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It is remarkable that for 40 years the Josephson effectmassive banksS; and S,. The coupling allows the ex-
has maintained its position at the center of condensed mattehange of electrons between the banks and establishes super-
physics. The reason probably lies in the very concept otonducting phase coherence in the system as a whole. The
weak coherent coupling between macroscopic quantum sysveakness of the coupling means that the superconducting
tems. It allows one to separate the effects of interactionprder parameters of the banks are essentially the same as for
which creates the long-range order, from the correlatiordisconnected superconductors, and they are characterized by
themselves, corresponding to this order. It provided the poshe phases of the order parametersaandy,. The Josephson
sibility to investigate the overlap of mutually exclusii@  weak link can be considered as a “mixer” of the two super-
the bulk long-range orders. It gives the opportunity to look conducting macroscopic quantum states in the banks. The
at the effects of finite size of the system. Josephson effeaesult of the mixing is a phase-dependent current-carrying
also gives a framework for the discussion and realization otate with current flowing from one bank to another. This
macroscopic quantum phenomeii@yond the almost trivial current is determinedparameterizedby the phase differ-
fact that superconductors are macroscopic quantum ohjectenceo= y,— x; across the weak link. The specific form of
The last five years have seen the demonstration of macrdhe current—phase relatidfip) depends on the type of weak
scopic quantum resonant tunneling, quantum coherence, atidk.
guantum entanglement in Josephson structures. Josephson A number of papers consider the coherent transport in
physics repaid the physics of bulk superconductivity by pro-Josephson weak links with coupling more complicated than
viding a means of investigation of unusual superconductorfust a tunneling barrier. In the paper by Kulik different types
(e.g., demonstrating-wave symmetry in high. cuprateg of superconducting weak links are reviewed, focusing on the

Brian D. Josephson discovered his remarkable effect imrigin of jumps in the current—phase relations. The author
1962. Josephson predicted that a zero voltage supercurreaiso discusses persistent currents in mesoscopic and nano-
could flow in a junction between two superconductors sepascopic Aharonov—Bohm structures. Novel effects in super-
rated by a tunnel barrier. The magnitude of the Josephsoconducting nanojunctions are studied theoretically in the pa-
current is related to the difference of the phases of the mager by Zaikin. It is shown that interplay between quantum
roscopic wave functionscomplex order parametgrsf the interference effects and Andreev reflection9rN—-Sjunc-
superconductors forming the junction. P. W. Anderson and Yions with insulating barriers may qualitatively modify the
M. Rowell first observed this dc Josephson effect in 1963. IfJosephson current. Several papers included deal with spin
a dc voltageV is applied to the junction, an ac supercurrenteffects in mesoscopic Josephson junctions. Shnireteal.
with the frequency 2V/%4 appears between the supercon-study the dynamics of a single spin embedded in the tunnel-
ductors. The first direct observation of the ac Josephson efag barrier between two superconductors. A new effect, “Jo-
fect was made 40 years ago in Kharkov, UkrajheK. Yan- ~ sephson nutation,” is predicted. The paper by Krigeal.
son, V. M. Svistunov, and |. M. Dmitrenko, ZhkEp. Teor.  reviews the charge and spin effects in S—Luttinger liquid—S
Fiz. 47, 2091(1964); 48, 976 (1965 [Sov. Phys. JETRO, and S—quantum wire—S junctions.

1404 (1969; 21, 650 (1969]). Soon after Josephson’s pre- The properties of the current carrying states in a weak
dictions for the tunnel junctions, it became clear that thelink depend not only on the manner of coupling but also on
effects are much more general and occur whenever two suikhe properties of the superconducting banks. The modern
perconductors are weakly coupled. The physics of weak syphysics of superconductivity is essentially the physics of un-
perconductivity(a term introduced by P. W. Andersohe-  conventional superconductivity.

came an area of a great interest for experimental and The discovery ofl-wave symmetry of the order param-
theoretical investigations. More than forty years after its dis-eter in high-temperature superconductors and of triplet su-
covery, the Josephson effect still attracts considerable atteperconductivity in compound SRuO, has caused a stream
tion and keeps providing us with exciting new physics andof theoretical and experimental research on unconventional
applications. superconductors. The sensitivity of the Josephson effect to

This issue is devoted to aspects of the physics of supethe symmetry of the complex order parameter in the junc-
conducting and mesoscopic structures. It represents reviewi®n’s banks stimulated numerous studies of Josephson weak
and original articles on the subject. The issue opens witlinks between unconventional superconductors. The current—
papers by Yanson and Dmitrenko which review the initialphase relations for unconventional Josephson weak links are
steps in study of the ac Josephson effect in tunnel junctionquite different from the conventional ones. For example, in
and further experimental investigation of weakly coupled su-grain-boundary junctions, depending on the angle of misori-
perconductors at the Institute for Low Temperature Physicentation of d-wave order parameters in the banks, the
and Engineering in Kharkov. current—phase relation is changed from agjHike curve to

The Josephson effect arises in superconducting wea& — sin(2p) dependence.
links—junctions of two weakly coupled superconductors  Clearly, this determines new features in the behavior of
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such Josephson junctions in applied voltage or magnetianconventional superconductors needs further theoretical
field. A considerable number of the papers included in thisand experimental investigations.

issue concern the study of unconventional Josephson weak Mesoscopic structures consisting of several Josephson
links. One of the most striking manifestations of the unconJunctions are now being studied intensively from the point of
ventional order parameter symmetry is the appearance ofiéw of qubit realization. A paper by I'icheet al. summa-
spontaneous current flowing along the contact interface ifiZ€S the results of implementation of advanced impedance
addition to the Josephson current. The spontaneous Curremeasurement technique for che}racterlzatlon _Of
arises due to the breaking of the time-reversal symm@ty ( interferometer-type superconducting qubits. In a theoretical

. i . . paper by loffeet al. a new class of Josephson arrays is in-
in the system. The study dF-breaking phenomena is not troduced. These arrays have nontrivial topology and exhibit

only of fundamer?tal signifipan_ce but als_o attragts inf[ereshovel quantum states at low temperatures. In the paper by
from the standpoint of reahz_atlon of qub|t§, basic units OfKupIevakhky, a detailed theory of Josephson vortices in lay-
quantum computers. The review by Kolesnicheekal.fo-  gred superconductors is developed. The quantum dynamics
cuses on spontaneous currents in junctions betwlegave  of the order parameter and time-dependent BCS pairing is
and triplet superconductors. It also contains the review ofnvestigated in the framework of the Wigner distribution
superconducting qubit basics with emphasis on the propertigginction by Aminet al.

of d-wave qubits. A theoretical paper by Tanadizal. con- A single issue cannot cover all aspects of the research. It
siders the impurity scattering effect on charge transport irgives the reader a brief overview of the current state of ac-
high-T, cuprate junctions. The results of experimental inves4ivities, which, we hope, will be useful and will stimulate
tigations of highT. grain boundary junctions and hetero- further investigations in the field of superconducting and me-
structures are presented in the papers by Tadtidl. Ko- ~ SOScopic structures.

missinskiet al. and Timofeevet al. The specific features of We greatly appreciate helpful discussions with all the
ac Josephson effect in unconventional superconductors af@ntributors during the preparation of this issue.

reported in the theoretical paper by Kwenal. Note that the

problem of existence of the fractional ac Josephson effect in A. N. Omelyanchouk
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An historical review of the discovery and the early period of research on the Josephson effect is
given. Experiments on the tunneling effect in superconductors done in the 1960s at the

Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of
Ukraine, Kharkov(ILTPE), which led to the observation of Josephson electromagnetic

radiation are described in detail. The experimental data are illustrated by the original curves, and
the dates they were taken are indicated. The physical mechanism for the generation of rf
radiation in superconducting tunnel junctions is examined, and some of the more promising
applications of the ac Josephson effect are briefly listed20©4 American Institute of

Physics. [DOI: 10.1063/1.17899111

1. INTRODUCTION of the potential difference across the barrier, which is respon-
] ) sible for some mechanism of dissipation of the oscillation
In the first half of the year 1962 the young English the-gnerqy j0sephson also pointed out the kinds of experiments

oretical physicist Brian Josephson, still a postgraduaté st ¢ would most clearly manifest the unusual properties of
dent, calculated the tunneling current between two SUPErcoRe cooper-pair tunneling current. For direct current this is

ductors _and found additional terms. According to Josephsony,q oscillatory dependence of the criti¢aé., maximum pos-
the barrier could be penetrated not only by “normal” elec- gjhie) supercurrent on the value of a weak magnetic field

trons, i.e., current carriers whose motion in a metal meetyiq cing the cross-sectional area of the tunnel junctions. This
with resistance and leads to“heat release, bUt also, with @pendence is a consequence of the sensitivity of the phase
comparable probgbl!lty, by_ sup_erconductlng ele_ctrons, x(r) of the wave function¥ (r)=|W (r)|&*®) of the super-
which through their mteractlpn with the crystal Iattlc_e are conducting electrons to magnetic field, or more precisely, to
attracted to e_ach other, forming so-called Cooper pairs Withi« field of the vector potentiah(r). Another experiment
charge 2 (e is the elementary electric chajgehe super-  a¢ would indicate the existence of an alternating supercur-
conducting electrons, when moving in a metal with & velocygp; s the extremely unusual detection of external electro-
ity not exceeding a (_:r|t|cal value, do not encounter resiSinagnetic radiation in the microwave range by a Josephson
tance. The penetration of normal electrons through annne| structure. Since the frequency of the alternating cur-
insulating layer several nanometers thick finds a natural eXzent js proportional to the voltage across the tunnel junction,
planation in the framework of t'he quantum tunneling effect.; mall microwave component induced by an external field
The tunneling of Cooper pairs can loosely be called gy ead to frequency modulation of the alternating current,

“double” quantum effect, since it derives its existence from and dc components will appear in the spectrum each time the
the wave nature of the whole ensemble of superconducting. voltage across the contact satisfies the relation

electrons as a whole, described by a single quantum wave
function(r). Naturally, from the standpoint of quantum me-
chanics, if the phenomenon of superconductivity is not taken
into account, the simultaneous tunneling of two electrons is
proportional to the square of the coefficient of transparencyConsequently, the current—voltagle-V) characteristic will
of the potential barrier, which is ordinarily a negligibly small have vertical segmenisteps at which the current changes
quantity. It is unusual that the transparency of the barrier foat a nearly constant voltage.
a Cooper pair is actually of the same order of magnitude as Relation(1) is easily interpreted from a physical stand-
for a single normal electron. point. The Cooper pairs have a total spin equal to zero and
In a brief communication published in one of the first therefore obey Bose—Einstein statistics. At temperatures far
issues of the newly launched journdthysics Letters below the transition temperature of the metal to the super-
(6/8—7/1/196%" Josephson very briefly set forth the impli- conducting state, as a result of Bose condensation almost all
cations of his theoretical calculations. Besides doesuper-  of the Cooper pairs occupy the same energy level, corre-
conducting current flowing aterovoltage across the barrier, sponding to the chemical potential of the conduction elec-
there should also exist aac superconducting current that trons. If a static voltage is applied between two supercon-
flows when adc voltage is applied across the barrier. At a ductors in tunneling contact, their chemical potentials will
potential difference of JV the frequency of the alternating differ by eV. Consequently, an elementary tunneling event of
current is 483.6 MHz. In fact, in order to be observable, thea Cooper pair having charge2n this case will be a process
ac Josephson current must give rise to a small ac componeatcompanied by the emission or absorption of one or several

2eV=ntiw (n=1,2,3,..). (1)
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guanta of energyiw. It is easy to see that relatiqi) is an
expression of the energy conservation law in such an el- 16 - Al-Al05-Pb
ementary process. 20.04.1963
The events leading to the experimental discovery of the
predicted effects developed rapidly. A half year after publi-
cation of Josephson’s first papeunder the cautious title
“Possible new effects in superconductive tunneling,” P. W.
Anderson and J. M. Rowell published an experimental
papef (1/11-3/15/1968 under the similarly cautious title
“Probable observation of the Josephson superconducting
tunneling effect,” in which they presented certain facts that
did not fit in with the existing(before Josephsogriheory of
the currents through a tunnel contact and which find a natural T=1.65K
explanation in Josephson’s theory of the dc supercurrent. The
complete triumph of Josephson’s ideas came in mid-1963, A A |
when Rowell reported the observation of an oscillatory de- 0 1 2 3 4
pendence of the critical curren(7/24—9/1/1968 which Voltage, mV
gave direct proof of the existence of the dc supercurrent. In
experiments with detection of external electromagnetic
radiatiorf (6/13—7/15/196B8S. Shapiro observed the current
steps predicted by Josephson, which could be regarded as . .
convincing indirect proof of the existence of an alternating(ILTPE) was_founded_ in Kharkov. Tu_nne_ll_ng In supercon-
current. A summary of these successes was presented at gcetors was 'ndUdeq in the plan of scientific research of th'.s
International Conference on Superconductivity at CoIgaténSt'tu_te' However, since 't was"negessar}/ to create the entire
University (USA), August 26—29, 1963. There, in addition to experimental bqse from “zero,” Giaever’s results were not
the achievements already mentioned, M. D. Fiske presenter produced until ‘?ar'y 1963: These were measurements of
a reporf containing experimental confirmation of the pre-t e |-V characteristics of thin-film tunnel structures of the

dicted temperature dependence of the Josephson critical C%’-pe a]Juhmlnfl_Jm{alr]umlnurrl_ O.X'de_(lei(.j’h“?]’ or_indiur. f
rent and the observation of vertical current steps at finit ne of the first characteristics on which the energy gap o

voltages in the absence of external microwave radiation. | eadéA:.ldeggAth) was;: Ie?rly re\;efalk;eq 'S S h0\r/1\{n r'ln F'gl'. -
the same issue of the journal the famous English scientist A. y mid- _t e technology of fabricating high-quality
B. Pippard, in a discussion section, made a guiser bril- superconductor—insulator—superconductor tunnel structures

liantly confirmed that the mechanism for the onset of thesehad been developefl,making it possible to study the Jo-

steps is a consequence of the excitation of electromagnetﬁ:ephsﬁn effeﬁts. Ir? the ver_;:j f'rS'F papef7/ 30_12/1?}% ':c bri
oscillations of a miniature strip resonator with open walls, V&S Shown that the tin—oxide—tin structures we had fabri-

formed by the tunnel junction. Pippard and Anderson can b ated had a thin and uniform potential barrier. The character-

regarded as the “godfathers” of the Josephson effect, sincg‘tiC oscillator;_/ dep.endence of the_ maximum Josgphsqn cur
they were the ones with whom Josephson discussed his ideé%m Was"obtalned. In a new experimental setup, n which an
and obtained from them complete mutual understanding anoexternal' magnetic field was greated by an adQ|t|0naI cur-
support. Besides, Anderson made a large contribution to th@n_t flowmg_along one of the films. _For _tunn_el junctions in
development and interpretation of the physical essence of th‘@hICh the width of the supercqnductmg films is less ‘hﬁ‘.” the
effects predicted by Josephson. In particular, in coIIaboratiorcl’o'Called Josephson_penet_ratlon depth of the magnetic field
with A. N. Dayem, he first showéd6/18—8/10/196% that into the tunn_el_ junction(which usually amount_s_ o a few
the Josephson effects are also observed in superconducti ths 9f a m|II|me©r, the depender}ce of the critical current
microbridges, thereby expanding the class of objects exhib? the fieldH, applled parallel to a film of width. conforms
iting “weak superconductivity,” i.e., structures in which well to the relation

these effects are manifested. Josephson himself had men- sin(w®/d )
tioned in his first report that the effects he was predicting !'c(Ho)=lo “(adIDy)
could take place not only in metal—insulator—metal tunnel ) ) 0 )
structures but also in the so-call&-N—-Sstructures, i.e., Wherel is the maximum dc Josephson currehp=h/2e is

two superconductors separated by a thin layer of normaihe magnetic flux quantum in the superconductors, equal to
metal. 2X10 Wb, ®=(d+2\)LH, is the magnetic flux

threading the tunnel junction is the thickness of the insu-
lating layer(the oxide separating the superconducting films
and\ is the so-called London penetration depth of a static
or not too high-frequency alternating magnetic field into the
The first tunneling measurements of the energy gap isuperconductor. Figure 2 shows the dependence of the Jo-
the spectrum of quasiparticle excitations of superconductorsephson critical currerit(Hy) on the magnetic field for the
were done in 1960 by I. Giaevkin the USA? In that same  junction on which the electromagnetic radiation predicted by
year the Institute for Low Temperature Physics and Engi-Josephson was first observed. In this case the dimensions of
neering of the National Academy of Sciences of Ukrainethe junction exceeded the Josephson penetration depth. Con-
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FIG. 1. Current—voltage characteristic of an Al,@85—Pb junction.
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SUPERCONDUCTORS AT ILTPE
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70 dotted circle indicates the step on which the working point
Sn-Sn0O,-Sn was set at the time of these experiments. One can sometimes
60l T=157K observe unusual behavior at such steps: with increasing cur-
28.11.1964 rent the working point can jump not to higher but to lower
50+ voltage? a finding that cannot be explained by the possible
< destruction of some superconducting current paths connected
E_ 40| in series. It was conjectur&tthat the stepped structure “can
-2 probably be attributed to the excitation of the alternating
30 supercurrent predicted by Josephson.” Thus in mid-1964 our
work had approximately reached the level that had been
20 achieved abroad back in August of 1983.
10
3. OBSERVATION OF JOSEPHSON ELECTROMAGNETIC
RADIATION

1 1 1 1 1 1
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H, kOe In spite of the fact that the mechanism producing the

vertical segments on the |-V characteristics of tunnel junc-

FIG. 2. Dependence of the critical current on an additional current along th?ions was unknown to us. there was no doubt in our minds
film, expressed in terms of magnetic field strength in the tunnel junction. oo ' .

that it involved the ac Josephson current. This could be

proved by the direct observation of electromagnetic radiation

sequently, the magnetic field penetrated nonuniformly intc@ccompanying the ac supercurrent. Registration of the radia-
the junction, in the form of quantized lines or tubes of mag-tion would be direct evidence of the tunneling of Cooper
netic flux. This circumstance is responsible for the deviatiorPairs with the emission of photons—one of the two funda-
of the observed dependence from form(@a Nevertheless, Mental quantum processes predicted by Josephson. Before
the Osci”atory dependence W|th a decaying enve'ope |§hat there eXiSted Only the indireCt eVidence mentioned
clearly observed, indicating the uniformity of the insulating above?’

spacer and the absence of microshorts in the tunnel b&rier. It was known that the voltage should be related to the
At comparatively high magnetic fields the magnetic field dis-radiation frequency by the Josephson relation

tribution in the junction becomes close to uniform, and the 4 ,=2eVv. 3
field dependence of the critical current approaches formula o N
2). In addition, it had been noted that the position of the steps on

The temperature dependence of the Josephson criticHl® voltage axis depended on the dimensions of the tunnel
current was also confirmed, and the so-called “subharmonidunction. The wider films are characterized by a shorter dis-
gap structure” was observéd. Fance betwggn adjacent step§. This madg it possible to choose

Of particular interest for the theme of this article is thati" @ empirical way those films of a width such that the
the so-called stepped structure of the 1~V characteristic afoltage at which any step corresponding to relati@
biases less than the threshold valie., foreV less than the Would be observed at the frequency at which the radiation
energy gap\) was observed in those measurements. A typi-Was det'ect'ed. The .helght of the steps depended.on the static
cal example of such structure is shown in Fig. 3, whichmagnetic flel_d gpplled in the plane of the tunnel_ junction.
shows the 1-V characteristic of the junction on which the /AS @ radiation receiver we used a P5-10 microwave ra-

Josephson electromagnetic radiation was first observed. THtiometer for the 3-cm wavelength range. Itlhad the advan-
tage of a high threshold sensitivity~(10 ¢ W), self-

calibration, and relatively compact size. It would later turn

out that the choice of a receiving device with the highest
60} Sn-Sn0,-Sn threshold sensitivity was the key to the success of the whole
28.11.1964 experiment, since the power initially detected was very low
50t (at a level of~10"1*W); Fig. 4.
The experiments were done as folld#$12/9/1964—3/
« 40 1965. Films of such a width that a step was observed on the
g I-V characteristic at the required voltagepproximately
g 30r 19.6 uV) were selected. From a number of tunnel structures,
g we selected those for which the critical current oscillated
O 20f with a smoothly decaying envelope in a static magnetic field
parallel to the films(like the dependence shown in Fig. 2
10r Satisfaction of this requirement attested to the presence of a
thin and uniform oxide layer. After that a value of the mag-

020 60 100 140 180 220 netic field was chosen such that the required step would have
Voltage, mV maximum height. The sample was anxX!838 mm glass sub-

FIG. 3. Stepped structure of the 1-V characteristic of the tunnel junction ons’tra_te(a microscope cover S')p?” which :c\fvf%tm films with

which the Josephson electromagnetic radiation was first obsénatelthe @ Width of around 1 mm and thickness of T0mm had been

step enclosed by the dotted circle deposited at right angles to each other in a high vacuum. The
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a 10 ° W (Ref. 14 through better matching with the outer
15 space. Although the power observed was extremely low, it
€ 10 was generated in a volume of the order of §@m?®, and so
= 5 2- the specific microwave power was as high as 10 m\W/cm
0 Jd and it could be raised to 1—10 W/émThe main advantage
0 12 24 36 of Josephson tunnel microwave generators is the ease with
- Voltage, uV which they can be incorporated in integrated film microcir-
g Sn-Sn0,-Sn 28.11.1964 cuits operating at low temperatures and, hence, having low
2 Cr o T b noise.
s Among the output devices of the P5-10 receiver is a
g loudspeaker, which served as an indicator of the noise signal
o in the band of sonic frequencies. Upon tuning to the working
% point of the |-V characteristic where the Josephson fre-
g quency relation is satisfied, there was usually a noticeable
g increase in the noise. Interestingly, on one occasion when the

voltage across the junction reached a value satisfying the
Josephson frequency relati@8), music was heard coming
from the speaker instead of noise. It turned out that the in-
trinsic linewidth of the Josephson radiation is so narrow that
the rf induction signal from a nearby radio translation station
first film had been covered by a thin insulating lay2mm  led to frequency modulation of the Josephson microwave
thick) formed by oxidation in air or in oxygen. Thus the radiation. After a double heterodyning in the P5-10 receiver,
tunnel junction was the~1x1x10 * mm region where the signal of that radio station was reproduced in the loud-
these films overlapped. The remaining elements of the strugpeaker.
ture served for connection of the current and potential leads. Thus our work on the direct observation of the electro-
The tunnel junction was held at liquid helium temperature inmagnetic radiation helped forge a link in the compelling
a standard 3-cm waveguide parallel to its wide wall and clos@hain of discoveries due to Josephson’s predictions.
to the short-circuiting plunger. The P5-10 receiver was  Aproad, the main thrust of experimental research on the
mounted on the other end of the waveguide, away from th@c josephson effect was toward explaining the mechanism of
cryostat. o _ the indirect manifestations of the existence of the ac super-
Figure 4 shows the initial part of the 1-V characteristic current. R. E. Eck, D. J. Scalapino, and B. N. Ta%ﬁor
(panel a together with the output signal of the radiation (5/18_7/6/196% observed a broad resonance peak in the
detector(panel b, taken with a smooth variation of the cur- |_y; characteristic of lead—oxide—lead tunnel junctions at bi-
rent through the junctiofand of the voltage across.ifThe ases less than half of the width of the energy gap of lead
step.satisfying relatioq3) for the frequencyf_o to which the op=1.34 meV). The position of this peak was propor-
receiver was tuned was placed in the region of marks 6 an%ﬁnal to the strength of the magnetic field applied in the

7 Mark.s 177 correspond fo the same points in time |n'th lane of the junction. This peak arises as a result of the
graphs in Fig. 4a,b. The P5-10 receiver has a comparativel : . . .
elf-detection of the traveling electromagnetic wave excited

narrow passband-{1 MHz), and so the signal is observed by the traveling wave of ac Josephson current. Because of

only in the neighborhood of a certain point on the step. Whe he large damping and structural inhomogeneities character-
the receiver is tuned to anoth@rearby frequency, this point . 9 ping ar . omog .
istic for lead tunnel junctions, reflection of electromagnetic

shifts on the step in accordance with relati@®). One can ) . .
P ) aves from the boundaries of the junction were not ob-

also notice a slight increase in the signal in the region otV
mark 4, which corresponds to relatigt) for n=2, i.e., a served. Somewhat laférthose same authors observed and

slight increase observed in the signal was due to the secorfdPiained the stepped structure for lead junctions of better
harmonic of the Josephson radiation. The radiation power ijulity. The steps arise as a consequence of the self-detection
the first experiments was very low-(10~ W). This is be- of resonance types of electromagnetic oscillations generated
cause only a small fraction of the radiation generated leakelY the ac Josephson current. An analogous explanation was
into the waveguide and could be detected. A large fraction ofiven by D. D. Coon and M. D. Fiské (10/5/1964-5/3/

it was scattered inside the tunnel junction and converted 1969 for the stepped structure in the case of tin tunnel junc-
heat. In addition, in the first experiments the static magneti¢ions. Unfortunately, the last two papers mentioned remained
field was directed along the axis of the waveguide and, hencanknown to us for a long time, and we arrived at similar
the direction of propagation of the electromagnetic field genfesults independentljsee Ref. 185/18-7/1/1965and Ref.
erated by the wave of Josephson current was, strictly speal9 (6/12—8/1/196%|.

ing, orthogonal to the axis. Nevertheless, because of the non- In parallel with the elucidation of the mechanism of gen-
uniformity of the field near the edges of the junction, aeration of Josephson radiation, other researchers conducted
significant amount of the electromagnetic energy was radiexperiments on its direct observation. For example, in Ref.
ated along the waveguide axis and could therefore be del7 an attempt was undertaken to observe the radiation by
tected. In the later experimehighe typical radiation power means of transmission line expanding smoothly frerh nm

was ~10 ¥ W and in certain cases could be increased to(the distance between the film and the tunnel jundttorthe

FIG. 4. Simultaneous recording of the 1-V characteristic near a(sjegnd
the output signal of a microwave receiver with detection of the radigbpn
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A which are inversely proportional to the dimensibrof the
junction along which the standing electromagnetic wave is
X w ’ established. The phase velocity of the slowed electromag-
L ’ d netic wave is given by

%( )7H0/ ( d )1/2
o / ’ Co=C

I — /785 g0l
N2/

O\ p and for typical values of the parameters is about 20 times
- - XZH,_ RN lower thanc, the speed of light in free space. It follows
y y immediately that a tunnel junction with dimensions some-
o o what large than 1 mm will resonate in the 3-cm wavelength
FIG.‘5.. Model of a tunnel junction and the electromagnetic fields and cur-range_
rent in it. i i
In analogy with how a density-modulated electron beam
excites slow electromagnetic waves in microwave electronic
devices, in a superconducting tunnel junction the wave of
macroscopic size of the coaxial cable or waveguide. NQlosephson supercurrent densijty(z,t) excites resonance
power was detected down to 18 W, even though one of electromagnetic oscillations of the miniature microwave
the junctions gave a tunneling current of 30 mA at a voltaggesonator made up of the crossed superconducting (s
of ~20 uV. We now know that the reason for the failure lay 5). The Josephson current flows along thexis, i.e., be-
in the insufficient sensitivity of the radiation receiver, sincetween the superconducting films. Its time dependence is de-
the wave impedance mismatch of a tunnel junctias a termined by the frequenci). The dependence of the Jo-
stripline) and a standard waveguide is large. sephson current density on the coordinates can be controlled
by means of a static magnetic figtt}, applied in the plane of
the junction. In the simplest case the rather weak coupling

4. MECHANISM OF GENERATION OF ELECTROMAGNETIC between the two Superconductc('rsa., at a sufficiently low
RADIATION AT RESONANCE FREQUENCIES OF A barrier transparency for the tunneling of Cooper paiinss
TUNNEL JUNCTION dependence is of a harmonic character for zhdirection,

o which lies in the plane of the junction but perpendicular to
Two superconductors separated by a thin insulator layejhe external magnetic field:

can act as a stripline for the propagation of electromagnetic
waves. These waves were considered by J. C. Swihate L . _2eAH,  2eV
. ) ; j=Jjcsinwt—Kkz); k= NOES .
showed that at a thickness of the insulating spacer much less c h
than the penetration depth of magnetic field into the super-
conductor, electromagnetic waves are strongly slowed. Th
penetration depth of magnetic field into a superconductor is

The phase velocity of the Josephson current density
ave is given by

given by oV
me |12 UpT K TCAH,
A= ( 47-rnse7> ' and it depends on both the voltageacross the junction and

on the magnetic fieltH,, which provides a means for con-
the speed of lightn, is the density of superconducting elec- trolling the phase velocity independently of the electromag-

trons, which is of the same order of magnitude as the densitnet|c waves which are excited. The maximum interaction of

of conduction electrons in a metal under the condition thag Josephson current density wave and an electromagnetic

the temperature is significantly below the critical '[emperaturewave In a tunnel junction is brought about when the phase

T, of the transition to the superconducting state. ForTin velo(;:_lt_les of the f'e(ljd andhcurrentl_densny are equal. This
=3.7 K and\ =50 nm. The thicknessl of the insulator condition corresponds to the equality

layer in a tunnel junction does not exceed 2 nm. Conse- Co

guently, the electric and magnetic fields are separated in V:FHO’

space. The first is concentrated in the insulating gap, while

the second is mainly in the subsurface layers of the supeYNich gives the value of the magnetic field at which the
conductor, occupying a total distance along thaxis of A self-induced step on the current—voltage characteristic of a
=2\, +d~100 nm(Fig. 5. tunnel junction has its maximum height. This relation corre-
The wave impedance of such a stripline is several order§PONds to equality of the wavelengths of the Josephson cur-
of magnitude lower than that of free space, and electromag®nt density wave and electromagnetic wave. As the mag-
netic waves are almost completely reflected from the edgelgetlc fieldH, is increased, the wavelength of the Josephson

of the tunnel junction as from the open end of a transmissioN'ave decreases, and a dephasing occurs between the current
line. Bounded on two sides, a tunnel junction is a strip reso\Vave and the field excited. However, each time the current-

nator with resonance frequencies density wave becomes an integer multiple of the field wave,
the efficiency of interaction again increases. Therefore, the
intensity of the generation on each type of oscillation and,
along with it, the height of the corresponding step on the

Heree andm are the charge and mass of the electiois

n
TCO, n=1,2,3,...,

wn=
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the value of the energy gap in the spectrum of quasi-particle

12} (H) > 240¢ excitations. For superconductors such as lead and tin the lat-
ol y ;:‘GOZ ter lies in the far-infrared region of the spectrum, while for
80¢ superconductors with higher critical temperaturésg.,

Nb;Sn or the new high-temperature materials Y8&0;_4
etc) it lies in the infrared. Recently there has been increasing
interest in the application of Josephson junctions as active
microwave devicegheterodynes, mixers, and frequency con-
verterg in thin-film integrated circuits. From a single tunnel
junction one can extract a microwave power of up to
10~7 W, and from a system of coupled junctions, up to 1
uW. For this application barriers with higher transparency
FIG. 6. Height of the characteristic steps on the |-V characteristic of aare used. Then_ the Josephson current _eXCItmg the_ resonance
Josephson tunnel junction in an external magnetic field. modes of a strip resonator propagate in the junction not in
the form a traveling wave but as a soliton representing a
guantum of magnetic flux which is multiply reflected from
current—voltage characteristic, oscillates with increasinghe edges of the junction. Such a soliton, which is also called
magnetic field, and the amplitude of those oscillations gradua fluxon, is generated by the tunneling current itself, and in
ally decays. this case the external magnetic field is absent.

Figure 6 shows how the height of the self-induced steps When speaking of the promising applications of the ac
on the -V characteristic of a Sh—SpOSn Josephson tun- Josephson effect one must not fail to mention quantum volt-
nel junction depends on the external magnetic field. Theage standards, which have long been used in a number of
numbern of each step in the sequence is indicated near theountries as primary government standards for the volt. Such
corresponding principal maximum, the position of which ondevices are easily compared with each other, since they are
the voltage axis as a function of field is given in the inset tochecked by comparing the frequencies of the standard and of
this figure. The deviation of the Josephson critical currenthe device to be checked. Precision measurements of relation
(corresponding tan=0) from relation(2) is due to the fact (1) have permitted refinement of the ratio of fundamental
that this junction, like that on which the radiation was first constantsh/e and to eliminate any seeming contradiction
detected, has dimensions exceeding the Josephson penetoatween the predictions of quantum electrodynamics and ex-
tion depth. The scheme for automatic registration of thes@eriment, which had arisen because of the use of a previous,
curves works in such a way that the field dependence of eadhaccurate value of this ratfd.
successive step can be determined provided that its position
on the I-V curve is at a higher current than the one before it:g-mail: yanson@ilt.kharkov.ua
Identical stepgexcept fom=0) correspond to the same sort VThis is how we shall indicate the dates of acceptance and publication for
of shading for an envelope rendered as a solid line or to thepioneering works. As recounted by P. W. Andergan,choosing the jour-

nal for publication it was decided not to send the first-claim report to the

same shape of the envelope in the absence of shading. Thgstablished American journ&hysical Review Lettersecause of the im-

complicated dependence that is observed is described wellportance and unusual nature of the results obtained and the fear that they

on the whole, by the existing theory_ would not be understood by the referees. As the further course of events
would show? even the two-time Nobel laureate John Bardeen did not agree
with Josephson’s conclusions at first.

5. SOME PROMISING TOPICS FOR FURTHER RESEARCH JIn 1975 Giaever, Josephson, and L. Esaki, who had even earlier discovered

AND APPLICATIONS OF THE AC JOSEPHSON the tunneling of electrons in highly doped semiconductors, were awarded

EEFECT the Nobel Prize.

It should be noted that the |-V characteristic is usually taken using a

Although the Josephson effects were discovered relg-current source. Therefore the descending part of the -V characteristic
cannot be recorded directly but is manifested as hysteresis on recording in

tlv_eI_y Iong_ ago, research and develqpment work on them iS q torward and reverse directions.
still intensively pursued. A whole region of low-temperature ¥The materials of the Colgate Conference on Superconductivity, published
electronics involves the application of so-called SQUIDs— in the January 1964 issue Beviews of Modern Physidsecame known to
superconducting quantum interference devices, which are® author only in the Fall of that year.
based on the very high sensitivity of the Josephson current to———
a static magnetic field. SQUIDs are used as sensors having a
record sensitivity to the strength and gradient of an applied,B- D- Josephson, Phys. Lett, 251 (1962.
tic field and f lifvi d . I 2P, W. Anderson, Phys. Tod&8(11), 23 (1970.
magnetic field and for amp ifying and measuring small cur- ;" g, een, Phys. Rev. Le(4), 147 (1962.
rents and voltages. They find application in geological pros-*p. w. Anderson and J. M. Rowell, Phys. Rev. Ldf, 230 (1963.
pecting for mineral resources and in medical diagnostics,’J- M. Rowell, Phys. Rev. LettL1, 200 (1963.

; ; 6S. Shapiro, Phys. Rev. Lettl, 80 (1963.
where they are a basic element of devices such as the ma M. D. Fiske, Rev. Mod, Phys36, 221(1964.

netocardiograph and magnetoencephalograph, and in othep \y anderson and A. H. Dayem, Phys. Rev. L&8, 195 (1964).
areas. %|. Giaever, Phys. Rev. Let§, 148(1960.

Josephson tunnel junctions as nonlinear elements can B&. O. Kulik and 1. K. Yanson,Josephson Effect in Superconducting Tunnel
used for the mixing of signals, frequency conversion, har- Egﬂﬁg’"&so'sscrﬁilzgogram for Scientific Translations, Jerusalésir2,
monic generation, and detection of electromagnetic radiation « yanson, V. M. Svistunov, and I. M. Dmitrenko, Zhk&p. Teor. Fiz.

at frequencies up to the threshold frequency corresponding to47, 2091 (1964 [Sov. Phys. JETRO, 1404(1965].
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48, 976(1965 [Sov. Phys. JETR1, 650 (1965]. York (1965, Part A, p. 415.

3D, N. Langenberg, D. J. Scalapino, B. N. Taylor, and R. E. Eck, Phys.'’D. D. Coon and M. D. Fiske, Phys. Rel38 744 (1965.
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In the study of the phenomena of superconductivity thereors were most promising in such a connection, and first at-
have been turning points that have opened up new fields aémpt to use them was to create a detector of electromagnetic
research. For example, such a role was played by Shubnikadiation based on a tunnel junction.
ov's discove_ry of the ideal diamagnetism pf superconductors,  The first junctions were obtained in a temporary building
an effect which was later named after Meissner, who, followa homb shelter under a residepée conditions unsuitable
ing a visit to Kharkov, published his results somewhat earliefgr such studies. In 1964, now in the new building of the
than Shubnikov. o _ institute, |. K. Yanson obtained junctions of better quality on

The concept of superconductivity, which was developedin, fiims and soon saw current at zero voltatie dc Joseph-
phenomenologically by Fritz Londlon in the years bet_weenSon effect® It should be mentioned that in that paper re-
1934 and 1951‘0 hasl\/? 'result Oiff his attem?tf todexplalnlt.h orted the first observation of subharmonics of the gap on
stratngeness of the Meissner effect, was of fundamental imy, current—voltagél—V) characteristics of a Sn—SpOSn
portance. . junction. Good agreement with the theory was obtained for

The well-known quantum expression for the current, .

. . : ; . the dependence of the critical currentbandH. At the end
written with the aid of the wave functions of the carriers, can . : . o
of that year, with the aid of the most sensitive receiver in the
be reduced to the form )
3-cm range then availabléhe P5-10 and a good under-
standing of the physics of the processes occurring in a tunnel

jsz%(ﬁvqp_ EA) junction, he successfully observed the radiatiokV (
m c ~10"* W) generated in the ac Josephson effect in a direct
experimentt

on the assumption that the square modulus of the wave func- A number of studies were subsequently done to study
tion of the “superfluid” electron is equal to the densityof  thjs radiatior? I. O. Kulik developed an electrodynamics of
such electrons. The supercurrgtcontains two terms: a the Josephson tunnel junctiBmnd our experimental results
paramagnetic part due to the gradients of the plasd @ yere successfully interpreted in the framework of that
diamagnetic part due to the vector potental theory.

A chief element of London’s concept was the postulate  \y\e a1so studied the processes of aging of tunnel
of phase coherence of the wave functions of the SUPercony,tions’ which are accompanied by growth of the critical

ducting electrons over macro;copic lengths and times. Ip thiéyrrent and a lowering of the normal resistance. Although a
case the phase gradient vanished, and the direct coupling lnnel junction is the limit of weak coupling of supercon-

the current and vector potential remained. Taking the curl Oductors, with the growth of the critical currefdoupling en-

both sides of the equation gave the second London equationr y) we were able to observe in th rum of current
which describes the Meissner effect. €19 € were able 1o observe € spectrum of curre

London's concept implied a result no less strange thar?tEps on the 1-V characteristic the subharmonic steps that are

the Meissner effect—quantization of the magnetic flux incharacteristic of the limit of strong coupling of supercon-

superconductoréF. London, Superfluids(1950). But only ductors, gs studies qf clamped point contacts would show.
after 11 years did “the ice start to move:” as we know, flux ~ 'he first weak link between superconductors that we
quantization was observed simultaneously in Europe angtudied was a tunnel junction. But such a link can also be
Americal The year before, Ivar Giaever had realized theCreated in contacts with direct conduction—point contacts,
tunnel effect in superconductors. A year later, Brian Josephthrough a normal metal layer, etc.
son, a postgraduate student doing a theoretical study of the Subsequent studies were done for delicate point contacts
tunneling effect, predicted his famous Josephson effects. 0f the tip—plane type. Stable results in the presence of vibra-
In 1960 the Institute for Low Temperature Physics andtions were obtained after a special mechanism was con-
Engineering of the National Academy of Sciences of Ukrainestructed (Fig. 1).2 The mechanism permitted placement of
(ILTPE), with a Department of Cryogenic Electronics, was the tips in the waveguide with an accuracy of 200-300 A.
founded in Kharkov. It soon became clear that superconducfFhis made it possible to made very smooth variationRpf

1063-777X/2004/30(7-8)/6/$26.00 522 © 2004 American Institute of Physics
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FIG. 1. Mechanisms for creating point conta2tm a resonatof (a) and in
a waveguidel (b); 3—elastic elementéflat spring and brackgt5,6 (a) and
4,5 (b)—differential threads with a pitch difference of 0.05 mm. The gear set
11 and clutch10 are used to rotate the center pldt2 to obtain a new

contact.

the critical current, and, as it turned out, the coupling energy
of the superconductors through the contact.

The earliest manifestations of the Josephson effect were
observed on high-resistance contacts. Fluctuations first dis-
rupt the current at zero voltage. The ac effect is more stable
against fluctuations; it was first manifested in oscillations of
the slope of the |-V characteristic, and at a fixed current it
leads to the characteristic oscillatiofiEg. 2).°

As the critical current increases, the spectral properties
of the contactgthe spectrum of the steps on the |-V char-
acteristic and the dependence of their height on the micro-

4
i © Ry=0.08Q
p T=2.4K
500 + M
":|| ..... a--N=0
400 - -} —o—n=1
<:_ 'Al —-——a=-n=2
: [
— 300} [
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/ t
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/ ., b
0 th 1 %
5.107 5.10°° 5.107° 5.107*
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wave radiation change substantiall.
The Josephson relation

j(e,t)=josine(t),

FIG. 3. Dependence of the zero current and step heights on the level of
microwave powerP delivered to superconducting point contacts: a high-
resistance Ta—Ta conta@); a contact between the same pair, enlarged by
movement of the tip, the resistance decreasing to Q.0®). The contact

pair was placed in a standard 3-cm waveguide at a distance of a quarter

wherej, is the maximum value of the dc Josephson currentvavelength from the short-circuiting plunger.

and ¢ is the phase difference, is well known. jl{¢) has
such a dependence agdt) is a linear function, then every-

thing is simple and beautiful: the spectrum of the steps idield varies as the modulus of the Bessel function of the
harmonic, and their height as a function of the microwavecorresponding order. But if the dependerj¢e,t) differs

I =50 pA
20} oz
_15¢ ---- T=3.98K
= —— T=3.96K
=10
s[1 ASSNV =19,
I‘/ !
1 1 1 1 1 1
30 25 20 15 10 5

from sinusoidal, then one must use the more general
expressiotf—1?

j(w,t>=n§1 jnsinne(t). )

Even for a tunnel junction, as the transparency of the
barrier increases the dependenrdg) deviates from lineal®
andj(¢) is not described by Ed1).1* Research on the spec-
tral properties of point contacts have led to the conclusion
that value of the coupling energy is the K&yA nonsinusoi-
dal dependencyH ¢) leads to the appearance of subharmonic
steps, and a characteristic alternation of extrema of the
Bessel function gives way in the strong-coupling limit to a

FIG. 2. Oscillations of the voltage across a superconducting point contac?mgle r_naxmurr(ﬁg. 3. By fitting Besse_l functions one can
(data of a previous figuyefor two fixed values of the current and with a aPPproximate the dependence of the height of the step on the

change of the incident power.

value of the microwave fieléFig. 4), having determined the
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FIG. 4. Experimental and calculated curves of the height of the first currenfIG. 5. |I—current—voltage characteristic of a Nb—Sn contact VR
step versus the amplitude of the microwave field for a low-resistance Ta—Ta- 0.10Q and a system of harmonic characteristic steps. The contact is mul-
point contact. Approximation of the sum by eight Bessel functions. tiply connected, and therefore the I-V characteristics®or nd, and ®
=(n+1/2)d, are substantially different. Il—I-V characteristic of a Nb—Sn

contact withRy=0.01Q with subharmonic characteristic steps.

degree of deviation of the dependerj¢e) from a sine and

the effective number of elements of the seri2s . us and studied in a crossed film geomeFg. 6).%2 A the-

The inverse Josephson effect was studied on point coryetical model for such control was developed in Ref. 23.
tacts in Ref. 16; previously it had bee.n observed only ongjmilar geometries have subsequently been investigated ef-
tunnel junctiongthe appearance of continuous and quantunyectively in systems of multiterminal interferometéfs.
dc voltages under the action of microwave radiation in the Interesting weak links arise at phase-slip cent®3C3
absence of a transport currgnt _ and the recently discovered and investigated phase-slip lines

~ Besides individual point contacts, we realized one-pg| 925 ps|s arise in narrow superconducting channels,
dimensional thams of point contacts between grains of nioghere the current and order parameter are uniform over the
bium pqwde} and investigated interference effects in the orq55 section, the magnetic field can be neglected, and Abri-
joint action of microwave and magnetic fields on statisticalyngy vortices do not form. The current—voltage character-
systems of point contacts. istics have the characteristic stepped form due to voltage

On point contacts of th&-N-S type we observed a gieps. Such structures of the -V characteristic have also
new type of detection of microwave radiation in the absencgeen opserved for wide films, where it is usually assumed
of transport current through the contact, controlled by anat the resistive state is due to a dynamic mixed £@k4S)
external magnetic field. The methods developed for making i which a flow of the vortices from the external field or the

contacts of the point type made it possible to study the fie|q of the current occurs at a current exceeding the vortex
characteristic steps on the -V characteristics of contacts IBinning strength.

various strip resonators.

If more than one microcontact is placed in a strip sys-
tem, it becomes possible to control the microwave generation
by means of small magnetic fields. This opens up interesting
possibilities in microwave and measurement technique.

It should be noted that a coherent lattice of contacts will
generate the same frequency for any contact resistagce
since the “banks” are superconducting and the potential dif-
ference across all contacts is the same. And changing the flux
by half a quantum rotates the phase of the microwave oscil-
lations of adjacent contacts by, i.e., it quenches the gen-
eration at the output.

Figure 5 is shown as an example. In contrast to the steps
induced by an external microwave source, the position of the
characteristic steps along theaxis changes with tempera-

ture as a result of the Change In penetration depth and elgeEI-G. 6. Photograph of a cross-shaped thin-film structure. Magnification

frequencies of the strip resonator. 1200x . Variants of the weak coupling in the cross-shaped samipie the
Current-controlled Josephson contacts were proposed hyansport currenti is the control current




Low Temp. Phys. 30 (7-8), July—August 2004 I. M. Dmitrenko 525

1
a
a
600 "
400
<
=,
~ 200
3
' b
—
Ic /
H

FIG. 7. 1.(H,) curves for two tin film samplesv=3 um (®) and 5.4um

(O) (a); schematic superpositoin of the initial parts of the |-V characteris-
tics for H<H’ andH>H' with the dependence for films of width<<\ ,
andw>\, (b).26%7

A fundamentally important result was obtained in studies
of the dependence of the critical current of wide films on the
value of a magnetic field perpendicular to the filRig. 7).%°
Besides the oscillations of the critical current itself at
H>H', at H<H' the |-V characteristics have the same

, 4
stepped character as a narrow channel, but, important, in the Ly '

region of fieldsH>H" where the vortices remain in place in ,-'//121;:,;/ ’ o 40V
the film, the I-V characteristic initially has the smooth, non- ,’,Z e a
linear form characteristic for a DMS, but then a new mecha- N O

nism of resistivity, due to the formation not of PSCs but now

(for the wide film of PSLs, is turned on. This reflects, on the

one hand, a more general case of resistivity of superconduct- v

ing films (coexistence of two different mechanisms of resis-pig, g. Images of the voltage response of a uniform tin film as the transport

tivity of the films) and, on the other, confirms the existencecurrent through the film is increasesv&),). The dark regions are the

of PSLs. locations of phase slip lines along the length of the film. The current in-
Interesting results on the dynamics of vortex motion inglrriasssﬁié‘l’(fig N (‘2 S(a)'esréirr’]%e(iﬂs;r“i‘;;i;f the 1=V characteristic of tin

zones of charge imbalandthe neighborhoods of PSLs and yasup uetng

the SN boundary have been obtained on wide filfisLater

A. G. Sivakov implemented a two-contact interferometer

based on PSLZ resistive regime at currents larger than the critical. This, as
PSLs were first observed visually with a low- has become clear, does not affect the fluxoid quantization or
temperature laser microscope at ILTHEg. 8). the interferencé®

Research on quantum interference, which was started by The rectifying properties of asymmetric interferometers
S. 1. Bondarenko, continued first on two-contact dc SQUIDswere discovered independently of the work of Ouboter at
(more precisely, interferometers, since the SQUID is a devic¢he Leiden laborator$? An important role in interferometers
with electronics, a magnetic antenna, etd.ater V. |. is played by circulating fluxoidal current, equal to zero for
Shnyrkov began his studies of single-contact rf SQUIDs nteger numbers of quanta of the external magnetic field and
which have proved to be fruitful and novel among the manyreaching a maximuni,, at half-integer flux quant& .= (n
papers on these superconducting devices. +1/2)Dg; i y=P/2L, whereL is the magnetic inductance

Two-contact interferometers have been studied in a newf the circuit.
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0.3
librium transport current. It follows from experiments that
the modulation deptiAl .(P,) is equal to 2,,. This is pos-
sible if the critical current of the contact decreases indepen-
0 T . . . )
30 32 34 36 38 dently of the direction of the circulating current in relation to

T, K that of the transport current. In Ref. 29 this was interpreted in
terms of a kinetic depairing and on the assumption of the

FIG. 9. Schematic illustration of the relationship between the critical currentexistence of independent fluxes in the electron condensate.
I, and the ma_ximum circula_ting current with chang_ing_temp_erature o_f_the These arguments can be valid only for the case when the
superconducting quantum interferometer. The regidnin which the criti- . . .
cal current is not observed because of the effect of fluctuations is skaded transport current interacts with a stable fluxoid current,
The Al (T) curves. Curved and2 are recorded for different inductances of Which cannot vary so long as fluxoid quantization holds.
the quantizing circuitb). If i,(P) becomes greater thdp, then in the interval
of fluxes®, near half-integer values of the quantum the flux
d=d,, the circulating current is equal to zero, and mag-
netic quantization gives way to kinetic quantizatiory (
>1). The role of the kinetic inductance in fluxoid quantiza-
tion was demonstrated back in 1964 in an experiment by
T. K. Hunt and J. E. Mercereall. Theoretically the 1-V

When the kinetic inductance,,=mc(t/a)/[e’n(T)]
is taken into account, whetes the length andr is the cross
section of the weak link, the conditions of fluxoid quantiza-
tion in the linear approximation has the form

yLipg+®Pe+Li=ndg, curves of superconducting interferometers were calculated in
Ref. 32.
where y=L,,/L and iy(T)=®o[1+ y(T)] Y/2L. With Many new results have been obtained on single-contact
growth of y the magnetic quantization becomes degeneratef interferometers>-3For example, V. I. Shnyrkov has stud-
(see p. 178 of Ref. 21 ied the classical and then the quantum dynamics of rf

The properties of an interferometer depend substantiallBQUIDs, made a detailed study of the nonhysteretic regime,
on the ratio of the critical current, to im(T)och‘z(T)oc(l observed and studied, at temperatures around 1 K, the “real
—t%), wheret is the reduced temperature. Néy this de-  quantum” phenomena of macroscopic tunneling and macro-
pendence is much steeper tHa(iT)<AT or AT?3, Whatwe  scopic quantum interference of the quantum states of a
have said is illustrated in Figure 9p. 199 of Ref. 2L For  SQUID which are degenerate in energy but lie on opposite
T>T* the critical current of the interferometer is nonzero onbranches of theéJ(®) parabola(Fig. 10, studied quantum
part of the oscillation period, and the amplitudé. of the  noise, and observed for the first time on a SQUID the regime
oscillations of the critical current increases laéT). At T  of stochastic oscillations—chaos.
=T* the I(T) curve bends over and goes practically to It should be mentioned in closing that the normal resis-
saturation(Fig. 9b. For T<T* the critical currentl ,(®) tance that determines the dissipation and damping and which
does not reach zero at ady,. Such behavior has been in- is due to the presence of “normal electrons” increases expo-
sufficiently studied, as has the question of the superpositionentially with decreasingd in point contactgcontacts with
of the circulating current, equilibrium current, and nonequi-direct conductioh just as in tunnel junctions.
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We briefly review aspects of superconductive persistent currents in Josephson junctions of the
S/I/S, S/OIS and S/N/S types, focusing on the origin of jumps in the current versus phase
dependences, and discuss in more detail the persistent and the “spontaneous” currents in
Aharonov—Bohm mesoscopic and nanoscdpiacromolecularstructures. A fixed-
number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable
against structural transformation removing spatial symmgiryarticular, azimuthal periodicijy

of its electron—lattice Hamiltonian. In the case when the transformation is blocked by

strong coupling to an external azimuthally symmetric environment, the system becomes bistable
in its electronic configuration at a certain number of electrons. Under such a condition, the
persistent current has a nonzero value even dabmos} zero applied Aharonov—Bohm flux and
results in very high magnetic susceptibildyi/dH at small nonzero fields, followed by an

oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory
magnetization in cyclic metallo-organic molecules by Gattestlail. can be attributed to

persistent currents. If this proves correct, it may present an opportunitarid; more generally,
macromolecular cyclic structures may suggest the possibilitgiogineering quantum

computational tools based on the Aharonov—Bohm effect in ballistic nanostructures and
macromolecular cyclic aggregates. ZD04 American Institute of Physics.

