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Abstract—In the context of the density functional theory and pseudopotential approach, the electronic struc-
ture of ZnGeP2 crystal is calculated on the basis of localized orbitals. The calculated behavior of the imaginary
part of the permittivity ε2 in the UV spectral region is in good agreement with the experimental data. Analysis
of direct interband transitions allows the origin of singularities in the behavior of ε2 to be established. © 2005
Pleiades Publishing, Inc.
Interest in the application of chalcopyrite-structured

II–IV–V2 crystals (the  space group) as materials
for nonlinear optics is motivated by their birefringence.
ZnGeP2 single crystals have gained acceptance, among
other applications, in the laser industry, where they are
used in mid-IR lasers as converters of radiation from
one spectral region to another.

Recently [1], the pseudodielectric functions of opti-
cally uniaxial ZnGeP2 crystal have been reported.
These functions were determined by spectroscopic
ellipsometry for the two orthogonal directions (along
the lattice vectors a and c) 〈εa〉  = 〈εa1〉  + i〈εa2〉  and 〈εc〉  =
〈εc1〉  + i〈εc2〉  in the energy range 1.5 to 6.0 eV. The
authors of [1] interpreted their data on the basis of the-
oretical calculations [2] performed in 1974. In [2], three
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characteristic peaks at the energies E1 = 3 eV, Ec =
3.6 eV, and E2 = 4.8 eV were found for ZnGeP2. The
origin and notation of these peaks were discussed on
the basis of the spectra of III–V compounds, which are
the binary analogues of ZnGeP2.

We calculated the electronic structure of ZnGeP2 in
the local approximation of density functional theory
[3–6] with the aid of nonempiric norm-preserving
pseudopotentials [7–9]. The solutions to Kohn–Sham’s
equations were represented on the basis of pseudo-
atomic orbitals (PAOs) [10]. The PAO basis involved
only s orbitals for Zn atoms and spd orbitals for Ge and
P atoms. For the case of the 8-atom chalcopyrite lattice
cell, this basis had 56 functions (dimensions). The
advantage of the basis of localized orbitals over that of
plane waves or over a mixed basis [11, 12] is its rela-
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Function ε2(E) for ZnGeP2, (solid line) calculated and (dashed line) determined experimentally. The transitions responsible for the
basic spectral singularities are indicated. (Symbol *** denotes the transitions listed in Table 2.)
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Table 1.  Singularities of the function ε2(E) for the ZnGeP2 compound in the range up to 6 eV at E || c

Characteristics, eV
Transitions from the valence band to the conduction band, eV

experiment [1] our calculation

2.35 (edge) 2.35 (edge) 2.20*, 2.23*, 2.28 – Γ4(16)  Γ3(17), Γ2(18), Γ1(19)

2.88 (peak) 3.10 (peak) 2.63 – N1(15, 16)  N1(17, 18); 2.99 – N1(13, 14)  N1(17, 18)

3.12 (shoulder) 3.15 (shoulder) 3.45 – T3 + 4(15, 16)  T1 + 2(19, 20)

3.68 (peak) 3.65 (peak) 3.76 – N1(11, 12)  N1(17, 18)

4.19 (shoulder) 4.20 (shoulder) 4.32 – N1(15, 16)  N1(19, 20); 4.38 – Γ5(14, 15)  Γ5(20, 21)

4.61 (peak) 4.60 (peak) 4.68 – N1(13, 14)  N1(19, 20)

Note: The symbol * indicates forbidden transitions.

Table 2.  Singularities of the function ε2(E) for the ZnGeP2 compound in the range up to 6 eV at E || a

Characteristics, eV
Transitions from the valence to the conduction band, eV

experiment [1] our calculation

2.45 (edge) 2.45 (edge) 2.21, 2.24, 2.29 – Γ5(14, 15)  Γ3(17), Γ2(18), Γ1(19)

3.00 (shoulder) 3.00 (shoulder) 2.99 – N1(13, 14)  N1(17, 18)

3.39 (peak) 3.35 (peak) 3.10 – T3 + 4(15, 16)  T5(17, 18)

3.58 (peak) 3.85 (peak) 3.76 – N1(11, 12)  N1(17, 18); 3.79 – T1 + 2(13, 14)  T5(17, 18)

4.07 (shoulder) 4.05 (shoulder) 4.14* – T1 + 2(13, 14)  T1 + 2(19, 20)

4.38 (shoulder) 4.40 (peak) 4.32 – N1(15, 16)  N1(19, 20); 4.38 – Γ4(16)  Γ5(20, 21);
4.36* – T5(11, 12)  T5(17, 18)

4.67 (peak) 4.75 (peak) 4.44, 4.47, 4.53 – Γ5(12, 13)  Γ3(17), Γ2(18), Γ1(19);
4.58 – Γ5(14, 15)  Γ4(22); 4.68 – N1(13, 14)  N1(19, 20);
4.52 – T3 + 4(15, 16)  T5(21, 22); 4.71 – T5(11, 12)  T1 + 2(19, 20)

5.12 (shoulder) 4.90 (shoulder) 5.22 – T1 + 2(13, 14)  T5(21, 22)

Note: The symbol * indicates forbidden transitions.
tively low dimensionality. This circumstance means
that it can be applied not only to computationally more
complex systems [13] but also used to obtain results
that are highly competitive in their accuracy with those
derived using the basis of plane waves [10–18]. In the
calculations presented below, the matrix elements of
the Hamiltonian and the overlap integrals were calcu-
lated by expanding the basis Bloch functions into a
Fourier series in plane waves [11, 12], with the total
number of plane waves ranging from 1600 to 1700.
Such a number of plane waves yields convergence on
an order between 10–2 and 10–3 au in the total energy.
The lattice parameters required for the calculations, a =
5.465 Å and c = 10.711 Å, and the shifts of anions in
ZnGeP2, u = 0.017 Å, were taken from [19].

The results of calculations of ε2(E) for ZnGeP2 are
shown in the figure for the longitudinal (E || c) and
transverse (E || a) orientations of the electric field E
with respect to the tetragonal axis of the crystal. In the
figure, the pseudodielectric function ε2(E) experimen-
tally obtained in [1] is shown by the dashed line. As is
obvious from the figure, the theory is in good qualita-
tive agreement with the experimental data. The experi-
SEMICONDUCTORS      Vol. 39      No. 9      2005
mentally identified singularities in ε2(E) can be inter-
preted in terms of direct interband transitions from the
valence band to the conduction band. It is known that
the most probable points of the Brillouin zone at which
electronic transitions from the valence to the conduc-
tion band can occur in II–IV–V2 crystals are the Γ, T,
and N points (see, e.g., [20, 21]). The notation in the fig-
ure is related to transitions from the valence band to the
conduction band. The interpretation of the singularities
of the function ε2(E) observed experimentally, as well
as those calculated in terms of direct interband transi-
tions for the ZnGeP2 crystal in the cases of E || c and
E || a, is illustrated in more detail in Tables 1 and 2. The
numbers in parentheses near the related energy levels
denote the number of branches in the Brillouin zone. It
should be noted that, for II–IV–V2 compounds, the
valence band consists of 16 branches, which means that
indices of 17 and above refer to the conduction band.
Comparing the singularities in the dielectric function
ε2(E), we can see that, for the E || c polarization, the
edge of the function is formed by transitions in the cen-
ter of the Brillouin zone of chalcopyrite from the top of
the valence band Γ4(16) to the three lower energy levels
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of the conduction band, namely, Γ3(17), Γ2(18), and
Γ1(19). According to the calculation, all of the three
peaks observed experimentally at E || c have their origin
in transitions occurring at the point N. The shoulder in
the energy region at about 3.12 eV is due to the onset of
transitions at the point T. At the same time, the shoulder
at 4.19 eV is of a mixed nature: transitions in the center
of the Brillouin zone and at the point N are responsible
for this singularity.

For the E || a polarization, similarly to the case of
E || c, the edge of the dielectric function is formed by
optical transitions in the center of the Brillouin zone
(Γ5(14, 15)  Γ3(17), Γ2(18), and Γ1(19)). However,
these transitions occur from a doublet level separated
from the top of the valence band due to crystalline split-
ting. The shoulder at 3.00 eV corresponds to transitions
from the second doublet level of the valence band to the
lowest level of the conduction band at the point N. The
peak at 3.39 eV and the shoulders at 4.07 and 5.12 eV
correspond to transitions at the point T. As can be seen
from Table 2, the peaks at the energies 3.58, 4.38, and
4.67 eV are of a more complicated nature and involve a
series of transitions at the points Γ, T, and N.

The results presented above show that the relatively
nontrivial polarization spectra of structurally and com-
positionally complex crystals can be interpreted in the
context of one-electron theory in terms of direct inter-
band transitions. The quantitative differences between
the theory and the experimental data arise from the
known limitations of the density functional approach
when applied to electron states of the conduction band
and do not exceed the discrepancies typical for this
approach.
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Abstract—The instabilities of longitudinal waves in infinite semiconductor plasma containing charge carriers
of two types are considered under the assumption that the thermal velocity of electrons slightly exceeds that of
holes. The main result of this study is that instability can occur in intrinsic semiconductors if the electron drift
velocity is lower than the thermal velocity. Drift wave instabilities are studied in intrinsic semiconductors and
semiconductors with identical plasma frequencies of electrons and holes. The influence of dissipation on the
instability of these waves is also considered. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In modern microwave engineering, bands of short
millimeter and submillimeter waves are the most
poorly understood. In these regions, tube-based devices
can no longer be used, and solid-state structures effi-
ciently operate as solid-state lasers only at shorter
wavelengths, i.e., in the infrared and visible regions. At
the same time, short millimeter and submillimeter
waves are of significant interest for modern communi-
cation, medical research, and studies of the physical
properties of materials [1, 2]. Therefore, the search for
materials and physical effects to be applied in the devel-
opment active devices in the millimeter and submilli-
meter ranges is obviously an important problem.

One conventional approach is the study of the possi-
bility of developing solid-state devices demonstrating a
prolonged interaction between an electromagnetic trav-
eling wave and carriers drifting in dc fields in semicon-
ductor plasma. Surveys of this problem are published
from time to time, one example being the excellent
review paper [3]. Paper [1] is also of considerable inter-
est. In particular, this paper describes an experiment in
which instability was observed in the millimeter range
during the interaction of carriers drifting in a semicon-
ductor layer with a periodic structure such as a dielec-
tric waveguide with a periodic wall of complex shape.
In our opinion, however, the mechanism of this instabil-
ity is not completely clear. Finally, review [4] shows
that study of the possibility of inducing instabilities in
short-wavelength ranges and developing solid-state
oscillators and amplifiers using these instabilities is of
great interest to many researchers.

To date, great progress has been achieved in the
technology of solid-state semiconductor periodic struc-
tures such as superlattices. These structures are new
artificial materials whose properties can significantly
differ from those of natural crystals. If the layer thick-
nesses are about 1–3 µm, then, in the millimeter and
terahertz ranges, such structures represent a continuous
1063-7826/05/3909- $26.001007
semiconductor medium. By selecting semiconductors
with different types of conductivity in their superlattice
layers, one can obtain a material in which plasma fre-
quencies, drift velocities, etc., for different carriers are
of the same order of magnitude. At the same time, insta-
bilities in semiconductors and plasma have been stud-
ied taking into account the significant difference in the
parameters of the electron and hole components. The
objective of this study was to examine the possibility of
obtaining instability in electron–hole plasma consisting
of a homogeneous semiconductor with a drift velocity
smaller than the thermal velocity of carriers. In order to
simplify the formulas, we do not consider the transition
from a layered periodic structure to a homogeneous
medium; these problems were considered in [5, 6].

The papers [7–11] of the late 1950s to early 1960s
dealt with the instabilities induced by the carrier drift in
plasma generated under external electric fields. In [12],
these instabilities were considered in the kinetic and
hydrodynamic approximations.

It has previously been shown that two-component
plasma becomes unstable if the electron drift velocity
with respect to ions is fairly high. The conditions for the
instability onset were studied in [7–9] for plasma
formed by electrons and ions with equal temperatures.
It was shown that plasma becomes unstable if the elec-
tron drift velocity v0e ≥ 1.32vTe. When the electron tem-
perature is much higher than the ion temperature, the
drift velocity at which instability occurs decreases v0e ≤
(me/mp)1/2vTe [10].

The interaction of drift waves with plasma waves in
semiconductors was considered in [11], where the two-
stream instability caused by carrier drift in an external
electric field was studied in the kinetic approximation.
Dispersion relations were obtained for two modes of
collective oscillations: a high-frequency optical mode,

ω2 ω0e
2 ω0 p

2+( )/ε0,=
 © 2005 Pleiades Publishing, Inc.
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in which electrons and holes move out of phase, and a
low-frequency acoustic plasma mode

in which electrons and holes move in phase. In these
formulas, the following notation is used: ω0e, p are the
Langmuir frequencies of electrons and holes, me, p are
their masses, vTe is the thermal velocity of electrons,
k is the wave number, and ε0 is the lattice component of
the permittivity. These solutions were derived in the
following approximations:

It follows from these inequalities that the thermal
velocity of electrons should significantly exceed the
hole velocity. At the same time, for many semiconduc-
tors, the electron thermal velocity only slightly exceeds
the hole velocity; i.e., the second inequality is violated.
This factor is taken into account in this study. We con-
sider the interaction of plasma oscillations of electrons
and holes (see [13]),

(1)

in the presence of carrier drift. It will be shown below
that a specific feature of these waves is that they have
regions of negative phase velocity, where the resonant
interaction of the hole and electron drift waves with
negative phase velocities is possible.

Significant attention was paid to the instability of
spatially separated electron–hole streams in the studies
of Romanov et al. [14–18]. The analysis was carried
out in the quasi-hydrodynamic approximation and took
into account the thermal velocity and collision frequency
of carriers. The main aim of those studies was to find out
if it was possible to decrease the drift velocity at which
the instability occurs. The studies were carried out in a
wide range of drifting carrier parameters, and the results
were compared to the data presented in [11].

The existence of two carrier streams significantly
complicates the problem; accordingly, we use the
hydrodynamic approximation. It is known that the
hydrodynamic equations are valid for the frequencies
ω � ν (collisionless plasma [19]) and ω � ν only if the
collective dynamics of the particles is studied and
effects such as Landau damping are disregarded. The
effect of thermal motion of the carriers can also be
taken into account in the hydrodynamic approximation.
As was shown in [20], the error of the hydrodynamic
description (compared to the kinetic approach) does not
exceed 10%, even at νλ/2πvT ≥ 3 (λ is the wavelength).
Using the plasma frequencies ωp = (4πe2n0/mε0)1/2 ≈
1011–1013 s–1, effective masses m ≈ 10–28–10–29 g, and
collision frequencies ν ≈ 5 × 1010–1013 s–1 (at tempera-

ω
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tures from 4.2 to 300 K) [21], which are typical of semi-
conductors, we obtain the thermal velocities vT ≈ 107–
108 cm/s, Debye length RD = vT/ωp ≈ 10–4 cm, and car-
rier free paths l = vT/ν ≈ 10–4–10–5 cm. Thus, our approach
is valid for the frequencies ω ≈ 1010–5 × 1013 s–1. It should
also be taken into account that, compared to the kinetic
approximation, in the hydrodynamic approximation,
a numerical coefficient slightly exceeding unity appears

at the term k2  in relation (1).

2. BASIC EQUATIONS

Let us consider an infinite two-component solid-
state plasma formed by electrons and holes. Let us
assume that an external dc electric field causes electron
drift with the velocity v0e and hole drift with the veloc-
ity –v0p. We direct the 0x axis along electron drift direc-
tion. The electromagnetic processes in such a structure
are described by Maxwell’s equations, as well as con-
stitutive equations for electrons and holes,

(2)

where n0e and n0p are the equilibrium electron and hole
concentrations; νe and νp are collision frequencies; vTe

and vTp are thermal velocities; and ne, np, ve and vp are
the variable concentrations and velocities of carriers.

In order to determine the components of the permit-
tivity tensor, we use the following relation for the elec-
tric displacement:

(3)

Here, the time and coordinate dependence is assumed
to be of the form exp(–iωt + ikx).

In the chosen coordinate system, Maxwell’s equa-
tions are separated into the equations for the two polar-
ization types. We study the polarization involving the
nonzero components Ex, Ez, and Hy. Substituting the
above expression for a plane wave into Maxwell’s
equation, we derive the dispersion relation. Let us con-
sider longitudinal waves propagating along the 0x axis

v T
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e
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disregarding any delay (ω/c  0). Then, we obtain
the dispersion relation for longitudinal waves ε = 0; i.e.,

(4)

We note that the solutions to this equation were
studied by Mikhailovskiœ [12] for various relations
between the electron and hole concentrations and disre-
garding thermal velocities and collision frequencies.

3. INSTABILITIES IN INTRINSIC 
SEMICONDUCTORS

First of all, let us consider a case where νe = 0, νp = 0,
and the semiconductor is intrinsic, i.e., the electron and
hole concentrations are equal, n0e = n0p. Let us use a
coordinate system linked to moving electrons, Ω = ω –
kv0e. Then, the drift oscillations are described by the
dispersion relation

(5)

where v0 = v0e + v0p and α =  = me/mp � 1. In
this case, we have a fourth-order equation with respect
to the frequency Ω, whose solutions are given by

(6a)

(6b)

Waves ω1, 2 are fast and slow electron drift waves, and
ω3, 4 are slow and fast hole drift waves. It should be
taken into account that the waves are usually separated
into fast and slow types at k > 0. If the wave vector can
be positive and negative, such separation is conditional.
In Fig. 1, the dashed lines correspond to the solutions
ω1, ω3, and ω4 at α  0. In this and all further figures,
numbers 1–4 correspond to the curves for waves ω1–4,
respectively. The feature of these solutions is that, at
negative wave numbers, the phase velocity of the elec-
tron drift wave becomes negative and that of the hole
drift waves, positive. With regard to the limitations on
the parameters imposed by the hydrodynamic approxi-
mation, it follows from formula (6a) that the frequency
of slow electron drift wave ω2 is negative (not shown in
Fig. 1). 

In order to explain this result, let us first consider a

case where v0e = 0 and ω± =  [15].
The plots for ω± are shown in Fig. 2. The thin curves
correspond to waves propagating in the positive direc-
tion of the coordinate axis, while the dashed lines cor-

ε0

ω0e
2

ω kv 0e– iνe+( ) ω kv 0e–( ) k2
v Te

2–
-------------------------------------------------------------------------------------–

–
ω0 p

2

ω kv 0 p iνe+ +( ) ω kv 0 p+( ) k2
v Tp

2–
--------------------------------------------------------------------------------------- 0.=

Ω2 ω0e
2 /ε0– k2

v Te
2–( )

× Ω kv 0+( )2 ω0 p
2 /ε0– k2

v Tp
2–[ ] αω0e

4 /ε0
2,=

ω0 p
2 /ω0e

2

ω1 2, kv 0e ω0e
2 /ε0 k2

v Te
2+± O α( ),+=

ω3 4, k– v 0 p ω0 p
2 /ε0 k2

v Tp
2+± O α( ).+=

ω0e
2 /ε0 k2

v Te
2+±
SEMICONDUCTORS      Vol. 39      No. 9      2005
respond to waves with negative phase velocities. We
can see that the dispersion relations for waves with pos-
itive and negative phase velocities are transformed into
each other and that the curves for waves propagating in
one direction exhibit a discontinuity at k = 0. The dash–
dotted line corresponds to the relation ωa = kv0e. By
summing these curves, we obtain the curves for ω1, 2

(bold lines). We note that all the curves are symmetric
with respect to the origin; therefore, hereafter, we con-
sider only waves with positive frequencies. In the case

1.0

0.5

–8000 –4000 0
k , cm–1

1

2 3

4

ω, 1011 s–1

Fig. 1. Dispersion curves for electron and hole drift waves
in an intrinsic semiconductor: v0e = 6 × 107 cm/s, vTe = 7 ×
107 cm/s, v0p = 3 × 107 cm/s, vTp = 1 × 107 cm/s, ε0 = 17.8,

ω0e = 4.2 × 1011 s–1, and ω0p = 2.1 × 1011 s–1. Dashed
curves 1, 3, and 4 are the dependences corresponding to
waves ω1, ω3, and ω4 at α  0.
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Fig. 2. Dispersion curves for electron and hole waves in the
absence of drift (curves +, –) and at v0e, p ≠ 0.
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where v0p = 0 and ω± = , the depen-
dences ω3, 4(k) are similar.

We now return to Fig. 1. The dispersion relation for
fast wave ω1 exhibits a characteristic bend in the range
of negative k and can intersect curves ω3 and ω4. It
should be noted that, if we take into account the thermal
velocity, we find that this wave propagates along the
negative direction of the 0x axis. If we take into account

ω0 p
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Fig. 3. Dispersion curves for drift waves in the presence of
spatial damping: (a) ω1 and ω2; (b) –ω3 and ω4; v0e = 2 ×
107 cm/s, vTe = 5 × 107 cm/s, v0p = 2 × 107 cm/s, vTp =

0.7 × 107 cm/s, ω0e = 4.2 × 1011 s–1, ω0p = 1.1 × 1011 s–1,

ε0 = 17.8, νe = 1 × 1011 s–1, and νp = 0.
the small parameter α, then we obtain the repulsion of
the curves at the crossing points. The solid curves in
Fig. 1 are the dispersion curves obtained when α is
taken into account. Physically, the crossing points cor-
respond to resonance interaction between drift waves of
various types. Near these points, the dispersion curves
are changed and a resonance region is formed. In Fig. 1,
this region corresponds to k ≈ –5800 to 0 cm–1. We note
that, in contrast to the known cases of slow drift wave
instability, the thermal velocities change the type of
interaction, with the result that the interaction between
a fast electron wave with negative phase velocity and a
slow drift wave results in instability. There are two
interaction points: between waves ω1 and ω3 and
between waves ω1 and ω4. Resonance-type instability
occurs when ω1 = ω4 and

(7)

In this case, the correction to the frequency is given by

(8)

This instability was further studied numerically. Figure 1
shows the dispersion curves for α = 0.25. The bold and
thin lines correspond to the dependences Reω(k) and
Imω(k), respectively. The domain of applicability of
the hydrodynamic approximation is denoted by the
dash–dotted line. We note that the range of instability
widens as α increases and that the increment of growth
increases. The maximum range corresponds to kres, and
the increment is given by Eq. (8). Simulation shows that
the instability range increases with the electron plasma
frequency, and the domain of applicability of the hydro-
dynamic approximation increases as well. We note that
instability of this type exists if

4. DISSIPATIVE PROCESSES

Let us consider the effect of collisions in the semi-
conductor. To this end, we rewrite Eq. (4) as

(9)

where Ω = ω – kv0e, v0 = v0e + v0p, and α = .

kres
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The solutions to this equation for the electron and
hole drift waves are given by

(10)

ω1 2, ω1 2,
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where  are the roots of Eq. (9) at α  0:

(11)

In formulas (10), the signs “+” and “–” refer to waves
ω1, 3 and ω2, 4, respectively.

Electron waves  are damped with the decre-

ment νe/2, and the hole wave decrement  of decay
is νp/2, since the radicands in A and B are always posi-
tive. We note that the influence of electron and hole col-

lisions on dispersion curves  is insignificant. 

Let us consider the interaction of drift waves with
each other (Fig. 3). The imaginary part of the frequency
from Eq. (10) for small α is written as
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The second terms on the right-hand sides in formu-
las (12) and (13) are approximately equal to ανe. There-
fore, waves ω1 and ω2 decay in the entire frequency
range, as is also shown by calculation using an exact for-
mula (Fig. 3). Waves ω3 and ω4 can grow if the relation

(14)

is satisfied. Furthermore, it can be seen from Eq. (13)
that the necessary condition for the existence of insta-
bility is the following relation between the drift velocity
and parameters of the problem:

(15)

These conclusions are confirmed by exact calcula-
tion. Figure 3 shows the dispersion relations for ω1 and
ω2 (Fig. 3a), in addition to ω3 and ω4 (Fig. 3b), calcu-
lated using formula (12). The bold and thin lines are the
dependences Reω(k) and Imω(k), respectively, and the
dash–dotted lines are the boundaries for the range of
applicability of the hydrodynamic relations (Fig. 3b).
At the chosen values of the parameters, waves ω1 and
ω2 decay with a decrement of ~–νe/2. The wave ω3 at
k > 0 grows, and the phase velocity of the hole drift
wave is positive at small k and negative at large k. At

1
ω0 p

2

ω0e
2

--------
νp

νe

-----> >

v 0 k 1– ω0 p
2 /ε0 k2

v Tp
2 νp

2 /4–+ .>
k < 0, the wave decays. The curve for wave ω4 is sym-
metric to ω3 with respect to the origin; i.e., this wave is
amplified at k < 0. The inset in Fig. 3b shows the results
of the calculation using approximate formula (13). We
can see that, near the origin, these results are slightly
different.

5. CONCLUSIONS
We considered the instabilities of semiconductor

electron–hole plasma under the assumption that the
Langmuir frequencies and thermal velocities of carriers
are slightly different. This assumption is a distinctive
feature of this study as opposed to those carried out in
the early 1960s. In this approximation, electron and
hole drift waves, which differ only by the parameters
associated with electron and hole mobilities and
masses, can propagate in plasma. It is clear that the
propagation directions of electron and hole drift waves
are opposite to each other.

We showed that efficient interaction of various drift
waves is possible in the range of negative phase veloc-
ities. Inequalities for the electron and hole drift veloci-
ties at which instabilities occur were derived. Simula-
tion showed that there exists a resonance frequency
range that increases as the ratio of the Langmuir fre-
quencies for electrons and holes tends to unity. 
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When the Langmuir frequencies and thermal veloc-
ities are exactly equal, it is shown that the instabilities
are aperiodic. If the thermal velocity is taken into
account, the increment decreases, and the condition for
instability contains the sum of the electron and hole
drift velocities. Dissipative processes give rise to non-
resonance instability of the hole waves. This instability
can occur at both positive and negative phase velocities.
In this case, the electron drift waves are damped.

Finally, we mention the two most significant results
obtained in this study. We showed that a resonance inter-
action occurs between electron and hole drift waves (1);
therewith, both waves should have negative phase veloc-
ities. The interaction appears if the condition

is satisfied or if the electron and hole concentrations are
equal:

Assuming that v0p = v0e(1 – α), where α < 1, we obtain

It follows from this inequality that, for instability to
occur, the electron drift velocity must be lower than
their thermal velocity by a factor of 2 or greater.

When studying cases in which the electron and hole
Langmuir frequencies are equal and the dissipative pro-
cesses are taken into account, we found that, for the
instability to occur, the carrier velocity should exceed
the thermal velocity, which is impossible in semicon-
ductors.

In order to observe the effects under study, semicon-
ductors with a high mobility of about 5 × 105 cm2/(V s)
are required, e.g., InSb at liquid-nitrogen temperature
or PbTe at liquid-helium temperature. For thin-layer
materials, GaAs-based layered structures can appar-
ently be used.
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Abstract—Electron traps in low-temperature-grown ~40-nm-thick GaAs layers containing nanometer As–Sb
clusters have been studied using deep-level transient spectroscopy. Measurements at various bias voltages and
small-amplitude filling pulses have allowed the identification of two groups (T1 and T2) of traps with substan-
tially different thermal electron emission rates. It is shown that the density of traps T2 (with an activation energy
of 0.56 ± 0.04 eV and electron capture cross section of 2 × 10–13–10–12 cm2) is ~2 × 1012 cm–2, while the density
of traps T1 (0.44 ± 0.02 eV and 2 × 10–14–10–13 cm2, respectively) is ten times lower. It is assumed that, according
to the existence of the two cluster groups observed in the layers under study, traps T2 are associated with clusters
4–7 nm in diameter and traps T1, with clusters up to ~20 nm in diameter. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Doping of gallium arsenide grown by low-tempera-
ture molecular-beam epitaxy (LT GaAs) can be used to
control the spatial distribution of clusters in this mate-
rial [1–5]. The “two-dimensional” (2D) cluster layers
generally obtained in this case contain, in addition to
excess As atoms, a significant number of dopant atoms
(Si, In, Sb). This circumstance can affect the properties
of the layers and their electron traps. However, the
parameters of these traps have barely been studied. In
the only study [6] dealing with this problem, carried out
using 2D layers of As–Sb clusters in LT GaAs, traps
with an activation energy of thermal electron emission
close to 0.5 eV and a density of ~2 × 1012 cm–2 were
detected.

This paper continues the investigation initiated in [6].
We comprehensively study thermal electron emission
from traps in a thin LT-GaAs layer using deep-level
transient spectroscopy (DLTS).

The application of various reverse biases to a struc-
ture with a Schottky barrier whose space charge region
contains a 2D layer of As–Sb clusters has made it pos-
sible to identify trap groups with significantly different
thermal emission rates of electrons and to estimate their
parameters. The results were confirmed and comple-
mented by measurements of the current–voltage (I–V)
and capacitance–voltage (C–V) characteristics.

The samples under study and the measuring system
were described in [6].
1063-7826/05/3909- $26.00 1013
2. STUDY OF ELECTRON EMISSION RATES 
FROM DEEP TRAPS

When there is a sufficiently large reverse bias on the
Schottky barrier (Ub ≤ –3 V), if the voltage on it
remains above ~–1 V during the filling pulse, the DLTS
spectrum contains two well resolved peaks, which indi-
cates the recharging of two different deep-level centers
(Fig. 1a). However, under these measurement condi-
tions, after the filling pulse is turned off, the space
charge layer of the Schottky barrier penetrates into the
heavily doped substrate due to the large negative charge
accumulated at these centers, which distorts the capac-
itance relaxation curves and the DLTS spectrum [7].
Therefore, to construct Arrhenius plots characterizing
the deep levels, we measured DLTS spectra at different
Ub but kept the amplitude of the filling pulse small and
constant (1 V). The variation in the capacitance of the
structure showed that, under these conditions, the space
charge region did not reach the substrate during DLTS,
thus providing a normal shape of the temporal capaci-
tance relaxation corresponding to displacements of the
space charge layer boundary in a uniformly doped
region. In this case, only a minor fraction of the entire
set of deep centers, whose energy levels lie near the
quasi-Fermi level in the 2D cluster layer, is filled and
depleted. The DLTS spectrum generally exhibited a
single peak corresponding to almost monoenergetic
levels (Fig. 1b, curves 1, 3). A change in the reverse bias
resulted in a shift of the peak of the DLTS spectrum
(Fig. 1b), since the quasi-Fermi level position is
changed with respect to the spectrum of energy states in
the cluster layer [6].
© 2005 Pleiades Publishing, Inc.
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The Arrhenius plots constructed on the basis of the
DLTS spectra at various bias voltages are shown in
Fig. 2. At Ub ≤ –3 V, the deep-center parameters, as
in [6], were determined from the high-temperature seg-
ments of the curves shown in Fig. 2, since the low-tem-
perature segments were distorted due to the tempera-
ture dependence of the level-filling factor [6].

We see in Fig. 2 that the electron traps detected in
the structure can be classified into two groups. One
group, denoted as T1, consists of centers that manifest
themselves at low reverse-bias voltages (–1.8 to –2.7 V).
The activation energy ET1 of these centers is 0.44 ±
0.02 eV, and the electron capture cross sections σT1
(calculated under the assumption that the coefficient
related to the degeneracy of the level under study is
unity) lie in the range 2 × 10–14–10–13 cm2. In this case,
the electron emission rate from the probed fraction of
these centers decreases as the reverse bias increases in
the measured temperature range (190–240 K). Since an
increase in the reverse bias causes an increase in the
activation energy of the probed fraction of deep centers,
such a decrease is at least in part associated with the
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Fig. 1. DLTS spectra of the structures under study with the
emission-rate window en = 1.55 ms–1 at various bias volt-
ages: (a) Ub = –4 V and Up = 4 V; (b) (1) Ub = –4 V and
Up = 1 V, (2) Ub = –2 V and Up = 0.8 V, and (3) Ub = –2.5 V
and Up = 1 V.
increase occurring in the above-mentioned ET1 range.
The second group of traps, denoted as T2, consists of
centers detected at Ub ≤ –3.1 V (Fig. 2). Thermal elec-
tron emission from these centers is characterized by the
following parameters: ET2 = 0.56 ± 0.04 eV and σT2 =
2 × 10–13–5 × 10–12 cm2.

In the intermediate range of reverse biases (Ub ≈
−2.8 to –2.9 V), the peak in the DLTS spectrum is
appreciably broadened (Fig. 1b, curve 2), since the
recharging of both observed groups of centers, whose
peaks are not resolved in the DLTS spectrum, contrib-
utes to a change in capacitance.

3. STUDY OF THE I–V 
AND C–V CHARACTERISTICS 

OF THE STRUCTURE

First, we note that the current through the structure
is limited by the high-resistivity of the LT-GaAs layer
and linearly increases with the forward bias on the
Schottky barrier if the barrier is sufficiently wide
(Fig. 3a). The dependence of the structure conductivity
in this segment of the I–V characteristic on the inverse
temperature (Fig. 3b) is described by an activation
energy of 0.42 eV, which is almost equal to that of ther-
mal electron emission from the T1 levels. This fact indi-
cates that the Fermi level in the LT-GaAs layer is con-
trolled by the T1 centers, whose electron-capture cross
section varies slightly with temperature.

5.04.54.0

10–4

en /T2, K–2 s–1

1000/T, K–1

1

2

34
5

678

3.5

10–3

10–2

Fig. 2. Arrhenius plots for the electron traps detected at
Up = 1 V and at various bias voltages applied to the struc-
ture. Ub = (1) –2, (2) –2.3, (3) –2.5, (4) –2.7, (5) –3.1, (6) –5,
(7) –8, and (8) –13 V.
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The dependence of the high-frequency capacitance
of the structures (at 1 MHz) on the reverse bias, mea-
sured at various temperatures, is shown in Fig. 4. As
in [6], the bias voltage was varied from Ub = 0 in steps
of 15 mV, and the time of sample exposure at each bias
was 2.5 s. A small decrease in the capacitance C with
temperature in the regions of the initial decrease in C
and the C quasi-independence is associated with a
change in the built-in contact potential of the barriers,
as well as with a decrease in the contribution of high-
frequency electron exchange between the GaAs con-
duction band and relatively shallow electronic states
(these states exist both in LT GaAs and the neighboring
low-resistivity n-type GaAs) to the structure capaci-
tance. The main changes in the C–V characteristic as
the temperature is lowered consist in the narrowing of
the region of quasi-constant capacitance (Fig. 4) due to
a decrease in the number of states that have time to
excite trapped electrons to the GaAs conduction band
as the reverse bias increases.

Since no peaks corresponding to the T2 levels were
observed in the DLTS spectra at Ub ≥ –2.7 V (Figs. 1b, 2),
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Fig. 3. (a) Current–voltage characteristics of the structure at
various temperatures: T = (1) 306, (2) 291, (3) 275, (4) 261,
(5) 245, and (6) 230 K; (b) the temperature dependence of
the conductivity of the structure at a bias exceeding 2 V.
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the quasi-Fermi level in the LT-GaAs layer at such bias
voltages lies above the T2 levels in a steady state.
Therefore, the region of quasi-constant capacitance
observed at 190 K (Fig. 4), whose upper boundary lies
at Ub ≈ –2.7 V, is controlled only by electron emission
from the T1 traps. The data presented in Fig. 2 show
that the thermal electron emission rate from the T1 traps
at T = 190 K is no lower than 2 s–1. Hence, almost all
the T1 traps that have captured electrons at Ub = 0 have
time to excite them to the conduction band during the
measurement of the C–V characteristic. At the same
time, the extrapolation of Arrhenius curves for the fast-
est centers of the T2 group (Fig. 2) to the low-tempera-
ture region shows that the electron emission rate for
these traps lies in the range 0.03–0.05 s–1 at T = 190 K.
This result means that, even if the quasi-Fermi level is
close to the T2 levels, these centers have no time to effi-
ciently maintain the quasi-constancy of the capacitance
at T = 190 K at the experimental bias variation rates. At
the same time, all the T2 centers have rather high elec-
tron emission rates at T = 270 K and the region of quasi-
constant capacitance extends down to Ub ≈ –18 V
(Fig. 4). Since the emitted charge is equal to the prod-
uct of the capacitance and the voltage difference ∆Ub

corresponding to the width of this region, the data
shown in Fig. 4 allow us to estimate the density of elec-
trons trapped by the T1 and T2 centers in equilibrium at
zero bias. Since the sample area was 1.1 × 10–3 cm2,
such an estimation yields nT1 ≈ 1011 cm–2 (∆Ub ≈ 1 V)
and nT2 ≈ 2 × 1012 cm–2 (∆Ub ≈ 18 – 3 = 15 V).

Since the Fermi level in the LT-GaAs layer lies in
the region of the T1 energy levels (as was shown in
this section), the total concentration of T1 traps is
slightly higher than nT1, while the total concentration
of T2 traps is nT2.
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Fig. 4. Capacitance–voltage characteristics of the structure
at various temperatures: T = (1) 190, (2) 210, (3) 230,
(4) 250, and (5) 270 K.
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4. CONCLUSIONS
We have shown that there are two groups of centers

with significantly different thermal electron emission
rates in thin LT-GaAs layers containing As–Sb clusters.
We may assume that this circumstance is caused by the
fact that the material under study contains two groups
of As–Sb clusters of different sizes, namely, clusters
4−7 nm in diameter and very large clusters up to 22 nm
in diameter [6]. The electron emission rates for the
T2 centers are close to those for Q2 centers, which we
previously associated with As clusters 6–8 nm in diam-
eter [7]. Therefore, under the assumption that incorpo-
ration of a significant number of Sb atoms into the clus-
ters only slightly changes the parameters of the traps
associated with these clusters, we may assume that the
T2 traps are related to clusters 4–7 nm in diameter.
Then, the T1 traps can be associated with the large
As−Sb clusters. However, an accurate identification of
the origin of the detected traps requires further study.
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Abstract—The physical parameters of a new five-component HgCdMnZnTe semiconductor alloy are studied.
It is shown that this material is quite competitive with HgCdTe, i.e., the basic material for photoelectronics in
infrared ranges of 3–5 and 8–14 µm. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Currently, due to its unique properties, the basic
optoelectronic material for the infrared range is
Hg1 − xCdxTe (MCT) [1, 2]. The wide band-gap range
(0–1.6 eV) of this alloy and the minimum lattice mis-
match between CdTe and Hg0.8Cd0.2Te allow efficient
growth of epitaxial structures based on these materials,
and the high carrier mobility makes it possible to
develop fast-response devices [3]. A major disadvan-
tage of MCT is the weak chemical bond Hg–Te, which
gives rise to a large number of mercury vacancies and
mercury diffusion to the surface. This process results
not only in degradation of the material bulk parameters
but also in problems in maintaining stability of the sur-
face and interface properties in the structures.

In [2], a hundredfold decrease in the carrier lifetime,
as well as conductivity-type inversion of MCT crystals,
was observed after five years of storage. In our opinion,
these changes are caused by mercury vacancy forma-
tion and a subsequent diffusion of Hg atoms to the crys-
tal surface, where they evaporate. These conclusions
were confirmed in [4]. Direct measurements of the sur-
face concentration of MCT components upon heating
to 470 K [5] demonstrated a decrease in the surface
mercury concentration with temperature. In this case,
concentrations of the other MCT components remained
unchanged.

At the same time, an alternative mechanism of
changes in the MCT parameters during storage was
suggested in [6]. It was assumed that the carrier lifetime
in MCT directly depends on local gradients of the com-
ponent concentrations (i.e., on the inclusion concentra-
tion) and the mercury concentration gradients in an ini-
tial material [6]. Material “aging” is directly related to
structural defects: grain and low-angle boundaries, dis-
locations, etc. This conclusion was also confirmed by
1063-7826/05/3909- $26.00 1017
our studies of thin MCT layers (15–20 µm thick)
exposed to a temperature of 80°C over six months.

The described MCT disadvantages can mostly be
eliminated using modern technology; however, this
greatly increases the cost of the produced materials.
Thus, it remains urgent to search for ways to improve
MCT crystal stability and homogeneity or to synthesize
analogues with more perfect and stable lattices.

This goal can be achieved by introducing elements
with ion radii smaller than that of MCT into the alloy,
which should stabilize the Hg–Te crystal bond. Partic-
ularly favored as such isovalent elements are Mn and
Zn, whose ion radii (1.39 and 1.3 Å) are much smaller
than that of cadmium (1.56 Å) [7, 8]. An increase in the
Hg–Te bonding energy in the presence of manganese
was theoretically predicted in [9]. In [10–12], it was
shown that Mn has a beneficial effect not only on the
crystal structure quality but also on the alloy surface
properties. Annealing of Hg1 – xZnxTe (MZT) crystals in
mercury vapor was studied in [13], In that case, the
results suggested that zinc decreases the mercury diffu-
sivity more than ten times in comparison with MCT
without Zn.

Taking into account the above-mentioned findings, we
believe that a five-component Hg1 – x – y – zCdxMnyZnzTe
(MCMZT) alloy with an insignificant manganese and
zinc content should advantageously differ from MCT
by demonstrating (i) higher temporal and thermal sta-
bility, (ii) higher structural quality, and (iii) better sur-
face and interface properties.

2. CRYSTAL GROWTH AND X-RAY 
DIFFRACTION STUDIES

MCMZT crystals were grown using a modified form
of the floating-zone melting method from preliminarily
synthesized homogeneous polycrystalline ingots 15–
© 2005 Pleiades Publishing, Inc.
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18 cm long and 15–20 nm in diameter. We used initial
Cd, Te, Zn, and Hg components with a purity of no
lower than 99.9999 wt % and a Mn component of
99.998 wt % purity that was additionally purified by
double vacuum distillation. The modification of the
conventional vertical floating-zone melting consisted in
ingot growth at an angle of 30°–60° to the horizontal
and intense mixing of the melt due to axial rotation.
Two MCMZT ingots with various manganese contents
were grown. The initial contents of the components
were x = 0.14 and 0.1, y = 0.02 and 0.04, and z = 0.01
and 0.01 for the first and second ingots, respectively.

As a rule, the distributions of the components and,
hence, the band gap along the ingot length were non-
uniform; therefore, samples cut from various areas of
the ingots were studied.

Samples for studying the optical, electrical, and
mechanical properties were cut from 500- to 600-µm-
thick wafers obtained by cutting an ingot normally to
the growth direction. The damaged layer formed during
cutting and grinding was removed by polishing using
ASM2/1 and ASM1/0 diamond pastes. The surface was
subjected to a finishing chemomechanical polishing.

According to X-ray diffraction studies using the
Berg–Barret and Laue methods, the MCMZT crystals
are of a large-block type, with block sizes of 0.9–4.5 mm
and misorientations between them of 25″–300″ (see
Fig. 1). It should be noted that the block size increases
with the number of components in semiconductor
alloys such as MCT from 0.2–0.6 mm for Hg1 – xCdxTe
to 0.5–1.5 mm for Hg1 – x – yCdxMnyTe and 0.9–4.5 mm
for Hg1 – x – y – zCdxMnyZnzTe.

Fig. 1. X-ray topographic image of an MCMZT crystal in a
(422) reflection. The magnification was ×16.
Thus, an increase in the block size for MCMZT by
a factor of 7–8 in comparison with MCT indicates
improvement of the crystal structure of the proposed
five-component alloy. In order to confirm this conclu-
sion, the microhardness of these alloys was studied.

3. MICROHARDNESS STUDY

Microhardness was studied in MCT, MCM“, and
MCMZT samples whose surfaces were oriented close
to the {110} plane. Measurements were carried out by
the conventional Vickers technique using a PMT-3
device at a load of 35 g, which corresponded to the
microhardness "plateau.” The loading time was 5 s. The
microhardness was averaged over 10–12 measure-
ments.

In this case, the most accurate results are obtained
by comparing the microhardness of crystals of various
compositions but with approximately equal band gaps
at room temperature (Fig. 2). The data obtained for
MCT agree well with the previously obtained results
[14]. The microhardness of all the crystals under study
was found to increase with the band gap, which corre-
sponds to an increase in the Cd, Mn, and Zn content.

For MCT, the microhardness varied from 36.8 kg/mm2

at the band gap Eg = 0.14 eV (which corresponds to the
composition x ≈ 0.19) to 52.7 kg/mm2 at Eg = 0.38 eV
(x ≈ 0.37) (Fig. 2). 

The MCMT microhardness varied from 41.2 kg/mm2

at Eg = 0.15 eV to 52.9 kg/mm2 (at Eg = 0.365 eV), and
the MCMZT microhardness varied from 42.3 kg/mm2

(Eg = 0.15 eV) to 53.7 kg/mm2 (x = 0.29 eV) for the first
ingot, containing 2% Mn (in the initial mixture), and
from 45.8 kg/mm2 (Eg = 0.17 eV) to 60.1 kg/mm2 (Eg =
0.35 eV) for the second ingot, which had 4% Mn. We can
see that the crystal microhardness increases by ~12% as

0.150.200.250.300.350.40
36

40

44

48

52

56

60

Eg, eV

H, kg/mm2

HgCdTe
HgCdMnTe
HgCdMnZnTe(1)
HgCdMnZnTe(2)

Fig. 2. Microhardness of MCT, MCM“, and MCMZT crys-
tals with various manganese contents. HgCdMnZnTe(1)
and HgCdMnZnTe(2) are the first and second MCMZT
ingots, with 2% and 4% of Mn, respectively.
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manganese is added to the alloy at Eg = 0.15 eV and by
~3% at Eg = 0.35 eV for MCMT. This result is also con-
firmed by an increase of &8% in the microhardness
of the second MCMZT ingot in comparison with the
first ingot. 

These results obviously suggest that the lattice of
mercury-containing materials such as MCT is strength-
ened due to small amounts of both Zn and Mn.

4. BAND GAP DETERMINATION

The band gap of the MCMZT crystals was deter-
mined by optical absorption curves at room tempera-
ture, since almost all the crystals were optically trans-
parent after growth. The transmittance varied from sev-
eral percent to 60%. The fundamental absorption edge
lay in the wavelength range 4–8 µm, which corresponds
to a band gap from 0.15 to 0.3 eV. Typical absorption
curves are shown in Fig. 3.

We can see that samples taken from the first ingot
(2% Mn) feature a band gap from ~0.16 to 0.3 eV and
a rather smooth fundamental absorption edge. Samples
cut from the second ingot (4% Mn) (not shown in Fig. 3)
are characterized by a band gap from 0.2 to 0.34 eV
and, on average, have a wider band gap than the first
ingot. However, the absorption edge of the narrow-gap
samples from this ingot has an insufficient steepness for
reliable determination of the band gap.

The band gap of the obtained MCMZT samples was
also determined from the temperature dependence of
the Hall coefficient in the intrinsic conductivity region
(in the case of samples with a pronounced intrinsic con-
ductivity region).

A summary of the results of Eg determination at
room temperature is given in Table 1.

We can see that the band gaps determined using the
two methods are almost identical for samples 1a-1, 1a-15,
1b-2 and correlate for the nearby samples (2a-3 and 2a-4).
As we recede from the ingot origin (the samples are
arranged in Table 1 exactly in this way), the band gap
decreases, which corresponds to the normal distribution
of components in the ingot from its origin to its end.

