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The theory of the oscillatory motion of a band particle or particlelike excitation in a uniform
field—the so-called Bloch oscillations—is reviewed. It is explained that this unusual
motion is contingent on two circumstances: the time dependence of the motion of the particle
under the influence of the external fields is governed by a classical equation of motion
(dp/dt5F), and the energy spectrum of the particle is of a band nature, which presupposes a
periodic dependence of the energy of the particle on its momentum~quasimomentum! «
5«(p)5«(p1p0), wherep0 , the period inp space, arises in a natural way in the description
of the motion in a spatially periodic structure~lattice!. Quasiclassical and quantum
descriptions of the Bloch oscillations are given. Since a systematic exposition of the theory of
this phenomenon has not been set forth in any monographs, the first part of this review
gives a rather detailed presentation~with all the basic calculations! of the results on the oscillatory
dynamics of an elementary excitation of a one-dimensional discrete chain, including the
theory of the motion both in a uniform static field and in a uniform field with a harmonic time
dependence. An interpretation is offered for the relationship of the frequency of
quasiclassical Bloch oscillations and the equidistant spectrum of energy levels in the so-called
Wannier–Stark ladder. An explanation of the physical nature of the phenomenon of
dynamical localization of a band particle in a spatially uniform alternating field is given. It is
shown that the basic results of such a dynamics carry over to the motion of a dynamical
soliton of the discrete nonlinear Schro¨dinger equation. The second part of this review describes
the Bloch oscillations of topological and dynamical magnetic solitons. It is shown that the
phenomenological Landau–Lifshitz equations for the magnetization field in a magnetically ordered
medium have surprising soliton solutions. The energy of a soliton is a periodic function of
its momentum, even though its motion occurs in a continuous medium. The presence of this
periodicity is sufficient to explain the Bloch oscillations of magnetic solitons. The quantum
oscillatory dynamics of a soliton in a discrete spin chain is described. The review concludes with
a discussion of the conditions for this oscillatory motion and the possibilities for its
experimental observation. ©2001 American Institute of Physics.@DOI: 10.1063/1.1388415#
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INTRODUCTION

The term ‘‘Bloch oscillations’’ in electronic theory refer
to the oscillatory motion of a band electron in a unifor
static electric field, with an amplitude inversely proportion
to the value of the applied field. This unusual behavior o
quasiparticle in a crystal was predicted by Bloch in 1921

and for that reason bears his name. The cause of this unu
~from the standpoint of the mechanics of a charged part
in vacuum! behavior of an electron in a crystal~a so-called
Bloch or band electron! is a certain peculiarity of its dynam
ics in external fields. The particular property of the ba
motion of an electron which is mainly responsible for th
peculiarity is that the energy of a Bloch electron, like that
any quasiparticle in a crystal, is a periodic function of
momentum or, more precisely, its quasimomentum~see any
book on electronic theory, e.g., Refs. 2 and 3!. In turn, the
periodic dependence of the energy of an electron on its q
simomentum~the periodicity of its dispersion relation ink
space, with the period of the reciprocal lattice! is due to the
translational spatial periodicity of the crystal lattice. If th
5131063-777X/2001/27(7)/29/$20.00
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period of the crystal lattice~the lattice constant! is equal to
a, then the curve of the reciprocal lattice is equal to 2p\/a.
Assuming the existence of periodicity of the dispersion re
tion and the possibility of using the classical equation
motion, according to which the time derivative of the m
mentum of an electron is equal to the electric field acting
it, one can easily estimate the period of the Bloch osci
tions. LetDp52p\/a be the period of the electron energ
«(p) as a function of quasimomentum. The velocity of t
electron is equal to the derivative of« with respect top, and
therefore by virtue of the periodicity of« it is also a periodic
function of p with the same period. In an electric field th
evolution of the momentum is governed by the usual eq
tion

dp

dt
5eE, ~1!

and thereforep5eEt. Consequently, the electron velocit
indeed oscillates in time with a frequencyvB5eEa/\. This
© 2001 American Institute of Physics
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is the Bloch oscillation frequency. Importantly, the Bloc
frequency is proportional to the period of the crystal latt
and to the force acting on the electron.

The proposed quasiclassical explanation of the natur
the Bloch oscillations can be associated to a simple quan
scheme. Let a quantum particle be found in a stationary s
with energy« in a potential fieldU52Fx52eEx. We de-
note byx5x0 the coordinate of the point whereE52Fx0

~Fig. 1a!. Then on the semiaxisx.x0 the kinetic energy of
the particle is negative, and its wave functionc(x) decays
exponentially with increasingx ~Fig. 1b!. On the semiaxis
x,x0 the particle has a certain effective negative quasim
mentum that depends on the coordinatex, and it is in a state
of motion leftward. However, when the quasimomentu
reaches the boundary of the Brillouin zone, the velocity
the electron goes to zero, i.e., the particle is, as it we
reflected from the Brillouin zone boundary. Consequen
although the functionc(x) has an oscillatory character, it
amplitude falls off with increasingx02x ~Fig. 1b!. As a
result, the wave vector is nonzero only in the region n
x5x0 . Therefore, the stationary state of the particle is loc
ized around this point. This physical phenomenon is som
times calleddynamical localizationof a particle in a uniform
external field. However, it is known that a localized statio
ary state must have a discrete energy level. What dis
guishes this value of« in a uniform field? By virtue of the
uniformity of the field there is no preferred value of«. There-
fore, the requisite discreteness can only be due to an e
distant discrete spectrum of the type

«5«01n\v, n50,61,62,..., ~2!

FIG. 1. Energy levels of a band particle in a uniform field~the Wannier–
Stark ladder! ~a!. The wave function of a band particle with energy« ~b!.
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where differentn correspond to the same wave functions b
which are localized around different centersxn5x0

1(\v/F)n.
The equidistant spectrum~2!, particularly its manifesta-

tion in optical experiments, is called a Wannier–Stark ladd
It turns out that the distances between the ‘‘steps’’ of t
ladder in the case of an electron in a uniform electric fie
determine the Bloch oscillation frequency:v5vB .

At reasonable values of the electric field the frequen
of the Bloch oscillations of an electron in a metal is ma
orders of magnitude lower than the collision frequency of
electron even in extremely pure metals~in other words, the
oscillation period is much greater than the relaxation timt
in the metal, and the amplitude of the Bloch oscillations
much greater than the electron mean free path!. Therefore, in
calculating the resistivity of conductors and in other simi
cases the periodic character of the electron motion need
be taken into account, and the electron motion over sh
path lengths can be assumed translational. It was long
sumed that the Bloch oscillations are an extremely curi
physical phenomenon but are of interest only from a theo
ical standpoint.

The situation was fundamentally altered by the devel
ment of technology for fabricating extremely perfect sem
conductor superlattices with structural periods much gre
than the lattice constant. In such structures the period of
reciprocal lattice is greatly diminished, and the electron
ergy spectrum separates into narrow subbands, with the
sult that the Bloch oscillations corresponding to them ha
rather high frequencies~the obvious conditionvt@1 be-
comes attainable!; thus it becomes realistic to produce su
oscillations and observe them experimentally. This possi
ity was first pointed out by Esaki and Tsu,4 prompting an
experimental search for these oscillations. It is clear that
cause of the finite value of the relaxation timet, measure-
ments should be made over very brief time intervalsDt
!t, but that becomes a problem of experimental techniq

Experiments along this line confirmed, first of all, that
Wannier–Stark ladder is manifested in optical studies.6 Later
the Bloch oscillations of the electron current in the bulk
semiconductor superlattices were observed directly~the first
direct experiments of this type were apparently done in R
7 and 8!.

It should be noted that what was observed experim
tally were oscillations of the macroscopic electric curre
Since the actual phenomenon under study consists in
translational electron oscillations, it can be manifested o
in the case of coherent motion of all the electrons particip
ing in it. In the experiment a macroscopic group of coher
electrons was produced by acting on the semiconductor
perlattice with a laser pulse~interestingly, the laser pulse
itself was produced by the collective coherent transition o
large group of electrons from an energy-converted ato
state to some ground state!.

The need for macroscopic coherent motion of the el
tron system for realization of Bloch oscillations places th
phenomenon in with a group of other peculiar oscillati
effects caused by the periodic dependence of the curren
the phase of a system of a large number of current carr
~recall that the quasimomentum of the electron determi
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the phase of its wave function!. A clear and obvious exampl
is the Josephson effect, in which the currentI depends har-
monically on the phaseF:

I 5I 0 sinF, I 05const, ~3!

and the rate of change of the phaseF with time is given by
an expression analogous to~1!:

dF/dt5eV/h, V5const, ~4!

whereV is the electrical potential difference across the
sephson junction. As a result, a dc voltage gives rise to
oscillatory current.

A physical system of the kind that should exhibit Bloc
oscillations is a superconducting condensate in a perio
superconducting structure~superconducting superlattice!. In-
deed, a superconducting condensate is a macroscopic sy
of coherently moving electrons~Cooper pairs! and, when
placed in a spatially periodic potential, should execute Blo
oscillations under to influence of, say, an external elec
field directed along an axis along which there is periodic
of the order parameter. This circumstance was pointed
long ago,9 but the author is unaware of any correspond
experiments.

Peculiar electron oscillations of the Bloch type can ar
in a layered superlattice in a high magnetic field parallel
the layers~the layers are arranged periodically with periodd
in the direction perpendicular to thex axis, and the magnetic
field H is directed along thez axis!. For a suitable choice o
gauge of the vector potential the electron momentum co
ponentpy is conserved and determines thex coordinate of
the center of the classical orbit of the electron,x0 . For this
geometry the electron energy, as was shown in Ref. 10,
periodic function ofx0 and, hence, a periodic function ofpy .
If in such a superlattice an electric fieldE that does not
destroy its energy structure is applied along they axis, then,
in accordance with what we have said, oscillations arise w
a frequencyv52pEc/(Hd). Interestingly, in this case th
oscillations are observed in the direction perpendicular to
direction of periodicity of the superlattice but are govern
by the time required for an electron to traverse the period
at the Hall drift velocityEc/H.

The fundamental commonality of the phenomena is
vious, as are the conclusions as to the possibility of sim
oscillations of the macroscopic electric current or the part
flux, if one is talking about the coherent motion of uncharg
particles or quasiparticles. Although the examples giv
above pertain to the Bloch oscillations of electrons under
influence of an electric field, the electrical properties of t
systems mentioned came in through the fact that the exte
force acting on the quasiparticle was determined by the va
of the electric field. If the electric field on the right-hand si
of Eq. ~1! is replaced by a constant force of any nature, th
all of the above discussion will still apply, and therefore:

a! the coherent particle flux~or current! should depend
on the phase of the system in a periodic manner~in the case
of electrons and Bloch oscillations this phase is the ident
momentum of the electrons!;

b! a rate of change of the phase should arise under
influence of a uniformly distributed external force;
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c! when condition a! holds, another type of oscillation
can occur, namely: if the transverse uniform external fo
creates a phase gradient, then purely spatial longitudinal
cillations of the dc current density can arise~the role of time
is assumed by one of the spatial coordinates!.

The situation described in this last conclusion has b
used in the description and experimental observation
Bloch oscillations in optics.11,12 Optical Bloch oscillations
reduce to spatial oscillations of a narrow laser beam pro
gating along a periodic system of parallel optical waveguid
under the influence of a uniform gradient of the refracti
index of the waveguide material. The individual optic
waveguides are weakly coupled optically with one anot
and form a sort of optical periodic medium, and in the e
periments of Refs. 11 and 12 the external force~the refrac-
tive index gradient! acting on the laser beam was produc
by a nonuniform heating of the system of optic
waveguides.

A discussion and experimental observation of opti
Bloch oscillations confirms the common physical nature
this phenomenon and the possibility that it can arise wh
any object moves under the influence of a constant forc
its kinetic energy is a periodic function of momentum. Su
an object may be, for example, a particlelike formation in t
nonlinear classical or quantum dynamics of discrete syste
where the presence of a periodic structure is provided by
aforementioned periodicity of the excitation energy. A typic
particlelike object of this type is a dynamical soliton. Th
Bloch oscillations of a soliton in a discrete molecular cha
described by a nonlinear Schro¨dinger equation are analyze
in Ref. 13.

A special class of systems in which the coherent eff
under discussion exists is that of magnetic systems, the
sideration of which brings us to the main subject of th
paper. Low-current magnetic dynamical solitons are
scribed by a nonlinear Schro¨dinger equation. Therefore, ou
analysis of the Bloch oscillations of solitons begins with t
dynamics of a soliton of this equation.

The oscillatory motion of the simplest magnet
soliton—a domain wall—in a realistic model, namely, in
ferromagnet with biaxial anisotropy, was first predicted
Ref. 14. The specifics of the dynamical equations for
magnetization of ferromagnets are such that even in the c
tinuum approximation a domain wall executes Bloch oscil
tions in a uniform magnetic field. Comparatively recent th
oretical studies have confirmed that Bloch oscillations
domain walls with solitonlike behavior can exist15 and have
calculated them both at the level of quasiclassical dynam
of domain walls moving in a periodic potential16 and with
the use of the quantum dynamics of spin solitons.17 Bloch
oscillations of a dynamical magnetic soliton in a on
dimensional~1D! uniaxial ferromagnet under the influenc
of a magnetic field gradient were predicted in Ref. 18 a
investigated in detail~including numerical calculations base
on the Landau–Lifshitz equations! in Ref. 19. The influence
of dissipative processes on the damping of Bloch oscillati
of a magnetic soliton were analyzed in Ref. 20.

The papers listed, which deal with to oscillations
magnetic solitons under the influence of a constant force,
only a few of the papers on which this review is base
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Nevertheless, they demonstrate that interest in the prob
arose long ago in the nonlinear dynamics of the magnet
tion of magnetically ordered systems and has been risin
recent years.

1. BLOCH OSCILLATIONS AND DYNAMICAL LOCALIZATION

1.1. Quantum theory of the Wannier–Stark ladder and
the oscillation of a particle in a uniform external field

Let us consider a 1D discrete system in which the m
tion of a particle reduces to hops between adjacent site
the chain. In the tight-binding model the equation for t
dynamics of a free particle in the site representation has
form

i
]Cn

]t
5a~2Cn2Cn112Cn21!1V0Cn , ~5!

where n is the number of the site,a is the frequency of
transition of the particle between nearest-neighbor sites
determines the kinetic energy of the quantum particle,
V0 is the potential energy of the particle at rest and is in
pendent of the site number~Planck’s constant is set equ
to 1!.

The wave function satisfying Eq.~5! has the obvious
form

Cn5C0 exp~ ikn2 ivt !, ~6!

wherek is the wave number~the distance between sites
taken equal to 1! and is related to the energy~frequencyv!
by the dispersion relation

v5V01«~k![V012a~12cosk!. ~7!

The spectrum of steadily moving states of a particle
continuous and has a single band of finite width (V0,v
,V014a).

From now on we will restrict the analysis to single-ba
models only. Of course, in using only single-band models
will be unable to discuss many features of the Bloch osci
tions, in particular, all those connected with interband tr
sitions. Some effects that go beyond the single-band mo
have been considered in Ref. 21. However, in the case
interest to us the spectrum of elementary excitations ha
single band, and so we may restrict the analysis to sin
band models.

Consider a wave packet whose harmonic components~6!
are localized ink space near a certain value ofk:

C~n,t !5
1

2p E
2p

p

F~k,t !exp~ ikn!dk. ~8!

As we know, the translational velocity of the envelope of t
wave packet~8! is equal to the group velocity of the particle
wave:

v5
dv

dk
52a sink. ~9!

A remarkable property of relation~9! is the periodic depen
dence of the velocity on the wave number~or wave vector in
the 3D case!. This property has an interesting manifestati
in the motion of a particle under the influence of extern
forces.
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Let us consider the dynamics of the same particle in
external field. It is known from electronic theory2–4 that in
the quasiclassical approximation a potential field producin
uniformly distributed forceF on a particle causes a chang
in wave number~quasimomentum! of the particle/packet:

dk

dt
5F. ~10!

Consequently, in a uniform and static field the wave num
k varies monotonically with time:

k5Ft. ~11!

Substituting~11! into ~9!, we see that the velocity of the
particle oscillates in time with a frequency

vB5F. ~12!

In dimensional units this frequency is equal tovB5Fa/\,
where a is the period of the chain~the distance between
nearest-neighbor sites!. This is the frequency of the Bloch
oscillations.

A uniform force field of strengthF in a continuous me-
dium corresponds to a potentialU52Fx, which in the site
representation can be written as

Vn52Fn. ~13!

One naturally wonders what will happen when the poten
~13! is included directly in Eq.~5!. ReplacingV0 in ~5! by
~13!, we get

i
]Cn

]t
5a~2Cn2Cn112Cn21!2FnCn . ~14!

We note that the stationary solutions of equation~14!, of the
typeCn(t)5Cn

v exp(2ivt), have a certain property which i
typical for the dynamics of a particle in a uniform field. It
clear that the solution of the equation of steady-state osc
tions,

~v1Fn!Cn5a~2Cn2Cn112Cn21! ~15!

is a function of the variablez5n1v/F, and it will therefore
be the same for different pairs of numbersn and frequencies
v connected by the relationz5const:

Cu2n/F
v1n 5Cn

v . ~16!

However, since the site numbern is an integer, the above
property is valid only for wave parametersn satisfying the
requirement

n5mF,m50,61,62,... ~17!

Thus, without using the explicit form of the stationary sol
tions of equation~15!, one can reach the conclusion that t
spectrum of this equation has an infinite series of equidis
preferred frequencies~energies! with a distance between lev
els

Dv5F5vB . ~18!

It is this series of frequencies that is associated with
Wannier–Stark ladder.

The agreement between the frequency difference~18!
determining the height of a step in the Wannier–Stark lad
and the Bloch oscillation frequency~12! is not accidental,
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since they reflect two sides of the same physical phen
enon. The relationship between the Wannier–Stark lad
and the Bloch oscillations has been discussed repeated
the literature, in particular in the more recent paper
Luban.22

But let us return to a systematic analysis of Eq.~10!,
which we rewrite ink space:

F~k!5(
n

Cn exp~2 ikn!. ~19!

We note that

]F

]k
52 i(

n
nCn exp~2 ikn!, ~20!

and therefore equation~14! can be rewritten in the form

i
]F

]t
5«~k!F2 iF

]F

]k
. ~21!

We turn our attention to the fact that the last term in~21!
arose from relation~20!, where the sum on the right-han
side contains a factorn that increases at infinity. Therefore
the representation~20! has meaning~the infinite sum on the
right-hand side converges! only under the condition that th
wave functionCn vanishes sufficiently rapidly asunu→`. Is
that possible? We noted above that in the system under s
there exists a series of discrete preferred frequencies.
known that discrete levels correspond to localized states
ing the obvious property thatCn→0 asunu→`. Since rela-
tion ~20! has meaning only for such states, our further ana
sis of the solutions of equation~20! will pertain to the study
of a set of solutions of the preferred set of frequenc
~energies!.

Turning to an analysis of these solutions, we make t
remarks. First, since the wave vectorF(k) in dimensionless
units is periodic with period 2p, the quasiwave numberk is
equivalent to the angle variablew (0,w,2p) specifying
the state of a ‘‘plane rotator.’’ Therefore, the Schro¨dinger
equation~5! studied here is equivalent to the equation
motion of a plane rotator, the dynamical features of wh
have relevance to the theory of Bloch oscillations.23

Second, the termnCn in Eq. ~14!, which takes into ac-
count the presence of a uniform force field, corresponds
the termi (]F/]k) in Eq. ~21!, and this corresponds to th
idea that the operatorn5 i ]/]k has the meaning of the num
ber operator of the site~discrete coordinate! in a single-band
model. Using the number operators for siten and the quasi-
wave numberk in thek representation, it is easy to formula
the problem on a rigorous quantum level.

We write the Schro¨dinger equation~5! in the standard
form

i
]C

]t
5HC, ~22!

where the Hamiltonian operator in thek representation is
written

H5«~k!2 iF
]

]k
. ~23!
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The role of the boundary conditions or quantization con
tions in k space is played by the condition that the wa
function F(k) be periodic with period 2p ~in dimensional
units, with the reciprocal lattice period 2p/a!. This periodic-
ity follows directly from definition~19!.

According to the usual rules we obtain equations for
time derivatives of the operatorsk andn:

dk

dt
5 i @H,k#5F, v5

dn

dt
5 i @H,n#5

d«

dk
, ~24!

where we have used the usual definition of the commuta
@A,B#5AB2BA.

Naturally the quantum relations~24! agree with the qua-
siclassical results of electronic theory~9! and ~10!, and it
remains only to give these relations problem-specific con
in the coordinate representation. It is clear that the gen
solution of equations~21! or ~22! can be written as

F~k,t !5Q~k2Ft !expH 2 i
E~k!

F J , ~25!

whereQ(k) is an arbitrary differentiable function, and th
following notation has been introduced for brevity:

E~k!5E
0

k

«~q!dq52ak2W~k!, W~k!52a sink.

~26!

Formula ~25! allows us to describe the evolution of a
arbitrary initial distribution of the Fourier component,F0(k)
~at t50!:

F~k,t !5F0~k2Ft !expH i

F
@E~k2Ft !2E~k!#J . ~27!

We note that forF50 formula~27! goes over to the obvious
relation

F~k,t !5F0~k!exp~2 ivt !,

where the frequencyv is related to the wave numberk by
the dispersion relation~7! for V050 (v5«(k)).

We see that the centroid of the packet~27! moves ink
space with a velocitydk/dt5F, in agreement with the qua
siclassical result~10!.

Let us confirm the features of the discrete spectrum
eigenvalues of the stationary dynamical states. We write
Fourier time transform of solution~25!:

Fv~k!5E F~k,t !exp~ ivt !dt5expH i

F
@~v22a!k

1W~k!#J E Q~z!expH 2 i
vz

F J dz

F
. ~28!

Since, as we have said,F(k)5F(k12p), the eigenvaluev
has the following spectrum:

v52a1mF, m50,61,62,... ~29!

We see that the spectrum of stationary states of the equa
under study is discrete and infinite (2`,m,`). This is the
Wannier–Stark ladder. The distance between energy le
~29!, equal toDv5F5vB , coincides with the Bloch oscil-
lation frequency~12!, thus confirming prediction~18!.
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We write expressions for the eigenfunctions of t
Wannier–Stark ladder:

Fm~k!5A expH i
W~k!

F J exp~ imk!, ~30!

where the normalization coefficientA is conveniently chosen
equal to 1.

In the site representation these states have the form

Cn
m5

1

2p E Fm~k!exp~ ikn!dk

5
1

2p E
2p

p

expS i
W~k!

F Dexp@ i ~m1n!k#dk. ~31!

It follows that the different states of the Wannier–Stark la
der have identical profiles shifted by an amountm along the
chain:Cn

m5Cn1m
0 . For an explicit description of the profile

of these states we setm50. Then

Cn
05

1

2p E
2p

p

expS 2a i

F
sink1 iknDdk5J2n

2a

F
, ~32!

whereJn is a zero-order Bessel function. The functionJ2n

describes the amplitude of a stationary state localized in
neighborhood of the sitem50. Figure 2 shows a plot of this
function for F50.5a in arbitrary scale. Since, according
~13!, the potential falls linearly with increasingn, the left-
hand side of the figure illustrates the total internal reflect
of a particle due to the impossibility of penetrating into t
region n52`, and the right-hand side shows the effect
Bragg reflection from the Brillouin zone boundary, upo
reaching which the velocity of the particle changes sign.

In the study of Bloch oscillations of wave packets t
width of the packet turns out to be important. For this reas
it is necessary to do a detailed treatment of the evolution
wave packets of different types in external fields. Let us fi
consider a wave packet with a rather narrow Fourier sp
trum localized~for t50! neark50. Making use of this cir-
cumstance, we writek2Ft5j and expand the argument o
the exponential function in~27! in a series in powers ofj,
keeping only the first nonvanishing term:

E~k2Ft !2E~k!52E~Ft !2«~Ft !j. ~33!

Using this expansion, we rewrite~27! as

F~k,t !5F0~j!expH 2 i
«~F !

F
jJ expH 2 i

E~Ft !

F J . ~34!

FIG. 2. Amplitude of the wave function of a stationary state localized n
the sitem50 (F50.5a).
-

e

n

f

n
f
t
c-

We now return to the site representation. We treat the
index n as a continuous variable~this is admissible for a
packet that is narrow ink space, since such a packet span
large interval of sites in the coordinate representation!. Then
it follows from Eq. ~8! that

Cn~ t !5exp~ iFnt !Cn2dn~0!expH 2 i
E~Ft !

F J , ~35!

where the shiftdn in the site index corresponding to th
maximum amplitude of the wave packet is given by the e
pression

dn5
«~Ft !

F
. ~36!

It is this relation that describes the Bloch oscillations
the coordinate of the center of the wave packet:

n~ t !5n~0!1«~Ft !/F. ~37!

Let us examine the density distribution in the wa
packet:

rn~ t !5uCn~ t !u2. ~38!

According to ~28!, the evolution ofrn(t) reduces to a dis-
placement of the center of the density distribution,

rn~ t !5rn2dn~0!. ~39!

At short times (Ft!1) the particle/packet moves with a con
stant acceleration:

dn5aFt2.

At long times the translational velocity of the packet is giv
by

v5
dn

dt
52a sin~Ft !. ~40!

Naturally expression~40! agrees with the quasiclassical fo
mula ~9! for k5Ft.

The density distributionrn(t) found numerically in Ref.
23 for the steady-state motion of the packet explicitly de
onstrates its Bloch oscillations unaccompanied by any ra
tion ~Fig. 3!.

Obviously the given results are based on expansion~33!
in which all powers ofj except the first have been droppe
Consequently, they are the more accurate the narrower tk
spectrum of the packet, i.e., the closer the state of the par
to a pure state corresponding to a definitek.

In the other limiting case, when the particle is initial
localized at one site (n50) and the Fourier spectrum is
plane wave (F0(k)51), the dynamics of the Bloch oscilla
tions is different.

Let us use expression~27! and, employing~8!, return to
the site representation:

r
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C~n,t !5
1

2p
exp~22iat !E

2p

p

expH 2a i

F
@sink2sin

3~k2Ft !#J exp~ ikn!dk

5exp~22iat !J2nF4a

F
sin

Ft

2 GexpH i
n

2
~Ft2p!J .

~41!

Using the properties of the Bessel functions, one c
easily see that if the functionC(n) is a solution of equation
~14!, then the function (21)nC* (2n) is also a solution
with the same profile~envelope! but describing an excitation
that differs at neighboring sites by a phase jump equal top.
Consequently, the density produced by the solution~41! is an
even function of the site indexn counted from the center o
localization:

rn~ t !5Jn
2S 4a

F
sin

Ft

2 D . ~42!

This means that the excitation propagates symmetricall
the directions of increasing (n.0) and decreasing (n,0)
potential. We recall that at small arguments the Bessel fu
tion has the form:Jn(z)5(1/n!)(z/2)n for z!n (n.0). The
modulus of the function increases monotonically with
creasing argumentz and reaches a maximum atz'n, pro-
vided thatn@1. For z@n the Bessel function is oscillator
and falls off in proportion toz21/2. In formula~41! the argu-
ment z5(4a/F)sin(Ft/2) depends harmonically on time
reaching a maximum valuezm54a/F at t5tm5p/F.
Therefore the evolution of the wave packet occurs as
lows: at t50 the particle is localized (Cn(0)5dn0), and as
time goes on, the excitation propagates to the near
neighbor sites of the chain~to the left and right!, and the
maximum actually reaches a remote siten@1 at z'n ~by
which time the excitation in the central part of the chain w
have fallen off, in an oscillatory manner, asz21/2!. However,
since z<zm , the wave can propagate only to a distan

FIG. 3. Bloch oscillations of a rather wide wave packet in a uniform fi
~a!. The distribution of intensities in the packet at three different times~b!.
n

in

c-

l-

st-

e

n'zm , reaching a maximum distance att5tm ; at this time
the argumentz stops growing~a stopping point!, and then the
wave ‘‘falls back,’’ gathering itself into the original pulse a
the siten50 at the timet52p/F.

An order-of-magnitude estimate of the peak-to-peak a
plitude of the oscillations can be made by calculating
mean-square deviation of the number of the site from
center in the course of the oscillations. It is sufficient to
the calculation for m50, using formula ~41! and the
identity24

(
n

n2Jn
2~z!5

1

2
z2, ~43!

after which trivial manipulations lead to the result

^n2&5(
n

n2rn~ t !58S a

F D 2

sin2S 1

2
Ft D . ~43a!

Averaging over time giveŝn2&5(2a/F)2. Thus one indeed
has^n2&1/25zm/2. Figure 4 shows the results of a numeric
integration of Eq.~14!, which illustrate the oscillatory evo
lution of the wave packet.1

We conclude this Section by remarking that formul
~42! and ~43a! admit passing the limitF→0, which corre-
sponds to treating a quantum particle in the absence of
ternal field. By taking this limit, one can write the sever
equations:

rn5Jn
2~2at !, ^n2&52a2t2. ~44!

We see that a free particle initially localized at the s
n50 moves away to infinity as time goes on. Using t
aforementioned properties of the Bessel functions, we fi
that the maximum densityrn is observed at the siten (n
@1) at the timetn'n/(2a). This means that the transla
tional velocity of the maximum of the distributionn/tn

52a coincides with the maximum of the group velocity o
the particle@see formula~9!#.

FIG. 4. Evolution of a narrow wave packet, demonstrating the alterna
spreading and focusing of the packet. The inset shows the distribution o
field intensity at the time of its stopping and turning.
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1.2. Dynamical localization of a particle in an alternating
field

The presence of a series of discrete Wannier–Stark
quencies in the spectrum of a particle in a uniform force fi
should be manifested in resonance phenomena when the
ticle is acted on by a force which is periodic in time. W
assume that the uniform external forceF includes a har-
monic time-dependent component:

F→F~ t !5F01F1g~ t !, F0 ,F15const, ~45!

where in the simplest case

g~ t !5cos~vt1u!. ~46!

It is clear that Eq.~21! remains valid in this case,

]F~k!

]t
1 i«~k!F~k!5F~ t !

]F~k!

]k
~47!

and the wave numberk as before obeys the quasiclassic
equation of motion~11!. Consequently,

k~ t !5k01E
0

t

F~s!ds5k01F0t1F1E
0

1

g~s!ds.

Embarking on a quasiclassical analysis of the particle
namics, we note that the velocity of the wave packet is
termined by the expressionv52a sink. Having the simplest
case in mind, we relate the constants of integrationk0 andu
by the conditionvk05F1 sinu. Then

v52a sin@F0t1~F1 /v!sin~vt1u!#. ~48!

Using the properties of series of Bessel functions, we wr

v52aH sinF0t cosFF1

v
sin~vt1u!G

1cosF0t sinFF1

v
sin~vt1u!G J 52aH J0S F1

v D sinF0t

12(
p51

`

J2pS F1

v D cos@2p~vt1u!#sin~F0t !

12(
p51

`

J2p21S F1

v D sin@~2p21!~vt1u!#cos~F0t !J .

~49!

Since

cosu1 sinu25
1

2
@sin~u11u2!2sin~u12u2!#,

for all vÞF0 the particle executes periodic Bloch oscill
tions at the fundamental Bloch frequencyvB5F0 , which is
accompanied by an infinite series of satellites with frequ
ciesvB6mv, with m51,2,3....

A curious resonance arises at the frequencyv5vB ,
equal to the distance between steps of the Wannier–S
ladder: a constant component of the particle velocity appe
~the term withm51!, the value of which is determined b
the initial conditions:

v05aJ1~F1 /F0!sinu, ~50!
e-
d
ar-

l

-
-

-

rk
rs

and the oscillatory component acquires a set of higher h
monics with frequenciesmvB .

If F1!F0 , then the velocity of the particle at resonan
(v5vB5F0) is

v5a~F1 /F0!sinu12a sin~vBt !1a~F1/F0!sin~2vBt1u!.
~51!

An analogous phenomenon in the physics of Joseph
superconducting systems is called the Shapiro effect.3

The effect described above means that when a par
executing Bloch oscillations is acted on by a force with
sinusoidal time dependence, under resonance condit
v5vB the particle will drift with a certain constant velocit
v0 . Consequently, the Bloch oscillations occur in a referen
frame moving with a certain constant velocityv0 .

Let us now consider the effect of a purely sinusoid
alternating force~46! on the particle, settingF050. For con-
venience in the calculation we chooseu50 and k05p/2.
Then in place of Eqs.~48! and ~49! we have

v52a cosFF1

v
sin~vt1u!G52aJ0S F1

v D
14a(

p
J2pS F1

v D cos~2pvt !. ~52!

Relations~52! pertain to a situation which is in a certai
sense the reverse of that described by formula~51!, namely:
for an arbitrary ratioF1 /v the particle velocity has a con
stant component equal to 2aJ0(F1 /v). However, if the ratio
F1 /v coincides with a zero of the functionJ0(z), then the
constant component vanishes. It is said that adynamical lo-
calization of the particle by the alternating field occurs.26

This resonance phenomenon is unusual in that the cond
for it is the coincidence of the frequency and amplitude o
force that is alternating in time~but uniform in space!.

The time dependence of the mean-square displacem
of the center of the packet~Fig. 5! and of the probability of
finding the excitation at the initial site of localization~Fig. 6!
beautifully illustrates the dependence of the dynamics of
packet on the ratioF1 /v and shows that the coincidence
F1 /v with a root of the functionJ0(z) is indeed a specia
condition.

FIG. 5. Time dependence of the mean-square displacement of the cen
a packet for different ratiosF1 /v.
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Naturally, the dynamical localization effect can be d
scribed rigorously by analyzing the distribution of the de
sity rn and the mean-square deviation^u2& of the particle
from the initial position at the siten50. For this it is conve-
nient to write the solution of equation~47! like ~27! but in
different independent variables. Together witht we introduce
the variable

q5k1E
0

t

F~s!ds,

having defined a new functionC(q,t)5F(k,t). Then Eq.
~47! is transformed to

i
]C

]t
5«@q2h~ t !#C, ~53!

h~ t !5E F~s!ds. ~54!

The solution of equation~53! has a form analogous to~25!,
viz.,

C~q,t !5Q~q!expH 2 i E
0

t

«@q2h~s!#dsJ . ~55!

Returning to the original variables, we obtain an analog
formula ~27!:

F~k,t!5F0@k1h~ t!#

3expH 2 i E
0

t

«@k1h~ t!2h~s!ds% , ~56!

whereF0(k) is the initial Fourier component~at t50!.
We write ~56! in explicit form, using the definition of«

in ~7!:

F~k,t !5F0@k1h~ t !#exp~22iat !

3expH 22iaE
0

t

cos@k1h~ t !2h~s!#dsJ .

~57!

We must now pass to the site representation and construc
densityrn(t). This procedure is extremely awkward and r

FIG. 6. Probability of finding an excitation at the initial site of localizatio
as a function of time for differentF1 /v.
-
-

f

the
-

quires the use of several theorems concerning the prope
of series of Bessel functions. It is set forth in the appendix
Ref. 27, and here we just give the results:

rn~ t !5Jm
2 $2a@u2~ t !1w2~ t !#1/2%, ~58!

whereu(t) andw(t) are given by the relations

u~ t !5E
0

t

cos@h~s!#ds, w~ t !5E
0

t

sin@h~s!#ds. ~59!

Using Eq.~43!, we obtain the mean-square displacement
the particle in the course of the oscillations:

^n2&52a2@u2~ t !1w2~ t !#. ~60!

Formula~59! is valid for any time dependence of the exte
nal force. However, we are primarily interested in the si
plest case of a sinusoidal force~46!. For F50 relation~59!
gives

u~ t !5
1

v E
0

vt

cosF S F1

v D sintGdt;

w~ t !5
1

v E
0

vt

sinF S F1

v D sint Gdt. ~61!

Let us examine the behavior of the functionsu(t) andw(t).
Whenevervt52pm, wherem is an integer, we have

um5~2pm/v!J0~F1 /v!5tmJ0~F1 /v!, v~ tm!50.

Thus the oscillatory functionw(t) is bounded for allt, while
the function u(t), on average, increases with time fo
t@2p/v, executing oscillations of finite amplitudedu5u
2^u& about the mean value. At long times one can leave
all but the monotonically increasing functionu(t)
'tJ0(F1 /v) in formulas ~58! and ~60!, in which case it
turns out that

rn~ t !5Jn
2@2atJ0~F1 /v!#,^n2&52@atJ0~F1 /v!#2,

t@2p/v. ~62!

We note that expression~62! is analogous to formulas~43a!,
which describe the evolution of the state of a free particle~in
the absence of external field!. If we introduce the effective
intersite transition parameter for a particle in a sinusoi
alternating field,aeff5aJ0(F1 /v), then formula~62! can be
rewritten like ~43a!:

rn5Jn
2~2aefft !, ^n2&52aeff

2t2, t@2p/v. ~63!

As a result, we have arrived at the conclusion that a si
soidal external field does not affect the free-particle deloc
ization process but only renormalizes the rate of delocal
tion. However, this conclusion is valid only in a gener
situation, i.e., for some undistinguished value ofF1 /v. If
this ratio coincides with a zero of the functionJ0(z), then
formulas~62! and~63! lose meaning. The functionsu(t) and
w(t) are now bounded periodic functions, and the fin
value of^n2& signifies dynamical localization of the particle

1.3. The Hamiltonian dynamics of a soliton of the nonlinear
Schrö dinger equation on a lattice

In the context of our discussion it is natural to turn to
study of the dynamics of particlelike solutions~solitons! of
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nonlinear discrete equations. Among the simplest of th
which have been well studied from the standpoint of soli
dynamics is the nonlinear Schro¨dinger partial differential
equation. It is a completely integrable equation, and the s
ton dynamics of the nonlinear Schro¨dinger equation~NSE!
has been described in detail both for the free motion of
soliton ~see, e.g., Ref. 28! and for its motion in an externa
field.29 The transition from the continuous to the discre
form of the nonlinear Schro¨dinger equation is nonunique. I
one starts from a model of the tight-binding type, then
nonlinear termguCnu2Cn should be added to Eq.~5!. Then,
settinga51, one would have the following equation:

i
]Cn

]t
52Cn2Cn112Cn2122guCnu2Cn . ~64!

It is an analog of this form that is used in the nonlinear opt
of a system of parallel optical waveguides.30 Unfortunately,
Eq. ~64! is not completely integrable and does not have ex
soliton solutions like the soliton of the continuous NS
However, there is an exactly integrable version of the n
linear Schro¨dinger equation on a lattice:31,32

i
]Cn

]t
5~Cn111Cn21!~11uCnu2!1VCn . ~65!

The frequency shiftV5V012 used in~65! is unimportant,
and we write it for consistency with Ref. 33, where th
equation is discussed from the point of view of interest to
here.

If V5const, then the linearized equation is characteri
by a dispersion relation of the type~8!:

w5V1«~k!, «~k!522 cosk. ~66!

Equation~65! has two additive integrals of motion:

N5(
n

ln~11uCnu2!, ~67!

which plays the role of the norm of the wave function, an

H5E1VN, E52(
n

~CnCn11* 1Cn* Cn11!. ~68!

The latter can be regarded as the energy, or Hamiltonian
the system. However, the Hamiltonian~68! generates equa
tion ~65! according to the usual definition

]Cn

]t
5$H,Cn%

with the Poisson brackets defined in a nonstandard way

$Cm ,Cn* %5 i ~11uCnu2!dmn ,

$Cm ,Cn%5$Cm* ,Cn* %50. ~69!

Naturally, in a uniform chain, owing to the translation
periodicity, there exists an obvious symmetry connected w
displacement by a lattice period, i.e., with the transiti
n→n11. We denote the corresponding translation opera
by T:

TCn5Cn11 .
e
n

li-

e

a

s

ct
.
-

s

d

of

h

r

Its eigenfunctions exp(ikn) correspond to the eigenvalue
exp(ik) ~2p,k,p, wherek is the quasiwave number!.

