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Propagation of a spatial soliton in a system of tunneling-coupled optical waveguides
with a variable coupling coefficient

F. Kh. Abdullaev
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The problem of the propagation of a spatial soliton in a system of tunneling-coupled optical
waveguides is studied. The tunneling coupling coefficient is assumed to be modulated in a
transverse direction. The adiabatic dynamics is studied for the case of periodic modulation
of the tunneling coupling coefficient. The stationary points for the beam parameters are found. The
effective potential is calculated for the center of the beam in the equivalent-particle model.
The condition for resonance emission of waves by a soliton is obtained. ©1998 American
Institute of Physics.@S1063-7842~98!00106-8#
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INTRODUCTION

Systems of tunneling-coupled nonlinear optic
waveguides are attracting attention in connection with p
sible applications as optical decouplers, components in o
cal logic circuits, and so on.1,2 Such configurations can b
obtained, for example, by preparing flat waveguides o
GaxAl12xAs substrate.3 This material possesses positive Ke
nonlinearity when the wave frequency is less than half
band gap. An important feature is that soliton propagat
regimes of powerful optical beams—spatial optical so
tons—are possible in such systems.4,5 Such systems also
have the advantage that it is possible to obtain strong n
linear effects in them by using weak nonlinear materials
separate waveguides. For applications it is of interest to
velop methods for controlling the parameters of spatial s
tons in these systems. In Ref. 6 it is suggested that varia
of the tunneling coupling coefficient between the wavegui
be used for such purposes. Using a variational approach
the continuum approximation the authors were able to inv
tigate the effect of linear and quadratic variation of the tu
neling coupling coefficient. For their approach the choice
trial function is critical. Since the continuum approximatio
leads to a perturbed nonlinear Schro¨dinger equation, the
method of the inverse problem in soliton theory provide
systematic approach.

In the present paper we shall study the effect of a p
odic variation of the tunneling-coupling coefficient on th
propagation of a spatial soliton in a stack of nonlinear pla
waveguides. The investigation will employ perturbati
theory based on the inverse-problem method. The prob
exhibits special features compared with that studied in R
6, specifically, in our case resonance emission of waves
spatial soliton appears.

DESCRIPTION OF THE MODEL

The system of equations describing the propagation
wave in an infinite system of tunneling-coupled nonline
planar waveguides is6,7
6151063-7842/98/43(6)/4/$15.00
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2 iunz5vn,n11/2un111vn21/2,nun211uunu2un . ~1!

Here ū(z,n) is the dimensionless intensity of the electr
field of the wave andvn,m is the coupling coefficient be
tween the waveguides. An approximate expression forvn,m

is8

vn,m;exp@2g~n2m!#.

We shall employ a continuum approximation to descr
the evolution of a wave in the system of waveguides. T
approximation can be used to study the variations of a w
on scales much larger than the distanceh between the wave-
guide centers.9 Thenun andvn,m can be expanded in a Tay
lor series

un615u~x!6hux1
h2

2
uxx1...,

vn,n61/25v~x!6
h

2
vx1

h2

8
vxx1... .

Substituting these expressions in Eq.~1! we obtain for
u(z,x) the equation

2 iuz52vu1h2S vuxx1vxux1
1

4
vxxuD1uuu2u. ~2!

We shall study the case of periodic modulation of t
tunneling-coupling parameter along the directionx,v51
1« sin(ax). Settingh51 and changing to the new variable
y5x/&, z52t, a5A2a, we obtain finally the equation

iut1uyy52uuu2u5«R~u,y!

52« sin~ay!uyy2«a sin~ay!uy

1
1

4
«a2 sin~ay!u24« sin~ay!u. ~3!

As a result, the problem reduces to investigation of
nonlinear Schro¨dinger equation with a periodic perturbatio
As follows from Eq.~2!, the perturbation is conservative—
there exists a conserved energy integral
© 1998 American Institute of Physics
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uuu2dx5const.

We note that the influence of a local nonuniformity
the refractive index in a stack of waveguides on the dyna
ics of a spatial soliton was recently analyzed on the basi
a continuum approximation and the inverse-problem met
for solitons.10 The corresponding perturbation on the righ
hand side of Eq.~3! has the formR(u,x)5«d(x)u. Numeri-
cal modeling confirmed that such an approach gives a g
description of beam dynamics.

ADIABATIC DYNAMICS OF A SPATIAL SOLITON IN A
SYSTEM OF COUPLED WAVEGUIDES

We shall study the evolution of a single spatial solito
propagating in a system of tunneling-coupled waveguid
When there is no modulation, i.e.,v50, the soliton solution
can be written in the form

us52ih sech@2h~y2z!#exp~22i jy24i ~h22j2!t !.

Hereh is the amplitude of the soliton andz524jt, where
j52v/4 is the coordinate of the center andv is the velocity
of the soliton. We note that in dimensional variables t
soliton velocity is the anglec5sin21(j/2) of propagation of
a beam in the stack of waveguides. In this section we s
study the effect of large- and small-scale modulations of
tunneling-coupling coefficient on the dynamics of a spa
soliton.

a! Large-scale modulations of the tunneling-coupling c
efficient.Using the perturbation theory,11,12 we find that the
amplitude of the soliton is conservedh5const. This is a
reflection of the previously noted fact that for Eqs.~2! and
~3! there exists an integral of the motion,N5*2`

` uuu2dx.
We obtain the following system of equations for the veloc
and coordinate of the center of the soliton:

dj

dt
5

pa2«

2h sin h~pa/4h!
cos~az!S h2

3
1j21

a2

48
21D ,

~4!

dz

dt
524jF11

pa« sin~az!

4h sin h~pa/4h!G . ~5!

For low soliton velocitiesj!1, j2!h2 ~‘‘heavy’’ soli-
ton! the system~4! and ~5! is equivalent to the problem o
the motion of a particle of unit mass in a periodic potent
u(z)

u~z!5
2pa« sin~az!

h sin h~pa/4h! S h2

3
1

a2

48
21D . ~6!

In the general case the effective potential depends on
soliton velocityj. There are examples of velocity-depende
potentials in physics. For example, velocity-dependent
tentials have been used to describe the nucleon interac
in nuclei.

Let us discuss the role of length scales in the proble
There are two characteristic scales: The modulation pe
l52p/a of the tunneling-coupling parameter and the s
-
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of the solitonl 51/2h. The amplitude of the effective poten
tial depends strongly on the ratiol /l. For l /l!1 the effec-
tive potential equals

u~z!'
8

3
« sin~az!h210~ l 2/l2!.

In this limit the effective potential is virtually indepen
dent of the ratio of the length scales and is proportiona
the squared amplitude of the soliton.

For l /l@1 we have

u~z!'
p«a3

48h
exp~2pa/4h!sin~az!.

One can see that the amplitude of the effective poten
is exponentially small for solitons whose width is grea
than the modulation period. There exists a corridor of para
eter values neara;«21/3 where the amplitude of the poten
tial &1.

It is difficult to find the general solutions of the syste
~4! and~5!. Let us analyze the behavior of the system in t
phase plane. For this, let us find the stationary points for
system~4! and~5!. Let us rewrite the system of equations
the form

dj

dt
5A cos~az!~j22B!, ~7!

dz

dt
524j@11C sin~az!#, ~8!

where

A5
«pa2

2h sin h~pa/4h!
,

B52S 1

3
h21

a2

48
21D , C5

A

2a
.

We note thatA, B, andC are decreasing functions ofa.
Then the conditions for the stationary points can be writ
in the form

j50, az5p/21np; j56AB,

az52sin21~1/c!~21!n, n5 1, 2, ... . ~9!

It can be shown by analyzing the linearized system~4!
and ~5! that the pointsaz5p/212np are stable, while the
pointsaz52p/212np are unstable. The phase portrait
the system is presented in Fig. 1. Since the phase traject
are periodic, we limited the figure to the values2p,az
,3p/2. One can see regions of finite motion of an effecti
particle, which correspond to oscillations of a spatial solit
as a whole in the system of tunneling-coupled waveguid
and regions of unbounded motion, which correspond t
growing deflection of the beam. We note that two types
effects materialize here. Effects of the first type are due
the linear periodic potential, and effects of the second ty
are due to periodic modulation of the dispersion. The disp
sion perturbation dominates for largej in R(u)→v(x)uxx

;j2v(x)u, which one can see in the phase portrait—reg
1. For low velocitiesj we have soliton oscillations aroun
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the bottom of each well of the periodic potential—region
The line 3, where the soliton velocity is constantj56AB,
is of special interest. Here the effects of dispersion and
tential disturbances on the motion of the spatial soliton
balanced. Since the soliton velocityj is related with the
beam propagation angle in the waveguide stack, we conc
that a variation of the tunneling-coupling constant betwe
the waveguides leads to periodic variations of the locat
where the soliton beam emerges from the waveguide st
The latter effect can be used to develop optical devices ba
on spatial optical solitons.

b! Small-scale modulations of the tunneling-coupling c
efficient.A different approach must be used to describe
limit a@h, specifically, one or another variant of th
method of averaging over fast variations ofn(y). Here we
shall use the method suggested in Ref. 13. The aim i
obtain an equation for the slowly varying part of the wa
field, using the expansion

u5U1A cos~ay!1B sin~ay!

1C cos~2ay!1D sin~2ay!1..., ~10!

where the functionsU, A, B, C, andD are assumed to b
slowly varying over distances;1/a.

A closed equation forU(y,t) can be obtained by writing
out the equations for these functions and using asympt
expansions in 1/a. Assuming that«,1/a anda@1, we ob-
tain

iut1uyy12uuu2u52
«2a2

16
u2

«2

16

3~2iut26uyy124uuu2u!. ~11!

Therefore the beam dynamics in a system of tunneli
coupled waveguides is described by a renormalized non
ear Schro¨dinger equation. The first term on the right-ha
side of the equation describes the variation of the soli
phase and the remaining terms describe the variation of
soliton width. It follows from Eq.~11! that the soliton width
increases

FIG. 1. Phase portrait of the system~4! and ~5! with «50.1, 2h51, a51.
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123«2/8
. ~12!

The adiabatic soliton dynamics studied in this section
valid when radiation effects can be neglected. We sh
briefly discuss the effect of the emission of waves by a s
tial soliton.

Analysis based on solving the equations for the Jost
efficient b(l) of an associated linear spectral proble
wherel is the spectral parameter14 (l52k andk is the wave
number!, shows that wave emission by a soliton arises. T
radiation is concentrated around two spectral points

l1,252j6Aaj2h2. ~13!

The group velocity of the emitted waves
v524l1,2. Maximum emission is observed when

a/22Aaj2h2!1. ~14!

For soliton amplitudesh small compared with the veloc
ity j and modulation frequencya we find that the emission is
maximum when

a5vs . ~15!

One can see that resonance radiation occurs when
modulation frequency equals the soliton velocity. On a
count of the strong soliton-radiation coupling the soliton d
cays as it propagates in the waveguide stack. In Ref. 1
condition identical to Eq.~15! was obtained from qualitative
considerations in a description of numerical experiments
the propagation of a nonlinear Schro¨dinger soliton in a peri-
odically nonuniform medium. Since the soliton velocity
actually the propagation angle of a beam in a system
waveguides, we find that intense emission should occur
propagation angles

cc5sin21~a/8!. ~16!

Our results should be correct for these values of the
rameters. Specifically, intense emission leads to the app
ance of radiation damping and deceleration of the soliton
complete analysis of the problem of wave emission by
spatial soliton in a system of waveguides and a calculation
the radiation decay length of a soliton will be perform
separately.

CONCLUSIONS

In this paper the propagation of a spatial soliton in
system of tunneling-coupled waveguides with a periodica
varying tunneling-coupling coefficient was investigated. T
problem was studied in the long-wavelength approximati
where it reduces to investigation of the propagation of a n
linear Schro¨dinger soliton with periodic dispersion and po
tential perturbation. The adiabatic dynamics of a soliton w
studied. It was shown that the motion of the soliton cente
described by the motion of a particle of unit mass in
velocity-dependent effective potential which is a period
function of the coordinate of the soliton. The stationa
points for the soliton were found. It was shown that the p
dicted effects can be used to control the parameters o
beam in a system of waveguides.
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The effect of small-scale modulations of the tunnelin
coupling coefficient on the propagation of a spatial solit
was also investigated. The method of averaging for nonlin
partial differential equations was used to derive a renorm
ized nonlinear Schro¨dinger equation for a beam and to fin
the change in the parameters of the soliton.

The effects due to wave emission by a spatial soli
were analyzed. The condition of resonance emission
waves by a soliton was found, and the propagation angle
which the spatial soliton decays resonantly was calculate

I thank B. A. Umarov and E. N. Tso� for helpful discus-
sions.
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For fields above a critical value the expansion of the conductivity in powers of the field ceases
to be valid and the weak-nonlinearity approximation no longer works. The density behavior
of the critical fields in strongly inhomogeneous media near the percolation threshold is found on
the basis of two criteria—an average criterion and a local criterion. The parameter values
of the medium for which crossover—a change of the critical behavior—occurs are determined.
Similar calculations are performed for the critical currents. ©1998 American Institute
of Physics.@S1063-7842~98!00206-2#
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Nonlinear phenomena play a special role in the study
the transport properties of strongly inhomogeneous me
near the percolation thresholdpc . This is because nearpc

there exist in a medium locations where the current den
and voltage drop are substantial, making it necessary to
into account the deviations from the linear Ohm’s law. To
first approximation there appears in Ohm’s law, beside
term linear in the field, a nonlinear cubic term

j ~r !5s~r !E~r !1x~r !uE~r !u2E~r !, ~1!

where j ~r ! is the current density,E~r ! is the electric field,
s~r ! the ordinary conductivity, andx~r ! is a constant char
acterizing the cubic nonlinearity.

Just as in the linear case (x50), to describe the effec
tive properties of a randomly inhomogeneous medium
introduces effective transport coefficients, which by defi
tion relate the volume averages of the field and current d
sity

^ j &5se^E&1xeu^E&u2^E&, ~2!

where^ . . . &5V21* . . . dV and the size;V1/3 of the aver-
aging region is assumed to be much larger than the cha
teristic self-averaging length—the correlation lengthj.

One of the main questions that must be answered
describing the effective properties of a medium taking in
account the nonlinearity is the question of the values of
electric field and current density for which the relation~2! is
still valid. It is assumed1,2 that the relation~2! remains valid
if

^ j &,^ j &c , ^E&,^E&c , ~3!

where^E&c and^ j &c are the so-called critical field and crit
cal current density determined from the condition that
first term in Eq.~2! equals the first term:

^E&c5Ase /xe, ^ j &c5Ase
3/xe. ~4!

Many papers have been devoted to the calculation of
critical field and current density in percolation media~see,
for example, Refs. 1–7!. Some of these works are based
6191063-7842/98/43(6)/3/$15.00
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the analogy between the critical behavior ofxe and the rela-
tive spectral densityCe of 1/f noise, which were first estab
lished in Refs. 8 and 9.

As a rule, two limiting cases are studied. Above the p
colation threshold, where the density of the hig
conductivity phasep.pc and the medium contains an infi
nite cluster consisting of a phase with conductivitys1 (s1

@s2), theN/I ~normal metal–insulator! case is studied. The
low-conductivity phase is assumed to be an ideal insulato
s250. Below the percolation threshold,p,pc , the S/N
~superconductor–normal metal! case is studied. In this cas
the system does not contain an infinite cluster, and the
rent necessarily flows through segments consisting of
low-conductivity phase. It is assumed that the entire volta
drop occurs across these segments, i.e., the high-conduc
phase is an ideal conductorr151/s150.

In Refs. 3–7 the following were obtained for these tw
cases:

^E&c;t2t1n~d21!, ^ j &c;tn~d21!, p.pc , N/I ,
~5!

^E&c;utun, ^ j &c;utu2q1n, p,pc , S/N, ~6!

where t5(p2pc)/pc is the proximity to the percolation
threshold,t andq are, respectively, the critical exponents
the effective linear conductivity above and below thresho
n is the critical exponent of the correlation lengthj
'a0utu2n, and a0 is the minimum length in the medium
which for a network problem is the bond length in the n
work. The analogy established in Refs. 8 and 9 betweenxe

and the relative spectral densityCe of 1/f noise and the fact
that taking the finite ratioh5s1 /s2 into account may be
essential for describing the critical behavior ofCe ~in con-
trast to se!

10–12 indicate thath5s2 /s1Þ0 must also be
taken into account when calculating the critical fields a
currents.

Models of a percolation structure above and belowpc

can be used to determine the fields and currents in a stro
inhomogeneous medium~Fig. 1!.13–15 The principal ele-
ments of this structure are a bridge consisting of a hi
conductivity phase and a low-conductivity interlayer. Taki
© 1998 American Institute of Physics
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into account the analogy between the weak nonlinearity
1/f noise (xe andCe!, we shall confine our attention to th
two structural elements indicated above, since these elem
give the main terms inCe and xe for hÞ0.14 The N/I and
S/N approximations correspond to taking into account o
one element of the structure: abovepc only the bridge, and
below pc only the interlayers.

We now require that besides the condition~3! a similar
condition hold locally, i.e., that at each point of each pha
the local field and current density be less than the local c
cal values

Ei~r !,Eci , j i~r !, j ci , i 51, 2, ~7!

where for each phase the critical local field and current d
sity are determined from a local law~1!:

Eci5As i /x i , j ci5As i
3/x i , i 51, 2. ~8!

In contrast to the conditions~3!, which can be called an
average criterion, the conditions~8! can be called a loca
criterion. Of course, there is no guarantee that the law~8!
holds just because the condition~3! is satisfied. This mean
that in some cases the relations~5! and ~6! should be re-
placed by different relations.

As one can see from Fig. 1a, the voltage across
bridge equals the external voltage. Assuming that the elec
field on the bridge equals the critical fieldEc1 and expressing
the external voltage drop in terms of the average field,
find the average field corresponding to the local criterion~7!
of weak nonlinearity to bêE&c15(N1a0 /j)Ec1 . Similar ar-
guments for the interlayer givêE&c25(a0 /j)Ec2 or

^E&c15As1 /x1t2t1n~d21!, ^E&c25As2 /x2tn. ~9!

The critical current densities for the fields~9! are

FIG. 1. Hierarchical model of a percolation structure with a finite ra
h5s2 /s1 . 1—Bridge, N1 high-conductivity resistances connected in s
ries; 2—interlayer,N2 low-conductivity resistances connected in parall
According to Refs. 13 and 14,N1;utu2t1n(d22), N2;utu2q2n(d22).
d

nts
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e
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^ j &c15s1As1 /x1tn~d21!, ^ j &c25s2As2 /x2t t1n.
~10!

For p.pc the average fields and current densities
which relations~7! still hold and Eq.~2! can be used are th
smaller of the two possible values:

$E%c5min$^E&c1 ; ^E&c2%, $ j %c5min$^ j &c1 ; ^ j &c2%.
~11!

Below the percolation threshold the entire current flo
mainly through the bridge and interlayer~Fig. 1b!. As the
voltage increases, the local criteria for weak nonlinearity~7!
are violated here first. Further calculations are most con
niently performed in terms of the resistivities. Then,
within a cubic term, the relation between the current dens
and electric field will have the form

E~r !5r~r !j ~r !1m~r !u j ~r !u2j ~r !, ~12!

where to this accuracyr i51/s i andm i52x i /s i
4 .

The local critical current densities are determined
equating the terms in Eq.~2!, i.e., j ci5Ar i /m i . Knowing the
cross-sectional area of the bridgea0

d21 and the interlayer
a0

d21utu2q2n(d22), we find the average critical current den
sities from the condition that the current^ j &jd21 through the
entire medium equals the critical currents for the bridge a
interlayer (j c1a0

d21 , j c2a0
d21utu2q2n(d22)):

^ j &c15s1As1 /x1utun~d21!,

^ j &c25s2As2 /x2utu2q1n. ~13!

From the condition that the total voltage drop across
correlation length equals the sum of the voltages across
bridge and interlayer we obtain the critical average fields

^E&c15
s1

s2
As1

x1
utuq1n~d21!, ^E&c25As2

x2
utun.

~14!

Both above and below the percolation threshold the cr
cal current density and field are the smaller of the expr
sions in Eqs.~13! and ~14! ~see Eq.~11!!.

Depending on the values of the parameterst, h
5s2 /s1 , and H5x2 /x1 the minimum values in Eq.~11!
can be the first or the second values of the field and cur
density. Equating the expressions for the fields in~9! and
current densities in Eq.~10!, for the casep.pc we obtain
A(s2x1)/(s1x2)t t2n(d22)51, or, equivalently,

t05~H/h!1/2~ t2n~d22!!, h5s2 /s1 , H5x2 /x1 .
~15!

Crossover—a change in the critical behavior of the cr
cal field current density—occurs whent passes through the
valuet0 . The critical current density depends ont as;t t1n

for t,t0 and ;tn(d21) for t.t0 . The critical field also
undergoes crossover: Fort,t0 it is ;tn and fort.t0 it is
proportional tot2t1n(d22).

The region1 indicated in Fig. 2a corresponds to the ca
when $E%c5^E&c2 from Eq. ~9! and $ j %c5^ j &c from
Eq. ~10!. The region2 corresponds to the situations whe
$E%c5^E&c1 , $ j %c5^ j &c1 , i.e., the critical exponents of th
current density and electric field are identical to Eq.~5!.
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FIG. 2. Surfaces bounding the regions of the constants ratiosh5s2 /s1 and H5x2 /x1 for a weakly nonlinear medium where the results of the stand
approach3–7 are valid (N/I andS/N cases~5! and~6!! and the critical current densities and fields obtained on the basis of a local criterion. Region2—standard
approach,1—results of this work. The hatched region of values oft corresponds to the region of broadeningD. The quantityD is determined on the basis o
the analogy between the effective properties of the weakly nonlinear medium and the effective 1/f noise,10 D5h1/(t1q).
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For p,pc the crossover condition for the critical curre
density and electric field can be found similarly to Eq.~15!
and has the form

ut0u5~h3/H !1/2~q1n~d22!!. ~16!

The surface bounding the regions ofs i andx i where the
results of the average criterion~6! are valid is shown in Fig.
2b. For the region1 the results of the standard approach a
valid, i.e., Eq.~6!. The region2 corresponds to the case whe
$ j %c5^ j &c1 from Eq. ~13! and$E%c5^E&c1 from Eq. ~14!.

We thank É. M. Baskin for a discussion of the question
touched upon here.
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The wave equation is solved by the operator separation method proposed in V. V. Zashkvara and
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A new approach to solving Laplace’s equation by se
ration of variables has been proposed and substantiate
Refs. 1–3. In this approach a solution is constructed in
form of a sum of paired products of functions of one varia
that satisfy chains of second-order ordinary differential eq
tions and zero boundary conditions on a circle. The differ
tial operators of these equations are coordinate-separ
parts of the Laplacian. A class of circular multipoles in c
lindrical and spherical coordinate systems has been obta
by the operator separation method.4

In Ref. 5 a new approach is used to solve Poisso
equation. It is shown that if the right-hand side of Poisso
equation in a cylindrical system with dimensionless coor
natesR/r 0 , j5z/r 0 (r 0 is the radius of an axial circle! is
represented by the function

F~R,j!5jNv~R!, ~1!

whereN is an integer andv(R) is a smooth function ofR,
then a solution of Poisson’s equation is given by the sum

Vn~R,j!5 (
m50

n

wm~j!•Fn2m~R!. ~2!

In this sumn5N/2 if N is even andn5(N21)/2 if N is
odd. The set of radial functionsFi(R) satisfies a chain ofn
differential equations

TF05N!v~R!,

TF152F0 ,

.........,

TFn52Fn21 , ~3!

where

T5
1

R

d

dR FR
d

dRG
is a second-order differential operator—the radial part of
Laplacian.

The set of axial functionsw i(j) is

wn~j!5
1

~2n!!
j2n,

n50, 1, 2, ...,N/2, if N is even,
6221063-7842/98/43(6)/5/$15.00
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wn~j!5
1

~2n11!!
j2n11,

n50, 1, 2, ...,~N21!/2, if N is odd. ~4!

The functionsFi(R) and w i(j) and their derivatives a
the pointR51, j50 satisfy the boundary conditions

Fi~1!5
dFi

dR U
R51

50, i 50, 1, 2, ...

w i~0!5
dw i

dj U
j50

50, i 51, 2, ... . ~5!

In Ref. 5 it was shown that for different values ofn the
solutionsVn(R,j) of Poisson’s equation possess the stru
ture of modified circular multipoles, which were termed no
Laplacian. In what follows we shall callf i(R) and Fi(R),
respectively, the radial functions of Laplacian and no
Laplacian circular multipoles.

Our objective in the present paper is to use the oper
separation method to solve the wave equation in a cylindr
coordinate system, to obtain particular solutions on the b
of the multipole approach, and to determine the characte
the temporal processes described by these solutions.

The wave equation in dimensionless cylindrical coor
natesR, j and dimensionless timet5ct1 /r 0 (t1 is the di-
mensional time andc is the propagation velocity of a distur
bance in a uniform medium! is

~D2x!U~R, j, t !50, ~6!

whereD is the Laplacian andx5]2/]t2 is the temporal op-
erator.

According to the operator separation method,1,2 the so-
lution of Eq. ~6! will be a sum of paired products of th
coordinates and temporal functionsn i(R, j) andF i(t)

Un~R, j, t !5(
s50

n

ns~R, j!•Fn2s~ t !. ~7!

If these functions satisfy the chains of equations

Dn050, Dn15n0 ,

Dn25n1 , .........,

Dnn5nn21 , ~8!
© 1998 American Institute of Physics
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xF050,

xF15F0 ,

xF25F1 ,

.........,

xFn5Fn21 . ~9!

Indeed, operating on the sum~7! with the operator
@D2x#, we obtain

~D2x!(
s50

n

ns~R, j!Fn2s~ t !

5(
s50

n

~Dns!Fn2s2(
s50

n

ns~xFn2s!

5(
s51

n

ns21Fn2s2 (
s50

n21

nsFn2s21 . ~10!

Let us now shift by 1 the summation index in the fir
sums215k, ns215nk , Fn2s5Fn2k21 . Then

(
s51

n

ns21Fn2s5 (
k50

n21

nkFn2k21 .

Thus, the sums in Eq.~10! are equal and Eq.~6! is sat-
isfied. The solution of the system of equations~9! is given by
the functions

Fn~ t !5
1

~2n!!
t2n, n50, 1, 2, ..., ~11!

if F0(0)51, Fn(0)50 (nÞ0), and]Fn /]tu t5050, or the
functions

Fn5
1

~2n11!!
t2n11, n50, 1, 2, ..., ~12!

if Fn(0)50, ]F0 /]tu t5051, and]Fn /]tu t5050 (nÞ0).
According to Eq.~8!, to find the coordinate function

n i(R, j) it is necessary to solve a chain of partial different
equations, consisting of Laplace’s equation for the functio
n0 and Poisson’s equations for the remaining functionsn i .
Before attempting to solve this problem we shall supplem
the results of Ref. 5 and find the solution of Poisson’s eq
tion in the case when the right-hand side of this equation
polynomial inj with arbitraryR-dependent coefficients. Le
this be an even polynomial of degree 2N

F~R, j!5 (
n50

N

v~n!~R!j2n. ~13!

Then the solution of Poisson’s equation will be given by t
sum

V~R, j!5 (
n50

N

V~n!~R, j!. ~14!

In accordance with Eq.~2!

V~n!~R, j!5 (
m50

n

wmFn2m
~n! . ~15!
l
s

t
-
a

Let us substitute expression~15! into Eq. ~14!. Perform-
ing some manipulations, we arrive at a solution in a fo
that facilitates further analysis of our problem:

V~R,j!5 (
n50

N

(
m50

n

wmFn2m
~n! 5 (

m50

N

wm (
n5m

N

Fn2m
~n!

5 (
m50

N

wm (
s50

N2m

Fs
~m1s! . ~16!

Two successive operations lead to Eq.~16!: switching
the order ofm and n summations and then replacing th
summation overn by summation overs5n2m. The radial
functionsFs

(m) form a triangular matrix

s → 0 1 2 3 4 5 . N

m ↓
0 F0

~0! ,

1 F0
~1! F1

~1! ,

2 F0
~2! F1

~2! F2
~2! ,

3 F0
~3! F1

~3! F2
~3! F3

~3! ,

4 F0
~4! F1

~4! F2
~4! F3

~4! F4
~4! ,

5 F0
~5! F1

~5! F2
~5! F3

~5! F4
~5! F5

~5! ,

.. .. .. .. .. .. ..

N F0
~N! F1

~N! F2
~N! F3

~N! .. .. FN
~N! .

The functionsFg
(m) , which together form the solution

~15! and correspond to individual terms of the polynom
~13!, stand in the rows of the matrix (m5const). The solu-
tion of Poisson’s equation with the right-hand side in t
form of the polynomial~13!, according to Eq.~16!, consists
of paired products ofwm times the sum of the function
Fs

m1s . These functions lie along the diagonals of the matr
The end point of the diagonal along which the ind
s50, 1, 2, . . . ,N2m varies is determined by specifyin
the value ofm. The set of functions forming a diagonal is

F0
~m! , F1

~m11! , F2
~m12! , ...FN2m

~N! . ~17!

Remaining within the multipole approach, we shall sol
the system of equations~8!, choosing asn0(R, j) a circular
multipole of order 2N, which is a harmonic polynomial inj
~Refs. 1 and 2!. Then

v~n!~R!5
1

~2n!!
f N2n~R!, n50, 1, ...,N, ~18!

where f N2n are radial functions of the first or second kin
studied in Ref. 4.

We shall show that in this case the functionsFs
(m1s)

standing on the same diagonal of the matrix are equal,
the solution of the chain of equations~8! can be easily found.
Let us operate with the operatorT on the function~17!, tak-
ing into account the differential equation~3! for Fi and the
system of differential equations satisfied by the radial fu
tions f i ~Refs. 1 and 2!:

T fi 1152 f i , i 50, 1, 2, ...,n. ~19!

As an example, let us findn1(R, j). According to Eqs.
~3! and ~18!, TF0

(m)5v (m)(R)5 f N2m . Using Eq.~19!, we
obtain from this relation
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F0
~m!52 f N2m11 . ~20!

According to Eqs.~3! and ~20!, TF1
(m11)52F0

(m11)

5 f N2m , and we have on the basis of~19!

F1
~m11!52 f N2m11 . ~21!

According to Eqs.~3! and ~21!, TF2
(m12)52F0

(m12)

5 f N2m . On the basis of Eq.~19! we have

F2
~m12!52 f N2m11 ~22!

and so on. Indeed, allN2m11 diagonal elementsFs
(m1s)

are equal and have the value2 f N2m11 ; there areN2m
11 of them. Returning to formula~16!, we conclude that if
the right-hand side of Poisson’s equation is represented
circular multipolen0(R, j) of order 2N, then the solution of
this equationn1(R, j) is a polynomial of the same order inj
and has the form

n1~R, j!52 (
m50

N

~N2m11!wm~j! f N2m11~R!. ~23!

Generalizing Eq.~23!, one can show that the solution o
an arbitrary linkDns5ns21 in the chain of differential equa
tions ~8! is

ns~R,j!5
~21!s

s! (
m50

N
~N2m1s!!

~N2m!!
wm~j! f N2m1s~R!.

~24!

Substituting expression~24! into Eq. ~7!, we write the
solution of the wave equation~6! in the form

Un~R, j, t !5(
s50

n
~21!s

s!
Fn2s~ t !

3 (
m50

N
~N2m1s!!

~N2m!!
wm~j! f N2m1s~R!.

~25!

The spatiotemporal structure of the solution~7! or ~25!
near the axial circleR51, j50 is determined by the leadin
terms of the functions~24!. To find them it is necessary t
separate out the leading terms of the radial functionsf i ap-
pearing in Eq.~24!. It turns out that in consequence of th
chain structure of the system of differential equations1,2

which f i satisfy with zero boundary conditions, we have

f i 11 / f i;r2 as r→0 ~r5R21!. ~26!

It follows from this relation that the leading termsf i

equal

f i;~21! ir2i 11

for the radial functions of the first kind and

f i;~21! ir2i

for the radial functions for the second kind,

i 50, 1, ... . ~27!

We shall confine our attention to the radial functions
the second kind. Then the leading terms inns(R, j) ~24! can
be represented by the formula
a

f

ns* ~R,j!;
1

s!
r2s (

m50

N

~21!N2m

3
~N2m1s!!

~N2m!! ~2m!!
@jmrN2m#2. ~28!

A characteristic feature here is that the sum is a hom
geneous polynomial of degree 2N in r andj containing sign-
alternating coefficients. This polynomial by itself describe
multipole structure with nodal pointR51, j50, where the
2N zero equipotential lines converge. The factorr2s in front
of the sum contributes to the structure of the field an ad
tional zero equipotential lying on thej axis, which separates
the single-potential region into two symmetric parts, there
increasing the multipole order by 2. In Ref. 5 such structu
were called incomplete non-Laplacian circular multipole
We shall also determine the spatiotemporal structure of
field ~25! on a surface of section by the planej50 nearR
51. In accordance with Eq.~4!, we have for even functions
wn(j)

wm~0!5H 1, if m50,

0, if m51, 2, . . . .
~29!

According to Eq.~25! we have

Un~R, 0, t !5(
s50

n

~21!sf s~R!Fn2s~ t !. ~30!

As an example, let us consider even functions for
choice ofFn(t). Then

Fn2s~ t !5
1

@2~n2s!#!
t2~n2s!. ~31!

Substituting expressions~27! and ~31! into Eq. ~30!, we
arrive at the following expression for estimating the sp
tiotemporal structure of the field in the sectionj50

Un~R, 0, t !5(
s

n
1

@2~n2s!#!
r2st2~n2s!. ~32!

It follows from Eq. ~32! that Un(R, 0, t) is a homoge-
neous polynomial inR andt of degree 2n whose coefficients
all have the same sign. Near the pointR51, t50 the equi-
potentialsUn(R, 0, t) of the wave field form a system o
closed curves encompassing this point. The fieldUn(R, 0, t)
is not a multipole field. But after one makes the substitut
t5 i t and transforms to imaginaryt in Eq. ~32!, the field in
the coordinatesR,t becomes a circular multipole with
node atR51, j50, t50.

Thus the spatial–wave structure of the wave field~7! in
all space is determined by a time-dependent polynom
whose coefficientsns(R, j) are circular multipoles. Initially
(t50) the structure of the wave fieldUn(R, j, t) will be
represented by a non-Laplacian circular multipolenn(R, j)
(nÞ0), and in the limitt→` it will be represented by a
Laplacian circular multipolen0(R, j).

As an example, let us examine the structure of the m
tipole solution of the wave equation~7! for the caseN51.

The Laplacian circular multipole is
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n0~R, j!5 f 1w01 f 0w1 . ~33!

According to Eq.~24!, the non-Laplacian circular multipole
can be calculated from the formula

ns~R, j!5
~21!s

s! (
m50

1
~s112m!!

~12m!!
wm~j! f s112m~R!;

~34!

s51, n152@2w0f 21w1f 1#,

s52, n253w0f 31w1f 2 ,

s53, n352@4w0f 41w1f 3# ~35!

FIG. 1.

FIG. 2.
and so on. For even functionsFn(t) we have, according to
Eq. ~7!,

n50, U0~r , j, t !5n0F05 f 1w01 f 0w1 , ~36!

n51, U1~R, j, t !5(
s50

1

nsF12s

5
1

2!
~ f 1w01 f 0w1!t22@2w0f 21w1f 1#, ~37!

n52, U2~R, j, t !5(
s50

2

nsF22s5
1

4!
~ f 1w01 f 0w1!t4

FIG. 3.

FIG. 4.
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2
1

2!
@2w0f 21w1f 1#t213w0f 31w1f 2 ~38!

and so on.
To calculateU1 the radial functions of the second kind4

were chosen forf i(R) and the even functions4 of j were
chosen forw i(j):

f 0~R!51, f 1~R!5
1

4
@2 ln R112R2#,

f 2~R!5
1

64
@2~418R2!ln R2514R21R4#. ~39!

w0~j!51, w1~j!5
1

2
j2. ~40!

Then, according to Eq.~37!,

U1~R, j, t !5
1

4 F1

2
~2 ln R112R2!1j2G t2

2
1

32
@2~418R2!ln 514R21R4#

2
1

8
j2@2 ln R112R2#. ~41!

The computational results obtained forU1(R, j, t) us-
ing Eq. ~41! are presented in Figs. 1–6, which show ‘‘sna

FIG. 5.
-

shots’’ of different times in the development of the sp
tiotemporal process described by the wave multip
U1(R, j, t): t50, 0.3, 0.5, 0.7, and 1.2, respectively. Fort
50 the wave multipole is an incomplete non-Laplacian c
cular sextupole~Fig. 1!. Even for smallt the contribution of
the quadrupole 1

2(2 ln R112R2)1j2 eliminates the zero
equipotentialR51 and destroys the non-Laplacian sext
pole. It is evident from these figures that in time the dev
opment of this process leads to the formation of a struct
close to a circular Laplacian quadrupole~Figs. 5, 6!.

The process unfolds similarly in the other cases wh
we examined. It can be concluded on this basis that the
erator separation method makes it possible to obtain a m
tipole solution of the wave equation that describes a fi
evolving from a more complicated to a simpler structure.

†Deceased.

1V. V. Zashkvara and N. N. Tyndyk, Zh. Tekh. Fiz.61~4!, 148 ~1991!
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It is shown that high-accuracy contact-free measurements of the divergence and emittance of an
accelerated H2 ion beam at the exit from the source can in principle be performed by
passive Doppler spectroscopy of a beam of excited hydrogen atoms produced by neutralization
of the ions with excitation on the residual gas in the source channel. The intensity of the
Ha-line radiation detected by the Doppler system is calculated, taking into account the principal
processes leading to the excitation and deexcitation of the 3s, 3p, and 3d levels of the
hydrogen atoms in the beam, for residual gas densities of the order of 1024– 1025 Torr in the
source channel. The computed Ha-line intensity was confirmed experimentally, making
it possible to perform photoelectronic detection of the spectral contour of the line in the current
mode rather than the photon-counting mode. ©1998 American Institute of Physics.
@S1063-7842~98!00406-1#
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INTRODUCTION

Monitoring of the parameters of a H2 ion beam during
continuous operation of the source is an extremely pres
problem. Contact sensors1–3 do not solve this problem be
cause they introduce perturbations into the beam and
crease the beam divergence, and it is virtually impossibl
use contact sensors for continuous monitoring of the div
gence of an ion beam during the operation of the source.
only method permitting such nonperturbative monitoring
Doppler spectroscopy, which has been used in the pas
monitoring the divergence of high-intensity beams of ato
and negative ions of hydrogen in the channel of
accelerator4,5 and for measuring the temperature of hydrog
atoms in the plasma discharge of surface-plasma source
H2 ions.6,7

In the present work we determined the possibilities
performing high-accuracy contact-free monitoring of the
vergence and emittance of an accelerated beam of neg
hydrogen ions in the source channel by passive Dop
spectroscopy without using a charge-transfer target.

Ha-LINE INTENSITY OF AN ACCELERATED PARTICLE
BEAM AT THE SOURCE EXIT

An organically integral component of the ion source o
modern accelerator is the turning magnet~see Fig. 1!, which
separates particles according to the transverse velocitie
the beam extracted from the source and forms an ion b
with a fixed emittance. Transport of the H2 ion beam along
the channel of the source magnet is accompanied by neu
ization of the ions and excitation on the residual gas p
ticles. The numberN(Ha) of photons spontaneously emitte
in the Ha line by excited atoms in the hydrogen beam duri
the time t r that the beam atoms travel over the rectiline
detection section at the exit from the magnet is
6271063-7842/98/43(6)/4/$15.00
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N~Ha!5N3s1N3p1N3d , ~1!

whereNm is the number of photons emitted in the transitio
3s→2p, 3p→2s, and 3d→2p, respectively, by hydrogen
atoms in the beam and is determined by the number of sp
taneous decays occurring over the travel timet r of excited
hydrogen atoms in the detection section which are presen
the entire volume of the beam pulse and enter the detec
system of the Doppler recording system with angular ap
ture DwA

Nm5
DDwAVAm

4p f E
0

tr
nm~x!dt. ~2!

HereD and f are, respectively, the diameter and focal leng
of the converging lensL1 ; Am are the probabilities of
the corresponding spontaneous transitions—A3s50.63
3107 s21, A3p52.23107 s21, and A3d56.43107 s21; V
5pd2ctb/4 is the volume of a beam pulse of durationt
with d being the beam diameter andb5v/c, wherev is the
velocity of the ions in the beam;nm(x) is the density of
excited hydrogen atoms at the detection point in the sta
3s, 3p, and 3d

nm~x!5nm
0 ~x!exp~Amt !. ~3!

The densitiesnm
0 (x) of the excited hydrogen atoms afte

the particles have passed through a section of lengthx in the
source can be found from an equation that takes into acc
the excitation of H2 ions and H0 atoms in collisions with the
residual gas as well as radiative decay of the excited le
and collisional relaxation on the residual gas

dnm
0 ~x!

dx
5ng@n0~x!s0,m1n2s21,m#
© 1998 American Institute of Physics
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2
nm

0 ~x!Am

v
2ngnm

0 ~x!sDC , ~4!

whereng is the density of residual gas particles in the sou
channel,n0(x) is the density of hydrogen atoms in the 1s
ground state in the beam,n2(x) is the density of H2 ions in
the beam,s0,m is the cross section for the excitation of h
drogen atoms into the statem in collisions with the residua
gas,s21,m is the cross section for charge transfer from H2

ions accompanied by the excitation of hydrogen atoms
the statem in collisions with the residual gas,v is the lon-
gitudinal velocity of the accelerated beam of H2 ions, sDC

5sm,01sm,111sm,21 is the total cross section for the co
lisional decay of the excited levelsm.

Sinces21,1!s21,0, the H0 atom and H2 ion densities in
the beam are, from Eqs.~4!,

n2~x!5n2~0!exp~2xngs0,1!, ~5!

n0~x!5
s21,0n

2~0!

s21,02s0,1
@exp~2xngs0,1!2exp~2xngs21,0!#.

~6!

We introduce the following notation:lDC51/ngsDC is
the mean free path of excited hydrogen atoms in the s
m53 due to collisional decay of the excited levels;lDR

5v/Am is the mean free path of excited hydrogen atoms
to the decay of the excited levels as a result of spontane
emission; 1/lD51/lDC11/lDR ; and, l151/ngs21,0, l2

51/ngs0,1, and B5s21,0/(s21,02s0,1). Substituting the
parameters into Eq.~2!, we find

FIG. 1. Doppler system for detecting a H2 ion beam in the source channe
S—H2 ion source, M—turning magnet, O—optical window,
L1—converging lens, Sp—detector slit, FOC—fiber-optic cable,
L2—focusing lens of the spectral unit,MC—monochromator,SI—scanning
interferometer,PM—photomultiplier.
e
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e
us

dnm
0 ~x!

dx
1

n0~x!

lD
5ng@Bs0,mn2~0!@exp~2x/l2!

2exp~2x/l1!#1n2~0!s21,m

3exp~2x/l1!#. ~7!

Solving this equation with the initial conditionsnm
0 (0)

50, we obtain

nm
0 ~x!5ngn2~0!@Bs0,m~lD

212l2
21!21@exp~2x/l2!

2exp~2x/lD!#1~s21,m2Bs0,m!~lD
212l1

21!21

3@exp~2x/l1!2exp~2x/lD!#. ~8!

We shall calculate the densitynm
0 (x) of excited hydro-

gen atoms for two values of the residual gas densityng in the
source for a H2 ion source with the optimal parameter
ion-beam energy 40 keV, pulse current 0.2 A, pulse durat
0.1 ms, beam diameter 2 cm, beam emittance 1024 rad•cm,
and pulse repetition frequency 100 Hz. Thenv52.8
3108 cm/s,n2(0)523109 cm23, and the parametersb are
b i5v/c5731023 for the longitudinal component of the
beam velocity andb'5v' /c5131024 for the transverse
component.

1. Let the residual gas pressure in the source beP55
31025 Torr. Then ng51.631012 molecules/cm3. For 40
keV H2 ions the charge-transfer cross sections are8 s21,0

58.7310216 cm2, s21,154310217 cm2, and s0,151.43
310216 cm2. Then sDC

3s 5sDC
3p 5sDC

3d 51.6310215 cm2.
The cross sections for neutralization with excitati
are9 s21,3s52.1310218 cm2 and s21,3p1s21,3d51.5
310218 cm2. For a section of lengthx520 cm in the source
channel where charge transfer from H2 ions occurs the othe
computational parameters arel150.73103 cm, l254.4
3103 cm, lDC50.43103 cm, lDR

3s 544 cm, lDR
3p 512 cm,

andlDR
3d 54.3 cm. Then Eq.~8! simplifies substantially:

nm
0 ~x!5ngn2~0!@s21,mlDR

m @12exp~2x/lDR
m !##. ~9!

Substituting expression~9! into Eq. ~4!, integrating and
substituting into Eqs.~2! and ~1!, we find for the number
N(Ha) of photons emitted in the Ha line

N~Ha!5
DVDwA

4p f (
m

nm
0 ~x!@12exp~2Amtr !#. ~10!

For a diameterD56 cm of the lensL1 in the optical
detection system the detection time for the Ha-line radiation
is t r5D/v50.231027 s. Substituting into Eq.~10! the val-
ues of all parameters gives

N~Ha!533105 photons/pulse. ~11!

2. For a residual gas pressureP5531024 Torr and a
source-channel densityng51.631013 molecules/cm3, we
havel1570 cm, l25440 cm, andlDC540 cm, the other
parameters having similar values. In this case Eq.~8! be-
comes

nm
0 ~x!5ngn2~0!@s0,m1BlD

m@12exp~2x/lD
m!#

1~s21,m2Bs0,m!~lD
2m1l1

21!21
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3@exp~2x/l1!2exp~2x/lD
m!##. ~12!

Heres0,m is the cross section for the excitation of hydrog
atoms into the 3s, 3p, and 3d states in collisions with re-
sidual gas particles in the source:s0,3s51310217 cm2,
s0,3p51.5310217 cm2, ands0,3d57310218 cm2 ~Ref. 10!.
The working values of the parametersnm

0 (x) are: n3s
0 (x)

52.83105 cm23, n3p
0 (x)53.63105 cm23, and n3d

0 (x)
53.43105 cm23. Substituting the values of all paramete
into Eq. ~10!, we have in this case for the numberN(Ha) of
photons

N~Ha!54.23106 photons/pulse. ~13!

PARAMETERS OF THE DOPPLER DETECTION SYSTEM

The contribution from the spreadDb i of the longitudinal
particle velocities in the accelerated beam to the Dopp
broadening of the Ha line can be neglected for radiatio
detection anglesw r close to the ‘‘magic’’ anglewM , which
equals4

wM5arccosb i . ~14!

Since the average longitudinal velocity of beam partic
in the source isv52.83108 cm/s, the magic angle equa
wM589.6°. When the radiation detection angle equals
magic anglewM , two Ha lines will be observed in the Dop
pler detection system: a line shifted by 0.03 nm, emitted
hydrogen atoms in the beam which are excited in the proc
of charge transfer from the ions on the residual gas, and
unshifted line, emitted by excited hydrogen atoms formed
the residual gas as a result of the dissociation of molec
hydrogen in collisions with accelerated hydrogen ions a
atoms in the beam: H2~H0!1H2→H2~H0!1H0*(n53)1H0.
The density of the molecular hydrogen in the residual ga
the source channel is quite high (;104 Torr) and the inten-
sity of the unshifted Ha line will be comparable to that of the
shifted Ha line, while its spectral width will be

DlvT
52l0vT /c. ~15!

For the average thermal velocity of the residual gasvT

51.383106@3E(eV)#1/2, the width of the unshifted Ha line
equals 0.1 nm.

The width of the Doppler broadened Ha line emitted by
excited hydrogen atoms in the accelerated beam4

DlD52l0b' cosu ~16!

will equal 0.13 nm in our case. To separate these twoa

lines in the spectrum the detection anglew r must be chosen
to be somewhat different from the magic anglewM . The
deviationDw r of the detection angle from the magic ang
must satisfy the condition4

6Dw r<102
DlD

l0b i
<30°, ~17!

for which the contribution from the longitudinal velocit
spreadDb i of the beam to the width of the Doppler conto
of the shifted Ha line can be neglected. Therefore the dete
tion angle of the Doppler system can be chosen asw r

560°. In this case the separation of the two Ha lines in the
r
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ss
an
n
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-

spectrum will equal 2.3 nm, which makes it possible to se
rate quite simply the shifted Ha line emitted by an acceler
ated beam of hydrogen atoms. The contribution to the wi
DlD of the Doppler contour of the Ha line with the detection
angle different from the magic angle will be of the order
1023 nm.

The contribution due to the angular apertureDwA of the
receiving unit of the Doppler system to the width of th
Doppler contour is eliminated if4

DwA<
0.1DlD

l0b i
<0.3°. ~18!

The intensity of the detected Ha line can be increased b
using in the detecting unit of the Doppler system~see Fig. 1!
a lensL1 with diameterD and a slit of width

D l 5 f •DwA ~19!

at the focal pointf .
For a lens with the focal lengthf 520 cm the slit in the

detecting unit should be 1 mm wide. For spectral analysis
Ha-line emission from the detecting unit of the Doppler sy
tem is extracted with a fiber-optic cable into a spectral u
consisting of a monochromator crossed with a scann
Fabry–Perot interferometer. The monochromator separ
the shifted Ha line emitted by the excited hydrogen atoms
the accelerated beam, while the width of the Doppler cont
is detected with a scanning interferometer and photomu
plier, the signal from which is fed into a computer.

CONCLUSIONS

The results of the present work show that passive D
pler spectroscopy of a beam of partially excited hydrog
atoms, obtained by neutralization of the ions in a beam
excitation of the hydrogen atoms in the beam on the resid
gas in the source channel, can be used for nonperturba
monitoring of the divergence and emittance of a H2 beam
extracted from the source. There is no need to introduc
gas target into the source channel, and the Doppler con
of the Ha line can be recorded using photoelectronic det
tion of the Ha-line contour rather than the photon-countin
mode. The method of passive Doppler spectroscopy de
oped was used to record the divergence of a beam of H2 ions
extracted from sources of negative hydrogen ions with pl
otronic and Penning electrode geometry. Its accuracy
confirmed by comparing with contact slit measurements
the beam divergence. It was shown that for discharge cur
densities<25 A/cm2 in the sources the divergence of the H2

ion beam is smallest in the case of a planotronic source
H2 ions ~Special Report No. 7504, Sukhumi Physicotech
cal Institute, 1989!.
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Cooperative population dynamics of an ensemble of L atoms in a bichromatic field
B. G. Matisov, I. A. Grigorenko, N. Leinfell’ner, I. E. Mazets, and A. Yu. Snegirev
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Equations are derived which describe the dynamics of three-level atoms with aL level scheme,
interacting with two coherent resonance fields under conditions such that cooperative
relaxation predominates over incoherent spontaneous emission. A numerical calculation of the
temporal dynamics of the values of the atomic populations is performed. It is shown that
coherent population trapping in the presence of cooperative decay is possible. The quantities
characterizing this phenomenon are calculated—the width of the black line and the
transition time to coherent trapping in this scheme. ©1998 American Institute of Physics.
@S1063-7842~98!00506-6#
e
dly
a
r

e
nt
te
h

f c
tio
p-
m

x-
e
w

m

de
i

,
av
a

si

e

le
e-
c
.
a
ul
ct

rk.

ves.
ic

n is

hift

this
he

he
tes.

i-

re-

tem
INTRODUCTION

Research on the interaction of coherent electromagn
radiation with multilevel quantum systems is today a rapi
developing field of nonlinear laser spectroscopy and qu
tum optics. In multilevel systems the presence of seve
channels of excitation and induction of coherences betw
long-lived quantum states by laser fields plays a fundame
role. This leads to the appearance of different quantum in
ference effects in the internal dynamics of the atoms. T
interference of quantum states that arises as a result o
herent excitation and leads in turn to coherent popula
trapping ~CPT! is the basis of many directions of develo
ment in modern physics: ultradeep laser cooling of ato
production of lasers without an inversion, and others~see
Refs. 1 and 2 for a more detailed discussion!.

It is known3 that different relaxational processes, for e
ample collisional, strongly influence the evolution of th
populations of atomic systems under CPT conditions. Ho
ever, in previous works concerning CPT in atomic syste
the casen•l3>1, wheren is the atom density andl is the
wavelength of an optical transition, was not studied. Un
these conditions cooperative effects have a determining
fluence on the evolution of the system. As is well known4,5

the main such effect is the mutual coordination of the beh
ior of the atoms. As a result of this, relaxation in such
system is determined not by ordinary spontaneous emis
but rather by a coherent process~superradiance!. Effects
similar to superradiance in a lumped Dicke model6 also oc-
cur in elongated~needle-shaped! samples, where cooperativ
emission has a narrow directional pattern.

In the present paper we extend the well-known sing
mode Bonifacio model7 to the case of an ensemble of thre
level L atoms interacting with a coherent bichromatic ele
tromagnetic field in the presence of cooperative relaxation
is established on the basis of equations derived below
describing the evolution of the system that coherent pop
tion trapping is possible and the main parameters chara
izing this phenomenon are calculated.
6311063-7842/98/43(6)/6/$15.00
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EQUATIONS FOR THE DENSITY MATRIX

Let us list the main assumptions employed in this wo
It is assumed that an ensemble ofN identical three-level
atoms interacts with two resonance electromagnetic wa
Let L be the linear size of the medium. We denote the atom
states byu0& l , u1& l , andu2& l , wherel 51, . . . ., N enumer-
ates the coherent atoms. The corresponding wave functio

u i & l5u i ~ INT!& ^ u i ~MOT!& l , i 50, 1, 2, ~1!

which consists of two parts describing the internal~INT! and
translational~MOT! degrees of freedom. Letu0(INT)& be the
upper excitedL state andu1(INT)& and u2(INT)& the low-
energy states. Absorption of a photon corresponds to a s
of the translational part of the wave function~1! in momen-
tum space by the amount of the photon momentum. For
reason, for further analysis it is convenient to perform t
following phase transformation:4,5

u j ~MOT!& l5exp~ ik jzl !u0~MOT!& l , j 51,2, ~2!

wherezl is the coordinate of thel th atom andkj is the wave
number of thej th mode.

This transformation makes it possible to eliminate in t
equations below the explicit dependence on the coordina
We define the collective atomic operator as

R̂i j 5(
I 51

N

u j & II ^ i u. ~3!

The commutator between the operatorsR̂i j is

@R̂mn ,R̂n8m8#5dnn8R̂mm82dmm8R̂n8n . ~4!

The commutation rules follow directly from the defin
tion ~3! and the orthonormality of the wave functions

l^ i u i 8& l 85d l l 8d i i 8 . ~5!

The electromagnetic field is described by bosonic c
ation and annihilation operatorsâ j

1 and â j . The coupling
constant characterizing the interaction of the atomic sys
with the field is defined as
© 1998 American Institute of Physics
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gj5A2p\v0 j

V
d0 j , j 51, 2, ~6!

where v0 j is the frequency,d0 j is the u0&2u j & transition
dipole moment, andV is the quantization volume.