5. GALVANOMETRIC MEASUREMENTS

The Hall coefficient, conductivity, and mobility of
carriers were determined by the dc Van der Pauw
method in the temperature range 4.2–300 K using the
setup described in [15].

Three samples from the first ingot (1b-2, 1a-1, and
1a-15) and two samples from the second ingot (2a-1
and 2a-6) were chosen for further analysis. On the one
hand, the properties of these particular samples are
closest to Hg0.8Cd0.2Te and Hg0.7Cd0.3Te; on the other
hand, their temperature dependences of the Hall coeffi-
cient and mobility allow determination of the impurity
concentration and activation energy (Fig. 4).
SEMICONDUCTORS      Vol. 39      No. 9      2005
The results of the study show that the conductivity
of the majority of the samples increases as the temper-
ature is elevated from 4.2 to 300 K (Fig. 4b). For the
chosen samples from the first ingot, a rather wide range
of intrinsic conductivity is observed at T > 150 K. At the
same time, sample 2a-6 from the second ingot exhibits
an almost constant conductivity in the range 50–300 K.
In our opinion, this offers an indication of a significant
concentration of impurities and their low activation
energy.

The carrier mobility in the chosen samples varied
from 10 to 3 × 104 cm2/(V s) (Fig. 4c) depending on
their band gap, which indicates that the narrow- and
wide-gap crystals have different properties. It should be

0.320.280.240.200.160.12
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1a-1
1b-10
1b-5
1b-2
1a-4
1b-9 (×4)
1b-3 (×4)
1a-15 (×20)

Fig. 3. Curves showing the optical absorption of MCMZT
samples from the first ingot (T = 300 K). The symbols
correspond to data on various samples from the
HgCdMnZnTe(1) ingot.

Table 1.  Band gap of the MCMZT samples

Sample Eg, eV (optical
measurements)

Eg, eV (galvanomag-
netic measurements)

1a-1 0.297 0.3

1a-4 0.275 –

1a-15 0.194 0.188

1b-10 0.244 –

1b-9 0.235 –

1b-5 0.224 –

1b-2 0.157 0.151

1b-3 0.175 –

2a-3 0.335 –

2a-4 – 0.322

2a-6 0.244 –

2a-7 0.23 –

2b-1 0.2 –
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noted that the highest mobility observed among all the
samples under study was 8.4 × 105 cm/(V s) at T = 78 K
in one of the samples from the first ingot.

In the high-temperature region, carrier mobilities in
the samples from the first ingot, as well as the slope of
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Fig. 4. Temperature dependences of the (a) Hall coefficient,
(b) conductivity, and (c) Hall mobility of MCMZT samples
from the two ingots.
the temperature dependences, were almost identical,
which is caused by identical mechanisms of carrier
scattering at T > 200 K (Fig. 4c). At the same time, the
room-temperature carrier mobility in samples from the
second ingot was much lower than that in samples from
the first ingot. This difference can be explained by the
fact that the manganese content in the second ingot was
two times larger, which resulted in an increase in the
material band gap and, hence, a decrease in the intrinsic
concentration of carriers and their mobility.

6. IMPURITY CONCENTRATION 
AND ACTIVATION ENERGY

Since we are concerned with two types of tempera-
ture dependences of the Hall coefficient for the chosen
samples, i.e., a minimum in the low-temperature region
(samples from the first ingot) and a sign reversal of the
Hall coefficient in the high-temperature region (sam-
ples from the second ingot), two methods were used to
determine the impurity concentration.

The first method was based on a model involving a
single discrete acceptor level near the valence-band top
and a single donor level near the conduction-band bot-
tom. This method was used to determine the parameters
of the samples from the second ingot, which were
p-type at low temperatures [16]. Here, it was assumed
that a donor impurity is always ionized. Then, the tem-
perature dependence of the hole concentration at low
temperatures is given by

(1)

where NV is the effective density of states in the valence
band; g is the factor of acceptor level degeneracy; EA is
the impurity activation energy; and ND and NA are the
donor and acceptor concentrations, respectively. In the
case of a compensated material, Eq. (1) is simplified to
the form

(2)

The effective mass of heavy holes in the calculation
was taken as mhh = 0.55m0 [17], and the level degener-
acy factor g was set to four [16]. Then, the dependence
RHT3/2 (or RH) on the inverse temperature was plotted,
and ND, NA, and EA were determined in the low temper-
ature region by the method of best fit with respect to the
theory and experimental data.

In order to determine ND and NA for samples from
the first ingot, a second method, based on estimation of
the impurity concentration from the temperature depen-
dence of the carrier mobility in the region of dominant
scattering by ionized impurities, was used. To deter-
mine the temperature range in which scattering by ion-
ized impurities is the prevalent mechanism, the temper-
ature dependences of the carrier mobility were numeri-

p p ND+( )
NA ND–( ) p–

----------------------------------
NV

g
------- EA/k0T–( ),exp=

p
NA ND–( )

ND

-------------------------
NV

g
------- EA/k0T–( ).exp=
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Table 2.  Impurity content and activation energy in the MCMZT samples

Sample
Hall coefficient* Mobility** Impurity activation 

energy EA, meVND, cm–3 NA, cm–3 ND, cm–3 NA, cm–3

2a-1 1.7 × 1017 2 × 1017 1.9 × 1017 2 × 1017 9

2a-6 8.5 × 1016 1.4 × 1017 – – 0.1

1a-1 – – 1.9 × 1016 1.92 × 1016 –

1a-15 – – 1.5 × 1016 1.6 × 1016 –

1b-2 – – 3 × 1015 1016 –

* Data obtained by studying the temperature dependence of the Hall coefficient in the temperature range 5–40 K.
** Data obtained by calculating the temperature dependence of mobility.
cally simulated for scattering by optical phonons and
ionized impurities.

In order to calculate the mobility for carrier scat-
tering by ionized impurities, the Brooks–Herring for-
mula [16] was used:

(3)

Here, lny = ln(1 + b) – b/(1 + b); in nondegenerate
semiconductors,

in the case of degeneracy,

Here, κ is the crystal permittivity, Ni is the concentra-
tion of ionized impurities, and n is the free-carrier con-
centration.

In order to calculate the mobility for carrier scat-
tering by polar optical phonons, a relaxation time for-
mula [18] was used:

(4)

where

Here, χs and χ∞ are the static and high-frequency per-
mittivities, respectively; ε is the energy; κ is the carrier
quasi-momentum; and Fop is a function accounting for
the nonparabolicity of the material band structure.

The mobility was simulated by using donor and
acceptor concentrations as adjustable parameters. The
impurity concentrations estimated by both methods are
listed in Table 2. The temperature dependences of the

µi
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Hall coefficient and mobility of sample 2a-1 allowed
determination of the impurity concentration by both
methods, which yielded almost identical results.

It follows from an analysis of the data that the first
ingot was “purer” than the second one: (0.3–1.92) ×
1016 as opposed to (0.85–2) × 1017 cm–3. It is clear that
the narrower (on average) band gap and lower impurity
concentration in the first ingot result in rather high
mobilities, as indicated above.

For sample 2a-1, at the point of the Hall coefficient
inversion, we estimated the ratio of electron and hole
mobilities. The value obtained (~117) is consistent with
the conventional value for this type of material (~100),
which also indicates the similarity between the proper-
ties of MCMZT and MCT [19].

7. CONCLUSION

The structural, mechanical, and galvanomagnetic
properties of single crystals of the new semiconductor
alloy Hg1 – x – y – zCdxMnyZnzTe, grown using a modified
floating-zone melting, were studied for the first time.

It was shown that a minor admixture of zinc and
manganese (up to 5–7%) in the alloy causes an increase
in single-crystal block sizes, as well as an increase in
the crystal microhardness, which indicates strengthen-
ing of the lattice of mercury-containing materials such
as MCT.

The donor and acceptor concentration in the sam-
ples studied was estimated as (0.3–20) × 1016 cm–3, and
the activation energy of the acceptor level was esti-
mated as 0.1–9 meV.

The band gap of the samples was determined as
0.15–0.335 eV. The values of Eg determined from the
fundamental absorption curves correlate well with the
values obtained from galvanomagnetic measurements.

These results allow us to conclude that the studied
alloy has the potential to become an alternative material
for producing infrared detectors sensitive in spectral
ranges of 3–5 and 8–14 µm.
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Abstract—The Hall factor and thermoelectric properties of an n-Bi2Te2.7Se0.3 solid solution with the room-
temperature Seebeck coefficient |S| = 212 µV/K have been studied in the temperature range 77–350 K. The
observed temperature dependences demonstrate a number of specific features, which were earlier found in sam-
ples with a lower electron density N. The effect of these specific features on the thermoelectric figure of merit
Z appears to be more favorable for the sample under study: this sample is most efficient in the temperature range
120–340 K, and the average value of ZT is 0.71. It is found that a rise in the density N enhances the factor
responsible for the effective mass decreasing as the temperature increases. This effect appears when the analysis
is carried out in terms of a single-band parabolic model with N = const(T). This finding suggests that the most
probable reason for the unusual behavior of these properties is the complex structure of the electron spectrum.
Temperature dependences obtained from calculations of the transport coefficients show good agreement with the
experimental data for two samples of the mentioned composition with different electron densities. The calcula-
tions have been performed in terms of a two-band model and an acoustic scattering mechanism and take into
account the anisotropy and nonparabolicity of the light-electron spectrum. © 2005 Pleiades Publishing, Inc.
In a previous paper [1], we discussed the difference
between the thermoelectric properties of lightly doped
n-Bi2Te1 – xSex and PbTe1 – xSex solid solutions, where
the thermoelectric figure of merit Z reaches its maxi-
mum at temperatures T below room temperature. It was
shown that the standard model considering a single-
band electron spectrum and acoustic scattering mecha-
nism, which is applicable for the second type of these
solid solutions, does not provide a satisfactory descrip-
tion of temperature behavior of the transport coeffi-
cients and thermoelectric figure of merit for solid solu-
tions based on Bi2Te3. For example, the application of
this model yields a nonmonotonic temperature depen-
dence of the effective mass in a Bi2Te2.7Se0.3 solid solu-
tion; no explanation is found for the weaker tempera-
ture variation of the Seebeck coefficient when the Se
content increases. The problems arising when describ-
ing the properties of these materials at T = 77–300 K in
terms of this model were reported much earlier [2].
However, attempts to explain the observed discrepan-
cies were limited to the introduction of a scattering
parameter reff, which was found to be dependent on T,
the Se content x, and the electron density N in terms of
a model of a single-band parabolic spectrum [3]. This
approach does not allow the physical factors that gov-
ern the transport of electrons in the materials under
study to be included in the consideration. In order to
explain the observed specific features, several ideas
1063-7826/05/3909- $26.00 1023
were suggested in [1], including possible variations in
the scattering mechanism as well as in the electron
spectrum. The importance of the last factor follows
from the fact that the Hall factor decreases as the tem-
perature increases, which has been observed in a solid
solution with x = 0.3 in [1] and, earlier [2, 4]. If the pos-
sibility of an electron density increase with temperature
is taken into account, the effective mass increases
steadily with temperature, in agreement with the data
for a Bi2Te2.88Se0.12 solid solution. This observation
indicates the nonparabolicity of the conduction band in
the materials under study. Among possible sources of
the electron density increase discussed in [1], a random
profile of the conduction band bottom, which leads to
the existence of a mobility threshold in samples of
inhomogeneous composition, and the formation of
defect levels near the band bottom are typical of lightly
doped materials, whose properties were studied in [1].
A third possible source, the involvement of a heavy
conduction band in transport phenomena, is more
important for more heavily doped samples, where the
contribution of heavy electrons is stronger due to their
higher density. This circumstance constituted the rea-
son for our further efforts to develop a theoretical
model offering an adequate description of the specific
features found in the thermoelectric properties of the
materials under study.
© 2005 Pleiades Publishing, Inc.
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Now, we present experimental data on the tempera-
ture dependences of the Seebeck coefficient S, the elec-
trical and thermal conductivity σ and κ, and the Hall
factor in a chlorine-doped Bi2Te2.7Se0.3 solid solution
(the doping level was chosen so as to obtain the highest
thermoelectric figure of merit Z at room temperature).
The thermoelectric parameters were measured in the
temperature range 77–350 K; the current and tempera-
ture gradient were parallel to the cleavage planes. The
Hall effect was measured at temperatures up to 450 K
in a magnetic field perpendicular (ρ123) or parallel (ρ231)
to the cleavage plane. Analysis of the experimental data
showed that the specific features observed earlier in
samples of a solid solution with a lower electron den-
sity [1] are also inherent in the sample under study. Spe-
cifically, the features in question are a decrease in Hall
factor as the temperature increases; a small variation in
the Seebeck coefficient and, especially, the electrical
conductivity within the mentioned temperature range,
which results in a nonmonotonic temperature depen-
dence and a high magnitude of the power factor; and,
finally, a shift of the thermoelectric figure of merit max-
imum to the range where the effect of intrinsic carriers
is significant. Owing to these specific features, which
are the most quantitatively favorable in the case in
question, the given sample demonstrates the highest
thermoelectric figure of merit Z in the temperature
range 120–340 K, with the average (ZT)av = 0.71. This
result is confirmed by the temperature dependences of
some of the characteristics of the sample, which are
shown in Fig. 1. The power factor S2σ and the figure of
merit Z are presented in comparison with data for a
more lightly doped solid solution with a room-temper-
ature Seebeck coefficient S = –285 µV/K [1].The last of
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Fig. 1. Temperature dependences of (1, 2) the power factor
S2σ, (1', 2') the thermoelectric figure of merit Z, and (2'') the
thermal conductivity κ for two samples of a Bi2Te2.7Se0.3
solid solution with different doping levels. (1, 1'), sample
no. 1, (2, 2', 2''), sample no. 2. The Seebeck coefficient |S| at
300 K for sample nos. 1 and 2 was 285 [1] and 212 µV/K,
respectively.
the above-mentioned specific features is illustrated by
the thermal conductivity curve: the peak of Z lies in the
temperature range where the bipolar contribution to the
total thermal conductivity of the sample is significant.

An estimation of the temperature dependence of the
effective mass in the range 85–240 K, performed in a
similar way to that in [1], in terms of a parabolic model
with a temperature-independent electron density yields
a weak steady decrease in m* under the law m* ∝  T–0.06

as the temperature increases. This result means that the
anomalous behavior of the effective mass, which
appears at the temperatures 85–120 K in lightly doped
samples, extends over the whole temperature range in
the sample with a higher electron density. Thus, the role
of the factor leading to the decrease in m* as tempera-
ture increases is enhanced not only by an increase in the
Se content [1, 5] but also by an increase in the electron
density. If the increase in the electron density with tem-
perature is taken into account in the analysis of the
Hall-effect data, we obtain a weak increase in the effec-
tive mass under the law m* ∝  T0.035 as the temperature
increases.

On the basis of these estimates, we can assume that
the most probable source of the specific features
observed in the transport properties of Bi2(TeSe)3 solid
solutions is the complex structure of the electron spec-
trum. The necessity of applying the concept of a com-
plex conduction band structure in Bi2Te3 and
Bi2(TeSe)3 solid solutions to explain their low-temper-
ature (T ≈ 4.2 K) characteristics was shown in [6, 7].
Therefore, it seemed reasonable to calculate the trans-
port coefficients at 85–300 K for two samples of a
Bi2Te2.7Se0.3 solid solution with different doping levels,
taking into account the second conduction band with a
heavier electron mass.

An anisotropy of the energy spectrum and scattering
is inherent in Bi2Te3 – xSex solid solutions. The anisot-
ropy of the relaxation time is small when acoustic scat-
tering dominates, as is the case in the temperature range
under study. The anisotropy of the energy spectrum
exerts influence on the contributions of each band to the
transport coefficients; however, accurate calculation of
these contributions is possible only if the anisotropy of
the dispersion law for both bands is known. In our cal-
culations, we used the Drabble–Wolfe model for
describing the dispersion law in the light conduction
band (C1 band) [8]. Due to the lack of published data
for the heavier electron band (C2 band), an isotropic
parabolic dispersion law with a density-of-states effec-
tive mass of 3m0 was used [6]. The calculations showed
that, to achieve good agreement between the calculated
and experimental temperature dependences of the Hall
factor, it is necessary to take into account the nonpara-
bolicity of the dispersion law in the C1 band [1, 6]. In
our calculations, the nonparabolicity was described by
SEMICONDUCTORS      Vol. 39      No. 9      2005
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Fitting parameters for the calculations taking into account (first row) and disregarding (second row) the nonparabolicity of the
dispersion law in the light-electron band

ε1,
10–4 eV K–1 s(1) s(2) N (1), cm–3 N (2), cm–3 b pa

1.74 0.35 0.40 0.123 0.042 1.26 × 1019 4.73 × 1019 7.52 0.19

1.88 0.39 0.39 0 0 0.97 × 1019 4.48 × 1019 5.92 0.14

m01*( ) 1( )

m0
-------------------

m01*( ) 2( )

m0
-------------------
a power dependence of the density-of-states effective
mass on the temperature in the form

(1)

Here, we set T0 = 85 K, and  and s were fitting
parameters dependent on the electron density.

For the solid solution under study with x = 0.3, the
energy spacing ∆ε between the minima of the two con-
duction bands is zero at liquid-helium temperature [7].
It then increases linearly with temperature, with the
coefficient ε1, which was also considered to be a fitting
parameter; therefore, ∆ε = ε1T.

As was mentioned above, the relaxation time for
scattering on acoustic phonons can be regarded as iso-
tropic and can be represented as

(2)

where k0 is the Boltzmann constant, ε is the energy cal-
culated from the bottom of the respective band, and the
index i = 1, 2 indicates the bands (1 denotes the light-
electron band and 2, the heavy-electron band). Then,
the electrical conductivity in the C1 band can be repre-
sented, in the approximation of an anisotropic, but par-
abolic, dispersion law, as [8]

(3)

Here, µ* is the chemical potential in k0T units;

are the Fermi integrals; and the factor σ01 equals

(4)

where  is the effective mass in the direction of the
kth principal axis of the ellipsoid and the anisotropy
parameter is
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where θ is the angle between the axis of the ellipsoid,
which corresponds to the index k = 1, and the twofold
axis. Relation (3) can also be used when calculating the
conductivity for the nonparabolic dispersion law,
assuming that the nonparabolicity in the C1 band nei-
ther distorts the shape of the ellipsoid nor changes the
angle θ but gives rise only to the temperature depen-

dence of the effective mass , similarly to (1), with

the same exponent s. In this case, the parameter pa is
temperature-independent.

Using (3) and (4) and taking into account the contri-
bution of the two bands, we obtain the following
expression for the conductivity:

(5)

Here, ∆ε* is the energy spacing between the minima of
the two bands in k0T units, and the temperature-inde-
pendent parameter b is defined by the ratio between the
deformation potential constants in the two bands and
takes the form

(6)

Similarly, for the Seebeck coefficient and the Hall fac-
tor we obtain

(7)

(8)
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where

(9)

Using the obtained relations, the model parameters
were found via the least-squares procedure. In the cal-
culation, the chemical potential was determined using

A
pa 1+

2
--------------F1 µ*( ) b

m1*

m2*
-------F1 µ* ∆ε*–( ),+=

n01

2m1*k0T( )3/2

3π2
"

3
------------------------------.=
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Fig. 2. Temperature dependences of the electrical conduc-
tivity σ for samples (1) no. 1 and (2) no. 2. The solid lines
show the calculation taking into account the nonparabolic-
ity of the dispersion law in the light-electron band, the
dashed lines indicate that the nonparabolicity has been dis-
regarded, and the squares represent the experimental data.
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Fig. 3. Temperature dependence of the Seebeck coefficient S.
The notation is the same as in Fig. 2.
the neutrality equation under the assumption that the
total density of electrons is constant in the temperature
range under study. For two samples with different car-
rier densities N(1), (2), the following fitting parameters

were chosen: , s(1), (2), N(1), (2), b, pa, and ε1;
the last three parameters were considered to be the
same for the two samples with different electron densi-

ties, whereas the effective masses  and the
exponents in their temperature dependences s(1), (2) dif-
fered in the two samples. Several variants of calculation
were tested, with the anisotropy and nonparabolicity of
C1 band either taken or not taken into account and
C2 band disregarded. The best fit parameters for the two
variants of the calculation, i.e., with or without consid-
eration of the nonparabolicity of the light-electron
band, are listed in the table. Figures 2–4 show the
experimental temperature dependences of the conduc-
tivity and the Seebeck and Hall coefficients as well as
those simulated in the two models. As can be seen, the
two-band model with the nonparabolic C1 band suffi-
ciently describes the temperature dependences of the
transport coefficients for both samples. The root-mean-
square error does not exceed 10% for the electrical con-
ductivity, 5% for the Seebeck coefficient, and 2% for
the Hall coefficient. The values of the fitting parameters
seem quite reasonable. In particular, the calculated den-
sity-of-states effective masses increase with tempera-
ture, as occurs in pure Bi2Te3. As was expected, the
effective mass is smaller in the more lightly doped sam-
ple, and the obtained density-of-states effective mass at
85 K agrees with the value obtained on the bottom of
the band in Bi2Te3 at 4.2 K (~0.27m0) [6]. The calcu-
lated ratio between the light- and heavy-electron mobil-
ities also lies within a reasonable range, varying
between 9 and 15 depending on the electron density and
temperature.

The two-band model also presents a qualitative
explanation for the decrease in the Hall factor as the
temperature increases, which is observed in both sam-
ples. Figure 5 shows, along with the temperature-
related variation in the chemical potential and light-elec-
tron effective mass in the samples, the relative position of
the C bands’ minima,  and . It can be seen that the
energy spacing between the subbands increases, with a
temperature coefficient of 1.74 × 10–4 eV/K, which leads
to carrier redistribution between the bands. As a result,
the carrier density in the lower band C1, which makes
the major contribution to the Hall factor due to its high
electrical conductivity, increases, and its contribution to
the total conductivity of the sample increases as the
temperature increases.

When the calculation is performed in terms of the
parabolic model for the C1 band, the fitting parameters
are close to those mentioned above, with less than a
10% difference (see table). For the second sample,
which demonstrated weaker temperature dependence
of the effective mass, all the calculated data agree with

m01*( ) 1( ) 2( ),

m0*( ) 1( ) 2( ),

εC1
εC2
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the experiment. A significant difference between the
calculated and experimental data is observed for the
lightly doped sample (Fig. 4). The calculation yields a
Hall factor decrease as the temperature increases, but
this decrease is too small to fit the experimental data.

In terms of the nonparabolic model, the increase in
the light-electron effective mass as the temperature
increases results in stronger temperature enhancement
of the electron density in the C1 band. This circum-
stance leads to better agreement between the calculated
and experimental temperature dependences of the Hall
factor.

Thus, the best fit for both samples was obtained by
taking into account the contributions of the two con-
duction bands to the transport coefficients. Consider-
ation of the nonparabolicity of the light-electron band
appeared to be essential for an adequate description of
the temperature dependence of the Hall factor in the
lightly doped sample.

This study was supported by the Russian Founda-
tion for Basic Research (project no. 03-02-17605).
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Abstract—The formation of nanodimensional structures on the surface of p-CdTe crystals has been studied as
a function of the radiation-power density of a laser under a single irradiation dose. The best conditions for laser
irradiation of the crystals are found. Under these conditions, a homogeneous structure with a period of 100 nm
is formed. The lateral size of the structure is ~(19–20) nm, and the average height is ~(3.40–9.38) nm. It is found
that periodicity manifests itself clearly in one crystallography direction. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Currently, study of the formation of nanodimen-
sional structures on crystal surfaces under laser irradia-
tion is one of the most interesting and promising lines of
research in semiconductor technology. The dimensions
and distribution density of the elements of these struc-
tures depend, in a complex manner, on local thermal
effects, the power density or irradiation dose, the concen-
tration of defects generated under laser irradiation, the
physical nature of the material, and other factors.

We have previously studied the formation of nano-
structures on the surface of p-CdTe crystals in relation
to the radiation dose under a fixed intensity of laser
radiation [1, 2]. We showed that an accumulation effect
plays the main role in this process. Consequently, it is
important to set the energy density of a single pulse of
laser radiation so as to cause the formation of ordered
nanodimensional structures on the surface of CdTe
crystals. The solution to this problem would make it pos-
sible to further develop modern optoelectronic engineer-
ing. In optoelectronics, CdTe crystals are used as a mate-
rial in the fabrication of room-temperature fast-response
modulators of the intensity of luminous fluxes and as a
substrate material for CdHgTe layers. Therefore, the fab-
rication of ordered structures on the surface of CdTe
crystals may possibly help to solve problems related to
the growth of nanodimensional CdHgTe layers.

The purpose of this study was to determine the low-
est intensity of a single radiation pulse from a ruby laser
at which uniformly distributed nanodimensional ele-
ments start to form on the surface of p-CdTe crystals.

2. EXPERIMENTAL

We studied undoped lamellar dislocation-free
p-CdTe (111) crystals, which were obtained by synthe-
1063-7826/05/3909- $26.00 1028
sis from vapors of the initial elements [3]. The samples
were ~100 µm thick.

The crystals were irradiated at room temperature
with a single radiation pulse from a multimode ruby
laser operating in the Q-switched mode at a pulse dura-
tion τ = 2 × 10–8 s. The laser radiation was focused into
a spot ~1 µm in diameter. In order to obtain uniform
laser radiation, we used an additional quartz diffuser.
The laser radiation intensity (I) was measured using
neutral gray filters. During the intensity measurement,
the illuminated spot was moved to a previously unirra-
diated area of the sample surface.

The crystal surface morphology prior to and after
irradiation was studied using a NanoScope IIIa atomic
force microscope (AFM) (Digital Instruments) in a
periodic contact mode (Tapping ModeTM).

3. RESULTS

Figure 1 shows AFM images of a 1 × 1 µm2 area of
the surface of the p-CdTe crystals in relation to the
laser-radiation power density. The arithmetical mean
value of the surface roughness for an initial (unirradi-
ated) sample was ~0.075 nm (Fig. 1a). In the region of
the crystals irradiated under the laser radiation power
density I1 = 4 MW/cm2, an island Te film emerged on
the sample surface (Fig. 1b). This film was washed off
in a 1 N KOH solution in methanol [1, 2]. The arithmet-
ical mean surface roughness of the samples increased to
~0.171 nm. In this case, we observed the onset of for-
mation of a profiled structure with lateral sizes of ~(23–
46.87) nm and an average height of ~1.30 nm. In the
region of the crystals irradiated under the laser-radia-
tion power density I2 = 8 MW/cm2, the arithmetical
mean surface roughness was ~0.760 nm (Fig. 1c). A
profiled structure with lateral sizes of ~(27–132) nm
© 2005 Pleiades Publishing, Inc.
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Fig. 1. AFM images of the surface of the p-CdTe crystal (a) prior to and (b–e) after the irradiation with a single laser-radiation pulse
at a power density I = (b) 4, (c) 8, (d) 12, and (e) 16 MW/cm2.
and an average height of ~(1.84–4.32) nm was ran-
domly distributed over the crystal surface. Clearly
formed structural elements uniformly distributed in
density and with lateral sizes of ~(19–20) nm and an
average height of ~(3.40–9.38) nm were observed in
the region subjected to laser irradiation at a laser-radia-
tion power density I3 = 12 MW/cm2 (Fig. 1d). The nan-
oclusters were dome-shaped and their density was 1.8 ×
1010 cm–2. The arithmetical mean surface roughness
was 1.583 nm after such a treatment. In this case, we
observed ordering of the nanostructural elements along
SEMICONDUCTORS      Vol. 39      No. 9      2005
certain crystallographic directions in conjunction with
the formation of a periodic surface profile. As the irra-
diation intensity increased to I4 = 16 MW/cm2, the den-
sity of the nanostructures increased. The lateral sizes of
the clusters were ~(19–23) nm, and their height was
~(2.0–5.7) nm (Fig. 1e). The arithmetical mean surface
roughness was ~0.870 nm.

Figure 2 shows an AFM image of a surface area 5 ×
5 µm2 in size and the Fourier transform of this image
for the irradiated p-CdTe crystal. The Fourier transform
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shows that the nanoclusters form a homogeneous struc-
ture with a period of 100 nm on the crystal surface only
in the region exposed to laser irradiation at a laser-radi-
ation power density I3 = 12 MW/cm2 (Fig. 2b). In this
case, the periodicity of the nanostructures preferen-
tially manifests itself in one crystallographic direction
(the inclined line in Fig. 2a).

The AFM study showed that the surface morphology,
namely the cluster size and distribution, remained the
same after the sample was kept in air for several days.

4. DISCUSSION

Nanodimensional clusterization (cluster diameter of
20 nm and height of 3 nm) has been observed on the
surface of a CdTe layer grown by atomic epitaxy [4].
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Fig. 2. (a) AFM image and (b) the Fourier transform of this
image of the surface of the p-CdTe crystal after the irradia-
tion with a single laser-radiation pulse at I3 = 12 MW/cm2.
Marsal et al. [4] attributed the formation of these nano-
clusters to the appearance of TeO2 due to oxidation
after storage in air. However, our results were not in
agreement. First, the sizes and density of the structural
elements were unchanged after being kept in air. Sec-
ond, the structure shown in Fig. 1d was not observed on
the surface of the CdTe crystals with Te film, even after
several days of storage in air. Note that Te oxidizes in
3–4 days [5]. Our measurements of the Raman spectra
show that the bands related to TeO2 and CdTeO3 are
absent in the frequency region 500–800 cm–1 [2]. Tak-
ing into account these data and, also, the fact that a
more volatile component (specifically, Cd) evaporates
from the surface of CdTe crystals under irradiation, we
can assume that our nanodimensional structures consist
of a nonstoichiometric Cd1 – yTey alloy formed under
laser irradiation. We earlier showed that a thin layer of
nonstoichiometric Cd1 – yTey alloy was formed within
the surface layer of a CdTe crystal under irradiation
with radiation pulses from a ruby laser [6]. The forma-
tion of such a composition is caused by the fact that Cd
atoms are preferentially removed from the surface lay-
ers of the CdTe crystal under irradiation with nanosec-
ond laser pulses. Thus, the surface layer is depleted of
Cd, and a polycrystalline Te film is formed on the crys-
tal surface. A thin (12–15 nm) layer of the nonstoichio-
metric Cd1 – yTey alloy is formed under the Te film. Note
that irradiation of the CdTe crystal at a radiation-power
density I3 = 12 MW/cm2 removes the Te film, which is
apparently associated with dissolution of this film in the
liquid CdTe phase.

Along with evaporation of the components of the
crystal, the defect structure of the surface region of the
crystal varies under the effect of nanosecond irradiation
of the CdTe crystals [1, 2, 6]. A change in the defect
structure depends heavily on the laser-radiation power
density. As the laser-radiation power density increases,
the concentration of defects (mainly, VCd and VTe)
increases in the crystal. This concentration is an exter-
nally controllable parameter [7, 8]. Estimation of the
concentration of generated defects under laser irradia-
tion of the CdTe crystals using a known formula [8]
yields the value ~1019 cm–3, which corresponds to the
first critical concentration giving rise to screening of
the elastic interaction of point defects. In this case,
nanometer-sized defect clusters form via a second-
order phase transition [7].

5. CONCLUSIONS

Thus, irradiation of p-CdTe crystals with a single
nanosecond laser pulse substantially modifies their sur-
face structure. Analysis of the experimental data
allowed us to establish the optimal value of laser-radia-
tion intensity at which periodic nanostructures with the
smallest lateral sizes and a period of 100 nm are formed
on the surface of the CdTe crystals.
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Abstract—Within the framework of the problem of band bending, the correlation between the bending induced
by the adsorption of a submonolayer metal film at the surface of a semiconductor and the change in the work
function of the system is established. The data on the adsorption of metals at n- and p-type GaAs and SiC sub-
strates are analyzed. © 2005 Pleiades Publishing, Inc.
             
The problem of formation of a Schottky barrier at a
metal–semiconductor interface has a long history, but
no commonly accepted unambiguous solution has yet
been found [1, 2]. In recent times, two models have
been widely used, namely, the unified defect model [3]
and the model of metal-induced states in the semicon-
ductor band gap [4]. The defect model accounts, in par-
ticular, for pinning of the Fermi level and, as a conse-
quence, for only small differences in the Schottky bar-
rier height Φb for different metal components in contact
with a certain semiconductor (see, e.g., [5–8]). In con-
trast, the model of metal-induced states can describe
substantial variations in Φb when considering different
metal components (see, for example, [9–13]). The pre-
dictions of both models have been confirmed experi-
mentally.

The initial stages of the formation of Schottky bar-
riers are of particular interest. If the metal film thick-
ness is less than one or two monolayers, the film cannot
be characterized by the work function φm of the metal
bulk. Therefore, the Schottky rule

(1)

cannot be used to define the barrier height Φb [2]. Here,
the superscripts in the barrier height Φb denote the con-
ductivity type of the substrate, φm is the work function
of the metal, Eg is the band gap, and χ is the electron
affinity of the semiconductor. In this case, we should
consider band bending near the surface of the semicon-
ductor Vs rather than the Schottky barrier.

As was shown in [14], the charge density Qs at the
surface of a semiconductor that contains completely

Φb
n φm χ  and  Φ b

p –  E g Φ b
n –= =                                          
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ionized dopants in the bulk is related to Vs via the
expression

(2)

Here, ψ = Vs/kBT, where the surface potential is Vs > 0;
γ = n/ni = ni/p, where ni, n, and p are the concentrations
of intrinsic carriers, electrons, and holes, respectively;
e is the elementary charge; kB is the Boltzmann con-
stant, and T is the temperature. The signs + and – in
Eq. (2) correspond to upward (on adsorption at an 

 

n-

 

type substrate) or downward (on adsorption at a 

 

p-

 

type
substrate) band bending (with respect to the direction
into the bulk of the substrate). The parameter 

 

L

 

D

 

 is the
Debye length for an intrinsic semiconductor:

(3)

Here, 

 

ε

 

0

 

 is the static permittivity.

In the problem of adsorption considered here, the
surface charge density 

 

Q

 

s

 

 is formed by adatoms. In fact,

(4)

where  Θ  =  N / N
 ML ,  N  is the concentration of adatoms, 

N
 

ML
 

 is the concentration of adatoms in a monolayer,
and 

 

Z

 

 is the charge of a single adatom. We take into
account that the adsorption-induced variation in the work
function 

 

∆φ

 

 is defined by the relation (see, e.g., [15])

(5)

where 2

 

λ

 

 is the width of an electric double layer formed
by the charged adatoms and their electrical images in
the substrate. Then, the surface charge density 

 

Q

 

s

 

 can
be expressed as

(6)

Qs 2eniLDR±,=

R±( )2 γ e ψ± 1–( ) γ 1– e ψ+− 1–( ) ψ γ 1– γ–( ).±+=

LD ε0kBT /8πe2ni( )1/2
.=

Qs eΘ Z NML,=

∆φ Θ( ) ΦΘZ , Φ– 4πe2NMLλ ,= =

Qs ∆φ /4πeλ .=
 © 2005 Pleiades Publishing, Inc.
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Equations (2)–(6) establish the relationship between
semiconductor band bending and variation in the work
function of the adsorption system. Unfortunately, we
are aware of only two papers [16, 17] in which measure-
ments of the work function in parallel with band bend-
ing as dependences of the degree of surface coverage
were reported. In [16], the adsorption of alkali metals
by n- and p-type GaAs was studied. In [17], a Cs/TiO2

system was considered. In [18], the quantity ∆φ(Θ) was
not measured. However, the authors of [18] considered
the band bending resulting from adsorption of alkali
metals (Na, K, Rb, and Cs) by n- and p-type GaAs
(110) substrates at T = 85 K. In that case, no chemical
reactions took place at the interface. It was shown,

among other things, that the band bending  was
noticeably different in magnitude for n- and p-type sub-
strates at Θ ! 1 but tended to the same value as Θ
increased. We will discuss these results below.

We consider n- and p-type semiconductors, assum-

ing that γn = n/ni @ 1, γp = ni/p ! 1, Ψn, p = /kBT @ 1,

and exp  @ . We use formulas (2) and (6) to
obtain

(7)

where the signs + and – refer to n and p types, respec-

tively. However, if exp  ! , then

(8)

Let us make some estimations. The quantity NML ≈
5 × 1014 cm–2. At T = 85 K, we have Eg = 1.48 eV [18],
mdn/m = 0.068, mdp/m = 0.5 [14], and the product niLD ≈
3 × 10–11 cm–2. At T = 300 K, we have Eg = 1.43 eV and
niLD ≈ 4 × 105 cm–2. The ratio |∆φML|/Φ ranges from
0.15 to 0.18 [19]. Hence, the arguments of the loga-
rithms in (7) and (8) exceed unity for any reasonable
values of γn and γp. (Of course, the case of ∆φn, p = 0,

which corresponds to  = 0, is disregarded.)

According to [18], the inequality  >  is satisfied
over the entire range of degrees of coverage. This result
immediately follows from a comparison of expressions (7)
and (8) for n- and p-type substrates, respectively. Since
the concentrations of Si donors and Zn acceptors are
Nd = 2.8 × 1018 cm–3 and Na = 1 × 1018 cm–3, the inequal-

ity  >  is satisfied for the case described by
expression (7) as well. Note that, in accordance with

expressions (2) and (6), we assume  = 0 if Θ = 0

Vs
n p,

Vs
n p,

γp
2 Ψs

p Ψs
p

Vs
n p, Θ( ) 2kBT γn p,

1/2± ∆φn p,

Φ
----------------

NML

2niLD
-------------- ,ln=

γp
2 Ψs

p Ψs
p

Vs
p 2kBT γp

1/2 ∆φp

Φ
------------

NML

2niLD
-------------- .ln=

Vs
n p,

Vs
n Vs

p

Vs
n Vs

p

Vs
n p,
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and  = ( )max if Θ = 1. In contrast, the authors

of [18] take the value of  at Θ = 0 as the maximal

band bend. It can easily be verified that (Θ) =

( )max – (Θ).

As Θ increases, the surface potentials  and 
grow, since |∆φn, p| increases. At Θ  1, the work
function of the adsorption system, φ = φs + ∆φ, where φs

is the work function of the semiconductor substrate,
tends to the work function of the metal bulk φm and
attains this value as soon as the second monolayer is

formed. In this case, the values of  and  should

approach each other and become nearly equal if γn ≈ .
This was exactly the result observed in [18] under an
increasing degree of coverage (see Fig. 4 in [18]). For

two or three monolayers, it was found that  ≈  and

 +  = Eg.

Similar conclusions can be drawn by analyzing the
detailed data available on contacts of various metals
with p- and n-type 6H-SiC crystal [12, 20]. This data
showed that, for carefully prepared contacts, the Schot-

tky relation  +  = Eg is satisfied to a high accuracy.

Since  =  +  – EC and  =  –  + EV, we

have  –  =  + . Assuming that  ≈ EV and

 ≈ EC, we obtain  +  ≈ Eg.

Thus, a model of the states induced by adatoms
allowed us to relate band bending to changes in the
work function and in the height of a Schottky barrier.
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Abstract—p-Zn2 – 2xCuxInxSe2 (ZCIS) polycrystalline films 1–2 µm thick have been obtained by selenization.
Photosensitive surface-barrier In/p-ZCIS structures are fabricated based on the films. The spectra of relative
quantum efficiency of the structures obtained by selenization of the initial ZnSe/(Cu–In) and (Zn–Cu–In) films
are examined. The optical band gap of the Zn2 – 2xCuxInxSe2 films is determined. Conclusions are reached on
the prospects for the use of the obtained films as broadband photoconverters of natural optical radiation. © 2005
Pleiades Publishing, Inc.
1. INTRODUCTION

Studies of the nearest crystallochemical analogues
to II–VI compounds, whose formation can be clearly
illustrated by a scheme involving the cross-substitu-
tions of two Group II atoms of the Periodic system with
Groups I and II atoms (2II  I + III), has led to syn-
thesis of an extensive class of I–III–VI2 ternary com-
pounds [1, 2]. The study of ternary and more complex
positionally ordered phases both solved the problem of
extending the series of materials used in modern semi-
conductor electronics and resulted in progress in a
number of relevant fields of electronics. For example,
thin-film solar cells with unprecedentedly high effi-
ciency (η = 19.2%) and extraordinary radiation stabil-
ity have been fabricated based on Cu(In,Ga)Se2 quater-
nary alloys with a chalcopyrite lattice [3–5]. For further
improvement of the properties of such photoconverters,
it is necessary to reveal the interrelations between tech-
nological approaches and the parameters of the struc-
tures and to use new alloys based on binary compounds.

This study is concerned with the fabrication and
examination of the photosensitivity of structures based
on Zn2 – 2xCuxInxSe2 (ZCIS) thin films, which were syn-
thesized for the first time by selenization [6–9]. Such
films were previously grown only by pulsed laser evap-
oration of synthesized (CuInSe2)x(2ZnSe)1 – x targets. It
is shown that a continuous series of solid solutions
exists in the system and that the band gap varies from
2.67 eV (ZnSe) to 1.04 eV (CuInSe2) [10, 11].

2. EXPERIMENTAL

A specific feature of selenization is the fact that the
synthesis proceeds in an atmosphere of one of the most
1063-7826/05/3909- $26.00 1035
volatile components that form the selected system
while the other components are deposited as thin films
on a solid carrier, specifically, glass plates. As the tem-
perature increases, the components of the films react
with each other and with the coexisting vapor phase
and, thus, form a uniform film of the required composi-
tion. Selenium is used for the vapor phase, and, as a
result, this process was called selenization.

For fabrication of the Zn2 – 2xCuxInxSe2 films, we
studied two variants of preparation of the initial compo-
nents for selenization, which were deposited on a glass
substrate surface. In one of these variants, we deposited
ZnSe films and films consisting of a Cu–In mixture
0.6–0.8 µm thick on the surface of borosilicate glass
plates. The ZnSe film was formed on the glass surface
via vacuum sublimation of the compound from a sepa-
rate Ta heater. The charge of powderlike ZnSe was
determined from the requirement of providing the spec-
ified Zn2 – 2xCuxInxSe2 composition after selenization.
The Cu–In films (with 99.999% purity) were deposited
by thermal evaporation under a residual pressure of
~7 × 10–4 Pa at the glass substrate temperature Ts ≈
100°C. Metals were deposited from a common molyb-
denum boat at an average rate of 0.05 µm/min. The Cu
and In contents in the obtained film were determined
from the charge of these metals, which was selected
empirically.

Selenization of the thus prepared ZnSe/(Cu–In)
structures was carried out using the interaction between
the films during Se diffusion from the vapor phase. This
process was performed in inert gas (N2) in a furnace
with a special temperature profile [9]. The ZCIS single-
phase films were fabricated by a two-stage thermal
treatment along with Se. At the first stage, selenization
© 2005 Pleiades Publishing, Inc.
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was carried out for substrates kept at 240–270°C for t =
10–30 min. At the second stage, the substrates were
kept at 460–540°C for t = 15–40 min.

In the second variant of film synthesis, the Zn, Cu,
and In charges were simultaneously evaporated from
three sources and followed by a two-stage thermal sele-
nization.

The structural properties and phase composition of
the layers prior to and after selenization were studied by
X-ray powder diffraction analysis in the angle range
2θ = 15°–100° using CuKα radiation with a Ni filter.
The phases in the films were identified via comparison
of the experimental interplanar spacings d with the data
from the JCPDS tables [12]. The surface microprofile,
microstructure, and transverse cleaved surfaces of the
films were studied by scanning electron microscopy
using an H-800 microscope (Hitachi, Japan) with a res-
olution of 0.2 nm. The elemental composition of the
film material was determined by X-ray dispersion spec-
troscopy using a Stereoscan-360 system (UK) equipped
with an AH 10000 EDX spectrometer (Link Analytic,

15.0 µm

Fig. 1. Typical surface morphology of the Zn2 – 2xCuxInxSe2
films.
UK) with a resolution of 1 µm and sensitivity 0.1 at %.
Qualitative and quantitative analyses of the elemental
composition of the films was carried out using a PHI-660
scanning Auger microscope (Perkin-Elmer, USA) with
a probe diameter of 0.1 µm and sensitivity of 0.1 at %
and an IMS-4F ion microprobe (Cameca). The quanti-
tative analysis was carried out by the method of high-
purity standards, in which the intensity of the currents
of the Auger electrons is corrected for the elemental
sensitivity coefficient.

3. RESULTS AND DISCUSSION

The developed selenization conditions of the initial
glass/ZnSe/(Cu–In) and glass/(Zn–Cu–In) structures
allowed us to obtain ZCIS layers 1.0–2.0 µm thick and
10 × 10 mm2 in area with a chalcopyrite lattice. These
layers were similar to those obtained in [10, 11], where
a substance was synthesized at a rather high tempera-
ture (T ≈ 1100°C) and then deposited via laser evapora-
tion. The X-ray powder diffraction analysis showed that
the films obtained using both variants of selenization
were uniform and had a lattice parameter correspond-
ing to the bulk crystals [9, 10]. The crystal lattice of the
ZCIS layers corresponded to an ordered chalcopyrite
structure, which was confirmed by the presence of the
typical reflections (112), (220/204), and (116/312), and
the reflections of the chalcopyrite superlattice (101),
(103), and (201).

The examinations allowed us to establish that the
chemical composition of the Zn2 – 2xCuxInxSe2 films
depended on the ratio between the initial components
and the synthesis conditions. A typical surface micro-
profile and the chemical composition of certain ZCIS
films obtained under the optimal conditions of seleniza-
tion are shown in Fig. 1 and listed in Table 1. Figure 1
shows that the synthesized films have a dense structure
formed by crystallites of more than 3 µm in size. The
chosen selenization conditions provided a uniform dis-
tribution of the components over the layer thickness,
which indicates that the interaction between the com-
Table 1.  Composition and resistivity of the p-ZCIS films at T = 300 K

State
of initial
samples

Sample
no.

Film composition after selenization

(Cu + In + Zn)/Se ρ, Ω cmMolar fractions
of components Cu, at % In, at % Zn, at % Se, at %

Glass/ZnSe/(Cu–In) Z4.1 Cu0.92In1.02Zn0.18Se1.88 22.95 25.56 4.49 47.00 1.128 1820

2Z4.1 Cu0.79In0.85Zn0.48Se1.88 19.62 21.25 12.03 47.10 1.123 1680

2Z4.1 Cu0.79In0.92Zn0.40Se1.89 19.65 22.99 10.04 47.32 1.113 5000

3Z5.1 Cu0.70In0.82Zn0.57Se1.91 17.52 20.48 14.29 47.71 1.096 110

Glass/(Zn–Cu–In) 1ZK27 Cu1.04In0.89Zn0.16Se1.91 25.95 22.31 4.084 47.66 1.069 0.24

1ZK28 Cu0.85In0.73Zn0.49Se1.93 21.18 18.14 12.36 48.32 1.026 56

2ZK27 Cu1.03In0.90Zn0.17Se1.90 25.79 22.66 4.159 47.40 1.11 108

2ZK28 Cu0.80In0.79Zn0.39Se2.02 19.85 19.73 9.919 50.61 0.976 150
SEMICONDUCTORS      Vol. 39      No. 9      2005
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ponents was complete and confirms the X-ray powder
diffraction data. These data show that it is indeed pos-
sible to control the atomic composition of such films
and vary the concentration ratio between the atoms
occupying various sites in the chalcopyrite lattice.
Table 1 also allows us to conclude that both the studied
variants of preparation of the initial components for
selenization yield practically identical homogenous
Zn2 – 2xCuxInxSe2 thin films. In general, these studies
show the potential of using selenization for obtaining
thin films of quaternary selenides. Such technology can
be used in the development of commercial methods for
obtaining large-area films for employment as absorbing
layers in thin-film solar cells.