The operatorT generates an additional additive integr
of motion (nCn* TCn , which is conveniently represented i
the form

S52 i(
n

@Cn* ~Cn112Cn!2Cn~Cn11* 2Cn* !#

52 i(
n

Cn* Cn112CnCn11*

52 i(
n

Cn* ~Cn112Cn21!. ~70!

The quantity j n52 i @Cn* (Cn112Cn)2Cn(Cn21* 2Cn* )#
in a discrete chain is an analog of the flux density of partic
in a continuous medium. ThereforeS has the meaning of the
total momentum in the excited chain. Let us consider a s
tionary solution of equation~65! of the type Cn(t)
5Fn

v(t)exp(ikn2ivt2iu), where Fn
v(t) is a real function

andu is an arbitrary constant phase. The functionFn and the
relation betweenv and k are determined by two real equa
tions:

~V02v!Fn5cosk~Fn111Fn21!~11Fn
2!, ~71!

]

]t
ln~11Fn

2!522 sink Fn~Fn112Fn21!. ~72!

Soliton solutions correspond to a functionFn that vanishes
at infinity: Fn50 for n→6`.

The integrals of motionN, E, andS depend on both the
function Fn and onk:

N5(
n

ln@11Fn
2#, ~73!

E522 cosk(
n

FnFn11 , ~74!

S52 sink(
n

FnFn11 . ~75!

Let us consider small variations of the integrals of m
tion due to small variations of the wave vectorC, i.e., to
small variations ofFn and small variations of the wave num
ber k. It follows from ~71! and ~73! that

~V2v!dN5cosk(
n

~Fn111Fn21!dFn . ~76!

Similarly, from ~74!–~76! and ~68! we obtain

dH5vdN1Sdk. ~77!

We see that the parametersv andk of the solution are related
by the Hamilton’s dynamical equations:

v5
]H
]N

5V1
]E

]N
, S5

]H
]k

5
]E

]k
, ~78!

if the Hamiltonian is considered as a function of the ind
pendent variablesN andk: H5H(N,k).

If Eq. ~65! has a stationary localized solution that mov
along the chain at a velocityV, one would expect that, in
analogy to the situation for the continuous nonline
Schrödinger equation, its real amplitude will have the form
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Fn~ t !5F~n2Vt!. ~79!

On this basis the following solution was proposed in Ref.

F~x!5A cn@b~x2x0 ,k!#, ~80!

whereA5const and cn(z,k) is the Jacobi elliptic cosine, th
parameterk of which lies in the interval (0,k,1). For
k!1 the elliptic cosine goes over to the trigonometric cos
and Eq.~80! goes over to the solution of the linear equatio
In the opposite limiting case (k→0) the transition is
cn(z,k)→1/cosh(z)5sech(z), and we have the solution

Cn~ t !5sinh~b!sech@b~n2Vt2x0!#exp~ ikn2 ivt1 iu!,
~81!

wherex0 ,u5const, and the parametersb, V, v, andk are
related by the formulas

v5V22 cosh~b!cosk ~82!

and

V5~2/b!sinh~b!sink. ~83!

If the soliton solution in fact has the form~81!, then the
integrals of motion are invariant with respect to continuo
translations, and they can therefore be calculated by rep
ing the sums in~73!–~75! by integrals:(n ...5*dn... . Then
it turns out that

N52b, E524 sinh~b!cosk, S54 sinh~b!sink.
~84!

Consequently, three of the four parametersb, V, v, and
k are determined by fixed integrals of the motion, and
fourth ~the quasiwave numberk! remains free. We see tha
the soliton widthl51/b is determined solely byN, while
the soliton energy and velocity are periodic functions ofk ~as
in a uniform periodic structure!.

It is clear that relation~42! follows from the first of the
Hamilton’s equations~78!, while the second of the Hamil
ton’s equations, together with~83!, leads to the conclusion
that

S5NV. ~85!

The result~85! agrees completely with the representati
of S as the total momentum.

The presence of relation~85! makes it possible to put th
Hamiltonian formulas~77! and ~78! into a more customary
form. We introduce in place ofk the new independent vari
ableP5Nk ~the total quasimomentum of the excited cha!
and assume that the new Hamiltonian« is a function of the
independent variablesP and N @«(N,P)5H(N,P/N)#.
Then formulas~77! and ~78! become

d«5~v2kV!dN1VdP,

v2kV5
]«

]N
, V5

]«

]P
, ~86!

wherev2kV is the soliton frequency in a coordinate syste
moving with velocityV.

Let us return to the periodic dependence of the soli
velocity on k, which can cause Bloch oscillations of th
soliton in a nonuniform chain, where the quasiwave num
k is not conserved. We assume that the lower boundary o
spectrum of small oscillations, i.e., the quantityV, varies
:

e
.

s
c-

e

n

r
he

weakly along the chain:V5Vn . At small intervals of chain
length this dependence can be assumed linear:

V5Vn[V01hn, ~87!

where we have introduced a small gradienth of the function
Vn . The Hamiltonian generating an equation of the type~65!
with V5Vn has the form33

H5E1(
n

Vn ln~11uCnu2!5E1V0N

1h(
n

n ln~11uCnu2!, ~88!

where the last term describes the nonuniform potential in
field of which the soliton is moving.

Using the representationCn5Fn
v exp@i(kn2vt2V0t)#,

we write an equation that generalizes~71!:

~hn2v!Fn
v5cosk~Fn11

v 1Fn21
v !@11~Fn

v!2#. ~89!

As regards the solution of equation~89!, we can repeat wha
we said in the case of Eq.~11!: the solution of equation~89!
is a function of the single variablez5n2v/h, and it there-
fore will be the same for different pairsn,v satisfying the
requirementz5const. This can occur under the followin
condition, analogous to~13!:

v5mh, m50,61,62. ~90!

Consequently, among the solutions of equations~72! and
~89! is a system of oscillatory stationary solitons—a series
solutions corresponding to the Wannier–Stark ladder~90!.
These solutions can be represented as

Cn
m5Fn2m exp@ ik~n2m!2 i ~V01mh!t#. ~91!

The solitons of this series with different numbersm have the
same profiles with centers shifted bym sites.

Further analytic calculations require knowledge of t
explicit solution of equations~72! and~89!. In Ref. 33 exact
solutions are given for the particular case~87!. However, we
would like to set forth an approximate method of analy
that might also be used for more complicated potentialsVn .

If the gradienth is small, then such a solution can b
found in the so-called adiabatic approximation, which is w
proven in the case of continuous systems. Ifh!V0 , then the
soliton is sensitive only to the constant local value ofVn at
the point where its center is located. We can therefore
sume that the shape of the soliton is, as before, describe
a solution of the type~81! in which the parametersk andV
are weakly time dependent. Settingm50 in ~91!, we write

Cn
05F~n2X~ t !!exp@ i ~kn2w~ t !2V0t !#, ~92!

whereX(t) is the coordinate of the center of the soliton, a
the soliton velocityV and frequencyv are obviously given
by

V5dX/dt, v5dw/dt.

Let us first convince ourselves that the nonuniform p
tential @the last term in~88!# leads to nonconservation of th
total momentumS and determines the equation of motion
the quasiwave numberk. Starting from~75!, we calculate the
time derivative ofS:
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dS

dt
5uH,Su5h(

n
n@Cn* ~Cn111Cn21!

1Cn~Cn11* 1Cn21* !#.

Substituting~91! into this equation and changing from a su
to an integral, we obtain

dS

dt
52h coskE

2`

1`

nF~n!@F~n11!2F~n21!#dn.

~93!

Keeping only the leading terms in the expansion inh, we can
use on the right-hand side of~93! the solution of equations
~72! and ~89!, whereV5V05const. Taking~72! into ac-
count and noting that]F/]t52V(dF/dn), we obtain

dS

dt
5h cot~kV!E

2`

1`

n
d

dn
ln~11Fn

2!dn

52h cot~kVN!. ~94!

On the right-hand side of~94! in accordance with~85! we
haveVN5S. In addition, it is clear that the nonuniformity o
Vn does not affect the conservation ofN as an integral of
motion, and therefore equation~94! simplifies to

dV

dt
52h cot~kV!.

Finally, we use the relation of the velocity and wave numb
~83! and arrive at the final equation

dk

dt
52h. ~95!

Consequently, as in the previous Sections, the quasiw
number of the soliton in a uniform external field depen
linearly on time, while the soliton velocity oscillates with
frequencyvB5h.

The amplitude of the oscillations is determined direc
from the energy conservation law~88! in the adiabatic ap-
proximation. We transform the nonuniform potential in~88!
as

U~X!5hE n ln@11F2~n2X!#dn, ~96!

where the functionF(n) in the given approximation is de
termined by formula~80! or ~81!. If we take into account tha
in this approximationF(j)5F(2j), then

U~X!5hNX~ t !. ~97!

Thus it turns out that the total energy~88! can be represente
in the form

«5E~N,P/N!1V0N1hN ~98!

and can be treated as a function of the three indepen
variablesN, P, andX. Since in the sum~98! only P5Nk
and X are time-dependent, the time derivative of the wa
number~95! plays the role of one of the Hamilton’s canon
cal equations:

dP

dt
52

]«

]X
,

dX

dt
5

]«

]P
. ~99!
r

ve
s

nt

e

Later we shall see that dynamical equations of the Hamil
type ~99! also arise in the theory of magnetic solitons.18,19

Using the explicit expression~84! for E(N,k) and Eq.
~97!, we obtain from the conditionH5const the following
time dependence of the soliton coordinate:

X~ t !5X~0!1
4 sinh~N/2!

hN
@cosk~ t !2cosk~0!#, ~100!

where the time dependence ofk is given by Eq.~90!:

k~ t !5k~0!2vHt,vH5h. ~101!

The amplitude of the spatial oscillations of the soliton is

DX54 sinh~N/2!/~hN!. ~102!

It is inversely proportional toh and increases sharply wit
increasingN. The oscillations of the soliton velocity can b
determined directly using~99! or by differentiating ~100!
with respect to time:

V5
dX

dt
5

4 sinh~N/2!

N
sink~ t !. ~103!

The amplitude of the soliton velocity~103! is independent of
h.

It is of interest to examine the following formula in th
linear limit N→0. In the casek(0)50 formula~99! reduces
to

X~ t !5X~0!1~2/h!cosht5X~0!2«~ht !/h, ~104!

where the function«(k) is determined by formula~66!. It is
easy to see that Eq.~104! is analogous to~37! ~we note that
F andh, by definition, have different signs!.

For a51 formula~103! goes over toV522sin(ht), an
expression analogous to~40!.

Equations~98! and ~86! could be used to find the oscil
lations of the soliton frequencyv. However, it is simpler to
adopt the expression given in Ref. 33 for the phasew(t),
which determines the explicit form of the oscillatory solito
under discussion:

Cn
05sinhb sech@b~n2x~ t !!#exp~2 iw~ t !2Vnt !,

~105!

w~ t !52~4/h!cosh~N/2!sink~ t !. ~106!

Naturally, there exists an infinite series of oscillato
solitons, corresponding to the Wannier–Stark ladderm
Þ0). In fact, by substituting~106! into ~91!, we obtain in
place of~92! the general expression

Cn
M5F@n2m2X~ t !#exp$ i @kn2w~ t !2V0t#%, ~107!

which demonstrates the presence of a series of identica
lutions with displaced centers.

The numerical integration of Eq.~64! in the case of a
uniform field ~87! which was done in Ref. 33 beautifully
illustrates the Bloch oscillations of the soliton. Figure
shows the oscillations of the soliton for arbitrary signs of t
initial velocities. For comparison we present calculations
the evolution of a soliton of the standard discrete NSE~64!
in a uniform field~Fig. 8!. Although one can speak of osci
latory motion of the soliton, one can readily see that it d
cays rather rapidly as a consequence of the absence of
plete integrability of Eq.~64!.
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Finally, that same paper33 investigated the evolution o
the two-soliton dynamics~Fig. 9!, which is reminiscent of
the process of periodic splitting and subsequent collaps
the wave packet of the linear discrete equation~see Fig. 4!.

The peculiar behavior of the soliton under the influen
of an external force is manifested particularly in a high
nonuniform field. Its motion in a wide potential well is rem
niscent of the oscillatory motion of an ordinary particle in
potential well: a natural bounded motion with two turnin
points. The soliton dynamics is unusual in that the soli
has this same kind of motion on a potential hump, fro
which an ordinary particle slides off in an accelerated m
ner, while a soliton executes oscillatory motion about
crest~Fig. 10!. This is a manifestation of the unusual pro
erties of a particle with a periodic dispersion relation~in k
space! moving in a highly nonuniform external field~see
Appendix!.

The theory of Bloch oscillations of a soliton of the di
crete NSE in a static uniform field~87! can be generalized to
the case of a uniform field with harmonic time dependen
of the type~46!, when the time dependence of the gradienh
in formula ~87! has the form

FIG. 7. Bloch oscillations of a soliton in a uniform field for initial velocitie
of opposite sign~the dotted line is a graph of the potential!. The vertical
lines indicate the positions of the turning points.
of

e

n

-
s

e

h5h1 cosvt, h15const. ~108!

The results of a generalization of the theory set fo
above to the case of a uniform field with harmonic tim
dependence turned out to be analogous to our generaliza
to dynamical localization of the wave packet of the line
Schrödinger equation. Of course the corresponding formu
for the Bloch oscillations in this case will be more comp
cated, but nevertheless the situation is qualitatively simila
the linear theory. Here we give only a summary of that stu
referring the reader to Ref. 13 for the details.

The dynamical characteristics of a soliton, including t
coordinate of its center, are expressed as before in the f
of series of Bessel functions of the type~52!, with F1 re-
placed byh1 . If the ratioh1 /v coincides with a zero of the
Bessel functionJ0(z), which is in a certain sense a conditio
of parametric resonance, then the dynamical localization
the soliton is exactly the same as in the previously cons
ered case of localization of a wave packet in a discrete lin
chain.

FIG. 8. Stage of decay of a localized~solitonlike! excitation in the case of
nonintegrable dynamics in a uniform field; the dotted line shows a grap
the potential.
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An example of the evolution of the investigated syste
under resonance conditions is shown in Fig. 11, which
taken from Ref. 13. The wave function at the initial timet
50) is taken in the form of a combination of an infinites
mally narrow wave packet, proportional to the Kroneck
delta dn0 , and a soliton packet localized near the s
n5n0550, the soliton widthDn being taken small in com
parison with the distance to thed-function packet (D!n0).
As time goes on, the narrow packet, as in the linear probl
splits into two packets which move in opposite directions
the beginning of the cycle and generate tails of lo
amplitude radiation. Having reached a certain maxim
peak-to-peak amplitude of oscillation the pair of narro
wave packets ‘‘falls back,’’ collecting into ad function by the
end of the period. The soliton interacts noticeably with
diation in the region where radiation is present, but it rec
ers its form completely upon leaving this region, and it e
ecutes regular periodic oscillations.

If the resonance conditions are not satisfied (h0Þv)
then one observes a deviation from the strictly cyclical

FIG. 9. Reciprocating motion of a pair of solitons in a uniform field~the
dashed line is a graph of the potential!, reminiscent of the motion of a packe
of waves of the linear equation~see Fig. 4!.
s

r

,
t
-

-
-
-

-

gime which increases linearly with time~as should be the
case as one departs from a condition of parametric re
nance! ~Fig. 12!. The deviation from the resonance picture
manifested in the fact that the pair of narrow wave pack

FIG. 10. Oscillatory motion of a soliton: in a potential well~dashed curve!
~a!, near a potential hump~dashed curve! ~b!.

FIG. 11. Interaction of an extremely narrow packet located at the sitn
50 at t50, and the soliton in a uniform field under resonance condition
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moves apart with time and the packets are damped, gen
ing ripples of low-amplitude oscillations. However, the so
ton survives and executes Bloch oscillations as a particle

2. BLOCH OSCILLATION OF MAGNETIC SOLITONS

2.1. Basic principles of the theory of ferromagnetism and
the quasiclassical quantization of magnetic solitons

The main idea of the macroscopic theory of ferroma
netism is that the state of a magnet is uniquely character
by the magnetization vectorM . Thus the dynamics and ki
netics of a ferromagnet are dictated by changes in its m
netization. The magnetization as a function of the coor
nates and time,M (x,t) is a solution of the phenomenologic
Landau–Lifshitz equation:34,35

]M

]t
52

2m0

\
M3Heff2gM3~M3Heff!, ~109!

wherem0 is the Bohr magneton andg is the relaxation con-
stant, which governs the precessional damping of the ve
M . The effective magnetic fieldHeff is defined as the varia
tional derivative of the energy of the ferromagnet with r
spect to the vectorM :

Heff52dE/dM . ~110!

It is assumed that the energy of the magnet is a functiona
the magnetizationM and its spatial derivatives:

E5E w$M ,]M /]xk%d
3x, ~111!

wherei andk are coordinate indices (i ,k51,2,3).
Taking the energy dissipation into account as propo

in ~109! is entirely sufficient in the case of a uniform o
slightly nonuniform distribution of the magnetization. F
describing the energy loss of highly nonuniform dynami
states it is necessary to take into account effects which
analogous to the viscosity in hydrodynamics and depend
the gradients of the magnetization. In the simplest case
should add to the right-hand side of Eq.~109! a term due to
a dissipative function of the form36,37

FIG. 12. Growth of the amplitude of oscillations of a narrow packet in
uniform field if the resonance condition is not satisfied (h0Þ0). The soliton
executes Bloch oscillations.
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F5
1

2
geE ]Heff

]xk

]Heff

]xk
d3x, ~112!

if the dissipative force is calculated as the variational deri
tive of F with respect to the argument]Heff /]xk . Herege is
a relaxation constant of exchange origin.

In the case of long wavelengths the dissipation at l
temperatures is small, and so in the leading approxima
we shall neglect it, limiting consideration to a Landau
Lifshitz equation of the form

]M

]t
5

2m0

\
M3Heff . ~113!

Equation~113! has the integral of motionM25const, which
is consistent with the idea ofM being an equilibrium char-
acteristic of the ferromagnet. In the ground state the mag
tude ofM is equal to the so-called spontaneous magnet
tion M52m0s/a3, wheres is the spin of an atom anda is
the interatomic distance.

The expression for the energy densityw depends on the
value of the magnetic anisotropy. We start from the follo
ing model for taking into account the anisotropy of a ferr
magnet:

w5
a

2

]M

]xk
•

]M

]xk
1wan2M•H, ~114!

where the first term is the energy density of the inhomo
neous exchange, andH is the external magnetic field; th
anisotropy energywan has the form

wan52
1

2
b1M x

22
1

2
b3M z

2. ~115!

If the anisotropy energy is given by~115!, the ferromagnet is
calledbiaxial. The caseb150 corresponds to a uniaxial fer
romagnet with anisotropy axis alongz. Anisotropy of the
easy-axistype occurs whenb150 andb3.0. In the ground
state of an easy-axis ferromagnet its magnetization vecto
directed along thez axis.

In the quantum theory of ferromagnetism, when one
considering magnetic systems of the given class one s
with an expression for the spin Hamiltonian. As a quantu
model we can take a system of localized electron spins w
an exchange interaction given by the Heisenberg model w
only a nearest-neighbor interaction:34

H52
1

2 (
n,n0

~J1Sn
xSn1n0

x 1J2Sn
ySn1n0

y 1J3Sn
zSn1n0

z !,

~116!

whereSn is the spin operator for thenth site,Ji ( i 51,2,3)
are the so-calledexchange integrals, and the indexn0 enu-
merates the nearest neighbors of each lattice site.

Turning to a continuum description of the magnetizatio
we define the magnetic moment per unit volume,M , in terms
of the average spin of a lattice site:

M52
2m0

a3
^Sn&52

2m0

a3
S~xn!,

Sn→2
a3

2m0
M ~xn!. ~117!
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In the long-wavelength approximation

Mn1n0
5M ~xn!1xi~n0!

]M

]xi
1

1

2
xi~n0!xk~n0!

3
]2M

]xi]xk
1... ~118!

In writing the energy density it should be remembered t
the exchange interaction is isotropic by nature, and the
change integralsJ1 , J2 , andJ3 are close in value. One ca
put

Jk5J01a2 j k , k51,2,3, ~119!

wherea2 j k are small corrections. Then to accuracya2 we
obtain equations~114! and ~115!, where

a5J0a5/~2m0!2, ~120!

and the anisotropy constantsb1 and b3 , which for a cubic
lattice have the form

b15zS a3

2m0
D 2 j 12 j 2

a
, b35zS a3

2m0
D 2 j 32 j 2

a
, ~121!

wherez is the number of nearest neighbors.
We change to the angle variablesu andw ~Fig. 13!:

Mx1 iM y5M0 sinueiw, Mz5M0 cosu. ~122!

The dynamical equations for the magnetization in the v
ablesu andw are

sinu
]u

]t
52

2m0

\M0

dE

dw
,

sinu
]w

]t
5

2m0

\M0

dE

du
, ~123!

where the variational derivatives of the energy~111! appear
on the right-hand sides.

We write the energy density of a biaxial ferromagnet
the same variables:

FIG. 13. Angle variablesw and u, which specify the orientation of the
magnetization vector,M .
t
x-

i-

w5
1

2
aM0

2@~¹u!21sin2 u~¹w!2#

2
1

2
b1M0

2 sin2 u cos2 w1
1

2
b3M0

2 sin2 u. ~124!

Treating Eq.~123! as an equation for the field (u,w), we
define for it a Lagrangian function, the density of whic
is38–40

L5
\M0

2m0
~12cosu!

]w

]t
2w. ~125!

In discussing the properties of dynamical solitons we sh
use Eq.~123! to study the dynamics of localized magnet
excitations, for whichu50 and u¹wu,` at infinity ~Fig.
14!.

Let a uniform external magnetic fieldH be directed
along thez axis. Then equations~123! clearly have two in-
tegrals of motion: the total energy~111!, and the total mo-
mentum of the magnetization field

P52E ]L

]~]w/]t !
¹wd3x52

\M0

2m0

3E ~12cosu!¹wd3x. ~126!

In describing the dynamics of domain walls, where it c
turn out that¹w50, it is convenient to use a somewh
different definition of the field momentum:

P52
\M0

2m0
E w sinu¹ud3x. ~127!

In an easy-axis ferromagnet (b1[0) the energy density o
which is independent of the angle variablew, there exists an
additional integral of motion—thez projection of the total
magnetic moment

N5
\M0

2m0
E ~12cosu!d3x, ~128!

which has the meaning of the average number of spin de
tions from the ground stateu50 in a localized magnetic
excitation. IfN@1, then it can be set equal to an integer. T
requirement of integerN in the classical relation~128! is
equivalent to a semiclassical quantization of the correspo
ing solution of the dynamical equations under discussi
HereN will be referred to as the number of magnons in
excited state of a magnet.41 One can introduce the density o
magnonsn5(M0/2m0)(12cosu).

Let us begin with an analysis of the dynamics of a ma
netic soliton in an easy-axis ferromagnet. First we note t
the uniform magnetic fieldH can be eliminated from the
Landau–Lifshitz equations by introducing a new angle va
able w5w2vHt, where vH52m0H/\. Since the energy
density of an easy-plane ferromagnet is independent ow,

FIG. 14. Distribution of the angleu in a dynamical magnetic soliton.
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this substitution indeed eliminates the magnetic field fr
the equations. This lets us start by considering the casH
50.

We assume that the magnetization depends on a si
spatial coordinatex. Then the Landau–Lifshitz equation
have a solution describing an excitation propagating al
the x axis with a constant velocity:

u5u~r 2Vt!, w5Vt1c~r 2Vt!, ~129!

whereV is the soliton velocity andV is the precession fre
quency in a reference frame tied to the moving soliton. If
functionu(x) is like that shown in Fig. 14, then this solutio
describes a two-parameter dynamical soliton. Since in
case the equations under consideration have the addit
integrals of motionP andN, one can find the exact solutio
of these equations in the one-dimensional situation and
culate the energy of the magnetic soliton:41,43

E54a2M0
2Aab tanh

N

N1
H 11

sin2~pP/2P0!

sinh2~N/N1!
J , ~130!

whereP05p\a2M0 /m0 ; N152a2l 0M0 /m0 .
Considering the change in energy~111! upon small

variations of the functionsu andw, we can relate this chang
to the variations of the integrals of motionP andN:41

dE5\VdN1V•dP, ~131!

V5~]E/]P!N , \V5~]E/]N!P . ~132!

The first relation in~132! is the canonical equation of mo
tion, and the second shows that\V is the energy of excita-
tion of a single flipped spin in a bound state of the magno

The most unexpected consequence of~130! is the peri-
odic dependence of the soliton energy on the total mom
tum P. In solid-state theory such a dependence is usu
attributed to the discreteness of the crystal lattice and to
existence of quasimomentum instead of momentum in a c
tinuous medium. However, since we have formulated the
namical equations for a continuous medium, this is an un
pected result.2

Assuming a periodic dependence of the energy on m
mentum, one expects the onset of Bloch oscillations in
motion of a magnetic soliton under the influence of an dr
ing force.

2.2. Oscillatory motion of a magnetic soliton in an easy-axis
ferromagnet

Conservation of the total momentumP is linked to the
assumption that the magnetic field is uniform. Let us n
analyze the situation in which a one-dimensional dynam
soliton moves in a magnetic field having a small gradient
the magnetic field has a weak dependence on the coordi
we can write

H~x!5H01hx, h5~dH/dx!0 . ~133!

Then the time derivative of equation~126! gives

dP

dt
52

\M0

2m0
E Fsinu

]w

]t

]u

]x
2sinu

]u

]t

]w

]x Gdx. ~134!

After simple manipulations with the use of the equations
motion ~123!, we arrive at the equation
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dP

dt
522m0

dH

dx E n~x!dx522m0hN, ~135!

where N is an integral of motion equal to the number
magnons in the bound state. Thus the quasimomentum
pends linearly on time:

P~ t !5P~0!22hm0Nt, P~0!5const. ~136!

Let us now find the total energy of a soliton moving in
magnetic field having a small gradienth. The presence of the
small gradient can be taken into account as a weak pertu
tion of the initial system in a uniform magnetic field. In th
adiabatic approximation one can assume that the sol
maintains its shape:

u5u@x2X~ t !#, w5w0~ t !1c@x2X~ t !#, ~137!

where the main dynamical parametersV andV of the soliton
have the form

V5dX/dt, V5dw0 /dt. ~138!

In this case we write the total energy in the following wa

E5E0~P,N!12m0S NH01hE n~x!xdxD , ~139!

whereE0(P,N) is determined by formula~130!, and

E n~x!x dx5
M0

2m0
E $12cosu@x2x~ t !#%Xdx

5
M0X

2m0
E @12cosu~j!#dj5NX. ~140!

In the last transformation, as in our analysis of the case
uniform magnetic field, one hasu(j)5u(2j), wherej[x
2Vt. Combining~139! and ~140!, we obtain

E5E0~P,N!12m0NH012m0hNX. ~141!

The energyE can now be treated as a function of thr
dynamical variables:P, X, andN. The relation for the time
derivative of the momentum plays the role of one of t
Hamilton’s canonical equations18,19

dP

dt
52

]E

]X
and

dX

dt
[V5

]E

]P
. ~142!

We write an expression for the soliton frequency:

\V5
]E

]N
5

]E0

]N
12m0H012m0hX, ~143!

where the first term on the right-hand side is given by
relation

]E0~P,N!

]N
5\vH cos2~pP~ t !/2P0!

cosh2~N/N1!

2
sin2~pP~ t !/2P0!

sinh2~N/N1! J , ~144!

and v052m0bM0 /\ is the frequency of the homogeneou
ferromagnetic resonance.

On the other hand, by suitably choosing the initial co
dinate of the soliton, we can use the constancy of the t
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energy of a conservative system together with formula~136!
to find the explicit time dependence of the coordinate of
centroid of the soliton:

X~ t !5X~0!1
W0@cos~pP~ t !/P0!2cos~pP~0!/P0!#

hm0N sinh~2N/N1!
,

~145!

where the time dependence ofP(t) is specified by Eq.~136!.
If P(0)Þ0, then at short times, whenhm0Nt!P0 , we have
uniform motion of the soliton:

X~ t !5X~0!1
2pW0 sin~pP~0!/P0!

P0 sinh~2N/N1!
t. ~146!

At long times (hm0Nt.P0) one observes oscillatory motio
of the soliton. The amplitude of the spatial oscillations,
follows from ~145!, is

DX5W0 /@hm0N sinh~2N/N1!# ~147!

and, naturally, is inversely proportional to the magnetic fi
gradient and decreases sharply with increasingN, i.e., with
the size of the soliton. The soliton velocity

V~ t ![
dX~0!

dt
5Vm

sin~pP~ t !/P0!

sinh~2N/N1!
, ~148!

whereVm52gM0Aab is the minimum spin-wave phase ve
locity (g52m0 /\).

Since the total momentum of a soliton is a linear fun
tion of time~136!, under the influence of a constant magne
field gradient one should observe harmonic oscillations
the soliton, with a frequencyvB54m0h l 0N/(\N1).

The periodic time dependence of the soliton velocity a
frequency is a special type of Bloch oscillation in the dyna
ics of the magnetization.

A numerical simulation of soliton motion by means
the Landau–Lifshitz equations in the presence of a sm
magnetic field gradient,19 the results of which are presente
in Fig. 15, demonstrates rather good agreement with the
culations done using the formulas of the adiabatic appro
mation. However, the more exact calculations show that n
the right-hand turning point the soliton emits a low
amplitude spin wave with a frequency corresponding to
precession frequency of the magnetization in the solit

FIG. 15. Bloch oscillations of a magnetic soliton in the field of a magne
field gradient.
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This phenomenon is due to the breakdown of adiabati
and is described by corrections of higher order in the m
netic field gradient.

We have analyzed the oscillatory motion of a magne
soliton under the condition that the magnetic field gradienh
is small. The motion of a magnetic soliton remains oscil
tory for arbitrary h as well. Studies of the quasiclassic
motion of a soliton in a nonuniform external field show19 that
the situation with the soliton dynamics is analogous to tha
an analysis of the quasiclassical motion of an ordinary p
ticle in a nonuniform potential field.

When dissipation is taken into account, the picture of
Bloch oscillations will undoubtedly differ from that dis
cussed above. If the presence of both a magnetic field gr
ent and dissipation is simultaneously taken into accou
then, as we shall see below, it becomes possible for the m
netic soliton to undergo translational motion at a const
velocity.

2.3. Influence of dissipation on the Bloch oscillations of a
magnetic soliton

In embarking on a description of the relaxation of Blo
oscillations of a magnetic soliton in a slightly nonunifor
magnetic field, it should be noted that the braking of a tw
parameter soliton in a uniform magnetic field was succe
fully studied in Ref. 37 on the basis of the Landau–Lifsh
equations with dissipation.

Assuming that the relaxation is weak and, according
that the relaxation constants are small, one can describe
evolution of a soliton in the presence of damping with the
of adiabatic perturbation theory. To simplify the expositio
we will take into account only relaxation processes of re
tivistic origin, i.e., we will start from Eq.~109!. Dissipative
processes of both relativistic and exchange nature are ta
into account completely in Ref. 20, and a description of
details of the problem is given. In that case not onlyP but
alsoE andN cease to be integrals of motion. Writing the
time derivatives with allowance for their definitions and f
dissipation, one can calculate the rate of change with time
all of these quantities.

From the form of formula~130! and also from the basic
relations governing the oscillatory dynamics of a soliton
follows that the energy and momentum of a soliton and a
the number of magnons enter only in the form of the dime
sionless ratiosE/E0 , pP/2P0 , and N/N1 , where E0

54a2M0
2(ab)1/2, P05p\a2M0 /m0 , and N152a2l 0M0 /

m0 . In what follows, we denote these ratios simply by t
lettersE, P, andN. Moreover, we use dimensionless va
ables: the coordinate measured in units of the magn
length l 0 , and the time measured in units of 1/v0 . Finally,
the dimensionless magnetic field gradienth will be taken as
2m0l 0h/\v0 .

Using the definitions~111!, ~114!, ~126!, and ~128! and
the main equation~109!, we straightforwardly obtain the fol-
lowing time derivatives:

dP

dt
52hN22g~VQex2ṽR!, ~149!
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dN

dt
522g~ṽQan2VR!, ~150!

dE

dt
522g~V2Qex22VṽR1ṽ2Qan!, ~151!

whereṽ is the soliton frequency shifted because of the u
form magnetic field,ṽ5v1H0 /(bM0), and we have intro-
duced the following functions:

R5
1

8 E sin2 u
]c

]x
dx, ~152!

Qan5
1

8 E sin2 u dx, ~153!

Qex5
1

8 E F S ]u

]xD 2

1sin2 uS ]c

]x D 2Gdx. ~154!

Definitions ~153! and ~154! agree with the expressions fo
the anisotropy energy and exchange energy:

Ean5bQan, Eex5bQex.

Since in the adiabatic approximation the soliton solut
maintains its functional form, one should substitute in
these expressions the exact soliton solution of the Land
Lifshitz equations forh50 andg50, assuming its param
eters to be smooth functions of time. The corresponding t
parameter solution of equations~109! has the form41

w5ṽt1c~x2Vt!;
dc

dx
52

C

cos2~u/2!
;

tan2
u

2
5

A1B

cosh2@k~x2V!#2B
. ~155!

The parameters of the solution arev and V, which in the
adiabatic approximation can be expressed in terms of
integrals of motionP andN:

v5
cos2 P

cosh2 N
2

sin2 P

sinh2 N
; V52

sin 2P

sinh 2N
. ~156!

The constantsA, D, C and the parametersk are functions of
v and V. However, it will be convenient below to expres
them in terms of the conserved~for h50 andg50! quanti-
ties N andP:

A5sinh2 N, B5sin2 P, C5
sin 2P

sinh 2N
, ~157!

k5S 11
B

AD tanhN. ~158!

The form in which Eqs.~149!–~154! are written is extremely
convenient for studying the dynamics of a soliton of lar
extent (N@1) with vanishingly smallV andv. In that case
one can describe the relaxation of such a soliton even w
out having the explicit solution in the general case. Assu
ing that the isolated factors ofV andṽ in Eqs.~149!–~151!
give the main dependence on these parameters, one ca
culate ~152!–~154! for V→0 andv→0, i.e., essentially in
the static regime. But then, as we know,41 c50 and the
function u5u(x) describe the profile of a wide one
dimensional domain with the reversed magnetization dir
-

–

-

e

h-
-

cal-

-

tion at infinity ~u'p inside the domain, andu50 at infin-
ity!. The width of the domainDx'2N, and its edges are two
domain walls in which

u~x!5u0~x![2 tan21$exp@6~x7x0!#%, ~159!

where 6x0 are the coordinates of the centers of the tw
domain walls: 2x05Dx. Since the widthl 0 of the domain
wall is finite andl 0!Dx, it is trivial to calculate the param
etersR, Qan, andQex in the leading approximation:

R50, Qan5
1

4 E
`

sin2 u0~x!dx,

Qex5
1

4 E2`

` S ]u0

]x D 2

dx. ~160!

Substituting~159! into ~160!, we findQex5Qan51/2.
In the case of smallv and V the form of Eq. ~151!

corresponds to the usual definition of the energy change
dissipative medium,

dE

dt
522F, ~161!

where the relativistic term of the dissipative function has
standard form:

F5g~ṽ21V2!,

which agrees with the equations of motion~149!, ~150!:

dP

dt
52

]E

]X
2

]F

]V
, ~162!

dN

dt
52

]F

]ṽ
. ~163!

HereE is the expression~corresponding to formula~141! in
dimensional units! for the soliton energy in a nonuniform
magnetic field,18,19

E5k1hN1h̃XN, ~164!

whereX is the coordinate of the center of the soliton, a
h5H0 /(bM0).

If the conditions thatV andv be small are not satisfied
in the calculation ofR, Qex, andQan, then it is necessary to
use the explicit form of the solution~155!. After integration
we obtain

R52VN/2, ~165!

Qan5
1

2 S 1

2
V sinh 2N1Nv D , ~166!

Qex5
1

2 S 1

2
V sinh 2N2Nv D , ~167!

whereV25v21V2, andv andV are expressed in terms o
the integrals of motion by formulas~156!. Equations~149!
and~150! with these values ofR, Qan, andQex give smooth
changes of the soliton parametersP and N with time, and
formula ~164! can be used to obtain the equation for t
coordinate of the center of the soliton,X(t).

To find X(t) we differentiate relation~164! with respect
to time and use Eqs.~149!–~151!. After some straightfor-
ward manipulations we ultimately find
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1

N

d~NX!

dt
52

sin~2P!

sinh~2N!
, ~168!

where the right-hand side is the same as in Eq.~156! for V,
but now P andN are functions of time. We note that if w
set g50 ~and, hence,N5const! in Eqs. ~149!, ~150!, and
~164!, then we arrive at the same description of the Blo
oscillations of a magnetic soliton as was obtained in Refs
and 19. In the caseg50 andh50, Eqs.~149!–~151! and
~165!–~167! agree with the analogous equations in Ref. 3

In the general case of arbitrary values of the parame
v andV ~or N and P! the system of equations~149!–~151!
describing the relaxation of a soliton can be investigated o
numerically.

However, forN@1 andH050 ~which is equivalent to
V,v!1! one can advance further with the analytical studi
In this case equations~149!, ~150!, and~168! in the leading
approximation take the form

dP

dt
52h̃N24ge22N sin~2P!, ~169!

dN

dt
524ge22N cos~2P!, ~170!

dX

dt
54e22N sin~2P!14G

1

N
e22N cos~2P!X. ~171!

We are most interested in considering the case of w
relaxation, where one expects to see only slightly modifi
Bloch oscillations. To keep the notation brief, we introdu
the parameterhc54g exp(22N0)/N0, whereN0 is the initial
value of the numberN, and our use of the term weak rela
ation refers to the casehc!h. Here one can find solutions o
equations~169! and ~170! by interaction, and they can b
represented as power series in the parameterhc /h:

P5P~0!2
1

2
n0t2

2g

hN0
exp~22N0!@cos~n0t !21#,

~172!

N5N02
2g

hN0
sin~n0t !,

whereh052hN0 is the Bloch oscillation frequency of th
soliton. Of course, the dimensionless frequencyn0 precisely
corresponds to the soliton Bloch oscillation frequencyvB

introduced in the previous Section. The terms of higher
ders in powers of the parameterhc /h are proportional to
higher harmonics with respect to the frequencyn0 .

We note that on average over the period of the Blo
oscillations of the soliton (T52p/n0) the parameterN re-
mains constant and practically equal to its initial valueN0 .
Using the results obtained forP and N and Eq.~171!, one
can also straightforwardly find the first two terms of the e
pansion ofX(t) in the parameter (g exp(22N0)/N0):

X~ t !5
4

n0
e22N0 cos~n0t !2

4g

hn0N0

3exp~24N0!sin~2n0t!2
8g

hN0
exp~24N0!t, ~173!
h
8

.
rs

ly

.

k
d

r-

h
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where in the last term we have again omitted the contribut
of higher order in the small parameter 1/N0 . The first term in
this expression agrees with the result obtained in Refs.
and 19 and describes Bloch oscillations of the magnetic s
ton.

Taking the damping into account leads to two effects,
can be seen from formula~173!. First, the oscillations of the
center of the soliton, while remaining periodic with fre
quency 2n0 , cease to be harmonic: higher harmonics app
in X(t). Second, the center of the soliton begins to drift a
constant velocity proportional to the damping:

Vdr52
8g

hN0
e2N0. ~174!