As a simplification, we shall neglect incoherent dec
from the upper excited level, which is a consequence of
interaction of the vacuum~zero! modes with the continuum
The reason for this simplification is that the cooperative p
cess is much faster than the incoherent process. Instea
slow atomic relaxation, fast relaxation of the electromagne
field into a laser-determined stationary state which produ
a pure coherent stateua1a2& f , i.e.,

â j ua1a2& f5a j ua1a2& f , ~7!

wherea j are complex numbers, is introduced.
The most important characteristic of the system is

residence timet5L/c of a photon in the medium. At time
shorter thant, the electromagnetic field is still in a state th
is coherently coupled with the state of the atomic syst
which has emitted a photon. At times longer thant the pho-
tons leave the region of interaction and coherence betw
the matter and field states breaks down. The timet is of the
order of 1 ns forL'30 cm and can be chosen as the shor
time interval in the system, since it is much shorter th
1027 s—the characteristic spontaneous relaxation time. T
the field density matrix arrives in its stationary sta
ua1a2& f f^a1a2u with relaxation timet.

We shall describe the interaction of two waves with t
entire collection of atoms as

Ĥ52\V1R̂112\V2R̂221g1â1R̂01

1g2* â2
1R̂201g1* â1

1R̂101g2â2R̂02, ~8!

whereV j is the detuning of thej th field from the frequency
of the corresponding atomic transition.

The density matrixŝ(t) describing the atoms–field sys
tem satisfies the Liouville–von Neumann equation with
relaxation term

]

]t
ŝ52

i

\
@Ĥ,ŝ#2

1

t
~ŝ2ŝ8!, ~9!

where the equilibrium density matrixŝ8 is

ŝ85 r̂ ^ ua1a2& f f^a1a2u, ~10!

and the reduced density matrixr̂ describes only the atomi
degrees of freedomr̂5Tr$ŝ% f ~trace extends over the fiel
variables!. The equation~9! possesses a formal solution
the form of an infinite series

ŝ~ t !5e~2t/t! (
m50

`
tm

m!
M̂m~ ŝ~0!!1

1

t E
0

t

e2~ t2t8!/t

3 (
m50

`
~ t2t8!m

m!
M̂m~ ŝ~ t8!!dt8, ~11!
y
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where

M̂ ~ ŝ !52
i

\
@Ĥ,ŝ#.

Perturbation theory is applicable if

tgjAN

\
!1, ~12!

which should hold for both (j 51, 2) modes. Therefore pho
tons escape in a time shorter than the duration of the su
radiance~SR! pulse ~the duration of the SR pulse ists

'ugj u2/h2Nt!. For this reason, the variation of the field
times t@t can be excluded adiabatically.

Expanding expression~11! in a series int, we obtain up
to terms of ordert2

ŝ~ t !5ŝ8~ t !2t
]

]t
ŝ8~ t !1tM̂ ~ ŝ8~ t !!. ~13!

Substituting expression~13! into Eq. ~9! and taking the
trace of both parts of Eq.~9! over the field variables, we
obtain an equation for the atomic density matrix

]

]t
r̂2

i t

\ F Ĥat ,
]

]t
r̂G52

i

\
@Ĥat ,r̂ #2

t

\2 Tr$@Ĥ,@Ĥ,r̂ ##% f ,

~14!

where we have introduced the Hamiltonian

Ĥat5 f ^aaa2uĤua1a2& f

which acts only on the atomic variables. Next, we apply
both parts of Eq.~14! the operator

Q̂~X̂!5X̂1
i t

\
@Ĥat , X̂#, ~15!

whereX̂ stands for Eq.~14!.
According to the accuracy adopted above, we neg

terms proportional tot2

]

]t
r̂52

i

\
@Ĥat , r̂ #2

t

\2 $~^Ĥ2&2Ĥat
2 !r̂

22 Tr$Ĥ~ r̂ ^ ua1a2& f f ^a1a2u!Ĥ%% f

2
t

\2 ~ r̂~^Ĥ2&2Ĥat
2 !12Ĥatr̂Ĥat!, ~16!

where^Ĥ2&5 f^a1a2uĤ2ua1a2& f .
In the case of aL scheme the equation for the densi

matrix is

\
]

]t
r̂52 i @Ĥat ,r̂ #1tug1u2~@R̂10,r̂R̂01#1@R̂10r̂,R̂01# !

1tug2u2~@R̂20,r̂R̂02#1@R̂20r̂,R̂02# !. ~17!

This equation is the extension of the Bonifacio mode7

ATOMIC OPERATORS AND THEIR AVERAGE VALUES

Exhaustive information about the dynamics of t
atomic system is contained in the average value of the
lective atomic operator
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r i j 5
1

N
Tr$R̂i j r̂%, i , j 50,1,2. ~18!

Switching to the new variablesr i j , we write Eq.~17! as

N
]

]t
r j j 852

i

\
Tr$@Ĥat ,r̂ #R̂j j 8%1

t

\2

3 (
j 951

2

ugj 9u
2Tr$~@R̂j 90 ,r̂R̂0 j 9#

1@R̂j 90r̂,R̂0 j 9# !R̂j j 8%. ~19!

Permuting cyclically within the trace, we obtain

N
]

]t
r j j 852

i

\
Tr$r̂@Ĥat ,R̂j j 8#%1

t

\2

3 (
j 951

2

ugj 9u
2Tr$r̂@R̂j 8 j 8 ,R̂0 j 9#

3R̂j 901R̂0 j 9@R̂j 90r̂,R̂0 j 9#%.

We now employ the commutation rules~4!, which de-
crease on the right-hand side the order with respect toR̂i j . It
is easy to see that the commutator with the Hamiltonian
linear

@Ĥat ,R̂j j 8#5 (
m50

2

(
m850

2

L j j 8
mm8R̂mm8 , ~20!

where the coefficientsL j j 8
mm8 can be calculated easily. Th

explicit form of L j j 8
mm8 in the Appendix gives

]

]t
r j j 85

i

\ (
m50

2

(
m850

2

L j j 8
mm8r mm82

t

\2N

3H d j 80 (
j 951

2

ugj 9u
2Tr$r̂R̂j j 9R̂j 90%1d j 0

3 (
j 951

2

ugj 9u
2Tr$r̂R̂0 j 9R̂j 9 j 8%2~ ugj u2~12d j 0!

1ugj 8u
2~12d j 80!!Tr$r̂R̂0 j 8R̂j 0%J . ~21!

As is customary in the theory of cooperative effects,
expand the correlator using the quasiclassical approxima

1

N2 Tr$r̂R̂i j R̂i 8 j 8%'r i j r i 8 j 8 . ~22!

The approximate nature of the simplification~22! is ex-
pressed only in the fact that it is impossible to describe c
rectly the early stage of the dynamics of the system in
case when there is no external laser field. From Eq.~21! we
obtain

]

]t
r j j 85

i

\ (
m50

2

(
m850

2

L j j 8
mm8r mm82d j 0 (

j 951

2

G j 9Nr0 j 9r j 9 j 8
is

e
n

r-
e

2d j 80 (
j 951

2

G j 9Nr j j 9r j 901@G j~12d j 0!

1G j 8~12d j 80!#Nr0 j 8r j 0 , ~23!

where we have introduced the notation

Gm5
t

\2 ugmu2.

It is important to note that

r 111r 221r 3351 ~24!

and the approximation~22! has no effect on this condition

After calculating the coefficientsL j j 8
mm8 , which are either the

detunings V j or the atom–field coupling constantsVj

5gja j /\, we can write Eq.~23! as

ṙ 115 iV1r 012 iV1* r 1012G1Nur 01u2,

ṙ 225 iV2r 022 iV2* r 2012G2Nur 02u2,

ṙ 015 iV1r 011 iV1* ~r 112r 00!1 iV2* r 21

2G1Nr01~r 112r 00!2G2Nr02r 21,

ṙ 025 iV2r 021 iV1* r 122 iV2* ~r 002r 22!

2G1Nr01r 122G2Nr02~r 222r 00!,

ṙ 215 i ~V12V2!r 211 iV2r 012 iV1* r 20

1~G11G2!Nr20r 01. ~25!

The Hermiticity conditionr j 8 j5r j j 8
* then holds. The sys-

tem of equations~25! for the average values of the collectiv
atomic operators is similar to the system of equations for
single-particle density matrix in the case of incoherent dec
Indeed, the diagonal elementsr ii give us the populations o
the corresponding states~per atom!. Nonetheless, there is a
important distinction: In the case of the cooperative eff
the relaxation terms are nonlinear and proportional to
total numberN of atoms. As the initial condition in the sys
tem ~25!, we assume that all atoms initially occupy the low
energy levelu1(INT)&, i.e.,

FIG. 1. Temporal evolution of populations in theL system forV50,
V50.3GN. The dimensionless timet/GN is plotted along the abscissa. Thi
curve—level 1, thick curve—level 2, dashed curve—level zero.
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r j j 8u t505d j 1d j 81 . ~26!

The off-diagonal elements of the matrixr i j equal zero.

COMPUTATIONAL RESULTS

We shall present the results obtained by integrating
merically the system of equations~25! with the initial con-
ditions ~26!. As a simplification we setG15G2[G, V1

5V2[V, andV15V2[V.
The temporal evolution of the atomic populationsr ii is

displayed in Figs. 1–4. In the caseV50 the behavior of the
system corresponds to a transition to CPT,8 where the states
u1& and u2& form a noninteracting superposition, while th
population of the upper levelu0& becomes zero~Figs. 1 and
2!. There is an important distinction from the ordinary tra
sition to CPT: In the presence of cooperative relaxation
the system the population of the upper level reaches a st

FIG. 2. Same as Fig. 1 but forV50, V53GN.
-

-
n
dy

regime much earlier than the population of the lower lev
~Figs. 1 and 2!. In the case of incoherent relaxation, howev
the system of equations describing the population dynam
is linear,8 so that the evolution of all populations is dete
mined by the roots of the same characteristic equation. In
nonlinear case of cooperative dynamics the oscillations
the populations predominate at the initial stage of evolut
for V,GN ~Fig. 1!. In the caseV.GN oscillations are sup-
pressed~Fig. 2!. Conversely, in the case when incohere
relaxation predominates the oscillations are suppresse
Rabi frequencies less than the relaxation rate from the up
level and are developed in the opposite case.8 We note also
that the stationary stater 1150.5, r 2250.5, r 12520.5, and
all other elementsr i j 50 is an exact solution of the system o
equation~25!.

In the caseVÞ0 the population dynamics is more com
plicated. The steady state of the system is an oscillatory

FIG. 3. Same as Fig. 1 but forV52GN, V53GN.
FIG. 4. Same as Fig. 1 but forV51.5GN, V51.5GN.
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gime ~Figs. 3 and 4!, in contrast to CPT in the ordinary
noncooperative case, where the steady state correspon
constant populations.1,8 These oscillations in the case of c
operative dynamics are periodic~Fig. 3!. When V and V
become equal to one another, the period increase
nonlinearity appears in the behavior of the quantum sys
~Fig. 4!.

Figure 5 shows the time-averaged value of the popu
tion of the levelu0& versus the dimensionless detuningV/GN
for different values of the atom-field coupling constant. O
can see that the width of the black line increases with
coupling constantV.

We now introduce the following three characteristic
the characteristic timet rel during which coherent populatio
trapping is established in the system, the widthdVBL of the
black line, and the widthF of the overall contour. Analysis
of the dependences of the introduced quantities on the v
of the parameterk5V/GN gives simple approximation for
mulas for all three quantities characterizing the quantum s
tem:

t rel
21

GN
5

0.03k2

0.171k2 ,
dVBL

GN
50.0051

0.70k2

0.901k
,

F

GN
52.3k0.92. ~27!

One can see that the transition ratet rel
21 to CPT under

two-photon resonance conditions~i.e.,V15V2! behaves just
as in the ordinary single-atom case: It increases quadratic
for k!1 and is constant in the opposite case. Further,
dependence of the width of the black line is similar to t
ordinary, noncooperative case.1 The width of the overall con-
tour satisfying a power law with an exponent close to 1 in
wide range of values of the parameterk differs from the
noncooperative dynamics, where it is constant fork!1. The
computed points for the three characteristicst rel

21 , dVBL ,
and F and the curves corresponding to the approximat
formulas~27! are presented in Fig. 6.

FIG. 5. Time-averaged populationr 00 of the upper levelu0& versus the
dimensionless detuningV/GN. V/GN: a—0.5, b—1.0, c—2.0.
to
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CONCLUSIONS

The transition to CPT in an atomic ensemble interact
with two coherent resonance electromagnetic fields under
operative relaxation conditions was investigated theor
cally. The results obtained make it possible to apply the p
nomenon of coherent population trapping, for example,
investigating electromagnetically induced transparency
purposes of coherent bleaching9,10 in dense optical media
with average interatomic distance of the order of the wa
length of the atomic transitionnl3;1. It was established
that cooperative relaxation introduces substantial change
the dynamics of the ensemble of atoms. The features
distinguish the cooperative case from the case where in
herent spontaneous relaxation predominates were clar
and parameters such as the width of the black line, the c
tour width, and the transition rate to CPT in the system st
ied above were calculated.

This work was supported in part by the fund ‘‘Fonds z
Förderung der wissenschaftlichen Forschung’’ under proj
No. S6508 and by the State Committee of the Russian F
eration on Higher Education under Grant No. 5-5.5-139.

APPENDIX

We present here the explicit form of the nonzero coe

cients L j j 8
mm8 appearing in expression~20!: L11

015 iV1 , L11
10

52 iV1* , L22
025 iV2 , L22

205 iV2* , L01
015 iV1 , L01

115 iV1* , L01
00

52 iV1* , L02
025 iV2 , L02

125 iV1* , L02
0052 iV2* , L02

225 iV2* ,
L21

215 i (V12V2), L21
015 iV2 , L21

205 iV1 . The coefficients

L j j 8
mm8 satisfy the relationL j j 8

mm85(L j 8 j
m8m)* .
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Thermophoresis of touching solid spheres in the direction along the line joining their
centers
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A theory of the steady motion of an aggregate of two touching solid, nonvolatile, low-thermal-
conductivity, spherical particles in the direction along the line joining their centers in a
nonuniformly heated viscous gas is constructed in a hydrodynamic regime with slipping at low
Reynolds and Peclet numbers. The thermophoretic transport velocity of an aggregate is
determined in an approximation linear in the small parameters. The small parameters are the
relative deviations of the thermal conductivity of the constituent particles of an aggregate from the
thermal conductivity of the external medium. ©1998 American Institute of Physics.
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INTRODUCTION

The study of particle dynamics in a viscous mediu
with nonuniform temperature is of interest in connecti
with investigations of thermophoretic motion in the phys
of aerodispersion systems for analysis of the interaction
hot particles, in mechanics and rheology of suspensions,
in a number of other problems. Thus far the characteristic
thermophoretic motion in viscous media of single solid a
liquid aerosol particles have been studied in greatest de
A general bibliography concerning these questions is p
sented in Ref. 1.

It is more important to study the motion of a partic
ensemble, since particles which are sufficiently close to
another strongly influence the relative particle motions.
aerosol systems, in practice, pairs of particles are most lik
to approach one another. It is thus of interest to study
dynamics of such pairs.

The thermophoresis of two spherical aerosol particles
the direction along the line joining their centers was inve
gated in Refs. 2–5. Exact analytical solutions for partic
located at an arbitrary distance but quite far from one ano
were obtained in a bispherical coordinate system on the b
of linearized stationary equations of hydrodynamics and h
transfer. A numerical comparison of these solutions with
proximate solutions obtained by the method of reflectio
shows that for close-lying particles there is a degradation
the convergence of the approximate solutions. In the limit
case when the particles touch the exact analytical solut
are suitable only for estimating the instantaneous veloci
of the steady motion of the particles. These estimates
strongly limited by the conditions of applicability of the lin
ear stationary equations of slow flow.

In the present paper we construct on the basis of a
drodynamic analysis a theory of the motion of two so
nonvolatile contiguous spheres in the direction along the
joining their centers in a nonuniformly heated viscous g
This work is necessitated by the fact that the limiting pro
lem of two touching spheres cannot be solved on the bas
6371063-7842/98/43(6)/7/$15.00
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theories employing a bispherical coordinate system and
Stimson–Jeffery approach to the hydrodynamic proble6

The endeavor to obtain an analytical solution of this probl
for the linearized stationary equations of hydrodynamics a
heat transfer makes it possible to obtain more reliable res
for larger temperature differentials than those obtained e
lier in the limiting case of touching particles.

FORMULATION OF THE PROBLEM

We shall study the slow motion of an aggregate
two touching, solid, nonvolatile, low-thermal-conductivit
spherical particles in the direction along the line joining th
centers in a temperature-nonuniform viscous gaseous
dium.

The problem of determining the thermophoretic veloc
UT of an aggregate can be solved in tangential spherical
ordinates~z,h,w! related to the circular cylindrical coordi
nates (g,z,w) as

g5
2z

z21h2 , z5
2h

z21h2 , w5w. ~1!

The origin of the cylindrical coordinate system is rigid
fixed at the contact point of the particles. In this coordina
system the center of gravity of the exterior medium mov
with the velocityU52UT , which is sought, relative to the
stationary aggregate.

A constant temperature gradientAT5(¹T(e))` is main-
tained in the gas infinitely far away from the particle agg
gate. Here and below the superscriptse andi denote physical
quantities in a region outside and inside an aggregate,
spectively, while a subscripta (a51,2) refers to a definite
particle.

Let the axisz5(r cosu) pass through the centers of th
touching spheres and be directed parallel to the vectorAT . A
nonuniform temperature distribution near the particles res
in the appearance of a directed~thermophoretic! motion of
the aggregate~on account of the thermal slipping of the ga
along the surfaces of the solid spheres!.
© 1998 American Institute of Physics
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The external medium is assumed to be sing
component, isotropic, incompressible, and continuous—
Knudsen number Kn5l/R0!1 ~wherel, R05R11R2 , R1

5h1
21 , and R25h2

21 are, respectively, the average me
free path length of the gas molecules, the unit of length,
radii of curvature of the surfacesh5h1.0 and h52h2

,0 of the particles in an aggregate!.
We assume that each particle consists of a mate

which is uniform and has isotropic properties.
Thermophoresis of an aggregate occurs at low Reyn

and Peclet numbers Re(e)5UR0 /n(e)!1 and ReT
(e)5UR0 /x(e)

!1. This makes it possible to drop the nonlinear~inertial and
convection! terms in the equations of hydrodynamics a
heat transfer. The external mass forces are neglected. T
are no heat sources inside or outside the particles.

The relative temperature differentials under the con
tions of the problem are small and the temperature varia
of the coefficients of molecular transport can be neglec
The density, kinematic viscosity, and thermal conductiv
are assumed to be constants (r0

(e,i ) ,n0
(e) ,¸0

(e,i )) at the unper-
turbed temperatureT0

(e) ~the temperature of the external m
dium at the location of the point of contact of the particles
an aggregate in the absence of the aggregate!. However, the
existing temperature differentials are large enough so tha
comparison the temperature variations due to heating
result of energy dissipation by internal friction can be n
glected in the heat-transfer equation.

Since the thermal and hydrodynamic relaxation times
the system are short, the motions of an aggregate ca
described in a quasistationary approximation~a slow axisym-
metric motion of the gas medium and a steady tempera
distribution inside and outside the particles!.

The following boundary conditions hold at infinity an
on the surface of the particles:

r→`: v~e!5U iz , T~e!5T0
~e!1Azz, ~2!

Sa~a51,2!: ~ ih•v~e!!50 ~3!

~ iz•v~e!!5KTSL
~e!

n0
~e!

To
~e! ~ iz•¹T~e!!, ~4!

T~e!5Ta
~ i ! , ~5!

¸0
~e!~ ih•¹T~e!!5¸0a

~ i ! ~ ih•¹Ta
~ i !!, ~6!

Fz~aggregate!50. ~7!

The conditions~2!–~7! physically signify the following.
At infinity the axisymmetric gas flow is uniform in spac

and its velocityU is in the positive direction along thez axis,
while the external temperature field is unperturbed.

On the gas-impermeable surfaceSa of the solid nonvola-
tile particles the normal velocity componentvh

(e) of the ex-
ternal medium vanishes, while the tangential componentvz

(e)

equals the velocity of thermal slipping~it is characterized by
the coefficientKTSL

(e) , determined by methods of the kinet
theory of gases!; the normal heat flux and temperature a
continuous.

The resultant forceF exerted on an aggregate by th
incident flow of the external medium equals zero.
-
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It is convenient to write the equations of hydrodynam
and heat transfer and the boundary conditions in a redu
form. The physical quantities entering in the equations
made dimensionless as follows:

g̃5
g

R0
, z̃5

r

R0
, r̃ 5

r

R0
, z̃5zR0 , h̃5hR0 ,

ṽz
~e!5

vz
~e!

U @0#
, ṽh

~e!5
vh

~e!

U @0#
, Ũ5

U

U @0#
, C̃~e!5

C~e!

R0
2U @0#

,

F̃z5
Fz

6ph0
~e!R0U @0#

, T̃~e!5
T~e!2T0

~e!

ATR0
,

T̃a
~ i !5

Ta
~ i !2T0

~e!

ATR0
,

C (e) is the stream function andU @0# is the velocity of the gas
flow at infinity in the zeroth approximation in the small p
rameters~it is determined in the course of the solution!.

In what follows the tilde is dropped and the initial equ
tions and boundary conditions are written in the reduc
form as follows:

E4C~e!50, ~8!

DT~e!5DTa
~ i !50, ~9!

r→`: C~e!52
1

2
g2U, ~10!

T~e!5Z, ~11!

Sa ~a51, 2!: C~e!50, ~12!

U @0#

]C~e!

]h
52KTSL

~e!
n0

~e!

T0
~e! ATg

]T~e!

]z
, ~13!

T~e!5Ta
~ i ! , ~14!

¸0
~e!

¸0a
~ i ! ¹hT~e!5¹hTa

~ i ! , ~15!

Fz~aggregate!50,

E25
]2

]g2 2
1

g

]

]g
1

]2

]z2 , D5
]2

]g2 1
1

g

]

]g
1

]2

]z2 .

~16!

The reduced velocityU of the gas flow at infinity is
sought in the form of a power series in the small parame
«1 and«2

0<«15~¸01
~ i !2¸0

~e!!/¸01
~ i !!1,

0<«25~¸02
~ i !2¸0

~e!!/¸02
~ i !!1,

U~«1 ,«2!511«1U @1#
~1!1«2U @1#

~2!1«1
2U @2#

~1!

1«1«2U @2#
~2!1«2

2U @3#
~2!1... . ~17!
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We shall confine ourselves below to determining t
quantitiesU @0# , U @1#

(1) , andU @2#
(2) , which characterize the ther

mophoretic velocity of an aggregate in the zeroth and fi
approximations~the bracketed subscripts!.

THERMAL PROBLEM

An exact analytical solution of the thermal problem~9!,
~11!, ~14!, and~15! cannot be obtained for arbitrary values
the reduced thermal conductivitieş15¸0

(e)/¸01
( i ) and ¸2

5¸0
(e)/¸02

( i ) . An approximate solution of the thermal~hydro-
dynamic! problem can be constructed by the method of s
cessive approximations in the small parameters«1 and «2

~the case of an aggregate of touching low-therm
conductivity particleş 1;¸2;1!. The reduced axisymmet
ric temperature inside and outside the particles is sough
the form

T~e!~z,h!5T@0#
~e!~z,h!1T@1#

~e!~z,h!1T@2#
~e!~z,h!1...,

Ta
~ i !~z,h!5Ta,@0#

~ i ! ~z,h!1Ta,@1#
~ i ! ~z,h!1Ta,@2#

~ i ! ~z,h!1... .

Here the temperature perturbationsT@1#
(e) (z,h) and Ta,@1#

( i )

3(z,h) in an approximation linear in the small paramete
can be written as

T@1#
~e!~z,h!5«1t1

~e!~z,h!1«2t2
~e!~z,h!,

Ta,@1#
~ i ! ~z,h!5«1ta,1

~ i ! ~z,h!1«2ta,2
~ i ! ~z,h!.

Since the Laplacian is a linear operator, the function

T@0#
~e!~z,h!, Ta,@0#

~ i ! ~z,h!,

t1
~e!~z,h!, t2

~e!~z,h!, ta,1
~ i ! ~z,h!, ta,2

~ i ! ~z,h!

are solutions of Eqs.~9! in a tangential spherical system
~z,h,w! of coordinates of revolution7

T@0#
~e!~z,h!5z1~z21h2!1/2E

0

`

~A@0#~l!cosh~lh!1B@0#

3~l!sinh~lh!!J0~lz!dl, ~18!

T1,@0#
~ i ! ~z,h!5~z21h2!1/2E

0

`

C@0#~l!e2lhJ0~lz!dl,

~19!

T2,@0#
~ i ! ~z,h!5~z21h2!1/2E

0

`

D @0#~l!e1lhJ0~lz!dl,

~20!

t j
~e!~z,h!5~z21h2!1/2E

0

`

~A@1#
~ j ! ~l!cosh~lh!1B@1#

~ j !

3~l!sinh~lh!!J0~lz!dl, ~21!

t1,j
~ i !~z,h!5~z21h2!1/2E

0

`

C@1#
~ j ! ~l!e2lhJ0~lz!dl, ~22!

t2,j
~ i !~z,h!5~z21h2!1/2E

0

`

D @1#
~ j ! ~l!e1lhJ0~lz!dl

~ j 51;2!. ~23!

The functions~18!–~20! satisfy the conditions
t

-

l-

in

T@0#
~e!~z,h!uSa

5Ta,@0#
~ i ! ~z,h!uSa

, ~24!

~¹hT@0#
~e!~z,h!!uSa

5~¹hTa,@0#
~ i ! ~z,h!!uSa

, ~25!

T@0#
~e!~z,h!ur→`5z, Ta,@0#

~ i ! ~z,h!u
h→`
z→` ,`. ~26!

The following algebraic equations follow from th
boundary conditions~24! and ~25! with allowance for the
integral transformations~A2! and ~A3! in the Appendix:

2l exp~2lh1!1A@0#~l!cosh~lh1!1B@0#

3~l!sinh~lh1!5C@0#~l!exp~2lh1!,

22l exp~2lh1!1A@0#~l!sinh~lh1!1B@0#

3~l!cosh~lh1!52C@0#~l!exp~2lh1!,

22l exp~2lh2!1A@0#~l!cosh~lh2!2B@0#

3~l!sinh~lh2!5D @0#~l!exp~2lh2!,

2l exp~2lh2!1A@0#~l!sinh~lh2!2B@0#

3~l!cosh~lh2!52D @0#~l!exp~2lh2!,

whence we have

A@0#~l!5B@0#~l!50, C@0#~l!52D @0#~l!52l,
~27!

T@0#
~e!~z,h!5Ta,@0#

~ i ! ~z,h!5z. ~28!

Thus in the zeroth approximation«15«250 the tem-
perature gradient is constant everywhere in space.

The functions~21!–~23! satisfy the conditions

t1
~e!~z,h!uS1

5t1,1
~ i !~z,h!uS1

, ~29!

~¹ht1
~e!~z,h!2¹hT@0#

~e!~z,h!!uS1
5~¹ht1,1

~ i !~z,h!!uS1
,

~30!

t2
~e!~z,h!uS1

5t1,2
~ i !~z,h!uS1

, ~31!

~¹ht2
~e!~z,h!!uS1

5~¹ht1,2
~ i !~z,h!!uS1

, ~32!

t1
~e!~z,h!uS2

5t2,1
~ i !~z,h!uS2

, ~33!

~¹ht1
~e!~z,h!!uS2

5~¹ht2,1
~ i !~z,h!!uS2

, ~34!

t2
~e!~z,h!uS2

5t2,2
~ i !~z,h!uS2

, ~35!

~¹ht2
~e!~z,h!2¹hT@0#

~e!~z,h!!uS2
5~¹ht2,2

~ i !~z,h!!uS2
,

t j
~e!~z,h!ur→`50, t1,j

~ i !~z,h!u
h→`
z→` ,`, ~36!

t2,j
~ i !~z,h!u

h→`
z→` ,`. ~37!

From the boundary conditions~29!–~36! with relations
~A2! and ~A3! taken into account it is easy to obtain th
algebraic equations
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A@1#
~1!~l!cosh~lh1!1B@1#

~1!~l!sinh~lh1!

2C@1#
~1!~l!exp~2lh1!50,

A@1#
~1!~l!sinh~lh1!1B@1#

~1!~l!cosh~lh1!1C@1#
~1!~l!

3exp~2lh1!52
2

3 S 2l2
1

h1
Dexp~2lh1!,

A@1#
~2!~l!cosh~lh1!1B@1#

~2!~l!sinh~lh1!

2C@1#
~2!~l!exp~2lh1!50,

A@1#
~2!~l!sinh~lh1!1B@1#

~2!~l!cosh~lh1!

1C@1#
~2!~l!exp~2lh1!50,

A@1#
~1!~l!cosh~lh2!2B@1#

~1!~l!sinh~lh2!

2D @1#
~1!~l!exp~2lh2!50,

A@1#
~1!~l!sinh~lh2!2B@1#

~1!~l!cosh~lh2!

1D @1#
~1!~l!exp~2lh2!50,

A@1#
~2!~l!cosh~lh2!2B@1#

~2!~l!sinh~lh2!

2D @1#
~2!~l!exp~2lh2!50,

A@1#
~2!~l!sinh~lh2!2B@1#

~2!~l!cosh~lh2!1D @1#
~2!~l!

3exp~2lh2!5
2

3 S 2l2
1

h2
Dexp~2lh2!,

Hence we have

A@1#
~1!~l!5B@1#

~1!~l!5D @1#
~1!~l!

52
1

3 S 2l2
1

h1
Dexp~22lh1!, ~38!

C@1#
~1!~l!52

1

3 S 2l2
1

h1
D , ~39!

A@1#
~2!~l!52B@1#

~2!~l!5C@1#
~2!~l!

5
1

3 S 2l2
1

h2
Dexp~22lh2!, ~40!

D @1#
~2!~l!5

1

3 S 2l2
1

h2
D . ~41!

Using the results~28!, ~38!, and~40!, we have

T~e!~z,h!5z2
1

3
«1~z21h2!1/2E

0

`S 2l2
1

h1
D

3exp~22lh11lh!J0~lz!dl

1
1

3
«2~z21h2!1/2E

0

`S 2l2
1

h2
D

3exp~22lh22lh!J0~lz!dl. ~42!
HYDRODYNAMIC PROBLEM

We seek the solution of the Stokes equation~8! in the
form

C~e!~z,h!52
1

2
g2U1C̃~e!~z,h!.

An expression for the distortionC̃ (e)(z,h) of the sta-
tionary velocity field near an aggregate, bounded on the s
metry axis (z50) of the flow and vanishing at infinity
(z5h50), was first obtained in Ref. 8

C̃~e!~z,h!5
z

~z21h2!3/2 E
0

`

W~l,h!J1~lz!dl,

W~l,h!5@a~l!1hc~l!#sinh~lh!

1@b~l!1hd~l!#cosh~lh!.

We seek the functionsX(l)5a(l), b(l), c(l), and
d(l) of the parameterl in the form of a power series in«1

and«2

X~l,«1 ,«2!5X@0#~l!1«1X@1#
~1!~l!1«2X@1#

~2!~l!1... .

Each term in these expansions is determined from
boundary conditions on the surface of an aggregate of tou
ing particles. Evidently, we can write

W~l,h,«1 ,«2!5W@0#~l,h!1«1W@1#
~1!~l,h!

1«2W@1#
~2!~l,h!1...,

W@0#~l,h!5~a@0#~l!1hc@0#~l!!sinh~lh!

1~b@0#~l!1hd@0#~l!!cosh~lh!,

W@1#
~ j ! ~l,h!5~a@1#

~ j ! ~l!1hc@1#
~ j ! ~l!!sinh~lh!

1~b@1#
~ j ! ~l!1hd@1#

~ j ! ~l!!cosh~lh!.

An expression for the resultant force exerted by the
ternal medium on an aggregate of touching spheres mo
in the direction along the line joining their centers is pr
sented in Ref. 8:

Fz~aggregate!5E
0

`

lb~l!dl.

Then, since the small parameters«1!1 and«2!1 are
arbitrary, we have from the condition~16! of uniform motion
of an aggregate

E
0

`

lb@0#~l!dl50, ~43!

E
0

`

lb@1#
~1!~l!dl5E

0

`

lb@1#
~2!~l!dl50. ~44!

In what follows we employ the temperature distributio
~42! near an aggregate of touching solid spheres. Using E
~A4! and ~A5!, we find from the boundary conditions~12!
and ~13!

W@0#~l,h!uh5h1
52~h11l21!exp~2lh1!, ~45!
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]W@0#~l,h!

]h U
h5h1

52dh1l exp~2lh1!, ~46!

W@0#~l,h!uh52h2
52~h21l21!exp~2lh2!, ~47!

]W@0#~l,h!

]h U
h52h2

522dh2l exp~2lh2!, ~48!

d54

KTSL
~e!

n0
~e!

T0
~e! AT

U @0#
21. ~49!

The dimensional thermophoretic velocityU@0#
T 52U@0#

is determined in the zeroth approximation by solving t
system~45!–~48! of linear inhomogeneous algebraic equ
tions, taking Eq.~43! into account,

U@0#
T 52

4

11d
KTSL

~e!
n0

~e!

T0
~e! AT , d5

*
0

` l

D
F1~l!dl

*
0

` l2

D
F~l!dl

, ~50!

F1~l!5~h11l21!exp~2lh1!D̃1

1~h21l21!exp~2lh2!D̃3 ,

F~l!5h1 exp~2lh1!D̃22h2 exp~2lh2!D̃4 ,

D52sinh2~l~h11h2!!1~h11h2!2l2,

D̃522~h11l21!exp~2lh1!D̃112dh1l

3exp~2lh1!D̃222~h21l21!

3exp~2lh2!D̃322dh2l exp~2lh2!D̃4 ,

D̃152h2l$~h11h2!l cosh~lh1!1sinh~lh1!%

1$h1l cosh~l~h11h2!!

1sinh~l~h11h2!!%sinh~lh2!,

D̃252~h11h2!h2l sinh~lh1!

1h1 sinh~l~h11h2!sinh~lh2!,

D̃352h1l$~h11h2!l cosh~lh2!1sinh~lh2!%

1$h2l cosh~l~h11h2!!

1sinh~l~h11h2!!%sinh~lh1!,

D̃45~h11h2!h1l sinh~lh2!

2h2 sinh~l~n11h2!!sinh~lh1!.

The corrections«1U @1#
(1) and«2U @1#

(2) ~due to the difference
of the thermal conductivities of the external medium and
particles in the aggregate! are finally found with the aid of
the transformations~A1!, ~A2!, ~A4!–~A6! from the system
of algebraic equations~51!–~58!:

W@1#
~1!~l,h!uh5h1

52U @1#
~1!~h11l21!exp~2h1l!, ~51!
-

e

]W@1#
~1!~l,h!

]h
U

h5h1

522h1H 1

3
~11d!1U @1#

~1!J l exp~2h1l!,

~52!

W@1#
~1!~l,h!uh52h2

52U @1#
~1!~h21l21!exp~2h2l!, ~53!

]W@1#
~1!~l,h!

]h
U

h52h2

52U @1#
~1!h2l exp~2h2l!2

2

3

3~11d!~h11h2!H 21
h1

h11h2

22h1lJ l exp~2a1l!, ~54!

W@1#
~2!~l,h!uh5h1

52U @1#
~2!~h11l21!exp~2h1l!, ~55!

]W@1#
~2!~l,h!

]h
U

h5h1

522U @1#
~2!h1l exp~2h1l!1

2

3

3~11d!~h11h2!H 21
h2

h11h2
22h2lJ l

3exp~2a2l!, ~56!

W@1#
~2!~l,h!uh52h2

52U @1#
~2!~h21l21!exp~2h2l!, ~57!

]W@1#
~2!~l,h!

]h
U

h52h2

522h2H 1

3
~11d!1U @1#

~2!J l

3exp~2h2l!,

a152h11h2 , a25h112h2 . ~58!

The additional conditions~44! make it possible to write

U @1#
~ j ! 5~21! j

11d

3
b j , b j5

*
0

` l2

D
V j~l!dl

*
0

` l

D
V~l!dl

, ~59!

V~l!5~h11l21!exp~2lh1!D̃11h1l

3exp~2lh1!D̃21~h21l21!

3exp~2lh2!D̃32h2l exp~2lh2!D̃4 ,

V1~l!5h1 exp~2lh1!D̃21~h11h2!

3S 21
h1

h11h2
22h1l Dexp~2a1l!D̃4 ,

V2~l!5~h11h2!S 21
h2

h11h2
22h2l D

3exp~2a2l!D̃21h2 exp~2lh2!D̃4 .
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ANALYSIS OF RESULTS

The dimensional thermophoretic velocity of an agg
gate in an approximation linear in the small parameters
be written as follows taking expressions~50! and ~59! into
account:

UT524KTSL
~e!

n0
~e!

T0
~e! ATH 1

11d
2

1

3
«1b~1!1

1

3
«2b~2!J .

~60!

It is of interest to check in the course of the numeric
analysis the agreement between Eq.~60! in the limiting cases
of thermophoresis of an aggregate of touching solid nonv
tile spheres (R1@R2 or R2@R1! with the result obtained
earlier for a single particle1

UT52
2¸a

112¸a
KTSL

~e!
n0

~e!

T0
~e! AT . ~61!

Let us expand the expression 2¸a /(112¸a) in a power
series in«a

2¸a

112¸a
5

2

3 S 12
1

3
«a2

2

9
«a

22...D .

Then, comparing the right-hand sides of Eqs.~60! and
~61! for the limiting casesR1@R2 or R1!R2 shows that the
following equalities are satisfied:

4

11d
5

2

3
~whence d55! ~62!

in the zeroth approximation and

«1b~1!2«2b~2!5
1

6 H «1 for R1@R2 ,

«2 for R2@R1
~63!

in the first approximation.
The limiting cases~62! and ~63! are confirmed by the

results of a numerical analysis~presented in Tables I and II!.
It should be noted that in the zeroth approximation in

small parameters~corresponding to the thermal conductivi
of the external medium being the same as that of the tou
ing nonvolatile solid spheres! the thermophoretic velocity o
an aggregate remains unchanged when the particles are
to change places (R1→R2 , R2→R1!. In the case«15«2

TABLE I.

R1 /R2 d b (1) b (2)

1 4.69309 7.6184631022 27.6184631022

2 4.77724 1.3130831021 22.5459231022

3 4.85906 1.4992331021 21.0800631022

4 4.90815 1.5743531021 25.5000331023

5 4.93750 1.6102831021 23.1656731023

6 4.95576 1.6296431021 21.9849831023

7 4.96762 1.6410331021 21.3253631023

8 4.97563 1.6481631021 29.2843431024

9 4.98121 1.6528731021 26.7543531024

10 4.98522 1.6561031021 25.0661831024

20 4.99735 1.6649931021 27.2261931025

30 4.99911 1.6661331021 22.2407431025

40 4.99960 1.6664331021 29.6735031026
-
n

l

-

e

h-

ade

50 the velocity of an aggregate is higher than that of a
single particle and the effect of the form of the aggregation
greatest when equal spheres touch~it equals at least 5%!.

Evidently, the theory of thermophoresis constructed
the basis of a hydrodynamic analysis is also valid for
aggregate of touching solid hydrosol particles and hig
viscosity pure drops. This case is most important for pra
cal applications.

APPENDIX

E
0

`

exp~2lh!J0~lz!dl5~z21h2!21/2, ~A1!

E
0

`

exp~2lh!J0~lz!ldl5h~z21h2!23/2, ~A2!

E
0

`

exp~2lh!J0~lz!l2dl53h2~z21h2!25/2

2~z21h2!23/2, ~A3!

E
0

`

exp~2lh!~h1l21!J1~lz!dl5
z

~z21h2!1/2,

~A4!

E
0

`

exp~2lh!J1~lz!ldl5
z

~z21h2!3/2, ~A5!

E
0

`

exp~2lh!J1~lz!l2dl53
zh

~z21h2!5/2. ~A6!
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Determination of nonlinear aerodynamic characteristics from trajectory data of an
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The method of calculating the nonlinear aerodynamic characteristics of objects from trajectory
data, based on the differential correction principle, is well known@N. P. Mende, FTI
Preprint No. 1326, A. F. Ioffe Physicotechnical Institute, Leningrad~1989!; G. T. Chapman and
D. B. Kirk, AIAA J. 8, 753 ~1970!#. A modification of this method is proposed here, in
which the solution is to be obtained in the form of a spline. This new approach, which has been
tested on model problems, can provide a more reliable guarantee of adequacy of the
solutions and an improvement in accuracy in cases where the functional relations sought have a
complicated form. ©1998 American Institute of Physics.@S1063-7842~98!00706-5#
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INTRODUCTION

One problem of experiments on ballistic apparatus is
determine the aerodynamic characteristics, i.e., the fo
and torques acting on a body in free flight. In this conte
researchers have at their disposal trajectory data—an ord
set of readings of the coordinates of the object at fixed
stants of time. These coordinates and the desired functi
dependences of the aerodynamic forces and torques ar
terrelated by a system of nonlinear differential equation1

which are not analytically integrable. Thus the problem ta
the general form

Az~x!5u~x!, ~1!

whereu(x)5x is the vector of measured coordinates,z is the
vector of aerodynamic coefficients~thusz(x) are the desired
functional relations!, and A is the integral operator of the
problem. This ill-posed problem is prescribed by an opera
equation of the first kind.2

Only the inverse operatorA21 can be written down ana
lytically. To solve this problem, the trial-and-error metho
has traditionally been used, i.e., for a series of approxim
tions of the unknown functions the direct problem is solv
and the deviation of the calculated trajectory from the exp
mental trajectory is calculated. The first approximation
chosen on the basis of ana priori expert assessment. As th
algorithm for constructing the minimizing sequence the d
ferential correction method has proved to be successful3 ~it is
also known as the Gauss–Newton method!. The class of
functions among which the stable solution is to be sou
~the correctness class of the problem! can be restricted in
different ways. The only condition is that the functional su
space under consideration be compact.2 Convergence of the
method in the class of power-law polynomials containing
finite number of terms of even or odd powers was confirm
in Ref. 1, where examples are given of successful dete
nation of aerodynamic coefficients on ballistic experime
with sharp cones. The practical importance of a statist
assessment of the results was also demonstrated1 on the basis
6441063-7842/98/43(6)/4/$15.00
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of the variance matrix of the regression coefficients of
unknown functions. The complexity of the question of a
equacy of the solution found by the trial-and-error method
well known, since the efficiency of the method in a give
case is determined by the errors of the experimental dat

STATEMENT OF PROBLEM

Among the objects of ballistic studies, a few are encou
tered that possess a quite complicated form of depende
z(x) of the aerodynamic coefficients on the generalized
ordinate. Although the aerodynamic coefficients, as a ru
are described by smooth functions, they can, for example
substantially nonmonotonic. Complexities of this kind us
ally show up when the range of variation of the independ
variable is increased. In such cases a model descriptio
the motion of the object using power series segments as
regression form can be assumed to be inefficient. The m
complicated the form of the unknown function, the furth
out must its approximating series be carried. As the num
of terms of the series increases, the conditionality of
least-squares matrices deteriorates. This is a well-known
in regression analysis.4 Computational algorithms exist~e.g.,
Ref. 5! which allow one to solve the corresponding underd
termined systems of equations. However, other shortcom
of higher-degree polynomials do not allow one to go th
route in the case of a complicated form ofz(x). Experience
shows that the confidence interval for the sum of the se
segment increases severalfold at the end of the approx
tion interval due to errors in the coefficients of the high
powers of the independent variable. In addition, since
power-law basis is not orthogonal, introducing higher po
ers in the approximation of the unknown function on lar
intervals alters the values of the regression coefficients of
lower powers. The presence of a large number of terms
lead to the appearance of nonphysical oscillations. All t
motivates us to look for other forms of representation of
unknown functions to use in the trial-and-error search for
solution of the ill-posed problem under consideration he
© 1998 American Institute of Physics
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One variant that has been proposed is to partition the ra
of variation of the independent variablex and construct a
regression of power series segments ‘‘matched’’ at
boundaries of the intervals in respect to the value of
function and the first derivative. In this case, within the lim
its of comparatively large intervals inx the unknown func-
tion will be described by substantially shorter polynomial

CONSTRUCTION OF THE METHOD

In light of the above considerations regarding the di
culty of elucidating the adequacy of the desired model a
the effect of hard-to-control experimental errors at the p
cessing stage of the algorithm, model problems were ex
ined, i.e., trajectory data calculated on the basis of prescr
aerodynamic characteristics of an ‘‘object.’’ Consider Fig.

FIG. 1. Model functional dependence of the static aerodynamic mom
coefficient~lower graph! and example of the corresponding oscillations
the object as a function of the attack angle~upper graph!. Dashed lines—
partition of the$a% axis into intervals.
ge

e
e

d
-
-

ed
.

As a particular case ofz(x), the lower graph plots the stati
aerodynamic moment coefficient as a function of the angle
attack,Cm(a). This function

Cm~a!5sign~a!@Cmax sin3~ uau1a0!1C0#,

which I used as my model example, cannot in general
described by a power series with a finite number of terms
regard to the problem under consideration this means tha
Chapman–Kirk algorithm3 does not allow us to seek out
solution that would adequately describe the given mom
function. Increasing the degree of the polynomial to 13 do
not achieve the desired model adequacy even though
elements of the matrix of normal equations at this point ha
already reached the limit of machine accuracy. If we co
sider segments of its domain of definition, e.g., as shown
the dashed lines, then it is obvious that on these intervals
function can be well fitted by lower-degree polynomials. T
upper curve is the ‘‘trajectory’’ of the oscillations of a bod
in flight, i.e., the dependence of the attack angle on the l
gitudinal coordinate along the trajectory. From the match
condition for the segments of the unknown function using
quadratic polynomial as the regression function to fit t
functional dependenceCm(a) on the domain uau
P@a i ,a i 11# we have

Cm~a!5sign~a!Cm~a i !1@dCm~a i !/da#

3~a2a i !sign~a!ki 11~a2a i !
2 ~2!

~the sign function was introduced in accordance with
physical requirement that the static aerodynamic momen
odd!.

Thus, the adopted regression form, possessing
piecewise-continuous second derivative, corresponds t
first-order spline.

Many of the advantages of the previously develop
technique for finding the aerodynamic characteristics de
mined the factors of continuity. Only, the use of the si
function sign~a! corresponds to the use of polynomials
even or odd degree in the Chapman–Kirk algorithm, wh
is yet another example in the trial-and-error method of
necessity of invokinga priori information about the nature
of the unknown functionz(x). As in the case of an all-at
once polynomial approximation of the aerodynamic char
teristics, the unknown number of degrees of freedom can
achieved by coprocessing the data of several experim
with one model. In this case the number of new nodes of
approximation increases more rapidly than the number
unknowns~the regression coefficients remain general, o
the initial conditions of the launch, which are treated as u
knowns, are added on!. Moreover, the coprocessing of th
data of several launches of one object with different am
tudes of oscillations in the attack angle allows one to ma
use of the nonisochronicity of these oscillations, which giv
more information about the nonlinear characteristics of
moment than can be had from an analysis of the form of
oscillations.

As before, the main logical thrust of the algorithm co
sists in constructing a sequence of approximations of
desired solution which minimize the deviation of the calc

nt
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lated trajectory from the experimental trajectory in a qu
dratic metric. To linearize the target function, i.e., the
sidual sum of squares of differences of the attack anglea, we
expand it in a multidimensional Taylor series in the desi
parameters in the vicinity of the solution, where this serie
truncated at the level of the linear terms. In such a repres
tation the deviation is written in terms of the derivatives ofa
with respect to the regression coefficients of the unkno
function and the initial conditions. The values of the deriv
tives are found from the equations of sensitivity, which a
obtained by differentiating the equation of motion with r
spect to all the unknowns and are integrated together w
the equation of motion. This approach allows one to co
pose the system of normal equations of the method of l
squares—linear algebraic equations based on the equa
of motion and sensitivity for all points of the scheme. Ho
ever, the solution of such a system of equations, which o
approximate the given nonlinear problem, gives only a se
corrections to the coefficients. Therefore, the search fo
solution reaches its goal after several iterations. Calcula
of the variance matrix6 allows one in the course of the dif
ferential correction to estimate the error of the found a
proximations of the coefficients and assess its significan

The new form of representation of the unknown functi
necessitated certain modifications in the algorithm. In
trial-and-error search for a solution of the operator equa
~1!, when we are solving the direct problem, i.e., integrat
the equations of motion, at each step the current value ofa is
monitored with the aim of determining to which of the de
ignated intervals it belongs. Depending on the interval
which the argument belongs, the values ofCm(a) are calcu-
lated according to the formulas of the respective interva
the procedures for calculating these values. Since on dif
ent intervals of$a% the regression coefficients affect the ta
get function in a different way: some of them directly, som
via their effect on the preceding segments@via formula~2!#,
the calculation of the coefficients of the equations of sen
tivity also depends on which intervala belongs to. However
from the derivatives calculated in this way a single matrix
normal equations of the method of least squares is c
structed, which of course corresponds to a single equa
prescribing the motion of the object, and all coefficients us
to describe the unknown function turn out to be correlate

ANALYSIS OF THE SOLUTION

By varying the number and positions of the interv
boundariesa i , it is possible to achieve acceptable results
determiningCm(a). Acceptability is determined, on the on
hand, by the errors of the found regression coefficients w
allowance for their correlation~when the relative error of the
coefficient of the square of the independent variable exce
100% for a prescribed confidence level, rejection of such
insignificant coefficient is indicated and the moment on t
interval is taken to be linear!. On the other hand, the ad
equacy of the found solution for the model problem is eas
monitored since the exact form of the desired function
known. Experience shows that the problem does not ha
unique solution in the considered class of functions and
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an unpropitious choice of the partition of the domain$a% it is
possible to find a spurious solution. In practice it has be
found that good results in terms of efficiency of the alg
rithm are had by assigning the boundaries at the extrema
inflection points of the unknown function. For the indicate
example~in Fig. 1 the moment is prescribed as the cube
the sine of the attack angle!, which has two inflection points
on the positive side and on the negative side in the ra
uau<40° ~a>613.25° anda>636.75°! and one extre-
mum (a5625°), acceptable results are achieved by start
not with four intervals in the absolute value ofa, but with
six: it was necessary to divide up the regions of large cur
ture symmetrically near an extremum~increasing the numbe
of intervals above the minimum necessary serves no p
pose!. Trajectory data of four ‘‘launches’’ were used, wit
amplitudes of oscillation in the attack angle equal to 7,
27, and 38°.

The plan of the ‘‘experiment’’ called for 34 points. Ap
proximation with quadratic polynomials on six interva
had 14 degrees of freedom. The accumulation of error of
found nonlinear regression coefficientski went from 1 (ua
u<a1) to 65% (uau>a5). Here the achieved accuracy o
determination of the static moment was within 9%~Fig. 2!.
The error was calculated from the variance matrix of t
regression coefficients with their covariances taken into
count.

Finding the solution of an ill-posed problem by the tria
and-error method2 is equivalent to minimizing the distancer
~in the quadratic metric! from the intermediate approximat
solution zd to the exact solutionzT . The result of this pro-
cess, as a rule, looks like this: the local deviations have
posite signs at the boundaries of the approximation reg
and in its middle while its integralr(zd ,zT) over the entire
region tends to zero. In the given case on each intervaa i

,uau<a i 11 the higher~one! coefficient of the approximat-
ing parabolic segment is sought independently. This fin

FIG. 2. Spline-reconstructed dependence~crosses! of the static aerodynamic
moment coefficient from Fig. 1. Original function—squares. Solid line
estimate of the residual error of thed approximation.
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expression in the complex character of the dependence o
error function of the found moment coefficient on the atta
angle: the error reflects the character of the local deviatio
zd from zT . Consideration of a model problem~where the
exact solution is known! makes it possible visually to trac
out the variation ofr from the relative location of the curve
of the prescribed and found functionsCm(a).

The case of four launches of a sharp cone with a to
vertex angle of 30°, considered in Ref. 1, was also analyz
In this case it is possible to compare the results for an all
once approximation of the desired moment coefficient us
the Chapman–Kirk algorithm~odd fifth-degree polynomial!
and for a piecewise-polynomial approximation. Howev
use of the available experimental data had to be rejecte
virtue of the sensitivity of the method to the systematic a
anomalous errors contained in them for a relatively sm
sample space and it was necessary to resort to modeled
data. Model trajectories, calculated from the characteris
taken from Ref. 1, was ‘‘noised up’’ by adding normal
distributed random error with a standard deviation of 0.
which corresponds to the error of the actual measureme
For this version of the functionCm(a) it turned out to be
sufficient to use four intervals~indicated by vertical line seg
ments in Fig. 3!. Comparison of the obtained curves reve
good agreement~the same solution is found!. Estimates of
the residual mean-square deviations of the attack anglea of
the trajectories calculated by the two different methods~sa

>0.51° for the all-at-once approximation andsa>0.13° for
the new method! favor the piecewise polynomial approxima
tion. Construction of the variance matrix of regression co
ficients in both cases allows us to estimate the total erro
the moment within the given range$a%. Values of the confi-
dence interval of the static moment for a confidence leve
95% are shown in Fig. 3. It can be seen that the piecew

FIG. 3. Comparison of the results of all-at-once~squares! and piecewise
~crosses! approximation in the reconstruction of the nonlinear static aero
namic moment of a sharp cone. Solid lines—values of the moment c
ficient, dashed lines—estimate of the relative errord of the corresponding
approximations.
he
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description of the moment function allows it to be foun
with less error. However, finding it is fraught with great
difficulties than finding the all-at-once polynomial approx
mation. There are additional problems associated with cho
of the boundaries of the segments into which to divide
range of variation of$a%. Overcoming these difficulties will
require time, but probably with accumulation of experience
will be possible to shorten the amount of time needed.

CONCLUSION

Analyzing the difficulties arising during processing
the algorithm for determining the aerodynamic characte
tics from trajectory measurements using splines to desc
the unknown functions, we can form the following pictu
regarding application of the method to actual experimen
data. It is unrealistic to choose the initial approximation
the form proposed using the given approach if all that
available are raw data. Therefore it is advisable to be
processing the experimental results with the help of
Chapman–Kirk algorithm, for example. Having obtained
representation of the unknown functions, it is possible
shift over to the new algorithm and carry out a comparat
analysis of the solutions found by the two approaches a
their adequacy~to the extent that it is possible to judge
generally! and their errors. Features of the unknown fun
tions revealed in the course of fitting using the Chapma
Kirk algorithm can help construct initial spline approxim
tions. Here an additional optimization factor arises
deciding on the number of intervals in the independ
variable and the positions of their boundaries. As has alre
been noted, for the observations just dealt with the m
successful locations, in the sense of convergence, for
boundaries are at the extrema and inflection points of
unknown functions. When working with experimental da
the search for such points must be carried out one after
other. A future check of the fruitfulness of the proposed a
proach in this case will be possible by obtaining qualitat
experimental data.