According to the sign of the thermoelectric power,
all the ZCIS films obtained by selenization exhibited
p-type conductivity, similarly to the case of laser evap-
oration of a preliminary synthesized substance [11].
This circumstance does not contradict the assumption
that the low-temperature interaction between the metals
under the conditions of Se diffusion from the vapor
phase preferentially causes the formation of acceptor
lattice defects in such materials.

Table 1 also lists the resistivity ρ values of some of
the Zn2 – 2xCuxInxSe2 alloy films obtained by seleniza-
tion. It can be seen that the developed selenization con-
ditions make it possible to vary the value of ρ in a rather
wide range, specifically, from 0.2 to 500 Ω cm, at T =
300 K. Apparently, this wide range of variations in the
film resistivity is caused by variations in their composi-
tion (Table 1), which shows that the film properties can
be controlled by selecting the selenization parameters.

The initial studies of the contact phenomena for the
Zn2 – 2xCuxInxSe2 films obtained by selenization led to
observation of a photovoltaic effect at the contacts
between the surface and pure In. The In thin films
(~1 µm) were deposited on the surface of the ZCIS
films by vacuum thermal deposition. As a rule, the pho-
tovoltage was at its highest when the barrier contact
side of the In/p-ZCIS structures was illuminated; this
contact was always negatively charged relative to the p-
type films. This fact is consistent with the rectification
direction in such structures.

The results of studies of the photovoltaic effect for
typical structures based on ZCIS films obtained by sele-
nization of two types of initial film structures, namely,
glass/ZnSe/(Cu–In) and glass/(Zn–Cu–In) structures,
are given in Table 2. It can be seen that the highest vol-

taic sensitivity , which is always attained if the bar-
rier-contact side of the obtained surface-barrier struc-
tures is illuminated, varies within the range of three

orders of magnitude. For the best structures,  =
1380 V/W at T = 300 K. This value is substantially
larger than that for similar structures based on
Zn2 − 2xCuxInxSe2 films grown by pulsed laser evapora-
tion of homogeneous bulk crystals of an identical com-
position [11]. The observed wide range of variation in

SU
m

SU
m

SEMICONDUCTORS      Vol. 39      No. 9      2005
the value of  for the obtained structures should be
related to variations in the film composition (Table 1),
the structure of the film systems prior to selenization,
etc. This issue is rather complicated and requires
detailed studies of the interrelation between the tech-
nology and the properties of the films grown.

The spectra of the relative quantum efficiency of
photoconversion η("ω) for typical In/p-ZCIS struc-
tures fabricated using the two variants of preparation of
the initial film system on a glass substrate for seleniza-
tion are shown in Figs. 2 and 3. Certain photoelectric
parameters of these structures and semiconductors form-
ing the basis of their fabrication are given in Table 2.

The main results of our studies of the obtained
In/p-ZCIS structures are the following. The use of two
variants of preparation of the initial films on glass sub-
strates for selenization does not introduce any substan-
tial distinctions into the spectral dependences of photo-

SU
m

Table 2.  Photoelectric properties of the In/p-Zn2 – 2xCuxInxSe2
surface-barrier structures (T = 300 K)

Sam-
ple no.

,
V/W

"ωm,
eV

"ω',
eV

δ1/2,
eV

ϕb,
eV

,
eV

Z4.1 8 1.3–2.0 0.95 1.8 0.85 0.95

2Z4.1 8 1.0–2.0 0.96 1.9 0.87 1.20

2Z4.1 1380 1.3–1.7 1.05 2.4 0.95 1.02

3Z5.1 60 1.3–2.2 1.03 2.5 0.93 1.00

1ZK28 160 1.7–2.4 1.02 2.5 0.94 1.23

2ZK28 360 1.6–1.8 1.03 2.0 0.95 1.21
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Fig. 2. Spectral dependences of the relative quantum effi-
ciency of photoconversion for the In/p-ZCIS structure (sam-
ple no. 3Z4.1) in nonpolarized radiation under illumination
of the barrier contact (curve 1) and of the ZCIS film (curve 2)
at T = 300 K. The film was obtained by selenization of a
glass/ZnSe/(Cu–In) sample.
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sensitivity of the structures obtained (Figs. 2, 3). It can
be seen that the photosensitivity sharply increases
under illumination of the barrier-contact side of the
structures for the photon energy "ω ≥ 0.90–0.95 eV.
This increase follows the exponential law to energies as

high as "ω' and exhibits a steep slope S =  = 30–

40 eV–1. On the basis of [13, 14], we can assume the
existence of direct band-to-band optical transitions in
the thin-film quaternary phases whose atomic composi-
tion is given in Table 1. Deviations from the exponen-
tial law in the spectrum η("ω) emerge at the photon
energy "ω', which is indicated in Table 2 and by arrows
in Figs. 2 and 3. The full width of the spectra η("ω) at
the half-height δ1/2 points to a broadband spectrum of
photoconversion in barriers based on the obtained poly-
crystalline films. For the best structures, δ1/2 ≈ 2.5 eV
(Table 2). The highest value of the relative quantum
efficiency of photoconversion for the best structures is
also attained in a wide spectral range (the quantity "ωm

in Table 2). It is clearly seen from Figs. 2 and 3 that the
high photosensitivity of barriers based on the phases
obtained by selenization manifests itself in a wide spec-
tral range, specifically, from 1.3 to 3.6 eV. These values
substantially exceed similar data for structures based on
films obtained by laser evaporation [11]. In our opinion,
this circumstance provides evidence of the higher crys-
tal quality of the Zn2 – 2xCuxInxSe2 thin films obtained
by selenization.

Figures 2 and 3 (curves 2) clearly show that, if the
semiconductor-film side (instead of the barrier-contact
side) of the Schottky barriers is illuminated, the spectra
η("ω) become highly selective. In this case, "ωm ≈ "ω',

δ ηln( )
δ "ω( )
-----------------

4.02.01.51.0
10

102

103

η, arb. units

"ω, eV

1.02

1 meV

1

2

2.5 3.0 3.5

Fig. 3. Spectral dependences of the relative quantum effi-
ciency of photoconversion for the In/p-ZCIS structure (sam-
ple no. 1ZK28) in nonpolarized radiation under illumina-
tion of the barrier-contact side (curve 1) and of the ZCIS-
film side (curve 2) at T = 300 K. The film was obtained by
selenization of a glass/(Zn–Cu–In) sample.
and δ1/2 ≈ 0.15–0.25 eV for various structures. The
abrupt short-wavelength falloff in the photosensitivity
of the structures is associated with the emergence of
strong optical absorption in the films as "ω' is
approached; this effect is related to the onset of direct
band-to-band transitions. As a result, the layer of pho-
togenerated pairs recedes from the active area of the
structures, which leads to the emergence of an abrupt
short-wavelength falloff of η at "ω > "ω' in this photo-
detection geometry. The analysis of the spectra η("ω)
of the structures obtained showed that the short-wave-
length portion of the spectra follows the Fowler law
(η"ω)1/2 = f("ω), which is characteristic of Schottky
barriers (Fig. 4, curves 1–3) [15]. The extrapolation of
these dependences (η"ω)1/2  0 yields the potential
barrier height ϕb (Table 2).

The short-wavelength portion of the spectra of the rel-
ative quantum efficiency of photoconversion for the struc-
tures studied, as can be seen from Fig. 4 (curves 4–6), fol-
lows the quadratic dependence (η"ω)2 = f("ω). There-
fore, this dependence can be attributed to direct band-
to-band transitions [15, 16], as in the case of the
CuInSe2 compound [2]. Extrapolation of the type

1.21.00.8
0

0.5

1.0

(η"ω)1/2, (η"ω)2, arb. units

"ω, eV

1
2

1.4 1.6 1.8

3

4

5

1.5

6

Fig. 4. Dependences (η"ω)1/2 = f("ω) (curves 1–3) and
(η"ω)2 = f("ω) (curves 4–6) for the In/p-ZCIS structures at
T = 300 K. Curves 1 and 4 correspond to sample 3Z5.1,
curves 2 and 5 correspond to sample 3Z4.1, and curves 3
and 6 correspond to sample 1ZK28.
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(η"ω)2  0, as can be seen from Fig. 4 (curves 4–6),
yields the cutoff energy. In turn, according to [15, 16],

this energy allows us to determine the band gap  of
the Zn2 – 2xCuxInxSe2 films grown by selenization (Table 2).
Since the Zn concentration range in the ZCIS films
obtained by selenization is very narrow (Table 1), it is

impossible to analyze the band gap  as a function of
the film composition. We can only note that a tendency

towards an increase in the value of  is evident for the
films obtained relative to a positionally ordered
CuInSe2 compound with a near-stoichiometric compo-
sition [2, 17]. It is also noteworthy that the largest val-

ues,  ≈ 1.27 eV (Table 2), for the ZCIS films
obtained by selenization are close to those for the
Cu(In,Ga)Se2 layers used in solar cells. Currently, these
layers have the highest photoconversion efficiency [17].

4. CONCLUSIONS

Zn2 – 2xCuxInxSe2 thin films were grown by a two-
stage temperature annealing in a mixture of Se vapor
and inert gas (N2). The developed modes of selenization
of the initial glass/ZnSe/(Cu–In) and glass/(Zn–Cu–In)
structures allowed us to obtain p-ZCIS layers with a
chalcopyrite structure 1.0–2.0 µm thick. On the basis of
these obtained Zn2 – 2xCuxInxSe2 films, In/p-ZCIS thin-
film surface-barrier photosensitive structures were fab-
ricated. The studies carried out showed that the struc-
tures obtained can be used for the development of
broadband photoconverters of nonpolarized radiation
whose long-wavelength edge of photosensitivity can be
controlled by the technology parameters of the process
of obtaining the Zn2 – 2xCuxInxSe2 thin films.
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Abstract—Special characteristics of the high-field drift of electrons in submicrometer n+–n–n+ structures are
studied by mathematical simulation methods in the quasi-hydrodynamic approximation. Alternative depen-
dences of the mobility and energy-relaxation time on the electron temperature are used to calculate the profiles
of the potential, temperature, drift mobility, and density of the thermal-energy flux of electrons. It is shown that,
in a submicrometer configuration, a large part of the thermal energy acquired by an electron in a high-resistivity
n-type region is dissipated in a low-resistivity n+-type contact. This effect reduces the rate of increase in the
electron temperature in the drift region as the voltage increases, brings about an increase in the effective mobil-
ity, and prevents saturation of the drift velocity, as is shown by the calculated current–voltage characteristics.
© 2005 Pleiades Publishing, Inc.
The saturation of the charge-carrier drift mobility in
silicon and other semiconductors was recognized even
at the outset of the development of semiconductor
physics [1] and was interpreted [2] as a manifestation of
the field dependence of the mobility, for example,

(1)

Here, µ0 ≈ 1500 cm2/(V s) is a low-field mobility and
the characteristic field ES = vS/µ0 ≈ 0.7 × 104 V/cm,
where vS ≈ 107 cm/s is the saturation velocity. In turn,
the field dependence of mobility is treated [3] as a man-
ifestation of the corresponding dependence of the
mobility on the electron temperature T. This tempera-
ture increases when the electric field is strengthened as a
result of Joule heating of the electron subsystem and is
determined from the well-known condition for the energy
balance that corresponds to compensation of Joule heating
by the transfer of excess thermal electron energy to the
phonon subsystem of the crystal; i.e., we have

(2)

(3)

where n is the electron concentration; τe is the energy-
relaxation time; and T0 is the lattice temperature, which,
it is assumed, corresponds to the equilibrium state.

µ µ0 1
E
ES
------ 

  2

+
1/2–

.=

jnE µnE2 n T T0–( )
τe

-----------------------,= =

T T0 µ T( )τe T( )E2,+=
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Equation (2) is then rewritten under the assumption
that the temperature dependences of the mobility and
relaxation time follow the power law:

(4)

(5)

It is worth noting that, in (4) and (5), only the quan-
tity µ0 can be considered as a well-defined physical
parameter (determined from experiments and from
microscopic-scale description of the momentum relax-
ation), whereas the value of the exponent α is deter-
mined to a lower accuracy, since only theoretical esti-
mates obtained under the condition of absolute preva-
lence of a particular scattering mechanism exist. The
quantities τ0 and β, which effectively describe a com-
plex combination of various multiphonon processes of
the electron-energy relaxation, are in fact adjustable
parameters whose numerical values should ensure the
required asymptotic behavior of the mobility in high
fields µ  vS/E. This requirement yields the expres-

sion τ0 = µ0T0/  and the well-known relation between
the exponents β = 1 – α. It is noteworthy that the pair
{β = 1/2, α = 1/2} is the most physically reasonable of
all the feasible combinations of these exponents and
corresponds to the mechanism of scattering of momen-
tum by acoustic phonons. In contrast, the pair {β = 0,
α = 1} does not feature an unambiguous physical inter-
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T
----- 
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, τe τ0
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pretation like the pair above but yields the field depen-
dence of mobility

(6)

which, from the standpoint of a comparison with the
experimental dependences of the drift mobility on the
electric field, is practically no different from the cor-
responding dependence yielded by formula (1) with
{1/2, 1/2}.

It was expected, at the initial stage of submicrome-
ter-technology development, that the drift-velocity sat-
uration under consideration would appreciably limit the
characteristics of submicrometer transistors, in the
active regions of which ultrahigh electric fields on the
order of 105 V/cm appear. However, it was found that
the effect of the drift-velocity saturation was largely
suppressed in submicrometer structures; as a result, in
present-day models of transistor structures, formulas (1)
and (6) with ES ≈ 105 V/cm (which would correspond to
the very high saturation velocities ~108 cm/s) are used.

It is self-evident that this remarkable behavior of the
electron subsystem in submicrometer structures is
caused by the corresponding lag in the heating of elec-
trons, which manifests itself in a situation where the
time of flight of electrons over the distance between the
low-resistivity contact regions becomes comparable to
the energy-relaxation time. This lag manifests itself
under steady-state conditions in the nonlocality of the
thermal balance in the case where an appreciable frac-
tion of the electron thermal energy acquired in the high-
resistivity flight region is dissipated in the low-resistiv-
ity contact region. In order to adequately take into
account the above nonlocality, we should supplement
condition (2) with the corresponding divergence of the
heat flow and, thus, formulate the so-called quasi-
hydrodynamic model of electron transport, which is
similar to the model suggested by Stratton in his pio-
neering publication [4].

To date, quite a number of studies concerned with a
quasi-hydrodynamic simulation of the electron drift
have been published (see, e.g., [5]). However, the
incompleteness of the numerical simulation results
reported in these publications makes it impossible to
reveal the distinctive physical special features in the
resulting current–voltage (I–V) characteristics that can
be used when comparing these results with experimen-
tal data and verifying the parameters of the employed
models of mobility. The identification of these specific
features of the high-field drift in submicrometer struc-
tures is precisely the aim of this study. We intend to
attain this aim by comparing the results of a simulation
(that consecutively complicates the drift description)
and using both the alternative models of mobility with
α = 1/2 or α = 1.

As the subject of our simulation, we used the sim-
plest possible silicon n+–n–n+ structure with a drastic
difference in its impurity concentration (1019/1018 cm–3)

µ µ0
1
2
--- 1

4
---

E
ES
------ 

  2

++
1–

,=
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and the extent of the high-resistivity region L1 =
0.25 µm. Correspondingly, we can write the expres-
sions for the electron-density flux

(7)

and the electron-temperature flux

(8)

in the clearest form. Here, φ is the potential and T is the
electron temperature expressed in energy units.

Under steady-state conditions, a system consisting
of a Poisson equation and equations of current continu-
ity and thermal balance is written as

(9)

where N and  are the donor concentrations in the
n- and n+-type layers, respectively;

is the Debye length; and εε0 is the permittivity.
Introducing the dimensionless quantities x 

x/LD, φ  φ/T0, T  T/T0, and N  N/  for the

donor concentration, and n  n/  for the electron
concentration, we can rewrite Eqs. (9) as

(10)

In order to discretize system of Eqs. (10), we use the
method of integral identities:

(11)
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Here,

ai xi xi 1– ,
dφ
dx
------ 
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Fig. 1. Current–voltage characteristics of an n+–n–n+ struc-
ture in the models of (1) constant mobility, (2, 3) energy
transport, and (4) local temperature. L1 = 0.25 µm and T0 =
0.025 eV.
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Fig. 2. Typical distributions of the potential φ, electron tem-
perature T, and drift velocity v  in the local-temperature
approximation. V = 1.5 V and T0 = 0.025 eV.
and the densities of the electron current and thermal
flux are given by

(12)

where

System of Eqs. (11) should be supplemented with
boundary conditions at x = 0 and x = L:

(13)

Here, V is the voltage applied to the structure, T0 is the

lattice temperature,  = 1019 cm–3 is the donor con-
centration in the n+-type layer, and L = 1 µm is the
dimension of the structure under consideration with
allowance for n+-type contact regions.

System of Eqs. (11) with boundary conditions (13)
was solved using a modified Newton method. We used
a uniform impurity distribution combined with a grad-
ual transition to abrupt n–n+ boundaries as the initial
approximation. In addition, calculation of the corre-
sponding distributions and currents for the sequence of
test voltages in the range 0–2.5 V began from small val-
ues. For each successive value of the voltage, the appro-
priately corrected final approximation of the preceding
step was used as the initial approximation for the poten-
tial. This procedure assures a reasonably good conver-
gence of the iterative process; specifically, we had to
use no more than five to six Newton iterations for each
new value of the applied voltage V.

In Fig. 1, we show the calculated I–V characteristics
represented, for clarity, as the dependence of the aver-

age relative velocity  =  on the average field

 = . Curve 1 corresponds to the drift model for

the constant mobility µ = µ0 = 1500 cm2/(V s); curve 4
corresponds to the drift–diffusion approximation for a
local temperature; and curves 2 and 3 correspond to
the quasi-hydrodynamic models for α = 1/2 and 1,
respectively.

It is worth noting that a clearly pronounced satura-
tion effect is exhibited only in curve 4, which corre-
sponds to the local-heating model. In this model, how-
ever, the effective saturation velocity is equal to ~3 ×
106 cm/s; i.e., it is a factor of 3 lower than the initial sat-
uration velocity vS = 107 cm/s. The inadequacy of the
model including local heating in regard to submicrome-
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ter structures is illustrated by the curves in Fig. 2, where
the distributions of the potential, temperature, and local
charge-carrier velocity at V = 1.5 V are shown; the
boundaries of the drift region with ND = 1018 cm–3 are
indicated by vertical dashed lines. These results show
that consideration of the diffusion-related component
of the current in the context of the model involving
local heating leads to an appreciable redistribution of
the potential in the n-type region and to formation of a
so-called static high-field domain at the anode. The
main part of the applied voltage and an anomalously
high electric field and electron temperature are concen-
trated in this region. However, the large gradient of
increase in the electron concentration in this domain
gives rise to a considerable diffusive counterflow,
which is exactly what causes the resulting difference of
the effective charge-carrier velocity from vS. In our
opinion, the fact that the average thermal energy of
electrons in the domain is found to be higher than the
energy supplied by the applied voltage most clearly
indicates that approximation of the local temperature is
inadequate.

Figures 3 and 4 illustrate the main results of this
study corresponding to the hydrodynamic consider-
ation of the electron drift. The distributions of the
potential, temperature, and energy-flux density are
shown in relative units in Figs. 3 and 4. These distribu-
tions correspond to the model of energy transport under
the alternative variants with α = 1/2 and α = 1. The fol-
lowing specific properties can be mentioned: relative
uniformity of the temperature profile in the high-resis-
tivity n-type region, a characteristic shift of the peak to
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φ

x/L
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0

jT/jT0

Fig. 3. Distributions of the potential φ, electron temperature T,
and thermal-flux density jT in the quasi-hydrodynamic

approximation with µ ∝  T–1/2.
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the anode in the temperature distributions, and a notice-
able penetration of hot electrons into the n+-type anode
contact. This penetration means that an appreciable
fraction of the electrons heated in the high-resistivity
part of the structure dissipate their excess thermal
energy in the n+-type contact bulk.

It is worth noting that the energy dissipation in the
contact region brings about a shift of the temperature
peak by a significant distance from the n–n+ boundary.
The first term in formula (8) corresponds to the ther-
mal-conductivity component of the electron-tempera-
ture flux and plays an important role in the quasi-hydro-
dynamic models. It is this term that gives rise to the
strange (at first sight) effect of a decrease in the temper-
ature in the near-anode region while the temperature
flux continues to increase until it reaches the geometric
boundary of the contact, as is shown, at a high magnifi-
cation, in Fig. 5. We can also mention, as a positive fac-
tor, the fact that the highest electron temperature in both
cases amounts to approximately a fifth of the potential,
whereas, according to the simplified (convective)
model used in our previous study [6], we would expect
an appreciably higher temperature T ≈ V/2.

Comparing the results of calculations based on the
above alternative models of mobility, we can only note
that the model with α = 1/2 yields somewhat higher
temperatures in the drift region and a higher drift
mobility. In the model with α = 1 and a constant relax-
ation time, we obtain a lower charge-carrier velocity
owing to the heavier temperature dependence of the
carrier mobility. It should be emphasized that the qual-
itative closeness of the calculation results from both
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Fig. 4. Distributions of the potential φ, electron temperature T,
and thermal-flux density jT in the quasi-hydrodynamic

approximation with µ ∝  T–1.
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Fig. 6. Current–voltage characteristics calculated taking
into account the dependence of mobility on the donor con-
centration. The calculations were carried out (1, 2) disre-
garding and (1', 2') taking into consideration scattering by
impurities.
mobility models makes it impossible to give any phys-
ically justified preference to one of these models. The
best choice of model can be probably made in future
using the results of corresponding experiments.

In this context, we considered it worthwhile to
increase the complexity of the description of the high-
field drift in the energy-transport model by including
the mechanism of the electron scattering by charged
impurities in our consideration using the interpolation
formula

(14)

which, in general, is close to the dependence suggested
by Hänsch [7]. It is important that, in Eq. (7), α should

be replaced with . The corresponding calculated

I–V characteristics (in the model with α = 1/2) are
shown in Fig. 6 for the donor concentrations N = 1017

and 1018 cm–3 in the drift region. The similar character-
istics obtained when disregarding scattering by impurities
are also shown for comparison. We can note the expected
decrease in the slope of the corresponding curves at the
initial stage and their equidistant behavior in higher fields.
It is also worth noting that the appreciably higher carrier
velocities observed when N = 1017 cm–3 are possibly
caused, to an extent, by the injection of electrons from the
cathode contact into the drift region.

This study was supported by the Russian Founda-
tion for Basic Research, project no. 04-02-17681.
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Abstract—Room-temperature photoluminescence (PL) has been studied in AlGaN/GaN superlattices and GaN
epitaxial layers implanted with 1-MeV erbium at a dose of 3 × 1015 cm–2 and annealed in argon. The intensity
of PL from Er3+ ions in the superlattices exceeds that for the epitaxial layers at annealing temperatures of 700–
1000°C. The strongest difference (by a factor of ~2.8) in PL intensity between the epitaxial layers and the super-
lattices and the highest PL intensity for the superlattices are observed upon annealing at 900°C. On raising the
annealing temperature to 1050°C, the intensity of the erbium emission from the superlattices decreases substan-
tially. This circumstance may be due to their thermal destruction. © 2005 Pleiades Publishing, Inc.
The main advantage of light-emitting structures
based on semiconductors doped with rare-earth (RE)
elements is that the luminescence line is narrow and the
emission wavelength is temperature-independent.
Erbium impurity is of particular interest because the
wavelength of erbium emission (λ ≈ 1.54 µm) corre-
sponds to the minimum loss and lowest dispersion in
fiber-optic communication lines. For the basic material
applied in semiconductor electronics, i.e., single-crys-
tal silicon with a relatively narrow energy gap, a strong
quenching (by several orders of magnitude) of the PL
from Er3+ ions is observed when the temperature is
raised from 77 to 300 K. It has been experimentally
established that the magnitude of this effect decreases
as the energy gap increases, to become virtually insig-
nificant in GaN [1]. Therefore, erbium-doped layers of
GaN and other Group III nitrides have been studied
intensively [2]. It has been found, however, that the
intensity of luminescence from Er3+ ions is insuffi-
ciently high in these layers. This problem may be due
to low excitation efficiency of the luminescence from
RE ions in the semiconductor bulk, since optical transi-
tions between f states are partially forbidden by the
selection rules. In [3], it was theoretically shown that
the excitation of f electrons at the heterointerface is
more efficient than that in the semiconductor bulk [3].
Recently, we observed, for the first time, an effect that
consists in an increase in the PL intensity from Er3+ ions
in AlGaN/GaN superlattices, compared with epitaxial
GaN layers, at an implantation dose of 1 × 1015 cm–3

[4]. The aim of the present study was to examine the
influence exerted by an increased (by a factor of 3)
implantation dose of erbium ions and an elevated
1063-7826/05/3909- $26.00 1045
annealing temperature on the PL in superlattices and
epitaxial layers.

Al0.26Ga0.74N/GaN superlattices (with a layer thick-
ness of 5 nm and 148 periods) were grown by metal-
organic chemical vapor deposition (MOCVD) on a
modified Epiquip VP-50 RP machine with a horizontal
quartz reactor and a graphite holder with an induction
heater. The growth process commenced with deposition
of a low-temperature (500°C) nucleation layer of
AlGaN onto a (0001) sapphire substrate, with subse-
quent epitaxial growth at 1050°C and a pressure of
200 mbar. The structures consisted of a 20-nm-thick
AlGaN nucleation layer, a 200-nm-thick GaN buffer
layer, and a superlattice with GaN wells and AlGaN
barriers of the same thickness. For comparison, 3-µm-
thick Si-doped GaN layers were grown in the same
modes. The epitaxial growth conditions are described
in more detail in [4]. Erbium ions with an energy E =
1 MeV at dose of 3 × 1015 cm–2 were implanted at room
temperature. According to data furnished by a method
involving Rutherford backscattering (RBS) of 200-keV
protons, the implanted layer did not undergo amor-
phization. The annealing treatments were performed in
the temperature range 700–1050°C at steps of 100°C
for 5 min at each temperature in a flow of argon. The PL
was excited by light from a halogen lamp, with λ >
360 nm, separated by a bandpass filter made of SZS-24
optical glass [4]. The intensity of light focused by a sys-
tem of lenses onto a sample was kept constant
(~50 mW) in all the experiments. The PL in the spectral
range 0.95–1.65 µm was recorded using an MDR-23
monochromator and an uncooled InGaAs photodetec-
tor. The light flux from the halogen lamp was modu-
© 2005 Pleiades Publishing, Inc.
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lated with a chopper at a frequency of 36 Hz. The pho-
tocurrent pulses from the photodetector were trans-
formed into an ac voltage, which was recorded with a
selective voltmeter. The spectral resolution of the setup
was ~7 nm.

Figure 1 shows the PL spectra of an AlGaN/GaN
superlattice and an epitaxial GaN layer, both of which

1.61.51.41.31.21.11.0
0.01

0.1
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1
2

λ, µm

Normalized intensity, arb. units

Fig. 1. PL spectra of (1) a superlattice and (2) an epitaxial
layer upon annealing at (700 + 800 + 900)°C. The spectra
are normalized to the maximum intensity of each spectrum.
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Fig. 2. PL intensities associated with Er3+ ions at λ = 1.542 µm
(1Er and 2Er) and defects at λ ≈ 1.2 µm (1D and 2D) vs. the
annealing temperature for a superlattice (1Er and 1D) and
an epitaxial layer (2Er and 2D).
were implanted with erbium ions at a dose of 3 ×
1015 cm–2. The spectra were measured at 300 K upon
annealing in a temperature mode of (700 + 800 +
900)°C and normalized to the maximum PL intensity
for each sample. The highest-intensity peak at λ =
1.542 µm is due to a transition of Er3+ ions from the first
excited state (4I13/2) to the ground state (4I15/2).

It is important to note that the shape of the spectra
and the peak positions of these bands are the same for a
superlattice and an epitaxial layer. The broad band at
1.05–1.4 µm, peaked at λ ≈ 1.2 µm, is associated with
PL related to defects introduced in the course of
implantation and the subsequent annealing treatments,
as a similar band has been observed after annealing
GaN layers implanted with ions of erbium [4], neody-
mium [5], and chromium [6]. The peak at ~0.994 µm is
due to radiative transitions from the second excited
state of Er3+ ions (4I11/2) to the ground state (4I15/2). The
shapes and positions of the peak coincide for a superlat-
tice and an epitaxial layer, similarly to the case of transi-
tions from the first excited state to the ground state.

Figure 2 shows how the intensity of PL from Er3+

ions (λ = 1.542 µm) and from the defects formed during
implantation and annealing (at the maximum of the
spectral distribution, λ ≈ 1.2 µm) depends on the
annealing temperature Tann for both an AlGaN/GaN
superlattice and a GaN epitaxial layer implanted with
erbium ions at a dose of 3 × 1015 cm–2. As can be seen
in Fig. 2, the intensity of the erbium PL in a superlattice
exceeds that in single-crystal GaN at annealing temper-
atures of 700 ≤ Tann ≤ 1000°C. The highest PL intensity
was obtained at Tann ≈ 900°C in a superlattice and at
Tann * 1000°C in an epitaxial layer. The strongest dif-
ference in the intensity of erbium PL between a super-
lattice and epitaxial layer (by a factor of ~2.8) was
observed upon annealing at 900°C. As the annealing
temperature was raised to 1050°C, the intensity of the
erbium PL in the superlattice substantially decreased,
which may be due to thermal destruction of the layers
constituting the superlattices (interface smearing). The
intensity of the defect-related PL in the superlattices
and epitaxial layers increased with temperature.

The dashed line in Fig. 2 shows the highest PL
intensity produced by erbium ions, reached in the
superlattices at an implantation dose of 1 × 1015 cm–2.
The results obtained from studies carried out at this
dose were reported in detail in [4]. As can be seen from
Fig. 2, raising the implantation dose by a factor of 3 leads
to a ~2.3-fold increase in the maximum PL intensity.

Thus, it has been established that, at an erbium ion
implantation dose of 3 × 1015 cm–2, the intensity of PL
from Er3+ ions in superlattices increases by up to a fac-
tor of 2.8 compared with epitaxial layers at equal tem-
peratures of postimplantation annealing. This increase
in intensity is presumably due to more efficient excita-
tion of f electrons near the heterointerfaces, as was the-
oretically predicted in [3].
SEMICONDUCTORS      Vol. 39      No. 9      2005
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Abstract—Within the context of the suggested quantum-mechanical description of hole transport in the ballis-
tic mode, the feasibility of using a quantum point contact as a spin filter in dilute magnetic semiconductors is
analyzed. By studying the example of a dilute ferromagnetic GaxMn1 – xAs semiconductor, it is established that
even smoothing the potential shape does not allow one to attain a 100% spin polarization of the current; in par-
ticular, at a constriction width of 3.5 nm, the polarization is 82%. It is shown that the operation region of such
a spin filter lies in the narrow range of constriction widths ~3.5–4.0 nm, and, at large constriction widths,
damped oscillations of the spin polarization of the current occur. The spin–orbit splitting in GaxMn1 – xAs is suf-
ficient for real operation of a quantum point contact as a spin filter in this material. An increase in the splitting
does not produce a substantial increase in the degree of polarization of the incoming current. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

The use of electron spin and charge for storage, pro-
cessing, and transfer of information forms the basis of
spintronics, a new area of development in modern elec-
tronics [1]. One of the important problems under dis-
cussion in spintronics is the creation of a stable source
of spin-polarized charge carriers that can be injected
into the bulk of a semiconductor. Several approaches to
the solution of this have been suggested, including the
injection of spins from a ferromagnetic metal into a
semiconductor through a Schottky barrier [2] or a
dielectric tunneling barrier [3]. Another approach uses
an entirely semiconductor form of spin filter, which can
operate under Rashba’s effect [4], interband tunneling
in a resonance tunneling diode [5], or the effect of Zee-
man splitting in a quantum point contact (QPC) [6].

A classical QPC contains two electron tanks con-
nected to each other by an ultranarrow constriction [7].
Due to transverse quantization, only a discrete set of
modes (standing waves) can propagate through the con-
striction under the conditions of conductance quantiza-
tion in such a channel. In the absence of spin degener-
acy, the conductance is quantized in units of e2/" [8].

In spintronics, there are thought to be good pros-
pects for dilute magnetic semiconductors, which are
usually represented by binary III–V or II–VI com-
pounds with a small amount of magnetic Mn2+, Fe2+, or
Co2+ ions [1, 9]. Impurity ions replace the atoms of the
semiconductor at the sites of the crystal lattice and play
the role of acceptors, thus producing a semiconductor
with p-type conductivity. Spin polarization of holes
arises because of their interaction with the localized
spins of magnetic ions. Furthermore, a strong s(p)–d
1063-7826/05/3909- $26.00 1048
exchange interaction gives rise to an indirect (d–d)
exchange between magnetic ions, which determines the
magnetic properties of a compound [9].

A highly promising dilute magnetic semiconductor
is GaxMn1 – xAs. The value of this semiconductor is
related to the possibility of growing layers on semicon-
ductor substrates in a production cycle, the ease of inte-
gration into the existing technology, and its relatively
high Curie temperature, TC ≈ 160 K [10]. GaxMn1 – xAs
compounds have the properties of a ferromagnetic
semiconductor [9, 10], for which the Fermi energies for
spin-up and spin-down carriers are different, even in the
absence of a magnetic field. This difference is deter-
mined by the spin–orbit splitting ∆SO = |EF↑ – EF↓|. For
a Ga0.976Mn0.024As compound with a hole concentration
of 3 × 1020 cm–3, the value of ∆SO is 34 meV [11]. Thus,
according to theoretical estimations [12], the degree of
spin polarization of holes in the bulk of the material,
P = (ρ↑ – ρ↓)/(ρ↓ + ρ↑) ≈ (kF↑ – kF↓)/(kF↓ + kF↑), is only
~5% (ρ and kF are the density of states and the wave
vector at the Fermi level).

From the above arguments, it might be possible to
conclude that, having attained the conductance of a
GaxMn1 – xAs QPC equal to e2/", it is possible to obtain
a 100% spin-polarized current. The absence of any
additional materials and layers makes such a design
more attractive compared to the other possibilities [2–5]
and makes the application of an external magnetic field
unnecessary. However, more rigorous estimation of the
efficiency of spin polarization in a QPC in a magnetic
semiconductor taking into account its actual geometry
is necessary.
© 2005 Pleiades Publishing, Inc.
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In this study, we use a quantum-mechanical descrip-
tion of charge carrier transport in the ballistic mode to
estimate the parameters of a QPC-based spin filter in a
dilute magnetic semiconductor with regard to a
smoothed geometrical shape of the conducting channel
and analyze the effect of the width of the constriction
and of the value of the spin–orbit splitting in a semicon-
ductor on the degree of spin polarization of the current.

2. MODEL

For theoretical calculations, we choose a QPC of
smoothed geometrical shape (Fig. 1). Such a QPC is
usually realized in split-gate devices [7], where two
Schottky barriers are connected in parallel to form a
split contact and produce a depletion in the two-dimen-
sional electron gas under the barriers. The application
of a negative bias to the gate increases the depletion
region under the Schottky barriers both in the longitu-
dinal and in transverse directions and changes not only
the width of the constriction w0 but also the thickness l0
of the impenetrable walls of the QPC. In order to take
this effect into account, we choose the following approx-
imation for the shape of the depletion region [13]:

(1)

Here, w1(x) is the coordinate of the boundary, w is the
width of the semi-infinite electrodes, and l is the half-
length of the QPC (Fig. 1). We assume that the QPC has
a fourth-order mirror symmetry with respect to the
point A (x = 0 and y = 0). Using approximation (1), we
can investigate the experimentally observed effect of
depletion-region expansion without additionally com-
plicating the calculations [7, 14].

The procedure for the conductance calculation
described below is the same for the two spin compo-
nents of the current. The difference in the results of the
simulation is determined only by the difference in the
initial data, namely, in the Fermi energy. Therefore, to
simplify the formulas, we omit the spin index σ where
it is not essential.

We assume that charge carrier transport mode is
coherent (ballistic) in the conducting channel that
passes through the constriction. The conductance in the
linear-response mode is calculated using the Landauer–
Büttiker formula (the temperature is disregarded) [8]

(2)

where tmn is the transmission factor of the wave from
mode m in the left-hand electrode to mode n in the
right-hand electrode. This factor is related to the
Green’s function of the system G = (E – H)–1, where E
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is the Fermi energy and H is the Hamiltonian of the sys-
tem [15]:

(3)

Here, νn is the mobility of mode n in an electrode of
width w, kF is the Fermi wave vector, and φn(y) is the
transverse wave function in the electrode,

(4)

For the factor of the reflection of electron waves rmn, we
write an expression similar to (3) [15].

A one-electron “tight-binding” Hamiltonian for the
system under study is written as [14]

(5)

where u is the hopping integral between the nodes of
the grid and ε0 is the energy of a charge carrier at a node
of the grid. The probability of finding a charge carrier
at a node (m, n) is determined by the matrix element
〈m, n|Ψ〉, where m = ax; n = ay; a is the step of the grid;
and x and y are the longitudinal and transverse coordi-
nates, respectively. In the calculations, we set ε0 = 4u.
Choosing u = "2/2m*a2 (m* is the charge-carrier effec-
tive mass), we see that, in the limit a  0, the tight-
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Fig. 1. Configuration of a quantum point contact formed in
split-gate structures. Two symmetry axes (dash-dotted
lines) intersect at the point A, with the coordinates x = 0 and
y = 0. The arrows indicate the variation in the geometrical
shape as the constriction width w0 increases (see Eq. (1)).



1050 IGNATENKO, BORISENKO
binding approach yields the standard Schrödinger
equation in the effective mass approximation.

In order to calculate the Green’s functions, we used
a standard recursive method [14] based on the Dyson
equation. In this case, the transmission and reflection
factors tmn and rmn assume the form

(6)

(7)

where km and kn are the wave vectors for the longitudi-

nal motion,  and  are the full Green’s func-
tions of the structure [14], and δmn is the Kronecker
delta. The number of modes in the electrodes and the
values of the wave vectors kn (and, accordingly, of km)
are determined using the dispersion relation and the
value of the Fermi energy (we assume that the elec-
trodes are ideal) [14]:

(8)

Here, N is the number of transverse nodes. If kn is a
complex number, then we have a propagating wave; if
kn is purely imaginary, then we have a decaying wave.

The accuracy of the calculations was checked using the
following criteria: (i) the sum of transmission factor (6)
and reflection factor (7) must be equal to the number of
propagating modes, and (ii) the factor of transmission
through a straight waveguide section without any con-
fining potential must be unity.

The degree of spin polarization of the current P is
estimated as [12]

(9)

tmn 2iu kna( ) kma( )sinsin Gnm
M 1 0,+ ,–=

rmn 2iu kna( ) kma( )sinsin Gnm
0 0,–=

– δmn

kma( )sin
kna( )sin

---------------------,

Gnm
M 1 0,+ Gnm

0 0,

E 4u 2u kncos πn
N 1+
-------------cos+ 

  .–=

P
J↑ J↓–

J↑ J↓+
-----------------

g↑ g↓–

g↑ g↓+
-----------------,= =

Parameters used for simulation of a QPC in GaxMn1 – xAs

Parameters Value

QPC width, w 30 nm

QPC length, 2l 30 nm

Constriction width, w0 0.5–15 nm

Number of points of the spatial 
discretization grid

240 × 240

Fermi level, E 150 [11] meV

Spin-orbit splitting, ∆SO 34 [11] meV

Hole effective mass, m* 0.15  [16]me
–

where J↑(J↓) is the current created by spin-up (spin-
down) polarized charge carriers and g↑(g↓) are the cor-
responding channel conductances calculated from (2).

3. SIMULATION RESULTS

As the subject of our simulation, we chose a QPC of
smoothed geometrical shape in GaxMn1 – xAs. The
parameters of this QPC are listed in the table. One of
the aspects of the study is the establishment of the
dependence of conductance (2) on the constriction
width w0 with regard to spin. However, it should be
borne in mind that a change in only one parameter w0 in
(1) affects the entire shape of the QPC, as indicated in
Fig. 1 by two arrows. The value of w0 was chosen to
vary from the minimal value determined by the step of
the grid of spatial discretization to 0.5w (see table). The
widths of the electrodes w were chosen so as to acco-
modate approximately 10 modes. With regard to this
fact, the number of sites of the discretization grid must
not be less than 100 × 100. Otherwise, large calculation
errors arise related to transformation (1) from a contin-
uous analytical form to a discrete form.

The choice of Fermi energy and spin–orbit splitting
determines the Fermi energies for spin-up and spin-
down carriers: E↑ = E + ∆SO/2 and E↓ = E – ∆SO/2. Hav-
ing calculated conductances (2) for the two compo-
nents, we determined the degree of spin polarization
using formula (9).

In Fig. 2a, the dependence of the conductance of a
GaxMn1 – xAs QPC on the width of the constriction is
shown. The curve with circles is calculated for spin-up
polarized holes, and the curve with triangles for the
spin-down polarized holes. A stepped characteristic is
typical of QPCs; it was observed experimentally [7]
and discussed theoretically [13]. A certain integral
number of propagating modes, which are accommo-
dated across a constriction of width w0, correspond to
each step of the conductance. At small w0 (less than
2.5 nm, Fig. 2a), no mode can pass from one electrode
to the other. Thus, the total transmission factor (see (2))
is very small and varies from 10–22 at w0 = 0.5 nm to
10–4 at w0 = 2.5 nm. Increasing w0 to 4–5 nm, we can
accommodate one transverse mode in the constriction,
and a step of g = e2/" appears in the characteristic in
Fig. 2a. Similar conditions arise for the other steps in
the dependence of the conductance g on the constric-
tion width w0 [14].

From Fig. 2a, we can see that the characteristics for
the two spin channels are different. This behavior man-
ifests itself in a displacement of the curve for spin-
down holes to the right along the w0 axis, which is
attributed to the difference ∆SO between the Fermi ener-
gies for spin-up and spin-down charge carriers. Spin-up
polarized holes have a higher energy, which corre-
sponds to the large number of modes accommodated in
the transverse direction. The passage of one mode at the
QPC constriction is possible at smaller values of w0.

By ∆w, we denote the difference between constric-
tion widths when one spin channel is open and the sec-
SEMICONDUCTORS      Vol. 39      No. 9      2005
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ond is closed (Fig. 2a). If the constriction width w0
increases, the difference ∆w increases: ∆w1 < ∆w2 < ∆w3.
If we choose a QPC whose constriction width corre-
sponds to one of the intervals ∆w, then the total conduc-
tance is dominated by one of the spin components. In
our case, this is the spin-up component, g↑ > g↓.

Figure 2b shows the dependence of the degree of
spin polarization P on the width of the QPC constric-
tion. For a comparative analysis, we indicated the
ranges ∆w of the variation of the constriction width
from Fig. 2a. For a constriction width of w0 = 3.5 nm,
the degree of spin polarization of the current is as high
as 82%. At larger values of w0, the value of P first
abruptly falls to zero and, then, spikes are observed in
the characteristic. As iw0 increases, the spike ampli-
tudes decrease. Such behavior is related to the increase
in the magnitude of the QPC conductance, while the
relative change in g of the two spin components does
not exceed e2/". At large values of w0 (not shown in
Fig. 2b), the oscillations are quickly damped and the
polarization approaches the average value of P = 5%, in
agreement with the predictions of the theory [12].

The maximum spin polarization is attained at the
instant when one of the spin channels is open and the
other is completely closed. In a practical realization of
a GaxMn1 – xAs QPC-based spin filter, the operation
region lies in the range ∆w1. Although, at w0 < 3 nm, the
values of P are rather large, the application of the
device encounters some difficulties related to the
extremely small values of the conductance, i.e., of the
current (see above). Here, it should be noted that one
must carefully choose the operation point of the spin fil-
ter because of the strong dependence of P on w0. In the
split-gate configurations of a QPC, a smooth variation
in the constriction width is attained by a corresponding
variation in the negative bias at the gate [7, 14]. Except
for the operation region ∆w1 specified above, the use of
other regions, ∆w2 and ∆w3, is also possible. However,
in these cases, the degree of spin polarization is four to
five times lower than in the case of ∆w1.

Simulation was performed for the case where the
Fermi energy for spin-up polarized holes is greater than
for spin-down carriers, E↑ > E↓. In this case, a QPC oper-
ates as a filter that is transparent for spin-up and non-
transparent for spin-down polarized holes (Figs. 2a, 2b).
In order to change the spin orientation of the current,
one must reverse the direction of the magnetization
vector in GaxMn1 – xAs. This reversal can be produced
by remagnetization of the material in an external mag-
netic field. The Fermi energy E↓ becomes greater than
E↑ but the difference between the levels remains the
same and equal to ∆SO. Thus, when reversing the direc-
tion of the external magnetic field, a QPC can be a
source of either spin-up or spin-down polarized charge
carriers.

The effect of the magnitude of spin–orbit splitting
∆SO in a magnetic semiconductor on the degree of spin
polarization is illustrated in Fig. 3. The range of varia-
SEMICONDUCTORS      Vol. 39      No. 9      2005
tion in ∆SO is varied from 0.01 to 0.05 eV, and the con-
striction width w0 is fixed at 3.5 nm, which corresponds
to the optimum operation mode of the spin filter
(Fig. 2b). As ∆SO increases, the degree of spin polariza-
tion increases nonlinearly. The largest increase is
observed at the initial portion of the curve; then, the
increase becomes slower, thus indicating the approach
to the saturation value of P = 100%. Obviously, the
experimental value of ∆SO = 0.034 eV for GaxMn1 – xAs
[11] is, in principle, sufficient and attempts to further
increase ∆SO will not yield a significant increase in the
polarization P in QPC-based spin filters.

At present, a basic obstacle to the practical applica-
tion of QPCs in GaxMn1 – xAs as spin filters remains the
low Curie temperature TC ≈ 160 K [10]; this fact, how-
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Fig. 2. Effect of the constriction width w0 in a quantum
point contact (a) on the conductance for two spin compo-
nents of the current and (b) on the degree of spin polariza-
tion of the current. The operation point corresponds to the
most effective operating mode of a spin filter based on a
quantum point contact.
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ever, does not prevent the realization of spintronic
devices operating at liquid-nitrogen temperature.

4. CONCLUSION

The suggested quantum-mechanical two-dimen-
sional model of the ballistic transport of charge carriers
in QPCs on the basis of the Green’s functions formal-
ism makes it possible to take into account not only the
spin of charge carriers but also the geometrical shape of
the contact.