The soliton behavior just described is reminiscent of
above-mentioned Shapiro effect in the theory of Joseph
junctions.3

Since all of the soliton characteristics are periodic fun
tions of P, while N, as we have said, is a periodic functio
of time, in the case under discussion, viz.,h@hc , soliton
damping does not occur at all. According to formula~161!,
the decrease of the soliton energy is proportional only to
square ofV and is exactly equal to the change in energy d
to the drift of the center of the soliton to the region of low
magnetic fields. It must be remembered, however, that as
soliton drifts, the value of the fieldH gradually changes. The
approximationH050 is valid only whileh,V. This leads
to the following estimate of the soliton drift time, whic
agrees in order of magnitude with its lifetimet: t
;N0 /(lV). Here the change inh on a scale comparable t
the Bloch oscillation amplitudeV/n0 is relatively small:
Dh;V/N0!V, and consequently, formulas~172!–~174!
and, hence, the qualitative conclusions as to the characte
the Bloch oscillation of the soliton, remain valid.

Let us now indicate the conditions under which the we
damping regime under study is realized. For adiabatic p
turbation theory to be applicable, the characteristic freque
V in the soliton must be much higher than the Bloch osc
lation frequency 2n0 , i.e., the following inequalities mus
hold:

1@4e22N0@2n0 .

This places a restriction on the maximum value of t
magnetic field gradient, sincen05hN0 . The conditionh
@hc , on the other hand, gives

2n0@8ge22N0.

In other words, ifg!1, then there is an interval ofh
values in which one should observe weakly damped Blo
oscillations of the soliton. Interestingly, even ifh*hc the
soliton has time to complete many oscillations (N0h/hc)
before it vanishes. Finally, we note that over its lifetime
soliton drifts a distance of the order of exp(22N0)/h!1,
which is much greater than both the soliton sizeN0 and the
Bloch oscillation amplitude 2 exp(22N0)/(N0h).

In the case whenV!1 but H0Þ0 (h.V), all of the
qualitative results presented above remain good. Only cer
quantitative characteristics will change. In particular, t
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condition of adiabaticity becomes weaker (v;h@n0), and a
soliton is able to complete onlyN0(h/hc)(V/h) Bloch os-
cillations before vanishing.

Thus if the magnetic field gradient is greater than a cr
cal value~but is still small enough for the adiabatic approx
mation to be applicable!, the Bloch oscillations of the soliton
exist even in the presence of damping. However, these o
lations cease to be harmonic, and, in addition, the cente
the soliton begins to drift at a constant velocity. Over
lifetime, a soliton can complete a large number of Blo
oscillations, and the value of the drift is much larger than
amplitude of these oscillations.

If the magnetic field gradient is less than the critic
value, then the Bloch oscillations vanish completely and
soliton has only a gradually damped translational motion

2.4. Macroscopic theory of Bloch oscillations of a soliton in
a biaxial ferromagnet

In a biaxial ferromagnet the energy density depends
plicitly on the variablew, and thereforeN is no longer an
integral of motion. It is very important that even in the ca
of a uniaxial ferromagnet the dependence of the energy ow
is manifested when the magnetic dipole interaction is ta
into account.

Let us consider a magnet of very large dimensions
restrict consideration to solutions that depend only on
single spatial coordinate,x. We assume that the sample is
the form of a slab perpendicular to thex axis, and outside it
(x56`) the magnetic field vanishes. Then the bound
conditions for the normal component of the magnetic ind
tion vector (Bx(6`)50) select a single nonzero compone
of the vectorH(m), which is the solution of the equations o
magnetostatics:

Hx
~m!524pMx . ~175!

Consequently, we obtain

Wm52pMx
2. ~176!

Even in the case of a uniaxial ferromagnet the energy~176!
leads to a certain effective anisotropy in the plane perp
dicular to the anisotropy axis if thex axis is not along a
preferred direction. In particular, ifz is the axis of anisot-
ropy, then we have for the total magnetic energy of a unia
ferromagnet

W5
a

2 S ]M

]x D 2

2
b

2
Mz

212pMx
2. ~177!

Formally the energy~177! pertains to a biaxial ferromagne
with b1524p.

Another feature of a biaxial ferromagnet stems from
fact that the external magnetic field cannot be elimina
from the equations. Therefore, the system behaves in c
pletely different ways in the presence and absence of m
netic field. We begin with the case when the external m
netic field is equal to zero.

To simplify the writing of the dynamical equations fo
the magnetization field, we introduce the magnetic len
l 05Aa/b3 and the homogeneous ferromagnetic resona
frequencyv052m0M0b3 /\; the coordinate will be mea
-
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sured in units ofl 0 and the time in units of 1/v0 . Then Eq.
~123! can be written, with allowance for~124!, in the form

]2u

]x2 2H 11S ]w

]x D 2

1« cos2 wJ sinu cosu1sinu
]w

]t
50,

~178!

]

]x S sin2 u
]w

]x D1« sin2 u cosw sinw2sinu
]u

]t
50,

where«52b1 /b3 is the ratio of the anisotropy constants
The simplest dynamical soliton in a biaxial ferromagn

is a topological soliton~domain wall!. The solution for a
domain wall in a biaxial ferromagnet was first found b
Walker40,44 ~see also Ref. 45!. For a domain wall moving
with velocity V, it has the form

u52 tan21 exp@s~11Q cos2 w!1/2~x2Vt!#,

w5const, ~179!

where Q is the topological charge of the domain wall (Q
561) and

V52
Q cosw sinw

A11Q cos2 w
. ~180!

If the anisotropy energy~176! comes from taking into ac-
count the magnetic dipole interaction in an easy-plane fe
magnet («54p/b3), then the domain wall withw5p/2 is
called a Bloch wall, and the immobile domain wall wit
w50 is a Néel wall.

It is easy to calculate the energyE and field momentum
P per unit cell of the crystal in the plane of the domain wa
The result is

E5E~P![EBA11Q cos2~pP/2PB!, ~181!

where EB52b3M0
2a2Aab3 is the energy, and PB

5p\M0a2/(2m0) is the momentum of an immobile
~sessile! Bloch wall.

We have obtained the periodic dependence of the ene
of a topological soliton on its momentum, the presence
this periodicity being is a necessary condition for the on
of Bloch oscillations of a soliton in a uniform external forc
field.

After proving the periodicity of the energy and veloci
of a topological soliton as functions of the field momentu
in the absence of magnetic field, we need to satisfy ourse
that when a magnetic field is turned on, the field moment
P ceases to be an integral of motion.

The first of equations~178! in the presence of a magnet
field parallel to the 0z axis is slightly modified:

]2 u

]x2
2H 11S ]w

]x D 2

1« cos2 wJ sinu cosu

1sinu
]w

]t
5h sinu, ~182!

whereh5H/(b3M0), and the second equation remains u
changed.

If the magnetic field is small (H!b3M0), then it can be
treated as a small perturbation. In the adiabatic approxi
tion the solution for a domain wall as before is of the ty
~179!, i.e., the solutions of the first equation of~178! for
]w/]t50 or of Eq.~182! for ]w/]t5h50:
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u52 tan21 exp@~11« cos2 w!1/2~x2X!# ~183!

~for definiteness we takeQ51!. Now, however, the coordi-
nateX of the center of the soliton and the anglew depend on
time. However, the functional dependence of the total m
mentum onw can be taken to be the same as in the abse
of magnetic field~when w5const!. Therefore, in using ex-
pression~127!, we shall assume that the following formula
valid:

P5~\M0a2/m0!w5~2PB /p!w. ~184!

This means that the time dependence ofP is determined by
the time dependence of the anglew.

In the leading approximation it follows from~182! that

dw

dt
5h. ~185!

Consequently,w5ht, and in accordance with formula~180!
the soliton velocityV5dX/dt executes oscillations at th
Bloch frequency 2h, where in dimensional unitsh
52m0H/\. The kinetic energy of the soliton~181! will os-
cillate at this frequency, which is twice the precession f
quency of the magnetization vector.

Indeed, the pair of equations~180! and~185! is trivially
integrated and gives the following law for the oscillations
the center of the domain wall:

X5
1

h
A11« cos2 ht, w5ht. ~186!

The amplitude of the oscillationsDX5(1/h)(A11«21). At
one of the stopping points the domain wall is purely Bloc
and at the other it is purely Ne´el. The energy difference
between these two domain walls,DE5EB(A11«2«), is
precisely equal to the work done by the external fo
2HM0a2 acting over a length equal to the oscillation amp
tude l 0DX.

Thus the energy of the magnet averaged over the o
lation period of the wall is conserved. The above analysis
the domain wall motion was given in Refs. 40 and 46. T
problem of domain wall motion in a magnetic field was fir
considered by Slonczewski,14 who restricted his analysis t
the case«!1 but for arbitraryH. In that limit the solution of
the Landau–Lifshitz dynamical equations simplifies to

u52 tan21 exp~x2X!, ~187!

where

dX

dt
52« cosw sinw,

dw

dt
5h. ~188!

Thus the oscillatory character of the domain wall motion in
uniform magnetic field is preserved.

The oscillatory character of the motion of a domain w
in a static magnetic field is entirely due to the periodic d
pendence of the energy~181! on the momentum of the do
main wall. However, in studying the oscillations of a d
namical soliton in an easy-axis ferromagnet, we have alre
seen that the inclusion of dissipative processes in the ana
disrupts this oscillatory motion and makes it possible to h
uniform, on average, motion of an electron in a static elec
field. Such a situation is also observed in the dynamics o
-
ce
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domain wall. In Slonczewski’s paper14 it was confirmed that
taking into account the braking of the domain walls movi
under the influence of an external magnetic field below
certain critical value will make it possible to have stea
motion of the domain wall at a constant velocity, i.e., t
motion first described by Walker.44 At high fields either os-
cillatory motion14 or an increase in the complexity of th
domain wall structure47 can occur.

2.5. Dynamics of solitons of a discrete spin system
„quantum description …

The results of the above-described theory of Bloch
cillations of magnetic solitons are applicable to the analy
of dynamic magnetic phenomena in ferromagnets, where
characteristic magnetic length is much greater than the in
atomic distance (l 05Aa/b@a). The presence of this in
equality allows us to use the long-wavelength~continuum!
approximation for describing the effects under study, sinc
magnetic soliton in such a theory spans a large numbe
sites of the 1D lattice. However, there exist highly anis
tropic magnetic materials in which the distribution of th
nonuniform magnetization due to an isolated soliton pro
gates only a few interatomic distances. For example, in m
nets with an extremely strong uniaxial exchange anisotro
so-called Ising magnets, the simplest topological soliton~do-
main wall! is realized over a single interatomic distance.
describe solitons in such systems one must explicitly t
into account the discreteness of the structure and the q
tum character of the dynamics of the magnetization.

In order to present the results in a more or less clo
form, let us consider a model obtained by a certain conti
ous complication of the Ising model. If one starts from t
Heisenberg Hamiltonian~116!, then the Ising model corre
sponds to taking into account only nearest-neighbor inte
tions and settingJx5Jy50, i.e., it corresponds to the Hami
tonian

HI52Jz(
n

Sn
zSn11

z . ~189!

A positive exchange integral (Jz.0) corresponds to a ferro
magnet~FM!, and a negative exchange integral (Jz,0) to an
antiferromagnet~AFM!. The ground state is one of ferro
magnetic ordering for the FM and Ne´el ordering for the
AFM.

An excitation of an Ising chain is an immobile doma
wall. It is known that two types of domain walls, different
ating in the effective chargeQ (Q561), can exist. In a
ferromagnet the wave functionsum,Q& in the basis of eigen-
functions of the operatorSz are

cn~m,1![um,1&5u...↑↑
m

↓↓...& ~190!

and

cn~m,21![u,21&5u...↓↓
m

↑↑...&,

where the siten5m is the left side of the domain wall, i.e.
the domain wall lies between the sitesn5m andn5m11.

In the absence of magnetic field the excitation spectr
consists of discrete energy levels, with each level cor
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sponding to a fixed number of domain walls and the deg
of its degeneracy being equal to the number of possible
tributions of this number of domain walls in the chain.

If an additional small exchange interaction of the tran
verse components of the spin~JxÞ0 or JyÞ0! is taken into
account, then the degeneracy of the levels is lifted. The s
trum becomes a series of bands with continuous energy
tribution separated by significant gaps. Each band, as be
corresponds to a fixed number of mobile~!! domain walls.
The lowest-lying energy band corresponds to single-sol
excitation.

Since in the previous Sections we made use of
single-band approximation, ruling out or neglecting int
band transitions, in the present situation we must res
consideration to single-soliton excitations of the spin syste

The single-soliton model was first discussed seriously
Villain48 in a study of soliton dynamics in a spin-1/2 Isin
like AFM chain. He described the dispersion of the solit
mode ~sometimes called the Villain mode! lying below the
continuous spectrum of two-soliton excitations. The valid
of the results of Ref. 48 has been confirmed both by theo
ical studies~a review of these can be found in Ref. 49! and
numerical calculations.50 It has also been shown that such
mode exists in a spin-1/2 Ising-like FM chain.51

Thus we are interested in a 1D magnet model which,
the one hand, is close to purely Ising, having a strong ea
axis anisotropy of the exchange interaction and, on the o
hand, admits domain wall dynamics, i.e., it must differ fro
purely Ising~it must have nonzeroJx andJy!.

We propose a convenient model for our purposes, w
ing the Hamiltonian of the system in the form

H5HI1Hxy22m0H(
n

Sn
z , ~191!

Hxy52(
n

~JxSn
xSn11

x 1JySn
ySn11

y !. ~192!

In the basis of eigenfunctions of the operatorSz the matrices
appearing inHxy have only off-diagonal elements. Ther
fore, the term~192! in the Hamiltonian, in acting on the
soliton wave function~190!, inevitably leads to the creatio
of two-soliton states, and only the termsSm21Sm and Sm11

Sm12 lead to displacement of the soliton from the positi
n5m to the positionn5m62 while preserving the single
soliton character of the excitations. Desiring to remain o
in the single-soliton sector, we must take into account o
these terms in~192! and neglect the rest. This operation m
be justified by the large value of the energy gap separa
the single-soliton band from the bands above it. Without
ing into the conditions for applicability of this description o
the dynamics of an individual soliton, we state our agr
ment with the authors of Ref. 17 and define the effect
Hamiltonian as the projection of~191! onto the subspace o
single-soliton states. Then the effective Hamiltonian of
single-soliton excitation in an external magnetic fieldH can
be written as

Heff5
1

2
J21D~T21T22!2FQm̂, ~193!
e
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whereF52m0H, T is the translation operator for displace
ment by one intersite distance,m̂ is the operator of the site
number specifying the position of the soliton. The intens
of ‘‘hopping’’ between next-nearest-neighbor sites is go
erned by the quantity17

D52
1

4
~Jy2Jx!. ~194!

It follows from ~194! that soliton~domain wall! motion
is possible only under the conditionJxÞJy, i.e., only in a
ferromagnet with biaxial exchange anisotropy. This conc
sion agrees with the results of the phenomenological the
of magnetic solitons.

An analogous effective model can also be proposed fo
uniaxial ferromagnet (Jx5Jy) in an external magnetic field
havingHx andHz components:17

Heff5
1

2
Jz2m0Hx@T1T21#22m0HQm.

However, in such a model jumps between nearest-neigh
sites of the chain are important.

Let us turn back to Eq.~193!. Since the soliton chargeQ
enters this equation as a parameter, it is sufficient to cons
the dynamics of a soliton of just one sign~e.g., Q521!.
Then ~193! becomes formally equivalent to the Hamiltonia
of the single-band tight-binding model for a particle in a
external uniform field and leads to an equation for the s
tionary states, analogous to equation~14!:

i\
]cn

]t
5

1

2
Jzcn1D~cn221cn12!2FQncn . ~195!

The specifics of the spin problem are manifested in an ef
tive interaction of only the next-nearest neighbors, wh
leads to the obvious difference of Eq.~195! from ~14!.

In the absence of an external magnetic field the Ham
tonian ~193! or Eq. ~195! give the dispersion relation

«~k!5
1

2
Jz12D cos~2k!, ~196!

which differs from~66! mainly in that the period ink space
is one-half as large.

A periodic dependence of the soliton energy«(k) on the
quasiwave vector arises naturally, causing Bloch oscillati
in the presence of a magnetic field. Since the site num
operator ink space isn5 i ]/]k, the field term in~193! leads
to the obvious equation of motion

dk

dt
5FQ52F. ~197!

It follows that in the quasiclassical approximation the solit
velocity depends harmonically on time:

v5
]«

]k
54D sin~2Ft ! ~198!

with the Bloch frequencyvB52F5(4m0H)/\. Integrating
~198! with respect to time and determining the position
the soliton at every point in time, it is easy to find the am
plitude of the Bloch oscillations:
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m~ t !5const2S 2D

F D cos~vBt !. ~199!

Curiously, the frequency of the Bloch oscillations is equal
twice the precession frequency of the magnetization ve
in a magnetic field, 2m0H/\. This frequency naturally
agrees with the frequency of Bloch oscillations of the d
main walls in a biaxial FM, which were described in th
previous Section on the basis of the Landau–Lifshitz eq
tions.

It is easy to confirm the results of the quasiclassi
analysis by a rigorous quantum calculation based on Ha
tonian ~193!.

First we can state on the basis of arguments analogou
~29! that there exists a preferred discrete spectrum of dom
wall energies3

E52D2mF, m50, 61, 62,..., ~200!

which corresponds to the Wannier–Stark ladder. It is a ch
acteristic property that the distance between steps on the
der, dE5F, is independent ofD. In the present case, how
ever, dE differs from the Bloch oscillation frequencyvB

52F.
Repeating the discussion of Sec. 1.1, we can write

eigenfunctions of the Wannier–Stark ladder, by analogy w
~30!, in the form

Fm~k!5expS i
D

F
sin 2kDexp~2 imk!. ~201!

In the site representation

Cn
m5

1

2p E
2p

p

expS i
D

F
sinkDexpS i

~n2m!

2
kDdk. ~202!

If the differencen2m is an even number, thenCn
m has the

form of a Bessel function of the first kind:

Cn
m5J~m2n!/2S D

F D ~203!

and describes the amplitude of a stationary state localize
the neighborhood of the siten5m. It is these solutions tha
were obtained and analyzed in Ref. 17.

Let us now satisfy ourselves that the evolution of t
soliton in an external field under the condition that it initial
occupied a definite site reduces to oscillations at the Bl
frequencyvB52F. We write the analog of solution~41! for
the case when the soliton att50 is found at the site
n5m:

C~n2m,t !5
1

2p
e22iDtE

2p

p

expH 2D i

2F
@sink2sin

3~k22Ft !#J eikn2m/2dk. ~204!

For evenn2m we obtain a result analogous to that given
Eq. ~41!:

C~n2m,t !5 iJ ~n2m!/2S 2D

F
sin 2Ft Dei ~n2m!Ft. ~205!

To ascertain the period of the oscillations described by
mula ~205!, we can calculate the mean-square deviation
or

-

-

l
il-

to
in

r-
d-

e
h

in

h

r-
f

the site numbern from the initial value. Settingn2m52p
and doing the calculation, we arrive at an expression an
gous to Eq.~41!:

^~n2m!2&54( p2Jp
2S 2D

F
sinFt D58S 2D

F D 2

sin2 Ft.

~206!

Indeed, the Bloch oscillations of a soliton initially localize
at a certain site have the character of ‘‘breathing’’ at a f
quencyvB52F. The difference of the frequencyvB from
the energy difference in the Wannier–Stark ladder is due
the specific selection ruleDm562, which arises becaus
the dynamics effectively operates by jumps of two inters
distances.

In finishing the exposition of the basic material, we no
that we have analyzed Bloch oscillations of dynamical a
topological solitons in 1D ferromagnets. Undoubtedly t
dynamics of solitons in antiferromagnets is also worthy
attention. This is not without justification, since the equatio
of motion of the magnetization in antiferromagnets are w
studied. However, the macroscopic~phenomenological! dy-
namics in antiferromagnets is more complicated than in
romagnets, and the author is unaware of any consistent
scription of the equations of motion, based on the Landa
Lifshitz equations, for individual solitons in antiferro
magnets.

At the same time, the quantum description of the mot
of solitonlike excitations in a spin chain with an antiferr
magnetic interaction of neighbors can be achieved in
scheme analogous to that set forth above, i.e., in an effec
model that takes into account only the single-soliton sec
of excitations. Indeed, for an antiferromagnetic spin chain
a longitudinal external magnetic field that increases linea
along the chain~with a constant magnetic field gradient! one
can propose the following effective Hamiltonian17

HAFM5
uJzu
2

1DAFM~T21T22!2m0HQ~21!mS m1
1

2D ,

where

DAFM5~Jx1Jy!/4.

This Hamiltonian is similar to Eq.~193! discussed above
Consequently, much of what we described previously can
used with suitable modifications for analysis of the oscil
tory dynamics of solitons in an antiferromagnetic spin cha

This remark about soliton dynamics in antiferromagne
chains is particularly topical in view of the fact that the e
istence of so-called ‘‘dispersion solitons’’~the Villain mode!
has been confirmed experimentally in Ising antiferr
magnets.52–57

2.6. Discussion of the possibilities of observing
manifestations of Bloch oscillations of a magnetic soliton

A theoretical analysis of Bloch oscillations of magne
solitons should be accompanied by an assessment of the
ditions and possibilities for observing Bloch oscillations
magnetic systems. In speaking of the general condition
should be noted that they are similar to those which exist
the study of mesoscopic effects in electronics~see, e.g., Ref.
58!.
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We should first recall that the Bloch oscillations are
single-band effect. Therefore, in physical systems for wh
the energy spectrum of the soliton is multiband, conditio
should be provided by which interband transitions can
eliminated~the effect under discussion is a consequence
the reflection of a soliton from the band boundary, whi
leads to reciprocating motion!. The external force acting on
the soliton should in a certain sense be not too large, so
the soliton, upon reaching the band boundary, cannot tu
into the higher band. Transitions of that kind can be n
glected if the frequency of the Bloch oscillations is cons
erably higher than the frequency of tunneling interband tr
sitions. In the context of the previous Section, this me
that the exchange integral along the easy axis,Jz, must be
considerably greater than the magnetic field (Jz@m0H).

Further, inelastic scattering of the soliton should be pr
tically absent. Inelastic scattering disrupts the phase co
ence of the motion, without which the Bloch oscillation
cannot occur. This scattering is due primarily to the inter
tion of the soliton with phonons and also to the soliton
soliton interaction. It is clear that this scattering is minimu
at low temperatures, when the phonons are ‘‘frozen out’’ a
the soliton density is small. This situation obtains in Isi
spin chains at temperatures much less thanJz.

Of lesser but still considerable importance is that ela
scattering on impurities should not give rise to so-cal
Anderson localization of the soliton in a disordered cha
which would mask its Bloch oscillations. For this reason o
must create conditions in which the amplitude of the Blo
oscillations will be smaller than the Anderson localizati
length. Since the Bloch oscillation amplitude is inverse
proportional to the magnetic field strength, this impose
restriction on the minimum magnetic field.

The last two arguments lead to the conclusion that
most suitable 1D and quasi-1D magnetic systems for obs
ing Bloch oscillations are those in which solitons of sm
dimensions exist and the Bloch oscillations have small a
plitude. But first we must be convinced of the existence
systems in which magnetic solitons could in principle
observed. Substances whose crystal structure consists o
tems of 1D chains that are weakly interacting with one
other and which admit excitations of the topological or d
namical soliton type are listed and described in the review
Mikeska and Steiner.49 Since such excitations create dynam
distortions of the magnetic structure, they may possibly
amenable to observation in inelastic neutron scattering
periments. The values measured in the neutron experim
are expressed in terms of the structure factor of the mate
under study.

Before turning to the calculation of the structure fact
let us reiterate that attention should be devoted mainly
considering the situation with solitons of small dimensio
executing Bloch oscillations of small amplitude. Such situ
tions are typical for the dynamical domain walls analyzed
Sec. 2.5. Therefore, let us give the expression for the st
ture factor of a ferromagnetic spin chain with a domain w
whose dynamics is described by the Hamiltonian~193!. We
start from the following definition of the structure factor:
h
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Szz~q,v!5
1

2p E
2`

`

dt e2 ivt^dS2q
z8 ~0!dSq

z8~ t !&, ~207!

wheredSq
z5Sq

z –^Sq
z&, and the Fourier transformation of th

spin operators is done in the standard way:Sq

5(n exp(iqn)Sn ~the period of the chain is taken equal
unity!. The calculation in Ref. 17 leads to a final gene
expression:

Szz~q,v!5
1

2 (
n

Gn~q!d~v2nvB!, ~208!

G05
J0

2~z!

cosh~bvB/2!2cosq
, ~209!

Gn5
Jn

2~z!

2 sin2~q/2! H 1, n.0,

enbvB, n,0,
~210!

wherevB is the Bloch oscillation frequency,b, as usual, is
the inverse absolute temperature, and the parametez
5(D/m0H)usinqu. We note that relation~208! is a direct in-
dication of the possibility of ‘‘imaging’’ the Wannier–Star
ladder. A soliton originally found in a state with a fixed valu
of n may be transferred to another state. The intensity
excitation of thenth level is proportional toJn

2 and is con-
trolled by the value of the parameterz.

It is of interest to analyze relation~208! in the limit of
vanishingly small wave numberq:17

Sb
zz~q→0,v!→ ]~v!

4 sinh~bm0H !
1S D

2m0H D 2

3@d~v2vB!1ebvd~v1vB!#. ~211!

Expression~211! enables one to calculate rather simply t
imaginary part of the uniform magnetic susceptibility of th
system under study:17

x9~v!5
1

2 S D

m0H D 2

~12e2bvB!@d~v2vB!

2d~v1vB!#. ~212!

Formulas ~211! and ~212! describe the response of
single chain containing an isolated soliton. In a sample w
a large number of chains, each of which may contain ma
uncorrelated solitons, the total result is obtained by multip
ing the given expressions by the integer number of solito
As a result, the signal becomes fully measurable.

As we want to obtain some quantitative estimates, let
give the characteristics of magnetic materials which are n
considered to be genuine candidates as subjects for the
surements under discussion. A rather complete set of exp
mentally obtained magnetic parameters~those described in
Ref. 59! is available for the substance CoCl2•2H2O ~see Ref.
17 for the magnetic properties of this salt and the cor
sponding parameters!. CoCl2•2H2O is a ferromagnet of the
Ising type with spin 1/2, and its magnetic structure cons
of chains formed by the magnetic ions Co with a ferroma
netic interaction along the chains and an antiferromagn
interaction between chains. The parameters of the excha
interaction along the chains are as follows: exchange inte
of the Ising interactionJz518.3 K, and biaxial exchange in
teraction characterized by the quantitiesJy2Jx53.7 K and
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Jx1Jy55.6 K. The presence of a weak antiferromagne
interaction between chains leads to the circumstance tha
ordering occurs at 17 K, with the result that at lower te
peratures and in weaker longitudinal magnetic fields, hal
the chains are polarized along the field and half are polar
against it. As the field strength increases, the system
undergoes a transition to a ferrimagnetic state and then
3D ferromagnetic state~the chains themselves are ferroma
netically ordered in any magnetic field!.

We neglect the interchain interaction and consider
isolated chain in a static and uniform external magnetic fi
Hext

z . We have mentioned that a single-soliton descript
can be used if the conditionm0H,Jz holds. For the param
eters indicated above this means that the magnetic
should not exceed 4 T. For estimates the authors of Ref
propose to take the magnetic field as 1.8 T. Then on the b
of formula ~206! it is easy to find that the amplitude of th
oscillations is of the order of the interatomic distance, a
the frequency of the Bloch oscillations is approximately 1
GHz. The first estimate holds forth the hope that vario
types of scattering can be avoided, and the second esti
falls in the range of possibilities for neutron experiments.
determine the interchain effects it is sufficient to use
mean field approximation, as was done in Ref. 60. The
fective field acting on an individual chain in such a treatm
is made up of the external field and a self-consistent inte
field. Therefore the magnetic field required for excitation
Bloch oscillations with an amplitude of the order of the i
teratomic distance is renormalized in all phases: a magn
field of 2.8 T is required in the 3D antiferromagnetic pha
a field of 3.6 T in the ferrimagnetic phase, and a field of 5
T in the ferromagnetic phase. These estimates show tha
compound in question is entirely suitable for use as a m
rial in which to observe Bloch oscillations of magnetic so
tons.

Materials which have structures close to that of t
salt described above include the following compl
compounds:@~CH3!3NH#CoCl3•2H2O, CoCl2•2NC5H5, and
@~CH3!3NH#FeCl3•2H2O. These substances are described
Refs. 60 and 62, respectively; they are ferromagnets of
Ising type, with a more pronounced one-dimensionality
the magnetic structure than in CoCl2•2H2O. The latter cir-
cumstance is because the spin magnetic chains in these
terials are separated by larger molecules, and one there
expects that the interchain interaction in them is weak
However, their magnetic parameters have so far been stu
in less detail~for example, it is unclear whether the degree
biaxiality of the magnetic anisotropy in them is sufficient
avoid the need of a more complicated combination of m
netic fields for observation of Bloch oscillations!.

In addition to the quasi-1D ferromagnets of the Isi
type with extremely anisotropic exchange, there exist 1D
romagnets with an isotropic exchange interaction but w
strong single-ion anisotropy.63,64 They belong to a family of
isostructural orthorhombic quasi-1D compounds of the ty
mentioned above, with the general formu
@~CH3!3NH#MCl3•2H2O, where the magnetic ion M is Ni
with spin S51. These are crystals in which the Ni magne
chains are separated by organic molecules. A typical mem
of this class of magnets is the compound TMANC. In th
c
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compound the magnetic anisotropy is substantially biax
having an anisotropy constant along the easiest axis whic
of the same order as the exchange interaction constant.
quasi-1D ferromagnet TMANC can be described by a d
crete quantum Heisenberg model with a Hamiltonian

H5J(
n

SnSn112D1(
n

~Sn
z!22D2(

n
~Sn

x!2.

Estimatory data for the parametersJ, D1 , andD2 can be
found in Ref. 64. Importantly, the parameter ratiosD1 /J
50.7 andD2 /D150.3 confirm the large value of the single
ion anisotropy energy. Using the magnetic length in t
Landau–Lifshitz equations (l 05Aa/b) as a rough guide,
one can estimate the width of a domain wall in the magn
under discussion asl 05aAJ/D1, wherea is the lattice con-
stant. It follows from the above estimates that these magn
chains can have ‘‘discrete’’ domain walls with a width of th
order of the lattice constant. Therefore such materials can
considered as suitable candidates on which to study the
namics of domain walls and Bloch oscillations in a unifor
magnetic field.

I am profoundly grateful to my coauthors on the pape
used in writing this review. I thank Mikhail Bogdan for help
ful discussions of the possibilities for observation of Blo
oscillations, and I express my heartfelt gratitude to Mar
Mamalui for enormous assistance in the preparation of
manuscript. This study was supported in part by an INT
grant from 1999.

APPENDIX

Features of the quasiclassical motion of a particle with a
periodic dispersion relation in a highly nonuniform
potential field

Consider the 1D dynamics of a quasiparticle with a d
persion relation of the type«5«(p)5«(p1p0), wherep0 is
the period inp space; it is assumed that«min50. For ex-
ample, one can take«5«0 sin2(pp/p0), where«0 is the width
of the energy band. We assume that the particle is movin
the field of a highly nonuniform potentialU(x), which does
not affect its ‘‘kinetic energy’’«(p). We assume that the
particle obeys the classical equation of motion mention
repeatedly in the main text:

dp

dt
52

]U

]x
, v5

]«

]p
.

For definiteness we shall use a dependence«
5«0 sin2(pp/p0) and assume that over a half period 0,p
,p0/2 the function«(p) is monotonic and, hence, the velo
ity v5]«/]p goes to zero atp50 andp5p0/2. It is also
convenient to assume that«min5«(0). Then on the basis o
the energy conservation equation

«~p!1U~x!5E5const,

one can give a rather complete qualitative analysis of
dynamics of such a particle. Without setting forth the p
fectly obvious arguments by which the dynamics of 1D m
tion can be understood, we note the most interesting~and
sometimes unusual! properties of the motion of the particl
under study.



te
il
th

te

x-
o

-
in

n
For

xis

f
in

at a
b-
ry

n-

e

-
.

tia
e

o-

er

539Low Temp. Phys. 27 (7), July 2001 A. M. Kosevich
1. If the ‘‘fall’’ of the potential relief at distancesDx of
the order of the amplitude of the Bloch oscillations is grea
than the width of the energy band of the particle, then it w
execute oscillatory motion at an arbitrary steepness of
potential relief and any sign ofU. In Fig. 16 the region of
reciprocating motion of the particle corresponds to the in
val (x1 ,x2).

2. At the bottom of the potential well the particle e
ecutes oscillations reminiscent of the vibrational motion
an ordinary particle in such a well@in Fig. 17a the region of

FIG. 16. Region of allowed motion (x1 ,x2) of a band quasiparticle in a
potential with a large gradient.

FIG. 17. Vibrational motion of a quasiparticle near the bottom of a poten
well at small energyE ~a!; near the walls of the potential well at larg
energyE ~b!.
r
l
e

r-

f

vibrations is the interval (x1 , x2#. However, if it happens
that E2«0.Umin , as is shown in Fig. 17b, then the vibra
tional motion takes on the character of Bloch oscillations
a uniform field and will occur either in the interval (x1 , x2)
or in (x3 , x4), depending on the initial conditions.

3. A step of the potential relief can lead to infinite motio
of the particle on one semiaxis on each side of the step.
the step in Fig. 18 this is possible both at an energyU1

,E1,U2, in which case the motion occurs on the semia
2`,x,x1 , and at an energyE2.U2 , in which case the
region of infinite motion isx2,x,`. If the step is suffi-
ciently high (U22U1.«0), then it can cause localization o
the particle, constraining it to execute Bloch oscillations
the inflection region.

4. An analogous treatment leads to the conclusion th
potential well of finite depth can be an insurmountable o
stacle for a particle, like a potential barrier for an ordina
particle ~Fig. 19!. It follows from this figure that ifE2«0

,U(`), then the potential well reflects the particle, co
straining it to move either in the interval2`,x,x1 or in
the intervalx2,x,`.

5. Finally, in regard to the ‘‘superbarrier motion’’ of th
particle in the case of a potential barrier of finite height~Fig.
20!, if E2«0,Umax the particle is ‘‘trapped’’ by the poten
tial hump and executes oscillatory motion about its apex

l

FIG. 18. ‘‘Superbarrier’’ repulsion of a quasiparticle by a nonuniform p
tential.

FIG. 19. A potential well repulses a particle whose energy is initially high
than the potential at infinity.
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The change in the role of the potential well and poten
barrier in the situations described can easily be unders
by introducing in place of the particle with energy«(p) an
analog of the ‘‘hole’’ in electronic theory, i.e., a quasipartic
with energy «(p)5«02«(p), and reckoning the energ
from the top edge of the energy band. Here the effec
potential changes sign, as it were, and therefore the pote
well and potential barrier ‘‘change places.’’
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2&Ã2& superstructures and charge transfer in YBa 2Cu3O6¿x

A. A. Mamaluia) and I. N. Sablin

Kharkov Polytechnical Institute National Engineering University, ul. Frunze 21, 61002, Kharkov, Ukraine
~Submitted January 25, 2001!
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Anomalies of the kinetic and thermodynamic properties of YBa2Cu3O61x (x;0.9) in the normal
state are interpreted as originating from the ordering of oxygen in the~001! CuOx basal
planes. A sequence of structural phase transitions is proposed, and the phases are analyzed by the
method of static concentration waves. It is shown that the anomalous behavior of the
resistivity and the relative elongation of the sample may be due to a charge transfer effect.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1388416#
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INTRODUCTION

The study of the ordering of oxygen in the CuOx planes
of YBa2Cu3O61x and the electronic structure interrelate
with it has been the subject of many papers.1–4 In Ref. 5 the
Cu–O chains served as a reservoir of charge carriers.
gether with a change in the oxygen index the carrier conc
tration in the CuO2 conducting planes also changed by mea
of the charge transfer out of the chains, and, hence, the
tem can exhibit both insulator and metallic superconduct
properties. In addition, it has been found that the resistiv
in the normal state and the critical parameters in the su
conducting state depend not only on the oxygen content
also on its degree of ordering.6 In the Cu–O chains the cop
per can be found in two valence states: Cu1 and Cu21, as is
confirmed by ellipsometric measurements7 and nuclear quad
rupole resonance experiments.8 In the first case, only two
apical oxygen atoms O4 are found in the nearest-neigh
environment of the copper, while in the second case the c
per is three- or fourfold coordinated. The improvement of
superconducting characteristics of YBa2Cu3O61x for x;0.5
~Ref. 6! is due to the formation of chains consisting of alte
nating Cu and O atoms, corresponding to a structural ph
transition OI→OII accompanied by the addition of ne
holes in the CuO2 layers. To calculate the contribution to th
atom–vacancy ordering energy from the transfer of charg
the CuOx basal planes as a system of highly correlated e
trons, the widely used Hubbard model was employed. In
framework of this approach one can describe a numbe
properties specific to high-Tc superconductors, e.g., th
metal–insulator transition. In the three-band Hubbard mo
used in Ref. 4, the mixed ionic–covalent character of
bonding was also taken into account. It is also advisable
consider other factors influencing the ordering of the oxyg
For example, increasing the oxygen concentration leads
decrease in the volume of the unit cell, which, in turn, p
motes the formation of a heterophase structure.9 The partici-
pation of the long-range elastic forces plays a decisive rol
the formation of the domain structure.2

Two types of vacancy superstructures are distinguish
chain and hexagonal or nearly hexagonal ‘‘herringbone’’
5421063-777X/2001/27(7)/3/$20.00
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perstructures. In YBa2Cu3O61x with a high oxygen concen
tration (x;1) the stable superstructures at low temperatu
are of the second type, viz., 2&32&, as has been con
firmed both experimentally10 and theoretically.11 However,
effects due to charge transfer can also be manifested in t
phases.

In the present study we consider the sequence of st
tural phase transitions in YBa2Cu3O61x with x50.9 and the
charge transfer related to them with the goal of explain
the anomalies observed in the temperature dependence o
resistivity12 and the relative elongation of the samples.13

MODEL OF STRUCTURAL TRANSITION

In connection with the study of atom–vacancy orderi
in the oxygen subsystem of YBa2Cu3O61x a model with an
asymmetric interaction in the second coordination sphere
been developed.1 For the Cu–O chains the long-range Co
lomb and elastic forces are important. As in Ref. 2, we sh
consider the ordering in the basal plane, i.e., the effectiv
two-dimensional case. We initially have a square lattice
copper atoms with lattice parametera. The oxygen occupies
interstitial positions, which we denote as (p,r ), where the
index p refers to the particular sublattice~the O~1! or O~5!
positions!, andr is the translation vector of the initial squar
lattice. The distribution of the oxygen atoms among the
terstitial positions is characterized by a functionn(p,r ),
which is the probability that an oxygen atom will occupy th
interstitial position (p,r ). The O–O interaction takes plac
by the long-range Coulomb and elastic forces, and this p
vides justification for restricting consideration to the me
field approximation. In that approximation the free ener
has the form

F5
1

2 (
p,r

(
q,r8

Wp,q~r2r 8!n~p,r !n~q,r 8!

1kBT(
p,r

~n~p,r !ln n~p,r !

1~12n~p,r !!ln~12n~p,r !!!2m(
p,r

n~p,r !, ~1!
© 2001 American Institute of Physics
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whereWp,q is the interaction energy of oxygen atoms fou
in the positions (p,r ) and (q,r 8), kB is Boltzmann’s con-
stant, andm is a Lagrange undetermined multiplier, whic
plays the role of the chemical potential. The equation of
self-consistent field can be obtained by equating to zero
first variation of the free energy~1! with respect ton(p,r ):

n~p,r !5H expF2
m

kBT
1

1

kBT (
q,r8

Wp,q~r2r 8!n~q,r 8!G
11J 21

. ~2!