[DOI: 10.1063/1.1789111

1. SUPERCONDUCTIVE WEAK LINKS Superconductive junction theory considers contact types
_ o S/I/S (tunnel junctiony’ orifice-type contacts S/Of5and
Current can flow in a dissipationless manner under thgne s perconductor—normal metal—superconductor contacts
control of an external parameter, the Josephson phase acragf\;s9-11The s/0/S and S/IN/S contacts can include barriers
a superconductive weak lifk (Fig. 19 or a phase difference 4 he interface between superconducting electrodes or inside
along a mesoscopic normal-metallic Igop (Fig. 10. I the normal metal, respectively. The zero-temperature feature
both cases, the phase is related to the magnetic flux piercing i, current—phase relation on which we will focus our
the loop. The flux can be considered as one created by a thiantion is the existence of jumps at certain values,dh
infinitely long solenoid producing no magnetic field OUtSideparticular atp=1 or ¢=0. In the latter caséwhich is in
its interior (and therefore in a logpout nevertheless affect- effect a property of the Aharonov—Bohm weakly coupled
ing the quantum _states of electrons in the qup. This nonloc%Op considered in the next Sectioithe current assumes a
effect of magnetic flux on quantum states is known as the,onzerg value at zero flux. Jumpslfy) in superconductive
Aharonov—Bohm effect.The phase shifiy due to magnetic  ¢ontacts are eliminated by the adjustment of the electronic

flux ®=$A-dl is equal to system to the appropriate value of the gap paramg(e).
In the Aharonov—Bohm loop the adjustment will be achieved
B o by the rearrangement of atoms in the Idtipe Peierls or the
@—2#(}70, @D Jahn—Teller effects, or more complex lattice transformation

The Ambegaokar—Baratoff and Kulik—Omelyanchouk
where ®y,=hc/e* is the flux quantum. In the Josephson theories resulted in an interpolated current—phase relation
junction, ¢ is the phase of the pair wave function, and theSuggested by Amold (see also the reviet)
effective chargee* equals twice the charge of the electron,
e*=2e. In case of a normal-metal ringg* is a single-

electron chargee. )= mho ,
The current in a loop can be calculated as the derivative 2eRy \r2+t%cod(pl2)
of the energy of the junction with respect ¢

sing

()

. whereR; is the resistance of the junction in the normal state
e* JE andr? andt? are the reflection and transmission probabilities

=5 Jp’ @ (with r2+t2=1) in the normal state\, is the order param-

1063-777X/2004/30(7-8)/7/$26.00 528 © 2004 American Institute of Physics



Low Temp. Phys. 30 (7-8), July—August 2004

S

Do X

7)) o

a b

FIG. 1. Superconducting loop with a weak contémbssed (a). Normal-
metal mesoscopic loop carrying currehtb).

eter of the superconduct@he BCS energy gap dt=0). At
t<1, formula(3) reduces to the Ambegaokar—Baratoff rela-
tion
3 _ ’TFAO
AB™ ZeRO
whereas atr=0 (no barriey
Omelyanchouk formula

(4)

sing
it gives the Kulik—
’7TAO

eRy

corresponding to twice as large a critical current at the sam

Jko= sin(@l2), —w<e<m (5)
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FIG. 3. Energy of the S/N/S contact versus phasg=a0 (1). Supercurrent

versus phas€). TheJ(¢) curve is shifted upward arbitrarily for clarity.
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(@’vm%
and is presented in Fig. 3 together with tB€¢¢) depen-

dence.
e

®

—m<e<T

value of the contact resistence. The energy versus phase r£-pepsiSTENT CURRENTS IN MESOSCOPIC SYSTEMS

lation in the S/O/S structure with barriers is given by

JrZ+t2 co?(<p/2)

Ao

n
Esos— 26%Ry 12 (6)

Persistent currentffirst discovered and termed nonde-
caying current have been predicted for mesoscopic con-
ducting loops~° which do not show the effect of supercon-

and is presented in Fig. 2. The SIN/S junction is representefltCtivity. The current appears in the presence of magnetic

by theE(¢) dependence a=0

ﬁUF

emod2mr
Esns™ —gq M. 1| ——

2

2
(= o
where vg is the Fermi velocity of the metal andl,

=Sk$/47r is the number of perpendicular conducting chan-

v

nels in the normal bridge between superconductors of Iengtﬁ

d and cross sectios. From the above expression, the cur-
rent in the S/N/S structure d=0 becomes

E(J), arb. units

I

2
o/m

FIG. 2. Energy of the S/O/S contact versus phasg=af (1). Supercurrent
versus phas€). The solid curves correspond te=0, the dotted curves to
r=0.2. TheJ(¢) curves are shifted upward arbitrarily for clarity.

field as a result of the Aharonov—Bohm effées discussed

in a review papet? persistent currents are similar to the
orbital currents in normal metals first considered by Téfler
in his interpretation of Landau diamagnetism in metélsyt
specific to the doubly connected geometry of the conductors
(loops, hollow cylinders, etg. Observations of persistent
urrents have been made in indirédf as well as in
irect®2! experiments, showing single-flux-quantush,
=hc/e periodicity in the resistance of thin Nb wirésand
networks of isolated Cu ring$,and in single-loop experi-
ments on metal¥’ semiconductor®’ and macromolecular
metallo-organic compound$. Contrary to the authors of
Ref. 21(an interpretation of magnetic oscillatidrbased on
antiferromagnetic ordering of Fe ions in a “ferric wheel”
[Fe(OMe)(O,CCH,CI)]49), we propose that the T6
periodic magnetization in this compound is due to
Aharonov—Bohm persistent current flowing in the outer ring
of O atoms while the inner ring of Fe atoms serves as a
concentrator of magnetic field to the center of the ring. In
Ref. 22 the g-periodic variation of resistivity in molecular
conducting cylindergcarbon nanotubgswas attributed to
the Altshuler—Aronov—Spivak effeét, a companion effect
to the classical Aharonov—Bohm mechanism but with a
twice smaller periodicity in magnetic fluX® =hc/2e.

Aspects of the Aharonov—Bohm persistent currents in
complex and correlated systems have been considered in
various papers, in particular by studying the strong
coupling*~2% and localizatioA”?® effects, thermodynamic—
statistical propertie$’~3! polaron effects?*3 effects of
strong magnetic fieff3> and spin—orbit interactiotf:>’
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Peierls transitior®~*°Wigner crystallizatiof* and Coulomb
blockade?? persistent current oscillation in hollow cylinders
with toroidal geometry® nonequilibrium and time-
dependent effecté %8 weak links in the loofd? as well as
the nontraditional phase effectgeometrical and Berry's
phase, instantons, e > summarized in recent
reviews***=>"Further trends in the macromolecular persis-
tent and spontaneous curref€® include quantum
computation&f' prospects of using Aharonov—Bohm loops
as quantum bits(qubity with the advantages of easier
(radiation-fre¢ manipulation of qubit states and increased
decoherence times as compared to macroscopic “Schro
dinger cat” structuregJosephson junctionsThe smallest
(three-sitg persistent current ring displays &shaped en-
ergy configuratior® with two degenerate ground states at
external flux®,=hc/2e. The spontaneous persistent currentrIG. 4. Persistent current versus number of electrons in a ring with a ratio of
loop will achieve the degenerate state at zero field or, if thesross-sectional dimensionsL;:L,=10:1:1 (spinfull configuratiop. The

degeneracy is lifted by the electron—phonon coupling, at pper curve is the maximum current in unitsJg==evg /L at givenN, the
reagsonablyylow field y P ping %otted curve is the amplitude of the first harmonidgf{®), and the curve

; . . at negative] is the spontaneous persistent current as defined below, also in
Persistent current is a voltage-free nondecaying curreninits of J,. The dashed curve is the square root of the number of perpen-
which exists as a manifestation of the fact that the groundicular channel$N, plotted againsN.

state of a doubly connected conductor in a magnetic field is
a current-carrying one. This statement has been proved fqr . . .
ying P %xed-number-of—partlcles ring with an odd number of elec-

ballistic loop$ and for diffusive rings. There is no funda- rons displavs a number of structural instabilities: the Peierls
mental difference between these two extremes. CounterintQFansfolrn?ati); 7 anu d the JahnETgller Ieff éétla:rle t'he bestl—
itively, ballistic structure does not show infinite conductivity,

as has sometimes been naively supposed; the dc resistancelr(ggrvr\’;nez;rgmevsvhzzdﬂ:g@?gjrrlzlIgt;?grerg\?gpéeeméz;';te in a
the loop is infinite rather than zero when a dc electric field is 9 . ey P 9
ymmetric configuration.

applied to the system. In the case when a current is fed . .
through the structure, no voltage appears provided that the In Fig. 4 we show the dependence of the maximal per-

magnitude of the current is smaller than a certain criticals'snz"gt cufrrelnt, as V\./e" as theh_sphontaneou§ Icudrrent, fqn_ the
value. This applies to both elastic and inelastic Scattering:::;l;mtherh;|§V(\E/Cgo|?ns dlenrav;{]hg \rlc\;clt;nwuall;rm:rozse szstinlmte_
The magnitude of the critical current of the ballistic ring ><Lg ow ¢y fini b fg dicul | T
smoothly matches the current of the diffusive ring when the”, ~2 containing a énlteznum er ol perpendicuiar electron
mean free path becomes large. In the dirty limit,<L,  C'annelsN, =L,LoKg/27". Note that the magnitude of the
wherelL is the ring circumference, the critical value of the current in a pa|||st|c fing 1s nQEUF/L’ as Is sometimes
supercurrent decreases proportionally [th according to suggestedy(r is the Fle/ezrml velocity, but rather approaches a
Ref. 62, or to [/L)Y? according to a numerical simulatidf. value Jma~(ev/L)N, " (see Ref. 4 The dependence

The nondecaying current does not even require severe ré]f“aX(N) a_\t_T=0 s irregular dL_Je to the addition .Of negative
striction on the so-called “phase breaking” electron meanand positive currents from different electron eigenstates in

free path. In fact, the normal-metal supercurrent is an analo&?ng't_Udlnal and transvers_e ch_a_nnels. . . .

of the “incoherent” Josephson effef®4in which the phase Figure 5 shows the bistability effect in a ring. While at
of the superconductor is considered as a classical variable.
Stronger criterigthat the dephasing length is larger than the 0.05
system size, and the analogous requirement in the time do-

main, that the “decoherence time” is larger than the charac-

teristic time of observationapply to persistent current rings W
as quantum computational tools mentioned above, which are
the analogs of the macroscopic quantum tunnéifmg’

N

3. SPONTANEOUS PERSISTENT CURRENTS

E, arb. units

Persistent current appears in a ballistic ring due to the
Aharonov—Bohm field. The current, however, can also origi-
nate when the external field is zero—the “spontaneous” cur-
rent. This situation has been noticed accidentally by various 0 o~
authors, in particular, in Refs. 68—70, but it has not seemed -0.5 0 0.5
convincing due to the fixed-chemical-potential configuration, @/®@g
and it has been attributed to the effect of Peierls instability Ir}:IG. 5. Bistable configuration in a ring: Energy versus flux in a ring of 10

. 0 e 8 ® . .
Fhe erA (criticized in Refs- 71 and _72 n regard to the electrong(1) and 11 electron). The second curve is shifted downward for
inaccuracy of the mean field approximatjorn fact, the  conveniencebut not rescaled
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an even number of electrons the electronic energy has externally applied fields. We will investigate this possibility
minimum atd =0, it acquires a maximum when the number in the tight binding approximatioff,”8in which electrons are
of electrons is odd(The inductive energy, to be included bound to certain atomic locatiorffap9 and make the loop
below, will shift the position of the minima in cunzof Fig. conducting by resonant tunneling between these locations.
5 to the origin, so that a degenerate state will appear in the In the tight binding approximation, Hamiltonian of the
near vicinity of®=0.) loop in the second-quantized form reads
The spontaneous current has the same order of magni- N N
tude as the maximal persistent current and represents an in- i
separable part of the Aharonov—Bohm effect. The structural B E y "’a’+1"’e i+he)+ Uigl MirMiy
transformation is investigated below in an exact way by con-
sidering the ring dynamics in the tight binding approxima-
tion. The “lattice” (the atomic configuration of the loppan
respond to the degenerate ground state by making an atomic
readjustment similar to the Peierls transitigioubling of the ~ WNeret; is the hopping amplitude between two near configu-
lattice period in a one-dimensional atomic chain; see, e. gra'uonal sitesj andj +1,
Refs. 75 and 76 or a more complex atomic rearrangement.
In fact, such a possibility clearly shows up in the case of

N
1
NigNiy10r T §K]§=:1 (6= 6,112

N
+Vv D

i=10,0'

(14)

ti=to+g(0;— 0j+1), Niy=a,ai,, (19

a 1D loop with the discrete quantum statgsis the azi-
muthal angle

1 .
:p,sﬁexp(m 6) ©)
corresponding to energies
2
SHZW(n—f)Z, (10

wheren=0,=1,+2,... andf=®/d, is the magnetic flux
threading the loop in units of the flux quantudb,=4
X107 G-cn.

As an example, the loop with 3 electrons has energy
2

E(f)=gq f?+ (+1 )2 2(f) (1)

corresponding to two spin-1/2 states with-0 and one state
with n=1 orn=—1. The last term in Eq(11) is the mag-
netic inductive energy and is the inductancéof the order
of the ring circumference, in the units adoptetihe current
J=—(e/h)gE/of is equal to

J(f)=Jo(=1-3|f]), Jo=egy/h

and is nonzero aft=0 in either of the states. The ratio of
magnetic energy to kinetic energy is of order

[,Jg e2 dp
N= 52, = ~10"°—,
2c%e, 4mmcR R

12

(13

wherea, is the Bohr radius. This is a very small quantity,
and therefore the magnetic energy is unimportant in the en-

ergy balance of the loop. The flux in the loop equéls
=foqt27mjs, Where fo is an external flux andj¢

and «; is the Aharonov—-Bohm phaga Peierls substitution
for the phase of hopping amplitude

27f
aj:W+(01_0j+1)f. (16)
ajf, is the creatior(anda,,, the annihilation operator of an
electron at sitg with spina, 6;, j=1,2,..,N are the angles
of distortion of site locations from their equilibrium positions
¢)=2mj/N and satisfy the requiremeB_, §;=0, andg is
the electron—phonon coupling constant. The interadtid
reflects the fact that the hopping amplitude depends on the
distance between the localization positions and assumes that
the displacemen#; — 6; , ; is small in comparison to 2/N.
U andV are Hubbard parameters of the on-site and intrasite
interactions. The parameters are assumed such that system is
not superconductivée.g.,U>0; and anyway, superconduc-
tivity is not allowed for a 1D system and is ruled out for a
small system The last term in Hamiltonia(l4) is the elas-
tic energy, anK is the stiffness parameter of the lattice.

In the smallest loop, the one with three sitds<3), the
only two free parameters of the lattice displacemeitand
X5, are

01:X1+X2, 62: _X1+X2, 63: _2X2 (17)

which are decomposed to second-quantized Bose operators
b, andb, according to

14 K | 14
Xlz(?) (by+b7), X2:3(3—w) (by+b3).
(18

The system(14) is solved numerically with the ABC
compiler/® which includes the creation—annihilation opera-
tors as its parameter types. These are generated as compiler

=J(f)/Jo. The correction for the externally applied flux is Macros with sparse matrices

essential only af.~ #; otherwise, we can ignore this con-

tribution.

The property of nonzero persistent current thus demon-
strated for the noninteracting electrons survives strong

An=C£]N ®1MN2) fermionic sector

n=1(Nl)®C$]N2> bosonic sector, (19

electron—electron coupling but collapses when the couplingvhere V) is a unit matrix of dimension 2 and C"), n

to the lattice is includedsee below. Nevertheless, whenthe =1 .

N are Fermi/Bose operators in a space of the same

loop is on a rigid backgroun@say, a cyclic molecule on a dimension,

substrate of a much more rigidly bound sglile degeneracy

may not be lifted, or may remain in a very narrow interval of

N)_

(ue)N Na(ev)" 1, (20)
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FIG. 6. Current versus magnetic flux in the 3-site loop with 3 noninteracting . .
electrong(1). Energy versus flux for thei=3, n=3 loop at the value of the FIG. 7. Spontaneous persistent current versus fluxfer—1 and various

hopping parametetp= — 1 (2). The energy is rescaled and arbitrarily shifted Values of the Hubbard parametdr0 (1); =2 (2); 2(3); =5 (4);5(5); ~10
upward for clarity. (6); 10 (7).

tion periodA® =®. Note that the persistent current peak is
reduced in amplitude only slightly nea =0. As is seen
from Fig. 9, the electron—phonon interaction splits the sin-
1 0 1 0 gularity at® =0 into two singularities ath = = ®,,. Out-
: u=(0 1), 2(0 ) (21)  side the interval— @< ® <D, the structural transfor-
mation is blocked by the Aharonov—Bohm flux. The range of
and 5 is a parameter magnetic fluxes between @, and dng determines the
domain of the developing lattice transformation, which
. (22 manifests itself in nonzero values of the lattice deformations
1 bosonic sector. X1, X,. The latter property allows us to suggest that the

Bosons are considered as “hard-core bosons,” such thatPontaneous persistent current statpeak of dissipationless
there are only two discrete states for each mode of displac&harge transport at, or near, zero fluemains for nonzero
ment. We calculate the ground state of Hami]torﬂm as a flux when the electron—phonon Coupling is not too strong or
function of magnetic flux (a classical variableIn applica- ~ When the lattice stiffness is larger than certain critical value.
tion to real atomic(macromolecularsystems, we can con-

sider X; and X, as classical variables, since the quantum4. CONCLUSION

uncertainties in the coordinatesAX; ,~(2/M w)¥?) are
typically much smaller than the interatomic distanchk i6
the mass of an atom and~10s™! is the characteristic
vibration frequency. The energy of the loop is calculated as
function of X, X, and further is minimized with respect to
X1, X, for each value off. The nonzero values of;, X,
will signify the “lattice” (the ionic core of the macromol- -3
ecule instability against the structural transformation which

is analogous to the Peierls transition.

For the 3-site loop, th&(f) dependence is shown in
Fig. 6 together with the dependence of the current ohe
latter shows a discontinuity &t=0 of the same order of
magnitude as the standard value of the persistent current. The
current atf =0 is paramagnetic, since the energy versus flux
has a maximum rather than a minimumfat0. On-site in-
teraction reduces the amplitude of the persistent current near
zero flux (Fig. 7) but doesn’t remove its discontinuity &t
=0. Therefore, the strongest opponent of the Aharonov— I
Bohm effect, the electron—electron interaction, leaves it _35

a, u, andv are the 22 matrices(® is the symbol of the
Kronecker matrix produgt

00
a=l1 o

[—1 fermionic sector
=

We have considered the Aharonov—Bohm effect in an
angular-periodic macromolecular loop like, e.g., an aromatic
cyclic molecule, and found that the Aharonov—Bohm flux
applied to the loop arrests the lattice instabilftgarrange-

I
w
o

E, arb. units
&
w

|
«
»

L n Il

qualitatively unchanged. 05 -03 -01 0.1 03 05
On the other hand, the electron—phonon interaction flat- /Do
tens theE(f ) dependence near the peak value; see Fig. 8.

large stiffnesng this flattening remains important only f(?r the lattice with the value of the coupling parameger1 and various values
small magnetic fluxes, much smaller than the flux quantizaef the stiffness parametés:2 (1); 3 (2); 5 (3); 10 (4); 20 (5).

A\EIG. 8. Energy versus flux in a loop of noninteracting electrons coupled to
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The modern physics of superconductivity can be called the physics of unconventional
superconductivity. The discovery of tllewave symmetry of the order parameter in high-
temperature superconductors and the triplet superconductivity in composiRdG3rhas caused

a huge stream of theoretical and experimental investigations of unconventional
superconductors. In this review we discuss some novel aspects of the Josephson effect which are
related to the symmetry of the order parameter. The most intriguing of them is spontaneous
current generation in an unconventional weak link. The example of a Josephson junction in the
form of a grain boundary between two disorientatedave orf-wave superconductors is

considered in detail. Josephson current—phase relations and the phase dependences of the
spontaneous current that flows along the interface are analyzed. The spontaneous current

and spontaneous phase difference are manifestations of the time-reversal syffimétmgaking

states in the system. We analyzed the region of appeararitédmefaking states as function

of temperature and mismatch angle. A review of the basics of superconducting qubits with
emphasis on specific propertiesafvave qubits is given. Recent results in the problem of
decoherence ird-wave qubits, which is the major concern for any qubit realization, are
presented. €2004 American Institute of Physic§DOI: 10.1063/1.178911]2

1. INTRODUCTION sic science and practical applications. Numerous experiments

. - how that high¥, cuprates are singlet superconductors with
The modern physics of superconductivity can be called5 o ghte cup 9 P
nontrivial orbital symmetry of the order paramete@r so-

the physics of unconventional superconductivity. It should be : .
noted that right after the famous papef Bardeen, Cooper, callgrdhd-v\\]/ave sr'][at(;, W;rtg :Ze )(:trrb|:2I Im omre]nitti\(jf F?[a"tiz)a i
and Schriffer (BCS it became clear thatconventional € Josepnson efiecks extremely sensitive 1o the de
s-wave singlet pairing is not the only possibilf, and pendence of the complex order parameter on the momentum

more-complex superconductinguperfluid states may be dlrectlgn on the Ferml surface. Thus the investigation of th|§
realized, with nonzero orbital and spin momenta of the CooE&ffect in unconventional superconductors enables one to dis-

per pairs. Because of the success of the BCS theory in déinguish among different candidates for the symmetry of the
scribing properties of the known metallic superconductors?“perconducmg state. Thls_ has stimulated numerous theoret-
theoretical research on unconventional superconductivityc@ and experimental studies of unconventional Josephson
was of purely academic interest and did not attract muchveak links. One of the possibilities for forming a Josephson
attention. Interest in unconventional pairing symmetry hadunction is to create a point contact between two massive
increased after the discovery of superfluidity 3de, with ~ Superconductors. A microscopic theory of the stationary
triplet spin symmetry and multiple superfluid pha$ésow- Josephson effect in ballistic point contacts between con-
temperature experiments on complex compounds led to théentional superconductors was developed in Ref. 9. Later
discovery of unconventional superconductivity in heavy-this theory was generalized for a pinhole modefiite,****
fermion system§.The heavy-fermion metal UPt like He, ~ for point contacts betweend-wave highT. super-
has a complex superconducting phase diagram, which show®nductors>**and for triplet superconductot3A detailed
the existence of several superconducting phases, while theory of the Josephson properties of grain-boundanave
weak temperature dependence of the paramagnetic susceptinctions was developed in Ref. 16. In those papers it was
bility indicates triplet pairing. Another triplet superconductor shown that the current—phase relations for the Josephson cur-
is the recently discovered compound,RBu0. rent in unconventional weak links are quite different from
The real boom in investigations of unconventional superthose of conventional superconductors. One of the most
conductivity started after the discovery by Bednorz andstriking manifestations of a unconventional order-parameter
Miiller” of high-temperaturéhigh-T.) superconductivity in Ssymmetry is the appearance, together with the Josephson
cuprates, because of its fundamental importance for both baurrent, of a spontaneous current flowing along the contact

1063-777X/2004/30(7-8)/19/$26.00 535 © 2004 American Institute of Physics
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interface. The spontaneous current arises due to the breaking Here theo; are Pauli matricesi&x,y,z); d(k) and o

of the time-reversal symmet(y) in the system. Such a situ- =(4y,0y,5,) are vectors in the spin space. The components
ation takes a place, for example, in a junction between twf the vectord(k) are related with the amplitudegssz(k) of
d-wave superconductors with different crystallographic ori-states with different spin projectiors,=(—1,0,1) on the
entations. Thed-wave order parameter itself doesn't break quantization axis:

the 7 symmetry. But the mixture of two differently oriented

order parameter@roximity effech forms aZ-breaking state 91=—dytidy; go=d;; g-=dxt+idy. ©)

near the interface’ Such spontaneous supercurrgio The functionsy(k) andd(k) are frequently referred to as
(and corresponding spontaneous phase diffejemésts  5n order parameter of the superconductor. For the isotropic
even if the net Josephson current equals zero. The state of the e g(k)=const the paring state is singlet. In a triplet
junction with the spontaneous current is twofold degenerat%uperconductor the order parameti¢k) is a vector(some

and in fact, two valuest jspo, appear. An interesting possi- 4ythors call it the gap vectpin the spin space and in any
bility arises then to use these macroscopic quantum states f@hse it depends on the direction on the Fermi surface. This

the design ofi-wave quantum bit¢qubits. vector defines the axis along which the Cooper pairs have
This review consists of three parts. In Sec. 2 the genergjqrq spin projection.

features of unconventional superconductivity are presented. The angular dependence of the order parameter is de-
The diﬁergnt types of order parameters are de_scribed. Wened by the symmetry groug of the normal state and the
briefly outline the essence Gtsymmetry breaking in uncon- gy mmetry of the electron interaction potential, which can
ventional superconductors and experimental tests for ordefegk the symmetrg. In a model of an isotropic conductor
parameter symmetry. In Sec.(&8nd Appendix I} the theory e quantum states of the electron pair can be described in
of coherent current states in Josephsqn junctions betwe§Rms of an orbital momentuinand itsz projectionm. The
d-wave superconductors and between triplet superconductogf,ngbt (triplet) superconducting state is the state with an
is considered. The current—phase relations for the Josephsgqen(odd) orbital momentum of Cooper pairs. The respec-
and spontaneous currents, as well as the bistable states, & states are labeled by lettess,d, ... (similar to the la-

analyzed. Section 4 is devoted to Josephson phase qubigjing of electron orbital states in atorand are called
based ord-wave superconductors. It contains a review of theg_\yave p-wave,d-wave, ... states. In the general case the

basics of superconducting qubits with emphasis on specifig nerconducting state may be a mixture of states with differ-
properties ofd-wave qubits. Recent results in the problem of gt orbital momenta.
decoherence iml-wave qubits, which is the major concern

4 eV The spherically symmetrical superconducting state,
for any qubit realization, are presented.

which now is frequently called the conventional one, corre-
sponds tes-wave singlet pairing=m=S=0. In this case of
isotropic interaction, the order parameter is a single complex
2. UNCONVENTIONAL SUPERCONDUCTIVITY function g=const. Fortunately, this simple model satisfacto-
rily describes the superconductivity in conventional metals,
where the electron—phonon interactions leads to spin-singlet
pairing with s-wave symmetry. The simplest triplet super-
The classification and description of unconventional su-conducting state is the state withwave pairing and orbital
perconducting states can be found, for example, in thenomentum of a Cooper pal=1. In the case ofp-wave
book'® and review article$?~3In our review we do not aim  pairing different superconducting phases with differemt
to discuss this problem in detail. We present only general1,0,1 are possible. A Cooper pair inpawave supercon-
information on the unconventional superconductors and theiductor has internal structure, becauselfsrl it is intrinsi-

2.1. Order-parameter in unconventional superconductors.
s-wave, d-wave, p-wave ... pairing

most likely model descriptions. cally anisotropic. The next singlet-wave state has the or-
It is well known' that a Cooper pair has zero orbital bital momentum of Cooper paits=2.
momentum, and its spin can be eitt®* 0 (singlet statgor In unconventional superconducting states the Cooper

S=1 (triplet statg. It follows from the Pauli exclusion prin- pairs may have a nonzero expectation value of the orhbital
ciple that the matrix order parameter of the superconductopr (and spin S momentum of a pair. States witB+0 (S
A,p(K) (a,B are spin indicgschanges sign under permuta- =0) are usually called nonunitaiynitary) triplet states.

tion of particles in the Cooper paits ,5(k) = — A g,(—K). The gapA(k)
Hence, the even parity state is a singlet state with zero spin . R
moment,S=0: A?(k)= 3 TrAT(k)A (k) (4)
Alsinged () = g (k)i ; in the energy spectrum of elementary excitations is given by
y the relations
kK)=g(—k). 1 i
900790~k D g = g, 5)
The odd parity state is a triplet state w1, which is _
in general a linear superposition of three substates with dif- AP (k)= \[[d(k)|?=[d(k) x d* (k)[]. (6)

ferent spin projectior, = —1,0,1: In unconventional superconductors the gap can be equal to

A(triplet)(k):(d(k)o_)a_ . zero for some directions on the Fermi surface, and for non-
Y unitary states $+# 0, so-called magnetic superconducjdhe
d(—k)=—d(k). (2 energy spectrum has two branches.
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In the absence of magnetic field the transition to a su-
perconducting state is a second-order phase transition. Ac-
cording to the Landau thed®/of second-order phase transi-
tions, the order parameter of such a state must transform
according to one of the irreducible representations of the
point symmetry group; of the normal phase, i.e., the sym-
metry group of the superconducting state is a subgroup of the
symmetry group of the normal state. The symmetry grGup
of the normal state contains the symmetry operations
Gspin-orbit IN SPin and orbitalcoordinat¢ spaces, the opera-
tion of time reversall, and the gauge transformatiah(1):

Gg=U(1)XT X Gspin-orbit- FIG. 1. The modulus of the order parameg(k)| (7) in momentum space
for a d-wave superconductor.
The transition to a superconducting state breaks the

gauge symmetrnyJ (1), andstates with different phases of

the order parameter become distinguishable. The Conver\]/\'/hereA(T) is a real scalar function, which depends only on

tional superconducting state is described by the symmetr%/he temperaturd, andk= (k. .K.). This type of pairing is a
] - X1y /-

groupH =7 X Ggpinormir- If @another point symmetry property ! : i :
of the superconducting state is broken, such a supercoﬁ\zvo—d|menS|onaI analog of the singlet superconducting state
in an isotropic metal and usually is called

ductor is termed an unconventional one. The order parametéfith =2 OF nd
of different superconducting states can be expanded on basi§-Wave” (or d,z_,2) pairing. The excitation gafg(k)| has
functions of different irreducible representations of the pointoUr liné nodes on the Fermi surface @{=(/4)(2n+1),
symmetry groupG. For non-one-dimensional representa-N=0,1,2,3(Fig. 1), and the order parametek) changes
tions the order parameter is a sum of a few complex funcS$'9n IN Momentum space.

tions with different phases, and such an order parameter is _'/Plet superconductivityan analog of triplet superfluid-
called a multicomponent one. ity in *He, was first discovered in the heavy-fermion com-

27 :
In real crystalline superconductors there is no classifica2Und UP§ more than ten years ago?’ Other triplet super-
tion of Cooper pairing by angular momentuns-ave, conductors have been found recently; RO, (Refs. 28, 2_9
p-wave,d-wave, f-wave pairing, etd. However, these terms and (TMTSF)}PF; (Ref. 30. In these compounds, the triplet

are often used for unconventional superconductors, meanirfgfifing can_be reliably determined, e.g., by Knight shift

that the point symmetry of the order parameter is the same gxperiments!~*It is, however, much harder to identify the
that for the corresponding representation of #@&(3) sym- symmetry of the order parameter. Apparently, in crystalline

metry group of an isotropic conductor. In this terminology tr.|plet- superconductors the grQer parameter dgpends on the
conventional superconductors can be referred te-amve.  direction in momentum spack, in a more complicated way

If the symmetry ofA cannot be formally related to any irre- than the well-knownp-wave behavior of the superfluid

ducible representation of tH8O(3) group, these states are phases ofHe. While numerous experimental and theoretical
usually referred to as hybrid states. works have investigated various thermodynamic and trans-

port properties of URtand SyRuQ,, the precise order-

parameter symmetry is still to be determirsde, e.g., Refs.

34-37 and references thergiymmetry considerations al-
2.2. Pairing symmetry in cuprate and triplet superconductors low considerable freedom in the choice of irreducible repre-

Cuprate superconductarAll cuprate high-temperature Sentation and its basis. Therefore numerous autfsess, for
superconductors (LaSr,CuQy, TI,Ba,CaCyOg, example, Refs. 34—4@onsider different modeléso-called
HgBa,CaCyOg, YBa,Cu;0-, YBa,Cw,0O,_5,  scenariosof superconductivity in URtand SgRuQ,, based
Bi,Sr,CaCyOg and othershave a layered structure with the on possible representations of crystallographic point groups.
common structural ingredient—the Cp@lanes. In some A conclusion as to the symmetry of the order parameter can
approximation these compounds may be considered as qua$e reached only after a comparison of the theoretical results
two-dimensional metals having a cylindrical Fermi surface With experimental data.

It is generally agreed that superconductivity in cuprates ba- Pairing symmetry irS,RuQ,. In experiment, SIRuQ,
sically originates from the Cuf layers. Knight shift —shows clear signs of triplet superconductivity below the criti-
measurements below T, indicate that in the cuprate super- cal temperatureT.=1.5 K. Investigation of the specific
conductors pairs form spin singlets, and therefore evenheat;" penetration deptfY; thermal conductivity;’ and ultra-
parity orbital states. sound absorptid# shows a power-law temperature depen-

The data of numerous experimefsge, for example, the dence, which is evidence of line nodes in the energy gap in
review articlé®), in which the different properties of cuprate the spectrum of excitations. The combination of these results
superconductors had been investigated, and the absenceWith the Knight shift experiment led to the conclusion that
multiple superconducting phases attests that the supercoB®RuUQO, is an unconventional superconductor with spin-
ducting state in this compounds is most probably describedfiplet pairing. A layered perovskite material ,8u0O, has a

by a one-component nontrivial order parameter of the formguasi-two-dimensional Fermi surfate.
Co oy The first candidate for the superconducting state in
g(k)=A(T)(k;—kj), (7)  spRuO, was the ‘p-wave” modef®4’
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d(k)=Az(k+ik,). (8)

The order parameter of the for(®) is a two-dimensional
analog k= (k,k,)) of the order parameter in thAe phase of
3He. Thed vector pointing along the direction implies that
the spin part of the Cooper pair wave function is the spin-
triplet state withS,=0, i.e., in-plane equal-spin pairirithe z
direction is along the axis of S,RuQ,). In a system with
cylindrical symmetry the orbital part of the pair wave func-
tion is a state with finite angular momentum along thexis,
L,==1.

However, the modd(i8) does not describe the whole cor-
pus of the experimental data. Recefft/ it was shown that
the pairing state in SRuQ, most likely has lines of nodes,
and some others models of the order parameter have beé&tg. 2. The modulus of the order parameitifi)| (11) in momentum space

proposed®?’ for the polar phase in afrwave superconductor.
o= A2 © line nodes are closed and there is a pair of point natles
d(k)=A2(k;—kf) (ke xiky). 10 O (Fig.3.

Other orbital state candidates, which assume weak effec-
In unitary state€8)—(10) the Cooper pairs have=+1 and tive spin—orbital coupling in UR{ are the unitary planar
S=0. state
Theoretical studies of specific heat, thermal conductivity, AL rori2 D2 -
and ultrasound absorption for different models of triplet su- d(k) = Akg[X(ky=ky) +2keky §1, (13
perconductivity show considerable quantitative differencesand the nonunitary bipolar state
between calculated dependences fop-Wwave” and TR, . .
“f-wave” mode's?4_36r4o d(k) = AkZ[X( kX_ ky) + 2|kxkyy]- (14)
Heavy fermion superconduct@Pt;. One of the best- More models for the order parameter in YRire dis-
investigated heavy fermion superconductors is the heavycussed in Refs. 21, 34 and 35. The mod@s-(10), (12),
fermion compound URt(Refs. 34 and 36 The weak tem-  (14) are interesting in that they spontaneously break time-

perature dependence of the Knight sfift,multiple  reversal symmetry(7-breaking, which we discuss in the
superconducting phas&sunusual temperature dependencenext Section.

of the heat capaci{? thermal conductivity®*® and sound
absorptior! in UPt; show that it is a triplet unconventional 2.3. Breaking of the time-reversal symmetry in
superconductor with a multicomponent order parameter.  ,nconventional superconductors. Spontaneous magnetic
The heavy-fermion superconductor YmRielongs to the  fields and currents
hexagonal crystallographic point groupg,. The models ) .
which have been successful in explaining the properties of ;nme-reversgl symmetry means that the Hamiltorfén
the superconducting phases in YR based on the odd- ~ /* bece’tuse ii){r) is a solution of the Schrbnger equa-
parity two-dimensional representatid,,. These models ton: theny™(r) is also a solution of the same equation. The
describe the hexagonal analog of spin-trifflatave pairing. ~ ime-reversal operatiof'is equivalent to complex conjuga-
One of the models corresponds to the strong spin—orbitdion 7¥ =¥*. The simplest example, when both the time-
coupling with vectord locked along the latticec axis
(cll2).3*3° For this modeld=2[ 7,Y;* 5,Y,], where Y;

=k,(k;—kJ) andY,=2k.kk, are the basis functions of the 5 %}\
representation. For the high-temperature polar phase ( : vl /‘
=1,7,=0) - '
d(k) = Azk,(kE—KD), (1) sy
. . k ‘
and for the low-temperature axial phase, € 1,7,=1i) z
d(k)=Azk,(kexk,)?, (12)

wherek=(ky,ky ,k,).

Both are unitary states. The stdtel) has zero expecta-
tion value of orbital momentum, while in the statE2) (L)
==+ 2. For the polar phas€ll) the gap in the energy spec-
trum of excitations|d(k)| has an equatorial nodal line &t

=m/2 and longitudinal nodal lines ap,=(m/4)(2n+1), FIG. 3. The modulus of the order parameltifk)| (12) in momentum space
n=0,2,3,4(Fig. 2). In the axial statg12) the longitudinal for the axial phase in afrwave superconductor.

A

X ky

x>
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reversal symmetryZ and parity? are broken, is a charged ing phases with finite orbital moments of the Cooper pairs.
particle in an external magnetic field, where ¢(r,H) and T-breaking leads to interesting macroscopic physics in a
&* (r,—H) are solutions of the Schdinger equation, while superconductor. Local currents generating orbital angular
(r,—H) and * (r,H) describe different degenerate statesmomenta flow in the bulk. In general, superconductivity and
of the system. This fact is crucial for understanding of themagnetism are antagonistic phenomena, but in this case, the
appearance of nondissipatiyeersistent currents in mesos- superconducting state generates its own magnetism. The
copic rings, that reflects the broken clockwise—Meissner—Ochsenfeld effect, however, prevents uniform
counterclockwise symmetry of electron motion along themagnetization inside the superconductor, and magnetism is
ring, caused by the external vector potential. restricted to areas of inhomogeneities—that is, around impu-

Unconventional superconductivity allows for a large va-rities and domain walls or at interfaces and surfaces. In these
riety of possible phases. In some of théfrand P are vio- ~ regions, spontaneous supercurrents flow. The surface current
lated; such superconductors are frequently catlichl ones.  generates a spontaneous magnetic moritéfitin triplet su-
(The word “chiral,” literally “handed,” was first introduced perconductors all nonunitary models break time-reversal
into science by Lord KelvinWilliam Thomson in 1884)  symmetry. For these states Cooper pairs have finite spins,
The time reversalthat is, complex conjugatiorof a one-  While the magnetization in the bulk is negligible. It was dem-
component order parameter is equivalent to its multiplicatiorPnstrated that chiral superconductors could show quantum
by a phase factor and does not change the observabléé?‘”"es"fe effects even in thg ab;ence of an external magnetlc
Therefore only in unconventional superconductors with di€ld>" & transverse potential difference would appear in re-
multicomponent order parameter can fisymmetry be bro-  SPONSe to the supercurrent.
ken. In particular, all superconducting states possessing non-
zero orbital or/and spin momenta are chiral ones. 2.4. Tests for order parameter in unconventional

If the 7-symmetry is broken, the superconducting phasesuperconductors
is determined not only by the symmetry of the order param- - rpq simplest way to test the unconventional supercon-
eter but also by the topology of the ground state. The latter i§,ing state is to investigate the effect of impurity scattering
characterized by the_égteger-valued topological invarlint 1, inetic and thermodynamic characteristics. Bevave
In momentum spac¥. Among the various implications of g nerconductors, nonmagnetic impurities have no effects on
ch|r§I|ty, perhaps the. most striking is the set of ch|rgl quasiT ' (Anderson’s theorejn In superconductors with uncon-
particle states, localized at the surface. These chiral stat€sntional pairing the nonmagnetic impurities induce pair-
carry spontaneous dissipation-free currents along the Surfacﬁreaking and suppress superconductivity. Increasing impurity
They are gapless, in contrast to bulk quasiparticles of th@goncentration leads to the isotropization of the order param-
superconductct. eter. In the state with broken spatial symmetry the only way

Volovik and Gor'kov? have classified chiral supercon- tq achieve it is make the order parameter to zero over entire
duc_tmg states into two categories, the so-called “ferr_orr_1ag1:ermi surface. This happens &f,7~1, whereA, is of the
netic” and “antlferl’omagnetlc" states. They are d|St|n' Order Of the average gap magnitude in the absence of impu_
guished by the internal angular moment of the Cooper pairsities at T=0, and 7 is the quasiparticles’ mean free
In the “ferromagnetic” state the Cooper pairs possess a finitgjme 62-64
orbital or (for nonunitary statésspin moment, while in the The Knight shift 6w of the nuclear magnetic resonance
“antiferromagnetic” state they have no net moments. (NMR) frequency(for details, see Ref. §5s the most suit-

In high-temperature superconductors with the order pagple instrument for determining the spin structure of the su-
rameter(7) the time reversal-symmetry is preserved in the perconducting state. Because it results from electron interac-
bulk. However, it has been shown theoreticallsee the tion with nuclear magnetic momentéw is proportional to
review’” and references thergirthat the pured,2_y2 pair  the Pauli paramagnetic susceptibiligyof normal electrons,
state is not stable against thiEbreaking states, such as the temperature dependence &#(T) depends strongly on
dy2—y2+idy, or dy2_y2+is, at surfaces and interfaces, near whether the pairing is singlet or triplet. In singlet supercon-
impurities, or below a certain characteristic temperatakg ( ductors the Cooper pair spB= 0, and the density of normal
or s means an admixture of theé-wave state withg(k)  electrons goes to zero @it—0. Thereforedw—0 as well. In
~2k,k, or the s-wave state withg(k)=const. It turns out triplet superconductors both Cooper pairs and excitations
that such states have larger condensation energy. Thsbntribute to the susceptibility, which changes little with
d2_,2+id,,-wave state represents a ferromagnetic pairinglecreasing temperature.
state, while thed,._,2+is-wave state is antiferromagnetic. The presence of point and line nodes of the order param-

Among the heavy-fermion superconductors there are tweter in unconventional superconductors may be determined
well-known systems which havé&violating bulk supercon- from the temperature dependence of thermodynamic quanti-
ducting phases: URtand U,_,Th,Be;3 (0.01<x<0.45). ties and transport coefficients. In fully gapped = const)
These materials show double superconducting transitions aswave superconductors they display thermally activated be-
decreasing temperature, arféviolation is associated with havior (~exp(—A/T)). In a superconductor with nodes in the
the second of them. The proposed modél8) and (14) of  gap of the elementary excitation spectrum the thermody-
the order parameter in UPtorrespond to theZ-violating  namic and kinetic quantities have power-law temperature de-
states. A more recent candidate fBriolating superconduc- pendence.
tivity is Srp,RuQ,. The “p-wave” and “f-wave” unitary The most-detailed information on the order parameter
models(8)—(10) describe theZ-violating bulk superconduct- can be obtained from phase-sensitive pairing symmetry tests.
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These are based on Josephson tunneling and flux quantiza- Unconventional Josephson weak link§ie properties of
tion: SQUID interferometry, tricrystal and tetracrystal mag-the current-carrying states in the weak link depend not only
netometry, magnetic flux imaging, and thin-flm SQUID on the manner of coupling but also on the properties of the
magnetometry (for review see Ref. 19 and referencesbanks states. For example, the S—c—S junction with the
therein. banks subjected to external transport current was considered
in Ref. 77. In such a system the time-reversal symmetry is
artificially broken, which leads to some interesting features

3. JOSEPHSON EFFECT AND SPONTANEOUS CURRENTS in the junction propertiegthe appearance of vortex-like
IN JUNCTIONS BETWEEN UNCONVENTIONAL states and a surface current flowing opposite to the tangential
SUPERCONDUCTORS transport current in the banksn this review we consider the

junctions formed by unconventionad{wave and triplet su-

_ ) ) perconducting banks, which we call unconventional Joseph-
The Josephson effécrises in superconducting weak son weak links. The most striking manifestation of the un-

Iinks—_the junctions of two weakly cpupled superconductorsconvemiona| symmetry of the order parameter in the

(massive banksS, andS,. The couplingcontacting allows  jynction is the appearance of a spontaneous phase difference

the exchange of electrons between the banks and establishgsy spontaneous surface current in the absence of current
the superconducting phase coherence in the system asfigying from one bank to the other.

whole. The weakness of the coupling means that the super-

conducting order parameters of the banks are essentially the, ;.ctions between d-wave superconductors

same as for separate superconductors, and they are charac- o _
terized by the phases of the order parametgrandy,. The Measurements of the characteristics of unconventional
Josephson weak link could be considered as the “mixer” ofJ0Sephson weak links give informati(_)n7about the symmetry
two superconducting macroscopic quantum states in thef superconducting pairingsee the revie). There are sev-
banks. The result of the mixing is a phase-dependent currenfral approaches to the calculation of coherent current states
carrying state with current flowing from one bank to anotherin unconventional Josephson junctions. These include the

This current (Josephson currentis determined (param- ~ Ginzburg—Landau treatmefftdescription in the language of
etrized by the phase difference= y,— y; across the weak Andreev bound statég, and the numerical solution of the

link. Bogoljubov—de Gennes equations on a tight binding
Classification. General propertieaccording to the type  lattice™ A powerful method of describing inhomogeneous
of coupling, Josephson junctions can be classified as followsUperconducting states is based on the quasiclassical Eilen-
1) Tunnel junctions(originally considered by Josephgon berger equations for the Green’s functions integrated over
S—I-S(l is an insulator layer Weak coupling is provided by energy?! It was first used in Ref. 9 to describe the dc Joseph-
guantum tunneling of electrons through a potential barrjer. 250N effect in a ballistic point contact between conventional
Junctions with direct conductivit—c—S(c is a geometrical Superconductors. The Eilenberger equations can be general-
constriction. These are the microbridges or point contacts.ized to the cases af-wave and triplet pairingAppendix I).
To have the Josephson behavior the constriction size must B8 this Section we present the results of quasiclassical calcu-
smaller than the superconducting coherence length lations for the Josephson and spontaneous currents in the
~fve/A. 3) Junctions based on the proximity effect, 9rain boundary ~junction between d-wave
S—N-S(N is a normal metal layer S—F-S(F is a ferro- superconductor§:*®*!
magnetic metal layer The different combinations of these 32 1. current —phase relations
types of junctions are possible, e.g., SNHI-S or S—I- We consider a Josephson weak "819)_8(2) which is
¢S structures. Another type of Josephson weak links are thf%rmed by the mismatching of the orientations of the lattice
multiterminal Josephson microstructures, in which the sev- y 9

i (d) (d) in Ei
eral bankgmore than two are coupled simultaneously with axes In the bar_1k§1 ands;”, as shown in Fig. 4 The
each othef®-6° axis is perpendicular and tlyeaxis is parallel to the interface

An important characteristic of a Josephson junction iSbetween two superconducting 2D half-spaces with different

the current—phase relatid€@PR) |4(¢). It relates the dc su-

percurrent flowing from one bank to another with the differ- \
ence of the phases of the superconducting order parameter in

the banks. The maximum value kf ¢) determines the criti- %

cal currentl . in the system. The specific form of the CPR

depends on the type of weak link. Only in a few cases does X Ve 2
it reduce to the simple fornhs(¢)=1sin(¢) that was pre- 9
dicted by Josephson for the case of a S—I-S tunnel junction.

In the general case the CPR is a-geriodic function. For S,
conventional superconductors it also satisfies the relation
Is(¢)=—14(—¢). The latter property of CPR is violated in
superconductors with broken time-reversal symmé&r{?

For general properties of the CPR and its form for different

types of weak links the reader is referred to the books angg, 4. interface between twd-wave superconductors, and S, with

reviews®6:74-76 different orientationsy,; and y, of the lattice axeg—b.

3.1. Superconducting weak links

d
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a—b axis orientationganglesy, andy, in Fig. 4). Far from
the interface X— +«) the order parameter is equal to the 0.12¢
bulk valuesA; (vg). In the vicinity of the interfacex=0, if
the anglesy; andy, do not coincide, the value @ deviates 0.08}
from A;,. To describe the coherent current states in the
system, the Eilenberger equatiag}) for the Green’s func- =
tions must be solved simultaneously with the equationfor 0.04}
(A5). The equation of self-consisten€}5) determines the
spatial distribution ofA(r). The problem of solving the 0
coupled equationA4) and(A5) can be treated by numerical A
calculations. Analytical solutions can be obtained for the 004!}
model (non-self-consistentdistribution of A(r): . . .
Ay (Ve)exp —igl2), x<O0, 0 0.5 1
A(Vg ,r)= . (15) o/n
As(vp)exp(iel2), x>0. 0

The phasep is the global phase difference between super- b
conductorsS; andS;. In the following we consider the case -0.01} 4
of an ideal interface with transparenBy=1. For the influ-
ence of interface roughness and effect of surface reflectancy -0.02}
(D#1) as well as the numerical self-consistent treatment of ¢ 3
the problem, see Ref. 16. -0.03 ¢}

Analytical solutions in the model with the non-self- 2
consistent order-parameter distributitkt) are presented in -0.04
Appendix Il. Using the expression&9), (A12) and (A13), 1
we obtain the current densitigg(x=0)=]; and j,(x=0) -0.051

© A,A,|cosd] 0085 ' 0.5 ' 1
cosé .
jJ=47-reN(O)vFTw§>:0 <91(22+1c()22+A1Azcos<p>Simp’ o/n
(16) FIG. 5. Josephson currerd) and spontaneous currerit)(versus the phase
difference in a clean DD grain boundary junction calculated in a non-self-

4N TS < A1A, singsign(cosé) >s'n consistent  approximation. ~ Current  densities are in units jof
Js s Uk “ Qlﬂz+w2+A1AZCOS¢ @ :jgoe(ng?L%E'Ezing4I (3())1;';d ;’;:oafmatch angles arg;=0 and x,

17

We denote byj ; the Josephson current flowing fro&
to S, and byjg the surface current flowing along the inter-
face boundary. Expressiori$6) and (17) are valid (within
the applicability of the mod€{l15)) for arbitrary symmetry of
the order parameterd,,. In particular, fors-wave super-
conductors from Eq.16) we have the current—phase relation
for the Josephson current in a conventior&ivave 2D bal-
listic S—c—Scontact?

superconductor varies. The Josephson current—phase relation
(Fig. 58 demonstrates a continuous transition from a
m-periodic (sawtooth-like line shape atdy=45° to a 2r-
periodic one for smalby, as expected in the case of a clean
DND junction® The phase dependence of the surface cur-
rent(Fig. 5b is also in qualitative agreement with results for
SND and DND junction§®

Ao(T)cod ¢/2) 3.2.2. Spontaneous currents and bistable states

2T In contrast to the weak link between two conventional
The surface currerits (17) equals zero in this case. superconductors, the currep is not identically equal to
For aS{?—S interface(DD junction) betweend-wave ~ Z€ro. Moreover, in some region of angles and x, a value
superconductors, the functiods Ave) in (16) and(17) are  Of the equilibrium phase difference= ¢, exists at which
Ay ,=Aq(T)cos 2¢0—x12). In Appendix | the temperature (djs(@)/de),—, >0 andj;(¢o)=0 butjs(¢o)#0. These
dependence of the maximum gap(T) in d-wave super- spontaneous phase differengg and spontaneous current
conductors is presented for reference. The results of the cajs(¢g)=]spon COrrespond to the appearance of time-reversal
culations ofj ;(¢) andjs(¢) for a DD junction are displayed symmetry breaking states in the systém fact, two values
in Fig. 5 for different mismatch angle$y between the crys- = ¢, of the phase and corresponding spontaneous currents
talline axes across the grain boundary and at temperature j gy, appea). The region of7-breaking stategas a func-
T=0.1T. (assuming the same transition temperature on bottion of temperature and mismatch angle shown in Fig. 6.
sides. The interface is between twlbwave superconductors In Figs. 6 and 7 we also present the self-consistent numerical
S, andS, with differenta—b lattice axis orientationg, and  result!® for comparison. Only in the asymmetrigy = 45°
X2- junction does the degeneraést ¢= = 7/2) survive at all
In these figures, the left superconductor is assumed to biemperatures, due to its special symmetry which leads to
aligned with the boundary, while the orientation of the right complete suppression of all odd harmonicsl 6f); gener-

j3=2eN(0)v FAO(T)singtan
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FIG. 6. Equilibrium phase difference in a clean DD grain boundary junction
as a function ofSy=x,— x1 (keeping x;=0), at different values ot
=TIT.. The circles and triangles correspond to non-self-consigi¢8C)

and self-consistentSC) calculations, respectively. For nonzerg, the
ground state is twofold degeneratge= =+ ¢;).