We estimated the efficiency of QPC spin filters on
the basis of dilute magnetic semiconductors. In partic-
ular, we established that, for GaxMn1 – xAs at a constric-
tion width of 3.5 nm, the degree of spin polarization of
the current is 82%. This value is smaller than the com-
plete (100%) spin polarization reported in [6] and is due
to the smooth (without sharp steps) dependence of the
QPC conductance on the constriction width. We note
that the theoretical predictions in [6] are based on sim-
ple analytical expressions, whereas we have solved a
rigorous quantum-mechanical problem. Thus, it is
rather difficult to experimentally obtain a completely
(100%) spin-polarized current in the classical QPC
design. One of the solutions to this difficulty can be an
increase in the length of the constriction (l0 in Fig. 1);
however, in this case, undesirable conductance oscilla-
tions appear [17].

We showed that the dependence of the polarization
of the current on the constriction width has a compli-
cated nonlinear character. The polarization attains a
maximum value at low widths and, then, as the width
increases, exhibits damped oscillations. Maximum val-
ues, i.e., the operation region of a spin filter, lie in a nar-
row range of QPC constriction widths (~3.5–4.0 nm).

0.050.040.030.020.01

30

40

50

60

70

80

90

100
P, %

∆SO, eV

GaxMn1 – xAs [11]

Fig. 3. Dependence of the degree of spin polarization of the
current through a quantum point contact in a magnetic
semiconductor on the spin–orbit splitting.
Hence, when experimentally realizing this situation, spe-
cial attention should be paid to the constriction width.

We established that the value of the spin–orbit split-
ting (∆SO = 0.034 eV) attained at present in GaxMn1 – xAs
[11] is sufficiently large for the fabrication of
QPC-based spin filters, and a further increase in this
quantity will not yield a substantial gain in the degree
of polarization of the current.
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Abstract—Deep-level transient spectroscopy is used to study charge-carrier emission from the states of sepa-
rate quantum dots in InAs/GaAs p–n heterostructures grown on (100)- and (311)A-oriented GaAs substrates in
relation to the reverse-bias voltage U. It is established that the structures under consideration exhibit different
bias-voltage dependences of the Stark shift for the energy levels of the quantum-dot states on the value of U.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

In recent years, there has been an ever increasing
interest in studies of the effect of an electric field on the
electronic properties of InAs/GaAs heterostructures
with self-organizing quantum dots (QDs). Such studies
are important from both the basic and the application-
related standpoints [1–13]. The results of studies per-
formed in various laboratories have shown that the sys-
tems under consideration exhibit a high degree of free-
dom when controlling the energy-band and optical
properties by using an external and a built-in internal
electric field. Attention was drawn to the fact that the
energy-band structure of systems with QDs can be con-
trolled for the first time in [1–3], where the effect of a
built-in electric field generated by a bistable dipole
formed by charge carriers localized in a QD and by ion-
ized point defects located very close to a QD was
observed. In our studies of InAs/GaAs heterostructures
with both vertically coupled QDs (VCQDs) and sepa-
rate QDs (SQDs) using deep-level transient spectros-
copy (DLTS), we observed a shift of the DLTS peak
related to the emission of charge carriers from a quan-
tum state of the VCQDs and SQDs to a higher-temper-
ature region of the spectrum as the electric-field
strength increased [1, 11]. The magnitude of the tem-
perature shift of the DLTS peak was much larger in a
structure with VCQDs than in one with SQDs.
Recently, studies of the electric-field dependence of the
photoluminescence (PL) spectra and photocurrent of
self-organized QDs located in an InGaAs/GaAs system
and grown on GaAs planes with various Miller indices
have been reported [4–8]. A red shift of the energy of
optical transitions in an electric field was observed [4–8].
The phenomenon responsible for this shift has come to
be known as the quantum-constrained Stark effect. In
the case of SQD structures obtained on GaAs substrates
with large Miller indices, this effect was found to be
related to a combination of a piezoelectric field and a
1063-7826/05/3909- $26.00 ©1053
permanent dipole located within a QD and caused by a
spatial separation of the wave functions for electrons
and holes [4, 5]. The Stark effect observed [6] for SQD
structures on GaAs (100) substrates was attributed
solely to dipoles resulting from a spatial separation of
the wave functions for electrons and holes. Lemaitre
et al. [7] assumed that the observed enhancement of the
binding of excitons to LO phonons and the shift of exci-
tonic spectral lines (the Stark effect) were caused by
charged defects within and near the QDs. It should be
borne in mind that the Stark effect in structures with
QDs is more than just a new physical phenomenon; in
addition, this effect has application-related potential.
Thus, it is of interest to use the DLTS method to exper-
imentally study the electric-field dependence of the
above effect for self-organized QDs located in an
InAs/GaAs system and grown on GaAs planes with dif-
ferent Miller indices.

In this paper, we report the results of measuring the
capacitance–voltage (C–U) characteristics and of
DLTS studies of the hole emission from the quantum
states of SQDs in InAs/GaAs semiconductor hetero-
structures grown on substrates with (100) and (311)A
orientations (here, A stands for the Ga sublattice). This
emission is studied in relation to the reverse-bias volt-
age U, conditions of isochronous annealing both under
the application of and without a bias voltage, and the
presence of illumination. The InAs/GaAs heterostruc-
tures under study contained SQDs and were grown by
the method of molecular-beam epitaxy (MBE) using
self-organization effects.

2. EXPERIMENTAL

The InAs/GaAs heterostructures with SQDs under
study were formed by MBE on n+-GaAs substrates with
(100) and (311)A orientations. The array of SQDs was
formed as a result of a single-stage deposition of two
 2005 Pleiades Publishing, Inc.
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InAs monolayers. The SQDs were positioned in the
middle of a 0.90-µm-thick p-GaAs layer doped with Be
at a concentration of 2 × 1016 cm–3. The p-GaAs layer
was coated with a 0.2-µm-thick p+-GaAs layer doped
with Be at a concentration of 2 × 1017 cm–3. The DLTS
studies were carried out using a DL4600 spectrometer
(BIO-RAD Co.) that operated in a regime of two-gate
integration. In order to measure the capacitance, we
used a Boonton-72B bridge that operated at a frequency
of 1 MHz. The sensitivity of this setup was ∆C/C ≈ 10–4.
In order to carry out the DLTS measurements, we ther-
mally deposited ohmic contacts onto the n+-GaAs sub-
strate and the p+-GaAs layer. The sample was annealed
isochronously for 1 min at a fixed temperature, either
under an applied reverse-bias voltage (Ua < 0) or with-
out it (Ua = 0), before each DLTS measurement. Prelim-
inarily, the sample was heated to 350 K; kept at this
temperature for 1 min at Ua = 0 if the annealing was car-
ried out at Ua < 0; and, finally, cooled to the annealing
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Fig. 1. Concentration profiles p*(U) for InAs/GaAs p–n het-
erostructures with separate quantum dots formed on GaAs
(a) (311)A and (b) (100) substrates. The profiles were deter-
mined from capacitance–voltage measurements at T = 82 K
after a preliminary isochronous annealing at a temperature
of 350 K and at Ua < 0. The measurements were performed
(1, 3) in the dark and (2, 4) under an exposure to white light.
temperature. If the sample was annealed with Ua = 0, it
was preliminarily kept at 350 K under the conditions of
Ua < 0. The annealing temperature was varied from 80
to 350 K. The sample was then cooled to 80 K under the
conditions of either Ua < 0 or Ua = 0. The DLTS mea-
surements were then performed in the dark or under
exposure to white light. In order to determine the con-
centration profile of charge carriers in the heterostruc-
ture, we measured the capacitance–voltage characteris-
tics. The thermal-activation energy Ea for deep levels
and the cross sections σp for the capture of charge car-
riers by these levels were determined from the Arrhe-
nius equation using the rate-window method for stan-
dard DLTS measurements.

3. RESULTS AND DISCUSSION

We measured the capacitance–voltage (C–U) char-
acteristics of the InAs/GaAs p–n heterostructures with
SQDs at a temperature T = 82 K. Variations in the
capacitance C as the bias voltage U is varied for struc-
tures on (311)A and (100) GaAs substrates is known to
be typical behavior for localized states [1, 2]. We
observed a single peak related to emptying of the QD
states in each of the free-hole concentration profiles
p*(U) (Fig. 1a, 1b) calculated using the data obtained
from the capacitance measurements at T = 82 K. Illumi-
nation had a clearly pronounced effect on the results of
the C–U measurements for the structure grown on a
GaAs (311)A substrate (Fig. 1a, curve 2); however, the
effect of the conditions of the isochronous annealing
carried out before the measurements was less pro-
nounced (this effect is not shown in Fig. 1). This behav-
ior of the C–U characteristics for the structure on a
GaAs (311)A substrate is consistent with the results of
our previous studies [3, 13] and indicates that, in a
GaAs matrix containing SQDs, there are point defects
with deep levels whose concentration is comparable to
that of shallow levels of the background impurity. It is
the optical recharging of these deep levels that brings
about appreciable changes in the C–U characteristics,
since this causes changes in the Fermi level position. In
the case of the SQD structures on a GaAs (100) sub-
strate, the effect of illumination on the C–U character-
istic was much less profound (Fig. 1b, curve 4).

We used the results of the C–U measurements to
determine the range of bias voltages for which signals
related to the emission of charge carriers from the SQD
states should be observed in the DLTS spectra. In order
to determine the spatial localization of the DLTS sig-
nals and the nature of the levels responsible for these
signals, we measured the DLTS spectra at a constant
amplitude of the filling voltage pulse Uf and at a vari-
able amplitude of the voltage pulse U that corresponded
to the measurement of the DLTS signal (Figs. 2a, 2b).
The DLTS spectra of an SQD structure on the GaAs
(311)A substrate included two peaks (HD1(311)A and
HD2(311)A) related to the emission of holes accumulated
SEMICONDUCTORS      Vol. 39      No. 9      2005
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at deep traps (Fig. 2a). The measurements carried out
under different conditions of preliminary isochronous
annealing (Ua < 0 or Ua = 0) showed that the amplitudes
of the DLTS HD1(311)A and HD2(311)A peaks after
annealing with Ua = 0 were not significantly larger than
in the case of annealing with Ua < 0; however, this
increase became significant if the sample was illumi-
nated during the DLTS measurements. The observed
increase in the amplitudes of the HD1(311)A and
HD2(311)A peaks as a result of annealing at Ua = 0 and
illumination is related (as in the case of the C–U mea-
surements) to a change in the Fermi level position
resulting from recharging of the deep-level defects in
the GaAs matrix [3, 13]. In accordance with the conclu-
sions drawn in [3, 13], the DLTS peaks HD2(311)A and
HD1(311)A are caused by spatially localized states of
holes. These states are related to the ground and excited
hole states in an SQD, respectively. In addition to these
two peaks, another peak was also observed in the DLTS
spectra (this peak is not shown in Fig. 2a). The param-
eters of a deep-level defect responsible for the appear-
ance of this peak were determined from the Arrhenius
equation (Ea = 331 meV and σp = 4.5 × 10–16 cm2) and
were found to be close to the parameters of HL7 and
HL11 defects [14]. HL7 and HL11 defects are typically
formed in GaAs layers obtained by MBE and from the
melt, respectively. In addition, the parameters of the
defect HL11 are very close to those of the defect HL5
[14], which, according to [15], is a complex of intrinsic
defects and includes an arsenic vacancy VAs. We previ-
ously observed this defect in GaAs/InAs heterostruc-
tures that included SQDs and were formed by MBE
[13]. The DLTS spectra of the structures with SQDs
formed on a GaAs (100) substrate (Fig. 2b) also
included three peaks: an ED1(100) peak related to the
emission of electrons from the trap levels in the upper
half of the band gap and HD1(100) and HD2(100) peaks
related to the emission of holes from the trap levels
located in the lower half of the band gap. We also mea-
sured the DLTS spectra for different conditions of pre-
liminary isochronous annealing (Ua < 0 or Ua = 0).
These measurements showed that a shift in temperature
was observed for all three peaks if the conditions of iso-
chronous annealing were changed. The DLTS-peak
shift is caused by the presence of electrostatic dipoles
formed by the charge carriers localized in an SQD and
by ionized defects with deep levels. This shift gives
grounds for identification of the ED1(100), HD1(100), and
HD2(100) peaks with those related to the SQD states or
to the interfacial states [3, 13]. The relation of the
ED1(100) and HD1(100) peaks to the SQD states is con-
firmed by the fact that the spatial localization of these
DLTS peaks coincides with the peak in the concentra-
tion profile for free holes p*(U) (Fig. 1b) that is related
to the emission of charge carriers from the QD states.
The range of spatial localization of the HD2(100) peak
coincides with the boundary between the wetting layer
SEMICONDUCTORS      Vol. 39      No. 9      2005
and an SQD. We plotted the dependences of the temper-
ature positions of the DLTS peaks Tmax on the value of
U for all the structures (Fig. 3). The peaks HD1(311)A

and HD2(311)A are shifted to higher temperatures as the
magnitude of U increases (Fig. 3; curves 1, 2); this
behavior corresponds to changes in the thermal-activa-
tion energies from 52 to 61 meV (HD1(311)A) and from
303 to 308 meV (HD2(311)A). In the case of an SQD
structure on a GaAs (100) substrate, we also observed
a shift of the positions of the DLTS peaks (Fig. 3): the
peak HD2(100) shifted to higher temperatures as the bias
voltage changed from +0.22 to –0.40 V (curve 3); the
peak HD1(100) first shifted to lower temperatures as
U changed from –0.52 to –0.75 V (curve 4) and, then,
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Fig. 2. DLTS spectra of InAs/GaAs p–n heterostructures
formed on GaAs substrates with orientations of (a) (311)A
and (b) (100). The spectra were obtained at the following
amplitudes of the reverse-bias voltage pulse U: (1, 2) –0.25,
(3) –0.22, and (4) –0.64 V. All the spectra were measured
using the emission-rate window 1000 cm–1, the filling-pulse
amplitude Uf = 0.42 V, and the pulse width 25 µs after a pre-
liminary isochronous annealing at 350 K and Ua < 0. Spec-
trum 1 was obtained with a sample exposed to white light
and spectra 2–4 were obtained for a sample kept in the dark.
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to higher temperatures as U changed from –0.75 to
−1.61 V. This behavior corresponds to variations in the
thermal-activation energy from 217 to 288 meV for the
level related to the peak HD2(100) and from 239 to 156 meV
and then to 215 meV for the level related to the peak
HD1(100). The ED1(100) peak shifted to higher tempera-
tures as the magnitude of U increased (Fig. 3, curve 5).
At U = –0.75 V, the thermal-activation energy for the
level corresponding to this DLTS peak was equal to
192 meV and the cross section of the electron capture
was 8.0 × 10–13 cm2. The observed dependences of the
positions of the DLTS peaks associated with the emis-
sion of holes from the quantum states of QDs on the
bias voltage U applied to an SQD structure on a GaAs
(311)A substrate are related to a manifestation of the
Stark shift effect for the levels of the quantum-state
energy in an SQD [4, 5]. As was ascertained by Gurioli
et al. [5], the Stark shift in this case is apparently gov-
erned by a combination of the p–n-junction electric
field and a piezoelectric field that arises in epitaxial
GaAs layers grown on substrates with a large Miller
index, the latter field being no higher than 10 meV. In
the case of an SQD structure on a GaAs (100) substrate,
the dependences of the positions of the DLTS peaks
arising as a result of the hole emission on the bias volt-
age U applied to the structure (Fig. 3) were similar to
those previously observed for structures with two verti-
cally coupled QDs also grown on GaAs (100) sub-
strates [12]. These dependences were related to the fol-
lowing phenomena, which can manifest themselves in
structures with SQDs and can make opposing contribu-
tions to the thermal-activation energies determined
from the DLTS measurements as the electric field
increased:
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80

120

160

200

240

280

U, V

Tmax, K

1

3

2

4

5

Fig. 3. Dependences of the temperature positions of the
DLTS peaks on the voltage-pulse amplitude U. Curve 1 is
for peak HD1(311)A; curve 2, for peak HD2(311)A; curve 3,
for HD2(100); curve 4, for HD1(100); and curve 5, for
ED1(100).
(i) the field effect, which reduces the barrier height
for thermal emission [16], and

(ii) the Stark effect, which shifts the energy levels of
a quantum state in an SQD [4–8].

For the SQD structure under consideration, we
observed an appreciable increase in the Stark shift for
the ground state of holes in an SQD (this shift became
as large as ~60 meV). A strong field dependence of the
thermal-activation energy for emission of holes from
this state also appeared, which was almost unobserv-
able for an SQD structure on a GaAs (311)A substrate.
An interfacial state at the boundary between the wetting
layer and the SQD was detected; we also observed a
large Stark shift for this state. In addition to the quan-
tum states of holes, we also observed a quantum state
of electrons for the SQD structures on GaAs (100) sub-
strates. This state manifested itself in the ED1(100)
DLTS peak, which also experienced a pronounced
Stark shift.

4. CONCLUSION

Thus, the results of our DLTS studies of SQD (sep-
arate-quantum-dot) heterostructures formed on GaAs
(311)A and (100) substrates show that the structures
differ with respect to the energies of quantum-state lev-
els in an SQD that exhibit different Stark shifts. In addi-
tion, in an SQD structure on a GaAs (100) substrate, we
observed a field dependence of the thermal-activation
energy for the hole emission from this quantum state in
an SQD and ascertained that there existed an interfacial
state at the heteroboundary between the wetting layer
and an SQD; a pronounced Stark shift was also
observed for this state. These differences between the
properties of the two structures can be related to differ-
ences between the geometric shape of the SQDs [17]
and between the conditions of SQD formation [3] and
can be caused by different orientation of the substrate
surface on which the heterostructures with SQDs were
grown [18]. A special feature of the formation of SQD
structures on (100) GaAs substrates can also consist in
the presence of either point lattice defects located near
an SQD [1–3] or a potential barrier for the capture of
charge carriers [9, 10, 19].
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Abstract—Atomic models for quasi-1D planar (nanostripe) and cylindrical (nanotube) nanostructures consist-
ing of 1T and 2H TiS2 phases are suggested. By using a self-consistent band approach to the electron-density
functional in the tight-binding approximation, specific features of the electronic spectrum of these nanostruc-
tures and the conditions necessary for their stability are studied in comparison with 2D (molecular monolayer)
and 3D (crystal) TiS2 forms. The possibility of 1T  2H phase transitions in the nanostructures is analyzed
for the first time. It is established that the octahedral atomic surrounding characteristic of a stable 1T TiS2 crys-
talline phase is retained in the 2D and 1D nanostructures. In contrast to 3D TiS2, all the stable 2D and 1D nano-
structures are semiconductors. The regular modifications of the energy-band spectrum of the TiS2 nanostruc-
tures in relation to their type and atomic arrangement are found. © 2005 Pleiades Publishing, Inc.

     
                   
1. INTRODUCTION

Titanium disulfide TiS2 belongs to a wide group of
layer-structured d-metal dichalcogenides MX2, where
M denotes the metal and X = S or Se. Depending on the
composition of the metal sublattice, these materials can
exhibit metal (and superconductor) or semiconductor
properties (see [1]).

It is known that the TiS2 structure is composed of
packed S–Ti–S molecular layers. The constituent atoms
inside the layers are bonded by strong interactions, par-
tially covalent and ionic in nature. Separate layers are
linked by a weak van der Waals interaction [2–4]. The
layer structure and the anisotropy of interatomic bond-
ing in these crystalline materials are considered as indi-
cating that there is a possibility of obtaining quasi-1D
(nanotubes) and quasi-0D (fullerene-like molecules)
nanostructures [5–10] based on them.

Recently [11], a low-temperature gas-phase synthe-
sis (TiCl4 + 2H2S  TiS2 + 4HCl) was successfully
used to produce the first TiS2 nanotubes. Analysis of
their morphology and structure showed that the tubes
were composed of coaxial titanium sulfide layers, with
an interlayer spacing of ~0.57 nm and Ti-to-S atomic
ratio [Ti] : [S] = 1 : 2. The nanotubes were open at both
ends, and their average outer and inner diameters (D)
were about 20–30 and 10 nm, respectively. In [12, 13],
the intercalation of TiS2 nanotubes with lithium and
hydrogen was studied, and the potential of these mate-
rials as hydrogen accumulators was discussed.

The material-science prospects for various catego-
ries of nanostructures are defined, in many respects, by
their electronic properties, which may essentially differ
from those of the corresponding 3D crystal phases; in
1063-7826/05/3909- $26.00 1058
turn, these properties depend on the atomic arrange-
ment and geometry of the nanostructures. For instance,
MoS2 or WS2 nanotubes are semiconductors whose
band gap essentially depends on the diameter and
atomic configuration of the walls, i.e., on the so-called
chirality. In contrast, NbS2 nanotubes are metallic in
their conduction mechanism [14–16].

Regarding d-metal disulfides, the two most stable
polytypes are known: the 1T and 2H phases, which are
different in their local atomic arrangement. For disul-
fides from the Group VI d metals (MoS2 or WS2), the
2H phases, where the metal atoms are located in a trig-
onal prism-like surrounding of S atoms, are more sta-
ble. In contrast, disulfides from the Group IV d metals,
such as Ti or Zr, are characterized by octahedral coor-
dination of the metal atoms (1T polytype). Disulfides
from the Group V metals can exist in the form of both
the 1T and 2H polytypes [1, 17].

So far, the type of local atomic coordination in dis-
ulfide nanostructures, i.e., the possibility of 1T  2H
“phase transitions” when the crystalline state is
replaced by a nanoscale structure, has not been studied.
When simulating NbS2, MoS2, and WS2 nanotubes in
[14–16], it was a priori assumed that the local atomic
structure of the tubes was the same as that in the rele-
vant crystalline 2H disulfides.

In this study, we suggest, for the first time, atomic
models for a series of 1D and 2D titanium disulfide
nanostructures with different local atomic arrange-
ments (octahedral or trigonal prism-like configura-
tions). In the context of a self-consistent band approach
to the electron density functional in the tight-binding
approximation, the electron energy properties of such

           
© 2005 Pleiades Publishing, Inc.
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nanostructures are studied in comparison to each other.
As a result, the possibility of a change in the atomic sur-
rounding during the transition from the TiS2 crystal to
its nanostructure state is analyzed. Special features of
the energy-band spectrum of the 1D nanostructures
(nonchiral zigzag and armchair TiS2 nanotubes and
proportioned atomic stripes) in comparison with the
band spectrum of the 2D molecular monolayers consist-
ing of 1T and 2H phases are established for the first time.

2. STRUCTURAL MODELS 
AND THE COMPUTATIONAL METHOD

The structure of a stable 1T phase of TiS2 (
symmetry group) is formed by three-atom S–Ti–S
molecular layers that consist of Ti hexagonal atomic
networks confined between planar networks of S atoms
(Fig. 1). The layers are packed in such a manner that the
Ti atoms are located above each other along the z axis.
The coordination numbers of the Ti and S atoms are 6
and 3, respectively, and the Ti atoms are located in the
centers of [TiS6] octahedrons whose faces are in con-
tact. The unit cell contains a single formula unit (Z = 1),
and the Ti and S atoms are located at the sites 1a(0, 0, 0)
and 2d(1/3, 2/3, 0.2501), respectively. The lattice
parameters are a = 0.3402 nm and c = 0.5698 nm [1].

A metastable 2H TiS2 phase (C6/mmc symmetry
group) is also formed by S–Ti–S molecular layers that
consist of conjugated trigonal prisms [TiS6]. The
atomic positions in the unit cell (Z = 2) are as follows:
(0, 0, 0) and (0, 0. 1/2) for the two Ti atoms and (1/3,
1/3, ±z) and (–1/3, –1/3, 1/2, ±z) for the four S atoms.

In the initial stage of the treatment, we optimized the
structures and calculated the energy bands for the three-
atom molecular layers consisting of 1T and 2H TiS2
phases. Based on the results, we developed structural
models for infinite nanotubes. For this purpose, molec-
ular stripes were “cut off” from a layer and then
twisted, resulting in the formation of “three-wall”
tubes. This procedure is similar to that commonly used

P3m
SEMICONDUCTORS      Vol. 39      No. 9      2005
                                                              to form carbon nanotubes from graphene stripes [7–10,
18, 19]. The TiS

 

2

 

 tubes consist of three coaxial cylin-
ders of S, Ti, and S atoms (Fig. 2). According to the
scheme adopted in [18, 19], the geometric parameters
of the TiS

 

2

 

 nanotubes (NTs) are described by the basic
vectors of the hexagonal network of Ti atoms, 
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 equal to the perimeter of the cylinder of Ti
atoms.

By using a well-known classification (see [18, 19]),
the large variety of TiS
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 NTs constructed in the above
manner can be divided into three groups of structures:
the so-called nonchiral 

 

armchair 
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n

 

) and 

 

zigzag

 

 (
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, 0)
NTs (Fig. 2) and chiral (

 

n

 

, m) NTs. We considered non-
chiral zigzag (20, 0) NTs and armchair (20, 20) NTs.
The band structures were calculated for unit cells con-
sisting of 120 atoms. The diameters of the central
atomic cylinders in the tubes D(Ti) are listed in Table 1.

In addition, the band structure of the infinite TiS2
molecular stripes from which the above described (20, 0)

1
2

a1

a2

a1

a2
III

III IV1T 2H

Fig. 1. Structures of 1T- and 2H-TiS2 phase molecular lay-
ers. Titanium and sulfur atoms are schematically shown as
(1) closed and (2) open circles, respectively. The basis vec-
tors (a1 and a2) used when constructing the atomic models
of the NTs are shown. The dashed lines show “sections” of
the I–IV nanostripes (see text for details).
Table 1.  The diameter D(Ti), band gap (BG), total energy Etot, and strain energy Est for optimized structures of the 1T and
2H TiS2 nanotubes and nanostripes

Phase Nanostructure D(Ti), nm BG, eV –Etot, eV/atom Est, eV/atom

1T Tube (20, 0) 2.174 (2.161)* 1.28 55.703 0.063

Stripe I** – 1.38 55.766 –

Tube (20, 20) 3.733 (3.743)* 1.54 55.759 0.012

Stripe III** – 1.48 55.771 –

2H Tube (20, 0) 2.072 (2.161)* 1.12 55.378 0.117

Stripe II** – 0.87 55.495 –

Tube (20, 20) 3.478 (3.743)* 1.21 55.499 –0.018

Stripe IV** – Metal 55.481 –

Note: The symbol * indicates the diameters of the “central” cylinders formed by Ti atoms in the TiS2 NTs. (The values of D(Ti) before
structural optimization are given in parentheses). I**–IV** correspond to the types of nanostripes (see text).
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1T

2H

Fig. 2. Fragments of optimized atomic structures of the (20, 0) zigzag nanotubes constructed from 1T and 2H TiS2 molecular layers.
and (20, 20) NTs were twisted was calculated. By per-
forming this calculation, we pursued two principal goals.

First, it was interesting to compare the electron
energy states in the 1T and 2H TiS2 nanostripes, which
exhibit three types of sections: those composed of only
S, only Ti, or both S and Ti atoms; moreover, it was of
interest to find the most stable configurations. Such
edge structures in TiS2 NTs can be formed due to
extended atomic defects (dislocations) in the NT walls
along the NT axis or to deviations in the NT shape from
a cylindrical form as a rolllike morphology is devel-
oped. It is worth noting that “nanorolls” have been
detected by scanning electron microscopy in a number
of nanomaterials, e.g., d-metal oxides [20–23]. The
edge states can promote semiconductor–metal transi-
tions. In fact, metal-like states have recently been found
in sections of semiconductor monomolecular MoS2
stripes, and the corresponding atomic chains have been
interpreted as 1D conductors [24].
Second, comparison of the energy states in propor-
tionate nanostripes with those in the NTs allows discus-
sion of the stability of these systems in terms of the
strain energy Est (see, e.g., [14–16]), which is represen-
tative of the energy effect of twisting a planar layer or a
stripe into a cylinder.

We considered, as model systems, four infinite
molecular stripes of types I–IV. These were used to
construct 1T- and 2H-like TiS2 NTs, specifically, zigzag
(20, 0) NTs (types I and III) and armchair (20, 20) NTs
(types III and IV) consisting of an equal number of
atoms (120) in their unit cell. The directions in which
the 1T and 2H TiS2 monolayers were “cut” are shown
in Fig. 1. With such directions, the planar sections of
stripes I and II contain Ti or S atoms, whereas those of
stripes III and IV contain both Ti and S atoms.

We calculated the electron structures of all of the
above nanosystems using a self-consistent band theory
of the electron density functional in the tight-binding
SEMICONDUCTORS      Vol. 39      No. 9      2005
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Table 2.  Calculated band structure parameters (in eV) for the 1T and 2H TiS2 monolayers in comparison to earlier results for
a 1T TiS2 crystal

Band width
Monolayer Crystal

1T* 2H* 1T [4] [4] [26] [27] [28]

S-3s 1.96 2.22 1.9 – 2.0 2.1 1.4

Band gap S-3s–S-3p 6.44 6.38 6.4 – 6.2 6.5 6.7

S-3p (up to EF)** 4.93 4.70 5.1 5.31 5.3 5.5 5.1

BG*** 1.65 1.25 1.0 sm sm sm sm

(Band overlap) – – – 0.4 0.1 – –

Note: The symbol * indicates the results of the DFT–TB calculations carried out in this study; the symbol ** indicates the results of band
calculations using the NB-LMTO approach [4], the method of spherical waves (LSWs) [26], and the full-potential method of aug-
mented plane waves (LAPWs) [27, 28]; and the symbol *** marks where, for the semimetal (sm) TiS2 crystal, the overlap of the
bands S 3p and Ti 3d around EF is given.
approximation (DFT–TB) [25]. We optimized the
structures of the nanosystems in order to minimize the
total energy. As a result, the electron energy bands, the
total and partial electron density of states (DoS), and
the total energies of the systems (Etot) were calculated.

3. RESULTS AND DISCUSSION

Before describing the results, it is worth noting that
the band structure of a crystalline 1T TiS2 phase has
been studied both experimentally and theoretically and
reported in a number of papers (for reviews, see [3, 4,
26–28]). In the earlier studies it was concluded that 1T
TiS2 falls into the category of narrow-gap semiconduc-
tors [2]. In contrast, the more accurate estimates
obtained in the recent years show that titanium disulfide
is a semimetal. It has this form due to the overlap
between the S p and Ti d bands near the Fermi level
(Table 2, [4, 26–28]). A critical analysis of the available
calculations and the XPS and electrical conductivity
data for TiS2 was given in [26, 27]. At the same time,
band calculations using the method of linear muffin-
tin orbitals (LMTOs) for a single molecular 1T TiS2
monolayer [4] showed that such a monolayer is a
semiconductor. The transition to the metal-like state
occurs for “a plate” of more than ten molecular layers.
SEMICONDUCTORS      Vol. 39      No. 9      2005
We have no information on the electron structure of
metastable 2H TiS2.

3.1. 1T and 2H Monolayers

Figure 3 shows the DFT–TB energy bands for a 1T
TiS2 monolayer. The two lowest bands (from –13.86 to
–11.90 eV) correspond to quasi-core bands and are
largely composed of the contributions from S 3s states.
The splitting between the bonding and antibonding
s-like bands at the high-symmetry points Γ and M of the
Brillouin zone is no larger than 1.96 eV. In the range
−5.46 to –0.53 eV, there are six filled bonding bands, to
which the major contribution is made by the S 3p states.
The upper and lower edges of the entire band are at the
points M and Γ of the Brillouin zone. There are three
antibonding Ti 3d bands of symmetry t2g above the
Fermi level (EF); these bands form the bottom of the
conduction band. It is worth noting that the dispersion
of these bands in k is very small (Fig. 3). A 1T TiS2
monolayer is a semiconductor and it exhibits the indi-
rect transition Γ–M and has a band gap Eg equal to
~1.65 eV.

The band spectrum of the 2H TiS2 monolayer exhib-
its some essential differences. At the same time, this
spectrum is, in many respects, similar to the band struc-
0

–5

–10

–15Γ ΓΚΜ

1TE, eV

0

–5

–10

–15Γ ΓΚΜ

2HE, eV

Fig. 3. Energy bands for the 1T and 2H TiS2 molecular layers.
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Fig. 4. Total (solid lines) and Ti 3d partial (dashed lines) densities of states for (a) the 1T and (b) 2H TiS2 monolayers.
ture of the other 2H disulfides [29–31]). Specifically,
the dispersion of the S 3p bands in k is smaller than that
for a 1T monolayer, and the band gap is also narrower
(~1.25 eV).

We now compare the energy distributions of the
total and partial DoS for the 1T and 2H monolayers
(Fig. 4). The high peak at –12.4 eV (peak A) for a 1T
TiS2 monolayer is formed by the S 3d states. The peak
near –3.41 eV (peak B) is formed by the S 3p states but
with a noticeable contribution from the Ti 3d states. The
lowest DoS peaks of the conduction band, C and D, are
predominantly composed of Ti 3d(t2g) and Ti 3d(eg)
states with an admixture of antibonding S 3p and Ti sp
states. These DoS bands show a number of substruc-
tures. For instance, the DoS profile of the S 3p-like
band (peak B) shows three maximums (b1, b2, and b3),
which are evident in the spectrum of the crystal as well
[32]. These maximums are attributed to the bonding
S 3p–Ti 4s, 4p and S 3p–Ti 3d states, and the antibond-
ing S 3p states, respectively. From the DoS distribution
derived for a 3H monolayer, it is evident that the above
peaks (A–D) are less intense, and subbands C and D
merge into one antibonding band of a mixed type:
Ti 3d(t2g + eg)–S 3p.

The dispersion and DoS distribution in the bands for
a 1T TiS2 monolayer are, in many respects, similar to
those of the crystal [4, 20–22] (see Table 2). This result
is a manifestation of the fact that the basic features of
the distribution of electrons in TiS2 are controlled by
strong covalent-ion “intralayer” interactions. Neverthe-
less, the electronic properties of a monolayer and crys-
tal are different: as mentioned above, the TiS2 crystal is
a semimetal while the monolayer is a semiconductor
with a band gap of 1.65 eV. The change in the type of
local atomic coordination, 1T  2H, does not lead to
a change in the semiconductor properties of the mono-
layer and affects only the type and energy of the inter-
band transitions.

Finally, our calculations show that the total energy
of a 1T TiS2 monolayer (–55.785 eV/atom) is lower
than that of a 2H monolayer (–55.587 eV/atom). This

                                              
result means that the octahedral coordination favorable
(in energy terms) for the TiS2 crystal remains favorable
for a single TiS2 monolayer.

3.2. 1T and 2H Nanostripes

The results of the calculations are shown in Figs. 5
and 6 and are listed in Table 1. The band structure near
the Fermi level for the stripes of types I and III and for
the 1T TiS2 monolayer are similar; the stripes remain
semiconductors. We note only some lowering of the
lowest empty quasi-planar Ti 3d(t2g) band. This effect is
due to a decrease in the splitting of the eg–t2g states of
Ti atoms in a section of the nanostripes due to some dis-
tortion in their environment.

At the same time, the bands of a 2H TiS2 stripe (type
IV) intersect the Fermi level EF (Fig. 5), resulting in the
formation of 1D metal states similar to the states
observed for 2H MoS2 stripes of the same structure
[24]. Analysis of the composition (partial DoS) of these
bands (Fig. 6) suggests that they are formed mainly
from the 3d states of Ti atomic chains in a section of the
stripe. Furthermore, a certain contribution is made by
the 3d states of two parallel S chains at the edges of the
stripe. These states are split off from the common
hybrid Ti 3d–S 3

 

p

 

 valence band. As in the case of the
monolayers, the octahedral configuration of Ti atoms
appears to be preferable, and the 1

 

T

 

-like nanostripes are
more stable than their 2

 

H

 

 analogues (Table 1).

 

3.3. 1T and 2H Nanotubes

 

As a result of DFT–TB minimization of the total
energy 
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tot 

 for the (20, 0) and (20, 20) 1
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 and 2
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 TiS
 

2 NTs, we find that all the NTs are stable, and their opti-
mized structures remain cylindrical in contrast to, e.g.,
NiCl

 

2

 

 NTs [33]. The diameters of the optimized 1

 

T

 

 TiS

 

2

 

NTs differ from the initial diameters, obtained when
“twisting” the corresponding nanostripes, by 0.3–0.6%.
For metastable 2

 

H

 

 TiS

 

2

 

 NTs, the effects of structural
relaxation are much more pronounced: the above-men-
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Fig. 5. Energy bands for the 1T (types I and II) and 2H (types III and IV) TiS2 nanostripes.
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Fig. 6. Total (solid line) and partial (dashed lines) DoS for a 2H TiS2 nanostripe of type V (see text). The partial DoS for (a) Ti 3d
and (b) S 3p states are shown.
                  
tioned difference in diameter can be as high as 4.5–7%
(Table 1).

The relative stability of the tubular TiS2 nanostruc-
tures can be inferred from the values of Etot listed in
Table 1. The tubes are less stable than the correspond-
ing 1T or 2H monolayers; in turn, the NTs with an octa-
hedral atomic arrangement of their walls (1T-like NTs)
are more stable than the NTs “twisted” from 2H mono-
layers.
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We now consider the strain energy (

 

E

 

st

 

). We define

 
E

 
st

 
 as the difference between a NT and a corresponding

nanostripe in relation to their total energy, i.e., 
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 = 
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tot

 

(TiS

 

2

 

 NT) – 

 

E

 

tot

 

(TiS

 

2

 

 nanostripe).

The values of 

 

E

 

st

 

 are listed in Table 1. Using these val-
ues, we can assess the relative role of the competitive
energy effects controlling the preferential formation of
particular structures, namely, the 1D planar nanostripes
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Fig. 7. Energy bands for armchair (20, 20) nanotubes based on (a) 1T and (b) 2H TiS2 phases.
 

or the tubular nanostructures. For the 1D nanostripes,
the destabilizing factor is generated by the dangling
bonds of the edge atoms. For the NTs, this effect is
excluded; however, the formation of the cylindrical
structures requires extra energy to be spent to deform
the planar layer. It is interesting that the values of Est are
substantially different for the 1T- and 2H-like NTs. It is
evident from Table 1 that the 1T TiS2 nanostripes are
more stable than the NTs; however, the Est values are
small and decrease as the NT diameter increases. It is
believed that this trend promotes the formation of pre-
dominantly multilayered TiS2 NTs with relatively large
diameters. Furthermore, there exists an additional
mechanism of stabilization of multilayered NTs due to
the van der Waals interaction between the neighboring
walls of coaxial “molecular” S–Ti–S cylinders. It
should be noted that such multilayered TiS2 NTs have
actually been experimentally observed [11–13].
Although the strain energy Est for a (20, 20) 2H TiS2 NT
is negative, i.e., the formation of such an NT is favor-
able compared to a corresponding nanostripe of type IV
(Table 1), these 2H TiS2 NTs are less likely to be
formed than the 1T-like NTs, since they are less stable
(lower Etot) (see above).

We now consider the electronic properties of TiS2
NTs (see Fig. 7 and Table 1). We can conclude that all
these NTs are semiconductors, and their band gaps are
wider for larger sizes D. The structural form of the
walls (1T or 2H) and the NT configuration (zigzag or
armchair) profoundly affect the band topology near the
Fermi level, thus defining the types of transitions, i.e.,
direct or indirect (Fig. 7). As the NT diameter increases,
the NT band gap generally approaches the band gap for
the corresponding 1T or 2H molecular monolayers.

4. CONCLUSIONS

In this study, atomic models for quasi-1D planar
(nanostripe) and cylindrical (nanotube) TiS2 nanostruc-
tures are suggested. By using the DFT–TB approach,
the electron energy spectra and the stability conditions
are analyzed for these nanostructures in comparison
with 2D (monolayer) and 3D (crystal) TiS2 forms. The
possibility of 1T  2H phase transitions in the 2D
and 1D TiS2 nanostructures is theoretically studied for
the first time. It is shown that the octahedral atomic sur-
rounding typical of a stable 1T TiS2 crystal is preserved
in the nanostructures. In contrast to the TiS2 crystal, all
the stable 2D and 1D nanostructures are semiconductors.

The next research task would be to study the elec-
tronic properties of TiS2 nanotubes in relation to the
number of constituent molecular layers and the defects
in these layers. An interesting area for further develop-
ment of the theory of TiS2 NTs and NTs of other
d-metal disulfides could be simulation of the structure
and electronic properties of as yet unknown multilay-
ered “composite” NTs that consist of cylinders of dif-
ferent d-metal disulfides. For example, one can readily
anticipate that, similarly to the well-known nanotubular
materials based on carbon NTs (see [18, 19, 34]),
“composite” TiS2/NbS2 NTs could form an appropriate
system for producing quasi-1D semiconductor–metal
heterojunctions.
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Abstract—The results of theoretical studies of the energy spectra of excitons moving in semiconductor spher-
ical quantum dots are described. The contributions of the kinetic electron and hole energies, the energy of the
Coulomb interaction between an electron and hole, and the energy of the polarization interaction between them
to the energy spectrum of an exciton in a quantum dot with a spherical (quantum dot)–(insulator medium) inter-
face is analyzed. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Progress in solid-state technology has made it pos-
sible to fabricate crystalline structures whose linear size
is comparable to de Broglie’s wavelengths of an elec-
tron and hole and/or to their Bohr radii. At nanoscale
geometrical parameters of semiconductor systems, the
phenomena of quantum confinement of charge carriers
play an important role in optical and electrooptical pro-
cesses [1–4].

Since the energy gap of semiconductors is much
smaller than that of semiconductor (insulator) matrices,
the motion of charge carriers in a spherical quantum dot
is restricted in all three directions to the bulk of the
quantum dot (QD); i.e., charge carriers move in a three-
dimensional spherical potential well. It follows that
neither an electron and a hole together nor an exciton in
a QD have a quasi-momentum. Therefore, we can only
deal with the states of quasiparticles in a QD. In what
follows, by an exciton in a QD, we imply an exciton
state that has no quasi-momentum.

The optical and electrooptical properties of such
heterophase systems are, to a large extent, determined
by the energy spectrum of a spatially confined elec-
tron–hole pair (exciton) [4–8]. The energy spectrum of
charge carriers in a QD is completely discrete, starting
from the dot size a on the order of Bohr radii of an elec-
tron ae or hole ah or smaller [9–11]. Therefore, such
QDs are also called “superatoms” [12]. Under these
conditions, the interface between a QD and the insula-
tor matrix can give rise to quantum confinement of
electrons and holes in the QD. This phenomenon is
related both to a purely spatial restriction of the con-
finement region [5, 6, 13] and to the polarization inter-
action of charge carriers with the QD surface [9–11,
14–20].

At the present time, the theory of exciton states in
quasi-zero-dimensional systems is not sufficiently
developed. Therefore, we study the contribution of the
kinetic energies of an electron and hole, the energy of
1063-7826/05/3909- $26.00 1066
the Coulomb interaction between them, and the energy of
the polarization interaction of an electron and hole with
the spherical interface between a QD and the insulator
medium to the energy spectrum of an exciton in a QD.

2. SPECTRUM OF AN EXCITON 
IN A QUASI-ZERO-DIMENSIONAL 

SEMICONDUCTOR SYSTEM

Following [14–20], we consider a simple model of a
quasi-zero-dimensional system: a neutral semiconduc-
tor spherical QD of radius a with permittivity ε2 sur-
rounded by a medium with permittivity ε1, the permit-
tivity of the QD ε2 being much greater than the permit-
tivity ε1 of the medium (i.e., ε2 @ ε1). An electron e and
a hole h with the effective masses me and mh (re and rh
are the distances of the electron and hole from the cen-
ter of the QD) move in the bulk of the QD (see Fig. 1).
We assume that the electron and hole bands are para-
bolic.

a

0
rh

h

r'h
h'

e'
r'e

e
re

Fig. 1. Schematic diagram of an exciton in a spherical semi-
conductor nanocrystal. The radius vectors re and rh deter-
mine the distance of the electron e and the hole h from the
center of a nanocrystal of radius a. The image charges e' =
(a/re)e and h' = –(a/rh)e are located at the distances  =

(a2/re) and  = (a2/rh) from the center of the nanocrystal 0

and represent point image charges of the electron and hole,
respectively.

re'

rh'
© 2005 Pleiades Publishing, Inc.
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The characteristic scales of the problem are a, ae, ah,
and aex, where

are the Bohr radii of an electron, hole, and exciton,
respectively, in an infinite semiconductor with permit-
tivity ε2; e is the elementary charge; and

is the reduced exciton effective mass. The fact that all
the characteristic scales of the problem are much
greater than the interatomic distance a0 [21], i.e.,

makes it possible to consider the motion of the electron
and hole in the QD in the effective-mass approximation.

In [14, 17–19], the spectrum of an exciton in a QD
was obtained under the assumption that, for an electron
and hole moving in the bulk of the QD, the QD is an
infinitely deep potential well. Thus, the QD radius a is
bounded by the conditions

(1)

Under conditions (1), we can use the adiabatic approxi-
mation (where the hole effective mass mh is much greater
than the electron effective mass me, i.e., mh @ me),
assuming that the kinetic energy of an electron in the
QD is

, (2)

where

is the reduced radius of the QD. We also assume that
energy (2) is the highest energy in the problem. Using only
first-order perturbation theory, the authors of [17–19]

obtained the exciton spectrum (S) in a QD
of radius S in the following state: ne, le = 0, me = 0 and
nh, lh, mh = 0. Here, ne, le, me and nh, lh, mh are the prin-
cipal, orbital, and magnetic quantum numbers of the
electron and hole,

(3)

In (3), the energy of the polarization interaction of the

electron and hole with the QD surface (S) aver-
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"
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-----------, ah
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memh
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aged over the electron wave functions for a spherical
well of infinite depth is

(4)

We write the expressions for the average values of the
energies of interaction of the electron with its own
image [17–19] as

(5)

of the hole with its own image as

(6)

of the electron with the hole image and the hole with the
electron image as

; (7)

and the energy of the Coulomb interaction between the
electron and hole as

(8)

where the frequency of the vibrations of the hole is

(9)

In formula (8), th = 2  + lh = 0, 1, 2, … is the principal

quantum number of the hole,  = 0, 1, 2, … is the
radial quantum number of the hole, Ci(y) is the integral
cosine, and γ = 0.577 is Euler’s constant. In what fol-

lows, the energy is measured in units of Rye = "2/2me

and a dimensionless QD radius S = a/ae is used.
It should be noted that formulas (4)–(8) were

obtained in [17–19] by averaging the corresponding
expressions for the interaction energies with wave func-
tions of the QD (of a spherical well of infinite depth).

The representation of the exciton spectrum (S) in
form (3) makes it possible to compare the contribution
of the energy of Coulomb interaction (8) between the
electron and hole and the energy of polarization inter-
action (4) with the contribution of electron kinetic
energy (2) to the exciton spectrum.
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Expression (3), obtained for the exciton spectrum, is
valid only for the lowest exciton states (ne, 0, 0; th)
under which the inequality

(10)

is satisfied; here, ∆V(S) is the depth of the potential well
for electrons in the QD (e.g., for a CdS QD with a
radius in range (1), the quantity ∆V = 2.3–2.5 eV [7]).

In [20], rather than restricting the analysis to the adi-
abatic approximation, we found the spectrum E0(a) of

Ene 0 0, ,
th S( ) Eg ! ∆V S( )–

1
2

3
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10 , 0
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 (
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 E
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y e
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Fig. 2. The dependence of the exciton energy spectrum

(S) on the size of the nanocrystal S = a/aex:

(1) experimental exciton spectrum taken from [5, 8];
(2) exciton spectrum E0(a) obtained by a variational method

in [20]; and (3) the electron kinetic energy (S) (Eq. (2)).