It is convenient to use Khachaturyan’s method, in which
solution of equation~2! is sought in the form a superpositio
of the static concentration waves.2,14

As in Ref. 15, we shall use a model of the O–O inte
action that corresponds to an anisotropic screened Coul
repulsion:

Wp,q~r2r 8!5H z2

r i
expS r i

r d
D1dWi , iÞ2

~16 f !
z2

a
expS 2

a

r d
D1dW2 , i 52

J ,

~3!

wherer i is the radius of thei th O–O coordination sphere,z
is the effective charge of the oxygen,f is the anisotropy
factor for the second coordination sphere~the minus sign
being used if there is a copper atom between the oxy
atoms!, anddWi is the correlation to the screened Coulom
interaction in thei th coordination sphere due to spatial d
persion of the dielectric constant.16

RESULTS AND DISCUSSION

For studying the ordering that occurs in th
YBa2Cu3O61x system withx50.9 we use the results of Ref
12 and 13, where the resistivity12 and the relative
elongation13 of the sample were measured in the temperat
interval 450–650 K with isothermal holds. Figure 1 sho
the curves of the temperature dependence of the ratio o
resistivity r t , which depends on the time of the isotherm
hold, to r0 , determined fort50; the curves were obtaine
as isochronal sections of the experimental isotherms.
presence of a temperature region in whichDr t /r0 is nega-
tive is a characteristic feature. An analogous dependence
observed for the relative elongationD l / l of the sample.13

The studies of Refs. 12 and 13 supplement the exp
mental data of Refs. 17–19, which were used in Ref. 16 a
basis for choosing the model of the O–O interaction and
sequence of phase transitions OI→OII→(2&32&)1

→OIII(3 31) for YBa2Cu3O61x with x50.75. The tempera
tures of the structural transitions were estimated over a w
range of concentrations 0.5,x,0.8 by studying the relax-
ation behavior of the superconducting transition tempera
after various heat treatments17 and also on the basis of th
neutron-diffraction studies.18,19

To achieve the best agreement with the experiments,12,13

we proposed the following sequence of structural transiti
e
e
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for x50.9: OI→OII→(2&32&)1→(2&32&)2 . At
low temperatures in YBa2Cu3O61x with x;0 andx;1 the
superstructure (2&32&) is more stable, in agreement wit
the results of Refs. 10 and 11. The superstructures (&
32&)1 and (2&32&)2 are illustrated in Fig. 2.

To simplify the calculations it is assumed that at t
point of the OI→OII transition the orthorhombic phase OI
almost completely ordered, i.e., the oxygen atoms occ
only one of the sublattices. For this reason, when the s
metry of the OI phase is taken into account, the model
scribed above can be reduced to one of ordering in a sim
lattice under the influence of an interaction potentialW22.
The OII, (2&32&)1 , and (2&32&)2 phases are then
described by the functions

n15x1h1 cos~k18r !,

n25x1h1 cos~k18r !1h2@cos~k28r !1sin~k28r !

1cos~k29r !1sin~k29r !#, ~4!

n35x1h1@cos~k18r !1cos~k19r !#1h2@cos~k28r !

1cos~k29r !#1h3 cos~k38r !,

FIG. 1. Temperature dependence of the ratio of the resistivityr t , which
depends on the time of the isothermal hold, tor0 , determined fort50, in a
YBa2Cu3O6.9 sample;t55 h ~d!, t57 h ~s!.

FIG. 2. Superstructures (2&32&)1 and (2&32&)2 ; oxygen atom~s!,
copper atom~d!.
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whereh1 , h2 , andh3 are order parameters with the follow
ing wave vectors:

k185
2p

a S 1

2
0D , k195

2p

a S 0
1

2D ,

k285
2p

a S 1

4

1

4D , k295
2p

a
S 1̄

4

1

4
D ,

k35
2p

a S 1

2

1

2D .

Stoichiometry is attained for the corresponding phases ax1

5h151/2; x253/4, h15h2521/4; x257/8, h15h3

521/8, h2521/4. Substituting~4! into the equation of the
self-consistent field~2!, we obtain a system of transcenden
equations for the order parameters, enabling us to cons
their temperature dependence. The temperatures of the s
tural transitions were determined from the condition
equality of the free energies of the successive phases.
choice of parameters of the O–O interaction was restric
by requiring that the exact sequence of transitions be
lowed, that the transitions OI→OII and (2&32&)1

→(2&32&)2 occur at the temperatures 500 and 600
and that phases which order according to other superstruc
vectors do not appear. Only four coordination spheres w
considered, and the redistribution of oxygen between sub
tices, as we have said, was neglected; the following va
were used for the parameters of the O–O potential:

z2

a
55015 K; r d5A5a; dW250;

dW352281 K, dW4598 K. ~5!

The fractionf of twofold coordinated copper is a cha
acteristic that can serve as a quantitative measure of th
fect of charge transfer. Knowing the functionn(r ) for each
superstructure, we can easily calculate the parametef ,
which is a characteristic of the short-range order,20 by em-
ploying the mean field approximation adopted here and
glecting correlations. The temperature dependence off is
given in Fig. 3. From a comparison of Figs. 1 and 3 we c
conclude that the behavior of the resistivity and the variat
of the parameterf are interrelated.

In the temperature interval 500–600 K the number
holes in the CuO2 layers increases upon the ordering und
study, and that leads to the observed decrease of the res
ity. The appearance of new current carriers is accompa
by a decrease in the charge of the copper atoms in the Cx

layers upon the transition Cu21→Cu1. For this reason, in
YBa2Cu3O61x , as occurs upon an increase in the oxyg
index x, the Ba ions can be more strongly attracted by
CuOx planes; as a result, the lattice parameterc decreases, a
is reflected in the dilatometric measurements.13

Thus YBa2Cu3O61x undergoes a sequence of structu
phase transitions OI→OII→(2&32&)1→(2&32&)2 in
the temperature interval 500–600 K. In this temperature
l
er
uc-
f
he
d
l-

,
re

re
t-
s

ef-
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n
n

f
r
tiv-
ed
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n
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terval the stable phases are OII and (2&32&)1 , in which
charge transfer to the conducting planes occurs, cau
anomalous behavior of the physical properties
YBa2Cu3O61x .
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The conditions for the appearance of multiplicative noise in the vortex system of superconductors
with pronounced layering are considered. A stochastic differential equation of motion is
constructed for a pinned 2D vortex, and its stationary solution is found. The region of parameters
of this equation in which a stochastic phase transition can occur in the vortex system is
determined. An experimental scheme is proposed for observing such a transition by the method
of power absorption from an alternating magnetic field. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1388417#
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INTRODUCTION

The two-dimensional~2D! character of vortices in high
Tc superconductors having a pronounced layered struct1

leads to the appearance of many new states on
temperature–magnetic field phase diagram.2,3 Studies of the
dynamics of vortices in different regions of the phase d
gram of high-Tc superconductors~HTSCs! have shown that
in a large range of fields and temperatures there is an e
tive bulk pinning governed by the interaction of vortices w
inhomogeneities of the material, such as oxygen vacanc
impurity atoms, twin boundaries in single crystals, and gr
boundaries in ceramics. These ‘‘internal’’ pinning cente
like the pinning centers created artificially~e.g., pinning cen-
ters in the form of columns!, have various characteristic size
and energies, and the number of these centers can vary
wide limits.

One of the most important characteristics of a superc
ductor is the critical current, the value of which is dete
mined, as a rule, by the averaged pinning potential,4 while
the distribution of currents over the volume is determined
the shape of the sample. The value of the critical curren
substantially temperature-dependent, since a rise in temp
ture leads to an increase in the thermal fluctuations of
position of the vortices and to thermally activate
depinning.2,5,6 The studies of Refs. 7–10 are devoted to t
influence of these thermal fluctuations of the position of
vortices on the value of the critical current,8 the position of
the line of depinning of the vortex lattice,7,8 the dimensional
transition in the vortex system,9 and hysteresis of the modu
lated microwave absorption.10

Thermal fluctuations are treated by introducing
temperature-dependent random force in the equation of
tion ~see, e.g., Refs. 8 and 11!. This force has the form o
additive white noise, and when it is taken into account
position of the vortex becomes a random quantity charac
ized by a steady-state probability densityrs(x) of the vortex
position near the pointx of the potential well. In the case o
additive noise the positions of the extremaxm of the prob-
ability density always coincide with the determinate stea
state equilibrium positions of the vortex,12 and increasing the
5451063-777X/2001/27(7)/7/$20.00
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intensity of such noise leads only to a smearing of the pr
ability density in the neighborhood of the determinate eq
librium position. In a superconductor through which a cu
rent is passed a low-frequency additive noise also appea13

which is due to hops of the flux bundles or to the formati
of vortex avalanches in samples of YBa2Cu3O7 ~Refs. 14–
18! and Bi2Sr2CaCu2O8 ~Ref. 19!.

We wish to call attention to the fact that in supercondu
ors there also arises a multiplicative noise, which, unlike
additive noise, may be due to fluctuations of the parame
of the pinning potential itself or can have an external sour
It is known12 that if the intensity of the multiplicative noise
exceeds a certain theoretical value, then the functional
pendencers(x) can change sharply, i.e., a stochastic ph
transition can occur, at which new extrema appear in
stationary probability densityrs(x). This means that, beside
the disorganizing effect on the system which is also pres
in the case of additive noise, the multiplicative noise c
give rise to new states and induce new nonequilibrium ph
transitions, i.e., it can lead to situations in which the syst
no longer accommodates to the averaged characteristic
the medium but reacts to changes of the medium in a m
active way. For example, some systems with multiplicat
noise possess supersensitivity to weak alternating signal20

In this paper we consider the conditions under wh
multiplicative noise appears in a system of 2D vortices
layered superconductors, leading to a stochastic phase
sition, and discuss the features of the absorption of hi
frequency power due to the onset of this stochastic ph
transition. This article is arranged as follows. In Sec. 1
introduce and discuss the stochastic equation of motion
2D vortex pinning at a point pinning center. In Sec. 2 w
obtain the stationary solution of the stochastic equation~i.e.,
an expression forrs(x)) and show that in certain cases
stochastic phase transition can arise in a system of pin
vortices. In Sec. 3 we discuss the main results and prop
an experimental scheme for observing the phase transi
The main findings of this study are summarized in the C
clusion.
© 2001 American Institute of Physics
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1. STATEMENT OF THE PROBLEM. MODEL

We consider a type-II superconductor with pronounc
layering and which is found in the mixed state. It is know
that at high temperatures and high magnetic fields the sys
of vortices in layered superconductors decomposes in
system of 2D vortices~see, e.g., Refs. 2 and 3!. We propose
that in superconductors there exist effective pinning cen
which confine around themselves only individual 2D vortic
or their bundles, while the rest of the vortices remain fr
Such a situation is apparently realized in layered HTSCs
the region of the temperature–magnetic field phase diag
where the critical current is either equal to zero or ve
small. We shall show that under certain conditions the in
action of a pinned 2D vortex with freely fluctuating 2D vo
tices can be described by multiplicative noise.

Let us consider such a 2D vortex, pinned at a point p
ning center. Suppose that this center is described by a sim
parabolic potentialUp(u) ~see Fig. 1a!,21

Up~u!55
4U0

d2
u2, uuu<

d

2
,

U0 , uuu.
d

2
,

~1!

whereU0 is the depth of the potential well andd is its spatial
extent. It is known22 that U0 depends on the magnitude o
the external static magnetic fieldH: the depth of the poten
tial well increases as the magnetic field is lowered. For
ample, in Bi2Sr2CaCu2O81x , where the pinning centers ar
oxygen vacancies,U0 varies from 0.01 to 0.2 eV.22 The
width d of the well is of the order of several coheren
lengths and is independent of the magnitude of the exte
field.

FIG. 1. Potentials in which a pinned 2D vortex oscillates:Up(u) is the
pinning potential~a!; the potential describing the interaction of a pinned a
an unpinned 2D vortex~b!. ~Its position varies randomly with respect t
Up(u). Two of a set of possible positions of the vortex are shown.!
d
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If a transport currentJ is passed through a superco
ductor, the equation of motion of a 2D vortex in the potent
Up under the influence of the Lorentz forceFL5@F03J#
will have the form

hu̇52
]Up~u!

]u
1FL , ~2!

whereu is the displacement of the vortex from the equili
rium position,h is the viscosity of a 2D vortex,23,24 andF0

is the magnetic flux quantum.
It follows from the structure of highly layered superco

ductors that the superconducting layers in them altern
with nonsuperconducting interlayers~spacers!,1 and there-
fore a vortex line, even in the region of low fields and lo
temperatures, consists of 2D vortices interconnected by
sephson contacts. As the magnetic field is increased, the
teraction of the vortices located on the same superconduc
plane increases, and under the influence of various fluc
tions the linear vortex decays into individual 2D vortice
Suppose that a pinned 2D vortex is found in thenth conduct-
ing plane. If at some point in time a free vortex of the (n
21)th or (n11)th plane accidentally happens to come ne
the pinned vortex, an attractive force will arise between
free and pinned vortices. The attractive force arises beca
the potential energy of two 2D vortices arranged one ab
the other is less than the sum of the potential energies of
isolated vortices. The pair interaction potentialU int(u) due to
the mobile vortex can be represented as a segment of a c
parabola, with parameters chosen in such a way that
force of interaction between the vortices is equal to zero
u50 andu5d1 ~at the center of the well and at its boun
ary! and the depth of the well isU15kTD , whereTD is the
temperature at which a linear vortex decays into individ
2D vortices.3 Then if the mobile vortex is centered at a di
tanced1 from the pinned vortex, the left half of the potenti
well can be represented in the following form~the solid line
in Fig. 1b!:

U int~u!5
U1

d1
3

u2~2u23d1! for 0<u<d1 . ~3!

The right half of the potential well is symmetric with respe
to the center of the mobile 2D vortex~see Fig. 1b!. The
half-width of the mobile potential welld1 is of the order of
the extent of the vortex in theab plane (d1;jab , wherejab

is the coherence length!,25 and the lower temperature bound
ary TD can be estimated as 30 K.3

Since the position of the free 2D vortex fluctuates, t
position of the potential wellU int relative to the pinning cen-
ter varies in a random manner. In what follows we sh
consider a simplified model in which it is assumed tha
‘‘free’’ 2D vortex can occupy only two positions relative to
pinned vortex: above the center of the vortex~point 0! and at
a distanced1 from it, and the times at which the free vorte
appears at points 0 andd1 are determined at random. The
the force exerted on the pinned vortex by the mobile vor
will have the form of a random force: (2]U int /]u)z(t),
wherez(t) is noise. We assume that the noisez(t) is Gauss-
ian white noisej t with the propertieŝ j t&50 and^j tj t1t&
5d(t).

Then the equation of motion~2! takes the form
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huu̇u5u@F03J#u2
8U0

d2 u2
6U1

d1
3 u~u2d1!j t . ~4!

It should be noted that in the investigated model of the
teraction of a pinned and a fluctuating 2D vortex the relat
motion of the potential wellsUp(u) andU int(u) is important.
The additive noise, which is manifested in a random walk
equilibrium points in the wellUp(u), is already taken into
account in this model, at least for walks at distances of
order of the sized1 of the ‘‘mobile’’ potential well. The
probability of walks of a pinned 2D vortex at distanc
greater thand1 is exponentially small and can be neglecte

Let us estimate the characteristic time scales for va
tions of u(t) and j(t). The timetmacro required for macro-
scopic evolution of the system to a steady state can be
mated as

tmacro5
d2h

8U0
. ~5!

For an estimate let us take, e.g., the usual parameters
HTSC materials:U0'0.1 eV, h(T50)51026 N•s/m2, and
d'200Å, i.e.,tmacro'10210s.26,27A measure of the rapidity
of the random fluctuations of the free vortices is the corre
tion time tcorr, i.e., the inverse of the frequency of natur
oscillations of the free 2D vortex:12

tcorr5
a2h

8Ua
S jab

a D 2

, ~6!

wherea is the average distance between vortices in the s
CuO2 plane~a}1/AB, whereB is the magnetic induction!,
Ua is the average potential, which determines the equi
rium position of a free vortex in an environment of oth
vortices (Ua'U0(H irr), whereH irr is the field of irrevers-
ibility !; (jab /a)2 gives the fraction of the total time that th
mobile vortex is found near the pinned vortex and can in
act with it ~with allowance for the two-dimensional charact
of the motion of the mobile 2D vortex!. For our casetcorr

,tmacro for U0(H)/Ua,(d/jab)
2, i.e., for a,500 Å or

H.1 kOe. Under these conditions the medium can be
garded as rapidly fluctuating.

Let us put Eq.~4! in dimensionless form:

]x

]t
5 j 2x1sS 1

a
2xD xjt , ~7!

where

x5
u

d
; t5

t

tmacro
; j 5

tmacroFL

hd
5

dFL

8U0
;

a5
d

d1
; b5

U0

U1
; s5

3a3

4b
5

3d3U1

4d1
3U0

;

the amplitudes of the multiplicative noisejt is determined
by the ratio of the parameters of the pinning potential w
and the mobile well that describes the interaction of
pinned 2D vortex with free vortices. With increasing ma
netic field the parameters of the mobile wellU1 andd1 and
the sized of the pinning well remain unchanged, while th
depthU0 of the pinning well decreases,22 and so the noise
-
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amplitude increases. Equation~7! has the form of a stochas
tic differential equation~SDE! with multiplicative white
noise.

2. SOLUTION OF THE EQUATION

We note first of all that Eq.~7! is valid for 0< j ,1/a,
and the random process develops in the region (0,1/a). For
21/a, j <0 the random process develops in the reg
(21/a,0), and a SDE analogous to~7! can be constructed
for this case also; it is sufficient to replacej by 2 j and 1/a
by 21/a in ~7!. This is confirmed by the character of th
boundaries of the random processb150 andb251/a ~see
Appendix!.

The standard method of solving a SDE is to use
Fokker–Planck equation.12 The Fokker–Planck equation fo
the SDE~7!, understood in the Stratonovich sense, for t
probability densityr(x,tux0,0) for the transition of a random
processx from the state (x0 ,t50) to the state (x,t) has the
form

]

]t
r~x,tux0,0!52

]

]x F S f ~x!1
s2

2
g8~x!g~x! D r~x,tux0,0!G

1
s2

2

]2

]x2
~g2~x!r~x,tux0,0!!, ~8!

where

f ~x!5 j 2x and g~x!5S 1

a
2xD x.

In finding the stationary solution of equation~8! it is impor-
tant to investigate the behavior of the functionr(x,tux0,0) at
the boundaries of the random process. As is shown in
Appendix, the pointx5b251/a is a natural boundary for
j ,1/a and an absorbing boundary forj .1/a. As to the
left-hand boundary of the interval,x5b150, its character
varies substantially depending on the parameterj . For j 50
the stationary probability density is not normalized and ha
singularity at the pointx50 ~see, e.g., Ref. 12!. For j Þ0
( j >0) the boundaryx50 becomes a natural boundary. Th
means that at the transition fromj .0 to j ,0 the probability
density around the pointx50 over a timetmacro510210s
shifts from the regionx.0 to the regionx,0. Thus it is
necessary to find the solution for the stationary probabi
densityrs(x) at the boundaries of the intervals 0,x<1/a
and 0, j <1/a with zero boundary conditions. This solutio
has the form12

rs~x!5
N

g~x!
expS 2

s2 Ex f ~u!

g~u!2
duD

5
N

S 1

a
2xD 12~2/s2!a3@~1/a!22 j #x11~2/s2!a3@~1/a!22 j #

3expH 2

s2F a2S 2x2
1

a D
xS 1

a2xD j 2
a

S 1

a
2xD G J , ~9!
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whereN is a normalizing factor.
The pointsxm at which extrema of the stationary prob

ability densityrs(x) are obseved are solutions of the follow
ing equation:12

f ~x!5
s2

2
g~x!g8~x!

or

j 2x5
s2

2 S 1

a
2xD S 1

a
22xD x. ~10!

We recall that in Eq.~10! the left-hand side is deter
mined by the dynamical part of Eq.~7!, while the right-hand
side, which is proportional tos2, is determined by the sto
chastic part. The roots in~10! are conveniently found by
means of a graphical solution of this equation. Figure
shows the solutions of equation~10! determined from the
points of intersection of the lines described by the expr
sions on the right- and left-hand sides of Eq.~10!, for j
50.025 and three different values ofs, viz., s510, 18, and
25. It is seen in the figure that fors.scr( j )518 there are
three extrema ofrs(x), and thus growth of the multiplicative

FIG. 2. Extrema of the stationary probability densityrs(x) for three values
of the noise intensitys—the points of intersection of the curves and t
straight line (j 2x) for j 50.025 anda55, x05 j is the sole equilibrium
position of the vortex~maximum ofrs(x)) in the absence of noise,x1 , x2 ,
and x3 are the extrema ofrs(x) in the case when the noise intensitys
525 is greater than the critical value (s.scr518); x* is the point at which
g8(x)50.

FIG. 3. Stationary probability densityrs(x) for j 50.025,a55 and various
values of the multiplicative noise intensitys: 1 ~1!, 5 ~2!, 15 ~3!, 25 ~4!, 35
~5!, 45 ~6!, 55 ~7!, 65 ~8!, 75 ~9!, and 85~10!.
2

-

noise will lead to a stochastic phase transition. Figure
shows the change observed in the stationary probability d
sity rs(x) when the intensity of the multiplicative nois
changes froms51 to s585 for a55 andj 50.025. We see
that as the noise increases fors.scr , the maxima of the
function rs(x) shift toward the edges of the interval@0,1/a]
and a redistribution of the probability density between the
maxima occurs~the equilibrium positionx3 becomes more
probable with increasing noise!.

Figure 4 shows the regions of values of the parame
appearing in Eq.~7! for which the stationary probability den
sity has three extrema. These parameters area5d/d1—the
ratio of spatial extents of the two wells,b5U0 /U1—the
ratio of energies of the large immobile (U0) and small mo-
bile (U1) wells, and j —the external current density~a di-
mensionless quantity measured in units ofj 0).

3. DISCUSSION OF THE RESULTS

In Sec. 2 it is shown that a stochastic phase transitio
observed under the influence of multiplicative noise, i.e.,
addition to the one equilibrium state that exists in the a
sence of noise, another equilibrium state appears near
interval boundaryb2. As the multiplicative noise increase
this new equilibrium state becomes more probable. Thus
multiplicative noise causes an appreciable change in
probability density distributionrs(x) of the vortex in the
potential well.

As we said in Sec. 2, the characteristic time for syst
changes istmacro'10210s, while the correlation time of ther
mal oscillations of the 2D vorticestcorr is 1–2 orders of
magnitude smaller. Therefore, any external currents that
duce an external magnetic field with frequencyv smaller
than 1/tmacro can be considered constant~dc! in this case.
This means that for every value of the alternating magn
field h(t)5h0 exp(ivt) with v!1/tmacro the system has time
to relax toward the equilibrium state determined by the s
tionary probability density distribution functionrs(x).

Let us consider the dynamics of vortices in a layer
superconductor placed in an alternating magnetic field wit
frequency of the order of 10 MHz. This field induces on t
surface of the superconductor an alternating current wh
causes oscillations of the vortices. In the region of the n
mal core of the oscillating vortex a scattering of Cooper pa
occurs, and the vortex therefore absorbs energy from
alternating magnetic field, the absorbed power being prop
tional to the mean-square displacement^Du2& of the vortex
from its position of local equilibrium~for free vortices! or
from the pinning center~for pinned vortices!.22 The inset in
Fig. 5 shows how the quantityI 5^Du2&s /^Du2&0 depends
on the multiplicative noise intensitys for j 50.025, where
^Du2&s is the mean-square displacement of a pinned vor
in the presence of multiplicative noise, and^Du2&0 is the
displacement in the cases50. The arrow indicates the valu
of the noise intensityscr at which a stochastic phase trans
tion is observed. According to the general theory of stoch
tic phase transitions,12 ^Du2&s does not have features at th
phase transition point. From the inset in Fig. 5 one can
that the functionI (s) indeed does not have any features
this point, but when the noise intensity is increased from
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FIG. 4. Regions of values~unshaded! of the parametersj 5(d/8)(FL /U0), a5d/d1 , andb5U0 /U1 for which the stationary probability densityrs(x) has
three extrema, i.e., for which there exists two equilibrium positions of the vortex: in thej –b plane for a52, 3, 4, 5, 6~a!; in the a –b plane for
j 50.0125, 0.025, 0.05, and 0.1~b!.
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values→0 to s@scr , the mean-square displacement of t
vortex and, hence, the power absorbed by the vortex,
creases by approximately a factor of 20.

For observation of this effect we propose the followi
experimental scheme. A single-crystal sample of a hig
layered high-Tc superconductor is cooled to a temperatu
T,Tc at which the bulk pinning is operative~e.g., T
,35 K for Bi2Sr2CaCu2O8! and is placed in crossed mag
netic fields: a static magnetic fieldH.H2D@Hc1 ~H2D is the
field at which a linear vortex decays into 2D vortices! paral-
lel to the c axis, and an alternating magnetic field perpe
dicular to thec axis, with a low amplitudeh!Hc1 and a
velocity n510 MHz. Then, as the static field is slowly in
creased toH.H irr , the powerP(H) absorbed by the vorti-
ces from the alternating field is measured. Figure 5 sho
]P/]H, the derivative of the power absorbed by the vortic
with respect to the field, as a function of this fieldH, accord-
ing to a calculation for the superconductor Bi2Sr2CaCu2O8

with the following values of the parameters:d5200 Å, d1

540 Å, andU1530 K52.631023 eV.3 The parametersd,
d1 , andU1 do not depend on the fieldH. The depth of the
pinning well has a weak field dependence:U0'1/AH ~Ref.
28!. ThenU0 /U15A/AH, whereA5630 andH is measured
in oersteds. It is seen in Fig. 5 that the curve of]P/]H(H) is
nonmonotonic. The field in which]P/]H has a maximum is
lower than the field at which the sochastic phase transi
takes place,H(scr). The dashed lines in the figure indica
the interval of magnetic fields (1kOe,H,17 kOe) in which
this theory is applicable. In fields below 1 kOe~the left-hand
dashed line! the correlation timetcorr of the random fluctua-
tions of the vortices becomes comparable to the charact
tic time tmacrofor the evolution of a vortex toward the stead
state in the pinning potential, and the medium cannot
considered to be rapidly fluctuating. In fields above 17 k
~the right-hand dashed line! there is evidently a thermally
activated depinning of vortices, i.e., the frequency at wh
the 2D vortices ‘‘jump out’’ of the pinning well will be com-
parable to 10 MHz. The extent of the region in which t
given theory is applicable depends on the frequency of
alternating field: the lower the frequency, the narrower
n-

y

-

s
s

n

is-

e
e

h

e
e

magnetic field region in which the existence of the stocha
phase transition can be detected from its influence on
absorption of power from the alternating field. Thus it can
assumed that a nonmonotonic dependence of]P/]H will be
observed in the region of the stochastic phase transition
scribed here~Fig. 5!.

Here it is important to note that the absorption of pow
from the alternating magnetic field occurs both at the pinn
and at the free 2D vortices, the absorption at the free vort
being proportional to the number of such vortices, i.e., p
portional to H, so that the nonmonotonic dependence
]P/]H will be observed against a rather high backgrou
]P/]H5const from the free 2D vortices. However, as t
frequencyn of the alternating field increases and its pow
decreases, the contributions to the]P/]H signal from the
free and bound vortices change sharply: as can be see
Fig. 2, under conditions of a developed stochastic phase t
sition, when the probability of finding a 2D vortex in th
neighborhood of the pointx3 increases substantially, the po

FIG. 5. Predicted field dependence of]P/]H, whereP is the power ab-
sorbed from an alternating magnetic field by a system of 2D vortices a
on by multiplicative noise;H is the static magnetic field. The inset show
the quantityI 5^Du2&s /^Du2&0 as a function of the multiplicative noise
intensitys for j 50.025 anda55.
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sition of this point depends weakly on the amplitude of t
alternating currentj and is independent of frequency. Calc
lations show that forn5500 MHz andh'0.01 Oe~h is the
amplitude of the alternating field! under the condition tha
the number of pinned 2D vortices is approximately 10%,
power absorbed by the pinned 2D vortices can turn out to
even greater than the power absorbed by the mobile vorti

Finally, we note that the shape of the potentialUp(u) in
this model is not important, since ford1!d the anharmonic
admixtures to the potential~1! are unimportant. As to the
shape of the potentialU int , it is also not very important. As
can be seen in Fig. 2, the position of the rootsx1 , x2 , andx3

varies somewhat upon changes in the shape of the pote
but it is clear that extremax2 and x3 will always be to the
right of the pointx5x* ~at which g8(x* )50), so that the
main characteristics of the mobile well are its depth and s
tial extent.

CONCLUSION

We have shown theoretically that in type-II superco
ductors with pronounced layering there can exist a multi
cative noise due to the interaction of 2D vortices, and
growth in intensity of this noise will lead to a stochas
phase transition. We have determined the parameter
which a noise-induced phase transition is possible. We h
also shown that the onset of multiplicative noise will lead
nonmonotonic dependence of]P/]H on the magnetic field
H.
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APPENDIX

Character of the boundaries

As was shown in Ref. 12, the character of the bounda
of the stochastic process is determined by the behavior o
transportf (x) and diffusiong(x) near these boundaries.
classification of the boundaries is based on the integrab
of certain functionsL1(x) andL2(x) composed ofg(x) and
f (x). Boundaryb is a natural boundary if

L1~b!5E
b

b

w~x!dx5`, ~A1!

where

w~x!5expS 2E
b

x 2@ f ~z!1~s2/2!g8~z!g~z!#

s2g~z!2 dzD .

For the left-hand boundaryb150 we have

w~x!'C expS 2 j a2

s2x
D

x→0

uxu2a3/s2~1/a22 j !21,

where
e
e
s.

ial,

a-

-
-
e

at
ve

e

.

ct

s
he

ty

C5const. ~A2!

It is seen from formula~A.2! that the functional dependenc
of w(x) has a different form forj 50 andj .0, and therefore
the character of a given boundary will depend onj :

1. j 50, w(x)'Cuxu2a2/s2 21, L1(b1),`, and
L2(b1)5` ~Ref. 12!, i.e., the boundary is attractive; be
cause the transport and diffusion go to zero at this bound
the entire ‘‘mass’’ of the probability density is concentrat
at this point. Therefore, independently of the noise intens
s, the stationary probability densityrs(x)5d(x), where
d(x) is the Dirac delta function.

2. j .0, L1(b1)→`; therefore the boundaryb1 is natu-
ral, i.e., unreachable.

In order to estimate the character of the right-ha
boundaryb251/a, we expand the functionsf (x) andg(x)
in series in the small parametery, where y51/a2x and
y→0. Then

w~x!'
C

S 1

a
2xD 2a2/s2~122 j a!11

expS 2a2

s2

12 j a

12xa D .

x→1/a ~A3!

We see from expression~A3! that for j , j cr51/a one
hasL1(b2)5`, i.e., the boundary is natural. Forj . j cr one
hasL1(b2),` andL2(b2)5`, i.e., the boundary become
attractive. This means that a 2D vortex leaves the inter
(b1,b2) in a finite time, and always through the right-han
boundary.12
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Nonlinear oscillations of the magnetization in small cylindrical ferromagnetic particles
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The radially symmetric nonlinear oscillations of the magnetization in small cylindrical particles
of a ferromagnet are considered in the cases of free and fixed boundary conditions at the
lateral surface of the particles. It is found that even for nonlinear oscillations of small amplitude
the dependence of the frequency on the amplitude of the oscillations is rather complicated
and can include a series of bifurcations. The character of the oscillations depends substantially on
the boundary conditions; for example, for free boundary conditions the solutions exhibit
bifurcations that are not present in the case of fixed boundary conditions. We discuss the
possibilities for generalizing the results to the case of oscillations in a cylinder with a
more complicated angular dependence and to the case of radially symmetric oscillations in a
spherical particle. ©2001 American Institute of Physics.@DOI: 10.1063/1.1388418#
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INTRODUCTION

In recent decades the technology of deposition and
thography has made it possible to produce nanometer p
odic magnetic superlattices of various types, both o
dimensional ~e.g., multilayer magnetic films! and two-
dimensional, among which the so-called magnetic
lattices are especially popular.1,2 Magnetic dots are particle
in the shape of circular1 or elliptical2 cylinders or rectangula
prisms, made of magnetically soft ferromagnets such as
Fe, FeNi, etc. on a nonmagnetic substrate. Magnetic dot
tices are important from a practical standpoint~high-density
magnetic storage! and are interesting as fundamentally ne
objects in the basic physics of magnetism. Indeed, altho
the physical properties of the material within an individu
particle~magnetic dot! with dimensions of the order of hun
dreds of nanometers are close to those of the bulk ferrom
net, the behavior of a superlattice of such dots, becaus
the weakness of their interaction,3 is substantially different
from that of both bulk ferromagnets and standard continu
magnetic thin films.

The special properties of such materials should be m
fested in resonance experiments. Studies done on long,
ally magnetized ferromagnetic wires4 and on magnetic do
lattices5,6 have shown that the spin-wave~SW! spectrum in
such systems is discrete, which is a direct consequence o
boundary conditions on the lateral surface of the partic
This same effect has been discussed for nanometer ferro
netic particles of cylindrical shape.3

All of the studies mentioned above dealt with line
SWs. It is known that taking nonlinearity into account lea
to a number of effects, such as the parametric excitation
magnons,7,8 frequency dependence of the oscillation amp
5521063-777X/2001/27(7)/7/$20.00
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tude, possible bifurcations, various instabilities, etc. It
clear that these effects can be very different in superlatt
than in massive samples or continuous magnetic thin fil
Knowledge of the properties of a single particle is fundam
tal to the study of the dynamics of the magnetization in su
an ensemble, since if the interparticle distance is somew
greater than the size of the particles, one can neglect
magnetostatic interaction between them.3

This paper is devoted to a study of nonlinear spin wa
~NLSWs! in a cylindrical particle of an easy-axis ferroma
netic material. We show that even in the approximation
low-amplitude nonlinear waves the picture of the nonline
modes is extremely complex and can include a series of
furcations. The NLSW picture depends substantially on
character of the boundary conditions. We discuss genera
tions of the problem to the case of spherical particles.

1. MODEL AND STATEMENT OF THE PROBLEM

We consider nonlinear spin waves in an easy-axis fe
magnet in the form a cylindrical particle of radiusL0 and
heighth, assuming thatL0@h. This is a typical situation in
real superlattices. The easy axis of the ferromagnet is
pendicular to the base of the cylinder. The macroscopic
namics of the ferromagnet is described by a classical ve
order parameter, in the capacity of which one can choose
unit vectorm5M /M0 , whereM is the magnetization of the
ferromagnet, andM0 is the saturation magnetization. Th
vector m is conveniently written in angular variables:m
5(sinu cosw;sinu sinw;cosu). The energy density of the
ferromagnet is written in the form9,10
© 2001 American Institute of Physics



a

an
n
n
e

be
,
ta

tio

wi
so

io
li
t

ea
a

at

th

a
re

e
th
r

th
m

h,

th

f
a
u

i-

ons
pli-
sy

in

s.
lf-

l

on

t

he
ed
ase

f

he

f

553Low Temp. Phys. 27 (7), July 2001 B. A. Ivanov and I. A. Yastremski 
W5
A

2
$~¹u!21sin2 u~¹w!2%

2
1

2
K cos2 u2

1

2
~M•H~m!!, ~1!

whereA is the exchange constant,K is the anisotropy con-
stant, andH(m) is the magnetostatic field. We have used
cylindrical coordinate system (r ,x,z), wherer andx are the
polar coordinates in the plane of the base of the cylinder,
the 0z axis is parallel to the axis of the cylinder. It is know
that for nonelliptical samples the ground state of the mag
tization is inhomogeneous. The cause of the inhomogen
is that the magnetostatic fieldH(m) is a complicated func-
tional of M . However, two substantial simplifications can
made in the caseL0@h. First, when this inequality holds
one can go over to a local dependence of the magnetos
field on M , viz., H(m)524pMzez , and the dipole–dipole
interaction can be taken into account by a simple redefini
of the anisotropy constants:K→K (m)5K22pM0

2 ~for K
,2pM0

2 the ferromagnet becomes easy-plane, but we
restrict discussion to ferromagnets with perpendicular ani
ropy!. Second, althoughH(m) is still nonuniform near the
lateral surface, this nonuniformity is concentrated in a reg
of the order ofh, and the corresponding effects are neg
gible. Therefore, we can assume that the magnetization in
ground state is homogeneous and directed along the
axis of the ferromagnet. In a cylindrical geometry there c
exist, against the background of the uniform ground st
both eigenmodes with nonuniformity along the 0z axis and
modes characterized by nonuniformity in the plane of
cylinder. In the first case (m5m(z)) the situation is the
same as for nonlinear modes in thin ferromagnetic slabs,
there are no specific effects of two-dimensionality. The
fore, we consider eigenmodes for whichm is independent of
z. The approximations made above do not alter qualitativ
the character of the nonlinear modes but do simplify
analysis considerably and make the results more transpa
and clear.

The dynamics of a ferromagnet is described by
Landau–Lifshitz equation, which for an energy of the for
~1! can be written as

r v
2¹2u2@11r v

2~¹w!2#sinu cosu52
sinu

v0

]w

]t
, ~2!

r v
2 div ~sin2 u¹w!5

sinu

v0

]u

]t
, ~3!

wherer v5AA/K (m)@a is the characteristic magnetic lengt
a is the lattice constant,v05(2mBK (m)/\)M0 is the fre-
quency of uniform precession of the magnetization in
linear theory.

The system of equations~2!, ~3! has a discrete set o
classes of solutions, which are characterized by different
gular dependence; these classes are defined by the form

u5u~x!, w5vt1qx1w0 , ~4!

where x5r /r v , w0 is an arbitrary phase,q50,61,62,...
~see Ref. 10!. For the choice of a solution in the form~4!,
equation~3! is satisfied identically, and we obtain an ord
nary differential equation for the functionu(x). We shall
d
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assume below that for a particle of rather large dimensi
the nonlinearity is manifested even at rather small am
tudes of the deviation of the magnetization from the ea
axis of the ferromagnet, whenu!1 and the frequencyv
obeys the conditionuv02vu!v0 . We restrict the discussion
to such low-amplitude NLSWs. We expand the function
Eq. ~2! in a series in powers ofu, keeping terms of orderu3,
(12v/v0)u, q2/x2u. As a result, we obtain

d2u

dx2
1

1

x

du

dx
2

q2

x2
u2S 12

v

v0
D u1

1

2
u350. ~5!

In studying Eq.~5! one should distinguish the casesv.v0

andv,v0 .
For the casev,v0 we make the usual substitution

u~x!5&« f ~j!, «5~12v/v0!1/2, j5«x, ~6!

and obtain for the functionf (j) an equation with a cubic
nonlinearity:

d2f

dj2
1

1

j

d f

dj
2

q2

j2 f 2 f 1 f 350, ~7!

which is widely discussed in various physical application
In particular, this equation is used for describing se
focusing of optical beams,11 and for q50 andq51 it de-
scribes two-dimensional solitons in FMs.12,13

For v.v0 we make the analogous substitution

u~x!5&«g~j!, «5~v/v021!1/2, where j5«x. ~8!

The function g(j) satisfies the following differentia
equation:

d2g

dj2
1

1

j

dg

dj
2

q2

j2
g1g1g350. ~9!

Thus for both cases~v.v0 and v,v0! we have ob-
tained universal differential equations that do not depend
v, and this simplifies the analysis substantially. Forj→0 the
solutions of equations~7! and ~9! which are nonsingular a
the origin have the same behavior,g5g0jq/q!, f
5 f 0jq/q!, but at the origin distances the character of t
solutions is substantially different. This is easily establish
in an analysis of the corresponding equations on the ph
plane.10

The equation forg(j), independently of the choice o
constantg0 , has only oscillatory solutions at largej:

g~j!→@C1,q sinj1C2,q cosj#/Aj as j→`,

where the values of the constantsC1,q and C2,q are deter-
mined by the behavior of the solution at zero, i.e., by t
value ofg0 .