FIG. 8. Josephson energy of a DD junction.

momentum direction on the Fermi surface than are the ther-
modynamic and kinetic coefficients. In this Section the con-
ally, ¢o—0 at some temperature that depends on the oriersideration of the Josephson effect in point contacts is based
tation. The equilibrium value of the spontaneous current ion the most favorable models of the order parameter in, UPt
nonzero in a certain region of angles and temperat(fegs ~ and SyRuQO,, which were presented in Sec. 2.

7), which is largest in the case of the asymmeijg=45°
junction.

The Josephson currehf( ) is related to the Josephson
energy of the weak linkE;(¢) through |;(¢)=(2e/#%)
X(JE;(¢)/de). The Josephson energy for DD junction as Let us consider a model of the Josephson junction as a
function of phase difference is shown schematically in Fig flat interface between two misoriented bulk triplet supercon-
8. The arrows indicate two stable states of the system. Thes#ictors(Fig. 9). In this Section we follow the results of Ref.
are two macroscopic quantum states which can be used fd5. In order to calculate the stationary Josephson current
d-wave qubit desigrisee Sec. 4 below contact we use “transport-like” equations fa@rintegrated
Green’s function® (see Appendix Il.3 Here we consider
the simple model of a constant order parameter up to the
surface. The pair breaking and the electron scattering on the
) . .85 O Tnterface are ignored. For this non-self-consistent model the
first discovere in weak links in"He. It was found that at current—phase relation of a Josephson junction can be calcu-

low temperatures the mass current—phase dependigge lated analytically. This makes it possible to analyze the main

can essentially differ from the ca;se of f,i cor;lvenuonal SUPETaatures of the current—phase relations for different scenarios
conductor, and a so-called #*state” (J'(w)>0) is

. : of “ f-wave” superconductivity. We believe that under this
possible®>®® In several theoretical papers the Josephson ef- P Y

fect has been considered for a pinhole in a thin wall separat(sqtrong assumption our results describe the real situation
. ) qualitatively, as was justified for point contacts between
ing two volumes of®He-B.10111387-9The discovery of Y J P

: L J “ d-wave” superconductot$ and pinholes ifHe !
metal superconducting compounds with triplet pairing of
electrons has made topical the theoretical investigation of the

3.3.1. Current density near an interface of misoriented
triplet superconductors

3.3. Junctions between triplet superconductors

The Josephson effects in the case of triplet pairing wa:

Josephson effect in these superconductors. The Josephson 7
effect is much more sensitive to dependencé\ @) on the ¢ A
0.04 (i)
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FIG. 9. Josephson junction as interface between two unconventional super-

FIG. 7. Spontaneous current in the junction of Fig. 6. conductors misorienated by an angleand with order parametet(k).
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Knowing the componeng,(0) (A29) of the Green'’s joxel
functiong(k,r,e,,), one can calculate the current density at
the interfacej(0):

]

j(0)=477eN(O)v,:TmE:0 dkk Re(§,(0)), (18

where
sin(* 6)

1Q,+AA,cod+6)°
(19

-I:he real VeCtorSALz are related to the gap vectors FIG. 10. Josephson current densities versus phader axial (12) and
d; (k) in the banks by the relation planar (13) states in the geometri); misorientation anglex=/4; the
R N ) current is given in units of = m/2eN(0)vrAy(0).
dn(K)=An(k)exp(i ). (20)

The angle 6 is defined by A;(k)-Ay(k) .
— AL (R)A (k) cos6, and () = (k) — g (K) + appearance of the-state at low temperatures is due to the
1(K)A, ' 2 1 @ fact that different quasiparticle trajectories contribute to the

Misorientation of the crystals would generally result in current with different effective phase differencefs) (see
the appearance of a current along the interfdces can be | .
bp . 9 , Egs. (18) and (19)].1* Such a different behavior can be a

calculated by projecting the vectpron the correspondin e T L .
y proj g 9 P g criterion for distinguishing between the axial and the planar

direction. : o
We consider a rotatiomR in the right superconductor states, taking advantage of the phase-sensitive Josephson ef-

| Ei e do(R)=Rd.(R-1K)). We ch h fect. Note that for the axial model the Josephson current
on y_(s_ee ig. 9, (i.e., dy(k) =Rdy( ). Ve choose the formally does not equal zero gt=0. This state is unstable
¢ axis in the left half-space a_long the partmgn between the(does not correspond to a minimum of the Josephson en-
supercondu_ctor(salong thez axis n Fig. 9. To illustrate the ergy), and the state with a spontaneous phase difference
results obtained by c_:omputmg the formuls), we PIOt the (value ¢q in Fig. 10, which depends on the misorientation
current—phase relation for different below-mentioned Sceé\nglea is realized
narios of "f-wave” superconductivity for two different ge- Thé remarkable influence of the misorientation angle
ometries corresponding to different orientations of the CYSon the current—phase relation is shown in Fig. 11 for the
tals to the right and to the.Ieft .at the interfagee Fig. 9 0 axial state in the geometiyi). For some values af (in Fig.
The basal pJarlab to the ”ght.'s rotateo_l abc_>ut theaxis by 11 it is a= 7/3) there are more than one state which corre-
the anglew; ¢,1IC,. (i) Thec axis to the right is rotated about spond to minima of the Josephson energy=0 and

AA
ReG:(0)= 5 2 77

the contact axisy( axis in Fig. 9 by the anglex; byllb,. dj,/de>0).
Further calculations require a definite model of the vec- ~ The calculatec andz components of the current, which
tor order parameted. are parallel to the surfaciy(¢), are shown in Fig. 12 for the

same axial state in the geometiiy). Note that the current
tangential to the surface as a functiong@fs nonzero when
the Josephson curreiiFig. 11 is zero. This spontaneous
tangential current is due to the specific “proximity effect,”
similar to spontaneous current in contacts betwegmwave”

Let us consider the models of the order parameter isuperconductors. The total current is determined by the
UPt which are based on the odd-parify, representation of  Green’s function, which depends on the order parameters in

the hexagonal point grouPg,. The first of them corre-  poth superconductors. As a result, for nonzero misorientation
sponds to the axial statd2) and assumes the strong spin—

orbital coupling, with the vectad locked along the axis of

the lattice. The other candidate to describe the orbital states, .10
which imply that the effective spin—orbital coupling in UPt
is weak, is the unitary planar stat&3). The coordinate axes S a=n/6
x,y,z here and below are chosen along the crystallographic ~ 0.05 ST

axesa,b,¢ as at the left in Fig. 9. These models describe the
hexagonal analog of spin-triplétwave pairing.

In Fig. 10 we plot the Josephson current—phase relation
ja(¢)=]jy(y=0) calculated from Eq(18) for both the axial
[with the order parameter given by E@.2)] and the planar -0.05}
[Eq. (139)] states for a particular value efunder the rotation
of the basal planab to the right[the geometry(i)]. For T
simplicity we use a spherical model of the Fermi surface. For -0.10

the ax_ial state the current—phase_ relation is just a slanteglg 11. josephson current versus phaser the axial state(12) in the
sinusoid, and for the planar state it shows &S$tate.” The  geometry(ii) for different e

3.3.2. Current —phase relations and spontaneous surface
currents for different scenarios of “f-wave”
superconductivity

1y/lo
o
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FIG. 14. Josephson current versus phaser the hybrid “f-wave” state(9)
in the geometry(i) for different .

b
002 - — a=7t/3 . .
- a=1/4 equals zerp Just as in Fig. 10 for the f“wave” order pa-
0.01F — a=n/6 rameter(12), in Fig. 14 for the hybrid f-wave” model (9)

the steady state of the junction with zero Josephson current
corresponds to a nonzero spontaneous phase difference if the
misorientation anglex# 0.

Thus, in this Section the stationary Josephson effect in a
planar junction between triplet superconductors is consid-
ered. The analysis is based on models withwave” sym-
metry of the order parameter belonging to the two-
dimensional representations of the crystallographic
FIG. 12. z component &) andx component §) of the tangential current  symmetry groups. It is shown that the current—phase rela-
versus phase for the axial statg12) in the geometryii) for different a. tions are quite different for different models of the order
parameter. Because the order parameter phase depends on
the momentum direction on the Fermi surface, the misorien-
{Qtion of the superconductors leads to a spontaneous phase
difference that corresponds to zero Josephson current and to
, , i the minimum of the weak-link energy. This phase difference

The candidates for the superconducting state #80,  jopends on the misorientation angle and can possess any
are the ‘p-wave” model(8) and the ‘f-wave” hybrid model 5,0 "It has been found that in contrast to the-wave”

(10). Taking into ag:count the quasi-two-dimensional eIectroandeL in the ‘f-wave” models the spontaneous current may
energy spectrgm in SRUQ,, we calcglatg the currgniﬂ.S) be generated in a direction which is tangential to the orifice
numerically using the model of a C,Y"’)d”C%' Fermi Surface'plane. Generally speaking this current is not equal to zero in
The Josephson current f(_)r the hybrit-ivave” model of the the absence of the Josephson current. It is demonstrated that
order parametefEq. (10)) is compared to the-wave model o o4,dy of the current—phase relation of a small Josephson
(Eq. (8) in Fig. 13 (for a=m/4). Note that the critical cur- ,,ction for different crystallographic orientations of banks

rent for tTe f—Yﬁvaveh molfiel '; several times Zmlallé;‘:_)r tg,? enables one to judge the applicability of different models to
fsame V‘; ue of\o) ]f :;]m or the ‘p-\r/]vave ”I]o_ el. T Ii)l ™ the triplet superconductors UPand SRuO, .
erent character of the current-phase relation enables Us 10 is clear that such experiments require very clean su-

distinguish between the two states. rEjferconductors and perfect structures of the junction because

In Figs. 14 and 15 we present the Josephson current ang i hreaking effects of nonmagnetic impurities and de-
the tangential current for the hybridf‘wave” model for fects in triplet superconductors

different misorientation angles (for the “p-wave” model it

angles a current parallel to the surface can be generated.
the geometry(i) the tangential current for both the axial and
planar states af =0 is absent.

4. JOSEPHSON PHASE QUBITS BASED ON d-WAVE
SUPERCONDUCTORS

4.1. Quantum computing basics

As we have seen, unconventional superconductors sup-
port time-reversal symmetry breaking states on a macro-
scopic, or at least, mesoscopic scale. An interesting possibil-
ity arises then to apply them in quantum bitgibity, basic
units of quantum computersee, e.g., Refs. 92—84using
T-related states of the system as basic qubit states.

A quantum computer is essentially a sethoftwo-level
quantum systems which, without loss of generality, can be

FIG. 13. Josephson current versus phaseer hybrid “f-wave” (10) and ~ 'epresented by spin operatoés”, i=1..N. The Hilbert
“p-wave” (8) states in the geometry); a= /4. space of the system is spanned BY Qates|s;)®|s,)®...

-0.31 7 gl2n
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0.15]  --- a=n/12 lution. Initialization and readout explicitly require nonunitary
____gz;‘ﬁ """""""""""""""""" operations(projectiong. Therefore any practical implemen-
0.10¢ e tation of a quantum computer must satisfy contradictory re-
0.05+ P quirements: qubits must be isolated from the outside world to
'\—: 1] . A , * allow coherent quantum evolutidicharacterized by a deco-
Toosl T 02 9.4 06 08)i10 herence timery) for long enough time to allow an algorithm
e, T to run, but they must be sufficiently coupled to each other
—010p e and to the outside world to permit initialization, control, and
-0.15 \__/ '''' o/2n S~ readout® Fortunately, quantum error correction allows one

to translate a larger size of the system into a longer effective
FIG. 15. Tangential current density versus phader the hybrid “f-wave” ~ decoherence time by coding each logical qubit in several
state(9) in the geometry(i) for different . logical oneg(currently it is accepted that a system witfy 7,

in excess of 1Hcan run indefinitely, wherey is the time of

a single gate applicatiote.g., the timeT in the example of

®|sy), si=0,1. The information to be processed is contained®P(7))-

in complex coefficientga} of the expansion of a given state Note that the operation of a quantum computer based on
in this basis: consecutive application of quantum gates as described above
is not the only possible, or necessarily the most efficient,
|7) = Z tss < |51)®]S)®...0|sy). (21 Wway of its use. In parti_cular, it reqL_Jires a huge overhead for
s=01 27N quantum error correction. Alternative approaches have been

guggestede.g., adiabatic quantum computifig’) which
may be more appropriate for the smaller-scale quantum reg-
isters likely to be built in the immediate future.

The unitary operations on states of the qubits are calle
gates, like in the classical case. Single qubit gate$Safe)
rotations. An example of a two-qubit gate iscanditional
phase shift CP(vy), which, being applied to a two-qubit
wave function, shifts its phase byif and only if they are in  4.2. Superconducting qubits
the same (“‘up” or “down” ) state. In the basig{|0)

©10),0)®[1),|1)|0),| 1)@ |1)} it is The size of the system is crucial not only from the point

of view of quantum error correction. It is mathematically

e€” 0 0 0 proven that a quantum computer is exponentially faster than

10 0 a classical one in factorizing large integers; the number of

CP(y)= (220 known quantum algorithms is still small, but an active search
0 01 0 for more potential applications is under wésee the above
0 0 0 €7 reviews and, e.g., Refs. 96 98\evertheless the scale on

which its qualitative advantages over classical computers be-
gin to be realized is about a thousand qubits. This indicates
that solid-state devices should be looked at for the solution.
The use of some microsopic degrees of freedom as qubits,
e.g., nuclear spins of'P in a Si matrix, as suggested by
Kane¥is attractive due to both the largg and well-defined
basis states. The difficulties in fabricatiqdue to small
scalg and control and readoutiue to weak coupling to the
external controlshave not allowed realization of the scheme
so far.

Among mesoscopic qubit candidates, superconducting,
more specifically Josephson systems have the advantage of a

is, one that can realize any possible quantum algorithm, thgoherent ground state and the absence or suppression of low-

way a Turing machine can realize any possible classical aENeray exc[tatlons, which increases the decoherence time.
. . : : ogether with well-understood physics and developed ex-
gorithm) can be modeled by a chain of qubits with only ™= o . )
. : . perimental and fabrication techniques, this makes them a
nearest-neighbor interactions:

natural choice.
N i) 0 @ 0 The degree of freedom which is coupled to the control
H:izl {Ui(f(z +Ajo, }+i:j2+l Jjoy’ a3 (23) and readout circuits determines the physics of a qubit. In the
superconducting case, one can then distingeisérge and
Further simplifications are possibigput this would be irrel- phasequbits, depending on whether the chafgember of

Obviously, if CP(y) is applied to a factorized state of two
qubits, [ W) = (a1]0) + B11)) ® (2| 0) + /1)), in the gen-
eral case we will obtain aantangledstate. Up to an unim-
portant global phase facto€ P(y) results from the free
evolution of two qubits, generated by the Hamiltonian
H=36"1. 52 for a timeT=%1y/(2J).

Another nontrivial example is theontrolled-not gate
CNy,, which, acting orls;)®|s,), leavess, intact and flips
s, (1—0,0~1) if and only if s;=1. The combination
SW,;,=CN;5,CN,,CN;, swaps(exchangesthe states of two
qubits.

It can be shown that a universal quantum comp(iteat

evant for our current discussion. particles or phasgJosephson currenf the superconductor
The operations of a quantum computer require that thes well defined.
parameters of the above Hamiltonian be controllgbiere The simplest example of a Josephson qubit is an rf

specifically, one must be able toitialize, manipulate and  SQUID 1°° with the Hamiltonian

read outqubity. For the unitary manipulations discussed s 5

above, at least some of the parameterd, J of the Hamil- " . &( o) &cos{ ) (24
tonian must be controllable from the outside during the evo- a"2C T ggaL P #x 2 @)
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wherelL is the self-inductance of the loop, ahdandC are  where this time the role of extern&symmetry breaking

the critical current and capacitance of the Josephson jungarameter is played by the char@g induced on the island
tion. The charge on the junctio®= —2ied,, is conjugate by a gate electrode. The working states are eigenstates of
to the phase difference across it. The external flux through charge on the island; at appropriaf the states withQ

the loop is®, = ¢, P, /(27). If it equalsexactly®y/2 (¢, ~ =2ne and Q=2(n+1)e are degenerate due to a parity
=) the T-symmetry is broken. The potential part {84)  effect'®wheren is the number of Cooper pairs in the SSET.
acquires a symmetric two-well structure, with tunneling be-Quantum coherence in an SSET has been observed not just
tween the wells possible due to the derivative terniJa), through the observation of level anticrossing near the degen-
which reflects quantum phase uncertainty in a Josephsd#facy point, as in Refs. 100 and 102, but also in the time
junction with finite capacitance. The tunneling rate is of thedomain:®” The system was prepared in a superposition of
order of w, exp(—U(0)/wy), where the frequency of oscilla- Stategn),[n+1), kept at a degeneracy point for a controlled
tions in one of the potential welle,~\E,;Eq, and the time 7, and measured. The probabili§(r) of finding the
height of the potential barrier between théhi0)~E;. system in state exhibited quantum beats.

The states in the right and left wells differ by the direc- A “hybrid” system, with E;/Eq=1, so-called “quantro-
tion of the macroscopic persistent current and can be used &m,” was fabricated and measured in the time domain at
qubit stated0) and|1). The dynamics of the system is deter- CEA-Saclay,”® with an extraordinary ratioy/7~8000(the
mined by the interplay of the charging ene@ézzg/c tunneling timer; can be considered as the lower limit of the
and Josephson energg;=hl./(2€). HereE;/Eq>1, and ~ gate application timeg). Quantronium can be described as a
charging effects are responsible for the tunneling splitting ofharge qubit, which is read out through the phase variable,
the levels. Coherent tunneling between them has actuallgnd is currently the best superconducting single qubit.
been observéd’ in a Nb/AIO,/Nb SQUID at 40 mK; the An interesting inversion of the quantronium desfyris
magnetic flux difference was approximate(@o/4, which also a hybrid qubit, this time a flux qubit read out through the
corresponded to currents of abouj?. (The actual design charge variable. It promises several advantages over other
was a little more complicated than the simple rf SQUID. superconducting qubits, but has not yet been fabricated and
Fine tuning of the external flux is essential to allewsonant  tested.
tunnelingthrough the potential barrier. Finally, a single current-biased Josephson junction can

In the case of small loop inductance the phase will bealso be used as a qulijthase qubjt*****'The role of basis
fixed by flux quantization. For phase to tunnel, one has tétates is played by the lowest and first excited states in the
introduce extra Josephson junctions in the loop. In the threewashboard potential. Rabi oscillations between them have
junction desigrt®® two junctions are identical, each with a been successfully observed.

Josephson energy;, and the third one has a little smaller ~ The charge, hybrid, and phase qubits are mentioned here
energyaE;, a<1. In the presence of external flux,, the only for the sake of completeness, since unconventional su-
energy of the system as a function of phases on the identicferconductors are more naturally employed in flux qubits.

junctions ¢, , ¢, is Various Josephson qubits are reviewed in Ref. 112.
U(e1,02) 4.3. Application of d-wave superconductors to qubits
g COSp;— COSpr— a COS @yt @1~ ¢3).

One of the main problems with the above flux qubit
designs is the necessity of artificially breaking the

7-symmetry of the system by putting a fldx,/2 through it.

As before, ife, =, the system has degenerate minima. DueEstimates show that the required accuracy is 010 .

to the two-dimensional poFentlaI landscape, tunneling be=I'he micron-size qubits must be positioned close enough to
tween them does not require a large flux transfer of order

®,/2, as in the previous case. Tunneling is again pOSSibIeach other to make possible their coupling; the dispersion of

. . . 'heir parameters means that applied fields must be locally
due to charging effects, which give the system an EzﬁeCt'VE%:alibrated; this is a formidable task given such sources of

mass” proportional to the Josephson junction capacﬂanceﬁeld fluctuations as fields generated by persistent currents in

gk.)s;\(/)ggggn'lth;unpr:)et!:%alble;\évgs:aptzea T\;lem?ecg?/serek()jee%umts themselves, yvhigh depend on the state of the.qubit;

' i . . ) field creep in the shielding; captured fluxes; magnetic impu-
from measurements on a C'&SS'C""! 3-ju.nct|.on Igoyth C rities. Moreover, the circuitry which produces and tunes the
too large to allow tunnelin Rabi oscillations were ob- bias fields is an additional source of decoherence in the sys-

serv?d b;{}?“ (tll]ndlrgctly, dudsmg t_the fq;argum .”n?'setem.(Similar problems arise in charge qubits, where the gate
spectrosco e observed decay time of Rabi oscillation voltages must be accurately turied.

observed in these experimentga,=2.51s), and directly, These problems are avoided if the qubitirgrinsically

. . - 105 —
n t'r_lr_f dol‘;nalﬁ I.(T.Féb'/Elsi lns). b d. Then th bistable The most straightforward way to achieve this is to
€ above IMitk,/tq can be reversed. Then e ¢ hstitute the external flux by a static phase shifter, a Joseph-

design must include a Mesoscopic |s_Iand separated fr_om trEeon junction with unconventional superconductors with non-
rest of the system by two tunnel junctiof@superconducting zero equilibrium phase shifs,. From (25), one sees that

single electron transistor, SSETThe Hamiltonian becomes e.g., a three-junction qubit would require an extunction

) , (o= ).1*3n the same way ar-junction can be added to a
" _(Q=Q7 ICCI)OCOS 26) multiterminal phase qubit* The only difference compared
4 @ to the case of external magnetic field bias is in the decoher-

(29

2C 2m
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ence time: instead of noise from field generating circuits weand would allow the realization of a universal set of quantum
will have to take into account decoherence from nodal quagates-'®
siparticles(see below. A more advanced design was fabricated and tested in the
A more interesting possibility is opened up if the bistableclassical regime in Ref. 117. Here two bistablevave grain-
d-wave system is employed dynamically, that is, if its phaséoundary junctions with a small superconducting island be-
is allowed to tunnel between the degenerate values. In a sé~een them are set in a SQUID loofThe junctions them-
called “quiet” qubit***an SD$ junction (effectively two SD selves are also small, so that the total capacitance of the
junctions in the(110) direction is put in a low-inductance System allows phase tunnelingn the case when the two
SQUID loop in parallel with a conventional Josephson juncJunctions have the same symmetry but different critical cur-
tion and large capacitor. One of the SD junctions plays thd€nts, In the absence of external magnetic field there is no
role of am/2-phase shifter. The other junction’s capacitanceCUrrent passing through the big loop, and therefore the qubit
C is small enough to make possible tunneling betwegn 'S decoupled from the electromagnetic environméfsi-
and — /2 states due to the charging tef3/2C. Two con- lent”). The_ second—orcjer degeneracy of the potential profile
secutive SD junctions are effectively a single junction withat the minimum drastically reduces the decoherence due to

equilibrium phases 0 and (which are chosen as working coupling to the external circuits.
states of the qubit The control mechanisms suggested in

Ref. 113 are based on switchesaands. Switch c connects

the small 3D junction to a large capacitor, thus suppressing4.4. Decoherence in d-wave qubits

the tunne_ling. Connecting for the durationAt creatgs an Decoherence is the major concern for any qubit imple-
energy differenceAE between|0) and [1), because in the mentation, especially for solid-state qubits, due to the abun-
latter case we have a frustrated SQUID with 0- andyance of low-energy degrees of freedom. In superconductors,
m-junctions, which generates a spontaneous @2. This  this problem is mitigated by the exclusion of quasiparticle
is a generalization of applying the operationto the qubit.  excitations due to the superconducting gap. This also ex-
Finally, if switch c is open, the phase of the small junction plains why the very fact of existence of gapless excitations in
can tunnel between 0 and Entanglement between qubits is high-T. superconductors long served as a deterrent against
realized by connecting them through another Josephson jungerious search for macroscopic quantum coherence in these
tion in a bigger SQUID loop. The suggested implementatiorsystems. An additional source of trouble may be zero-energy
for switches is based on a low-inductance dc-SQUID desigstates(ZES) in DD junctions.
with a conventional and ar-junction in parallel, withl Nevertheless, recent theoretical analysis of DD
=1, . In the absence of external magnetic field the Josephunctions;*®**® all using quasiclassical Eilenberger equa-
son current through it is zero, while at external fipg/2 it tions, shows that the detrimental role of nodal quasiparticles
equals 2. Instead of external flux, another SDfinction, — and ZES could be exaggerated.
which can be switched by a voltage pulse between the 0 Before turning to these results, let us first do a simple
(closed and 7 (open states, is put in series with the estimate of dissipation due to nodal quasiparticles in bulk
m-junction. d-wave superconductot$’

The above design is very interesting. Due to the absence  Consider, for example, a three-juncti¢tDelft” ) qubit
of currents through the loop during tunneling betwden ~ With d-wave phase shifters. The) and|1) states support,
and |1) the authors called it “quiet,” though, as we have respectively, clockwise and counterclockwise persistent cur-

seen, small currents and fluxes are still generated near the §8Nts around the loop, with superfluid velocity. Tunneling

boundaries. between these states leads to nonzero ave«hz@eln the
Another design based on the same bistaBittgnly re-  Pulk Of the superconducting loop. _

quires one SD or DD boundary. Here a small island contacts The Flme-dependent superfluid velocity produces a local

a massive superconductor, and the angle between the orie?ﬁl—eCtrIC field

tation of d-wave order parameter and the direction of the 1. m,

boundary can be arbitrarfas long as it is compatible with E=—cA=g Vs (27)

bistability). The advantage of such a design is that the poten-

tial barrier can to a certain extent be controlled and sup@nd quasiparticle currepg,= oE. The resulting average en-

pressed: moreover, in general there are two “working” €9y dissipation rate per unit volume is

minima — ¢q,¢q; the phase of the bulk superconductor = gE2~mr (Ao )i)2> 28)

across the boundary is zero will be separated from each other AP\ R ESTES

by a smaller barrier than from the equivalent states differingiere 7y, is the quasiparticle lifetime, and

by 27n. This allows us to disregard the “leakage” of the "

qubit state from the working space spanned (i),/1)), W(vs)zf deN(e)[Ne(e—prvs) +Ne(e+prug)] (29)

which cannot be done in a “quiet” design with exact 0

m-periodicity of the potential profile. A convenient way of is the effective quasiparticle density. The angle-averaged

fabricating such qubits is to use grain-boundary DD junc-density of states inside ttbwave gap i¥*!
tions, where a two-well potential profile has indeed been

observed® Operations of such qubits are based on the tun- N(e)~N(0) 2e (30)
able coupling of the islands to a large superconducting “bus” HA
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whereu=A,*d|A(6)|/d6, andA, is the maximal value of the critical Josephson currety and spacing between An-
the superconducting order parameter. Substituti®® in dreev levels in the normal part of the systesss v /2L, via
(29), we obtain

lo=N, €. (37)
2 . .
v ~N(0) —— (= T)[Li,(—exp(— pros/T)) We require thaty/ wg<1, wherewy= /32N, Eqe/ 7 is
#Ao the frequency of small phase oscillations about a local mini-
+ Lio(—exp(pevs/T)], (32) mum. This means that
where Li(2) is the dilogarithm. Expanding for smabli-v E
) N, <—. (38
<T, we obtain Eo
o N(0) ([ w°T? ) The above condition allows a straightforward physical inter-
N(vs)~ _MAo 3 +(Prvs)”|. (32 pretation. In the absence of thermal excitations, the only dis-

) _ sipation mechanism in the normal part of the system is
The two terms in parentheses correspond to thermal activanrough transitions between Andreev levels, induced by fluc-
tion of quasiparticles and their generation by a currentyation voltage. These transitions become possiblée if

carrying state. Note that a.fin.ite quasiparticle density by it'<2eV~ \/?w o, Which brings us back t638). Another
selfldois not Iea_d thJ_ any d|SS|pat|on.| h d _ interpretation of this criterion arises if we rewrite it ag *
ot treem‘;ﬁ’rﬁ’sos'te imit T<prus) only the second contri- 7/} )=1 (Ref. 115. On the right-hand side we see the
' time for a quasiparticle to traverse the normal part of the
_ N(0) ) junction. If it exceeds the period of phase oscillatigos the
N(vg)~ m(vas) : (33 left-hand side Andreev levels simply do not have time to
form. Since they provide the only mechanism for coherent
The energy dissipation rate gives the upper limitfor  transport through the system, the latter is impossible, unless
the decoherence tinfsince dissipation is a sufficient but not oyr “no dissipation” criterion holds.
necessary condition for decoherencBenoting byl the For a normal-layer thicknesd ~1000 A and v
amplitude of the persistent current in the loop, Ibyhe in- 107 cm/s this criterion limitswy<10"12s™%, which is a
ductance of the loop, and Wy the effective volume of the  comfortable two orders of magnitude above the tunneling
d-wave superconductor in which persistent current flows, W&plitting usually obtained in such qubits-(L GHz) and can

can write be accommodated in the above designs. Nevertheless, while

7272 , s presenting a useful qualitative p?cture, the_ DND modgl @s not

220 2mrg N(0)Q) 3 (V5 +pr(vivs adequate for Fhe2t3ask_ of extracting quantltatl_ve predpuons.

l=—s~ > ] A calculatiort?® using the model of a DD junction inter-
LIg mAQLIE acting with a bosonic thermal bath gave an optimistic esti-
(34 mate for the quality of the tricrystal qubi> 1CP.

Note that the thermal contribution tq, * is independent of The role of size quantization of quasiparticles in small

the absolute value of the supercurrent in the loowd), DD and SND structures was suggested in Refs. 113 and 115.

while the other term scales d¢. Both contributions are The importance of this effect is that it would exponentially
proportional toQ) and (via v4) to w,, the characteristic fre- suppress the quasiparticle density and therefore the dissipa-
quency of current oscillationé.e., the tunneling rate be- tion below the temperature of the quantization gap, estimated
tween clockwise and counterclockwise current sjates as 1-10 K. Recently this problem was investigated for a
It follows from the above analysis that the intrinsic de- finite-width DD junction. Contrary to expectations, the size
coherence in al-wave superconductor due to nodal quasi-quantization as such turned out to be effectively absent on a
particles can be minimized by decreasing the amplitude oscale exceeding, (that is, practically irrelevant From the
the supercurrent through it, and the volume of the materiaPractical point of view this is a moot point, since the deco-
wheretime-dependergupercurrents flow. herence time due to the quasiparticles in the junction, esti-
Now let us estimate the dissipation in a DD junction. mated in Ref. 119, already corresponds to a quality factor
First, following Refs. 115 and 122, consider a DND model 7,/ 74~ 10°, which exceeds by two orders of magnitude the
with ideally transmissive ND boundaries. Due to tunneling,theoretical threshold allowing a quantum computer to run
the phase will fluctuate, creating a finite voltage on the juncindefinitely.

tion, V=(1/2e) ¥, and a normal currert,=GV. The corre- The expression for the decoherence time obtained in
sponding dissipative function and decay decrement are ~ Ref. 119,
1. 1 Gy%[1\2 de
= — f=— 2:— ] T o 17 Asl 0 39
Fep =56Vl (35 = Syl (Atle) (39
2 9F G 4N, Eq where ¢ is the difference between equilibrium phases in

(36)  degenerate minima of the junctidne., S¢=2y in other
notatior), contains the expression for the quasiparticle cur-
Here Eq=€?/2C, Mo=C/16e’=1/3%E,, andN, are the rent in the junction at finite voltage\,/e (whereA, is the
Coulomb energy, effective “mass,” and number of quantumtunneling rate between the minimarhis agrees with our
channels in the junction, respectively. The last is related tdack-of-the-envelope analysis: phase tunneling leads to finite

" Mox dx  4€Mq  w
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voltage in the system through the second Josephson relationeous currents in unconventional Josephson weak links. The
and with finite voltage comes quasiparticle current and decomixing of the unconventional order parameters from the
herence. The quality factor is defined@s- 7,A/2%, thatis,  junction banks leads to the formation offébreaking state in
we compare the decoherence time with the tunneling timethe weak link. A consequence of the time-reversal symmetry
Strictly speaking, it is the quality factor with respect to the breaking is the appearance of a phase difference across the
fastest quantum operation realized by the natural tunnelingosephson junction in the absence of current through the con-
between the minima at the degeneracy point. For the Raliact. This phenomenon, not present in conventional junctions
transitions between the states of the qubit this number ibetween standard superconductors, radically changes the
much lower(10-20 versus 8000; Ref. 108n account of the physics of weakly coupled superconductors. The current—
relatively low Rabi frequency. phase relations for unconventional Josephson weak links,
A much bigger threat is posed by the contribution fromwhich we have discussed f&%—S@ and S{tPle)_g(tipley
zero-energy bound states, which can be at least two orders pfnctions, are quite different from the conventional one. De-
magnitude larger. We can see this qualitatively fr@8): a  pending on the angle of misorientation of tevave order
large density of quasiparticle states close to zero engrgy  parameters in the banks, the current—phase relagigp) is
at the Fermi level means that even small voltages createchanged from a si)-like curve to a—sin(2p) dependence
large quasiparticle currents, which sit in the denominator of Fig. 5. Clearly, it determines new features in the behavior
the expression for,. Fortunately, this contribution is sup- of such a Josephson junction in applied voltage or magnetic
pressed in the case of ZES splitting, and such splitting idield. We have discussed the simple case of an ideal interface
always present due, e.g., to the finite equilibrium phase difbetween clean superconductors in which the spontaneous
ference across the junction. current generation effect is the most pronounced. Remaining
A similar picture follows from the analysis presented in beyond the scope of this review are a number of factors
Ref. 124. A specific question addressed there is especiallwhich complicate the simple models. They are the influence
important: it is known that th&® C constant measured in DD on the spontaneous current states of the interface roughness,
junctions is consistently 1 ps over a wide range of junctionpotential barriergdielectric layey, and scattering on impuri-
sizest?® and it is tempting to accept this value as the dissi-ties and defects in the banks. For the case of a diffusive
pation rate in the system. It would be a death knell for anyjunction see the article of Tanala al. in this issue. For the
quantum computing application of highs- structures, and detailed theory of spontaneous currents in DD junctions see
nearly that for any hope to see some quantum effects ther®ef. 16. The spatial distribution of spontaneous current, in
Nevertheless, it is not quite that bad. Indeed, we saw that thearticular, the effect of superscreening, is considered in Refs.
ZES play a major role in dissipation in a DD junction but are12 and 16. An important and interesting question concerns
sensitive to phase differences across it. Measurements of thiiee possible induction of a subdominant order parameter near
R C constant are made in the resistive regime, when a finit¢he junction interface and its influence on the value of spon-
voltage exists across the junction, so that the phase diffetaneous current. It was shown in Ref. 17 that the spontaneous
ence grows monotonically in time, forcing the ZES to ap-currents decrease when there is interaction in the subdomi-
proach the Fermi surface repeatedly. Therefege reflects  nant channel. This statement, which may seem paradoxical,
some averaged dissipation rate. On the other hand, in a fremn be explained in the language of current-carrying Andreev
junction with not too high a tunneling rate the phase differ-states(see Fig. 5 in Ref. 17 As a whole, the theory of
ence obviously tends to oscillate aroupglor — x, its equi-  unconventional Josephson weak links with breakingZof
librium values, and does not spend much time near zero ymmetry, in particular, the self-consistent consideration and
m; therefore the ZES are usually shifted from the Ferminonstationary behavior, needs further development. The
level, and their contribution to dissipation is suppressed. spontaneous bistable states in Joseph$avave junctions
This qualitative picture is confirmed by a detailed calcu-attract considerable interest also from the standpoint of
lation. The decoherence time is related to the phaseimplementation of qubits, the basic units of quantum com-

dependent conductance via puters. In Sec. 4 we analyzed the applicatiordefiave su-
1 SE perconductors to qubits. Unlike the Josephson charge and
To=———7=tanh;—. (40) flux qubits based on conventional superconductors, the
aF(xo)“oE 2T d-wave qubits have not yet been realized experimentally.

Here « is the dissipation coefficientSE is the interlevel ~Nevertheless, the important advantagesdefvave qubits,
spacing in the well, and e.g., from the point of view of scalability, not to mention the

5 2 fundamental significance of tiEbreaking phenomenon, de-
G(x)=4e%ald,F(X)]". 4D mand future experimental investigations of unconventional
For a realistic choice of parameters E40) gives a weak links and devices based on them.
conservative estimate,=1-100 ns, and quality facta®
~1-100. This is, of course, too little for quantum comput-
ing, but quite enough for observation of quantum tunneling

and coherence in such junctions.
APPENDIX |. TEMPERATURE DEPENDENCE OF THE

5. CONCLUSION ORDER PARAMETER IN A d-WAVE SUPERCONDUCTOR
We have reviewed one of the most intriguing aspects of  In a bulk homogeneous-wave superconductor the BCS
unconventional superconductivity, the generation of spontaequation for the order paramet&(vg) takes the form
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FIG. 16. Temperature dependence of the order paramg(dr) in ad-wave
superconductor.
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. Awvp)
AR =2mNOT 2, | Ve VE) s
0> F v/
F

(A1)

Or, writing V(Vg,Vi)=V4cos ¥cosd', Ng=N(0)Vy4,
A=Ay(T)cos ¥, we have forAy(T)

Ag(T)=ha2 T§ 2rdf  Ay(T)cos 26
ol M=ha2mT 2 | " 57 JaZ+ Ay(T)Zcod 26

(A2)

(w=(2n+1)7T, wherew, is the cutoff frequency
At zero temperaturd =0, in the weak coupling limit
Ag<<1, for Ax(T=0)=A(0) it follows from (A2) that
Ag(0)=2w.B8exp(—2/\y), InB=In2-1/2~1.21.

The critical temperaturé . is
2
TCZ;wC‘y exp(—2/M\y), Iny=C=0.577, y~1.78.

Thus,Ao(0)/T.= 7Bl y~2.14.
In terms of T., EQ.(A2) can be presented in the form

LI Ti Zfzwda cog 20 1)
N—=2m 5= -—].
Te >0 0 27 Jw?+Ay(T)?cos20 @

(A3)

In the limiting cases, the solution of equatioA3) has the
form

T 2
AO(O){].—SQ(?))(—) } T<T,.

Ay(0)
Ao(T)= 3052 | 112 T2
el _ T~T,.
(21s<3> T°<1 Tc) ’ ©

For arbitrary temperaturessOT< T, the numerical solu-
tion of equation(A3) is shown in Fig. 16.
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APPENDIX II. QUASICLASSICAL THEORY OF COHERENT
CURRENT STATES IN MESOSCOPIC BALLISTIC
JUNCTIONS

II.1. Basic equations

To describe the coherent current states in a supercon-
ducting ballistic microstructure we use the Eilenberger
equation®’ for the &integrated Green'’s functions

J . ~ A
Vg- EGM(VF )+ [T+ A(VE,r),G,(VE,I)]=0,
(A4)
where

. J9o fo
Ga)(VFir): f+ -9

is the matrix Green’s function, which depends on the Mat-
subara frequencw, the electron velocity on the Fermi sur-
facevg, and the coordinate; here

R 0 A
A=lar o
is the superconducting order parameter. In the general case it

depends on the direction of the vectgr and is determined
by the self-consistent equation

A(Vg,r)=27N(0)T ZO (Ve VP T u(VE D)y (AB)

Solution of the matrix equatiofA4) together with the self-
consistent order parameték5) determines the current den-
sity j(r) in the system:

i(r)=—4meN(O)T 2, (Veg,(Ve )y (A6)

In the following we will consider the two-dimensional
case; N(0)=m/27 is the 2D density of states and..)
=[27d@/2m... is the averaging over directions of the 2D
VeCctorveg .

Supposing the symmetnA(—vg)=A(vg), from the
equation of motior{fA4) and equatiofA5) we have the fol-
lowing symmetry relations:

f*(—w)=f"(w); g*(—w)=—9g(w);
*(0,—Ve)=1"(0,Vp); 9" (0, ~VE)=0(w,Vf);
f(—o,~Ve)=f(0,VF); 9(—o,~Ve)=—g(w,VF);
AT=A*,

On the phenomenological level the different types of
symmetry of the superconducting pairing are determined by
the symmetry of the pairing interactiod(vg,vg) in Eqg.
(A5). For conventional g-wave pairing, the function
V(vg,Vvg) is constantV,, and the corresponding BCS inter-
action constant ia =N(0)Vs. In the case ofl-wave pairing
V(Vg,Vp)=Vgcos Hcos V', \yq=N(0)V4. The anglesd
and ¢’ determine the directions of vectovs andvg in the
a—b plane.
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I1.2. Analytical solutions of Eilenberger equations in the . 0 idoo,

model with non-self-consistent order parameter distribution A=l.. . (A17)
i0,d* o 0

The solutions of equatiofA5) for the Green’s function

G,(v,r) can be easily obtained for model distributi¢i®)
of A(r). Forx=<0:

Below we consider so-called unitary states, for whith
xd*=0.

The gap vectod has to be determined from the self-

Aje o2 griel2 consistency equation:
— _ _ XQ]_/\UZ| .
f(Xla) Ql + Al (an w)ez Cla i o X
(A7) d(k,n)=7TN(0) X (V(kK)Go(K' T em),  (A18)
e+i<p/2 e+i<p/2 "
f(x,0)= A VAL w)ehllvdc,; whereV(k,k’) is the pairing interaction potential..) stands
! ! (A8) for averaging over directions of the electron momentum on
the Fermi surfacelN(0) is the electron density of states.

_ 9 o, Solutions of Eqs(Al14), (A18) must satisfy the condi-
9(x.0)= Q, +eriiliaC,, (A9) tions for the Greens's functions and the vealan the banks
For x>0 of superconductors far from the orifice:

: . ie r A
Aze+|qo/2 gtief2 o lemTs 12
— _ — e 2ol §(F )= ———=5, (AL19)
f(Xla) Qz + AZ ( 7702 (l))e 2 CZ: A\ 82m+ |d112|2
(A10) |
e igl2  aiel2 d(Iw)=d112(I2)exr{ 17"0 , (A20)
Fr(x.0)= —q—+ 5 (10— w)e Z%2/l4C,;
2 2 (A1) where ¢ is the external phase difference. EquatigAd4)
and (A18) have to be supplemented by the boundary conti-

o 220, /lo, nuity conditions at the contact plane and conditions of reflec-
9(z,0)= Q_2+e “Ca. (A12) " tion at the interface between superconductors. Below we as-

] ) ) sume that this interface is smooth and the electron scattering
Matching the solutions at=0, we obtain is negligible. In a ballistic case the system of 16 equations

Ay w(A;—A,cosp)+inA,Q, sing for the functionsg; andg; can be decomposed into indepen-
159 2 ) dent blocks of equations. The set of equations which enables
Q 0105+ 0w +AA, cos
1 (allpto 142c05¢) us to find the Green'’s functiog, is
Az O)(AZ_AlCOS(p)+|77Alﬂzs|n(P ) ~ % .
Z_Q_z (Qlﬂz+w2+A1A2COS§D) (A13) IkaVg1+(g3d_92d )_0! (AZ]—)
Here Q; ,= Jw?+[A1 %, 7=sign@,). ivgkVg-+2i(dXgs+d* Xgy)=0; (A22)
ivpkVgs—2iengs—2g,d* —id* X g_=0; (A23)
I.3. Quasiclassical Eilenberger equations for triplet ivFRVg2+ 2ie0,+2g,d—idxXg_=0, (A24)

superconductors )
whereg_=g;—g,. For the non-self-consistent modei { ,

does not depend on the coordinates up to the intexf&xgs.
(A21)—(A24) can be solved by integrating over ballistic tra-

The “transport-like” equations for theé-integrated
Green’s functiongj(k,r,e,;) can be obtained for triplet su-

perconductors: jectories of electrons in the right and left half-spaces. The
L < e general solution satisfying the boundary conditioA49) at

[iemms—A,g]+ivgkVg=0. (A14) infinity is

The functiong satisfies the normalization condition ie
(n__~“m_ . _ .

§6=—1. (A15) 03 Q, +iC, exp(—2sQ,t); (A25)
Hereeg,=7T(2m+1) are discrete Matsubara energies, gW=C, exp —2sQ,t); (A26)
is the Fermi velocity, and is a unit vector along the electron
velocity, andr;= r;®1, and#; (i=1,2,3) are Pauli matrices g _ ~2Cn =0 XCo o) o G o
in a particle—hole space. —2s7Q,+2ey Q,

f Tgwse Matsubara propagatagy can be written in the " 2C,d% +dE X C, o
orm. 03 =—F—F~—F5—exp—2sQ,t)— =, (A28)
—2s9Q,—2¢e Qn

911010 (9ot Q0)io : : , , .
“lis (Qat-Ga5)  Qu— GoGu5) " whgret is the tlm.e of flight along the trajectory, s@)(
2093198 4 Teuath2 =sign(z)=s; 7=sign@,); Q,=e2+|dy|?. By matching
as can be done for an arbitrary Nambu matrix. The matrixhe solutions(A25)—(A28) at the orifice planetE0), we
structure of the off-diagonal self-enerdyin Nambu space is find the constant€,, andC,. The indexn numbers the left

(A16)
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(n=1) and right 6=2) half-spaces. The functiog,(0)
=g{"(—0)=g{?(+0), which determines the current den-
sity in the contact, is

0 iem(Q+Q,)coss+ (&2 +Q,0,)sins
9:(0)= AA,+(e2+Q10,)c08s —iemn(Q1+Q5y)sing
(A29)
In formula (A29) we have taken into account that for
unitary states the vector , can be written as

dn=A, expiyy, (A30)

whereA, , are real vectors.
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We consider the charge and spin effects in low-dimensional superconducting weak links. The
first part of the review deals with the effects of electron—electron interaction in
Superconductor/Luttinger liquid/Superconductor junctions. The experimental realization of this
mesoscopic hybrid system can be an individual single-wall carbon nanotube that bridges

a gap between two bulk superconductors. The dc Josephson current through a Luttinger liquid is
evaluated in the limits of perfectly and poorly transmitting junctions. The relationship

between the Josephson effect in a long SNS junction and the Casimir effect is discussed. In the
second part of the paper we review the recent results concerning the influence of the

Zeeman and Rashba interactions on the thermodynamic properties of ballistic S—QW-S junction
fabricated in a two-dimensional electron gas. It is shown that in a magnetically controlled
junction there are conditions for a resonant Cooper pair transition which results in a giant
supercurrent through a tunnel junction and a giant magnetic response of a multichannel

SNS junction. The supercurrent induced by the joint action of the Zeeman and Rashba interactions
in 1D quantum wires connected to bulk superconductors is predicted0@! American

Institute of Physics.[DOI: 10.1063/1.1789291

1. INTRODUCTION gave birth to a new and unexpected direction in supercon-
ductivity, namely, the superconductivity of weak linf@eak
Since the discovery of superconductivity in 1911 thissuperconductivity; see, e.g., Ref). 3t soon became clear
amazing macroscopic quantum phenomenon has influencetat any normal metal layer between superconducisay,
modern solid state physics more then any other fundamentain SNS junctiohwill support a supercurrent as long as the
discovery in the 20th century. The mere fact that five Nobephase coherence in the normal part of the device is pre-
Prizes already have been awarded for discoveries directlgerved. Using the modern physical language one can say that
connected to superconductivity indicates the worldwide recthe physics of superconducting weak links has turned out to
ognition of the exceptional role superconductivity plays inbe part of mesoscopic physics.
physics. During the last decade the field of mesoscopic physics
Both at the early stages of the field development anchas been the subject of extraordinary growth and develop-
later on, research in basic superconductivity brought surment. This has mainly been due to the recent advances in
prises. One of the most fundamental discoveries made ifabrication technology and to the discovery of fundamentally
superconductivity was the Josephson effdat1962 Joseph- new types of mesoscopic systems such as carbon nanotubes
son predicted that when two superconductors are put int¢see, e.g., Ref.)6
contact via an insulating laygSIS junction then (i) a dc For our purposes metallic single-wall carbon nanotubes
supercurrentl=J;sine (J. is the critical currentyp is the  (SWNT) are of primary interest since they are strictly one-
superconducting phase differend®ws through the junction dimensional conductors. It has been demonstrated
in equilibrium (dc Josephson effécand (i) an alternating  experimentally~® (see also Ref. 10that electron transport
current (p=w;t, w;=2eVIh, whereV is the bias voltage along an individual metallic SWNT at the low-bias-voltage
appears when a voltage is applied across the jund@@n regime is ballistic. At first glance this observation looks sur-
Josephson effectA year latter both the dc and the ac Jo- prising. For a long time it was knowfsee Ref. 1lthat 1D
sephson effect were observed in experiméritdn impor-  metals are unstable with respect to the Peierls phase transi-
tant contribution to the experimental proof of the Josephsotion, which opens up a gap in the electron spectrum at the
effect was made by Yanson, Svistunov, and Dmitrehto ~ Fermi level. In carbon nanotubes the electron—phonon cou-
were the first to observe rf radiation from a voltage-biasedling for conducting electrons is very weak while the Cou-
contact and who measured the temperature dependence lomb correlations are strong. The theory of metallic carbon
the critical Josephson curredg(T). nanotube¥'® shows that at temperatures outside the mK
As a matter of fact the discovery of the Josephson effectange the individual SWNT must exhibit the properties of a

1063-777X/2004/30(7-8)/14/$26.00 554 © 2004 American Institute of Physics
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two-channel spin-1/2 Luttinger liqui€LL). This theoretical (here “F” denotes a magnetic mateniabr when spin-
prediction was soon confirmed by transport measurements afependent scattering on magnetic impurities is considered.
metal-SWNT and SWNT-SWNT junctiolfs'® (see also As a rule, magnetic impurities tend to suppress the critical
Ref. 16, where the photoemission measurements on a SWNdyrrent in  Josephson junction by inducing spin-flip

were interpreted as a direct observation of the LL state "brocesse§7.'28Another system where spin effects play an im-
carbon nanotubés Both theory and experiments revealed portant role is a quantum dé@D). Intriguing new physics

strong electron—electron correlations in SWNTS. appears in normal and superconducting charge transport

An und_oped |nd|y|dual .SW.NT Is not |ntr|n§|(_:ally asu- through a QD at very low temperatures when the Kondo
perconducting material. Intrinsic superconductivity has been

observed only in ropes of SWNTsee Refs. 17 and 18 physics starts to play a crucial role in the electron dynamics.
Here we consider the proximity-induced superconductivityLaSt year a vast literature was devoted to these problems.
in a LL wire coupled to superconductaiSLLS). The experi- Here we discuss the spin effects in a ballistic SNS junc-
mental realization of the SLLS junction could be an indi- tion in the presence ofi) the Zeeman splitting due to a local
vidual SWNT bridging a gap between two bulk magnetic field acting only on the normal part of the junction,
superconductors’?° and (i) strong spin—orbit interaction, which is known to ex-
The dc Josephson current through a LL junction wasst in quantum heterostructures due to the asymmetry of the
evaluated for the first time in Ref. 21. In that paper a tunneklectrical confining potentidf It is shown in subsection 3.1.
junction was considered in a geometsee subsection 2.2 that in a magnetically controlled single-barrier junction there
that is very suitable for theoretical calculations but probablyzre conditions when superconductivity in the leads strongly
difficult to realize in an experiment. It was shown that the gnpances electron transport, so that a giant critical Josephson

Coulomb correlations in a LL wire strongly suppress theg,, .. appearsl.~ D. The effect is due to resonant elec-
critical Josephson current. The opposite limit—a perfectly

transmitting SLLS junction—was studied in Ref. 22, wheretror_] transport _through de Gennes-Saint-James energy levels
it was demonstrated by a direct calculation of the dc Josephs—p“t by t_“r_‘”e"”g- . _
son current that the interaction does not renormalize the su- The joint actlgn of Zeeman s_phttmg and superconductiv-
percurrent in a fully transparenb(= 1, whereD is the junc- ity (see subsection 3)2results in yet another unexpected
tion transparendyjunction. In subsection 2.2 we re-derive €ffect—a giant magnetic responsé,~N, ug, (M is the
and explain these results using the boundary HamiltoniafagnetizationN, is the number of transverse channels of
method?3 the wire, andug is the Bohr magnetgnof a multichannel
The physics of quantum wires is not reduced to the in-quantum wire coupled to superconductéfthis effect can
vestigations of SWNTs. Quantum wires can be fabricated ifbe understood in terms of the Andreev level structure which
a two-dimensional electron g&8DEG) by using various ex- gives rise to an additionasuperconductivity-inducecdon-
perimental methods. Some of theng., the split-gate tech- tribution to the magnetization of the junction. The magneti-
nique originate from the end of the 1980s, when the firstzation has peaks at special values of the superconducting
transport experiments with a quantum point cont®PQ  phase difference when the Andreev energy levelE at
revealed unexpected properties of quan_tlzed electron _bthsUg A, (AZ is the Zeeman energy splittingecome 2, -fold
transport(see, e.g., Ref. 24 In subsection 2.1 we briefly Pegenerate.

review the results concerning the quantization of the critica The last two subsections of Sec. 3 deal with the influ-

supercurrent in a QPC. X
P Q ence of the Rashba effect on the transport properties of

In quantum wires formed in a 2DEG the electron— ) ; i ; i
electron interaction is less pronounéedhan in SWNTs duasi-1D quantum wires. Strong spin—ort80) interaction

(presumably due to the screening effects of the nearby pulRXperienced by 2D electrons in heterostructures in the pres-
metallic electrodes The electron transport in these systemsence of additional lateral confinement results in a dispersion
can in many cases be successfully described by Fermi liquigsymmetry of the electron spectrum in a quantum wire and
theory. For noninteracting quasiparticles the supercurrent iin a strong correlation between the direction of electron mo-
an SNS ballistic junction is carried by Andreev levels. For ation along the wire (right/left) and the electron spin
long (L>¢&p,=7%ve/A, whereL is the junction length and projection®!32

is the superconducting energy gaperfectly transmitting The chiral properties of electrons in a quantum wire

junction the Andreev—Kulik spectrufhifor quasiparticle en- cause nontrivial effects when the wire is coupled to bulk
ergiesE<A is a set of equidistant levels. In subsection 2'3superconductors. In particular, in subsection 3.4 we show

boundary conditions for chirdtight- and left-moving elec- S

: . . anomalous supercurrent, which is a Josephson current that
tron fields and calculate the thermodynamic potential of an® . .
SNSS junction using field theoretical methods. In this ap_per5|sts even at zero phase difference between the supercon-

proach there is a close connection between the Josephsgf'fc'“ng banks._ )
effect and the Casimir effect. In Conclusion we once more emphasize the new features

In Section 3 of our review we consider the spin effects inOf the Josephson current in ballistic mesoscopic structures
ballistic Josephson junctions. As is well known, the electrorand briefly discuss the novel effects that could appear in an
spin does not influence the physics of standard SIS or SN8c Josephson current through an ultrasmall superconducting
junctions. Spin effects become significant for SFS junctionsgjuantum dot.
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FIG. 1. A schematic picture of a superconducting point contagt Quan- . _/’ O
tum wire adiabatically connected to bulk superconductbis ( Tttt Hole
Cooper pair
2. JOSEPHSON CURRENT THROUGH A
SUPERCONDUCTOR-QUANTUM .
WIRE-SUPERCONDUCTOR JUNCTION FIG. 2. A schematic illustration of Andreev reflection.