I am grateful to N. P. Mende for a statement of t
problem and for valuable discussions, and to S. V. Bobas
for helpful remarks.
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Steady-state leader breakdown. Nitrogen atmosphere
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Physical arguments about the possible mechanism of formation of a leader channel are presented.
A mathematical model describing steady-state leader breakdown is constructed. An algorithm
for determining the propagation velocity, dimensions, and electric field in the streamer zone is
developed. A numerical simulation of the channel formation stage in the plasma of a
streamer zone a nitrogen atmosphere is performed. The dependence of the leader velocity on the
potential is obtained. The tentative model proposed here can be used to describe the leader
breakdown of a long gap at high positive potentials. ©1998 American Institute of Physics.
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INTRODUCTION

The problem of steady-state breakdown of an exten
gas-filled gap with a prescribed potentialU0 on one of the
electrodes is considered. It is well known~see, e.g., Ref. 1!
that such a discharge has a complicated structure. The po
tial U0 is transmitted along a highly conductive leader cha
nel at a temperature high enough for thermal ionization
take place. The channel is formed in the poorly conduct
streamer zone, whose dimensions are quite largeL>1 m.
There are a number of conceptions about the mechanis
formation of the leader channel. According to one of them
is formed as a result of heating of a solitary streamer.2 Hy-
potheses have been developed about the formation of
channel against the background of a huge number of cont
ously forming streamers.3 We will proceed from the first.

If we neglect the potential drop in a highly conductiv
channel, then for gaps with large dimensions of the strea
zone it is natural to consider the steady-state breakdown
gime. In this case the problem of the formation of a lea
channel in a streamer discharge plasma is one-dimension
all quantities depend only on the transverse coordinater. The
z dependence is determined parametrically in terms of
retarded timet5t2z/vx . For a given medium the describe
breakdown regime is completely determined by o
parameter—the potentialU0 , on which depend the propaga
tion velocityvz and the parameters of the streamer zone
channel. Determination of the dependence onU0 of the ve-
locity vz and of the dimensionsL and electric fieldE0 in the
streamer zone is the aim of the present work. Here i
assumed thatvz is much greater than the electron drift v
locity, i.e.,vz is determined by the charge transfer rate alo
the channel. An important aspect of these studies is
model of the streamer zone of the leader.

MODEL OF THE STREAMER ZONE

The situation here is unclear.1 Reference 4 calls attentio
to the fact that broadening of the current-carrying region
the cylindrical ionization wave plays a substantial role in t
propagation of a streamer. In Ref. 5 a regime of streame
propagation is constructed in which the conductance per
6481063-7842/98/43(6)/7/$15.00
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length,G52p*0
`srdr , is formed by a cylindrical ionization

wave with nearly constant propagation velocityv r . The con-
ductivity of the streamer~i.e., the electron concentration! de-
pends on the coordinater as s'vz

2/v r r (G'vz
2t). It has

been shown that such a regime can support the propaga
of streamers many meters in length. Here the electric fi
varies weakly along the length of the streamer and is equa
;10 kV/m. This picture permits an explanation of the e
perimentally observed3 linear dependence of the streamer v
locity on the rate of growth of the potential fordU/dt
.400 kV/ms (vz.43107 cm/s). We will proceed from the
concept of a streamer given in Ref. 5.

It is assumed that the leader channel is formed as a re
of the development of an ionization–overheating instabili1

near the axis, where the ionization is maximum. For mod
ate rates of current growth it is possible to restrict the d
cussion to processes at atmospheric pressure~without shock
waves!. The description of channel formation is complicat
in that the dimensions of the region in which the instabil
develops are uncertain. The scale of this region can dep
on the initial conditions, e.g., the size of the streamer tip. W
will neglect this scale<1023 cm ~Ref. 6!, assuming that the
channel parameters are determined by transport process
the streamer plasma.

In a quasineutral streamer plasma diffusion is ambipo
However, heating of the electron gas is governed by the e
tron diffusion coefficient. On this basis, we neglect diffusi
of charged particles in comparison with the electronic th
mal conductivity. Note that by virtue of the low electro
concentration at the stage of channel formation the electro
thermal conductivity does not contribute significantly to t
overall balance of energy. Its influence is manifested in
averaged way, through the removal of energetic electr
capable of ionizing the gas, into the colder regions.

Below, on the basis of the concepts expounded above
construct a calculational model of channel formation in
streamer discharge plasma. Here the main mechanism
cold gas entrainment into the channel is the electronic th
mal conductivity.
© 1998 American Institute of Physics
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BASIC EQUATIONS

We assume that the plasma consists of molecular n
gen, the corresponding ions and electrons with concen
tionsN, n1 , ne . This assumption is justified up to temper
tures of the mediumT<4000 K, where it is possible to
neglect dissociation.1 The plasma is electrically neutralne

>n1 and weakly ionized 10233N>ne , i.e., it is possible to
neglect Coulomb collisions.1 Neglecting diffusive drift of the
charged particles, the equation of continuity for the elect
component takes the form

]ne

]t
1

1

r

]

]r
~rv0ne!5kionNne2krne

21Sstr, ~1!

wherev0 is the transverse hydrodynamic velocity.
The source termSstr(vz ,v r ,E0) describes the creation o

electron–ion pairs at the front of the cylindrical ionizatio
wave forming the streamer discharge. To get the strea
discharge to propagate, it is necessary to set5

Sstr5
C0

2p

1vzvz

eke~E0!v r~r 1r 0!
d~t2r /v r !, ~2!

whereke(E0)5We /E0 is the electron mobility,We(E0) is
the drift velocity, the capacitance of the discharge per u
length isC051/2Ln(2vz /v r), and the quantityr 0 has been
introduced to eliminate the singularity in the limitr→0.

For a given electron energy distribution functio
«2 f («) the ionizationkion and recombinationkr rate con-
stants are given by

kion5A 2

me
E

I

`

«qion~«! f ~«!d«,

kr5A 2

me
E

0

`

«qr~«! f ~«!d«, E
0

`
A« f ~«!d«, ~3!

where qion and qr the ionization and recombination cros
sections~I is the ionization potential!; it is assumed that ion
ization occurs from the ground state.

To determineN and v0 it is necessary to solve the hy
drodynamic equations which at constant atmospheric p
sureP0 take the form7

]N

]t
1

1

r

]

]r
~rNv0!50, P05NkT,

]

]t
~N«!1

1

r

]

]r
@rv0~N«1P0!#2

1

r

]

]r
~rJ !5neSe , ~4!

where we have neglected the kinetic energy in compari
with the internal energy«, J is the energy flux,Se is the
energy transferred by an electron to the medium per sec
in elastic and inelastic collisions.

By virtue of their small mobility the contribution of the
ions to heating of the medium can be neglected. The inte
energy « is equal to the sum of the kinetic energy«k

5(3/2)kT, the energy of rotational degrees of freedo
which under conditions of thermodynamic equilibrium
equal to«R5kT, and the vibrational energy«V
o-
a-

n

er

it

s-

n

nd

al

,

«5
5

2
kT1«V . ~5!

In writing Eq. ~5! we have neglected the energy of th
electron-excited particles, assuming that it relaxes quite r
idly into thermal energy.

By virtue of retarded deactivation of the vibrational d
grees of freedom, to determine«V it is necessary to solve th
equation7

]~N«V!

]t
1

1

r

]

]r
~rv0N«V!2

1

r

]

]r S rxN
]«V

]r D
5neNSV1N

«V
p2«V

tV
, ~6!

whereSV is the energy lost by an electron to excitation
vibrations of a molecule,tV is the vibrational relaxation
time, «V

p5hn/@exp(hn/kT)21# is the vibrational energy un
der conditions of thermodynamic equilibrium~hn
50.291 eV is the energy of a vibrational quantum!, x
5l/(Ncp) is the thermal diffusivity@cp5(7/2)k is the spe-
cific heat at constant pressure#, andl is the thermal conduc-
tivity.

Transforming Eqs.~4!–~6!, we obtain a system of hydro
dynamic equations in the temperatureT, concentrationN,
and mass velocityv0

NcpS ]T

]t
1v0

]T

]r D5
1

r

]

]r S rl
]T

]r D1ne~Se2NSV!

2N
«V

p2«V

tV
,

cpP0

k

1

r

]

]r
~rv0!5

1

r

]

]r S rl
]T

]r D1ne~Se2NSV!

2N
«V

p2«V

tV
,

]«V

]t
1v0

]«V

]r
5

1

Nr

]

]r S rxN
]«V

]r D1neSV1
«V

p2«V

tV
,

N5
P0

kT
. ~7!

To determine the energy scattered by the electrons,
necessary to solve the equation of energy balance, which
be written in the form7

]

]t S 3

2
nekTeD1

1

r

]

]r F r S 5

2
nekTev02le

]Te

]r D G
5ne

e2E0
2

menm
e 2neN~Sel2Sin2Si !2ne

2Sr1ST , ~8!

where the electron temperature is understood as

3

2
kTe5E

0

`

«3/2f ~«!d«;

the kinetic energymev0
2/2 has been neglected in comparis

with kTe ; le is the electronic thermal conductivity
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e2E0
2/menm

e is the energy transferred to the electrons by
field; Sel , Sin , andSi are the rates of energy loss per mo
ecule by an electron in elastic and inelastic collisions to i
ization of the gas;Sr is the rate of energy loss per ion by th
electrons during recombination;nm

e is the elastic scattering
frequency of the electrons; the source termST

5(3/2)kTe
0Sstr describes the energy acquired by the electr

at the front of the cylindrical ionization wave; andTe
0 is the

equilibrium electron temperature in nitrogen at normal d
sity in the fieldE0 .

The frequencynm
e and the electron energy loss rate a

given by

nm
e 5A 2

me
NE

0

`

«qm~«! f ~«!d«,

Sel5A 2

me

2me

M E
0

`

«2qm~«!F f ~«!1kT
d f

d« Gd«,

Sin5A 2

me
(

i
F« iE

« i

`

«Qi~«! f ~«!d«

2« i
2E

0

`

«Qi
2~«! f ~«!d«G ,

Si5A 2

me
I E

I

`

«qion~«! f ~«!d«,

Sr5A 2

me
E

0

`

«2qr~«! f ~«!d«, ~9!

whereqm is the transport cross section of electron scatter
by a nitrogen molecule;Qi5Piqi(«) is the excitation cross
section of thei th level with energy« i ; Pi is the population
of the i th level; Qi

25Piqi
2(«) is the deactivation cross sec

tion of thei th level with energy« i
2 ; M andme are the mass

of a nitrogen molecule and an electron, respectively.
To determine the rates of ionization, recombination, a

electron energy loss and the collision frequency, it is nec
sary to know the electron energy distribution function. It
usually assumed to be Maxwellian

f ~«!5 f M~«!5
2

Ap

1

~kTe!
3/2expS 2

«

kTe
D . ~10!

Here the expression for the electronic thermal cond
tivity takes the form

le5
5

2
kneDe5

5

2
nekTe

k

menm
e , ~11!

whereDe is the electron diffusion coefficient.
The contribution of recombination to the energy tran

ferred to the medium per unit timeSe can be calculated from
the formula

Se
r 5krneS 3

2
kTe1I N2I N

2
1

d D , ~12!
e

-

s

-

g

d
s-

-

-

where I N514.5 eV is the ionization potential of atomic n
trogen andI N

2
1

d
58.7 eV is the binding energy of theN2

1

molecule.

INTERACTION CROSS SECTIONS OF THE ELECTRON WITH
THE MEDIUM

A detailed analysis of the interaction cross sections
the electrons with molecular nitrogen was carried out in R
8. Let us describe briefly the set of constants which we w
use here. To describe the elastic collisions, we employ
dependence of the transport cross sectionqm on the electron
energy given in Ref. 9. We describe rotational excitation
line with Refs. 10 and 11. Invoking the smallness of t
rotational constantB052.531024 eV!kT, kTe , we can
take the distribution over levels to be quasicontinuous. T
allows us to replace the sum over levelsj by an integral over
the corresponding continuumd j from j 50 to j 5`. In par-
ticular, for the braking cross section we obtain

Sin
R54B0s0S 12

kT

« D , ~13!

where s058p/15 (a0Q)2, a0 is the Bohr radius, andQ
51.05 is the electric quadrupole moment.

In the description of excitation of vibrations, we tak
account of only collisions of the first kind, i.e., we assum
that the molecules are found in the ground state. The exc
tion cross sectionsqi

V of the first eight levels are given in
Ref. 12.

The electron excitation cross sections were taken fr
the following sources:A3Su

1 anda1Pg from Ref. 13;B3Pg

andC3Pu from Ref. 14;b1P i , b1Su
1 , and the sums of cros

sections of the higher-lying states from Ref. 15.
In describing electron impact ionization we restrict ou

selves to the process originating in the ground state.
corresponding cross sections were taken from Ref. 16.

In line with Ref. 17, we assign the dissociative recom
nation rate constants as

kr5331027S 300

Te
D 1/2

,
cm3

s
~@Te#5K!. ~14!

For the vibrational relaxation time we use th
expression18

tV56.531029 expS 137

T1/3D , s~@T#5K!. ~15!

The dependence of the thermal conductivity of molec
lar nitrogen on the temperature of the medium is taken fr
Ref. 19.

JUSTIFICATION OF THE HYDRODYNAMIC APPROACH

At high electron concentrations scattering takes place
Coulomb collisions and use of the Maxwell distributio
function for the electrons is justified by the intense ene
exchange in electron–electron collisions. At low electr
concentrations the distribution function is governed by
interaction of the electrons with the neutral gas and use
the Maxwell energy distribution requires justification.
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To describe the electron distribution functionf under
conditions of interaction with the neutral medium we use
following approach, which provides a good description
the experimental data.20 Expandingf in a series of Legendre
polynomials and limiting it to the first two terms

f 5 f 0~«!1cosQ f 1~«!, ~16!

where Q is the angle between the field vectorE and the
electron velocity, we obtain the following equation for th
steady-state value off 0 :

]

]« H Fe2E2

N2

«

3qm~«!
1kT«2

me

M
qm~«!G

3
]

]«
f 0~«!1«2

2me

M
qm~«! f 0~«!J

5(
i

@«Qi~«! f 0~«!2~«1« i !Qi~«1« i ! f 0

3~«1« i !1«Qi
2~«! f 0~«!2~«2« i

2!Qi
2~«2« i

2!

3 f 0~«2« i
2!#1«qion~«! f 0~«!22E

«1I

`

«8qion~«8!

3 f 0~«8!c~«8,«!d«8. ~17!

The quantityc(«8,«)d« is the probability that one o
the two electrons coming out of the collision will have e
ergy in the interval from« to «1d«. It is normalized by the

condition*0
«82I jc(«8,«)d«51. For definiteness, we assum

the energies of the electrons to be identicalc(«8,«)5d„«
2(«82I j )/2…. For purposes of comparison of the two a
proaches to description of the electron dynamics such
assumption is admissible.

Using the distribution functionf 0 the ionization and re-
combination rate constants are found from formulas~3!, and
the energy loss rate—from formula~9!. The drift velocity,
electron diffusion coefficient, and electron temperature
be calculated from the formulas

FIG. 1. Dependence on the parameterE/N of the ratioeD/ke ~1! and the
electron temperatureTe ~2!. s—the hydrodynamic approximation (Te

5eD/ke).
e
f

n

n

We52
eE

3
A 2

me
E

0

` «

Nqm~«!

d f0

d«
d«,

De5
1

3
A 2

me
E

0

` «

Nqm~«!
f 0~«!d«,

Te5
2

3k E
0

`

«3/2f 0~«!d«. ~18!

Under similar conditions, in the hydrodynamic approx
mation the electron temperature@Te

0 , see Eq.~8!# can be
found from the equation of energy balance

e2E2

mene
5N~Sel1Sin1Si !, ~19!

where the dependence of the collision frequency and the
ergy loss rates on the temperature are found from formu
~9! for f 5 f M(Te ,«) ~we have neglected the energy losses
dissociation, assuming the electron concentration to
small!.

Figures 1, 2, and 3 compare the dependence onE/N of

FIG. 2. Dependence on the parameterE/N of the electron drift velocity~1!
and the ionization rate~2!. N52.531019 cm3. Curves—the kinetic approxi-
mation,s—the hydrodynamic approximation.

FIG. 3. Dependence of the relative energy lossesh i on E/N. 1—excitation
of rotations together with elastic collisions,2—excitation of vibrations,3—
excitation of electron levels,4—ionization. Curves—the kinetic approxima
tion, s—the hydrodynamic approximation.
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the electron temperature, the drift velocities, the diffus
coefficients, the ionization frequencies, and electron ene
loss rates for molecular nitrogen, obtained by numerical
lution of the kinetic equation~17!, ~18! and in the hydrody-
namic approximation~9!, ~11!, ~19!. Equation ~17! was
solved by the method of Ref. 21. ForE/N<4
310216 V•cm2 the difference in the quantities is large.
the region E/N>4310216 V•cm2 the hydrodynamic ap-
proach gives reasonable agreement with the results obta
from the kinetic treatment.

ANALYSIS OF THE CALCULATED RESULTS

The solution of the problem is defined by Eqs.~1!–~3!
and~7!–~12!. At the initial time instant the nitrogen is foun
under normal conditions:Nut505N052.531019 cm23,
Tut505293 K, «Vut5050, the electron concentratio
neut5050, and the electron temperatureTeut505293 K. The
boundary conditions follow from the requirement of ax
symmetry: atr 50 the particle and energy fluxes are equal
zero. The ionization and recombination rate constants,
ergy loss rates, collision frequency, and electronic ther
conductivity follow from formulas~3!, ~9!, ~11!, and ~12!
assuming a Maxwellian electron energy distribution~10!.

The ionization sourceSstr ~2! and the field in the
streamer zone are determined by the streamer param
E0 , vz /v r , andvz , which are unknown. We take the valu
vz /v r510 ~Ref. 5!. To find E0 andvz , we proceed from the
fact that for a given potentialU0 , of all possible values ofE0

that one will be realized for whichvz is maximum.
Figure 4 plots the time dependence of the medium te

perature along the discharge axis for different values ofr 0

~2! in two series of calculations withE0512.6 kV/cm, vz

523107 cm/s, andE0510.8 kV/cm,vz523108 cm/s. As
r 0 is decreased, the dimensions of the streamer disch
zone decrease and forr 0<1024 cm the solutions are indis
tinguishable, i.e., forr 0<1024 cm the solution is observe

FIG. 4. Time dependence of the temperature of the medium along the
charge axis.r 0 , cm: 1—1025, 2—1024, 3—1023, 4—2.531023 ~for E0

512.6 kV/cm andnz523107 cm/s!, 5—1025, 6—1024, 7—1023, 8—
2.531023 ~for E0510.8 kV/cm andn523108 cm/s!.
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to converge to the true solution obtained in the limitr 0→0.
This testifies to the correctness of the mathematical st
ment of the problem.

Figure 5 plots the electron temperature distribution a
medium density distribution across the channel at the ins
of time when the valueN/N050.1 is reached. It can be see
that at the earlier stage the scale of leader channel forma
is ;1023 cm and depends weakly onE0 and vz . To de-
scribe the further evolution of the channel requires that
introduce Coulomb collisions limiting growth of the electro
temperature, take into account nitrogen dissociation limit
growth of the temperature of the medium, describe radia
transfer entraining new masses of gas into the channel du
heating of the cold periphery, etc. In addition, the growi
conductivity of and consequently current through the chan
affect the magnitude of the electric field~feedback effect!.
This requires a self-consistent approach to the descriptio
the dynamics of channel formation and the magnitude of
electric field. However, basing ourselves on a string of
sumptions it is possible to obtain the dependence of
propagation velocity of the leader and the dimensions of
streamer zone on the potential without complicating
problem by bringing in a description of the enumerated
fects.

The nature of the solution—an abrupt growth of the te
perature of the medium~decrease in the density! at the stage
of channel formation—makes it possible to introduce t
concept of a length of the streamer zoneL and a potential of
leader channel formationV5E0L. For definiteness we take
L5vz•t0.1, wheret0.1 is the time it takes the channel densi
to reach the valueN/N050.1. Proceeding from the fact tha
the leader channel possesses a high temperature~high con-
ductivity!, we estimate the value of the leader potentialU0

'V, i.e., we neglect the potential drop in the channel.
Figure 6 plots the dependence of the potentialV on the

propagation velocity vz , calculated for E0

511.4, 11.64, 12 kV/cm. The curves have a bell sha
growth of the potential at small velocities gives way to a f
at large velocities. Qualitatively, this may be understo

is-FIG. 5. Spatial distributions of the electron temperature and relative den
of the medium.1,2—Te ; 3,4—N/N0 ; E0 , kV/cm n, cm/s:1,3—12.6 and
23107; 2,4—10.8 and 23108.
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from the following considerations. On the one hand, grow
of the velocity is accompanied by an increase ofL5vz•t0.1

and consequently also ofV5E0L. On the other, in the
adopted streamer zone model an increase invz leads to
growth of Sstr ~2!, i.e., ne in the streamer zone, and cons
quently to increased energy release and a decrease int0.1 and
L, V. At small velocities the first of these prevails while
large velocities, the second, which leads to the appearanc
a maximum in the dependence ofV on vz .

Thus, for a given potentialV there is a family of curves
vz(E0) assigning the propagation velocity of the leader a
function of the electric field in the streamer zone. Thus,
V5V* the fieldE0511.4 kV/cm corresponds to the velocit
at the pointa, i.e., va , and at the corresponding point fo
largevz ; and the fieldE0511.64 kV/cm corresponds to th
velocitiesvb andvd ; the fieldE0512 kV/cm corresponds to
the velocityvc , etc. ~Fig. 6!, i.e., beginning its motion with
velocity va , the leader can accelerate to the velocit
vb , vc , vd , and so on.

Generally speaking, the propagation velocity and con
quently the field in the streamer zone are determined by
propagation velocity of the channel. In turn, the channel
rameters and consequently the channel propagation velo
are determined by processes in the streamer zone, i.e., b
field E0 and the velocityvz. Let us qualitatively consider the
process of acceleration of a leader due to an increase in
channel propagation velocity~Fig. 7!. Let at the initial time
the channel velocityvz

c and streamer zone velocityvz
str be

identical and equal to the leader propagation velocityvz .
Increasing the fieldE0 will lead to an increase in the rate o
energy release, i.e., to a growth ofvz

c , and, conversely, a
growth of vz

c leads to a shrinkage of the dimensions of t
streamer zoneL and consequently to a growth ofE0 (E0

5V* /L). In other words, growth of the leader velocity
possible with simultaneous growth ofE0 and vice versa.
Having started its motion with velocityva , a streamer can
accelerate tovc since this acceleration is accompanied by
growth of E0 . Further growth of the velocity, e.g., tovd , is

FIG. 6. Dependence of the potentialV on the propagation velocityvz . E0 ,
kV/cm: 1—11.4,2—11.64,3—12.
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impossible since it is associated with a decrease in the fi
strength in the streamer zoneE0 .

Thus, if we assume that for a given potential the lea
propagates with the maximum possible velocity, then its
locity is determined by the maxima in theV(vz) curves~the
pointsc,e, f in Fig. 8!. The dependencevz(U0), whereU0 is
the potential determined by the condition]V/]vzuE0

50 ~E0

is a parameter here!, is plotted in Fig. 8. With growth ofU0

the leader velocity grows roughly asvz;U0
0.75. This is clear

from comparison with the interpolatingvz dependence also
shown there:

vz51.473107U0
0.75 cm/s~@U0#5MV !. ~20!

Thus, within the framework of the ideas expound
above it is possible to construct the steady-state regime
leader propagation, describe the initial stage of channel
mation, and obtain the dependence on the potential of
propagation velocity, the field, and the dimensions of
streamer zone. These ideas depend in an essential way o
parameters of the plasma in the streamer zone. These pa
eters were chosen on the basis of a model of strea
breakdown.5 Presumably, in the case of a positive stream
this model works at propagation velocitiesvz>324
3107 cm/s. At least it makes it possible to explain the line
dependence of the streamer velocity on the rate of growt

FIG. 7. Diagram of the process:1—leader channel,2—streamer zone.

FIG. 8. Dependence of the velocityvz on the potentialU0 . Solid curve—
calculated; dashed curve—interpolation based on formula~20!.
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the potential observed in this region.3,6 Therefore we can
assume that what has been said above is valid for pos
leaders forU0>3 MV ~Fig. 8!, i.e., at high potentials. It
cannot be ruled out that at small potentials formation o
leader channel takes place via another mechanism,
against the background of a huge number of continuou
forming streamers.3 The experimental data known to us d
not allow us to conjecture about the applicability of t
model to negative leaders.

It is interesting to note that the streamer zone fieldsE0

depend weakly on the potentialU0 ~on the velocityvz!. As
U0 varies from 6 to 26 MV, the fieldE0 varies within the
range 11.4212 kV/cm. This has to do with a peculiarity o
energy dissipation in the given range of field strengths~Fig.
3!, specifically with a shift of the main channel of energ
scattering by the electrons from excitation of molecular
brations to excitation of electron levels. By reason of
tarded deactivation of the vibrational levels of the molecu
heating of the medium and consequently channel forma
are hindered in the first case. In this sense one may spea
a threshold field for leader breakdown in nitrogen~air! equal
to ;11212 kV/cm.

CONCLUSION

1. A physical picture of the formation of a leader cha
nel has been presented. A leader channel is formed in
plasma of a streamer zone as a consequence of
ionization–heating instability. The streamer zone consist
an isolated streamer formed by a cylindrical ionizati
wave.5 The main mechanism determining the channel para
eters at the early stage is the electronic thermal conductiv

2. A mathematical model has been constructed, desc
ing the leader channel formation stage in a streamer z
plasma. By comparing with the solution of the kinetic equ
tions in the spatially homogeneous case it has been sh
that use of the hydrodynamic approximation is justified
E/N>4310216 V•cm2.

3. Assuming smallness of the potential drop in a high
conductive channel, an algorithm has been constructed
determining the leader propagation velocityvz and the di-
mensionsL and electric fieldE0 in the streamer zone. Th
algorithm is based on the assumption that for fixedU0 the
value of E0 is determined that provides the maximum po
sible propagation velocity.

4. Steady-state leader breakdown in a nitrogen atm
sphere has been modeled by a numerical simulation. It
found that the leader propagation velocity is proportiona
U0

3/4.
5. It has been shown that the field in the streamer z
ve
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depends weakly on the potentialU0 and is determined by the
value of E/N corresponding to the shift of the electron e
ergy dissipation channel from excitation of vibrations to e
citation of electron levels. Under normal conditions this co
responds to the valueE0>12 kV/cm, i.e., in some sense it i
possible to speak of the existence of a threshold field
leader breakdown.

6. Presumably in the case of positive leaders the mo
works at potentialsU0>3 MV. It is possible that at low
potentials channel formation takes place against a ba
ground of a huge number of continuously formin
streamers.3 The experimental data known to us does not
low us to conjecture about the applicability of the model
negative leaders.

7. The model can be used to describe a leader bre
down of a long air gap. When additional processes are ad
to the model, it will be possible to obtain leader chann
parameters matched to the potentialU0 .
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3É. M. Bazelyan and A. Yu. Goryunov, Elektrichestvo, No. 11, pp. 27–
~1986!.
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Lowering of ionization potentials in a nonideal plasma
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Analytical expressions are obtained for the ionization potentials of neutral atoms and ions in the
screened Coulomb potential of a nonideal plasma. Among all the chemical elements
considered, cesium exhibits the greatest relative lowering of the ionization potentials in comparison
with the case of an unscreened interaction. ©1998 American Institute of Physics.
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INTRODUCTION

Many characteristics of plasmas, in particular the eq
tion of state and the kinetic coefficients, depend substanti
on the electron density.1–11 In a not-too-dense plasma ioniza
tion is caused by thermal excitation of electrons to state
the continuum, and at high enough temperatures there e
in the plasma ions in different states of ionization. Such m
tistep ionization in an ideal plasma is described the the S
equations,12 according to which the main parameters det
mining ionization equilibrium at given plasma temperatu
and density are the ionization potentials of the atoms
ions. In an ideal plasma these are the ionization potential
the isolated neutral atoms and of ions in the various cha
states. With growth of the density of the plasma and its
viation from ideality a renormalization of the ionization p
tentials takes place due to effects of interactions between
particles of the plasma. For a weakly nonideal plasma effe
of the Coulomb interaction can be taken into account wit
the framework of the Debye approximation. The correct
to the free energy per unit volume due to interaction in
continuum can be expressed as12 ~here and below we us
atomic units!

D f 52
2

3
Ap/TS (

i
niZi

2D 3/2

52
1

3l (
i

niZi
2 . ~1!

Hereni is the density of particles of the plasma with char
Zi , T is the temperature,l is the Debye screening lengt
leading to an effective interaction of particles with charg
Z1 andZ2 at the distancer

UD~r !5
Z1Z2

r
e2r /l. ~2!

Screening of the Coulomb interaction for bound electr
states in atoms and ions leads to a lowering of their ion
tion potentials.

LOWERING OF THE IONIZATION POTENTIALS AS A
CONSEQUENCE OF SCREENING

The Schro¨dinger equation for the valence electron wi
potential~2! does not have an analytical solution in terms
known functions~approximate techniques of solution by th
6551063-7842/98/43(6)/5/$15.00
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variational method and by perturbation theory can be fou
in Ref. 4!. Analytical formulas convenient for practical ca
culations can be obtained by using, instead of Eq.~2!, the
similar Hulthén potential13,14

UH~r !52
Z* /l

er /l21
. ~3!

Like the Debye potential, potential~3! for r !l goes
over to the Coulomb potentialUc(r )52Z* /r and falls off
exponentially at larger . Z* is the effective charge of the
atomic radical for the valence electron with principal a
orbital quantum numbersn and l . We will determineZ*
from the experimentally measured ionization potentialI n,l

0 of
this valence electron in an isolated atom or ion

I n,l
0 5

Z* 2

2n2 . ~4!

This gives then- and l -dependent effective charge

Z* 5nA2I n,l
0 . ~5!

Let us determine the energy levels of the bound state
the electron in a centrally symmetric potential~3!. Repre-
senting the electron wave function in the usual way in
form of a product of a radial functionR(r ) and angular func-
tions Ylm(u,w) and then transforming to the variab
x5r /l, we obtain the radial Schro¨dinger equation for the
function x(x)5R(x)/x

2
1

2l2

d2x

dx2 1S 2
Z*

l

1

ex21
1

l ~ l 11!

2l2x2 Dx5Ex. ~6!

In this equation the states withl 50 are a special case
For them the centrifugal termUl(x)5 l ( l 11)/(2l2x2) is
generally absent, and Eq.~6! can be solved by transformin
to the new argumentu5e2x ~Ref. 13!. The energy levels of
the discrete spectrum forl 50 are determined by the princi
pal quantum numbern and can be written as

En52
Z* 2

2n2 S 12
n2

2Z* l D 2

. ~7!

ReplacingZ* by the expression for it given in formula~5!,
we obtain
© 1998 American Institute of Physics
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En52I n,0
0 S 12

n

2lA2I n,0
0 D 2

. ~8!

To obtain an analytical expression for the energy lev
of the bound states withlÞ0, we replace the centrifuga
potentialUl(x) by

Ũ l~x!5
l ~ l 11!

2l2

1

~ex21!2 . ~9!

The function Ũ l(x) approximates the functionUl(x)
very well. Indeed, forx!1 (r !l) the two functions coin-
cide, but in the localization region of the bound electr
r;1 (x;1/l). Therefore, in a plasma with largel Ũ l(x) is
a good approximation forUl(x). With the true centrifugal
termUl(x) replaced by the approximate centrifugal term~9!
the radial equation forx(x) takes the following form:

2
1

2l2

d2x

dx2 1S 2
Z*

l~ex21!
1

l ~ l 11!

2l2~ex21!2Dx5Ẽx

~10!

and can be solved exactly for anyl . We make the transfor
mation of variableu5e2x in Eq. ~10! and introduce the no
tation

a5lA22Ẽ, b252Z* l.

Taking the asymptotic behavior ofx(x)

x~x!;xl 11;~12u! l 11 for x→0,

x~x!;e2ax;ua for x→`,

into account, we seek the solution of Eq.~10! in the form

x~u!5ua~12u! l 11w~u!. ~13!

Here for the functionw(u) we obtain the hypergeome
ric equation

u~12u!w91~2a112~2a12l 13!u!w82~~2a11!

3~ l 11!2b2!w50. ~14!

Its finite solution in the limitu→1 has the form

w~u!5F~a111 l 1g,2nr ,2l 11, u!. ~15!

Here g5(a21b21 l ( l 11))1/2, nr52(a111 l 1g) is the
radial quantum number taking nonnegative integer valu
andF(j,h,z,u) is the hypergeometric function

F~j,h,z,u!5 (
m50

`
~j!m~h!m

~z!m

um

m!
. ~16!

The symbol (j)m is defined as

~j!m5j~j11!...~j1m21! for m.0,

~j!m51 for m50. ~17!

For nr50,1,2,... the hypergeometric series~15! degen-
erates into a polynomial with degreenr . Introducing as in
the case of the Coulomb potential the principal quant
numbern5nr1 l 11, which takes only positive integer va
ues, we obtain the discrete spectrum for any orbital quan
numberl
s

s,

m

Ẽn,l52
Z* 2

2n2 S 12
n22 l ~ l 11!

2Z* l D 2

~18!

(n51, 2, 3, ..., 0< l<n21!.
Expressing the effective chargeZ* in terms of the ion-

ization potentialI n,l
0 of an isolated atom or ion, we obtain th

ionization potential for an electron with quantum numbersn
and l with screening taken into account

Ĩ n,l52Ẽn,l5I n,l
0 S 12

n22 l ~ l 11!

2nl
A 1

2I n,l
0 D 2

. ~19!

As the particles of the plasma we may consider nega
ions of the chemical elements. Loss of electrons by such i
can also be examined within the framework of the mo
expounded above. In this case the ionization energyI n,l

0 is
the electron affinitye0 of isolated atoms of these chemic
elements. As a rule,e0!1 ~e.g., for hydrogene050.028!;
therefore, as follows from Eq.~19!, the relative lowering of
the electron affinity as a result of screening turns out to
still more significant than the lowering of the ionization p
tentials. Similarly, the critical value of the screening leng
lc , at which the renormalized electron affinity vanishes,

lc5
n22 l ~ l 11!

2nA2«0
~20!

turns out to be substantially greater than the critical scre
ing length for vanishing of the renormalized first ionizatio
potential~the Mott screening length!. This leads to the resul
that with growth of the temperature the density of negat
ions in the plasma falls significantly faster in comparis
with the situation where screening of the Coulomb inter
tion is not taken into account.

The above expressions for the ionization potentials a
the electron affinity were obtained by using the approxim
centrifugal potential~9!. The difference betweenUl(x) and
Ũ l(x) can be taken into account in perturbation theory. In
first-order theory

dUl~x!5Ul~x!2Ũ l~x! ~21!

and the correction to the energy of an electron with quant
numbersn and l is equal to

dEn,l5
l ~ l 11!

2l2

*0
`xn,l

2 S 1

x2 2
1

~ex21!2Ddx

*0
`xn,l

2 dx
. ~22!

Substituting the radial functionxn,l ~13! into expression
~22!, we writew2(u) as

w2~u!5(
j 50

2nr

bju
j . ~23!

Here

bj55 (
m50

j

amaj 2m , if j <nr ,

(
m5 j 2nr

nr

amaj 2m , if j .nr .

~24!
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The coefficientsam here are equal to

am5
~2g2nr !m~2nr !m

~2a11!mm!
. ~25!

Calculating the integrals arising in expression~22!, we
obtain

dEn,l5
l ~ l 11!

2l2

3

(m50
2n cm~m12a!ln~m12a!2(m50

2~n21!
dm

m12a12

(m50
2n

cm

m12a

.

~26!

The coefficientscm can be expressed in terms of th
coefficientsbm by way of the following formulas:
l<nr21

cm55 (
i 5o

m

~21! i S 2l 12
i Dbm2 i , if m<2nr ,

(
i 5m22nr

2l 12

~21! i S 2l 12
i Dbm2 i , if m.2nr ,

~27!

for l .nr 21

cm55 (
i 5o

m

~21!m2 i S 2l 12
m2 i Dbi , if m<2l 12,

(
i 5m22l 22

2nr

~21!m2 i S 2l 12
m2 i Dbi , if m.2l 12.

~28!
ac

iz
tio
In an analogous way the coefficientsdm can be ex-
pressed in terms of the coefficientsbm : for l<nr

dm55 (
i 50

m

~21! i S 2l
i Dbm2 i , if m<2nr ,

(
i 5m2nr

2l

~21! i S 2l
i Dbm2 i , if m.2nr ,

~29!

for l .nr

dm55 (
i 50

m

~21!m2 i S 2l
m2 i Dbi , if m<2l ,

(
i 5m22l

2nr

~21!m2 i S 2l
m2 i Dbi , if m.2l .

~30!

In expressions~27!–~30! we have used the standard b
nomial coefficient notation

S i
j D5

i !

j ! ~ i 2 j !!
. ~31!

The expression fordEn,l looks especially simple in the
casel 5n21 (nr50) corresponding to circular Coulomb o
bitals. For electrons with such quantum numbers
dEn,l5dEn,n215
l ~ l 11!

2l2

(m50
2n ~21!mS 2n

m D ~2a1m!ln~2a1m!2(m50
2n22 ~21!m

2a121m S 2n22
m D

(m50
2n ~21!m

2a1m S 2n
m D . ~32!
in
the

ing
and
ve
m.
of

-

m
nts
For largel the expression fordEn,l for all l is simply

dEn,l5
a l

2l2 ~33!

and the ionization potential with screening taken into
count for largel can be written in the form

I n,l5I n,l
0 S 12

n22 l ~ l 21!

2nl
A 1

2I n,l
0 D 2S 12

l

l
A 1

2I n,l
0 D .

~34!

RESULTS

The analytical expressions obtained above for the ion
tion potentials were used to calculate the first three ioniza
potentials of the alkali-metal atoms~Li, K, Na, Rb, and Cs!
-

a-
n

and inert gases~He, Ne, Ar, Kr, and Xe!. The relative low-
ering of the first ionization potential of the alkali metals
comparison with the case of an unscreened interaction in
isolated atoms is plotted in Fig. 1 as a function of screen
length, and of the second and third potentials, in Figs. 2
3, respectively. For the first ionization potential the relati
lowering turns out to be especially significant for cesiu
This is due to the fact that the principal quantum number
its valence electron (n56) is the largest of all the above
listed alkali metals for the orbital quantum numberl 50
~which is the case for all of them! and the first ionization
potential of an isolated atom is the lowest (I 6.0

0 53.893 V).
The relative lowering of the ionization potential of cesiu
turns out to be the largest for all of the chemical eleme
considered.
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The relative lowering of the two ionization potentials
helium and the first three ionization potentials of the ato
of the other inert gases~Ne, Ar, Kr, and Xe! are plotted in
Figs. 4, 5, and 6 as functions of the screening length. Am
the elements of this group the greatest relative lowering

FIG. 1. Relative lowering of the first ionization potential of lithium, sodium
potassium, rubidium, and cesium as a function of the interaction scree
length.

FIG. 2. The same as in Fig. 1 for the second ionization potential.
s

g
f

the ionization potentials obtains for Xe. For all the atom
considered this lowering decreases as the charge state o
ion increases: the lowering of the first ionization potential
the most significant. The ionization potentials of isolated
oms of all the elements are taken from Ref. 15.

Figure 7 plots the relative lowering of the electron affi
ity due to screening of the Coulomb interaction for the ser
of elements~H, He, Cs!. The relative lowering of the elec
tron affinity turns out to be substantially greater than t
lowering of the first ionization potential of these elements

ng

FIG. 3. The same as in Fig. 1 for the third ionization potential.

FIG. 4. Relative lowering of the first ionization potential of helium, neo
argon, krypton, and xenon as a function of the screening length in
plasma.
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FIG. 5. The same as in Fig. 4 for the second ionization potential.

FIG. 6. The same as in Fig. 4 for the third ionization potential.
This work was carried out with the financial support
the Russian Fund for Fundamental Research, Grants No
02-04535a and No. INTAS-94-1105.
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Probe diagnostics of strongly ionized inert-gas plasmas at atmospheric pressure
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The technique of probe measurements~experiment and theory! is applied in a dense, strongly
ionized inert-gas plasma at atmospheric pressure. The measurements are performed in a
high-current~250–550 A! free-burning argon arc with a thermionic cathode. As a control
technique we used spectroscopic measurements. Comparison of calculation with experiment
reveals good agreement. The possibility of determining the plasma potential from the
measured floating-probe potential is demonstrated. ©1998 American Institute of Physics.
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INTRODUCTION

Virtues of the probe method of plasma diagnostics
clude locality, the possibility to carry out measurements
devices from which extraction of light is hindered or com
pletely impossible, etc. In practice, only the probe meth
allows one to determine the plasma potential—the most
portant parameter in the study of processes occurring
the electrodes in various discharges. The latter circumsta
is the most important stimulus for ongoing studies directed
extending the range of plasma parameters accessible to p
diagnostics.

In a strongly ionized plasma at atmospheric press
probe measurements have been carried out for some
~see, e.g., Refs. 1 and 2!. However, the technique of carryin
out such measurements has still not been fully worked
This is frequently explained by the technical difficulties i
volved in performing the measurements~high heat flux den-
sities to the probe!, but mainly by difficulties of interpreta-
tion of the results by virtue of the absence of a consist
theory of current collection by the probe under these con
tions. The assertion made in Ref. 1 on the basis of o
qualitative arguments that the potentialVf of a floating probe
relative to the plasma in a strongly ionized, high-press
plasma has an absolute value ofuVf u5(261) V has been
widely accepted. However, this estimate, as results of re
calculations have shown,3,4 is probably incorrect even in or
der of magnitude, since a calculation givesuVf u>10 V.

Since measurements of the floating-probe potential r
tive to the electrode in atmospheric-pressure arc discha
usually give a valueuw f u<10 V, in the determination of the
cathode potential dropVk according to Ref. 1 it is possible t
obtain a value ofVk more than two times lower than th
value that follows from the calculation in Ref. 4. In the d
termination of the anode dropVa the choice of the correc
value of Vf is no less important, since not only the magn
tude but also the sign ofVa depend on it.

The aim of the present work is an experimental check
the theory developed in Ref. 4 and further developmen
the probe-measurement technique at high ionization leve
6601063-7842/98/43(6)/4/$15.00
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an atmospheric-pressure plasma. As the control techniqu
used spectroscopic measurements.

The experiments were carried out in a freely burni
atmospheric-pressure arc in argon, the most frequently u
plasma-forming material in plasma devices. Reference 4
sents results of calculations of the probe characteristics
xenon plasma. The present paper applies the theory de
oped in Ref. 4 to a calculation of the probe characteristics
an argon plasma.

EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUE

The experiments were performed in a water-coo
stainless-steel chamber with an inner diameter of 180
and a height of 200 mm. The chamber was first pump
down to a pressure ofp<1023 Torr, flushed with argon and
then filled with argon to 3–5% above atmospheric pressu
The arc was oriented vertically: a tungsten rod-shaped c
ode with diameterD52 mm was located below the arc, an
a flat copper water-cooled anode above it. Care was ta
not to sharpen the end of the cathode, which had the shap
a hemisphere. The interelectrode gap was 12 mm. The
onic emission from the cathode was generated by s
heating which was produced by a constant-current~50–70
A! auxiliary ~service! arc. The main pulsed discharg
source—a generator with low internal resistance, pump
out single rectangular current pulses withI<1000 A and du-
ration up to 5 ms—was connected in parallel with the serv
arc. The leading edge of the pulse was formed by transit
processes in the discharge and was;1 ms in duration. Mea-
surements were performed in the steady-state regime 3–
after onset of the pulsed discharge. The experimental setu
described in more detail in Ref. 5.

Spherical probes with diameter d[2a50.45
20.50 mm were fabricated from a tungsten wire 0.35 mm
diameter. The wire was insulated by Al2O3 ceramic 0.75 mm
in diameter. The area of the cylindrical part of the pro
extending out from the insulator did not exceed 15% of
area of the sphere. With the help of an electromagnet
probe was shot across the arc through the central zone o
arc channel with a speed of>1 m/s. During the motion of
© 1998 American Institute of Physics
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the probe a special device generated time markers w
were formed with the help of a comb-type light chopp
mounted to the shaft of the probe holder.

With the help of an S9-8 digital storage oscilloscope
recorded the time dependence of the floating-probe pote
w f relative to the grounded cathode or the ion currentI i

when a negative bias of 5–15 V relative tow f was applied to
the probe. The position of the probe was determined with
help of the time markers. As a result of the unavoidable
gap of the probe holder inside the solenoid of the elec
magnet, the accuracy of determination of the position of
probe was'0.3 mm. Measurements in each of the regim
were carried out in the form of a series of 8–10 oscillogram
after which the results were averaged, discarding outl
whose appearance was connected with the bias of the
channel. The position of the arc was monitored visually o
screen onto which its magnified image was projected.

Before commencement of the measurements a nega
bias of '20 V relative tow f was applied to the probe an
the probe was shot through the plasma several times. As
probe passed through the central part of the arc chann
cathode ‘‘spot’’ formed on the surface of the probe, clean
its surface without causing any noticeable erosion since
current was limited to 10 A. Such a preliminary cleani
prevented the appearance of spots on the probe during
current measurements which were carried out at somew
lower ~in magnitude! biases. Such cleaning was repeated
needed during the measurements.

To record the arc emission spectrum we used an MD
spectrometer joined to an OSA B&M Spektronik multicha
nel optical analyzer. The half-width of the instrument fun
tion of the spectroscopic setup~for the width of the entrance
slit <0.08 mm! was 0.12 nm. During the measurements
width of the entrance slit of the monochromator was se
0.15 mm, which ensured undistorted transmission of the
tual intensity distribution in the emission spectrum. A 25-n
segment of spectrum was recorded in each exposure.

With the help of a system of crossed mirrors and a tw
lens quartz condenser a reduced, horizontally oriented im
of the arc was formed in the plane of the entrance slit, wh
was scanned across the slit by rotating a plane-parallel qu
plate. We estimated the spatial resolution along the disch
axis to be<0.3 mm. The exposure time~temporal resolu-
tion! of the analyzer was varied within the limits 0.2–0.5 m
The delay of startup of the analyzer was chosen with
intention that the start of recording of the spectrum cor
spond to the moment the probe passed through the par
region of the discharge. The spectral sensitivity of the se
was measured with the help of an SI8-200U reference ba
lamp.

The probe and spectroscopic measurements were
performed simultaneously; however, processing of a la
quantity of measurements revealed good reproducibility
the arc burning regimes.

THEORY

The operation of the probe in dense plasma was pr
ously analyzed theoretically mainly in application to regim
ch
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where collisions of electrons with ions and neutrals do
affect the electron temperature distributionTe(r ) in the
probe sheath. In a large number of calculations the value
Te in the probe sheath was in general not determined but
assigned as a parameter~see, e.g., Refs. 6–9!. In fact, here it
was assumed thatTe coincides with the electron temperatu
in the unperturbed plasma. In the present work we calcula
for a different situation, typical of rather high pressures,
which as a consequence of intense collisions between
electrons and heavy particles a single temperatureT(r ) is
established in the main part of the probe sheath for both
electrons and the heavy component. This temperature dif
from the temperature of the unperturbed plasmaT` . First of
all, this difference is connected with a lowering of the tem
perature of the heavy particles in the probe sheath fromT` to
the temperatureT0 of the probe surface. Second, it is co
nected with a lowering of the electron temperature as a c
sequence of their motion toward the probe in a retard
electric field in a quasineutral plasma, and also with ene
losses by the electrons to ionization and overcoming the
tarding potential barrier in the Langmuir sheath of the pro
In the theoretical treatment the probe sheath region was
vided up into a series of layers in line with the role of th
predominant effects in them~in more detail see Refs. 4 an
10!. Under the conditions considered here the following
erarchy of characteristic lengths obtains:L0! l i!LM!Li

!LT!a. HereL0 is the thickness of the Langmuir sheath
the probe,l i is the mean free path of the ions,LM is the
Maxwellization length of the electrons,Li is the length of
single ionization of the argon atoms by the Maxwelliz
electrons,LT is the relaxation length of the temperature
the heavy component to the electron temperature. If
above sequence of inequalities is fulfilled, it is possible
analyze processes in the indicated regions separately, ta
into account the presence of narrower layers in the effec
boundary conditions. The inner layers forr<LT can be
treated as planar. Numerical calculations using a techni
we developed earlier4 were performed for a spherical prob
of radius a50.25 mm in an argon plasma at atmosphe
pressure.

The condition for realization of the indicated hierarch
of characteristic lengths, in addition to a high enough pr
sure, includes a comparatively high temperatureT` of the
plasma. In particular, if the conditionLi!LT is fulfilled, it is
necessary that the electron temperature in the ionization
gion exceed 2 eV~Ref. 4!. In this case the temperature of th
unperturbed plasma should exceed 2.5 eV. In this case
unperturbed plasma consists only of electrons and dou
charged argon ions Ar11, while in the intermediate region
Li!r ,a a transition takes place from single to double io
ization of the plasma. The extent of the corresponding tr
sition region under the conditions considered here excee
an order of magnitude the recombination length of the Ar11

ions with the electrons. This allows us to use the condition
local thermodynamic equilibrium~LTE! to determine the
composition of the argon plasma in the probe sheath ev
where forr .Li .

Calculated results are shown in Figs. 1 and 2. Figur
plots the calculated dependence of the electron current
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sity j e and ion current densityj i to the probe on the prob
potential Vp relative to the unperturbed plasma. Figure
plots the dependence of the floating-probe potentialVf ~rela-
tive to the unperturbed plasma! on the temperatureT` .

EXPERIMENTAL RESULTS

As was shown above, the criteria of applicability of th
theory are met in a plasma withT.2.5 eV. Such a tempera
ture in a freely burning atmospheric-pressure arc is reac
near the cathode. Earlier studies showed5 that the character
istic dimension of the region of plasma withT.2.5 eV for
I .250 A is '2 mm and grows as the current is increas
By virtue of this fact, measurements were carried out
I>250 A at a distancez0'1 mm from the cathode. As cal
culations have shown,4 the perturbations introduced by th
cold probe in the plasma relax at the distan
LT;1021 mm!z0 . The size of the current collection regio

FIG. 1. Density of the electron and ion current to the probe as function
the probe potential.T050.15 eV; T` , eV: 1—3.4, 2—3.2, 3—3.0, 4—2.8.
The points show the values of the floating-probe potentialVf .

FIG. 2. Dependence of the floating-probe potential on the plasma temp
ture T` . T050.15 eV.
ed

.
r

is on the order of the probe radiusa50.25 mm and is also
quite small in comparison withz0 . In addition, it should be
noted that near the cathode at distancesz,D there exists a
stagnation zone; a cathode jet, whose velocityv;104 cm/s
~Ref. 1!, is formed in the regionz>D. Therefore probe mea
surements near the axis of the arc channel at distan
a,z0,D can be assumed to be correct and can be comp
with calculations for an immobile plasma.

The probe measurements were carried out in the follo
ing way. For a given discharge current the floating-pro
potential w f relative to the grounded cathode was det
mined. Then, different negative biases~5–15 V! relative to
w f were applied to the probe and the ion current was m
sured. The dependence of the ion currentI i on time had a
wide maximum which corresponded to passage of the pr
through the paraxial region of the arc. The maximum va
of I i was reached near the arc axis. In the investigated
gimes we observed unmistakable saturation of the ion c
rent with increase of the magnitude of the negative bias
the probe relative tow f . The dependence of the saturatio
ion current densityj is measured in this way on the arc cu
rent I is plotted in Fig. 3.

The plasma temperature at the distancez0 from the cath-
ode on the discharge axis was measured as a function o
arc current by the method of relative line intensities witho
using the Abel inversion. As the results of Ref. 11 sho
under the conditions of our measurements the associate
ror of determination of the temperature does not excee
few percent. The high temperature of the near-cath
plasma was the reason for using the spectral lines of Ar
for diagnostic purposes. Isolated lines with known probab
ties of radiative transitions were chosen12 which had been
used earlier13,14 in arc plasma thermometry. In the workin
segment of the emission spectrum 315–340 nm against
background of the recombination–bremsstrahlung c
tinuum we distinctly observed the two triplets of Ar III~six
lines in all! 4s8 3D024p8 3F and 4s 5S024p 5P with ex-

of

ra-

FIG. 3. Saturation value of the ion current density to the probe as a func
of the arc current (z0'1 mm).
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citation potentials of the upper levels'28.1 V and
'25.4 V, respectively. However, for diagnostic purposes
were able to use only the Ar III line pairs with wavelengt
~333.61 and 330.19 nm! and ~333.61 and 328.58 nm!. Mea-
surements on other line pairs gave significant spread
unrealistically exaggerated values of the temperature. Th
a result of the impossibility of resolving the implement
spectral lines of Ar III and the near-lying lines of atom
tungsten and tungsten ion and also the lines of carbon
The presence of carbon was due to its removal from
cathode pin during arc burning, which was noted earlie5

The excitation temperature of the lines measured by
method under the conditions of our experiment coincid
with the plasma temperature.15

The spectroscopic measurements were used to cons
the dependence of the saturation ion current densityj is to the
probe on the plasma temperature~Fig. 4!.

DISCUSSION OF RESULTS

The calculated results plotted in Fig. 1 show that t
dependence of the logarithm of the electron current to
probe on the probe potential in a strongly ioniz
atmospheric-pressure argon plasma is substantially no
ear. An analogous result was also obtained in the cas
xenon.4 This has to do with the fact that the electron te
perature at the surface of the probe is lowered when
potential difference between the probe and the plasma is
creased, i.e., when the electron current is increased.
effect was discovered experimentally several years ago
investigated theoretically in the case of a strongly ioniz
low-pressure plasma.16 At a plasma density an order of mag
nitude lower than in the present work, the effect was sign
cant only when a large electron current was collected by
probe~in comparison with the ion current!, but for I e;I i the
probe characteristics turned out to be undistorted and
lowed us to determine the electron temperature.

Under the conditions investigated in the present wo
that is to say, in a strongly ionized atmospheric-press

FIG. 4. Dependence of the saturation value of the ion current density to
probe on the plasma temperature. Points—experiment, dashed cur
calculation.T0 , eV: 1—0.05,2—0.25.
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plasma a transitional segment of the probe characterist
distorted forI e;I i . What is more, the significant decrease
the ion current to the probe in comparison with the saturat
ion current atI e;I i ~Fig. 1! prevents us from using the mea
sured probe current–voltage characteristic to directly de
mine I e ~by extrapolatingI is!. All this makes the transitiona
segment of the characteristic unsuitable for diagnostic p
poses. Nevertheless, the plasma temperatureT` can be de-
termined by measuring the saturation ion current to
probe. Indeed, as calculation shows,j is is a sensitive func-
tion of the plasma temperature and depends only v
weakly on the surface temperature of the probe~the dashed
curves in Fig. 4!. This is important since during the measur
ments the surface temperature of the probeT0 varies in an
uncontrolled way. The maximum value ofT0 depends on the
residence time of the probe in the plasma and the pr
potential relative to the plasma. Estimates show that in
experiments the surface temperature of the probe could re
2500 K. The comparison of calculation with the results
experiment shown in Fig. 4 reveals good agreement.

The results obtained confirm that the theory developed
Ref. 4 adequately describes current collection by a float
probe in a strongly ionized atmospheric-pressure plasma
this work we have demonstrated the possibility of measur
the plasma temperature indirectly from measurements of
saturation ion current, and we have also demonstrated
possibility of determining the plasma temperature from m
surements of the potential of the floating probe.