E1 0 0, ,
0

T1 0,
e

the exciton ground state in a QD of radius a for a simple
model of a quasi-zero-dimensional system (see Fig. 1)
using the variational method. In contrast to [14, 17–19],
the radius of the QD a in this case was not bounded by
conditions (1). The results of a variational calculation
of the spectrum are shown in Fig. 2. Note that the spec-
trum E0(a) in a QD of radius a was obtained in [20]
under condition (10), which corresponds to the condi-
tions of the experiments carried out in [5–8].

3. CONTRIBUTIONS OF THE KINETIC, 
POLARIZATION, AND COULOMB ENERGIES 

TO THE SPECTRUM OF AN EXCITON 
IN A QUANTUM DOT

In [5, 8], peaks of interband absorption were
observed for spherical CdS QDs (ε2 = 9.3) with radii a
ranging from 1.2 to 30 nm dispersed in a transparent
matrix of silicate glass (with a permittivity ε1 = 2.25).
The effective masses of an electron me, hole mh, and the
reduced mass of an exciton µ in CdS were me/m0 =
0.205, mh/m0 = 5, and µ/m0 = 0.197, respectively. In [5, 8],
the dependence of the positions of the QD absorption
lines resulting from interband transitions to the electron
quantum-confinement levels (ne = 1 and le = 0), (ne = 1
and le = 1), and (ne = 1 and le = 2) in the conduction band
on the QD radius a were experimentally determined.

Table 1 lists the parameters of the exciton spectrum

(S) according to Eq. (3) under the conditions of
the experiments carried out in [5, 8] for CdS QDs with
radii a = 1.5–3.0 nm. According to expressions (4), (8),
and (2), the ratios of the energy of the polarization

interaction (S)/ (S) and the energy of Cou-

E1 0 0, ,
th

Upol
1 0 0, ,

T1 0,
e

Table 1.  The contribution of the energy of the Coulomb interaction of the electron and hole (a)/ (a) (Eq. (8)) and

the energy of the polarization interaction (a)/ (a) (Eq. (4)) to the exciton spectrum (a) (Eq. (3)) in comparison

with the contribution of the electron kinetic energy (a) (Eq. (2)). The values refer to CdS QDs with radii a = 1.5–3.0 nm
under the conditions of the experiments carried out in [5, 8]

a, nm (S) th , % , %

1.5 23.35 0 17.4 55.8 35.08

(0.624) 1 8.5 37.34

2.0 14.26 0 25.6 74.4 21.21

(0.83) 1 15.3 22.68

2.5 9.13 0 34.0 93.0 14.51

(1.04) 1 22.5 15.56

3.0 6.34 0 42.6 111.5 10.71

(1.25) 1 30.0 11.51

V
˜

eh

1 0 0; th, ,
T1 0,

e

Upol
1 0 0, ,

T1 0,
e E1 0 0, ,

th

T1 0,
e

T1 0,
e S( )
Rye

------------------
V
˜

eh

1 0 0; th, ,
S( )

T1 0,
e S( )

----------------------------
Upol

1 0 0, ,
S( )

T1 0,
e S( )

----------------------- E1 0 0, ,
th S( ) Eg–

Rye
----------------------------------
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Table 2.  The contributions of the energy of the interaction of the electron with its own image (a) (Eq. (5)), the energy of

the interaction of the hole with its own image (a) (Eq. (6)), and the energy of the interaction of the electron with the image

of the hole and of the interaction of the hole with the image of the electron (a) +  (a) (Eq. (7)) to the energy of the

polarization interaction (a) (Eq. (4)), as well as of the ratio of the energy of the Coulomb interaction to the energy of the

polarization interaction (a)/ (a) (8) and (4)). The values correspond to CdS quantum dots with radii a = 1.5–3.0 nm
under the conditions of the experiments carried out in [5, 8]

a, nm (S) , % , % , % th , %

1.5 14.14 64.5 58.2 22.7 0 31.2

(0.624) 1 15.2

2.0 10.61 64.5 58.2 22.7 0 34.3

(0.83) 1 20.5

2.5 8.49 64.5 58.2 22.7 0 36.6

(1.04) 1 24.2

3.0 7.07 64.5 58.2 22.7 0 38.2

(1.25) 1 26.9
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lomb interaction (S)/ (S) to the increase in
the electron kinetic energy with the QD radius S are
proportional to S and S1/2, respectively. The behavior of
these ratios is confirmed by the simulation results listed
in Table 1.

It follows from Table 1 that the major contribution
to exciton spectrum (3) is made by the energy of the

polarization interaction (S)/ (S) (Eq. (4)).
This contribution varies from 55.8% for a = 1.5 nm to
112% for a = 3 nm. However, the energy of the Cou-

lomb interaction (S)/ (S) (Eq. (8)) makes
only a small negative contribution, whose magnitude
changes from 17.4% (th = 0) and 8.5% (th = 1) at a =
1.5 nm to 42.6% (th = 0) and 30% (th = 1) at a = 3 nm.
The results listed in Table 1 are also confirmed by the
results of a variational calculation of the exciton spec-
trum E0(a) in a QD of radius a, which were obtained
in [20] without using the adiabatic approximation under
the conditions of the experiments carried out in [5, 8].

The main contribution to the energy of the polariza-

tion interaction (S) (Eq. (4)) is made by the
energy of the interaction of the electron with its image

(S)/ (S) ≈ 64.5% (Eq. (5)) and the energy of
the interaction of the hole with its image

(S)/ (S) ≈ 58.2% (Eq. (6)). The contribution

[ (S) + (S)]/ (S) (Eq. (7)) of the
energy of the interaction of the electron with the hole
image and the energy of the interaction of the hole with

V
˜

eh

1 0 0; th, ,
T1 0,

e

Upol
1 0 0, ,

T1 0,
e

V
˜

eh

1 0 0; th, ,
T1 0,

e

Upol
1 0 0, ,

Vee'
1 0 0, ,

Upol
1 0 0, ,

Vhh'
1 0 0, ,

Upol
1 0 0, ,

Veh'
1 0 0, ,

Vhe'
1 0 0, ,

Upol
1 0 0, ,
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the electron image is negative and its magnitude is
equal to 22.7% (see Table 2). It is important that these
contributions do not depend on the QD radius S.

The energy of the Coulomb interaction (S)
(Eq. (8)) yields a much smaller contribution to exciton
spectrum (3) than the energy of the polarization inter-

action (S) (Eq. (4)). The ratio of these energies

(S)/ (S) is negative, and its magnitude
changes from 31% (th = 0) and 15% (th = 1) at a =
1.5 nm to 38% (th = 0) and 27% (th = 1) at a = 3 nm (see
Table 2).

The authors of [5] claimed that, at large radii a of a
CdS QD, starting with a size of a ≥ 2.0 nm, the experi-
mental exciton spectrum could be adequately described

by the kinetic energy of an electron in a QD (a)
(Eq. (2)). Actually, it follows from Table 1 that, at 2 ≤
a ≤ 3 nm, the ratio of the sum of the polarization and
Coulomb interaction energies to the kinetic energy of
an electron is large:

Even for smallest experimentally realized QDs of
radius a = 1.5 nm, this ratio is substantial: ~38% (see
Table 1).

Thus, in the context of a simple model of a quasi-
zero-dimensional system, we showed that, even for
smallest experimentally realized QDs of radius a < aex,

V
˜

eh

1 0 0; th, ,

Upol
1 0 0, ,

V
˜

eh

1 0 0; th, ,
Upol

1 0 0, ,

T1 0,
e

Upol
1 0 0, ,

V
˜

eh

1 0 0; th, ,
S( )+

T1 0,
e S( )

-------------------------------------------------- 49–69%.≈
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the contribution of the electron kinetic energy (a)
(Eq. (2)) to the spectrum of an exciton in a QD

(a) (Eq. (3)) is of the same order of magnitude as
the contributions of the energies of the polarization

(a) (Eq. (4)) and Coulomb (a) (Eq. (8))
interactions. Therefore, describing the exciton spec-
trum for a QD of size a satisfying conditions (1) using
only the expression for the electron kinetic energy

(a) (Eq. (2)) is not quite justified.

4. CONCLUSIONS

In this study, we mainly considered simple quasi-
zero-dimensional systems. Nevertheless, the obtained
results make it possible to understand features of the
optical processes in complex multilayer spherical nano-
systems related to electron and exciton states [1–4].
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Abstract—A theory on the high-frequency nonlinear response of a double-well nanostructure in a constant
electric field has been developed. Such a structure is the next simplest in form after a single-well structure
(a resonant-tunnel diode) but less complex than a superlattice with a one-band “Stark ladder.” By solving the
Schrödinger equation numerically, the polarization current over wide ranges of frequencies and fields, including
high fields, is found for model and real structures. It is shown that the response of a double-well nanostructure
is much higher (by one or two orders of magnitude) than that of a resonant-tunnel diode. A new optimal mode
of generation, similar to that based on interlevel transitions in a coherent laser, is predicted. © 2005 Pleiades
Publishing, Inc.
1. INTRODUCTION

Resonant tunneling appears to show considerable
promise for application in nanostructure-based lasers,
integrated circuits, and logic devices [1–3]. The satis-
fied conditions for coherent tunneling offer fundamen-
tally new opportunities in this field. Examples include
coherent lasers [4], in which population inversion is not
necessary, and oscillators based on the effect of a two-
band “Stark ladder” [5], which provide generation in
the bulk.

The present-day level of technology has already
made it possible to accomplish coherence over long
lengths (up to ten quantum wells (QWs) [6]). Further-
more, the simple condition for coherent tunneling τΓ < τph,
where τΓ = "/Γ, Γ is the level width, and τph is the coher-
ence degradation time, can be too strict. In fact, a
detailed theoretical consideration shows that, under cer-
tain conditions, electron–phonon interaction does not
affect the damping of the Bloch oscillations [7] and that
resonant tunneling remains coherent even at τΓ @ τph [8].
Consequently, it is of interest to search for ways to
develop oscillators operating under the conditions for
resonant tunneling and to gain insight into the physical
processes occurring in them.

The purpose of this study was to develop a theory
for the high-frequency nonlinear response of a double-
well nanostructure (DWNS) under a dc bias. Such a
structure can be considered as the next simplest in form
after a single-well structure, or resonant-tunnel diode
(RTD), but before a superlattice with a one-band Stark
ladder. In addition, a DWNS is of interest in its own right.
First, it exhibits fundamentally new features resulting
from level splitting and from interference between the
wells. Second, the high-frequency response of a DWNS
due to the transitions between the levels can be more
intense than the response of an RTD [9, 10], making
1063-7826/05/3909- $26.00 1071
DWNSs rather promising for application as generators
in the terahertz frequency range.

Recently [10], an analytical theory of linear
response for a DWNS has been developed in the con-
text of a model previously used in [11]. Simple expres-
sions were derived for the transmission coefficient and
the average polarization current [10].

In this study, the equations of the theory developed
in [10] are solved numerically and, as a result, the
polarization current in high fields is determined for
wide ranges of frequencies and structural parameters,
including those of practical QW structures.

The results of the numerical calculations are in good
agreement with those obtained analytically for low
fields. On the basis of these results, a number of new
effects in high fields are predicted. In addition, these
results make it possible to calculate the output power of
DWNS-based oscillators.

2. FORMULATION OF THE PROBLEM 
AND THE NUMERICAL PROCEDURE

We follow [10] and consider a structure consisting
of two identical QWs of width a confined by δ barriers
of strength α. Let a dc bias Vdc be applied to the struc-
ture (Fig. 1). A steady flow of electrons of energy ε and
amplitude q is supplied to the structure on its left side.
An ac electric field E of potential V(x, t) acts in the
region of the structure:

V x t,( ) U x( ) ωt,cos=

U x( )
0, x 0<

eEx, 0– x 2a≤ ≤
2eEa– V ac, x– 2a.>=






=

© 2005 Pleiades Publishing, Inc.
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Here, e is the elementary charge and ω is the frequency
of the external field.

The electron wave function Ψ(x, t) obeys the one-
dimensional time-dependent Schrödinger equation

(1)

Here, Θ is the unit-step function and m* is the electron
effective mass in the structure. The boundary condi-
tions for the Schrödinger equation (1) can be written as

(2)

where

are the electron wave vectors to the left and right of the
structure, respectively.

The reduced current of the nth well Jn is given by

where n = 1 and 2. Under the effect of the ac electric
field, an active polarization current Jc, which is in phase
with the external field, and a reactive current Js flow

i"
∂Ψ
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Fig. 1. A double-well nanostructure under an external volt-
age Vdc.
through the structure. The active current (amplification)
can be calculated using the formula

(3)

Thereafter, we set " = 2m* = q = 1.
In order to solve Eq. (1) numerically, we take a dis-

crete rectangular mesh with certain steps along the
coordinate dx = 2a/(NX – 1) and time (dt) axes. (Here,
NX is the number of coordinate nodes in the mesh.) We
use the finite difference method [12]. Then, for each
fixed time layer j, the problem is reduced to the solution
of the matrix equation

where Ψ(k, j) is the wave function to be found, U(k, j) =
Vac(k, j) + Vdc(k) are the known values of the potential at
the nodal points of the mesh corresponding to the coor-

dinate k and the time j, and i = .
The symbols A2 and Ak denote the matrix elements

and
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The solution to the above matrix equation is searched
for by the sweep method [12]. Once the function Ψ(k, j)
has been found using this procedure, we progress to the
next time layer j + 1 and so on, thus obtaining the solu-
tion to the problem formulated by Eqs. (1) and (2). The
symmetric six-point procedure developed by Crank and
Nicholson [13] yields a high accuracy of the solution
over a wide range of external field frequencies.

The calculations were performed for a structure
with barriers of strength α = 5, 10, and 15 and width a =
2π. For a separate well with α = 10, the energy of the

resonant ground state is  ≈ 0.235 and the half-width
(damping constant) is Γ(1) = 7 × 10–4.

3. ENERGY SPECTRUM AND TRANSMISSION 
COEFFICIENT

The energy and the half-width of the resonant levels
can be found directly from the dependence of the trans-
mission coefficient T on the electron energy ε (Fig. 2).
As can be seen from Fig. 2, the dependence features

two peaks at the energies  ≈ 0.228 and  ≈ 0.242;

the widths of the peaks are  = 3.3 × 10–4 and  =
Γ = 3.7 × 10–4. (The above-listed numerical results cor-
respond to Vdc = 0). The energy separation between the
peaks increases as Vdc increases. From this trend, the
energy spectrum of the structure can be found. It is

worth noting that the quantity  decreases as Vdc

increases, while the quantities  and  remain
almost unchanged. These results are in good agreement
with the relevant analytical calculations [10]. For illus-
tration, comparison between the numerical and analyt-
ical results for the transmission coefficient T(ε) is

εR
1( )

εR1
2( ) εR2

2( )

Γ1
2( ) Γ2

2( )

εR1
2( )

Γ1
2( ) Γ2

2( )

0.2450.2400.2350.2300.2250.2200.215 0.250

1.0

0.8

0.6

0.4

0.2

0

Vdc = 0
Vdc = 20Γ

Energy, arb. units

Transmission

Fig. 2. Dependences of the propagation coefficient T on the
energy of incident electrons ε at Vac = 0. The solid and
dashed lines refer to the numerical and analytical solutions,
respectively.
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shown in Fig. 2. Some discrepancy between the results
derives from the fact that the analytical formula taken
for the comparison does not involve corrections qua-
dratic in the parameter p/α.

4. LINEAR RESPONSE OF A DOUBLE-WELL 
STRUCTURE

First, we find the currents in the first and second

wells, J1c and J2c, under a weak field Vac ! Γ at ε = 
in relation to the parameters of the structure, the fre-
quency ω, and the voltage Vdc. This step allows us to com-
pare the results with those obtained analytically [10]. Fig-
ure 3 shows the dependence of the response J1c/Vac on
ω under various voltages Vdc for the average current of
the first well J1c. (The current of the second well is vir-
tually the same as that of the first well.) From Fig. 3, we
notice that the response shows a sharp peak at certain
frequencies ωm that are nearly equal to the energy sep-
arations between resonant levels. (It is worthwhile
comparing this finding with the energy dependence of
the transmission coefficient shown in Fig. 2.) The peak
response first increases with voltage, attains a maxi-
mum at Vdc ≈ 20Γ, and then decreases.

It should be noted that the peak response here is con-
siderably stronger than the response of an RTD (see [14]).
Calculation of the response for different values of α/p
shows that it increases proportionally to (α/p)3.

The above results are in good agreement with the
analytical calculations [10], including the dependence
of the response on the voltage Vdc. We can conclude that
this finding confirms the correctness of the above
numerical computations.

εR2
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Fig. 3. Dependences of the linear response of the first well,
J1c/Vac, on the frequency ω at Vac = 0.01Γ for different val-
ues of Vdc.



1074 ELESIN, KATEEV
5. NONLINEAR RESPONSE 
OF A DOUBLE-WELL STRUCTURE

In order to obtain the output power in the generation
mode, the current under high fields, i.e., for Vac > Γ,
should be determined. Typical results of the calcula-
tions for different Vdc at the frequencies ω = ωm are
shown in Fig. 4. We can see that, at certain values of

, the absolute value of the current J1c exhibits a peak
that shifts in accordance with an increase in Vdc. As Vdc
increases, the peak value of the current increases as
well. The resultant dependences of J1c on the ac field Vac
allow us to find the generation output power, e.g., by
applying the method used in [4, 14]. Analysis shows
that the output power may attain rather large values,
especially under a high bias voltage Vdc. Taking into
account the fact that variations in the voltage Vdc affect
the resonant frequency, we can conclude that DWNSs
show considerable potential as oscillators in the tera-
hertz frequency range.

Since the radiative transitions in DWNSs occur
between two levels, the generation should exhibit a
“laser” behavior, with the frequency being much lower
than the frequency of the transition between the resonant
levels of one well. Therefore, certain special features typ-
ical of the coherent lasers in high electric fields [4] can
be expected. In particular, we can expect a sharp depen-
dence of the current J1c on the energy of electrons sup-
plied to the structure. This feature is a result of the split-
ting of the resonant levels in high ac fields.

Figures 5a and 5b show the results of calculations of
the quantity J1cVac = Q as a function of the detuning δ =
ε = εR at different values of Vac. At Vdc = 0 and Vac = 8Γ,
Q shows a minimum (a maximum in absolute value) at
δ = 0. If Vac is higher than 8Γ, there are two minimums
that pull apart, with the separation being proportional

V ac
m

70605040302010 80
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Fig. 4. Dependences of the polarization current J1c on the ac
electric field amplitude Vac at the frequencies ω = ωm for
different values of Vdc.
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Fig. 5. Dependences of the quantity J1cVac on the detuning δ
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to Vac. Thus, a DWNS exhibits behavior similar to that
of a coherent laser that operates by transitions between
the resonant levels of one well. Because of this circum-
stance, there should exist an optimal mode of genera-
tion with a fine adjustment, as predicted in [4]. At the
same time, there are some differences, namely, an
asymmetry in the behavior of Q at δ > 0 and δ < 0 and
a decrease in minimal Q as Vac increases. At high Vdc
(Fig. 5b), the asymmetry is less pronounced, and the
quantity J1cVac at the minimums remains nearly constant.

6. CONCLUSIONS

The results presented above are obtained in the con-
text of a simple model with δ-like barriers. We believe
that the qualitative content of the results will not change
for actual structures. In order to verify this conclusion
explicitly, we calculated the linear response of a struc-
ture with the following parameters: a well width a =
150 Å, barrier width b = 16 Å, and barrier height Vb =
2 eV. The parameters were chosen so that we had α/p ≈ 10
and α = Vbb. The results of the calculation are shown in
Fig. 6. It is clear that the frequency dependence of the
response is similar to that in Fig. 3 and that the response
is of the same order of magnitude.
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Abstract—A theory of large polarons in ellipsoidal quantum dots is developed. The optical spectrum of
polaron excitons and its dependence on the degree of anisotropy of a quantum dot are analyzed. It is shown that
the polaron ground state exhibits specific anisotropic polarization of the medium. The symmetry of the wave
function of the ground state depends on the band structure of the material and on the shape of the quantum dot.
The conditions under which strong polarization of the zero-phonon emission line produced by interband optical
transitions occurs are determined. The possible polarization of this line is determined for various relationships
between the polaron energy and the energy of the exchange interaction. © 2005 Pleiades Publishing, Inc.
The optical properties of quantum dots (QDs) con-
trolled by interband electronic transitions are closely
related to a profound localization of charge carriers in
the region defined by the QD radius R. Such localiza-
tion involves the enhancement of both electron–elec-
tron interaction and electron–phonon coupling. The
manifestation of each of these effects in the optical
spectra of QDs has undergone extensive theoretical
study. In this paper, we consider the possible influence
that these types of interaction have on each other.

In the case of enhanced effective electron–electron
interaction, the excitonic effects become more pro-
nounced. The average energy of a Coulomb interaction
between two charged particles in a QD is much higher
than the exciton binding energy in the bulk of the same
crystal if the following condition for strong localization
is satisfied [1]:

(1)

Here, aB is the exciton Bohr radius in the bulk.
Along with the direct Coulomb interaction, the

effects of the exchange interaction are also consider-
ably enhanced for the excitons localized in a QD [2, 3]. In
this case, the corresponding exchange splitting is much
more pronounced than that in the bulk material if condi-
tion (1), i.e., the same condition that defines the enhance-
ment of the direct Coulomb interaction, is satisfied.

In semiconductors that exhibit a high degree of ionic
bonding, the strong interaction of electrons with polar
optical phonons results in polaronic effects [4]. In semi-
conductor nanostructures, the polaron interaction man-
ifests itself most clearly in a series of intense lines of
phonon replicas. These lines have been observed in
CdSe QDs embedded in a vitreous matrix [5, 6].

The condition for appreciable enhancement of the
polaronic effects in QDs in comparison to those in bulk

R
aB
-----  ! 1.
1063-7826/05/3909- $26.00 ©1076
materials can be expressed [7, 8] by an inequality sim-
ilar to (1), namely,

(2)

where a0 is the polaron radius in the bulk. Condition (2)
can be referred to as the strong localization condition
for a polaron.

Conditions (1) and (2) can be simultaneously satis-
fied for different relationships between polaron and
exciton binding energies or, equivalently, for different
relationships between the radii aB and a0. In this study,
we show how these differences can manifest them-
selves in the optical spectra of exciton transitions in
QDs.

We begin with a consideration of the relation
between the polaron and exciton effects in a spherical
QD. We assume that the energy states of electrons and
holes can be described, with reasonable accuracy, using
the approximation of a potential well with an infinitely
high barrier. For typical semiconductors, the spectrum
of electrons in the conduction band is nondegenerate
and can be characterized by the effective mass me. The
valence band for the same materials is, as a rule, four-
fold degenerate at the Γ point in the Brillouin zone. In
this case, the spectrum of the states of a free hole with
the moment p can be described by the spherical Lut-
tinger Hamiltonian [9]

(3)

where γ and γ1 are the Luttinger parameters, which are
well known for most semiconductors; m0 is the free

electron mass; and  is an operator of the proper hole
momentum equal to 3/2. For electrons and holes in a
spherical potential well with infinitely high barriers, the

R
a0
-----  ! 1,

ĤL
1

m0
------ p̂2

2
----- γ1

5
2
---γ+ 

  γ p̂Ĵ( )2
– ,=

Ĵ

 2005 Pleiades Publishing, Inc.
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quantum-confinement energy levels and wave functions
are known. For the electron ground state, we have [1]

(4)

where jl(x) is a spherical Bessel function of order l and
|sz〉  is the spin wave function.

The states of holes in a symmetric potential well are
characterized by certain values of the total momentum

 =  + , where  is the operator of the anglular
momentum. For the hole ground state, the total momen-

tum is  = 3/2, and the wave function has the following
form [10]:

(5)

Here, Fz is the component of the momentum  along
the axis of quantum confinement z, χµ is the eigenvector
of the matrix Jz, µ is the corresponding eigenvalue

(Jzχµ = µχµ), and  is Wigner’s 3j sym-

bol. The summation in Eq. (5) is performed over the
values of the quantum number l = 0 and 2 and values of
m and µ that satisfy the condition m + µ = Fz. The radial
wave functions are given by [11]

and

where the parameter β = (γ – 2γ1)(γ + 2γ1) characterizes
the ratio between the masses of light and the heavy
holes, A(β) is a normalization factor equal to

(6)

and the quantity k = R /" is defined by the
quantum-confinement energy En and by the heavy-hole
mass mh.

It is worth noting that simultaneous fulfillment of
conditions (1) and (2) implies that, in a zeroth approxi-

Ψsz

e( ) re( ) 2π
R

------ j0
πr
R
----- 

  sz| 〉 ,=

F̂ L̂ Ĵ L̂

F̂

ΨFz

h( ) rh( ) 2 1–( )
l 3/2– Fz+

RF l, r( )
l

∑=

× l 3/2 3/2

m µ Fz– 
 
 

Ylm ϑ ϕ,( )χµ.
m µ,
∑

F̂

l 3/2 3/2

m µ Fz– 
 
 

R3/2 0, R0 r( )≡

=  A β( ) j0 k
r
R
--- β 

  j2 k β( )
j2 k( )

-------------------- j0 k
r
R
--- 

 +

R3/2 2, R2 r( )≡

=  A β( ) j2 k
r
R
--- β 

  j2 k β( )
j2 k( )

-------------------- j2 k
r
R
--- 

 – ,

A β( ) R0
2 r( ) R2

2 r( )+( )r2 rd

0

R

∫ 
 
 

1/2–

,=

2mhEn
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mation, the energies and wave functions of the states
are defined by the condition of quantum confinement for
the spectrum of charged particles. The energy of the elec-
tron–electron interaction appears to be smaller than the
energy of the state quantized in parameter (1). Similarly,
the energy of the electron–phonon coupling is lower than
the energy of the state quantized in parameter (2).

Known wave functions (4) and (5) can be used for
constructing the wave function of the ground state of an
electron–hole pair (exciton) for any relationships
between the quantities aB and a0.

The essential difference between electron wave
functions (4) and (5) lies in their different degrees of
degeneracy in the angular momentum component that
represents the symmetry of the band states for typical
semiconductors. The electron states are twofold degen-
erate in spin, while a hole ground state with the total

momentum  = 3/2 is fourfold degenerate. Conse-
quently, disregarding the Coulomb interaction and elec-
tron–phonon coupling, the ground state of an electron–
hole pair is eightfold degenerate. In line with the gen-
eral rules for addition of momenta, the states of an elec-
tron and a hole coupled by a Coulomb interaction can
have the total momentum Iexc = 1 and 2. In this case, the
state with Iexc = 1 is optically active in the dipole
approximation, while the state with Iexc = 2 is optically
inactive. These states differ with respect to energy due
to the exchange interaction [2, 3]. The most interesting
case occurs when the energy of exchange splitting is
higher than the polaron energy; otherwise, the polaron
interaction tends towards a mixing of all the possible
exciton states, with the result that the polaron exciton
spectrum appears as it would without the exchange
interaction [7].

In what follows, we deal only with an optically
active state where Iexc = 1. The wave function of such
state is given by [12]

(7)

The state of an electron–hole pair described by wave
function (7) is threefold degenerate in the Iexc = 1
momentum component along an arbitrary axis. It
should be noted that the exact form of wave function (7)
is independent of the relation between aB and a0 and is
defined by the symmetry of the states and by conditions
for strong localization (1) and (2). If electron–phonon
coupling is taken into account along with the Coulomb
interaction, further reduction of the symmetry of the
wave function can occur. In the case of strong electron–

F̂

ΨIz

exc( ) re rh,( ) 3 1–( )
Iz 1–

=

× 1/2 3/2 1

sz Fz Iz–
Ψsz

e( ) re( )ΨFz

h( ) rh( ).
sz Fz+ Iz=

∑
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phonon coupling, the energy of the exciton ground state
in a QD is shifted by the polaron shift [7, 8]

(8)

Here,

and the optical permittivity εopt characterizes the inter-
action of charged particles with polar optical phonons
and obeys the relation 1/εopt = 1/ε0 – 1/ε∞. Expression (8)
for the polaron energy was derived by the same proce-
dure as in [7, 8], taking into account wave function (7)
corresponding to a certain value of the total momentum
of an electron–hole pair. This expression differs from
that obtained previously in that, if the exchange effects
are taken into account, it involves the modified electron

and hole densities (re) and (rh), which generally
depend on the quantum numbers of the exciton state.

Since, for a zeroth-approximation exciton, wave
function (7) is degenerate, the correct functions of the
first approximation should be written, according to the
general rules of quantum mechanics, as linear combina-
tions of functions of type (7),

(9)

with the arbitrary coefficients Ci. These coefficients are
determined from the condition that polaron energy (8)
takes its minimal value. It is found that this condition
for ∆E in Eq. (8) is attained under anisotropic polariza-
tion of the medium. In such a case, the minimal energy
is realized using a combination of wave functions (9),
such that C–1 = ±C1, which corresponds to the condition

(10)

Condition (10) implies that recombination of an elec-
tron and hole in the relevant state produces nonpolar-
ized light emission. It should be noted that, in this case,
the binding energy of a polaron exciton, ∆E, is equal to
the same value Epol, which was obtained in [7, 8] by dis-
regarding the exchange interaction:

(11)

The dimensionless function B(β) is given in [7, 8]. The
absolute value of the binding energy of a polaron exi-
ton, ∆E, controls the distribution of phonon replicas in
the optical spectra of QDs. Thus, the simultaneously
considered polaron coupling and exchange interaction
in a spherical QD do not produce any qualitative
changes in the spectrum of exciton optical transitions.

∆E
e2

2εopt

-----------
φe

2 r( ) φh
2 r( )– φe

2 r'( ) φh
2 r'( )–

r r'–
------------------------------------------------------------------d3rd3r'.∫–=

φe
2 re( ) Ψ exc( ) re rh,( ) 2

d3rh,∫=

φh
2 rh( ) Ψ exc( ) re rh,( ) 2

d3re,∫=

φe
2 φh

2

Ψ exc( ) re rh,( ) C 1– Ψ 1–
exc( ) re rh,( )=

+ C0Ψ0
exc( ) re rh,( ) C1Ψ1

exc( ) re rh,( ),+

Iexc( )z〈 〉 0.=

∆E Epol≡ e2

εoptR
------------B β( ).–=
The situation can be reversed if a QD has lower, e.g.,
ellipsoidal symmetry. Let the equation for the QD
boundary in the principal axes x, y, and z have the fol-
lowing form:

(12)

Here, b = R(1 – ε/3), c = R(1 + 2ε/3), and ε is the non-
spherical-shape parameter. We will assume that this
parameter is small; i.e.,

|ε| ! 1. (13)

In this case, the electron and hole states can be charac-
terized by certain values of the anglular momentum. In
an approximation that is linear in the small nonspheri-
cal-shape parameter, the fourfold degenerate hole state
is split into two doublets corresponding to Fz = ±3/2 and
Fz = ±1/2. Because of the relatively high symmetry of
such a QD, the centroids of the quantum-confinement
levels are not shifted [12]. Such splitting for ellipsoidal
QDs was considered in detail in [13]. It was found that
the splitting of the hole doublets ∆Ehole is proportional
to the energy En of the quantum-confinement level:

(14)

Here, the factor f(β) depends only on the ratio β
between the masses of the light and heavy holes. The
dependence f(β) was plotted in [13]. It is significant that
the function f(β) reverses its sign and passes through
zero at β = β0 ≈ 0.14.

In the vicinity of the mass ratio β = β0, splitting due
to the non-spherical shape of a QD is negligible. This
range of β should be considered separately in more
detail (see below).

Outside the range around β = β0, the quantum-con-
finement energy of a hole, En, is parametrically high com-
pared to the polaron energy as given by inequality (2). In
addition to En, splitting of the hole levels ∆Ehole < Epol
(14) is defined by the nonspherical-shape parameter ε.
If ε is very small, meaning that the condition ∆Ehole <
Epol is satisfied, the polaron state appears to be the same
as in the case of a spherical QD. The optical spectrum
of a QD can essentially be modified under the condition

(15)

which is compatible with the condition of small non-
spherical-shape parameter (13) as a result of inequal-
ity (1). When constructing wave function (7) for the
exciton ground state in this case, the states of only one
hole doublet, which has a minimal energy, should be
taken into account.

If the conditions
ε > 0 and β > β0 or ε < 0 and β < β0 (16)

are satisfied, the ground state of a hole in a nonspherical
QW is a doublet with the momentum component Fz =
±1/2. In this case, there are no qualitative changes in the

x2 y2+

b2
---------------- z2

c2
----+ 1.=

∆Ehole εEn f β( ).=

ε  @ 
R
aB
-----,
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optical spectra of interband transitions. The exciton
ground state corresponds to the coefficients Ci that lead
to condition (10). The optical emission due to recombi-
nation of such states is nonpolarized. In contrast, under
the conditions

ε > 0 and β < β0 or ε < 0 and β > β0 (17)

the ground state of a hole is a doublet with the momen-
tum component Fz = ±3/2. When taking into account
the polarization of the medium, the exciton ground state
is described by solutions of type (9). In this case, how-
ever, the coefficients found by minimizing polaron
energy (8) are

|C–1| = 1 or |C1| = 1, (18)

which are consistent with the conditions 〈(Iexc)z〉  = ±1.
Recombination of an electron and a hole in this state
produces polarized emission. For a single QD, the
degree of polarization of the zero-phonon line should as
high as 100%.

In the range β ∝  β0, the symmetry of the ground
state is largely defined by polaron effects. The splitting
of the quantum-confinement levels of a hole due the
nonspherical shape of a QD is small compared to the
polaron interaction and, thus, can be disregarded. Con-
sideration of this range is of special interest because it
is typical of a number of II–VI compounds (e.g., CdSe
and CdS), in which polaron effects have been experi-
mentally observed.

In the linear approximation, with respect to the
small nonspherical-shape parameter ε, the energy of the
polaron state of an electron does not change. Therefore,
we take into account only possible changes in the
energy of the hole states. Conditions (1) and (2) allow
us to study the electron–phonon coupling in a QD inde-
pendently of exciton effects.

We now consider the interaction of a hole with the
polar optical phonons in an ellipsoidal QD whose
boundaries obey Eq. (12). After substituting variables
in the form x = (x'b)/R, y = (y'b)/R, and z = (z'c)/R, the
QD boundary is transformed into a sphere of radius R.
Under the same substitution of variables, the conven-
tional operator of the electron–phonon coupling from
[7] takes the form

(19)

where  and  are the phonon creation and annihila-
tion operators. In Eq. (19), we used the notation

(20)

for the above substitution of the variables x, y, and z.

V̂h ph– e
2π"
Vεopt

------------ ω q( )
q

∑–=

× 1
q
--- âq iq' rh⋅[ ]exp âq

+ i– q' rh⋅[ ]exp+[ ] ,

âq
+ âq

q'
b
R
---qx

b
R
---qy

c
R
---qz, , 

 =
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We now account for the polaron coupling by the
method described in detail in [7, 8]. It is necessary to
average the Hamiltonian of the system with respect to
the fast motion of electrons and to make the unitary

transformation  = exp[ ], where

(21)

as a result, we convert the phonon Hamiltonian into a
diagonal form and obtain the following expression for
the binding energy of a hole polaron:

(22)

Here, the Fourier component of the hole density is
given by

(23)

Expanding expression (20) in series up to a term that is
linear in nonspherical-shape parameter (13), we use
Eq. (23) to obtain the following expression:

(24)

In the zeroth approximation with respect to the param-
eter ε, expressions (22) and (24) yield the binding
energy of a hole polaron in a spherical QD, which was
derived in [7]. In the linear approximation in ε, the hole
ground state, initially fourfold degenerate, splits into
two doublets with the momentum components Fz =
±1/2 and Fz = ±3/2. At the same time, in the linear
approximation in ε, the centroid of the levels is shifted
along with the above-mentioned splitting. This shift is
determined by the formula

(25)

The dependence of the shift in Eq. (25) on the mass
ratio β of light and heavy holes was calculated using
wave functions (5). The result takes the form

(26)

The dimensionless function F1(β) is plotted in Fig. 1.
Although the shift is rather small, it can be important,
since it produces a change in the energy of the interband
optical transitions in an ellipsoidal QD as compared to
a spherical QD of the same volume. Taking this shift

Ŝ Ûh

Ûh
e
q
--- 2π

Vεopt"ω q( )
----------------------------- ρh q'( )âq

+ ρh* q'( )âq–[ ] ;
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iq' r⋅[ ] .exp∫=

ρh q'( ) d3r ΨFz

h( ) r( ) 2
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into account can be important when analyzing the
experimental spectra of the interband optical transitions.

The splitting of the hole levels at the energies E±3/2
and E±1/2 is given by

(27)

where the dimensionless function F2(β), dependent on
the mass ratio, is expressed in terms of radial wave
functions of the hole ground state for a QD in the fol-
lowing way:

(28)

∆Esplit E 3/2± E 1/2±–
e2

2εoptR
---------------εF2 β( ),= =

F2 β( ) 16
15π
--------- A β( )( )4 R0

2 r'( ) R2
2 r'( )+( )[

0

∞

∫
0

R

∫
0

R

∫=

× R0 r( )R2 r( ) j0 qr'( ) R0
2 r( ) R2

2 r( )+( )–

× R0 r'( )R2 r'( ) j2 qr'( ) ] j1 qr( )qrdq r' r.dd

0.2 1.00.80.60.40

0.002

0.004

0.006

0.008
F1

β

Fig. 1. Shift of the energy levels of the ground state for a
hole exciton in an ellipsoidal QD versus the ratio between
the masses of light and heavy holes.

0.2 0.4 0.6 0.8 1.0
–0.03

–0.02

–0.01

0

0.01
F2

β

Fig. 2. Splitting of the energy levels of holes with the
momentum components Fz = ±3/2 and Fz = ±1/2 in an ellip-
soidal QD versus the ratio between the masses of light and
heavy holes.
The function F2(β) is plotted in Fig. 2. The symmetry
of the states resulting from polaron-induced splitting is
the same as in the case of splitting due to the quantum-
confinement effects considered above. Depending on
parameter (2), the splitting induced by quantum con-
finement can be larger than that described by Eq. (27).
Therefore, Eq. (27) actually describes splitting of the
hole levels only in a rather narrow range of mass ratios,
where β ≈ β0. As follows from the calculated values of
the function F2(β), the symmetry of the polaron ground
state in this case is the same as the symmetry in the
range defined by inequalities (17).

In the approximation that is linear in the small non-
spherical-shape parameter ε, the corrections to the
polaron exciton energies are the same as above-derived
corrections (25) and (27) to the hole polaron energy.
For the polarized emission controlled by interband opti-
cal transitions to be observed, it is necessary that the
exciton ground state corresponds to a hole doublet with
the momentum components Fz = ±3/2. This situation
takes place under condition (17). If this condition is sat-
isfied, the emission from a single QD will be com-
pletely polarized; i.e., the degree of polarization will
be 100%.

Emission from arrays of QDs is commonly
observed experimentally. These QDs can differ in
shape and size. In this case, the degree and type of
polarization of the emission is governed by the proper-
ties of a particular array. Polarized emission from an
array can serve as an optical indicator of a rather high
density of constituent nonspherical QDs, for which the
nonspherical-shape parameter obeys condition (15).
This opens up new possibilities for determining the
parameters of QDs from optical measurements.
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Abstract—Experimental results obtained by studying the main characteristics of a millimeter–submillimeter-
wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostruc-
ture with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the
mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 µW (for
a mixer area of 1 µm2). It is shown that a millimeter–submillimeter-wave receiver with a noise temperature of
1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for
use in array receiver elements. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Heterodyne receivers show great potential as
devices for the detection of electromagnetic radiation in
the frequency range 0.5–6.0 THz. At present, these
detectors are used to facilitate the realization of projects
such as HERSHEL, SOFIA, TELIS [1], etc., aimed at
the development of submillimeter-wave-band radio
telescopes and spectrometers that can be earth-, bal-
loon-, and space-based. At the same time, the field of
possible applications of terahertz-radiation detectors is
much wider, including medicine, fire departments, nav-
igation systems, security systems, and so on. Expansion
of the market for heterodyne detectors is primarily
impeded by the necessity of ensuring complex special
conditions for the operation of these detectors. For
example, mixers that exhibit a record-breaking value of
noise temperature and are based on a superconductor–
insulator–superconductor junction (SIS mixers) [2] and
mixers based on electron-induced heating in a thin
superconductor film (HEB mixers) [3] need cooling to
temperatures of ~4.2 K and lower, which adds compli-
cations when dealing with these mixers. The noise tem-
perature of widely known mixers based on Schottky
diodes increases drastically at frequencies higher than
1 THz, even if these mixers operate at room tempera-
ture [4]. In addition, the mixers based on Schottky diodes
require an appreciable (~1 mW) power for their local-
oscillator source, which makes the development of array
detector components based on these mixers impossible,
although these components undoubtedly extend the field
of application for mixers that operate in the millimeter-
and submillimeter-wave (MM–SMM) bands.

A new type of a mixer designed for the MM–SMM
band and based on the effect of heating a two-dimen-
1063-7826/05/3909- $26.00 1082
sional (2D) electron gas in AlGaAs/GaAs semiconduc-
tor structures was suggested by Yang et al. [5, 6].
The  mechanism of operation of a submillimeter
AlGaAs/GaAs mixer is based on the heating of the
electron subsystem in the heterostructure produced by
absorption of electromagnetic radiation. This heating
brings about a variation in the charge-carrier mobility
and resistivity of a sample and, as a result, the appear-
ance of a photoconductivity signal PIF at the intermedi-
ate frequency (IF) ∆f, i.e., the difference between the
frequency of radiation of the local-oscillator source and
that of the object under study. The IF bandwidth of the
mixer is controlled by the relaxation time for the tem-
perature of nonequilibrium (“hot”) electrons. In the
case of a phonon-related mechanism of cooling at a lat-
tice temperature of 77 K, this relaxation occurs via the
transfer of excess energy to the optical phonons of the
lattice. If the sample length l satisfies the condition l <

π , where D is the diffusion coefficient and τe – ph

is the time of electron–phonon interaction, the condi-
tions are then satisfied for a diffusion-related escape of
nonequilibrium charge carriers to the contacts. In our
experiment, we studied the rate of electron–phonon
interaction. Yang et al. [5, 6] (in addition, see [7, 8]) stud-
ied the electron–phonon interaction in AlGaAs/GaAs
heterostructures and showed that the conversion band-
width of an AlGaAs/GaAs mixer should be equal to
~3 GHz at 77 K if the phonon-related mechanism of
cooling of hot electrons is used. Lee et al. [9] reported
the design of a mixer based on an AlGaAs/GaAs het-
erostructure with ballistic cooling of charge carriers;
for this mixer, the signal-conversion bandwidth was
as large as ~40 GHz. Theoretical estimation of the
noise temperature Tn for a receiver based on an

Dτe ph–
© 2005 Pleiades Publishing, Inc.
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AlGaAs/GaAs mixer yielded Tn ≈ 1500–2000 K at a
local-oscillator frequency of 1 THz [8], which is com-
parable with the best characteristics of mixers based on
superconductors. Estimation of the optimum local-
oscillator power for an AlGaAs/GaAs mixer [8] yielded
the value Phet ≈ 1 µW at submicrometer sizes of the
mixer, which makes it feasible to fabricate mixers that
consist of arrays of receiver sections based on
AlGaAs/GaAs.

In this paper, we report the results of experimental
studies of the main parameters of a mixer based on
heating of a 2D electron gas in an AlGaAs/GaAs het-
erostructure with a phonon-related mechanism of
charge-carrier cooling. The parameters under consider-
ation include the conversion losses, the conversion
bandwidth, and the optimum local-oscillator power.

2. THE STRUCTURES UNDER STUDY

The structures were fabricated on the basis of a sep-
arate AlxGa1 – xAs/GaAs heterojunction grown by
molecular-beam epitaxy. The molar fraction of Al in the
AlxGa1 – xAs compound was x = 0.28–0.3. A schematic
representation of the structure is shown in Fig. 1. In
order to improve the ohmic contact to the 2D electron
gas, we used a heavily doped 50-nm-thick n-GaAs
layer (the concentration of the doping impurity was 1 ×
1018 cm–3). The structures were obtained by the conven-
tional technology sequentially using the following
operations: wet chemical etching of the mesa structure,
explosive photolithography while forming the contact
metallization, thermal deposition of the AuGe alloy
with subsequent annealing at a temperature of 400°C in
an inert-gas atmosphere, and removal of the top shunt-
ing GaAs layer. The typical contact resistances of the
structures were equal to 10–3 Ω/cm2. The mobility µ and
the surface electron concentration ns were determined
from the results of measurements of the Shubnikov–de
Haas oscillations and were recalculated for the temper-
ature T = 77 K. The obtained values of µ and ns, as well
as the length l and width W of the structures, are listed
in the table.

3. THE CONVERSION BANDWIDTH 
OF AN AlGaAs/GaAs MIXER

The experimental setup for measuring the mixer band-
width is shown schematically in Fig. 2. Radiation from the
signal generator, with a frequency of 129.2 GHz, and
radiation from the local oscillator, whose frequency
was varied in the range from 129.2 to 139.2 GHz, were
supplied to the mixer through a quasi-optical channel
that included a beam splitter. The local-oscillator power
exceeded the signal-generator power by ~7 dB. A direct
bias current was fed to the mixer via a cooled wide-
band bias adapter. The IF signal was extracted using a
section of a semirigid coaxial line and was fed to
uncooled broadband amplifiers with a frequency range
from 0.1 to 10 GHz and gain of ~50 dB. The amplified
signal was detected using a thermistor-based power meter.
SEMICONDUCTORS      Vol. 39      No. 9      2005
The IF bandwidth of the mixer was determined from
the frequency dependence of the mixer signal PIF (at
fixed power levels of both the signal and local-oscilla-

2D electron gas2D electron gas2D electron gas

AuGe ohmic contact

500 Å—n-doped
GaAs

600 Å—n-doped GaAs layer

50 Å—undoped AlGaAs spacer

0.6 µm-undoped GaAs buffer layer

GaAs substrate

Fig. 1. Schematic representation of the AlGaAs/GaAs het-
erostructure under study.

Table

Structure 
no.

m77 K,
cm2 V–1 s–1 ns, 77 K cm–2 l, µm W,  µm

15 2.5 × 104 2.5 × 1011 35 100
5 1.1 × 105 3.5 × 1011 190 60
1 2.3 × 105 3 × 1011 1600 300

760 7.7 × 104 7.5 × 1011 1000 500

GPIB
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Bias-T
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P
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Fig. 2. Schematic circuit diagram of the system for measur-
ing the conversion bandwidth of a mixer based on an
AlGaAs/GaAs heterostructure.
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tor sources) using the expression [10] PIF(f)/PIF(0) =
1/(1 + (f/f3 dB))2, where f3 dB is the frequency at which
the signal decreases by a factor of 2. We measured the
frequency dependence of PIF at 77 K for an
AlGaAs/GaAs mixer (structure 5) with the 2D electron
concentration ns = 3.5 × 1011 cm–2 and electron mobility
µ = 1.1 × 105 cm2/(V s); this dependence is shown in
Fig. 3. The IF bandwidth was ~4 GHz, and the corre-
sponding time of electron–phonon interaction was
equal to τe – ph = 0.04 ns.