In this chapter we consider the Josephson current in a

uantum wire coupled to bulk superconductors. One could .
d b P n@teractmg electron model. Then due to Andreev

expect that the conducting properties of this system depe . R )
strongly on the quality of the electrical contacts between thé) ackscattering 9f quasmgrtlcles at the SN mterfaqes, gaset of
QW and the superconductors. The normal conductance of %ndreev levels is formed in the normal part of the junctfon.

QW coupled to electron reservoirs in Fermi liquid theory isIn a smgle—mrgge short junction the spectrum of bound states
determined by the transmission properties of the Waee, takes the fornt (L/£,—0)

e.g., Ref. 33 For the ballistic case the transmission coeffi-  E.,=+A\1—D sirf(¢/2) (1)
cient of the system in the general situation of nonresonant

electron transport depends only on the transparencies of t d t d d the Fermi velocit d theref
potential barriers which characterize the electrical contact fum does not depend on the Fermi velocily, an eretore
e Andreev levels, Ed1), in a junction withN, transverse

and does not depend on the lengtlof the wire. As alread ) )
was mentioned irr)1 the Introducti(!);n, the Coulomb interac):iongzgzgilrzge 4, degeneratéthe factor of 2 is due to spin
in a long 1D (or few transverse channeRQW is stron .

enough tgo convert the conduction electrons in the wire i?lto a I.t is well known _(see, €.g., Refs. 39 and )4fhat.the
Luttinger liquid. Then the barriers at the interfaces betweerfontlnuum spectrum in the limit/ §,—0 does not contribute
the QW and electron reservoirs are strongly renormalized by0 the Josephson current,

electron—electron interaction, and the conductance of the e 90}

N—-QW-N junction at low temperature strongly depends on J= rra 2

the wire length** For a long junction and repulsive electron— _ _ _ o
electron interaction the current through the system iwhere(} is the thermodynamic potential. It is evident from

strongly suppressed. The only exception is the case of perfe§ds- (1) and (2) thatége Josephson current through a QPC
(adiabati¢ contacts when the backscattering of electrons afD:%) is quantized” At low temperatures T<A) we

here ¢ is the superconducting phase difference. This spec-

the interfaces is negligiblyexponentially small. In the ab- hav
sence of electron backscattering the conductd@cis not eA o
renormalized by interactiSRand coincides with the conduc- J=N,—==sinz. 3

tance quantunG=_2e?/h (per channél From the theory of
Luttinger liquids it is also knowif that for a strong repulsive This effect’ is the analog of the famous conductance quan-
interaction the resonant transition of electrons through dization in QPCs(see Ref. 41
double-barrier structure is absent even for symmetric barri-  Now let us imagine that the geometry of the constriction
ers. allows one to treat the QPC as a 1D quantum wire of finite
The well-known results listed above for the transportlengthL smoothly connected to bulk superconducttF.
properties of a 1D Luttinger |iquidsee, e.g., Ref. J7allow 1b). The 1D wire is still much shorter than the coherence
us to consider two cases when studying ballistic S—QW-34ength&,. How does the weakly screened Coulomb interac-
junctions:(i) a transparent junctio=1), and(ii) a tunnel  tion in a 1D QW influence the Josephson current in a fully
junction (D<1). These two limiting cases are sufficient to transmitting ©=1) junction? Notice that the charge is
describe the most significant physical effects in S—QwW-dreely transported through the junction, since the real elec-

junctions. trons are not backscattered by the adiabatic constriétion.
o _ Thus it is reasonable to assume that the Coulomb interaction
2.1. Quantization of the Josephson current in a short in this case does not influence the Josephson current at all.

ballistic junction We will prove this assumption for the case of a long junction

At first we consider a short, <&, ballistic S—-QW-S in the next Section. If the QW is separated from the leads by
junction. One of the realizations of this mesoscopic device ipotential barriergquite a natural situation in a real experi-
a quantum point conta¢QPQ in a 2DEG(see Fig. 4). For  men) the charging effects have to be taken into account. As
a QPC the screening of the Coulomb interaction is qualitaa rule, the Coulomb correlations, which tend to keep the
tively the same as in a pure 2D geometry and one can evalurumber of electrons in the normal regigguantum dot in
ate the Josephson current through the constriction in a norsur casg constant, suppress the critical supercurrent due to
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the Coulomb blockade effedsee, e.g., Ref. 43, where a long 1D or quasi-1D SNS junction, when the normal region
consistent theory of the Coulomb blockade of Josephson turean be modeled by a Luttinger liquidL). The standard
neling was developedThey can also change thedepen-  approach to this problerfsee, e.g., Ref. 23s to use for the
dence of the Josephson current. One possible scenario fgescription of electron transport through the normal region
how charging effects influence the Josephson current in ghe LL Hamiltonian with boundary conditions which take
short SNS junction is considered in Ref. 44. into account the Andreé¥ and normal backscattering of
quasiparticles at the NS interfaces.

The LL HamiltonianH, | expressed in terms of charge

A consistent theory of electron—electron interaction ef-density operatorgg,, ¢, of right/left moving electrons with
fects in weak superconductivity has been developed for ap/down spin projection takes the fortsee, e.g., Ref. 46

2.2. Luttinger liquid wire coupled to superconductors

|

Hy, =m‘z_|'dx[u(a§2T PB4 ph, +PL,)

Vo x = O - L. o o
+ - BRPRY +PLtPLy +PRIPLY +PRIPLL +PR1PLY +PRIPL] (4)

47) or they can be calculated by using some particular model
of the interface$® In what follows we will consider two
limiting cases:(i) poorly transmitting interface¥/§"")— oo
(tunnel junction and (ii) perfectly transmitting interfaces

where V, is the strength of electron—electron interaction
(Vo~€?) and the velocityu=v g+ Vy/27#. The charge den-
sity operators of the chiralR/L) fields obey anomalous
Kac—Moody commutation relatior(see, e.g., Ref. 46

Vg0—+O
_ _ poa . Ok 0 ) At first we relate the effective boundary pairing poten-
[P (¥) Pruk(X)]= 255 = S(X=X), tials AS" to the amplitudes" of the Andreev backscatter-
. ing proces$®° Let us consider for example the Andreev
k=11 backscattering of an electron at the left interface. This pro-
The Hamiltonian(4) is quadratic and can easily be diagonal- €€SS can be described as the annihilation of two electrons
ized by a Bogoliubov transformation with opposite momenta and spin projectionsxat0. The
corresponding  Hamiltonian ishya~rxMa,a_, , or
H(d):ﬂ_hf dx[v (p2 +p2 )+ (p2 +p2 )], 5 equivalently in the coor'dlnate rgpresentauorinA
L [Py PL) HUolPRoTPLA] (B) ~rxOWe (0)¥,(0). Herer 4 is the amplitude of Andreev

where v,y are the velocities of noninteracting bosonic backscattering at the left interface,

modes(plasmong v ,,)=ve /g, and

2V0 -1/2
Thug » 9o

o [t exdi(e+ m/2)]

r
=1. (6) A O a2

Hereg, andg, are the correlation parameters of a spin-1/2t(" is the transmission amplitudét{’|2+|r("|2=1), ande,

LL in the charge(p) and spin(o) sectors. Notice thag, is the phase of superconducting order parameter at the left
<1 for a strongly interacting\{y,>%uvg) electron system. bank. An analogous expression holds for the right interface.
The Andreev and normal backscattering of quasiparticleNotice that for a tunnel junctioft!"V|2<1 the amplitude of
at the NS boundariesx& 0 andx=L) can be represented by Andreev backscattering is small—it is proportional to the

the effective boundary Hamiltoniadg=H4"+HE", with  transparenc, ,=[t('"|?<1 of the barrier at the righfeft)

interface. Thus in our model the effective boundary pairin
HEP =AY Wg; (0) W (0) +Wgy(0)(0)]+AY Y paiing

potential is
X[Wri (L)W (L)+W¥g (L)W (L)]+he., (7)

1+ 9

9,=

AP =ChveriV, AY=—Choery™, (10)
H<B“>=VS>JZU «If,-l(owv,-a(owvg)ng Ul(L)W (L),

8

wherej=(L,R) ando=(T,]). HereAS") is the effective
boundary pairing potential at the leftight) NS interface,
andvg") is the effective boundary scattering potential. The  For poorly transmitting interface®, ;<1 the amplitude
values of these potentials are related to the phase of the saf Andreev backscattering is small and we can use perturba-
perconducting order parameters in the banks and to the notion theory when evaluating the phase-dependent part of the
mal scattering properties at the left and right interfaces. Theground state energy. In second-order perturbation theory the
can be considered either as input paramefsee, e.g., Ref. ground-state energy takes the form

whereC is a numerical factor which will be specified later.

2.2.1. Tunnel junction
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(TH® Y2 Here H®(7) is the boundary Hamiltonian(7) in the
oE ((P):Z ? imaginary-time Heisenberg representation. After substituting
11 _ . Eq. (7) into Eq.(11) we get the following formula fosE?)
=7 fo d~(O|HPT(r)HV(0)|0). (11)  expressed in terms of electron correlation functions:
8E @ (¢) = —4Cho} Re(r;Pr(? Idt [< Wre (0)¥; (1:,0)‘}’2i (o, L)‘I’};T O,L>+<T o> (12
0
|
We will calculate the electron correlation function by It is convenient here to introdut®&the charge(p) and
making use of the bosonization technique. The standardpin (o) bosonic fieldse,,6,, which are related to the
bosonization formula reads above-defined chiral fieldg, , by the simple linear equa-
tion
1
v, (X)= \/Z_exr[i aATd, (X,1)], (13 . 1
ma (9 :5(<PRTi<PLTI<PR¢_€DL¢) (16)
where a is the cutoff parameter a~\g), 7=(R,L) P
=(1,—-1), o=(7,1)=(1,—1). The chiral bosonic fields in (the upper sign corresponds¢q and the lower sign denotes
Eq. (13) are represented as followsee, e.g., Ref. 51 6,). After straightforward transformations E(.2) takes the
form
1 . X—nut
CD.,}’,,.(X,I)ZE ()077,(7+H(TT+ (P'/},(r(xvt)- (14)

SE?()=4ChvED cos,@f dr[IT, (7)+T_(7)],
Here the zero mode operatass , andf[o obey the standard 0 17)
commutation relations for “coordinate” and “momentum,”
[&,.0.1151=—i78,, . They are introduced for a finite
length LL to restore correct canonical commutation relations  I1..(7)=(27a?%) 2exp{27[{¢,(7,—L)¢,)

for bosonic fields?>! Notice that the topological modes as-

sociated with these operators fully determine the Josephson H(0p(1,=L) )= (0,(1.— L) ¢o)

current in a transparenD(=1) SLLS junction?? The non- (o (1,—L)ONIQ (7). (18)
topological components,, ,(x,t) of the chiral scalar fields 7 ’ -
are represented by the series

whereD=D,D,<1 is the junction transparency and

Here ¢,=¢,(0,0), 6,=06,(0,0), and the double brackets
(.., denote the subtraction of the corresponding vacuum
1 ) - average at the pointsr(x)=(0,0). Note that the supercon-
o) =2 \/z_{exp[lq(nx—vt)]bquh.c.}, (19 ducting properties of a LL are determined by the correlators
q qL N .

. . of the bosonic field$), and ¢,,, unlike the normal conduct-
whereb, and bg are the standard bosonic annihilation anding properties, where the fields, and ¢, play a dominant
creation operatord; is the length of the junction, and is  role. The factorQ..(7) originate from the contribution of
the velocity. zero modes,

wft (T4 +11))] >}exp (nvpt/L).

Qi(r)=exp{£<[fl -TI; %
o< [y -10 9

FIG. 3. A schematic picture of an SLLS junction formed by an effectively FIG. 4. A Luttinger liquid wire of lengthL coupled to bulk superconductors
infinite Luttinger liquid coupled to bulk superconductors by side electrodesvia tunnel barriers with transparenciBs, -
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With the help of a Bogoliubov transformation the chiral
bosonic fields in Eq(16) can be expressed in terms of non-
interacting plasmonic modes with known propagatmse,
e.g., Ref. 46 Two different geometries of SLLS junction
have been considered in the literature, viz., an effectively
infinite  LL connected by side electrodes to bulk
superconductofs (see Fig. 3 and a finite LL wire coupled
via tunnel barriers to superconduct8f$2 Notice that both
model geometries can be related to realistic contacts of a
single-wall carbon nanotube with metdksee, e.g., Ref. 53
and references thergirThe geometry of Fig. 3 could model
the junction when electron beam lithography is first used to v,/ hv,
define the leads and then ropes of SWSN are deposited on
top of the leads. A tunnel junction of the type shown sche-FIG. 5. Dependence of the renormalization fad®qy, on the dimensionless
matically in Fig. 4 is produced when the contacts are apphe(?'ec”of” e'egg‘lmt&aci'f:;g%”%:f:zFtoi‘:]r"::dcggjsl‘;‘(’j“?i tv‘\’”:*e‘e
over the nanotube rope. case ota sl

The topological excitations for an effectively infinite LL ().
(L—x) play no role, and the corresponding contributions
can be omitted in Eqg15) and(18), Q.. (7)=1. The propa-
gators of noninteracting chiral bosonic fields d@see, e.g., at the interfacesx=0L. To zeroth order of perturbation

8 10

Refs. 46 theory in the barrier transparencies the electrons are confined
5 et st to the normal region. Therefore the particle curreht
ik a—+ X Sk — * H H H _
(or (LX) orLi)=— oI —— > (20) Re(W;4d,¥,) through the interfaces is zero. For a single
4 a mode LL this requirement is equivalent to the following

oy . . . . 52
where j,k=1,2 and the plasmonic velocitiesi=v,, s, boundary condition for the chiral fermionic fields:

v,=vg (see EQq.(6)). Finally, the expression for the Jo- E,U(X)‘I’R,a(xﬂx:o,ﬁ E,U(X)WL,U(XNXZO,L' (25)
sephson current through a “side-contacted” (fig. 3) takes - ) )
the formft These boundary conditiodsL with open endgresult in
zero eigenvalues of the “momentum”-like zero mode opera-
I =IPRi(g,)sine, (21)  torI1, and in the quantization of nontopological modes on a

ring with circumference R (see Ref. 50 In this case the

(0)— i iti .
whereJ.’=(Devg/4L)(C/ ) is the critical Josephson cur plasmon propagators take the form

rent for noninteracting electrons, an&(g,) is the

interaction-induced renormalization factd®(g,=1)=1): O, l—exdim(xx—st+ia)]
<<§DL J(t X)@RL k>>_ - _7T n mall :
R(g)=de TQ2) (11 1 1, 29
)= T2t 12g,) 12727 2g, 20 %

Using Egs.(2), (17)—(19), and (26), one readily gets the
g, ' -1 expression, analogous to Eg1), for the Josephson current:
220 I{P=3DR(g,)sine, where now the critical Josephson cur-
rent of noninteracting electron i8")=(Dev/4L)(C/ )
Hereg, is the correlation parameter of a spin-1/2 LL in the and the renormalization factoR¢(g,=1)=1) reads
charge sectofEq. (6)), I'(x) is the gamma function, and

a

X
L

F(a,B;v;z) is the hypergeometric functio(see, e.g., Ref. Rf(gp)— gp (Ei 9,; 2 -g,+1,-1
54). The expression foR;(g,) in integral form was derived gp 9 9 gp
for the first time in Ref. 21. In the limit of strong interaction 209~ 1-1)
Vo/hvg>1 the renormalization factor is small: > i 27)
hvg 32/ V2Volahvg -
Ri(g,<1)=+ (V_o T <1, (23)  Comparingd(®) with the well-known formula for the critical

Josephson current in a low-transparency SINIS jundisee,
and the Josephson current through the SLLS junction i€.g., Ref. 40, we find the numerical constaft= .
strongly suppressed. This is nothing but a manifestation of In the limit of strong interactiong,<1, Eq.(27) is re-
the Kane—Fisher effettin the Josephson current. duced to the simple formula

To evaluate the correlation function, E({.8), for a LL
wire of finite length coupled to bulk superconductors via Ri(g,<1)=
tunnel barriers(Fig. 4), we must first formulate boundary ?
conditions for the electron wave function:

2. [2VgThoE
<1. (28)

ma

L

ﬁUF
2 V

The dependence of the renormalization factor given by Eqs.
V(%) = explikeX) Vg o(X) + expl — ikex) W, ,(X), (22), (27) on the strength of the electron—electron interaction

’ ’ Vo/hvg is shown in Fig. 5. The behavior of the Josephson
o=1] (24) current as a function of the interaction strength is similar for
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the two geometries considered. However we see that the ir2-3. Josephson current and the Casimir effect
teraction influences the supercurrent more strongly for the

case of an “end-coupled” LL wire. More then fifty years ago Casimir predictédhe exis-

tence of small quantum forces between grounded metallic
plates in vacuum. This forc@ kind of van der Waals force
between neutral objedtsarises due to a change of the

This is the case of perfectly transmitting interfaces invacuum energy(zero-point fluctuations induced by the
terms of the boundary Hamiltoniar(#), (8), which formally ~ boundary conditions imposed by the metallic plates on the
correspond to the limi¥/g—0 and not smallAg. It cannot  fluctuating electromagnetic fieldsee Refs. 59 and 60T his
be treated perturbatively. Physically this means that charge ®rce has been measuredee, e.g., one of the recent
freely transported through the junction and only pure An-experiment$ and the references thergirand in quantum
dreev reflection takes place at the NS boundaries. It is wellield theory the Casimir effect is considered as the most spec-
known that at energies much smaller than the superconductacular manifestation of zero-point energy. In a general situ-
ing gap E<A) the scattering amplitude of quasiparticles ation the shift of the vacuum energy of fluctuating fields in a
becomes energy independdésée Eq(9)). This enables one constrained volume is usually called the Casimir end&tgy
to represent the Andreev scattering process as a boundafpr a field with zero rest mass dimensional considerations
condition for a real-space fermion operator. It was shown irresult in a simple behavior of the Casimir energy as a func-
Ref. 22 that the corresponding boundary condition for chiration of geometrical size. In 1DEc~%Av/L, wherev is the
fermion fields takes the form of a twisted periodic boundaryvelocity. Now we will show that the Josephson current in a
condition over the interval I2, long SNS junction from a field-theoretical point of view can

. be considered as a manifestation of the Casimir effect.

ViR zo(X=2L D =exXp =i )W R 2o (X1) (29 Namely, the Andreev boundary condition changes the energy
(the upper sign corresponds to the left-moving fermions, thef the “Fermi sea” of quasiparticles in the normal region.
lower sign—to right-moving particlgswhered=m+ ¢, ¢  This results in the appearance ¢fi an additional cohesive
is the superconducting phase difference, and the phaise  force between the superconducting battkand (i) a super-
acquired due to the Andreev reflection on two interfase®,  current induced by the superconducting phase difference.
e.g., Eq.(9)). Thus the problem can be mappétb the one As a simple example we evaluate the Josephson current
for the persistent current of chiral fermions on a ring of cir-in a long, transparent, 1D SNS junction by using a field
cumference . It is well knowrP™*° (see also Ref. 58that  theoretical approach. Andreev scattering at the NS interfaces
the persistent current in a perfect rifwithout impurities in results in twisted periodic boundary conditions, E2g), for
the continuum model does not depend on the electronthe chiral fermion fieldS* Thus the problem is reduced to
electron interaction due to the translational invariance of thehe evaluation of the Casimir energy for chiral fermions on
problem. This “no-renormalization” theorem allows us to an S' manifold of circumference I2 with “flux” 9. Notice
conclude that the Josephson current in a perfectly transmithat the left- and right-moving quasiparticles feel opposite
ting SLLS junction coincides with the supercurrent in a long(in sign “flux” (see Eq.(29)). The energy spectrum takes

2.2.2. Transparent junction

one-dimensional SNS ballistic junctigh?>’ the form A, =#Avg/L)
4eT & sinke 1
— B, _ k+1_ = ()
= nonio= gl U Sinnzaktay 0 En,n(L,¢)=7TAL<n— >t n%),
where T is the temperature and =#v/L. The formal N=0+1-2. p==1, 31

proof of this statemeft consists in evaluating the partition
function of the LL with the twisted boundary conditions, Eq. 54 coincidegas it shouldl with the electron and hole ener-

(29), supplemented by a connection between g, and  gies calculated by matching the quasiparticle wave functions
W, . fields that follows from the chiral symmetry. The su- 5; the NS boundari€€. The Casimir energy is defined as the

perconducting phase differengecouples only to zero modes gt of the vacuum energy induced by the boundary condi-
of the charge-current field,. In a Galilelian invariant sys- jons

tem zero modes are not renormalized by the interaction, and

the partition function for an SLLS junction exactly coincides 1
with that for a long SNS junction. Ec(L.¢)=2[ -5 nE En,y,(LAP)—nE En,,(L—) .
We notice here that Eq30) holds not only for perfectly 7 7 (32)

transmitting interfaces. It also describes asymptotically at

<A the Josephson current through a tunnel junction whemotice that the factor{ 1/2) in Eq.(32) is due to the zero-
the interaction in the wire is assumed to be attractive. Wepoint energy of chiral fermions, and the additional factor of 2
have seen already in the previous subsection that this due to spin degeneracy. Both sums in 82) diverge, and
electron—electron interaction renormalizies the bare transpapbne needs some regularization procedure to manipulate
ency of the junction due to the Kane—Fisher effect. Thethem. One of the most efficient regularization methods in the
renormalization is known to suppress the electron current focalculation of vacuum energies is the so-called generalized
a repulsive interaction and to enhance it for an attractivezeta-function regularizatioff. For the simple energy spec-
forces®* Thus one could expect that for an attractive interac-trum in Eq.(31), this procedure is reduced to the analytical
tion the electron interface scattering will be renormalized atontinuation of the infinite sum ovar in Eq. (32) to the

low temperatures to perfect Andreev scattefing. complex plane,
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* However, as we have seen already in the previous Sections,

Ec(e)=—mA_ lim z (n+a,)"° the dependence of the critical Josephson current on the inter-
so—in=me= =l action strength is qualitatively the same for spin-1/2 and
spinless Luttinger liquids. Thus for ease of calculations it is a

=—7A, Z [¢{(—1la,)+¢i(—1,—a,)+a,l, common practice to investigate weak superconductivity in
7==1 the model of a spinless Luttinger liqufd.
(33 Spin effects in the Josephson current become important

in the presence of a magnetic field, spin—orbit interactions,
or spin-dependent scattering on impurities. At first we con-
sider the effects induced by a magnetic field. Generally
speaking a magnetic field influences both the normal part of
the junction and the superconducting banks. It is the latter
influence that determines the critical Josephson current in

where {(s,a) is the generalized Riemanhfunctior?* and
a,=(m+ ne)/2mw. Expressing{(—n,a) in terms of Ber-
noulli polynomials using a relation that is well known from
textbooks(see Ref. 54 one gets the desired formula for the
Casimir energy of a 1D SNS junction as

hoe[l @\ 1 short and wide junctions. The corresponding problem was
Ec=27—— (E 120 o= G4 Soived many years ago, and one can find analytical results
. for a short and wide junction in a magnetic field parallel to
Zrhee Casimir force~ and the Josephson currehtat T=0 the NS interfacde.g., in Refs. 63 and 64
In this review we are interested in the superconducting
JEc Ec e JEc evg @ properties of junctions formed by a long ballistic quantum
Fe=-— 9o L' % L aw pl=. wire coupled to bulk superconductors. We will assume that a

(35) magnetic field is applied locally, i.e., only to the normal part

The expression for the Josephson current coincides with th(x)ef the junction (such an experiment could be realized for

zero-temperature limit of Eq30). The generalization of the mst.ance .W'th the help Of. a magnetic tip a"?d a scanning tun
) - . . neling microscope In this case the only influence of the
calculation method to finite temperatures is straightforward, o ) i
I . . “magnetic field on the electron dynamics in a single channel
The additional cohesive force between two bulk metals in- : . i
{or few-channel QW is due to the Zeeman interaction. For

duced by superconductivity is discussed in Ref. 30. In thanoninteracting electrons the Zeeman splitting lifts the double

paper it was shown that for a multichannel SNS junction thisde eneracy of Andreev levels in an SNS iunction and results
force can be measured in modified AFM—STM experiments 9 y ]

S . . in a periodic dependence of the critical Josephson current on
where force oscillations in nanowires have been observed.

. T magnetic field®

The calculation of the Casimir energy for a system of Interaction effects can easily be taken into account for a

interacting electrons is a much more sophisticated problen& : o ] . o
: : D SLLS junction in a magnetic field by using bosonization

In Ref. 47 this energy and the corresponding Josephson cur-~ . A :
rent were calculated analytically for a special exactly soly-€chniques. The term in the Hamiltonidt,, which de-
able case of a double-boundary LL. Unfortunately the cas§C'iP€S the interaction of the magnetic fi#ddvith the elec-
considered there corresponds to the attractive regime of LLEON SPINS(X) is in bosonized fornisee, e.g., Ref. 46
(9,=2 in our notation; see Ed6)), and the interesting re- 1
sults obtained in Ref. 47 cannot be applied for electron trans-  fj_— — ngBBzJ dxS,(X),S,(X) = —— dy @, , (36)
port in quantum wires fabricated in a 2DEG or in individual N2

SWNTSs, where the electron—electron interaction is known to . .
be repulsive. whereg; is the g factor, ug is the Bohr magneton, and the

scalar fieldp,, is defined in Eq(16). As is easy to see, this
interaction can be transformed away in the LL Hamiltonian
3. THE EFFECTS OF ZEEMAN SPLITTING AND SPIN-ORBIT by a coordinate-dependent shift of the spin bosonic field
INTERACTION IN SNS JUNCTIONS .= ¢, + A xlfive\27m, whereA,=g;ugB is the Zeeman
. . . . plitting. Thus the Zeeman splitting introduces an extra
In the previous Sectpn we considered the mfluencg 0E—dependent phase factor in the chiral components of the
electron—electron interactions on the Josephson current in 3Brmion fields, and so the Zeeman interaction can be readily

S—QW-S juncti_on. AIthom_Jgh aI.I galculations_ WETe DPErtaken into accoufit by a slight change of the bosonization
formed for a spin-1/2 Luttinger liquid model, it is readily formula (13)

seen that the spin degrees of freedom in the absence of a

magnetic field are trivially involved in the quantum dynam- lﬂ(y,zt)r(X,t)IeXF(iKn X)Wy (X1,

ics of our system. In essence, they do not change the results ’ ' '

obtained for spinless particles. For noninteracting electrons A,

spin only leads to an additional statistical factor ofspin Kﬂ,tr:4hUF no, no0==1 (37)

degeneracy in the thermodynamic quantities. At the first

glance spin effects could manifest themselves in SLLS juncThe phase factor appearing in E§7) results in a periodic
tions, since it is known that in a LL the phenomenon ofdependence of the Josephson current on magnetic field. In
spin—charge separation takes pl&t@ne could naively ex- the presence of Zeeman splitting the critical current, say, for
pect some manifestations of this nontrivial spin dynamics iran SLLS tunnel junction, Eq(21), acquires an additional
the Josephson current. Spin effects for interacting electronsarmonic factor cog(;/A,), the same as for noninteracting
indeed do not reduce to the appearance of statistical factgparticles.
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3.1. Giant critical current in a magnetically controlled tunnel A§= m(2k+1)A,, k=0,1,2,.., (39

junction

i . . . a resonance Josephson curréaftorder \/5) is developed.
Interesting physics for low-transparency junctions ap-a; 17— it takes the form

pears when resonant electron tunneling occurs. In this sub- _
section we consider the special situation when the conditions ()= s /D Sing (40)
for resonant tunneling through a junction are induced by su- A L |sin(@/2)|"

perconductivity. The device we have in mind is an SNINSThis expression has the typical form of a resonant Josephson

ballistic junction formed in a 2DEG with a tunable tunnel : . A .
A L . current associated with the contribution of a single Andreev
barrier (“I” ) and a tunable Zeeman splitting which can be 40 . ;
level™ One can interpret this result as follows. Let us as-

provided for instance with the help of a magnetic tip and a . S .
. . ; . sume for a moment that the potential barrier in a symmetric
scanning tunneling microscopSTM). In quantum wires

fabricated in 2DEG the effects of electron—electron interac-S NINS Junction s '”f'r_"te- Then the system breaks up into
wo identical INS-hybrid structures. In each of the two sys-

tions are not pronounced, and we will neglect them in whaﬁ . . )
ems de Gennes—Saint-James energy levels with spacing

follows. . _ 2aA | are formed! For a finite barrier these levels are split
Resonant electron tunneling through a double-barneEj i h ch - litt
mesoscopic structure is a well studied quantum phenomenonue o tunne 'ng with ¢ are}ctenstlc sP |tt|ng energy
~ DA . The split levels, being already localized on the

which has numerous applications in solid state physics. The
. . PP - phy v¥hole lengthL between the two superconductors, are noth-
manifestations of resonant tunneling in the persistent curren

have recently been studied both in supercondubliagd in "9 but the Andreev—Kulik energy levels, i.e., they depend
3 on the superconducting phase difference. Although the par-
normal system&®

In these papers a double-barrier system was formed btIal current of a single Igvel IS Iargg»(JB) '(see Refs. 40
nd 67, the current carried by a pair of split levels is small

the two tunnel barriers at the NS interfatesr in a normal (~D) due to a partial cancellation. At=0 all levels above
metal ring®® It was shown that for resonance conditidnes- . P :
the Fermi energy are empty and all levels bel&wy are

lized for ial f junction lengthr interbarrier . ) ) > .
a ed for a specia se’g of junction lengffie te_z ba_ © filled. Thus, in a system without Zeeman splitting the partial
distance®) a giant persistent current appears which is of the : : : .
. . . cancellation of currents carried by pairs of tunnel-split en-
same order of magnitude as the persistent current in asystegg levels results in a small critical current-D). The
with only a single barrier. In the case of the SINIS junction ggman splittingh , of orderA, (see Eq(39)) shifts tﬁe WO
considered in Ref. 67 the critical supercurrent was found toZ . P , L L q
. : .. sets(“spin-up” and “spin-down”) of Andreev levels so that
be proportional toyD. Notice that the normal transmission . T .
o . . : the Fermi energy lies in between the split levels. Now at
coefficient for a symmetric double-barrier structdre., the

structure with normal leagl@t resonance conditions does not Zn%oﬂlyeazztf;v?;rsg(e\/lﬁs) %Cg:ep'ﬁg’osngu:?; tre;ur:::selrt'lh:n
depend on the barrier transparency at all. This means that fgruantizped electronghole s ectrurr)n is formed .b Andreev
the hybrid structure considered in Ref. 67 the superconducq . . P y
tivity actually suppresses electron transport. scattering at the NS interfaces, the resonance structure for a

Now we showi® that in a magnetically controlled single- single-barrier junction dis_appears when the leads are in the
barrier SFIFS junctiort“F” denotes the region with nonzero normal (nonsuperconductujgstatg. Thus the electron trans-
Zeeman splittingthere are conditions when superconductiv- port through the normal region is enhanced by superconduc-

ity in the leads strongly enhances electron transport. Namel)ﬁ\]/gy'eil:f;:%;‘ Sog'g e{;i?\%g:?gg;gtﬂg%ﬁﬁ ;rsuiﬁle}lef-ct));rrier
the proposed hybrid SFIFS structure is characterized by g 9 P 9

. . . unction.
iant critical currentl.~ /D, while the normal conductance J . :
% is proportional toDC The resonant transport described can occur not only in a

For a single-barrier SFIFS junction of length where symmetric junction. For a given value of the Zeeman split-

the barrier is located at a distant€L measured from the ting A2 from Eq.(39) there is a set of pom?%(speuﬁed by

i i (k) i junc-
left bank, the spectrum of Andreev levels is determined fron{ir:)en')r coordinates,” measured from the middie of the junc

the transcendental equatfn

2E*A, 2E+ A, xK =+
+Rcos +D cosep=0, (38) m 2k+1
Ay AL-a _ , . _ .

_ . (mis an integer in the interval €m=<k+1/2) at which a
whereA,=fivg/x, D+R=1, andA; is the Zeeman split-  parrier still supports resonant transport. The temperature de-
ting. In the limit Az=0 Eq. (38) reduces to a well-known enqgence of the giant Josephson current is determined by the
spectral equation for Andreev levels in a long ballistic SNSenergy scaleS~ \/BA,_ and therefore at temperaturés- 8

. . . . . ’70 X
junction with a single barrief? o o which are much lower thar , all resonance effects are
At first we consider the symmetric single-barrier junc-,,oched out.

tion, i.e., the case when the scattering barrier is situated in
the middle of the normal region=L/2. Then the second
cosine term in the spectral equation is equal to 1, and E
(38) is reduced to a much simpler equation which is easily
solved analytically. The evaluation of the Josephson current It is known that the proximity effect produced in a wire
show$® that forD<1 and for a discrete set of Zeeman split- by superconducting electrodes strongly enhances the normal
tings, conductance of the wire for certain value of the supercon-

L (41)

COoS

.2. Giant magnetic response of a quantum wire coupled to
superconductors
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ducting phase differencégiant conductance oscillatioffs. 50

For ballistic electron transport this effect has a simple physi- T=0.2K

cal explanatiof? in terms of Andreev levels. Consider a mul- 40 T=0.8K

tichannel ballistic wire perfectlywithout normal electron 30 T=3.2K

backscatteringcoupled to bulk superconductors. The wire is £

assumed to be connected to normal leads via tunnel contacts. <20

In the first approximation one can neglect the electron leak-

age through the contacts, and then the normal part of the 10

Andreev interferometer under consideration is described by a

set of Andreev levels produced by superconducting mirrors. 0

When the distancé between the mirrors is much longer -10 \ . L | )

than the superconducting coherence lengthéy=rAve/A 04 06 08 10 12 14 16

(Ais 2th superconducting gaphe spectrum takes a simple o/n

form: FIG. 6. Dependence of the magnetizatibh of an SNS junction on the
) hv(j) superconducting phase difference for different temperatures.

Eg{gzz—f[w(zw 1)*e], N=0,+1,%2,.., (42

wherev{) is the Fermi velocity of thgth transverse channel &t high temperaturesTé-A, ) is exponentially small and
(j=1,2,..N,). It is evident from Eq.(42) that at special does not contribute to the total ma.gne.tlzatlon of the junction.
values of the phase differenag,=m(2n+1) the energy Al low temperaturesT the magnetization has peaks M'g\.
levels belonging to different transverse chanjatsllapse to  ~N.9xs, where the supercondugtmg phase difference is an
a single multi-degenerateN( -fold) level exactly at the ©dd multiple ofa (see Fig. 6, which is adapted from Ref.
Fermi energy. Thus resonant normal electron transpor@o)- A quahtgtlv_e ex_planatlon for thls_resonz;nce behavior of
through a multichannel wiréhe situation which is possible the magnetization is as follows. It is knofnthat for ¢

for symmetric barriers in the normal contactwill be :(Gf?E(Z”*l)W (n is an integer the two Andreev levels
strongly enhanced at= ¢, . The finite transparency of the Ea '==Az/2 become &, -fold degenerate. .
barriers results in a broadening and a shift of the Andreev At T—0 the filled stateE§, ) dominates in the magneti-

levels. These effects lead to a broadening of the resonand@tion ate=e¢,, since at other values of superconducting
peaks in giant conductance oscillations at lowPhase the sets of Andreev levels corresponding to different

temperatured® transverse channels contribute to the magnetizajteags.

The magnetic properties of a quantum wire coupled td43). (45] with different periods in “magnetic phasey;

superconductors can also demonstrate a behavior analogotk§-» in general, incoherentlyand their contributions par-

to the giant conductance oscillations. We consider a |ongt'ially cancel each other. Notice also that for a fixed volume
perfectly transmitting SNS junction in a locépplied only V. the number of transverse channbls has a steplike de-

to the normal regionmagnetic field. In this case the only pendence on the wire diameter. Thus at resonance values of
influence of the magnetic field on the Andreev level structurdhe phase difference= ¢, one can expect a steplike behav-
comes in through the Zeeman coupling. The thermodynamil of the magnetization as a function of wire diamefer.
potential) ,(¢,B) calculated for Zeeman-split Andreev lev- This effect is a magnetic analog of the Josephson current

els i0 quantization in a short SNS junctidh,considered in Sec.
2.1.
¥ <& (—1)F coske cosky;
B @ cosKy;
QA(QD’B)_“T% kgl K sinh( ZwkT/A,(_j)) - 43 3.3. Rashba effect and chiral electrons in quantum wires
Herer=AZ/A(j), whereA,=gugB is the Zeeman energy Another type of system where spin is nontrivially in-

splitting, A(Li)zﬁvgi), U(Fi) is the Fermi velocity in thgth ~ volved in the quantum dynamics of electrons are conducting
transverse channel, afgl} is the set of transverse quantum structures with strong spin—or0) interaction. It has long
numbers. In Ref. 30 the normal part of the SNS junction waeen knowf?® that the SO interaction in the 2DEG formed in
modeled by a cylinder of length and cross-sectional area & GaAs/AlGaAs inversion layer is strong due to the struc-
S=V/L. Hard-wall boundary conditions for the electron tural inversion asymmetry of the heterostructure. The appear-
wave function on the cylinder surface were assumed. TheAnce in quantum heterostructures of a spin—orbit coupling
the set{j} is determined by the quantum numbefgj that  linear in electron momentum is now called the Rashba effect.
label the Zeroey, of the Bessel functiorjl(yl n):01 and The Rashba interaction is described by the Hamiltonian

the velocityv " takes the form g 9

2 Hgg=ia's Oy =~ O0x =

() 2 , mheL X ay
Ve =\ = SF_)’mZ v (44) i i i

m m whereoy(,, are the Pauli matrices. The strength of the spin—

It is evident from Eq(43) that the superconductivity-induced ©OrPit interaction is determined by the coupling consiags,
which ranges over a wide interval (1-2010 °eV-cm

: (46)

magnetization
9 for different systems(see, e.g., Ref. 31 and references
__9a(e,B) (45 therein. Recently it was shown experimentdfty’’ that the
A JB strength of the Rashba interaction can be controlled by a gate
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e(p) 1D quantum wiré! Notice that the spectrum proposed in
Refs. 31 and 79Fig. 7, solid lines for spin projectionsloes
not hold for strong SO interactions, whan is not small.
Spin is not conserved in the presence of the SO interaction,
and the prevailing spin projection of electron states in
l quasi-1D wires has to be independently calculated. It was
2 l T 2 shown in Ref. 32 by a direct calculation of the average elec-
tron spin projection that for energies closestothe electron
(‘) <> spin projection for strong Rashba interacticcomparable
< ! with the band splitting in the confining poteniias strongly
\ '::-::1 / p correlated with the direction of the electron motion. Namely,
.......................... g the right-moving R) and left-moving () electrons always
have opposite spin projections regardless of their velocities
(see Fig. 7, where the parentheses indicate the spin projec-
FIG. 7. Schematic energy spectrum of 1D electrons with dispersion asymyjqn for strong Rashba interactipriFor our choice of Rashba

metry. Particles with energies close to the Fermi enesgyave an almost . . .
linear dependence on momentum and are classified by their Fermi velocitie‘§O Hamiltonian, Eq(46)’ the R electrons kx> O) will be

(v4r subbandl, v,r subband). The solid lines for spin projections corre- - down-polarized” ((oy)=—1) and thel electrons kK,
spond to the case of weak SO interaction; the arrows in parentheses indicate 0) will be “up-polarized” ((oy)=+1) to minimize the

the spin projections in subbaridfor strong Rashba interaction. main part of electron energy(h2/2m)<kx+ e ma’so/ﬁ>2 in
the presence of strong spin—orbit interaction.

voltageaso(Vg). This observation makes the Rashba effect Ch'Ta' electr_on_s in-a 1!? quantum wire refu_lt in such
teresting predictions as “spin accumulation” in normal

a very attractive and useful tool in spintronics. The best" &2 littina-induced .
known proposal based on the Rashba effect is the spinvs-vIre or. Zeg%%n-sp ltting-induced  supercurrent in- a
modulator device of Datta and D&S. ~QW=S junctiory

The spin—orbit interaction lifts the spin degeneracy of
the 2DEG energy bands pt~0 (p is the electron momen-
tum). The Rashba interactigizq. (46)] produces two sepa- 3.4. Zeeman-splitting-induced supercurrent
rate branches for “spin-up” and “spin-down” electron states:

It was shown in the previous subsection that under the
p°  aso conditions of the Rashba effect in 1D quantum wires the spin
e(p)= ﬁiTm'- (47) degree of freedom is strongly correlated with the electron
) . momentum. This observation opens up the possibility of
Notice that under the conditions of the Rashba effect thenagnetic control of an electric current. It is well known that
electron spin lies in a 2D plane and is always perpendiculag, ring-shaped conductors a current can be induced by mag-
to the electron momentum. By the terms “spin-uffSpin-  hatic flux due to the momentum-dependent interaction of the
down”) we imply two opposite spin projections at & given gjgciromagnetic potentiah with a charged particleH
momentum. The_ spectrur@d7) does .not wolatg left—right =(e/mc)p-A. Chiral properties of electrons in quasi-1D
symmetry; that is, the electrons with opposite momenta g antum wires allow one to induce a persistent current via a
(£p) have the same energy. Actually, the time reversal SYMhure  spin (momentum-independent interaction H
metry of the spin—orbit interactiofEq. (46)] imposes less —gusSH. Below we consider the Josephson current in a
strict limitations on the electron energy _spectru_m, name_lyballistic S—QW-S junction in the presence of Rashba spin—
eq(—P)=e-4(p), and thus the Rashba interaction can ing it interaction and Zeeman splitting. We will assume at
principle break the chiral symmetry. In Ref. 31 it was showngirst that SO interactions exist both in the normal part of the
that in quasi-1D quantum wires formed in a 2DEG by aj,nction and in the superconducting leads, so that one can
Iatc_—:‘rally conﬂnmg pot.ent|al the electron spectrum is Characheglect the spin rotation accompanied by electron back-
terized by a dispersion asymmetey,(—p)#e,(p), This  gcattering induced by SO interactions at the NS interfaces. In
means that the electron spectrum linearized near the Fermginer words the contacts are assumed to be fully adiabatic.
energy is characterized by two different Fermi velocitieSthis model can be justified at least for a weak SO interac-
vizr and, what is more important, electrons with largeion The energy spectrum of electrons in a quantum wire is
(Ferm) momenta behave as chiral particles in the Sense thadhown in Fig. 7 and the effect of the SO interaction in this
|n(2§aach subbandcharacterized by Fe_rm|_velocny(p) OF  approach is characterized by the dispersion asymmetry pa-
v¢”’) the direction of the electron motion is correlated with rameten ,, Eq. (48).
the spin projectiott'’®(see Fig. 7. It is natural in this case to For a perfectly transparent junctioB & 1) the two sub-
characterize the spectrum by the asymmetry parameter  pangs1 and 2 (see Fig. 7 contribute independently to the
Andreev spectrum, which is described by two sets of I&Vels

Vi~ U2F
a= (48)
ViptUoF 1 o+ x
. .  EW =g AD| ng S 42

which depends on the strength of the Rashba interaction n.n L 2 27 )’
Na(aso=0)=0. The asymmetry parameter grows with in- (49)
crease ofagg and can be considered in this model as the @ — . A®| 4t £+ P X2
effective dimensional strength of the Rashba interaction in a m.7 L 2 Ton )



Low Temp. Phys. 30 (7-8), July—August 2004 Krive et al. 565

where the integera,m=0,=1,+2,... are ordinary quantum 1.0
numbers which label the equidistant Andreev levels in a long 0.8+
SNS junctior?® »==1, AP =fv ;e /L (j=1,2), ande is
the superconducting phase difference. The magnetic phases 061
xj=Az/A{ characterize the shift of Andreev energy levels 0.4 1
induced by the Zeeman interaction. Notice that the relative 0.2k
sign between the superconducting phasand the magnetic :? ol
phasey; is different for channeld and2. This is a direct - 3
consequence of the chiral properties of the electrons in our ~ —0.2f
model. In the absence of dispersion asymmetry:E v, -0.4})
=vg) the two sets of levels in Eq49) describe the ordinary —06l
spectrum of Andreev levels in a long, transparent SFS junc- )
tion (“F” stands for a normal region with Zeeman splitting '0‘80 5 4 6 8 10 12 12 16 1
14 16 18 20
1 [ X o
En po=mAL N+ §+ 77%4-0'%) , mo==x1
(50) FIG. 8. Dependence of the normalized anomalous Josephson ciyrehy
. o L (Jo=evg/L) on the dimensionless Zeeman splitting,/A_ (A,
Knowing the energy spectrum explicitlhEq. (49)], it is =#vg /L) for asymmetry parametar,=0.1. The different plots correspond
straightforward to evaluate the Josephson current. It takes the different temperature3: 0.1T* (1); 1.5T* (2); 3.5T* (3), where T*
form®? =A, /27,
I T.A) = ZiTE (—1)k+t sink(¢+x1) netic field with the electric fieldnormal to the planethat
RYT R & sinh 2k T/A (M) induces the Rashba interaction determines the direction of

the anomalous supercurrent. In other words the change of the
. (51) sign of the SO interaction in Eq46) or the sign ofA,
makes the supercurrent E2) change sign as well.
We now discuss briefly the case of a strong Rashba in-

HereT is the temperature. The formal structure of Efl) is . o = .
obvious. The two sums in E@51) correspond to the contri- teraction(the charactenstu; momentukg= m/ﬁaSO(VQ). IS
of the order of the Fermi momentymThe electrons in a

butions of magnetically shifted sets of levdland2 in Eq. ntum wire with strona Rashb ling are chiral oar
(49). In the absence of any SO interaction the Zeeman splitgua u e strong Rashba coupiing are chiral par-

ting results only in an additional factor of c&d( /A, ) in the t'.(f[leS; Fhat IS, tk;e rlgzh_tr—hand .Ieft-movmg p?rtlcles have cippo—
standard formula for the supercurrent through a perfectl)é'(g3 _s;:ln prt(_)Jec_ Iotnh i 3Dere IS ho rzaS(t)_n OI asdsurr\}\? a s_”r(f)nlg
transmitting long SNS junctior. The most striking conse- interaction in the superconducting feads. Ve witl fol-

quence of Eq(51) is the appearance of an anomalous JO_Iow the approach taken in Refs. 32 and 80, where the system

sephson current, = J(¢=0), when both the Zeeman split- was modeled by a quantum wire o+ 0) attached to semi-

ting (A,) and dispersion asymmetry\{) are nonzero. At infinite leads Wltha30=0. In this model the SN mterfacg
hi ) . acts as a special strong scatterer, where backscattering is ac-
igh temperature$=A}"’ the anomalous supercurrent is ex-

ponentially small. In the low-temperature regiﬂiéA(L” it companied by a spin-flip process. For a general nonresonant

: . . : .situation the dispersion asymmetry is not important in the
is a piecewise-constant function of the Zeeman energy sphtl-imit of strong Rashba interaction, and we can puk

sink(¢—x2)
sinh(27k T/A (%))

ting 4z, ~v,e~vg. Then, up to a numerical factor, the Josephson
= kil current atT=0 takes the form
e (—1) A
Jan(AZ): Ekgl —k U1g SIN kA(l) N
B ev
3(¢,A7)~Deglaso) —sin| ¢+ 2| (53)
[ Ay L Ay
—UoF SIN kw . (52) X )
Ay Here Dgi(aso) <1 is the effective transparency of the

junction. It can be calculated by solving the transition prob-
lem for the corresponding normal junctidhAnyway, in the
NS-interface model considergaonadiabatic switching on

of the Rashba interactipreven in the limit of strong Rashba
interaction the anomalous supercurrdgt=J(¢=0,A) is
small because of the smallness of the effective transparency
of the junction. One could expect a large current only for the
gtpecial case of a resonant transition. This problem has not
yet been solved.

For rational values i /v,r=p/q (p<q are integerp
Janis a periodic function of the Zeeman energy splitting with
period A ,= quA(l); otherwise it is a quasiperiodic func-
tion. The dependence of the normalized supercurdgitl,
(hereJg=evg/L, vp=(v1et+voe)/2) on the dimensionless
Zeeman splittingy=A,/A, for A,=0.1 and for different
temperatures is shown in Fig. 8. We see thaflat0 the
Zeeman-splitting-induced supercurrent appears abruptly
finite values ofA ; of the order of the Andreev level spacing.