The functionf (j) behaves differently. For all values o
f 0 and variousq, except for a certain countable setf 0

5Fm
(q) , m50,1,2,..., , thesolutions forj→` also oscillate,

but about two different finite valuesf 561, specifically,

f ~j!→11@B1,q sinj1B2,q cosj#/Aj

or

f ~j!→212@D1,q sinj1D2,q cosj#/Aj.
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TABLE I. Characteristic values ofFm.

m 1 2 3 4 5 6 7 8

Fm
(q50) 2.2 3.33 4.14 4.82 5.42 5.95 6.44 6.9

Fm
(q51) 1.25 2.43 3.58 4.72 5.88 7.03 8.19 9.3
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The solutions with these two different asymptotic beha
iors are separated by a soliton solution withf (j) going ex-
ponentially to zero asj→`:

f ~j!→~aq /Aj!exp~2bqj!.

The soliton solutions form a countable set and are
tained when one of the valuesf 05Fm

(q) is chosen as a con
dition at j50. The characteristic valuesFm for eight values
of m andq50, 1 are given in Table I. The smallest of the
values, F1

(q) , corresponds to a soliton without nodes, f
which f (j) is nonzero at any finite value ofj. The remaining
Fm

(q) with m21 give solitons with (m21) nodes. The soliton
solutions for anyq andm can be obtained numerically by th
shooting method.10

2. FORMATION OF NONLINEAR MODES FOR PARTICLES
OF FINITE SIZE

In the analysis below we will take into account the fin
size of the particles. We construct solutions that satisfy sp
fied boundary conditions at the surface of the particle, i.e
r 5L0 . In terms of the dimensionless variablesx or j the
boundary conditions, with allowance for~6! and ~8!, are
taken atx5L5L0 /r v or j5u(v/v021)u1/2L0 /r v , respec-
tively. The boundary conditions for the magnetization und
different conditions on the surface of the cylinder can
written asau1b(n]u/]r )50, wheren is the vector normal
to the surface.7,9 We consider in detail the two limiting case
aÞ0, b50 anda50, bÞ0, which correspond to fixed an
free magnetic moments at the surface. Generalization to
case of an arbitrary relationship betweena andb is not very
simple, and we shall discuss it in the concluding Secti
Thus the problem is to investigate the dependence of
frequencyv of a nonlinear mode on the amplitude of th
magnetization oscillations for different types of angular d
pendence of the solution~differentq! for these two boundary
conditions.

For the linear case this problem is simple to solve—
solution of the equation is the Bessel function~of index q!
Jq(kr). The eigenvalues of the wave numberk are deter-
mined by the conditionskn,qL05 j n,q or kn,qL05 j n,q8 , where
j n,q is thenth root of the Bessel function andj n,q8 is thenth
root of its derivative for the fixed or free conditions, respe
tively. The relation betweenvn,q and kn,q is given by the
linear dispersion relation for magnons:vn,q5v0@1
1(r vkn,q)2#.

For the nonlinear problem this method does not wo
the linear dispersion relation is invalid, and the relation
vn,q with the size of the particle and the amplitude of t
wave must be found from the solution of the equation
u(r ), the coefficients of which depend onv. Going to uni-
versal equations forf (j) and g(j) simplifies the analysis
although not as much as in the linear case, since the solu
of the universal equations still depend on the amplitude
-
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e
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ns
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the wave. In order to analyze the nonlinear modes for so
specificq, it is sufficient to construct two families of solu
tions for f (j) andg(j) with different initial conditions:

g~j→0!→g0jq/q!, f ~j→0!→5 f 0jq/q!

and to find the behavior of the characteristic points~the zeros
of the functions and of their derivatives! as functions of the
initial valuesg0 or f 0 , respectively.

We denote byjn,q(g0) thenth root of the functiong(j)
with the specified initial conditiong(j→0)→g0jq/q! and
by jn,q8 (g0) the nth root of the derivativedg(j)/dj. Simi-
larly, for analysis of the solutions withv,v0 we introduce
the notationjn,q( f 0) andjn,q8 ( f 0) for the nth roots of f and
d f /dj. For the sake of definiteness, we begin with the c
of fixed boundary conditions. Then, differentiating relatio
~8! q times with respect to the variablex and using the rela-
tion LAv/v0215jn(g0), we obtain a system of algebrai
equations for finding v5vn@dqu/dxq(x50),L# for v
.v0 , whered0u/dx0(x50)5u(0). It is necessary to dif-
ferentiate because for a given value ofq one has

g~0!50, d1g~0!/dx150, d2g~0!/dx250,...

dq21g~0!/dxq2150.

The situation forf (j) is analogous. Forv,v0 one must
use ~7! and the relationLA12v/v05jn( f 0). For the case
q50 considered below it is convenient to rewrite these s
tems in the form~for brevity in the formulas we shall hence
forth omit the indexq50!

u~0!5
&

L
g0jn~g0!,

v

v0
511S jn~g0!

L D 2

, v.v0 ;

~10!

u~0!5
&

L
f 0jn~ f 0!,

v

v0
512S jn~ f 0!

L D 2

, v,v0 . ~11!

The system of equations for free boundary conditions has
same form but withjn(g0) and jn( f 0) replaced byjn8(g0)
andjn8( f 0).

Thus the relationv5vn@u(0),L# is specified parametri-
cally with the aid of Eqs.~10! for v.v0 and Eqs.~11! for
v,v0 , whereg0 and f 0 , respectively, play the role of aux
iliary parameters. In order to obtain the desired relationv
5vn@u(0),L# it is necessary to solve Eq.~9! in the casev
.v0 and Eq. ~7! in the casev,v0 with various initial
values g0 and f 0 ~at q50! and construct the function
jn(g0) and jn( f 0) for fixed boundary conditions orjn8(g0)
andjn8( f 0) for free boundary conditions.

Using these numerical data, one can find a set of
quencies corresponding to each value of the real amplit
u(0) of the magnetization oscillations and sizeL of the sys-
tem. Let us apply this approach to some specific exampl
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3. FIXED BOUNDARY CONDITIONS

For fixed boundary conditions (b50) the NLSWs are
governed by the behavior of the roots of the functiong(j)
~for v.v0! and f (j) ~for v,v0!. A numerical calculation
shows that for anyg0 the functiong(j) oscillates with de-
creasing amplitude. When the amplitude of the solution
small (g0→0), the functiong(j) is proportional to the zero
order Bessel functionJ0(j), and its rootsjn(g0) coincide to
high accuracy with the rootsj 0,n of the functionJ0(j). Fig-
ure 1 shows and behavior of thenth rootjn(g0) as a function
of g0 for values ofg0 that are not small.~It should be re-
membered that, as follows from Eqs.~10! and ~11!, by
choosing a sufficiently large value ofL it is possible even for
largeg0 to makeu(0) arbitrarily small andv/v0 arbitrarily
close to 1, and our approximation therefore remains vali!

We see thatjn(g0) is a monotonically decreasing func
tion. Also plotted in Fig. 1 are the functionsg0jn(g0), which
appear in Eq.~10! and are important for calculating the fre
quencies. Forg0→0 the functiong0jn(g0)→0. On the other
hand, if g0 is large, theng0jn(g0) goes to a constant valu
Xn ; the values ofXn for the first eightn are given in Table
II.

We see that whenu(0)→0 (g0→0) we havev/v051
1( j 0,n /L)2 and dv/du50, in agreement with the conclu
sions of the linear theory of spin waves. With increasi
u(0) the oscillation frequency decreases monotonically,
for u(0)5&Xn /L its value becomes equal tov0 .

Let us turn to the regionv,v0 and consider the func
tion f (j). For sufficiently smallf 0 ( f 0,F1) the function
f (j) does not have any roots. Forf 05F1 this root appears
for j→`, which corresponds to the soliton solution. F

FIG. 1. The functionsjn(g0) ~ ! and g0jn(g0) ~ ! for different
values ofn.
s

d

F1< f 0,F2 the function f (j) has one root, forF2< f 0

,F3 it has two roots, etc. In the general casef (j) hasm
roots if Fm< f 0,Fm11 , wherem51,2,...,`; here jn(Fm)
5` if m<n. Graphs ofjn( f 0) and f 0jn( f 0) are given in
Fig. 2. We see thatf 0jn( f 0) is a monotonically decreasin
function. Whenf 0→Fm10, Fmjn(Fm)→`. For largef 0 , as
in the case ofg0jn(g0), the function f 0jn( f 0) goes to a
constant, the numerical values of which coincide withXn to
a high degree of accuracy. Using~11!, for valuesf 0'Fm one
can write approximatelyu(0)5(&/L)Fnjn( f 0). Solving
for jn( f 0) and substituting into~11!, we can obtain the
asymptotic expression forv5vn(u(0),L), viz., v5v0@1
20.5(u(0)/Fn)2#. There are two interesting features th
should be emphasized here. First, the asymptote does
depend explicitly on the size of the system. In this case
value ofL comes into the picture in the following way: th
larger L, the smaller the amplitudesu(0) at which v ap-
proaches its asymptotes. Second, the asymptote is inde
dent of the specific form of the divergences at the pointsf 0

5Fm . The analogous statement is also true for free bou
ary conditions.

The NLSW frequenciesv5vn@u(0),L# found from
these data forL5100 are shown in Fig. 3. We see that th
oscillation frequency decreases as asu(0) increases. For suf
ficiently large u(0) the value of vn asymptotically ap-
proachesv0@120.5(u(0)/Fn)2#. Since the values ofFm are
rather large~see Table I!, this regime is realized foru(0)
!1 andv/v0'1, and therefore our approximation remai
applicable.

4. FREE BOUNDARY CONDITIONS

The case of free boundary conditions is more interesti
since in addition to the dependence of the frequency on

FIG. 2. The functionsjn( f 0) ~ ! and f 0jn( f 0) ~ ! for different
values ofn.
6
6

TABLE II. Characteristic values ofXn for largeg0.

n 1 2 3 4 5 6 7 8

Xn 3.5 12.2 24.1 38.1 54.2 72.1 91.6 112.
Xn8 7.2 17.6 30.6 45.8 62.8 81.6 101.9 123.
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amplitude of the oscillations now another property inher
to nonlinear systems appears: bifurcations of the solutio
However, the bifurcations arise only forv,v0 , while for
v.v0 the picture is similar to that observed in the case
fixed boundary conditions. The roots of the derivative of t
solution, jn8(g0), are defined for allg0 , and wheng0→0,
jn8(g0) coincides with j 0,n8 ~the nth roots of dJ0 /dj!. The
curves ofjn8(g0) andg0jn8(g0) as functions ofg0 are quali-
tatively similar to those forjn(g0) and g0jn(g0) shown in
Fig. 1. Like g0jn(g0), the derivativeg0jn8(g0) tends toward
a constant valueXn8 asg0→`; the numerical values of thes
constants are given in Table II. As in the case of fixed bou
ary conditions, for u(0)→0 the frequency v/v051
1( j 0,n8 /L)2 and dv/du50. With increasingu(0) the fre-
quencyv decreases monotonically, and foru(0)5&Xn8/L is
coincides with the boundary of the continuous spectr
(v5v0).

If v,v0 , on the other hand, the picture is qualitative
altered. The functionjn8( f 0) is plotted in Fig. 4a. We see tha
jn8( f 0) has (n11) divergences. The first is observed wh
f 0→0. This characteristic feature~nonlinear effect at smal
f 0! is due to the fact that Eq.~7! is essentially nonlinear
Even if f 0→0 its solutionf (j) for small f 0 begins to grow,
and it continues to grow until the nonlinear termf 3 becomes
substantial. The remaining divergences occur forf 05Fm ;
the characteristic values ofFm were discussed above and a
given in Table I. Graphs off 0jn8( f 0) are given in Fig. 4b. We
see that asf 0→0 the value off 0jn8( f 0)→0. When f 0→`,
the values off 0 tend toward the same constantsXn8 as in the
casev.v0 . The functionf 0jn8( f 0) hasn divergences.

These features in the behavior of the functionsjn8( f 0)
and f 0jn8( f 0) for f 050,F1 ,F2, etc., lead to the onset of bi
furcations. Fig. 5 shows graphs ofv5vn@u(0),L#. Only for
NLSWs with n51 are bifurcations absent. Whenu(0)
,&Xn8/L, for v.v0 we have the upper branch of oscilla
tions, which was discussed above, and forv,v0 we have
the lower branch. The difference between these mode
manifested most clearly asu(0)→0, when the upper branc
corresponds to a nearly linear solutiong(j) while the lower
branch corresponds to an essentially nonlinear solutionf (j)
in which f (j'1)@ f (0). If u(0)5&Xn8/L, then, as we have
said, the upper branch passes throughv5v0 . For u(0)

FIG. 3. Curves ofv5vn@u(0),L# for fixed boundary conditions andL0

5100r v—solid curves; the asymptotesv/v05120.5@u(0)/Fn#2—dashed
curves.
t
s.

f
e

-
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.&Xn8/L we have two branches of oscillations withv
,v0 . If u(0) is sufficiently large, both branches tend t
ward the asymptotev/v05120.5@u(0)/F1#2.

Let us consider the NLSWs withn52. It can be seen in
Fig. 5 that whenu(0),u2,1

c ~expressions forun,k
c will be

given below!, two branches of oscillations are observed.
u(0).u2,1

c , two new branches of oscillations appear. Wh
u(0) is large, v tends toward the asymptotesv/v051
20.5@u(0)/Fi #

2, where i 51,2. In the general case fo
NLSWs with anyn there are (n21) bifurcation parameters
un,k

c , wherek51,2,...n21. At eachun,k
c two new branches

of oscillations appear, with a characteristic amplitude dep
dence of the frequency:v5v1,25v@u(0)#6Pn,k@u(0)
2un,k

c #s, wherePn,k ands are numbers, withs,1. The val-
ues ofun,k

c can be determined from the relationdv/du5`
or d( f 0jn8( f 0))/d f050. This formula leads to the depen
denceun,k

c 5&tn,k /L, in which the parameterstn,k can be
determined numerically. The actual values oftn,k for n not

FIG. 4. The functionsjn8( f 0) ~a! and f 0jn8( f 0) ~b! for different values ofn.
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very large are also not very large, not exceeding 10
n,8; for example:

t2,152.8; t3,152.6; t3,253.8; t4,152.5;

t4,253.7; t4,354.6; t5,152.4; t5,253.6;

t5,354.5; t5,455.2; t6,152.4; t6,253.6;

t6,354.4; t6,455.1; t6,555.8; t7,152.4;

t7,253.6; t7,354.4; t7,455.1; t7,555.7;

t7,656.3.

Therefore, for sufficiently large values ofL, the complex
picture of bifurcations can be described using the appro
mation of weakly nonlinear waves employed here. For su
ciently large values ofu(0) the frequenciesv for the differ-
ent branches approach their asymptotesv/v051
20.5@u(0)/Fi #

2, i 51,2,...,n.

CONCLUDING REMARKS AND A DISCUSSION OF
POSSIBLE GENERALIZATIONS

We have considered NLSWs with radial symmetry,u
5u(r ), w5vt1w0 , in a cylindrical ferromagnetic particle
of radiusL0 . We found that, even in the approximation
small-amplitude nonlinear waves, for sufficiently largeL0

@r v the picture of the nonlinear modes is extremely comp
cated and can include a series of bifurcations.

For fixed boundary conditions the bifurcations do n
occur, and the classification of the modes is the same a
the linear case—each branch of oscillations is character
by an integer~the mode indexn!. The mode frequencyvn

falls off smoothly with increasing amplitudeu(0), and for
u(0)5&Xn /L it crosses the boundaryv0 of the continuous
spectrum and then approaches the asymptotesv/v051
20.5@u(0)/Fn#2.

The case of free boundary conditions is more interest
since then bifurcations are also present, and the numbe
branches is greater than in the linear case or for the nonli
problem with fixed boundary conditions. For the mode w
n51 there are two such branches~see Fig. 5!. For u(0)
→0 the upper branch describes nonlinear spin waves w
the dispersion relationv/v0511( j 0,n8 /L)2 and dv/du50;

FIG. 5. The functionsv5vn@u(0),L# for free boundary conditions and
L05100r v .
r

i-
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-

t
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ed

g,
of
ar

th

the lower mode is essentially nonlinear. For the remain
modes withn>2 there are (n21) bifurcation parameters
un,k

c , k,n. If at fixed n the amplitude is smaller thanun,1
c ,

then one observes two branches of oscillations. Whenu(0)
becomes larger thanun,1

c , two more branches appear, etc.
general, ifun,k

c ,u(0),un,k11
c , then there exist 2(k11) dif-

ferent branches of oscillations. When the amplitudeu(0) be-
comes sufficiently large, the mode frequenciesvn corre-
sponding to the different branches fall off smoothly wi
increasing u(0) to the asymptotic valuesv/v051
20.5@u(0)/Fi #

2, i 51,2,...n.
For arbitrary boundary conditions, when the paramet

a andb are finite, it is necessary to analyze in terms of t
functions f (j) and g(j) the relation (r va) f
1bA12v/v0(] f /]j)50 for frequencies v,v0 , and
(r va)g1bAv/v021(]g/]j)50 for v.v0 . Here the fre-
quency approximates in the condition and the initial univ
sality is to a considerably degree lost, and the analysis
comes more complicated. However, qualitatively the res
can be described by noting that for finite values ofr va/b, as
the boundary of the continuous spectrum is approached
boundary conditions effectively become fixed. Forr va/b
;1, sinceuv/v021u!1, the behavior of the SW modes
practically the same as for fixed boundary conditions. T
transition to a picture effectively corresponding to free co
ditions is possible only at large values ofb, when (r va)2

!b2uv/v021u.
A concrete analysis of the NLSW frequencies has be

done only for modes with radial symmetry (q50) and for
the two simplest cases of the boundary conditions. As
have said@see Eq.~4!#, for cylindrical particles there can b
more-general solutions of the formu5u(x), w5vt1qx
1w0 , whereq takes integer values. Let us discuss the g
eral regularities in the formation of nonlinear modes w
different angular dependence. It can be said that the poss
ity of bifurcations and their character for NSWs withq50
are due to the presence of localized solutions~u50 or
du/dj50, whenj→`! for a countable set of values of th
initial conditionsu(0). This property is evidently preserve
for modes with variousqÞ0 as well. This provides ground
for assuming that bifurcations of the nature described will
observed for all values ofq.

For a spherical particle the angle dependence of
magnetization is much more complicated,10 and a detailed
examination of this case is beyond the scope of this pa
However, analysis of the simplest version of radially sy
metric oscillations, neglecting their dipole–dipole interacti
~as can be done whenK@2pM0

2!, does not present diffi-
culty. For this case one can also simplify the initial Landa
Lifshitz equation to two universal equations of the type~7!,
~9!, which will differ from ~7! for v,v0 or ~9! for v.v0

only by the absence of the term containingq and the replace-
ment of (1/j)(d/dj) by (2/j)(d/dj). For these equations a
of the regularities, in particular the presence of a counta
set of localized solutions, remain the same, and one can
pect an analogous picture of the nonlinear modes, includ
the possibility of bifurcations of the type described above

We conclude by noting that the modification of the ma
netic two-dimensional axially symmetric solitons in a cyli
drical region of finite radius is not specific to two
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dimensional systems. The existence of a sequence
bifurcations creating solitons of increasingly complex fo
in the case of free boundaries and the absence of these b
cations for fixed boundary conditions is also observed
one-dimensional systems14–16and is solely a consequence
the finite size of the system.

The study was supported by the grant INTAS 97-31 3
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Influence of pressure, temperature, and magnetic field on the resistivity and
magnetoresistive effect of lanthanum manganite ceramics and films with the composition
La0.7Mn1.3O3Ád

S. S. Kucherenko, V. P. Pashchenko, P. I. Polyakov,a) V. A. Shtaba,
and A. A. Shemyakov

A. A. Galkin Donetsk Physico-Technical Institute, National Academy of Sciences of Ukraine,
ul. R. Lyuksemburg 72, 83114 Donetsk, Ukraine
~Submitted February 16, 2001!
Fiz. Nizk. Temp.27, 761–766~July 2001!

The effects of magnetic fieldsH50 –8 kOe and high hydrostatic pressuresP50 –2.2 GPa on
the resistivityr, magnetoresistive effectDR/R0, metal–semiconductor phase transition
temperatureTms, and peak temperatureTp of the magnetoresistive effect are investigated over a
wide range of temperaturesT577–350 K in a ceramic target and a laser film of the same
cationic compound La0.7Mn1.3O36d . IncreasingH andP leads to a decrease of the resistivity. The
observed difference inr, Tms, andTp between the ceramics and film samples is explained
by the difference of their oxygen nonstoichiometry. The magnetoresistive effect decreases with
increasingH and decreases with increasingP. The temperaturesTms andTp of the ceramics
and film increase with increasingP, but the effect is stronger in the film. The observation of two
phase transitions in the ceramics~the main transition atTms5250 K and an additional
transition atTms8 5210 K! is explained by its mesoscopic inhomogeneity of the cluster type.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1388419#
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INTRODUCTION

Rare-earth manganites are attracting a heightened in
est because of the colossal magnetoresistive~CMR! effect1–3

observed in these perovskitelike metal oxides when do
with divalent ions: R12xMex

21Mn12x
31 Mnx

41O3
22 ~R is La31,

Pr31, Nd31, or Sm31; Me21 is Ca21, Sr21, Ba21, or Pb21).
In spite of a large number of papers, including revie
articles,4–6 the nature of the unusual coupling of the elect
and magnetic properties in these materials remains in
pute.

Elucidation of the nature of the CMR effect and the d
velopment of new magnetoresistive materials based on r
earth manganites are topical problems in science and t
nology. To help solve them it is useful to investigate t
influence of temperature, magnetic field, and especially h
hydrostatic pressures, about which little information
available.7,8

The most promising of the magnetoresistive rare-ea
manganites are manganite–lanthanum oxides with the pe
skite structure.9–11 In distinction to conventional rare-eart
manganites doped with Me21, we have investigated au
todoped lanthanum manganite perovskites with excess su
stoichiometric manganese.12,13 It is of particular interest to
do comparative studies of ceramic~polycrystalline! samples
used as targets and thin single-crystal films obtained fr
these targets by magnetron14,15 or laser16,17 sputtering. The
usefulness of such studies is suggested by the substa
difference of the magnetic and semiconductor states
powder18 and thin-film19 samples of Sm0.6Sr0.4MnO3, which
have been studied by various methods. The present stu
devoted to a comprehensive investigation of the influence
temperature, magnetic field, and high hydrostatic press
5591063-777X/2001/27(7)/4/$20.00
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over wide ranges on the resistivity and magnetoresistive
fect ~MRE! for a ceramic target and a single-crystal las
film of the same cationic compound La0.7Mn1.3O36d .

METHODS OF PREPARING AND STUDYING THE SAMPLES

The ceramic samples — targets of manganit
lanthanum oxides of the series La12xMn11xO36d ~Ref. 12!
with x50.3 — were obtained by a synthesizing anneal o
mixture of ChDA-grade powders of La2O3 (Ia3, a
511.498 Å! and Mn3O4 (I41 /amd, a55.77 Å,c59.38 Å!
at 900 °C~20 h! and sintering the pressings at 1150 °C f
24 h, followed by a slow cooling.

The single-crystal films were deposited by laser sput
ing at 800 °C on a LaSrGaO4 single-crystal substrate. Fo
saturation of the film with oxygen it was subjected to ad
tional annealing at 780 °C.

The phase composition and crystal lattice parame
were determined by x-ray diffraction in Cu radiation on
DRON-2 diffractometer.

The resistanceR and the value of the magnetoresistiv
effect DR/R05(R02RH)/R0 were determined by a four
probe method over a wide range of temperatures 77–35
at several different values of the magnetic field (H50, 2, 4,
6, and 8 kOe!. High hydrostatic pressuresP were obtained in
a special two-layer chamber20 made of nonmagnetic 40Kh
NYu refined steel, with a channel diameter of 6.5 mm and
outer diameter of 31 mm. The pressure was determined f
the load on the press and was monitored by measuring
resistance of a manganese pressure sensor.21 The errors of
measurement of the quantities mentioned were within
following limits: phase composition — 3%, lattice param
eters — 1%; resistivity — 0.7%, temperature — 0.1%, ma
© 2001 American Institute of Physics
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560 Low Temp. Phys. 27 (7), July 2001 Kucherenko et al.
netic field — 1.5%, hydrostatic pressure — 3%.

EXPERIMENTAL RESULTS AND DISCUSSION

According to the x-ray data, the ceramic targets ha
rhombically distorted (Pnma) lanthanum manganite perov
skite structure with the parametersa55.464 Å,b55.515 Å,
c57.728 Å. The Curie temperature of the target wasTC

5255 K.
The NMR spectrum of55Mn is broad, with a frequency

at maximum amplitudeF5377 MHz. In view of the fre-
quencies for Mn31 ~F 5 420 MHz!22,23 and Mn41 (F
5320 MHz!24 this is evidence of high-frequency electro
exchange between Mn31 and Mn41 found in theB positions,
with an averaged valencev̄53.5.25

With identical base composition La0.7Mn1.4O36d , the
ceramic target (c) and the films deposited by magnetron (m)
and laser (l ) sputtering were characterized by the followin
properties: resistivity~at H50, P50) at maximum crm

50.04 V•cm, mrm50.25 V•cm, lrm50.01 V•cm; tem-
perature at maximum resistivity, corresponding to the met
semiconductor transition,cTms5240 K, mTms 5 220 K, lTms

5 260 K for the ceramics, magnetron film, and laser fil
respectively. The difference of these temperatures, in
opinion, is due to the different oxygen content and the n
stoichiometry of the ceramic and film samples. Compar
the lattice parameters, Curie temperature, and me
semiconductor transition temperature with those given
Refs. 26 and 27, in which the influence of nonstoichiome
on the listed properties of the lanthanum manganite pero
kites La12yMn12yO36d was established, one notices that t
values ofa, b, andc are comparable and that the values
Tms are higher for our samples. The reason for this l
apparently not only in the different nonstoichiometry b
also in the mesoscopic inhomogeneity due to the exc
manganese, which in the real perovskite structure
La0.7Mn1.3O36d is found predominantly in the form of plana
clusters ofg-Mn2O3 ~Ref. 12!, or, more precisely, it is due to
the mixed-valence manganese ions: Mn0.5

21Mn1.0
31Mn0.5

41O3.
The magnetism of such clusters is manifested at temp
tures below 45 K both in the ceramics28 and in the magne-
tron films at spin-wave resonance.29

The temperature dependence of the resistivity of the
ramics and laser-deposited film is shown in Fig. 1 forH
50 and 8 kOe andP50 and 1.8 GPa. One notices substa
tial differences not only in the value ofr but also in the
character of its temperature dependence for the ceramics
film. The higher values of the resistivity of the ceram
samples are possibly due to their porosity and the differ
degree of nonstoichiometry.

For the ceramic target, but not for the film, at tempe
tures below the main resistivity peak (Tms5250 K! there is
an additional smaller, smeared peak (Tms8 5210 K!, which,
like the main peak, decreases markedly with increasing p
sure, i.e., the ceramics characteristically have two met
semiconductor transitions. The main transition, depending
the magnetic field and pressure, lies in the interval from Tms

5 235 K (H50, P50) to Tms5275 K (H58 kOe, P
51.8 GPa!. The second transition lies betweenTms8 5200 K
(H50, P50) andTms8 5235 K (H58 kOe, P51.8 GPa!.
The two resistive transitions in the ceramic target are ap
a
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ently due to the intercrystallite zones,12 to the mesoscopic
structural30 and magnetic31 inhomogeneities, the nature o
which is in dispute and is now being clarified. One notic
that the temperature of the main resistivity peak for the
ramics (Tms5235–275 K! is substantially lower than for the
film (Tms5275–300 K!. This may be due to the differen
oxygen content and nonstoichiometry of the ceramic a
film samples, or to the difference in the characteristic dim
sions of the crystallites of the ceramic (D'10 mm! and the
thickness of the single-crystal film (d'0.1 mm! and also to
the influence of the substrate. These factors may be the c
of the different influence of high hydrostatic pressuresP
51.8 GPa! on the resistivity and value of the MRE in th
ceramics and film.

The temperature dependence of the magnetoresistive
fect DR/R0 at P50 and various values of the magnetic fie
(H52, 4, 6, and 8 kOe! for the ceramic and film samples i
shown in Fig. 2. One notices first the large values of
MRE in the ceramics and the less smearedDR/R0 peak in
comparison with the film. Here the temperature of the pe
of the MRE is lower in the ceramics (Tp5237 K! than for
the film (Tp5257 K!. As the magnetic field is increase
from 2 to 8 kOe for the ceramic target, the MRE increas
from 4 to 18.5%, i.e., by a factor of 4.6, while for the singl
crystal film it increases from 2 to 13%, i.e., by a factor
6.5.

The influence of the magnetic field strength on the MR
at P51.8 GPa for the ceramics and film is shown in Fig.
At high hydrostatic pressures the value of the MRE d
creases and the temperature of its peak increases.DR/R0

increases with increasingH from 2 to 8 kOe: for the ceram
ics from 3.8 to 16%, i.e., a factor of 4.2, and for the fil
from 1.8 to 9.8%, i.e., a factor of 5.4. In spite of the low
MRE in the film, it is influenced by the magnetic field to
greater degree.

FIG. 1. Temperature dependence of the resistivity of a ceramic targetc)
and a single-crystal film (f ) of La0.7Mn1.3O36d for various pressures and
magnetic fields:1c,1f — P50, H50; 2c,2f — P50, H58 kOe;3c,3f —
P51.8 GPa,H50; 4c,4f— P51.8 GPa,H58 kOe.
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Figure 4 shows the effect of high hydrostatic pressu
on the resistivity of the ceramics and film atH50. As the
pressure is increased to 2.2 GPa the resistivity decrease
a factor of 1.75 for the ceramics and 2.5 for the film.
appears as if the resistivities of the ceramics and film sho
converge somewhere in the region of negative hydrost
pressures.

The effect of high hydrostatic pressures on the met
semiconductor transition temperatureTms atH50 and 8 kOe
and the temperature of the magnetoresistance peakTp for the
ceramic target~the unfilled symbols! and the single-crysta
film ~filled symbols! is illustrated in Fig. 5. With increasing
P the temperaturesTms andTp increases practically linearly
in the entire pressure interval investigated, and their temp
ture coefficients are close in value. The reason is appare
the decrease in the inter-ion distances and the change in
exchange interaction, which shifts the region of the ‘‘met
lic’’ state to higher temperatures.

CONCLUSIONS

Comprehensive studies of the influence of temperat
magnetic field, and high hydrostatic pressures on the re
tivity and magnetoresistive effect of ceramic and fi
samples of the lanthanum manganite perovsk
La0.7Mn1.4O36d have established the following:

1! the resistivity of the ceramic target is higher than th
of the laser film;

FIG. 2. Temperature dependence of the magnetoresistive effect atP50 and
various magnetic fields for the ceramics~a! and film ~b!: 1c,1f — H52
kOe; 2c,2f— H54 kOe;3c,3f— H56 kOe;4c,4f— H58 kOe.
s
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2! the temperature of the metal–semiconductor transit
is substantially higher for the film;

3! for the ceramic samples two temperature peaks of

FIG. 3. Temperature dependence of the MRE atP51.8 GPa and various
magnetic fields for the ceramics~a! and film ~b!: 1c,1f— H52 kOe;2c,2f
— H54 kOe;3c,3f— H56 kOe;4c,4f— H58 kOe.

FIG. 4. Effect of high hydrostatic pressures on the resistivity of the cera
~1! and film ~2! at H50.
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resistivity are observed, which are explained by a clus
type of mesoscopic inhomogeneity;

4! for the ceramics the MRE is larger and its peak te
perature is lower than for the film, on account of the differe
nonstoichiometry;

5! with increasing magnetic field the MRE increases
both the ceramics and film, the effect being stronger in
film;

6! high hydrostatic pressures decrease the resistivity
increases the temperatures of the metal–semiconductor
sition and of the peak of the MRE.

The authors thank V. V. Zavrazhin for assistance in do
the experiment.
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QUANTUM EFFECTS IN SEMICONDUCTORS AND DIELECTRICS

Polarization of far-IR radiation from p-type germanium under uniaxial pressure
and strong electric field

V. Bondar* and P. Tomchuk

Institute of Physics of National Academy of Sciences of Ukraine, 46 Pr. Nauki, Kiev, 03028, Ukraine

V. Tulupenko
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Experimental results on the polarization of the far-IR radiation (l580– 120mm) from p-type
germanium under strong uniaxial pressure in a heating electric field at liquid-helium
temperature are reported. The directions of the polarization and electric field are shown to be
mainly coaxial for samples under pressure and perpendicular to each other for unstrained
samples. The possible reasons for this phenomenon are discussed. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1388420#
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INTRODUCTION

As is well known, a strong electric field disturbs th
cubic symmetry of the carrier distribution of a semicondu
tor in k space. This results in anisotropic optical propert
connected with free carriers. In particular, the electrom
netic radiation from a semiconductor must be polarized1,2

Indeed, polarization of the far-IR radiation (l580
– 120mm) from Ge and Si was observed and studied in Re
3–5. It was proposed that inp-Ge the polarization is cause
by asymmetry of the distribution function of heavy holes~by
the second spherical harmonic in the development of
distribution function in a strong electric field!. On the other
hand, there is a theoretical model of radiation polarizat
that takes into account the possible intersubband transit
in the p-material.1 Uniaxial pressure splits the light an
heavy subbands and must change the intersubband tr
tions. In view of this, the main goal of the present study w
to investigate the influence of uniaxial pressure~up to 8
kbar/cm2! on the polarization and intensity of the far-IR r
diation from p-Ge under strong electric fields at liquid
helium temperature.

EXPERIMENTAL DETAILS

Samples ofp-Ge with a resistivity at room temperatur
of 5 V•cm and 13137 mm dimensions were used in ou
experiments. The sides were well parallel~to within 209!.
The samples were oriented along the^100& axis. To improve
the mechanical strength of the samples at liquid-helium te
perature, Pb-In contacts were utilized. Injection of minor
carriers from the contacts started when the value of the
plied field reached 200–250 V/cm. This injection was co
trolled by the form of the current pulse and did not exce
;10%. To cut off the short-wavelength part of the IR em
sion spectrum, black polyethylene was used as a filter.
strong electric field was provided by a pulse generator wit
5631063-777X/2001/27(7)/2/$20.00
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0.8 ms pulse duration and a repetition rate of 6 Hz. T
measurements were carried out at temperatures of 4.2–
A Ge–Ga photodetector with a range of sensitivity of 80
120 mm was employed. The results were reproducible~reli-
ability up to 95%! and corresponded to elastic deformatio
as after having been released from the maximal pres
~7–8 kbar/cm2! the samples gave the same signals as did
original unstrained states.

RESULTS AND DISCUSSION

Figure 1 presents the dependence of the far-IR sig
intensity on the angle between the^100& axis and transmis-
sion direction of the polarizer when the directions of t
electric field and pressure coincide with the^100& axis. In the
absence of pressure the radiation is partially polarized,
the degree of polarization reached nearly 10%. The ma

FIG. 1. Dependence of the direction of radiation polarization upon the an
rotation of the polarizer. Uniaxial pressure, kbar/cm2: 0 ~1!; 0.25 ~2!; 1 ~3!;
2 ~4!; 3 ~5!; 4 ~6!; 6 ~7!. The value of electric fieldV5100 V/cm.
© 2001 American Institute of Physics
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mum intensity of the radiation is observed for zero angle
rotation of the polarizer. At low pressure~up to around 0.7
kbar/cm2! the intensity dependence on the angle of rotat
of the polarizer is almost a straight line~curve3!. Increasing
the applied pressure causes a change of the polarizatio
rection to 90°, which remains constant up to 6 kbar/cm2.

We can propose at least two reasonable explanations
this phenomenon. The first one is a significant role of
intersubband transitions, which play the main role in t
emission of IR light fromp-Ge in a heating electric field
without applied pressure. It has been shown1 that in this case
the radiation will be partially polarized in the direction pe
pendicular to the electric field. The degeneracy of the
lence band vanishes under uniaxial pressure, and the ro
the intersubband transitions decreases. Under strong pre
and not so strong a heating electric field the intersubb
transitions do not play any role at all in the light emissio
On the other hand, the isoenergetic surfaces under st
pressure are known to be ellipsoids with different ho
populations.6 The effective mass of the holes in a more pop
lated ellipsoid is smaller along the field than in the perp
dicular direction. In this case the radiation should be orien
along the electric field.

The second probable explanation derives from the dif
ent scattering probability of a hole on an acoustic phon
and an ionized impurity. The effective mass of the major
of the holes along the field direction is considerably less
the strained samples than in the unstrained ones. As a r
of the effective mass reduction, the carrier scattering fr
the ionized impurities is expected to be less efficient in
strained samples than in the unstrained ones. On the o
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hand, the scattering on acoustic phonons is assumed t
essentially unaffected by the applied pressure. The temp
ture dependences of the degree of polarization could be h
ful to test this hypothesis.

It should be noted that the same change of the polar
tion with respect to the applied heating electric field a
pressure was observed forn-Ge samples with different resis
tivities: for pure samples the polarization is oriented alo
the field direction, while for heavily doped samples it is pe
pendicular to the field.

The authors are much obliged to Prof. O. G. Sarbey
fruitful discussion, to A. M. Vasiliev and A. P. Larionov fo
supplying the experimental setup with liquid helium and
trogen, and to N. F. Chornomorets and V. V. Bondarenko
active engineering support.
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Lower limit on the thermal conductivity of krypton–xenon solid solutions
V. A. Konstantinov,* V. P. Revyakin, and M. A. Pokhodenko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of Ukraine, pr. Lenina 47, 61103 Kharkov, Ukraine
~Submitted February 5, 2001!
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The isochoric thermal conductivity of the solid solutions Kr12jXej (j50.14 and 0.37! is
investigated in the temperature interval from 80 K to the onset of melting. Its value and
temperature dependence are in good agreement with the lower limit of the thermal
conductivity of the crystal lattice. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1388421#
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INTRODUCTION

Solid rare gases Ar, Kr, and Xe are among the simp
objects in solid-state physics, and for this reason they
traditionally used for comparison of experimental and th
retical results.1 In perfect crystals at temperatures of the o
der of their Debye temperatures and above (T>QD) the
thermal conductivity is almost entirely governed by thre
phonon scattering processes and should vary according t
law L}1/T ~Ref. 2!. This temperature dependence arises
cause of the change of the populations of the modes. For
be realized, the volume of the crystal must remain u
changed, since otherwise the modes will change, and
will lead to a different temperature dependence of the th
mal conductivity.

Isochoric studies of the thermal conductivity of solid A
Kr, and Xe have shown3–5 that a dependenceL}1/T holds
only roughly for T>QD . As the temperature is increase
the temperature dependence begins to deviate noticeab
the direction of a weaker dependence, the deviation gra
ally increasing to 20–25% at temperatures just below wh
the sample starts to melt.5 This deviation is due to the fac
that the phonon mean free path cannot decrease without
as the temperature is raised. It follows from simple arg
ments that it must be bounded by either the interato
distance6 or by one-half of the phonon wavelength.7 This
means that the thermal conductivity also tends towar
lower limit Lmin , which for the cases mentioned differs b
20% in absolute value.8

The thermal conductivity of a number of amorphous s
ids and highly disordered crystals has been well describ7

under the assumption that all of the excitations are scatt
at a distance of one-half the wavelength,l/2. Here the lower
limit Lmin of the thermal conductivity of the crystal lattic
can be written in the form

Lmin5S p

6 D 1/3

kBn2/3(
i

v i H S T

Q i
D 2E

0

Q i /T x3ex

~ex21!2
dxJ .

~1!