4. CONVERSION LOSSES 
OF AN AlGaAs/GaAs MIXER

We determined the conversion-loss factor of a mixer
L = 10 /PIF), where Pin is the absorbed power of
microwave radiation, using the method of isotherms

Pin(log

1
Intermediate frequency, GHz

Output power, dB
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Fig. 3. Dependence of the output-signal power on the inter-
mediate frequency for structure 6 (in reference to 1 mW).
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Fig. 4. Conversion-loss factor for structures 1 and 760 at T =
77 K as a function of the total absorbed power per electron.
Curve 1 corresponds to structure 1, with the electron mobil-
ity µ = 2.3 × 105 cm2/(V s), and curve 2 corresponds to
structure 760, with µ = 7.7 × 104 cm2/(V s).
[10]; in this method, it is assumed that heating a 2D
electron gas by microwave radiation is equivalent to
heating by a constant bias current. In this case, if the
mixer is completely matched to the IF amplifier, we
have L = 10 (Rop/KP0)2), where Rop is the sample
resistance at the operating point, P0 is the total power
absorbed by the mixer at the operating point, and K =
(dR/dP  [10]. According to [10], at the optimum
operating point of the mixer, we have 0.5P0 = Phet = Pbi;
here, Phet and Pbi are the values of the power absorbed
by the mixer related to the local oscillator and the con-
stant bias current, respectively. The parameters Rop, P0,
and K were determined from the current–voltage char-
acteristics of the mixers under consideration.

Figure 4 shows the dependences of the conversion-
loss factor for an AlGaAs/GaAs mixer based on struc-
ture 1 with µ = 2.3 × 105 cm2/(V s) and structure 760
with µ = 7.7 × 104 cm2/(V s) on the power absorbed by
the mixers (per electron); we measured these depen-
dences at 77 K. It can be seen from Fig. 4 that the small-
est conversion-loss factor for both structures is
obtained in the region of high absorbed power, i.e., in
the region of high heating of the electron gas. The low-
est conversion losses, L = 13 dB, correspond to the
mixer with a higher mobility of the 2D electron gas.
The curves shown in Fig. 4 also indicate that the same
values of the conversion-loss factor are attained for
mixers with different electron mobilities at a different
level of heating of the 2D electron gas; moreover, a
much higher absorbed power is required in the case of
a mixer with a lower electron mobility.

It is worth noting that, if we take into account the
requirement for matching the structure resistance to the
resistance of the IF circuit and for constancy of the
local-oscillator power when choosing the operating
point, the conversion losses depend only on the coeffi-
cient K. In turn, this coefficient (taking into account the
constancy of the 2D electron concentration in the range
of electron temperatures under consideration) is con-
trolled by the temperature dependence of the charge-
carrier mobility. At temperatures of ~77 K, the relax-
ation of the hot-electron momentum in an
AlGaAs/GaAs heterostructure is possible only as a
result of scattering by either the residual impurities in
GaAs or polar optical phonons. We confirmed this
inference by experimentally measuring the depen-
dences of the mobility µ on the temperature T in the
range T = 4.2–200 K for structures 1, 5, and 15 (Fig. 5).
The theoretical calculated dependence µ(T) [11] for an
AlGaAs/GaAs heterostructure in the case of scattering
of 2D electrons by optical phonons is also shown in
Fig. 5. The dependences shown in Fig. 5 indicate that
the transition to the prevalence of optical-phonon scat-
tering for AlGaAs/GaAs structures with a higher
mobility of the 2D electron gas occurs at lower temper-
atures than for structures with a lower mobility. Conse-
quently, in order to obtain the largest possible value of
∂µ/∂T (and the smallest possible value of L) governed

8(log

)P P0=
SEMICONDUCTORS      Vol. 39      No. 9      2005



A MILLIMETER–SUBMILLIMETER PHONON-COOLED HOT-ELECTRON 1085
by the optical-phonon scattering, we have to apply a
lower power of the local-oscillator source Phet to sam-
ples with a higher mobility µ. This behavior completely
confirms the above temperature dependences for the
samples with different mobilities of 2D electrons.

Estimations of noise temperature for a receiver
based on an AlGaAs/GaAs mixer were carried out on
the basis of the determined conversion-loss factor. The
two-band noise temperature of the receiver is obtained
from the following conventional expression [12]:

(1)

Here, Lsing are the total losses of a single-band mixer,
TIF is the noise temperature of the IF amplifier, and Tout
is the noise temperature at the mixer output. According
to Gerecht et al. [12], the two major contributions to Tout
are made by the thermal-fluctuation noise Tfl and the
Johnson noise TJ. As was shown by Gershenzon et al.
[13], the thermal-fluctuation noise in a mixer based on
an AlGaAs/GaAs heterostructure Tfl ≈ 70 K, while TJ is
equal to the electron temperature (in the case under
consideration, ~100 K) in the first approximation. Con-
sequently, Tout ≈ 170 K. The typical value of TIF is TIF ≈
20 K at T = 77 K. The total mixer losses can be repre-
sented by the sum of the conversion losses of the sensi-
tive element (the value L ≈ 13 dB obtained by us) and

Tn Lsing/2 Tout T IF+( ).=

100 T, K

µ, 104 cm2/(V s)

100

1

10

200

1

2

3

4

Fig. 5. Temperature dependence of the mobility for struc-
tures (1) 15, (2) 5, and (3) 1. Curve 4 represents the result of
the calculation.
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the losses in the high- and intermediate-frequency
channels, with the latter losses amounting to ~7 dB in
present-day receivers at frequencies of ~1 GHz [14].
The noise temperature obtained using expression (1)
for an AlGaAs/GaAs mixer is equal to ~1900 K. This
temperature indicates that further studies of the most
important characteristic of the mixer, i.e., the noise
temperature, are very important and that further
improvement of the results already obtained is possible.

5. OPTIMAL LOCAL-OSCILLATOR POWER 
FOR AN AlGaAs/GaAs MIXER

When estimating the optimal local-oscillator power
required for the operation of a mixer based on an
AlGaAs/GaAs heterostructure, it is convenient to rep-
resent the conversion-loss factors obtained for struc-
tures with different mobilities of the 2D electron gas as
dependences on the active mixer area. In Fig. 6, we
show the dependence of L on the total absorbed power
per 1 µm2 for structures 1 and 760. It can be seen that,
for structure 1, which has a lower concentration and
higher mobility of the 2D electron gas, the conversion-
loss factor levels off and takes a nearly constant value
of 13 dB at absorbed power in excess of 0.2 µW/µm2.
For structure 760, the dependence L(P0) levels off at
much larger values of absorbed power. Taking into
account the measurements of optical losses in a submil-
limeter-range receiver based on a local-oscillator mixer
[14], we can state that the necessary power of the local-
oscillator source for an AlGaAS/GaAs mixer with an
area of 1 µm2 should be ~0.5 µW. If structures with sub-
micrometer planar sizes were fabricated on the basis of
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Fig. 6. Dependence of the conversion-loss factor on the total
absorbed power per 1 µm2 for an AlGaAs/GaAs mixer at
T = 77 K for structures 1 and 760. Curve 1 corresponds to
structure 1, with the electron mobility µ = 2.3 × 105 cm2/(V s),
and curve 2 corresponds to structure 760, with µ = 7.7 ×
104 cm2/(V s).
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an AlGaAs/GaAs heterojunction with a higher mobility
and a lower concentration of 2D electrons, the above
value of the optimal absorbed power could be reduced
even more. This reasoning makes the development of
submillimeter-multielement-array receiving systems
based on AlGaAs/GaAs mixers promising.

6. CONCLUSION

The main characteristics of millimeter- and submil-
limeter-band mixers based on a separate AlGaAs/GaAs
heterojunction with µ = 2.3 × 105 cm2/(V s) and ns = 3 ×
1011 cm–2 at T = 77 K were found to be the following: a
conversion-loss factor L ≈ 13 dB, conversion band-
width of a mixer f3 dB ≈ 4 GHz, and optimal local-oscil-
lator absorbed power per 1 µm2 of area Phet = 0.2 µW.
In order to improve the mixer characteristics, it is nec-
essary to use the heterojunctions with a higher mobility
and lower concentration of 2D electron gas. With the
above parameters of an AlGaAs/GaAs mixer, the main
characteristics of a millimeter- and submillimeter-band
receiver operating at T = 77 K would be the following:
a receiver noise temperature Tn ≈ 1900 K, receiver con-
version bandwidth f3 dB = 4 GHz, and optimal power of
the local-oscillator source for a mixer with an area of
1 µm2 Phet = 0.5 µW. This consideration makes the fab-
rication of multielement-array receiving sections and
their use in thermal-imaging systems possible.
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Abstract—Disk-cavity whispering-gallery-mode (WGM) semiconductor lasers for the mid-IR spectral range
have been developed. The specific properties of these devices are investigated. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Semiconductor lasers for the IR spectral range have
been actively studied during the last ten years. The mid-
IR (2–8 µm) range is of considerable practical interest
because it includes the characteristic absorption lines of
numerous toxic and harmful gases and liquids, explo-
sives, etc. However, the advantage of optical detection
of substances of this kind is not fully taken advantage
of because of the lack of simple coherent light sources
for this spectral range.

Usually, the active region of a 2–4 µm semiconduc-
tor laser is made of a narrow-gap semiconductor. In
such semiconductors, in contrast to wider gap ones,
nonradiative recombination is strong, which reduces
the gain in the active region. In this case, the demands
on the optical-cavity Q factor increase by virtue of the
generator self-excitation condition GF = 1, where G is
a single-pass gain and F is the energy feedback coeffi-
cient. The estimated single-pass gain along a beam path
of ~100 µm is 1.4 [1], which is not sufficient for the
onset of lasing in a conventional stripe laser at room
temperature.

Earlier [2], we reported the results of studies of ring
lasers with an emission peak at the wavelength λ =
3.05 µm. Ring lasers for the visible range have been
studied before (see [3] and the references therein). The
specific feature of these devices was the use of a disc
cavity with a whispering gallery mode (WGM).

The WGM in disc cavities has been studied both
theoretically and experimentally [3]. It was found that
the Q factor of the disc cavities can exceed 106 [4].
However, WGM lasers have not yet demonstrated deci-
sive advantages as compared to conventional semicon-
ductor lasers for the visible and near-IR range.

In our opinion, this circumstance is related to the
fact that, in this spectral range, devices with a conven-
tional configuration operate sufficiently well at room
temperature for the high quality of WGM cavities not to
offer a decisive advantage over the disadvantages typi-
1063-7826/05/3909- $26.00 1087
cal of WGM lasers: a complicated design of beam out-
let, instability of the ring cavity, and multimode (in a
general case) operation.

In the mid-IR range, lasers of simple design just do
not exist (recently, quantum-cascade lasers operating at
300 K were reported [5], but their design is very com-
plicated). Therefore, the increase in quality provided by
a disc cavity opens the way for fabrication of a device
capable of lasing even when the optical gain in the
active region is not high. Furthermore, since the wave-
length in the range under study is λ ≈ 3 µm (~1 µm
within the cavity), the demands on the surface finish are
significantly lowered, and the treatment of the cavity
surface can be reduced to the usual lithography and
standard methods of finishing.

In this study, we discuss mid-IR WGM lasers emit-
ting at a wavelength of 3–4 µm at the temperature T =
70–120 K. The obtained results give grounds to hope
for the development of room-temperature devices.

2. SAMPLES AND EXPERIMENTAL METHODS

Light-emitting laser diodes were fabricated based
on LPE-grown InAsSbP/InAs1 – xSbx/InAsSbP double
heterostructures (DHs). The DHs were grown in a stan-
dard graphite holder on a (100) InAs substrate. The
rectangular substrates used, which were 18 × 16 mm in
size and had a dopant concentration from 2 × 1016 to 5 ×
1018 cm–3, were produced by Wafer Technology Ltd.
The epitaxial growth was controlled by a PC using Lab-
View software. The details of the technology are
described in [6–8].

The active region of the DHs was composed of an
InAs1 – xSbx solid solution, with the Sb content x vary-
ing from 0 to 0.11. The carrier density in the active
region was below 5 × 1015 cm–3. This density was
obtained owing to defect gettering in the active region
doped with Yb, with Pb used as a neutral solvent. The
active region thickness was 0.5–0.7 µm.
© 2005 Pleiades Publishing, Inc.
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The active region was embedded between n- and
p-type layers of a wide-gap InAsSbP solid solution.
The wide-gap n- and p-type regions were doped,
respectively, with Sn to 5 × 1018 cm–3 and with Zn (1 ×
1018 cm–3). Figure 1 shows a typical device configuration.

Laser diodes were fabricated from epitaxial struc-
tures using standard photolithography and reactive ion
etching in a CH4:H2 gas medium. The mesa diameter
ranged from 100 to 1000 µm. After etching, the surface
of the mesa was passivated with Si3N4. Ohmic contacts
were produced by thermal sputtering of AuZn:Au and
AuTe:Au onto the p- and n-type layers, respectively.
The top contact was a 30-µm-wide ring lying at a dis-
tance of 10 µm from the edge of the mesa. The crystal
was soldered with In onto a TO-49 case. The emission
was collected by a parabolic mirror. Figure 2 shows a
micrograph of a laser diode produced in this way.

The electroluminescence spectra of the laser diodes
were studied in pulsed and quasi-stationary modes. In
the pulsed mode, the pulse width τ varied from 50 ns to
30 µs, and the repetition rate f, from 1 to 50 kHz. A cur-
rent I of 0.1 to 10 A was passed through the device. The
measurements were performed in the temperature
range 4–300 K.

A laser diode was placed in a cryostat with a sap-
phire window, and the emission was focused by a sys-
tem of fluorite lenses onto the monochromator slit.
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Fig. 1. Semiconductor structures used in the fabrication of
lasers. z is the coordinate in the direction of layer growth.
A Monospec 1000 high-resolution (1 Å) monochroma-
tor was used to study the mode structure of the spectra.
In the measurement with a lower resolution, or in those
that demanded a high focal power of the setup, a DK-480
monochromator (CVI Laser Corp.) with a resolution of
15 Å was used.

The emission was detected by a J10D-M204-R04M-60
cooled InSb photodiode with a PA-9 (Judson technolo-
gies) preamplifier. A Stanford Research SR850 lock-in
instrument was used.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Ring Lasers 200 µm in Diameter

In this study, we discuss two types of laser diodes:
type 1, with an active region based on InAs, and type 2,
with an InAs0.89Sb0.11 active region. The emission
wavelength of the type-1 and type-2 devices was λ ≈
3.04 and 3.9 µm, respectively, at the temperature T =
77 K. The type-1 devices were fabricated with a disc
cavity of 200 and 400 µm in diameter, and, in the type-2
devices, the diameter of the cavity was 400µm.

Figure 3 shows the typical coherent emission spec-
tra of a device with a diameter of 200 µm. It can be seen
that the emission is multimode, with the mode spacing
∆λ ≈ 40 Å.

In order to correlate the experimentally observed
spectrum with the presumed spectrum of a WGM laser,
it is necessary to recall that the strength of the z compo-
nent of the electric field in a WGM is approximately
described by the relation [3]

(1)

where r is the distance along the radius, n is the refrac-

tive index, ωmN = c/nR,  is the Nth root of the

Ez f z( )Jm rn
ωmN

c
---------- 

  eimφ,=

xm
N xm

N

Fig. 2. Micrograph of a mesa.
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Fig. 3. Lasing spectra of a V2230R device 200 µm in diameter (a) at different temperatures and (b) at different currents. Ith = 0.15 A.
equation Jm(x) = 0, Jm(x) is the Bessel function, and R is
the mesa radius.

WG modes correspond to large m (m @ 1) and N ≈ 1.
The specific feature of WGMs is that the field in these
modes is concentrated near the cavity walls and their
damping in the cavity is small. In the case under study,
with a cavity diameter of 200 µm, wavelength of
3.04 µm in air, and the refractive index n ≈ 3.5, m is
about 600.

The mode spacing for the cavity under study can
easily be estimated using the asymptotic expression for
the roots of the Bessel function with a large index for m
and N = 1:

Using this relation and expressing m in terms of λ, we
obtain the mode spacing

(2)

which, in our case, yields ∆λ = 43 Å, in perfect agree-
ment with the experiment.

Another specific feature of the laser diodes under
study is the fact that, in contrast to conventional lasers
with Fabry–Perot cavities, they operate at a current
exceeding the threshold value by a factor of 27 (I = 27Ith),
and they remain operable at temperatures up to 150 K
(a standard stripe laser fabricated from the same mate-
rial becomes inoperative at 110 K).

xm
1 m o m1/3( ).+≈

∆λWGM
λ2

2πRn
--------------,=
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Before we discuss the dependence of the optical out-
put power of the laser on the driving current (the exter-
nal quantum efficiency), it is necessary to note that the
current density in a round mesa with a circular contact
is highly nonuniformly distributed and to find this dis-
tribution for the given sample shape.

It is noteworthy that a laser diode is a nonlinear
device that does not obey Ohm’s law. (Moreover, since
the active region is a double heterojunction with double
charged layers on its interfaces, the standard theory of
a p–n junction is not applicable to this device either.)
Nevertheless, the current–voltage characteristic can be
approximated by a straight line in the range of working
voltages, and the current density distribution can be cal-
culated assuming the existence of some additional volt-
age drop across the active region of a real device, which
cannot be calculated in terms of a linear theory.

Formulated in this way, the problem of calculation
of the current density distribution is reduced to the solu-
tion of the standard equation

with the boundary condition

instead of setting the potential at the contacts (in this
case, the potential at the contacts is assumed to be con-
stant). Here, I is the current in the sample; jn is the nor-
mal component of the current density; σ is the conduc-
tivity, which is different in different regions; and ϕ is

∇ σ∇ϕ( ) 0=

jn Sd

Ω
∫

∂
∫ I=
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the potential. The integration is performed over any sur-
face ∂Ω dividing the sample into two parts and passing
between the contacts.

The thus calculated distribution of the normal com-
ponent of the current density jn ≡ jz on the interface of
the active region is shown in Fig. 4. The same figure
demonstrates the position of the WGM in respect to the
mesa edge. The inset shows the scheme of current lines,
which illustrates how such a distribution is attained. As
can be seen in Fig. 4, the current density peaks exactly
at the place where the WGM is localized.

Figure 5 shows the calculated current density distri-
bution and a photo of the device under study in the LED
mode, made using an IR photographic camera (at room
temperature). Since the light intensity is proportional to
the normal component of the current density, this photo
indicates, at least, qualitative agreement between the
calculation and the experiment.

Figure 6 shows the dependence of the laser output
power on the current density in the active region (for
definiteness, we plot the average current density in a
ring ~10 µm in width and situated at the mesa edge
along the x axis). Figure 6 also shows similar depen-
dences for a stripe laser made of the same material (in
this case, the current density is easily obtained by divid-
ing the total current by the contact area) and for a ring
of 400 µm in diameter. The last result will be discussed
in the next section.

As can be seen in Fig. 6, the threshold current in a
ring laser with a 200 µm diameter is severalfold smaller
than that in a conventional stripe laser, which confirms
the high quality of the disk cavity. At the same time, the
slope of the curve for the stripe laser is significantly
larger, which means that the external quantum effi-
ciency of this device is higher.

1.20.8 1.00.60.40.20
4
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9

10

12

11

r, 10–4 m

jz, 107 A/m2

Contact

10

0 0.6 0.9
r, 10–4 m

z,
 1

0
–

5 
m

Ring

WGM

Mesa

contact

edge

location

Fig. 4. Current density distribution along the radius of a
round mesa with a ring contact. Inset: the distribution of
current lines.
We attribute the small experimental quantum effi-
ciency of the ring laser to several factors. First, no spe-
cial device was used for outcoupling light from the cav-

(a)

(b)

jz, 107A/m2

5.8
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5.4

5.2
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4.6

4.4
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Fig. 5. (a) IR photo of a LED and (b) the calculated current
density distribution.
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Fig. 6. Output power of the lasers vs. the current density j in
the active region. (1) a 200-µm ring laser, (2) a 400-µm ring
laser, and (3) a stripe laser.
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Fig. 7. (a) Mode positions at different currents and (b) emission spectra at different temperatures for an V2230R Device with a diam-
eter of 400 µm and an InAs-based active region. Ith = 0.65 A.
ity; therefore, it seems probable that only a fraction of
the optical output power was measured and the external
quantum efficiency was underestimated. Second, the
WGM is localized near the mesa edge, where centers of
nonradiative recombination are also localized as a
result of technological factors; therefore, indeed, the
internal and, accordingly, the external quantum effi-
ciency of a WGM laser must be lower than that of a
stripe laser. The problem of which of these two factors
is dominant needs further study.

3.2. Ring Lasers 400 µm in Diameter 

Along with lasers with a diameter of 200 µm, we
fabricated ring lasers with a diameter of 400 µm and an
active region composed of InAs (Figs. 7, 8) and
InAs0.89Sb0.11 (Fig. 9). The specific feature of these
lasers is that, in contrast to the 200-µm-diameter lasers,
their emission spectrum shows separate high-intensity
modes (Figs. 8, 9). The spectral mode spacing ranges
from 40 to 150 Å. The InAs-based laser demonstrates
quasi-single-mode lasing at currents up to twice the
threshold current.

Detailed study of the spectra of the 400-µm lasers
reveals several other modes, which are suppressed in
respect to the fundamental mode. For the nearest
modes, the mode spacing is ~17 Å (see Fig. 8), which
agrees with the mode spacing for the WGM as esti-
mated from Eq. (2).

The dependence of the output power on the current
density in the active region was studied using the
SEMICONDUCTORS      Vol. 39      No. 9      2005
above-described method. As can be seen in Fig. 6, this
dependence for the 400-µm lasers differs significantly
from that for the 200-µm lasers. This observation sug-
gests that the operating modes in these two cases are
different and that the difference is related to the cavity
size not to the structure of the active region: indeed,
devices in which the active region is made up of differ-
ent materials, which emit at significantly different
wavelengths, demonstrate similar behavior.

3.053.043.033.023.013.002.99
Wavelength, µm

0

1600

1200

800

400

Intensity, arb. units

T = 80 K
I = 1.0 A
τ = 1.0 µs
f = 10 kHz

λ = 3.017 µm

17 Å 17 Å
18 Å

Fig. 8. High-resolution emission spectrum of a V2133R
device with a diameter of 400 µm and an InAs-based active
region. Ith = 0.65 A.
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The different behavior observed for the two sizes of
WGM lasers can be explained in two plausible ways:
first, the cavity modes generated in a 400-µm ring are
not WGMs; second, certain nonlinear processes appear in
the large disks, leading to preferential lasing in separate
WGMs. The first assumption contradicts a simple estima-
tion of the size of a cavity with the mode spacing ∆λ:

which yields ~80–150 µm. In a round cavity of 400 µm
in diameter, there exists no region of this size selected
in any way. Furthermore, WGM peaks are observed in
the spectra even though they are suppressed (Fig. 8).

Therefore, we believe that the described difference
in the behavior of 200- and 400-µm WGM lasers is
related to the development of nonlinear processes in a
larger-diameter cavity. Unfortunately, we have not yet
studied this effect in detail.
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--------------,=
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Fig. 9. (a) Mode positions at different currents, and (b) the
mode structure of emission for a V2346-2 device with a
diameter of 400 µm and an InAsSb-based active region.
4. CONCLUSIONS

The first WGM lasers for the mid-IR range have
been produced. An emission power of several milli-
watts is obtained at a wavelength of 3–4 µm at temper-
atures up to 150 K. The threshold current is several
times less than that in conventional stripe lasers of the
same structure, which confirms the existing concept of
the high Q factor of disk cavities. The lasers can operate
at currents up to 27Ith. Modification of the emission
spectrum is observed as the size of the disk cavity
increases. The origin of this effect needs further study.
The obtained results indicate that WGM lasers are
promising devices for IR-spectroscopy.
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Abstract—The kinetics of electronic processes in vidicon phototargets based on semiconductor–insulator
structures with a narrow-gap semiconductor is considered taking into account charge drain in the insulator layer
and relaxation of the nonequilibrium depletion region in the semiconductor layer. The integration time, thresh-
old sensitivity, and resolution at various intensities of incident radiation are estimated. © 2005 Pleiades Pub-
lishing, Inc.
It has been suggested [1, 2] that, to extend the spec-
tra-sensitivity range of vidicons to longer wavelengths
(for example, to 2.5–5.5 µm), semiconductor–insulator
structures could be used as phototargets. These struc-
tures should include a narrow-gap n-type semiconduc-
tor that operates under the conditions of nonequilib-
rium depletion. The insulator layer should exhibit some
electrical conductivity, so that the negative charge
induced by an electron beam in this layer can drain off
during the frame time. The electrical conductivity of
the insulator is chosen according to the requirement
that the times of the charge drain-off and frame integra-
tion are comparable.

Such a phototarget is in fact a heterostructure that
consists of wide- and narrow-gap semiconductors,
which means that the concept of the “insulator layer”
should be treated as just terminological.

The energy-band diagram of a metal–insulator–
semiconductor (MIS) structure in the phototarget under
consideration was considered in detail in [3].

If there is an input image, a charge profile is formed
in the areas exposed to light during the existence of a
depletion region. This profile is retained until the deple-
tion-region thickness becomes equal to zero as a result
of thermal generation. In the case of repeat scanning of
the target with an electron beam, a videosignal appears
across the load resistance during the period in which the
charge-profile exists.

We now consider the kinetics of the electronic pro-
cesses in phototargets in which a narrow-gap extrinsic
semiconductor with a band gap ∆Eg = 0.2–0.4 eV and
free-electron concentration n0 = 1014–1015 cm–3 is used
as the photosensitive layer. The possible thickness of
the depletion layer, which exists for some time in such
a semiconductor under the effect of voltage induced by
the charge deposited on the insulator, is equal to L ≤
10 µm. We have to determine the integration time in the
phototarget taking into account the leakage current in
the insulator.
1063-7826/05/3909- $26.00 ©1093
Distributions of the field, charge, and voltage are
described by the equations [4]

(1)

(2)

(3)

where εi and εs are the dielectric constants of the insu-
lator and semiconductor layers, L is the thickness of the
depletion layer, Li is the thickness of the insulator layer,
Ns is the density of free charge carriers (holes) accumu-
lated at the semiconductor–insulator boundary, ∆Qi is
the surface density of the charge that drains through the
insulator layer, U is the voltage that arises at the photo-
target in reference to the signal plate if there exists a
charge on the insulator-layer surface, Us and Ui are the
voltages across the semiconductor and insulator layers,
U0 is the initial voltage at the phototarget, n0 is the con-
centration of ionized impurities in the semiconductor,
Ei is the electric-field strength in the insulator layer, and
C is the phototarget capacitance. Since Li ! L, we have

C =  ≈ Cs = , where Cs and Ci are the capac-

itances of the semiconductor and insulator layers,
respectively.

Substituting the expressions for Us and Ui from (1)
and (3) into Eq. (2), we obtain

(4)

εiEi 4πen0L 4πeNs 4π∆Qi,–+=

U U0
∆Qi

C
---------– U i Us,+= =

Us

4πen0L2

εs
---------------------, U i EiLi,= =

CsCi

Cs Ci+
-----------------

εsS
4πL
----------

U0

∆Qi

C
---------–

=  
Li

εi
---- 4πen0L 4πeNs 4π∆Qs–+( )

4πn0L2e
εs

---------------------.+
 2005 Pleiades Publishing, Inc.
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Differentiating (4) with respect to time and taking

into account that  = GTL and  = σiEi, we rep-

resent Eq. (4) as

(5)

Here, GT is the thermal-generation rate for free charge
carriers in the semiconductor; σi is the electrical con-
ductivity of the insulator layer; and σi = eµni, where µ
is the mobility of charges in the insulator and ni is their
concentration.

In order to simplify the solution to Eq. (5), we
assume that the current in the insulator layer is time-
independent, since the drift mobility in insulators and
semiconductors attains saturation under the effect of
high fields >103 V/cm. The voltage across the insulator
layer varies from 0.1 to 10 V at Li ≈ 10–5 cm, and, con-
sequently, the electric-field strength Ei ≈ 104–106 V/cm;
as a result, the above assumption is reasonable.

In order to determine the value of the term 

in Eq. (5), we use the following concepts. Thermal gen-
eration dominates over recombination in the depletion
region of the semiconductor; as a result, a flow of holes,
which eventually accumulate at the interface, arises.

If holes are accumulated with the density ∆Ns, the
depletion-region thickness decreases by ∆L and the
variation in the surface charge density is given by

(6)

where L0 is the initial thickness of the depletion region.

Taking (6) into account at L @ Li, we can represent
the first term in Eq. (5) as

(7)

We then use the expressions for  and

∆Qi to transform Eq. (5) into the following form:

(8)

dNs

dt
---------

d∆Qi

dt
------------

d
dt
-----

∆Qi

C
--------- 

 –

=  
Li

εi
---- 4πen0

dL
dt
------ 4πeGTL 4πσiEi–+ 

  8πen0L
εs

-------------------dL
dt
------.+

d
dt
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∆Qi

C
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 

∆Qi en0∆L en0 L0 L–( ),= =

d
dt
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∆Qi

C
--------- 

  d
dt
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4πen0 L0 L–( )L
εs

--------------------------------------- 
 =

=  
4πen0L0

εs
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dt
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8πen0L
εs

-------------------dL
dt
------.–

d
dt
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∆Qi

C
--------- 

 

d
dt
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en0L0εi

Liεs
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  dL
dt
------– eGTL σiEi.–=
A solution to Eq. (8) is written as

(9)

For L0 @ L, we use formula (9) to obtain the depen-
dence

(10)

If σiEi ! eGTL and σiEi ! eGTL0, we use (10) to
obtain

(11)

and the integration time for the phototarget can be esti-
mated using the formula

(12)

Using formula (12), we list the numerical estimates
for the integration time. In structures composed of nar-
row-gap semiconductors (indium antimonide and
indium arsenide), the thermal-generation rate GT ≈
1018–1020 cm–3 s–1 [4], L0 = 10–3 cm, Li = 10–5 cm, εs ≈
εi ≈ 10, and the impurity concentration n0 ≈ 1014–
1015 cm–3. Substituting these values into formula (2),
we find that the integration time can vary from 10–1 to
10–3 s. The experimentally measured integration times
in InAs phototargets at ~80 K are equal to ~60 ms [2],
while the integration time in InSb-based MIS structures
has been found to be equal to ~1 ms [4].

When the phototarget is affected by an image, with
the electron charge deposited on the insulator layer in
the phototarget, a larger charge of holes is accumulated
in the regions exposed to illumination with a higher
intensity than in those exposed to illumination with a
lower intensity; correspondingly, the depletion-region
thickness decreases to a greater extent. In this case, the
accumulated surface-charge density is given by

(13)

where GP is the integrated photogeneration rate.

In the case of repeat electron-beam scanning, the
illuminated element is additionally charged for the
time τe; the additional charge is given by

. (14)

As a result, a signal current with a density jS appears
across the load resistance R.

Since the values of the charge Ns in formulas (13)
and (14) are the same, the value of the signal-current

eGTL σiEi–
eGTL0 σiEi–
--------------------------------ln t

G

n0
εiL0

εsLi
--------- 1+ 

 
------------------------------.–=

L t( )
σiEi

eG
---------- L0

σiEi

eG
----------+ 

  t
T
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εsLi

εiL0
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 
 
 

.exp+=

L t( ) L0
t
T
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εsLi

εiL0
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 
 
 

,exp=

tint T
εiL0

εsLi
--------- 

  n0

GT
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εiL0

εsLi
--------- 

  .= =

e∆Ns eGPL0tint,=
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density is given by the following expression, which is
characteristic of integrating photodetectors:

(15)

The highest possible signal current that can be col-
lected from each element of a vidicon is limited by the
maximum current obtained from the electron beam
(1−5 µA) [3].

We now report an estimate of the threshold sensitiv-
ity and the detectivity of vidicons. The threshold sensi-
tivity is controlled by an incident-radiation power Pi at
which the photocurrent signal is equal to the noise sig-
nal. If the electron-beam current is equal to 1 µA and
the bandwidth of the measured frequencies is ∆f =
106 Hz, the noise current is IN ≈ 10–9 A.

Comparing the noise current with the videosignal
current defined by formula (15) and taking into account
that the photogeneration rate Gt at the threshold power

Pt is equal to Gt =  in a single element, we can

write the expression for the threshold sensitivity as

(16)

By varying the parameters within reasonable ranges
and taking into account the experimental data (Ie =
10–5–10–6 A, τe = 10–6–10–7 s, tint = 10–3–10–2 s, γ =
0.2−0.7, and hν = 0.36 eV for InAs), we can use for-
mula (16) to find that the values of the threshold power
Pt and the threshold power density It can vary within the
following ranges: Pt = 10–13–10–14 W/element and It =
5 × 10–8–10–7 W/cm2 (the element area Se = 6 × 10–6–
10–5 cm2).

The experimental values of the threshold sensitivity
obtained using vidicon samples with InAs-based photo-
targets at a temperature T = 85 K are equal to (0.5–5) ×
10–13 W/element, which is consistent with the calcu-
lated values.

In order to calculate the specific detectivity D*, we
use the well-known formula [3]

(17)

where NEP is the noise-equivalent power.
In the case under consideration, the NEP = Pi ≈

10–13–10–14 W/element, Se = 6 × 10–6–10–5 cm2, and
∆f ≈ 106 Hz. In this situation, the specific detectivity is
equal to ~1013 cm Hz1/2 W–1 according to formula (17).

When the input images have low levels of illumina-
tion, the resolution of the semiconductor–insulator
structures can be as high as hundred lines per millime-
ter. This behavior is related to the fact that a fairly high
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electric field can quickly push charge carriers to the
interface and suppress charge-carrier diffusion in the
transverse direction. Under these conditions, the reso-
lution of the phototargets is mainly limited by the diam-
eter of the sampling electron beam (15–30 µm). Photo-
generated charge carriers can spread out in the trans-
verse direction (due to bipolar diffusion) when the input
images have high intensities of illumination, in which
case the thickness of the depletion region vanishes (the
potential well is completely filled).

Background radiation brings about not only an
increase in the noise level but also overfilling of the
potential well in the depletion region. The highest noise
level of a vidicon is determined by an electron-beam
shot noise amounting to ~10–9 A/element. The possibil-
ity of accumulation in the potential well is limited by a
deposited-charge density equal to ~1012 e/cm2. If back-
ground generation and thermal generation give rise to
the same hole density in the accumulation time, a weak
signal from the input image cannot be detected. For the
input-radiation signal to be detected, the potential well
should not be completely filled (instead, e.g., it should
be half filled) by the combined effect of the background
radiation and thermal generation. In order to realize this
situation, it is necessary that the generation by signal
radiation is either comparable with the generation
caused by background radiation and by heat or amounts
to several tenths of the total generation.

The use of two-layer semiconductor–insulator struc-
tures with nonequilibrium depletion of the semiconduc-
tor as phototargets in vidicons makes it possible to
extend the spectral-sensitivity range of vidicons to the
middle infrared region of the spectrum (2.5–5.5 µm).
The accumulation time in the phototarget at liquid-
nitrogen temperature can be ~(1–100) ms if the pho-
totarget is made of a narrow-gap semiconductor with
∆Eg = 0.2–0.4 eV. This consideration could lead to
the design of infrared vidicons with a threshold sen-
sitivity of ~(5 × 10–8–10–7) W/cm2 and detectivity of

~1013 cm /W.
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Abstract—A new concept is suggested to explain the effect of dislocations on electroluminescence in silicon
diodes. This concept is based on consideration of the spatial correlation between injected electrons and holes
that recombine inside a dislocation core. This correlation leads to an increase in the probability of radiative
recombination for electron–hole pairs. Two cases are analyzed. In the first case, the resulting current is con-
trolled mainly by tunneling of electrons and holes along dislocations, which is followed by electron–hole
recombination under the conditions of barrier lowering. In this situation, electroluminescence is not related to
the fundamental absorption edge and the energy position of the electroluminescence band shifts to shorter
wavelengths as either the temperature decreases or the applied voltage increases. In the second case, the diffu-
sion-related component is prevalent in the total current. The radiative recombination of electron–hole pairs
occurs in quasi-neutral regions and the electroluminescence exhibits an edge-related character. It is shown that
the suggested mechanism may be responsible for a substantial enhancement of both the electroluminescence
intensity and the quantum efficiency in silicon diodes with dislocations if the Shockley–Read–Hall lifetime is
shorter than 10–3 s. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Appreciable progress has recently been made with
regard to increasing the quantum efficiency of elec-
troluminescence (EL) in silicon diode structures.
Results that are encouraging with respect to practical
applications have been obtained for structures of three
types. The first type is represented by diode structures
formed from high-quality silicon grown by the floating-
zone method. For these structures, it has been possible
to obtain an appreciable reduction of recombination
losses related to the nonradiative multiphonon bulk and
surface recombination of charge carriers [1, 2]. Diode
structures obtained by boron implantation are assigned
to the second type of devices under consideration [3–5].
Finally, the third type of devices includes diode struc-
tures of plastically deformed silicon [6, 7]. The EL
mechanism is more or less clear only for the first type
of structure, where this mechanism is apparently
related to the radiative recombination of charge carriers
in quasi-neutral regions of the emitter and base [1, 8–10].
In these structures, radiative recombination of spatially
correlated electrons and holes is dominant at room and
elevated temperatures [11, 12], whereas excitonic
recombination is prevalent at low temperatures [9, 10].
The intense EL observed in the second and third types
of structures is, in some way, related to the presence of
dislocations. For example, it was suggested [3] that an
increase in the EL intensity in the second type of struc-
ture (where, as is well known, a large number of dislo-
cations are formed as a result of ion implantation) is
related to an increase in the nonradiative lifetime of
charge carriers due to appearance of barriers that limit
the recombination.
1063-7826/05/3909- $26.00 1096
The dislocation-related mechanism of EL and pho-
toluminescence (PL) in silicon has been analyzed in a
number of studies, whose results were summarized
in [13]. It was shown that, if the dislocation density
exceeds 106 cm–2, the PL and EL intensities are higher
than those in dislocation-free silicon. The so-called
D1 band peaked at 0.8 eV was the main band observed
at fairly low temperatures; as temperature increased,
the EL and PL intensities decreased drastically,
although the data on the temperature corresponding to
the onset of appreciable falloff of the D1-band intensity
were different in different publications.

In this study, we advance a hypothesis that makes it
possible to account for the EL mechanism in the second
and third types of structures using the same reasoning.
The hypothesis is based on the assumption that, due to
the spatial correlation between an electron and hole in
the region of a dislocation, the probability of their radi-
ative recombination at the dislocations increases drasti-
cally; in a number of cases, this increase can not only
compensate for an increase in the probability of nonra-
diative recombination but even become prevalent. It is
established that EL and PL in the third type of struc-
tures are typically observed in a situation in which the
barrier does not completely vanish. We advance and
theoretically justify the assumption that the EL mecha-
nism in the third type of structure is related to radiative
recombination of electrons and holes that tunnel along
the dislocation cores, thus decreasing the distance
between electrons and holes. It is shown that the posi-
tion of the emission-band peak depends, in this case, on
the extent to which the initial barrier height is lowered
in the p–n junction. We compare the results of our cal-
© 2005 Pleiades Publishing, Inc.
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culation with experimental data and show that there is
qualitative agreement between them.

The EL related to the fundamental-absorption edge
in the second type of structure is attributed to the diffu-
sion component of the total current, whereas the EL
band located at longer wavelengths and observed at
fairly low temperatures is related to the tunneling com-
ponent of the total current. This component is caused
by tunneling of the charge carriers along the cores of
dislocations.

2. FORMULATION OF THE PROBLEM

We assume that, in diodes with dislocations inter-
secting the p–n-junction space-charge region (SCR), a
tunneling current, caused by multistage tunneling of
charge carriers along the cores of dislocations, flows in
addition to the diffusion- and recombination-related
currents. The tunneling component of the total current
is expressed in a “dislocation shunt” model, first sug-
gested by Evstropov et al. [14]. We carried out a theo-
retical calculation for a situation where the use of a
model of equivalent diode’s circuit with the lumped
parameters is justified; in this case, the total-current
density in the diode J(V, T) can be written as

(1)

Here, JSd(T) = JSd(300)[ni(T)/ni(300)]2 is the density of
the saturated diffusion-related current; JSr(T) =
JSr(300)(T/300)1/2ni(T)/ni(300) is the density of the sat-
urated recombination-related current; ni(T) =
[Nc(T)Nv(T)exp(–Eg(T)/kT)]1/2 is the charge-carrier
concentration in an intrinsic semiconductor; Nc(T) and
Nv(T) are the effective densities of states in the conduc-
tion and valence bands; Rs is the series resistance; and
I(V, T) = AJ(V, T), where A is the area of the diode struc-
ture. We used the following expression for the satura-
tion tunneling-current density JSt(T):

(2)

Here, q is the elementary charge, Nd is the density of
dislocations that intersect the p–n junction, ν is the fre-
quency of collisions of tunneling electrons (or holes)
with the barrier, qVC(T) = Eg(T) – kTln[(T/300)3/21.02 ×
1019 cm–3/pp] – kTln[(T/300)3/22.86 × 1019 cm–3/nn] is
the barrier height in the p–n junction, Eg(T) is the sili-
con band gap, pp and nn are the majority-carrier concen-
trations expressed in cm–3, and εt is the characteristic
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energy of tunneling. The energy-band diagram of the
p–n junction and a schematic representation of the tun-
neling are shown in Fig. 1.

2.1. Theoretical Analysis of Electroluminescence 
for the Third Type of Structure

In Fig. 2, we show the calculated temperature
dependences of the diffusion- and tunneling-related
components of the total current at the bias voltage V =
0.9 V. Here, the dislocation density serves as a parame-
ter and is varied in the range 104–108 cm–2. It can be
seen from Fig. 2 that, as the dislocation density
increases, the temperature range in which the tunneling
component of the current is prevalent widens; more-
over, this component is dominant even at room temper-
ature if the dislocation density is as high as ~107 cm–2.

The integrated intensity of EL related to the radia-
tive recombination of electrons and holes that tunnel
along the dislocations is directly proportional to the
tunneling-current density. This intensity is given by the
following expression when the probability of tunneling
is lower than that of recombination:

(3)

Here, JT is the tunneling component of the current den-
sity and is defined by the third term on the right-hand

side of formula (1), and  and  are the radiative
and nonradiative times for recombination of electrons
and holes that come into close proximity with each
other in the course of tunneling within the dislocation
core. The quantum yield for this EL component is equal

U
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n

τd1
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------.=
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n
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1/2(VC – V)

1/2(VC – V)

Fig. 1. Energy diagram of the p–n junction and a schematic
representation of tunneling [14].
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to / . We can estimate the position of the EL-band
peak from the condition Em(T) ≈ qVx(T, IC), where
Vx(T, IC) is the voltage that should be applied to the
structure at a given temperature T in order to obtain the
current IC = AJC (A is the diode-structure area). The
dependence Em(T) for the case of IC = 10 mA was
derived by solving transcendental Eq. (1); this depen-
dence is shown in Fig. 3 (curve 1). As can be seen from
Fig. 3, this estimation for the photon energy at the
tunneling-EL peak yields a value of approximately
0.76 eV at room temperature and at the values of the
parameters used in the calculation. As the temperature
is lowered, this energy increases to a value of about
0.9 eV at T = 100 K. In addition, as follows from Fig. 3,
the barrier does not vanish completely, even at low tem-
peratures, in the case under consideration; i.e., the
injection-related mechanism of EL exists under the
condition V – ICRs < VC(T).

The temperature dependence of the energy position
of the EL-band peak in plastically deformed diodes is
also shown in Fig. 3 (curve 2); this dependence is drawn
using the experimental data reported by Kreger et al.
[6]. As can be seen, our theoretical estimates are consis-
tent with the experimental data at a temperature close to
250 K. At lower temperatures, the experimental values
of the energy corresponding to the peak of the EL band
are smaller than those calculated under the assumption
that the barrier vanishes completely. This disagreement
is apparently caused by the appearance of a one-dimen-
sional dislocation band [13] at fairly low temperatures.
It is also noteworthy that, according to the results of our
calculations, the energy corresponding to the EL-band

τd1
n τd1

r

300250200150100
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Fig. 2. Calculated temperature dependences of the (1) diffu-
sion and (2–6) tunneling currents. The following values of
the parameters were used in the calculations: the saturation-
current density JSd = 10–14 A/cm2 at T = 300 K; A =

10 mm2; Rs = 1 Ω; ν = 1013 s–1; εt = 0.08 eV; V = 0.9 V; and

Nd = (2) 104, (3) 105, (4) 106, (5) 107, and (6) 108 cm–2.
peak should increase as the total current at which the
EL is measured increases. It is this behavior that is
observed experimentally [6].

2.2. Theoretical Analysis of Electroluminescence When 
the Diffusion-Related Component of the Total Current 

Is Dominant

In this case, we should take into account the effect
of dislocations on the effective lifetime of electron–
hole pairs in the quasi-neutral regions of the base and
emitter. We restrict the consideration to room-tempera-
ture cases and assume that the diffusion-related compo-
nent is dominant in the total current.

In the case under consideration, an increase in the
intensity and quantum yield of electroluminescence in
the diode structures can be obtained under the condition

that the inequality /  !  is satisfied; here,

 and  are the radiative and nonradiative lifetimes

of charge carriers in the region of a dislocation, and 

and  are the corresponding lifetimes in the disloca-
tion-free region, which are governed only by conven-
tional mechanisms of electron–hole recombination (for
example, multiphonon recombination, radiative elec-
tron–hole recombination, excitonic recombination, and
band-to-band Auger recombination).
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Fig. 3. (1) Theoretical and (2) experimental temperature
dependences of the position of the EL-band peak. The fol-
lowing values of the parameters were used in the calcula-
tions: A = 10 mm2, ν = 1013 s–1, Rs = 1 Ω, εt = 0.08 eV, Nd =

3 × 106 cm–2, and IC = 10 mA. Calculated dependences of
the tunneling current on the dislocation density are shown
in the inset; the following values of the parameters were
used in the calculations: T = 77 K; A = 10 mm2; ν = 1013 s–1;
Rs = 1 Ω; εt0 = 0.066 eV; β = 0.00014 eV cm1/2; pp =

1020 cm–3; nn = 3 × 1015 cm–3; and V = (1) 0.9, (2) 1.0, and
(3) 1.1 V.
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When dislocations are arranged perpendicularly to

the p–n junction and the criterion (1/  +

1/ )dd/(D ) ! 1 (where dd is the diameter of the
dislocation core and D is the diffusion coefficient in the
base) is satisfied, the effective lifetime of holes in an n-
type base is given by

(4)

Similarly, we can write the following expression for the
lifetime of electrons in a p-type emitter:

(5)

Using the notation of [9], we can express the diffu-
sion lengths for electrons (Ln) and holes (Lp) as

(6)

(7)

Here, τsp and τsn the Shockley–Read–Hall lifetimes in
the n- and p-type regions, respectively; Ai is the con-
stant of the radiative electron–hole recombination; n* =
(NcNv /Nx)exp(–Ex/kT), where Nx is the effective density
of excitonic states and Ex is the exciton binding energy;

τx = (1/  + 1/ )–1, where  is the radiative lifetime

of excitons and  is the nonradiative exciton lifetime
related to the Auger recombination with the involve-
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ment of a deep bulk level; and Cn and Cp are the coeffi-
cients of the band-to-band Auger recombination of
electrons and holes in silicon.