The studies described in this paper were carried out w
the support of the International Science Foundation~Grants
No. R5D000 and R5D300!.
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Numerical calculation of the heavy-ion energy spectrum in the cathode sheath of a glow
discharge in a gas mixture

V. I. Kristya
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A numerical method is developed for solving the equation for the heavy-ion total-energy
distribution function in the cathode sheath of a glow discharge in an inert-gas mixture which
requires much less computer time than the Monte Carlo method. It is shown that it allows
one to calculate with satisfactory accuracy the energy spectrum of the heavy ions bombarding
the cathode in glow-discharge devices. ©1998 American Institute of Physics.
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In many gas-discharge devices such as gas lasers
displays, the working medium is a mixture of inert gas
containing a light gas with a small admixture of a heavy o
Their service life in many cases is a function of the catho
sputtering time, where the main contribution to the sputter
comes from ions of the heavy component.1,2 To model the
evolution of the emission surface of the cathode in suc
discharge, it is necessary to know the energy distribut
function of the ions of the heavy component of the mediu

The energy distribution function of the ions in the cat
ode sheath of the discharge has been calculated by analy
methods in a number of papers3–6 for a discharge in a pure
gas. However, as was shown in Ref. 7, the use of such a
distribution function to calculate the sputtering rate of t
cathode in a gas mixture can lead to qualitatively inva
results. On the other hand,8,9 Monte Carlo simulation of the
ion distribution function requires large amounts of compu
time, which limits the applicability of this method for mod
eling cathode sputtering in a glow-discharge plasma in
mixtures. In Ref. 10, I proposed an equation for the tot
energy distribution function of the ions of the heavy comp
nent of the mixture and found its analytical solution in t
continuous-slowing-down approximation for a heavy ion in
light gas. The expression I obtained there for the ion dis
bution function allows one with satisfactory accuracy to c
culate the cathode sputtering rate in a gas mixture. Howe
it does not describe a number of properties of the ac
distribution function of the ions~in particular, its high-
energy tail, due to the stochastic nature of the ion–atom
lisions, which is not taken into account in the continuou
slowing-down approximation for an ion in a gas!.

In the present paper I develop a method for numer
solution of the equation proposed in Ref. 10 for the distrib
tion function of the heavy ions which allows one to calcula
the energy spectrum of the heavy ions without using
continuous-slowing-down approximation and requires mu
less computer time than the Monte Carlo method.

When an ion moves in a gas of its own species in
cathode sheath of a discharge, the main ion–atom interac
is resonant charge transfer, whose cross section significa
6641063-7842/98/43(6)/4/$15.00
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exceeds the elastic collision cross section and the elec
ionization cross section of the parent atom. In a mixture c
taining only a moderate amount of heavy gas, the motion
the heavy ions can be strongly affected by their elastic c
lisions with atoms of the light gas between charge-trans
events on gas atoms of their own species. Nonreson
charge transfer on atoms of the light gas, on the other ha
can be ignored, since its cross section for inert gases at
energies below 1 keV is small.11

If the mass ratio of the atoms of the two components
large (MH /ML@1), then the deviation of the trajectories o
the heavy ions from the normal to the cathode surface will
small10 and their motion can be treated as one-dimensio
Thus, if we let thez axis be directed along the normal to th
cathode surface, the coordinatez50 correspond to the
boundary of the plasma with the cathode sheath, and
coordinatez5dc , to the surface of the cathode, then t
heavy-ion distribution functionf (z,«) in the cathode sheath
will satisfy the equation10

] f

]z
2e

]w

]z

] f

]«
5

1

lc
@d~«!2 f #1

1

le

3F E
«

«/~12g! f ~z,«8!d«8

g«8
2 f G ~1!

with the boundary conditionf (0,«)5d(«2«0), where lc

and le are the heavy-atom resonant charge-transfer len
and the elastic collision length of the heavy atoms with
light atoms,g54MHML /(MH1ML)2, w is the electric field
potential, and«0 is the ion energy at the boundary of th
cathode sheath.

Integration of Eq.~1! over « gives the ion flux conser-
vation law

E f ~z,«!d«51. ~2!

Replacing« by the new variable

s5«1ew~z!, ~3!
© 1998 American Institute of Physics
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we obtain from Eq.~1! an equation for the functionf (z,s),
which contains a derivative in only one variable

] f

]z
1F 1

lc
1

1

le
G f 5

1

lc
d~s2ew!1

1

le
E

s

sm f ~z,s8!ds8

g~s82ew!
,

~4!

where

sm5H @s2gew#/~12g!, s,«0~12g!1gew,

«0 , s>«0~12g!1gew.

Integrating Eq.~4!, we find

f ~z,s!5E
0

z

dz8 expF S 1

lc
1

1

le
D ~z82z!G

3F 1

lc
d~s2ew!1

1

le
E

s

sm f ~z8,s8!ds8

g~s82ew! G
1d~s2«0!expF2S 1

lc
1

1

le
D zG . ~5!

We represent the functionf (z,s) in the form

f ~z,s!5d~s2«0!expF2S 1

lc
1

1

le
D zG1h~z,s!. ~6!

The first term in expression~6! is the ion distribution
function of the primary ion beam entering the cathode she
from the discharge, and the second term is the distribu
function of the secondary ions formed in the cathode she
in charge-transfer and elastic collisions of the primary io
Substituting expression~6! into formula ~5!, we obtain an
equation forh(z,s)

h~z,s!5E
0

z

dz8 expF S 1

lc
1

1

le
D ~z82z!G

3F 1

lc
d~s2ew!1

1

le
E

s

sm

3
d~s82«0!exp@2~1/lc11/le!z8#1h~z8,s8!

g@s82ew~z8!#
ds8G .

~7!

After differentiating with respect toz it is possible to
reduce this equation to the form

]h

]z
52S 1

lc
1

1

le
Dh~z,s!1

1

lc
d~s2ew!1

1

le

3expF2S 1

lc
1

1

le
D zG u$s2@«02g~«02ew!#%

g~«02ew!

1
1

le
E

s

sm h~z,s8!

g~s82ew!
ds8, ~8!

whereu(x) is the Heaviside step function.
The boundary condition for Eq.~8! follows from the

boundary condition for the functionf (z,s) and has the form
h(0, s)50. The functionh(z,s), as follows from Eq.~3!, is
th
n
th
.

nonzero in the interval fromew(z) to «0 , and the condition
of ion flux conservation~2! after substitution of relation~6!
takes the form

E
ew

«0
h~z,s!ds512expF2S 1

lc
1

1

le
D zG . ~9!

To find a numerical solution to Eq.~8! we can use a
method similar to that proposed in Ref. 12 to solve the
netic equation for the electron distribution function in th
cathode sheath of a discharge.

We divide the interval@0, dc# along thez axis into n
segments of lengthDz5dc /n, whose end-points are equal t
zi5 iDz, i 50,1,...,n. We divide up the interval@ew(zi),«0#
of variation ofs in each cross sectionz5zi into m segments
of length Dsi5(«02ew(zi))/m, i.e., sk

i 5ew(zi)1kDsi ,
k50,1,...,m. In the first cross section, as follows from th
boundary condition for Eq.~8!, we haveh(z0 ,sk

0)50. To
find the values of the functionh(z,s) in other cross sections
from Eq.~8!, we can use the Cauchy–Euler method,13 which
gives

h~zi ,sk
i !5h~zi 21 ,sk

i !1hz~zi 21 ,sk
i !Dz. ~10!

The valuesh(zi 21 ,sk
i ) are determined by interpolatio

over the known valuesh(zi 21 ,sk
i ) for sk

i >s0
i 21 and are set

equal to zero forsk
i ,s0

i 21 . The functionhz(zi 21 ,sk
i ) is a

finite-difference approximation of the right-hand side of E
~8!

hz~zi 21 ,sk
i !52S 1

lc
1

1

le
Dh~zi 21 ,sk

i !1u~2sk
i 1s0

i 21!ak
i

1
1

le
expF2S 1

lc
1

1

le
D zi 21G u~sk

i 1«m
i 212«0!

«m
i 21

1
1

le
E

sk
i

tm
i h~zi 21 ,s8!

g@s82ew~zi 21!#
ds8, ~11!

where

«m
i 215g@«02ew~zi 21!#,

tm
i 5H @sk

i 2gew~zi 21!#/~12g!,

sk
i ,«0~12g!1gew~zi 21!,

«0 , sk
i >«0~12g!1gew~zi 21!.

The functionak
i describes the distribution of the ion

that have undergone charge transfer in the segment@zi 21 ,zi #
in the interval@s0

i ,s0
i 21#. The correct choice of its form, a

calculations show, has a substantial affect on the calcula
ion distribution function. SinceDz!le , this function can be
found from Eq.~8! in neglect of the elastic scattering of ion
at a distanceDz after charge transfer, which gives

ak
i 5

exp~zsk
i /lc!

lcew8~zsk
i !@exp~zs0

i 21/lc!2exp~zs0
i /lc!#

, ~12!

where the quantitieszsk
i , zs0

i , andzs0
i 21 are found from the

equations2ew(z)50 for s equal tosk
i , s0

i , ands0
i 21 . re-

spectively.
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To avoid nonconservation of the ion flux due to discre
zation errors, at each step inz the functionh(z,s) is renor-
malized on the basis of relation~9!. Using relations~6!, ~9!–
~12! successively fori 51,2,...,n, it is possible to find the
energy spectrum of the heavy ions over the entire exten
the cathode sheath from the boundary with the plasma to
cathode surface.

To estimate the accuracy of the proposed method of
lution of Eq.~1!, calculations were carried out without takin
into account the elastic collisions of the heavy ions with
light atoms (le@dc). In this case the velocities of the ion
are directed along thez axis, and the ion distribution func
tion, if the initial energy«0 of the ions at the boundary of th
cathode sheath is neglected, is given by3,10

f ~z,«!5
1

euw8@z0~«!#u Fd@z0~«!#1
1

lc

3expS z0~«!

lc
D GexpS 2

z

lc
D , ~13!

where the dependencez0(«) is given by «5e@w(z0)
2w(z)#.

The results obtained for the case of a quadratic dep
dence ofw(z) ~Refs. 3 and 14! @w(z)52Uc(z/dc)

2, where
Uc is the cathode potential drop# andm5n5100 are plotted
in Fig. 1, whence it follows that for the given number
divisions of the spatial and energy intervals of variation
the functionh(z,s) the numerical solution coincides quit
well with the exact solution. Therefore these values ofm and
n were used in further calculations of the ion distributi
function in the presence of elastic collisions, where an ex
solution of the problem is lacking.

Figure 2 plots the ion distribution function for three va
ues of the discharge current densityj in a 15:1 helium–neon
mixture at a pressure of 6 Torr and temperature of 300
(«054 eV, with the values ofUc and dc determined from
the Aston model1!, as found by the given method and
obtained by a two-dimensional Monte Carlo simulation
the motion of the ions in the cathode sheath by the techn
described in Ref. 10. It can be seen that the method of
culating the ion distribution function proposed here giv
results which are very close to the two-dimensional Mo
Carlo results. Computer time requirements using the o
dimensional model are roughly an order of magnitude le
and in contrast to the Monte Carlo method they do not gr
with the ratiodc /lc .

FIG. 1. Ion distribution function at the cathode surface, as calculated by
proposed method~solid line! and the exact solution~13! ~dashed line! in the
absence of elastic collisions of the heavy ions with the light atoms (lc /dc

50.313,le /dc@1!.
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Figure 3 plots the dependence of the cathode sputte
coefficient averaged over the ion energies

R5E Y~«! f ~dc ,«!d« ~14!

on the discharge current density, calculated on the basi
the ion distribution function found by different method
@Y(«5a(«2« t)

2 is the ion cathode sputtering coefficient1

« t is the threshold sputtering energy, anda is a constant for
the given kind of ions and cathode material#. There is good
agreement between the results obtained from the o
dimensional and two-dimensional models.

Consequently, the proposed method, based on a num
cal solution of the one-dimensional equation for the ion d
tribution function, allows one to calculate the energy sp

e

FIG. 2. Distribution function of ions of the heavy component at the catho
surface in a helium–neon mixture, calculated by the proposed me
~curves! and by the Monte Carlo method~histograms! for three discharge
regimes.j , mA/cm2: a—1.0, b—0.6, c—0.2;Uc , V: a—291, b—272, c—
250; dc , cm: a—0.230, b—0.269, c—0.409;lc /dc : a—0.313, b—0.226,
c—0.124;le /dc : a—0.125, b—0.090, c—0.050.

FIG. 3. Dependence of the cathode sputtering coefficient averaged ove
energy spectrum of the ions, on the discharge current density in a heli
neon mixture for« t530 eV, as found by the Monte Carlo method~points!,
by the proposed method~solid line!, and on the basis of the ion distributio
function ~13! for a single-component gas~dashed line!.
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trum of the heavy ions in the cathode sheath of a gl
discharge in an inert-gas mixture with satisfactory accur
and without the use of large amounts of computer time
can be used to create a self-consistent model describing
interaction with the cathode surface for a glow-discha
plasma of complicated composition.
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Motion of the cathode spot of a vacuum arc in an external magnetic field
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Russia
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The problem of the motion of the cathode spot of a vacuum arc electrical discharge in a
magnetic field applied tangential to the cathode surface is considered. The treatment is based on
concepts of the nonstationary, cyclical nature of processes occurring in the cathode spot
and the key role of return electrons falling out of the near-cathode plasma back onto the cathode.
© 1998 American Institute of Physics.@S1063-7842~98!01206-9#
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INTRODUCTION

In the present paper we consider the paradoxical p
nomenon of the retrograde motion of the cathode spot o
vacuum arc in a tangential magnetic field.1 This phenomenon
is attracting research interest because no generally acce
explanation has yet appeared. The existence and motio
the cathode spot is treated as an nonstationary, cyclical
cess of appearance and dying off of emission centers or
plosive centers.2,3 The direction of motion of the spot is th
direction in which a new center will preferentially arise
place of the old one. On the basis of these ideas we
attempt to explain the phenomenon of retrograde motion

MODEL OF RETROGRADE MOTION OF THE CATHODE
SPOT

Numerical modeling of the expansion of a plasma
from the emission center of a cathode spot has shown
there exists in the vicinity of the center a ring current carr
by return electrons moving from the plasma to the cath
and closed through the emission zone of the center~Fig. 1!.4

The motion of the return electrons forms current loops wh
together create a toroidal surface. The symmetry axis of
torus is perpendicular to the cathode surface and pa
through the center of the spot. The geometry of this arran
ment is shown in Fig. 2.

The process of formation of a new emission center
linked with the return electron current. Where this curren

FIG. 1. Geometry of an emission center:1—cathode,2—plasma, 3—
current lines.
6681063-7842/98/43(6)/5/$15.00
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greater, favorable conditions arise for the formation of a n
center.5 The direction of motion of the spot is toward th
region where the current of return electrons concentrates

The magnetic field created by the transport current fr
the emission centeri 1 can be estimated from the formula6,7

B15
m0

4p

2i 1

r
~1!

and is directed according to the ‘‘right-hand rule.’’ The ma
netic field of the currenti 2 of the return electrons is given b

B25
m0

4p

2i 2

r
, ~2!

and this field is nonzero only inside the current torus, wh
it adds together with the field of the forward current. In t
presence of an external magnetic field tangential to the c
ode surface, a torque equal to7

M5@pmBS#, ~3!

will act on each current loop. Here the square brackets
note the vector~cross! product,BS is the total magnetic field,
equal to the vector sum of all the fields, and the vector qu
tity pm is the magnetic moment of the current loop carryi
a currenti

pm5 iS, ~4!

whereS is a vector equal in magnitude to the area enco
passed by the loop and having the direction prescribed by
right-hand rule.

The torque will rotate the current loop in such a way th
the vectorspm andBS become parallel and the plane of th
loop becomes perpendicular toBS . The resulting action on
the current torus will have the direction shown in Fig. 2~F!,
i.e., the loop will tend to ‘‘swing around’’ to the ‘‘anti-
Ampère’’ direction, or the direction of maximum magneti
field. In addition, in a nonuniform magnetic field the curre
loop is acted on by the force

G5grad~pmBS!, ~5!

which pulls the loop into the region of higher magnetic fie
All this leads to a bunching up of the current lines and
© 1998 American Institute of Physics
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increase in the current density of the return electrons fr
the plasma to the cathode in precisely the retrograde di
tion.

If the external magnetic field is oriented at an angle w
respect to the cathode surface, then the picture of motio
the spot changes. The so-called Robson angle effect ar
This is illustrated in Fig. 3. Figure 4 shows a diagram elu
dating this phenomenon. In the given case the current l
not only swings around but also inclines relative to the ca
ode plane, tending to occupy the position in which its pla
becomes perpendicular to the magnetic field vector. Proc

FIG. 2. a—schematic depiction of the arrangement of current contour
return electrons about an emission center, b—view from above and to
side. Dashed lines depict reaction of the contours to an external tange
magnetic field. Arrows on rings show the direction of current. The direct
of motion of the electrons is opposite.
c-

of
es.
-
p
-
e
d-

ing from the diagram shown in Fig. 4, we can write down t
following relations:

A1A25R cosS p

2
2uBD , ~6!

and

w'arctanS R

R1r
cosS p

2
2uBD D . ~7!

HereR is the radius of the current ring andr is the radius of
the emission zone. Figure 5 provides a comparison of
picture developed above with experiment. Curves1 and 2
correspond to experiments with a dirty cathode surface
which the craters are small and relatively far apart.8,1 In this
case, relation~7! must be augmented by the conditio
R@r . The corresponding calculated curve~4! is also shown.

In experiments with a good vacuum and a well-clean
cathode surface the size of the craters is significantly gre
and they lie one on top of another~curve3!.9 In this case it
may be assumed thatR'r ~curve5!.

In addition to this, one more circumstance should
noted. The cathode is separated from the near-cath
plasma by a space-charge sheath in which the charged
ticles, electrons and ions, move without collisions. To d
scribe the particle motion in the sheath layer we will use
full system of Vlasov equations, with the goal of obtainin
the momentum and energy conservation laws of the parti
and the field. We write the Vlasov equations together w
Maxwell’s equations:

] f a

]t
1v•¹ f a1

ea

ma
~E1@vH# !¹v f a50, ~8!

¹•E5
1

«0
(
a

eaE f adv5
1

«0
(
a

ea^1&a , ~9!

@¹H#5«0

]E

]t
1(

a
eaE vf adv5«0

]E

]t
1(

a
ea^v&a ,

~10!

@¹E#52
]B

]t
, ~11!

¹•B50. ~12!

FIG. 3. Illustration of the Robson angle effect~1 is the track of a spot!.
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Here f a denotes the distribution function of particles
sort a ~electrons and ions from the plasma, electrons fr
the cathode!; ea and ma are the charge and mass of th
particles;E andH are the electric and magnetic field vecto
the magnetic field inductionB5m0H, «0 and m0 are the
electric and magnetic constants,¹5]/]x; ¹v5]/]v; the
angle brackets denote averaging over the corresponding
tribution function.

We multiply Eq.~8! by mav, integrate overv, and carry
out the sum overa. We then have

]

]t (
a

^mav&a1¹•(
a

^mavv&a

2(
a

ea~E^1&a1@^v&aB# !50. ~13!

Using Maxwell’s equation, we transform the two la
terms in Eq.~13!

E(
a

ea^1&a5«0E¹•E,

(
a

@^eav&aB#5@@¹H#B#2«0F]E

]t
BG ,

@E@¹E##5
1

2
¹E22E•¹E,

@@¹H#B#52
m0

2
¹H21mH•¹H.

We now rewrite Eq.~13! in the following form:

FIG. 4. Diagram elucidating the origin of the Robson angle.
;

is-

]

]t S (
a

^mav&a1«0m0@EH# D 1¹•(
a

^mavv&a

2«0E¹•E1
m0

2
¹H22m0H•¹H

1
«0

2
¹E22«0E•¹E2m0H¹•H50. ~14!

The last term in Eq.~14! has been added for symmetr
@to accommodate Eq.~12!#. According to the rules of vecto
calculus, we can write

A¹•A2
1

2
¹A21A•¹A5¹•S AA2

1

2
A2Û D , ~15!

where the expressionAA is a tensor~direct product of vec-
tors! and Û is the identity matrix.

Taking the above vector identity~15! into account, we
obtain from Eq.~14! the equation of momentum conserv
tion of the particles and field

]

]t H(
a

^mav&a1«0m0@EH#J 1¹•H(
a

^mavv&a

2S «0EE1m0HH2
«0E21m0H2

2
Û D J 50. ~16!

In an analogous way we obtain the equation of ene
conservation. Toward this end we multiply Eq.~1! by
(mav2)/2, integrate it overv, and carry out the sum overa.
We obtain

]

]t (
a

K mav2

2 L
a

1¹•(
a

K mav2

2
vL

a

2(
a

^eav•E&a50.

~17!

From Eq.~10!

(
a

^eav•E&a5@¹H#•E2«0

]E

]t
E. ~18!

Carrying out the vector product in Eq.~18!, we have

@¹H#•E52¹•@EH#2m0H
]H

]t
. ~19!

FIG. 5. Dependence of the Robson angle on the inclination angle of
external magnetic field relative to the cathode.1—Robson’s experiment:8

Al, 0.15 T, 1021 Torr, 28 A; 2—Kesaev’s experiment:1 Cu, 1 kOe,
1023 Torr, 1–10 A;3—Juttner’s experiment:9 Mo, C, 0.37 T, 1029 Torr,
10–300 A;4—formula ~7! for R@r ; 5—formula ~7! for R'r .
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Employing Eqs.~18! and ~19!, we write the equation of
energy conservation of the particles and field in the form

]

]t S (
a

K mav2

2 L
a

1
«0E21m0H2

2 D
1¹•S (

a
K mav2

2
vL

a

1@EH# D 50. ~20!

Note the following. The particles, electrons and ion
cross the space-charge sheath over times close to the
spective inverse plasma frequencies. At the plasma dens
near the center,n>1024 m23, these times are very short i
comparison with the characteristic lifetime of an explos
emission centert'1028 s ~Ref. 10!.

The dying out of a center is accompanied by a rapid d
of the current and the appearance of induced electric
magnetic fields. The correction to the fields associated w
this effect is given byr /(t1c), wherer is the radius of the
crater,t1 is the characteristic time of current drop, andc is
the speed of light.7 The corrections are substantial ifr /(tc)
>1. In our caser'1026 m, t'1029 s ~Ref. 10!, and
r /(tc),1025!1, i.e., it is possible to ignore the variation o
the fields associated with variation of the current and
only the time-independent forms of Eqs.~16! and~20! and of
Maxwell’s equations.

The particles in the cathode sheath are not magneti
however, in order to use the one-dimensional Vlasov eq
tions it is still necessary to show that the tangential com
nent of the electric field, associated with the Ohmic poten
drop at the cathode and in the near-cathode plasma due t
arc current, is small. The potential drop at the cathode
taken into account numerically within the framework of t
model described in Ref. 11. The calculations show that!
the potential drop is almost purely Ohmic, and thermoel
tric effects are small, b! the potential drop can reach a valu
<10 V, i.e., it is comparable with the cathode fall, and c! the
potential drop is concentrated within<1026 m of the emis-
sion zone.

The potential distribution in the near-cathode plas
was considered in Ref. 4. It was shown there that it also
an Ohmic character and that the field is concentrated o
scale of the order of 1026 m.

Thus, we can neglect the tangential~to the cathode!
component of the electric field in the cathode sheath and
the one-dimensional time-independent Vlasov equation
calculate the particle characteristics. We integrate the ti
independent form of Eq.~16! over the region indicated in
Fig. 6. It can be assumed that the particle velocities and
electric field in the sheath have only one component, para
to the symmetry axis~Fig. 1!. The volume integral over the
hatched region in Fig. 6 is transformed into an integral o
its surface. By virtue of the cylindrical symmetry of the sy
tem, integration over the end-faces yields the relation

2pE
r 2Dr

r

r 8dr8S (
a

^mav2&a2
«0E2

2 D
K

P

50, ~21!

since the magnetic field strength does not depend on thz
coordinate, which runs perpendicular to the cathode. The
,
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perscriptP and subscriptK together indicate the flux differ-
ence at the boundaries of the sheath with the cathode
with the plasma. Since the quantityDr is arbitrary, we finally
obtain

S (
a

^mav2&a2
«0E2

2 D
K

P

50. ~22!

Integration of Eq.~20! over the same region gives th
following expression:

rDr S (
a

K mav2

2
vL

a
D

K

P

1r 2

3E
0

L

@EH#2dz2r 1E
0

L

@EH#1dz50, ~23!

whereL is the thickness of the sheath, and the subscrip
and 2 correspond to the value of the function at the inner
outer radius of the hatched region in Fig. 6.

TakingDr 5r 12r 2 to be sufficiently small, we can write

r 2E
0

L

@EH#2dz2r 1E
0

L

@EH#1dz'Dr E
0

L

@EH#dz.

Thus, Eq.~23! can be rewritten as follows:

S (
a

K mav2

2
vL

a
D

K

P

1
1

r E
0

L

@EH#dz50. ~24!

Relation~21! is a consequence of balance of the mome
tum flux through the end-faces of the cylindrical shell in F
6. It allows one to determine the field strength at the cath
without solving Poisson’s equation in the sheath if the p
ticle characteristics are known.

Relation~24! shows that the energy flux transported
the particles normal to the cathode surface increases
increasing energy flux transported along the sheath by
field. Hence the possibility opens up of a new interpretat
of retrograde motion of the cathode spot. It is well know
that the retrograde motion takes place in the direction of

FIG. 6. Diagram of an emission center and the sheath layer separatin
cathode~1! from the near-cathode plasma~2!. The hatched regions represe
a cross section of the cylindrical cavity over which equations~16! and~20!
are to be integrated.
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maximum magnetic field. In this direction the vector@EH# is
also maximum and, consequently, the normal particle fl
toward the cathode has a large value, which in turn lead
a greater probability of appearance of new centers in
direction of the retrograde motion. The additional accele
tion of the particles in the sheath has an electrodynamic c
acter.

CONCLUSION

Thus, we can claim reasonable agreement of the exp
mental data with calculations based on our quite sim
model. A second mechanism, associated with the electro
namic character of the acceleration of the particles in
sheath layer separating the plasma from the cathode prob
plays a large role under dirty conditions, when the craters
widely separated from one another.

This work was supported by the Russian Fund for F
damental Research, Project No. 96-02-16194-a.
x
to
e
-
r-

ri-
e
y-
e
bly
re

-

1I. G. Kesaev,Cathode Processes of an Electric Arc@in Russian# ~Nauka,
Moscow, 1968!.

2G. A. Mesyats and D. I. Proskurovski�, Pulsed Electrical Discharge@in
Russian# ~Nauka, Novosibirsk, 1984!.

3G. A. Mesyats, Usp. Fiz. Nauk165, No. 6, 601~1995!.
4E. A. Litvinov, G. A. Mesyats, and A. G. Parfenov, Dokl. Akad. Nau
SSSR310, 344 ~1990! @Sov. Phys. Dokl.35, 47 ~1990!#.

5E. A. Litvinov, G. A. Mesyats, A. G. Parfenov, and A. I. Fedosov, Z
Tekh. Fiz.55, 2270~1985! @Sov. Phys. Tech. Phys.30, 1346~1985!#.

6R. P. Feynman, R. B. Leighton, and M. Sands,The Feynman Lectures on
Physics, Vol. 5, Electricity and Magnetism~Addison-Wesley, Reading,
Mass., 1965; Mir, Moscow, 1977!.

7R. P. Feynman, R. B. Leighton, and M. Sands,The Feynman Lectures on
Physics, Vol. 6, Electrodynamics~Addison-Wesley, Reading, Mass
1965; Mir, Moscow, 1977!.

8A. E. Robson, inProceedings of the IVth International Conference o
Phenomena in Ionized Gases, Uppsala, 1959, Vol. II b, pp. 346–349.

9B. Juttner, Thesis B. Academy of Sciences. Berlin, 1983.
10E. A. Litvinov, G. A. Mesyats, and A. G. Parfenov, Dokl. Akad. Nau

SSSR279, 864 ~1984! @Sov. Phys. Dokl.29, 1019~1984!#.
11S. A. Barengolts, E. A. Litvinov, A. G. Parfyonov, inProceedings of the

XIVth International Symposium on Discharge and Electrical Insulation
Vacuum, Santa Fe, New Mexico~1990!, pp. 185–186.

Translated by Paul F. Schippnick



TECHNICAL PHYSICS VOLUME 43, NUMBER 6 JUNE 1998
Onset of rotating stall in induction magnetohydrodynamic flows
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The possible onset of unsteady induction magnetohydrodynamic~MHD! flows in wide channels
or in channels of annular cross section is discovered on the basis of a proposed two-
dimensional mathematical model. Such secondary flows have the character of rotating stall,
which was previously known in high-pressure axial compressors. The existing experimental data
confirm the possibility of observing this phenomenon, which can be interpreted as a new
type of symmetry loss. It is shown for certain relations between the parameters that the system
has a lower margin of stability against disturbances of the rotating-stall type than against
steady-state disturbances. In particular, a loss of stability of a steady uniform flow can occur on
the descending portion of the external characteristic of the machine. ©1998 American
Institute of Physics.@S1063-7842~98!01306-3#
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INTRODUCTION

The loss of stability of uniform induction flows in mag
netohydrodynamic~MHD! channels and the properties of th
secondary flows that arise have hitherto been studied ma
on the basis of the so-called one-dimensional jet flow mo
which was first used for this purpose in Ref. 1. The m
results were described in detail in Refs. 2–5. At the sa
time, transverse velocities, which lead to the developmen
helical motion, were discovered in experiments devised
study the structure of the flows in channels of inducti
MHD machines.6,7 As was stressed in Ref. 8, the reason
the observation of the transverse velocities could not be
tablished unequivocally. This is because there was asym
try of the primary field with respect to the azimuth~the trans-
verse coordinate! in the experiments performed due to th
engineering constraints. The question of whether the tra
verse motions are caused by this asymmetry or appear
result of the instability of the symmetric problem remain
open, and an investigation of the stability of at least tw
dimensional motion was needed to resolve it. Such an
tempt was apparently undertaken for the first time in Ref
but the status of the results obtained is not entirely cle
since the stability of a uniform flow was studied in that wo
only with respect to a narrow class of disturbances, wh
wavelength was equal to or a rational fraction of the wa
length of the external traveling field.

The study of the properties of steady secondary flows
Refs. 4 and 5 demonstrated their remarkable similarity to
secondary flows in high-pressure axial compressors, wh
appear as a result of so-called ‘‘rotating stall.’’10 This simi-
larity encompasses both external integral characteristics~the
presence of an extended horizontal segment on them
operation in an ‘‘ideal pressure source’’ regime5! and the
flow structure ~the existence of internal boundary laye
separating a ‘‘cell,’’ in which the stream has a velocity d
fering strongly from the flow nucleus and is possibly ev
oppositely directed!. Such similarity points out the similarity
6731063-7842/98/43(6)/5/$15.00
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between the properties of the mathematical models of t
different physical phenomena. At the same time, the seco
ary flows in compressors are unsteady, have a helical c
acter, and the velocity cell formed moves across the width
the channel. The observed similarity between the phenom
provides some basis to assume that flows of such struc
can also exist in induction MHD channels. In the prese
work it is shown on the basis of a proposed two-dimensio
model in the long-wavelength approximation that instabil
of the rotating-stall type can be observed in induction MH
flows. A linear analysis, which permits drawing several co
clusions regarding the character of its appearance as a f
tion of the of the parameters of the problem, is perform
The previously studied, steady secondary flows are also
scribed by the two-dimensional system used as special c
of possible solutions for definite relations between the
rameters.

MATHEMATICAL MODEL

The flow of the conducting fluid in an induction MHD
channel, whose scheme has been presented, for examp
Ref. 4, is investigated. Here and below the notation and
rections of the coordinate axes correspond to those ado
in Refs. 4 and 5. We shall use the so-called plane-para
field model~Ref. 11, p. 155!, assuming that there is only on
magnetic field component normal to the channel wall,

B5~0,0,b̃~x,y,t !exp@ i ~ax2Vt !# !,

b̃~x,y,t !5ba1 ibr , ~1!

which corresponds to the fundamental mode of the exte
electromagnetic field traveling along the channel axisB0

5Bm sin(ax2Vt). This approximation is natural for chan
nels of small height with walls having a high magnetic pe
meability. Unlike the so-called jet model, despite the ax
symmetry of the machine, we allow the possibility of th
existence of an azimuthal velocity component, i.e., we
V5(u,v,0). Substituting~1! into the induction equation
© 1998 American Institute of Physics
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DB2ms
]B

dt
1ms curl~V3B!52curl j 0 , ~2!

~d is the Laplacian operator!, we obtain for the relative value
of the complex amplitude of the magnetic inductionb
5b̃/Bm

@A11A2#b5 i ,

A15
]2

]y2 2«
]

]t
211 i«~12u!,

A25
]2

]x2 12i
]

]x
2«u

]

]x
2«v

]

]y
, ~3!

where«5msV is the magnetic Reynolds number,A1 is the
operator corresponding to the jet flow model, andA2 is an
additional operator which is conditional on the presence
an azimuthal component of the velocityV and the possibility
of that the field amplitude can vary along thex axis.

We note that in~2! j 0 is the extrinsic current density

curl j 052
]2B0

]x2 52a2Bm i exp@ i ~ax2Vt !#.

The equations of motion are averaged with respect to
period and wavelength of the external traveling electrom
netic field. After application of the averaging operator

1

T E
0

T

•dt
1

2t E
0

2t

•dx,

whereT52p/V and t5p/a, the equations of motion fo
the principal velocity component, which varies slowly
comparison to the variation of the external field, take
form

zS ]u

]t
1u

]u

]x
1v

]u

]yD
52

]p

]x
1

j 2

« S ba2ba

]ba

]x
2br

]br

]x D2uAv21u2,

zS ]v
]t

1u
]v
]x

1v
]v
]y D

52
]p

]y
2

j 2

« S ba

]ba

]y
1br

]br

]y D2vAv21u2,

]u

]x
1

]v
]y

50, ~4!

where j is the relative current density due to the volta
supplied andz is the hydraulic inductance of the pump.

Here, as in the jet model, only the turbulent flow at t
wall @the last terms of the first two equations in~4!# is taken
into account in view of the small height of the channel.

Equations~3! and~4! are supplemented by the periodi
ity conditions

bux505bux5L , buy505buy5S ,

]b

]xU
x50

5
]b

]xU
x5L

,
]b

]yU
y50

5
]b

]yU
y5S

,

f

e
-

e

vux505vux5L , vuy505vuy5S , ~5!

which can be interpreted either as the conditions for a cy
drical induction MHD channel closed into a torus or as t
natural boundary conditions for wide and long channe
HereL andSare the relative length and width of the chann
respectively. The velocity of the external traveling field@v#
5V/a was taken as the velocity scale in~3!–~5!, and @ t#
51/V and @b#5Bm were taken for the time and the mag
netic induction, respectively. We note that the applicabil
of the model~3!–~5! just formulated is restricted by the av
eraging procedure used, which requires weak variation ob
andv over lengths of the order of 2t and times of the order
of T, i.e., the problem is solved in the ‘‘long-wavelength
approximation.

LINEAR ANALYSIS. SYSTEM OF EQUATIONS SPECIFYING
NEUTRAL SURFACES

The problem~3!–~5! admits a solution corresponding t
a steady flow that is uniform with respect to both coor
nates:

u5u0 , v050, ba05
«~12u0!

«2~12u0!211
,

br052
1

«2~12u0!211
,

S ]p

]x D
0

5
j 2~12u0!

«2~12u0!211
2u0uu0u. ~6!

We seek solutions of the form

U5U01dU5U01C exp@ i ~2pmy/S12pnx/L2vt !#,

~7!

where

U5S u
v
ba

br

p

D , U05S u0

v0

ba0

br0

p0

D , C5S c1

c2

c3

c4

c5

D ,

which branches off from the uniform solution~6!. After lin-
earizing the problem~3!–~5! in the vicinity of ~6! and plug-
ging in ~7!, we obtain a system of linear equations, who
determinant equals

D5uDiku,

where

D115 i«v2k1
22k2

2212 i«k2u0 ,

D1252«~12u0!22ik2 ,

D135«br0 , D1450, D1550,

D215«~12u0!12ik2 ,

D225 i«v2k1
22k2

2212 i«k2u0 ,

D2352«ba0 , D2450, D2550,
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D3152
j 2

«
~12 iba0k2!, D325

i j 2

«
br0k2 ,

D335zu0k2i 12uu0u2 ivz, D3450, D355 ik2 ,

D415
i j 2

«
k1ba0 , D425

i j 2

«
br0k1 , D4350,

D445 izu0k21uu0u2 ivz, D455 ik1 ,

D5150, D5250, D535 ik2 , D545 ik1 , D5550.

Here we have introduced the following new notation:k1

52pm/S andk252pn/L are wave numbers, which expre
the relative density of the waves appearing along the w
and length of the channel, respectively. The condition for
existence of nontrivial solutions leads to a system of t
nonlinear equations

Re~D!50, Im~D!50,

from which the branch pointu0 and the stall rotation fre-
quencyv are determined. The expanded form of this syst
is

R3uu0u~R11k1
2!2zR1R2R42k1

2 j 2@ba0«~12u0!

1br0~R111!#50,

R4uu0u~R11k1
2!1zR1R2R32k1

2 j 2@2ba0k21«br0R2#50,
~8!

where

R15k1
21k2

2 , R25k2u02v,
e

lie
s

s
m
ne
a
st
it
o
s
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th
e
o

R35~R111!21«2~12u0!22«2R2
224k2

2 ,

R452«@R2~R111!12~12u0!k2#.

ANALYSIS OF THE SYSTEM SPECIFYING THE BRANCH
POINT

As we have already noted, the mathematical mo
adopted is applicable only in the case ofk2!1 andv!V
because of the procedure used to average the equation
motion. In this context the form of the asymptotic formu
for v andu0 at small values ofk2 is of interest. After sub-
stituting the series

v5v01v1k21O~k2!, u05u0
11u0

~2!k2
21O~k2

2!

into ~8! and equating the terms with identical powers ofk2 ,
in a first approximation we obtain

v050, 2uu0
1uG~G1K221!2 j 2~G2K21!50, ~9!

whereK511k1
2, G511«2s2, ands512u0

1.
Expression~9! is the familiar equation for determining

the branch points of stationary solutions.1 Thus, the previ-
ously investigated steady flows comprise a subset of the
lutions of the two-dimensional model, whose branch poi
are determined from~8! whenk250. Equating the terms o
order k2 in the second equation and of orderk2

2 in the first
equation gives the following expressions:

v15
Gu0

1@4«~Ku0
112s!1z~K21«2s2!#2« j 2~2s2u0

1!

G@4«u0
1K1z~K21«2s2!#1« j 2 ,
u0
~2!52

G@~K21«2s2!u0
112k1

2u0
1~2K2«2W224!22z«k1

2W~KW12s!#1k1
2 j 2

2k1
2@~K21«2s2!~G22u0

1«2s!22Gu0
1«2s1 j 2«2s#

,

e
s of
the

pa-
whereW5u0
12v1 . It is seen that the phase velocity for th

propagation of long waves along the channelc5v/k25v1

does not depend on the wavelength.
The case of large currents due to the voltage supp

( j→`) is also of practical interest. The asymptotic expre
sion then has the simple form

u0512
Ak1

21k2
211

«
1d~ j !, v5k2~3u022!1d~ j !,

whered( j )→0 and j→`.
The system~8! was solved numerically by Newton’

method in the general case. The calculations were perfor
mainly for the pump operating regime of an MHD machi
0,u0,1. The problem of flow in a channel closed into
torus is apparently artificial and is not of practical intere
therefore, we at once turn to an analysis of flow in an infin
tube of annular cross section. This corresponds to the c
tinuous variation of k2 and the discrete set of value
k152pn/L5A¸n, n51,2,3... . Figure 1 shows the neutr
curves, i.e., plots of the dependence ofu0 at the branch point
d
-

ed

;
e
n-

on k2
2 for various values ofz and the mode numbern. The

nonmonotonic character of theu0(k2
2) curves appearing for

fairly large values ofz is of fundamental importance for th
analysis. It means that the region for the existence of flow
the rotating-stall type can be wider than the region for
existence of steady secondary flows, for whichk250. Un-
steady flows should be observed experimentally for such

FIG. 1. Dependence ofu0 on the square of the wave numberk2
2 for «54,

j 2540, A¸50.1, andz55 ~a!, 10 ~b!, and 20~c! in the pump regime for
various azimuthal mode numbersn51 ~1!, 2 ~2!, and 3~3!.
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FIG. 2. Critical value of the angular frequenc
v ~1a!, the square of the wave numberk2

2 ~2a!,
andu0* ~b! as functions of the hydraulic induc
tancez for k150.1, «54, andj 2540. The plot
was constructed for the region of maximum
pressure values in the pump regime.
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case
rameters, since the stability reserve of the system tow
such disturbances is minimal.

Figure 2 shows the dependences of the critical val
u* 5max(u0), v, andk2

2 on z. The vertical line in Fig. 2a and
the horizontal line in Fig. 2b correspond to the highest va
of u0 possible for the steady uniform flow~6! in the pump
regime. The intersection of these lines by theu* (z), v(z),
andk2

2(z) curves attests to the possibility of a loss of stabil
on the descending branches of the external character
Such behavior is impossible for steady secondary flows.2–4 It
is known that branching external characteristics which
smoother than those predicted by the one-dimensional th
are observed experimentally. They do not exhibit a char
teristic peak in the vicinity of the branch point. The possib
ity of the branching of a static external characteristic on
descending portion can lead to smoothing of that peak. T
becomes conclusively clear after a nonlinear analysis
complete numerical determination of the external charac
istics of the unsteady secondary flows.

The limiting case of flow between parallel plates, whe
both wave numbersk1 and k2 vary continuously, is also
interesting. Figure 3 shows the neutral surfaceu0(k1

2 ,k2
2)

corresponding to the zeroth damping decrement of the
turbances for this case as an example. It is seen that it h
maximum corresponding to the critical point for the loss
stability for the parameters taken. The instability appears
the descending portion of the external characteristic, but
fairly large values ofk2

2 ~0.4–0.7! at the critical point force
us to question the applicability of the model used for stu
ing the stability of flow between plates, at least for quanti
tive calculations. A rigorous analysis calls for studying t
stability of a system which has not been averaged with
spect to time and the wavelength. This leads to the nee
solve the far more complex eigenvalue problem for eq
tions with variable coefficients.

We note that axial symmetry leads to equivalence of
stall rotation directions, i.e., small disturbances with eith
the azimuthal wave numberk1 or 2k1 are always possible
However, as is seen directly from system~8!, the sign ofk2

does not vary, i.e., the direction of motion of a wave trav
ing along thex axis always coincides with the direction o
motion of the external field.
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EVOLUTION OF FINITE DISTURBANCES

The results obtained demonstrate the possibility, in pr
ciple, of the appearance of secondary unsteady induc
MHD flows of the rotating-stall type. However, at least tw
important questions can be solved only as a result of
consideration of finite, but small disturbances. It is not cle
first, whether the instability studied can lead to the twisti
of an axisymmetric flow and, second whether the waves~7!
appearing can quench one another and lead to a wave w
is standing in the azimuthal direction, rather than to a ‘‘tra
eling cell.’’ In fact, as follows from a linear analysis, afte
the loss of stability at the critical point, the main part of
disturbance of the uniform solution will have the form

d U5h j 1U1 exp@ i ~k2x1k1y2vt !#1h j 2U1

3exp@ i ~k2x2k1y2vt !#1c.c.~O~«!!, ~10!

where c.c. denotes the complex-conjugate terms.
The amplitudesj 1 and j 2 are determined from the con

ditions of solvability of the equations for the next terms
the expansion ofd U into a series in the supercriticalityh2

5u0* 2u0 . These conditions from a so-called system
branching equations, which has the same form as in the

FIG. 3. The neutral surfaceu0(k1
2 ,k2

2) for z511.3, «54, and j 2540.
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of the loss of stability of a hot jet.12 As follows from the
basic principles of symmetry and is indicated by the prelim
nary analysis performed, the system of branching equat
has solutions of the form

j 150, u j u2
25 j 2, ~11!

j 250, u j u1
25 j 2, ~12!

which correspond to the generation of rotating stall with ce
moving in opposite directions, and the solution

j 1
25 j 2

25b2, ~13!

which corresponds to a wave which is standing in the a
muthal direction and traveling in the longitudinal directio
The helical waves corresponding to solutions~11! and ~12!
lead to deformation and twisting of the mean flow already
the next approximation with respect to« using the Reynolds
directions (u1•¹)u1 and nonlinear friction in~4!. An analy-
sis of the stability of these solutions near the neutral cu
reveals which of the two regimes, i.e.,~11! and ~12! with
twisting or ~13! without twisting, is realized. The stability o
the solutions~11!–~13! will depend on the relation betweenj
andb, which, in turn, can be defined in terms of the para
eters of the original system~3! and ~4!. This analysis is our
next subject of investigation.

We note that the steady flows generated by the evolu
of the perturbations~7! for k250 and their external charac
teristics were constructed completely in Ref. 2 and that th
stability was demonstrated in Ref. 3 within the on
dimensional jet model. However, it is not known wheth
they are stable in the two-dimensional model~3!–~5!. Dis-
placement of the branch points of the nonstationary soluti
to the right, into the region of negative slope of the sta
external characteristic for a uniform flow, leads to the fa
that some stationary solutions of~4! can be totally absen
over a fairly broad range of variation of the external lo
after the loss of stability of the uniform flow.

CONCLUSIONS

In summary, we formulate the main conclusions follo
ing from the analysis performed.

1. Twisting helical flows of the traveling-wave type ca
appear along with the previously studied static second
flows in induction MHD channels.

2. The appearance of secondary flows of such a kind
-
ns

s

i-

e

-

n

ir
-
r

s
c
t

ry

as

several similarities to so-called rotating stall, which has p
viously been described for high-pressure compressors.

3. At fairly high values of the hydrodynamic inductanc
the region for the existence of such twisting flows can
wider than that of steady secondary flows.

4. At fairly high values of the twisting hydrodynami
inductance, flows can also appear on the descend
branches of static external characteristics in the pump
generator regimes, but this is ruled out for steady second
flows.

5. In all likelihood, the analysis performed accounts f
the previously observed twisting of the flows in the chann
of cylindrical induction MHD machines and the smoothin
of the external characteristics of the secondary flows in co
parison to the flows predicted by the one-dimensional
model.

6. The further study of rotating stall in induction MHD
flows will involve a nonlinear analysis in the vicinity of th
neutral curve and numerical construction of nonstation
solutions and the corresponding external characteristics
from the branch point. In addition, a refinement of the p
posed mathematical model, which would eliminate the c
straints on the density and velocity of the traveling wav
caused by the procedure used to average the equation
motion, is possible.
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The two-phase equilibrium states of a current-carrying thin superconducting film in the case of
convective heat transfer on the free surface are considered, and their stability is investigated
in a first approximation. It is shown that of the two equilibrium states, the state with the normal-
phase region of larger size is stable. In the limiting case of an infinitely long film, the
stable two-phase equilibrium state tends to a spatially uniform normal state, and the unstable
state remains localized. In a definite range of values of the system parameters, the
relaxation time of such a formation can be fairly long, and it should be regarded as a quasistable
equilibrium state. ©1998 American Institute of Physics.@S1063-7842~98!01406-8#
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INTRODUCTION

One of the problems associated with the developm
and use of cryoelectronic devices is thermal destruction
the superconducting state, which is accompanied by the
mation of a normal phase in the superconducting region
Ref. 1 such nonuniform equilibrium states were examined
reference to one-dimensional and planar structures as
most widely encountered elements in cryoelectronics. In p
ticular, the following was demonstrated in Ref. 1, where
idealized model of a thin superconducting film carrying
alternating current and immersed in a cooling medium w
investigated. At values of the Stekly parameters exceeding
the critical valuesc , along with the uniform superconduc
ing state there are nonuniform equilibrium states, in wh
the central part of the film is in the normal state. Because
the so-called external nonlinearity of the system~the discon-
tinuity of the parameters and the source density on the ph
boundary!, at s.sc there are two such double-fronted no
uniform equilibrium states.

In situations where the existence of some element o
cryoelectronic device in a nonuniform state is a necess
condition for its operation, as, for example, in Franze
bolometer,2 the problem of the stability of a localized norm
state arises, which was not investigated in Ref. 1. T
present work is devoted to an analysis of the stability of
stationary solutions obtained in Ref. 1 against symme
perturbations of the temperature field and an investigatio
the asymptotic behavior of the two equilibrium states.

DYNAMICAL MODEL OF THE SYSTEM

We consider the thin superconducting film carrying
alternating current in Fig. 1, whose central portion is in t
normal state. Let the film be immersed in a thermostat fil
with a liquid or a gas, and let the entire system, with t
exception of the film, have a temperature below the criti
value and be in thermal equilibrium. We examine the cas
which the nonuniform temperature field of the film is on
6781063-7842/98/43(6)/7/$15.00
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dimensional. We introduce the following notation for the d
viation of the temperature of the superconducting film fro
the thermostat temperature:Ts(x,t) is the deviation of the
temperature in the superconducting region;Tn(x,t) is the
deviation of the temperature in the region of the norm
phase. It is clear that the stationary distribution of the te
perature is symmetric relative to the plane passing thro
the middle of the filmx5d. Let the system deviate from th
equilibrium state in the initial moment so that the tempe
ture distribution remains symmetric, as before. In this c
the boundary-value problem for determining the temperat
field of the superconducting~S! and normal~N! phases has
the form

FIG. 1. Superconducting film in the circuit of an ac source with convect
heat transfer on the free surface. The deviation of the film temperature in
two-phase state from the thermostat temperature is shown. Ins
displacement of the phase boundary upon perturbation of the temper
field.
© 1998 American Institute of Physics
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cVsṪs5lsTs922
a

h
Ts ,

cVnṪn5lnTn91r0~11bTn! j 222
a

h
Tn ,

Ts~0,t !50, Tn8~x,t !ux5d50,

Ts@xb~ t !,t#5Tn@xb~ t !,t#5Tc ,

lsTs8~x,t !ux5xb~ t !5lnTn8~x,t !ux5xb~ t ! . ~1!

Here cVs , cVn , ls , andln are the heat capacities per un
volume and the thermal conductivities of the supercondu
ing and normal phases, respectively;r0 is the resistance o
the normal phase;b is the temperature coefficient of resi
tance; j 2 is the period-averaged value of the square of
current density;a is the heat transfer coefficient,h is the
thickness of the film,xb is the coordinate of the phase boun
ary, andTc is the critical temperature. The last terms on t
right-hand sides of Eqs.~1! take into account the heat los
due to convective heat transfer on the surface. In addition
view of the small value ofh, we assume that there is n
thermal resistance or temperature gradient along a norm
the surface.

Going over to the normalized variablesQ5T/Tc and
j5x/d, we bring the problem~1! into the dimensionless
form

d2

as
Q̇s~j,t !5Qs9~j,t !22BisQs~j,t !,

d2

an
Q̇n~j,t !5Qn9~j,t !2kQn~j,t !1K,

Qs~0,t !50, Qn8~j,t !uj5150,

Qs@jb~ t !,t#5Qn@jb~ t !,t#51,

lsQs8@j,t#uj5jb~ t !5lnQn8@j,t#uj5jb~ t ! . ~2!

Here Bi5ad2/hl is the product of the intrinsic Biot numbe
ad/l and the similarity criterion of parametric formd/h,
and k52Bin2br0 j 2d2/ln and K5r0 j 2d2/lnTc are auxil-
iary parameters. We seek the solution of the problem~2! in
the form of a sum of the stationary and nonstationary so
tions

Q~j,t !5Q̄~j!1u~j,t !, jb~ t !5 j̄b1jb~ t !, ~3!

whereu(j,t) is a small symmetric perturbation of the equ
librium state:

u~ j̄b ,t !/Q̄~ j̄b!!1. ~4!

It is not difficult to show~Fig. 1! that the displacement of th
coordinate of the phase boundaryjb(t) for such a perturba-
tion of the temperature field will also be small. Then t
continuity conditions of the problem~2!, which are written
preliminarily as
t-

e

in

to

-

Q̄s@ j̄b1jb~ t !#1us@ j̄b1jb~ t !,t#

5Q̄n@ j̄b1jb~ t !#1us@ j̄b1jb~ t !,t#51,

ls$Q̄s8@ j̄b1j~ t !#1us8@ j̄b1j~ t !,t#%

5ln$Q̄n8@ j̄b1j~ t !#1us8@ j̄b1j~ t !,t#%, ~5!

can be expanded in a Taylor series in the vicinity of the po
j̄b with respect to the variablejb(t).3 After discarding the
terms which are nonlinear with respect to the perturbatio
we obtain a linear approximation of the continuity cond
tions:

Q̄s~ j̄b!1Q̄s8~ j̄b!jb~ t !1us~ j̄b ,t !

5Q̄n~ j̄b!1Q̄n8~ j̄b!jb~ t !1un~ j̄b ,t !51,

ls@Q̄s8~ j̄b!1Q̄s9~ j̄b!jb~ t !1us8~ j̄b ,t !#

5ln@Q̄n8~ j̄b!1Q̄n9~ j̄b!jb~ t !un8~ j̄b ,t !#. ~6!

Separating the stationary and nonstationary component
the problem~2!, with consideration of~6! we have

Q̄s9~j!522BisQ̄s~j!50, Q̄n9~j!2kQ̄n~j!1K50,

Q̄s~0!50, Q̄n8~j!uj5150,

Q̄s~ j̄b!5Q̄n~ j̄b!51, lsQ̄s8~j!uj5 j̄b
5lnQ̄n8~j!uj5 j̄b

; ~7!

d2

as
u̇s~j,t !5us9~j,t !22Bisus~j,t !,

d2

an
u̇n~j,t !5un9~j,t !2kun~j,t !,

us~0, t !50, un8~j,t !uj5150,

us~ j̄b ,t !1Q̄s8~ j̄b!jb~ t !5un~ j̄b ,t !1Q̄n8~ j̄b!jb~ t !50,

ls@us8~ j̄b ,t !1Q̄s9~ j̄b!jb~ t !#5ln@un8~ j̄b ,t !1Q̄n9~ j̄b!jb~ t !#.
~8!

The stationary problem~7! was considered in Ref. 1
where it was shown that the system has only the unifo
solutionQ̄(j)50, which corresponds to the superconducti
state of the film, for values ofs5K/k that are smaller than
the critical valuesc . When s@sc , the problem~7! has
nonuniform solutions of the form

Q̄s~j!5
sinhA2Bisj

sinhA2Bisj̄b
~m!

; j, j̄b
~m! ,

Q̄n~j!5s1~12s!
coshAk~12j!

coshAk~12 j̄b
~m!!

; j. j̄b
~m! ,

~9!

where s5K/k has the same meaning as the Ste
parameter1! s05 j 2roh/2aTc for a classical superconducto
to which it is related by the equalitys5s0 /(12bTcs0).

The coordinate of the phase boundaryj̄0
(m) is defined as

the root of the equation
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cothA2Bin
s0

s
~12 j̄b!cothA2Bisj̄b5~s21!Aln

ls

s0

s
.

~10!

For planar structures based on classical supercondu
the number of equilibrium statesm in the supercritical region
(s.sc) is equal to two. According to Ref. 1, more than tw
stationary states are permissible for high-temperature su
conductors. It should be stipulated that we are dealing w
multifronted two-phase states, whose analysis requires
propriate formulation of the boundary-value problem.