Let us now imagine the situation when the Zeeman split-
ting arises due to a local magnetic figlacting only on the 4. CONCLUSION
normal part of the junctionapplied in the 2D plane normal The objective of our review was to discuss the qualita-
to the quantum wire. Then the vector product of that magtively new features of the Josephson effect that appear in
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S—-QW-S hybrid structures. Quantum wires are characteison current are extremely sensitive to small variations of the
ized by a 1D or quasi-1D character of the electron conduchias voltage and to changes in the frequency of the micro-
tivity. Electron transport along QWs is ballistic, and due towave field. This picture, which differs qualitatively from the
the weak screening of the Coulomb interaction in 1D it isfamous Shapiro effectis a direct manifestation of the role
described by a Luttinger liquid theory. Thus the first questiorthe strong Coulomb correlations play in the nonequilibrium
wanted to answer was, what is the Josephson effect in asuperconducting dynamics of mesoscopic weak links.
SLLS junction? It was shown that although electrons do not ~ The authors thank E. Bezuglyi, L. Gorelik, A. Kadi-
propagate in a LL weak link the supercurrent in a perfectlygrobov, and V. Shumeiko for numerous fruitful discussions.
transmitting SLLS junction coincides exactly with that in an llya V. Krive and Sergei |. Kulinich acknowledge the hospi-
SNS junctior? This “no renormalization” theorem is analo- tality of the Department of Applied Physics at Chalmers Uni-
gous to the result known for a LL adiabatically coupled toVersity of Technology and Geborg University. Financial
nonsuperconducting lead$.For a tunnel SILLIS junction support from the Royal Swedish Academy of Scien(er-
the dc Josephson current is described by the famous Joseg€i . Kulinich), the Swedish Science Research Council
son current—phase relation, only now the effective transpafRobert I. Shekhter and the Swedish Foundation for Strate-
encyD <1 defined byd=J,Dsine (WhereJy=evg /L), gic ResearctiRobert I. Shekhter and Mats Jongas grate-
depends strongly on the aspect rafi. of the LL wire (@ fully acknowledged.
~\g is the width of the nanowije temperature, and
electron—electron interaction strength. This réduls a  E-mail: Shekhter@fy.chalmers.se
manifestation of the Kane—Fisher effédin Mesoscopic Su- Uit was recently observed in: T. Baug al, “Supercurrent and f’:onduc—

. . . tance quantization in superconducting quantum point contact,” cond-mat/
perconductivity. It was also interesting for (8nd we hope 0405205, May 11, 2004.
for the reader as wellto find a close connection, rooted in
the Andreev boundary conditions, between the physics of a
long SNS junction and the Casimir effe(see Sec. 2.3. 1B. D. Josephson, Phys. Lett, 251 (1962.
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In this paper we address several new developments in the theory of the dc Josephson effect in
superconducting weak links. We analyze the interplay between quantum interference

effects and Andreev reflection in SNS nanojunctions with insulating barriers and demonstrate that
these effects may qualitatively modify the Josephson current in such structures. We also
investigate the impact of the parity effect on persistent currents in superconducting nanorings
interrupted by a quantum point contd@QPQ. In the limit of zero temperature and for

an odd number of electrons in the ring we predict complete suppression of the supercurrent across
a QPC with one conducting mode. In nanorings with SNS junctiofisséate can occur for

an odd number of electrons. Changing this number from even to odd ysgldataneous
supercurrent in the ground state of such rings without any externally applied magnetic

flux. © 2004 American Institute of Physic§DOI: 10.1063/1.1789914

In 1926 Albert Einstein posed a remarkable question: tional to the voltage/. Equation(2) and the related oscilla-
“Of particular interest is the question whether a link betweentions of the supercurrent represent the essence ofathe
two superconductors also turns superconducting.” The andosephson effect
swer to this question was provided by Brian Josephson in  Soon after Josephson’s predictions a microscopic theory
19622 It was predicted by Josephson that dissipativelessf both the dé and aé*® Josephson effects was constructed,
flow of Cooper pairs between two different superconductorsaand these effects have been observed experimefitally.
separated by an insulating barrier is possible provided thifuge number of publications and several monographs have
supercurrent does not exceed some critical valiye Fur-  been devoted to various aspects of these effects. It has turned
thermore, the dependence of this current on the phases ofit that the physics encoded in these phenomena is very rich
macroscopically coherent wave functions of Cooper pairand important for understanding the basic properties of su-

was established in a very simple fofm: perconductivity itself. More than forty years after its discov-
ery the Josephson effect is still attracting the attention of
ls=I.sing, (1) many researchers and keeps providing us with new and in-

teresting physics.

where ¢ is the difference between the phases of the BCS In this paper we will discuss several new phenomena for
order parameters of two superconductors. Equationep- which a theoretical understanding has only very recently
resents thelc Josephson effecEinstein’s questiohturned ~ been achieved. In the next Section we very briefly review
out to be answered in the affirmative. already well-known and established results which concern
What if the total current flowing through the barrier is the dc Josephson effect in various types of superconducting
larger thani .2 In this case a part of the net current across theveak links. Sections 2 and 3 are devoted to possible new
barrier is transferred by normal electrofosiasiparticlesand  effect$® which emerge and gain importance as one de-
the rest of it is carried by Cooper pairs. While the secondtreases the size of a weak link, eventually turning it to a
contribution, I, remains dissipativeless and is again de-nanostructure with only few conducting channels. Fabrica-
scribed by Eq.(1), the first—quasiparticle—contribution to tion of such quantum point contad®PCs—unthinkable at
the current is dissipative and, hence, causes a nonzero volfie time of discovery of the Josephson effects—is now be-
age dropV across the insulating barrier. In the presence offoming a routine procedure. Hence, the new effects dis-
th|s Vo|tage the Coherent phase diﬁeremacquires a t|me cussed here C-an be direCtly observed and inVeStigated in a
dependence described by another famous Josephson relati@dern experiment.

ip  2eV 1. INSTEAD OF INTRODUCTION

at o’ @ Relatively soon after Josephson’s discovery it was un-

derstood that the nondissipative transport of Cooper pairs

Combining Egs(1) and(2), one immediately arrives at the between two superconductors can take place not only
conclusion that for any nonzer® the supercurrents  through a(usually very thin insulating barrier but also in

changes in time. In the case of time-independent voltagegarious other situations. One of such situation is realized in

one has¢=2eVt# and, hence, the Josephson curréhit  the so-called SNS structures, i.e., if a piece of a normal metal

will oscillate in time with a fundamental frequency propor- is placed in-between two superconductors. In contrast to tun-

1063-777X/2004/30(7-8)/11/$26.00 568 © 2004 American Institute of Physics



Low Temp. Phys. 30 (7-8), July—August 2004 A. D. Zaikin 569

nel junctions, in SNS systems at sufficiently low tempera-decrease the thicknessof the normal metal and gradually
tures appreciable supercurrent can flow even if the normatross over to the limit of short superconducting constrictions.
layer is as thick as few microns. This is because the wavé microscopic description of the dc Josephson effect in this
function of Cooper pairs or, more precisely, the anomalousype of weak links was developed by Kulik and
Green function, penetrates into the normal metal from a suomel’'yanchouk® Also in such systems at low temperatures
perconductor at the lengthug /T for ballistic and~D/T  the current-phase dependence deviates frompsimd the
for diffusive metals(here and belovD =v¢l/3 andl are the  critical currentl .(T—0) is again proportional to the combi-
diffusion coefficient and the elastic mean free path, respetation €qp/€Ry, Where noweg,=A. A crossover between
tively). Clearly, at temperatures much lower than the criticalhe two limits of long SNS junctions and short superconduct-
temperatureT. of a superconductor this length becomesjng weak links can also be described microscopically. In the
large (as compared, e.g., to the superconducting coherencgean case this task can be accomplished trivially by solving
length, and macroscopic quantum coherence is estabhsheﬁiIe Eilenberger equatioﬁ%?lg while in the dirty limit one

between two superconducting banks separated by a normﬁquSt use the Usadel equatidiswhich can be solved only

metal. . . . . umerically. The latter task has recently been carried out in
Further studies revealed an interesting mechanism of 15

Cooper pair transfer in such systems. It turned out that the : . .
L Let us also note that in all the above considerations the
supercurrent flow is directly related to another fundamentally

important phenomenon: Andreev reflectiérSuffering An- intermetallic interfaces were assumed to be perfectly trans-

dreev reflections at both SN interfaces, quasiparticles Wiﬂg)arent. It is also straightforward to generalize the analysis to

energies below the superconducting gap are eﬁectivel)'FCIUde electron scattering at an insulating barrier that can be

“trapped” inside the N layer and form a discrete set of present inside a weak link. For short superconducting junc-

levels®® It was demonstratédthat in the presence of a phase NS containing an insulating barrier with an arbitrary
difference ¢ across the SNS junction these levels acquire £n€rgy-independent transmission the correzgom_jlng generali-
shift proportional to this phase difference. Thus, on the ond@tion has been worked out by Haberketral™ This analy-
hand, the position of the quasiparticle energy levels in sucf§iS Yields a general formula for the Josephson current which
systems can be tuned by the passage of supercurrent, and, Btches with the Ambegaokar-Baratoff resuit the weak

the other hand, the magnitude of this supercurrent can béinneling limit and crosses over to the Kulik-Omel'yanchouk
established by taking the derivative of the quasiparticle enexpressiot? for clean constrictions at transmissions ap-
ergy with respect tap with subsequent summation over the proaching unity. It is interesting that the result of Ref. 16 for
whole energy spectrum. The microscopic thébiyleads to  diffusive constrictions can also be recovered from the for-
the following expression for the current density throughmula of Ref. 21 after its slight generalization. In order to do
clean SNS systems: so one should assume that the transmission is not the same
for all conducting channels but rather obeys the Dorokhov
distribution formula. Combining this formula with the ex-
pression from Ref. 21 and summing over all conducting

This expression is valid &—0 and for N-metal layers with channels, one arrives at the result of Ref. 16 for diffusive
thicknessd> &,~wvr /A, whereA is the superconducting or- Weak links.
der parameter. The most important features of this result are One can also investigate the transport properties of
(i) the strongly nonsinusoidal current-phase relation, cf. Eqsnore-complicated layered structures which contain both nor-
(1) and(3), and(ii) the linear dependence of the current onmal metal layers and insulating barriers. For instance, SNS
the gap in the quasiparticle spectrgy~v/d in the direc- systems with one insulating barrier, such as SINS and
tion normal to the NS interfaces. SNINS, have been analyzed by a number of autfordFor

It is interesting that qualitatively both featurégsand(ii) an extended review summarizing various features of the dc
survive not only for ballistic but also for diffusive SNS junc- Josephson effect in different types of superconducting weak
tions, even though in the latter case the discrete Andreelinks and further references we refer the reader to Refs. 29—
levels are washed out due to elastic scattering of quasipart81l.
cles on impurities in the N metal. It has been demonstrated Most of the results reviewed above were obtained a long
microscopically®~*° that at low temperature¥<D/d? the  time ago and are by now well established and well under-
current-phase relation in diffusive SNS junctions also devistood. One can think that considering dc Josephson effect in
ates from the sinusoidal oHeand the critical Josephson cur- even more complicated structures like, for instance, SNS
rent is again proportional to the gap in the quasiparticle specstructures with two or three insulating barriers, may at most
trum, in this case the Thouless enekgy,= D/d?. The exact yield somewhat more cumbersome expressions but would
value of the critical JOSE‘phSOﬂ current in Iong diffusive SNSnot reveal any new physics beyond what has a||’eady been
junctions can be established only numerically. One finds  understood in simpler situations. Below we will show that
6 that is not the case. On the contrary, in the next Section we
.= 10.82% , (4)  will demonstrate that qualitatively new effects may occur in

SNS junctions with more than one insulating barrier, in par-

whereRy is the junction normal state resistance. ticular, provided the cross section of such junctions is re-

The above results—both for the ballistic and diffusive duced to where it is comparable to the square of the Fermi
limits—are valid for sufficiently long junctions. One can also wavelength.

._e2p|2:vF 3
J—m¢, —m<¢<m. ©)
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2. JOSEPHSON EFFECT AND QUANTUM INTERFERENCE d2k, _ ,
OF QUASIPARTICLES G, (r,r')= j WGwn(x,x’,kH)ékWu*fu>,

In this Section we will analyze the dc Josephson effect inve express the Gor’kov equations in the following standard
SNS systems which contain several insulating barriers. Iform:
this case electrons scattered at different barriers can interfere )
inside the junction. We will demonstrate that such interfer- iop—H  A(X) Go, (XX k) S(x—x")
ence may lead to qualitatively new effects and cause severe | Ax(x) iwn+H, F;n(x,x’,k”) - 0 '
modifications of the supercurrent across the junction. We will (5)
see that these modifications can go in both directions, i.e., .
the Josephson current can be dramatically decreasetbby Herew,=(2n+1)=T is the Matsubara frequency, andx)
structive interferenceof quasiparticles or, on the contrary, iS the superconducting order parameter. The Hamiltokian

increased as a result of theionstructive interference in Eq. (5) reads
The first situation is realized for sufficiently short junc- =
i hile for | th d effect might b A1 7K
ions, while for longer ones the second effect might become  j—_ — —_ 4 L. v(x). 6)
more pronounced. The phenomenon of quantum interference 2m gx*  2m

of quasiparticles is of primary importance for SNS structureﬁ_'ereE”:k”_ e/cA(X), e is the Fermi energy, the term

with few conducting channels. The interest in such structure%(x) takes into account the external potentid@esluding the
has grown considerably after several experimental grOUpBoundary potentia) and A, is the vector potential. The

succeeded in connecting a carbon nanotube to two supercoE'- iitonianf . is obtained fromt (6) by | ting the si
ductors and performing transport measurements in suc amiftoniant, 1S oblained 1ro y Inverting the sign
of the electron charge.

2-34 _ . .
systems?"** More-conventional SNS structures with many As usual, it is convenient to separate fast oscillations of

conducting channels and several insulating barriers are als[ﬂe Green functions exp(+ik,x) from the envelope of these

o_f conS|de_rab_Ie interest, for instance in connection with posfunctions, which changes over distances much larger than
sible applicationgsee, e.g., Ref. 35 and further references

) ) atomic scales. Then one can construct a particular solution of
therein. We will demonstrate that for such systems quantuny o Gor'kov equationgs) in the following form:
interference effects are also important provided there exist
more than two scatterers inside the junction.

On the theoretical side, a significant difficulty is that the
powerful formalism of quasiclassical energy-integrated
Eilenberger Green functiohs'®% supplemented by the b o(X)ga(x)e X iy x
Zaitsev boundary conditio$cannot be directly applied to
systems containing more than one insulating barrier. An im- @)
portant ingredient of the derivatidhis the assumption that and
such barriers are located sufficiently far from each other, so
that interference effectemerging from electron scattering
can be totally neglected. It is also essential that Zaitsev
boundary conditions do not depend on the scattering phases. N
Since here we are just interested in investigating the quantum + o o(X) Fo(x ) ERXD) i x<x!
interference of quasiparticles, we are not in a position to use ®)
the quasiclassical Eilenberger formalism for our purposes.

One possible way of circumventing this problem is to apply =~ These functions satisfy Gor’kov equations satx’.

the formalisni’*® within which the presence of an arbitrary Here¢. are two linearly independent solutions of the equa-

number of barriers in the system can be accounted for byion

linear boundary conditions. Another, even more straightfor-

ward, possibility for analyzing the dc Josephson effect in

structures with several insulating barriers is to directly solve

the exact Gor’kov equatioris.Here we will follow the sec-

ond approach. The solution¢. ; does not diverge ak— + o, while
The results presented in this Section were obtained i, is well-behaved ak— —c. Similarly, the two linearly

collaboration with Galaktiono¥A similar approach has also independent solutiong_, , do not diverge, respectively, at
been used independently by Brinkman and Golufov. X— — o0 andx—s + oo, ’

G“’n(x’x,’kH) o - ,
F;n(x,x’ ’kH) = ¢+1(X)gl(x,)elkx(x_x )

G“’n(x’x,’kH) _ - ,
F;n(X,X, ka) = qbfl(X)fl()(’)eflkx(xfx )

io,—A2  AX)

A*(X)  iw,t+HE,

)Zfo. 9

2.1. General formalism In Eq. (9) we defined
In what follows we will assume that our system is uni- ~a e e? 5 -
form along the directions parallel to the interfadesordi- HL=Flvyxdx— EA\\(X)V\\+ WA\I(X)+V(X)' (10

natesy andz). Performing the Fourier transformation of the
normalG and anomalou§ © Green function with respect to Herek,=muv,= \/kzF—kf, V(X) represents a slowly varying
these coordinates, part of the potential which doesot include fast variations
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possibly occuring at metallic interfaces. The latter will be ie d?k,
taken into account by the boundary conditions to be consid- J= ETE W(VX'—Vx)xuxGwn(X,X',kn) (14
ered below. “n
The functionsf, (x) and g; AX) are determined with and making use of the expressions for the Green functions,
the aid of the continuity condition for the Green functions atone arrives at the following result:

x=x" and the condition resulting from the integration of K :
S(x—x") in Eq. (5). Jogers [(FRdk_sind (15)
A general solution of the Gor’kov equations has the form =0 Jo 2 CcOsp+W
G, (X,x) G, (x.x) whe_re the functiorW depends on Fk_le number of insulating
o ) ) = ) ) +[I1(x’)$+1(x) barriers. This function will be specified below for the case of
Fo, (X:x") Fo,(xx) ] two and three barriers.
o ° ‘ . Note that the integral ovéy, in Eq.(15) can be replaced
+1,(X") 1 2(X) 1€ X+ [15(X" ) p_1(X) by a sum over independent conducting channels:
oy ik, K N
Tl d—2(01e o Zif "Kdk( =S (), (16
T Jo m

For systems which consist of several metallic layers the
particular solution is obtained with the aid of the procedurewhere A is the junction cross section. In this cade, and
outlined above, provided that both coordinatesand x’ R, , may also depend on the channel index
belong to the same layer. Showdchindx’ belong to different
layers, the_ par_ticular solu'Fion is zero pecause in thgt Casg, sINI’S junctions with few conducting channels
the & function in Eq.(5) fails. The functiond; ,34{X") in ] ) ) i ) ) )
each layer should be derived from the proper boundary con- L&t us first consider SNS junctions with two insulating
ditions. These are just the matching conditions for the wav&?arriers, one at each NS interface. In this case the funigtion
functions on the left and on the right side of a potentialin (15 takes the form
barrier, A_l exp@klxx)+Bl_exp(—iklxx) and _A_2 exp(kaX) 4 /R_le Qﬁ
+B,exp(—ikyX), respectively. These conditions have the W= DD Pcosx

1¥2

standard form(see, e.g., Ref. 41
. Q2(1+Ry)(1+Ry) + w2D,D, thnd

D,D,A? oS

A2:(1A1+ BB]_, BZZB*A]_JF a*Bl,

k
|2~ |B|2=12. (12) 2(1-RRy) Quon . 2wyd
Koy + >—sinh
D,D, A Uy

Here x=2k,d+ ¢ is the phase of the produet; B,a} B7 .
2 K1y Equations(15), (17) provide a general expression for the dc

» D=1-R= Koy |2 13 Josephson current in SINS structures valid for arbitrary
] ) ) o transmission®; andD,.
define, respectively, the reflection and transmission coeffi- | ot s first analyze the above result for the case of one
cients of the barrier. Applying these boundary conditions annducting channaN=1. We observe that the first term in
each insulat.ing parrier, one uniquely determines all the UNEq. (17) contains cos(@d+¢), which oscillates at distances
known functions in Eq(11) and thereby completes the con- ot the order of the Fermi wavelength. Provided at least one
struction of the Green functions for our problem. For furtherys ine parriers is highly transparent and{éor sufficiently
details we refer the reader to Ref. 8. long junctionsd=&,) the temperature is highi>v/d this

~ We are now in a position to specify the general expresygilating term is unimportant and can be neglected. How-
sion for the Josephson current across ballistic SNS junctiongyer at lower transmissions of both barriers and for rela-
which contain an arbitrary number of insulating barriers. '”tively short junctionsd=<wv /T this term turns out to be of
what follows we will assume that a thin specularly reflectingine same order as the other contributiongAtq17). In this
insulating barriers(l) are situated at both SN interfaces. c5q6 the supercurrent is sensitive to the exact positions of the
Additional such barriers can also be present inside the Njiscrete energy levels inside the junction, which can in turn
metal. Transmissions of these barriers may take any valu\(?ary considerably il changes at the atomic scalesl/k .
from zero to one. We also assume that electrons propagajence, one can expect sufficiently strong sample-to-sample
ballistically between any two adjacent barriers and that nQyctyations of the Josephson current even for junctions with
electron-electron or electron-phonon interactions are preserﬁteaﬂy identical parameters.

in the normal metal. For simplicity we will restrict our atten- Let us first consider the limit of relatively short SING
tion to the case of identical superconducting electrodes Wi”j\.Jnctions, in which case we obtain
singlet isotropic pairing and neglect suppression of the su-

perconducting order parameter in the electrodes close to the ,_ €A 7siné anr{D—ﬂ 19

SN interface. The phase of the order parameter is settobe =~ 2 D 2T

— @12 (+ ¢/2) in the left (right) electrode. As before, the
thickness of the normal layer will be denoted ty

Employing the standard formula for the current density D(p)=\1—TSiré(p/2) (19

(17

The equations

B

o

R=

where we have defined
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and an effective normal transmission of the junction ev,D;sing
|l=——.

>d (24)

(20

D1D;
T= . . . .
1-R;R,+2VR;R, cosy Provided the transmissions of both NS interfaces are low,
) ) D, ,<1, we obtain in the off-resonance region
Equation(18) has exactly the same functional form as the

result derived by Haberkoret al?! for SIS junctions with an evy ,
arbitrary transmission of the insulating barrier. This resultis = 7-q P1P2Sin¢Y[x], (25)
recovered from our Eq918), (20) if we assume, e.gD;
<D,, in which case the total transmissi¢20) reduces to Where)[x] is a 2r-periodic function defined as
7=D;.

As we have already discussed, the total transmisgion Y[x]= L —m<x<m. (26)
and, hence, the Josephson current fluctuate depending on the Siny
exact position of the bound states inside the junction. Th
resonant transmission is achieved fok,@+ o= *1, in
which case we get

D1D2 el}x\/DlDzsin(b

T the vicinity of the resonancé|y| — 7| <D the above
result no longer holds. Exactly at resonange, = 7, we get

Tro=——————. 21 I= : (27)
res (l— ’_Rle)z ( ) (;b 1 D1 D2 2) 1/2
4dy co—+ — ——\/=
This equation demonstrates that for symmetric junctibps 2 4 D> D

=D, at resonance the Josephson current does not depend
the barrier transmission at all. In this caggs~1, and our
result(18) coincides with the formula derived by Kulik and ev, D sin¢/2
Omel’yanchouk® for ballistic constrictions. In the limit of | = XT
low transmissionsD, ,<1 we recover the standard Breit-

Wigner formulaZre=4D;D,/(D+D,)* and reproduce the while in the strongly asymmetric casB,<D,, we again
result obtained by Glazman and Matvéefor the problem  arrive at expressiof24). This implies that at resonance the
of resonant tunneling through a single Anderson impurityparrier with higher transmissiod, becomes effectively
between two superconductors. transparent even iD,<1. We conclude that foD, ,<1 the
Note that our result§18)—(20) also support the conclu-  maximum Josephson current is proportional to the product of
sion reached by BeenakKérthat the Josephson current transmission®,D, off resonance, whereas exactly at reso-

across sufficiently short junctions has a universal form anthance it is proportional to the lower of the two transmissions
depends only on the total scattering matrix of the weak linkp, or D,.

which can be evaluated in the normal state. Although this ~ we observe that both for short and long SISljunc-
conclusion is certainly correct in the limit— 0, its applica-  tions interference effects may enhance the Josephson effect
bility range depends significantly on the physical nature ofor partially suppress it, depending on the exact positions of
the scattering region. From Eqél5), (17) we observe that the bound states inside the junction. We also note that in
the result(18), (19) applies atd<&, not very close to the order to evaluate the supercurrent across SSNunctions it
resonance. On the other hand, at resonance the above resylin general not sufficient to derive the transmission prob-
is valid only under the more stringent conditiod  ability for the corresponding NINN structure. Although the
<&oD max, Where we defin® ,=max01,D5). normal transmission of the above structure is given by Eq.
Now let us briefly analyze the opposite limit of suffi- (20) for all values ofd, the correct expression for the Jo-
ciently long junctionsd> &,. Here we will restrict ourselves sephson current can be recovered by combining @6)
to the most interesting case=0. From Eqs(15), (17) we  wijth the result8"*in the limit of short junctionsd<D&,
obtain only. In this case one can neglect suppression of the anoma-
lous Green functions inside the normal layer, and, hence, the

Bor a symmetric junctionD, ,=D, this formula yields

—n<¢<m, (28

_ euySing | arctanyz,/z, information about the normal transmission turns out to be
mdzy VZy 124 sufficient. On the contrary, for longer junctions the decay of

Cooper pair amplitudes inside the N layer can no longer be
. :co§£+ 1 (R, +2R;R, cosy) 22) disregarded. In this case the supercurrent will deviate from
1.2 2 Db, "7 12 L0SX), the form (18) even though the normal transmission of the
junction (20) will remain unchanged. This deviation becomes
where R, =R;+R,. For a fully transparent channé, junction (20) wi nu g I viat

. articularly pronounced for long junctions, i.e., fbe &, off
=D,=1 the above expression reduces to the well know yp 9l o

. . esonance and fat>D &, at resonance.
Ishii-Kulik result>12 €0

Generalization of the above results to the case of an
ev arbitrary number of independent conducting chanietsl
l=—3 —7<é<m, (23) s trivial: The supercurrent is simply given by the sum of the

contributions from all the channels. These contributions are
whereas if one transmission is smd@l; <1, andD,~1, we in general not equal because the phase fagter2k,d+ ¢
reproduce the resdft change randomly for different channels. Hence, mesoscopic



Low Temp. Phys. 30 (7-8), July—August 2004 A. D. Zaikin 573

fluctuations of the supercurrent should become smaller witimission below the value-D is a result of destructive inter-
increasing number of channels and eventually disappear iference and indicates the tendency of the system towards
the limit of largeN. localization.

In the latter limit the Josephson current is obtained by  Let us now proceed to the limit of a long junctiahj ,
averaging over all values of the phageThis limit has al- >¢; and T=0. In the off-resonance region fah;=d, we
ready been studied in detf and will not be considered find
here. We will only point out that, as was demonstrated in .
Ref. 8, in the limitN— o« interference effects are effectively | = €vxD1DoD,sing Y xa]~ Ylxol _
averaged out, and exactly the same result can be reproduced 8md, COSy2—COSx1

by means of the Eilenberger formalism supplemented byrhis expression diverges at resonatiice., at y;= or x.

Zaitsev boundary conditions. It is also worthwhile to empha-~ 7} where it becomes inapplicable. In the resonant region
size that the latter statement applies only to junctions with,,~ 7 we obtain

two insulating barriers. Below we will show that for systems

(32

with more than two barriers quasiparticle interference effects _ ev,yD1DgD,sing
turn out to be even more significant, and the correct result for I= 4d\2(1+cosy [T T—sir(#/2)] (33

the current cannot be recovered with the aid of Zaitsev
boundary conditions even in the linit— . 2.3.2. Many-channel junctions
As was already discussed, in the many-channel limit it is
2.3. Josephson current in SINI- “NI”S junctions appropriate to average the current over the scattering phases.
Let us now turn to SNS structures with three insulatingpraCtically in any realistic physical reaIizatio_n the widths '
barriers. As before, two of them are located at SN interfaces2nd dz fluctuate independently on the atomic scale. In this
and the third barrier is inside the N layer at distandgand ~ CaS€ averaging ovey, and x, should also be performed
d,, respectively, from the left and right SN interfaces. Theindependently. Ifd; and d; do not change on the atomic

transmission and reflection coefficients of this intermediateScale but are incommensurate, independent averaging over
barrier are denoted @3, andR,=1—D,, whereas the left the two phases is to be performed as well. Independent av-

and the right barriers are characterized by=1—R, and eraging cannot be fulfilled only in thighysically irrelevant
D,=1—R,, respectively. case of strictly commensurath andd,, which will not be

The supercurrent is calculated along the same lines aconsidered below. . _
for the case of two barriers. The final result is again ex-  1echnically, independent averaging over the scattering
pressed by Eq15), where the functioW is now defined by ~Phasési=x andx,=X\x amounts to evaluating the integral
a substantially more cumbersome expression than for thgf the expression [i+cosxcosfx)] from x=0 to some

case of two barriers. This expression was evaluated in Ref, §ge valuex=L. At =1 the result of this integration is
and will not be presented here. We will skip to the final L/ Vt(1+1t). However, if A IS irrational, the integral ap-
results. proaches the valuelX(14<)/mt, whereK(h)=F(=/2,h)

is the complete elliptic integral.
Let us assume that the transparencies of all three inter-
faces are small compared to unity. After averaging over the
Let us first discuss the case of one conducting channetwo scattering phases we arrive at the final expression for the
In the limit of short junctionsl< ;D .. We again reproduce current:
the result(18), where the total effective transmission of the

2.3.1. One-channel limit

: : ek’ _ A% [AZsir($l2)
normal structure with three barriers takes the form J= —3 Dgrsin(¢T) > ?K o2 , (34)
2t,tot, i ©n=0 %%n n
7= 1+tytoto+ C(pyortoro) (29 \where we define the effective transmission

1
where Det= f d,,u\DD1D. (35
C=cosy; (1 —t2)(1—t2)+cosy,\(1—t2)(1—t3) 0
, _ > > Hence, for similar barriers we obtain the dependedce
*+(COSx1 COSYa~toSINX1 SINY2) V(1 -t)(1-13). o p372 rather thand«D (as would be the case for indepen-
(300  dent barriers The latter dependence would follow from the
calculation based on Zaitsev boundary conditions for the
]Eilenberger propagators. We observe, therefore, that quan-
tum interference effects decrease the Josephson current in
systems with three insulating barriers. This is an essentially
2t,tots quantum effect which cannot be recovered from Zaitsev
(31 boundary conditions even in the multichannel limit. This ef-
fect has exactly the same origin as a quantum suppression of
In particular, in the case of similar barriers with small trans-the average normal transmissi¢¥) due to localization ef-
parencieD,, ~D<1 the average normal transmission of fects. Further limiting expressions for short junctions can be
our structure i§7y~D%2 Suppression of the average trans-directly recovered from Eq31).

Here we definﬁo’Lz: DO,1,2/(1+ Royl'z) and X1,2: 2kXdl,2
+ ¢, ,. For later purposes let us also perform averaging o
this transmission over the phasgs,. We obtain

()=

2ttty + 5+ t5t5+ 55— t2t5t5
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We also note that the current-phase relatief) deviates one to recover the correct results. This is because the contri-
from a pure sinusoidal dependence even though all threbutions sensitive to the scattering phase are effectively aver-
transmissions are smalDy; ,<1. At T=0 the critical Jo- aged out during summation over conducting channels.
sephson current is reached &@t=1.7, which is slightly Quantum interference effects turn out to be even more
higher thans/2. Although this deviation is quantitatively not important in the proximity systems which contain three in-
very significant, it is nevertheless important as yet one moraulating barriers. In this case the quasiclassical approach
indication of quantum interference of electrons inside thebased on Zaitsev boundary conditions fails even in the limit
junction. of many conducting channels. In that limit the Josephson

Finally, let us turn to the limit of long junctionsl; ,  current isdecreasedor short junctions JxD%?) as com-
>¢,. We again restrict ourselves to the case of low-pared to the case of independent barridrg D). This effect
transparency interfaces. At high temperatufesvg/27d; ,  is caused by destructive interference of electrons reflected
we get JxDyDD,exp(—d/&T)), where d=d,;+d, and from different barriers and indicates the tendency of the sys-
E(T)=ve/(27T). In this case the anomalous Green func-tem towards localization. In contrast, for long SNS junctions
tion decays strongly deep in the normal layer. Hence, interwith three barriers an interplay between quantum interfer-
ference effects are not important and the interfaces can bence and the proximity effect leads to enhancement of the
considered as independent from each other. In the oppositlosephson current d&—0: We obtained the dependende
limit T<Duvg/d, however, interference effects become im- «D%? instead ofJ=D? for independent barriers.
portant, and the current becomes proportionaD& rather
than toD?>. Explicitly, at T—0 we get to logarithmic accu-
racy 3. PARITY-INFLUENCED JOSEPHSON CURRENT

B elév,: sing 1d 5D \/D_I D1 36 Let us now turn to a different issue which, to the best of
16772@ 0 HpmD1P2vDoln Do ™ (36) our knowledge, has not_yet_ attracted _much attention in the
literature. Namely, we will discuss an interplay between the
We see that, in contrast to short junctions, in the limit of parity effect and the dc Josephson current in superconducting

thick normal layers interference effects increase the Josephiyeak links. The results presented in this Section have been
son current as compared to the case of independent barriegptained in collaboration with Shardv.

The result(36), as well as one of Eqg34), (35), cannot be It is well known that the thermodynamic properties of
obtained from the Eilenberger approach supplemented biolated superconducting systems are sensitive to the parity
Zaitsev boundary conditions. of the total number of electroffs*® even though this number

N is macroscopically large. This parity effect is a direct con-
sequence of the fundamental property of a superconducting
ground state described by the condensate of Cooper pairs.
By directly solving the Gor’kov equations we evaluated The number of electrons forming this condensate is neces-
the dc Josephson current in SNS junctions containing twearily even; hence, for odd/ at least one electron always
and three insulating barriers with arbitrary transmissionsremains unpaired, having an extra energy equal to the super-
SINI'S and SININI”S junctions, respectively. Our results conducting energy gap. At sufficiently low temperatures a
can be directly applied both to the junctions with few con-clear difference between the superconducting states with
ducting channels(such as, e.g., superconductor—carboneven and oddV has been demonstrated experiment&if
nanotube—superconductor junctiéhs®) and to more con- Can the supercurrent be affected by this parity effect? At
ventional SNS structures in the many-channel limit. We havehe first sight the answer to this question should be negative
demonstrated that an interplay between the proximity effecbecause of the fundamental uncertainty relativis$=1.
and quantum interference of quasiparticles may play a cruShould the electron numbeY be fixed, fluctuations of the
cial role in such systems, causing strong modifications of theuperconducting phasgbecome large, disrupting the super-
Josephson current. current in the system. On the other hand, suppressing fluc-
For the system with two barriers and few conductingtuations of the phase will destroy the parity effect because
channels we found strong fluctuations of the Josephson critief large fluctuations ofV.
cal current depending on the exact position of the resonant Despite that, we will demonstrate below that in certain
level inside the junction. For short junctiods< 3D at reso-  superconducting structures the parity effect can coexist with
nance the Josephson current does not depend on the barri@nvanishing supercurrent. Consider a superconducting sys-
transmissionD and is given by the standard Kulik— tem which can support circular persistent currgi®€9. An
Omel'yanchouk formul¥ derived for ballistic weak links. In  example is provided by an isolated superconducting ring
the limit of long SNS junctionsl> &, resonance effects may pierced by a magnetic fluse, in which case a circulating PC
also lead to strong enhancement of the supercurrent, in this induced in the ring. In accordance with the number—phase
case aff —0 and at resonance the Josephson current is prasncertainty relation the global superconducting phase of the
portional toD and not toD?, as it would be in the absence of ring fluctuates strongly in this case; however, these fluctua-
interference effects. tions are decoupled from the supercurrent and therefore can
While the above results for few conducting channelsbe integrated out without any influence on the latter. In what
cannot be obtained by means of the approach employinfpllows we will show that the parity effect may substantially
Zaitsev boundary conditions, in the many-channel limit andmodify the PC in superconducting nanorings, in particular
for junctions with two barriers the latter approach does allowfor an odd number of electrons.

2.4. Some conclusions
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3.1. Parity projection formalism currentl. Here we will be interested in describing the cur-
In order to investigate systematically the influence of therentS flowing in isol_ated supercon_ducting rings pierced by

electron parity number on persistent currents in supercont—he external magnetic fiu, . Then n the case of even/odd

ducting nanorings we will employ the well-known parity total number of electrons one obtains

projection formalisnf®~°Let us recapitulate the key points

of this approach, closely following Ref. 49. |
The grand canonical partition functionZ(T,u)

=Trexd —B(H—uN)] is connected to the canonical one

Z(T,N) by means of the following equation:

lp— It
e~ It * g5 g (43

where the upper/lower sign corresponds to the even/odd en-
semble and we have defined

&Qelo

e Qp
elo D,

len=—c| —2
v L C( aD,

Z(T,,LL)ZNZZO Z(T,/\/)exp(Q/). 37)

w(®y) ) w(Py)

Here and below# is the system Hamiltoniany is the total
number of electrons, an@=1/T. Inverting this relation and
defining the canonical partition functiog, and Z,, respec-  3.2. Parity effect in nanorings and blocking of the
tively, for even (WV=A) and odd (V=A\/) ensembles, one supercurrent

gets Let us now make use of the above general expressions
1 (= . and investigate the influence of the parity effect on the PC in
Zgo(T)= EJ du e WNelz,, (T,iTu), (38)  superconducting nanorings with quantum point contacts
T (QPCs. Before turning to concrete calculations we shall
where specify the model for our system. We shall consider mesos-
copic superconducting rings with cross sectioand perim-
Zoso(To 1) = ETr{[li(_l)N]e—ﬁ(H—uM} eter L=27R. The rings will be assumed sufficiently thin,
2 i.e., Vs<\_, where\, is the London penetration length.

1 Superconductivity will be described within tHearity pro-
= E[Z(T,M)iZ(T,,quin)] (390 jected mean fieI_d _BCS theory. At suff.iciently low tempera-
tures this description is justified provided that the quantum
are the parity projected grand canonical partition functionsphase slipSQPS°*~*%in the nanorings can be neglected.
For A>1 it is sufficient to evaluate the integral i(88)  This requirement in turn implies that the ring cross section

within the saddle-point approximation, which yields should be sufficiently large. With the aid of the results of
Ref. 51 one concludes that the QPS tunneling amplitude re-
Zeto(T) ~exfl — B(Qejo~ teroNero) I, (40 mains exponentially small provided that the conditien

where)¢ o= —TIn Z,(T,u) are the parity projected ther- >>\§ &y !l is satisfied. Here\g is the Fermi wavelength,

modynamic potentials. They can be presented in the form £o~vr/A is the coherence length, ahds the electron elas-
tic mean free path, which is assumed to be shorter than

Q. =0.~TIn E(liefg(abfaf)) (41) For generic systems QPS effects can usually be neglected
elo 2o 2 ' provided that the transverse sige of the wire/ring exceeds
~10 nm. Hence, the total number of conducting channels in
the ring N,~s/)\§ must inevitably be larg&,>1. In addi-
Q¢p=—TIN[Tr{(x1)Ne AH-11], (42 tion, the ring perimetet. should not be too large, so that one
The chemical potentialg/, are defined by the saddle-point can .dlsrigar.d the QPS-mduced redgctlon of the PC
condition Ny = — 00 o/o(Ts fters) I ters . amplitude? .Fmally, we will neglect the difference between
elo ek Pelo) O elo the mean field values of the BCS order parameter for the

The main advantage of the above analysis is that it al- 29— o .
lows one to express the canonical partition functions an@ gﬁ;:naengf(iﬂg Ezzzzgfjuc;?gs :;sn!;?slt'g%ts grr]%\ﬂ‘g;dl_;he
thermodynamic potentials in terms of the parity prOJected> 1/vA, wherev is the density of states at the Fermi level

grand canonical ones, thereby enormously simplifying the ;
whole calculation. We further note th&k; is just the stan- and A is the BCS order parameter for the bulk supercon-

dard grand canonical thermodynamic potential &hgrep- ductor atT=0._AII these requirements can easily be metin a
modern experiment.

resents th rr ndin tential linked to th rtition . .
esents the corresponding potentia ed to the partitio The task at hand is now to evaluate the thermodynamic

function Z(T,u+iwT). It is easy to s€® that in order to . - :
recover this function one can evaluate the true grand canon otentials( ¢, . Within the mean field treatment these quan-

cal partition functionZ(T,u«), express the result as a sum eltr:?jstﬁ:nssee?ég;%isc?ii motreJ;an g‘;grf ; gr ():'tagflg ::géi%les
over the Fermi Matsubara frequencies=2=T(m+1/2) P 9 P '

and then substitute the Bose Matsubara frequeneigs e
=2nTminstead of the Fermi ones. This procedure will au- Q=0 -2T, In(z cosh—k), (44
tomatically yield the correct expression f&(T,u+inwT) K 2T
and, hence, fof)y,.

Having found the thermodynamic potentials for the even =£~1—2TE In( 2 sinhﬂ) (45)
and odd ensembles one can easily determine the equilibrium K ANN

where
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where Q=Id3r|A(r)|2/g+Tr{E}, g is the BCS coupling The pptimal value of _the phase differe_n@across the
constant, and is the single-particle energy operator: QPC is fixed by the conditioa{}/d¢=0, which reads

L1 J e 2 o 2e 90© 52

= | —ip——2Z _ -c =—— .

A(r) is the vector potential, and(r) describes the potential Here we have made use of the fact that the thermodynamic
profile due to disorder and interfaces. potenna!s of the ring depend both dn, and ¢ only via the

The excitation spectrum, has the form superfluid ~ velocity vs=(1/4mmR)(d—27D,/Py), in

— which case one can patd®,= —(2e/%c)(d/dp). The left-
ex=8(p)=pvst V&A%, (47) " hand side of Eq(52) represents the current flowing inside

where p is the quasiparticle momentung=(p?>—z)/2m, the superconducting_ring(r)z—c&Q“)/aCDX:(evFNr/L)
and 1= u(®,) —mv?2/2. The superconducting velocity vec- X(¢—27®,/®P,). This value should be equal to the current

tor v is oriented in the direction along the ring and is definedacross the QPC, which is given by the right-hand side of Eq.
by the well-known expression (52). Estimating the maximum value of the latter for a

single-channel QPC as=ZA/#, we obtain

h _ ( d)x) 49
Vg=s—=min,| n——1. ®
ST2mR " O ¢22W3X, if L<L*, (53
This expression and the excitation spectrd are periodic 0
functions of the flux®, with period equal to the supercon- ¢=2mn, if L>L*, (54)

ducting flux quantumb,=hc/2e.
Consider the most interesting cabe>0. Making use of
the above expressions, one easily finds

whereL* = &N, /7> &,. In a more general case of a QPC
with N conducting channels, in the expression Edr one

) should set
le=€vspeS, pe=pm(pe) +Mug/2 (49) N
for the even ensemble and T, 7,
n
v
I0=evspos—efsgr(vs), po=p+ ]—)H (50 In what follows we will consider the most interesting
U limit N<N, and L<L*. Due to Eq.(53) in this case the

for the odd one. Herpg,,=MN¢,/V are the electron densities dependencd ¢,(P,) is fully determined by the current-

for the even and odd ensemblgs,s the grand canonical phase relation for the QPC, which can be found by means of

electron density aT=0, v,,=2u/m, andu, is assumed to  Eq. (43) with |,=—(2e/4)dQ{7/d¢. It is convenient to

be small as compared to the critical velocity=A/pg. We  employ the formul&

also note that the second equatior{30) is an implicit equa- N )

tion for the chemical potentiak, . |”b:§ ST sing _ (55)
Equation (49), taken together with Eq(48), coincides fi =1 g COSP+W(wipp)

with that obtained for the grand canonical ensemble. In par-

ticular, the current, represents the well known “saw-tooth”

dependence on magnetic flux. In contrast, for odd ensembles W, (w)=(2/7;)(1+ w?/A%) -1,

there exists an additional flux-dependent contribution to PC ) . )

(50) which cannot be viewed as just a renormalizatiop of where_Tn s the_ transmission of thath conduc_tlng channel.
Unfortunately, this parity effect is rather small in multi- Substituting this function int¢55) and summing overr,

channel rings, as we mentioned above. Estimating the lea€ recovers the standard reStft

ing contribution tol ¢, asl~evgN, /L, we find 2¢ N den(P) en( )
(le—1o)/1 ~1/N,<1. lf(cb)——;n:l P tanh———,
The results(49), (50) hold as long asT<Avg/L. At where

higher temperatures the parity effect gets even smaller and _
eventually disappears at temperatures exceeding the &n(¢)=AV1—T,sin?(¢/2). (57)

pafa“_"'eté‘s T*%N_In(”VVAT*)' _The correspoqding €X" The same summation over Bose Matsubara frequensjes
pressions are readily obtained within our formalism, but Weyields

will not consider them here.

Rather we turn to a somewhat different system—a super- 2e den( ) en( @)
conducting ring interrupted by QPC—in which the parity Ib:_fgl P coth—-—.
effect turns out to play a much more important role. In this
case the thermodynamic potentfalof the system consists of Finally, the difference),— Q= is evaluated as a sum
two different contributions of the ring () and QPS Q%) contributions. The latter is
found by integratind f,,(¢) over the phase differenag:

In the case of short QPS one has

(56)

(58)

Q=0 (u,T, &y, )+ 0 (1, T, ) (51
N
. &
from the bulk part of the ring and from the QPC, respec-  ©_»TS |y cotI-( n(¢)), (59)
tively. n=1 2T
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while the former is defined by the standard expregSion T<T*, substantially affecting, e.g., the current-phase rela-
tion for the QPC. Fofl >0 this relation will deviate from the

dp e(p) _ grand canonical one both for even and odd ensenfbles.
r
'BQE”)ZZVJ (277ﬁ)3|n coth 2T =uVVATe 4T, Finally, we consider superconducting rings containing a
piece of a normal metal. Here we restrict our attention to
Combining all these results with E¢43), we get transparent SNS junctions with lengths of the normal metal
d>¢,. In this case for w<A one has W;(w)
2e O den(P) en( @) =cosh(2vd/vg). Substituting this function int¢55) and re-
lero=— anl EP) tanh 2T peating the whole calculation as above, in the lilhit 0 we
) obtain
(cothgn(¢)) -1 eveN eveN ( 7739”91’)
2T le=——¢, |l,= - . (62)
x| 1+ N 5 . (60) md md N
eﬁ“(brf)l_[l (coth#) +1 These results apply for7<¢<m and should be 2-
=

periodically continued otherwise. We observe that the current
l. again coincides with that for the grand canonical
ensembles! while for odd A the current-phase relation is
shifted by the valuer/N. This shift has a simple interpreta-
tion as being related to the odd-electron contribution
(2elh)9Eyld ¢ from the lowestabove the Fermi levelAn-
dreev stateEy( @) inside the SNS junction. Unlike in QPC,
his contribution does not compensate for the current from
other quasiparticle states. Rather it provides a possibility for
Ia parity-inducedm-junction state in our system. Indeed, ac-
cording to Eq.(62) for single mode SNS junctions the “saw-
tooth” current-phase relation will be shifted exactly by

For more than one conducting chanmel1 within the in-

Equation (60) represents the central result of this Section.
Together with Eq.(53) it establishes the complete depen-
dence of the PC on the magnetic fldxin isolated supercon-
ducting nanorings with QPCs.
Consider the most interesting limit— 0. In this case for

an even number of electrons in the ring the PC is given b
expression(56), which coincides identically with that for
grand canonical ensembl¥s2* On the other hand, for an
odd number of electrons the PC will acquire an additiona
contribution which turns out to be most important for the
case of a single-channel QPE= 1. In that case the expres-

sion In thg square brackets of H§O) reduces to zero, i.e., terval — 7<¢<m there exists a twofold degenerate mini-

the PC will be totally blocked by the odd electron. Thus, we . — 54
redict a novel mesoscopic effect—parity-influenced block- energy(zero current state occurring a=* m/N.

P . P! parity= In the special cas&l=2 the current-phase relation(¢)

ing of PC in superconducting nanorings with QPCs. turns -periodic

oo L oL P T3 The well Known eaue of superconducing s e
' b rupted by am-junction is the possibility opontaneousu-

\ﬁaAge C?:;'db;]tt'ﬁgs (I;fcd;sscrete Andreev leves.(¢)= percurrent developing in the ground stateAlthough this
+AD(4) Q feature is inherent to any type afjunctions, in the case of
26l JE JE the standard sinusoidal current-phase relation, such sponta-
I(p)= W ﬁ—_f,(E,)Jr a_+f+(E+) , (61 neous super_curr_ents can occur only for suf_ficiently_larg_e val-
¢ ¢ ues of the ring inductancé.® In contrast, in the situation
. ) : : - studied here the spontaneous current state is realized for any
whereD(¢) is defined in Eq(19). Using the Fermi filling . . ; . _
factors for these levelf. (E.)=[1+ expE. ()] one inductance of the ring because of the nonsinusoidal depen

arrives at Eq.56). If we now fix the number of electrons dencel o(¢) (62).

inside the ring and consider the lirit~0 the filing factors ]flﬁffgzr tc’”ggToogjtrrgtitmt'}i‘eﬁsﬁfg“tﬁ: gr‘]aetrno ;Xter'
will be modified as follows. For even numbehg all of the PP Y : 9y

. ) : ) an SNS ring with an odd number of electrons can be written
electrons are paired, occupying states with energies below

the Fermi level. In this case one has(E_)=1, f (E,) Ih the form
=0, the current is entirely determined by the contribution of ®2  mhueN ®,sgnd |2
the quasiparticle stat&_, and Eq.(61) yields the same Eo=20£+ q)gd ( N ) ’
result as for the grand canonical ensemble. By contrast, in
the case of an odd number of electrons, one electron aMayghere(I) is the flux related to the circular current flowing in
remains unpaired and occupies the lowest available energtPe ring. Minimizing this energy with respect b, one eas-
state—in our cas&,—above the Fermi level. Hence, for Ily observes that a nonzero spontaneous current
oddNone hasfi(Et)_=1, the contributions of two quasi- evr 2eveN £
particle energy states in E¢61) exactly cancel each other, = iT 1+ q D
and the current across the QPC remains zero for aror 0
magnetic fluxd, . This is just the blocking effect which we should flow in the ground state of our system. This is yet one
have already obtained above from a more formal considemore remarkable consequence of the parity effect: Just by
ation. changing/\VV from even to odd, one can induce nonzero PC
For N>1 and/or at nonzero temperatures this parity-without any external fluxb, . In the limit of low inductances
influenced blocking of PC becomes incomplete. But also inC<®yd/ev;N, which is easy to reach in the systems under
this case the parity effect remains essential at temperaturesnsideration, the value ¢fdoes not depend on the number

(63

-1

(64)




578 Low Temp. Phys. 30 (7-8), July—August 2004

of channelsN and is given by the universal formule=
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It is known that the zero-bias conductance peaRCP) is expected in tunneling spectra of normal-
metal/highT, cuprate junctions because of the formation of the midgap Andreev resonant
states(MARS) at junction interfaces. In the present review, we report the recent theoretical study
of impurity scattering effects on the tunneling spectroscopy. In the former part of the

present paper, we discuss impurity effects in the normal metal. We calculate tunneling conductance
for diffusive normal meta(DN)/high-T. cuprate junctions based on the Keldysh Green

function technique. Besides the ZBCP due to the MARS, we can expect ZBCP of a different
origin, i.e., caused by coherent Andreev reflectiGAR) assisted by the proximity effect

in DN. Their relative importance depends on the angleetween the interface normal and the

crystal axis of hight. superconductors. A#=0 we find the ZBCP by the CAR for low-

transparency junctions with small Thouless energies in DN; this is similar to the case of diffusive
normal metal/insulator/s-wave superconductor junctions. Under increasérom zero ton/4,

the contribution of MARS to ZBCP becomes more prominent and the effect of the CAR

is gradually suppressed. Such complex spectral features would be observable in conductance spectra
of high-T, junctions at very low temperatures. In the latter part of our paper, we study

impurity effects in superconductors. We consider impurities near the junction interface on the
superconductor side. The conductance is calculated from the Andreev and the normal reflection
coefficients, which are estimated by using the single-site approximation in an analytic

calculation and by the recursive Green function method in a numerical simulation. We find
splitting of the ZBCP in the presence of the time reversal symmetry. Thus the zero-field splitting
of ZBCP in the experiment does not perfectly prove the existence of a broken time reversal
symmetry state. €2004 American Institute of Physic§DOI: 10.1063/1.1789915

1. INTRODUCTION in quasi-one-dimensional organic superconductore®
. . MARS and the Doppler effeé-**MARS in ferromagnetic
Nowadays, charge transport in unconventional supercon- .~ " 44 5> .