The summation is taken over three modes with~two
transverse and one longitudinal! with sound velocitiesv i ; Q i
5651063-777X/2001/27(7)/3/$20.00
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is the Debye temperature for each polarization,Q i

5v i(\/kB)(6p2n)1/3, wheren is the number of atoms pe
unit volume;x5vh/kBTl. Table I showsLmin for the solid
rare gases Ne, Ar, Kr, and Xe, calculated at the temperat
of their triple points. The densities and sound velocit
needed in the calculation were taken from Refs. 1 and 9–
Also given are the experimental values of the thermal c
ductivity Lmeas, measured at the saturated vapor pressur1,5

It is seen that at pre-melting temperatures the thermal c
ductivity of the solid rare gases Ne, Ar, Kr, and Xe is on
1.5–2 times larger than the lower limit of the thermal co
ductivity of the lattice. This circumstance was first point
out by Slack.6 He also proposed that the phonon–phon
scattering at these temperatures is maximal and that fur
decrease of the thermal conductivity is impossible.

This conjecture is easily checked. The thermal cond
tivity of a crystal can be lowered by creating defects in it,
particular, by adding impurities. In Ref. 12 the isochoric th
mal conductivity of solid krypton containing 3 and 6.
mol.% methane was investigated in the temperature inte
from 50 K to the melting temperature. It was noted that t
contribution of point defects to the thermal resistance of
crystal decreases with increasing temperature, but the a
lute value of the thermal conductivity was nevertheless 3
40% higher than the lower limitLmin calculated according to
Eq. ~1!.

TABLE I. Thermal conductivity of solid rare gases Ne, Ar, Kr, and X
measured at the saturated vapor pressure1 at temperatures corresponding t
the triple points (Lmeas), and calculated according to Eq.~1! (Lmin); the
triple-point temperaturesTt and the molar volumesVm are from Ref. 1, and
the longitudinalv l and transversev t sound velocities are from Refs. 9–11

Gas
Tt ,
K

Vm ,
cm3/mole

v l v t Lmin Lmeas Lmeas

Lminkm/s mW/~cm•K!

Ne 24.6 14.0 0.97 0.60 1.35 3.6 2.5
Ar 83.8 24.7 1.3 0.72 1.2 2.1 1.75
Kr 116 30.1 0.98 0.59 0.92 1.45 1.65
Xe 161 38.5 0.98 0.58 0.78 1.25 1.6
© 2001 American Institute of Physics
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In the present study we investigated the isochoric th
mal conductivity of the solid solutions Kr12jXej (j50.14
and 0.37! in the temperature interval from 80 K to the start
melting.

EXPERIMENTAL PROCEDURE

Studies can be carried out at constant volume in the c
of molecular solids, which are characterized by compa
tively low values of the temperature coefficient of the pre
sure (dP/dT)V . If the high-pressure cell is filled with a soli
samples of sufficiently high density, then the sample can s
sequently be cooled at a practically constant volume, w
the pressure in the sample decreases comparatively slo
In a certain interval of densities the sample will pull aw
from the walls of the cell at a certain characteristic tempe
ture T0 , and the condition of isochoricity is violated. Th
onset of melting is shifted to higher temperatures with
creasing density of the sample. The deviations from cons
volume due to the thermal and elastic strains of the meas
ment cell can be easily taken into account.

The present studies were done by the steady-s
method on an apparatus with coaxial geometry.13 The mea-
surement cell of beryllium bronze had an inner diameter
17.6 mm and a length of 160 mm and was designed fo
maximum pressure of 800 MPa. The diameter of the in
measurement cylinder was 10.2 mm. The temperature
sors~platinum resistance thermometers! were placed in spe
cial channels of the inner and outer cylinders and were
subject to the influence of high pressure. The samples w
grown at a temperature gradient along the measurement
of around 1 K/cm, and the pressure in the cylinder was v
ied over the range 50–250 MPa to obtain samples of dif
ent density. After the growth the inlet capillary was block
off by freezing it with liquid nitrogen~hydrogen!, and the
samples were annealed for 5–6 h at premelting temperatu
After the measurements were completed the samples w
evaporated in a thin-walled vessel and their mass was d
mined by weighing. The molar volume of the samples w
determined from the known volume of the measurement
and the mass of the sample. The total systematic error o
measurements was dominant and did not exceed 5% fo
thermal conductivity and 0.2% for the volume. The purity
the initial Kr and Xe gases used in preparing the solution w
99.98% or better. The concentration of the components
determined by a chromatographic method in the gas pha

DISCUSSION OF THE RESULTS

Two samples of the solid solution Kr12jXej with
j50.14 and 0.37 were investigated in the temperature in
val from 80 K to the onset of melting. The choice of th
system and of the concentrations and temperature interv
the measurements was based on the following consi
ations:

—the phase diagram of the solid solution Kr12jXej is
well known;14

—the liquid and solid phases have a point of equal c
centrations at a temperature of 114.1 K andj50.15;

—between 75 and 114 K the components form a so
solution with an fcc structure for all 1>j>0.
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Scattering on point defects is governed by the factorG,
which can be written15

G5j~12j!FDM

M
12g

DV0

V0
G2

, ~2!

where g is the Grüneisen coefficient,M5(12j)MKr

1jMXe , andV05(12j)V0Kr1jV0Xe are, respectively, the
averaged atomic weight and the volume per atom of the s
solution (V056.3310223cm3, M5131 for pure Xe and
V055.0310223cm3, M583.8 for pure Kr!, DM5M
2MXe andDV05V02V0Xe are the difference between th
averaged atomic weight of the solid solution and the atom
weight of the impurity and the difference between the v
ume of the solid solution and the volume of the impuri
AlthoughDM /M for the solution Kr12jXej is a factor of 1.5
smaller than for Kr12j(CH4)j , the relative difference of the
volumes per atom,DV0 /V0 , is twice as large in the firs
case, since at equalj the coefficientG is 1.6 times larger for
the solution Kr12jXej than for Kr12j(CH4)j . This means
that a Xe impurity in Kr should scatter more strongly than
CH4 impurity in Kr on account of the larger distortion of th
crystal lattice.

The first sample had a ratio of components close to
point of equal concentrations (j50.15), for which the pos-
sibility of phase separation of the solid solution durin
growth can be ruled out. This sample has a molar volume
29.9 cm3/mole; the temperatureT0 corresponding to the the
point at which the constant-volume condition (V5const) be-
gan to hold was 84 K, and the temperatureTm at which the
sample started to melt was of the order of 170 K. Sample
2 had a molar volume of 30.7 cm3/mole, T0578 K, andTm

'180 K.
Since the molar volume of the solid solution vari

strongly from Kr to Xe, the comparison of the experimen
results is conveniently done for samples that attain consta
of the volume at the same temperatureT0 . The two samples
were grown under identical conditions~pressure of 80 MPa
in the capillary, a temperature gradient of 1 K/cm along t
measurement cell!, so that the temperaturesT0 for them dif-
fered by only 5 K. According to our estimates, the correcti
to the thermal conductivity from rescaling to densities cor
sponding to the intermediate temperature 80 K does not
ceed 3–4%, which is less than the error of measurem
Therefore, the experimental results are shown in Fig. 1 w
out rescaling. The thermal conductivity of pure krypton a
xenon for samples whose volume was fixed starting at 8
was calculated using the semiempirical relation propose
Ref. 5. The Debye temperatures for Kr and Xe are equa
72 and 64 K, respectively, so thatLmin can be assumed con
stant in the investigated temperature range.

We see that the thermal conductivity of the solid so
tions Kr12jXej for j50.14 and 0.37 is practically equal t
the lower limit of the thermal conductivity over the entir
temperature range studied. The thermal conductivity is so
what higher for the solution withj50.37 than for that with
j50.14. This may be due to partial phase separation of
sample. The sample was grown from a dense liquid phas
a temperature gradient along the measurement cell o
K/cm. According to the phase diagram,13 a solution enriched
with xenon should have precipitated out in the lower part
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the cell, and the subsequent annealing might have bee
sufficient to equalize the impurity concentration along t
cell.

CONCLUSIONS

The isochoric thermal conductivity of the solid solutio
Kr12jXej with j50.14 and 0.37 is practically constant
the temperature interval from 80 K to the start of melting.
absolute value and temperature dependence are in
agreement with the lower limit of the thermal conductivity
the crystal lattice,Lmin .

FIG. 1. Isochoric thermal conductivity of Kr12jXej solid solutions:d—j
50.14, Vm529.9 cm3/mole, j—j50.37, Vm530.7 cm3/mole. The solid
curves show the thermal conductivity of pure Kr and Xe for samples wh
volume is fixed starting at 80 K. The lower limits of the thermal conduct
ity, Lmin , for pure Kr and Xe in the isochoric case (T0580 K) are shown at
the lower right of the figure.
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Heat capacity of methane–krypton solid solutions. Conversion effect
I. Ya. Minchina, V. G. Manzhelii, M. I. Bagatskii,* O. V. Sklyar, D. A. Mashchenko,
and M. A. Pokhodenko
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of Ukraine, 47 Lenin Ave., Kharkov 61103, Ukraine
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The heat capacity of Kr–nCH4 solid solutions with the concentrationsn51; 5; 10% and of the
solid solution Kr–1% CH4–0.2% O2 is studied at 0.7–8 K. The contributionsCrot to the
heat capacity of the solutions due to the rotation of the CH4 molecules are estimated. The
deviations of the measuredCrot from the values corresponding to the equilibrium distribution of the
CH4 nuclear spin modifications are dependent on the correlation between the characteristic
times of conversion and of the calorimetric experiment. The effects of temperature, O2 impurities,
and CH4 clusters upon the conversion rate are studied. It is shown that the hybrid mechanism
of conversion proposed by Berlinsky and Nijman, which takes into account both
intramolecular and intermolecular interactions of the proton spins, is predominant. ©2001
American Institute of Physics.@DOI: 10.1063/1.1388422#
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INTRODUCTION

This paper reports a calorimetric investigation of t
quantum behavior of CH4 rotators in a crystal field of cubic
symmetry. The degree of the quantum effect in the rotatio
motion can be characterized by the parameterlw5\/AI«w,
whereI is the moment of inertia of the molecule, and«w is
the energy barrier that the molecule has to overcome w
its orientation changes. The higherlw is, the stronger are the
quantum effects in the behavior of the rotator. The mom
of inertia I is quite small because the CH4 molecule has light
hydrogen atoms at its periphery. In matrices of solidifi
inert gases, methane molecules are surrounded by spher
symmetric atoms. Under this condition, the magnitude of«w

is also quite low~several tens of kelvin1!. Solutions of meth-
ane in matrices of solid inert gases with the fcc structure
therefore most suitable for answering the questions of
study. The spectrum of a quantum rotator in a crystal field
close to that of a free rotator. As a consequence, the spe
of different nuclear spin modifications of a rotator diff
considerably,2 and their mutual transformation~inter-
conversion! should be taken into account. Solid Kr has be
chosen as a matrix because, of all the inert gases, only Kr
Lennard-Jones potential parameters very close to thos
CH4. As a result, the solubility of CH4 in solid Kr is as high
as 80% at low temperatures. This offers an opportunity
investigate not only the behavior of isolated rotators but th
interaction as well. Since the low concentration case m
readily lends itself to interpretation, we considered it reas
able to use Kr–CH4 solutions with CH4 concentrations of
1–10%. The quantum behavior of rotators shows up at
temperatures. In addition, the relative contribution of the
tator subsystem to the heat capacity of Kr–CH4 solutions
decreases as the temperature rises. The temperature in
of this study was therefore bounded from above by 8 K.

We should mention some problems which are much
5681063-777X/2001/27(7)/6/$20.00
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sisted by studies of the heat capacity of solid CH4–Kr solu-
tions at low~helium! temperatures.

1. Mechanism of mutual transformation of nuclear spin CH 4

modifications „conversion mechanism …

It is known that CH4 molecules can come in three mod
fications having different mutual proton spin orientations a
rotational energy spectra. These CH4 modifications, specified
asA, T, E, have the total nuclear spins 2, 1, 0, respective
Their rotational spectra~the low-energy region! are shown in
Fig. 1 for a free rotator and a rotator in a Kr matrix.

The A modification has the lowest energy of the grou
state. Owing to conversion, the modifications are in equi
rium at different temperatures. The temperature depende
of the equilibriumA, T, and E concentrations of free CH4
rotators is shown in Fig. 2.2 In the high temperature limit the
concentration ratioxA :xT :xE is 5:9:2.

Two factors are responsible for the rate of conversion
the interaction of the proton spins and the possibility for t
phonons to gain energy from the transitions between dif
ent rotational states. Since the spacing of the protons is q
small within the molecule, the intramolecular spin intera
tion is an order of magnitude stronger than the spin inter
tion between the neighboring molecules. The intramolecu
spin interaction is, however, only weakly connected with t
translational vibrations of the lattice, and this considera
impedes conversion. According to Nijman and Berlinsky,6 a
hybrid mechanism of conversion predominates in solid C4

at low temperatures: the intramolecular interaction mixes
nuclear spin states, and the intermolecular interaction
duces transitions between the energy levels, which are
companied by emission of phonons. CH4–Kr solid solutions
are very suitable for testing the Nijman and Berlinsky mod
The conversion of isolated CH4 molecules can be studied o
weak solutions. At increasing concentrations, the numbe
clusters of CH4 molecules increases rapidly, and they trigg
© 2001 American Institute of Physics
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the hybrid mechanism of conversion. The heat capacity
the CH4 subsystem is very dependent on theA, T, and E
concentrations achieved by the time of measurement an
whether their concentration ratio has a chance to change
ing a single measurement run. It follows from the abo
consideration that we can derive information about conv
sion from the measured heat capacity.

To avoid misunderstanding, it is appropriate to note h
that our term ‘‘heat capacity’’ has the meaning of the deriv
tive of the heat transferred to the system with respec
temperature, irrespective of whether the system is at equ
rium or not.

It is also interesting to investigate how small amounts
paramagnetic impurities can influence the heat capacity
diluted CH4–Kr solid solutions. If the hybrid mechanism
prevails and no paramagnetic impurity is present in
Kr–CH4 solution, during the time of experiment the conve
sion will mainly occur in the clusters. The addition of
paramagnetic impurity will increase strongly the rate of co
version in the isolated CH4 molecules and hence the he
capacityCrot of the rotational subsystem. This problem c
also be tackled in the context of heat capacity studies.

FIG. 1. Rotational energy spectra of the methane molecule: a—free rota3;
b,c—hindered CH4 rotator in the crystal Kr field ~b—calculation4,
c—experimental5!. J-rotational quantum number,R—energy ~degeneracy
levels are in brackets to the right!.

FIG. 2. The temperature dependence of the equilibriumA, T, andE concen-
trations of free CH4 rotators.2
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2. Dynamics of quantum rotators in a crystal field

The heat capacityCV of the system is determined by it
energy levels. Our heat capacitiesCP(P50) estimated at a
constant pressure coincide, within the experimental er
with the valuesCV obtained at a constant volume. The i
verse problem of obtaining the energy spectrum from h
capacity7 can be solved uniquely only for the low-temp
erature heat capacity, which is determined by a small num
of excited levels in the spectrum. The first excited state of
rotator subsystem estimated from the heat capacity
sometimes surpass the spectroscopic data in accuracy.8

The high solubility of CH4 in solid Kr9,10 may provide
more evidence about how the octupole rotator interact
influences the low-energy part of the spectrum of the rota
subsystems. The multipolar moment of quantum rotators~un-
like the classical ones! is dependent on the state of the rot
tor. In the ground state the CH4 molecule has the smallest3

octupole moment. As the temperature of the Kr–CH4 solu-
tion rises, the occupancy of the excited states of the C4

rotators increases, and so do the octupole moment of the4
molecules and their interaction. Thus the interaction betw
the CH4 molecules changes with temperature, which sho
manifest itself in the behavior of the heat capacity of t
rotator subsystem.

3. Octupole glasses in Kr– nCH4 solutions: existence
and features

At sufficiently low temperatures an orientational oct
pole glass can develop in a Kr–nCH4 solution.14 In our so-
lutions with low CH4 concentrations (n<10%) we can
hardly expect an orientational glass to be formed due t
direct octupole interaction of CH4 molecules. Such concen
trations may, however, allow an octupole glass caused by
indirect interaction. This type of glass can develop due to
indirect interaction of impurity molecules through the stra
fields induced by the impurities themselves in the host
tice. The presence and type of glass can be identified f
the temperature and concentration dependences of the
capacity.12 Quadrupole glasses with an indirect interacti
have been detected and studied by several investigators.12–14

EXPERIMENT

The heat capacity of solid Kr–nCH4 solutions with the
concentrationsn51; 5; 10% and the Kr–1% CH4– 0.2% O2

solution were studied at 0.7–8 K by a pulse-heating meth
using an adiabatic vacuum calorimeter.15 The temperature of
the sample changed asDTi5Ti 112Ti , whereTi and Ti 11

are the temperatures before and after heating. The cha
during one measurement run was about 10% ofTi . The heat
capacity corresponded to the temperatureT5(Ti1Ti 11)/2.
The heating timeth was usually two or three minutes. Th
time texp taken to measure one heat capacity value was 0
1.4 hour and depended mainly on the duration (te) of tem-
perature equalization over the sample after switching off
heater. The effective~characteristic! time tm of one measure-
ment run is taken to betm5th1te . The mass of the sample
was 0.5–0.7 mole.

r
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The purity of the gases was: CH4– 99.94% (0.04% N2,
,0.01%Ar, O2); Kr–99.72% (0.08% N2; 0.2% Xe);
O2– 99.99%.

Gas mixtures with a pre-assigned composition were p
pared at room temperature. The impurity concentration
the mass of the samples were found from thePVT data to
within 0.2%. A solid solution was prepared in a calorime
at T'70 K by condensing the gas mixture into the so
phase. The error of the heat capacity measurement was 6
0.7 K; 2% at 1 K; 1% at 2 K, and 0.5% above 4 K. T
minimize the systematic measurement errors and to impr
the accuracy of separation of the heat capacity compo
Crot contributed by the CH4 impurity rotation, the heat ca
pacity of pure Kr was measured in the same calorimeter

The heat capacity of Kr–CH4 solutions had been mea
sured only once, by A. Euken and H. Veight9 in 1936 ~T
512– 25 K; 28– 96% CH4!.

DATA PRESENTATION

The heat capacity of the Kr–CH4 solution can be repre
sented as a sum,Csol5Ctr1Crot , whereCrot is the heat ca-
pacity contributed by the rotational motion of the CH4 mol-
ecules, andCtr is the heat capacity due to translation
vibrations of the lattice.Ctr can in turn be represented a
Ctr5CKr1DCL , where CKr is the heat capacity of pur
krypton, andDCL is the change in the translational heat c
pacity caused by the presence of a lighter impurity (CH4) in
the Kr lattice. DCL was calculated by the Jacobi matr
method16 for the mass ratiomCH4

/mKr50.2, the force con-
stant variation being neglected. The rotational compon
Crot was found by subtractingCKr andDCL from the experi-
mentalCsol values. TheCrot value thus obtained was com
pared with calculations for three limiting cases:

1. Equilibrium distribution~ED! of the nuclear spin~A,
E, T! modifications~fast conversion!.

It is assumed that conversion is so fast that theA, E, and
T concentrations can be thought of as equilibrium at a
instant at the temperature of the experiment. This is poss
if conversion occurs during the effective timetm of a single
measurement run. In this case the heat capacity is obtain
from the unified rotational energy spectrum based on
levels.

2. Frozen equilibrium distribution~FED!
The A, E, andT concentrations are equilibrium with re

spect to the initial temperatureTi and do not change durin
the effective timetm when the sample is heated fromTi to
Ti 11 . This is possible when the characteristic convers
time is t@tm . Prior to measurement, the sample must
kept atTi during the timet@t. At the mid-heating tempera
ture T5(Ti1Ti 11)/2, the heat capacity is calculated as

Crot~T!5xA~Ti !CA~T!1xT~Ti !CT~T!1xE~Ti !CE~T!, ~1!

where xA ,xT ,xE are the relative equilibriumA, E, and T
concentrations atTi ; CA , CT , andCE are the heat capacitie
of the corresponding modifications at the temperatureT.

3. Frozen distribution~FD! ~no conversion!
TheA, E, andT concentrations are constant in the who

range of temperatures and equal to the high-temperature
tribution, i.e., xA :xT :xE55:9:2. This occurs if at all tem-
peratures the conversion is very slow and theA, E, and T
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concentrations are practically invariable during the whole
periment~several weeks!. In this case the heat capacityCrot

can be found as

Crot~T!5
5

16
CA~T!1

9

16
CT~T!1

2

16
CE~T!. ~2!

To calculateCrot for the above limiting cases, we need
know the rotation spectrum of the CH4 molecule in the crys-
tal field of krypton. This spectrum has been calculated
Ref. 4~see Fig. 1b!. The energies of four low-lying rotationa
levels of the CH4 molecule in a Kr matrix were found ex
perimentally by the method of inelastic neutro
scattering.5,17 It turns out that three of them agree well wit
theoretical predictions,4 the discrepancy being within 3%
~see Fig. 1c!. The fourth level differs by about 30%. W
thought it reasonable to use the spectrum of Fig. 1~b! in the
subsequentCrot calculation.

RESULTS OF THE MEASUREMENTS. DISCUSSION

The heat capacitiesCrot measured on the solutions wit
1; 5; 10% CH4 and normalized to the CH4 concentrationn
and the universal gas constantR are shown in Fig. 3a for the
whole range of measurement temperatures and in Fig
~enlarged scale! up to 4.3 K. As is seen in Fig. 3a, the da
scatter increases with rising temperature, and the accurac
the Crot component degrades. This is due to the lattice c

FIG. 3. Temperature dependence of reduced rotational heat capaci
Kr–CH4 solutions containing 1% CH4 ~s!, 5% CH4 ~m!, 10% CH4 ~h! for
the whole temperature range~a! and up to 4.3 K~b!. The solid lines are the
theoretical curves for the three limiting cases mentioned~1–ED, 2–FED,
3–FD!.



h

ds

u
E

th
ro

e

i
sti

a

m
H
e
.

in
s

m
.
ys
iti

ac
s
il

ul

t c
tiv

na

ity

on-
that

is
-
the
ced
-
on-

is

in

ide
t of
n of
ests

era-

-
ex-

-
y
de-
d.
the
esti-

f
the

CH

f bi-

571Low Temp. Phys. 27 (7), July 2001 Minchina et al.
tribution Ctr to the total heat capacity of the solution, whic
increases as the temperature rises: 47% atT54 K and 78%
at T58 K (n510%). The dotted line in Fig. 3a correspon
to the high-temperature value,Crot /nR53/2, for a mole of
isolated CH4 molecules in a Kr matrix.

Along with experimental results, Fig. 3 show the calc
lated heat capacities for the above three limiting cases:
~curve1!, FED ~curve2!, FD ~curve3!. It is seen that in the
whole temperature region, the heat capacity of
Kr–1% CH4 solution hardly exceeds the experimental er
and is much below curves1 ~ED! and 3 ~FD! at T<5 K.
Curve 2 ~FED! is the best description of the solution atT
<5 K. This suggests that the characteristic conversion tim
of this solution greatly exceed the effective timestm of a
single measurement run. This conclusion is consistent w
Refs. 18 and 19. According to Ref. 18, the characteri
conversion timet of isolated CH4 molecules in a Kr matrix
is 3.5 hours atT52 K.

It is seen in Fig. 3 that the reduced rotational heat cap
ity increases rapidly with the concentrationn, and aboveT
'4 K (n510%) orT'6 K (n55%) it exceeds theCrot /nR
value corresponding to the instantaneous thermodyna
equilibrium of the nuclear spin modifications of isolated C4
molecules. This can be explained as follows. As the conc
tration n grows, the number of CH4 clusters increases, too
Clusters of two and three CH4 molecules prevail atn55;
10% CH4. The hybrid mechanism of conversion operating
the clusters6 enhances the conversion rate considerably. A
result, the nonequilibrium nuclear spin modifications co
into equilibrium, and the entropySof the solution increases
The higher the conversion rate is in the nonequilibrium s
tem, the more intensively the entropy changes at the in
temperatureTi during the effective timetm of a single mea-
surement run. Correspondingly, the measured heat cap
CV5T(dS/dT) appears to be higher. Note that in this ca
the measured heat capacity can exceed that of the equ
rium system. The higher heat capacity of clustered molec
~as compared to that of isolated ones! can also contribute
appreciably to the concentration dependence of the hea
pacity. We should therefore not overestimate the quantita
comparison between theCrot of the solutions withn55;
10% CH4 and the theoretical curve describing the rotatio

FIG. 4. Temperature dependence of rotational heat capacity of Kr–4

solutions containing 5% CH4 ~m! and 10% CH4 ~h!, in reduced coordi-
nates.
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heat capacity of the equilibrium system of isolated impur
molecules~the ED case!.

Additional arguments for or against the enhanced c
version in clusters can be furnished by the consequences
follow from this assumption. Let us assume that~i! the con-
tribution of isolated CH4 molecules~singles! to the heat ca-
pacity is negligible,~ii ! the conversion rate in a cluster
independent of its size, and~iii ! the rotational energy spec
trum of the molecules in clusters is also independent of
cluster sizes. If these conditions are realized, the redu
heat capacityCrot /n8R, wheren8 is the molecule concentra
tion in the clusters, will be independent of the methane c
centrationn. And we remember that the number of CH4

singles in a solution containingN particles isNn(12n)12;
correspondingly, the number of molecules in clusters
Nn@12(12n)12#, i.e., n85n@12(12n)12#.

In Fig. 4 the heat capacity of the rotational subsystem
the solutions with 5%; 10% CH4 is shown in the reduced
coordinatesCrot /Rn@12(12n)12# –T. It is seen that the re-
duced heat capacities of these solutions at 5–8 K coinc
within the measurement error, i.e., they are independen
the methane concentration. This supports the assumptio
considerably enhanced conversion in clusters and sugg
that the above three conditions are realized in this temp
ture interval.

At lower temperatures~see Fig. 4! there are some devia
tions from the universal dependence which exceed the
perimental error. This may occur because conditions~ii ! and
~iii ! ~or one of them! are not fulfilled. According to Ref. 3,
the first effective excited rotational level (J51) is some-
what lower for three-molecule clusters (i 53) than for two-
molecule clusters (i 52). Correspondingly, at rather low
temperatures the heat capacity of the solution withn
510%, which contains morei 53 clusters, should be appre
ciably higher than in then55% case. Another reason ma
be connected with the conversion rate, which becomes
pendent on the cluster size as the temperature is lowere

To estimate the effect of a paramagnetic impurity on
conversion rate and hence on the heat capacity, we inv
gated the heat capacity of the Kr–1% CH4–0.2% O2 solution.
The contributions of the impurities (CH4, O2) were assumed
to be additive. The contribution of O2 to the heat capacity o
the solution was estimated using the data of Ref. 20. In

FIG. 5. Temperature dependence of reduced rotational heat capacity o
nary Kr–CH4 solutions containing 1% CH4 ~s!, 10% CH4 ~h!, and the
triple solution Kr–1% CH4–0.2% O2 ~n!.
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presence of O2 the CH4 contribution to the heat capacity i
an order of magnitude higher than that in the Kr–1% C4

solution containing no appreciable paramagnetic impuri
~see Fig. 5!.

With an equilibrium distribution of the CH4 modifica-
tions, the heat capacity atT<3 K is determined by the posi
tion of the first excited level in the rotational spectrum of t
CH4 molecules~see Fig. 1!. We assume that atT<3 K some
part of the CH4 molecules influenced by the paramagne
impurities convert so fast that their heat capacity correspo
to the equilibrium distribution~the ED case!. Let this frac-
tion of molecules be denoted asn9. The value ofn9 also
includes a relatively small number of the fast-converti
CH4 molecules from the clusters. We then assume that
contribution of the rest of the CH4 molecules, whose fraction
is (12n9), to Crot is negligible. When the above three co
ditions are fulfilled,Crot can be written as

Crot5NkB

n9

T2 E1
2 g1

g0
e2E1 /T, ~3!

whereN is the number of CH4 molecules in the sample;E1 is
the first excited level energy;g0 andg1 are the degeneracie
of the ground and the first excited levels, respectively;kB is
Boltzmann’s constant. In Fig. 6 the measuredCrot of the
Kr–1% CH4–0.2% O2 solution is shown in the coordinate
ln(CrotT

2/R) – 1/T.
The linear dependence ln(CrotT

2/R) – 1/T is fulfilled
within the experimental error, which indicates that our a
sumptions are realistic. TheE1 value (11.760.4 K) was es-
timated from the slope of the obtained straight line and is
good agreement with the neutron-diffraction magnitudeE1

511.7 K.17

The ratio of the experimental valueCrot
exp and the value

Crot
theor calculated forE1511.7 K on the assumption that a

the CH4 molecules convert during the effective timetm of a
single heat capacity measurement~the ED case! is shown in
Fig. 7. It is seen thatn9572%, which implies that only 72%
of CH4 molecules convert in the Kr–1% CH4–0.2% O2 solid
solution atT<3 K during the effective timetm of a single
heat capacity measurement. This suggests that during

FIG. 6. Temperature dependence ofCrot of the Kr–1% CH4–0.2% O2 solid
solution in ln(CrotT

2/R) – 1/T coordinates.
s

ds

e

-

n

he

time tm the conversion takes place in the CH4 molecules
which are situated in seven coordination spheres around
O2 molecule.

Finally, we discuss the possibility of an orientation
glass in our Kr–CH4 solutions. At the CH4 concentrations
used in this study, we can only expect the orientational gl
with an indirect interaction.12 In such glasses the rotator
interact through the strain fields which they form in the m
trix. Our temperature and concentration dependencies do
display any features typical for the heat capacity of su
glasses.12 This means that the shift of the CH4 rotation en-
ergy levels caused by the indirect interaction of the C4

molecules is smaller than the distanceE1 between the
ground and the first excited levels of the spectrum. It is qu
possible that the glasslike behavior should be sought in
temperature and concentration dependencies of CD4–Kr
solid solutions, becauseE1 is smaller in that case.

The authors are indebted to E. S. Syrkin, S. B. Fe
dosiev, and I. A. Gospodarev for the calculated data on
translational component of the heat capacity of Kr–CH4 so-
lutions. This study has been supported by the Ministry
Education and Science of Ukraine within the Project ‘‘Op
cal and Thermal Spectroscopy of Small Molecules in Cry
genic Matrices,’’ No. M/1862-97.
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Manifestation of quasi-symmetry of the cation sites of Gd 2SiO5, Y2SiO5,
and Lu 2SiO5 in the spectra of the impurity ion Pr 3¿
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The quasi-symmetry of the inequivalent cation sites in the crystals Gd2SiO5, Y2SiO5, and
Lu2SiO5 is established on the basis of an analysis of the features of the low-temperature optical
spectra of the impurity ion Pr31. One type of cation site of the crystals Y2SiO5 and
Lu2SiO5 manifests the quasi-symmetry of a distorted octahedron, and the other type, that of a
distorted tetrahedron. The parameters characterizing the energy spectrum of the free
Pr31 ion in the crystalline field of the cation sites are determined. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1388423#
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INTRODUCTION

Rare-earth-doped crystals of Gd2SiO5 ~GSO!, Y2SiO5

~YSO!, and Lu2SiO5 ~LSO!, which belong to the family of
oxyorthosilicates with the general formula RE2~SiO4!O
(RE5Gd, Y, Lu) are objects of intensive research. This
search is primarily in connection with the search for efficie
laser and scintillator materials.1–5 The high chemical and
photochemical stability of oxyorthosilicates makes the
promising materials for use in display technologies.6

From an applied standpoint, the important optical a
luminescence properties of rare-earth ions is to a consi
able degree determined by the microstructure of their c
talline environment and to a lesser degree by the ma
scopic properties of the crystal. Therefore it is of topic
interest to ascertain the microstructure of the substitutio
cation sites of the oxyorthosilicates. The narrowness of
spectral lines makes the low-temperature optical spectr
impurity ions highly informative, affording efficient study o
the microstructure of the activation centers.

In the present paper, which is a logical continuation o
previously published report,8 we present a detailed analys
of the low-temperature optical spectra of the impurity io
Pr31 and determine the parameters characterizing the en
spectrum of the free Pr31 ion in the crystalline field of the
cation sites in GSO, YSO, and LSO crystals.

EXPERIMENTAL RESULTS AND DISCUSSION

The luminescence spectrum of the Pr31 impurity ions
was excited by a tunable narrow-band organic dye laser
was recorded using an MDR-23 grating monochromator
an FÉU-64 photomultiplier operating in the current mod
The signal from the photomultiplier was preamplified a
5741063-777X/2001/27(7)/5/$20.00
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digitized by an ATsP-712 analog-to-digital converter. T
scanning of the monochromator and digitizing of the sig
were automated with the aid of a computer.

Since the crystalline field has a weak influence on thf
electrons of rare-earth ions, their energy spectrum is de
mined mainly by the Coulomb and spin–orbit interaction
The system of terms of the free ion is described by the qu
tum numbersL, S, andJ ~L, S, andJ5L1S are the orbital,
spin, and total angular momenta, respectively!. For the f 2

configuration of the Pr31 ion there are nine triplet terms
3H4,5,6,

3F2,3,4,
3P0,1,2, and four singlet terms,1S0 , 1D2 ,

1G4 , and1I 6 . Since thef 2 configuration does not give de
generate terms, the energy of the thirteen terms of the
Pr31 ion, if higher-order corrections are not taken into a
count, is given by the expression

E~LSJ!5 (
k50

2l

f k~ f 2, LS!Fk~4l , 4l !1h~L•S!, ~1!

where f k( f 2,LS) is an angular coefficient,Fk(4l ,4l ) is a
Slater integral,l 53, andh is the spin–orbit interaction con
stant.

Ordinarily Fk(4l ,4l ) andh are chosen as variational pa
rameters and are determined from experiment. The ang
coefficients are calculated from the known formulas or tak
from data tables.9–12

In the crystalline field the terms of the impurity ion a
split, and therefore relation~1! gives the position of the cen
troid of the terms. The results of Refs. 7 and 8 enable on
determine uniquely the positions of the centroids of the ter
3H4 , 1D2 , and3P0 for the two Pr31 optical centers in YSO
and LSO crystals. For the GSO crystal we were unable
give a complete interpretation of the Stark components of
term 3H4 . For a more precise determination of the values
© 2001 American Institute of Physics
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the four variational parametersFk(4l ,4l ) and h it is neces-
sary to know the positions of the centroids of several m
terms. For this reason we studied the low-temperature
luminescence spectra of the two optical centers Pr31 in the
YSO and LSO crystals upon their selective excitation~Fig.
1!. The use of selective excitation and low temperatu
made it possible to simplify the structure of the luminesce
spectra considerably and to interpret them without ambigu
Figure 1 shows groups of spectral lines belonging to
same Pr31 optical center in the YSO and LSO crystals. T
spectra correspond to optical transitions from the low
Stark component of the1D2 term to the Stark components o
the split terms3H4,5,6 and3F2,3,4. From these spectra and th
analogous data for the second Pr31 optical center one can
find the centroids of five more terms. The values of the va
tional parametersFk(4l ,4l ) and h for the two Pr31 optical
centers in YSO and LSO crystals were determined from
condition of minimization of the sum ( i 51

7 (Ei
exp

2Ei(L,S,J))2, whereEi
exp are the centroids of the terms dete

mined experimentally from the optical spectra. A
expected,9–11 the values of the variational paramete
Fk(4l ,4l ) and h ~see Table I! are quite similar for the two
Pr31 optical centers in the YSO and LSO crystals.

FIG. 1. Fragments of the luminescence spectra of YSO:Pr31 and LSO:Pr31

crystals under selective excitation of the Pr31 impurity centers in the region
of the optical transitions3H4→1D2 at T580 K.

TABLE I. Values of the Slater integralaFk(4l ,4l ) and spin-orbit interaction
constanth for two types of Pr31 centers in crystals of Y and Lu oxyortho
silicates.

Parameter

Y2Si5 Lu2SiO5

Type I Type II Type I Type II

F2(4l , 4l ) 293.3 299.2 294.1 298.1
F4(4l , 4l ) 42.7 41.0 42.4 42.2
F6(4l , 4l ) 4.5 4.6 4.4 4.5

h 782.1 746 759.8 745.3

Note: The parameter values are given in cm-1.
e
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By virtue of the specific character of the splitting o
the 1D2 term by a crystalline field of definite symmetry,
can be used as a probe for studying the microscopic struc
of the crystalline field of the ligands. To show this, let us tu
to the classification of the states of the free Pr31 ion in the
group-theoretic formalism.9–11 The term1D2 corresponds to
the irreducible representationD (2) of the three-dimensiona
rotation group. In the case of octahedral or tetrahedral s
metry, D (2) decomposes into a twofold and a threefo
irreducible representation. In a crystalline field of octahed
symmetry the energy of the threefold degenerate statet2g

is lower than the energy of the twofold degenerate st
eg , while in a field of tetrahedral symmetry the opposite
true. This has been confirmed experimentally in the opti
spectra of the Ti31 ion and is analyzed in Refs. 9–11, 1
and 15.

It is known7,8,13that the Pr31 ions in the YSO, LSO, and
GSO crystals occupy two inequivalent cation sites with
lowest possible, triclinic, local symmetryC1 . Both cation
sites are characterized by the crystalline field of the distor
REO6 octahedra. Consequently, the terms of the Pr31 ion
must split completely, and that is observed experimentally7,8

However, a detailed analysis of the structure of the abso
tion spectrum of the Pr31 impurity ion in YSO, LSO, and
GSO crystals in the region of the optical transitio
3H4↔1D2 ~Fig. 2! shows that there is a special grouping
the Stark components of the1D2 term. For example, in the
absorption spectrum of the GSO:Pr31 crystal, the spectra
lines 1* , 2* , and 3* are separated from the lines 4* and 5*
by an energy interval of;692 cm21, which is larger than
corresponding splitting between these lines within ea
group. It can be conjectured that for the two types of P31

optical centers in the GSO crystal and for the first type

FIG. 2. Fragments of the absorption spectra of LSO, YSO, and GSO cry
in the region of the optical transitions3H4→1D2 of Pr31 impurity ions at
T580 K.
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Pr31 optical centers in the YSO and LSO crystals the spec
lines 1, 2, and 3~Fig. 2! appear as a result of the crystal-fie
splitting of the originally threefold degenerate statet2g ,
while the spectral lines 4 and 5 appear as a result of
splitting of theeg state.9–11 In the YSO and LSO crystals
however, for the second type of Pr31 optical centers~Fig. 2!
the grouping of the spectral lines is the opposite: first co
the spectral lines 1* and 2* and then 3* , 4* , and 5* . Con-
sequently, it can be supposed that in the cation sites of
second type in the YSO and LSO crystals the Pr31 impurity
centers are found in the crystalline field of a distorted te
hedron. It should be noted that a structural analysis13 gives a
distorted octahedral symmetry for both types of cation s
in the YSO crystal.

The qualitative arguments presented above are base
the analogy with the splitting of the1D2 term of thed elec-
tron in crystalline fields of octahedral and tetrahedral sy
metry. Therefore, in the case of twof electrons one should
do a detailed analysis with allowance for the fact9–11 that in
the expansion of the crystalline field in spherical harmon
Yl ,m(u,w) for f electrons it is necessary to take into accou
terms withl<6.

For analysis of the features of the splitting of the1D2

term of the Pr31 ion in a crystalline field of octahedral o
tetrahedral symmetry, we construct an orthonormalized b
w2,m(u,w) (m5@22,2#) of the representationD (2). The
wave functionsw2,m(u,w) are written in the form of a linea
combination of productsY3,k(u1 ,w1)Y3,p(u2 ,w2) ~u1 ,w1

and u2 ,w2 are the coordinates of the first and second el
trons! with the use of the Clebsch–Gordan coefficients.9–11

The combination of spherical harmonics in the express
for the crystal-field potential is chosen from the conditi
that it be invariant with respect to the symmetry operators
the groupsOh andTd . The radial integrals of the crystallin
field are taken as variational parameters. If the quantiza
axis is taken along the fourfold axis, the crystal-field pote
tial can be written in the form

Vcr5(
i 51

2

$6B4,0@Y4,0~u i ,w i !1A5/14~Y44~u i ,w i !