In the case of a long-base diode, we take into
account the dislocation-related EL and express the
internal quantum yield of electroluminescence as

1
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4
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107106105104
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Nd, cm–2

Quantum efficiency of electroluminescence η, %

Fig. 4. Calculated dependences of the EL internal quantum
efficiency in a silicon diode on the dislocation density for
the cases of (a) transverse and (b) longitudinal arrangement
of dislocations with respect to the p–n junction. The follow-
ing values of the parameters were used in the calculation:
pp = 1017 cm–3; nn = 1016 cm–3; τsn = 10–4 s; and τsp =

(1) 10–2, (2) 10–3, (3) 10–4, and (4) 10–5 s.
(8)η nn pp
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Analysis shows that taking into account the effect of
dislocations can bring about both an increase in the EL
quantum efficiency η and its decrease. The increase
occurs when the Shockley–Read–Hall lifetimes of
charge carriers in the emitter and base are fairly short,
whereas the decrease is possible if these lifetimes are
long. These lifetimes are on the order of 10–2 s for the
values of the parameters used in the calculations. In
Fig. 4a, we show the calculated dependences of η at T =
300 K on the dislocation density; these dependences
illustrate the above reasoning. In the calculations, we
used the value of 2.5 × 10–15 cm3 s–1 for the coefficient
of the combined absorption-edge and excitonic radia-

tive recombination Ai + 1/n* . The quantity 1/n* ,
which characterizes the nonradiative excitonic Auger
recombination, was assumed to be equal to (2.7 ×
10−16 cm3)  in n-Si and (1.3 × 10–17 cm3)  in p-Si.
For the coefficients of the band-to-band Auger recom-
bination of electrons and holes in p-Si (Cp) and n-Si
(Cn), we used the value Cp = 10–31 cm6 s–1 and the
empirical dependence Cn = (2.8 × 10–31 + 2.5 ×

τ x
r τ x

n

τ sp
1– τ sn

1–
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10−22/ ) cm6 s–1, where the numerical value of nn is
expressed in units of cm–3 [9]. When plotting the curves
in Figs. 4a and 4b, the diffusion coefficients for holes and
electrons were assumed to be equal to Dp = 10 cm2 s–1

and Dn = 25 cm2 s–1. We also used the values dd = 10–6 cm,

 = 10–7 s, and  = 10–5 s in the calculation.

It is much more difficult to simulate a situation where
the dislocations are arranged parallel to the p–n-junction
plane. We can obtain a simple estimate of η in this case
by assuming that the dislocations are distributed uni-
formly in the emitter bulk and are absent in the base. In
order to calculate η, we can then use a modified form of
expression (8) in which the effective quantity

(9)

appears instead of the diffusion length Lp.
As can be seen from Fig. 4b, where the calculated

dependences of η on the dislocation density are shown
for the case under consideration, these dependences are
similar to those shown in Fig. 4a for smaller values
of τsp. However, as can be seen from Fig. 4b, the EL
quantum yield decreases as the dislocation density
increases if τsp ≥ 10–3 s.

To conclude this subsection, we note that, in fact,
both EL mechanisms can exist in the same diode struc-
tures. As can be seen from Fig. 2, at intermediate values
of the dislocation densities, the diffusion-related mech-
anism of charge transport is dominant and the EL is
related to the fundamental-absorption edge at high tem-
peratures, whereas, in the region of low temperatures,
the tunneling component of the current is prevalent and
the energy of the emitted photons can be close to the
value of qVx(T, IC), where Vx(T, IC) is the voltage that
should be applied to the structure in order to obtain the
current IC at a given temperature T. It is also noteworthy
that our results are valid when dislocations are sepa-
rated by distances that do not exceed the diffusion
lengths for the minority charge carriers in the p- and
n-type regions; for example, the corresponding diffu-
sion length should be no shorter than 10 µm at a dislo-
cation density of 106 cm–2.

3. DISCUSSION OF EXPERIMENTAL 
AND THEORETICAL RESULTS

It was noted in [13] that dislocation-related PL and
EL intensities depend on Nd randomly from the disloca-
tion density Nd ≈ 106 cm–2 onwards. This behavior can
easily be explained in the context of the dislocation-
shunt model. Indeed, according to [14], tunneling along
dislocations occurs through a chain of barriers formed
by decorating impurities. At a given impurity concen-
tration, the heights of barriers for tunneling electrons
(and holes) increase as the dislocation density
increases; as a result, the value of εt increases. The cal-
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culated dependences of the tunneling dislocation-
related current for the model when the value of εt

depends on the dislocation density according to the law

εt = εt0 + β  are shown in the inset in Fig. 3. As can
be seen from Fig. 3, the value of the tunneling current
practically levels off in the region of Nd ≈ 108 cm–2,
which is consistent with the experimental dependences.

We now analyze the differences between the condi-
tions of EL observation in the second and third types of
structures. In the second type of structure, experimental
studies of the EL were carried out at fixed values of the
current in the range 50–250 mA. The electrode diame-
ter in diodes was on the order of 1 mm. Study of the EL
for the third type of structure was performed at a dark
current equal to 10 mA, and the electrode area was
approximately ten times larger than in the case of the
first type structure. Thus, the current density at which
EL was measured in the second type of structure was
higher than that in the third type of structure by at least
1.5–2 orders of magnitude. In addition, in the third type
of structure, the dislocation density was higher than
108 cm–2 [7], which, according to our estimates, led to
the predominance of the tunneling component of the
total current even at room temperature. This inference
is supported by the forward portions of the current–
voltage (I–V) characteristics of silicon diodes formed
from a plastically deformed material; these characteris-
tics were reported in [15] for the case of T = 300 K. In
the voltage range 0.1–0.7 V, the I–V characteristics
reported in [15] obey the exponential law with a non-
ideality factor of ~3, which is highly indicative of the
tunneling mechanism of the charge transport. The bar-
rier does not disappear completely in the p–n junction
in the third type of structure. However, the same can
also be stated about the second type of structure if we
take into account their high series resistance Rs. As the
theoretical estimates reported in [3] show, the forward
I–V characteristics can be simulated only under the con-
dition that Rs ≈ 50 Ω; in this case, the value of V – IRs is
approximately equal to 0.6 V even at V ≈ 2 V; i.e., the
barrier indeed does not vanish completely. Since the
dislocation density in the second type of structure is
much lower than that in the third type of structure, the
diffusion-related component of the total current should
be dominant in the second type of structure at room
temperature; in addition, the EL should be related to the
fundamental-edge absorption. Such is indeed the case
for the experimental observations. As temperature is
lowered, the role of the tunneling component should
become more important and, correspondingly, a band at
longer wavelengths should appear. The EL tunneling
component is especially pronounced at low tempera-
tures in the case of diodes fabricated by implantation of
boron [4]. The EL has been studied [4] in a wide range
of temperatures and implantation doses. In addition to
the edge EL, a long-wavelength EL band, with its peak
located at ~0.96 eV at T = 12 K, was observed at low
temperatures [4]. The temperature dependence of the

Nd
0.25
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energy position of the peak for this band was consistent
with the results shown in Fig. 3. The band under con-
sideration is almost unobservable at room temperature,
which, in our opinion, is due to a lower dislocation den-
sity in the ion-implanted diodes compared to the case of
plastically deformed silicon. The integrated intensity of
this band decreases as the temperature increases. This
behavior, on the one hand, is accounted for by a
decrease in the tunneling component of the current
(compared to the diffusion-related component) as the
temperature increases and, on the other hand, is proba-
bly related to the activation character of the nonradia-
tive recombination of electrons and holes that migrate
along dislocations.

The electroluminescence observed in all three types
of structures at temperatures below 295 K is apparently
related to excitons and is caused by the radiative recom-
bination of correlated electron–hole pairs at room tem-
perature.

The following considerations can be applied to the
mechanism of radiative recombination involving dislo-
cations. For electron–hole pairs in the vicinity of a dis-
location, the factor of spatial restriction imposed on the
motion of electrons and holes in a direction transverse
with respect to the dislocation axis brings about an
enhancement of the Coulomb component of the elec-
tron–hole interaction; i.e., the degree of correlation
between the electron and hole states increases. As a
result, the thermodynamic equilibrium between elec-
tron–hole pairs and excitons should shift towards an
increase in the exciton concentration. This behavior can
be also promoted by an increase in the probability of
radiative recombination of excitons both with the
involvement of phonons and as a result of pseudodirect
zero-phonon transitions, in which case the law of con-
servation of momentum is satisfied owing to the dislo-
cation itself. Therefore, the role of the excitonic compo-
nent of emission in structures with dislocations should
apparently become more important compared to that in
dislocation-free diode structures.

4. CONCLUSIONS

In this study, we used the hypothesis that the proba-
bility of radiative recombination involving dislocations
increases owing to an increase in the degree of spatial
correlation between electrons and holes to suggest two
mechanisms describing the appearance of dislocation-
related electroluminescence in silicon diodes. These
mechanisms allowed us to explain an increase in the
quantum efficiency of electroluminescence in compari-
son with dislocation-free diodes.

The first mechanism involves the radiative recombi-
nation of electrons and holes that tunnel towards each
other over dislocations in the p–n junction. This mech-
anism is prevalent even at room temperature in the case
of plastically deformed diodes and manifests itself at
low temperatures in diodes with a moderate dislocation
SEMICONDUCTORS      Vol. 39      No. 9      2005
density. Electroluminescence that is unrelated to the
edge absorption and a shift of the emission-band peak
to longer wavelengths are typical of this mechanism.

The second mechanism implies radiative recombi-
nation with the involvement of dislocations in quasi-
neutral regions of the emitter and base. This mechanism
is dominant at relatively high temperatures. In this case,
electroluminescence is related to the edge absorption.

It follows from the above analysis that the electrolu-
minescence intensity is directly proportional to the
total-current density, whereas the quantum yield of
electroluminescence is independent of this density.

REFERENCES

1. M. A. Green, J. Zhao, A. Wang, et al., Nature 412, 805
(2001).

2. T. Trupke, J. Zhao, A. Wang, et al., Appl. Phys. Lett. 82,
2996 (2003).

3. W. L. Ng, M. A. Lourenco, R. M. Gwilliam, et al.,
Nature 410, 192 (2001).

4. J. M. Sun, T. Dekorsy, W. Skorupa, et al., Appl. Phys.
Lett. 83, 3885 (2003).

5. N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, and V. I. Vdo-
vin, Fiz. Tverd. Tela (St. Petersburg) 46, 39 (2004) [Phys.
Solid State 46, 35 (2004)].

6. V. Kveder, E. A. Steinman, S. A. Shevchenko, and
H. G. Grimmeis, Phys. Rev. B 51, 10520 (1995).

7. V. V. Kveder, M. Badylevich, E. Steinman, et al., Appl.
Phys. Lett. 84, 2106 (2004).

8. O. B. Gusev, M. S. Bresler, I. N. Yassievich, and B. P. Za-
kharchenya, in Proceedings of NATO Workshop on Toward
the First Silicon Laser (Trento, 2002); M. S. Bresler,
O. B. Gusev, B. P. Zakharchenya, and I. N. Yassievich, in
Proceedings of Workshop on Nanophotonics (Nizhni
Novgorod, Russia, 2003), Vol. 1, p. 59.

9. A. V. Sachenko, A. P. Gorban’, and V. P. Kostylev, Fiz.
Tekh. Poluprovodn. (St. Petersburg) 38, 570 (2004)
[Semiconductors 38, 550 (2004)].

10. A. V. Sachenko, A. P. Gorban, V. P. Kostylyov, et al.,
Semicond. Phys., Quantum Electron. Oproelectron. 7, 5
(2004).

11. H. Schlangenotto, H. Maeder, and W. Gerlach, Phys.
Status Solidi A 21, 357 (1974).

12. M. Ruff, M. Fick, R. Lindner, et al., J. Appl. Phys. 74,
267 (1993).

13. Electronic Properties of Dislocations, Ed. by Yu. A. Osi-
p’yan (Éditorial URSS, Moscow, 2000) [in Russian].

14. V. V. Evstropov, M. Dzhumaeva, Yu. V. Zhilyaev, et al.,
Fiz. Tekh. Poluprovodn. (St. Petersburg) 34, 1357 (2000)
[Semiconductors 34, 1305 (2000)].

15. V. G. Eremenko, V. I. Nikitenko, and E. B. Yakimov,
Zh. Éksp. Teor. Fiz. 67, 1148 (1974) [Sov. Phys. JETP
40, 570 (1974)].

Translated by A. Spitsyn



  

Semiconductors, Vol. 39, No. 9, 2005, pp. 1102–1109. Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 39, No. 9, 2005, pp. 1138–1145.
Original Russian Text Copyright © 2005 by Abramov, Goncharenko, Kolome

 

œ

 

tseva.

    

PHYSICS OF SEMICONDUCTOR
DEVICES

         
A Combined Model of a Resonant-Tunneling Diode
I. I. Abramov^, I. A. Goncharenko, and N. V. Kolomeœtseva

Belarussian State University of Informatics and Radioelectronics, ul. Brovki 17, Minsk, 220013 Belarus
^e-mail: nanodev@bsuir.edu.by

Submitted December 21, 2004; accepted for publication January 21, 2005

Abstract—A combined model of a resonant-tunneling diode is suggested. This model is based on the semiclas-
sical and quantum-mechanical (the wave-function formalism) approaches. In addition to certain factors, impor-
tant properties of the device heteroboundaries, in particular, the shape of the energy-band offset and the surface
charge, are taken into account in the model. It is shown that the model can be used to obtain satisfactory agree-
ment with experimental data when calculating the current–voltage characteristics of the diode. It is important
that the peak voltages are determined with a good accuracy only if the resistances of extended passive regions
and the surface charge of the heteroboundaries are taken into account. © 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

The resonant-tunneling diode (RTD) is one of the
most promising devices produced in the field of solid-
state nanoelectronics [1]. For example, at present, ana-
log, digital, and analog–digital multipurpose integrated
circuits based on these devices are being developed [2].
Some of these circuits are already produced commer-
cially [3]. The highest attained frequencies of RTD
operation exceed 2.5 THz; i.e., this device exhibits an
unprecedentedly fast response. This property makes it
possible to use an RTD as a unique active element in
microwave electronics. Unfortunately, in spite of the
seemingly relatively simple principle of operation of
the device under consideration [4, 5], the physics and
simulation of this device are fairly complex. This cir-
cumstance is related to the very high sensitivity of the
device under consideration to the effect of a great vari-
ety of factors. Therefore, there are many unresolved
problems with regard to both the physics of RTD oper-
ation and the RTD simulation.

Basically, when constructing RTD models, one can
use the following general quantum-mechanical formal-
isms [6]: (i) the formalism of wave functions; (ii) the
formalism of density matrices; (iii) the formalism of the
Wigner distribution functions, (iv) the formalism of the
Green’s functions, and (v) the formalism of the Fein-
man integrals over trajectories. When deriving simpli-
fied models, one begins, as a rule, with the formalism
of wave functions [7–11]. More adequate and complex
numerical models are typically developed in the con-
text of the formalisms of wave functions [12–16], the
Wigner distribution functions [17–21], and the Green’s
functions [22–24]. A great number of factors are often
taken into account in the course of self-consistent cal-
culation in the more adequate RTD models, the most
important and most frequently used of these factors
being the charge in various regions of the structure and
the scattering [25]. Each of the three formalisms men-
1063-7826/05/3909- $26.00 ©1102
tioned above has its own advantages and disadvantages.
Without analyzing these formalisms in detail, we note
that the formalisms of the Wigner and Green’s func-
tions lead to an increase in the number of variables and,
therefore, require computers with a higher throughput
when these formalisms are to be implemented numeri-
cally [19, 21, 24]. As a result, the corresponding models
are of limited utility for widespread use.

In spite of the great efforts undertaken for, in fact,
more than 30 years, it has been very rare that the results
of calculations of the current–voltage (I–V) characteris-
tics of an RTD could be made consistent with experi-
mental data, even for models demonstrating a high ade-
quacy in the context of the above three formalisms. The
best results in this context were obtained using the
models reported in [24–26].

We may speculate as to the cause of the poor agree-
ment with the experimental data for the majority of
models. In our opinion, there are two main causes in
addition to those mentioned above, and the first of these
is related the approximations used. The single-particle
approximation and the effective-mass method are con-
ventionally used in numerical models of all three for-
malisms. In addition, the models, as a rule, are one-
dimensional; i.e., the passive regions are often not ana-
lyzed. Second, there have been no attempts made to
take into account the properties of actual heterobound-
aries in the RTD models in more detail [27]; in particu-
lar, the shape of the energy-band offset and the surface
charge are disregarded.

In this paper, we describe a developed numerical
combined RTD model that is based on the semiclassical
and quantum-mechanical (the wave-function formal-
ism) approaches and takes into account the effect of
charge in different regions of the structure (including
the surface charge at the heteroboundaries), the shape
of the band offsets at the heteroboundaries, scattering in
the quantum well, and resistances of the extended pas-
 2005 Pleiades Publishing, Inc.



        

A COMBINED MODEL OF A RESONANT-TUNNELING DIODE 1103

                                                                                    
sive regions. The use of this model confirms the impor-
tance of taking into account all the above factors when
calculating RTD I–V characteristics.

2. CONSIDERATION OF THE CHARGE 
(INCLUDING THE SURFACE CHARGE)

The suggested RTD numerical model is based on
the self-consistent solution to the Schrödinger and
Poisson equations and belongs to the class of com-
bined models [6], since this model combines the semi-
classical and quantum-mechanical approaches.

We first consider how the charge in various regions
of the structure (including the surface charge) is taken
into account in the model. First of all, the device is con-
sidered as consisting of three regions: contacts, near-
contact regions, and an active region. The effect of the
contacts is described using the contact-potential differ-
ence. In the near-contact regions that also include the
spacer layers, the Boltzmann statistics instead of the
Thomas–Fermi approximation is used for the charge-
carrier mobility [28, 29]; as a result, the electron con-
centration is given by [6]

(1)

where nie is the effective intrinsic concentration, Φ is
the electrostatic potential, Fn is the quasi-Fermi poten-
tial for electrons, kB is the Boltzmann constant, T is
temperature, and q is the elementary charge.

In an active region that includes barriers and a quan-
tum well, the following Poisson and Schrödinger equa-
tions are solved self-consistently:

(2)

(3)

Here, εsε0 is the permittivity of the medium, ND is the
concentration of ionized donors, m* is the effective
electron mass, ψ is the wave function, E is the electron
energy, and V is the potential energy of an electron. In
the active region, the quantity n is calculated on the
basis of the wave functions ψ(Ek) and the electron con-
centration for each of the states k is calculated using the
well-known formula given in [28], which, in the case
under consideration, takes the form

(4)

where ∆Ec is the conduction-band offset in the barrier
with respect to the quantum well.

n nie q Φ Fn–( )/kBT[ ] ,exp=
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The initial approximation for the potential Φ is
specified according to the assumption that there is elec-
troneutrality, relation (1) is satisfied for the entire
device, and the quasi-potential Fn is constant in the
near-contact regions and varies linearly in the active
region. The latter assumption is also used below in the
course of the self-consistent calculation.

The electron concentration in the active region is
determined by solving Eq. (3) in the form of a transport
problem [30, 31]. To this end, the wave functions are
specified as a combination of incident (transmitted) and
reflected waves [30] with general boundary conditions
[32] at the boundaries of the solution domain for the
Schrödinger equation. It is noteworthy that, in the
known models, the values of the wave functions at the
boundaries of the active region are specified as fixed
(zero) when the self-consistent potential is determined.
This procedure leads to errors [28] and also requires
additional solution of the Schrödinger equation in the
form of a transport problem in order to calculate the
current density J in the final stage [14, 29].

In order to improve the convergence of the iterative
process, we linearize Eq. (2); as a result, we obtain

(5)

Equation (5) is solved (for the entire device, including
the near-contact and active regions) for the correction
δΦ to the potential, and a new value of the potential Φ
is then determined. In the course of the solution, we
took into account the nonlinear dependence of the
charge on the electrostatic potential both in the classical
(near-contact) and quantum-mechanical (barriers and
the well) regions using the derivative ∂n(Φ)/∂Φ. This
derivative was found on the basis of expressions (1)
and (4). A flowchart for the method of a self-consistent
concept [6] for iterative solution of the Schrödinger and
Poisson equations was reported in [30].

When estimating the accuracy of simultaneous solu-
tion of the equations, we used the following two crite-
ria: (i) a criterion based on the largest variation in the
electrostatic potential from iteration to iteration
max|δΦ(x)| ≤ εps and (ii) a criterion related to the ful-
fillment of the electroneutrality of the RTD as a whole.
After the self-consistent potential has been deter-
mined, we use the transmission coefficient [30] to cal-
culate the current density with formulas derived in [5]
for the case of finite temperatures (T ≠ 0 K) and in the
limit of T  0 K.

We now consider how the surface charge at the het-
eroboundary is taken into account in the model. To this
end, we use the Gauss law

(6)

∂
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where the superscripts Γ– and Γ+ indicate points to
the left and right of the boundary and σsur is the surface-
charge density. It is noteworthy that the nodal point of the
spatial-discretization grid must be located at the bound-
ary. As a result, the finite-difference approximation for
Eq. (5) at a point i of the interface is expressed as

(7)

where Φi is the value of the potential at the point i and
hi is the mesh width of the spatial-discretization grid.
The approximation for internal points (outside the het-

eroboundaries) is a particular case of (7) at  = ,

 = ,  = , σsur = 0. The finite-difference
approximations of the linearized Poisson equation in
the case where σsur depends on the potential Φ and of
the Schrödinger equation can be found in [30]. The sys-
tems of linear algebraic equations that emerge at each
step are solved using direct methods (see [30]).

3. CONSIDERATION OF THE BAND-OFFSET 
SHAPE AT THE HETEROBOUNDARIES

If the band-offset shape is taken into account, two
basically different situations can arise, i.e., (i) the band
offset is abrupt (steplike) and (ii) the band offset is
more gradual. It is worth noting that both situations can
also be described using a discrete model when the nodal
point is located at the heteroboundary. The first situa-
tion was considered in detail in [30]. In this context, we
consider the second situation, which is more attractive
from the physical standpoint, of a more gradual offset.

In the approximations under consideration, we use
the averaged value of the potential directly at the heter-
oboundary (at the ith point); specifically,

(8)

where Vi – 1 and Vi + 1 are the values of the potential on
opposite sides of the barrier. A hyperbolic approxima-
tion [33] (in addition to the linear approximation) has
been also used to describe the barrier shape [34]. This
approximation is similar to that often used when the
image-force potential is taken into account in simpli-
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fied models of the tunneling effect [34]. The approxi-
mation was carried out not only for the barriers but also
for the quantum well between them. As a result, the
modified initial potential profile is described by the
expression

(9)

where Vb0 is the height of an equivalent rectangular bar-
rier; the sign “–” corresponds to the barrier region; the
sign “+” corresponds to the well region; β is a coeffi-
cient; d is the barrier width; and x is the coordinate for
the barrier, with the result that x ∈  (0, d). Division by 0
is possible at the interfacial points. Therefore, we used
the linear approximation in order to describe the poten-
tial in the immediate vicinity of the interfacial points; as
a result, expression (8) is valid in this case as well.

We emphasize that, in the described approximations,
the band offset at the heteroboundaries is typically quite
abrupt (as has been observed experimentally [27]) but is
not steplike. This circumstance is related to the very
small mesh width of the spatial-discretization grid in
the active region of the device; as a rule, this width
amounts to tenths or hundredths of a nanometer. Obvi-
ously, a great deal depends on the parameter β in
expression (9).

4. CONSIDERATION OF SCATTERING

A complex Hamiltonian, in the context of various
formalisms, is widely used at present to take into
account the processes of inelastic scattering [25, 35].
Since the main mechanism of scattering in devices with
resonant tunneling is believed to be related to scattering by
optical phonons, our consideration of this scattering was
performed according to the approach used in [14, 36]. In
particular, after calculation of the self-consistent poten-
tial Φ, attained as a result of solving the Poisson (2) and
Schrödinger (3) equations, a Schrödinger equation with
a complex Hamiltonian is solved in the next stage in the
quantum-well region; specifically [14, 36], we obtain

(10)

Here, Wop is the optical potential Wop = "/2τ, where 1/τ
is the scattering rate. The potential V is taken from the
previous stage (i.e., it depends on Φ), is calculated
according to [30], and is corrected at the heterobound-
aries according to the procedure described in Section 3.

In order to calculate the scattering rate, we extended
the relations reported in [14, 36] to a case in which all
the levels through which tunneling is possible are taken
into account. In this case, we have

(11)
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(12)

where Sopl is the scattering-rate coefficient, ERl is the
energy corresponding to the lth resonant level, and
"ωopl is the energy of optical phonons for the lth level.
The total scattering rate is given by

(13)

where the summation is performed over all the resonant
levels l located within the specified energy range.

As a result of solving Eq. (10), we determine the
wave functions. On the basis of these functions, we
then calculate the transmission coefficient

(14)

where Tcoh and Tincoh are the coherent and incoherent
components of the transmission coefficient, A is the
attenuation coefficient (A = 1 – Tcoh – Rcoh) (Rcoh is the
coherent component of the transmission coefficient),
and TL and TR are the transmission coefficients for the
left- and right-hand barriers. In order to determine the
quantity Tincoh, we represent the wave functions as

(15)

(16)

The quantity k(x) is calculated on the basis of expres-
sion (16) with Wop = 0 in the RTD active region outside
the quantum well. Next, the transmission coefficient is
determined according to [30], while the current density
is determined according to the method described in
Section 2. It is noteworthy that the wave function has
previously [25, 36] been represented as

(17)

where γ is the wave-function attenuation coefficient
related to scattering and κ is the wave vector with the
scattering disregarded. In this case, the coefficient γ is
calculated on the basis of the optical potential and is
assumed to be constant in the quantum well at a speci-
fied energy. In a strict sense, this assumption is valid
only for a rectangular quantum well. Thus, the sug-
gested modification also makes it possible to take into
account an arbitrary profile of the quantum well.

5. CONSIDERATION OF RESISTANCES 
OF THE NEAR-CONTACT REGIONS

It was earlier assumed (as in many of the known
models) that all applied voltage drops across the active
region of the structure (see Section 2). It should be
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noted that this assumption is indeed justified, since the
near-contact (passive) regions are typically heavily
doped; i.e., these regions are considered as belonging to
contacts in the models under consideration.

Let us take into account the voltage drop across the
RTD near-contact regions. Consideration of this volt-
age drop is necessitated by two factors. First, currents
with very high densities can flow through the structure.
Second, actual RTDs often exhibit fairly extended (gen-
erally, three-dimensional) passive regions that cannot
be precisely taken into account in the context of one-
dimensional numerical models.

We correct the voltage in the model suggested using
the formula

(18)

where U' is the voltage applied to the RTD, I is the cur-
rent calculated using the model (see Sections 2–4) at a
voltage U, and Re and Rc are the resistances of the RTD
near-contact regions. In order to estimate the values of
these resistances, we can use the well-known model of a
resistor for a slab of a uniformly doped semiconductor,

(19)

where L is the length of the region, s is the cross-sec-
tional area, and µn is the electron mobility. It is note-
worthy that the near-contact RTD regions typically
include several subregions with differing electrical con-
ductivity; therefore, the total resistance should be esti-
mated taking into account the above fact [38].

The software package that made it possible to com-
pute the above-described combined RTD model was
included in the NANODEV system of simulation of
nanoelectronic devices [39], which is intended for per-
sonal computers (PCs). All the data reported below
were obtained using this system and a PC based on a
Pentium III processor.

6. RESULTS AND DISCUSSION

The effect of some of the above-considered factors
on the results of the simulation has been discussed in a
number of our publications [30, 31, 38–43]. For exam-
ple, the established patterns of the effect of the width of
different regions on the RTD I–V characteristics were
described in the cases where the active-region charge is
taken into account or is disregarded [30, 41]. It was
found that, when calculating the I–V characteristics
lying within the range of numerical values typical of
actual RTDs, it is necessary to correctly take into
account the charge in the active region. The results of
calculations of the I–V characteristics are also pro-
foundly affected by the shape of the band offset at the
heteroboundaries [42]. In particular, for a two-barrier
RTD based on In0.52Al0.48As/In0.53Ga0.47As, the calcu-
lated value of the peak current was approximately
47 times smaller in the case of a steplike band offset
than in the case of using the averaged value of the

U' U IRe IRc,+ +=

R L/qsµnND,=
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potential at the interfacial point (see (8) and β = 0 eV
in (9)). The peak voltage is higher by a factor of
approximately 2.5 in the case of a steplike offset. If
smooth approximations are used, the values of the peak
currents and voltages (see Section 3, case (ii)) differ
from each other but to a much lesser extent. As the coef-
ficient β increases in (9), the barrier becomes more
smoothed-out, with the result that its height and width
decrease, which brings about an increase in the peak
current and a decrease in the peak voltage. Simulta-
neously, the shape of the calculated I–V characteristic
becomes closer to that of the experimental characteris-
tic. These data indicate that it is important to develop
models of the energy-band structure of heterojunctions
so that these models can be applied to resonant-tunnel-
ing devices, in particular, to RTDs. At the same time, as
has been shown recently [38, 43], it is necessary to take
into account the insignificant (at first glance) resis-
tances of the passive RTD regions when fitting the cal-
culated I–V characteristics to the experimental data. It
is also worth noting that the values of the resistances Re
and Rc are close to estimates calculated according to the
concepts given in Section 5. Therefore, we can assume
that these resistances are not, in fact, merely adjustable
parameters in the model under consideration. The near-
contact regions also profoundly affect the distributions
of the charge and potential in the active region [43]; i.e.,
a correct description of the interaction between all three
regions in an RTD is required for adequate simulation
of the physical processes occurring in this device.

We now consider the effect of other factors that can be
taken into account in the described combined model.
The I–V characteristics were calculated for a
GaAs/AlAs two-barrier RTD at T = 300 K [44]. The
structure of this RTD consists of an active region that
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Fig. 1. Calculated I–V characteristics of an RTD (1) with
scattering disregarded and (2–4) taking into account scatter-
ing with the optical-phonon energy "ωop = (2) 0.064,
(3) 0.032, and (4) 0.016 eV.
includes 2-nm-wide barriers and a 4.5-nm-wide quan-
tum well confined by these barriers. The spacer regions
on the sides of the emitter and collector contacts are not
doped and have a width of 7 and 10 nm. The impurity
concentration is equal to 2 × 1018 cm–3 in the emitter
and collector near-contact regions, which have sizes of
600 nm; however, the 100-nm-thick layers near the
spacers are an exception: the impurity concentration in
these layers is as low as 1017 cm–3. We used the follow-
ing values of the parameters in the simulation: the bar-
rier height 1.116 eV; m* = 0.068m0 and εs = 13.18 for
GaAs; and m* = 0.172m0 and εs = 10.06 for AlAs.

We studied the effect of the parameters of the scat-
tering model used on the results of calculations of the
I–V characteristics. These parameters were assumed to
be independent of l and included the energy of optical
phonons "ωop and the scattering-rate coefficient Sop. An
analysis of the available publications showed that the
values of these parameters can vary widely. For exam-
ple, we found that Sop = 6.0 × 1012 s–1 and "ωop =
0.32 eV in [36], whereas Sop = 1.25 × 1013 s–1 and
"ωop = 0.032 eV in [14]. Therefore, in our studies, we
varied the scattering parameters within the ranges close
to the above experimental data.

In Fig. 1, we show the RTD I–V characteristics cal-
culated using different values of "ωop at a fixed value of
Sop = 1.25 × 1013 s–1. Curve 1 corresponds to the case
where scattering is disregarded. Curves 2–4 were calcu-
lated using the optical phonon energies 0.064, 0.032,
and 0.016 eV. It can be seen that a decrease in "ωop
leads to a decrease in the peak current and to an
increase in the valley current (at a high voltage) of the
I–V characteristic compared to the case where the scat-
tering is disregarded. The most significant transforma-
tion in the shape of the I–V characteristic is observed at
"ωop = 0.016 eV. The ratios between the peak current and
the current in the region of the valley in the I–V charac-
teristic (the “contrast” of the I–V characteristic) are
equal to 2.41 (curve 1), 2.33 (curve 2), 2.156 (curve 3),
and 1.744 (curve 4). Thus, as the energy of optical
phonons increases, the contrast of the I–V characteristic
increases and attains its largest value if scattering is dis-
regarded.

In Fig. 2, we show the results of the simulation
at  various values of Sop. Curve 1 corresponds to the
I–V characteristic calculated with scattering disre-
garded. Curves 2–4 correspond to the cases where
the values of Sop are equal to 0.625 × 1013, 1.25 × 1013,
and 2.5 × 1013 s–1. It can be seen that an increase in Sop
brings about a decrease in the peak current and an
increase in the valley current of the I–V characteristic.
The contrast of the I–V characteristic decreases simul-
taneously and is equal to 2.237, 2.156, and 2.022 for
curves 2, 3, and 4.

At the same time, consideration of a various number
of resonant levels when calculating the scattering rate
SEMICONDUCTORS      Vol. 39      No. 9      2005
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(see Section 4) made it possible to establish that the
major contribution is made by scattering involving only
the lowest level for the RTD under consideration. The
effect of scattering also involving other resonant levels
on the I–V characteristic is insignificant. Notwithstand-
ing this circumstance, consideration of the effect of
several resonant levels makes it possible to more ade-
quately describe the real pattern of physical processes
that occur in an RTD.

Figure 3 illustrates the calculated I–V characteristics
of the same RTD for various values of the surface-charge
density. In this case, scattering was disregarded in order
to exclude its possible effects. Curve 1 was calculated
with the surface charge disregarded. Curves 2–5 were
obtained using the following values of σsur at the inter-
face between the right-hand barrier and the quantum
well: (2) –10–5, (3) 10–5, (4) –10–4, and (5) 10–4 C/m2. It
follows from the results that the surface charge strongly
affects the voltage Vmax that corresponds to the peak
values of the current. For example, a decrease in σsur

from 10–4 C/m2 (curve 5) to –10–4 C/m2 (curve 4) brings
about an increase in the voltage Vmax from 0.43 to 0.54 V.
This behavior can be accounted for by the fact that a
negative charge at the heteroboundary retards the pro-
cess of resonant tunneling; as a result, the voltage Vmax
increases.

Similar studies were carried out for cases where the
surface charge at other heteroboundaries was taken into
consideration, namely, the boundaries between the left-
hand barrier and the emitter near-contact region,
between the left-hand barrier and the quantum well,
and between the right-hand barrier and the collector
near-contact region. The results show that the observed
general pattern is retained. In these cases, the charge
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Fig. 2. Calculated I–V characteristics of an RTD (1) with
scattering disregarded and (2–4) taking into account scatter-
ing with the scattering-rate coefficient Sop = (2) 6.25 × 1012,

(3) 1.25 × 1013, and (4) 2.5 × 1013 s–1.
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and potential are only redistributed in the active region,
which insignificantly affects the voltage Vmax at fixed
values of σsur. In this context, it is sufficient to take into
account the surface (effective) charge at only one of
heteroboundaries in the course of calculating the volt-
age Vmax for the RTD under consideration.

Finally, Fig. 4 shows a comparison of an I–V char-
acteristic calculated with all the above factors taken
into account (curve 1) with the experimental data [44]
(curve 2). Satisfactory agreement with the experiment
is attained at the following values of the parameters: the
cross-sectional area s = 1.5 µm2, the scattering-rate
coefficient Sop = 1.25 × 1013 s–1, the optical-phonon
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Fig. 3. RTD I–V characteristics calculated for various val-
ues of the surface-charge density σsur at the interface
between the right-hand barrier and the quantum well: σsur =

(1) 0, (2) –10–5, (3) 10–5, (4) –10–4, and (5) 10–4 C/m2.
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Fig. 4. Comparison of a calculated I–V characteristic (curve 1)
with experimental data [44] (curve 2).
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energy "ωop = 0.032 eV, the shape factor for the barrier
β = 0 eV, the surface-charge density σsur = –10–4 C/m2,
and the resistances of the near-contact regions Re =
Rc = 7 Ω.

Let us analyze the results obtained. The number of
adjustable parameters is no more than seven in the sug-
gested combined RTD model; these parameters include
s, Sop, "ωop, β, σsur, Re, and Rc. We believe that seven
parameters cannot be considered as a large number. For
example, there are 25 adjustable parameters in the well-
known Gummel–Poon model of a bipolar transistor
[37]. In one of the most adequate numerical models of
submicrometer MOS transistors (based on the Monte
Carlo method and intended for use by supercomputers),
the number of adjustable parameters is equal to four
just for the description of the transport properties of sil-
icon [45], which was considered a considerable
achievement. At the same time, only three parameters
are really adjustable in the model we have suggested: s,
β, and σsur. For example, as was mentioned above, the
values of the parameters Re and Rc are close to the esti-
mates (see Section 5), while the scattering parameters
Sop and "ωop are taken from the characteristic range of
published experimental values because of a lack of
other data. The cross-sectional area s is conventionally
chosen on the basis of the best fit of the calculated peak
current to the corresponding experimental values even
in the well-known models. Such an approach is gener-
ally often used in one-dimensional numerical models of
semiconductor devices [37]. In addition, data on the
value of s were not reported in [44]. Unfortunately,
there is almost no experimental information about the
parameters β and σsur [27]. In this context, it is impor-
tant to note that the model suggested can be used to
determine these parameters indirectly.

At the same time, it is worth noting that consider-
ation of the surface charge and resistances of the near-
contact region made it possible to obtain very good
agreement with the experimental data with respect to
the voltage Vmax (see Fig. 4), which is rarely attained in
the known models. For example, the value of the volt-
age Vmax is equal to about 0.48 V with the above factors
disregarded and at various scattering parameters (see
Fig. 2, curve 1) and is equal to 0.59 V (Fig. 4, curve 1)
if these factors are taken into account. Consequently,
consideration of both the surface charge and the resis-
tances of the near-contact regions is important for a cor-
rect estimate of the RTD peak voltage.

In summary, we should comment on the valley
region (or “plateau”) and the internal bistability [46] of
the I–V characteristic of an RTD, since it is in this
region that the most significant difference between our
calculations and the experimental results is observed
(Fig. 4). First, it is established at present that this region
can be adequately described using only nonstationary
models (see, for example, [21]). Second, a more ade-
quate description of this region can be obtained by vary-
ing the resistance [47] using models based on RTD
equivalent circuits. Such a correction can also be easily
applied in the model suggested; however, a radical
improvement of the model from the physical standpoint
is related to the consideration of nonstationary processes.

7. CONCLUSIONS

We suggested a numerical combined RTD model that
is based on both the semiclassical and quantum-mechan-
ical (the formalism of wave functions) approaches and
can be implemented in calculations on personal com-
puters. This model makes it possible to describe the
joint effect of a number of factors, such as the charge in
different regions of the structure (including the surface
charge at the heteroboundaries), the shape of the band
offset at the heteroboundaries, scattering in the quan-
tum well for a number of resonant levels, and resis-
tances of extended passive regions.

The performed studies of the effect of each of the
above factors indicated that it is important to take into
account these factors when simulating an RTD. Satis-
factory agreement of the calculated I–V characteristic
with the experimental data is attained if all the parame-
ters are taken into account. The introduction, for the
first time, of important parameters (the band-offset
shape and the surface charge) of the heteroboundaries
into the model suggests that it is necessary to take into
account the characteristics of actual heterojunctions in
more detail in order to adequately simulate RTDs.
Good results of the analysis can be obtained in the con-
text of the single-particle approximation and the effec-
tive-mass method using a one-dimensional model. Fur-
ther refinement of the combined model suggested will
be carried out by taking into account the effect of nonsta-
tionary processes in order to provide a more adequate
description of both the valley region in the I–V character-
istic and the internal bistability of an RTD.
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Abstract—The topology of GaAs(100) and GaAs(111) surfaces before and after short treatments in Se vapor
is studied by atomic-force microscopy. On the basis of this study, as well as ellipsometry and electron micros-
copy, a mechanism for the formation and growth of Ga2Se3(110) nanoislands and a layer on the GaAs(100) and
GaAs(111) surfaces is proposed. © 2005 Pleiades Publishing, Inc.
The use of gallium arsenide in microelectronics is
limited by the presence of a high density of surface
electronic states on the actual surface of this semicon-
ductor [1]. In order to decrease the surface-state den-
sity, chalcogenide passivation is used [1–3]. The first
studies focusing on the passivation of GaAs surfaces in
sulfide solutions showed a significant increase in the
photoluminescence intensity of GaAs [2]. This effect is
due to a significant decrease in the nonradiative surface
recombination rate, which becomes comparable with
the nonradiative recombination rate at the only known
ideal interface: GaAs/AlGaAs [3]. Investigation of the
electrical characteristics of Me–Ga2Se3(110)–GaAs
Schottky diodes (Me represents a metal) by measuring
capacitance–voltage and current–voltage (I–V) charac-
teristics has shown that, as a result of chalcogenide pas-
sivation, the experimental value of the effective height
of Al and Au Schottky barriers decreases from 0.75 to
0.50 eV and from 0.84 to 0.94 eV, respectively. These
facts indicate that, due to the chalcogenide passivation, a
decrease in the surface-state density and the detachment
of the Fermi level near the GaAs surface occur [4]. The
energies of electronic states with respect to the bottom
of the conduction band in the bulk (0.20, 0.32, and
0.68 eV) and on the surface (0.40 eV) of GaAs have
been determined by isothermal-scanning deep-level
transient spectroscopy. It was shown that, after treat-
ment of the surface in Se vapor, the level with an acti-
vation energy 0.40 eV, which is responsible for the sur-
face-state density, is absent [5]. During thermal treat-
ment of GaAs substrates in Se vapor, reconstruction of
(100) and (111) polar surfaces occurs, followed by the for-
mation of a thin pseudomorphic Ga2Se3(110) layer [5].

The authors of [5] believed that it is the formation of
this layer, accompanied by the reconstruction of the
GaAs surface, that is responsible for the decrease in the
surface-state density. Indeed, the lowest surface-state
density (~1011 cm–2 eV–1) was observed at the mini-
mum lattice mismatch in the heterostructure. This con-
dition is satisfied for Ga2Se3xTe3(1 – x)/GaAs heterostruc-
1063-7826/05/3909- $26.00 0989
tures at x = 0.43, since the Ga–Se–Te solid solution of
this composition has the same lattice constant as GaAs.
The surface reconstruction provides a passivating effect
(minimum surface-state density) only when the dura-
tion of the treatment of the GaAs surface in Se vapor
under the conditions described in [4–6] is shorter than
15 min. Thus, from the point of view of the electrical
properties of the Ga2Se3(110)/GaAs interface (mini-
mum surface-state density), samples subjected to short-
term (shorter than 15 min) treatment are of prime inter-
est. Thus, in this study, in order to clarify the mecha-
nism of formation of Ga2Se3/GaAs heterostructures,
the surface of GaAs was investigated before and after
short-term treatments in Se vapor by atomic-force
microscopy (AFM), ellipsometry, and transmission-
electron microscopy (TEM).

Investigation in an H-800 transmission electron
microscope was performed in order to choose samples
with a single-crystal pseudomorphic gallium selenide
layer for subsequent analysis of their surface by AFM
using a FEMTOSCAN-001 instrument. In this case, the
microdiffraction image of the surface corresponded to
that shown in Fig. 1 in [5]. These samples were also
studied by measuring the I–V characteristics of Schot-
tky diodes formed by free thermal deposition of a metal
(Al, Ni, Ag, or Au) on the substrate surface immediately
after the treatment in Se vapor. Samples with I–V charac-
teristics corresponding to those of GaAs samples with-
out surface states [5] were chosen for AFM study. 

Analysis of the ellipsometric data obtained on an
LÉF-3M ellipsometer for the GaAs surface treated in
Se vapor made it possible to establish a number of
kinetic regularities for the initial stage of formation of
GaAs(100)/Ga2Se3(110) systems. Specifically, the tem-
perature dependences of the ellipsometric parameter,
possessing the dimension of length (in what follows,
thickness), showed that the growth rate of Ga2Se3 lay-
ers, depending on the treatment duration, is initially
limited by the rate of the chemical reaction of heterov-
© 2005 Pleiades Publishing, Inc.
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alent substitution (Ea = 4.75 eV); then, as the layer
thickness increases, the mechanism of limitation
becomes mixed (diffusion–kinetic, Ea = 1.04 eV); fur-
thermore, the growth rate is limited by the diffusion of
Se or the reaction products (Ea = 0.40 eV) through the
formed Ga2Se3 layer [7].

In this study, high-resistivity (~1016 cm–3) n-GaAs
substrates were used. The substrate surface was chemo-
mechanically polished in a H2SO4 : H2O2 : H2O = 4 : 1 : 1
solution; subsequently, residual oxides were removed
in a HCl : H2O = 1 : 10 solution. After this procedure,
the substrates were rinsed in deionized water and dried
in a centrifuge. The surface was scanned in an atomic-
force microscope in the ranges 5000 × 5000, 1500 ×
1500, and 600 × 600 nm. Figure 1 shows an AFM image
and a cross section for the initial (immediately after the
chemomechanical polishing) GaAs(100) surface.

After a 3-min treatment of GaAs, Ga2Se3(110)-phase
islands were formed on the surface (Fig. 2). It can be
seen that the islands formed on the GaAs(100) surface
have lateral sizes of about 100–200 nm and heights of
50 to 70 nm; their density is 108 cm–2.

With an increase in the treatment time, these islands
expanded, with their lateral sizes attaining ~400–500 nm
at treatment times of about 5 min (Fig. 3).

After a 10–15 min treatment of GaAs, the character-
istic shape of the initial surface and islands was not
observed and the surface became more uniform
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Fig. 1. (a) AFM image and (b) the cross section for the ini-
tial GaAs(100) surface.
(Fig. 4). The roughness amplitude did not exceed 5 nm,
in contrast to the initial GaAs(100) surface and the sur-
face treated for periods lasting from several seconds to
10 min. As was noted above, we studied samples with a
continuous single-crystal pseudomorphic Ga2Se3(110)
layer on their surface [5]: microdiffraction images of all
the surface regions contain reflections from the
Ga2Se3(110) phase, and analysis of the I–V characteris-
tics shows detachment of the Fermi level and, respec-
tively, a decrease in the surface-state density for all the
surface regions. Within the model considered in [5],
these observations can be attributed to the presence of a
continuous single-crystal Ga2Se3(110) layer on the sur-
face. We should note that the correspondence of the com-
position of the layers formed in these processes to the
stoichiometry of Ga2Se3 was earlier established in [8].