. . . unctions, influence of MARS on the Josephson
ductor junctions has become one of the most important to ~ffect®® 2 and oth lated blerf&7L H th
ics in solid state physics. The most remarkable property i§ect and other related problemmis. ~ However, the
the so-called zero bias conductance p€aRCP) observed 'mp“”tY scattering eﬁgct qn the ZBCP in reallstp .normal
in tunneling experiments. The ZBCP arises from the forma-meml/h'gh:rC cuprate junctions has hot peen clar!fled yet.
tion of midgap Andreev bound state@MARS) at the The aim of thg pre.sent paper is to review the important
interfacel™ The MARS, which are created by injected and Progress on this topic. _
reflected quasiparticles feeling different signs of the pair po-  1N€ organization of the paper is as follows. In Sec. 2, we
tential, can play an important role in determining the pairmgdscuss the impurity scattering effect in normal metal. We
symmetry of unconventional superconductors. The expericalculate the tunneling conductance for diffusive normal
mental observation of the ZBCP has been reported for variietal (DN)/high-T. cuprate junctions based on the Keldysh
ous unconventional superconductors of anisotropic pairing>reen function technique. Besides the ZBCP due to the
symmetries2°A basic theory of the ballistic transport in the MARS, we can expect ZBCP caused by a different mecha-
presence of MARS has been formulated in Refs. 3 and 51ism, i.e., coherent Andreev reflectid@AR) assisted by
Stimulated by this theory, extensive studies of MARS in un-proximity effect in DN. In Sec. 3, we discuss impurity effects
conventional superconductor junctions have been performeith superconductors. The random potential near junction in-
during the last decade: in the case of broken time reversderfaces causes splitting of the ZBCP even in the presence of

symmetry staté'~?8in triplet superconductor junctios;3*  the time reversal symmetry.

1063-777X/2004/30(7-8)/12/$26.00 579 © 2004 American Institute of Physics
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2. THEORY OF CHARGE TRANSPORT IN DIFFUSIVE tion area between DN and US is considered as composed of
NORMAL METAL /HIGH-T, CUPRATE SUPERCONDUCTOR a diffusive isotropization zone, a left side ballistic zone, a
CONTACTS right side ballistic zone, and a scattering zone. The scattering

zone is modeled as an insulating delta-function barrier with
Before discussing charge transport in high-cuprate e transparencyl ,= 4 co2 ¢/(4 cog ¢+272), whereZ is a
junctions, we should review the progress of charge transpogimensionless constang is the injection angle measured
in_mesoscopic superconducting systems. The low-energi{om the interface normal to the junction, ands the chan-
transport in mesoscopic superconducting systems is goVyg| index. We assume that the sizes of the ballistic and scat-

erned by Andreev reflectioff, a unique process specific to tering zones along the axis is much shorter than the super-

electron scattering at normal metal/superconductor intefgonducting coherence length.

faces. The phase coherence between incoming electrons and pere we express insulating barrier as a delta-function
Andreev reflected holes persists at a mesoscopic length scalggdel H 5(x), whereZ is given byZ=2mH/(%2kg) with

in the diffusive normal metal, which enhances interferencg-grmi momentumke and effective massn. In order to
effects on the probability of Andreev reflectiéhThe coher- clarify the charge transport in DN/US junctions, we must
ence plays an important role at sufficiently low temperaturegptain the Keldysh—Nambu Green function, which has indi-
and voltages when the energy broadening due to either voliges of the transport channels and the direction of motion
ages or temperatures becomes of the order of the Thoule§§Jng thex axis, taking into account the proper boundary
energyEry, in mesoscopic structures. As a result, the conduczongditions. For this purpose it is necessary to extend a gen-
tance spectra of mesoscopic junctions may be significantly g theory of boundary conditions which covers the cross-

modified by these interference effects. A remarkable experigyer from the ballistic to the diffusive cas® formulated for
mental manifestation of the electron—hole phase coherence ignventional junctions in the framework of the circuit

the observation of the zero-bias conductance REBICP) in  theory?71% However, the circuit theory cannot be directly

diffusive _normal metal (N)/superconductor(S) tunneling  applied to unconventional superconductors, since it requires
junctions. ™ _ ~_ isotropization. The latter is simply incompatible with the
Various theoretical models of charge transport in diffu- ere existence of unconventional superconductivity. To
sive junctions extend the clean limit theories developed byyyoid this difficulty we restrict the discussion to the conven-
Blonder, Tinkham, and KlapwifR (BTK) and by Zaitse%.  tional model of a smooth interface by assuming momentum
In Refs. 87-92, the scattering matrix approach was used. Ogpnservation in the plane of the interface. We apply the qua-
the other hand, the quasiclassical Green function method igjc|assical Keldysh formalism for calculation of the conduc-

nonequilibrium superconductivity is much more powerful tance. The spatial dependence of the 4 Green function
and convenient for the actual calculations of the conductancgN(X) in DN, which is expressed in matrix form as

at arbitrary bias voltage¥. Using the Kuprianov and ) R
Lukichev (KL) boundary conditio for a diffusive SIN in- . Ry(X)  Kn(X)
terface, Volkov, Zaitsev and KlapwijkVZK) have obtained GN(X):( 0 Ay(X)
the conductance spectra with ZBCP, the origin of which was N
attributed to coherent Andreev reflectiéB8AR), which in-  must be determined. The Keldysh componi€g(x) is given
duces the proximity effect in the diffusive met4lSeveral by RN(X)=I5€N(x)f1(x)—?1(x)AN(x) with retarded compo-

authors have studied the charge transport in mESOSCOpf?entﬁeN(x) and advanced componeAt(x) using distribu-

junctions, combining this boundary condition with the tion function? Wi tth ¢ electrical potential i
Usadef® equation that describes superconducting correlat'on function 1(x). We put the zero of electrical potential in

tions in the diffusive metdl’~'% The modified boundary the S electrode. In this case the spatial dependent, 0f)
conditions were studied by several autht¥sl® important i DN is determined by the static Usadel equatitn,

, 1)

progress was achieved by Nazaf6v?® who developed a 9E(X)
much more intuitive theorythe so-called “circuit theoryy D— éN(X) N +i[I:|,éN(x)]=0, 2)
for matrix currents, which allows one to formulate boundary d 24

conditions for Usadel-like equations in the case of arbitrary ity the diffusion constanb in DN. whereH is given by
transparencie¥’ Recently we have succeeded in extending

this circuit theory for unconventional superconduct§fs1® . [Hy O
In order to resolve the charge transport in higheuprate H= 0 0
junctions, we apply above theory fdrwave superconduct- 0
ors. We have shown that the formation of MARS stronglywith |:|o:8ATs-
competes with the proximity effect that is an essential ingre- ¢ boundary condition faBy(x) at the DN/S interface
dient for CAR in diffusive conductotDN). We consider a g given by

junction consisting of normal and superconducting reservoirs

()

connected by a quasi-one-dimensional DN with a lergth L. aéN(x) h .

much larger than the elastic mean free path. The interface R, GN(X)T - FRb““O)' @)
between the DN and the U®unconventional supercon- -

ductop electrode has a resistanRg, while the DN/N inter- | s given by

face has zero resistance. The positions of the DN/N interface )

and the DN/S interface are denoted s —L and x=0, i :4i[é B.] )
respectively. According to the circuit thed!$ the constric- noT oy L En
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with Using éN(x), one expresses the electric current as
Bo=(—T1[Gy, HIY+HIH, —T2 G HIH,. Gy 7! L (e ( aGN(x) |
. e . lg=-—= | deTr| 73| Gn(X) (12
X (Tin(1-H-H+T2.6, 1), 7) 4 4eRy Jo N ax

HereH. =(G,. +G,_)/2. Ry andR, denote the resistance where Gy(x) dGy(x)/x)* denotes the Keldysh component
in DN and that at the DN/S interface, respectively. The deof (Gy(x) 9Gy(x)/dX). In the actual calculation, we intro-
tailed derivation of the matrix current is shown in Ref. 109.duce a parametefi(x) which is a measure of the proximity
The average over the various angles of injected particles affect in DN, where we have denote{0)=6,. Using

the interface is defined as a(x), QN(X) can be written as

. 72 . /2 -
(I(¢)>=Jﬁ/2d¢>cos¢l(¢>)/ jﬁﬂ/2d¢T(¢)cos¢, Rn(X) = T3 cogX) + 7, Sin6(X). (13

(8)  Ay(x) and Ky(x) satisfy the following equationsAy(x)
with 1(¢)=1 andT(¢)=T,. The resistance of the interface =— 73RN (X)73, and Ky(x)=Ry(x)f1(x) = F1(x)An(x),

Ry, is given by with the distribution function f,(x) given by f;(x)
h 2 =fon(X) + 73fan(X). In the above,fsy(X) is the relevant
Rb=? - , (9) distribution function which determines the conductance of
f dpT(p)cose the junction we are now concentrating on. From the retarded
—ml2

or advanced component of the Usadel equation, the spatial
with Sharvin resistanc®,. Gy(—L) coincides with that in dependence of(x) is determined by the following equation:

the normal state. We denote the Keldysh—Nambu Green 92 o
function G, G,. , Dma(x)Jers si 6(x)]=0, (14)
. (R K . Rpe Koo i i
&= 1 ) 1 Gy 2 A2 , (10) while for the Keldysh component we obtain
- 0 e 71910 SR 61 (%) | =0 15
where the Keldysh componert,,. is given by K., x| ax cost Om(x)| = (19

= Ri@)f12)(0) = T1(2)(0)As (2 With the retarded compo- i g, —im[a(x)]. At x=—L, since DN is attached to the
nentR; ,.. and the advanced componehy,. using distri-  normal electroded(—L)=0 and the conditionf z(—L)
bution functionf;,)(0). In theabove,R,.. is expressed by =f,, is satisfied, with
¢ e—eV 16
~nf ST )| (18

Rpe=(gs73+ .t (11) f 1[t k(s+ev
R =_itanh ——=

with g.=e/\Ve?—AZ, f.=A./JAZ—¢Z and A,. 02 2kgT

=—#3R]. 73, where & denotes the quasiparticle energy whereV is the applied bias voltage. Next, we focus on the

measured from the Fermi energy.f,(0)="f,g(0) boundary condition at the DN/S interface. Taking the re-

=tanHe/(2kgT)] in thermal equilibrium with temperature. tarded part of Eq(4), we obtain

L d6(x) (F)
= ===, (17
a X | o R
Eo 2T [cosby(f,+f_)—sinby(g,+g_)] 18
T2 T (1709 T, T )T To[c0800(g. +9-) F sindo(f, + T )] 18
On the other hand, from the Keldysh part of E4), we obtain
L [dfan _ (Ipo)fan(0-)
R—d W)COSH[“’H(GO)] o ——R—b, (19
[ _In Cofan(0-) 20
02 [(2-To)(1+9.g-+f )+ T [cosp(g,+g-)+sinbo(f, +f_)]*’

Co =T (1 +|cosBol +lsin®o* ) lg, + g_P+1f, + F P+ N+ fif + g9 P+1frg- — g f ]
+2Q2-T,)Re {1+ gig" + fif) [(cos8y + cos8y)(g, + g_) + (sinBy +sin0)(f, + )]}
+ 4T, Im (cos 0 sin0) Im [(f, + f_) (g, + g1
(21
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After a simple manipulation, we can obtaligy(0_):
Rofto

Rd<| bo) f

fan(0-)= (22

Rot Lcosf? H,m(x)

Since the electric currert, can be expressed vig, in the
form

le=— eRd f (ﬁfaN

we obtain the following final result for the current:

st A f;“’ AN (24)

cosﬁ[lm(ao)]ds, (23

X=

) b0> ~LCOSIT (X)
Then the total resistand® at zero temperature is given by eV/Aq
Re o R f _dx (25)
(Io) b0> ~1L.COSH (%)

We will discuss the normalized conductanaer(eV)
=og(eV)laoy(eV), where ogy)(eV) is the voltage-
dependent conductance in the supercondudtiogma) state 1
given by og(eV)=1/R and on(eV)=on=1/(Ry+ Ry), re-
spectively.

It should be remarked that in the present circuit theory,
R4/Rp can be varied independently @f,, i.e., of Z, since
we can change the magnitude of the constriction area inde-
pendently. In other wordRy/R;, is no longer proportional
to T,(L/l), whereT,, is the averaged transmissivity ahts
the mean free path in the diffusive region, respectively.
Based on this fact, we can chooBg/R;, andZ as indepen-
dent parameters.

First, we focus on the line shapes of the conductance, 0
whered-wave symmetry is chosen as the pairing symmetry
of the unconventional superconductor. The pair potentials eV/Ao
A are given byA. = A, co42(¢+a)], wherea denotes the i 1. Normalized conductanaer(eV) for Z=10, a=0, andE,=A,
angle between the normal to the interface and the crystal axi@), E;,=0.01A, (b) at differentRy /Ry : 0 (1), 0.1(2), 1(3), 2 (4), and 10
of the d-wave superconductors ard, is the maximum am- (5.
plitude of the pair potential. In the above, denotes the
injection angle of the quasiparticle measured fromxlais.
It is known that quasiparticles with injection angfesuch  the ZBCP width is given byEt, as in the case o$-wave
that m/4—|a|<|@|<m/4+|a| feel the MARS at the inter- junctionsi®” When the magnitude oR4/R,, exceeds unity,
face, which induces ZBCP. In the following, we choose ao{(eV) acquires a zero bias conductance @pCD) (curve
relatively strong barrierZ=10. Results for the high- 5). The qualitative features of the line shapesog{eV) is
transparency cases are written in detail in Ref. 109. different from those irs-wave junctiongsee Figs. 1 and 2 in

Let us first chooser=0, where ZBCP due to the MARS Ref. 37. It should be remarked that even in the case of
is absent. We calculater(eV) for various Ry/R,. For  d-wave junctions we can expect ZBCP by CAR as in the
Emn=A4, [see Fig. a], the magnitude obr(eV) for |eV|  case of ars-wave junction fora=0.
<A, increases with the increase Bf;/R,. First, the line Next, we focus ono(eV) and 6y for a#0 (0<«
shape of the voltage-dependent conductance remains/4). First we focus orw= /8, where MARS is formed
V-shaped, and only the height of the bottom value is enfor 7/8<|¢|<3w/8. or(eV) has a ZBCP due to the forma-
hanced(curves2 and3). The V-shaped line shape originates tion of MARS at the DN/US interface. The height of ZBCP
from the existence of nodes of thlewave pair potential. is reduced with the increase Bfj/Ry, (see Fig. 2). Contrary
Then, with a further increase &4/R;,, a rounded bottom to the corresponding case af=0, o(eV) is almost inde-
structure (curve 4) appears, and finally it changes into a pendent ofE+, (see Fig. B). This is because the proximity
nearly flat line shapécurve5). For Er,=0.01A, (Fig. 1b),  effect is almost completely suppressed due to the competi-
the magnitude of+(eV) has a ZBCP once the magnitude of tion of MARS, and the magnitude @f(x) is reduced. In the
R4/Ry, deviates slightly from 0. The order of magnitude of extreme case= w/4, theot(eV) is completely independent
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0 | 1 1 I 1 | ! ) 1 I l
-1 0 1
eV/Ao
[ |
Z=10 Er,=0.01A,
i a=n/8
2...

eV/AO

FIG. 2. Normalized conductance(eV) for a= /8, Ey,=A, (a) and
E:,=0.01A, (b) at differentRy/R,: 0 (1), 1 (2), 2 (3), and 10(4).

of E1,. The results obtained are plotted in Fig. 3.

In the present Section, a detailed theoretical investiga-
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Z=10
- a=mn/4

FIG. 3. Normalized conductaneer(eV) for a= /4 at differentRy /Ry, : 0
(1), 1(2), 2 (3), and 10(4).

Ohm's law: or(eV) = (Ry+Ry)/(Rr, -0+ Ra), Ry being the
resistance of the interface.

4. We have clarified various line shapes of the conduc-
tance including ZBCP. The results serve as an important
guide to analyze the actual experimental data of the tunnel-
ing spectra of highF; cuprate junctions. We want to stress
that the height of the ZBCP is strongly suppressed by the
existence of DN, and the resulting;(0) is not so high as
obtained in the ballistic regim&ln the actual fit of the ex-
perimental data, we strongly hope to take into account the
effect of Ry . In such a case without solving the Usadel equa-
tion or(eV) can be simply approximated by

tion of the voltage-dependent conductance of diffusive nor-
mal metal/unconventional superconductor junctions is pre-
sented.

1. The ZBCP is frequently seen in the shapergfeV).

For a#0, the ZBCP is robust, being independent of the dif-
fusive resistanc®, . Fora=0, the ZBCP is due to the CAR.

2. The appearance of the ZBCP is different for the
MARS and CAR mechanisms. The first mechanism may lead
to arbitrarily large o+(0). The second mechanism cannot
provide o1(0) exceeding unity. While for the first mecha-
nism the width of the ZBCP is determined by the transpar-
ency of the junction, for the second it is determined by the
Thouless energy. These two mechanisms compete, since the

R4+ Ry
T R o Ry 2
=
Rp
RRd:ozm, (27)
/2
j /003¢Ibodgo
—7l2
<Ib0>: 2 ’ (28)
f coseT(¢)de
— 2
_T(¢){1+T(¢)|F+|2+[T(<P)—1]|F+F7|2} 29
- [T+ [T(e) LT, TP 29
r _A—i (30)
ot o2 Al
2R,
Rb: 2 ! (31)
f, /2d¢T(¢)cos¢

proximity effect and the MARS in singlet junctions are gen-with A =A,co$2(¢+a)] ande=eV. This expression is a

erally incompatible%®
3. In the extreme case= m/4 the proximity effect and

convenient one for fitting of experimental data. However, for
the quantitative discussions including much more general

the CAR are absentor(eV) is then given by a simple cases, one must solve the Usadel equation, as was done in
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the present paper. Recently, mesoscopic interference effects Normal metal High-T, Superconductor
have been observed in actual cuprate junctidhgve expect
the present results will be observed in many experiments in

y X
y ® 4
the near future. 3 O w
X + -
3. IMPURITY IN HIGH-T, CUPRATE NEAR THE INTERFACE X X
x =0

The MARS is sensitive to the time reversal symmetry
(TRY) of junctions because the retro-reflectivity of the An-
dreev reflection assists the constructive interference effect of W
a quasiparticlé!? Actually, the ZBCP in NS junctions splits
into two peaks under magnetic fielths3°~**The peak split-
ting is also discussél2¢11314yhen a broken time reversal
symmetry statéBTRSS is formed at the interface. Theoret-
ical studies showed that such BTRSSs are characterized by
thes+id,, (Ref. 26 or d,,+id,2, 2 (Ref. 115 wave pair-
ing symmetry. In the presence of the BTRSS, splitting of the 1
ZBCP is expected in zero magnetic field. The experimental
results, however, are still controverstat:*'” Some experi- Random potentials

mental papers reported splitting of the ZBCP at zero mag-
netic field®1718118-123yhile in others the splitting was not FIG. 4. The normal-metalfwave superconductor junction is schematically

10,11,15,20,12 . . illustrated. In @) the crosses represent impurities. In) (the open, filled,
Observed;' ?m addition, a recent experiment has and gray circles represent the normal metal, insulator, and superconductor,

shown the near absence of BTRSS in highgrain boundary  respectively.
junctions®?*

In previous papers, we showed that random potentials at
the NS interface cause the splitting of the ZBCP at the zero . o o ) )
magnetic field by using the recursive Green function method@@r Potential is shown in Fig. 4. The NS junctions are de-
in numerical simulatior§'25and by the single-site approxi- ScfiPed by the Bogoliubov—de Gennes equation,
mation in an analytical_calcu_latidﬁf3 We also showed that S(r—=r"Yhg(r") A(rr) u(r’)
the splitting due to the impurity scattering can be seen more f dr’ A*(rr)  S(r=r")ho(r") (v(r’))
clearly when realistic electronic structures of high-mate- ' 0
rials are used?®’ Our conclusion, however, contradicts those E( v(r))

a

of a number of theori&~"112612%ased on the quasiclassi- v(r) (32)
cal Green function methdd®2°-1¥3while it is a common s
conclusion of all the theories that the ZBCP is drastically hev

; . . ho(F)=— V() = e (33)
suppressed by interfacial randomness, the theories of the 2m

guasiclassical Green function method conclude that the ran-
dom potentials do not split the ZBCP. Thus this issue has not ~ ¥(")=Va(r)+Vi(r) (34)
been fixed yet. There are mainly two reasons for the disyhere
agreement in the two theoretical approaclies, the recur-
sive Green function method and the quasiclassical Green A(r, ) =0(x) (1IN |)E Aexgik-(r—r")].
function methogl One is the treatment of the random poten- ' Vol
tials, and the other is the effects of the rapidly oscillating . . o

: ; . The normal conductance of clean junctions is givenGyy
wave functions on the conductance. In our simulations, We=(2e2/h)N T with T= beind the transmission probabilit
calculate the conductance without any approximation to the ¢ B B 9 P Y

random potentials and the wave functions; this is an advan(—)f the junction, anN=Wk/ is the number of propagat-

tage of the recursive Green function metRod3Our results !Egciig?lgzeés ;; tlh)e vl\js ;:?]hiuzal(;;z ITnthi;t)\fA&tSc: pvitraency
indicate that the splitting of the ZBCP in experiments doed T ’ B ) '

. — — 2 . . .y
not constitute direct evidence of the BTRSS at the interfac%ﬁgerr':g;gcf/gn ?hn;/ZukFe-rc\é)vrf dﬁgtr; Sr'dstgém:sr;::gii;igr b
of NS junctions. P y

Let us consider two-dimensional NS junctions as show crosses in Eig. 4. The potential of the impurities is given by
in Fig. 4a, where the normal metak& 0) andd-wave su- .,(r):Vizj;la(.r—rj).,.whereNi is the numbgr of impuri-
perconductor ¥>0) are separated by a potential barrier ties- Effects of impurities on the wave functions are taken

Vg(r)=H¥(x). We assume the periodic boundary conditionim0 account by using the Lippmann-—Schwinger equation,
in they direction, and the width of the junction W. Thea

N
axis of highT, superconductors is oriented at 45 degrees to  ¢!)(r)=y{ (1) + X, Go(r,r)Viaap(r)), (35)
the interface normal. The pair potential of a hifhsuper- =1
conductor is described by, =2Aqk.k, in momentum wherel indicates a propagating channel characterized by the
space, wherek,=k,/ke=cose and k,=k,/ke=sing are transverse wave numbk{’ andGo(r,r") are the real-space
the normalized wave number on the Fermi surface inthe Green functions in the clean junctions and can be obtained
andy directions, respectively. A schematic illustration of the analytically. Hereng)(r) is the wave function in which an
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FIG. 5. In (@), the trace of the Green function in the superconductor is shown as a functenTdfe peak width of the imaginary part is given Bygp
=A,/Z3. In (b) the local density of states is shown as a functiorxkg# , whereE=0, z,=10, andA,=0.1u¢ . The numerical and analytical results are
represented by the solid and broken lines, respectively.

electron like quasiparticle witt{) is incident on the NS 2¢? (= [ofep(E—eV)
interface from the normal metal and is described as Cns(eV)=—- J_md (W)
Yo' (N=x(y) 3 exp(ikix) + i)exmk.x)rmu) U
Ncg<o>_42}l rjl, (39)
+ é)exq—ikm)rﬁﬁ\l(l)}, (36 o) /2 Adcod ¢sir? ¢
for x<0, wherey;(y) =exdik{yl/\W, k; is the wave num- J :ZJ YEZ5+AZcof gsit o “0

ber of a quasiparticle in the normal metal and satiskigs . . .
quasip e The first term of Eq(39), N.g'?, is the conductance in the

2
+k{) =k, ran() an_d_fReN(') are the normal and the An- o100 junctions, frp(E) is the Fermi—Dirac distribution
‘?‘fee" reflection coefﬂqents, respecnvely, of the clean JUNCtynction, andV is the bias voltage applied to the junctions. In
tions. The wave function fox>0 is exp(rlgassed in the same g (39 I'; represents effects of the impurity scattering on
way. The wave function at an impurig(r;.) can be ob- 0 onductance. An explicit expression oy is given in
tained by lettingr—r;, in Eq. (35): Ref. 126.
N; . Before discussing the conductance, the local density of
P (=2 [608;;—Go(rj ,1))Vias]p(r)). (37  states(LDOS) near the junction interface should be clarified
=1 because the LDOS affects the scattering events of a quasi-
It is possible to calculate the exact conductance if weparticle. The LDOS is given by
obtain y')(r;) for all impurities by solving Eq(37). In this
paper, we solve Eq37) within the single-site approxima- Ng(E,x)=— ilmTréo(r,r), (41)
tion, where the multiple scattering effects involving many ™
impurities (Anderson localizationare neglected. However 9
the multiple scattering by an impurity is taken into account = 4NoZo €xp( — X/ €o)
to infinite order in the scattering events. In the summation of 2 (2 A2cod ¢ sir? ¢ sir?(Kex cose)
j in Eq. (37), only the contribution withj=j’ is taken into x—f de 24 A cof oSt
account in the single-site approximatibtt.in this way, the mJo E*Zp+Apcos’gsint ¢
wave function ar; is given approximately by In the second line, we use the conditiBreA, (Ref. 126.
M YT A — A (v r WA 1-1 (D As shown in Fig. 8, the imaginary part of the Green func-
YR =180~ Golrj r)Vidal "o (ry)- 38 tion has a large peak arouri=0, reflecting the MARS
Substituting the wave function at impurities in E§8) into  formed at the junction interface, whex&:=6, z,=10, and
Eqg. (35, we obtain the wave function in the presence ofA,=0.1ur. The energy Sca|EZEP:AO/Z(2) characterizes the
impurities. The normal reflection coefficieng,, and the  width of the peak of the LDOS. Since the self-energy of
Andreev reflection coefficientd, |, are then calculated ana- impurity scattering is roughly proportional to the LDOS, ef-
lytically from the expression for the wave function at fects of scattering becomes strong for a quasiparticle with
x— —o. The differential conductance in the NS junctions iISE<E,cp. At E=0, we find

calculated from the normal and the Andreev reflection 5
coefficients®® Ng(E=0,x)=4Ngzg exp( —x/ &) Xke (43

(42)
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2e? ° fep(E—eV)
GNSZTNCdeE< FZ?(eV) )

kels

w

x99~ p;

<F>}, (44)

<r>:<Nii§l rj>, 5

where(...) means the ensemble average. The broken line de-
notes the conductance in the clean limit. The width of the
ZBCP in clean junctions is also characterizedEytp. We
choosel kg=20 in Fig. 6 because we focus on the impuri-
ties near the interface arike~6. In Fig. 2 we show the
conductance of junctions in which low-density strong impu-
rities are distributedi.e., V;Ny=0.1 andp;=0.2). The con-
ductance for high-density weak impuritie€.e., V;Ng
=0.005 andp;=0.6) is shown in Fig. B. There is no peak
splitting in Fig. @, whereas the conductance clearly splits
into two peaks in Fig. b at zero temperature. The impurity
scattering affects the ZBCP in two way$) it decreases the
conductance around zero bias, afiid it makes the ZBCP
wider. Roughly speaking, the product &fiNy(E=0,&)
characterizes the strength of the impurity scattering. The sup-
pression of the zero-bias conductance always happens irre-
spective ofV;Ng(E=0,£y). The widening, however, happens
only if impurity scattering is sufficiently weak that;Ng(E
=0,40)~0(1) is satisfied?® Since Ng(0,£)/Ny>1, as
shown in Fig. 6, the zero-bias conductance is drastically de-
creased by impurities. WhentNg(E=0,£5)>1, as shown in
-1.0 -0.5 VOE 0.5 1.0 Fig. 6a, the suppression of the zero-bias conductance domi-
eV/Ezep nates over the widening of the ZBCP. The conductance de-
FIG. 6. The conductance in the presence of impurities distributed randomiggr€ases from that in the clean junctions for almost the all bias
in the range K x;kz<20, wherep; is the dimensionless area density of region foreV<Egp, as is seen in Fig.& which leads to no
ir_n_puritit_es near the interface. The_conductar_\ce for low-density strong impusplitting. On the other hand, for weak scattering potentials,
rities W|th_ViN0:0._1 aan,:0:2 is shown in &). The c_onductan_ce for V,N¢(0,£,)~O(1), impurities cause widening of the con-
high-density weak impurities witkl; No=0.005 andp; = 0.6 is shown in ) iT¥s\ M50 ’ . .
for several choices of temperature. The conductance in the clean junction &tUctance peaks as well as the suppression of the zero-bias
the zero temperature is plotted with a dot-and-dash-line. conductance. As a consequence, the conductance splits into

two peaks, as shown in Figh6The splitting peaks merge
into a single peak at finite temperatures such as
T=0.1E,gp, Which is comparable to peak splitting width at
zero temperature. The results obtained indicate that strong
random potentials are not necessary for splitting of the

area. In Fig. bwe plot_ Egs(42) and(43) with the solid and ZBCP. High-density impurities with weak random potentials
broken lines, respectively. The results show the remarkablg,e responsible for the spliting of the ZBCP in low-

enhancement of the local density of states arownd,, transparency junctions.
whereé,=(hve/mA,) is the coherence length and is about  The analytical results can be confirmed by numerical
6/k-. This implies that the MARS is formed around simulations based on the recursive Green function method on
x~&o. two-dimensional tight-binding lattice, as shown in Fid. 4

In the presence of impurities, the self-energy of the im-The system consists of three regions: a perfect normal metal
purity scattering depends on the LDOS. Thus the impuritie§open circle, an insulator(filled circles, and a supercon-
aroundx~ &, are expected to be strong scatterers. At theductor(gray circles. The gray sites correspond to Cu atoms
same time, scattering effects become remarkably stronan CuQ layers. The Hamiltonian reads
around E~0. The conductance in disordered junctions is
shown in Fig. 6, where impurities ;ire dis.tributed. randqmly in -3 (tr,r'C;r,(rCr',ﬁ h.c)+ >, (sr—,U,)C:'(,C,,(,
the range K xjke<LKg, pj=N;Ag/WL is the dimension- .o ro
less area density of impurities, amg=10. The conductance
is calculated from the expression -> (Arfr'CrT,TCrTgﬁh-C-), (46)

r,r’

whereNy=m/(=#)? is the normal density of states per unit
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tial is determined to satisfy al-wave symmetry. The
Bogoliubov—de Gennes equation derived from the Hamil-
tonian of Eq.(46) is solved numerically by using the recur-
sive Green function methotl. The transmission and reflec-
tion coefficients of the junction are computed exactly in the
simulation. We obtain the differential conductance from
these coefficients using the Blonder—Tinkham—Klapwijk
formula®

In Fig. 7 we show the conductance as a function of the
bias voltage, where the Fermi energy in normal metals is
—2.0t,, W=30, and the conductance is divided by the nor-
mal conductance of the junctio@,,. The potential barrier at
the insulators i8/5/t,= 3.0, and the transparency of the in-
sulating layers is of the order of 0.01. The Fermi eneugy
Ag, t1, andt, are determined from an analysis of theJ

FIG. 7. The conductance calculated by the recursive Green function methognodel*® for 10% hole doping. The degree of disorder is

The degree of randomness is representey by

Vs/t,=0.0 (broken lineg, 0.1, 0.3, 0.5, and 1.0 from top to
bottom. The conductance is averaged over a number of

wheret, . andA,_,. are the hopping integral and the pair Samples with different random configurations. The results

potential betweem andr’, respectively.

We consider the nearest-neighbor hopping,in normal
metals and insulators. The on-site potentiais fixed at zero
in normal metals and ¥y in insulators. In superconductors,
we consider nearest-neighbor hoppintg, and second-
nearest-neighbor hopping,. The random potential at the

show the drastic suppression of the ZBCP even for weak
random potential aV¥/g/t,=0.1. The split of the ZBCP can
be seen for slightly stronger potentials such\agt,=0.3

and 0.5. ForVg/t,=1.0, we find dip structures around
eV~0 instead of the ZBCP. These results may correspond to
the dip structures observed in disordered NS junctions in an

interface is taken into account through the on-site potentialuf:xperimentl.36

given randomly in a range of V¢/2<¢,<Vd/2, as shown in

Several experiments?? have shown a sensitivity of the

Fig. 4b. The amplitude of the pair potential between theconductance peaks to external magnetic fields. Here we dis-

nearest-neighbor sites is,, and the sign of the pair poten-

Gnsl[2N e%/h]

cuss the conductance in the presence of magnetic fields. The

eV/Ezep

FIG. 8. The conductance in external magnetic fields for low-density strong impuritiesvilts=0.1 andp;=0.2 are shown ind), whereT is fixed at
0.0%E . Those for high-density weak impurities withN,=0.005 andp;=0.6 are shown inlf). In the insets, the peak positions are plotted as a function

of magnetic field. The conductance of clean junctions is showm)n (
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We review results on two novel types of grain-boundary Josephson junctions in the high-critical-
temperature cuprate superconductors. The quality of,€BgO, _ 5 biepitaxial grain-

boundary Josephson junctions has been improved using a new growth geometry to the point that
“tunnel-like” characteristics are reproducibly obtained. The consequent low barrier

transmission probabilities are apparently favorable for isolating intriisi@ve induced effects.

We also focus on peculiar aspects of spontaneous currents in HTS Josephson junctions,

which are unique and reflect the intimate relation between vortex matter and the Josephson effect.
Bicrystal grain-boundary Josephson junctions have also been fabricated using artificial
superlattice films with as few as six superconducting copper—oxygen planes. Extrinsic and intrinsic
d-wave effects in these junctions are discussed within the framework of novel designs for
mr-circuitry and qubits. ©2004 American Institute of Physic§DOI: 10.1063/1.1789917

INTRODUCTION (OPS.>~" The OPS was made experimentally accessible by

. . . . reproducible and good quality junctions, such as grain-
Ever since the discovery of high-critical-temperature SUy oundar (GB) Josephson junction&JJ38 The bicrystal
perconductor§HTSS9, the fabrication of high-quality junc- y P J j 4

tions has presented a difficult materials science task. Thtechnology was fundamental for the development of most of

goal of producing a trilayer structure, which could reproduce € plonleerlngI_ex;:grlmentshon qundSTE)entgl |stiues£has vr\]/ell(;;\s
the very successful achievements of Iow—critical-temperatur«gOr simple applications such as SQUIDs. On the other hand,

superconductofS) junctions, with an insulatingl) barriet the.flexibility of .the bi_cryst.al tgchnology, which can proyide
(S—1-9, was always aimed at, but never really pursued in agrbnrary GB orientation, |s.h|ndered by the fact that junc-
systematic and reliable way. This situation reflected thd'o"S have to be placed basically only on one litteee on a
structural complexity of HTSs, and the difficulty of finding a AUit€ sophisticated tricrystal substratélore recently the
good material science recipe for growing a barrier on Jiepitaxial technlqge was revealed to pe particularly suitable
highly nonuniform HTS electrode, which was also character{0 Study relevant SSUES of the physics of HTSs and HTS
ized by poor surface superconducting properties. Recently &_osephson_juncmr?sl. The first biepitaxial technique pro-
significant step in the direction of the goal of an all-HTS Vided 45° tilt GBs:* We extended the same biepitaxial con-
trilayer with an insulating barrier was achieved through theCepts to novel configurations, in which one of the electrodes
structure composed of Lg<Sr, ;:Cu0, electrodes separated does not grow along the axis orientation. Although this
by a one-unit-cell-thick LgCuO, barrier? The conditions geometry appears to be complicated by the presence of an
required to fabricate a trilayer structure are apparently criti-Off-axis electrode, it gives major advantages in terms of junc-
cal and currently limited to a very few special HTS and tion flexibility and junction properties, as demonstrated in
barrier materials. Significant achievements have been als#is paper.
obtained by alternative junction techniques such as the In the present paper we will discuss some important in-
YBCO-Au-Nb edge trilayérand the engineered-interfdce sights into the debate of HTS weak links addvave in-
technique. duced effects, which have been achieved by using these
Despite the slow progress in material science issues redouble-angle Ce@based biepitaxial junctions, and mention
lated to the realization of HTS junctions, the new physicalnovel approaches to HTS junctions based on ultrathin films.
aspects which have been raised are particularly excitinghat will drive our approach to the problem is the prospect
What has made the novel physics interesting is mostly reef exploiting the “unique” properties of HTS junctions for
lated to the unconventional order parameter symmetryjuantum circuitry, and the need for tunnel-like junctions.

1063-777X/2004/30(7-8)/8/$26.00 591 © 2004 American Institute of Physics
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This problem clearly involves the fundamental issue of transate tunneling directions because of the strong phase depen-
port in junctions. We will also focus on peculiar aspects ofdence of the quasiparticle conductance ofl-avave GB
spontaneous currents in HTS JJs, which are unique and rg@inction.
flect the intimate relation between vortex matter and the Jo- The Chalmers group has discussed the dynamics of the
sephson effect. junctions in the zero-bias quantum regime and the depen-
dence on junction parameters of the decoherence time in the
system?® determining also the Josephson and Coulomb en-
THE QUBIT PROPOSALS: NEED FOR JUNCTIONS WITH ergies in submicron junctions. The same group has also stud-
TUNNEL-LIKE PROPERTIES ied experimentally the possibility of using size effects in sub-

o N ] micron junctions to freeze out low-energy quasiparticles, and
When considering new and exciting physical aspects asg induce a prevailing @ component in thel.—¢
sociated with unconventional OPS and Josephson junctiongependence’

the idea of developingr-circuitry and, in particular, more These are experimental and theoretical examples of in-
novel designs of “quiet qubits**~*°is among the most fas- novative work towards a “quantum” treatment of HTS junc-
cinating. The “quiet” aspect of HTS proposalgo need to  tjons, and are quite encouraging. Nevertheless a complete
apply a constant magnetic bias, as opposed to systems basgfhantum” approach to junction properties and parameters is
on low-temperature-superconductor Josephson jungtionstii| missing, and typical quantum effects, such as macro-
probably represents the most relevant feature motivating th§copic guantum tunneling, have not been observed up to
interest for HTS qubit systems. Furthermore, the conceptgow. A lot of work has to be done in this respect, covering
behind the various “qubit” proposals combine several otherseyeral different issues, but some “trends” and constraints
exciting physical aspects related gowave OPS, such as  on junction properties are becoming clear. It is reasonable to
Andre_evlg bound _statéé; time reversal symmetry eyxpect that for macroscopic quantum tunneling experiments,
breaking,” an imaginary component of the order parameter o instance, it is important to rely on junctions in the tunnel-
and soon. _ o like limit with relatively high values of the normal-state re-
The “qubit” proposals involving hight. superconduct-  sjstance. A favorable quantum regime may nevertheless be
ors basically exploit the fact that JJs with an additiomal hingered by the lack of understanding of the junction trans-
shift in the phase between the electrodes can be produced Eﬂ)rt processes and of the interplay between OPS effects and
the absence of an externally applied supercurrent or fielg)arrier/microstructure effects. It may be important to reach a
when using superconductors withdg.,2-wave order pa-  regime in which “intrinsic” d-wave induced effects are iso-
rameter symmetr{/This may lead to intrinsically doubly de- |ated from “extrinsic” effects. Intrinsic effects are only due
generate systems, i.e., systems based on JJs with an energy—the d-wave order parameter, while extrinsic effects are
phase relation with two minima. Current versus themostly due to thel-wave order parameter and occur only in
superconducting phasét-¢) measurements on 45° asym- junctions with particular morphologies and/or properties. Ex-
metric and 45° symmetric bicrystal GB JJs have demonymples of extrinsic effects are the anomalous dependence of
strated the prevalence of thep Zomponent under some the critical current on the magnetic fidféf and the presence
conditions:®2°On the other hand, the state of the art of HTS of specific spontaneous currents revealed through scanning
JJs and the actual understanding of transport mechanisms ﬁQUID microscopy(SSM).? Extrinsic effects may be unde-
GBs do not presently allow the reproducible determinationsjraple and even mask the features of the intrinsic effects. We
of the conditions for observation of theeZomponent. Sub- | discuss in the following Sections how it is possible to

sequent investigations have raised concerns about the quigkach some regimes of HTS JJs in which intrinsic effects can
ness of these devices. It was argued that, while on the ongs isolated.

hand a 45° misorientation of the OPS in one electrode is
necessary to generate thebehavior, it may on the other
hand lead to spontaneous currents related to Andreev reflec’?‘—EW BIEPITAXIAL TECHNIQUE
tion and more precisely to Andreev bound stafe.Such Grain-boundary Josephson junctions are obtained at the
currents may cause additional ndiand enhance decoher- interface between &103 YBa,CuzO;_s (YBCO) film
ence mechanisms. This analysis led to the development gfrown on a(110 SrTiO; substrate and a-axis film depos-
alternative designs, in which a five-junction logpith four  ited on a(110) MgO (Fig. 1a) or CeG (Fig. 1b) seed layer.
ordinary junctions and ar-junction) takes the place of the The presence of the Ce(produces an additional 45° in-
original s-wave-d-wave superconductor junction. In this plane rotation of the YBCO axes with respect to the in-plane
“macroscopic analog” of Ref. 12, ther-junction removes directions of the substratd?® As a consequence, the GBs
the need for a constant magnetic bias n#2. are the product of two 45° rotations, a first one aroundcthe
Contributions to dissipation due to different transportaxis, and a second one around thaxis. This configuration
processes, such as channels due to nodal quasiparticles poduces the desired 45° misorientation between the two
midgap states or their combination, have been identified andlectrodes to enhancewave OPS effects, as shown in Fig.
distinguished? In particular cases, decoherence times andld and as opposed to the MgO case of Fig, Where no
quality factors have been calculated. It has been also arguéd-plane rotation occurs. MgO-based junctions have been
that problems in observing quantum effects due to the pregproved to be of high quality and their properties to be very
ence of gapless quasiparticle excitations can be overcome hyeakly influenced by OP%.In this paper MgO based junc-
choosing the proper working phase pdifitn particular, de- tions will be discussed mostly for comparison with the
coherence mechanisms can be reduced by selecting approptieO,-based junctions.
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FIG. 3. (a) Critical current densities of Cebased junctions of the present
work (arrows are compared with data published in Ref. 8) Normal-state
resistances of CeGbased junctions are compared with data published in
Ref. 8.

FIG. 1. Sketch of the grain-boundary structures. The two limit configura-
tions, tilt and twist, are indicated for junctions based on the MgO or.CeO ) ) » -
seed layer, respectively. junctions, higher critical current densities and lower normal-

state resistances characterize the twist limit when compared
_ . with the tilt case, reflecting the different grain-boundary mi-
Furthermore, the degrees of freedom of the fabrication, gstructures. On the other hand, for Geased junctions
process allow the selection of any possible in-plane orientage influence of the resulting-contacts cancels out any dif-
tion for the GB interface. Details about the fabrication pro-ference in critical current densities between the tilt and twist
cess can be found elsewhéré:”® We will define the GB  .,ses. Details will be given in the next Section.
interface angle with respect to th¢001] in-plane SrTiQ The values of the critical current and specific resis-
direction. In the two limiting configurationsf=0°, 6  ancer, A (WhereA is the junction argeare compared with
=90°, the GBs are characterized byl®0) 45° filt or twist, 1 \plished dafhin Figs. 3 and 3. The data available in the
respectively, of the axis with respect to the interface, plus a jiterature mostly pertain to GB junctions for which the angle
45° tilt around thec axis. In this paper they will be referred gfers 10 an in-plane tilt. Our grain boundary is more com-
to as tilt-tilt and twist-tilt GBs. It is reasonable to assumepjicated, as discussed in the previous subsection. As a matter
that these MgO-based and Cgbased junctions can be con- o tact our critical current density, andRyA values are the
sidered complementary from the OPS point of view from &5yest and the highest values, respectively, indicating a trend

circuit design perspectivé. toward tunnel-like behavior. Values &yA typically range
from 10" to 10 ° Q-cn? at T=4.2 K, on average at least
TRANSPORT PROPERTIES: GENERAL FEATURES one order of magnitude higher than the values extracted from

The analysis of current versus voltage-{/) character- measurements on othén particular, bicrystaltypes of GB
ajunctions? The values ofJ, typically range from 18 to

istics, while revealing basic properties of the junctions, is 5

broad topic that goes beyond the aims of this paper. Wé><103 A/.cm : ) ] ] o

confine our attention to some specific properties, which are 1€ tilt and twist configurations are the limiting cases,
of relevance in our discussion dfwave induced effects in clearly different from each othésee Fig. 2 A fine tuning of
HTS JJs. The general conclusion of different studies realizeff’® | =V curves has been clearly observed by changing the
on the MgO-based and Ceased junctions sketched above INterface angle orientations, as shown in Fig. #he tuning

is that in our GBs, the crucial feature of relatively lower Of the junction properties follows a very peculiar behavior
barrier transmission seems to be associated wittazis tilt.  indicative ofd-wave OPS(as discussed in the next subsec-
The normal-state resistancBy, and critical currents, are o), while the junction parameters fall in the ranges given
the relevant parameters. A direct comparison of they ~ @bove. Thel—V curves are mostly described by the resis-
curves for MgO-based and Ce®ased junctions in the ex- t|vel_y shunted junctiofRSJ mpdel. We al§o n_ote the repro-
treme tilt and twist limit casesee Fig. 2 reveals that the ducible presence of hysteretic behaviswitching currents

barrier transparency may be strongly connected to OPS coff? the | -V characteristics in Figs.af. The hysttzretig be-
figuration. In this case the 45° in-plane rotation of one of the"@vior is mostly observed in the angle range 45° (twist-

electrodes producesr-contact behavior. For MgO-based

2 b 50 mG
of Twist 8'% 68’ ‘:’11-
<A < 0.2t -
E_Of Tit(x10)| € 0.1 Trs| 2ot 2smg
T —-0.1} 1}
_ a -0.2r
. -0.3 L -60 - o
-30-15 0 1.5 3.0 2-1 0 1 2 20-10 0 1.0 20 50 75 0 75 150
V, mv V, mV V, mV V, v

FIG. 2. Current versus voltagd €V) characteristics of MgO and CgO  FIG. 4. Current versus voltage characteristics of biepitaxial junctions mea-
biepitaxial junctions are reported in the extreme cases of tilt and tWist ( sured aflT=4.2 K for various interface orientationg) and of a twist junc-
=4.2 K) for junctions of the same widtt10 um), respectively. In the MgO  tion (90°) atT=0.8 K for three different values of the magnetic fiek) (

tilt case the current is multiplied by a factor of 10 for clarity. In (a) the curves are shifted along tlxeaxis for clarity.
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We believe that our junction configuration, with low bar-
rier transmission probabilities, preserves the directionality of
the Cooper pairs, whether the transport be by tunneling or
some other mechanism. Therefore it is in principle more sen-
sitive to the angular dependence of the order parameter sym-
metry and therefore reveatbwave induced behavior. The
anisotropy measurements have demonstrated for the first
time that “intrinsic” d-wave effects are dominant in the phe-
nomenology of the Josephson junctions themse{mes in-
serted in any loopindependently of the interface detatfs.

The good agreement with the SR formula apparently sug-
0= — gests that thé.(6) dependence is mostly determined by the
OPS. In this case the grain-boundary microstructure, which
is the other main effect ruling the junctions’ properties, does
FIG. 5. Dependence df, on the angled; experimental datéfilled circles not significantly contribute to the qualitative behavior of
are compared with theoretical predictions basedden ,.-wave pairing  |,(#). In other words, deviations from the Sigrist—Rice be-
symmetry(open circle® In the in_set t_hree d_iﬁerent interface orientations navior may indicate a more significant contribution played
are given as examples. The junction igh wide. .

by the actual GB microstructure to the angular dependence
of I .. The GB microstructure definitely contributes to form a
like regime and for lower values Ojc, Conﬁrming a genera| “tunnel-like” barl’_ier, characterized by h|gher values of the
trend towards tunnel-like behavior. The presence of suckormal-state resistance.
switching currents may be important for a series of different

experiments, such as those aimed at detecting macroscopie ANNING SQUID MICROSCOPY AND SPONTANEOUS
guantum effects. CURRENTS

» —@— Exp
R o Theor: d-wave like

In this Section and the next we will deal with some
aspects related to vortex matter and the Josephson effect, and
in particular to the presence of spontaneous curréras

In Fig. 5 we report the dependencelgfon the angled  spontaneous magnetization with random orientation and the
for junctions 4um wide. A clear oscillatory dependence of half flux quantum effedtin CeQO,-based biepitaxial junc-
the critical currentl . on @ was observeld as expected in tions. Phenomena related to spontaneous currents are pecu-
structures dominated bgl-wave induced effects. This has liar to HTS Josephson junctions angicontacts systems.
been observed for various sets of junctions of differentScanning SQUID microscopyis an appropriate technique
widths. for the imaging and study of the magnetic response of dif-

Minima in the critical current are observed fé=0°,  ferent samples, and can be used in appropriate configurations
34°, and 90°, respectively. These values correspond to cote study phenomena in zero-field cooling, and therefore
figurations in which the tunneling directiofthe normal to  spontaneous currents. Spontaneous currents may have differ-
the barriey points towards a node of the OP on one of theent origins depending on the system in which they are ob-
two sides. The minima a#=0° and 90° arise from the po- served. The half flux quantum effestuch as observed in the
sition of the nodes in the-axis oriented side of the junction. tricrystal experimeniswas the first remarkable example of
The minimum até=34° occurs when the projection in the spontaneous currentsn this case the different flux distribu-
a’'b’ planes of the normal to the barrier points towards ations depend only on the intentionally introduced sample ge-
node of the OP on th€l03) side. In the Sigrist-RicéSR)  ometry and on the typical scaling lengths of the junctions
phenomenological approach, the Josephson current densiiyolved. SSM has also demonstrated the presence of ran-
of an alld-wave junction is given by domly distributed spontaneous currents along &BEhese
(1) are determined by naturally occuringloops due to a com-

bination of thed-wave OPS and the junction morphology
In this expressiod, is the maximum Josephson current den-(faceting.?*27:28
sity, ¢ is the difference between the phase of the OP in the L _ _ _
two electrodes, and, and n, are the projections of the unit Spontaneous magnetization with random orientation
vectorn onto the crystallographic axesandy in the left(L) We first address spontaneous currents due-kmops and
and right (R) electrode, respectively. Traditionally the SR how it is possible to prevent their formatiéhiTo this aim
formula has been applied to junctions where both electrodewe investigated through SSM the magnetic behavior of grain
are c-axis oriented. Specifying the expression above toboundaries of biepitaxial samples cooled in zero field and
our noncoplanar configuration J{~sin20(2—cos 6)(1  characterized by different junction parameters.
—3sir? §)/(1+sir? 6)), and assuming a more efficient tunnel- In Fig. 6a we give evidence of the presence of sponta-
ing in the lobes direction¥, we obtain the curve plotted as neous currents along the GBs in the tilt, twist, and interme-
open circles in Fig. 5. The experimental behavior is welldiate situations represented, for instance, by the sides of the
reproduced by the SR-like theoretical prediction. Th&d) photolithographically defined triangles sketched in Fig. 6
dependence in agreement with the SR formula apparentlyhis behavior is consistent with the presence mfoops
seems to be mostly determined by the OPS. along the GBs and with expectations based on faceted inter-

ANISOTROPY MEASUREMENTS: EVIDENCE FOR d-WAVE
INDUCED EFFECTS

2 2 2 2 :
JC:JO(nX_ny)L(nx_ny)RSIn(P'
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the film in Fig. 7 to about one-third of the thickness of the
sample reported in Fig.& Differences in thel, values cor-
respond to the general feature in HTS JJs, thatloes not

0 = 0° tilt-tilt
N(OQ”\:;BS?%' T
§ * 9

¥ N ey ¥ perfectly scale with the film thickne§s.
| SR O el If we try to interpret these results, keeping in mind the
b, et d-wave nature of these junctions, as revealed by the anisot-
450 pm ropy measurements, we attribute the absence of any sponta-
¢ neous magnetization to the locally reduckd This experi-
1.6 mental conclusion is consistent with numerical solutions of
1.2 the sine-Gordon equation for a @Josephson junctiotf. %2
< 82 In this modeling the spontaneous magnetization decreases
5 ot when the ratio of the Josephson penetration dagtto the
—04} facet spacing becomes large, as is discussed in detail in Refs.
-0.8¢ 28 and 31. We have modeled this for a regular array, varying
-t2p Ty v v c the facet widthL . For the faceted configuration there is a
-30-20-10 0 10 20 30 threshold for observation of spontaneous magnetization (
B, uT =\ ).28 Sufficiently long penetration depths made the mea-

surements of the Josephson critical currents as a function of
the presence of spontaneous currents. The sample was cooled and imageéba? misorientation angle insensitive to faceting effects, and
T=4.2 Kin nominally zero field.f) Skétch of the grain boundaries imaged represent the crucial feature in preventing the formation of
in (a). (c) Magnetic pattern of a hysteretic twist biepitaxial junction mea- Spontaneous currents dueseoops in the systems analyzed.
sured atT=4.2 K. The two different curves refer to the critical and the We recall another interesting related configuration in
retrapping currents. The junction is 20n wide. which spontaneous currents with random orientation have
been observetf This case enriches possible scenarios of
spontaneous currents. We refer deaxis YBCO thin films
faces, in agreement with other experiments on bicr$fszald grown on a MgO seed layer on @10 SrTiO, substrate
biepitaxial junctions’ The noise associated with such cur- (which basically represents tieaxis electrode of the MgO
rents, due tor-loops along GBs, provide a simple example haseq biepitaxial configuratibnSpontaneous currents were
of how HTS JJs may be intrinsically noisy. Such a behavioryserved to be spatially correlated with impurities due to the

is associated with samples characterized by higher Critic%resence of the so-called green phase due to Y excess in
current densitied...* In the literature it has been shown that ¢_ayis films. The origin of such currents is unclear. It may be

the presence ofr-loops is accompanied by_an_anomalousdue to time reversal symmetry breakifBTRS) or due to
magnetic patteﬁ'?“suph as the one reported in Fig, 8e€a-  {he spontaneous nucleation of topological defects in phase
sured on one of our junctions. In this case the/ charac-  (ansitions(for instance, the pinning of a vortex tangle, pro-
teristic is hysteretic, and we report both the critical escapgyceq neaf, in a Berezinskii—Kosterlitz—Thoule¥stype
and retrapping currents. _ _ transition in the nearly two-dimensional superconductor
In Fig. 7, where a scanning SQUID microscope image ofygc). BTRS may be related to an imaginary component of
an 800<800 um area is reported, no spontaneous magnetitne OPS near a surface facing the insulating green pfase.
zation was detected along any of the GB interfaces, whichnis would in principle be the only configuration able to
had_ arbitrary orientatioff Single-flux-quantum Jos_ephson prove the origin of BTRS as due to an imaginary component
vortices are randomly present along the GBs. In this case Wgf the order parameter, since in junction interfaces the same
have changed, and, as a consequence, the Josephson peRgfect could also be due simply to Andreev bound st3tés.
etration depth. This was done by reducing the thickness ofne |ack of an experiment showing reproducible, well-
defined isolated spontaneous currents in controlled systems
is a limitation for the former interpretation and for related

FIG. 6. (&) SSM image of a 608400 um area. The GBs are marked by

g 4 arguments on fractional vortices. More recent studies on
B . - (103)YBCO phase transitions on the amorphous superconductgSMn
ASERCEIES S ring geometry make the latter possibility feasiblerurther
x b2 o investigations are required for a definitive answer.