1Y4,24~u i ,w i !!#1B6.0@Y6,0~u i ,w i !

2A7/2~Y6,4~u i ,w i !1Y6,24~u i ,w i !!#%, ~2!

B4,45B4,0A5/14, ~3!

where B4,0 and B6,0 are variational parameters, an
Yl ,m(u i ,w i) are spherical harmonics.

In relation~2! the plus sign corresponds to the octahed
symmetry and the minus sign to the tetrahedral. The ma
elements of the crystal-field operator are calculated in
basis of orthonormalized wave functionsw2,m(u,w). A cal-
culation shows a complete analogy with a singled
electron,9–11,14,15viz: in a crystalline field of octahedral sym
metry the threefold degenerate level of the1D2 term of the
Pr31 impurity ion has a lower energy than the twofold d
generate level~Fig. 3!. In a field of tetrahedral symmetry th
situation is reversed. For the model crystalline field~2! the
splitting of the 1D2 term depends only on the paramet
B4,0: D5B4,0 20/7Ap. An estimate ofB4,0 can be obtained
from experiment. To do this we find the centroids of t
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spectral lines 1, 2, 3 and 4, 5~1* , 2* and 3* , 4* , 5* ! for
the two Pr31 optical centers in the YSO and LSO crysta
and also the centroids of the spectral lines 1, 2, 3 and 4
and 1* , 2* , 3* and 4* , 5* in the GSO crystal~Fig. 2!. The
difference of the positions of the corresponding centro
gives the value of the desired parameter: for the first type
Pr31 optical centerB4,05350 cm21 ~LSO!, B4,05343 cm21

~YSO!, andB4,05296 cm21 ~GSO!, and for the second type
of centerB4,05448 cm21 ~LSO!, B4,05442 cm21 ~YSO!, and
B4,05560 cm21 ~GSO!. It is seen that the second type o
Pr31 optical centers are acted upon more strongly by the fi
of the ligands.

Further analysis of the lowering of the symmetry of t
cation sites will be confined to the case of octahedral co
dination, since there is a chain of distortions~tetragonal,
trigonal, and rhombic! of a regular octahedron which lead t
successive splitting of the1D2 term and to complete lifting
of the degeneracy. We will not discuss the trigonal distort
of the octahedron in detail, since it is manifested in a man
analogous to the tetragonal. In the case of tetragonal dis
tion of the octahedron the point symmetry of the cation s
is lowered toD4h ~Refs. 9–11!: the eg and t2g representa-
tions of the Oh group become reducible, and the stateseg and
t2g are therefore split. In the splitting oft2g the twofold
degenerate level is conserved.

For finding the quantitative characteristics of the cryst
line field in the case of tetragonal distortion, a ter
A2,0Y2,0(u i ,w i) must be added to the crystal-field potent
~2!. If the tetragonal distortion is treated as a weak pertur
tion, then relation~3! remains unchanged. Further, in th
basis of wave functionsw2,m(u,w) we find the matrix ele-
ments of the modified crystal-field operator, and we obt
and solve the secular equation. The desired roots of the s
lar equation and, hence, the energies of the Stark compon
of the 1D2 term relative to the centroid are as follows:

FIG. 3. Simplified scheme of the splitting of the1D2 term of the Pr31

impurity ion.
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E1,252
8B4,0

7Ap
2

11A2,0

21A5p
,

E352
120B4,0

105Ap
1

11A5A2,0

105Ap
,

E45
12B4,0

7Ap
2

11A2,0

21A5p
, ~4!

E55
180B4,0

105Ap
1

11A5A2,0

105Ap
.

The system of equations~4! gives a symmetric splitting
of the levelseg andt2g ~Fig. 3!. However, it follows from the
optical absorption spectra~Fig. 2! that for the YSO and LSO
crystals the energy interval between the spectral lines 4 a
is almost twice as large as the energy interval between lin
and the centroid of lines 1 and 2. Asymmetric splitting is a
observed in the absorption spectrum of the GSO:Pr31 crystal.
To describe the asymmetry in the splitting of the1D2 term it
is necessary to consider two independent variational par
etersB4,0 andB4,4. In that case the roots of the secular equ
tion are:

E1,252
8B4,0

7Ap
2

11A2,0

21A5p
,

E35
10B4,02150B4,4111A5A2,0

105Ap
,

~5!

E45
12B4,0

7Ap
2

11A2,0

21A5p
,

E55
30B4,01150B4,4111A5A2,0

105Ap
.

The parametersB4,0, A2,0, and B4,4 can be estimated
from the absorption spectra~Fig. 2!. For this we find the
position of the centroid of the spectral lines 1 and 2 in
YSO and LSO crystals and then compare the correspon
differences (Ei2Ej ) according to the scheme in Fig. 3. F
the GSO crystal we follow similar procedures for each of
two Pr31 optical centers. The best approximation to the sp
ting of the 1D2 term is achieved atA2,051040 cm21, B4,0

5310 cm21, andB4,45380 cm21 for the LSO crystal and a
A2,051103 cm21, B4,05306 cm21, and B4,45357 cm21 for
YSO. Accordingly, for the first type of Pr31 optical centers of
the GSO crystal we findA2,05746 cm21, B4,05329 cm21,
and B4,45232 cm21, and for the second typeA2,0

5838.9 cm21, B4,05585.5 cm21, andB4,45499.7 cm21.
Further lowering of the symmetry of the octahedron

rhombic (D2h) completely lifts the degeneracy of the1D2

term. The point groupD2h contains only one-dimensiona
irreducible representations. The model of the crystal-field
tential becomes more complicated, and the secular equa
becomes too awkward to solve because of the two additio
variational parametersA2,2 andB4,2. We therefore give only
the expression for the splitting of the lower, twofold dege
erate state~Fig. 3!:
5
3
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D15S 640~B4,2!
2

49p
2

352B4,2A2,2

49)p
1

242~A2,2!
2

735p D 1/2

. ~6!

If we set B4,2'A2,2, then we can estimate their valu
from the experiment. It follows from the splitting of lines
and 2 ~Fig. 2! that for LSO B4,2'A2,2'45 cm21 and for
YSO B4,2'A2,2'43.6 cm21. For the first type of optical cen
ters in GSO we findB4,2'A2,2'36.4 cm21, and for the sec-
ond typeB4,2'A2,2'30.7 cm21.

Analysis of the numerical values of the variational p
rameters characterizing the microstructure of the crystal
field of the ligands at the cation sites of the YSO, LSO, a
GSO crystals shows that the greatest effect of the crysta
field of the ligands is felt by the second type of Pr31 optical
centers in the GSO crystal~the large values ofB4,0 andB4,4!.
At the same time, however, the octahedral symmetry of
cation sites of the GSO crystal is less distorted than in Y
and LSO. The values of the parametersA2,0, A2,2, andB4,2

for the YSO and LSO crystals are larger than for GSO.
YSO and LSO the values of the variational parameters ch
acterizing the crystalline field are of the same order. It sho
be noted that the YSO and LSO crystals belong to one c
talline type and the GSO crystal to another.16

Thus on the basis of an analysis of the low-temperat
optical spectra of the crystals YSO:Pr31, LSO:Pr31, and
GSO:Pr31 we have obtained the values of the paramet
characterizing the Coulomb and spin–orbit interactions
the free Pr31 ion and also of the parameters governing t
microstructure of the crystalline field of the ligands at t
cation sites of the crystal lattices of YSO, LSO, and GS
The features of the splitting of the1D2 term indicate that the
quasi-symmetry of the cation sites is conserved. In cont
to the structural data, the features of the splitting of the1D2

term of the second type of optical centers in YSO and L
indicate a tetrahedral quasi-symmetry of the cation sites.
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A nonlinear elastic chain in an external periodic double-barrier potential~a generalized
Frenkel–Kontorova model! is considered. Small-amplitude dynamical localized excitations whose
parameters lie in and near the gap of the spectrum of linear waves—gap and near-gap
solitons—are investigated. ©2001 American Institute of Physics.@DOI: 10.1063/1.1388424#
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INTRODUCTION

The Frenkel–Kontorova model is widely used in soli
state physics for the theoretical description of dislocation
crystals,1–3 the motion of crowdions in an elastic lattice,4–6

fluxons in Josephson junctions, domain walls in magnetic
ordered media, etc.3,7 In recent years a great deal of attenti
has been devoted to generalized Frenkel–Kontorova mo
in which the chain of interacting atoms is found in a period
potential of complex form—a so-called double-well
double-barrier potential.3,5,6,8 Such systems can support th
existence of topological soliton excitations with a spec
structure: in particular, fractional and split crowdions.5,6

Besides the topological soliton excitations~kinks! that
have been considered in the majority of studies, the Frenk
Kontorova model also supports the existence of dynam
small-amplitude soliton excitations~envelope solitons!. The
study of this type of soliton excitations in the generaliz
Frenkel–Kontorova model is the subject of the present pa

We consider a monatomic elastic chain in a doub
barrier potential. Such a modulation of the potential cause
gap to appear in the spectrum of linear waves, the width
the gap being proportional to the difference between the
minima of the double-barrier potential. We investigate sm
amplitude dynamical soliton solutions with parameters ly
in and near the gap in the spectrum of linear waves—
so-called gap and near-gap solitons.

STATEMENT OF THE PROBLEM AND THE BASIC
DYNAMICAL EQUATIONS

In the standard Frenkel–Kontorova model one consid
a chain atoms interacting harmonically with one another
executing one-dimensional motion in a potential well of t
form U}12cosxn created by the immobile periodic sub
strate, wherexn is the spatial coordinate of thenth atom.
5791063-777X/2001/27(7)/6/$20.00
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Here we use a generalized model5,6 in which the periodic
potential created by the substrate~the ‘‘external’’ nonlinear-
ity! is assumed to have the form

V~xn!5gFh~12cosxn!1
1

2
~12cos 2xn!G , ~1!

whereg.0, andh is a dimensionless parameter describi
the double-barrier potential.

The interaction between atoms along the chain will a
be assumed anharmonic~the ‘‘internal’’ nonlinearity!:

U~jn!5
K2

2
~jn2jn21!21

K4

2
~jn2jn21!4, ~2!

wherejn is the displacement of thenth atom from its equi-
librium position xn

05pn: jn5xn2xn
0 ; the constantK2 is

positive, and the interatomic distance is assumed equal tp.
Let us assume that in the ground state the coordinate

the atoms correspond to the minima of the external poten
~see Fig. 1!. Here the even-numbered atoms lie in the ab
lute minima of the function~1!, which correspond to value
of the potential energyV(pn)[0, n50,62,64,,..., while
the odd-numbered atoms lie in relative minima, which c
respond to a value of the potential energyV(pn)[2hg,
n561,63,... . This corresponds to having an interatom
distance in the monatomic chain equal to one-half the pe
of the substrate. Thus the parameterh characterizes the en
ergy difference of the two minima.

The equation of motion for thenth atom is

m
d2jn

dt2
1K2~2jn2jn112jn21!

1g@h sin~pn1jn!1sin~2jn!#50. ~3!

In the majority of papers employing the Frenkel–Kontoro
model it is the topological soliton solutions~kinks! of equa-
© 2001 American Institute of Physics
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tion ~3! that are studied. We will be considering sma
amplitude dynamical solitons, in which the position of ea
atom deviates slightly from its equilibrium position. We ca
then expand the external potential~1! in small displacements
jn to the first nonlinear terms. The expansion will be diffe
ent for the even- and odd-numbered atoms. As a result,
obtain the following dynamical equation for thenth atom:

m
d2jn

dt2
1K2~2jn2jn112jn21!1g@21h cos~pn!#jn

1K4@~jn2jn11!31~jn2jn21!3#2
8

3
gjn

350,

n50,61,62... ~4!

The modulation of the parameters of the system is assu
small (h!1), and we are neglecting the small terms prop
tional to hjn

3 . A distinctive feature of this equation is th
presence of the term containing cos(pn), which modulates
the harmonic part of the external potential of the syste
This modulation makes it impossible to seek the general
lution of the linearized equations in the standard formjn

}exp(ivt2ibn); it must contain two waves propagating wi
different phase velocities:9

jn5A1 expi ~vt2bn!1A2 expi ~vt2~b2p!n!1c.c.
~5!

The spectrum of linear waves of the system~see Fig. 2!
is determined by the dispersion relation

v42~v1
21v2

2!v21v1
2v2

22ṽ0
4 cos2 b50, ~6!

FIG. 1. Schematic illustration of the arrangement of atoms in the chain.
even-numbered atoms lie in the absolute minima of the double-barrier
tential of Eq.~1!, while the odd-numbered atoms lie at relative minima.

FIG. 2. Spectrum of linear waves of the form in Eq.~5!; the spectrum is
described by the characteristic equation~6!.
e

ed
-

.
o-

where v1
25(2K212g2hg)/m; v2

25(2K212g1hg)/m;
ṽ0

252K2 /m, andv05A(v1
21v2

2)/2. At a given frequency
v the two partial waves of the solution~5! correspond to the
pointsa1 anda2 in Fig. 2. We see that these two waves ha
the same group velocityV5dv/db but different phase ve-
locities.

For b56b056p/2 the spectrum of linear waves has
gap with a width proportional toh: v2

22v1
252hg/m. The

formation of this gap is due to the modulation of the para
eters of the system. We will be interested in nonlinear ex
tations whose parameters lie in and near the gap.

The amplitude of a linear wave is arbitrary. In the case
a nonlinear wave the amplitudesA1 and A2 in solution ~5!
can also take on different values, but their ratio is determin
by the frequency of the wave:

A2

A1

5
Au12v2/v2

2u6Au12v2/v1
2u

Au12v2/v2
27Au12v2/v1

2u
, ~7!

where the upper~lower! sign corresponds to excitations wit
frequencies lying on the parts of the spectrum where an
crease of the modulus of the wave vector corresponds to
increase~decrease! of the frequency.

We restrict discussion to nonlinear waves with freque
cies v;v1 ,v2 and wave numbersb'b0 ~i.e., valuesb
5b01k, where k!1). In this region of parameters th
spectrum of linear waves~6! has a quadratic form.

We seek a solution of the system of nonlinear equati
~4! in the form ~5!, with coefficientsA1 and A2 that are
slowly varying functions oft andn:

jn5A1~n,t !expi S vt2
p

2
nD1A2~n,t !

3expi S vt1
p

2
nD1c.c. ~8!

We will be interested in small-amplitude nonlinear sol
tions with parameters lying near the gap of the spectrum
linear waves. The condition that the amplitudes of the
waves be small is satisfied near the curvev5v(k), which
corresponds to the linear wave dispersion relation~6!. From
now on we shall assume that the parameterh is small, en-
suring that the gap in the spectrum of linear waves is narr
Thus the condition that the amplitudes be small will ho
both inside the gap and in the neighborhood around it.

In the long-wavelength limit, whenAi(n,t) is a slowly
varying function of the atom numbern, we replace the dis-
crete numbern in Ai(n,t) by a continuous coordinatex and
use the expansion

Ai~x61,t !5Ai~x,t !6
]Ai~x,t !

]x
1O~h2Ai !

~as we shall see below,]Ai(x,t)/]x;hAi , ]Ai(x,t)/]t
;v0hAi).

In the case of a small difference between the poten
energy minima (h!1), when ]Ai /]t!v1Ai ,v2Ai and
]Ai /]x!Ai , for treating the region in and around the gap
the spectrum of linear waves we need to keep only the
derivatives]Ai /]t and]Ai /]x in the linear part of the equa
tion obtained by substituting Eq.~8! into ~4!. In addition,

e
o-
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when the small-amplitude character of the atomic osci
tions is taken into account (uK4uuAi u2/K2!1, uAi u2!1), in
the nonlinear part of that equation we can drop all the
rivatives of the amplitudesAi . The validity of assumptions
will be checked for the solutions obtained. For the amp
tudesA1 andA2 we have the following system of first-orde
differential equations:

i
2

v0

2~K21g!

hg

]A1

]t
1 i

2K2

hg

]A1

]x
5

2d

v0

2~K21g!

hg

3A12A22
3K4

hg
@~3p11!A1~ uA1u212uA2u2!

13~p21!A2
2A1* #,

i
2

v0

2~K21g!

hg

]A2

]t
2 i

2K2

hg

]A2

]x
5

2d

v0

2~K21g!

hg

3A22A12
3K4

hg
@~3p11!A2~ uA2u212uA1u2!

13~p21!A1
2A2* #, ~9!

wherev0
252(K21g)/m is the frequency corresponding t

the midpoint of the gap in the spectrum of linear wavesd
5v2v0 is the frequency measured from the midpoint of t
gap, andp5@12(4g/3K4)#/3 is a parameter characterizin
the relative strength of the ‘‘internal’’ and ‘‘external’’ nonlin
earities.

As we see from system~9!, a spectrum of linear wave
of the form ~5! will have the following appearance in th
neighborhood of wave numberb05p/2:

v5v06
v0hg

4~K21g!
A11~2K2k/hg!2. ~10!

Introducing the renormalized amplitude
A12uK4u/hgAi5Fi , coordinate (hg/(2K2))x→x, and time
@v0hg/4(K21g)#t→t, we obtain the following system o
equations in the dimensionless variables:

i
]F1

]t
1 i

]F1

]x
5VF12F22

s

4
@~3p11!F1~ uF1u2

12uF2u2!13~p21!F2
2F1* #, ~11!

i
]F2

]t
2 i

]F2

]x
5VF22F12

s

4
@~3p11!F2~ uF2u2

12uF1u2!13~p21!F1
2F2* #,

whereV54d(K21g)/(v0hg) is the dimensionless devia
tion of the frequency from the midpoint of the gap in th
spectrum of linear waves, ands5sgn(K4).

In the new variables the spectrum of linear waves~10! in
a coordinate system moving with the group velocityV
5]v/]k, i.e., for solutions of the formFi}exp(2ik(x
2Vt)), takes the form

VL5
4~K21g!

hg
6A12V2. ~12!
-

-

-

The system of differential equations~11! obtained here
is analogous to the system describing the dynamics o
diatomic chain.10

ANALYSIS OF THE SOLITON SOLUTIONS

A detailed qualitative analysis of a system of equatio
of the form ~11! for arbitrary values of the parameterp is
done in Ref. 10. Here we give analytical expressions for
soliton solutions of the system~11! in the particular case
K450, i.e., when the ‘‘internal’’ nonlinearity in the chain i
absent. For such a choice of the constantK4 the system~11!
reduces to

i
]F1

]t
1 i

]F1

]x
5VF12F22

1

2

3@F1~ uF1u212uF2u2!1F2
2F1* #, ~13!

i
]F2

]t
2 i

]F2

]x
5VF22F12

1

2

3@F2~ uF2u212uF1u2!1F1
2F2* #,

whereFi5A8/h Ai .
We shall assume that the coordinate and time dep

dence of the amplitudesFi is of the form Fi(x,t)5Fi(x
2Vt), which is standard for envelope solitons moving
velocity V. We introduce the new real variablesu1 , u2 , q,
ands:

F15u1 exp~ iq1 is!,

F25u2 exp~ iq2 is!, ~14!

which satisfy the following system of equations:

du1

dz
5u1 sin~2s!1b~V!u1

3 sin~4s!, ~15!

ds

dz
52n1cos~2s!1a~V!u1

21b~V!u1
2 cos~4s!, ~16!

dq

dz
52nV1

V

A12V2~11V!
u1

2, ~17!

u25A~12V!/~11V!u1 , ~18!

where

a~V!5 32V2/2A12V2~11V!; z5 x2Vt/A12V2;

b~V!5A~12V!/~11V!/2,

and the parametern(V,V) is defined by the relation

n~V,V!5
V

A12V2
. ~19!

The relation of the form~18! between the amplitudesu1

and u2 corresponds to two-parameter solutions of syst
~11!. In general, this system admits a solutions of a m
general form with dependence on three parameters, bu
will not consider those solutions here. The possibility of e
istence of three-parameter solitons is discussed in Ref. 11
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FIG. 3. Phase portraits of the system of equations~15!, ~16! for different values of the frequencyn:21,n,1 ~a!, 1,n,n* ~b!, n.n* ~c!.
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the case of the two-parameter solutions it is convenien
choose the shift of the frequencyV and the velocityV as the
parameters of a solution.

Equations~15! and~16! for u1 ands in the system~15!–
~18! separate, forming a system of equations with the follo
ing effective Hamiltonian:

H5~2n1cos~2s!!u1
21

a

2
u1

41
b

2
u1

4 cos~4s!, ~20!

where the variablesu1
2 and 2s play the role of canonically

conjugate coordinate and momentum, and the coordinaz
plays the role of an effective ‘‘time.’’

It is convenient to study the possible solutions of syst
~15!, ~16! on the phase plane of the variables (u1 ,s). In the
general case the phase portrait is symmetric about the
u150 and is periodic in the variables with period p. We
shall therefore consider it in the regionu1.0, 0,s,p ~see
Fig. 3!. The form of the phase portrait of the system und
study depends on the value of the parametern, which is a
function of the dimensionless velocityV and frequency shift
V ~19!.

For n,21, i.e., when the frequency of the nonline
excitation is less than the frequency of the lower branch
the spectrum of linear waves (V,2A12V2), there are no
singular points on the phase plane (u1 ,s), and soliton solu-
tions do not exist in this frequency region. At the frequen
n521 (V52A12V2) a singular point appears at the c
ordinatesu150, s5p/2, which splits into two saddle point
u150, s5p/26cos21(2n)/2 and a centerC with coordi-
natesu15A(n11)(a1b), s5p/2 in the frequency region
21,n,1 ~see Fig. 3a!. The saddle points are connected
separatricesL, which correspond to moving gap soliton
The phase portraits illustrated in Fig. 3a and 3b are an
gous to those for an anharmonic oscillator under conditi
of parametric pumping.12 The similarity of these systems de
rives from the fact that the coefficient periodic in the coo
dinatex in the evolution equations plays the role of the c
efficient periodic in time in the case of parametric excitatio

The next bifurcation occurs on the upper branch of
spectrum of linear waves, i.e., forn51 (V5A12V2): each
saddle point splits into two saddle points situated symme
cally in the regionsu1.0 andu1,0. Thus in the frequency
region 1,n,n* 51/(12V2) there exist on the phase plan
to

-

xis

r

f

y

o-
s

-
-
.
e

i-

(u1 ,s) two saddle points with coordinatesu15
6A(n21)(a1b), s50,p and two centers with coordinate
u156A(n11)(a1b), s5p/2 ~see Fig. 3b!. The saddle
points are connected by separatricesN andN8, which corre-
spond to moving near-gap solitons in which, unlike the g
solitonsL, the asymptotes at infinity (z→6`) are not equal
to zero. The separatrixN corresponds to the so-calle
‘‘bright soliton on a pedestal,’’ since in it the amplitude o
the field at zero is greater than the amplitudes at infinity. T
separatrixN8 corresponds to a ‘‘dark soliton of the nonze
vacuum’’ ~see Ref. 12!.

Finally, when the parametern becomes equal ton*
51/(12V2) the last bifurcation occurs: the centeru1

5A(n21)(a1b), s5p/2 splits into a saddle point with the
same coordinates and two new centers with coordinatesu1

5An/(a2b), s5p/26cos21(n* /n)/2 ~see Fig. 3c!. Then
two new separatricesK appear in addition toN andN8. Thus
three types of moving near-gap solitons exist in the reg
n.n* : N, N8, andK.

The gap solitonsL and near-gap solitonsN andN8 are
studied in detail in Ref. 10. Here we consider the near-g
solitonsK. The analytical expression for this type of solito
has the form

u15F ~11V!A12V2~11n!

22V2 G1/2

3H ~11n!~12n* !1n~n* 11!cosh2~j!

~n21!~n2n* !1n~n* 11!cosh2~j!64An~n2n* !sinh~z!
J 1/2

,

s5p6tan21F S n~n* 11!

~n11!~n2n* ! D
1/2

cosh~z!G ,
q52

V~n11!

22V2 z6
2VA~n2n* !~n11!

~22V2!An*
3tan21@c~1!~exp~2z!7An* ~n11!/n2~n* 11!c~2!!#

7
2VA~n2n* !~n11!

~22V2!An*
3tan21@c~2!~exp~2z!6An* ~n11!/n2~n* 11!c~1!!#,

~21!



e
n
e
he

or

th
c

e

n
c

he

on

-
e

mic
wn
alo-
vo-
the
x-

hen

ent
clu-
-
an

ffer

m

.

s-

583Low Temp. Phys. 27 (7), July 2001 Gorbach et al.
where z52A(n11)(n2n* )/(n* 11)z, c(n)5An/n* (12
(21)nA(n2n* )/(n11)), and the different signs corre-
spond to the different separatrix loops.

This near-gap soliton is formed by two nonlinear wav
with the same frequency, propagating in opposite directio
The frequencyv of the waves and one of the two wav
numbersb1,2 completely determine the parameters of t
soliton, viz., the velocityV and frequency shiftV in the
coordinate system moving with the soliton:

v5v01
v0hg

4~K21g! FV1
V2

~22V2!~12V2!

3~V1A12V2!G ,
b1,256b01

hg

2K2

V

~22V2!~12V2!
~V1A12V2!.

Unlike theL, N, andN8 solitons, in theK solitons the
phases has the same asymptotes forz→6`. Thus the phase
shift of the nonlinear waves forming the soliton as the co
dinatez varies from2` to 1` is determined solely by the
asymptotic behavior of the phaseq and is given by

D57
4VA~n2n* !~n11!

~22V2!An*
3tan21@c~1!c~2!An* ~n11!/n2~n* 11!#. ~22!

The profiles of the fieldsu1 andu2 in theK soliton differ
substantially from those in theL, N, andN8 solitons. Figure
4 shows a schematic illustration of the dependence of
amplitudeu1 on the coordinatez, which has an asymmetri
shape that is uncharacteristic for a soliton. The positions
the maximum and minimum of the amplitude are determin
by the relation

z052A~n11!~n2n* !/~n* 11!z0

5sinh21F2
1

An
S 16

n11

An* 11
D G .

The resulting fieldj of atomic displacements~see Eq.
~8!! in the K soliton has the form of a localized excitatio
against the background of nonlinear waves that do not de
at infinity; its dependence on the coordinate~number of the
atom! is shown schematically in Fig. 5. The maximum of t

FIG. 4. Dependence of the amplitudeu1 on the coordinatez in a K soliton.
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amplitude in the soliton is shifted relative to its center
account of the specifics of the profiles of fieldsu1 andu2 .

The localization region of theK soliton is inversely pro-
portional to (12V2). As the velocityV approaches its maxi
mum value (uVu→1), the soliton delocalizes and, in th
limit, goes over to a periodic nonlinear wave~the so-called
‘‘cnoidal’’ wave!.

CONCLUSION

We have studied the nonlinear dynamics of a monato
chain in an external double-barrier potential. We have sho
that this system is described by dynamical equations an
gous to those for a diatomic chain. We have studied the e
lution of the phase portrait of the system upon changes in
frequency of the nonlinear excitation and found explicit e
pressions for the soliton solutions in the particular case w
the interaction between particles is assumed linear.

The analogy that we have drawn between two differ
modulated elastic systems reconfirms the previous con
sion of the authors13 that the dynamics of different one
dimensional modulated systems with cubic nonlinearity c
be described by analogous differential equations which di
only in the coefficients of the linear and nonlinear terms.
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Low-temperature control of nanoscale molecular dynamics
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A novel in situ probe of the nanoscale molecular dynamics of organic-molecule and fullerene-
tube nanostructures is proposed. General and consistent results for the nonlinear-current
coupling to the nanostructure excitations are presented to document a frequency-selective
electrostatic control of this current stimulation and optimal operation as a local source of current-
induced molecular excitationsV i . The control is possible for temperaturesT!V i . Finally,
it is explained in detail how Raman measurements of this molecular dynamics would probe the
nanoscale excitations within organic and fullerene nanostructures under nonlinear transport
conditions. © 2001 American Institute of Physics.@DOI: 10.1063/1.1388425#
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A successful future molecular-electronics technology
quires an understanding of the fascinating nanoscale mol
lar devices themselves, of their nonlinear and interact
transport properties, and of the current-induced molec
dynamics. Fullerene tubes~nanotubes!1 and organic
molecules,2 which assemble between metal contacts to fo
organic nanostructures, offer interesting candidates for s
a molecular-transport program. These organic nanostruct
and the fullerene tubes implement, for example, the molec
resonant-tunneling diode,3 the single-Bucky-ball (C60)
transistor,4 and the nanotube field-effect transistor,5 which
achieves room-temperature operation and a nanoscale fe
size in all but the transport direction. Fullerene-tube hete
structures can be identified by experimentally obser
kinks6 and permit one to create additional nanosc
molecular-electronic devices by combining sections of diff
ent local chirality7 and thus a different nature of electro
conduction.8 The experimental selection of single-kink he
erojunctions produce the nanotube equivalent of curre
rectifying diodes.6 A corresponding selection,6 and/or pro-
posed engineering,9 of double-kink nanotube sample
produces either the nanotube quantum dot10 or the robust,
i.e., temperature- and scattering-insensitive, nanot
resonant-tunneling transistor,11 which achieves a nanosca
feature size in all dimensions. Nanostructure device rob
ness is of central importance as, e.g., experiments on sin
Bucky-ball transistors4 and on current-induced atom
molecule manipulation,12 document significant molecula
excitation induced by the nonlinear transport.13 The coupling
to this molecular excitation can even provide novel transp
mechanisms as in the electron shuttle.14 A molecular-
electronics program must characterize devices both in te
of the nonlinear molecular current and in terms of t
nonlinear-transport coupling to the molecule-structu
dynamics—the molecular excitation.

Here I document frequency-selective electrostatic c
trol of the current-induced molecular excitations and prop
a probe of this local nanostructure dynamics. The control
suggested molecular probe work for characteristic excita
frequenciesV i5V0,1,... that are larger than the temperatur
5851063-777X/2001/27(7)/5/$20.00
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T and would operate at the relevant nonequilibrium dev
condition, i.e., with the nonlinear transistor current enabl
For use in the molecular-dynamics probe, I furthermore
tail the optimal operation as a strong frequency-selec
source of current-induced molecular excitations at the la
frequenciesV i@Troom that characterize the local fullerene
tube nanostructure dynamics.15 The suggested nanostructu
probe extends an earlier proposal by Narayanamurti16 that
used a burst of incoherent~acoustic! phonons to identify and
map defects deep inside semiconductor heterostructu
Here, instead, I propose~1! to exploit the nonlinear nano
structure transport conditions for a directin situ and con-
trolled excitation of the relevant high-energy vibrationsV i

2V0,1,... and ~2! to use surface-enhanced Ram
spectroscopy15,17 to measure the resulting molecular excit
tion dNvib(V i), establish the associated decay 1/t i , and thus
probe the density of material defects,16 the mutual coupling
between such vibrations, and the intrinsic nature of the e
tation ~phonon! propagation.18,19

Figure 1 illustrates a pair of resonant-tunneling syste
that could produce a strong source of molecular excitati

FIG. 1. Schematics of transport and local vibration-source realization
organic resonant-tunneling nanoparticle~top panel! or as resonant-tunneling
nanotube heterostructure~bottom panel!. A metal gate~gray ring! at voltage
Fgate controls the current and molecular excitation in either nanostructu
by adjusting the resonant-level energy positionEorb(Fgate).
© 2001 American Institute of Physics
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and hence the proposed nanostructure-dynamics probe.
upper scheme involves an organic nanostructu3

~ORTN!—an organic molecule assembled between and c
nected both mechanically and electrically to the source
drain metal contact through the synthesisized inclusion
sulphur atomsS. The lower scheme involves a double-kin
nanotube resonant-tunneling heterostructure~NRTH!,11 in
which metallic nanotube leads~gray tubes! connect to the
metal contacts~wedges!, e.g., scanning-tunneling micro
scope tips. In both schemes the central barrier region tra
single resonant level having energyEorb and connected by
tunneling ratesGL/R to the surrounding metal leads or co
tacts. A close metal gate, e.g., another metallic nanot
~gray ring at potentialFgate! adjustsEorb(Fgate) and enables
a gate-controlled resonant-tunneling transport.4,11,20,21

The proposed nanostructure-dynamics probeexploits
this gate control of the nanostructure tunneling transport b
selective optimization of the current-induced molecu
stimulation. To document the suggested operation, this p
~i! provides a conserving nonequilibrium Green functi
calculation13,22 of the current-induced spontaneous emiss
~net absorption! rates Rsp(Eorb;V i) @Rab(Eorb;V i)# as a
function of Eorb(Fgate) and at a set of characteristic excit
tion frequencies;~ii ! details how phase-space restrictions th
rest on the Pauli exclusion principle permit a frequen
selective gate control ofRsp,ab(Eorb;V i); and ~iii ! identifies
nonequilibrium tunneling conditions that can maximi
and/or inhibit the resulting effective current excitatio
dNvib(V i). At a given gate voltage and thus resonant-ene
positionEorb(Fgate), they determine an excess nanostruct
vibrational population:23

1

t i
dNvib~Eorb~Fgate!;V i !

5@Rsp~Eorb;V i !2Rab~Eorb;V i !dNvib~Eorb~Fgate!;V i !#.

~1!

The local electrostatic-field controlEorb(Fgate) ~Refs. 4, 11,
and 20! can, for example, produce a strong~frequency-
selective! burst of nanostructure excitationsdNvib(V0).
Simultaneous Raman measurements15 of the strength of
the anti-Stokes Raman signal at nanostructure-vibra
frequencyV0 can thus determine the decay 1/t0 of this
excess population17 dNvib(V0) and probe intrinsic mech
anisms16,18,19affecting the nanoscale molecular dynamics

Electrostatic control of resonant-tunneling transport

A theoretical description of the electrostatic gate cont
Eorb(Fgate) exists for both the organic nanostructure20 and
the fullerene heterostructure11 scheme~Fig. 1, upper and
lower schemes!. In both transport schemes this local electr
static control permits current-switch and transis
effects4,11,20 in which transport is focused onto a single m
lecular level. Such nanostructure transistors improve
semiconductor resonant-tunneling transistor design21 through
a dramatic miniaturization to nanoscale dimensions. Fo
calculation of the noninteracting resonant-tunneling transp
in an organic-nanostructure transistor, refer to the analys
Ref. 20. For a nonequilibrium Green function13,22calculation
of the interacting transport in the nanotube heterostruc
he
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transistor~Fig. 1, lower scheme! refer to Ref. 11. Before
reporting calculations of gate control in the current-induc
molecular excitation, however, I summarize the descript
of the important tunneling-transport mechanisms.11,20

Figure 2 illustrates the electrostatic-gate effects on
nonlinear resonant-tunneling current. A finite applied b
eVbias maintains the left and the right metallic-nanotu
leads at the different chemical potentialsmL and mR5mL

2eVbias, respectively. The main panel in Fig. 2 assumes t
a finite gate voltageFgate maintains a fixed resonant-leve
position Eorb(Fgate)5(mL1mR)/210.06 eV, and it docu-
ments how the application of a moderate bias can then s
rate a significant resonant-tunneling current

eJ,eJRT5eS 4GLGR

GL1GR
D2 H 1 nA for ORTN,

5 mA for NRTH. ~2!

The current is characterized by the resonance widthG
5GL1GR . At low temperatures this tunneling current13,22,24

J@Eorb~Fgate!;mL/R#2JRT@Pocc
mL ~Eorb!2Pocc

mR~Eorb!# ~3!

results as a difference between contributions

Pocc
m ~Eorb!5F1

2
1

1

p
arctanS m2Eorb

G D G ~4!

evaluated atm5mL and mR , respectively. I focus on the
NRTH transport realizations where it is possible to achie
G;10 meV.11

The pair of inset diagramsillustrate the gate operation
and contrast the transport conditions in the absence and p
ence of a finite voltageFgate applied to the metal gate. A
Fgate;0 ~left inset! the molecular gapEg ~*1 eV for the
previously investigated NRTH transistor11! forces a
resonance-level energy positionEorb(Fgate;0)'mL1Eg/2
~dashed line in right inset!. No current results, since bot
Eorb and the vibration satellites13 Eorb(Fgate;0)2V i 50,1,...

remain far above the chemical potentials of the leads. Ho
ever, a voltageFgate;2 V suppresses the electron potent

FIG. 2. Gate control of nonequilibrium resonant-tunneling currentJ
,JRT . The inset panels contrast transport conditions at~i! Fgate;0, when
the molecular gapEg forces a resonance-level energy positionEorb(Fgate

;0) ~dashed line in right inset! and vibration satellitesEorb(Fgate;0)
2V0,1 ~left inset! far above the lead chemical potentialsmL/R ; and at~ii !
Fgate;2 V, when the adjusted electron potentialFB ~solid curve in right
inset! positionsEorb(Fgate)'(mL1mR)/2 ~solid line!. The main panel as-
sumes such a fixedEorb(Fgate); a moderate biasmL2mR'0.3 eV then satu-
rates the currentJ'JRT .
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FB ~solid curve, right inset! within the fullerene barrier and
adjusts the resonance-level positionEorb(Fgate)'(mL

1mR)/2 ~solid line! to enable the tunneling processes~ar-
rows!. Below, I assume a fixed biaseVbias5300 meV and use
the resonant-level gate controlEorb(Fgate) also to optimize
the current stimulation of molecular excitations.

The molecular excitations

For the NRTH it is relevant to consider current-induc
excitation at energies V i5100– 200 meV ~800–1600
cm21!.15 I concentrate on a pair of high-energy modes,
assumed frequenciesV1(0)5200 meV (120 meV)@G and
describe the current stimulation at zero temperature to il
trate my results and predictions.

The top and middle panels in Fig. 3 contrast the ind
pendent gate-voltage control of the electron-vibration int
action effects inRsp andRab for a pair of vibration energies
V0 ~solid curve! andV1 ~dashed curve!. The gate control is
implicit as the gate voltageFgate adjusts the resonant leve
energy positionEorb(Fgate)2mL . The fixed applied bias sat
isfies 2V1.eVbias.2V0 and eVbias.V1 . The documented
current-excitation gate control arises within the regionmL

.Eorb.mR ~identified by vertical lines!, where the electro-
static gate enables a strong resonant-tunneling current,
~3!. The excitation transition rates are illustrated for eq
electron tunneling ratesGL5GR .

FIG. 3. Frequency selective current stimulation of molecular vibrations.
left-most top and middle panels contrast the gate variation of the spon
ous phonon emission rateRsp and net absorption rateRab at two frequencies
V0,1. Both rates are proportional toJRT and the electron–vibration coupling
constantg. The gate variation is implicit and defined throughEorb(Fgate).
The set of four right-most schematics illustrates the Pauli exclusion me
nism responsible for the frequency-selective control. The set of downw
~upward! arrows labeled byr sp(r ab) identify inelastic tunneling events tha
contribute to the spontaneous emission~to the net stimulated absorption!.
Finally, the left-most bottom panel contrasts the current-induced increa
excitation leveldNvib(V0) ~solid curve! anddNvib(V0) ~dashed curve! for a
given intrinsic vibration decay timet.
t

s-

-
r-

q.
l

I determine the magnitude and gate dependence of
current-induced molecular-excitation transition ratesRsp and
Rab through a separate nonequilibrium Green function cal
lation similar to that for the nonequilibrium defluctuation
~shot noise!.25 The calculation involves a determination o
the nonequilibrium density-correlation components:

P r
0~v!52 i E

0

`

dt8 exp~ ivt8!^@n~ t1t8!n~ t !#&, ~5!

P,
0 ~v!52E

2`

`

dt8 exp~ ivt8!^n~ t1t8!n~ t !&, ~6!

where n denotes the electron density at the resonance
where the notations and conventions introduced in Ref.
are followed. The retarded correlation component include
commutator@.,.# and defines the frequency shift13 and vibra-
tion decay26 due to the electron–vibration~phonon! interac-
tion. Here I evaluate both components~5!, ~6! out of equi-
librium to establish the current-induced excitation level, E
~1!.