INVESTIGATION OF THE STABILITY OF NONUNIFORM
STATIONARY STATES

To determine the stability of the two-phase states in
first approximation we seek solutions of the problem~8!. The
last two boundary conditions of this problem assign the c
tinuity of the nonstationary components of the temperat
and the heat flux on the phase boundary. Let us cons
these conditions in greater detail.

Substitution of the solution sought in the formu(j,t)
5V(j)exp(nt) into the continuity condition for the tempera
ture leads to the following law for the motion of the pha
boundary:

jb~ t !52
Vs~ j̄b!

Q̄s8~ j̄b!
exp~nt !,

jb~ t !52
Vn~ j̄b!

Q̄n8~ j̄b!
exp~nt !. ~11!

Eliminatingjb(t) from ~11! and taking into account tha

Q̄s8~ j̄b!

Q̄n8~ j̄b!
5

ln

ls

, ~12!

we transform the first of the continuity conditions into th
simpler condition

Vs~ j̄b!

Vn~ j̄b!
5

ln

ls

. ~13!

We write the continuity conditions for the heat flux wit
consideration of~11! as

FVs8~j!

Vs~j!
2

Q̄s9~j!

Q̄s8~j!
G

j5 j̄b

5FVn8~j!

Vn~j!
2

Q̄n9~j!

Q̄n8~j!
G

j5 j̄b

. ~14!

Separating the variables in~8! and replacing the conti
nuity conditions by~13! and ~14!, we arrive at the Sturm–
Liouville problem

Vs9~j!5ms
2Vs~j!, Vn9~j!5mn

2Vn~j!,

Vs~0!50; V8~j!uj5150,
Vs~ j̄b!

Vn~ j̄b!
5

ln

ls

,

FVs8~j!

Vs~j!
2

Q̄s9~j!

Q̄s8~j!
G

j5 j̄b

5FVn8~j!

Vn~j!
2

Q̄n9~j!

Q̄n8~j!
G

j5 j̄b

, ~15!

where
rs

er-
h
p-

a

-
e
er

ms
25

d2

as
n12Bi, mn

25
d2

an
n1k.

The solutions which satisfy the first three boundary co
ditions have the form

Vs~j!5C sinh msj, ~16!

Vn~j!5C
ls

ln

sinh msj̄b

coshmn~12 j̄b!
coshmn~12j!, ~17!

whereC is a constant.
Substituting~9!, ~16!, and ~17! into the last boundary

condition, we obtain an equation for the eigenvalues of
operators~15!

ms coth msj̄b1mn tanhmn~12 j̄b!

5A2Bis tanhA2Bisj̄b1Ak cothAk~12 j̄b!. ~18!

Thus, to determine the stability of the stationary so
tions of~9!, we must find the roots of the characteristic equ
tion ~18! for the corresponding values ofj̄b .

FURTHER IDEALIZATION OF THE MATHEMATICAL MODEL

The analysis of Eq.~18! in its general form is a fairly
formidable problem; therefore, we shall confine ourselves
an investigation of the two-phase state of a supercondu
with a low temperature coefficient of resistance in a sm
vicinity of the transition point. In this case the thermal co
ductivities of the superconducting and normal phases, as
as the Biot numbers, can clearly be assumed to be eq
ls5ln , Bis5Bin[Bi. In view of the small value ofr0b, it
is permissible to takek52Bi and setmn5ms[m and to
thereby significantly simplify Eq.~18!:

m@coth mj̄b1tanhm~12 j̄b!#5A, ~19!

where

A5A2Bi @ tanhA2Bij̄b1cothA2Bi~12 j̄b!#. ~20!

Now the proof of the stability of the stationary solution
reduces to calculatingm for assigned values ofj̄b and Bi and
determining the sign of the parameter

n5
a

d2 ~m222Bi!. ~21!

The left-hand side of Eq.~20! is a function of the com-
plex variablem5m81 im9, while the right-hand side of the
equation, which is an implicit function of the control param
eterA5A@ j̄b(s)#, does not depend onm. Separating the rea
and imaginary parts in~20! and eliminatingA, we arrive at
the equation



orresponds

681Tech. Phys. 43 (6), June 1998 A. S. Rudy 
FIG. 2. Dependence of the roots of the characteristic equation on the coordinate of the phase boundary: a—the solid line in the upper half plane c
to the position of the first root of Eq.~23! on the imaginary axis, and the dotted line corresponds to the position on the real axis. Biot number:1—2, 2—1,
3—0.1; b—second root of Eq.~23!.
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m9 coshm8 cosm91m8 sinh m8 sin m9

m8 coshm8 cosm92m9 sinh m8 sin m9

5
coshm8 sin m91coshm8~2j̄b21!sin m9~2j̄b21!

sinh m8 cosm91sinh m8~2j̄b21!cosm9~2j̄b21!
.

~22!

The results of a numerical search for roots of Eq.~22!
indicate that the equation does not have any complex r
and that all the points of the spectrum lie either on the r
axis or on the imaginary axis. Alternately settingm5 im9
andm5m8 in ~21!, we arrive at the following equations:

2m9 cosm9

sin m91sin~2j̄b21!m9
5A2Bi~ tanhA2Bij̄b

1cothA2Bi~12 j̄b!!,

2m8 coshm9

sinh m81sinh~2j̄b21!m8
5A2Bi@ tanhA2Bij̄b

1cothA2Bi~12 j̄b!#.

~23!

The first of Eqs.~23! has an infinite number of rootsmk9 ,
two of which are shown in Figs. 2a and 2b. It is seen fro
Fig. 2a that the first pair of complex-conjugate roots6 im19

tends to zero asj̄b increases. At the value of the Stek
parameter for whichj̄b5jc , where jc is the root of the
equation

A2Bij̄b@ tanhA2Bij̄b1cothA2Bi~12 j̄b!#51, ~24!

the first pair of roots moves over to the real-number ax
The negative root moves over to the positive semiaxis
vice versa. Thus, the second of Eqs.~23! has a single pair of
roots.
ts
l

.
d

The stability of the equilibrium states~9! is determined
by the further course of them8( j̄b) curve. As is shown in
Fig. 3, the plot ofj̄b(s0) is symmetric relative toj50.5;
therefore, in one of the equilibrium states, for examp
m51, we always havej̄b,0.5, while in the other equilib-
rium statej̄b.0.5. It is easy to see that upon passage o
real root through the pointj50.5, i.e., upon passage from
one equilibrium state to the other,n changes sign for any Bi
For this reason, in the second of Eqs.~23! we must setj̄b

50.5 and solve it numerically with respect tom2. The plot
of m25m2(2Bi) in Fig. 4 shows that, regardless of the Bi
number, reversal of the sign ofn1 always occurs atj̄b50.5
and, therefore, the second equilibrium state is always
stable.

FIG. 3. Dependence of the coordinate of the phase boundary on the S
parameter. Bi:1—0.1, 2—0.5, 3—1, 4—3, 5—7.



e

-

n

ur
n
m

e

-

ity
ty,
era-

n-
eters
f

or

682 Tech. Phys. 43 (6), June 1998 A. S. Rudy 
In the rangej̄b, j̄c , where all the eigenvalues of th
operator ~16! are imaginary@mk5 imk9( j̄b)#, the solutions
~17! and ~18! of the boundary-value problem~8! have the
form

Qs~j,t !5 (
k51

`

Ck sin~mk9j!exp~nkt !,

Qn~j,t !5 (
k51

`

Ck

ls

ln

sin~mk9j̄b!

cosmk9~12 j̄b!
cosmk9~12j!exp~nkt !,

~25!

wherenk52 as /d2 (m9k
212Bi) is negative and the equilib

rium states are stable.
When j̄b. j̄c , the first eigenvalue of the operator~16!

becomes real@m15m18( j̄b)#, and the solutions~25! trans-
form into

Qs~j,t !5C sinh~m18j!exp~n1t !

1 (
k52

`

Ck sin~mk9j!exp~nkt !,

Qn~j,t !5C
ls

ln

sinh~m18j̄b!

coshm18~12 j̄b!
coshm18~12j!

3exp~n1t !1 (
k52

`

Ck

ls

ln

sin~mk9j̄b!

cosmk9~12 j̄b!

3cosmk9~12j!exp~nkt !. ~26!

When j̄b.0.5, the sign ofn changes, and the solutio
~26! becomes exponentially unstable.

INVESTIGATION OF THE ASYMPTOTIC BEHAVIOR OF THE
STATIONARY SOLUTIONS

Let us conclude with a discussion of the physical nat
of an unstable equilibrium state. For reasons of convenie
we move the origin of coordinates to the center of the fil
Then the stationary solutions~9! transform into

FIG. 4. Plot ofm2(2Bi) at the branch point of the stationary solutions f
s5sc .
e
ce
.

Q̄s~j!5
coshA2Bis~12j!

sinhA2Bis~12 j̄b
~m!!

,

Q̄n~j!5s1~12s!
coshAkj

coshAkj̄0
~m!

, ~27!

and the condition~10! takes the form

cothA2Bin
s0

s
j̄b cothA2Bis~12 j̄b!5~s21!Aln

ls

s0

s
.

~28!

Assuming thatj̄b
(1), j̄b

(2) , we consider them52 state.
As the length of the film tends to infinity, i.e., when th
system becomes degenerate with respect tod, the coordinate
of the free boundaryj̄b

(2) also tends to infinity, and the tem
perature of the normal phase~27! tends to a spatially uniform
distribution:

Q̄n~j!5s. ~29!

It follows from ~29! that the solution~27! corresponds to
a state whose inhomogeneity is caused only by the proxim
of the boundary. When the latter is moved away to infini
the system tends to the normal state with a uniform temp
ture distribution.

In the case ofm51, the limiting transitionx̄b→` leads
to the expressions

Q̄s~x!5expA2a

hls
~ x̄b

~1!2x!,

Q̄n~x!5s1~12s!
coshA2as0 /hlnsx

coshA2as0 /hlns x̄b
~1!

, ~30!

where

x̄b
~1!5Ahln

2a

s

s0
arctanh~s21!Aln

ls

s

s0
. ~31!

FIG. 5. Locally nonuniform equilibrium state of an infinite thin superco
ducting film. The temperature field corresponds to the system param
b50, s53, and 2a/hln5106. The additional plots illustrate the law o
equal areas.
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The same expressions were obtained in Ref. 4 as s
similar solutions describing a localized, spatially nonunifo
equilibrium state of an infinitely long superconducting fil
~Fig. 5!.

It is noteworthy that relation~31!, like ~10!, follows di-
rectly from the energy conservation law. It is not difficult
obtain these relations by equating the total quantity of h
evolved and the heat loss in the system. For a film of infin
length, relation~31! allows the following simple geometric
interpretation. We find the areasS1 and S2 of the hatched
objects in Fig. 5:

S15E
0

x̄b
Q̄n~x!dx5~s21!Ahln

2a

s

s0
tanhA 2a

hln

s0

s
x̄b ,

S25E
x̄b

`

Q̄s~x!dx5Ahls

2a
. ~32!

EquatingS1 and S2 , we obtain~31! again, whence it
follows thatS15S2 . The latter relation is a specific additio
to the law of equal areas.5

Self-sustained localized nonuniform formations in dis
pative systems are customarily called autosolitons. In Re
the equilibrium state defined by~30! and~31! was interpreted
as an autosoliton normal phase, since the question of its
bility had not been investigated at that time. The same s
was obtained above as an asymptotic form of an unst
solution when the system became degenerate; therefor
can be expected that it also remains unstable in the case
film of infinite length.

Let us investigate the asymptotic behavior of the char
teristic equation defined by~19! and~20!. When the origin of
coordinates is displaced toj51, Eqs.~19! and ~20!, which
were written for the right-hand half plane (j.0), transform
into

x̄bAcvs

ls
n1

2a

lsh
cothAcvs

ls
n1

2a

lsh
~d2 x̄b!

2 x̄bA2a

lsh
tanhA2a

lsh
~d2 x̄b!

52 x̄bAcvn

ln
n1

2a

lnh
tanhAcvn

ln
n1

2a

lnh
x̄b

1 x̄bA 2a

lnh
cothA 2a

lnh
x̄b . ~33!

We assume that the thermal conductivities of the t
phases are equal (ls5ln5l) and that the specific heat un
dergoes a jump upon passage into the superconducting
(cvs5cvn1Dc). Introducing the notation

z5 x̄bAcvn

l
n1

2a

lh
, y5 x̄bA2a

lh

and allowing the film length to tend to infinity (d→`), we
obtain

zF tanhz6A11
Dc

cvn
S 12

y2

z2D G2y~coth y61!50,

~34!
lf-

at
e

-
4

ta-
te
le
, it
f a

-

o

ate

where the plus sign corresponds to the right-hand ph
boundary.

Equation~34!, like ~22!, does not have complex roots
and only one root exists for realz, it being such thatz.y.
Hence it follows that the parameter

n5
l

cvnx̄b
2 ~z22y2!

is always positive and that the solution defined by~30! and
~31! is unstable.

This result means that the localized nonuniform equil
rium state considered in Ref. 4, is not a stationary autos
ton. It cannot appear spontaneously, and the artificially c
ated temperature distribution defined by~30! and ~31! is
unstable. On the other hand, it is clear that at large value
the variables the implicitly assigned function~34! tends to
the explicit formy5z. Settingz2y5«, where«!1, it is
not difficult to obtain the following estimate:

«'
4

21Dc/cnv
z exp~22z!,

n5
l

x̄b
2

8

2cn1Dc
z2 exp~22z!, ~35!

according to which the characteristic exponent of the so
tion ~26! is practically equal to zero wheny@1. Such a qua-
sistable nonuniform formation can remain long-lived ev
for comparatively small sizes of the normal region (x̄b

;1023 m).

CONCLUSIONS

The results of the analysis performed allow us to st
that of the nonuniform equilibrium states found in Ref. 2 f
a thin current-carrying superconducting film, the state wh
corresponds to a normal-phase region of larger size is sta
The fact that the stability was investigated only with resp
to symmetric perturbations is not significant in the pres
case, since of the two equilibrium states only one is gener
unstable.

In the equilibrium states with a normal phase of smal
dimensions the conditions on the film boundary weakly
fluence the heat balance, and the nonuniform solution
mains localized upon passage to a film of infinite leng
This solution is also unstable in an infinitely long film, b
the relaxation time to the locally uniform equilibrium sta
can be fairly long when the parameters of the system h
certain values. The instability of a given equilibrium sta
means that spontaneous localization of the normal phase~the
formation of a stationary autosoliton! is impossible in the
system under consideration. Thin films based on new su
conductors may be more promising in this sense. As w
shown in Ref. 2, more than two equilibrium states are p
sible in films with a large temperature coefficient of res
tance; therefore, it would be interesting to investigate
asymptotic behavior of the corresponding stable solution
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1!The dimensionless quantitys0 , which serves as a measure of the ratio
the characteristic flux of heat evolvedj 2r0dV to the heat removal rate
a(Tc2T0)dS in superconductors with a transport current, is called
Stekly parameter. In particular, for thin films based on classical super
ductors s05 j 2r0h/2a(Tc2T0). As was shown in Ref. 1, the ratios
5K/k can serve as the Stekly parameter for materials with a large t
perature coefficient of resistance.
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Collinear light scattering on dipole-exchange spin waves in inhomogeneous
ferromagnetic films
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A theory is developed for the collinear TE–TM scattering of optical waveguide modes on dipole-
exchange spin waves in perpendicularly magnetized ferromagnetic films that are
inhomogeneous across their thickness. It is found in homogeneous ferromagnetic films and in
films with small deviations from homogeneity that the TE–TM scattering on higher spin-
wave modes is strongest when the synchronism conditions for the transverse phases and for the
longitudinal and transverse wave vectors are satisfied. When the thickness of the planar
optical waveguide does not match the thickness of the ferromagnetic film, the phase synchronism
condition is violated with the resultant appearance of an oscillating type of dependence of
the TE–TM scattering on the spin-wave mode number. The scattering of light on spin-wave modes
in films with a magnetization gradient is investigated in the presence of turning points for
the magnetostatic potential. It is found that the existence of a turning point in the region of the
antinode for the optical modes leads to an increase in the scattering amplitude. The
formation of inhomogeneous magnetooptical structures and superlattices based on
~Lu,Y,Bi!3~Fe,Ga!5O12 is discussed. ©1998 American Institute of Physics.
@S1063-7842~98!01506-2#
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INTRODUCTION

The interaction of light with spin waves in iron garn
film has been studied intently in recent years. This inter
tion can be utilized for both practical and research purpo
for ultrahigh-frequency optical modulators and for studyi
the spin-wave processes occurring in iron garnet thin film
The results of investigations of the noncollinear interact
of optical waveguide modes with spin waves and TE–T
mode conversion were presented in Refs. 1 and 2. The
tures of the TE↔TM conversion of optical modes upon co
linear scattering were studied in Refs. 3–7 by both theor
cal and experimental methods. A theoretical analysis of
diffraction of optical modes on surface and bulk spin wav
for an arbitrary angle of incidence of the optical mode w
conducted in Ref. 8. The purpose of the present work is
take into account the exchange interaction accompanying
scattering of optical waveguide modes on spin waves in
homogeneous ferromagnetic films. The exchange interac
must be taken into account, if the inhomogeneous ferrom
netic film has a layer with a turning point for the magne
static potential of the spin wave. The magnitude of the va
able magnetic moment is greater in this layer than in ot
layers, leading, in turn, to an increase in the scattering of
optical waveguide modes.

This paper is divided into three parts. The first two pa
describe the properties of dipole-exchange spin waves
present the dispersion relations and eigenfunctions of op
waveguide modes. In the third part the optical-mode c
pling equations are derived, and the conditions for achiev
maximum TE–TM scattering are analyzed for various fi
structures with homogeneous and inhomogeneous ferrom
6851063-7842/98/43(6)/6/$15.00
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netic layers. The formation of inhomogeneous magnetoo
cal structures and superlattices based
~Lu,Y,Bi!3~Fe,Ga!5O12 is discussed.

1. DIPOLE-EXCHANGE SPIN WAVES

Let us consider a perpendicularly magnetized ferrom
netic planar structure of thicknessd with magnetic and di-
electric parameters that are inhomogeneous across its th
ness~Fig. 1!. The 0z axis is perpendicular, and the 0x and
0y axes are parallel to the film surface. We assume that
spin-wave and optical modes propagate along the 0x axis.

FIG. 1. Geometry of a planar structure for collinear light scattering on s
waves: f—ferromagnetic layer;1, 2—cladding and transitional nonferro
magnetic layer with the thicknessesdc andds ; A—antenna used to excite
the spin waves.
© 1998 American Institute of Physics
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Spin waves are described in the magnetostatic approxima
by the magnetostatic potentialw(x,z,t), which is found from
the equations9

]M

]t
52gFM•

dH
dM G ,

div~h14pm!50, ~1!

where

H5E F2M ~H1h!12p~M ,n!22
1

2
ba~M ,n!2

2
1

2
a

]M

]r i

]M

]r i
GdV ~2!

is the effective classical dipole-exchange Hamiltonia
M5M01m(x,z,t) is the magnetic moment density~M0

does not depend onx and t, and um(x,z,t)u!M0!, g is the
gyromagnetic ratio,Hi0z is the external constant magnet
field, h(x,z,t)52¹w(x,z,t) and w(x,z,t) are the variable
magnetic field and the magnetostatic potential of the s
wave,a is the exchange coupling constant,ba specifies the
uniaxial anisotropy fieldHa5ba(M ,n)n with the n axis,
which is perpendicular to the film surface, the ter
2p(M ,n)2 in ~2! describes the energy of the demagnetiz
magnetic field of the film, and]/]r i is an abbreviated form
for writing the derivatives]/]x, ]/]y, and]/]z.

The system of equations~1! was investigated in Ref. 10
in a linear approximation with respect tom(x,z,t) for the
case of films that are inhomogeneous across their thick
with the magnetic parametersg(z), a(z), M0(z), and
Ha(z). The calculation of TE–TM scattering on a spin wa
requires finding the distribution ofm across the thickness o
the ferromagnetic structure. We shall consider ferromagn
films that are homogeneous and weakly inhomogene
across their thickness, as well as ferromagnetic films wit
magnetization gradient across their thickness. In the la
case it is assumed that the magnetostatic potentialw of the
spin wave has a turning point within the film.

A. Ferromagnetic films that are homogeneous a
weakly inhomogeneous across their thickness.We assume
that the spin-wave frequencyv is far from the ferromagnetic
resonance frequencies of any layer of the ferromagnetic fi
In this case the potentialw does not have turning point
within the film, and the magnetic susceptibility tensorx ik(v)
does not have singular points. Ferromagnetic structures
are weakly inhomogeneous across their thickness are un
stood to be structures with weak deviationsDx ik from the
mean valuesx̄ ik ~Ref. 10!. The small value ofDx ik /x̄ ik

makes it possible to use perturbation theory, where the
approximations for calculating the dispersion relations a
the magnetostatic potential are the dispersion relations
the potentialw of a homogeneous film with the mean para
etersx̄ ik , ḡ, ā, M̄0 , andH̄a . The expansion parameters a
the Dx ik /x̄ ik , which, in turn, are determined by the relativ
deviationsDg/ḡ, Da/ā, DM0 /M 0̄, andDHa /H̄a .

The spin-wave eigenfunctions of a homogeneous fi
are
on

,

in

ss

ic
us
a
er

d

.

at
er-

st
d
nd
-

w~x,z,t !5~2p!21wn~z!exp~ ikx1 ivnt !, ~3!

where

wn~z!5Pn5
cos@kz

~n!~z2d/2!

1~n21!p/2# ~0<z<d!,

~21!n21
kz

~n!

k0
~n! exp@ uku~d2z!# ~z.d!,

kz
~n!

k0
~n! exp~ ukuz! ~z,0!,

~4!

n51,2,3,... is the mode number,Pn is the normalization
parameter,k0

(n)25k21kz
(n)2 , k is the wave vector, andkz

(n) is
defined by the relation

2 cot kz
~n!d5

kz
~n!

uku
2

uku
kz

~n! . ~5!

The dispersion relation for thenth mode has the form

vn
25~V1gaM0k0

~n!2!~V1gaM0k0
~n!2

1g4pM0k2/k0
~n!2!, ~6!

whereV5g(H24pM01Ha).
Taking into account the values of the group velocityvg

(1)

of the first mode andkz
(n) for uku!p/d ~Ref. 10!, it follows

from the dispersion relation~6! that the dispersion curves o
the first and higher modes cross when

kn5agM0kz
~n!2/vg

~1!5ap~n21!2/d3. ~7!

The second equality in~1! gives the relation between th
variation of the magnetic moment densitymx(z) and the
magnetostatic potentialwn(z) of the nth mode:

mx~z!5
ik0

~n!2

4puku
wn~z!. ~8!

For a weakly inhomogeneous ferromagnetic film, in
first approximation with respect to the degree of deviation
the magnetic parameters from the parameters of the ho
geneous film structure the dispersion relation of a spin w
is specified by the expression

vn5^nuV~z!1g~z!M0~z!~a~z!k0
~n!212pk2/k0

~n!2!un&,
~9!

where^nu f (z)u l &[*0
dwn* (z) f (z)w l(z)dz with the normaliza-

tion factorsPj5(d/21uku/k0
( j )2)21/2 ( j 5n,l ).

To determine the coupling coefficient of TE and T
modes for scattering on a spin wave it is convenient to re
the normalization of the eigenfunctionswn(z) ~4! to the en-
ergyU (n) of the spin wave per unit area of the film. Accord
ing to Ref. 11, the energy of a spin waveU (n) is related to
the magnon number densityNn :

U ~n!5E
0

d

Nn\vndz5E
0

d m̄x
2vn

2gM0
dz ~10!

~the bar denotes a time average!.
With consideration of~3!, ~4!, and~8!, from ~10! we find

the normalization parameter
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Pn5
~4p!2uku

k0
~n!2 A 2gM0U ~n!

vn~d12uku/k0
~n!2!

. ~11!

B. Ferromagnetic films with a magnetization gradie
across their thickness.Let us consider a ferromagnetic film
with linear variation of the magnetization 4pM054pM̄0

2m(z2d/2) and the frequency range in which there is
turning point for the potentialwn within the ferromagnetic
film structure. According to Ref. 10, the distribution o
m65mx6 imy across the thickness is described by the
pression

m6~z!5
i uku

w~0! Fv2
6~z!E

0

z w~j!

a~j!
v1

6~j!dj

1v1
6~z!E

z

d w~j!

a~j!
v2

6~j!djG , ~12!

where w(0) is a Wronskian, v1
6(z)5Ai @(m/aM̄0)1/3(z

2z0
6)# andv2

6(z)5Bi@(m/aM̄0)1/3(z2z0
6)# are Airy func-

tions, andz0
65@7v/g2ak2M̄02H14pM̄02Ha(0)#/m.

The substitution ofm6(mx ,my) into the second equality
in ~1! gives an integrodifferential equation inw(z). This
equation was solved numerically. The dispersion relat
v(k) was found from the requirement thatw(z) and
]w(z)/]z be continuous on the boundary of the ferroma
netic film. Outside the filmw(z);exp(2ukzu).

Whenk→0, we can employ a simplified formula spec
fying vn ~Refs. 12 and 13!:

vn5min V~z!1g@2p2m2aM̄0~n21/2!2#1/3, ~13!

where

V~z!5g~z!@H24pM0~z!1Ha~z!#.

In this approximation the turning pointzr is given by the
relation

zr5@2p2aM̄0~n21/2!2/m#1/3. ~14!

Normalization of the eigenfunctionswn(z) per unit of
the energy density of the spin waveU (n), which is needed to
compare the TE–TM scattering amplitudes in different f
romagnetic structures, was found numerically using E
~10! and ~12!.

2. OPTICAL WAVEGUIDE MODES

The equations describing TE and TM optical wavegu
modes and the effects of TE↔TM conversion are obtained
from Maxwell’s equations.14 We consider the case in whic
the diagonal component of the dielectric constant«0(z) is a
function only ofz and is much greater than the off-diagon
components. The off-diagonal components take into acco
the gyrotropic effects, i.e., the dependence onm(x,z,t):15

«0~z!@« l j 5 igel jkmk~ t !~ lÞ j !, ~15!

whereg5F flA« f /pM0 , F f is the Faraday coefficient,l is
the wavelength of the light in a vacuum,« f is the mean value
of «0(z) in the ferromagnetic film,el jk is a totally antisym-
metric tensor, andl , j ,k5$x,y,z%.
t

-

n

-

-
s.

e

l
nt

The equations for the TE and TM modes are derived
analogy to the equations for the TE and TM modes in
planar structure in Refs. 14 and 15 by taking the Four
transform with respect tot and retaining the first terms of th
approximation with respect to« l j /«0 ( lÞ j ). A TE mode is
completely characterized by the field componentEy :

S ]2

]z2 1
]2

]x2 1
«0~z!vTE

2

c2 DEy1
ivTE

2

c«0~z!vTM

3S «yx*
]Hy

]z
2«yz*

]Hy

]x D50. ~16!

A TM mode is completely characterized byHy :

«0~z!
]

]z S 1

«0~z! *
]Hy

]z D1
]2Hy

]x2 1
«0~z!vTM

2

c2 Hy1«0~z!

3F ]

]z S «xz

«0~z!2 *
]Hy

]x D1
]

]x S «zx

«0~z!2 *
]Hy

]z D G
1

ivTM«0~z!

c F ]

]z S «xy

«0~z! * EyD2
]

]x S «zy

«0~z! * EyD G50.

~17!

In ~16! and ~17! the symbol* denotes the convolution

~u* w!~v!5~2p!21/2E u~v2v1!w~v1!dv1 .

The terms containing the convolution describe effe
with a change in frequency upon scattering. IfvTE andvTM

are much greater than the spin-wave frequencyvn in ~6!, ~9!,
or ~13!, the convolution is replaced by the product. T
terms withHy in ~16! and withEy in ~17! lead to TE↔TM
mode conversion. The fourth term withHy in ~17! describes
the modulation of the TM mode by the spin wave and w
not be taken into account below. Because of the condit
~15!, the terms withHy in ~16! and with Ey in ~17! can be
regarded as perturbations.

For films with constant values of«0(z) ~«c is the value
in the cladding,« f is the value in the film, and«s is the value
in the substrate! the eigenfunctions of the unperturbed equ
tions ~16! and ~17! are orthogonal to one another and ha
the form14

C~p!~x,y!5~2p!21/2c~p!~z!exp~ ib~p!x!,

c~p!~z!5P~p!

3H ~11ac
~p!2!21/2exp@2gc

~p!~z2d!# ~z.d!,

cos~kf
~p!z2us

~p!! ~0,z,d!,

~11as
~p!2!21/2 exp~gs

~p!z! ~z,0!,

~18!

where p50,1,2,... is the mode number,kf
(p)252b (p)2

1« fv
2/c2, gs,c

(p)25b (p)22«s,cv
2/c2, and us,c

(p)5arctanas,c
(p) .

For a TE mode

as,c
~p!5gs,c

~p!/kf
~p! , P~p!5S 2

d1gc
~p!211gs

~p!21D 1/2

.
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For a TM mode

as,c
~p!5

gs,c
~p!« f

kf
~p!«s,c

,

P~p!5&Fd1
kf

~p!1gs
~p!as

~p!

kf
~p!gs

~p!~11as
~p!2!

1
kf

~p!1gc
~p!ac

~p!

kf
~p!gc

~p!~11ac
~p!2!

G21/2

.

The subscriptsf, s, andc indicate that the quantity refer
to the film, the substrate, and the cladding. In the phase v
ablesus,c

(p) the dispersion relations take the simple form14

kf
~p!d2us

~p!2uc
~p!5pp ~p50,1,2,...!. ~19!

The functions~18! together with the radiative mode
form a complete orthonormal system. They will be used
calculate the coupling coefficient of TE and TM modes a
the conditions for synchronism in an inhomogeneous film
first-order perturbation theory.

3. TE–TM SCATTERING OF OPTICAL MODES ON SPIN
WAVES

Variation of the magnetic moment densitym(x,z,t)
5$mx ,my,0% of a spin wave leads to the interconversion
TE and TM modes. We represent the electromagnetic fiel
a planar waveguide in the form of the superposition of a p
of nearby TE and TM modes:

CB
~p!~x,z!5F~x!CTE

~p!~x,z!1G~x!CTM
~p! ~x,z!, ~20!

whereCTE
(p) andCTM

(p) are the functions~18!.
We take into account that a! the derivatives of the am

plitudes]F(x)/]x and]G(x)/]x are terms that are small i
first order, i.e.,bTE

(p)21F21]F/]x!1 andbTM
(p)21G21]G/]x

!1, that b! under the conditionvTE ,vTM@vn the convolu-
tion in ~16! and ~17! is replaced by the product, and that!
the dependence of« l j ( lÞ j ) on m has the form~15! and is
proportional to exp(ikx1ivnt). In these approximations w
obtain the coupling equations

]F~x!

]x
5

ivTE
2 bTM

~p! ^Ey
~p!u«yzuHy

~p!&

2c« fvTMbTE
~p! exp~2 iDx!G~x!,

]G~x!

]x
5

ivTM~bTE
~p!2k!^Hy

~p!u«zyuEy
~p!&

2cbTM
~p! exp~ iDx!F~x!,

~21!

where

^Ey
~p!u«yzuHy

~p!&5^Hy
~p!u«zyuEy

~p!* &

5E
0

d

cTE
~p!* ~z!«yz~z!cTM

~p! ~z!dz,

D5bTE
~p!2bTM

~p!2k, «yz5 igmx .

When the synchronism conditionD50 is satisfied, the
coupling coefficient of the TE and TM modes reaches
maximum and is given by the expression
ri-

o
d
n

f
in
ir

a

n~p!25
vTE

2 ~bTE
~p!2k!u^Ey

~p!u«yzuHy
~p!&u2

4c2« fbTE
~p! . ~22!

The coupling coefficientn (p) determines the period o
the spatial oscillations along the 0x axis for TE↔TM con-
version:

L ~p!5
2p

n~p! . ~23!

We shall now examine some special cases of TE–
scattering on spin waves in ferromagnetic films that are
mogeneous and weakly inhomogeneous across their th
ness and in films with a magnetization gradient.

A. Ferromagnetic films that are homogeneous a
weakly inhomogeneous across their thickness.Substituting
the eigenfunctions~4! and ~18! with consideration of~8!,
~11!, and~15! into ~22!, we obtain the coupling coefficient o
a pair of TE and TM modes upon scattering on thenth spin-
wave mode

nn
~p!5PTE

~p!PTM
~p!F fF ~bTE

~p!2k!gU ~n!

2bTE
~p!vn~d12uku/k0

~n!2!M0
G1/2

3U (
j ,l 51

2 sin~K jl
~n,p!d2J j ,l

~n,p!!1sin J j ,l
~n,p!

K jl
~n,p! U, ~24!

whereK jl
(n,p)5kz

(n)1h ( j )kf ,TE
(p) 1h ( l )K f ,TM

(p) ,

J j l
~n,p!5~kz

~n!d2p~n21!!/21h~ j !us,TE
~p! 1h~ l !us,TM

~p! ,

h~1!51, h~2!521.

An analysis of the relation obtained~24! shows that the
scattering will be strongest when the conditions

K je
~n,p!50 ~ j ,l 51,2!, ~25!

J j l
~n,p!52pr ~ j ,l 51,2, r 50,61,62,...!, ~26!

which can be called the conditions for synchronism of t
transverse wave vectors and phase synchronism, are s
fied. The physical meaning of these conditions can be
plained in the following manner. Let us consider two ad
cent layers with antinodes for the spin-wave mode. Sincem
has opposite values in these layers, the rotation of the po
ization plane is determined by the difference between
Faraday effects in these layers. The maximum total rota
of the polarization plane occurs in the case in which there
an antinode of the optical mode in one of the layers and th
is a node in the other layer, as is reflected in the conditi
~25! and ~26!.

To illustrate the importance of the fulfillment of relation
~25! and ~26! for obtaining maximum TE→TM conversion,
we performed numerical calculations for a YIG/GGG stru
ture andk5kn . Fulfillment of the conditionD5bTE

(p)2bTM
(p)

2k50, which can be called the synchronism condition f
longitudinal wave vectors, was achieved by introducing la
2 ~Fig. 1! with linear variation of the dielectric constant a
cording to the law«(z)5« f1(« f2«s)z/ds (zP@0,2ds#)
within the layer ~other ways of achieving the conditio
D50 were described in Ref. 16!. The eigenfunctions of the
optical modes of such a film structure were found from~16!
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FIG. 2. Ratio between the coupling co
efficients nn

(4)/n1
(4) for TE4→TM4 scat-

tering in a homogeneous ferromagnet
layer ~a YIG/GGG structure! as a func-
tion of the spin-wave mode number fo
k5kn @Eq. ~7!#. dc , mm: a—0, b—0.5,
c—1.0.
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and ~17! using perturbation theory in the form of a series
powers of the deviation from a homogeneous film. In a fi
approximation the eigenfunctions have the form~18! with
altered values ofb (p)

TE:b~p!25b0
~p!21~2p/l!2^Ey

~p!u~«~z!2«0!uEy
~p!&,

TM:b~p!25b0
~p!21~2p/l!2^Hy

~p!u~«~z!2«0!uHy
~p!&

2 K Hy
~p!U ]«~z!

«~z!]z

]

]zUHy
~p!L . ~27!

Figure 2 presents the ratios between coupling coe
cientsnn

(4)/n1
(4) for TE4→TM4 scattering as a function of th

numbern of the spin-wave mode for various values of t
cladding thicknessdc . The mean values for YIG were use
4pM051750 Oe,Ha50, a54p•3.2310212 cm2, g52p
32.83 MHz/Oe for d510 mm, vn/2p59 GHz,
l51.15mm, nc5A«c51.0, nf5A« f52.220, andns5A«s

51.945. The transition layer2 ~Fig. 1!, which was employed
to achieve the condition D50, had a thickness
ds>0.6 mm. The presence of this layer required recalcu
tion of the values ofnn

(4) , K jl
(n,4) , and J j l

(n,4) with altered
values ofb (4) according to Eqs.~18!, ~24!, and ~27!. The
cladding1 had a dielectric constant identical to the dielect
constant of the YIG layer (A« f52.220) and was nonmag
netic. Thus, the thickness of the spin-wave waveguide
not coincide with the thickness of the optical waveguid
This led to the additionskf

(p)dc to theJ j l
(n,p) , to violation of

the phase synchronism conditions~26!, and, thus, to the os
cillating character of the dependence of the TE–TM scat
ing on the spin-wave mode number. The synchronism c
dition ~25! kz

(n)2kf ,TE
(4) 2kf ,TM

(4) 50 was satisfied forn59
210.

Formula ~24! for the coupling coefficientnn
(p) was ob-

tained for a homogeneous ferromagnetic layer. The emp
ment of this formula for weakly inhomogeneous ferroma
netic structures in the absence of turning points for
magnetostatic potential is permissible in first-order pertur
t

-

-

id
.

r-
n-

y-
-
e
-

tion theory. The expansion parameter here isDx ik /x̄ ik ,
which, in turn, is determined by the relative deviatio

Dg/ḡ, Da/ā, DM0 /M̄0 , andDHa /H̄a .
B. Ferromagnetic films with a magnetization gradie

across their thickness.The coupling coefficient of TE and
TM modes upon scattering on thenth spin-wave mode in a

film with the magnetization gradient 4pM054pM̄02m(z
2d/2) was found from~22! after plugging in the eigenfunc
tions ~18! with consideration of the distribution ofm6 @Eqs.
~12! and~15!#. A numerical calculation was performed for
YIG/GGG structure. The external magnetic field~for
vn/2p59 GHz! was selected so that there would be a tu
ing point for the magnetostatic potential within the ferroma
netic film. Figure 3 presents the ratios of the coupling co
ficient nn

(4) for TE4→TM4 scattering in a film with a gradien
to the coupling coefficientn1hom

(4) for TE4→TM4 scattering in
a homogeneous ferromagnetic film as a function of the sp
wave mode numbern of the for k→0. The values 4pM̄0

51750 Oe andm510 Oe/mm were used. All the remaining
parameters were the same as for the homogeneous ferro
netic structure. The conditionD50 was achieved just as in
the case of the homogeneous ferromagnetic film by introd
ing intermediate layer2 ~Fig. 1!. An analysis of the distribu-
tion of m6 ~12! reveals thatm6 has its greatest amplitude i
the vicinity of the turning pointzr ~14!. If the antinodes of
the TE and TM optical modes are located in the layer w
the turning pointzr , the TE–TM scattering is strongest. I
Fig. 3 this is observed for the spin-wave modes withn52,
7–8, and 14–16. Variation of the cladding thicknessdc leads
to displacement of the antinodes relative tozr . It is seen
from a comparison of the plots in Figs. 2 and 3 that if the
is a turning point for the magnetostatic potentialw(z), the
amplitude of the TE–TM scattering in inhomogeneous f
romagnetic films can take a larger value than in homo
neous films. It can be concluded on this basis that the m
promising magnetooptical materials are those in wh
TE–TM scattering is possible on a periodic distribution
several layers with turning points forw(z). They can be
magnetic superlattices, i.e., film structures with spatially
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FIG. 3. Ratio between the coupling co
efficientsnn

(4)/n1hom
(4) for TE4→TM4 scat-

tering in an inhomogeneous ferromag
netic layer as a function of the spin-wav
mode number fork→0. The values ofdc

are the same as in Fig. 2.
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riodic deviations of the magnetic parameters from cons
values across the thickness, withd@AL and a fairly large
number of periods. It was noted in Ref. 10 that superlat
structures can be obtained on the basis of multicompon
iron garnets. Iron garnets with~Lu31,Y31!,~Lu31,Y31,Bi31!,
or (Lu31,Y31,La31) in dodecahedral lattice sites were pr
posed. Periodic variation of the growth conditions duri
epitaxial growth leads to variations in the entry of these io
into the dodecahedral sites and to variations in the entry
Pb21 and Pb41. This, in turn, leads to variations in th
uniaxial growth anisotropy.12 More detailed investigations
were performed for the iron garnet~Lu,Y,Bi!3~Fe,Ga!5O12 in
Ref. 17. Trial runs of the epitaxial growth of films showe
that the formation of these iron garnet structures durin
single production cycle can be achieved by varying the p
duction parameters~the growth temperature, the rotation ra
of the substrate, etc.!.

CONCLUSIONS

The following conclusions can be drawn as a result
the theoretical analysis performed.

a! In homogeneous ferromagnetic films and in films w
slight deviations from homogeneity TE–TM scattering
higher spin-wave modes is strongest when the synchron
conditions for the transverse phases and the longitudinal
transverse wave vectors are satisfied. When the thickne
of the planar optical waveguide and the ferromagnetic fi
do not match, the phase synchronism condition is viola
with the resultant appearance of an oscillating type of dep
dence of the TE–TM scattering on the spin-wave mode nu
ber.

b! A layer with a turning point for the magnetooptic
potential in a film with a magnetization gradient across
thickness makes the largest contribution to TE–TM scat
ing. The juxtaposition of this layer, whose position depen
on the spin-wave mode number, to the region of the antin
nt

e
nt

s
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a
-

f
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nd
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n-
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s
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of the optical modes increases the amplitude of the TE–
scattering in comparison to the scattering in homogene
films.
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Postgrowth residual stresses in polycrystalline zinc selenide
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The residual stresses in samples of polycrystalline ZnSe are studied by measuring the
photoelasticity in the visible part of the spectrum with transillumination parallel and perpendicular
to the growth axis. The thermal and growth components of the birefringence, which exhibit
different types of distributions among samples, are investigated. It is established that the thermal
component has a nearly equilibrium distribution, while the growth component has an
asymmetric distribution, which reflects individual features in the growth of each specific sample.
© 1998 American Institute of Physics.@S1063-7842~98!01606-7#
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The residual stresses in industrial metals, which co
prise a widely encountered class of polycrystalline met
are customarily divided into stresses of the first and sec
kinds.1 The former include macrostresses, which affect
volume of a body as a whole, and the latter include micr
tresses, which act within the grains of a material and on th
boundaries. Unlike metals, polycrystalline ZnSe is transp
ent in the visible region of the spectrum. Under the influen
of mechanical stresses and strains, the spherical optical
catrix (Xi /n2)51 is slightly distorted and takes the form o
a uniaxial or biaxial ellipsoid, depending on the character
the stressed~strained! state. This permits the application o
the ordinary tools and methods of photomechanical anal
to it. Optical effects of the action of stresses of both kin
can be observed in the field of vision of a polariscope. In
present work only stresses of the first kind are investigat

The application of the methods of photomechanics
zinc selenide is significantly simpler than in the case of ot
photoelastic crystalline materials. First, like AgCl or KRS,
has a fairly high optical sensitivity,2,3 but, unlike those ma-
terials, it is less plastic and, therefore, behaves essent
like an elastic medium, and the application of the law
photoelasticity, which does not take into account the ti
factor when a force is applied, is more correct for just su
media. Second, it can be regarded as a proven fact that in
case polycrystalline ZnSe is an isotropic photoelastic m
rial within the sensitivity range of polariscope-polarimeter3

This facilitates application of the photoelasticity law to
without consideration of the crystallographic coordinates
the medium, which must be taken into account in the cas
single crystals.4 Thus, it can be regarded as a simple a
effective sensor of the piezobirefringence and stresses
appear or are manifested in various stages of a produc
process.

The original disks of polycrystalline ZnSe, with a diam
eter of 150–400 mm and a thickness of 15–40 mm, w
grown by vacuum desublimation.5 An analysis of the micro-
structure and x-ray diffraction investigations provide e
dence of the anisotropy of the external form of the grains
their textured character, which become stronger as the
densate thickness increases.6,7 The disks were optically
6911063-7842/98/43(6)/5/$15.00
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treated in both planes and investigated in polarisco
polarimeters with a field of vision from 150 to 300 mm with
out magnification using a diffuse source of white light.
KSP-7 polariscope with a magnification of 8 – 103 and a
Sénarmont compensator for an optical wavelength of 54
nm, which was isolated by a filter, was employed for mo
exact measurements. Templates cut from disks so that
section one pair of their sides would be equal to the thickn
of the disk and the length would be equal to the radius of
disk or a chord, depending on the cutting geometry, w
investigated in a similar manner. The disks and templa
were marked to show which planes belonged to the subs
and the growth surface.

A right-hand system of axis, in which the growth ax
coincides with the direction of theZ coordinate, was used to
describe the geometry of the piezobirefringence and
stresses~Fig. 1!. In such a system the field of values of th
birefringence Ni5Dnr2Dna , where Dnr and Dna are
small increments of the refractive index along a radius of
disk and in the direction perpendicular to it, can be measu
when the disks are transilluminated alongZ. In an axisym-
metric distribution of the birefringence, the central part
the circular disks is free of birefringence, sinceDnr5Dna .
The birefringence in directions perpendicular toZ cannot be
measured in an intact disk, since there are no immers
liquids with a refractive index close to 2.60; therefore, su
measurements were performed on templates. When the
plates are transilluminated in directions perpendicular toZ,
the field of values of the birefringenceN'5Dnz2Dna ,
whereDnz is the increment of the refractive index along th
Z axis andDna is the increment of the refractive index alon
a direction perpendicular toZ measured in the perpendicula
direction, can be determined. In the central parts of the a
symmetric fieldNi and N' depend on the influence of th
thermal stresses caused by the axial temperature gra
controlling the vapor condensation process.

It is known from the theory of photoelasticity of opt
cally and mechanically isotropic bodies that differences
tween normal stresses can be calculated from measured
ues of the birefringence, if the photoelastic constant of
material is known. Using the notationt i(r ,a)5s r2sa , we
© 1998 American Institute of Physics
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FIG. 1. Asymmetric arrangement of el
lipses in sections of the optical indicatrix
in planes of the samples investigated f
from the edge part when disks are me
sured along theZ axis andDnr2Dna

.0 ~a!, when a template is measure
along theZ axis andDnr2Dna50 ~b!,
and when a template is measured pe
pendicularly to theZ axis ~c!: 1—neutral
lines with zero birefringence.
fri

e
f

he
pa
re
ia
nt

e

e
e-

o
a
i

ur
ai
ffi
h
r

-
-
w
ob
is

ame

is
e

o

nd
ire-
f
re-
al

di-

cal
the

tion
of

ses

n-
oval
m.

for
ig-
dge
he
ual
to
e
i-

in-
can write the relation between the stresses and the bire
gence in the form of the formula

t i5BNi cos 2w i , ~1!

whereB52/n3(p112p12) is the photoelastic constant of th
material andw i is the azimuth of the principal directions o
the indicatrix and of the stressess r andsa .

When the distribution of the optical anisotropy and t
stresses in the original disk is axisymmetric, the princi
mechanical and optical directions are oriented radially; the
fore, w i50. Otherwise, the principal stresses are not rad
and this situation leads to the appearance of tange
stresses,t i , which can be defined by the formula

t i5BNi sin 2w i/2. ~2!

Knowing t i and t i , we can also define the differenc
between the principal stressest5At i

214t i
2, the azimuth of

the principal optical and mechanical directions being defin
by an anglew iÞ0 directly during the polarization measur
ments. In addition,

tan 2w i52t i /t i . ~3!

RESULTS

1. Residual birefringence and stresses.The magnitude
and distribution of the optical anisotropy clearly depend
the magnitude of the axial temperature gradient, which
signs the growth rate. If the thickness of the layer grown
small, the amount of heat removed from the cylindrical s
face of the disk is also small. However, above a cert
thickness, at which the cylindrical surface acquires a su
cient area, the latter becomes a source of heat losses, w
cause the appearance of a radial temperature gradient. T
silluminating the disk along theZ axis, we discover axisym
metric fields ofNi ~Fig. 1a!. When there is no radial tem
perature gradient, there are likewise no peripheral zones
birefringence. In this case the disk does not contain piez
refringence of the first kind, but it has birefringence, which
noticeable within the grain structure of the material~piezo-
n-
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birefringence of the second kind!. A similar phenomenon is
observed when templates are transilluminated in the s
direction ~Fig. 1b!.

Regardless of whether a distribution of birefringence
observed in the disks when they are observed along thZ
axis or not, the piezobirefringenceN' is always observed
when they are observed in the directions perpendicular tZ,
i.e., in templates of the radial and chord type~Fig. 1c!. The
pattern of this birefringence in the form of indicatrices a
their orientation contains an odd number of zones with b
fringence of opposite sign. IfNi50 over the entire plane o
a disk, andN'Þ0, as is always observed, the observed bi
fringence is associated with the formation of uniaxial optic
indicatrices of opposite sign~Fig. 1c!. Such indicatrices
clearly form under the action of an axial temperature gra
ent DTi and in the absence of a radial gradientDT' . If a
radial gradient still appears for a number of technologi
reasons, it leads to the distortion of circular sections of
uniaxial indicatrices~Fig. 1c!. Biaxial indicatrices, whose
circular sections can be at different angles to the observa
directions taken in the present work, form. The sections
such indicatrices in the plane of the sample display ellip
in peripheral zones~Fig. 1a!. A comparison of this figure and
Fig. 1c reveals the similarity between them, which is co
fined to the fact that both patterns are caused by the rem
of thermal energy from the surface of the growing prefor
With respect to the temperature gradientsDTi andDT' , the
indicatrices have identical signs. However, the conditions
mechanical equilibrium of a disk and a template differ s
nificantly. In a disk the thermal stresses created on the e
by the conditionDT'Þ0 are balanced by the stresses of t
central circular zone, in which the thermal strains are eq
in all directions lying in the plane of the disk. This leads
the formation of a uniaxial indicatrix at the center of th
sample. WhenDTiÞ0 and the sample is observed in a d
rection perpendicular to theZ axis, the central zone of a
template contains birefringence of opposite sign~Fig. 1c!,
and its thickness is divided into three zones with birefr
gence of opposite sign. Thus, the distribution ofNi measured
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along theZ axis can be represented with motion along t
diameter by anNi202Ni pattern, andN' can be repre-
sented with motion along theZ axis by anN'2(2N')
2N' pattern. Knowing the photoelastic properties of t
material,2,3 its behavior upon heating in the field of vision o
the crossed polariscope in the temperature range 20–20
~Ref. 8!, and relations~1!–~3!, we can make the transitio
from indicatrices to stresses using the classical model
simple birefringent plate for this transition. The diagram
stresses caused by the radial temperature gradient durin
growth and cooling of the sample consists of peripheral co
pressive stresses, which are balanced at the center by str
of opposite sign that do not produce birefringence. Cool
from the growth temperatures 800–1000 °C was followed
plastic deformation,9 as a result of which the sign of th
residual stresses was the reverse of the sign observed d
growth and cooling under the action ofDT' .1 Residual pe-
ripheral compressive stresses, which are balanced by uni
in-plane stresses that are equal to one another, but cann
determined by the polarization method, appear. The ma
tude of these stresses is small and amounts to a
230 kgf/cm2. These stresses vanish after the templates
cut in accordance with the scheme in Fig. 1b.

Figures 2a and 2b present two types of diagrams of
residual stressest'5sz2sa , which were observed on sev
eral tens of templates. We call the diagram in Fig. 2a sy

FIG. 2. Principal types of postgrowth optical anisotropy observed in
direction perpendicular to the growth axis: a—equilibrium diagram of
sidual thermal stresses of the quenching type~the symmetric type!, b—
equilibrium diagram of residual thermal stresses with growth stresses d
an axial temperature gradient~the asymmetric type!.
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metric, and the diagram in Fig. 2b asymmetric. According
Ref. 8, the diagram in Fig. 2a should correspond to heat
During cooling, the signs of the stresses are reversed du
the plasticity under the high-temperature conditions. The
fore, this diagram could have formed only after plastic d
formation, apparently of the grain-boundary type,9 which
would lead, precisely as in the case in Fig. 2, to reversa
the signs of the residual stresses, whose structure reflect
action of the axial temperature gradientDTi as a whole to
within the signs. The diagram in Fig. 2b is also frequen
encountered and has a more complicated type of distribu
of N' and t' than in the preceding diagram. They are, as
were, two diagrams of opposite sign, which are combin
with one another so that the opposite sides of a template h
residual stresses of opposite sign. On the substrate side
upper part of the diagram has a form similar to a diagram
the symmetric type. This diagram, however, smoothly jo
the analogous diagram of opposite sign in the lower par
the template. The tensile stresses on the lower edge of
template provide evidence that it was, as it were, addition
heated at a low temperature, which is such that even u
further cooling the diagram of opposite sign does not man
to form because of the low plasticity of the material at tho
temperatures. The material behaved like a hard spring,
this was not previously detected in Ref. 9, since the ther
strains were not frozen.

2. Influence of mechanical treatment on N' and t' . The
birefringenceNi in disks has been investigated fairly tho
oughly, since it is often monitored during the fabrication
optical elements from glass and crystals. The behavior
N' , which is observed in templates, is not so well know
The influence of the mechanical treatment of templa

FIG. 3. Influence of mechanical treatment on residual thermal stresses o
symmetric type~stress diagrams!: a—original state, b—after reduction o
the template thickness.
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across their thickness is shown in Fig. 3a. After a total
duction of the thickness of a template on both sides by 16
the original symmetric diagram~Fig. 3a! exhibited slight
changes in its form in the part adjacent to the substrate,
viding some basis to regard the contact with the substrat
an additional factor which increases the stresses in this p
The opposite side underwent significantly smaller chang
For this reason, it would be useful to investigate the infl
ence of mechanical treatment of the plane of a template
jacent to the substrate in greater detail, rather than the v
tion of N' and t' in templates with diagrams of th
asymmetric type. Figure 4 shows the variation of the str
diagram when 16, 33, 50, and 66% of the thickness is u
laterally ground off. After the thickness is reduced by 33
the diagram remains asymmetric. After 50% is ground o
the diagram becomes symmetric, but has a sign whic
opposite to that of Fig. 3a, and after further treatment~66%!,
it transforms into a diagram which is similar to a diagram
four-point bending, where the tensile stresses from
growth surface increase significantly and compress
stresses appear on the surface on the substrate side.

3. Influence of isothermal postgrowth annealing.A se-
ries of templates from a single original disk was subjected
isothermal annealing at constant temperatures from 40

FIG. 4. Influence of mechanical treatment on residual thermal stresses o
asymmetric type~stress diagrams!: a—original state, b, c—after reduction o
the template thickness;1—substrate,2—growth surface.
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1000 °C with holding for 5 h. Each template was annea
once. The annealing temperature variation step was 100
All the templates had the same original birefringence patt
down to the grain structure. The band patterns were ph
graphed before and after annealing, and stress diagrams
constructed from them according to the method adopted.
templates were held in a gradient-free portion of the furna
and the cooling to room temperature after each anneal
not forced. It was found that annealing at temperatures fr
400 to 700 °C did not cause changes in the diagrams of
residual birefringenceN' and the stressest' . Annealing at
temperatures from 800 to 1000 °C with the same cool
procedure lowersN' and t' . The decrease in the residu
stresses at 800 °C amounts to 25%, while annealing
1000 °C lowers them by 80–90%, i.e., increases the opt
homogeneity of the material. Figure 5 shows the characte
the decrease in the level of the residual stresses as a fun
of the annealing temperature for a diagram of the asymme
type.

the

FIG. 5. Influence of isothermal annealing on residual thermal stresse
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4. Influence of mechanical treatments.The four-point
bending of templates was employed to study the influenc
the grain inhomogeneity across the thickness and the res
stresses on the mechanical behavior of the material in
region corresponding to its elasticity at room temperatu
The bending was performed so that the stresses appeari
a result would stress the surface facing the growth front,
surface facing the substrate, and the surface parallel to tZ
axis upon transillumination of the sample in the same dir
tion. The loading was carried out in the field of vision of th
polariscope by a lever press with a graduated load. The
chanical moment step during the loading was 0.25 kgf.
analysis of the band pattern for the loading cases indica
demonstrates their completely identical nature, with the
ception of the local edge deviations caused by individ
features of the grain structure. The higher was the mech
cal moment, the more similar the band patterns became.
observed a similar response of the material upon the diam
ric compression of disks with a diameter of 30 mm and
thickness of 4 mm, which were cut parallel, perpendicula
and at a 45° angle to the growth axis.9 This is evidence that
as a whole, the material is homogeneous and isotropic
cording to its photomechanical behavior and that its gr
inhomogeneity, texture, growth features, and resid
stresses do not create any macroscopic mechanical fea
such as reinforcement, anisotropy, and the like in the m
rial.