«  0=90° twist- tilt
B S 1(001) YBCO [N Half flux quantum

~ .

i PN v Once the conditions which lead to the absence of spon-
4 ‘ taneous currents due teloops along GBs were determined,

we studied if and how the well-known half flux quantum
effect occurs in our peculiar junction configurations.
800 pm Figure 8 is a three-dimensional SSM image of a large
G 7 SSM o 800800 osing filt—tift and tuist area of a biepitaxial sample containing different interfaces
A Image ol an mum area, enclosing tit—tit an ISt— f .
tilt GBs. The sample was cooled in nominally zero field and imaged atand types of grain boundaw, cooled in presence of a small

T=4.2 K. No randomly oriented spontaneous magnetization was detectef@gnetic field. Variou_s types of vortices and spread _ﬂUX can
along the GB interfaces. be observed. We notice on the left, four standard in-plane

j R
0 = 0° tilt-tilt
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the sample cooled and imaged in a magnetic field such that
there is approximately 1 flux quantun®g) trapped per tri-
angle. This image is the two-dimensional view of the central
part of the image of Fig. 8. Spontaneo{since it was ob-
served also when the sample was cooled in zero)fialag-
netization is visible along some interfaces and at some cor-
ners, and a systematic behavior clearly appears in moving
from the top row, where the flux is spread along GBs, down
to the bottom, where the flux is more localized in some
corners.
The fact that under some circumstances the half flux
quantum can be spread along the grain boundaries rather
< > than being concentrated in the corner, is consistent with long
600 pm Josephson  penetration depths and low barrier
FIG. 8. SSM image of a 600600 um area, enclosing different types of tr_ansml.ssmné? oceurring in our junctions. For comparlson, .
Gbs. The sample was cooled in a small magnetic field and imagdd at Simulations of the expected spontaneous currents in our tri-
=4.2 K. Flux tubes appear randomly localized in bulk material and alongangular grain boundaries are shown in Fig. Bhese simu-
grain boundaries. Magnetic flux also appears along some grain-boundaigtions numerically solve the sine-Gordon equation for a fac-
lines. eted grain boundary, with the sign and magnitude of the
Josephson critical current density along the grain boundaries
chosen using the Sigrist—Rice expressiorassuming the
standardd,z_yz-like pairing symmetrg? It was assumed
here was a total of on@, of magnetic flux in each triangle.
he Josephson penetration depiy was set equal to

Abrikosov vortices characterized by flux well localized in a
narrow area. On the top anisotropic vortices in th@3) part
of the YBCO film are also visible. These are more sprea

than the in-plane Abrikosov vortices. Both these types of — . .
vortices are a useful reference for determining the qu>2‘JO/ [ic(6)], wherejc(6) contains the dependence of the

present in the center of the image along the Iithographicall)frItlcal current on grain-boundary ggometry. For_the simula-

pre-determined contour$riangles in particular In contrast “9”5 )‘J.(O) was assumed _to be 5 microns. Detalls.about the
with the ordinary vortices, the flux along the triangles will SImer}tlons can b,e fouqd n Ref. 28. Apart from minor local ,
not vanish even in zero-field cooling. This is due to the par_deV|at|on5:, there is qualitative agreement between the experi-

ticular triangular shape&defined by grain boundaries with Mental data and the modeling.
different orientationswhich were designed in order to ob-
serve the half flux quantum effect. DISCUSSION: EXTRINSIC AND INTRINSIC d-WAVE

A schematic of a section of the sample imaged in Fig. 8 EFFECTS IN GRAIN-BOUNDARY JUNCTIONS

a set of 16 isosceles trianglesiangle sidel. =50 um), is The features discussed in the previous Section prove the
shown in Fig. @. Each triangle is rotated clockwise by 3° gyistence of “pure” intrinsicd-wave effects in GB JJs, as
from the last in moving from bottom to top along the rows of jgicated in anisotropy transport measurements and the half
triangles, and from left to right along the columns. Cornersy,y quantum effect, in agreement with theoretical expecta-
which have a sign change in the product of the normal comgigns, Moreover experimental conditions can be chosen in
ponents of the gap functions on opposite sides of the graifyhich spontaneous extrinsic currents may be substantially
boundaries are expected to have spontaneously generated J9qyced. It is possible therefore in the biepitaxial technology
sephson vortices with a flux localized at them equal to half ot gpserve the half flux quantum effect and to suppress spon-
the superconducting flux quantum, if the Josephson depth igneous magnetization with random orientations. In other
short relative to the length of a side of the triangle. In this,,ords there seems to be an accessible scaling range of junc-
de;ign the. half flux quantum vortices.should systemgticqllyfion parameters for reaching a favorable “regime” where
shift to different comers as the triangle orientation iSq.\yave induced intrinsic features are very robust, and extrin-
changed. Figurel®shows the corresponding SSM image of ¢ features such as noise fromloops can be severely lim-
ited. The coherence related to the OPS seems to be preserved
on a scale larger than the faceting and/or any interface im-

I .."'_i"‘ 1L » L purity characteristic lengths. Both from anisotropy transport
e 5'5 T I ‘:‘; x measurements and SSM analysis, results on junctions can be
E Rt X L tey reasonably explained without invoking a significant imagi-
Alh B Bl Tw oL nary component of the OP'€3°
DA R N 4 oEm woliiie A study based on radio-frequency and SSM
prm S measurements on the same tilt—tilt samples seemed to
a s0g=0110p . 5 show the absence of the type of spontaneous magnetization

reported, for instance, in Fig. 7, and Andreev bound states
FIG. 9. (a) Schematic diagram of the sample geomethy. $SM image of  gre effects which can co-exist. This also means that the pos-

a 450<450 um area, enclosing a set of 16 triangles with various interface_:, .. . .
orientations. The image was takenTat 4.2 K. (c) Simulated spontaneous Slblllty of preventing the spontaneous currents discussed

fluxes along the triangle interfaces, assumihgvave momentum depen- aPbove applies only to those generatedbioops. Howeve_r:
dences of the pairing wave function. a threshold of 0.01 of the flux quantush, for other addi-
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gram is shown in inseth() of Fig. 10, where the six super-

L3 2, 9999 conducting Cu@ planes are shown. The CBCO film is only
1.0 L™ 8 nm thick.
05 Ly & The current—voltagé—V curves reported in Fig. 10 cor-
S L respond to av=1 mm wide bicrystal junction measured at
E 0 Oy Gy T=4.2 K. The misorientation angle in this case is 24°, and
_05 CR ‘.’. the configuration is asymmetric. Similar behavior was ob-
served for symmetric junctions up to 5 mm wide. The shape
-1.0 @Ba @ca is RSJ-like and thé—V curves are modulated by the mag-
15k Supercondueting CuO, netic field. Details will be discussed elsewhere.
L L The simple structure of the grain boundary composed by

-0.2 0 0.2 6 superconducting CuQayers(due to the highly controlled

Vv, mV structure of the 5/2/5/2/5 artificial structgralso allows a

FIG. 10. -V curve in zero field for a bicrysal junction 1 mm wide. The reliable estimation of the coupling along tiae _planes of
misorientation angle in this case is 24°, and the configuration is asymmetridw0 CuQ, layers separated by a 24° asymmetric or symmet-

The typical stacking sequence of the charge resef@®) block and the  ric GB: in particular, we calculate a critical current density
infinite layer (IL) superconducting block characteristic of HTS compounds per plane of about (0_2_0_3)102 A/cmz.

and of the CBCO compound used in this experiment is reported in ia$et ( . . .
A schematic diagram of the grain boundary is shown in ingt pnly 6 Additional evidence of the Josephson behavior comes

superconducting CuQplanes are present on each electrode; Josephson phdfom the observation through SSM of Josephson vortices,
nomena should be associated only with such planes. which will be discussed elsewhere. In this case the magnetic
fields associated with the Josephson vortices are influenced
by the extremely large Pearl lengths of these very thin films.
tional mechanisms generating noise in HTS JJs is set by
SSM measurements. The tunnel-like behavior inferred fronfONCLUSIONS
different experiments is the other crucial feature of these e have discussed different issues of grain-boundary
biepitaxial junctions; it favors a promising regime where 4Ts josephson junctions. To produce high-quality junctions
junction quantum effects could manifest. The additional dejs g crucial step in pursuing quantum circuitry based on
gree of freedom offered by the biepitaxial technique, to varyyTss and to for investigating reliably all the exciting phe-
the interface orientation, can be crucial for finding more preyyomenology occurring in HTS junctions. Good quality
cise conditions in which to optimize specific performances-yynnel-like” Josephson junctions can be fabricated by ex-
and even to reduce decoherence mechanféier instance, ploiting the biepitaxial technique. The anisotropic transport
in the range 50% §<80° we could obtain a regime where measurements and the half flux quantum effect, both in
thel -V curves are hysteretic and the effect of midgap stateggreement with theoretical expectations, prove the existence
should be reduced. of “pure” intrinsic d-wave effects in GB JJs. If this is com-
bined with the absence of spontaneous magnetization in situ-
ations where faceting could be expected to be an issue, there
seems to be an accessible scaling range of junction param-
eters to reach a favorable “regime” whedewave induced
In this Section we discuss a “novel” type of HTS JJs. intrinsic features are very robust and dominant over extrinsic

The philosophy is to develop controlled systems which ma)jeatures such as noise fromloops. A remark_able feature is

in the proper limit give more uniform barrier interfaces. This (N Presence of Josephson phenomena in nano-structured
is realized by exploiting GB junctions and ultrathin films, SyStems(ultrathin films along macroscopic dimensions of
ie. artificially layered HTS4 such as the_ ordgr of a few millimeters. Morg sp_emﬁca!ly we are able
[Bay Ny (CUO, . ,],,/[CaCuQ], (CBCCO-mxn). These to |d.ent|fy Josgphson phenomena in films wnh 6 supercon-
films (similarly to all existing HTS cuprat¢sare composed ducting layers in a nominally very uniform configuration. No
by a stacking sequence of two structural subunits havin@n@logous situation exists for other HTS junctions with
different functions, namely the charge resery@R) block hicker electrodes. This more controlled system (?ould also
and the infinite layexIL) superconducting blocksee inset ©P€N Up some prospects for further understanding of the
(a) in Fig. 10. The IL block always consists of Cy(lanes ~ ransport mechanisms in grain-boundary junctions.
seperated by an alkaline eartmostly Ca plane, while the ‘This work has been partially supported by the ESF
structure and the chemical composition of the CR block vanpProiects “II-Shift” and “QUACS.” The authors would like
from compound to compound. The structural and transpor® thank A. Barone, T. Bauch, S. Kubatkin, K. Moler, and
properties of these compounds have been discusséd TSU€i for helpful discussions.

elsewherd®**We have for the first time realized Josephson,

junctions composed of only a few superconducting guO E-mail: tafuri@na.infn.it

planes(6 layers in particular For this experiment we have

focused in particular on ultrathifBag Ndy :CuGs 5/ ) _ o
[CaCuQ],/[BayNdy ;CUO,. 5 /[CaCuQ],/ 1éﬁ§:?r‘<]).r1$vila;yc’i SéWPsé?L?gg§|cs and Applications of the Josephson

[Bao_gNd0_1CU.02+x]5 (5/2/5/2/5 StrucFureS. and have _em'. 2|, Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and
ployed the bicrystal technique. The junction schematic dia- T. H. Geballe, NaturéLondon 422 873(2003.

JOSEPHSON JUNCTIONS BASED ON ULTRATHIN CBCO
FILMS
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Research results on electron transport in Au/Y8B&0, and Nb/Au/YBaCu;O, thin-film
heterojunctions are reviewed. The experimental current—phase relations of Nb/A@YBg
heterojunctions orc-oriented YBCO films exhibit a second harmonic, temperature

dependence, and a phase shift that is explained in terms of a combined syrdpejpyt s of

the superconducting order parameter of ¥YBaO, . The current—voltage characteristics

of Au/YBa,Cu;O, and Nb/Au/YBaCu;O, heterojunctions on (1 1 20) YB&u;O, thin films with

an inclined crystallographic axis display an anomaly of the conductance at low voltages,

the behavior of which is studied at various temperatures and magnetic fields. The experimental
results are analyzed in the framework of a model for the appearance of bound states

caused by multiple Andreev reflection in junctions containing a superconductodyyitk)

symmetry of the superconducting order parameter. Studies of the noise characteristics of
Nb/Au/(1 1 20) YBaCusO, heterojunctions al=4.2 K reveal the presence of thermal and

shot components. However, enhancement of the shot noise due to multiple Andreev reflection is
not observed in the experiment. @004 American Institute of Physics.

[DOI: 10.1063/1.1789918

1. INTRODUCTION decreases if an epitaxial film having twin boundaries is used
h | ¢ . ) indi hat in th instead of a single crystalThe experimental data can be
The results of various experiments indicate that in t eexplained by assuming that in thin films both types of sym-

majority of metal oxide superconductors a complex type ofmetry of the superconducting order parameterfidd) are

;ymmgtry of Fhe superconducting order pa_rameterlls realr'ealized and that a change in sign of thecomponent(a
ized, in which the d,2_,» component is dominant

(d-superconductojs Unlike superconductors with isotropic fﬁ:ggci;f Ic:iepnr;arzjnZ?zsojr?gr:Z:gt%%ttxvé?e:%l:Tg:rélPVI;h(l)lfe
(having s symmetry superconducting order parameters P

(s-superconductojsin d-superconductors the order param- Pb/YBaCus0, junctions onc-oriented YBQC%OX fllms
eter changes sign upon a 90° change in direction of the que(_c—YBCO) from the appearance of fractional Shapiro steps
siparticle momentum in thab plane. As a consequence, in under irradiation by millimeter waves have shown the ab-

Josephson junctions based drsuperconductors, when a S€nce of a second harmonic of the CPR. _
transport current is flowing in theb plane in a direction for In tunnel junctions of al-superconductor with a normal
which the magnitude of the superconducting order parametdpetal (N/d), with an s-superconductorg(d), or with an-
equals zero, the shape of the current—phase relgg@R  Otherd-superconductord/d’) the change in sign of the su-
can differ from sinusoidal A nonsinusoidal CPR, containing Perconducting order parameter of thesuperconductor for
components proportional to sinand sin 2, has been ob- the incident and Andreev-reflected quasiparticle gives rise to
served in experimenitsn symmetric 45° bicrystal Josephson an additional phase shift by.” Such a process is realized,
junctions with a[001]-inclined bicrystal boundary. for example, in N/d junctions with a (110-oriented

A different situation is realized im/s heterojunctions d-superconductor. The sequence of specular and Andreev re-
(the slash/denotes a potential barxitar the direction per- flections of a quasiparticle in this case causes Andreev bound
pendicular to thexb basal pland€along the crystallographic  states to form at low energies on tt@10 plane of a
axis). Because of the symmetry of the order parameter, the d-superconductor, localized near the interface a distance
superconducting current in such heterojunctions should bef the order of the coherence lendthow-energy Andreev
small (proportional to the second power of the boundarybound state$LABSs) are manifested in the appearance of a
transparencyD?) and should contain a sin2component —conductance peak at zero bi@®nductance anomalpn the
corresponding to the second harmonic of the GRfow-  current—voltagel—V) characteristic of amN/d junction?
ever, the experimentally obsen#e8 product of the critical Tunneling spectroscopy of metal oxide superconductors,
currentJ, times the normal resistand®, of the Josephson YBCO in particular, is difficult because of the short coher-
junction depends weakly on the boundary transparency, but é&nce length of the material3 nm) and also the high sen-
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FIG. 1. Image of a portion of the surface, obtained with an atomic force microscepréented @) and(1 1 20-oriented €) YBCO films. Profiles of the
surface of thec-oriented p) and(1 1 20-oriented ) YBCO films along the white lines in&) and (c), respectively; the inset to panelshows a schematic
illustration of the structure of the surface of theoriented films.

sitivity to defects of the crystal lattice and to the presence obteps:®> We present the temperature dependence and
impurities. At the same time, as the experiment of Ref. 9magnetic-field dependence of the observed conductance
showed, the conductance anomaly has been obseriéttlin anomaly on the |-V characteristic of the IHJ. In the Nb/Au/
ands/d heterojunctions, bicrystal junctions, end heterojunc-(1120YBCO IHJ at low temperatures we measured the
tions, and the point contacts of a scanning tunneling micronoise characteristics and revealed the presence of thermal
scope. Therefore, of the two possible causes for the onset aind shot components. The experimental results are discussed
the conductance anomaly, viz., the presence of magnetic imn the framework of a model for the onset of bound states
purities in the barriérand LABSs in ad-superconductdta  due to Andreev reflection in superconductors withype
preference must be given to the latter. Theoretical studiesymmetry of the superconducting order parameter.
have predicted the existence of LABSs on crystallographic
planes ofd-superconductors differing slightly fror110),1°
for example, on “faceted” surface€’$,and that prediction has
been confirmed in experiments.The experimentally ob-
served splitting of the LABSs at high magnetic fi¢fdwas The c-oriented YBCO superconducting films were
explained by a Doppler shift of the levels, caused by the flongrown on (001) SrTi@ substrates. The axis of the YBCO
of the screening current—the excitation of an imaginary films grown on(7 10 2NGO deviated from the normal to the
component of the superconducting order parameter in a suplane of the substrate by an angte-11° of rotation in the
face layer of ad-superconducta? (110YBCO plane. As a result, the orientation of the YBCO
In this paper we review the results of experimental re-film was close to(1 1 20YBCO. YBCO epitaxial films 150
search on Au/YBCO and Nb/Au/YBCO heterojunctions nm thick were laser deposited at a temperature of
based orc-oriented YBCO films on (001)SrTipsubstrates 770—790 °C in an oxygen atmosphere with a pressure of 0.6
(¢ heterojunctionsc-HJ9 and also single-domain films of mbar. The resulting YBCO films had a critical temperature
(1120YBCO, which were prepared on specially oriented T.=85-90 K and a critical current densify~2x10° and
(7102)NdGaQ@ substrates (inclined heterojunctions, 5x10* Alcm? at 77 K for the c- and (11 20-oriented
IHJ9).*® We study the |-V characteristics of heterojunctionsYBCO films, respectively)
at low temperatures and low magnetic fields and also under The morphology of our YBCO films was studied on an
irradiation by monochromatic millimeter-wave radiation. We atomic force microscope. For the-oriented YBCO films
analyze the current—phase relations of Nb/Au/YBCO heterofa=0) the maximum surface roughness was 3—4 (fig.
junctions of both types, obtained by the methods of rf superda,b). With increasing angler, growth steps appear on the
conducting quantum interferendSQUID)** and Shapiro  surface, and at=11° [for (11 20YBCOQ] their height is 20

2. PREPARATION OF THE HETEROJUNCTIONS AND THE
MEASUREMENT TECHNIQUES
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T,K FIG. 3. |-V characteristi€1) and the voltage dependence of the differential

resistancdRy(V) of a Nb/Au/YBCOc-HJ atT=4.2 K (2). The dotted curve
FIG. 2. Temperature dependence of the zero-bias resisRy(g for c-HJs ~ shows the dependence that follows from form(ily the dot-and-dash line
Au/YBCO (dotted curve and a Nb/Au/YBCO(solid curveé measured at a  is Ohm’s lawV=IRy. The inset shows the |-V characteristic in the range
bias current of JuA. of voltagesvV<0.3 mV.

nm (Fig. 1c,d). The long and short sides of the growth stepsgous valueT.=89.5 K for the Au/YBCOc-HJ, probably
are the(001) and(110) planes of YBCO, respectively. There- pecause of the large humber of technological operations in
fore, in planar heterojunctions prepared on such YBCO filmshe fabrication of the Nb/Au/YBC@-HJ and the resulting
the total transport current is made up of the currents flowingyxygen deficit in the surface layer of the YBCO film. At
through the contacts to th@01) and (110 crystallographic  <T_ the behavior ofRy(T) is fundamentally changed. For
planes of YBCO. Because of the anisotropy of the conducthe Au/YBCOc-HJ atT<T, one observes the characteristic
tivity of YBCO, a large part of the current flows through the growth of R, for superconductor—insulator—normal metal
(110-oriented faces of the surface of the YBCO filfiWe  tunnel junctions, while for the Nb/Au/YBC®-HJ the resis-
note that the surface roughness(®20YBCO films on the  tance Ro(T)~const and remains unchanged down to the
(001- and(110-oriented faces is 1-2 lattice constants of thetemperature of the transition of the niobium electrode to the
YBCO film. superconducting stat@y,~9.1 K. Such behavior oR(T)

For the formation of heterojunctions with aredsang-  for the Nb/Au/YBCOc-HJ is apparently due to the presence
ing from 5X5 to 30< 30 um we use the method of rf mag- in thesec-HJs of a second interface, with a high transpar-
netron sputtering of Au and Nb, photolithography, and ion-ency, between Nb and Au: in this regard the Au/Nb/YBCO
beam etching in an argon atmosph&t@he eletrophysical ¢-HJ can be regarded as a highly asymmetric double-barrier

parameters of the heterojunctions were measured in a foustructureN/N'/s, the conductance of which has a linear tem-
point scheme in the fixed-current regime in the temperatur@erature dependené®.

rangeT=4.2—300 K, at magnetic fields up to 5 T, and under
electromagnetic irradiation at frequencies of 40—-100 GHz
The noise properties of the Nb/A@/1 20YBCO heterojunc-
tions were investigated by two methods: direct measurement The |-V characteristics and the voltage dependence of
of the noise spectral density with a low-noise cooled amplithe differential resistanc®y(V) of the junction are shown in
fier working in the frequency range 1-2 GHz, and by theFig. 3. The |-V characteristic of the-HJ reveals the exis-
method of estimating the linewidth of the characteristic Jotence of a supercurrent witd.=1-10 A/cnt and I Ry
sephson generation from the selective detector response to=al0—80uV in the c-HJ samples studied. HeiRy is the
weak external microwave signal. normal resistance of the junction, which is determined from
the value of the differential resistané; of the junction at
3. HETEROJUNCTIONS ON c-ORIENTED YBCO FILMS AND ~ VOItagesv=2mV. We also note that &>2 mV theRy(V)
THEIR PROPERTIES curve is descending with increasing voltage, like that of the
Au/YBCO c-HJ. The descending trend d&4(V) persists
even atvV> A, =20 mV, the value obtained in tunneling mi-
croscope experiments.

Figure 2 shows the temperature dependence of the resis- At low voltages the 1-V characteristic of the junction
tanceRy(T) at a low bias currentl uA) for Au/YBCO and  corresponds well to a resistive model of the Josephson junc-
Nb/Au/YBCO c-HJs. At T>T, the resistanceR, of the tion, with low capacitancésee the inset in Fig.)3When the
YBCO leads is much larger than the resistance ofctfé)s,  voltage is increased t§>2 mV the |-V characteristic has
and therefore in this temperature regigp(T) characterizes the formV=(l+1.)Ry, wherel <0 is the excess current.
the conductance of the leads in thb basal plane of YBCO. 1,>0 is observed in superconducting junctions with direct
It is seen in Fig. 2 that both curves correspond to a metalli¢not tunneling conductior?®?*Negativel . (a current deficit
type of conduction—the values &, decrease with decreas- is typical of double-barrier superconducting heterostructures
ing temperature. The valug,=84 K of the YBCO leads for s/N/s’, in which with decreasing proximity effect in th¢
the Nb/Au/YBCOc-HJ is considerably lower than the analo- layer a change in sign df, is observeda transition from a

3.2. 1=V characteristics of Nb /Au/YBCO c-HJs

3.1. Temperature dependence of the conductance of c
heterojunctions
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current excess to a current defic As we see in Fig. 3, the 7K

|-V characteristic of the junctions is well described by the 1.6 25K a

relation typical fors/N/s’ structures? A 35
V=IRy+ Ry tanHeV/KT). D) t2r 9

From the experimentally measured |-V characteristic for this % 0.8
junction we havd .= —145 uA at T=4.2 K. According to
Ref. 22,1,=(—DA4— A/ (eRy)~—270 nA, whereAy,
=1.2 mV is the superconducting gap of Nb, aBd=7.6
x10°° is the transparency, averaged over the area of the
junction, of the Au/YBCO boundary, calculated according to ) )
the formulg®-22

Igs

04

D=2pl/3r, 2

wherer =RyA=4.4x10 ¢ -cn? is the characteristic re-
sistance of the contact RG=Ry(T.)), and p=p,~5
X102 Q-cm andl=I.~1 nm are, respectively, the resis-
tivity and mean free path in the superconductor, the latter
being equal to the distance between Gu@anes in the
YBCO film (Ref. 16.%

The Ry(V) curve exhibits a feature in the form a local
minimum atV=1.2 mV, which coincides in value with
and has a temperature dependence close to that given by
BCS theory. This feature on the |-V characteristic vanishes

together with the critical current &t=8.5-9.1 K, and the T.K

temperature dependenceIQ(T) is close to that of yy(T). FIG. 4. Current—phase relation for a Nb/Au/YBQ@EHJ at temperatures of
We note that previously the gap structure of thei1.7,2.5,3.5, 4.2, and 6.0 Kaj. Temperature dependencel 9fT) (squares
s-superconductor Pb was observed in a Pb/YBEAJA andl (T) (circles. The solid lines show the theoretical curved gfT) and

To estimate the contribution to the measured resistanck(T) calculated according to formuld6) and (7) (b).
from the electron transport caused by the contact toathe

basal plane of the YBCO film, we used a parallel-resistor, ¢qnsequence of the active chemical interaction of Nb with

model for the resistances of the sharp boundaries between Adkygen from the YBCO film, with the formation of NB
and YBCO along thee axis (r¢) and in the basal plane of ;04 other oxides of Nissee also Ref. 2

YBCO (r,). Herer for the heterojunctions was determined

from the condition 3.3. Phase dependence of the supercurrent

of a Nb/Au/YBCO c-HJ
F=rclap/(Faptretany), 3

For measurement of the dependence of the supercurrent
where tany~A,,/A~0.04 andA,, is the total area of the on the phase different of the wave functiohg), we used
contacts to theb plane of the YBCO film(see the inset to a method in which a Nb/Au/YBC@-HJ with dimensions of
Fig. 1b). In Refs. 17 and 23 it was shown that for YBCO the 10X 10 um was shorted by a ring of YBCO film with an
experimentally observed values pf are an order of magni- inductanceL~80 pH and by another Nb/Au/YBCQ@-HJ
tude larger tham,,. Consequently, for surface irregularities with a substantially larger area of 18@00 xm, forming a
observed in experimentf=2°), thecontribution to the total SQUID. The current—phase relation was calculated from the
current from the component of the contacts to délieplanes  measurements of the amplitude—frequency characteristics of
is small. This is confirmed by the absence of a conductancen rf resonator inductively coupled with this SQUID. This
peak at low voltages—the conductance anomaly due to Anmethod is differential with respect tp and gives high sen-
dreev reflection in thed-superconductor—for the Nb/Au/ sitivity in measurements of current—phase relatiths.

YBCO junctions atT>T.y, (see also Sec. 4 of the present In the temperature rang€=1.7-6.0 K in which the
pape}.® We recall that the theory predicts the appearance oEPR was measured, the normalized critical currgit

such an anomaly for rough boundariesfd heterojunc- =2xLI /®, ($,=2.07x10 ® Wb is the magnetic flux
tions even in the case of an arbitrarily orientedquantum of the Nb/Au/YBCOc-HJ under study lay in the
d-superconductott interval from 0.27 to 0.4, i.e.8 <1. Therefore the CPR

We note that superconducting shorts do not form in recould be determined for a whole period of variationgof*
gions of possible punchthrough of the Au filf@.g., nonsto- The CPR of a Nb/Au/YBCCc-HJ is shown in Fig. 4. It is
ichiometric particles on the surface of the YBCO filnin  seen that with decreasing temperature the shape of the
particular, studies of Nb contacts to YBCO without the Au current—phase relation begins to deviate from sinusoidal. A
spacer layer on specially prepared samples revealed the abeurier analysis of the measured CPR showed that its spec-
sence of supercurrent ang~1 ) - cn?, which is apparently trum contains a finite number of first and second harmonics
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and that the amplitudes of higher-order harmonics are small. 30F
Therefore, the superconducting component of the current can a
be written in the form . LI
s AAMA Al
A 1
Is(p)=lcasing+1csiN(2¢+¢o). (4) 201 f A
The experimentally observed sign of the term is always <:E§ A%
opposite to that of the., term, i.e.,po=m. If T~1.7 K, - L2 '
then |, =1.57 uA, I,=—0.25uA, and |l,/14|~0.16. 10F é‘@ . R4
The temperature dependencel gf(T) andl.»(T) is shown o S A ‘AAAA /,"
in Fig. 40.%° A LR ¢ TYRNE
After completion of the measurements of the CPRs the :\"0. | L) 5\0,"|
YBCO superconducting inductive ring of the SQUID was 28 : : :

locally cut by a focused ion beam. In the resulting geometry
we then measured the |-V characteristic and BgV)
curve of the same Nb/Au/YBC@-HJ for which the CPR 15
had been measured. From tRg(V) curve we determined
the value Ry=~60(, which corresponds to,=6x10 °
Q-cn?, and then, using Eq2), obtained the transparency < 1.0
of the givenc-HJ: D~5.6x 10 °. =

The CPR of thec-HJ was also measured by a different
method, based on measurement of the critical current and of 0.5
the Shapiro steps on the |-V characteristic of a Nb/Au/
YBCO c-HJ as functions of the amplitude of an external
monochromatic electromagnetic wave irradiating the
heterojunctiort>?® Under external monochromatic electro- 0 2 4 6
magnetic irradiation at frequendy~40 GHz Shapiro steps IR/l
I corresponding to the fundamental frequency and a ha-rFIG. 5. Critical currentl, and the first Shapiro stel (a) and the first
monic component appeared on the 1-V characteristic at voltsubharmonic Shapiro stép, (b) on the experimental |-V characteristic of
ages ofn(hf/2e) (n is an integex. At a voltage of%(hf/ze) a Nb/Au/YBCOc-HJ as functions of the amplitude of 40-GHz electromag-
(n=1/2) the first subharmonic Shapiro step was also obhetic radiation, normalized th, atT=4.2 K. The solid and das_h_ed curves

. . . show the corresponding dependences that follow from a resistive model of

served, with an amplitude,,/1.=0.08 atT=4.2 K. Figure ¢ j55ephson junctions.
5 showsl ., 1, andl;, as functions of the amplitude of the
rf current. The solid curves show the theoretical dependences

lc(a), 11(a), andly(a), wherea=Igg/l; is the experi- |n formula(5) Ag and A, denote the superconducting gaps
mental value of the normalized rf current, which was deterof Nb and YBCO, respectively, and)g = w?+AZ,.

mined from a comparison of the experimentg{a) curve  Keeping in Eq.(5) terms up to second order in the small
with the theoretical one in respect to the first minimum of guantityD(¢)<1 inclusive, we obtaf?
this quantity*®> We note that for low amplitudes of the exter-
nal radiation the first Shapiro step is symmetric with respect | (T)Ry~ As AR(T) 6)
C

to the autonomous |-V characteristic, a circumstance that A} e’

attests to the coherence of the Josephson generation in au-

tonomous junction$® Thus the subharmonic Shapiro steps | (T)Ry~ — EBAR(T) tan;—(AR(T)> 7
observed on the experimental -V characteristic may be in- >~ " 8 2kgT )’

dicative of a deviation of the dependenic¢e) from sinu-  \yhere A* =mA4[2In(3.58\¢/kgTer)] L. In deriving for-
soidal. _AtT=4.2 K the ratios of the harmonics of the CPR yyjas(6) and(7) we have used an expression for the super-
determined by the rf SQUID method and also from the aMconducting gap of YBCO of the form\(6)=A4cos ¥
plitudes of the Shapiro steps aig,/lc1|~0.12 andly/lc 1A whereA 4 andA, are the amplitude values of tideand
=0.08 for twoc-HJs on one substrate. _ s components of the superconducting order parameter of
_The presence of the two harmonitg>sine andlc;  YBCO, whereA ;>A4,Ag. There are differing estimates of
*sin 2p in the spectrum of the CPR of a Nb/AU/YBGBHJ  the parameterA /A% of YBCO in the literature. For

can be explained by the existence of a combideds sym-  axample, in tunneling microscope experiments the values
metry of the superconducting order parameter in YBCO. ForAsml MeV andA/A%~0.05 were obtainetf, while for a

calculation of the supercurrent we use the expre$sion Pb/YBCOC-HJ a range\g/A% ~0.3—1.1 was found®
An additional factor that influences the valuel gfis the
_2e presence of twinning in the YBCO film. In this case the
IS(‘p)_ka:; kBTEw“ component can enter the expressifd)=A4cos D+Ag

_ with a minus sign as well, which is a reflection of the change
y D(0)ArAysing ©) in sign of s on passage through a twin boundary in YBCO,
20Rr0+D(0) (02 + QrQ+ ArA, COSE) although the sign of th& component remains unchanged
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here® Consequentlyl ;=0 in the limiting case of equal ar-

eas of the two twin domains. However, it has been sHéwn 130
that the areas of the twinned domains can be different even 12.5
when a YBCO thin film is deposited on a SrEQubstrate, 120
which has a cubic crystal lattice. Denoting the areas of two g
twin domains as (% ¢)/2 and (1-¢)/2, we find that the 11-5 _E
experimentally measured valueo{. Using the values 11.0T
A /A5~0.3-1.1 andAg=1.2 mV for Ry(V) (see Fig. 3 } los
and substituting the experimental value lgf into (6), we 0 it 0

obtain{=0.07-0.21, in qualitative agreement with the value : ; : ; ,
{=0.14 obtained for a YBCO film 100 nm thiéR?’ 0 %0 100 }5?( 200 250 300

The maximum valud .,=—0.25uA for T=1.7 K is
i D~ —2 ; _ FIG. 6. Temperature dependence of the resistaicef two types of in-
obtained from(7) for D~3.2x10 %, which strongly ex- i\ cicroiunctions: Nb/AuYBCGsolid curve and Au/YBCO (dashed

ceeds the value of the transparerizyof the Au/YBCO bar-  curve, measured at a bias current ofuA. The dotted curve shows the

rier. This discrepancy can be explained by assuming that th@ependenc&k]=0.11+3 exp(-T[K]/85), which is a good approxima-
. tion for the experimental dependence R§(T) of the Au/'YBCO IHJ at

transparency of the Nb/Au/YBC©O-HJ varies over the area -1 _s3«.

of the junction. The transparency of a Nb/Au/YB@EHJ is

determined by the transparency of the Au/YBCO boundary,

the uniformity of which over the area of tleeHJ depends ON 4. HETEROJUNCTIONS ON INCLINED FILMS (1120)YBCO

the uniformity of the distribution of the oxygen content in AND THEIR PROPERTIES

the surface Igyer of the YBCO. _The_ finite surface roughnesil_ Temperature dependence of the resistance of inclined

of a YBCO film leads to local diffusion of oxygen from the peterojunctions

coating contacts toward theb planes of YBCO. This can

lead to scatter in the values pfand| over the area of the S
. . L . tanceR, measured at a current of AA on inclined hetero-
junction, resulting in fluctuations of the value of the trans—junctions (IHJ9 AWYBCO (1120 and Nb/AU/YBCO
parency of the Au/YBCO boundary. _ 1120. It is seen that folT=53 K the resistanc&, of the

It S_hOU'OF be noted that thg second harmonic of the CPRy,/yBCO IHJ increases exponentially with decreasing tem-
also arises in the model af+is type symmetry of the su- perature, and fof<53 K a deviation ofRy(T) from the
perconducting order parameter of YBCO, which was pro-exponential dependence is observed. In the case of the
posed in Ref. 28i(=+/—1). However, in the framework of Au/YBCO IHJ one does not observe any significant change
that model a phase shift,= 7/2 betweerl ., andl; should  of Ry at T~T,, since the resistand®y of the IHJ itself is
exist, in disagreement with the valug,== determined substantially larger than the resistance of the YBCD20
from experiment and also with the results of Ref. 6. leads. This is the typical situation for Au/YBCO IHJs pre-

A possible alternative explanation of the experimentallyPared by depositing the Au film on YBG®D1 20 ex situ In
observed CPR is the model proposed by Mffisin that ~ this case the escape of oxygen atoms from the YBCX20

model one can represent the Nb/Au/YB@GHJ as a lattice surface layer decreases the transparency of the boundary. The
of 0- and m-junctions connected in parallel, with a lattice Chi‘ga"te”gﬁc boundary resi;tam:aaried over yvide limits,
S . - 1072-10 % Q-cn?, depending on the technique used to
constant equal to the characteristic size of a twin domain in & . . .
. i . prepare theoretical IHJ. In particulate, for an IHJ for which
c-oriented YBCO film, 10 nm. T_hen, as was shown in Ref.the boundary between the Au and YBQAC 20 was formed
29, spontaneous currents arise in the ground statecefld, 1, jepositing the Au filmex sity r increased by 3—4 orders
and the energy of the-HJ is minimum fore=* /2. Esti-  4f magnitude as compared to IHJs for which the boundary
mates of the value of the amplitude of the second harmonigetween Au and YBCQ 1 20 was formedn situ. Here one
of the CPR (czm) arising on account of this mechanism ¢4, speak of a decreasebnby the same factor by which
showed thatl ., /1.,<0.032° Consequently, the contribu- increases.
tion of this mechanism to the value bf; is small. The behavior ofRy(T) is completely different forRy
Another alternative cause for the appearance of the see<R,, which is the situation when the Au film has been
ond harmonic in the CPR in Nb/Au/YBCE®HJs may be the depositedn situ. This is the case for the Nb/Au/YBCO IHJ
presence of the Nb/Au boundaries, which have high transwhose Ry(T) dependence is shown in Fig. 6. At~T,
parency Dypas~10"1), which is reflected in the shape of =53 K a sharp increase &, is observed, due to the tran-

the 1-V characteristiésee Fig. 3 As we have said, a Nb/ sition of the leads to the superconducting state. Upon further

Au/YBCO c-HJ can be represented as a highly asymmetricdecre"’?Se of t'he tempgrature beldy to TC.’\'bwg'z K the
zero-bias resistancR, increases monotonically. The tem-

double-barrier structure, in which the gecond ha_lrmonlc of th erature at whiclRy(T) for the Au/YBCO IHJ deviates from
CPR can appeaf. On the other hand, simple estimates base he exponential dependence coincides Wit 53 K.

on Eq.(9) of Ref. 18 show that in such a cakg/l.;~D, In Au/YBCO and Nb/Au/YBCO IHJs the behavior of
and consequently the amplitude of the second harmonic dRy(T) for T<T, is due to the turning on of a current trans-
the CPR is much smaller than that observed experimentallyport channel involving Andreev reflection as the temperature

Figure 6 shows the temperature dependence of the resis-
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FIG. 7. Conductivity versus bias(V) for an inclined Au/YBCO hetero-
junction at different temperaturéthe solid curves from bottom to t@p4.2,

10, 20, 30, 35, 40, 45, and 50 K. The dotted curve shows the parabola
approximating the dependeneogV) at T=50 K. The dashed curve corre-
sponds tar(V) at T=4.2 K for the Au/'YBCOc-HJ. The inset shows (V)

for IHJs Au/YBCO atT=4.2 K (inverted trianglesand Nb/Au/YBCO at
T=10 K (squaresin the low-voltage regiofV|<6 mV. The solid chamber ) o . ) )
is the approximation of-(V) for the Au/YBCO IHJ by a Lorentzian. whered is the angle of incidence of the quasiparticle relative

to the normal to the boundary, amg describes the shift of
_ . _ _ the energy levels of the Andreev states, e.g., on account of
is lowered:. For IHJs on YB_CQl 120 films the influence of  the the flow of current along thi/d boundary. In formula
the LABSs should be manifested on the -V characterlsnc_lrtg) the level broadening is characterized by the parameter
the form a conductance peak appearing at low vqltages, L8R (9)~#/7(6), where(6) is the lifetime of a quasiparticle
the conductance anomaly that is observed experimentally. i the LABS. In the general cadd(6) is determined by the
. tunneling of quasiparticled, (), the diffusive scattering
4.2. Broadening of the Andreev states due to the rough surface of the YBCO filigi(6), um-

Figure 7 shows the transformation®fV) with decreas- Klapp processes of quasiparticle scattering with a change of
ing temperature for a Au/YBCO IHJ. FGF>T, the o(Vv)  the normal component of the morr_lgntul’q,s(la), and scat-
curve (the T=50 K curve in Fig. 7 can be approximated tering on lattice defects and impuritielS;,:
well by a paraboldthe dashed curve in Fig) T the frame- T(0)=T ol )+ Tgisr( ) + T y(6) + Timp.- (9)

work of the tunneling theory oN/N’ junctions with allow- ) _ _
ance for the influence of the voltage on the shape of thaf upon the formation of the LABSs the dominant contribu-
potential barrief® For T<T, the o(V) curve at smallV tion to their broadening comes from scattering on defects and

exhibits a deviation from the parabolic shape in the form ofMPUrities,I'in,, which is independent of the direction of the
a conductance anomaly, increasing with decreadinghe  duasiparticle momentum, then, as follows fr¢& and 9),
deviation ofRy(T) for a Au/YBCO IHJ from the exponential the dependence of the conductance anomaly has the shape of

growth corresponds to the onset of the conductance anomafy Lorentzian of widthl’. The inset in Fig. 7 shows the ex-
on the I-V characteristic. We note that the conductanc@€’imental dependeneg(V) at low voltages V<6 mV) for

anomaly is absent for the-HJ Au/YBCO (dashed curve in the AUYBCO IHJ atT=4.2 K (inverted trianglesand the
Fig. 7). Nb/Au/YBCO IHJ atT=10 K (squares Theo (V) curve for

Figure 8 showsa(V) for a Nb/Au/YBCO IHJ in the the Au/YBCO .IH.J is welllapproximated by a Lore.n.tzian;
temperature region 9-40 K in which the conductanceconseq.ue““y' it is scgtterlng on defects and |mpur|t|e.s thfat
anomaly is most strongly expressed. We note V) determmes the half-width of the con_duc_tance anomaly in this
~ consts aff =T, . This corresponds to the tunneling of qua- case. It is also seen from the inset in Fig. 7 that the shape of

siparticles through a delta-function-like barrier which is uni- (V) for the No/Au/YBCO IHJ is not Lorentzian.

form over area, while folf <T. a conductance anomaly ap- In the Au/YBCO IHJ the formation of the boundary was

pears on the IV characteristic of the Nb/Au/YBCO IHJ, justdone with the vacuum broken(ex sity, and the

as for the Au/YBCO IHJ. For both types of IHJ one observes\1 1 20YBCO surface of the film was subjected to the atmo-
growth of the amplitude and a decrease of the half-wikkh sphere for about an hour prior to the deposition of Au. As a

of the conductance anomaly as the temperature is lowerefeSult of the interaction with the atmosphere, various impu-
Together with the thermal smearing of the conductancéitiés such as Coand OH were precipitated on the surface

anomaly the LABS levels broaden on account of the finite®f the YBCO film, and oxygen-deficient regions, which are
lifetime of the states. For a quasiparticle with energyt lattice defects, also formed. The factors mentioned lead to
e<Ag (A, is the amplitude value of the energy gar6) the formation of a large number of scattering centers in the

= A, cos 2 for thed-superconductdrone uses the following surface layer of the YBCO film and may give the governing
form of the density of stateN(s, §): 81231 contribution to the broadening of the conductance anomaly.

1o The degree of diffuseness of the surface layer on the
m T“(6) ® Au/YBCO boundary can be characterized with the aid of the
(e—ep)°+T(0)% parametert/l, wheret is the thickness of the disordered

FIG. 8. o(V,T) for the Nb/Au/YBCO IHJ.

N(e,0)=
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layer?> Here t/|=0 corresponds to the ideal Au/YBCO 20
(1120 boundary, whilet/l =< corresponds to a completely
diffuse boundary. Unfortunately, there are no data in Ref. 2
for the regiont/1>0.1, which corresponds to the Au/YBCO
IHJ under study here.

Among the LABS broadening mechanisms that depend
on the direction of the momentum of the incident quasipar-
ticles are tunneling, scattering on the YBCO surface rough-
ness, and scattering with a change in direction of the quasi- -20
particle momentum. With increasing transparency of the
boundary the probability of escape of the quasiparticles by
tunneling through the barrier increases, and that should lead 40 . . . . .
to an increase of 'y, 6).33? However, for the Nb/Au/ ~15 -10 -5 0 5 10 15
YBCO IHJ the values ob are at least an order of magnitude vV, mv
larger thaq for the Au/YBCO IHJ, althoughV at low tem- .~ o Ao(V.H) = o(V.H)— o (V,0) at T=4.2 K for a AUYBCO IHJ at
peratures is several times smaller for the Nb/Au/YBCO IHJyvarious values, from 0 to 5 T, of the magnetic field applied perpendicular to
than for the Au/YBCO IHJ. For example, @=10 K one the plane of the substrate. The curve for0 corresponds to a straight line
hasAV~1 mV for the Nb/Au/YBCO IHJ and 6.8 mV for Passing through zero. In the inset the squares show the dependence of the

. T splitting, calculated as half the distance between maxima®fV,H) and
the AU/YBCO IHJ. ThusAV in the IHJs falls off with in normalized taA =20 MeV, on the magnetic field strength. The solid curve

creasingD and, hence, the tunneling of quasiparticles is notcorresponds to a calculation in a model in which an additisraimponent

the governing factor for the broadening of the conductancef the order parameter in YBCO is generated at temperatures below

anoma|y_ T<7K, wherein Ag_ygco=1.2 meV, A;=20 MeV, Hy=16 T, and
Ho=1T."

Ao, uQ'1

The LABS broadening that leads to the non-Lorentzian
shape of the conductance anomaly is apparently due to two
processes: diffusive scattering due to the rough surface of the

YBCO film, and umklapp processes of quasiparticle scatterdéPendenced(H) obtained in the framework of a Doppler

ing with a change in the normal component of the momen_shift model for the LABS levels owing to the generation of

tum. The experimental study of the influence of each of thes@" additionals component of the superconducting order pa-
processes on the broadening of the conductance anomaly @Meter al =T((YBCO)~7 K (the solid curve in the inset

difficult because of problems in determining the exact distri-°f Fi9- 9.~ In this case the conductance anomaly should
bution of transparency over the area of the junction and ovefSO Pe Split at zero magnetic field, which has not been ob-

angles6, and also of determining(6) for each process. served in experiment, even though the conditbATs is
met. It has been showhthat the splitting in zero magnetic

field vanishes when the doping level of thesuperconductor

goes from overdoping to underdoping. Apparently it is the
When anN/d IHJ is placed in a perpendicular magnetic underdoping by carriers due to the oxygen deficit that is

field a screening current arisesdnshifting the LABS levels  realized in the YBCO films, as is indirectly confirmed by the

(Doppler shift of the levels'* Analogously, spontaneous cur- |ow transition temperature to the superconducting state (

rents can also arise in the absence of external magnetic field 53 K). In the low-magnetic-field regiorH<1 T) the ex-

if on the surface ofl, e.g., when the temperature is lowered perimental data are insufficient for making a comparison of

below a certain critical valuds, a transition occurs to a experiment with the theory.

mixed type of symmetryl,>_,2+is of the superconducting

order parameter. In both cases this leads to splitting of the

LABS levels. As a result, the peak of the conductancet.4. Influence of Andreev states on the supercurrent

anomaly in arN/d IHJ is split into two peaks. In a perpen-

dicular magnetic fieldH the LABS level splitting i8>

4.3. Magnetic-field dependence

The dependence of the energy of Andreev bound states
on the phase difference of the superconducting order pa-
gp=(e/c)vgHN  siné, (100  rameter of the electrodes forming the Josephson junction de-
termines the supercurrent that flows through the Andreev
bound stategsee, e.g., Ref. 33

2

where c is the speed of light in vacuumy, is the Fermi
velocity in theab plane of YBCO, and\| is the London
penetration depth of the magnetic field in thelirection of dE,(0,¢)

YBCO. For studying a Au/YBCO IHJ in magnetic fields up |s(¢)“;2 cosaan(En( 6))dé, 11

to 5 T perpendicular to the plane of the substfataking an "

angle of approximately 79° with thab plane of YBCQ, where the summation overgoes over all the Andreev states
after subtraction of the analogous dependenceHfer0 the ~ With energiesE,, andf(e) is the Fermi distribution func-
presence of splitting of the conductance anomaly becomeéon. We note that for tunnel junctions made from
obvious(Fig. 9. The inset in Fig. 9 shows the dependence ofs-superconductorsi{<1) the energies of the Andreev states
the splitting of the conductance anomaly on the value of thdie near the gap. For the Andreev states of a contact between
magnetic fieldS(H), in a Au/YBCO IHJ afT=4.2 K. Inthe  an s-superconductor Ag) with the (110 plane of a
high magnetic field regionH>2T) the splitting 5(H) is  d-superconductorg/d ;1) there are also LABS levels for

practically constant and can be approximated well by thes<A,:83%
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the normalized amplitude of the rf current for an IHJ of area
30X 30 um. The amplitudes of., 1, and I, oscillation
with increasing amplitude of the external influence; this cor-
responds to a resistive model of Josephson junctidiite
subharmonic Shapiro steps observed experimentally on the
I-V characteristic of botlc-HJ and IHJ Nb/Au/YBCO at
V=3(hf/2e) are indicative of a deviation of the CPR from
sinusoidal form. It should be noted that the high-amplitude
irradiation of the heterojunctions under study from an exter-
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c : nal microwave source can alter the quasiparticle Fermi dis-
0 —‘/; I 025500 150 tribution function that appears in formuidl) for the phase
. , 1 Lo | dependence of the supercurréhiVe therefore made mea-
-50 0 50 100 150 200 surements of the selective detector response at a low ampli-
Vv, uv tude of the external microwave signal relative to the value of
the critical current of the Josephson junction under study,

FIG. 10. |-V characteristic of a Nb/Au/YBCO IHJ of area >80 um
under irradiation by microwave radiation with a frequency of 46.4 GHz atI rRe<lc. . ) . )
T=4.2 K. The upper inset shows the critical curréniind the first; and The lower inset in Fig. 10 shows the selective detector

secondl, Shapiro steps as functions of the amplitude of the microwaveresponse;(V) obtained under the influence of a low-power
radiation. The lower inset shows the selective detector respg(igi ob- signal lrp<le with f=55.7 GHz. The arrow on the;(V)
tained during irradiation by a low-power signalfat 55.7 GHz. The arrow gt 1
indicates the subharmonic response. curve _|nd|cates the feature at vpltag’e: _z(hf/2e), corre-
sponding to the first subharmonic Shapiro step, the appear-
ance of which in the given case cannot be explained by the
= . — — onset of a nonequilibrium energy distribution function for the
= + - +0(D?). Co e .
En=ArAGD SiN/[2Ap+D(A¢—Ap)]+O(D%). (12 quasiparticles. For a Nb/Au/YBCO IHJ withA=10
It was shown in Re_f. 33 that iml/d;40) junctions at  x10 um andl <3 uA we were unable to observe subhar-
low temperatures KT<DAy/4v2), just as ins/s junc- monic Shapiro steps on the |-V characteristic, probably be-

tions 1,«D and | .Ry~mA, /e, but I(¢) differs strongly ~cause of their small amplitudes.
from sinusoidal, I {(¢)~cose (0<e<m) (case a). At

higher temperatures DA g/4v2<kT<A4/2)l .=D?, 1Ry
~(7mAqD/4e)(A4/2kT—1) andl(¢)~sin 2p (caseb). On
the other hand, ifA/2<kT<KkT,, then I ,Ry=0232 Since

D~10 *-~10° in the Nb/Au/YBCO iHJs studied here, we : .