The spontaneous vibration emissionrateRsp is to lowest
order in the dimensionless electron–vibration coupli
strengthg,13 given by the, correlation component, Eq.~6!.
The rate is proportional toJRT but limited by the availability
of phase space:27

Rsp@Eorb~Fgate!;V i #

gJRT

5
@2V2P,

0 ~V i !/2#

JRT

5
Q~mL2mR2V i !V i

2

4~V i
214G2!

3@DPocc~Eorb;V i !1DPlog~Eorb;V i !#. ~7!

A significant variation and structure arises in the vibrati
emission~7! whenV i@G, a condition relevant for the loca
molecular modes of the NRTH. The spontaneous vibrat
emission is then dominated by the simple phase-space m
sure

DPocc~Eorb;V i !5@Pocc
mL ~Eorb!2Pocc

mR~Eorb2V i !#

1@Pocc
mL ~Eorb1V i !2Pocc

mR~Eorb!#, ~8!

while the logarithmic correction termDPlog can be
ignored.28 The phase-space measure~8! is specified by the
nonequilibrium contributions~4! at the resonance level an
at the vibration satellitesEorb6V.

The net vibration absorptionat V i@G is given by29

Rab@Eorb~Fgate!;V i #

gJRT

5
V2@2Im P r

0~V i !#

JRT

'
GV i

2

4~V i
214G2!

~GR
21@Pocc

mL ~Eorb2V i !2Pocc
mL ~Eorb1V i !#

1GL
21@Pocc

mR~Eorb2V i !2Pocc
mR~Eorb1V i !# !. ~9!
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This rate is defined by a phase-space measure which, in
trast to Eq.~8!, involves differences of contributions, Eq.~4!,
evaluated at thesamechemical potential~at mL or mR!. Thus
it is possible to achieve an important independent contro
Rsp@Eorb(Fgate);V i # andRab@Eorb(Fgate);V i #.

The Pauli exclusion principleexplains the phase-spac
limitations on the current-induced spontaneous and net
sorption, Eqs.~8! and~9!. The four right-most panels,A, C0 ,
C1 , andB, in Fig. 3 illustrate the set of different transpo
conditions ~all with J;JRT! which characterize the gate
control regimes identified in the left set of panels.

The presence of downward arrowsr sp identifies condi-
tions when the current flow can stimulate a spontaneous
bration emission, as specified by the phase-space mea
Eq. ~8!. In regionA ~B! this emission arises when an electr
tunnels intoEorb ~into Eorb1V i 50,1! but leaves at energy
Eorb2V i 50,1 ~at Eorb!. For an applied bias which satisfie
2V1.eVbias.V1 ~panel C1! neither type-A nor type-B
vibration-emission processes are possible for local m
V1 . However, both types of spontaneous emission proce
remain possible for a vibrational mode atV0,eVbias/2
~panelC0!.

The presence of upward arrowsr ab instead identifies
conditions for a net current-induced absorptionRabÞ0. In
sectionA ~B! a net absorption arises, when the electron
ters at Eorb ~at Eorb2V i 50,1! but leaves atEorb1V0,1 ~at
Eorb!. TuningEorb to the central regionC causes an enhance
absorption for modeV1 , as both type-A and type-B absorp-
tion processes become possible~panelC1!. However, for the
lower mode atV0,eVbias/2, I find an effective cancellation
~panel C0! as the energiesEorb and Eorb6V0 all carry a
partial electron occupation and thus produce a vanishing
absorption rate,Rab→0.

Frequency-selective molecular-vibration stimulation

The lower-left panel in Fig. 3 documents how an op
mization of current-induced molecular excitation is possib
The panel contrasts the calculated gate-variation of the
crease in the molecular excitation level, Eq.~1!, dNvib(V0)
and dNvib(V1), and details methods to enhance the curr
stimulation of modeV0 at the expense of modeV1.V0 .
Such selective excitation is possible even wheneVbias.V1

@G, and arises when 2V1.eVbias.2V0 and Eorb is tuned
to region C(Eorb'(mL1mR)/2). These nonequilibrium
transport conditions simultaneously minimizeRst(V1) to-
wards zero and maximize the ratioRst(V0)/Rab(V0) to ex-
tinguish dNvib(V1) and dramatically enhance the lowe
frequency current stimulationdNvib(V0).

The molecular-dynamics source and probe

The lower-left panel in Fig. 3 also details the sugges
operation as a molecular-excitation source. The panel do
ments a crisp electrostatic gate control for the current stim
lation dNvib(V1) which arises through an adjustment of t
resonant-level energy positionEorb(Fgate).

11 This implicit
gate control permits a switch between enabling and disab
the current stimulation~1!. Such operation can produce
n-
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frequency-selective molecular-vibration source and eve
strong nonequilibrium burstdNvib(V0)@0 of high-energy
nanostructure vibrations.

Nanoscale molecular-dynamics probing is then poss
with simultaneous Raman measurements of the anti-Sto
signal at V0 , because the anti-Stokes strength is direc
sensitive17 to the excess molecular-excitation bur
dNvib(V0)@0. Such Raman measurements can, through
~1!, determine the decay 1/t i that characterize these nan
structure molecular excitations and thus pro
mechanisms16,18,19which help determine the intrinsic nano
cale molecular dynamics. The suggestedin situ molecular-
dynamics probe could implement an important strong tes
our theoretical descriptions for both the nanostructure ato
configurations10,11,30 and for the current-induced structur
dynamics.4,12–14

In summary, I have suggested a novelin situ probe of the
nanoscale molecular dynamics of organic-molecule a
fullerene-tube heterostructures. General nonequilibri
Green function results for the current coupling to local nan
structure excitations were presented to document
frequency-selective electrostatic control and optimal ope
tion as a necessary current-excitation source. Raman m
surements of the anti-Stokes signal can then permit anin situ
probe of the local nanostructure molecular dynamics at n
equilibrium conditions.
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A cryogenic unit designed for physical research on quantum crystals at ultralow temperatures is
described. The unit includes a dilution refrigerator with a hybrid3He circulation system,
an antivibration protection system, and a system of automated control and data acquisition and
processing. The construction of the basic units, the thermometry system, the algorithms
for measurements, and the software for conducting research on quantum crystals by the method
of precision pressure measurements are described. The unit may be used for performing a
wide range of tasks in research on various condensed systems at millikelvin temperatures.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1388426#
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INTRODUCTION

Dilution refrigerators are now the most widely use
ultralow-temperature apparatus in laboratory practice. P
posed in Ref. 1, this method of cooling, based on the us
the heat of mixing of two helium isotopes, provides a hi
cooling capacity and the capability of reaching ultralow te
peratures and maintaining them for arbitrarily long times

This method was first implemented successfully in 1962

in a refrigerator scheme with an external cycle of3He circu-
lation that has become the most commonly used in cryog
ics laboratories. A typical drawback of this type of refriger
tor is the need for cumbersome evacuation lines in
circulation system and also the need for special measure
keep the cryostat free of oil or mercury vapor from t
pumps. Furthermore, the boiling of the working liquid in th
pumps causes additional vibrations, which are undesira
when the dilution refrigerator is used in nuclear demagn
zation cryostats. These drawbacks are eliminated in ref
erators with a cryogenic3He circulation cycle using conden
sation or adsorption pumps. Different versions of su
refrigerators are described in Refs. 3–8.

The primary advantage of a cryogenic circulation cy
lies in the use of ‘‘sterile’’ pumping, which reduces th
chance of blockage of the capillaries and throttle by vario
impurities that could enter the3He circulation system. At the
same time, implementation of a cryogenic cycle requires
ther an additional3He system~if condensation pumps ar
used! or reliably operating cryogenic valves~if the circula-
tion is effected by adsorption pumps!. The cyclic regenera-
tion of adsorption pumps in refrigerators with adsorpti
pumping also leads to a greater expenditure of liquid heliu

It therefore looked promising to design a refrigerator th
would combine the advantages of both a cryogenic cycle
external circulation of3He. In the this paper we discuss th
design and present the basic characteristics of an3He–4He
5901063-777X/2001/27(7)/9/$20.00
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dilution refrigerator which, depending on the experimen
conditions, can employ either an external3He cycle or a
cryogenic cycle. The dilution refrigerator described is a co
ponent of a cryogenic unit for physical research at ultral
temperatures. It is planned that this refrigerator will
supplemented by a nuclear demagnetization stage, and
have therefore taken special measures to protect against
sible vibrations and rf noise. The unit is equipped with
system of automated data acquisition and processing, an
automation system is designed with provisions for the use
some manually controlled devices.

The unit was put into service for conducting experime
tal research on quantum crystals—in particular,3He–4He
solid solutions—by means of precision measurements of
pressure in the sample. Therefore the instrumentation p
the algorithms, and the software are described in terms
particular examples of physical problems that have been
dressed in those studies. It should be noted, however, tha
unit described can be used to perform a wide range of ta
arising in the study of various condensed systems at ultra
temperatures.

1. SYSTEM OF PROTECTION FROM VIBRATIONS
AND ELECTROMAGNETIC RADIATION

To reduce vibrations the apparatus is mounted in a s
cial annex constructed with large concrete blocks and
connected to the foundation or walls of the main buildin
The main element of vibration protection9 is a one-and-a-half
metric ton platform to which the cryostat is secured. T
platform and cryostat are suspended on eight hemp rop
m long to channel-iron beams beneath the ceiling. The l
on the platform is chosen so that the resonance frequenc
vertical vibrations
© 2001 American Institute of Physics
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f vert5
1

2
pAK/M ~1!

does not coincide with any of the main sources of vibratio
HereK is the stiffness of the rope andM is the mass of the
platform. Special measurements showed thatf vert is 6.5 Hz,
in agreement with the calculation by formula~1!.9 Of course,
this frequency can be lowered by increasing the mass of
platform.

The surface velocity of horizontal vibrations is given b
the formula for an ideal pendulum,

f hor5
1

2
Ag/L, ~2!

whereL is the length of the rope, andg is the acceleration o
gravity. The measured valuef hor50.25 Hz, in good agree
ment with the value obtained by a calculation using form
~2!.

The amplitudes of the vibrations of the platform we
measured using an accelerometer10 for two positions of the
platform — suspended on ropes, and arrested~resting on
special supports!. The main sources of vibrations at freque
cies above 10 Hz were the compressors of the liquefy
room, located; 100 m away. It was found that the ampl
tude of the vibrations of the platform in the suspended s
were reduced by a factor of 40–50 in comparison with
arrested platform and amounted to 0.01mm far from reso-
nance and'0.2 mm close to resonance. To reduce the vib
tions transmitted along the pumping lines, the latter w
made with metal sleeves and sylphon bellows isolators.

The need for rf shielding of the device is due to t
proximity of a television/radio transmitter. To reduce the
noise, which would affect the lowest attainable temperat
of the refrigerator and the readings of the resistance t
mometers used in the device, the laboratory room w
shielded by copper sheets 0.3 mm thick. When the room
completely shielded the attenuation of the rf signal at 1
kHz ~30-mm skin layer! reached 120 dB.

2. DILUTION REFRIGERATOR WITH A HYBRID CIRCULATION
SYSTEM

Figure 1 shows a diagram of the main units and eleme
of the dilution refrigerator. A nitrogen-free helium cryostat1
with an inner diameter of 210 mm and a length of the inn
vessel 2.4 m had multilayer superinsulation, which provid
economy of liquid helium consumption without addition
nitrogen cooling.11 1 K pot 8 was pumped down by a
NVPR-16 forevacuum pump with a capacity of 16 liter
and the throttle placed on the inlet tube6 of the 1 K pot, had
a resistance to flow of 2.2310210cm23. To prevent its
blockage by mechanical impurities in the liquid helium,
filter containing pressed copper powder was placed on
end of inlet tube. The working temperature of the therm
bath is ordinarily 1.2–1.4 K.

The low-temperature part of the dilution refrigerator i
cludes a still12, a mixing chamber19, and a system of hea
exchangers15 and 17. The circulating3He is preliminarily
cooled in a copper capillary~inner diameter 1.2 mm, oute
diameter 2 mm! helically wound on the shields of the neck
the cryostat and then condensed in a capillary10 placed in-
.
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side the 1 K pot. After this the3He is collected in a collector
9 intended for stabilizing the operation of the refrigerat
when the3He circulation is effected by means of adsorpti
pumps2.

The cross section of an absorption pump is illustrated
Fig. 2. For reliable cooling of the adsorbent a plug consist
of alternating copper trays2 and copper grids3 is attached to
the copper tube1 with hard solder. The gaps between th
trays and grids are filled with the synthetic adsorbe
SKM-4. The thickness of a tray with the adsorbent is 3 m
and the repetition period is 5 mm. The pump is placed in
external vacuum can4, and for regeneration of the pump
heater6 and special drainage tubes are used, analogou
those described in Ref. 7. In this construction the plate ho
ing the adsorbent is in good thermal contact with the liqu
helium, and the rate of removal of the heat of absorpt
provides a circulation of 731024 mole/s.

The low-temperature valves of the evacuation line
analogous to the valves used in Ref. 7, except that the re
valves are located directly in the liquid helium. The cro
section of the return valves is;12 mm.

On leaving the receptacle, the liquid3He, after passing
through the main throttle~11 in Fig. 1! with a flow resistance
of 2310211cm23, enters the heat exchanger13 of the still,

FIG. 1. Diagram of the construction of the dilution refrigerato
1—nitrogen-free helium cryostat;2—adsorption pumps;3—evacuation tube
of the still; 4—evacuation tube of the 1 K pot; 5—liquid 4He; 6—filling
capillary for the 1 K pot, with athrottle and filter at the end;7—vacuum
can;8—1 K pot; 9—receptacle;10— condenser of the solution;11—main
throttle; 12—still; 13—heat exchanger of the still;14—secondary throttle;
15—continuous-flow heat exchanger;16—intermediate plate placed be
tween the continuous-flow and discrete heat exchangers;17—discrete heat
exchangers;18—experimental cell;19—melting curve thermometer;20—
mixing chamber.
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where its temperature is lowered to 0.7–0.8 K.
The still, with a volume of 240 cm3, is made of copper

A polished diaphragm 4 mm in diameter is used for suppr
sion of the superfluid film. The return flow from the sti
after passing through the secondary throttle14, with a flow
resistance of 1.8310210cm23, enters a continuous-flow hea
exchanger15 of the ‘‘coil in tube’’ type and a system o
discrete heat exchangers17. The continuous-flow heat ex
changer is a capillary with a diameter of 2 mm and a w
thickness of 0.2 mm, twisted into a coil around a wire 2 m
in diameter and inserted into a tube having a diameter o
mm and a wall thickness of 0.3 mm. The dilute phase of
phase-separated3He–4He liquid solution flows in the spac
between the tubes, and the concentrated liquid flows in
inner tube. The length of this heat exchanger is 1 m.

Eight discrete heat exchangers17 were made at the Uni
versity of Lancaster~U.K.!.12,13A layer of silver powder with
a particle size of 700 Å was baked onto both sides of
30375 mm by 0.1 mm thick silver plate of the heat e
changer. The surface area of each side of the plate
;7 m2. Stainless steel tubes for the inlet and outlet of
dilute and concentrated phases were joined to the tops o
heat exchanger with silver solder. The partition between
phases was attached to the tops with POS-61 ‘‘soft’’ sold
The diameters of the channels of the heat exchangers va
from 3 to 5 mm on the side with the concentrated phase
from 5 to 12 mm on the side with the dilute phase.

Between the continuous-flow and discrete heat excha
ers is a plate16 with a heat exchanger attached to it. Th
heat exchanger is a mixture of equal parts copper pow
with a particle size of 25mm and an ultradisperse silve

FIG. 2. Diagram of the construction of the adsorption pump:1—copper tube
containing liquid helium; 2—tray for adsorbent; 3—copper grid;
4—vacuum can;5—adsorbent;6—heater;7—valve for actuation of adsorp-
tion pumps;8—regeneration valve;9—drainage valve.
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powder with a particle size of 700 Å, pressed at a pressur
2.3 kbar. The filling factor is 50% and the area of the h
exchanger is;20 m2.

After passing through the heat exchangers the flow
ters the mixing chamber20, which was turned from a solid
piece of oxygen-free copper together with the worki
flange, which is mounted to the plate16 on three stainless
steel tubes. The diameter of the flange is 131 mm, wh
provides enough space to accommodate the measure
cells and various types of thermometric apparatus. The m
ing chamber and flange are coated with a layer of silver
improve the thermal contact. The mixing chamber is of t
counterflow heat-exchanger type~Fig. 3! and is made of a
copper block1 through which two parallel passages, 22 m
in diameter and 90 mm long, have been bored. A mixture
a copper powder with a particle diameter of 5–10mm and a
silver powder with a particle size of 700 Å was pressed o
the walls of the passages to a thickness of 5 mm. The pre
powders~pressing pressure 2.3 kbar! served as the heat ex
changer2 of the mixing chamber. The passages are c
nected together on one end by a cross tube3 and are con-
nected on the other end to the lowermost discrete h
exchanger17 ~in Fig. 1!.

Thus the flow of liquid3He enters the mixing chambe
from the heat exchanger17 and passes through the spec
channels4. It is very important to optimize the inner diam
eter of the channels in order to decrease the viscous hea
In accordance with Ref. 14, the inner diameter of the chan
was chosen equal to 12 mm. The volume of the mixi
chamber is 64 cm3, and the surface area of its heat exchan
is '400 m2. The mixing chamber is mounted in such a w
that the phase separation line in the steady-state mod
parallel to the axis of the channels. For the mounting
measuring devices the flange of the mixing chamber
equipped with conical and threaded connectors.

In addition to the adsorption pumping system the refr
erator has provisions for circulation of3He by means of a
mechanical pump, which can substantially reduce the exp
diture of helium in the preliminary cooling stage and al

FIG. 3. Diagram of the construction of the mixing chamber:1—body of
chamber;2—heat exchanger of the mixing chamber;3—connecting tube;
4—valves for the liquid flow;5—position of the phase separation line.
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FIG. 4. Block diagram of the circula-
tion of 3He in the dilution refrigerator:
1—adsorption pumps;2—heater of
adsorbent; 3—regeneration valves;
4—low-temperature valves for actuat
ing the adsorption pumps;5—valves
for pumping out the still by the me-
chanical pump; 6—helium trap;
7—nitrogen trap; 8—mechanical
pump; 9—sylphon evacuation hose
10—nitrogen traps; 11,12—
manometers;13—main condensation
line; 14—standby condensation line
15—return valves of adsorption
pumps.
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permits conducting prolonged experiments that do not
quire very low temperatures~temperatures down to
;25– 30 mK!. The adsorption pumps are ordinarily turne
on when it is necessary to go to lower temperatures. Figu
shows a diagram of the circulation of3He by this hybrid
scheme. As can be seen in the figure, when the circulatio
3He is effected by the mechanical pump the flow of the g
eous 3He to be condensed is purified before entering
cryostat by means of a nitrogen trap7 placed at the output o
the mechanical pump8 and a helium trap6 located inside the
helium Dewar. A manometer11 is used to monitor the pres
sure at the outlet of the pump to detect possible blockag
the oil trap10. The apparatus is also provided with a stand
condensation line14, which is opened by a valve if the mai
line 13 becomes blocked. In the case of cryogenic pump
of 3He from the mixing chamber the circulation is effect
by the alternately operating pumps1, which are controlled
by low-temperature valves3 and4. This apparatus has pro
visions for the return of3He from the adsorption pumps1,
when in the regeneration mode, to the condensation line13
through the use of a mechanical sliding-vane rotary pum8.
In that case the low-temperature valves3 are permanently
closed, and the return of3He directly to the evacuation line
9 of the mechanical pump is effected through the valves15,
which are at room temperature. In this situation valve5 is
closed. Thus the adsorption pump in the regeneration m
is continually pumped out by a mechanical pump.

This combination of cryogenic pumping and regene
tion with evacuation by a mechanical pump has the follo
ing advantages:
-
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— the requirements on the main cryogenic valves4 are
substantially reduced, since the pressure in the adsorp
pump does not increase appreciably at the time of regen
tion;

— the adsorption pump is almost completely cleansed
impurities without leaving behind an appreciable amount
3He after the regeneration process is completed;

— the heating regime of the adsorption pumps is m
economical, since it is unnecessary to raise the pressur
the pump very much.

The minimum temperature that would be attained
cooling with an unfilled cell~without heat leakage along th
filling capillary! was 4.2 mK. Originally the circulation wa
effected by a mechanical pump, and after the tempera
reached 25–30 mK the adsorption pumps were turned on
working with external pumping, when the experiment do
not call for temperatures below 20 mK, the refrigerator
quite economical. For example, at a ‘‘cruising’’ circulation
1024 mole/s the expenditure of liquid helium is 7 liter/day

3. EXPERIMENTAL UNIT FOR STUDYING SOLID
HELIUM
BY MEANS OF PRECISION PRESSURE MEASUREMENTS

The operation of the automated cryogenic unit can
examined for the example of the study of kinetic processe
solid mixtures of the quantum crystals3He–4He in the mil-
likelvin temperature range. The measurement cell18 con-
taining the sample is mounted on the plate of the mix
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chamber20 ~see Fig. 1! by means of a conical thermal con
tact. This plate also holds the main thermometers~see Sec. 4!
and a heater.

The construction of the measurement cell is describe
detail in Ref. 16. The geometry of the cell has been cho
so as to ensure the rapid establishment of thermal equ
rium in the crystal under study and to reduce to a minim
the inhomogeneities arising in the process of crystallizati
The experiments are done at constant volume, and
change in pressure in the crystal due to various proce
occurring in the system under study is recorded. The cha
in pressure is measured by a capacitance bridge with a r
lution of 61 Pa.

The method of precision measurement of the pressur
a quantum crystal is very informative and convenient
performing the following physical tasks:

— studying the kinetics of growth and the dissolution
3He inclusions in a4He matrix or of4He inclusions in a3He
matrix;

— construction of the equilibrium phase diagram;
— determination of the coefficient of interdiffusion;
— determination of the exchange interaction in solid h

lium.

4. THERMOMETRY SYSTEM

The main thermometer for measurement of ultral
temperatures is the melting curve thermometer~MCT!, the
working principle of which is based on the change in t
melting pressure of3He. The ratio of the melting pressure
the melting temperature of pure3He is universal and has now
been standardized to a high degree of accuracy. Therm
etry based on the properties of the melting curve of3He
became possible after the development of precision m
brane pressure sensors17–19 and is the most widely use
method in the millikelvin temperature range. In the pres
study we have used the standard construction of the MC19

which was calibrated at a temperature'1.3 K according to a
standard manometer.

The indications of the capacitive sensor of the MC
were recorded by an E8-4 or E7-8 digital capacitance me
The calibration curve obtained is well reproducible for ea
of the samples. The dependence of the pressureP on the
capacitanceC was approximated by the formula

P5P12P2/C, ~3!

where P1 and P2 are fitting coefficients, and the relatio
between the pressure and temperature, according to Ref
and 21, was taken in the form

P5 (
n523

9

anTn , ~4!

where

a23527.2175164310213, a2252.905595831029,

a21525.04419831026, a053.4461924,

a1524.4127628, a251.54011133101,

a3523.57808183101, a457.15674623101,

a5521.04296053102, a651.05245913102,
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20

a7526.93015783101, a852.66594333101,

a9524.5298212.

This formula, obtained at the metrological institute
the Physikalisch Technische Bundesanstalt in Berlin, G
many, approximates the melting curve of3He in the tempera-
ture range from 1 mK to 1 K.

The average sensitivity of the capacitance bridge use
0.8 pF/atm. In the measurements by the automatic digita
current bridge E8-4, with a sensitivity of 0.01 pF, the tem
perature resolution was 0.3 mK, which is entirely adequ
for making measurements. The high-purity3He (.99.99%)
used for thermometry was obtained by the distillation
commercial-grade3He ~99.75% pure! by the standard tech
nique of purification by rectification.

In each cooling cycle a tie-in was made to the minimu
of the melting curve of3He. The pressure measurements n
the minimum on the melting curve of3He, were made by a
General Radio~GR! 1615-A manual bridge, which permitte
improving the pressure resolution to 12.5 Pa. It was fou
that the calibration curves before and after the experim
agreed to within 0.01%; however, the cyclic temperatu
change from room to helium temperature noticeably sh
the calibration curve, and it is therefore necessary to do
calibration over again for each experiment.

In these experiments we also used resistance therm
eters: two Matsushita carbon thermometers with nominal
sistances of 55 and 105V, a gallium arsenide semiconducto
thermometer with a nominal resistance of 0.6V, and a ru-
thenium oxide thermometer with a nominal resistance
1000 V. ~The nominal resistances of the thermometers
indicated at room temperature.! These thermometers ar
placed at different points in the refrigerator and permit mo
toring of the temperature distribution in it at any time. Th
resistance of the thermometers was measured by a four-
scheme on a Cryobridge R441 ac current bridge at a d
pated power of 10210– 10212W and also by a specially de
veloped ac current bridge22 at a dissipated power of the orde
of 10215W.

5. AUTOMATED SYSTEM FOR CONTROL AND DATA
ACQUISITION AND PROCESSING

The automation system of the cryogenic unit for resea
on solid 3He–4He mixtures at ultralow temperatures is co
structed on the basis of two computers and a CAMAC bu
module system. It includes a combination of hardware a
software for performing experiments by different procedur
Figure 5 shows a block diagram of the automated con
system of the refrigerator, in which one can discern the f
lowing main blocks:

— a two-computer complex;
— the CAMAC bus–module system;
— the experimental apparatus;
— the instrumentation unit.
The two-computer complex consists of two computers

the IBM PC type, computer1 and computer2, which,
through a CAMAC bus–module system, operates in a dia
mode with the instrumentation part of the refrigerator a
performs data acquisition from the various channels, sto
and monitors the data, and carries out preliminary data p
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cessing and provides real-time visualization of the data o
monitor screen. As the information is accumulated, this co
puter transfers it to computer1, which receives the data
through a local area network, performs the final data proc
ing and visualization of the results on the monitor, and p
duces an archive of experimental data on the processing
sults.

The CAMAC bus–module system performs the functi
of interfacing with the object of study, since computer2 was
not designed for automation of experiments, and some of
instrumentation does not have standard interfaces. The i
face functions are implemented by standard units: an in
register3, a digital-to-analog converter5, and an original
control unit 4. The CAMAC bus interfaces with the bus o
computer2 through the controller of the crate and a specia
designed adapter.

The experimentation unit contains the following set
primary sensors to permit tracking various parameters c
acterizing the state of the sample and refrigerator:

— a capacitive pressure sensor Cs used for measuremen
of the pressure of the investigated crystalin situ;

— capacitive transducers of the crystallization thermo
etersMCT1 and MCT2 , intended for measurement of th
temperature at various points of the dilution refrigerator;

— a block of resistance thermometers for measuring
temperature at various points in the refrigerator;

— a wire resistanceRh which is a control element of the
temperature stabilization.

FIG. 5. Block diagram of the automated control system of the cryoge
unit: 1,2—two-computer complex;3—input register; 4—control unit;
5—digital-to-analog converter;6—two-channel analog-to-digital converte
~MS QUICK!; 7—scalers;8—Gr 1615-A capacitance bridge;9—Ch3-34A
frequency meter;10—L, C, R meter of the E7-8 type;11—bridge for resis-
tance measurement.
a
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The instrumentation unit includes the following main d
vices:

— a GR 1615-A bridge for capacitance measuremen
— A Ch3-34A frequency meter;
— L, C, R meter of the E7-8 type
— an original precision digital bridge for resistanc

measurement.22

The input register3 accepts data from the Ch3-34A fre
quency meter~9!. The control unit4 performs the triggering
of the E7-8 meter~10! and the acquisition of data from it
controls the operation of an analog commutator, and a
accepts data from the resistance bridge11. The eight-channel
analog commutator is based on reed relays which do
introduce any errors into the measurement of the electr
resistance and provide fast action of the commuta
The control unit4 is a multifunction device to which one ca
connect additional digital voltmeters of the ShCh-30
ShCh-302, and ShCh-304 types.

The analog-to-digital converter5 provides for smooth
control of the heaterRh . Special mention should be made
the two-channel 8-bit analog-to-digital converter6 with a
32-kilobyte memory in each channel and a maximum m
surement frequency of 50 MHz. This converter perform
data acquisition in two channels from the GR 1615-A capa
tance bridge and has an output directly to the bus of co
puter 2. Precision scalers7 are provided for ensuring the
most complete use of the scale of the analog-to-digital c
verter6.

6. AUTOMATION OF THE MANUAL CAPACITANCE BRIDGE

Let us now discuss the automation of the precision s
tem for capacitance measurement, consisting of a
1615-A capacitance bridge, a GR 1311-A sinusoidal sig
generator, and a GR 1232-A null detector21 ~Fig. 6!. As we
see from the figure, the system uses a transformer bri
The capacitanceCx to be measured is connected with a
active resistanceRx to one arm of this bridge, and a set o
standard capacitancesCm1 , Cm2 ,...,Cmm is present in the
reference arm, together with a resistance boxRm with an
additional capacitanceCd . An ac signal at frequencyw
55 kHz is applied to the reference generator1 across the
transformer bridge, from which it is taken off by a pha
detector2. The latter is equipped with a filter that passes on
the generator frequency. The imbalance voltage of the bri
from detector2 and the reference signal after scaling by un

ic

FIG. 6. Block diagram of the automated system for capacitance meas
ment: 1—reference generator;2—null indicator; 3—amplifier; 4—analog-
to-digital converter.
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3 are fed to the analog-to-digital converter4. This converter
is a programmable MSQUICK card, which simultaneou
measures the voltage at the output of the generator in c
nel 1 and of the null detector in channel2 and and enters
them in a data file in the computer.

The automation of the manual bridge is based on
principle that after the preliminary calibration the value
the capacitance to be measured is calculated from the im
ance voltage of the bridge. An analysis~Fig. 7! of the imbal-
ance voltage on the null detector, which is used as an am
fier, as a function of the imbalance of the capacitance sho
that it is more advantageous to use phase instead of am
tude detection. Phase detection gives a unique relation
tween the measured values of the realA and imaginaryB
parts of the voltage of the null indicator of the bridge and
imbalance of the capacitanceCm2Cx and of the dissipative
factor Dm2Dx . For amplitude detection, as can be seen
Fig. 7 ~the curve (A21B2)1/2!, each value of the voltageU
corresponds to two values ofDC. Furthermore, in amplitude
detection additional systematic error can arise due to
change in resistance of the cables.

A calculation are linear electrical circuits gives the fo
lowing expression for the ratio of the voltageUd after the
detector to the generator voltageUg :

Ud /Ug5A1 iB5~k1 iw!
Cm2Cx1 i ~CmDx2CxDm!

Ck1Cx1 i ~CkDx1CxDm!
,

~5!

whereCk51592 pF is the total capacitance of the box, a
k1 iw is the gain of the null detector determined in the ca
bration. For fixed values ofCx and Dx the values of the
capacitance of the box are changed in discrete steps:Cm1

5Cm1DCm , which, in turn, leads to a discrete change
the quantitiesA and B. From this we determined the gai
components

k5~A12A!
Ck2Cm

DCm
1A;

~6!

w5~B12B!
Ck2Cm

DCm
1B,

FIG. 7. Voltage across the null indicator of the capacitance bridge versu
imbalance of the capacitance.A is the real part of the imbalance voltag
andB is the imaginary part; (A21B2)1/2 is the voltage amplitude.
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whereA11 iB1 is the imbalance at the new valueCm1 . If the
gain is known, then by measuring the active and reac
components of the imbalance of the bridge in the course
an experiment, one can easily calculate the capacitanceCx

and dissipative factorDx to be measured:

1

Cx
1 iwRx5~11 iD m!

k1 iw2~A1 iB !

Cm~k1 iw!2Ck~A1 iB !
, ~7!

Dx5wCxRx . ~8!

The bridge automation system described is quite sim
and reliable and can be used for automating other bridge
the transformer type.

7. SOFTWARE FOR STUDYING THE KINETIC PROCESSES
IN 3He–4He SOLID SOLUTIONS

The software for precision measurement of the press
at constant volume and for reading the thermometers con
of a main program and a set of subprograms. All of t
programs are written in the language Turbo Pascal 6.0 in
MS-DOS environment with the use of Assembler langua
plug-ins which permitted a substantial improvement in t
execution time of the program. The subprograms are writ
as procedures and are linked to the main program. This st
ture makes it possible to use in one subprogram proced
described in other subprograms. In addition, one can alw
link new subprograms to the main program.

Pressure measurement

In the subprogram for pressure measurement are pr
sions for the analog-to-digital converter4 ~Fig. 5! to store
parts of the sinusoid of the measurement and reference
nals fed from the output of the scalers3. These signals are
processed by the least-squares method on computer2, com-
pared in phase and amplitude, and used to calculate the
pacitance to be measured according to Eqs.~7! and~8!. The
result is stored in a file, and the procedure is repeated.

Before the program is started the GR 1615-A bridge
balanced in respect to the dissipative factorDm and the gain
of the null detector is chosen such that a change in cap
tance byDCm will correspond to the largest possible voltag
~60% scaling limit!. Upon the startup of the program th
readiness of the CAMAC is determined and then, in a dia
mode, the parameters of the reference capacitancesCm ,
DCm , andDm and the averaging time of the measured qu
tities ~the default is 1 min! are specified. Then a determina
tion of the gain~calibration! is made and the real-time mea
surements begin. The averaging of the measured value
the pressure is done according to a quadratic depend
with monitoring of the overshoots. The program for autom
tion of the capacitance bridge had to solve the followi
problems: Distinguish between the change in capacita
when the balancing knob is turned from a change in
capacitance to be measured. If it is a change inCm a recali-
bration of the gain of the null detector is done. This make
possible, having established a high sensitivity at the sta
of the program, to measure the change in pressure more
cisely by a stepwise change inCm . Unfortunately, this
method cannot be used to measure fast processes (;5 min!

he
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occurring with a large change in pressure~e.g., upon a sharp
heating of a separated solution to the one-phase region!, be-
cause the recalibration time is'1 min.

Thanks to a systematic processing of the data obtaine
became possible to improve the accuracy of the pres
measurements from68 to 61 Pa.

Temperature measurements

The subprogram for temperature measurements con
of two parts. The first is intended for measurement of
temperature according to the MCT and controls the trigg
ing and readout of the E7-8 meter. The second part of
subprogram corresponds to commutation and measure
of the resistance thermometers with allowance for the b
ancing time of the special ac current bridge. The algorit
for reading the resistance thermometers can be written
follows:

— switch to the first resistance~reset!;
— balance the resistance bridge~10–12 s!;
— measure the resistance;
— switch to the second resistance;
— balance the resistance bridge;
— measure the second resistance, etc.
The switching occurs for all the resistances connecte

the analog commutator, and after the measurement of the
resistance a reset is done.

Both of these parts of the subprogram operate simu
neously, and a measurement of the temperature of the M
is made every 0.2 s.

Temperature stabilization

To implement the discrete temperature changes ne
sary for studying the temperature dependence of the kin
coefficients at phase transitions, a heater-control subprog
is used. The input of a digital-to-analog converter is fed
digital signal given by the formula

n5Fk1•dR@1#1k2(
i 51

7

dR@ i #1k3~dR@1#

2dR@2# !G1/2

~R* /R!2, ~9!

where k1, k2, and k3 are the coefficients in front of th
proportional, integral, and differential terms of the tempe
ture stabilization, respectively;dR@1,...,7# is an array of dif-
ferences of the measured resistanceR and the reference re
sistanceR0 (dR@1# corresponds to the last measureme
dR@2# to the preceding one, etc.!; R* is the value of the
resistance at which the coefficientsk1, k2, andk3 had been
chosen to provide the most effective temperature stabil
tion at that temperature. The factorR* /R appears to the sec
ond power because it is assumed that the main role is pla
by the cooling capacity of the refrigerator, which is propo
tional to T2.

Modes of operation

The main program, which unifies the subprograms
the pressure and temperature measurements, temperatu
, it
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bilization, etc. can operate the unit in different modes a
perform the measurement functions differently depending
the experimental tasks.

In the graphical mode the kinetics of the change in pr
sure of the sample and the temperature of the crystalliza
thermometer are displayed on the monitor screen. This m
is very convenient in operation and permits direct visu
monitoring of the physical processes, so that, if necess
one can rapidly correct the experimental conditions. T
choice of the scale and digitization of the axes is made
tomatically.

In the digital mode the monitor also displays the valu
of the gain of the null detector, the reference capacitance,
imbalance of the bridge, and the readings of the crystalli
tion thermometer and resistance thermometers.

In the nonaveraging mode each point is written to a
of results~the interval between measurements is around
s!. This mode makes it possible to study fast processes w
characteristic times of from 1 s to 2min. In particular, the
dissolution of solid inclusions of3He in a4He, matrix upon
sharp warming of the sample was studied, and an ano
lously fast mass transfer, of a threshold character, w
discovered.24

In the temperature-stabilization mode no switching
different resistance thermometers is done, and it is not n
essary to wait for balancing of the resistance bridge. T
power of the heater is calculated from the difference betw
the reference value of the resistance and the actual resist
at each cycle of measurements~every 0.2 s!.

The advantages of temperature stabilization with the
of a computer are:

— convenience in operation~for a temperature measure
ment it is sufficient to specify only the reference value of t
resistance!;

— direct readings of the resistance thermometer are
tained ~unlike the case when the reference value is est
lished manually on the measurement bridge!;

— the possibility of varying the heating power as a fun
tion of the temperature of the sample, which makes it p
sible to take into account the low-temperature behavior
the heat capacity of substances and the temperature de
dence of the cooling capacity of the refrigerator;

— the implementation of special regulated modes
heating of the objects under study~for example, a linear
change of the temperature with time!.

CONCLUSION

The cryogenic unit described here makes it possible
realize various modes of operation that can be used in a w
range of physical studies at ultralow temperatures. When
refrigerator is operated with circulation by means of a m
chanical pump a very economical mode~in terms of the use
of liquid helium! is realized which permits doin researc
down to 20 mK. The use of two alternately operating adso
tion pumps offers the possibility of lowering the limitin
temperature to;5 mK. For further lowering of the tempera
ture it is planned to add a nuclear demagnetization stage

The use of a flexible automation system makes it p
sible to easily alter the architecture of the system, to imp
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ment new algorithms of measurement, and to create
software.

The authors are grateful to Profs. G. R. Pickett and I.
Miller ~University of Lancaster, England! for providing the
discrete heat exchangers and to the staff of the metrolog
institute of the Physikalisch Technische Bundesanstalt~Ber-
lin, Germany! for technical support.
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We are mourning the loss of the patriarch of low
temperature physics, Academician Boris Georgievich La
rev of the National Academy of Sciences of Ukraine. Gr
for his loss is shared by many cryogenic centers that h
been founded in different cities across the enormous exp
of the Soviet Union. It would be hard to find any scientists
them who were not in some way influenced by his grou
breaking works on the electronic structure of metals, sup
conductivity, and the properties of liquid helium. He was t
one who furnished the cryogenic equipment for the labo
tories in Kiev, St. Petersburg, Ekaterinburg, Donetsk, Tbil
and Sukhumi, inspired their staffs with enthusiasm, and
troduced them to the physics of subtle properties of ma
In turn, his fellow scientists and proteges, Academicians B
Verkin and A. A. Galkin of the Ukrainian Academy of Sc
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ences, developed this branch of science and enriched it
new fields of study in institutes that they founded which ha
become the leading academic institutes of Ukraine. In ad
tion to his gifts as a researcher, it fell to Prof. Lazarev to ta
on the mission of passing on to succeeding generation
physicists the spirit and traditions of that romantic time
the pioneers of science, who gave it their unselfish devot
Now it is our duty to keep that epoch from disappeari
without a trace.

Prof. Lazarev was the senior member of the editor
board of this journal, a wise and always interested advi
an optimist and a great lover of life. It seemed that he w
around long before us and would live on after us. H
memory will always remain in our hearts and in the histo
of physics in our country.

Editorial Board
© 2001 American Institute of Physics
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