CONCLUSIONS

1. The induced optical anisotropy in polycrystalline zi
selenide grown by a desublimation technology has two co
ponents: a growth component and a thermal component
of
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2. The thermal component of the birefringence a
stresses is observed when disks or templates are transill
nated parallel to the axis of the temperature gradient pro
ing for the growth process. This component has a nea
equilibrium distribution.

3. The growth component of the birefringence and t
stresses is most clearly expressed in templates transillu
nated perpendicularly to the growth axis. It very often has
asymmetric distribution, which is far from equilibrium, and
tendency toward stratification, which reflects individual fe
tures in the growth of each concrete sample.
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Analysis of structural defects in boron-implanted silicon single crystals on the basis
of the results of double- and triple-crystal x-ray diffractometry

A. P. Petrakov, N. A. Tikhonov, and S. V. Shilov
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The structural defects in Si single crystals are analyzed on the basis of diffraction reflection
curves and triple-crystal spectra. The relative variation of the lattice period and its distribution as
a function of depth are calculated, and the type of defects appearing and the behavior of the
implanted impurity in response to high-temperature annealing are determined. ©1998 American
Institute of Physics.@S1063-7842~98!01706-1#
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INTRODUCTION

Ion implantation is an effective tool for altering the ele
trical properties of semiconductor materials. Boron is e
ployed quite often as the implantant. Ion implantation cau
damage to the subsurface structure of crystals subjecte
irradiation. This structural damage is investigated by diff
ent methods. Among the nondestructive methods, dou
and triple-x-ray diffractometry are very informative. The
methods have been used in numerous studies~see, for ex-
ample, Refs. 1–5! of the kinds of defects formed in silico
single crystals as a result of implantation. At the same tim
the development of a method for treating experimental sp
tra, particularly triple-crystal spectra, would make it possi
to obtain new data on defects. The present paper analyze
results of systematic triple-crystal x-ray diffractometric i
vestigations of silicon single crystals that were implan
with boron in various doses and subjected to isothermal
nealing at various temperatures and for various annea
times.

EXPERIMENTAL METHOD

Nearly perfect single-crystal wafers of KDB-10 silico
with a thickness of 500mm were investigated. The surface
of the samples coincided with the~111! plane. The angle
6961063-7842/98/43(6)/5/$15.00
-
s
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e-

,
c-

the

d
n-
g

between them, which was measured by an x-ray diffrac
metric method, was about 109. The samples were implante
with B1 having an energy of 25 keV in doses fromD56.2
31014 to 6.2531015 cm22. The implantation was carried ou
at room temperature under conditions which rule out ch
neling. The use of a fairly weak ion current with a density
0.2mA/cm2 also ruled out the phenomenon of self-anneal
during implantation. After implantation, some of the samp
were annealed in a nitrogen atmosphere. The annealing
perature was varied from 300 to 1000 °C. The anneal
times were 10, 60, and 120 min.

The structure of the subsurface layers of the silic
single crystals was diagnosed using an automatic dou
and triple-crystal x-ray diffractometer, which was assemb
on the basis of a DRON-UM1 x-ray diffractomete
Dispersion-free double-crystal (n,2n) and triple-crystal
(n,2n,n) geometries6,7 and Cu Ka1 radiation were em-
ployed. The double-crystal diffraction reflection curves a
the triple-crystal x-ray diffraction spectra were measured
the « scan mode~rotation of the analyzer!. The sample azi-
muthal angle~v! was varied from25009 to 15009. High-
perfection silicon single crystals with a symmetric~111! re-
flection served as the monochromator and analyzer. The h
widths of the diffraction reflection curves of th
FIG. 1. Diffraction reflection curves of crys-
tals. Implantation dose, cm22: 1—6.25
31014, 2—1.87531015, 3—3.12531015,
4—6.2531015; P—curve for a perfect crys-
tal, I /I 0—ratio of the reflected to the inci-
dent intensity.
© 1998 American Institute of Physics
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FIG. 2. Plots of the reduced intensity func
tion P(v). The notation corresponds to
Fig. 1.
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monochromator and the analyzer amounted to 109, which is
close to the theoretical value.

EXPERIMENTAL RESULTS

A. Dependence of the structural damage on the do
Samples with dose loads from 6.2531014 to 6.25
31015 cm22 were investigated to find the dose depende
of the structural damage in ion-implanted silicon. Figure
presents the ‘‘tails’’ of the corresponding diffraction refle
tion curves. The zero corresponds to the exact Bragg pos
of the reflection from the~111! plane of an undistorted crys
tal. There is an appreciable increase in the intensity of
diffraction reflection curve at small angles. Here the intens
increases with the dose, and a well resolved additional p
is observed for the largest dose. The triple-crystal x-ray
fraction spectra did not display diffuse peaks. Plots of
reduced intensity functionP(v)5I •v2/Pid ~I is the intensity
of the principal peak,v is the sample azimuthal angle, an
Pid5I id

•v2 is the reduced intensity function for an ide
crystal and is approximately constant for all values of
sample azimuthal angle! constructed from the triple-crysta
x-ray diffraction spectra are shown in Fig. 2. All the samp
display a distinct maximum on the negative-angle si
whose intensity increases with the dose. In addition, the s
of the maxima toward negative angles increases. The p
tion of the peaks on the plot coincides with the region
elevated intensity on the diffraction reflection curve at ne
tive angles. The presence of a maximum on the plot ofP(v)
attests to the occurrence of coherent scattering from a l
with an altered lattice constant. The mean relative stra
were calculated from the positions of the maxima in Fig
using the formulaDd/d5cotQb•DQ and are presented i
Table I.

A plot of the dependence of the mean strain on the d
is presented in Fig. 3. Figure 4 presents the strain pro
calculated using a program developed according to
method described in Ref. 8 for a sample irradiated with
dose equal to 6.2531015 cm22. The program calculates th
variation of the strain as a function of depth from the sam
surface on the basis of an analysis of the additional peak
the diffraction reflection curve caused by coherent scatte
e.
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from a layer with an increased lattice constant. As is se
from the plot, the maximum value ofDd/d, which is ap-
proximately equal to 0.003, corresponds to a depth of 0
mm.

The effective thicknesses9 of the damaged layers wer
also calculated for the irradiated samples:Li from the half-
widths of the maxima on the reduced intensity function, a
Lp by the integral-characteristic method, without consid
ation of a region of 209 or 309 around 0. These data ar
presented in Table I.

B. Influence of annealing on the structure of io
implanted silicon.To investigate the influence of annealin
on the structure of boron-implanted silicon, we measured
diffraction reflection curves and triple-crystal x-ray diffra
tion spectra of samples which were irradiated with a dose
1.87531015 cm22 and subjected to annealing in a nitroge
atmosphere at 300, 600, 800, 900, and 1000 °C with ann
ing times equal to 10, 60, and 120 min. Figure 5 presents
‘‘tails’’ of the diffraction reflection curves for the sample
subjected to annealing at 600 and 800 °C for 10 min. A
nealing at the lower temperatures did not alter the form
the diffraction reflection curve shown in Fig. 1 for a do
equal to 1.87531015 cm22. Increasing the temperature t
600 °C led to an increase in intensity on both the negati
and positive-angle sides. Annealing at 800 °C led to an
preciable drop on the negative-angle side.

The plots of the reduced intensity functionP(v) con-
structed from the triple-crystal x-ray diffraction spectra r
veal the presence of a maximum on the negative-angle
~Fig. 6!, which coincides with the region of elevated inte

TABLE I. Values of the strain and thickness of the damaged layer a
function of the implantation dose.

Dose (cm22)

Dd

d
3103 Lp @from P(v)#,

mm
Li(20),

mm
Li(30),

mm

6.2531014 0.8 0.16 0.043 0.031
1.87531015 1.2 0.14 0.067 0.054
3.12531015 1.9 0.14 0.11 0.09
6.2531015 2.9 0.13 0.12 0.11
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sity on the corresponding diffraction reflection curve.
positive angles the plots of the reduced intensity funct
~for annealing temperatures equal to 300 and 600 °C! show a
tendency to rise, which reflects the increase in intensity
the diffraction reflection curve~Fig. 5!. However, annealing
at 800 °C leads to the appearance of a maximum in
range of angles. The values of the mean strainDd/d calcu-
lated from the positions of the maxima on the plot ofP(v)
are presented in Table II.

Thus, annealing at 800 °C led to the appearance of
regions with strains of different sign in the subsurface lay
It should also be noted that there was no diffuse peak on
triple-crystal x-ray diffraction spectra obtained in the an
lyzer scan mode for any of the samples subjected to h
treatment at temperatures from 300 to 900 °C.

Annealing at higher temperatures leads to furth
changes in the structure of the subsurface layer. At 1000
the triple-crystal x-ray diffraction spectra display a diffu
peak, which intensifies as the annealing time is increa
The plot of P(v) for 1000 °C displays only one maximum
which attests to the presence of a layer with a negative m
strain ~Table II!, whose magnitude decreases.

Table II presents the values ofLi andLp calculated for
all temperatures. The values ofLi for the heavily annealed
samples~1000 °C, 60 and 120 min! are not presented, sinc

FIG. 3. Dependence of the mean relative strainDd/d on the implantation
doseD.
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the use of the integral method to estimate the thickness of
damaged layers is incorrect because of the presence of
fuse scattering, which makes a contribution to the diffract
reflection curve.

Plots of the dependence of the intensity of the diffu
peak on the sample azimuthal angle were constructed in
log coordinates from the diffuse peak on the triple-crys
x-ray diffraction spectra for the samples annealed at 1000
for 120 min~Fig. 7!. Each plot has two linear segments wi
slopes close to 1 and 3.

The most significant structural changes are observe
doses close to the doses ('1016 cm22) which cause amor-
phization of a subsurface layer under the implantation c
ditions employed. This can be observed for the samples
planted with boron in a dose equal to 6.2531015 cm22.
Figures 1 and 2 show the diffraction reflection curves a
plots of P(v) for this implantation dose. Annealing at 40
–700 °C for 10 min led to the appearance of one or t
additional peaks on the diffraction reflection curve at ang
smaller than the Bragg angles. Two maxima associated w
coherent scattering are observed on the plot ofP(v) at nega-
tive sample azimuthal angles. After annealing at 800 °C
10 min the diffraction reflection curve of the sample prac
cally coincided with the analogous curve for an unimplan

FIG. 4. Strain profile as a function of depthZ calculated from diffraction
reflection curves.
o

FIG. 5. Diffraction reflection curves of
crystals implanted with a dose equal t
1.87531015 cm22. Annealing tempera-
ture, °C: 1—600, 2—800 ~the annealing
time was 10 min!; P—curve for a perfect
crystal.



a
io

e
al
6

ce
ak
b
e
it
th

la
ic
in

he
x

o-

im
he

l
hi

the
ys-
l is
he
le
riti-
the
the
n

.25
a
of

de-
eal-
s in
°C
n in

ns.
the
he
ted
dis-

an
ak

699Tech. Phys. 43 (6), June 1998 Petrakov et al.
sample. In this case the plot ofP(v) did not display any
peaks. A further increase in the temperature to 900 °C ag
led to an increase in the intensity on the diffraction reflect
curve at large and small angles, and the plot ofP(v) shows
four maxima~Fig. 8!. There were no diffuse peaks on th
triple-crystal x-ray diffraction spectra in the range of anne
ing temperatures 400–900 °C. Annealing at 1000 °C for
min led to the appearance of an intense diffuse peak.

DISCUSSION OF RESULTS

The presence of maxima on the plots of the redu
intensity function~Fig. 2! and the absence of a diffuse pe
on the triple-crystal x-ray diffraction spectra are caused
coherent scattering in a subsurface layer with an increas
the lattice constant. This quite trivial result is associated w
the generation of a large number of point defects upon
implantation of boron. Silicon ions displaced from regu
positions into interstitial sites cause expansion of the latt
As would be expected, the lattice strain increases with
creasing dose~Fig. 3!. The absence of a diffuse peak on t
triple-crystal x-ray diffraction spectra indicates that no e
tended defects form in silicon following implantation by b
ron ions with doses up to 6.2531015 cm22.

The thickness of the subsurface layer damaged by
plantation, which was estimated from the half-width of t
reduced intensity function, varies only slightly.

The increase in the value ofLi calculated by the integra
method can be attributed to the higher sensitivity of t

FIG. 6. Plot of the reduced intensity functionP(v). The implantation dose
was 1.87531015 cm22, the annealing temperature was 800 °C, and the
nealing time was 10 min.
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method toward highly strained layers. The value ofLi is
calculated from the difference between the areas under
diffraction reflection curves of the damaged and perfect cr
tals. Because the reflection coefficient of the latter crysta
higher than that of the ion-implanted crystal, the part of t
diffraction reflection curve in the region of the Bragg ang
must be excluded. The data in Table I demonstrate the c
cal nature of this exclusion. It should also be noted on
basis of the data in Table I that the total thickness of
damaged layer with ‘‘large’’ and ‘‘small’’ degrees of strai
varies only slightly~0.20–0.25mm! for all the samples ex-
cept the sample irradiated with a dose equal to 6
31015 cm22. This can be attributed to amorphization of
certain part of the layer, which takes place in the region
the maximum on the defect distribution profile.

When the samples are annealed, restructuring of the
fects in the subsurface structure should be expected. Ann
ing at 300 and 600 °C does not lead to significant change
the x-ray diffraction pattern. However, annealing at 800
leads to the appearance of a layer with a negative strai
the subsurface region~Fig. 6! along with the layer with a
positive strain formed as a result of the implantation of io
Its formation can be attributed to a significant increase in
concentration of substituent boron ions in lattice sites. T
layer with an increased lattice constant is probably loca
somewhat closer to the surface because of the stronger

-
FIG. 7. Dependence of the logarithm of the intensity of the diffuse pe
ln Id on the logarithm of the sample azimuthal angle lnv. The annealing
temperature was 1000 °C, and the annealing time was 120 min;1—positive
sample azimuthal angles,2—negative angles.
TABLE II. Variation of the strain and the thickness of the damaged layer as a result of annealing.

Tempe-
rature,
°C

Annealing
time,
min

Dd

d
3103

Lp , mm

Li(20), mm Li(30), mm
positive
strain

negative
strain

positive
strain

negative
strain

300 10 1.2 ••• 0.13 ••• 0.079 0.059
600 10 1.4 ••• 0.14 ••• 0.070 0.050
800 10 1.4 21.8 0.13 0.09 0.057 0.043
900 60 1.6 20.97 0.12 0.14 0.045 0.009

1000 60 ••• 20.38 ••• 0.18 ••• •••
1000 120 ••• 20.29 ••• 0.26 ••• •••
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placement of the defect distribution toward it in comparis
to the distribution of the implanted impurity.

The gradual decrease in the thickness of the layer wi
positive strain revealed by the integral-characteristic met
as the annealing temperature is increased from 300 to 90
is most likely attributable to the diffusion of interstitial sil
con ions, which leads to spreading of the distribution of
terstitial silicon, the passage of silicon ions into regular p
sitions, and the occupation of lattice positions by boron io
which actively displace silicon ions at high anneali
temperatures.10,11

Heat treatment at 1000 °C leads to the disappearanc
the layer with a positive strain due to the implantation of
even larger amount of boron in lattice sites. In addition,
diffusion of boron ions into the bulk leads to a decrease
the negative strain in the subsurface layer~Table II!.

The presence of a diffuse peak on the triple-crystal x-
diffraction spectra following high-temperature annealing
tests to the association of point defects in extended defe

FIG. 8. Plot of the reduced intensity functionP(v). The implantation dose
was 6.2531015 cm22, and the annealing temperature was 900 °C.
a
d
°C

-
-
,

of
n
e
n

y
-
ts.

The data presented in Fig. 7 show that, for the most p
defects of the dislocation-loop type make contributions to
diffuse peak for the crystal annealed at 1000 °C for 120 m
Dislocation loops are associated with stacking faults form
by interstitial silicon atoms.12

It should be stressed that defects of these types are
the only defects which make a contribution to the x-ray d
fraction. Other crystal lattice imperfections of silicon in th
form of rod-shaped defects, vacancy clusters, interstitial
oms, pores, cracks, tetrahedra of stacking faults, etc.
known.11

We express our thanks to V. A. Bushuev for his supp
and advice in all aspects of this work.

1A. Yu. Kazimirov, M. V. Koval’chuk, and V. G. Konn, Metallofizika,
9~4!, 54 ~1987!.

2V. Holy and J. Kubena, Czech. J. Phys.32, 750 ~1982!.
3M. Servidori and F. Cembaly, J. Appl. Crystallogr.21~5!, 176 ~1988!.
4P. Zaumseil and U. Winter, Phys. Status Solidi A120, 67 ~1990!.
5V. A. Bushuev and A. P. Petryakov, Kristallografiya40, 1043 ~1995!
@Crystallogr. Rep.40, 968 ~1995!#.

6A. Iida and K. Kohra, Phys. Status Solidi A51, 533 ~1979!.
7A. M. Afanas’ev, P. A. Aleksandrov, and R. M. Imamov,X-Ray Diffrac-
tion Diagnostics of Submicron Layers@in Russian#, Nauka, Moscow
~1989!, 152 pp.

8V. G. Kohn, M. V. Kovalchuk, R. M. Imamov, and E. F. Labonovich
Phys. Status Solidi A64, 435 ~1981!.

9V. A. Bushuev and A. P. Petrakov, Fiz. Tverd. Tela~St. Petersburg! 35,
355 ~1993! @Phys. Solid State35, 181 ~1993!#.

10G. A. Kachurin, I. E. Tyschenko, and M. Voelskow, Fiz. Tekh. Polupr
vodn.21, 1193~1987! @Sov. Phys. Semicond.21, 725 ~1987!#.

11J. W. Mayer, L. Eriksson, and J. A. Davies,Ion Implantation in Semicon-
ductors: Silicon and Germanium, Academic Press, New York~1970!; Mir,
Moscow ~1973!, 296 pp.

12F. F. Komarov, A. P. Novikov, V. S. Solov’ev, and S. Yu. Shiryae
Structural Defects in Ion-Implanted Silicon@in Russian#, Universitetskoe
Izd., Minsk ~1990!, 319 pp.

Translated by P. Shelnitz



TECHNICAL PHYSICS VOLUME 43, NUMBER 6 JUNE 1998
Conversion of optical modes in an absorbing magnetogyrotropic waveguide
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The features of mode conversion in an absorbing magnetogyrotropic waveguide are investigated
by a coupled-wave approach. It is shown that absorption leads to an additional contribution
to the coupling of both identically and orthogonally polarized modes. A new waveguide regime for
mode conversion, in which there is no oscillatory energy exchange between modes, is
revealed. The possibility of controlling the damping of the total field in a waveguide by varying
the orientation of the magnetization in the waveguide layer is demonstrated. ©1998
American Institute of Physics.@S1063-7842~98!01806-6#
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INTRODUCTION

In most planar waveguides in use the losses associ
with optical absorption in the film material are insignifica
and are generally disregarded in theoretical analyses1–3

However, in waveguides based on epitaxial iron garnet fil
the absorption in the near-IR range has values in the ra
a;1 – 10 cm21, which cannot always be considere
small.2,4 The research reported in the literature deals ma
with the influence of absorption on waveguide eigenmod
and the features of mode conversion in an absorbing wa
guide has scarcely been analyzed. For example, mode d
ing coefficients were obtained on the basis of the ray
proach in Ref. 5, and waveguide light propagation w
investigated in Ref. 6 with consideration of the absorption
the metallic coating of the waveguide. The contributio
from various absorption mechanisms to the damping coe
cients of modes of different orders were considered in R
2 and 7. Mode damping associated with the conversion
part of the energy of a waveguide mode into radiant ene
was described in Ref. 8. Experimental results on mode c
version in a magnetogyrotropic waveguide with consid
ation of the complex character of the propagation consta
of the modes were discussed in Ref. 9. Finally, an ex
solution and numerical analysis of the problem of wavegu
light propagation in an absorbing, transversely magneti
waveguide, for which the TE and TM modes are eige
modes, were presented in Ref. 10. In the present work
features of mode conversion in an absorbing planar mag
togyrotropic waveguide are investigated on the basis of
coupled-mode theory for an arbitrary orientation of the m
netization in the waveguide layer.

ORTHOGONALITY RELATION FOR AN ABSORBING
WAVEGUIDE

The orthogonality relations of modes play an importa
role in constructing waveguide solutions on the basis of
coupled-wave theory. Let us find the form that they take
the presence of absorption. We consider a planar waveg
structure consisting of a substrate, a waveguide layer, a
cladding. We direct thex axis perpendicularly to the inter
7011063-7842/98/43(6)/7/$15.00
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faces between the layers. Thex50 andx52L planes sepa-
rate the waveguide layers from the cladding and the s
strate. The dielectric constant of the cladding («1) and the
substrate («2) are assumed to be real, and the dielectric c
stant of the waveguide layer is assumed to be the com
quantity«5«82 i«9. The magnetic permeabilities of all th
layers for the optical range used are virtually equal to un
The field of a mode propagating along thez axis with the
complex propagation constantb5b82 ib9 is proportional to
the factor exp(2ibz). It is easy to show~Ref. 3! that two
different waveguide modes with the fieldsEi and H i obey
the relation

¹b[¹~E1H2* 1E2* H1!52k0«* E1E2* , ~1!

wherek05v/c, v is the frequency of the radiation, andc is
the speed of light in free space.

Separating the vectorb and the operator¹ into trans-
verse and longitudinal components, we integrate~1! over a
transverse cross section of the waveguide

E S ]bz

]z
1¹ tbtDds52k0«9E E1E2* ds, ~2!

whereds5dxdy, ¹ t5(]/]x,]/]y,0), and the integration is
carried out over the cross section of the waveguide.

Replacing the integral over the area from the seco
term on the left-hand side of~2! by an integral over a contou
enclosing the waveguide, and taking into account the ex
nential damping of the field of waveguide modes with i
creasing distance from the boundaries of the wavegu
layer, we obtain

E ~¹ tbt!ds5 R ~btet!dl50, ~3!

whereet is a unit vector that is perpendicular to the integr
tion contour.

With consideration of~3! we arrive at the following sys-
tem of equations for the real and imaginary parts of the co
ponentbz :
© 1998 American Institute of Physics
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E @~b282b18!bz82~b291b19!bz922k0«9 Im~E1E2* !#ds50,

E @~b282b18!bz91~b291b19!bz812k0«9 Re~E1E2* !#ds50.

~4!

It follows from the relations obtained that only mod
with orthogonal polarization (E1'E2) are orthogonal, i.e.
do not interact with one another in an absorbing scalar wa
guide. The orthogonality relation*bzds50 holds for these
modes. The orthogonality relation does not hold between
ferent modes of the same polarization; therefore, a rela
stipulated by the absorption of the waveguide should e
for them.

EQUATIONS OF COUPLED MODES

For a further analysis of the influence of absorption
mode coupling, a waveguide without absorption having
dielectric constant«5«8 should be taken as the unperturb
structure, and the imaginary part of the dielectric constan
the waveguide layer should be taken as the perturba
D«(a)52 i«9, where«9'aA«8/k0 anda is the absorption
of the material. If the dichroism of TE and TM waves
taken into account, the perturbed part of the dielectric c
stant should be regarded as a diagonal tensor with noni
tical diagonal components, and the absorption will be diff
ent for modes with different polarization. In
magnetogyrotropic waveguide the perturbation of the die
tric constant is also determined by the orientation of
magnetization.11 The total perturbation of the dielectric con
stant in this case can be represented in the following man

D«̂~a,M !5D«̂~a!1D«̂~M !. ~5!

Assuming that there are no radiative modes, we exp
the components of the electric field of the perturbed wa
guide in the complete set of modes of the unperturbed wa
guide:

Ej5(
n

@An~z!exp~2 ibnz!6Bn~z!exp~ ibnz!#E j~x!.

~6!

Here the upper signs in the square brackets refer to the tr
verse field components (j 5x,y); the lower signs refer to the
longitudinal components (j 5z); An(z) and Bn(z) are the
amplitudes of the forward and backward eigenmodes, wh
propagate in the1z and 2z directions and vary along th
waveguide as a result of mode coupling and perturbation
their propagation constants; and theE j (x) are profile func-
tions, which define the distribution of the field across t
thickness of the waveguide. The coupling of counterpro
gating modes is significant in waveguides with a periodica
varying dielectric constant.12 In the case considered here w
shall confine ourselves to an analysis of the interaction
only the forward modes.

The representation of a field in a waveguide in the fo
~6! permits derivation of the following equation for the mod
amplitudes:
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Am8 52 ik0 exp~ ibmz!E ~D«̂E!Emdx, ~7!

where the prime denotes the derivative with respect to
coordinatez and the integration is carried out over the
section of the waveguide layer of thicknessL.

Of the complete set of modes, the strongest coupling
observed between the modes having the greatest phase
chronism. There are generally two such modes, and energ
transferred between them as they propagate in the w
guide. We write the coupling equations for these modes

Am8 52 iDbmAm2 igmnAn exp@ i ~bm2bn!z#,

An852 iDbnAn2 igmn* Am exp@2 i ~bm2bn!z#, ~8!

where the coupling coefficientgmn5k0*Em* D«̂Endx.
The corrections to the propagation constants of the

and TM modes are defined in the following manner

Dbn
E5k0E D«yyuEnyudx,

Dbn
M5k0E @D«xxuEnxu1D«zzuEnzu

1Enx* D«xzEnz1Enz* D«zxEnx#dx. ~9!

The solution of Eqs.~8! with the boundary conditions
Am5Am(0) andAn50, which were taken atz50, have the
following form:

Am~z!5Am~0!S cosxmnz2
iDmn

xmn
sin xmnzD

3exp@ i ~Dmn2Dbm!z#,

An~z!52 iAm~0!
gmn*

xmn
sin xmnz exp@2 i ~Dmn1Dbn!z#,

2Dmn5bm1Dbm2bn2Dbn , xmn
2 5ugmnu21Dmn

2 .
~10!

With consideration of~10! the mode conversion effi
ciencyhmn5uAn(z)/Am(0)u2 takes the form

hmn5Ugmn

xmn
sin xmnzU2

exp@2~bm9 1bn9!z#. ~11!

DAMPING CONSTANT AND COUPLING OF IDENTICALLY
POLARIZED MODES

The damping constant specifying the damping of a mo
in a waveguide is found as the imaginary part of the pert
bation of the propagation constant, i.e., asbn952Im Dbn .
Figure 1 presents the dependence of the damping constanbn9
for the TE~solid curve! and TM~dashed curve! modes of the
first three ordersn50,1,2 on the waveguide thicknessL. The
following parameters are used here and below in the ca
lations: «854.5371,«253.8, «151; wavelength of the ra-
diation in free space,l51.15mm; damping parameter,a
51 cm21. The symbols for the zeroth- and second-ord
modes in the figure show the solutions obtained numeric
from the dispersion expressions found by matching the fie
on the interfaces of the media. Both methods give coincid
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values for bn9(L), attesting to the good approximatio
achieved using the coupled-mode formalism. It is seen fr
the figure that in the case of equality between the imagin
parts of the diagonal components of the dielectric tensor,
damping of the TM modes differs significantly from th
damping of the TE modes only near the cutoff thickne
where the following relation holds:

~bn
E!9

~bn
M !9

'S Cn
E«8k0qn

E

Cm
Mbn

Mhn
E D 2 vn

E

vn
M , ~12!

where theCn
E,M are normalized mode coefficients,qn

E5(bn
2

2k0
2«1)1/2, qn

M5qn
E«8/«1 , hn

E,M5(d0
2«82bn

2)1/2, and vn

[L12 sin2(hnL)/qn2sin(2hnL)/2hn .
Figure 2 presents the dependence of the damping

stant bn9 of the zeroth~n50, curves1 and 2! and first ~n
51, curves3 and 4! TE modes on the absorptiona of the
waveguide-layer material for two waveguide thicknessesL
51.5 mm ~curves1 and3! andL51 mm ~curves2 and4!.
An analysis of these curves reveals that the linear dep
dence ofbn9(a) has its smallest slope at the mode cut

FIG. 1. Dependence of the damping constantbn9 on the waveguide thicknes
L.

FIG. 2. Dependence of the damping constantbn9 on the absorptiona for two
different waveguide thicknesses.
m
ry
e

,

n-

n-
f

thicknessLn5Ln0 and that this dependence asymptotica
approaches the straight linebn9(a)5a/2 as the deviation
from that thickness increases.

The coupling coefficients of the identically polarize
modes are defined by the expressions

gmn
EE5k0E D«yyEmy* Enydx,

gmn
MM5k0E @Emx* ~D«xxEnx1D«xzEnz!

1Emz* ~D«zzEnz1D«zxEnx!#dx. ~13!

It follows from ~5! that the perturbation of the dielectri
constant contains a component which depends on the abs
tion a and leads to the coupling of identically polarize
modes even in a scalar waveguide, i.e., in the absenc
magnetization. This is confirmed by the orthogonality re
tions obtained above~4!. Whena;1 – 10 cm21, D«~a! is of
the same order as the perturbation which is quadratic w
respect to the magnetization in the diagonal terms of
dielectric constant in the iron garnet film. Therefore, the co
tribution of the absorption introduced to the coupling
identically polarized modes is comparable to the coupl
caused by the magnetization,11 but the large phase mismatc
of modes of different orders greatly weakens the mode in
action. The mode coupling coefficient appearing as a re
of absorption is of the order ofugmnu;1022 cm21 for a
51 cm21, while the phase mismatchDmn8 ;102 cm21. For a
mismatchDmn8 @ugmnu the mode conversion efficiencyhmn

<ugmnu/Dmn8 !1. Therefore, in an absorbing waveguide, as
a transparent waveguide, identically polarized modes w
different propagation constants (bmÞbn) can be considered
noninteracting modes, i.e., eigenmodes, of the waveguid
the absence of other~for example, periodic! perturbations of
the dielectric constant.

COUPLING OF DIFFERENTLY POLARIZED MODES

In an absorbing waveguide, as in a transparent wa
guide, orthogonally polarized modes are coupled only wh
the dielectric tensor has off-diagonal components. In a m
netogyrotropic waveguide the TEm and TMn modes are
coupled with the coupling coefficient

gmn5k0E Emy* ~D«yzEnz1D«yxEnx!dx. ~14!

To find the profile functions appearing in~14!, we
should take into account the perturbation of the dielec
constant of the waveguide layer and the propagation c
stants of the modes, which lead to a dependence of the
pling coefficientgmn on the absorption. Figure 3 presents t
dependence of the coupling coefficient which provides
TEm→TMn conversion in the first three orders (m5n
50,1,2) on the thickness of the waveguide layer for orie
tation of the magnetization along thex axis and a
520 cm21 ~the dashed curves correspond to a transpa
waveguide,a50!. It is seen that the difference between t
values ofugmnu for absorbing and transparent films increas
as the deviation from the cutoff thickness increases, i.e.
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the film thickness increases. This is due to the fact that
the deviation from the cutoff thickness increases, the loc
ization of each mode in the film increases with resultant
hancement of the influence of absorption on the coup
coefficient, which is determined by the overlap of the profi
functions in the layer with the perturbed dielectric consta
Deflection of the magnetic moment away from a normal
ward the Faraday orientation leads to a significant~by more
than two orders of magnitude! increase inugmnu, while the
difference ugmn(a)u2ugmn(0)u varies only slightly; there-
fore, it can be stated that the influence of absorption on
coupling of modes, i.e., on (ugmn(a)u2ugmn(0)u)/ugmn(0)u,
decreases. Here and in the following we shall use a mag
togyrotropic waveguide with the@111# crystallographic axis
normal to the surface of the film for the calculations;
linear and quadratic magnetooptical parameters have the
lowing values: f 53.0731024, Dg520.7331024, g11

55.0731024, andg4452.431024.
We bring the expression for the mode conversion e

ciency ~11! into the form

hmn5U gmn

xmn
U2

@sin2~tz cosc!1sinh2~tz sin c!#

3exp@2~bm9 1bn9!z#,

t5~xmnxmn* !1/2, 2Dmn8 5bm2bn1Re~Dbm2Dbn!,

2Dmn9 5bn92bm9 ,

c5
1

2
arctan@2Dmn8 Dmn9 ~D8mn

2 1ugmnu22D9mn
2 !21#. ~15!

While the conversion efficiency for a transparent wav
guide is a periodic function, the conversion efficiency fo
waveguide with absorption is a decreasing oscillating fu
tion. When the conditionuDmn9 u>ugmnu holds forDmn8 '0, the
conversion efficiency ceases to be an oscillating functi
This effect is similar to the effect considered in a system

FIG. 3. Dependence of the coupling coefficient for TEm→TMn conversion
on the thickness of the waveguide layer.
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coupled waveguides with strongly different absorpti
properties.13 An analysis of~15! shows that the conversio
efficiency reaches its maximal values at the wavegu
lengths z'p(1/21n)/(t cosc) (n50,1,2,. . . ) and its
minimal values at the lengthsz'pn/(t cosc), where, in
contrast to the situation in a transparent waveguide, for
synchronized modes the intensity of thenth mode I n

5uAn(z)u2 is nonzero:

I n
~min!5UAm~0!

gmn

xmn
U2

sinh2~pn tan c!

3exp@2~bm9 1bn9!pn/t cosc#. ~16!

Hence it follows that in an absorbing waveguide the p
larization of the total field of two coupled modes forcÞ0
and any waveguide length differs from the polarization of t
field of the input mode. In the case of complete phase s
chronism (Dmn8 50) the expressions for the intensities of th
input mode I m5uAm(z)u2 and the intensity of the excited
modeI n take the form

I m5uAm~0!u2S cosxmnz1
Dmn9

xmn
sin xmnzD 2

3exp@2~bm9 1bn9!z#,

I n5uAm~0!u2S ugmnu
xmn

sin xmnzD 2

exp@2~bm9 1bn9!z#,

~17!

wherexmn5(ugmnu22Dmn9 )1/2.
The energy of thenth mode in a waveguide of lengthz

5pn/xmn is equal to zero, while the energy of themth mode
remains nonzero over the entire course of the waveguide
the conditionuDmn9 u!ugmnu holds at the minima at the length
z5p(1/21n)/xmn (n50,1,2,. . . ), theintensity of the input
mode takes the values

I m
~min!5uAm~0!u2S Dmn9

xmn
DexpF2pS 1

2
1nD ~bm9 1bn9!/xmnG .

~18!

To analyze mode coupling it is useful to introduce t
quantity r mn(z)5uAn(z)/Am(z)u2, which characterizes the
contribution of each mode to the intensity of the total field
the waveguide. The form of the functionr mn(z) is largely
determined by the differenceDmn9 between the damping pa
rameters of the modes. In real waveguide structures the
sorption of modes of different polarization can differ by se
eral fold even far from the cutoff thickness.9 The parameter
uDmn9 u increases significantly when waveguides with a cla
ding of a conducting material or waveguides obtained
proton exchange are used.3,14

Figure 4 presents plots ofr mn(z) for TE0→TM0 conver-
sion and various values ofDmn9 and the waveguide thick
nessesL53.6 ~a!, 3.7 ~b!, and 2.0mm ~c!. The difference
between the mode damping parameters takes the va
Dmn9 520.25, 20.125, 0, 0.125, and 0.25 cm21 ~Fig. 4a,
curves 1–5!, Dmn9 520.25 cm21 ~Fig. 4b!, and Dmn9
520.25,20.5, 20.75, and21 cm21 ~Fig. 4c, curves1–4!.
The growth anisotropy of the iron garnet film was taken in
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account in constructing the curves in Fig. 4b by adding
31023 to the diagonal componentD«xx .11 As a result of
this anisotropy, the TE0 and TM0 modes are completely syn
chronized, i.e.,D008 50, whenL'3.7 mm. It follows from
the plots presented that if the absorption of themth input
mode is greater than the absorption of thenth excited mode,
the maxima and minima ofr mn increase with the waveguid
length. This means that the contribution of thenth mode to
the field propagating in the waveguide increases with
distancez. When there is no dichroism, the height of th
maxima of r mn does not vary, but the minima take a ze
value, at which the field takes on the original polarization
the absorption of the input mode is weaker than the abs
tion of the excited mode, the height of the maxima decrea
with only a slight increase in the minima ofr mn . In Ref. 9 an

FIG. 4. Plot ofr mn(z) for TE0→TM0 conversion.
2

e

f
p-
es

r mn(z) curve with increasing maxima was obtained as a
sult of an investigation of TE0→TM0 conversion forDmn9
'0.29 cm21. However, our analysis~Fig. 4a! shows that the
maxima of r mn(z) should obey a dependence which d
creases with the waveguide length in this case. When the
complete phase synchronism between the modes~Fig. 4b!
and the conditionuDmn9 u,ugmnu holds, the intensity of the
mth input mode reaches a minimum, and the functionr mn(z)
takes very large values at certain waveguide lengths.
polarization of the total field approximates the polarizati
of the nth mode in this case. The strong mode mismatch
the waveguide thicknessL52 mm ~Fig. 4c! makes the
maxima more frequent and dramatically lowers their heig
Also, if bm9 .bn9 , as the difference between the dampi
parameters of the input and excited modesuDmn9 u increases,
the contribution of the excited mode to the total intens
increases, rising with the waveguide lengthz.

NONOSCILLATING INTERMODE INTERACTION REGIME

In the case of phase synchronism (Dmn8 50) and a fairly
large difference between the damping parameters of
coupled modes (ubm9 2bn9u>2ugmnu), the trigonometric func-
tions in ~16! transform into hyperbolic functions. As a resu
the periodic energy exchange between modes propagatin
a waveguide that takes place in a transparent waveguide
in the case of a small difference between the mode damp
parameters is not observed. In this case the intensity of
nth excited modeI n5uAn(z)u2 has one maximum at the
waveguide length

z15
1

2smn
lnS bm9 1bn912smn

bm9 1bn922smn
D , ~19!

and the intensity of themth input modeI m has one minimum
and one maximum at the waveguide lengths

z25
1

2smn
lnS dmn

2

dmn
1 D ,

z35
1

2smn
lnS ~bm9 1bn912smn!dmn

2

~bm9 1bn922smn!dmn
1 D , ~20!

respectively, where

smn5~D9mn
2 2ugmnu2!1/2 and dmn

6 5Dmn9 6smn .

It is significant that the interaction of modes results
changes in their damping, which is determined for the p
tion of the waveguide atz.z3 by the quantity

ām,n52~bm9 1bn96smn!. ~21!

This permits regulation of the mode dampingām,n in a
certain range by varying the coupling coefficient. In additio
the total intensityI m1I n at the waveguide exit can be regu
lated by varying the coupling coefficient, although this cou
not be done when identically absorbed modes are coup
The results presented are also valid for a small phase
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match 2Dmn8 ,ugmnu. Under the conditionsDmn8 50 and
Dmn9 5ugmnu the expressions for the intensities of the mod
take the form

I m5I 0~zDmn9 11!2 exp@2~bm9 1bn9!z#,

I n5I 0~zDmn9 !2 exp@2~bm9 1bn9!z#, ~22!

whereI 05uAm(0)u2, and the intensity maxima of thenth and
mth modes and the minimum of themth mode, respectively
are realized at the lengths

z152/~bm9 1bn9!, z352bm9 /~bm9
22bn9

2!,

z251/~bm9 2bn9!.

If the mth input mode damps more slowly than the e
cited mode, its intensity does not have extremum values
decays monotonically.

As follows from an analysis of the relations presented
the absence of intermode coupling the possibilities of re
lating the energy damping in a waveguide are increasin
better the more strongly the absorption coefficients of
modes differ. To obtain a quantitative estimate of the eff
described, let us consider conversion of the TM1↔TE1 type
in a magnetogyrotropic waveguide consisting of an iron g
net film on a gadolinium–gallium garnet substrate with
cladding of a conducting material. The conducting lay
mainly influences the absorption of the modes by stron
enhancing the dichroism ~bM9 524.5 cm21 and bE9
520.5 cm21! and has practically no influence on other p
rameters of the modes.14 The film thicknessL56.8 mm, at
which the TE1 and TM1 modes are synchronized (Dmn8 '0)
in the waveguide considered, was used for the calculati
Figure 5 presents the dependence of the relative~normalized
to I 0 , i.e., the intensity of the input mode atz50! intensity
of the input modeJm(z)5I m(z)/I 0 , ~curves1!, the relative
intensity of the excited modeJn(z) ~curves2!, the total rela-
tive intensityJm(z)1Jn(z) ~curves3!, and the relative inten-
sity of the input mode in the absence of couplingJm(z)
5exp(22bm9z) ~gmn50, curves4! on the waveguide lengthz
for TM1→TE1 ~a! and TE1→TM1 ~b! conversion. The mag
netization lies in the plane of the film at the anglew559° to
the z axis, at which the mode-synchronism condition (Dmn8
'0) and the equalityDmn9 5ugmnu hold. It follows from the
dependences presented in Fig. 5a that the intensity
strongly absorbed input mode interacting with a less stron
absorbed mode passes through the minimum valueJm(z2)
and then damps more slowly than the intensity of themth
eigenmode. If the input mode is absorbed more slowly th
the excited mode~Fig. 5b!, mode coupling accelerates i
damping. The total intensity is greater in the former case
less in the latter case than the intensity of the noninterac
mode.

When the magnetization deviates from the anglew
559°, the phase synchronism is violated to a slight ext
(Dmn8 522.13 cm21 for w50 and Dmn8 50.8 cm21 for w
590°!, and the character of the mode interaction in this c
is determined mainly by the relation of the coupling coe
cient to the difference between the damping parametersDmn9 .
The total energy propagated in a waveguide can be ef
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tively varied by altering the coupling coefficient as a res
of rotation of the magnetic moment of the film. Figure
shows the dependence of the total relative intensity of
modes on the waveguide length for TM1→TE1 conversion
and various orientations of the magnetic moment in the pl
of the film: w50, 30, 50, 59, 80, 85, and 90° for curves1–7,
respectively. Under conditions close to phase synchronism
the coupled modes, the most effective control of the ene
transferred in the waveguide is possible, if the coupling
efficient ugmnu is smaller thanuDmn9 u ~curves4–7! or exceeds
it only slightly ~curve 3!. When the coupling coefficient is
increased further~curves1 and 2!, the possibilities of con-
trolling the waveguide energy by varyingugmnu are greatly
reduced, and in the limiting case ofugmnu@uDmn9 u they vanish
completely, since the energy of two synchronized mod
damps according to an exp@2(bm91bn9)z# law, being deter-
mined only by the imaginary parts of the propagation para
eters of the modes. For large coupling coefficients (ugmnu
@uDmn9 u) variation of the damping of the total energy is po
sible only by significantly increasing the phase misma

FIG. 5. Dependence onz of the relative intensitiesJm ~1!, Jn ~2!, Jm1Jn ~3!,
andJm5exp(2bm9z) for gmn50 ~4!.
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Dmn8 , the mode coupling is then destroyed, and the ene
transferred by the waveguide, consisting practically co
pletely of the energy of themth input mode, damps accordin
to an exp@22bm9z# law.

The analysis performed here allows us to conclude
absorption in a magnetogyrotropic waveguide influences
interaction of both identically and orthogonally polarize
modes, making an additional contribution to the intermo
coupling and altering its character when certain conditio
are satisfied. For example, for interacting modes w

FIG. 6. Dependence of the total relative intensity of the coupled modes
TM12TE1 conversion on the waveguide length.
y
-

at
e

e
s
h

strongly different damping parameters, the oscillatory ene
exchange between the modes vanishes and the dampin
the modes themselves becomes dependent on the cou
coefficient under conditions close to phase synchronism.
fective control of the damping of the field in the wavegui
becomes possible under such conditions. The effect
scribed can be utilized to create radiation amplitude modu
tors based on absorbing planar waveguides.
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Temperature stability and radiation resistance of holographic gratings on photopolymer
materials

T. N. Smirnova, O. V. Sakhno, I. A. Strelets, and E. A. Tikhonov

Institute of Physics, Academy of Sciences of Ukraine, 252650 Kiev, Ukraine
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Zh. Tekh. Fiz.68, 105–110~June 1998!

Data are presented from studies of the temperature dependence of the diffraction efficiency and
radiation resistance of volume phase hologram/transmission gratings. The reversible
diffraction efficiencies are described by the phase equilibrium diagram for the polymer–diffusate
system. The radiation resistance of these hologram/gratings is determined by the thresholds
for photothermolytic decay of the diffusate, bromonaphthalene, that was used. Composites
containing diffusates with high thresholds for photolysis and thermolysis are studied. As a
result, modified versions of the photopolymer recording medium with radiation resistances
exceeding 200 MW/cm2 are proposed. ©1998 American Institute of Physics.
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INTRODUCTION

Photosensitive polymer composites~PPCs! for holo-
graphic recording are constantly being developed
improved.1–6 The advances of recent years have led to n
possibilities for photopolymers, such as the recording
negative holograms in real time4,5 and a thermal techniqu
for developing latent holographic images.6 The known ad-
vantages of PPCs compared to bichromated gelatin inc
the ability to obtain holograms without having to go throu
the stages of chemical development of a latent image
extensive possibilities for optimizing the composites a
achieving better reproducibility of the basic parameters. T
phase character of the recorded information over a w
range of thickness and area of the recording medium ma
these materials attractive for the fabrication and developm
of various kinds of holographic optical elements.

We have for sometime been using the basic photop
mer holographic recording composite FPK-488 and its mo
fications for fabricating various types of holographic optic
elements. These include transmission and autocollima
diffraction gratings,7 diffraction optical filters,8 and selec-
tively reflecting diffraction gratings.9

Applications of optical devices based on polymer ho
graphic optical components in instruments or systems in
tably rely on the stability of the main operating paramete
The primary factor which affects photopolymer holograph
optical elements is the temperature. Humidity or mechan
effects are not as important, since this composite does
swell in water and the optical element is a rigid structu
consisting of a pair of substrates with the holograms betw
them. The temperature, on the other hand, is an unavoid
parameter, since local temperature rises may occur bec
of dissipative losses during channeling of high power la
beams.

In the first stage, the effect of general and local heat
of holographic optical components on their spectral and
gular characteristics is reversible. With increasing tempe
7081063-7842/98/43(6)/6/$15.00
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ture, they may cause irreversible changes and destroy a
logram. Researchers encounter a similar situation w
gratings interact with high-power laser beams. During int
actions with high-power laser beams, a third stage may
velop between these two, owing to the nonlinear optical
sponse of the grating material~a cubic nonlinearity with
respect to the field in an isotropic medium!. This stage will
be the subject of later studies; the results of a study of
first and second stages are presented in this paper.

One of the important practical achievements of this wo
has been the creation of a modification of the basic comp
ite which has a higher radiation resistance than bichroma
gelatin.

STRUCTURE AND PROPERTIES OF PHOTOSENSITIVE
POLYMER COMPOSITE HOLOGRAPHIC MEDIA

Holographic media based on FPK-488 are made in
form of a triplex: substrate–PPC–substrate, with a gap ra
ing from a few microns to 1 mm, depending on the angu
selectivity specifications for the fabricated holographic op
cal element. The gap is typically formed by spacers which
not inhibit shrinkage of the polymer layer. This kind of m
dium is prepared before recording and, for sizes up to 10
presents no technical difficulty. PPCs of this class incor
rate three interacting subsystems: a monomer–oligomer m
ture which is capable of polymerizing; a mixture of two
more components which form an effective initiator for
radical polymerization process; and, a chemical compon
which plays a fundamental role in the diffusion-induced
reversible spatial modulation of the refractive index—
chemically neutral diffusate~CND!.

Some characteristics of the photosensitive polymer co
posites are listed in Table I. FPK-488M differs from th
basic FPK-488 composite5 in the monomer–oligomer com
ponent, and FPK-488N differs in the diffusate.

The basis of the mechanism for holographic recording
these composites is the radical photopolymerization of
© 1998 American Institute of Physics
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monomer–oligomer mixture and interdiffusion of the mon
mer and the CND between the phase planes of the incip
hologram which correspond to the maximum and minim
light intensities in the interference light field.10,11 The result-
ing spatial modulation in the concentration of the CND e
hances, by many times, and stabilizes the modulation of
refractive index of the polymer layer.

TEMPERATURE STABILITY OF THE PARAMETERS OF FPK-
488 HOLOGRAPHIC GRATINGS

We have studied the temperature dependences of the
fraction efficiency h and transmissionT0 of holographic
gratings recorded on layers of FPK-488 and FPK-488M.
this purpose we measured the variation in the diffraction
ficiency over temperatures of250 to 1250 °C. A transmis-
sion diffraction grating was placed in a temperature c
trolled cabinet with a temperatureT that was controlled ove
the range120–1250 °C. The diffraction efficiency was
measured over the intervalT52100 to120 °C using a liq-
uid nitrogen cryostat with a variable temperature. The va
tion in the diffraction efficiency of the grating was teste
using a He–Ne laser beam (l50.6328mm) incident on the
sample grating at the Bragg angle. The powers of the in
dent (Pin), transmitted (Pout), and diffracted beams (Pdif)
were monitored using FD-26 photodiodes whose outp
were fed to an automatic data recording and processing
tem.

The diffraction efficiency was defined as the ra
Pdif /(Pdif1Pout). Losses due to light scattering (r51
2T0) were taken into account by measuring the grat
transmissionT05(Pin2Pfr2Pout)/Pin , wherePfr represents
the Fresnel losses measured when the probe beam was
dent on the grating at the angle for whichPdif50.

These studies yielded the following data. Heating
gratings to 100 °C causes a negligible change in the diffr
tion efficiency. On going toT.100 °C, a reduction in the
diffraction efficiency is observed, with an approach to
steady value which remains invariant for fixedT throughout
the observation time~up to 8 h!. Cooling the grating to the
initial ~room! temperature is accompanied by a return of
diffraction efficiency to its original value.

Figure 1 shows the diffraction efficiencyh5 f (T) of
transmission gratings for the FPK-488 and FPK-488M co
posites. A temperature-reversible recovery of the diffract
efficiency occurs up to temperaturesT such that the grating

TABLE I.

Sensitivity,* Resolution, Amplitude of the modulaion
Type of PPC mJ/cm2 mm21 of the refractive index,dn**

FPK-488 300 .6000 0.012–0.015
FPK-488M 60 .6000 0.025
FPK-488N 150 .6000 0.012–0.014

*The photosensitivity of the recording medium is defined as the expo
required to attain a maximum diffraction efficiency for write beam inte
sities of 0.2 mJ/cm2 at a writing wavelength ofl50.488mm.

** The amplitude of the modulation of the refractive index was calcula
for grating readout by al50.6328mm beam with the electric field vecto
E parallel to the ‘‘rulings’’ ~s polarization!.
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is destroyed. For gratings based on FPK-488, destruction
in at T5218 °C; for the gratings recorded on FPK-488M,
244 °C.

A polymer layer without the neutral component r
mained undamaged up to the highest observation temp
ture, T5250 °C. The damage for all the gratings~with n
52000 mm21! had a specific and fixed character: crac
formed parallel to the direction of the phase planes of
grating, with a division ratio of roughly 20:1. The crack
occur periodically and thus convert the thick transmiss
grating into a thin one~according to the Klein–Cook crite
rion! and lead to the appearance of a multiwave diffract
pattern of the probe beam. Polymer layers of the same p
topolymer recording material with no hologram recorded
them crack in a disordered fashion at the same temperatu

As a grating is cooled to around25 °C, its diffraction
efficiency remains practically constant. At low temperatu
(T,0 °C), a reversible reduction in the diffraction effi
ciency is observed~Fig. 2!. For gratings with FPK-488 with
an initial h598%, the minimum diffraction efficiency stabi
lizes at;0.81. When a grating is heated at an average rat
;0.5 deg/min, such that a quasiequilibrium temperature
tribution can develop over the layer, the diffraction ef
ciency increases. The initial value is recovered atT518 °C.
Hysteresis appears in the diffraction efficiency for gratings
FPK-488M on cooling and heating. Thus, when a grat
~with an initial h50.95! is initially cooled to260 °C and
then heated, its efficiency at first increases but then, with
reaching its original value, stabilizes at a level of;0.8.
However, the initial diffraction efficiency is recovered whe
the grating is keptT520 °C for a long time~over an hour!
or heated to130– 40 °C. In addition, for gratings based o
the two modified PPCs, the light scattering increases as
temperature is reduced.

The diffraction efficiency of a transmission volum
phase grating at the Bragg angleb is given by the Kogelnik
formula12 for a given temperature

h~T!5sin@pdn~T!d~T!/l cosb~T!#, ~1!

re

d

FIG. 1. Temperature-induced variations in the amplitude of the modula
of the refractive index of a grating based on FPK-488~1!, and in the dif-
fraction efficiency of gratings based on FPK-488M~2! and FPK-488~3!.
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where dn is the amplitude of modulation of the refractiv
index andd is the grating thickness.

It might be expected thath(T) is determined by tem-
perature variations in the grating parameters which ente
Eq. ~1!.

As our measurements showed, the diffraction efficien
of the grating is essentially unchanged over temperature
1–100 °C. This appears to be related to the specific struct
features of the holographic optical element and its ther
mechanics: because of the adhesion of the polymer to
substrate, the change in the size of the polymer layer al
the grating vector is determined principally by the therm
expansion ~contraction! of the glass substrate. ForT
5200 °C and a coefficient of linear thermal expansion of
glass ofac5831026 deg21, the change in the grating pe
riod is roughly 0.07% and the change in the diffraction e
ciency is 0.02%. ForT,0, ac is smaller and the effect o
this factor on the grating period is even more negligible.

The changes in the grating thickness is determined
the coefficient of linear thermal expansion of the polym
ap , and not of the substrate. The PPCs used here are
systems of polymer~more often, copolymer! and solvent
~CND!. There are no published data on their temperat
coefficients of expansion. The estimates given here are b
on values ofap for polymers with similar properties. Ac
cording to data13 for polymers similar to those studied her
the maximum value ofap5531024 deg21. For this value
of ap , the grating thicknessd increases by;10% whenT is
raised to 200 °C.

The observed decrease of the diffraction efficien
~rather than an increase with grating thickness! is evidence
that its temperature behavior is determined primarily by
dependencedn(T), which decreases by more than the thic
nessd increases.

The temperature variationdn(T) calculated from Eq.~1!
on the basis of the measuredh(T), with allowance for the
change ind for b5const, is shown in Fig. 1~curve1!.

FIG. 2. Temperature-induced variations in the diffraction efficiency~1,2!
and light scattering losses~3! for gratings based on FPK-488~1,3! and
FPK-488M ~2!.
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Let us see which properties of the recording mate
determine the magnitude and temperature behavior
dn(T). By definition,

dn5u~nmax2nmin!u/2, ~2!

wherenmax,minare the refractive indices of the polymer in th
phase planes formed at the antinodes and nodes of the i
ference field, where the concentration of the CND is diffe
ent.