In order to explain the formation of islands on the
heterostructure surface, we analyzed the ellipsometric
data along with microscopic images of the same sur-
face. New-phase islands formed at treatment times of
~3 min (Fig. 2) have sizes of ~200 × 200 × 60 nm and
their surface density is 108 cm–2. If we take the material
of these islands to form a uniform Ga2Se3 layer, its
thickness will be ~2.5 nm. The kinetic ellipsometric
investigations of the same sample show that a layer
formed in such a way should be ~7.5 nm thick. This
ratio of thicknesses is retained for treatment times last-
ing up to 10 min, when individual islands from the
Ga2Se3 phase can be detected (Figs. 2, 3). The revealed
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Fig. 2. (a) AFM image and (b) the cross section for a
GaAs(100) surface treated in Se vapor for 3 min.
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feature of Ga2Se3 growth on the GaAs surface can be
explained if we consider the growth process in terms of
two interdependent mechanisms:

(i) Ga2Se3 is formed as a result of the heterovalent
substitution of As in the GaAs lattice by Se (adsorbed
on the sample surface) in accordance with the reaction

3GaAs + 3Se  Ga2[VGa]Se3 + Ga + 3As. (1)

(ii) Gallium atoms (superstoichiometric for Ga2Se3)
released after reaction (1) arrive at the sample surface
and become involved in the formation of Ga2Se3, directly
reacting with Se in accordance with the reaction

3Ga + 3Se  Ga2[VGa]Se3. (2)

This reaction constitutes the second mechanism of for-
mation of Ga2Se3 during the thermal treatment of GaAs
in Se vapor.

Gallium (superstoichiometric for Ga2Se3) is sup-
plied to the surface through the formed Ga2Se3 layer.
This diffusion process seems quite likely because
Ga2Se3, crystallizing in the sphalerite structure, has a
large (~1021 cm–3) concentration of stoichiometric cat-
ion vacancies.

Furthermore, gallium selenide is formed both in the
bulk, by reaction (1), and on the surface, by reaction (2).
With an increase in the process duration, the number of
islands and their sizes increase, and they cover the
GaAs (100) surface with a continuous layer from the
Ga2Se3(110) phase (Fig. 4). Thus, under the chosen
process conditions, the above-mentioned feature of
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Fig. 3. (a) AFM image and (b) the cross section for a
GaAs(100) surface treated in Se vapor for 5 min.
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crystal growth is attributed to the fact that the larger part
of the Ga2Se3 layer (with a thickness two-thirds of the
value measured by the ellipsometric method) grows in
the bulk of the GaAs substrate in accordance with reac-
tion (1), while the rest (one-third) of the Ga2Se3(110)
phase is formed from the released superstoichiometric
Ga in accordance with reaction (2). Similar processes
are observed under the annealing of GaAs(111) sub-
strates in Se vapor, with the only difference being a
shift of the temperature modes corresponding to the
states of the GaAs(100) surface treated in Se vapor (see
Figs. 2–4) to higher temperatures by about 20 K. This
difference may be a consequence of the differing rate
constants of the chemical reactions on the (100) and
(111) GaAs surfaces.

Thus, analysis of ellipsometric and AFM data for a
GaAs surface processed in Se vapor shows that the for-
mation of nanoislands and a nanolayer from the
Ga2Se3(110) phase occurs through two successive
mechanisms and that stoichiometry is conserved. The
number of islands, the rate of their nucleation, and,
finally, the formation of a continuous Ga2Se3(110) layer
are determined by the modes of treatment of the GaAs
surface in Se vapor.

This study was supported by the Russian Founda-
tion for Basic Research, project no. 03-02-96480.

The AFM analysis was performed at the Center of
Collective Usage of Scientific Equipment at Voronezh
State University.
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Abstract—The properties of undoped bulk ZnTe crystals grown under nonequilibrium crystallization condi-
tions by chemical synthesis from a vapor phase have been examined using microphotoluminescence spectral
analysis and imaging. In spite of a considerable increase in the crystallization rate, the samples under study
compare well, in terms of the concentration of different types of residual defects, with high-quality single crys-
tals grown from a vapor phase under quasi-equilibrium conditions at much higher temperatures. At the same
time, the absence of a luminescence contrast at the grain boundaries and the inefficiency of thermal annealing
indicate that the main nonradiative growth defects in the materials obtained are low-mobility thermally
stable complexes formed due to the association of stoichiometric defects and, possibly, background impurities.
© 2005 Pleiades Publishing, Inc.
1. INTRODUCTION

Single-crystal zinc telluride, a direct-gap II–VI
semiconductor compound with a band gap of ~2.3 eV,
is useful for physical studies and applications as a mate-
rial for visible-range light-emitting and electrooptical
devices. However, in ZnTe crystals grown under quasi-
equilibrium conditions, a straightforward relationship
between their physical properties and their composition
cannot be readily ensured. This problem is caused by
the fact that, due to the retrograde behavior of the soli-
dus line in the T–x (temperature–composition) cross
section of the phase diagram, the free-carrier concen-
tration is determined by the interaction of stoichiomet-
ric defects with doping (background) impurities, which
is not easily controlled. For example, because of the
well-known problems related to growing a doped mate-
rial of n-type conductivity, light-emitting devices with
the best parameters have, so far, been based on MOS
structures rather than on p–n junctions [1]. Moreover, it
should not be forgotten that the electrical and optical
properties of real crystals are determined by the inter-
play between all the defects of thermodynamic origin,
both point and extended (dislocations and boundaries).

An alternative is offered by opting for nonequilib-
rium growth techniques. Due to changes in the mecha-
nisms of incorporation of both matrix and dopant atoms
into the crystal lattice, this approach makes it possible
to avoid limitations related to the shape of phase dia-
grams and to modify the system of defects and impuri-
ties in a way necessary for obtaining a material with the
desired properties.
1063-7826/05/3909- $26.00 0993
Earlier [2, 3], we investigated the properties of bulk
CdTe crystals grown using nonequilibrium vapor-phase
processes, including low-temperature synthesis from
highly purified components and subsequent purifica-
tion of the material under the conditions of congruent
sublimation, gas-dynamic vapor flow, and high-rate
condensation at low temperatures. In this study, differ-
ent variants of nonequilibrium conditions for crystalli-
zation by chemical synthesis from a vapor phase were
used to produce undoped bulk ZnTe. The properties of
the material obtained were studied by low-temperature
microphotoluminescence spectral analysis and imag-
ing. These techniques combine high sensitivity to the
presence of impurities and defects in the crystal with a
high spatial resolution.

2. EXPERIMENTAL

Below, we briefly characterize the developed non-
equilibrium vapor-phase techniques of growing bulk
crystals at increased deposition rates.

The first method involves vacuum sublimation of an
initially synthesized binary compound using a temper-
ature gradient and shifting the material composition to
the point of minimum pressure Pmin in the P–x (pres-
sure–composition) cross section of the phase diagram.

In the gas-dynamic flow regime, the vapor-conden-
sation rates at the temperatures 680–720°C were 200–
250 µm/h (taking into account the condensation coeffi-
cient). Upon deposition in a dynamic vacuum, a tex-
tured material with a single-crystal grain size up to
1.5 mm and the predominant growth direction [111]
© 2005 Pleiades Publishing, Inc.
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was obtained on the quartz walls of the reactor. Mass-
spectrometry analysis indicates that, within the detec-
tivity limits, the main background impurities in this
material are O, C, Cu, and Li (at a concentration of
~1015 cm–3).

The second and third methods involve chemical
synthesis from vaporized Zn and Te2 components fed
into the synthesis area from individual cells connected
to the crystallizer.

The processes were carried out in a quasi-closed-
type quartz reactor in dynamic vacuum. The vapor flux
density of the components (supersaturation) and the
ratio of the vapor fluxes (nonstoichiometry of the vapor
phase in the synthesis area) were controlled by heating
the cells with source components whose temperatures
(vapor pressures) can be controlled independently.
With vapor supersaturation in a crystallization area of
103–104 and under relatively small deviations of the
vapor-phase composition towards an excess of Te (sec-
ond method) or Zn (third method), bulk polycrystalline
condensate was deposited on the walls of the quartz
crystallizer at temperatures of 650–720°C and rates up
to 3000 µm/h. The condensed material consisted of fac-
eted crystallites with sizes up to 1 µm and a predomi-
nant {111} orientation. As revealed by etching and
optical microscopy techniques, twins are main form of
structural defects within single-crystal grains.

Luminescence was measured both for samples with
natural-growth surfaces and for ones whose surface
was ground and polished parallel to the crystallization
front and, after removal of the damaged layer in bro-
momethanol solution, treated in a selective etchant
(12.5N solution of NaOH, 80°C).

After the as-grown samples were studied, they were
annealed for 72 h in an atmosphere of saturated Zn
vapor at 840°C or in liquid zinc at 650°C.

Measurements were carried out using a microphoto-
luminescence scanner, which made it possible both to
carry out a spectral analysis at chosen spots on the sam-
ple surface and to conduct luminescence imaging of the
surface at a given wavelength. The combination of
these two techniques enabled us not only to identify the
nature of the impurity and defect centers but also to
determine the mechanisms of their formation. The sam-
ples were mounted on a cold finger in a cryostat, with
the temperature variable from 100 to 300 K. The lumi-
nescence was excited by a He–Cd laser (λ = 415.6 nm)
using an optical focusing system. The power of the
excitation radiation on the sample surface was 3.0 mW,
and the spot diameter was 15 µm (at a half-maximum
intensity level). Optical filters were used to reduce the
excitation level. The luminescence spectra were
recorded in a wavelength range up to 1 µm using an
MDR-12 grating monochromator (1200 groove/mm)
with the reciprocal linear dispersion 2.4 nm/mm; a
cooled FÉU-83 photomultiplier was used as a detector,
and the signal was finally fed to a lock-in amplifier. The
position of the excitation spot on the sample surface
was monitored visually using a microscope-based opti-
cal system.

Spatial scanning was performed by moving, under
computer control, a special table with a cryostat along
two mutually perpendicular directions with respect to
the excitation laser beam (which was fixed in space).
The scan step could be varied according to the measure-
ment requirements; in this study, the images were
recorded at a 35-µm step. In the course of luminescence
mapping, the data were displayed on a computer moni-
tor using color representation of the luminescence
intensity; at any spot of interest, the scan can be inter-
rupted to obtain a record of the sample emission spec-
trum. Below, the recorded luminescence spectra are
given with corrections made to take into account the
spectral variation in the setup sensitivity.

3. RESULTS AND DISCUSSION

When analyzing the experimental results reported
below, one should bear in mind that microluminescence
measurements are typically characterized by high exci-
tation levels. In this study, this level was *1021 pho-
tons/(cm2 s), which exceeds the intensities commonly
used in “macroscopic” photoluminescence measure-
ments by more than an order of magnitude. As a rule,
this leads to relatively high intensities of the exciton-
emission lines in the spectra in comparison to the impu-
rity- and defect-related bands.

Another consequence of high excitation levels
observed in this study was the photochromism of the
freshly etched samples, manifested as a reduction of the
luminescence intensity under the effect of the excita-
tion laser beam (by a factor of 2–2.5 in 4–5 min). Thus,
in order to avoid errors, all the luminescence spectra
shown below were recorded under steady-state condi-
tions, after the photostimulated processes of the forma-
tion of surface nonradiative recombination centers had
come to an end.

The spectra of liquid-helium-temperature macro-
scopic luminescence of the samples under study are
typical of the emission of undoped single-crystal p-type
ZnTe, where lines of excitons bound to neutral accep-
tors are dominant [4, 5]. The intensities of the longer
wavelength impurity and defect bands were low, which
is indicative of the high quality of the material. This
inference is also confirmed by observation of the lumi-
nescence from the crystals under study at room temper-
ature (edge-emission band at ~2.27 eV).

As a wide-gap semiconductor, ZnTe features fairly
large exciton binding energies. For free and neutral-
acceptor-bound excitons, the binding energies are 13
and 6–7 meV, respectively, while the ionization energy
of a hydrogen-like acceptor is ~62.5 meV [6, 7]. Due to
the relatively large values of the binding energies, exci-
tonic transitions can be observed at rather high temper-
atures, specifically, exceeding 100 K. Furthermore, the
intensity of the excitonic emission depends nearly qua-
SEMICONDUCTORS      Vol. 39      No. 9      2005
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dratically on the excitation level, as compared to the
(sub)linear dependence for the emission originating
from the transitions to localized states [8]; thus, even at
high temperatures, excitonic lines may still dominate
over impurity- and defect-related bands under high-
level excitation conditions (excitation by a pulsed laser,
electron beam, etc.) (see [9, 10]).

Figure 1 shows the microluminescence spectra of
the crystals under study at T = 95 K. It can be seen that
all of these spectra are characterized by similar sets of
spectral lines (note that the spectral resolution varies
according to the magnitude of the signal). Under the
given experimental conditions, the edge-emission lines
at 2.0–2.4 eV are the strongest ones. Their intensities
exhibit superlinear power-law dependences on the exci-
tation level, with the exponent lying in the range 1.9–
1.4 (larger values correspond to higher-energy lines),
which is an indication of their excitonic origin [8]. Tak-
ing into account the temperature shift [11], we attribute
the shortest wavelength line at 2.367 eV to free-exciton
emission and other the lines to the emission of excitons
bound to various types of impurities: an isolated neutral
acceptor (apparently, typical of CuZn and LiZn [4, 7]) for
the 2.361-eV line; an isolated neutral double acceptor
(probably, SiTe or CTe [12, 13]) for the 2.345-eV line;
and a low-symmetry unidentified complex based on Cu
[14] for the 2.322-eV line (which also has a phonon
replica at 2.296 eV).

In the long-wavelength region of the spectra of all
the samples under study, there is a band at ~1.88 eV,
known to correspond to the emission of an OTe isoelec-
tronic center [15]. The low intensity of the oxygen-
related band in the samples obtained by vacuum resub-
limation is due to the special purification of the source
components. At the same time, the spectra of these sam-
ples contain a donor–acceptor band at ~1.68 eV, which
is related to the background Cl impurity that forms
deep-level impurity–defect complexes (in particular,
acceptor VZnClTe A centers) [16]. Finally, the spectra of
the samples grown under the conditions of an excess Zn
content in the vapor phase (curve c) exhibit a previously
unobserved weak band at ~1.43 eV (870 nm), which,
most probably, originates from centers containing Te
vacancies.

For comparison, in Fig. 1, we added the spectrum of
an undoped single-crystal material produced under
quasi-equilibrium conditions by free growth from a
vapor phase at ~1100°C at a rate of ~50 µm/h [17]
(curve d). The developed nonequilibrium techniques
exhibit considerably (two orders of magnitude!) higher
rates of structure formation; nevertheless, it can be seen
that the material obtained compares well (in terms of
the concentrations of different types of residual stoichi-
ometric defects and background impurities) with high-
quality single crystals grown under quasi-equilibrium
conditions from the vapor phase at much higher tem-
peratures.
SEMICONDUCTORS      Vol. 39      No. 9      2005
In order to study the behavior of the impurity–defect
ensemble in the crystals under a heat treatment, the
samples were annealed in the presence of an excess
amount of cationic-component atoms. Such annealing
of II–VI compounds (in the vapor phase or in the liquid
metal) is used to clear the crystals of cationic vacancies
and their associations with background impurities,
which form deep-level compensating acceptor centers.
An obvious consequence of such treatment is a reduc-
tion in the relative concentrations of cation-substitution
impurities and, at the same time, an increase in the rel-
ative concentration of the impurities occupying anion
sites in the lattice [5, 18]. In addition, such annealing
results in the dissolution of inclusions and precipitates
of Te present in the samples and extraction (segrega-
tion) of the impurities contained there [19, 20].

In this study, annealing of the samples for 72 h in an
atmosphere of saturated Zn vapor at 840°C or in liquid
zinc at 650°C did not lead to an enhancement of their
luminescence (for the sample grown by method 1, there
was even some decrease in the luminescence intensity).
The spectra reveal only a partial redistribution between
the emitting excitonic complexes (which manifests
itself in the appearance of new bound-exciton lines at
2.333 and 2.316 eV, the latter with an LO-phonon rep-
lica at 2.288 eV) and disappearance of the VZnClTe
impurity–defect A centers in the material grown by
method 1 (see Fig. 2). Although a reduction in the
intensity of the emission related to centers incorporat-
ing cation vacancies and cation-substitution impurities
might be attributed, according to the common tendency,
to a decrease in the concentration of such centers, a
similar reduction in the intensities of the other spectral
lines (including the free-exciton line) provides definite
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Fig. 1. Microphotoluminescence spectra of the materials
under study at T = 95 K. Curves a, b, and c correspond to
samples obtained by nonequilibrium vapor-phase tech-
niques 1, 2, and 3, respectively; curve d corresponds to an
undoped single crystal grown under quasi-equilibrium con-
ditions from a vapor phase [17].
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evidence of the low efficiency of the annealing. In gen-
eral, reducing the concentration of growth defects in
bulk undoped ZnTe remains a problem (cf, e.g., [20]).

In order to examine the uniformity of the grown
material over the bulk of the ingots obtained, as well as
to study the influence of the grain (subgrain) bound-
aries on the spatial distribution of point defects and
impurities within single-crystal grains, we carried out
microluminescence imaging measurements. In order to
reveal the grain boundaries and crystal-structure
defects within the grains, the sample surface was
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Fig. 2. Microphotoluminescence spectra of samples (a) 1
and (b) 2 (see curves a and b in Fig. 1) at T = 95 K recorded
after annealing for 72 h in saturated Zn vapors at 840°C.
treated with a selective etchant (12.5N solution of
NaOH, 80°C). The maximum grain size was as large as
1.5 mm in the samples grown by method 1 and up to
1 mm in other cases. The measurements were per-
formed at wavelengths corresponding to the spectral
peaks in Figs. 1 and 2. The general shape of the spectra
did not change significantly across the grown ingots,
excluding the local crystallization areas, whose posi-
tion within the reactor suggested that the gas flows were
highly turbulent in their vicinity. In Fig. 3, to demon-
strate the imaging results, we show the data obtained
for a sample grown under the conditions of congruent
sublimation of the presynthesized binary compound
and vapor flow in the reactor in the gas-dynamic
regime. The spectrum of this sample is shown by curve a
in Fig. 1. Figure 3a shows a photograph of a 2.45 ×
2.45 mm2 area whose luminescent image, recorded at
the step of 35 µm and a wavelength of 525 nm (2.361 eV,
exciton bound to a CuZn/LiZn neutral acceptor), is
shown in Fig. 3b. It can be seen from Fig. 3a that even
neighboring single-crystal grains may have different
orientations of the polar axis at the growth surface,
which was revealed (upon selective etching) by the typ-
ical surface profile (on the black-and-white photo-
graph, the bright (mirrorlike) regions correspond to the
{111}A orientation and the dark regions correspond to
the {111}B orientation). For ZnTe and CdTe, the simul-
taneous presence of grains with {111}A and {111}B
orientations along the growth direction is indicative of
nonequilibrium crystallization conditions [21] and is
probably related to fluctuations in the composition of
the vapor phase. Within the examined area of the sam-
100
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Fig. 3. Images of a sample grown under the conditions of congruent sublimation of a presynthesized binary compound and vapor
flow in the reactor in a gas-dynamic regime (spectrum a in Fig. 1): (a) photograph of a 2.45 × 2.45 mm2 area and (b) luminescent
image of this area recorded at 525 nm (2.361 eV) with the step of 35 µm.
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ple, the luminescence intensity varied by about a factor
of 6; however, the variation was no more than twofold
within individual single-crystal grains. It should be
noted that higher intensities were observed in larger
grains, while the orientation of the polar surfaces was
of no importance. An identical “profile” of the lumines-
cence intensity was obtained when scanning was car-
ried out at wavelengths corresponding to the other
peaks in curve a (Fig. 1): 534 nm (2.322 eV, an exciton
bound at a low-symmetry Cu center) and 740 nm
(1.68 eV, donor–acceptor transitions involving Cl cen-
ters). For each wavelength, the variations in the lumines-
cence intensity within the grains was insignificant and
there was no luminescent contrast in the vicinity of the
grain and twin boundaries or the other extended struc-
tural defects (compare with the data from [9, 19, 20]).
The absence of associations of residual defects is typi-
cal of nonequilibrium growth conditions with high
crystallization rates and a vapor flow in the reactor in a
gas-dynamic regime [22]. However, it should be noted
that the shape of the luminescent images remained vir-
tually unchanged even upon sample annealing. Appar-
ently, this circumstance means that, in the materials
investigated, the nonradiative centers responsible for the
recombination processes are low-mobility thermally sta-
ble complexes formed during the growth due to the asso-
ciation of stoichiometry defects (and, probably, back-
ground impurities). These complexes are distributed rel-
atively uniformly over the bulk of the crystal lattice.

4. CONCLUSIONS

Despite the fact that high-temperature (100-K) spec-
tra of ZnTe are far less informative than low-tempera-
ture spectra, the results reported here indicate that
materials obtained by nonequilibrium vapor-phase
techniques compare well, in terms of the concentrations
of different types of residual defects and background
impurities, with high-quality single crystals grown
from a vapor phase under quasi-equilibrium conditions
at much higher temperatures. Except for the grain size
in the texture, a considerable (by two orders of magni-
tude) increase in the crystallization rate did not lead to
significant changes in the nature of the crystallization
processes at the microscopic level. At the same time, the
density of nonradiative centers remained fairly high,
especially in the smaller grains. The low efficiency of
thermal annealing and absence of a luminescent contrast
at the single-crystal grain boundaries indicate that, in the
materials investigated, the dominant nonradiative growth
defects are low-mobility thermally stable complexes
formed due to the association of stoichiometry defects
and, probably, background impurities.
SEMICONDUCTORS      Vol. 39      No. 9      2005
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Abstract—The process of self-compensation in Cd0.95Zn0.05Te:Cl solid-solution crystals has been studied by
annealing single crystals under a controlled Cd vapor pressure, with subsequent measurements of the Hall
effect, photoluminescence, carrier lifetime and mobility, and photocurrent memory in the annealed crystals. By
means of this annealing, conditions of thermal treatment that make it possible to fabricate low-conductivity
samples with a low carrier density, 107–1011 cm–3, are defined. In these samples, a p  n conduction inversion
is observed at a higher free-carrier density (n, p ≈ 109 cm–3) and the dependence of the electron density on the
Cd vapor pressure exhibits a more gentle slope than in the case of CdTe:Cl crystals. The obtained data are dis-
cussed in terms of a self-compensation model in which intrinsic point defects act as acceptors with deep levels.
This level is attributed to a Zn vacancy, which remains active at high Cd pressure. © 2005 Pleiades Publishing, Inc.
The synthesis of semi-insulating Cd1 – xZnxTe:Cl
crystals is being widely studied at present [1, 2]. The
low conductivity of these crystals is accounted for by
self-compensation of charged point defects. The two
mechanisms most frequently used to explain the self-
compensation in a semiconductor doped with a donor
impurity are the generation of oppositely charged
intrinsic point defects [3–8] and the crystal lattice
relaxation, which results in the formation of DX centers
[9–11]. A high degree of self-compensation in a crystal
is reached if it undergoes a slow post-growth cooling,
when the interaction of charged point defects occurs
[3, 4, 12].

We studied the self-compensation in CdTe:Cl by
annealing single crystal samples under a controlled Cd
vapor pressure PCd, with subsequent measurement of
the Hall effect [13, 14]. The obtained data allowed us to
determine the thermal conditions necessary for obtain-
ing samples with low conductivity, ~10–10 Ω–1 cm–1,
and a low density of free carriers, 107–108 cm–3. The
nature of the p–n conduction inversion as a function of
PCd at low carrier densities, 107–108 cm–3, was estab-
lished. On the Basis on these results, we determined the
conditions necessary for controlling self-compensation
during the post-growth annealing of a CdTe:Cl ingot.

Semi-insulating crystals with p-type conduction
were reproducibly obtained via sample annealing and
the growth of a CdTe:Cl ingot. Semi-insulating n-type
crystals were obtained considerably less frequently,
and, often, they exhibited inhomogeneous physical
1063-7826/05/3909- $26.00 0998
characteristics. However, even the earliest experiments
on the growth of Cd1 – xZnxTe:Cl (x = 0.0002–0.1) dem-
onstrated a reliable production of semi-insulating
n-type crystals [15]. It is precisely this kind of n-type
semi-insulating crystal that is demanded for the fabrica-
tion of X-ray detectors for computer tomography [15].

In this report, we present the results of investigation
of single-crystal Cd0.95Zn0.05Te:Cl samples annealed
under a controlled Cd vapor pressure.

In preparation for annealing, samples were cut from
a Cd0.95Zn0.05Te:Cl ingot grown by horizontal unidirec-
tional crystallization under controlled PCd [15]. The
growth conditions (the melt overheating, the deviation
from stoichiometry, and the growth rate) were the same
as in the case of CdTe:Cl [16]. The Cl concentration in
the ingot was defined by the CdCl2 charge in the melt,
2 × 10–18 cm–3 (which was the same for CdTe:Cl).
Before annealing, the as-grown Cd0.95Zn0.05Te:Cl sam-
ples demonstrated p-type conduction with a hole den-
sity p = 108–109 cm–3. The method used for annealing
was described in detail for CdTe:Cl [13]. The samples
were annealed in a three-zone furnace in a quartz
ampule. The annealing temperature was tcr = 900°C, the
temperature of the filling material was tp = 905°C, and
the temperature of metallic Cd tCd was defined in each
experiment by the desired partial pressure of Cd. The
filling material was prepared from the same crystal as
the sample to be annealed, which meant that the sample
composition remained unchanged during the annealing.
© 2005 Pleiades Publishing, Inc.



        

EXACT SELF-COMPENSATION OF CONDUCTION 999

                                                                                             
The density of carriers was determined from Hall
measurements of Cd0.95Zn0.05Te:Cl samples annealed
under a selected partial pressure of Cd vapor. Figure 1a
(points 2, 2') shows the dependence of the hole (p) and
electron (n) density in these samples on PCd.

Points 1 and 1' in Fig. 1a show similar results
for   CdTe:Cl. At low PCd, both CdTe:Cl and
Cd0.95Zn0.05Te:Cl demonstrate p-type conduction. At
intermediate PCd, a p  n inversion of the conduction
is observed.

At a high partial pressure of Cd, the crystals switch
to n-type conduction. It is necessary to note that the
conduction inversion for the CdTe:Cl crystals is
observed within a very narrow range of PCd values and
at low carrier densities, p(n) = 107–108 cm–3.

In the Cd0.95Zn0.05Te:Cl crystals, the conduction
inversion p  n is observed at higher carrier densi-
ties, p(n) * 109 cm–3. The curve describing the n(PCd)
dependence for the CdTe:Cl crystals is very steep: n
increases from 107 to 1015 cm–3 under only an approxi-
mately twofold increase in the partial pressure PCd. For
the Cd0.95Zn0.05Te:Cl crystals, the curve exhibits a more
gentle slope: when PCd increases 10 times, the carrier
density n increases from 107 to 1011 cm–3 (while the
material remains virtually semi-insulating). In contrast
to the case of CdTe:Cl, this behavior of the n(PCd)
dependence in the Cd0.95Zn0.05Te:Cl crystals creates
considerably more favorable conditions for controlling
the electrical properties of a crystal during its fabrica-
tion, specifically, by varying the partial pressure of the
Cd vapor.

The low free-carrier density, p(n) = 107–108 cm–3, in
the Cd1 – xZnxTe:Cl crystals is related to self-compensa-
tion of charged point defects. According to one of the
models of self-compensation [9–11], a strong relax-
ation of the crystal lattice in the vicinity of Cl atoms
leads to the formation of DX– centers, which generates
deep levels below the minimum of the conduction band.
This circumstance accounts for the formation of semi-
insulating n-Cd1 – xZnxTe:Cl crystals. However, two
points remain unaccounted for:

(i) The dependence of the electron density on PCd;
indeed, in terms of this model, the lattice relaxation
depends only on the composition of the solid solution
(Zn content) and the nature of the dopant (Cl). (ii) The
formation of DX– centers in Cd1 – xZnxTe:Cl becomes
energetically favorable only at the Zn content x ≥ 0.2
[10]. It is necessary to note that the formation of
DX− centers has been observed in Cd1 – xZnxTe:Cl crys-
tals with x < 0.2 [9, 11].

In terms of the other model [3–8], the self-compen-
sation is accounted for by the formation of intrinsic
point defects, i.e., metal vacancies (VZn and VCd), which
act as acceptors, and by the association of charged
donors and acceptors into centers that give rise to deep
levels in the band gap. According to this model, the
concentration of VCd acceptors in the crystal is high at
low PCd. This circumstance leads to a high density of
SEMICONDUCTORS      Vol. 39      No. 9      2005
free holes, which can be seen in Fig. 1a for the CdTe:Cl
and Cd0.95Zn0.05Te:Cl crystals. As the pressure of the Cd
vapor on the crystal increases, the concentration of VCd
decreases. The dependence of p on PCd for the CdTe
samples demonstrates a corresponding decrease in the
hole density. For the Cd0.95Zn0.05Te:Cl samples, we did
not observe any clearly pronounced p(PCd) dependence.
The high hole density and the lack of a clear p(PCd)
dependence indicate that the VCd concentration remains
high. The high value of [VCd] is a consequence of insuf-
ficiently high PCd on the Cd0.95Zn0.05Te:Cl crystal dur-
ing the annealing. (Indeed, the partial pressure PCd for
stoichiometric Cd0.95Zn0.05Te:Cl must be higher than
for CdTe at the same temperature [17].) At higher PCd,
the concentration of donor centers, [Cdi] + [ClTe],
exceeds the [VCd] concentration. This behavior of the
concentrations of charged defects correlates with the
data in Fig. 1a, in which the conduction inversion p  n
is observed for CdTe:Cl and Cd0.95Zn0.05Te:Cl. For
CdTe:Cl, the p  n inversion is sharp (almost step-
like). This variation in the carrier density is related to a
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Fig. 1. (a) Carrier density and (b) PL characteristics as func-
tions of the Cd vapor pressure during annealing of the sam-
ples. (a): (1) p-CdTe, (1') n-CdTe, (2) p-Cd0.95Zn0.05Te, and
(2') n-Cd0.95Zn0.05Te. (b): (3) relative integral intensity I/I0
of the luminescence band at 1 eV, (4) the position of peak of
the 1-eV band "ωm, and (5) total integral PL intensity I0.
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“jump” in the Fermi level from a deep acceptor to a
shallow donor (Cdi and ClTe) level.

The rate at which the electron density n grows with
PCd is considerably lower in the Cd0.95Zn0.05Te:Cl crys-
tals than for CdTe:Cl. This fact may indicate that there
is a weak dependence of the concentration of donor
point defects [Cdi] and [VTe] on PCd. The limited solu-
bility of these intrinsic point defects in Cd1 – xZnxTe:Cl
can be seen in the state diagram of the Cd–Zn–Te sys-
tem shown in Fig. 2. The limit of the maximum Cd con-
centration in a Cd0.95Zn0.05Te crystal (curve 5) indicates
that the Cdi and VTe solubility is lower than that in CdTe
(curves 3, 4). These curves reflect the total concentra-
tion of point defects. Furthermore, the limited VTe solu-
bility in the crystal results in limited solubility of the
principal donor dopant substituting Te, i.e., ClTe. There-
fore, from the data on the solubility of VTe in
Cd0.95Zn0.05Te and CdTe, we may assume a lower solu-
bility of Cl in the solid solution as compared to the
binary compound. Prior to annealing, Cl in the
Cd0.95Zn0.05Te:Cl samples exists in charged state at the

concentration [ ] ~ 1017 cm–3, which is necessary to
obtain a semi-insulating material with p ~ 108 cm–3.

During annealing at 900°C, the concentration of 
defects can decrease due to egress of Cl to some inclu-
sions in the crystal (or to a gaseous phase) or as a result
of the retrograde character of the solubility of these

defects in the crystal. As the content of  and 
decreases, the concentration of centers forming shallow
levels in the band gap also decreases; therefore, the
transition of the Fermi level from deep to shallow levels
becomes more gradual. These considerations furnish a
qualitative explanation of the difference between the
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+
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Fig. 2. Maximum solubility of Cd in CdTe: (1, [3]; 2, [20];
3, [18]; and 4, [19]) and of Cd and Zn in Cd0.95Zn0.05Te
(5, [17]) along the T–x section of the state diagram of the
Cd–Zn–Te system.
dependences of the electron density on PCd in
Cd0.95Zn0.05Te and CdTe (Fig. 1a).

The quantitative estimate is hindered by the following:
(i) The available experimental data on the solubility

of point defects, which were obtained by different authors
using different methods, strongly diverge from each other
and from the results of calculations (see Fig. 2).

(ii) Until now, the concentration of charged point
defects (VZn and Zni) in Cd0.95Zn0.05Te has not been
studied.

iii) The solubility of Cl in Cd0.95Zn0.05Te has not yet
been determined.

We have tried to estimate the maximum solubility of
charged intrinsic donor defects using recent data on the
total solubility of defects in Cd0.95Zn0.05Te [17] and
CdTe [19] and the data on charged intrinsic point
defects in CdTe [3, 20] (the last data show only a slight
scatter, see curves 1 and 2 in Fig. 2). We assume that the
ratio between the total amounts of intrinsic point
defects and charged defects in Cd0.95Zn0.05Te is the
same as in CdTe:

(1)

This assumption is based on the fact that the crystal lat-
tice energies in CdTe and Cd0.95Zn0.05Te differ insignif-
icantly [21] and the samples are annealed in similar
P−T (pressure–temperature) conditions. We also
assume that the Cd vapor pressure governs change in
the concentration of charged defects (the Fermi level
position and free-carrier density). The data on the con-
centration of defects at 900°C are taken from Fig. 2. For

Cd0.95Zn0.05Te, we obtain [ ] + [ ] + [ ] ≈ 5 ×
1016 cm–3. The electron density in the conduction band
must be the same at high PCd; however, this is not the
case (see Fig. 1a). Therefore, either assumption (1) is
erroneous or the used concentration of point defects at
900°C does not correspond to the concentration of
defects in the semi-insulating crystal at room tempera-
ture, at which the Hall effect was measured. If we
assume that assumption (1) is correct and use it in the
estimation of the concentration of defects at low tem-
peratures (~500°C), when the equilibrium of the
defects is “frozen” during the cooling of the crystal, we

obtain an even higher value of[ ] + [ ] + [ ],
since the solubility of the metal in Cd0.95Zn0.05Te at low
temperatures is higher than in CdTe [17]. It is necessary
to note, however, that, while discussing the dependence
of the ratio

Cdi
+[ ] VTe

+[ ]+
Cdi[ ] VTe[ ]+

--------------------------------- 
 

CdTe

=  
Cdi

+[ ] Zni
+[ ] VTe

+[ ]+ +
Cdi[ ] Zni[ ] VTe[ ]+ +

----------------------------------------------------- 
 

Cd0.95Zn0.05Te
.

Cdi
+ Zni

+ VTe
+

Cdi
+ Zni

+ VTe
+

Cdi
+[ ] Zni

+[ ] VTe
+[ ]+ +

Cdi[ ] Zni[ ] VTe[ ]+ +
----------------------------------------------------- 

 
Cd0.95Zn0.05Te
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Product of the carrier mobility by lifetime for electrons and holes and the photocurrent memory in samples annealed at dif-
ferent PCd

Before annealing After annealing

(µτ)e, cm2 V–1 (µτ)h, cm2 V–1 photocurrent 
memory, % annealing no. PCd, 104 Pa (µτ)e, cm2 V–1 (µτ)h, cm2 V–1 photocurrent 

memory, %

063 1.8 5 × 10–5
4.5 × 10–5 3.5

064 0.8 4 × 10–5 <2 × 10–7 0.13

067 2.5 5 × 10–5 <8 × 10–7 0.4

~2 × 10–4 ~(1–3) × 10–5 9–10 3.5 × 10–5 <2 × 10–6

6 × 10–5

070 5 ~2.5 × 10–7 <5 × 10–7 0.17

~2.5 × 10–6 <2 × 10–7
on PCd, we have formally included [ ] in it, and we
expect a conduction inversion through variation of the

ratio ([ ] + [ ])/[ ] with PCd. The concentra-
tion of point defects involving Zn in a sample is con-
trolled by the composition and temperature of the fill-
ing material in the ampule, and these parameters for the
filling and the sample coincide. The hole density p =
108–109 cm–3, which was measured in the samples
before annealing, indicates that the intrinsic point

defects with the greatest concentrations are [ ] and

[ ], and [ ] and [ ]. During annealing at high

PCd, the concentration of [ ] and [ ] in the metal

sublattice decreases, whereas that of [ ] and [ ]
increases. In this situation, the concentrations of intrin-

sic point defects [ ] and [ ], which are not
directly related to PCd, may remain stable or change
only slightly. The presence of a deep level in the band
gap, associated with a center related to a Zn vacancy,
can account for the slow increase in n with PCd occur-
ring under a sharp increase in the concentration of shal-

low donors [ ] and [ ].

Along with the Hall effect measurements, the pho-
toluminescence (PL) spectra, carrier lifetime and
mobility, and the photocurrent memory were measured
in all the Cd0.95Zn0.05Te samples annealed at various
pressures PCd.

PL was measured at 77 K in the range of photon
energies "ω = 0.8–2.3 eV. The emission was excited by
an Ar-ion laser (the photon energy was 2.43 eV and the
flux density was ~1020 cm–2 s–1) and detected by a
cooled Ge photodiode. As is standard, the PL spectrum
consisted of three bands peaked at about 1.6, 1.45, and
1 eV. We now restrict our consideration to the 1-eV
band. Figure 1b shows the ratio of the integral intensity
of this band I to the total intensity I0 integrated over the
whole spectrum (curve 3), the peak position "ωm of the

Zni
+

VCd
– VCd

–2 Cdi
+

VCd
–

VCd
–2 VZn

– VZn
–2

VCd
– VCd

–2

Cdi
+ VTe

+

VZn
– VZn

–2

Cdi
+ ClTe

+
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band (curve 4), and the total integral intensity I0 (curve 5)
as functions of PCd. The integral intensities were mea-
sured under the same excitation and detection condi-
tions for different samples. It can be seen that I/I0

remains virtually unchanged, at about 6%, up to PCd =
3.5 × 104 Pa. It then increases to ~90% and tends to a
constant value. It is noteworthy that the curves describ-
ing the electron density n and of the intensity I of the PL
band level out in the same range of PCd (in Fig. 1a,
curves 2'; Fig. 1b, curve 3). The fact that the spectral
position of the band peak remains constant (at least for
PCd corresponding to the n-type samples) indicates that
the increase in the band intensity is related to an
increase in the concentration of centers of the same
kind rather than to the appearance of some other type of
centers. The origin of the 1-eV band still remains
unclear. Presumably, it has a complex nature [22, 23].
Several authors, including us, have attributed it to the
capture of carriers by centers that are either isolated

doubly negatively charged Cd vacancies,  [3], or
various complexes that include these vacancies [15,
24–27]. Under the conditions of our experiment, the
concentration of Cd vacancies cannot increase with the
pressure of the Cd vapor. However, it seems quite prob-
able that the initial sample contains VZn vacancies, and,
as was mentioned above, they are retained under
annealing with a filling. This assumption is supported
by the estimate of the energy position of the VZn level in
ZnTe [23], which nearly coincides with the VCd level in
CdTe. Under annealing at higher PCd, the concentration
[VMeD] of acceptor complexes constituted by a metal
vacancy and a donor, which are responsible for the PL
band at 1.45 eV, decreases, with the result that the con-
tribution of the 1-eV band increases.

As can be seen in Fig. 1b, an increase in the Cd
vapor pressure during annealing reduces the integral PL
intensity I0. This observation indicates an increase in
the concentration of nonradiative recombination cen-
ters (or emission outside the spectral range under study,

VCd
–2
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which seems unlikely). This dependence correlates
with the data obtained for the product of the carrier
mobility and lifetime and for the photocurrent memory
in the samples annealed at high PCd. These data are pre-
sented below.

Using the time-of-flight method and irradiation with
α particles (see, e.g., [28]), we measured the product of
the carrier mobility and the lifetime for electrons (µτ)e

and holes (µτ)h in the crystals under study before and
after annealing (see table). It can be seen that the
annealing changes (µτ)e only slightly. At the same time,
(µτ)h in the annealed crystals is significantly reduced.
This fact confirms the above-made assumption that the
annealing of Cd0.95Zn0.05Te crystals at high PCd leads to
the formation of deep acceptor centers, which are pos-

sibly the intrinsic point defects  and . These
centers are negatively charged, which results in an
intense capture of holes.

The study of the same crystals before and after
annealing by intense pulses of uniformly absorbed radi-
ation (the computer tomography mode [29, 30]) has
demonstrated the strong photocurrent memory present
in the unannealed samples (see table). It can be seen
that, after annealing at low PCd close to the pressure at
which the p  n inversion occurs (annealing no. 063),
the photocurrent memory is slightly reduced. In anneal-
ing nos. 064, 067, and 070 at higher PCd, the photocur-
rent memory is strongly reduced: to (0.13–0.4)%. The
magnitude of the photocurrent memory correlates with
the dependence of (µτ)h on PCd (see table). As is known
[15, 29, 30], one of the origins of photocurrent memory
is an incomplete collection of the hole component of
the signal. In our case (annealing nos. 064, 067, 070),
the hole component is virtually absent, which results in
a strong decrease (by a factor of 10–20) in the photo-
current memory and indicates that there appears a large
amount of deep acceptor levels responsible for the
recombination of holes.

Thus, study of the self-compensation in single-crys-
tal Cd0.95Zn0.05Te:Cl shows that the p  n conduction
inversion is observed at a higher free-carrier density
(n, p ~ 109 cm–3) than in CdTe:Cl crystals. In addition it
was found that the curve describing the dependence of
the electron density on the Cd vapor pressure exhibits a
more gentle slope.

Studies of photoluminescence, carrier lifetime and
mobility, and photocurrent memory have confirmed the
formation of a deep acceptor level in the band gap of the
annealed crystals. This finding indicates that the low
conductivity of annealed Cd0.95Zn0.05Te:Cl crystals can
be explained in terms of a model of self-compensation
via the formation of charged intrinsic point defects with
a deep acceptor level. We assume that this level is related
to Zn vacancies, which remain active at high PCd.

VZn
– VZn

–2
It is noteworthy that the revealed dependence of the
electron density in Cd0.95Zn0.05Te:Cl on PCd creates con-
siderably more favorable conditions for controlling the
electrical properties of a crystal by varying the Cd
vapor pressure during the fabrication of the material in
comparison with CdTe:Cl.

The study was supported by INTAS (project
no. 99-1456).

REFERENCES

1. Proceedings of 10th International Conference on
II−VI Compounds (Bremen, 2001); Phys. Status Solidi B
229, 1 (2002).

2. Proceedings of 11th International Conference on
II−VI Compounds (Niagara, 2003); Phys. Status Solidi C
1, 621 (2004).

3. D. de Nobel, Philips Res. Rep. 14, 361 (1959).

4. G. Mandel, F. F. Morehead, and P. R. Wagner, Phys. Rev.
136, A826 (1964).

5. F. A. Kröger, The Chemistry of Imperfect Crystals
(Wiley, New York, 1964; Mir, Moscow, 1969).

6. K. R. Zanio, in Semiconductors and Semimetals, Vol. 13:
Cadmium Telluride, Ed. by R. K. Willardson and A. C. Beer
(Academic, San Francisco, 1978), p. 230.

7. J. Marfaing, Thin Solid Films 387, 123 (2001).

8. V. Babentsov, V. Corregider, K. Benz, et al., Nucl.
Instrum. Methods Phys. Res. A 458, 85 (2001).

9. K. Khachaturyan, M. Kaminska, and E. R. Weber, Phys.
Rev. B 40, 6304 (1989).

10. D. J. Chadi, Phys. Rev. Lett. 72, 534 (1994).

11. C. H. Park and D. J. Chadi, Phys. Rev. B 52, 11884
(1995).

12. O. A. Matveev and A. I. Terent’ev, Fiz. Tekh. Polupro-
vodn. (St. Petersburg) 34, 1316 (2000) [Semiconductors
34, 1264 (2000)].

13. O. A. Matveev and A. I. Terent’ev, Fiz. Tekh. Polupro-
vodn. (St. Petersburg) 27, 1894 (1993) [Semiconductors
27, 1043 (1993)].

14. O. A. Matveev and A. I. Terent’ev, Fiz. Tekh. Polupro-
vodn. (St. Petersburg) 32, 159 (1998) [Semiconductors
32, 144 (1998)].

15. O. A. Matveev, A. I. Terent’ev, V. P. Karpenko, et al.,
Phys. Status Solidi B 229, 1073 (2002).

16. O. A. Matveev and A. I. Terent’ev, Fiz. Tekh. Polupro-
vodn. (St. Petersburg) 29, 378 (1995) [Semiconductors
29, 191 (1995)].

17. J. H. Greenberg, V. N. Guskov, M. Fiederle, and K. Benz,
J. Cryst. Growth 270, 69 (2004).

18. K. V. Kiseleva, U. V. Klevkov, S. N. Maksimovsky, et al.,
in Proceedings of International Symposium on Cadmium
Telluride, Ed. by P. Siffert and A. Cornet (Centre de
Resich des Nucl., Strusburg, 1971), p. 12.
SEMICONDUCTORS      Vol. 39      No. 9      2005



EXACT SELF-COMPENSATION OF CONDUCTION 1003
19. J. H. Greenberg, V. N. Guskov, V. B. Lazarev, and
O. V. Shekershneva, J. Solid State Chem. 102, 382
(1993).

20. F. T. Smith, Metall. Trans. 1, 617 (1970).

21. N. N. Berchenko, V. E. Krevs, and V. G. Sredin, Semi-
conductor Solid Solutions and Their Applications, II–VI:
Reference Tables (Min. Oborony, Moscow, 1982), p. 208
[in Russian].

22. C. B. Davis, D. D. Allred, A. Reyes-Mena, et al., Phys.
Rev. B 47, 13363 (1993).

23. W. Stadler, D. M. Hofman, H. C. Alt, et al., Phys. Rev. B
51, 10619 (1995).

24. M. R. Lorenz, B. Segal, and H. H. Woodbury, Phys. Rev.
134, 751 (1964).
SEMICONDUCTORS      Vol. 39      No. 9      2005
25. G. Mandel, Phys. Rev. 134, A1073 (1964).
26. N. V. Agrinskaya, E. N. Arkad’eva, and O. A. Matveev,

Fiz. Tekh. Poluprovodn. (Leningrad) 4, 370 (1970) [Sov.
Phys. Semicond. 4, 347 (1970)].

27. N. V. Agrinskaja and O. A. Matveev, Rev. Phys. Appl. 12,
235 (1977).

28. N. K. Zelenina and A. A. Tomasov, Élektron. Tekh., Ser.
Mater. 7, 77 (1983).

29. N. K. Zelenina, S. N. Ignatov, V. P. Karpenko, et al.,
Nucl. Instrum. Methods Phys. Res. A 283, 274 (1989).

30. V. P. Karpenko, O. A. Matveev, and A. A. Tomasov, Éle-
ktron. Model. 11, 92 (1989).

Translated by D. Mashovets


	1004_1.pdf
	1007_1.pdf
	1013_1.pdf
	1017_1.pdf
	1023_1.pdf
	1028_1.pdf
	1032_1.pdf
	1035_1.pdf
	1040_1.pdf
	1045_1.pdf
	1048_1.pdf
	1053_1.pdf
	1058_1.pdf
	1066_1.pdf
	1071_1.pdf
	1076_1.pdf
	1082_1.pdf
	1087_1.pdf
	1093_1.pdf
	1096_1.pdf
	1102_1.pdf
	989_1.pdf
	993_1.pdf
	998_1.pdf