Our measurements~Fig. 3! show that the dependence o
the refractive index of the polymer on the amount of CN
within this range of concentrationsc is quite well described
by a linear dependence of the form14

n5n01c~dn/dc!, ~3!

wheredn/dc is the rate of increase of the refractive inde
and n0 is the refractive index of the polymer without th
neutral component.

Substituting Eq.~3! in Eq. ~2! yields

dn~T!5udn~T!/dcuc1N~T!, ~4!

wherec1N is the amplitude of the modulation of the conce
tration of the neutral component.

The absolute value of the rate of increase of the refr
tive index is known14 to increase in proportion to the differ
ence between the refractive indices of the polymer and
vent. The magnitude ofDc depends on the thermodynam
affinity of the neutral component of the polymer.~We shall
discuss this in more detail below.! Thus, dn(T) is deter-
mined by the thermodynamic properties of the polyme
CND system and by the difference in their refractive indic
The rate of increase of the refractive index is constant ov
wide range of temperatures for various polymer–solv
systems.13 The slight change indn over 20–100 °C indicates
that the change inudn(T)/dcu is small for the PPCs studie
here. Based on this, we may assume that the character o
temperature dependence ofdn(T) is determined mainly by
that of Dc(T).

The temperature dependence ofDc5 f (T) is explained
by a change in the phase equilibrium of the polymer–CN

FIG. 3. The refractive indices of FPK-488~1! and of a polymer based on i
~2! as functions of the concentration of the chemically neutral diffus
~CND!.
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system. The phase equilibrium of such a system is descr
by a state diagram. In the following, we shall consider t
models which are capable of describingDc5 f (T) qualita-
tively ~Fig. 4a and 4b!. We consider phase equilibrium
curves with an upper critical temperature of displacementT*
as the most common type of diagram for systems simila
those studied here.13,15

Our measurements imply that for FPK-488 and FP
488M,T* lies above the temperature at which the hologra
are destroyed. Prior to recording, these composites are
ticomponent single phase solutions. Polymerization in
gradient interference field destroys the equilibrium state
the system and shifts it to pointA ~Fig. 4a!. Here system1
breaks up into two phases. When equilibrium is reached,
compositions of the phases correspond to the pointsC1 and
C2 . The phase planes of the gratings in this case diffe
having different amounts of these phases.

Diagrams2 and3 of Fig. 4b allow for the difference in
solubility of the polymer formed at the antinodes and nod
of the interference field. Such a difference may be caused
a dependence of the degree of polymerization~density factor
of the polymer network! and, therefore, of the solubility o
the polymer, on the spatial distribution of the intensity of t
light field.16

During the recording process, at the antinodes of
field the system becomes two-phased, and microsyne
~squeezing out! of the excess neutral component from t
polymer mass takes place. For the polymer formed at
nodes of the field, the concentration of the neutral com
nent remains in equilibrium. As a result, the phase plane
the grating consist of polymer phases with different equil
rium concentrations of the CND~C3 andC4 in Fig. 4b!.

For the system described by curve1, an elevated tem-
perature causes the thermodynamic affinity of the CND
the polymer to increase and, accordingly, the compositi
of the phases move closer together~pointsC18 andC28!. Then
Dc(T) anddn(T) decrease, which leads to a reduction in t
diffraction efficiency. In the second case~Fig. 4b!, the equi-
librium concentration of the neutral component in both po
mer phases increases, with an accompanying drop in the
centration gradient of the CND and, therefore, a reduction
dn. In both cases, the change inDc(T) is reversible, so tha
the diffraction efficiency recovers when the grating is cool

The choice of a specific model for the holographic
cording process in these photosensitive polymer compo
requires additional study of their thermodynamic properti

FIG. 4. Phase diagrams of the states of a polymer-CND system for
models described in the text~c is the concentration.!
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The situation is different when the gratings are coo
below 20 °C. The monotonic drop in the diffraction effi
ciency can be explained by a decrease in the thickness o
grating with temperature, sincec1N changes little according
to the phase diagram. In addition, the drop in the diffract
efficiency may be related to increased light scattering in
grating ~Fig. 2, curve3!. This last effect may be caused b
crystallization of the CND, whose freezing point is26 °C.
The further drop in the diffraction efficiency as the tempe
ture is brought below the freezing point of the CND and t
above-described hysteresis may be related to a change i
diffusion times of the system owing to the high viscosity
the polymer phase and the peculiarities of the crystallizat
kinetics of the neutral component in the polymer matrix.

RADIATION RESISTANCE OF POLYMER HOLOGRAPHIC
GRATINGS

The radiation resistance of the photosensitive polym
composite gratings was studied by irradiating them w
pulsed Nd31:YAG ~l51.064, 0.532 mm! and dye (l
50.630mm) lasers. The transmission and diffraction ef
ciency of the gratings and their thresholds forN-pulse and
many-pulse damage were measured. The threshold foN-
pulse damage is defined as the intensity (I N) at which N
pulses on a given point of the sample will produce mic
scopic damage on its surface and in its volume. The mu
pulse damage threshold is defined as the intensityI * which
will cause damage forN.1000 pulses.

The way the diffraction efficiency and transmissionT0

varied was similar for laser irradiation at different wav
lengths, intensities, and pulse repetition rates. As a rule,
diffraction efficiency and transmission of a grating are o
served to decrease in an irradiated region~the latter is mea-
sured at orientations off the Bragg angle! all the way up until
destruction of the grating. Visually, a blackening of the gr
ing is observed where later a microscopic hole is form
owing to evaporation of the polymer. Here the transmiss
of a polymer layer without a neutral component does
change until it is destroyed atI * ;1 GW/cm2.

Our results indicate that the damage threshold for ho
graphic optical components made of these photosens
polymer compositions is determined primarily by the pho
physical and thermal properties of the CND component
the polymer. Here the processes leading to destruction of
grating have a cumulative character. A reduction in the
tensity is observed as the frequency of the laser light
proaches the edge of the fundamental absorption band o
diffusate.

Without pretending to an exhaustive description of t
damage mechanism, we may assume that under intense
diation, photochemical processes develop in the polymer
ing to multiphoton absorption. The consequence of th
processes is the formation of photodissociation products
the component with the lowest photodissociation thresho
The products of photodissociation that exhibit fundamen
absorption at the wavelength of the high-power laser are
tremely important, since in this case there is positive fe
back in the chain of events formed by absorption–photo

o
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TABLE II.

Diffraction efficiency,
No CND nd np2nd Copt , vol.% l * , MW/cm2 l50.6328mm

1 Bromonaphthalene 1.66 20.14 30 16.0 0.99
2 Quinolene 1.627 20.107 35 12 0.85
3 Petachlor Diphenyl 1.636 20.116 30 15 0.9
4 Trifluorethanol 1.29 0.23 35 .200 0.94
5 Acetonitryl 1.344 0.176 40 .200 0.04
6 Methanol 1.328 0.192 40 .200 0.03
7 Heptane 1.387 0.133 12 .200 0.98
8 Hexane 1.375 0.145 20 .200 0.98

Note: The multi-pulse damage thresholdI * was measured using light from a Nd laser with the followin
parameters:l51.06mm, pulse length 10–15 ns, pulse repetition rate 12.5 Hz; ‘‘.’’ means that no damage to
the sample was observed during continuous operation for 6 h.
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sis–absorption–heating–thermolysis, etc. An increase in
concentration of these products leads to local heating of
polymer and its evaporation in the region of the interact
with the light beam. Apparently in the case of bromonap
thalene as the CND, bromine is photodissociated from
main naphthalene molecule and this then opens up the
sibility of direct absorption of visible light by molecular bro
mine. The process proceeds with steady autoacceleration
thus is cumulative. Soot formation and the evaporation of
polymer, as a final stage of damage, take place owing
thermolysis during the rapid local heating of the polymer
the irradiated regions.

In order to enhance the radiation resistance of ho
graphic optical components based on these photopolym
we have studied replacing the CND contained in the ba
composite FPK-488. A list of the diffusates that were stud
and some characteristics of the new FPK-488N are show
Table II.

The preliminary choice of the compounds for use as
CND was based on the following considerations. Aroma
1–3 and aliphatic 4–8 compounds were investigated. S
the aromatic compounds undergo thermolysis more ea
than the aliphatic,17,18 using them as a diffusate in a phot
polymer recording medium lowers the radiation resistance
holographic optical components. In order to ensure hig
efficient recording, compounds were chosen for which
absolute value of the difference between the refractive in
ces of the polymer-forming part (np) and the CND (nd) was
at least 0.1.

In addition, materials with a different solubility relativ
to the polymer were examined, and this made it possible
establish a relation between the holographic parameters
the thermodynamic properties of the photosensitive polym
composite. The Huggens parameters, which characterize
thermodynamic affinity of a CND to a polymer, were n
determined. However, the change in the affinity in a serie
additives can be estimated qualitatively from the value of
optimum concentrationcopt of the CND which ensures maxi
mum recording efficiency. A reduction in this efficiency
evidence of a drop in the equilibrium concentration of t
neutral component in the polymer and, accordingly, of a
duction in the thermodynamic affinity in the system. A
Table II implies, the groups of compounds Nos. 1–4, 5,
e
e

n
-
e
s-

nd
e
to

-
rs,
ic
d
in

e
c
ce
ily

f
y
e
i-

to
nd
r
he

f
e

-

,

and 7, 8 have similar affinities to the polymer, and the affi
ity decreases in the series~5,6!–~1,4!–~7,8!.

Diffusates2 and 3 ensure highly efficient recording a
roughly the same optimum concentrations as for the b
monaphthalene in the basic FPK-488. The multi-pulse da
age thresholds for them lie between 12 and 16 MW/cm2 and
are roughly the same as for the basic FPK-488. In both ca
damage to the grating was accompanied by the formatio
absorbing products, in agreement with earlier observation17

On the other hand, the CNDs 4–8 greatly increased the
diation resistance of the gratings, although the pho
sensitive polymer composites based on them differed in t
recording efficiencies. Thus, the maximum diffraction ef
ciency for additives 5 and 6 was less than 30–40%. CND
yielded a diffraction efficiency of up to 96%, but noticeab
reduced the photosensitivity of the PPC. This was a resu
a chemical interaction between this diffusate and the ini
tor.

The best results for the magnitude of the diffraction
ficiency and the radiation resistance, simultaneously, w
obtained using the normal paraffins 7 and 8 as CNDs.
sides increasing the radiation resistance, going to the nor
paraffins made it possible to increase the photosensitivity
the material by a factor of 1.5–2 as a result of increasing
rate of polymerization of the composite while the concent
tion of the CND was lowered. This last result suggests t
for materials such as FPK-488, reducing the thermodyna
affinity of the neutral component leads to an improvemen
such parameters of the materials as its photosensitivity.

CONCLUSION

Based on the results obtained here, we reach the foll
ing conclusions:

1. The temperature variation in the diffraction efficien
of gratings based on photopolymer materials such as F
488 is characterized by the existence of two tempera
ranges. Within the range1100.T.210 °C, the grating
efficiency is essentially constant. The decrease in the diffr
tion efficiency forT,210 °C and forT.100 °C up until
the grating is destroyed is reversible. The change in the
fraction efficiency with temperature in the latter case is d
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termined by temperature-induced changes in the phase e
librium conditions for the polymer–diffusate system.

2. The radiation resistance of gratings using FPK-4
polymers is determined by the properties of the chemic
neutral diffusate. By choosing an optimum diffusate from t
class of aliphatic compounds, we were able to raise the l
damage threshold of the gratings to*200 MW/cm2, which
makes it possible to use gratings based on FPK-488N
controlling the output from high-power lasers.

3. By choosing constituents of the photosensitive po
mer composite with an optimum combination of physic
and thermodynamic parameters, it is possible to minim
the concentration of the diffusate in the medium witho
lowering the recording efficiency and, thereby, to raise
photosensitivity of these materials.

4. The recording of holographic gratings can serve a
method for determining the relative change in the affinity
the solvents to the polymer, based on the change in the
timum concentration of solvent which ensures a maxim
recording efficiency for a given pair.
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Experimental study of the focusing of submicrosecond pressure pulses in liquids
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Experimental data are presented from a study of the focusing of single, submicrosecond pressure
pulses in water. The effects of the initial amplitude distribution, the initial pressure level,
and the geometric parameters of the opto-acoustic concentrator are studied. It is found that the
focusing efficiency can be substantially enhanced by going from a bell-shaped distribution
of the initial amplitude to an annular distribution. ©1998 American Institute of Physics.
@S1063-7842~98!02006-6#
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INTRODUCTION

The focusing acoustic pulses in liquids currently ha
wide range of applications in different areas of science, te
nology, and medicine.1–3 Thus the problem of concentratin
pulsed pressures in the smallest possible spatial regio
extremely timely.

The Kirchhoff–Helmholtz integral equation4 is used to
describe the focusing of monochromatic waves in the lin
approximation. If the local distanceF is much greater than
the wavelengthl, while the geometric angle of convergenc
a, is not too large (a<1 rad), then this approach yields th
following result:5

~pf /p0!;Fb2/l, L f;l/b2, D f;l/b, ~1!

where pf and p0 are, respectively, the maximum pressu
amplitudes in the focal plane and at the surface of the foc
ing source,L f and D f are the length and diameter of th
focal region at a level of 0.5pf , andb is the effective con-
vergence angle.

The parameterb is defined by the formulas5

b25p21E
0

2p

dwE
0

a

f s~u,w!sin udu,

f s~u,w!5ps~u,w!/p0 , ~2!

where ps(u,w) and f s(u,w) are, respectively, the pressu
amplitude at the surface of the focusing source and its
tribution function, whileu andw are the latitude and longi
tude angles in a spherical coordinate system.~The origin of
the coordinate system lies at the geometric focus, with
angleu reckoned from the acoustic axis andw in the focal
plane.!

Thus in order to enhance the focusing efficiency for l
ear monochromatic waves, it is necessary to red
the wavelengthl and increase the effective convergen
angleb.

The criterion for applicability of the linear approac
which takes only diffraction into account, is the following4
7141063-7842/98/43(6)/6/$15.00
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~4LD /LN!!1, LD5p~Fb!2/l,

LN5r0c0
2l/~2p«p0!, ~3!

whereLD andLN are, respectively, the diffraction length an
the distance for formation of a discontinuity in a plane wav
«5(11g)/2 is the acoustic nonlinearity parameter, andr0

andc0 are the density of the liquid and the speed of sou
in it.

Therefore, for sufficiently short waves and large effe
tive angles of convergence, nonlinear effects, whose c
bined effect on the focusing efficiency for monochroma
waves is complicated, must be taken into account.6–8

It has been found that the processes involved in
propagation of pulsed and monochromatic waves in both
linear and nonlinear regimes have many features
common.4,9,10 In particular, to examine the focusing of a
initially monopolar pressure pulse of durationt, one can use
Eqs. ~1!–~3! with the wavelengthl replaced by the ‘‘pulse
length’’ c0t.11,12 Thus, according to the linear theory, th
efficiency with which a single pulse is focused will increa
as its duration is reduced. Then, however, the influence
nonlinear effects should become greater, and this may
qualitatively different, depending on the ratioLD /LN .

Hence, studies of the focusing of short, single press
pulses (t<1027 s), which are most conveniently generat
using an opto-acoustic approach,13 are of great interest from
the standpoint of both fundamental and applied problems

In both theoretical and experimental studies of the foc
ing of pressure pulses it is customary to consider bell-sha
profiles of their initial amplitude. An analysis of the avai
able experimental data14–18 indicates that for enhancing th
focusing efficiency for submicrosecond pulses it is necess
to increase the geometric angle of convergence. This con
sion is consistent with Eqs.~1! and~2!: asa is increased, so
doesb, and therefore the focusing conditions are improve

There is, however, another approach to the probl
of increasing the effective convergence angle. According
© 1998 American Institute of Physics
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FIG. 1. The experimental apparatus~a! and tem-
poral profiles of the pressure pulses~b!: 1—near
the surface of the absorbing layer,2—at the fo-
cus of the opto-acoustic concentrators.
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Eq. ~2!, the largest contribution tob is from the periphery of
the beam, rather than from its axial region. Thus, the eff
tive angleb can be increased without changinga, by going
from a bell-shaped distribution of the initial amplitude to
annular distribution.

Under nonlinear conditions a bell-shaped initial distrib
tion is clearly even more inferior from the standpoint of f
cusing because of the negative effect of nonlinear refract
In the case of a bell-shaped distribution of the initial amp
tude, nonlinear refraction straightens the wave front a
thereby makes focusing more difficult. At the same time,
nonlinear distortion of the pulse profile, which enriches t
initial spectrum with higher-frequency harmonics, promo
focusing until a shock front develops. Then the deleterio
effect of nonlinear refraction is augmented by nonlinear
sorption. Thus, different situations can occur, depending
the intensity of these nonlinear processes.

It appears that using beams with an annular distribut
of the initial pressure can greatly attenuate the deleter
influence of nonlinear effects. In this case, in the initial sta
of propagation of the wave, nonlinear refraction will not i
hibit the focusing process but, on the contrary, will facilita
it. In addition, for a fixed acoustic energy,p0 and, therefore,
the influence of nonlinear effects will be smaller for larg
values ofb.

In order to verify these assumptions, we have made
experimental study of the dependence of the focusing of s
microsecond pressure pulses in water on the level ofp0 and
on the geometric parameters of the opto-acoustic conce
tor for the cases of bell-shaped and annular initial distri
tions.

EXPERIMENTAL TECHNIQUE

A multimodeQ-switched neodymium glass laser~wave-
length 1.06mm! was used to excite the pressure pulses. T
duration of the laser pulse at half maximum was 20 ns and
energy was varied over the interval 0.1–0.3 J.
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Figure 1a shows a sketch of the experimental appara
The laser beam1 was expanded by a negative lens2. In
order to smooth out its transverse multimode structure
diffuser 3 was placed at the inlet of the opto-acoustic co
centrator4.

The laser pulse was converted into a single press
pulse of duration 0.2ms at half maximum in a solid absorb
ing layer of thickness>0.4 mm deposited on the concav
spherical surface of the glass substrate. The layer mat
was well matched with water in terms of its acoustic impe
ance ~r'103 kd/m3, c'1.83103 m/s! and this essentially
eliminated energy losses owing to reflection as the pres
pulse passed from the opto-acoustic layer into the wa
tank 5.

The thermoelastic mechanism for opto-acoustic gene
tion ensured that the absorbing layer could be used m
times and provided good reproducibility of the parameters
the exciting pressure pulses with a high light-to-sound c
version efficiency. The parameterh5p0 /J0 ~whereJ0 is the
maximum energy density of the laser pulse at the apertur
the concentrator! was ;20 MPa/~J/cm2! for 0,J0

,0.5 J/cm2.
The change in the distribution of the initial amplitude

the pressure pulse was measured by transforming the in
sity distribution of the laser light at the inlet of the opto
acoustic concentrator.

The pressure in the water was recorded using a piez
ramic probe6 with a sensitive area of diameter 0.5 mm. T
signal from the probe was fed to the input of an S8-14
cording oscilloscope~bandwidth;50 MHz!. A differential
interferometer with stabilized sensitivity and photoelectr
pulse counting, operating in a linear mode, was used to c
brate the probe.

Studies of focusing were done on two opto-acoustic c
centrators: 1! F568 mm and D554 mm, and 2! F
591 mm andD5110 mm, whereD is the diameter of the
concentrator.
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Figure 1b shows typical profiles of the pressure pul
recorded near the surface of the absorbing layer and a
focus of the opto-acoustic concentrators for different lev
of the initial amplitude. At low pressures, one can observ
characteristic diffractional transformation of the tempo
profile, i.e., the pulse is differentiated. As the initial amp
tude is increased, the influence of nonlinearity shows
distinctly:4 the leading edge of the pulse becomes stee
the duration of the compression phase is shorter, and its
tive amplitude increases, while the rarefaction phase is
tended and smoothed out.

It should be noted that in our experiments, as oppo
those of Musatov and Sapozhnikov,16 no shock front forma-
tion was observed, so only two nonlinear effects opera
nonlinear distortion of the temporal profile, and nonline
refraction.

RESULTS AND DISCUSSION

The axially symmetric functionsf s(u,w)5 f s(u) con-
structed on the basis of the experimental data for the cas
a bell-shaped distribution of the initial amplitude are sho
in Fig. 2a. The changes in the amplitude of the compress
phase of the pressure pulse along the acoustic axis and i
focal plane are shown in Figs. 2b and 2c for two laser pu
energiesE. The absolute magnitudes of the initial and foc
pressures, the gain coefficientG5p1 /p0 , the length and di-
ameter of the focal region, and the effective converge
angle are listed in Table I.

These data show that as the effective convergence a
and the focal length are increased~i.e., on going from the
first concentrator to the second!, the focal pressure and th
gain increase substantially. At the same time, there is a
ticeable reduction in the size of the focal region, both
dimension along the acoustic axis~2! and the diameter.

For low initial pressures (p0;0.2– 0.3 MPa), these dat
are in fairly good agreement with the predictions of the l
ear theory. According to Eq.~1!, going from the first to the
second concentrator should yield an increase inG by a factor
of 2.4 asL f and D f are reduced by factors of 1.8 and 1.
respectively. In the experiment the gain increased by a fa
of 2.4 and the size of the focal region was reduced to roug
half.

At higher initial pressures (p0;2 – 3 MPa), the agree
ment between the linear theory and the experimental da
poorer owing to the greater role of nonlinear phenome
Here the changes indicating an enhancement in the focu
efficiency on going from the first concentrator to the seco
are less marked than at lowp0 : the gain increases by a facto
of 1.7, while the size of the focal region is reduced by
factor of 1.3.

The influence of nonlinear effects on the focusing p
cess is clearly demonstrated by the plots ofpf(p0) and
G(p0) for the second concentrator shown in Fig. 3. Forp0

<1 MPa, these curves are still linear, while for higher init
pressures the focusing efficiency falls off. That the range
linearity was much wider than predicted by Eq.~3! is appar-
ently explained by the fact that nonlinear refraction and n
linear distortion of the temporal profile counterbalance e
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other at low initial pressures. Asp0 is increased, nonlinea
refraction begins to predominate and the focusing dete
rates.

Let us examine the experimental data for the case o
annular distribution of the initial amplitude. The function
f s(u,w)5 f s(u) for this sort of distribution are shown in Fig
4a. Figure 4b shows the variations in the amplitude of
compression phase of the pressure pulse along the aco
axis for the first and second concentrators for two laser pu
energies. The corresponding radial distributions in the fo
planes of the opto-acoustic concentrators are given in
4c. The normalization parameters, gain coefficient, len

FIG. 2. Bell-shaped distribution of the initial pressure in the opto-acou
concentrator. The dashed curve is the first concentrator and the sm
curve, the second.E ~J!: 0.3 and 3.0~1!, 1.85 ~2!, 0.15 ~3!.
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TABLE I.

Opto-acoustic p0 , pf , L f , D f ,
concentrator E, J MPa MPa G mm mm b0

1 0.30 0.30 2.0 6.7 22 2.8 13.5
1 3.00 3.00 20.0 6.7 22 2.8 13.5
2 0.15 0.17 2.7 15.9 10 1.6 18.0
2 1.85 2.00 22.9 11.5 18 2.2 18.
e

li-
a

n
ze
pe
b

ac
te
s

th
wa
su
e
d

en
io
oc

itia
b

n-
urve,
and diameter of the focal region, and the effective conv
gence angle are listed in Table II.

The data for an annular distribution of the initial amp
tude also show that as the effective divergence angle
focal length are increased~on going from the first to the
second concentrator!, there is a significant rise in the gai
and focal pressure with a simultaneous decrease in the si
the focal region. As opposed to the case of a bell-sha
initial distribution, these changes are larger than predicted
the linear theory. In the experiment, even forp0

;1 – 2 MPa, an increase in the focusing efficiency by a f
tor of 2.7 was observed with respect to all three parame
~G, L f , andD f!, while for p0;0.1– 0.2 MPa these indicator
were still higher.

Here it should be noted that the measured value of
diameter of the focal region for the second concentrator
comparable to the size of the sensitive area of the pres
probe. Thus, the dimensions of the focal volume were ov
stated, while the pressures measured in the neighborhoo
the focus were understated.

The effect of the finite probe size on the measurem
results can be estimated by writing the amplitude distribut
of the compression phase of the pressure pulse in the f
plane in the form

p~r !5pf* F~r /D f* !, ~4!

whereF(r /D f* ) the dimensionless profile function,pf* is the
true value of the pressure at the focus, andD f* is the actual
diameter of the focal region at the 0.5pf* level.

FIG. 3. The focal pressure and gain coefficient as functions of the in
pressure for the second opto-acoustic concentrator in the case of a
shaped distribution of the initial amplitude.
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FIG. 4. Annular distribution of the initial pressure in the opto-acoustic co
centrator. The dashed curve is the first concentrator and the smooth c
the second.E ~J!: 0.3 and 3.0~1!, 1.85 ~2!, 0.15 ~3!.
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TABLE II.

Opto-acoustic p0 , pf , L f , D f ,
concentrator E, J MPa MPa G mm mm b0 MLG

1 0.30 0.18 2.2 12.2 22 2.8 17.0
1 3.00 1.80 22.0 12.2 22 2.8 17.0
2 0.15 0.08 2.7 33.8 5 1.0 22.5 1.4
2 1.85 1.00 29.2 29.2 9 1.3 22.5 1.1
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Introducing the dimensionless averaging coefficientM
5pf* /pf , we find

M5d2F8E
0

d/2

F~r /D f* !rdr G21

, ~5!

whered is the probe diameter.
SinceD f.d, for the purpose of estimates it is sufficie

to approximateF(r /D f* ) by some bell-shaped function, a
suming thatD f* 'D f2d. Let us compare the values ofM
calculated for Lorentzian~L! and Gaussian~G! focal distri-
butions

ML5x2 ln21~11x2!,

MG5x2 ln 2@12exp~2x2 ln 2!#21, ~6!

wherex5d/D f* .
ML and MG begin to differ noticeably only forx.1.5

and, therefore, the parameterMLG5(ML1MG)/2 intro-
duced in Table II can be used for our estimates. ForD1

>1.6 mm, the calculation yields values ofMLG which differ
little from unity (MLG<1.09), so they have not been ind
cated in Table II and were not taken into account in anal
ing the experimental data.

Thus, in the case of the second type of opto-acou
concentrator, the growth in the focusing efficiency was u
derestimated by roughly factors of 1.5 and 1.2, respectiv
for low and high initial pressures. In order to determine t
focal parameters more accurately, the spatial resolution
the measurements must be increased severalfold; that
independent and by no means simple problem.

Let us analyze the enhancement in the focusing e
ciency on going from a bell-shaped distribution of the init
amplitude to an annular one. For the first concentrator,
gain increases by a factor of 1.8, while the changes in
dimensions of the focal region are negligible. At the sa
time, for the second concentrator, the gain increases b
factor of 3.0, while the length and diameter of the focal
gion are reduced to half.

Going from a bell-shaped distribution of the initial am
plitude to an annular distribution, therefore, makes it p
sible to greatly enhance the focusing efficiency, and th
changes are most noticeable for the second concentrato
the meantime, according to Eq.~1!, the increase in the focus
ing efficiency should be the same for the first and sec
concentrators, since on replacing a bell-shaped initial dis
bution by an annular one,b increases by the same factor f
both of the concentrators~Tables I and II!.

The observed additional improvement in the focus
conditions for the second opto-acoustic concentrator app
-
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to be related to a lessening of the negative contribution
nonlinear phenomena in the case of an annular distributio
the initial pressures. An analysis of the geometry of the
nular distributions of the initial amplitude~Fig. 4a! shows
that for the second concentrator, the ring of the initial dis
bution stands substantially farther away from the center t
for the first concentrator, a circumstance which also show
up in the character of the nonlinear refraction. This assum
tion is confirmed by the plots ofp/pf(z) in Fig. 4b. For the
first concentrator the pressure equals zero only in the ne
borhood of the pointz5r 50, while for the second concen
trator the region in which there is no acoustic perturbation
the beam axis is much wider (z<20 mm).

In order to determine the influence of the geometry of
annular initial distribution on the focusing efficiency, we pe
formed the following experiment. Atp0;0.1 MPa, an annu-
lar distribution of the initial amplitude for the second co
centrator was shifted from the center to the edge in a w
such that the effective width of the annulus remained c
stant. The diameter of the focal region was found to decre
to 0.5 mm, i.e., to the size of the sensitive area of the pr
sure probe, with the measured focal pressurepf essentially
constant owing to the strong spatial averaging. These res
confirm the important influence of the geometric paramet
of an annular distribution on the focusing efficiency and t
possibility of further increasing the efficiency by optimizin
f s(u,w).

The suppression of the deleterious contribution fro
nonlinear refraction compared to the positive influence of
nonlinear distortion of the temporal profile shows up mo
clearly in the behavior ofpf(p0) andG(p0) for the case of
an annular distribution of the initial amplitude~Fig. 5!. At
initial pressures below 1 MPa,G(p0) has a characteristic
maximum. This confirms the earlier conclusion6,8,10,11,14that
at low initial pressures, when a shock front is unable to
velop, nonlinear effects can improve the focusing conditio
compared to the linear case, if the nonlinear distortion of
temporal profile predominates over nonlinear refraction.
higherp0 , as in the case of a bell-shaped initial distributio
the focusing efficiency falls off owing to the dominant co
tribution of nonlinear refraction.

CONCLUSIONS

These studies have shown that the distribution of
initial amplitude of submicrosecond pressure pulses in a
uid has a significant effect on the process by which they
focused. In particular, we have demonstrated the possib
of greatly increasing the focusing efficiency by going from
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bell-shaped initial distribution to an annular one. This ph
nomenon is observed over a wide range of initial pressu

At low levels ofp0 , the positive effect originates prima
rily in an enhancement in the effective convergence anglb
when the distribution function is changed appropriately.
higher initial pressures there is an additional factor: the s
pression of the negative influence of nonlinear refract
compared to the nonlinear distortion of the temporal pro
of the pulse. Then the degree of suppression depends sig

FIG. 5. The focal pressure and gain coefficient as functions of the in
pressure for the second opto-acoustic concentrator in the case of an an
distribution of the initial amplitude.
-
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cantly on the geometric parameters of the annular distri
tion of the initial amplitude.
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Magnetostatic surface waves produced by an inhomogeneity of the anisotropy with a
turning point of the spectral function on a ferromagnet surface

I. A. Ka bichev and V. G. Shavrov
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Magnetostatic surface waves with fixed frequency and wave vector are predicted to exist in a
ferromagnet with an inhomogeneity of the magnetic anisotropy such that the spectral
function has a turning point on the surface. This result is most important for the case when an
external magnetic field magnetizes the ferromagnet perpendicular to its surface. The
frequency of the surface wave is determined by the frequency of the magnetostatic volume wave
at the surface of the ferromagnet, and the wave vector is determined by the surface values
of the local magnetic anisotropy field and its derivative. ©1998 American Institute of Physics.
@S1063-7842~98!02106-0#
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INTRODUCTION

Ferrite epitaxial films, mainly of yttrium iron garne
are widely used in microwave electronics. They a
grown on nonmagnetic substrates, such as gallium ga
linium garnet. The existing film growth technologies main
yield films that are inhomogeneous over the sam
thickness.1,2 Inhomogeneities can also be created artificia
by ion implantation.3–8 In this regard, a need has arisen f
studying the properties of magnetostatic waves in films t
are inhomogeneous over their thickness. The distribution
the magnetization in the ground state of a ferromagne
determined to a great extent by the profile of the magn
anisotropy constant; here the inhomogeneous exchange
stant and the saturation magnetization can be regarde
constant.6 We will therefore consider a ferromagnet wi
only an inhomogeneity in the magnetic anisotropy. We lim
ourselves to inhomogeneities with a single turning point
the spectral function on the surface of the ferromagnet
magnetostatic volume wave is thereby allowed to propag
on the surface of the ferromagnet. We shall choose the
file of the inhomogeneity in the magnetic anisotropy const
to be such that magnetostatic volume waves cannot pr
gate inside the ferromagnet. In that way, we obtain expon
tial damping of the magnetic potential of the wave in t
interior of the ferromagnet, and this leads to localization
the wave near the surface. A wave of this sort can be clas
as a magnetostatic surface wave. This result is of grea
interest for a ferromagnet magnetized by an external m
netic field perpendicular to its surface, since then only m
netostatic volume waves will exist in the homogeneo
case,9–11 while surface excitations of the spin system sh
up only when exchange is included.12–16Thus, in a normally
magnetized ferromagnet, magnetostatic surface waves
exist as a result of the inhomogeneity in the magnetic ani
ropy.
7201063-7842/98/43(6)/6/$15.00
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EXPERIMENTAL AND THEORETICAL STUDIES OF
MAGNETOSTATIC SURFACE WAVES IN INHOMOGENEOUS
FILMS

Most studies have been made of the case where the
ternal magnetic field and the magnetization are in the sa
direction and lie in the plane of the film, while the wav
itself, propagates perpendicular to them.17–24The inhomoge-
neity in the distribution of the magnetization is modeled by
multilayer film consisting of two or three homogeneous la
ers with different magnetic parameters.19–23 Numerical cal-
culations have been done for a specified inhomogeneity
file by several authors.17,18,24 It is important to obtain
analytical results for a rather general form of the inhomo
neities.

The case in which an external magnetic field magneti
an inhomogeneous ferromagnet in a direction perpendic
to its surface is of greatest interest. An inhomogeneity in
film of yttrium iron garnet with this geometry has only bee
considered once,25 in an examination of the direct and in
verse spectral problems for magnetostatic forward volu
waves, while the experimental spectra were interpreted
terms of a spatial inhomogeneity in the uniaxial anisotrop

STATEMENT OF THE PROBLEM AND BASIC EQUATIONS

Let us consider a uniaxial semi-infinite ferromagn
which occupies the regionz.0 ~see Fig. 1! and has an ar-
bitrary profile of the inhomogeneity of the local magne
anisotropy fieldHA(z)52K(z)/M0 , whereK(z) is the mag-
netic anisotropy constant andM0 is the saturation magneti
zation. We assume that the magnetic anisotropy fieldHA(z)
is less than the absolute value of the demagnetizing fi
uHMu54pM0 . Then in weak magnetic fieldsH0,4pM0

2HA(z) the ground state is inhomogeneous:

c0~z!56arccos~H0 /@4pM02Ha~z!# !, ~1a!

while in strong fieldsH0.4pM02HA(z) a homogeneous
ground state is realized,
© 1998 American Institute of Physics
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c0~z!50. ~1b!

This latter condition also occurs in the case ofHA(z)
.4pM0 andH0.0. In a situation withHA(z).4pM0 and
4pM02HA(z),H0,0, the homogeneous phase~1b! is
metastable. Thus, the results for the magnetostatic sur
wave spectrum in the latter case will be valid only when
energy of the magnetic excitations of the ferromagnet
small compared to the potential barrier preventing a tra
tion of the ferromagnet into the homogeneous stable s
c0(z)5p. The exchange interaction was not taken into
count in determining the ground state. This is valid if t
dimensions of the ferromagnet film and the characteri
scale length of the inhomogeneity of the magnetic anisotr
field ~the length over whichHA(z) changes from its surfac
to its bulk value!, L, exceed the exchange leng
d5A2A/(HA0M0). ~A is the inhomogeneous exchange co
stant andHA0 is the anisotropy field in the interior of th
film.!

Surface magnetostatic waves propagate along theY axis,
so we assume that all the variables in the problem are
portional to exp(ivt2iky), wherev is the frequency andk is
the wave vector. We consider frequencies up to several G
since they are usually employed in practice.19–23 At these
frequencies, the wave vectork,105 cm21. In this region,
the contribution of the exchange interaction is small co
pared to the other terms in the magnetic energy: dipo
dipole and Zeeman. In an examination of magnetost
waves, it can be neglected. We shall begin with the system
equations of magnetostatics:

curl HM50, div~HM14pM !50, ~2!

whereHM is the demagnetization field.
The magnetizationM satisfies the Landau–Lifshit

equation

]M /]t52g@M•Heff~z!#, ~3!

FIG. 1. The geometry of the problem.H0 is the external magnetic field;n is
a unit vector characterizing the direction of the easy axisz of the ferromag-
net, which is perpendicular to its surface;M is the magnetization~in general
it deviates from the easy axis by an anglec0(z)!; and,k is the wave vector
of the magnetostatic surface wave.
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whereg is the gyromagnetic ratio,Heff(z)5H01HM1HA(z)
3(Mn)n/M0 is the effective magnetic field, andn is the unit
vector characterizing the direction of the anisotropy axis
the ferromagnetic crystal~directed along the easy axisz of
the ferromagnet!.

The magnetization vector in the ground state has co
ponents (M0 sinc0(z), 0, M0 cosc0(z)), and the demagneti
zation field is (0,0,24pM0 cosc0(z)). We assume that the
deviations of the magnetization vectorm and the demagne
tizing field h from these equilibrium values are small. W
linearize the Landau–Lifshitz equation~3! to obtain the cou-
pling between the components of the vectorsm andh, which
we write in the form

mi5x i j hj , i , j 5x,y,z, ~4!

wherex i j is the high-frequency magnetic susceptibility te
sor of the ferromagnet.

Its components are given by

xXX5G~z!V1~z!cos2 c0~z!,

xXY52xYX5G~z!iv cosc0~z!,

xYY5G~z!V2~z!, xYZ52xZY5G~z!iv sin c0~z!,

xZX5xXZ52G~z!V1~z!cosc0~z!sin c0~z!,

xZZ5G~z!V1~z!sin2 c0~z!.

Here we have used the notation

G~z!5gM0 /@V1~z!V2~z!2v2#,

V1~z!5g@H0
~ i !1HA~z!cosc0~z!#cosc0~z!,

V2~z!5g@H0
~ i ! cosc0~z!1HA~z!cos 2c0~z!#,

while H0
i 5H024pM0 cosc0(z) is the internal magnetic

field. Note that on going to a system of coordinates with itsZ
axis coincident with the magnetization of the ground state
the ferromagnet, we essentially obtain a form of the hig
frequency magnetic susceptibility tensor which was kno
previously.9 The differences are related to the dependence
the magnetic anisotropy field on the vertical coordinatez.
The components of the magnetic susceptibility tensor a
become functions ofz. Substituting Eq.~4! into the equation
of magnetostatics~2!, and then introducing the magnetic sc
lar potentialF(h52¹F), we obtain a second-order differ
ential equation with variable coefficients:

D2F~z!2k2Q~v,z!F~z!50, ~5!

where Q(v,z)5114pgM0V2(z)/@V1(z)V2(z)2v2#
1vD$4pgM0 sinc0(z)/@V1(z)V2(z)2v2#%/k is a function
which determines the character of the solutions, which
shall refer to as the spectral function, andD25]2/]z2. The
form of the spectral functionQ(v,z) depends on the choic
of ground state:

Q~v,z!52@vV1~z!2v#@v2vV2~z!#/v2 ~6a!

for the inhomogeneous ground state~1a! and

Q~v,z!5@vV2
2 ~z!2v2#/@vV1

2 ~z!2v2# ~6b!
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for the homogeneous phase~1b!. The quantitiesvV1(z) and
vV2(z) have the same physical significance in both cas
they are the lower and upper local boundaries of the mag
tostatic volume wave spectrum in a homogeneous slab
parameters equal to their values at the pointz. Their forms,
however, depend on the choice of ground state. For the
homogeneous state~1a!,

vV j5A~z!1~21! jAA2~z!2B~z!,

A~z!52pgM0 cosc0~z!Dc0~z!/k,

B~z!54pg2M0HA~z!sin2 c0~z!, D5]/]z,

while for the homogeneous phase~1b!,

vV1~z!5V0~z!, vV2~z!5AV0~z!@V0~z!14pgM0#,

where V0(z)5g@H024pM01HA(z)# is the local ferro-
magnetic resonance frequency.

In the beginning we examine a uniform material, whe
there is no dependence onz andQ(v,z)5Q(v). In an in-
finite material there is a single magnetostatic volume wa
whose frequency is determined from the conditionQ(v)
50. For a slab withQ(v),0, the solutions of Eq.~5! are
expressed in terms of a linear combination of the sine
cosine and describe an infinite set of magnetostatic volu
wave spectral modes.10,11 It should be noted that thes
waves, by analogy with elastic waves,26,27 occupy an inter-
mediate position between surface and volume waves, bu
term ‘‘magnetostatic volume waves in a slab’’ has beco
established in the literature. In a half space withQ(v).0,
the solution of Eq.~5! is expressed in terms of a linear com
bination of exponents with different signs and describe
magnetostatic surface wave~if it satisfies the boundary con
ditions!.

Everything is a bit more complicated in an inhomog
neous medium. For example, if there is pointz0 , referred to
as the turning point, such thatQ(v,z0)50, then only one
magnetostatic volume wave can propagate at the pointz0 . If
Q(v,z),0 in some layer, then an infinite set of magne
static volume wave modes exist in it, while forQ(v,z).0 a
magnetostatic volume wave cannot exist, but a magnetos
surface wave can propagate. Let us choose a situation
that Q(v,z50)50, while for any otherz.0 the spectral
function Q(v,z).0. The conditions for propagation of
magnetostatic volume wave are thereby created on the
face of the ferromagnet, while inside it the magnetic pot
tial will fall off exponentially. Ultimately, this should resul
in localization of the wave near the surface, so we shall re
to this as a surface wave.

We now formulate the boundary conditions for the pro
lem. They involve the continuity at the ferromagnet surfa
(z50) of the normal component of the magnetic inducti
and the tangential component of the magnetic field stren
which reduces to the following conditions for the magne
potential:

F~0!5FB~0!, 2DF~0!14pmz~0!52DFB~0!,
~7!

whereFB(z) is the magnetic potential in the vacuum regi
(z>0).
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Thus, the second-order differential equation~5! with the
spectral function~6! and the boundary conditions~7! can be
used to describe the propagation of a surface magnetos
wave in an inhomogeneous ferromagnet.

MAGNETOSTATIC SURFACE WAVE SPECTRA

Of all the possible profiles of the local magnetic anis
ropy fieldHA(z), we shall consider only those which have
single turning point in the spectral functionQ(v,z), at the
surface of the ferromagnet, i.e.,Q(v,z50)50. This condi-
tion uniquely determines the frequency of the surface m
netostatic wave:

vS5vV2~0!. ~8!

The frequencyv cannot take other values. The upp
local limit on the magnetostatic volume wave spectrum in
slab,vV2(0), is given by different expressions~6a! or ~6b!,
depending on whether an inhomogeneous~1a! or homoge-
neous~1b! state is realized. In the interior of the ferromagn
for z.0 we assume that the spectral functionQ(vS ,z) is
positive. Then the upper local limitvV2(z) for any z>0
must satisfy the inequality

vV2~z!<vV2~0!. ~9!

The equal sign holds only forz50. Thus, the situation
we are examining is realized only for profiles of the loc
magnetic anisotropy field which ensure that the upper lo
limit vV2 of the magnetostatic volume wave spectrum in t
slab satisfies inequality~9!.

In the short-wavelength approximation,ukuL@1 ~wave-
length much shorter than the inhomogeneity scale lengthL!,
Eq. ~5! has the solution28,29

F~z!5F0 Ai @ uku2/3j~z!#,

j~z!5F3

2 E
0

z

dtAQ~vS ,t !G2/3

, z>0, ~10!

whereAi(a) is the Airy function of the first kind.
Near the surface, for z→0, the function j(z)

5A3 DQ(vS,0)z, while the Airy function is written in the
form

Ai ~a!5Ai ~0!1@] Ai ~a!/]a#a50a52
1

32/3G~2/3!

2
zuku2/3 A3 DQ~vS,0!

34/3G~4/3!
,

whereG~«! is the gamma function.
Then the distribution of the magnetic potential of th

surface magnetostatic wave with frequency~8! has the
asymptotic form

F~z!52F0H 1

32/3G~2/3!
1

zuku2/3 A3 DQ~vS,0!

34/3G~4/3! J ~11a!

near the surface (z→0) and



tia
r

he

tio
fo
n,

ur
e

-

e-

’’

it
ta

ou
s

eld

the
ve-

ve-
e
g-

ear
of

ort-
ons
l
y is
.,

ge-
on

cy
ol-

me

It
ni-
ns

-

n

ld

723Tech. Phys. 43 (6), June 1998 I. A. Ka bichev and V. G. Shavrov
F~z!5
F0

2p
A4 Q~vS!

Q~vS ,z!
expH 2uku E

0

z

dtAQ~vS ,t !J
~11b!

in the interior of the ferromagnet (z@0). Outside the ferro-
magnet, for the vacuum region (z<0), we have

F~z!5C0 exp$ukuz%. ~11c!

Substituting the expressions for the magnetic poten
~11! into the boundary conditions~7! yields an expression fo
the wave vector of the magnetostatic surface wave,

uku5bDQ~vS,0!, ~12!

whereb5$G(2/3)/G(4/3)%3/9'0.3874.
In calculatingb we have used tabulated values of t

gamma function.30 A result for the wave vector~12! was
obtained in the short-wavelength range, where the condi
uku@L21 must be satisfied. This leads to a requirement
the surface value of the derivative of the spectral functio

DQ~vS,0!@@bL#21. ~13!

MAGNETOSTATIC SURFACE WAVE SPECTRUM IN A
FERROMAGNET WITH AN INHOMOGENEOUS GROUND
STATE

We now make the results for the frequency of the s
face magnetostatic wave~8! and the absolute value of th
wave vector~12!, as well as the conditions~9! and ~13! for
the inhomogeneous state~1a!, more specific. A magneto
static volume wave spectrum with lowervV1(z) and upper
vV2(z) local boundaries~7! exists in an inhomogeneous m
dium if A2(z).B(z) or

HA~z!,pM0H DHA~z!

@4pM02HA~z!#k
cot2 c0~z!J 2

. ~14!

Restricting ourselves to low fieldsH0!4pM0

2HA(z), we have

HA~z!,Hkp5
pM0H0

4@DHA~z!#2

@4pM02HA~z!#6k2

'
pM0H0

4

@4pM02HA~z!#4@kL#2 . ~15!

This condition is clearly satisfied in an ‘‘easy plane
ferromagnet withHA(z),0. For short wavelengths, with
kL@1, the termA(z) in the expression for the upper lim
vV2(z) can be regarded as small. Then, for the magnetos
surface wave frequency~8!, we obtain

vS5vV~0!@12a#, ~16!

wherevV(0)52gusinc0(0)uA2pM0HA(0) is the frequency
of a magnetostatic volume wave in an infinite homogene
ferromagnet with parameters equal to their surface value
the inhomogeneous medium, while

a5H0
2DHA~0!

sign c0~0!

@4pM02HA~0!#3k
A2

pM0

HA~0!
~17!

is a small correction leading to a dispersion;k21.
l

n
r

-

tic

s
in

In the case where there is no external magnetic fi
(H050) one hasvS5vV(0). To determine the absolute
value of the wave vector according to Eq.~12!, we calculate
the derivative of the spectral function on the surface;
dispersion of the surface magnetostatic wave at short wa
lengths can be neglected. As a result, we obtain

uku52b
DHA~0!

HA~0! H 12
2H0

2HA~0!

@4pM02HA~0!#3J . ~18!

All these results have been obtained for short wa
lengths, such thatuku@L21. This leads to a condition on th
surface value of the logarithmic derivative of the local ma
netic anisotropy field,

D ln@2HA~0!#@
1

bL H 11
2H0

2HA~0!

@4pM02HA~0!#3J , ~19!

i.e., the local magnetic anisotropy field must increase n
the surface. For other values of the logarithmic derivative
the local magnetic anisotropy field at the surface, the sh
wavelength approximation does not hold and our equati
are not applicable. If condition~19! is satisfied, then the fina
expression for the magnetostatic surface wave frequenc
obtained from Eq.~16! by substituting the wave vector, i.e

vS5vV~0!H 12s sign c0~0!
H0

2A2pM0HA~0!

@4pM02HA~0!#3J ,

s5sign k, ~20!

where

vV~0!52gA2pM0HA~0!H 12
H0

2

2@4pM02HA~0!#2J
is the magnetostatic volume wave frequency in a homo
neous ferromagnet with parameters equal to their values
the surface of the inhomogeneous medium.

If c0(0).0, then for propagation in the positiveY di-
rection (s511), the magnetostatic surface wave frequen
vS ~20! will be somewhat lower than the magnetostatic v
ume wave frequencyvV(0), and if thewave propagates in
the negativeY direction (s521), thenvS is higher than
vV(0). In the casec0(0),0, for the positiveY direction
(s511) the magnetostatic surface wave frequencyvS ~20!
will be somewhat higher than the magnetostatic volu
wave frequencyvV(0), and for the negative direction
(s521), lower. Thus, a nonreciprocity effect shows up.
involves a difference in the frequencies for identical mag
tudes of the wave vector but different propagation directio
of the wave. Equation~20! implies that it is observed only in
an external magnetic fieldH0 . If there is no field (H0Þ0),
thenvS5vV(0), and thenonreciprocity effect does not oc
cur.

Condition ~11!, which ensures that the spectral functio
is positive in the absence of a magnetic field (H050), is
satisfied for any profile of the local magnetic anisotropy fie
with

HA~z!>HK5HA~0!. ~21!
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At low fields H0!4pM02HA(z), the expression for
the critical field is somewhat different,

Hk5HA~0!2
H0

2HA~0!A2pM0HA~0!

@4pM02HA~0!#3 H 12
DHA~z!

DHA~0!J .

~22!

If DHA(z)/DHA(0) is not a constant equal to 1, thenHK

should depend weakly on the propagation direction of
wave. Thus we have determined the fixed values of the
quency~20! and wave vector~18! of the magnetostatic sur
face wave in the case where the ferromagnet has an inho
geneous ground state. We have shown that these value
different in an external magnetic field for different directio
of propagation of the wave~i.e., a nonreciprocity effect oc
curs!. The local magnetic anisotropy field inside the ferr
magnet must be greater than the critical field and incre
near the surface. The critical field is determined mainly
the local magnetic anisotropy field at the surface.

MAGNETOSTATIC SURFACE WAVES IN A FERROMAGNET
WITH A HOMOGENEOUS GROUND STATE

We now obtain these results for the homogeneous s
~1b!. The surface magnetostatic wave frequency~8! in this
case is given by

vS5vV~0!, ~23!

wherevV(0)5AV0(0)@V014pgM0# is the magnetostatic
volume wave frequency for a homogeneous ferromag
with parameters equal to their values on the surface o
inhomogeneous medium. For the wave vectork, Eq. ~12!
implies that

uku52b
DHA~0!

18pM0

V0~0!12pgM0

V0~0!
. ~24!

Thus, this sort of magnetostatic surface wave can e
only for inhomogeneities in the local magnetic anisotro
field which fall off near the surface, i.e.,DHA(0),0. Since
our results have been obtained for the short-wavelength c
Eq. ~13! can be satisfied and is equivalent to the requirem
that

DHA~0!!2
18pM0

bL

V0~0!

V0~0!12pgM0
. ~25!

In the interior of the ferromagnet forz.0, the spectral
functionQ(vS ,z) was assumed positive. Then the upper
cal limit VV2(z) for arbitrary z>0 should satisfy the in-
equality ~9!, which leads to an inequality for the local ma
netic anisotropy field,

HA~z!<HA~0!. ~26!

Thus, a magnetostatic surface wave with the freque
~23! and wave vector~24! exists for a local magnetic aniso
ropy field which is smaller than that on the surface and fa
off near the surface.

CONCLUSIONS

In summary, we have demonstrated the possible e
tence of a single magnetostatic surface wave with a fi
e
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frequency and wave vector in an inhomogeneous ferrom
net for which the spectral function has a turning point on
surface. This kind of magnetostatic surface wave is obtai
from a magnetostatic volume wave propagating at the s
face of the ferromagnet by choosing a profile for the lo
magnetic anisotropy field which precludes the existence o
magnetostatic volume wave in the interior of the ferromag
and ensures exponential damping of the magnetic poten
This significantly new result is of greatest interest for a f
romagnet that has been magnetized perpendicular to its
face, where only a magnetostatic volume wave can exis
the homogeneous case. The fact that the frequency and w
vector are fixed is nontraditional. They are uniquely det
mined by the values of the local magnetic anisotropy fi
and its derivative at the surface. The conditions for the ex
tence of the predicted magnetostatic surface wave depen
the choice of the ground state of the ferromagnet.
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Influence of the edge field on the focusing properties of a coaxial cylindrical lens
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The effect of the distance between the grounded flat entrance diaphragm and the outer cylindrical
electrode~which determines the edge field of the lens! is investigated over a wide range of
variation of the geometry of a coaxial cylindrical lens. It is found that focusing of a charged
particle beam on the lens axis is achieved over a wide range only in the case of small
clearances between the diaphragm and the outer electrode. It is shown that for an alternative
power feed arrangement, in which the outer cylindrical electrode is grounded and the voltage is
applied to the inner electrode, beam focusing is in general degraded, in particular on the
lens axis. ©1998 American Institute of Physics.@S1063-7842~98!02206-5#
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In Refs. 1 and 2 we identified the working regimes o
coaxial cylindrical lens focusing an annular charged-part
beam on its axis and investigated it over a wide range
variation of its geometrical and electrical parameters.
also obtained simple empirical formulas for the cardinal
ements of this lens. The clearance between the groun
end-face diaphragm at the lens entrance and the externa
lindrical electrode was significantly less than the transve
and longitudinal dimensions of the lens. Since this cleara
determines the configuration of the edge field, it should h
a substantial influence on the focusing properties of the le
The influence of the position of the entrance diaphragm i
fact the subject of the present paper.

Figure 1a presents a diagram of a coaxial cylindrical le
consisting of two cylindrical electrodes, a flat end-face d
phragm at the entrance with an open back face. The in
electrode and the diaphragm were constructed as a s
unit with a grounded housing, onto which the outer electro
was mounted through an insulator. Application of a volta
V to the outer electrode while the diaphragm and inner e
trode remain grounded leads to the appearance of a fiel
the lens. Therefore, in what follows we will call the out
cylindrical electrode the field-assigning electrode.

In such a lens, the equipotentials of small absolute v
ues of the potential pass near the inner electrode, then
nearly parallel to the end-face diaphragm, and finally clos
the space between the housing and the inner electrode. H
as a consequence of the open back face they penetrate
the space beyond the electrodes. The equipotentials of l
absolute values of the potential have a simpler configurat
smaller extent, and surround the field-assigning electr
from the inside and out. It can be seen from Fig. 1b tha
the region of the diaphragm located near the field-assign
electrode~the edge-field region at the lens entrance!, the val-
ues of the potential at fixed radius grow with increasi
value of the longitudinal coordinate whereas away from
diaphragm~the edge-field region at the lens exit!, near the
inner electrode, the potential at first grows and then falls
the rest of the exit edge-field region the dependence of
potential on the longitudinal coordinate is analogous to t
7261063-7842/98/43(6)/4/$15.00
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dependence for the entrance edge field. It should be st
that near the diaphragm but far from the field-assigning e
trode, the field distribution is similar to the field distributio
away from the diaphragm. The values of the voltages de
mining the form of the equipotentials and the rate of fallo
of the edge field away from the field-assigning electrode
pend on the geometry of the lens.

The charged particle beam trajectories were calcula
numerically using the TEO computer code for tw
dimensional electrostatic fields. We considered beams en
ing the coaxial cylindrical lens parallel to its longitudin

FIG. 1. a:—Coaxial cylindrical lens:1,2—cylindrical electrodes,3—flat
diaphragm,4—housing,5—charged particle trajectories; b—equipotenti
plot.
© 1998 American Institute of Physics
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axis and determined the working regimes focusing the be
on the lens axis. For the characteristic geometry of the l
with ratio of the radii of the large and small cylindrical ele
trodesR/r510 the distance from the diaphragm to the fie
assigning electrode was varied over wide limits 0,s/R
<1.5. The length of the latter was varied within the lim
0.5<L/R<1.9 so that the length of the lens from the di
phragm to the back face did not change (l 5L1s52R
5const). The minimum clearancess/R were governed by
the magnitude of the breakdown voltage, the maxim
clearances lead to vigorous growth of the lens excitation
to decrease of the length of the field-assigning electrode

Figure 2 displays the calculated results. It plots the fo
length, measured from the back of the lens, and the entra
radius of the paraxial beam trajectory—the trajectory arou
which the other beam trajectories are focused, as function
the lens excitationF ~F5eV/«, wheree is the charge of the
particle and« is its energy!. The small brackets mark off th
minimum and maximum excitations bounding the existen
region of the focus. For small clearances (s<0.3R) focusing
is realized over a wide range of variation of the distan
from lens exit to focus~focal length! (100<l/R<0.2); here
the value of the minimum achievable focal length decrea
as the clearance is decreased. At large clearancess>R the
focal region substantially narrows, and fors50.5R focusing
is generally absent. The entrance radius of the paraxial b
trajectory in the focusing regime falls as the excitation

FIG. 2. Dependence of the focal length~solid curves! and radius of the
paraxial beam trajectory~dashed curves! on the excitation for a lens with
R/r510 andl /R525const for various clearances between the diaphra
and the field-assigning electrode.s/R: 1—0.1, 2—0.25, 3—0.75, 4—1.0,
5—1.5.
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increased according to a linear law, whereas with increas
the clearance it at first grows~curves1–3! and then falls
~curves4 and5!.

From the aforesaid it can be concluded that for focus
of a parallel beam onto the lens axis, coaxial cylindric
lenses should be designed with a small clearance betwee
entrance diaphragm and the field-assigning electrode.

It is of interest to investigate the influence of the ed
field on focusing of a coaxial cylindrical lens for which th
length of the field-assigning electrode was not varied. T
latter was chosen from the condition that the potential diff
ence between the electrodes not exceed the acceleratin
tential, i.e., a lens excitationF<1. We calculated a lens with
R/r510 andL5R5const for which we varied the clearanc
within the limits 0,s/R<2. In this case the overall length o
the lens from the diaphragm to the back face varied wit
the range 1, lR<3. Results of the numerical calculation a
plotted in Fig. 3. As can be seen, focusing takes place o
the entire range of variation of the clearance which de
mines the edge field. However, starting ats50.4R ~curves
3–6! the focal region is found near the lens and does
extend beyondl>2R, and as the clearance is increased t
region decreases in extent. Note that the focal length and
initial radius of the paraxial beam trajectory for the clea
ancess5R and s52R practically coincide. Consequently
from the point of view of focusing it is without sense t
make the clearance greater than the radius of the outer c
drical electrode.

For small clearances between the entrance diaphr
and the field-assigning electrode (s<0.3R) focusing exists
within wide limits, and while the focal length varies onl
slightly with the clearance~curves1 and 2 in Fig. 3a!, the
radius of the paraxial trajectory at the entrance to the coa
cylindrical lens varies considerably~curves1 and 2 in Fig.
3b!. Note that with increase of the ratio of the electrode ra
the region ins in which focusing is realized increases som
what and forR/r5100 is 0,s<0.4R. As this ratio is de-
creased, the indicated region narrows substantially, and
R/r52 the maximum clearance iss50.1R.

In the choice of the optimal geometry of a coaxial cyli
drical lens, the quality of focusing is important, where t
latter is defined by the radius of the spot formed by the le
when focusing a ring beam on the lens axis. Figure 4 p
the radius of the spot in the plane passing through the in
section point of the longitudinal axis of the lens and t
paraxial beam trajectory~the trajectory around which the
other trajectories are focused! as a function of the clearanc
between the diaphragm and the field-assigning electro
The solid curves correspond to ring thickness at lens
tranceDr 050.05R, and the dashed ones, toDr 050.1R. In
the small clearance region the radius of the focal spot is
orders of magnitude smaller than the thickness of the
trance ring while fors>R this radius grows substantially. In
addition, fors>0.4R, as can be seen from Fig. 3, the foc
region is small. Therefore the geometry of a coaxial cyl
drical lens with a large clearance between the entrance
phragm and the field-assigning electrode is not of inter
from the point of view of beam focusing on the lens axis

Figure 5 plots the radius of the axially focused bea
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over a wide range of variation of the focal length for sm
clearances between the diaphragm and the field-assig
electrode for a coaxial cylindrical lens with ratio of electro
radii R/r510. It can be seen from the figure that only in t
region 2<l/R<10 is the spot radius for a lens with clea
ances50.25R smaller than fors50.1R. Outside this region
of focal length values the clearance values50.1R provides
the smallest spot size, whose magnitude varies only slig
~for Dr 050.005R the spot radiusr i>0.003R, while for
Dr 050.1R it is equal tor i>0.009R!.

FIG. 3. Same as in Fig. 2 for a lens withR/r510 andL/R51 ~a,b!. s/R:
1—0.1, 2—0.25,3—0.4, 4—0.5, 5—1.0, 6—2.0.
l
ing

ly

Thus, for a coaxial cylindrical lens, over a wide range
variation of the ratio of electrode radii for various lengths
the field-assigning electrode, the optimum clearance betw
the entrance diaphragm and the field-assigning electr
from the point of view of focusing the beam on the axis
s<0.1R. In this case, to determine the focal length and
radius of the paraxial beam trajectory~the trajectory about
which focusing takes place! it is possible to use the corre
sponding formulas from Ref. 2.

In conclusion, note that we have also investigated a
axial cylindrical lens with an alternative power feed arrang
ment, where the voltage is fed to the inner electrode wh
the outer electrode and diaphragm remain grounded. In
case the design of the lens simplifies since the need fo
housing falls away and the inner electrode is mounted to
diaphragm through an insulator. However, such a power f
arrangement leads to a substantial change in the edge fie
the entrance to the lens and, as a consequence, cause
beam to behave in a different way, leading to degradation

FIG. 4. Radius of the focused spot as a function of the clearance betw
the diaphragm and the field-assigning electrode for a coaxial cylindrical
with R/r510 andL/R51. Solid curves—Dr 050.05R, dashed curves—
Dr 050.1R; 1,2—l50.5R; 3,4—l5R.

FIG. 5. Dependence of the radius of the focal spot on position meas
from the back of the lens for small clearances between the diaphragm
the field-assigning electrode.s: 1—0.1R, 2—0.25R; solid curves—Dr 0

50.05R, dashed curves—Dr 050.1R.
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focusing in general and on the axis of the lens in particu
This has to do with the fact that the particles in the edge fi
are accelerated, and this acceleration and also the radial
of the lens decrease with growth of the radius. For the m
voltage feed arrangement~Fig. 1! the particles are slowed
down, and this slowing down and the radial force of the le
r.
d
rce
in

s

grow with the radius.
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Focusing of electrons reflected from a crystal with loss of energy
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A study is made of the features arising in the spatial distributions of reflected electrons as a
result of a focusing effect. Experiments are conducted on single-crystal Mo~100! with primary
electron energies of 0.5–2 keV and detection of electrons which lose fixed amounts of
energy up to 300 eV. An analysis of the data establishes the dependence of the electron focusing
efficiency on the amount of energy loss. It is shown that when electrons are reflected with
single losses through plasmon excitation, the magnitude of the effect is determined mainly by the
average number of scattering atoms encountered by an electron along its path to the surface.
When the energy losses are high, defocusing owing to multiple elastic and inelastic scattering of
the electrons is found to predominate. ©1998 American Institute of Physics.
@S1063-7842~98!02306-X#
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INTRODUCTION

In recent years, two types of diffraction effects observ
during bombardment of test objects by medium energy e
trons have come into active use for the structural analysi
solid surfaces. The first is the diffraction of reflected ele
trons, which shows up in the form of peaks in their spa
distributions oriented along close-packed atomic rows
planes of the crystal,1–3 and the second is the dependence
the intensity of electron reflection and Auger electron em
sion on the angle of incidence of the primary electrons re
tive to the crystal axes.4,5 Here the emission peaks appear f
the same orientations of the incident electrons at which
peaks in the reflected electron diffraction patterns are
served. Thus far, it has been established that electron fo
ing effects in the crystal play a dominant role in the form
tion of these diffraction features. However, not all aspects
this phenomenon have been studied adequately. For
ample, there have been almost no studies of the focu
behavior of electrons reflected with different energy loss
Only a few papers touch on this problem.6–9 In the mean-
time, it is known that the probe depth, the contrast of
diffraction patterns, etc., depend on the magnitude of
energy loss. Thus, it seemed appropriate to us to mak
systematic study of the spatial distributions of electrons
flected with different energy losses over a wide range of e
angles. Single crystal Mo~100!, which has been used in ea
lier work, was chosen as the object of study.

EXPERIMENTAL TECHNIQUE

The measurements were made in a special ultrah
vacuum angle-resolved secondary electron emission s
trometer that has been described elsewhere.10 The energy
resolution of the modified-plane-mirror analyzer was 0.4
and the angular resolution was about 1°. The electron b
of the spectrometer bombarded the sample with electr
along the normal to its surface. The energy analyzer could
rotated around the sample, making it possible to vary
7301063-7842/98/43(6)/5/$15.00
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polar angleu of the escaping electrons. The azimuthal e
anglew could be varied by rotating the sample about an a
perpendicular to its surface. This instrument design mad
possible to measure the distributionsI~w! of the reflected
electrons with respect to the azimuthal exit anglew for dif-
ferent polar anglesu and thereby to obtain almost comple
diffraction patterns. The energyDE lost by the electrons
upon reflection was varied as a parameter. The intensity
the electron flux was measured by modulating the curren
the primary beam. Measurements were made for prim
electron energiesEr of 0.5–2 keV. Principal attention wa
devoted to an energy of 1.25 keV, which is high enough
the focusing effect to show up but not so high that the ene
resolution of the analyzer no longer allows the main peak
the characteristic electron energy loss spectrum to be
solved.

The method of preparing the test sample has been
scribed elsewhere.11 The cleanliness of the surface of th
molybdenum single crystal was monitored by electron Au
spectroscopy and the structure of its surface region, by l
energy electron diffraction~LEED!. The measurements wer
made at room temperature in a vacuum of 5310210 Torr.

RESULTS OF THE MEASUREMENTS AND DISCUSSION

A general idea of the appearance of the electron focus
effect in the simplest case of quasielastic reflection (DE
,1 eV) is provided in Fig. 1a, which shows a two dime
sional map of the distribution of the intensityI (u,w) of the
electrons over the polar and azimuthal exit angles, obtai
by synthesis of a family of azimuthal scans measured a
energyEr52 keV. The data are shown in a stereograp
projection. The center of the circle corresponds to the nor
to the surface of the sample, and the outer circle to emiss
of electrons along the surface. The distribution is shown i
linear scale of gray shadings in which the maximum refl
tion corresponds to white and the minimum, to black. Qua
elastic electron reflection from single-crystal Mo~100! is
© 1998 American Institute of Physics
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evidently highly anisotropic and has a distinct diffractio
pattern. Its symmetry reflects the symmetry of the~100! face
of the body-centered cubic crystal, as illustrated in Fig. 1
which shows the corresponding stereographic projection
comparison of the data of Fig. 1a with this projection mak
it possible to identify the main peaks in this pattern at onc
Clearly, they are caused by the escape of electrons al
close-packed directions of the crystal, such as^111& and
^110&. These peaks were observed over the entire range
energies that was studied and are caused by focusing of e
trons moving along strings of atoms with small interatom
distances. These results are all in good agreement with d
on quasielastic scattering of electrons which we have o
tained previously11 for another face of molybdenum
Mo ~110!.

The focusing effect also shows up in the spatial distrib
tions of the electrons reflected from the crystal with a loss
energy. As an illustration, Fig. 2 shows several typical a
muthal distributions of the electrons reflected with loss
DE,300 eV. ~In accordance with the symmetry of the
Mo ~100! face, the range of variation of the azimuth here h
been limited to half a quadrant!. These data were obtained
for Er51.25 keV and a polar emission angle ofu555°. A
distinct diffraction structure is visible in all the curves. Th
strongest feature is the peak observed atw50, which is
caused by focusing of electrons along the most close-pac
crystal direction,̂ 111&. Weaker peaks are observed at az
muths ofw518 and 45°, corresponding to orientations of th
escaping electrons along the~130! and ~100! planes. The
shape of theI (w) curves depends on the magnitude of th
energy losses experienced by the electrons. AsDE increases,
there is a noticeable drop n the focusing peak for electro
along the^111& direction, which essentially vanishes byD
'200 eV, and then is inverted to form a minimum. Suc
behavior is typical of the focusing peaks observed for ele
trons moving along other close-packed directions.

For a quantitative estimate of the focusing effect fo
electrons reflected along the low-index directions^hkl& with
different energy losses we can use

x5@~ I max2I min!/I max#•100%,

FIG. 1. A two dimensional map of the intensity distributionI (u,w) of
quasielastic electron reflection over the polar and azimuthal exit angles
tained at an energyEr52 keV for single crystal Mo~100! ~a! and a stereo-
graphic projection of this face indicating the most close-packed planes
directions of the crystal~b!.
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whereI max and I min are the intensities of the electron flux i
the analyzed peak of theI (w) distribution and in its deepes
minimum, respectively.

By analyzing a family of azimuthal distributions mea
sured for a number of values ofDE andu, it is possible to
determine the electron focusing efficiencyx(DE) as a func-
tion of the magnitude of the energy losses for the ma
close-packed directions of the crystal. In order to obtain t
information, the distributionsI (w) were measured for 6 dif-
ferent anglesu with a step inDE amounting to 2 eV. These
data are represented in Fig. 3. It is clear that for small ene
losses ~in the region DE,50 eV!, the focusing is quite
strong andx can reach 75%. It is noteworthy thatx depends
monotonically onDE. For most of the curves, nonmonoto
nicities are observed at the same values ofDE. The fine
structure of thex(DE) curves for small anglesu looks like it
is superimposed on a horizontal straight-line backgrou
and as the polar angle is increased, the background falls
with increasingDE. This is typical of thex(DE) curves for
large energy losses (DE.50 eV), as well. However, even
here the rate of decrease in the degree of focusing with ris
DE depends on the polar angle, increasing with risingu. For
sufficiently large angles, thex(DE) curves are observed t
settle into a region of negative values corresponding to
above-noted inversion in the diffraction structure of the a
gular distributionsI (w) for electrons reflected with large en
ergy losses.

In order to clarify the nature of the observed nonmon
tonicities inx(DE), let us compare them with the characte

b-

nd

FIG. 2. Azimuthal angular distributions of electrons inelastically reflec
from single crystal molybdenum, measured for a primary electron ene
Er51.25 keV and a polar angle of emission of 55°~from the normal to the
sample surface!. The energy lossesDE for different groups of electrons:
1—less than 1 eV~quasielastically reflected electrons!, 2—24 eV ~electrons
which have lost energy exciting a bulk plasmon!, 3—50, 4—100, and5—
250 eV.
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istic electron energy loss spectrum in molybdenum. O
such spectrum is shown in Fig. 4. It was taken forEr

50.5 keV and a polar angle of 45°. There are three dist
maxima in this spectrum. The first, observed atDE

FIG. 3. Plots ofx(DE), the electron focusing efficiency as a function of th
energy lost by the electrons during reflection. These data were obtaine
Er51.25 keV and apply to the following close-packed directions of
crystal: 1—^012&, 2—^112&, 3—^110&, 4—^111&, and 5—^122&. All the
curves are plotted on the same scale as that indicated for curve5. For the
other curves, only the lines corresponding to the shifted zero ordinate
indicated.

FIG. 4. Characteristic electron energy loss spectrum in molybdenum m
sured forEr5500 eV.
e

t

511 eV, corresponds to overlapping excitation peaks fo
surface plasmon (hvs59.5 eV) and a low-energy bulk plas
mon (hvv510.4 eV).12 The second, larger loss atDE
523.5 eV is caused by the generation of the fundame
bulk plasmon of molybdenum. The third peak atDE
548 eV is usually attributed to dynamic polarization of ele
trons in the shallow core 4p level,13 but some part of it may
come from double excitation of bulk plasmons. Besides th
peaks, the spectrum includes a noticeable background
multiple losses, which increases with risingDE. Comparing
the data of Figs. 3 and 4 shows that electron focusing
creases if the electrons experience single energy loss thro
excitation of bulk plasmons as they are reflected. For sm
polar escape angles, the anisotropy of the distributions
these electrons is greater than in the case of quasielastic
tering.

Let us analyze these data in terms of a simple model
we have used before to study the focusing of quasielastic
scattered14 and primary electrons.15 This model is based on
the assumption that the reflection of electrons from a soli
the result of single, large-angle electron–phonon scatte
events. Although a rigorous solution of the problem will i
clude multiple quasielastic scattering processes,16 this model
is entirely appropriate for describing the motion of electro
in a thin subsurface layer of the crystal. In this case
trajectory of the electrons inside the solid can be appro
mated by a broken line consisting of two straight segme
The first of these (l 1) corresponds to motion of the electro
into the interior of the crystal~to a point where a quasielasti
scattering event occurs! and the second segment (l 2), to the
motion of the scattered electron toward the surface. N
that, since the focusing of the reflected electrons takes p
along pathl 2 , this is the parameter in the problem whic
should have a controlling influence on the magnitude of
observed effect.

Estimatingl 2 is simplest in the case of quasielastic sc
tering of the electrons, withl 25l/(11cosu), wherel is the
mean free path of the electron with respect to an inela
interaction. It is clear that the length of the focusing string
this case becomes greater asu increases. For inelastic reflec
tion of electrons involving single excitation of plasmons, y
another elementary act is involved which may take pla
before or after the quasielastic scattering into the backw
hemisphere. Since plasmon excitation takes place throu
long-range Coulomb interaction with the electronic su
system of the crystal, the probability of generating plasmo
is essentially independent of electron focusing.15 In addition,
since the electron generates long-wavelength, sm
momentum plasmons with a higher probability,17 there is no
significant change in the direction of motion of a 1 keV
electron. Thus, the events in which plasmons are gener
should have little effect on the focusing process. Thus,
assume that the observed differences inx for electrons which
excite plasmons and are scattered only quasielastically o
nate primarily in a difference in the average exit depths
these groups of electrons and, therefore, in the differ
lengths of the focusing strings. Since the exit depth
roughly twice as large for electrons reflected with plasm
excitation as for quasielastically scattered electrons, we m
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assume that the lengthl 2 is also twice as large. Thus, b
comparing thex(DE) curves obtained in the single energ
loss region for different anglesu, we can understand how th
focusing efficiency for electrons moving along differe
crystallographic directions depends on their path lengths

The focusing properties of the atomic strings depend
the characteristic distance between the atoms, as well a
their length. Thus, it is appropriate to present the data of F
3 as plots ofx(n), wheren is the average number of sca
terers encountered along an electron’s path as it moves
ward the surface along a given string. In terms of our mod
this number can be estimated as follows:n5 l 2 /d, whered is
the interatomic distance along the given direction. Plots
x(n) obtained on the basis of data for quasielastic scatte
and scattering with single excitation of a bulk plasmon
shown in Fig. 5~curves1 and2, respectively!. They charac-
terize the focusing of electrons by different strings of ato
oriented along 6 low-index directions of the crystal~^111&,
^110&, ^133&, ^012&, ^112&, ^122&! with interatomic distances
varying between 2.72 and 9.45 Å. Pairs of points referring
the same direction are denoted by the same symbol.
clear from the figure that all the data fit fairly well on tw
monotonically increasing curves. This means that for e
group of electrons, the number of scatterers in the str
plays a controlling role in focusing them, while the inte
atomic distance is less important. The data for the^122& di-
rection are especially characteristic in this regard. For
other atomic strings, an increase in the polar angleu, leading
to lengthening ofl 2 and an increase inn, is accompanied by
a monotonic rise inx, but in this case, although the pa
length l 2 is quite large (u570°), the values ofn are quite
small ~1.6 and 3.2! because of the large interatomic distan
and, accordingly, the values ofx are also lower.

A monotonic growth in the focusing efficiency o
quasielastically reflected electrons is observed at least u
four scatterers, and for electrons reflected in processes
volving plasmon excitation, up to eight. At the same tim

FIG. 5. Plots of the electron focusing efficiencyx(n) as a function of the
number of scatterers encountered on the path of the electrons towar
surface for emission along different close-packed directions of the cry
1—Quasielastic reflection,2—reflection with single excitation of a bulk
plasmon;Er51.25 keV.
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both dependences are nonlinear and reveal a distinct slow
down in the growth ofx with increasingn. This is evidence
of the onset of an electron defocusing process,11 which arises
because of multiple elastic scattering of electrons in su
ciently long atomic strings. The effect of defocusing b
comes especially noticeable when points on curves1 and 2
corresponding to the same direction are compared pair
pair. In fact, while a doubling of the length of strings havin
a small number of scatterers~going fromn51 – 2 ton'3!
slightly increases the degree of focusing of electrons t
have excited plasmons, in the case of the^111& and ^110&
directions, where the initialn are already quite large, a fur
ther increase inn has the contrary effect of making the poin
on curve2 appear to lie below those on curve1.

The weakening of the diffraction structure of the dist
butions for high energy losses~the drop in the curves in Fig
3 for DE.50 eV! is evidently also related to enhanced d
focusing of the electrons. Here inelastic interactions of
electrons with the crystal play an important role, along w
multiple elastic interactions. The point is that the focusing
reflected electrons, which causes them to escape manly a
the atomic rows, leads to an increase in the electron den
near the ion core of the crystal, and this should be accom
nied by increased elastic, as well as inelastic, scattering
the electrons at large angles. As a result, the intensity of
flux of electrons moving toward the surface along the atom
rows falls off more rapidly than in other orientations and,
particular, in those for which minima of theI (w) curves are
observed for quasielastic reflection. The influence of th
processes increases as the path traversed by the electro
the direction toward the surface becomes longer; this h
pens when the energy lossDE and angleu increase. This
factor also evidently explains the faster drop in thex(DE)
curves seen upon an increase in the polar angle of escap
the electrons. The observed inversion in the structure of
spatial distributions of the electrons which have experien
large energy losses during reflection is of a similar natur

Thus, an extension of the range of energy losses by
reflected electrons detected in medium energy electron
fraction greatly complicates the picture of the phenome
since multiple elastic and inelastic scattering processes c
into play which defocus the electrons. This, on one ha
makes it more difficult to analyze the patterns and mo
them numerically, and, on the other, should reduce the c
trast in the measured distributions.

CONCLUSION

An experimental study of the focusing effect for ele
trons with energies of the order of 1 keV using an analysis
the spatial distributions of the electrons reflected fro
single-crystal Mo~100! with different energy lossesDE has
revealed the following behavior:

1. The effect shows up over a fairly wide range of ele
tron energy losses up to roughly 200 eV. The size of t
range depends on the polar angle of escapeu of the electrons.

2. For electrons reflected with small~single event! en-
ergy losses, the focusing efficiency is determined principa
by the number of atomsn encountered by an electron alon

the
l.
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its path as it moves toward the surface along a close-pac
direction, and it increases withn. The spatial orientation o
the exit directions and the packing density of the atoms
them are of less importance.

3. The focusing efficiency for electrons reflected w
large energy losses declines, as a rule, with increasingDE,
although thex(DE) curves are nonmonotonic and correla
with the energy loss spectrum. The weakening of the foc
ing is caused by multiple elastic and inelastic scattering
the electrons by the crystal~defocusing processes!. The
peaks of the distributions are damped most rapidly along
most close-packed directions of the crystal, for which
inversion of the diffraction patterns is observed at largeDE
andu.

This work was performed as part of the Program
Surface Atomic Structures, Project No. 95-1.21.
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Mechanisms for formation of a population inversion in the levels of metal atoms and
ions in a plasma jet

V. P. Starodub
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The mechanisms for formation of population inversions in plasma jets of lithium, sodium,
cadmium, and strontium vapor are studied. The primary contribution to forming a population
inversion over the transitions of the alkali atoms is found to be three-body electron–ion
recombination, and for transitions between the ion levels of strontium and cadmium, inelastic
collisions with the buffer gas play an important role. Using helium instead of argon as a
buffer leads to a substantial increase in the magnitude of the inversion. ©1998 American
Institute of Physics.@S1063-7842~98!02406-4#
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It is important to examine the conditions and analyze
mechanisms for population inversions in moving plasm
with rapidly varying density and temperature in order to
certain the feasibility of plasmadynamic lasers. In this pap
a study is made of plasma jets formed from the vapors
lithium, sodium, cadmium, and strontium. The experime
were conducted on a device described elsewhere.1 The
source of the jet was a dc plasmatron with a 3-mm-di
acoustic nozzle. Argon and helium were used as bu
gases. The excited level populations were determined o
cally from the intensities of spectral lines, which in turn we
determined by comparison with the intensity of a stand
source which has a known spectral energy distribution.

These studies showed that population inversions dev
between certain levels of lithium and sodium atoms and c
mium and strontium ions. These atoms and ions each h
one electron in their outer shell, so they are similar. The d
show, however, that the behaviors of the population inv
sions over these atoms and ions are not at all identical, e
in terms of the initial conditions or along the jet.

Figure 1 shows plots of the magnitudes of the populat
inversions as functions of distance along the jet for the tr
sitions of these elements which are the most promising fr
the standpoint of lasing. For lithium and sodium the ma
mum population inversion is observed near the exit sec
of the nozzle and falls off rapidly along the jet, following th
variation in the electron density.2,3 This indicates that pro-
cesses involving electrons, in particular, three-bo
electron–ion recombination

A11e1e5A* 1e, ~1!

play an important role in creating the population inversio
As opposed to the alkali metals, the peak inversion in

populations of the Sr1 and Cd1 ions is observed a significan
distance away from the nozzle exit~Fig. 1, curves3 and4!.
This is unambiguous evidence that in the cadmium a
7351063-7842/98/43(6)/2/$15.00
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strontium plasmas, reaction~1! does not make a significan
contribution to the formation of a population inversion. Mo
likely, a population inversion is created over the 62S1/2

→5 2P3/2 transition of strontium through processes involvin
the buffer gas He, as is indicated by the dependence of
magnitude of the inversion on the helium pressure~Fig. 2!.
Note that all the curves shown in Fig. 2 were obtained wit
constant feed rate for the metals. An analysis of publish
data4–7 and of the level diagrams for the strontium and h
lium atoms and the strontium ion shows that the followi
elementary processes may play an important role in popu
ing these levels:

FIG. 1. The variations in the magnitudes of population inversions o
transitions of Li I, Na I, Cd II, and Sr II along the jet:1—3 2S1/2→2 2P3/2

Li I, 2—5 2S1/2→3 2P3/2 Na I, 3—6 2S1/2→5 2P3/2 Sr II, and 4—5s 2D5/2

→5 2P3/2 Cd II.
© 1998 American Institute of Physics
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Sr111Sr* ~41D2, 53P0,2!→Sr1* ~62S1/2!1Sr1, ~2!

Sr111He* ~21S0, 23S1!→Sr1* ~62S1/2!1He1, ~3!

Sr~0!1He* ~nl1,3L !→Sr* ~4p55s26s, 4d!

1He→Sr1* ~62S1/2!1He1e. ~4!

Two of these reactions involve atoms of the buffer g
The rate constants for reactions~2! and ~3! are large and,
according to the data of Ref. 5, are equal, respectively
131028 cm23 s21 and 231028 cm23 s21. It was not pos-
sible to find the rate for reaction~4!, but there is some
indication4 that above 19–25 eV there are some autoioniz
levels of the strontium atom which can decay to form
strontium ion in the 62S1/2 state. The cross section for th
kind of reaction for different levels of Sr* I is estimated to be
in the range 10214– 10217 cm2.

The inversion does not exist for low concentrations
helium ~Fig. 2!, since the helium concentration is too low fo
pumping the 62S1/2 level ~reactions~3! and ~4!!. As the he-
lium concentration is raised, a population inversion appe
reaches a maximum, and then falls off. The decrease in
magnitude of the inversion is explained by the fact that,
the helium concentration is raised, relaxation processes in
plasma are faster and the metastable states of strontium
helium are destroyed more rapidly.

FIG. 2. The magnitudes of population inversions over transitions of L
Na I, Cd II, and Sr II as functions of the helium pressure:1—3 2S1/2

→2 2P3/2 Li I, 2—5s2 2D5/2→5 2P3/2 Cd II, 3—5 2S1/2→3 2P3/2 Na I, and
4—6 2S1/2→5 2P3/2 Sr II.
.

to

g

f

s,
he
s
he
nd

In order to clarify the role of processes~1!–~4! we have
performed an additional experiment. Some cesium, whic
easily ionized, was added to the He–Sr plasma jet. The
sium density was 1013– 1014 cm23 at most. In this experi-
ment, the cesium impurity enhanced the electron density
roughly a factor of two, without affecting the electron tem
perature significantly. If the 62S1/2 level is populated by re-
combination~reaction~1!!, then the intensity of the corre
sponding line should have increased. If processes~2!–~4!
predominate in filling the level, then the intensities of t
430.5 and 416.2 nm lines should have decreased, since i
first caseDN}Ne and in the second caseDN}1/Ne . Intro-
ducing a cesium impurity into the He–Sr plasma jet did n
increase the intensities of these lines but decreased them
;20%. It can thus be inferred that reactions~2!–~4! make a
significant contribution to filling the 62S1/2 state of Sr II. To
clarify the role of the buffer gas in creating a populatio
inversion over the cadmium ion lines, helium was replac
by argon. It was found that in an Ar–Cd plasma the inv
sion is 6–8 times smaller than in the He–Cd plasma jet. T
is explained by the fact that the cross section for the end
hermic charge exchange on the Cd1 level is roughly an order
of magnitude smaller than the corresponding cross sec
for the endothermic charge exchange in He–Cd. In addit
a Penning reaction takes place in the He–Cd plasma, bu
in argon.

Based on data obtained from a study of metal va
plasma jets, therefore, it has been found that three-b
electron–ion recombination predominates in the formation
population inversions over transitions of the alkali atom
while inelastic collisions with the buffer gas play a signi
cant role for transitions between levels of the strontium a
cadmium ions, and if helium is used instead of argon a
buffer gas, there is a substantial increase in the magnitud
the inversion.

1S. P. Bogacheva, M. F. Veresh, I. P. Zapesochnyy� et al., Ukr. Fiz. Zh.30,
186 ~1995!.

2S. P. Bogacheva, L. V. Voronyuk, I. P. Zapesochnyy� et al., Zh. Prikl.
Mekh. Tekh. Fiz., No. 6, 10~1984!.

3M. F. Veresh, I. P. Zapesochny�, and V. P. Starodub, Zh. Tekh. Fiz.57,
572 ~1987! @Sov. Phys. Tech. Phys.32, 347 ~1987!#.

4A. A. Borovik, I. S. Aleksakhin, V. F. Bratsov, and A. B. Kuplyausken
Opt. Spektrosk.53, 976 ~1982! @Opt. Spectrosc.~USSR! 53, 583 ~1982!#.

5B. M. Smirnov,Excited Atoms@in Russian#, Énergoizdat, Moscow~1982!,
232 pp.

6V. N. Kondrat’ev and E. E. Nikitin,Kinetics and Mechanism of Gas
Phase Reactions@in Russian#, Nauka, Moscow~1975!, 397 pp.

7B. M. Smirnov, Asymptotic Methods in Collision Theory@in Russian#,
Atomizdat, Moscow~1973!, 294 pp.

Translated by D. H. McNeill
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Thermoelectric energy conversion based on the Seeb
Thomson, and Peltier effects has been used extensively
several decades in various areas of science, technology
low-level power generation. In refrigeration technology,
well as in thermoelectric generators, stationary opera
regimes have traditionally been used. Studies of nonstat
ary cooling and current generation began only mu
later ~Stil’bans and Fedorovich,1 E. K. Iordanishvili and
co-workers,2 and others! and certain advantages of these o
erating regimes were identified at once, especially in the
tial stage of operation, when the difference in the time c
stants of the thermal and electrical processes are import

Thermoelectric power supplies are multilayer structu
in which the temperature distributions are determined
solving a system of nonlinear differential heat conduct
equations with the corresponding boundary conditions
the heat sources and sinks. In their general form in the
dimensional approximation, these equations are

]

]x F¸ i~T!
]Ti

]x G1 j i~ t !
]a i~T!

]Ti

]TiTi

]x
1 j i

2~ t !r i~T!

5Ci~T!
]Ti

]t
,

]T1

]x
2

Q1~ t !

¸0~0!
1b1~T2T1~ t !!5 f 1~ t,T!, x50,

]TL

]x
2

Q2~ t !

¸0~L !
1b2~T2T2~ t !!5 f 2~ t,T!, x5L,

T~x,0!5TH~x!, ~1!

wherej is the current density,̧ anda are the thermal con
ductivity and thermopower~Seebeck! coefficient, r is the
electrical resistivity,C is the specific heat, andi is the layer
number.

Usually the thermal characteristics of the material
each layer can be represented in the form

s~x,T!5s0~x!1Ds~x,T!,
Ds

s0
,1. ~2!

The system of Eqs.~1! must be supplemented by equ
tions for determining the current densityj, which depend on
the electrical circuit joining the thermal elements. In acc
dance with the method outlined previously,3 the solution of
this problem is conveniently represented in the form

T~x,t !5T0~x,t !1U~x,t !, ~3!
7371063-7842/98/43(6)/2/$15.00
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whereT0(x,t) is the temperature of the system in neglect
the dependence of the thermal properties and thermal sou
on the temperature and current effects.

Going from a multilayer system to an effective homog
neous system using the WKB method,4 i.e., making the sub-
stitution

x→P~x!5E
0

x dx

Aa0~x!
, a05

¸0

C0
, ~4!

and using a Green function formalism,4 we obtain

T0~x,t !5E
0

P~L !

TH~P8!G~P,t;P8,0!dP8

2E
0

t1H S Q1Aa0~0!

¸0~0!

1b1Aa0~0!T1~t! DG~P,t;0,t!2S Q2Aa0~L !

¸0~L !

1b2Aa0~L !T2~t! DG~P,t;P~L !,t!J dt. ~5!

To determineU(x,t) we have the integral equation

U~x,t !52E
0

t1H E
0

P~L !

C~P8,t!G~P,t;P8,t!dP8

1Aa0~0! f 1G~P,t;0,t!

2Aa0~L ! f 2G~P,t;P~L !,t!J dt, ~6!

where

C52
]

]x FD¸~x,T!
]T

]xG1DC~x,T!
]T

]t

2 j ~ t !
]a

]T

]T

]x
T2 j 2~ t !r~T!,

f k52
D¸k

¸0k

]T

]x
1vk~ t,T!, k51,2,

Qk and vk are known functions; the upper limitt1 means
that the integration with respect tot is taken tot1« fol-
lowed by a transition to the limit«→0; G(P(x),t;P(x8),t)
is the Green function for the system of equations~1!, which
is found approximately using the WKB method as
© 1998 American Institute of Physics
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G~P,t;P8,t!5
1

2p i Ed2 i`

d1 i`

N~P,P8,P!

3exp@p~ t2t!#dp, ~7!

where

N.
FcoshApP82

b1Aa0~0!

Ap
sinhApP8G

R

3H b2Aa0~L !

Ap
sinhAp@P~L !2P#

1coshAp@P~L !2P#J ,

R5ApF S b2Aa0~L !

Ap
2

b1Aa0~0!

Ap
D coshApP~L !

1S 12
b1b2Aa0~0!a0~L !

Ap
D sinhApP~L !G , ~8!

andP.P8.
ForP,P8, P andP8 must be switched. Equation~6! is

easily solved by successive approximations, withT0(x,t)
taken as a zeroth approximation.

It should be noted that using asymptotic methods,5 in
particular the reduced matching technique,6 makes it possible
to simplify the computational formulas greatly. For sho
times

t

P0
2~L !

,
1

4

and low current densities

j ,0.1
¸

aL
,

the influence of current effects on the temperature can
neglected, and this substantially shortens the computati
procedure. The effective characteristics for multilayer s
tems can be obtained using the sum rule for the eigenva
of the original problems.7

Figure 1 shows the time variation in the relative elec
cal power of a thermoelectric generator,W/WT

max, obtained
through calculations employing the method proposed h
~curve 1!, an exact solution~curve 3!, and experimentally
~curve 2!. The experimental data were obtained by A.
Sokolov~Sukhumi Physicotechnical Institute!. A comparison
t

e
al
-
es

-

re

.

of these results shows that their are in satisfactory agreem
so the method developed here can be recommended for
culating and analyzing the characteristics of specific therm
electric devices.

Mathematical modeling of the nonstationary operation
thermoelectric generators shows that, in order to accele
the approach of a thermoelectric generator to a given po
production regime, it is necessary to reduce the thicknes
the transition layers on the hot-junction side and to use m
terials with a high thermal diffusivity in them. In order t
sustain prolonged operation of the system, its heat capa
must be increased and the temperature or calorific capa
of the heat source must be raised. The amplitude of the
put electrical signal also depends significantly on these
tors.

1L. S. Stil’bans and N. A. Fedorovich, Zh. Tekh. Fiz.28, 489 ~1958! @sic#.
2E. K. Iordanishvili and V. P. Babin,Nonstationary Processes in Thermo
electric and Thermomagnetic Energy Conversion Systems@in Russian#,
Nauka, Moscow~1983!, 216 pp.

3Yu. I. Dudarev and M. Z. Maksimov, Teplofiz. Vys. Temp.26, 824
~1988!.

4F. M. Morse and H. Feshbach,Methods of Mathematical Physics,
McGraw-Hill, New York ~1953!; IL, Moscow ~1958!, Vols. 1 and 2.

5Yu. I. Dudarev, A. P. Kashin, V. I. Lozbin, and O. V. Marchenko, Inz
Fiz. Zh. 42, 492 ~1982!.

6A. P. Kashin, T. M. Kvaratskheliya, M. Z. Maksimov, and Z. E. Chiko
vani, Teor. Mat. Fiz.78, 392 ~1989!.

7Yu. I. Dudarev, A. P. Kashin, and M. Z. Maksimov, Inzh. Fiz. Zh.48, 333
~1985!.
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FIG. 1. W/Wt
max as a function of time:1—calculated by the method pro

posed here,2—experiment,3—exact solution.
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Asymptotic methods for evaluating the change in the relief of local surface formations are used
to obtain simple and fairly exact equations for the profile of the relief and characteristic
relaxation times of local deformations on metal surfaces in kinetic and diffusion models. ©1998
American Institute of Physics.@S1063-7842~98!02606-3#
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1. In creating ultrahigh-capacity information storage sy
tems based on solids, information is coded through the ac
of the tip of a scanning tunneling microscope made o
refractory metal. The resulting changes in the relief~promi-
nences and indentations! can be associated with bits o
information.1 Self-diffusion of the material of the storag
medium can, however, cause a gradual smoothing of the
lief and reduce the bit lifetime. Studies of the relaxation
netics and dynamics of surface structures are therefor
some interest for predicting the operating lifetime of th
type of device. This question is the subject of a detai
paper.1 We believe, however, that the solutions of the eq
tions obtained there for the functionf (r ,t) which describes
the surface relief were not examined analytically to a su
cient extent. We shall discuss this in more detail. First of
these equations can be written in a unified form

] f ~r ,t !

]t
52Kn~21!nLn21

1

r

]

]r S r f r

A11 f r
2D ,

L5
1

r

]

]r S r
]

]r D , f r5
] f

]r
, ~1!

whereL is the radial Laplacian operator on the plane,n51
corresponds to the kinetic model (K1[K) andn52, to the
diffusion model (K2[l).

Here it is assumed that the initial profile of the depre
sions on the surface of the metal are described by a Gaus
distribution

f ~r ,0![2b0f 0~r !52b0 expS 2
pb0r 2

V0
D , ~2!

whereb0 is the initial depth of the depression andV0 is its
volume with a root-mean-square radius of the equivalent
inder of

^r 2&5R25
V0

pb0
5b0m2, m25

V0

pb3 . ~3!

This representation of the initial conditions for the pr
file is entirely natural, since it conforms with the overa
distribution of roughness on the surface.2–4 In the general
case, the solution of the system of Eqs.~1! and ~2! is diffi-
cult; however, the horizontal dimensions 2R of the pits
7391063-7842/98/43(6)/2/$15.00
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which develop on metallic surfaces owing to the interact
with the tip of a tunneling microscope are much larger1,3 than
their vertical dimensions, similarly to natural surfac
asperities.2–4 In this case,

u f r u;
r

R

b0

R
,1,

so that Eq.~1! can be linearized to take the compact form

] f

]t
5Kn~21!nLnf . ~4!

2. Here it should be pointed out that describing a roug
ness profile by the system of equations~2! and ~4! is fully
equivalent to the problem of the time evolution of the dist
bution function f 0(r ) in studies of the kinetics of fine pul
verization and other technological processes for work
ores and raw materials.5,6 This makes the analysis of th
corresponding solutions much easier. In fact, according
Refs. 5 and 6, the solution of the system of Eqs.~2! and~3!
can be written in the following integral form:

f n~r ,t !52b0E
0

`

f 0~r 0!Gn~r ,tur0,0!dr0 , ~5!

whereGn(r ,tur0,0) is the Green function of the operator~4!,
whose Fourier representation has the form

Gn~r ,tur0 ,t !5
1

~2p!2 E dq exp@ iq~r2r0!2Kntq2n#.

~6!

It is easy to confirm that, ast→0,

Gn~r ,tur0,0!5d~r2r0!, ~7!

and on the basis of Eq.~5! we immediately obtain the resu
~2! for any f 0(r ). Furthermore, since the main contributio
to the integral~6! is from finite q;q0 , by making the sub-
stitution Knq2nt5r it is easy to obtain a second leadin
asymptotic term ofGn as t→`

Gn~r ,tur ,0!5
1

2
GS 11

1

nD ~Knt !21/n, ~8!

whereG(z) is the gamma function.
Substituting Eq.~8! in Eq. ~5! yields
© 1998 American Institute of Physics
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f ~r ,t ! t→`52
V0

4p
GS 11

1

nD ~Knt !21/n, ~9!

since

2pb0E
0

`

f ~r 0!r 0dr05V0 . ~10!

In the case of the kinetic model~n51, K15K! and the
Gaussian initial condition~2!, all the calculations becom
simpler,1 since the corresponding integrals of the Bes
functions in Eqs.~5! and ~6! are complete Weber integrals7

We have

f 1~r ,t !52b1~ t !exp~2pb1~ t !r 2/V0!, ~11!

so that

f 1~0,t !52b1~ t !52b0~114pKb0t/V0!21. ~12!

For arbitraryn and, in particular, for the diffusion mode
~n52, K25l!, it is not possible to obtain such simple equ
tions for f n(r ,t). However, for approximate estimates w
can use the reduced matching method8 in the parametert.
According to the procedure of this method, for the lead
asymptotic terms of the function@2 f (r ,t)#n we have from
Eqs.~2! and ~9!

S 2
f ~r ,t !

b0
D n

5H @ f 0~r !#n t→0

tn /t t→`,
~13!

which, when matched, give

f n~r ,t !52b0~ t/tn11/f 0
n~r !!21/n, ~14!

and

tnKn5S V0G~111/n!

4pb0
D n

. ~15!

From this, first of all for the kinetic model (n51) and
the initial condition~2! we obtain

f 1~r ,t !'2b0~exp~r 2/R2!1t/t1!, t15R2/4K, ~16!

where Eq.~3! has been used.
Here, on the one hand, the function~16! satisfies the

initial conditions, and its series expansion and that of exp
sion ~11!, in powers ofr 2/R2 give the same values for th
first few coefficients, and, on the other hand, forb1(t)
5 f 1(0,t) we obtain the correct result, Eqs.~11! and ~12!.
Thus Eqs.~14! and~15! can be used with sufficient accurac
for other r andn. If here we introduce the degree of prese
vation of a dip in the surface,j52 f (r ,t)/b0, f 0(r ), then
for the time t for filling it from the initial f (r ) to a given
level j, we find

tn5tn~j2n2 f 0
2n~r !!, j< f 0~r !. ~17!

Here it should be noted that none of the above estimates
very sensitive to the shape of the initial distributionf 0(r ),
because, as in Ref. 1, it is assumed that condition~10!, nor-
malization to volumeV0 for a given depthf 05b0 , and con-
dition ~3!, for the average radius, are satisfied. All togeth
this makes it possible to choose an initial distribution of t
simplest form, close to rectangular, for which the transit
l

-

g

s-

-

re

,

from Eq. ~1! to Eq. ~4! becomes better justified. This is con
firmed by numerical calculations1 of two approximations for
t1 in the kinetic model. In these cases, we can also ass
f 0.1; then Eq.~17! for the kinetic (n51) and diffusion
(n52) models becomes

tkin.t1~1/j21!, t15R2/4K; ~18!

tdif.t2~1/j221!, t25pR4/64l. ~19!

Their ratio is

tdif /tkin5~1/j11!t2 /t1 , ~20!

i.e., for other conditions the same, it depends on the deg
of filling. For example, forj50.5 we have

tdif /tkin53t2 /t1 . ~21!

Next, for j→0, Eq. ~19! for the diffusion model gives
the correct resultltdif /pb0

4m451/64j2, as opposed to the
estimates of Ref. 1, which gave 1/96j.

3. By using a rigorous analysis of the initial kineti
equations and asymptotic methods for the change in the
lief of local surface formations, we have obtained simple a
fairly accurate equations for the relief profile and for t
characteristic relaxation times of local deformations on me
surfaces in the kinetic and diffusion models. All of this, t
gether with methods for calculating the energy parame
and transport coefficients,1 makes it much easier to predic
the operating lifetime of memory structures, to determine
conditions for their reliable operation, to choose the stora
medium material, and other tasks which are indispensa
steps in nanotechnologies.

1A. M. Dobrotvorski� and V. K. Adamchuk, Zh. Tekh. Fiz.64~8!, 132
~1994! @Tech. Phys.39, 816 ~1994!#.
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Three of the simplest schemes for the design of a new physical apparatus based on the Barnett
effect are examined. It is shown that the most realistic is a design with a special type of
electrically open-circuited, superconducting magnetic shield. The design of this device is
described. ©1998 American Institute of Physics.@S1063-7842~98!02706-8#
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The possibility, in principle, of creating a new type
cryogenic ferromagnetic gyroscope, an angular velocity s
sor, has been discussed.1 The cryogenic ferromagnetic gyro
scope is based on the Barnett effect,2 in which a magnetic
field is generated when a ferromagnetic body is rotated
has been shown1 that there are three physical phenomena
exciting a magnetic field when different bodies are rotat
These are the magnetoresonance effect in3He, the London
moment in superconductors, and the Barnett effect. In o
to obtain a magnetic induction in the cryogenic ferroma
netic gyroscope equal to the induction produced in
nuclear gyroscope with3He developed so long ago,3 it would
be necessary for the relative dimensionless magnetic pe
ability of the ferromagnetic body to be>800. It was shown
that the cryogenic ferromagnetic gyroscope should be m
simpler than the nuclear gyroscope.

In this paper we examine some design versions o
cryogenic ferromagnetic gyroscope. It was pointed
previously1 that the simplest scheme for a cryogenic fer
magnetic gyroscope is a ferromagnetic rod located insid
cylindrical superconducting, electrically open-circuite
shield. A superconducting sensor winding is placed on
rod and connected to a superconducting short-circuiting l
incorporating the input winding of a SQUID. This schem
however, has two disadvantages. First, a simple cylindr
open-circuited magnetic shield gives a low shielding coe
cient and, second, a winding placed directly on the ferrom
netic rod has a high inductance, which reduces the curren
the input winding of the SQUID and makes it difficult t
match the winding to the input of the SQUID. In principle,
is possible to mount the ferromagnetic rod in a cylindric
closed-circuited superconducting shield, but in this case
overall size of the superconducting shield becomes m
larger owing to the compensating magnetic field which
velops inside the shield, or the dimensions of the rod mus
reduced, which results in a lower sensitivity for the devi
In sum, the two versions with simple, open- or close
circuited shields are poorly suited to making a realistic cr
genic ferromagnetic gyroscope.

In order to create a functional cryogenic ferromagne
gyroscope we propose using a special electrically op
circuited superconducting shield. It is an essentially cylind
cal shield, slit along a generator of the cylinder, with a lar
overlapping zone at the site of the slit~for example, in the
7411063-7842/98/43(6)/2/$15.00
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arrangement4 of a ‘‘snake swallowing its tail’’!. If the ratio
of the height of the gap to the length of the gap overlap zo
is kept at 1:10, then the shielding coefficient will be of th
order of 105– 106. A further reduction in this ratio will in-
crease the shielding coefficient. This scheme has been
by us in the device to be discussed below.5

An example of such a shield is a cylinder with a ve
narrow slit, of the order of 0.01–0.1 mm, along a genera
and with a large wall thickness of 2–3 mm. Besides incre
ing the shielding coefficient, a shield of this sort makes
possible to shield the sensor winding placed on it from
ferromagnetic material and to reduce its inductance
roughly a factor ofm.

The ferromagnetic rod is mounted inside the shield. T
diameter of the rod and the inner diameter of the shield m
be close in value (Dc'De), so that a field close to the Bar
nett inductionBB acts on the inner surface of the shield. T
current created on the inner side of the shield to compen
the fieldBB flows over the outer surface of the shield, tran
ferring the fieldBB to the surface of the shield. This fiel
excites a current in the superconducting sensor wind
which is wound on the surface of the shield and connecte
a short-circuiting superconducting loop incorporating the
put winding of a SQUID. In order to prevent current leakag
the width of the shield must be somewhat less than the len
of the ferromagnetic rod.

The current excited in the sensor winding, which is pr
portional to the rotational speed of the apparatus, flows al
the input winding of the SQUID, creating a flux which
measured by the SQUID. An electrically open-circuit
shield can obviously be used in place of a sensor windin

The magnetic flux created in the ferromagnetic rod
the Barnett effect is

FB5BBS5
mV

gB
S, ~1!

wherem is the relative dimensionless magnetic permeabi
of the rod material,V is the angular velocity of rotation,S is
the transverse cross section of the rod, andgB is the gyro-
magnetic ratio (gB51.731011 A•s•kg21).

WhenDc5De , the flux at the shield is

Fe5 l eLe5FB5
mV

gB
S, ~2!
© 1998 American Institute of Physics
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whereI e andLe are the current and inductance of the shie
The magnetic flux at the input winding of the SQUID

Fc5I 0Lc5
mVS

gB

Lc

L01Lc
, ~3!

whereI 0 is the current in the short-circuited superconducti
circuit flowing through the input winding of a SQUID with
inductanceLc , andL0 is the inductance of the sensor wind
ing.

We refer toLc /(L01Lc)5K as the flux transfer coeffi-
cient. In complicated circuits this coefficient is more cum
bersome than in Eq.~3!, but, as a rule, it consists of relation
ships among the inductances and mutual inductances o
components in the device. In practice,K;1021– 1023. The
Barnett magnetic flux can be measured ifFc>Fnc , where
Fnc is the SQUID noise. Then

Fc5Fnc5
m•V•S•K

gB
, ~4!

which implies that the sensitivity of the cryogenic ferroma
netic gyroscope to angular velocity will be

f 5
FncgB

2p•m•S•K
. ~5!

Equation~5! implies that in order to raise the sensitivit
of the cryogenic ferromagnetic gyroscope, it is necessary
increasem, S, and K. For example, forFnc51025F0 ~F0

52310215 Wb is the quantum of magnetic flux!, m5800,
S51023 m2, and K51022, we obtain forf a value of the
order of 1027 s21.

A simplified sketch of the cryogenic ferromagnetic g
roscope is shown in Fig. 1. Inside the case1 are a ferromag-
netic rod2 and a superconducting magnetic shield3, both
rigidly connected to the case; possible shapes of the sh
are illustrated to the right and left in the figure. A superco
ducting sensor winding4 is wound on the shield2 and con-
nected to the input winding5 of a squid6. Superconducting
end-cap shields7 are mounted on the ends to improve th
screening coefficient. The ratio of the height of the gaps
the overlap lengths of the shields3 and7 is 1:10.

It is known that during rotation of a superconductin
body, such as a solid or hollow closed cylinder, a magne
field ~the London moment! develops in it.1 A London mo-
ment does not develop in the electrically open-circuit

FIG. 1. A design sketch of the cryogenic ferromagnetic gyroscope.
.
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shield 3, To eliminate the influence of the London mome
on the measurement of the Barnett field, it is necessary
the end-cap shields7 be slit appropriately. Here the ratio o
the gap height to the overlap zone must be<1:10, i.e., the
cap must be comparatively thick and the slit very narrow

There are still some details involved in making and u
ing a cryogenic ferromagnetic gyroscope. Cooling the ap
ratus to the working temperature to eliminate trapping of
magnetic flux by superconducting components should
done under conditions of essentially zero magnetic field,
pecially near the superconducting transition temperature
the material.

It is desirable to use a single crystal for the ferroma
netic rod material and have the easy axis of magnetiza
coincide with the axis of the rod.

Ferromagnetic materials are noisy even at extremely
temperatures. In order to reduce the level of magnetic no
it is appropriate to coat the surface of the ferromagnetic
with a nonmagnetic material such as pure copper that h
low Ohmic resistance at the operating temperature.

The noise level of SQUIDs increases sharply below
certain frequencyf n'0.1– 1.0 Hz. To eliminate this effect i
is appropriate to modulate a higher frequency signal and
modulate at the output of the SQUID.

If an additional winding~or windings! is placed on the
open shield, then the prospects for the cryogenic ferrom
netic gyroscope are greatly expanded; with a suitable con
system it can measure angular acceleration and rota
angle.

We have proposed a design for a new physical app
tus, the cryogenic ferromagnetic gyroscope. The sensi
element of the cryogenic ferromagnetic gyroscope~a rod
with a shield! has no moving parts and does not require a
additional energy to operate; it does not release heat. Thu
is very convenient for cryogenic devices and its operat
lifetime is unlimited.

A comparison with the known designs for cryogen
gyroscopes—angular velocity sensors~the cryogenic nuclear
gyroscope!3 and the cryogenic ferromagnetic gyroscope
shows that the cryogenic ferromagnetic gyroscope desig
simpler and more reliable. In terms of sensitivity, the cry
genic nuclear gyroscope and the cryogenic ferromagnetic
roscope are similar. There is a possibility, in princip
of increasing the sensitivity of the cryogenic ferromagne
gyroscope by employing a ferromagnetic material with
higherm.

1L. A. Levin, Zh. Tekh. Fiz.66~4!, 192 ~1996! @Tech. Phys.41, 399
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2S. J. Barnett, Rev. Mod. Phys.7, 129 ~1935!.
3K. F. Woodman, P. W. Franks, and M. D. Richards, Rev. J. Navigat
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5A. P. Buravlev, B. E. Landau, L. A. Levin, and S. L. Levin, ‘‘Cryogeni
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Translated by D. H. McNeill
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