— . . by two methods: direct measurement of the noise spectral
haveDA/4v2<0.01 K, and all =4.2 K caseb is realized.  yojy by 4 low-noise cooled amplifier working in the fre-
For example, for a Nb/Au/YBCO IHJ witlD~2.5X10"°  guency range 1-2 GHz, and by the method of estimating the
one calculates.Ry~10 nV, which agrees in order of mag- inewidth of the characteristic Josephson generation from the
nitude with the value observed in experiment. TR€T)  selective detector response to a weak external microwave
curve measured experimentally for the Nb/Au/YBCO IHJSsjgnal. The 1-V characteristic and the dependence of the
falls off monotonically with increasing temperature. The pgise power on the bias current for a Nb/Au/YBCO IHJ of
nonmonotonicity ofl (T) predicted in Ref. 33 is not ob- area 1010 um are shown in Fig. 14 Unlike the case of
served. At the same time, tunneling experiments/dc-HIS /g contacts®® there is no increase in the noise on the resis-
have revealed the presence of an additicnabmponent of  tjye part at low values of the bias current. We note that the
the superconducting order parameter of YBCO, with an engrop in the noise power upon the transition of the 1HJ from
ergy gapAs-yeco- In that case the temperature dependencghe superconducting to the resistive state is caused by a
of the supercurrent, determined from form& with allow-  change in the output impedance of the sample relative to the
ance for the fact that, owing to the high transparency of theso() input impedance of the amplifier. Upon a significant
Nb/Au boundary and the proximity effect in the Au spacerincrease in the bias voltage a growth of the noise spectral
layer, an order parameter with a critical temperaturegensityS(V) at the contact is observed; see Figh1The
T(<Tcnp Ccan be manifested, in qualitative agreement withinset to Fig. 1b shows the part of th&(V) curve for |V

4.6. Noise properties of inclined Nb /Au/YBCO
heterojunctions

The noise properties of Nb/Au/YBCO IHJs were studied

the experimental observations on Nb/Au/YBCO IHJs. <9 mV in greater detail. The dependence found is explained
by growth of the shot-noise intensif§=2el as the current

4.5. Phase dependence of the supercurrent of inclined I . through the heterojunction increases. We note that quali-

Nb/Au/YBCO heterojunctions tatively similarS(V) curves have been obtained previodsly

Figure 10 shows the I-V characteristic of a 30for d/d superconducting Josephson junctions with an aver-

X 30 um Nb/Au/YBCO IHJ under irradiation by monochro- 29€d boundary transparenby- Oég)l. The question of noise
matic electromagnetic radiation with a frequendy ~ has been studied theoreticafly*® for s/d junctions with
~46.4 GHz. The |-V characteristic shows the critical cur-relatively high transparencyD>0.1, quite unlike the
rentl., harmonic Shapiro stefs andl,, and also the first Nb/AuU/YBCO [HJs studied experimentally, for which
subharmonic step, with,,/1;~0.1 at 4.2 K¥ The upper D~10°.

inset in Fig. 10 shows the dependenced of I, andl, on It follows from Refs. 36—38 that suppression of the ex-



608 Low Temp. Phys. 30 (7-8), July—August 2004 Komissinski et al.

superconducting electrodes revealed a deviation from sinu-
200 soidal form for both types of Nb/Au/YBCO heterojunctions.
% A conductance peak on the |-V characteristics of the
100 S Au/(1120YBCO and Nb/Au{1 120YBCO at low voltages
% was found and investigated; this is the conductance anomaly
> 0 5 due to multiple Andreev reflection in the junctions from su-
. z perconductors with d,2_ 2 type of order-parameter symme-
-100 g try. The Lorentzian shape and thel/T temperature depen-
2 dence of the amplitude of the conductance anomaly in Au/
-200 z YBCO heterojunctions indicate that its broadening is due to
quasiparticle scattering on impurities and lattice defects,
_15 5 which is independent of the direction of the quasiparticle
momentum, in the YBCO near the boundary. We have inves-
6 tigated the shot and thermal noise in Nb/&ul 20YBCO
i 2 ) heterojunctions, but we observed no excess noise due to the
5L 2 i effect of Andreev reflection.
» T
= %) N
5 4r 1 E-mail: gena@hitech.cplire.ru
5 YIn the presence of the order-parameter suppression near the boundary in
& 3f 1 N/d junctions, bound states can also form at finite enefgies.
) 2X-ray diffraction experiments oril 1 20YBCO films have shown that
2r E such films are single-domain and have a single twin complexlike, for
example, YBCO films on (110)SrTiCand (120NGO substrate¥>
1+ . 3Formula(2) is valid in the case of a spherical Fermi surface of the mate-
rials in contact. We note that even in the absence of an insulating layer the
! I I L L 1 I transparencyp <1 for the case of a large mismatch of the Fermi velocities
-60 -40 -20 0 20 40 60 of the metals in contact.
V, mV “For the Nb/Au/YBCO IHJ one haBy=R(T,), while for the Au/'YBCO

IHJ the value ofRy was determined from the |-V characteristic as the
FIG. 11. |-V characteristi¢1) and the dependence of the noise power on maximum value of the resistance at 4.2 K. The low value3 ofor the
the bias current2) for a Nb/Au/YBCO IHJ, obtained with the use of a  Nb/Au/YBCO IHJ (T,~53 K) are apparently due to the escape of oxygen
low-noise cooled amplifier af=4.2 K (a); dependence of the noise spec-  from the operab planes of the YBCQL 1 20 films during preparation of
tral densityS(V) on the voltage a¥=50 mV; the inset shows the part of ¢ samples.
S(V) for V<9 mV (b). SWe note that, as in the case of the Nb/Au/YBE@@J, at low amplitudes
of the external influence the first Shapiro step is symmetric with respect to
the autonomous |-V characteristic; this attests to the coherence of the
cess shot noise occurs as the transparency decreases at Iglasephson generation in autonomous junctins.
bias voltages for Josephson junctions with a
d-superconductor as one or both electrodes. Most likely the
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The results of experiments on the low-field dc magnetic response of0B&®, _, single

crystals having unidirectional twinning planes are presented. The nonmonotonicity observed in the
temperature dependence of the magnetization of the samples is interpreted in the framework

of a possible model for the existence of a system of Josephson weak links on the twinning planes
and of anisotropy of the order parameter. 2004 American Institute of Physics.
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Research on higfi;, superconductordHTSC9 by mag-  tional twin boundaries oriented parallel to theaxis of the
netometric methods is topical both from the standpoint ofcrystal.
understanding the nature of the formation of high-  The low-field measurements of the temperature depen-
temperature superconductivity and for applied purposes. Adence of the magnetization of YBau;O,_, near the phase
advantage of such methods is their unique sensitivity in studtransition temperature were made using a magnetic suscepti-
ies using SQUID magnetometry and the absence of contactbjlity meter based on a SQUID gradientomet@f the
which could alter the structure of the object near the surfacedB,/dZ type) with cooling at the helium level. A standard
Despite numerous theoretical and experimental studies déchnique of dc magnetization measurement by registering
metaloxide HTSC$? a number of questions remain to be the response of an rf SQUID to motion of a sample along the
clarified, for example, in connection with the magnetic fluxaxis of its antenna in the uniform magnetic field of a
dynamics and the appearance of spontaneous currents $olenoid® The residual level of Earth’s magnetic field in the
weak magnetic fields and at temperatures close to the criticaggion of the experimental chamber was reduced to 0.5 mOe
point in the presence of various structural inhomogenetties.or less by the use of multilevel Permalloy shielding. Addi-
In the design of rf SQUIDs and their input antenna elementsional compensation of the residual field could be achieved
(flux transformers the solubility to these problems is ur- with the use of an auxiliary solenoid. This permitted cooling
gently needed in order to reduce the inherent magnetic noisaf the sample and bringing it to the superconducting state in
of sensors and to improve the sensitivity of equipmentthe zero-field coolingZFC) regime.
cooled at the nitrogen level. Figure 1 shows the typical temperature dependence of

Here we report the results of observations of nonmonothe output voltage of the susceptibility meter as the tempera-
tonic temperature dependence of the magnetization of YBCQure of one of the samples was increased in the region around
single crystals at very low magnetic field®8.01-0.2 O  the superconducting phase transition. The coefficient of con-
possibly caused by a thermally activated transformation of aersion of magnetic moment into the voltage response of the
system of Josephson weak links on unidirectional twins inexperimental apparatus was=5x10"1°A.-m?/V in the
the region near the superconducting phase transition. As thgorking sensitivity ranget 10 ®,, where®, is the mag-
object of study we chose impurity-free oriented single crys-etic flux quantum. The magnetic field of the solenoid had a
tals of YBgCu;O;_, grown by flux-melt technology at a magnitude equal to 15.5 A/m~0.2 Oe) and was directed
low longitudinal temperature gradiehfter annealing in an  along thec axis of the single crystal. In this orientation the
oxygen flow the single crystals had a superconducting tranmagnetic field is parallel to the twinning planes, and the most
sition temperaturel . of 93 K, which was measured by a effective pinning of Abrikosov vortices is achieved. To a
resistive method at “zero” magnetic field, and the width of high degree of accuracy similar curves were obtained for a
the superconducting transition was 0.3 K, which attests to thaumber of YBCO single crystals with the optimum doping
high quality of the samples. The annealing necessary for odevel. As can be seen in Fig. 1, the curve of the supercon-
timal doping in an oxygen flow at 400 °C leads to a trans-ducting phase transition, unlike the data from resistive mea-
formation of the tetragonal structure of the crystals to orthosurements on YBCO single cryst4lss nonmonotonic and
rhombic and, as a consequence, to the formation of twinningccupies a significant temperature intervalT(=3-5 K).
planes. To study the influence of these planar defects on piffhe curves exhibited a smoothed step that cannot be ex-
ning processes we chose single crystals of XB80;_, plained by melting of a vortex lattiteat the low values of
with dimensions close toX1X0.02 mm, having unidirec- magnetic field used in the experiment.
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FIG. 1. Temperature dependence of the output voltage of the susceptibility

meter with increasing temperature of the sample in the region of the supeFIG. 2. Temperature dependence of the magnetization of a YBCO single
conducting phase transition. The inset shows the temperature dependencecgystal, normalized to the maximum value, for different values of the mag-
the susceptibility of a ceramic HTSC from Ref. 6. netic fieldH [A/m]: 8 (1), 15.5(2), 65.9(3).

Let us mention a few key points in this regard. In study-vorable for the existence of an orbital glass. Abrikosov vor-
ing the magnetic susceptibility of polycrystalline cuprates oftices can penetrate through the grains alongaheplanes,
the YBCO and RBCO type (RNd, Eu, Gd the authors of and in that case supercurrents can flow through loops closing
Ref. 6 found that some of the samples that had been sulmne or several granules. Similar plateaus on the phase tran-
jected to annealing in oxygen had ZFC curves of the phassition curves have also been observed in high-quality epitax-
transition with a smoothed steplike kink. This form of the ial film samples of YBCO in studies of the current—voltage
temperature dependence of the susceptibility of a HTSC isharacteristics and magnetization at high fielBs=0.3 T) 2
characteristic of the regime of the “glass—liquid” transition This behavior was interpreted by the authors in the frame-
of the vortex matter, which occurs at a temperaflige<T,  work of a model based on the existence of a one-dimensional
in strong magnetic fieldsi>H,. Since in the experiment network of Josephson junctions with statistically distributed
described in Ref. 6 the magnetic fields were wedk ( lengths and with magnetic field-dependent barrier thick-
=10-30 Oe), the observed stepped form of the phase chanesses. There the transport current was treated as a tunneling
acteristics was attributed to a transformation of a medium oturrent through this Josephson network. A given network
Josephson weak links at low magnetic fields, which was preeonsists of a number of current channels through the inter-
dicted in the theoretical studiés. granular boundaries, and the pinning in this system is ef-
The superconducting granules of a cuprate sample arected at interblock boundaries and/or correlated defects. In
coupled to each other in a random way by barriers of varioushat case the sizes of the defects are comparable to the sizes
transparency for Cooper pairs and thus form statistically disef the current channels and also to the size of the vortex core.
tributed current networks. The parameters of this Josephsofit high temperatures a significant fraction of these channels
medium depend on the technology of preparation of théreak up into individual superconducting granules, reducing
HTSC sampldpressures, degrees of oxygen saturation),etc. the value of the critical current.
the temperature of the sample, and the external magnetic The results of our experiments with single-crystal
field used in the measurements. By analogy with the spisamples of YBCO suggest that the twinning planes create
glass this medium is sometimes called an “orbital glass,”conditions for the formation of similar Josephson networks
since the orbital moments are identified with circulating in-with randomly distributed parameters. The twin boundaries
duced or spontaneous superconducting currents. The latterclude CuQ layers containing oxygen vacancies and have a
can exist under certain conditions, e.g., in the presence of astrong local influence on the suppression of the supercon-
odd number of Josephsan contacts in the random current ducting order parameter. The suppression of the supercon-
loops. With increasing applied magnetic field the temperaducting order parameter at twins leads to a lowering of the
ture T, of this transition shifts to lower values, and the stepenergy of the vortex lines trapped by the twins. The density
vanishes completely at higher fields, where the susceptibilitypf vortex lines at twins is therefore higher than in the rest of
demonstrates typical diamagnetic behavior. the crystal. Experiments on the decorrelation of the vortex
We have observed such effects in single-crystal samplestructure showed that in fields of 20—40 Oe the density of
of YBCO. Figure 2 shows the temperature dependence of theortices at twins is twice as high as in the bulk of the
magnetization normalized to its maximum value for one ofcrystal® Since in a field of 0.2 Oe the intervortex distance
the YBCO single crystals at three values of the magneti@,=(®,/B)Y?>~10* nm exceeds the intertwin distance
field Hlc, equal to 8 A/m (0.10e), 155 A/m d~10° nm and is comparable to the field penetration depth
(=~0.2 Oe), and 65.9 A/m~0.83 Oe). We see that with A~10% nm in the given temperature region, and since the
increasing fieldH the step shifts to lower temperatures andinteraction between vortices decays exponentially with the
becomes smoother. intervortex distance, it can be expected that all of the vortices
Because of the anisotropy of the grains, granular superare localized at twins.
conductors have a complex microstructure and are more fa- Subsurface superconducting regions separated by twin
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For certain orientations of Josephson junctions betweenpismwave or twod-wave

superconductors, the subgap Andreev bound states produgearibdic relation between the
Josephson currertand the phase differencg |osin(¢/2). Consequently, the ac

Josephson current has the fractional freques@i, whereV is the dc voltage. In the tunneling

limit, the Josephson current is proportional to the first potasd not the squayef the

electron tunneling amplitude. Thus, the Josephson current between unconventional superconductors
is carried by single electrons, rather than by Cooper pairs. The fractional ac Josephson

effect can be observed experimentally by measuring the frequency spectrum of microwave
radiation from the junction. €004 American Institute of Physic§DOI: 10.1063/1.1789931

1. BRIEF HISTORY OF THE AC JOSEPHSON EFFECT ing experiments® performed on conventionalwave super-

In 1962, Josephsdrpredicted theoretically that if a dc conductors.

voltageV is applied to a junction between two superconduct-
ors, an ac supercurrent with the frequenay\V24 appears
between the superconductors. The ac Josephson radiation In many materials, the symmetry of the superconducting
was first observed experimentally 40 years ago in Kharkowrder parameter is unconventional, i.e., setvave. In the
by Yanson, Svistunov, and Dmitrenkd.In Ref. 3, the spec- high-T cuprates, it is the singlet,z_2-wave? There is ex-
trum of microwave radiation from tin junctions was mea- perimental evidence that, in the quasi-one-dimensional
sured and a sharp peak in the frequency spectrune{/2  (Q1D) organic superconductors (TMTSH),° the symme-
was found. It is amazing that without any attempt to matchtry is triplet!* most likely thep,-wavel? where thex axis is
the impedances of the junction and waveguide, Dmitrenk@long the conducting chains. The unconventional pairing
and Yanson found a signal several hundred times strongersymmetry typically results in the formation of midgap An-
than the noise and a ratio of linewidth to the Josephson fredreev bound states on the surfaces of these superconductors.
quency less than 1G. This discovery was followed by fur- For d-wave cuprate superconductors, the midgap Andreev
ther work in the United Statésind Ukraine’ The results of  states were predicted theoretically in Ref. 13 and discovered
these investigations have been summarized in a classixperimentally as a zero-bias conductance peak in tunneling
book® Since then, the ac Josephson radiation has been obetween normal metals and superconductsee Ref. 1%
served in many materials in various experimental setups. Fdfor the Q1D organic superconductors, the midgap states
example, a peak of Josephson radiation was found in Ref. Were theoretically predicted to exist at the edges perpendicu-
in indium junctions at a frequency of 9 GHz with a width of lar to the chain$®>'® When two unconventional supercon-
36 MHz. In Ref. 8, a peak of Josephson radiation was obéductors are joined together in a Josephson junction, their
served around 11 GHz with a width of 50 MHz in Andreev surface states hybridize to form Andreev bound
Bi,Sr,CaCyOg single crystals with the current along tee states in the junction. These states are important for the Jo-
axis perpendicular to the layers. sephson current. Andreev bound states in Highunctions

The theory of the Josephson effect was originally develwere reviewed in Ref. 17. The Josephson effect between two
oped for conventiona-wave superconductors. In this paper, Q1D p-wave superconductors was studied in Refs. 18 and
we study Josephson junctions between unconventional supet9.
conductors, such ad-wave cuprates op,-wave organic In the present paper, we predict a new effect for Joseph-
superconductors. We show that the midgap Andreev statesn junctions between unconventioriabnchira) supercon-
in these materials produce arferiodic relation between ductors, which we call the fractional ac Josephson effect.
the Josephson curreni and the phase difference Suppose both superconductors forming a Josephson junction
¢: lxsin(g/2). Consequently, the ac Josephson current habave surface midgap states originally. This is the case for
the fractional frequencyeV/#, half of the conventional butt-to-butt junctions between twp,-wave Q1D supercon-
value. We hope that this effect can be observed experimerductors, as shown in Figaland for 45°/45° in-plane junc-
tally as a corresponding peak in the frequency spectrum dfons between twal-wave superconductors, as shown in Fig.
Josephson radiation from unconventional superconductor8a. (The two angles indicate the orientation of the junction
such agl-wave cuprates, in a manner similar to the pioneerdine relative to theb axes of eacld,2_y2 superconductoy.

2. INTRODUCTION

1063-777X/2004/30(7-8)/7/$26.00 613 © 2004 American Institute of Physics
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a Ay Age'® momentum-independent orientatitn'? If the spin quantiza-
T tion axisz is selected along, then the Cooper pairing takes
a place between electrons with the oppogHaxis spin pro-
b Ao 1 ~ jectionso and o (€,(k)Ex(—k))xA (k), wheret,(k) is

the annihilation operator of an electron with momentlkm
and spino. The pairing potential has the symmethy, (k)
=FA4k)==A,(—k), where the upper and lower signs
correspond to the singlet and triplet cases.

We select the coordinate axis perpendicular to the
plane of the Josephson junction. We assume that the interface
between the two superconductors is smooth enough, so that
the electron momentum componédqt parallel to the junc-
tion plane is a conserved good quantum number.

FIG. 1. Josephson junction between two QpRwave superconductors Electron states in a superconductor are described by the

(a). The energiedleft pane) and the currentgright pane) of the subgap ~ Bogoliubov operatorsy, which are related to the electron

states in thes—s junction as functions of the phase differengdor D=1 operators@ by the foIIowing equation7§
(thin lineg and D=0.9 (thick lineg (b). The same ash for the p,—py

junction atD=0.2 (c).

¢ ¢

= || AU (081 00+ 08 (0815 001, @)

We predict that the contribution of the hybridized Andreev R . Lt

bound states produces ar4eriodic relation between the Cvky(x):; [”noky(x)ynakﬁUnEEy(X)VnE?y]’ @
supercurrentl and the superconducting phase difference o

@: lsin(el2).2° Consequently, the ac Josephson effect hasvherek,= —k,, andn is the quantum number of the Bogo-
the frequencye /%, wheree is the electron charg&/ is the  liubov eigenstates. The two-component vect(m',sl,ky(x)
applied dc voltage, ank is Planck’s constant. The predicted =[u,,, (X),vh« (X)] are the eigenstates of the
frequency is one-half of the conventional Josephson fregogoliubov—de Genne@BdG) equation with the eigenener-
quency 2V/# originating from the conventional Josephson giesg, , :

relationl ocsine with period 2r. Qualitatively, the predicted y

effect can be understood as follows. The Josephson current | g, (k) +U(X) A i (x,ky)
across the two unconventional superconductors is carried by Y . . i Un=Ept,, Q)
tunneling of single electrongather than Cooper pajrbe- Ag, (ko) — ey (k) —U(X)

tween the two resonant midgap states. Thus, the Cooper pair - L
charge 2 is replaced by the single chargein the expres- wherek,= —i4d, is thex.componer)t of the electron momen-
sion for the Josephson frequency. This interpretation is alsi!M operator, ant(x) is a potential. In Eq(3) and below,
supported by the finding that, in the tunneling limit, the Jo-& Often omit the indicesr andk, to shorten the notation
sephson current is proportional to the first potrest squarg ~ Where this will not cause confusion.

of the electron tunneling amplitud&-23 Possibilities for ex-

perimental observation of the fractional ac Josephson effet JUNCTIONS BETWEEN QUASI-ONE-DIMENSIONAL
are discussed in Sec. 4. SUPERCONDUCTORS

The predicted current—phase relationsin(¢/2) is quite In this Section, we consider junctions between two Q1D
radical, because every textbook on superconductivity SaySuperconductors, such as the organic superconductors
that the Josephson current must bemap2riodic function of (TMTSF),X, with the chains along th& axis, as shown in
¢.2°To our knowledge, the only paper that has discussed thejg. 1a. For a Q1D conductor, the electron energy dispersion
4s-periodic Josephson effect is that of Kitséwe consid- in Eq. (3) can be written a$=h2k§/2m—2tbcosbky)—,u,
ered a highly idealized model of spinless fermions on a oneynerem is an effective masgy is the chemical potentiah
dimensional1D) lattice with superconducting pairing on the angt, are the distance and the tunneling amplitude between

neighboring sites. The pairing potential in this case has théhe chains. The superconducting pairing potentials insthe
px-wave symmetry, and midgap states do exist at the ends ¢f,g p,-wave cases have the forms

the chain. They are described by the Majorana fermions,
which Kitaev proposed to use for nonvolatile memory in

guantum computing. He found that, when two such super-
conductors are placed in contact, the systemsigpériodic ) ) .
in the phase difference between the superconductors. OYfherefike=y2mu is the Fermi momentum, andlis treated
results are in agreement with his work. However, we formu-28 + for T and — for |. The indexg=R,L labels the right
late the problem as an experimentally realistic Josephson efX=0) and left &<0) sides of the junction, anti ; acquires
fect between known superconducting materials. a phase difference across the junction:

AL:Ao, AR:AOei(P. (5)
The potentiall (x) =Uq48(x) in Eq. (3) represents the junc-

In this paper, we consider singlet pairing and triplet pair-tion barrier located ax=0. Integrating Eq(3) overx from
ing with the spin polarization vecton having a uniform, —0 to +0, we find the boundary conditions @t 0:

. . glAg, s-wave,
A (XK= - 4
ery( x) Afgkx/k[: , p,-wave, ( )

3. THE BASICS
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=R, IR I =KeZP(0), (6) 2
\D
Z=2mUy/h%ke, D=4(Z%+4), (7)
whereD is the transmission coefficient of the barrier. S
3 Px—Px
o
ol
4.1. Andreev bound states N 1 S-S
The general solution of Eq3) is a superpositon of | el
terms with momenta close takg, where the indexx= = | , .
labels the right- and left-moving electrons: 0 05 1
T/T
u - Ug,— | -~ c
Vs =" Ag 5"*)ékF*+BB( et () y | .
Bo+ UBo— FIG. 2. Critical current of thes—s (dashed ling and p,—p, (solid line)

_ . . Josephson junctions as a function of temperatureédfer0.3.
Here == for R andL. Equation(8) describes a subgap

bound state with an enerd§|<A,, which is localized at
the junction and decays exponentiallyxrwithin the length
1/k. The coefficients g, , v ge) in EQ. (8) are determined
by substituting the right- and left-moving terms separately It is well knowr?>?8that the current carried by a quasi-
into Eq.(3) for x# 0, whereU(x) =0. In the limitke>k, we  particle statea is

4.2. DC Josephson effect in thermodynamic equilibrium

find | | 2e oE, 1
Ugoa _ A,Ba'a . VA3_|E|2 9) *h de .
Vgoa Et+iaphuvg’ R The two subgap states carry opposite currents, which are

plotted versusp in the right panelstf) and () of Fig. 1 for

the s—s and p,—py junctions. In thermodynamic equilib-
rium, the total current is determined by the Fermi occupation
numbersf, of the states at temperatufe

wherevg=7ike/m is the Fermi velocity, and 4, is equal
to oA, for the s-wave case and taA; for the p,-wave,
with A 5 given by Eq.(5). Thek,-dependent Fermi momen-
tum ke =7%ike+2t, cospk)/ve in Eq. (8) eliminates the dis-
persion ink, from the BdG equation. 285 B, 2e JEq anl‘(E)
Substituting Eq(8) into the boundary condition®), we h &< dp 2 h do 2T)°
obtain linear homogeneous equations for the coeffici@pts
and Bg. The compatibility condition for these equations
gives an equation for the energies of the Andreev boun

(13

For thes—s junction, substituting E¢10) into Eq. (13), we
ecover the Ambegaokar—Baratoff formtién the tunneling

states. There are two subgap states, with the eneEjes imit D<1:
=aEy(¢) labeled by the indexa= = el Ag A Ag
ls~D smgoﬁtan >T =smgomtan T (14
ES(¢)=—AgV1-Dsirk(¢/2), s—sjunction, (10)

o and the Kulik—Omelyanchuk formuf&in the transparent
EP(¢)=—A0VDcogel2), p-pdunction. (1)  [imit D—1:

The energie$10) and(11) are plotted as functions af
in the left panelsl§) and () of Fig. 1. Without the barrier
(D=1) the spectra of the—s and p,—p, junctions are the
same and consist of two crossing cunkes + A, cos(p/2),
shown by the thin lines in the left panel of Figd.JA nonzero
barrier @ <1) changes the energies of the Andreev boun
states in thes—s and p,—p, junctions in different ways. In
the s—s case, the two energy levels repel nes+ 7 and
form two separated2-periodic branches shown by the thick
lines in the left panel of Fig.l2°>?®In contrast, in thep,—py
case, the two energy levels continue to crosg atw, and
they are separated from the continuum of states abiosg e\ erg Ag\/D cog ¢/2)
and below— A, as shown in the left panel of FigclThe o= \/Bsm<5) 7 tan)‘( >T
absence of repulsion of the energy levels indicates that there
is no matrix element between these levelspat 77 in the e\ mA Ay\/D cog ¢/2)
px—Px case, unlike thes—s case. ZSIH( 5) JDeR an)’( T

As will be shown in Sec. 5, the 45°/45° junction be-
tween two d-wave superconductors is mathematically The temperature dependences of the critical currents for
equivalent to thep,—p, junction. Equation11) was derived the s—s and p,—p, junctions are shown in Fig. 2. They are
for the 45°/45° junction in Refs. 22, 23, and 27. obtained from Eqs(14) and (16) assuming the BCS tem-

| ~sin ¢ elAg Agcod ¢/2)
s~sm§ 7 tan o7 .

Taking into account that the total current is proportional to
the numbeN of conducting channels in the junctige.g.,
he number of chains we have replaced the transmission
coefficient D in Eqg. (14) by the junction resistance
R=#/2N€’D in the normal state.

Substituting Eq(11) into Eq. (13), we find the Joseph-
son current in g,—py junction in thermodynamic equilib-
rium:

(15

. (16)
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perature dependence fdg. In the vicinity of T¢, I, andls 4 in ¢, rather than conventionak2 Although ate =27 the
have the same behavior. With the decrease of temperature, spectrum in the left panel of Fig.clis the same as at
quickly saturates to a constant value, because,Dfet1, ¢=0, the occupation numbers are different. The lower state
EP~FA, (10); thus forT<A,, the upper subgap state is is empty and the upper state is occupied. Onlyat4 are
empty and the lower one is completely filled. In contragt, the occupation numbers the same agat0.
increases rapidly with decreasing temperature, s ahnd The 4 periodicity is a consequence of the energy levels
saturates to a value enhanced by the factgD2telative to  crossing atp= . In contrast, in thes-wave case, the levels
the Ambegaokar—Baratoff formulél0) at T=0. This is a repel ato= in Fig. 1b, and so the energy curves are-2
consequence of two effects. As Eqd4) and (16) show, periodic. As discussed at the end of Sec. 4.1, there is no
<D and Ipoc\/B, and thusl,>1 in the tunneling limit ~matrix element between the crossing energy levelspat
D <1. At the same time, the energy splitting between the two= 7. Thus, there are no transitions between them, so the
subgap states in thg—p, junction is small compared to the occupation numbers of the solid and dotted curves in Fig. 1
gap: EPc \DAg<A,. Thus, for JDA,<T=<A,, the two  are conserved. In order to show this more formally, we can
subgap states are almost equally populated, so the criticalrite a general solution of the time-dependent BdG equation
current has the T/temperature dependence analogous to th@s a superposition of the two subgap states with time-
Curie spin susceptibility. dependentp(t): ¥(t) =2,Cy(t) fal ¢(t)]. The matrix ele-
Equation(16) was derived analytically for the 45°/45° ment of transitions between the states is proportional to
junction between twad-wave superconductors in Refs. 21 zp(zp+|a¢¢,)=¢(¢+|a¢|3||¢,>/(E,—E+). We found that
and 22, and a similar result was calculated numerically foit is zero in thep,-wave case, and thus there are no transi-
the p,—py junction in Refs. 18 and 19. Notice that E46)  tions, and the initial occupation numbers of the subgap states
gives a Josephson curreif(¢) that is a 2r-periodic func-  at ¢=0 are dynamically conserved.
tion of ¢, both forT=0 andT+#0. This is a consequence of As one can see in Figclthe system is not in the ground
the thermodynamic equilibrium assumption. At=0, this  state whenw< <3, because the upper energy level is
assumption implies that the subgap state with the lower ensccupied and the lower one is empty. In principle, the system
ergy is occupied, and the one with the higher energy ismight be able to relax to the ground state by emitting a
empty. As one can see in Fig. 1, the lower energy is alwayphonon or a photon. At present time, we do not have an
a 2m-periodic function ofg. The assumption of thermody- explicit estimate for such an inelastic relaxation time, but we
namic equilibrium was explicitly made in Ref. 22 and was expect that it is quite long(The other papet&1%2'22that
implicitly invoked in Refs. 18, 19, and 21 in their use of the assume thermodynamic equilibrium for each value of the
Matsubara diagram technique. In Ref. 31, the temperaturphasee do not have an estimate of the relaxation time ei-
dependence of the Josephson critical current was measurégkr) To observe the predicted ac Josephson effect with the
in YBCO ramp-edge junctions with different crystal anglesfractional frequencyeV/#%, the period of Josephson oscilla-
and was found to be qualitatively consistent with the uppetions should be set shorter than the inelastic relaxation time,

curve in Fig. 2. but not too short, so that the time evolution of the BdG

equation can be treated adiabatically. Controlled nonequilib-

4.3. Dynamical fractional ac Josephson effect rium population of the upper Andreev bound state was re-
The calculations of the previous Section are applied iff€nty achieved experimentaffyin an s-wave Josephson

the static case, where a given phase differepds main- Junction. _ .
tained for an infinitely long time, so the occupation numbers . Eduation(17) can be generalized to the case where ini-
of the subgap states have enough time to relax to thermodyialy the two subgap states are populated thermally at
namic equilibrium. Now let us consider the opposite dynami-‘P:O’ ‘f’md these_occupatlon numbers are conserved in the
cal limit. Suppose a small voltagev<A, is applied to the ~dynamical evolution:

jgnction, so the phase di_fference acquires dependence. on 2e IE[@(1)]

timet: ¢(t)=2eVt#. In this case, the state of the systemis  1p(t)= 72 o [[Eal¢=0)] (18
determined dynamically starting from the initial conditions. a ¢
Let us consider thp,—p, junction atT=0 in the initial state
¢=0, where the two subgap statékl) with the energies =sin —

+ E, are, respectively, occupied and emptyelft) changes h ] DeR 2T
sufficiently slowly(adiabatically, the occupation numbers of Note that the periodicities of the dynamical equatidi®)

the subgap states do not change. In other words, the statggq the thermodynamic equatict®) are different. The latter
shown by the solid and dotted lines in Fig: temain ocCU-  equation assumes that the occupation numbers of the subgap

pied and empty, respectively. The occupied @B pro-  giates are in instantaneous thermal equilibrium for each
duces the currentl2):

tan .

(19

o VDeA, [e(t)) JDeA,  [eVt .
p(D)= h sin 2 )] & sin h ) (17 4.4. Tunneling Hamiltonian approach
The frequency of the ac curreftt7) is eV/#, a half of the In the infinite barrier limitD— 0, the energiest E®) of

conventional Josephson frequencg\2%. The fractional the two subgap statgd1) degenerate to zero, i.e., they be-
frequency can be traced to the fact that the energies of Eqgome midgap states. The wave functig@sare simplified as
(11) and the corresponding wave functions have a period ofollows:
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Wo(X) T tro(X) quaS|part|cIe in the ng_ht mld_gap sta_te a_nd its creation in the

Yog=—————, (20)  left midgap state. In this basis, Hamiltonié2i7) can be writ-

V2 ten as a X2 matrix:

) 1
dio=2x sm(kFx>eKX( i ) 0(=), (21 ) 0

PH.=AyyD cog ¢/2) 1 o (28)

- eicp/2

Yro=2r sin(kex)e | _ i e—iqolz) 0(x). (22)

The eigenvectors of Hamiltoniaf28) are (1+1), i.e., the
Since atD=0 the Josephson junction consists of two semi-antisymmetric and symmetric combinations of the right and
infinite uncoupledp,-wave superconductors), o and g left midgap states given in E§20). Their eigenenergies are
are the wave functions of the surface midgap stateslong-  E. (¢)=FAq/D cos/2), in agreement with Eq11). The
ing to the left and right superconductors. Let us examine théunneling current operator is obtained by differentiating Eq.
properties of the midgap states in more detail. (27) or (28) with respect tap. Becausep appears only in the

If (u,v) is an eigenvector of E¢3) with eigenvalueE,,, prefactor, the operator structures of the current operator and
then (—v*,u*) for the s-wave case andu(*,u*) for the the Hamiltonian are the same, so they are diagonal in the
p-wave case are the eigenvectors with the energwame basis. Thus, the energy eigenstates are simultaneously
Er=—E,. It follows from these relations and E@l) that the eigenstates of the current operator, with the eigenvalues
&m[yzcazlgky with |C|=1. Notice that in thes-wave case,
because §,v) and (—v*,u*) are orthogonal for any and Ay (o
v, the states andn are always different. However, in the l.==* \/5679”( §>, (29)
p-wave case, the vectors p) and @*,u*) may be propor-
tional, in which case they describe the same state with

E=0. The state§21) and (22) indeed have this property: N agreement with Eq(17). The same basis (%,1) diago-
nalizes Hamiltonian(28) even when a voltag¥ is applied

vLo=iUfy, Uro=—iURg- (23 and the phase is time-dependent. Then the initially popu-
lated eigenstate with the lower energy produces the current
lo= JVD(eA/#)sin(eVi#) with the fractional Josephson fre-
guencyeV/7i, in agreement with Eq.17).

Substituting Eq.(23) into Eq. (1), we find the Bogoliubov
operators of the left and right midgap states

At A ~t A
Yook, = YLook, YRoak, = IYRook,: (24) 4.5. Josephson current carried by single electrons rather

) ) ~ than Cooper pairs
Operators(24) correspond to the Majorana fermions dis-

cussed in Ref. 24. In the presence of a midgap state, the sum N the tunneling limit, the transmission coefficieDtis
over n in Eq. (2) should be understood &%,- o+ 33,0, proportional to the square of the electron tunneling ampli-
where we identify the second term as the projectRinof ~ tude 7 Do, Equations(17) and (29) show that the Jo-
the electron operator onto the midgap state. Using B8, sephson current in the,—p, junction is proportional to the

(24), and (2), we find first power of the eI.ectro'n tunneling amplitudeThis is in
contrast to thes—s junction, where the Josephson current
Péaky(x)zuo(x) &quy=v3(x)&g—; . (250 (14) is proportional tor?. This difference results in a large
TRy

ratio I,/1s= 2/\JD between the critical currents @t=0 in
Let us consider two semi-infinige,-wave superconduct- thep,- ands-wave cases, as shown in Fig. 2 and discussed in
ors on a 1D lattice with the spacirig one occupying<|I Sec. 4.2. The reason for the different powers7ois the
= —| and the othex=1. They are coupled by the tunneling following. In the p,-wave case, the transfer of just one elec-
matrix elementr between the sitek and|: tron between the degenerate left and right midgap states is a
real (nonvirtua) process. Thus, the eigenenergies are deter-
~ . — . R — mined from the secular equati@@8) already in the first or-
H,= T; [CE"ky( )CR‘Tky(lHCE‘“ky(l)c'—"ky(l)]‘ @6 der of . In the s-wave case, there are no midgap states, so
’ the transferred electron is taken from below the gap and
In the absence of couplingr&0), the subgap wave func- placed above the gap, at the energy cdsi2 Thus, the
tions of each superconductor are given by E8%) and(22).  transfer of a single electron is a virtualot rea) process. It
Using Egs(25), (23), (21), and(22), we find that the tunnel-  muyst be followed by the transfer of another electron, so that
ing Hamiltonian projected onto the basis of midgap states ig, pair of electrons is absorbed into the condensate. This im-
A e — it plies that the current is proportional t3.
PH = [ ufo(1)Ugo(l) +c.CJ(¥ 1 ¥ros + H.C)) This picture implies that the Josephson supercurrent
_ At oA At oA across the interface is carried by single electrons in the
AoVD €% @/2) (301 Yror * Yroy Yeor ) @ px—Pyx junction and by Cooper pairs in th&-s junction.
where \D=4r7sir? kel/fivg is the transmission amplitude, Because the single-electron chamgyis a half of the Cooper-
and we have omitted summation over the diagonal ifdex pair charge 2, the frequency of the ac Josephson effect in
Notice that Eq(27) is 4s-periodic in ¢.2* the py,—py junction iseV/#, a half of the conventional Jo-
Hamiltonian (27) operates between the two degeneratesephson frequencyed//7 for the s—s junction. These con-
states of the system related by annihilation of the Bogoliubowlusions also apply to a junction between two cuprate
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the 45°/45° junction between twd-wave superconductors
with the appropriate integration ovéy,. The energies and
the wave functions of the subgap Andreev states in the
45°/45° junction are #-periodic, as in Eq9.11). Thus the ac
Josephson current has the fractional frequee@%, as in
Eq. (17).

On the other hand, if the junction is parallel to {le 1]
crystal direction, as shown in Fig.b3 then Agky(x,ﬁx)

FIG. 3. Schematic drawing of the 45°/45° junctica) (and 0°/0° junction : UAB(k)Z‘_ kf,)/k% ) Thl§ pairing pOtentlaI IS an even. func—

(b) between twod-wave superconductors. The thick line represents elion of k., and so it is analogous to thewave pairing

junction line. The circles illustrate the Fermi surfaces, where positive angootential in Eq.(4). Thus the 0°/0° junction between two

negative pairing potentiala are shown by the solid and dotted lines. The d-wave superconductors is analogous to ke junction. It

poitts ﬁécﬁanc'ﬂzqu tr'?e"t’]ar;‘r?e"r‘e”t“m space are connected by transmissiogpq|q exhibit the conventional2periodic Josephson effect
' with the frequency 8V/#.

For a generic orientation of the junction line, ttiavave
d-wave superconductors in such an orientation that bottpairing potential acts likp,-wave for some momentg, and
sides of the junction have surface midgap states, e.g., to tHie s-wave for othek, . Thus, the total Josephson current is
45°/45° junction(see Sec. b a sum of the unconventional and conventional tefths:

In both the Px—Px and s—s junctions, eIeptrons trans- | =C, sin(@/2)+C,sin(¢)+..., (3D
ferred across the interface are taken away into the bulk by
the supercurrent of Cooper pairs. In the case offifep, with some coefficient€, andC,. We expect that both terms
junction, a single transferred electron occupies a midgap Ed.(31) are present for any real junction betwekmwave
state until another electron gets transferred. Then the pair GuPerconductors because of imperfections. However, the ra-
electrons becomes absorbed into the bulk condensate, t##€ C1/C2 should be maximal for the junction shown in Fig.
midgap state returns to the original configuration, and the3@ @nd minimal for the junction shown in Figh3
cycle repeats. In the case of thes junction, two electrons
are simultaneously transferred across the interface and b&- EXPERIMENTAL OBSERVATION OF THE FRACTIONAL
come absorbed into the condensate. Clearly, electric chargbcteC JOSEPHSON EFFECT
is transferred across the interface by single electrons at a rate  Conceptually, the setup for experimental observation of
proportional tor in the first case and by Cooper pairs at athe fractional ac Josephson effect is straightforward. One
rate proportional tor? in the second case, but the bulk su- should apply a dc voltag¥ to the junction and measure the
percurrent is carried by the Cooper pairs in both cases.  frequency spectrum of microwave radiation from the junc-

tion, expecting to detect a peak at the fractional frequency

5. JOSEPHSON JUNCTIONS BETWEEN d-WAVE eV/i. To observe the fractional ac Josephson effect pre-
SUPERCONDUCTORS dicted in this paper, it is necessary to perform this experi-

In this Section we study Josephson junctions betweer;fent with the 45°/45° cuprate junctions shown in Fig. 3

two d-wave cuprate superconductors. As before, we select™" control purposes, it is also d_esira_ble to meas_ure.the fre-
the coordinatex perpendicular to the junction line and as- quency spectrum for the 0°/0° junction shown in Fig, 3

sume that the electron momentum comporignparallel to Wﬁ:&ﬁj iepgzlgeerl:t t:snjr?gti?n?% hcsr?\(/)elzj;?i be Imlunr:r(;ia:)lﬁlt
the junction line is a conserved good quantum number. The pietely J '

. o unless the junction enters a chaotic regime with period
the 2D problem separates info a set of 1D soluti@sn the doubling®® TJhe highT . junctions of the rquuired eompetr
x direction labeled by the inde, . Using an isotropic elec- 9- ghc ) 9 Y

. ; be manufactured using the step-edge technique. Bicrystal
tron energy dispersion law=#%2(k2+k2)/2m—u, we re- 2N b .
place thegl):/ermipmomentumF an(dxvelg():ityvp Igy their x junctions are not appropriate, because the crystal axaxl

> _ b of the two superconductors are rotated relative to each
componentske,= kg —ky and ve,=fikg/m. Thus, the other in such junctions. As shown in Figa,3we need the

transmission coefficier® in Eq. (7) becomesk,-dependent. junction where the crystal axes of the two superconductors

The total Josephson current is given by a sum over all OCCL{ﬁave the same orientation. Unfortunately, attempts to manu-

pied subgap states labeled ky. f . ) .
. . . tur hson junctions from the Q1D organi rcon-
For the cuprates, let us consider a junction parallel to the o 'e Josephson junctions fro e Q1D organic superco

_ e ) ductors (TMTSF)X thus far have failed.
[1,1] crysta! direction in thea—b plane apd select theaxis The most common way of studying the ac Josephson
along the diagondll, 1], as shown in Fig. & In these co-

_ @ nr effect is observation of the Shapiro stéfs$n this setup, the
ordinates, thel-wave pairing potential is Josephson junction is irradiated by microwaves with the fre-

Aak (x,ﬁx)=02ABkyRX/k2, (30) quencyw, and steps in the dc current are detected _at the dc

y voltages V,=nAw/2e. Unfortunately, this method is not

where the same notation as in Hg) is used. Direct com- very useful for studying the effect that we predict. Indeed,
parison of Egs(30) and (4) demonstrates that the-wave  our results are effectively obtained by the substitutian 2
superconductor with the 45° junction maps to fhhewave  —e. Thus, we expect to see the Shapiro steps at the voltages
superconductor by the substitutidy— 02Aoky /ke. Thus, V,=mho/e=2mhw/2e, i.e., we expect to see only even
the results obtained in Sec. 4 for thg-p, junction apply to  Shapiro steps. However, when both terms are present in Eq.
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We implement the impedance measurement techr(idWi€) for characterization of interferometer-
type superconducting qubits. In the framework of this method, the interferometer loop is
inductively coupled to a high-quality tank circuit. We show that the IMT is a powerful tool for
studying the response of an externally controlled two-level system to different types of
excitations. Conclusive information about the qubits is obtained from a readout of the tank
properties. ©2004 American Institute of Physic§DOI: 10.1063/1.1789933

1. INTRODUCTION ternal disturbances. Thus the back-action of a detector should
_ _ _ ~be as small as possible. Many different detectors have been
Quantum effects in mesoscopic superconducting circuitguggested in the literatutsee Ref. 1 and references thejein
of small Josephson junctions have attracted renewed atten- |p this paper we review our results obtained on super-
tion. It was clearly demonstrated that Josephson devices cafbnducting qubits by the impedance measurement technique
behave like single microscopic particles if they are suffi-(MT). Below we shall discuss several quantum effects in-
ciently isolated from the environment. Therefore, ideas decluding macroscopic quantum tunneling, Landau—Zener
veloped in atomic and molecular physics can be used fofransitions, Rabi oscillations, and direct resonant spectros-
description of artificially fabricated circuits of macroscopic copy of the qubit energy levels. Finally, we present our very

size. These concepts are stimulated further by the prospect gécent results of investigation of two coupled qubits.
a promising way to realize quantum bitgubitg for quantum

information processing.

Qubits are two-level quantum systems with externally
controlled parameters. Generally, two kinds of such devices For the flux qubits the Josephson energy dominates over
with small-size Josephson junctions have been developethe charge energ¥;>E.. It was predicted that such sys-
One approach is based on the charge degree of freedorfems should exhibit various quantum-mechanical effects, in-
basic states of this kind of qubit are distinguished by thecluding macroscopic quantum tunnelitdQT) of the flux?
number of Cooper pairs on a specially designed island. Thindeed, the predicted effects have been observed
alternative realization utilizes the phase of a Josephson jun@xperimentally’=® In this Section we briefly discuss the main
tion (or the flux in a ring geometjy which is conjugate to properties of the flux qubits and demonstrate that the IMT
the charge degree of freedom. Due to macroscopic the size téchnique is a powerful tool for the investigation of the
superconducting qubits, they are extremely sensitive to exMQT.

2. MACROSCOPIC QUANTUM TUNNELING

1063-777X/2004/30(7-8)/9/$26.00 620 © 2004 American Institute of Physics
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SQUID. The main difference between rf-SQUID and qubit
behavior is the existence of the adiabatic traject8gy for
latter one(see Fig. 4,b). Let us assume that trajectoBE is
forbidden and the “qubit” is inductively coupled to the high-
quality resonant circuit. Then the system exhibits hysteretic
behavior!® The tank circuit is simultaneously driven by a dc
bias current 4. and an ac currert; at a frequencyw close

to the resonance frequency of the tank circuit. The two cur-
rents produce a total magnetic flux applied to the qdhit
=® 4.+ D¢ coswt. If the amplituded ;> P, whered,, is

the half-width of the hysteresis loofCFD (Fig. 1b), the
tank circuit will register energy losses proportional to the
loop area, as long d@ 4.— P /2| <P,;—P,,. These losses
occur due to the jumps frork, to E_ at the ends of the
loop. This idea was used by Silver and Zimmerman to build
the first rf SQUID magnetometet$If & > d,, the rf volt-
age across the tank circuit is®g-periodic function of ap-
plied dc flux V{(P4.) with local minima at®y.=®y/2

b +nd,, wheren is an integer.
| Now, let us take into account the additional “quantum”
Dy /2 @, trajectoryBE (see Fig. b). If its probability 1— P, is non-

zero but less than 1, two new closed pathBED and
FIG. 1. a—Quantum energy levels of the 3JJ flux qubit versus external flux.BCFE are possible. There are two contributing trajectories,
The dashed lines correspond to the classical potential minima. In all graphgidiabatic and Landau—Zener transition. Therefore the net
the _ste_ltesA, B, C correspond to, SQWL W|th _Ieft_—rotatlng supercurrent. As _ dissipation iSPlosszszz(l_ PLZ) and vanishes iPLZ is
d, is increased, these lose classical stability in favor of the correspondln%. h I | jeg D h ial d
states¥'r, denoted byD, E, andF. b—Internal versus external qubit flux. ither too small or too large. Due tf) the exlpone'_’]tla epen-
dence ofP,, on the sweep rate, in practice this makes the
guantum losses observable only if the bias sweep narrowly

o o overshoots the anticrossing, i.e., if
One of the realizations of the flux qubit is a supercon-

ducting loop with low inductancé , including three Jo- 1
sephson junctiong 3JJ qubit’ Its total Josephson energy is Dy~ E(DO
E;=32 |E;i(¢;), whereg; andEj=%1/2e are the phase
difference and Josephson energy of ttiejunction, respec- when®, changes slowly. Plottiny+(®4.) for ®,;>d,/2,
tively. Due to flux quantization, only;, , are independent, a plateau flanked by two peaks is expected. The position of
with @3=—¢;—¢,— 27D /D (P, is the external flux the dips depends o,; as follows from Eq.2). Therefore
bias and,=h/2e is the flux quantur for negligibly small  in contrast to the/;(®4.) dependence of an rf SQUID, the
L (though see Ref.)8 qubit should exhibit two local minimén one period which

At ®.=®d/2 the potentialU(¢;,¢,) has two shallow are symmetrical with respect thy.= /2. For amplitudes
minima. These two minima correspond to the qubit stdtes & ,>®, the ACFD hysteresis becomes closed as well.
and ¢, carrying equal but opposite supercurrents arouncHere, as in the rf SQUID, a local minimum should appear on
the loop. Therefore, according to the laws of quantum methe V,;(®,4.) dependence exactly &y .=®,/2. Note that
chanics, near degeneracy the system can tunnel between g here plays the role of a biasfor the Hamiltonian(1).

S(Drf ) (2)

two potential minima. To test the ideas discussed above, square-shaped Nb pan-
In the basis{ ¢ ,yr} and neard = (/2 the flux qubit  cake coils with inductancke; were prepared lithographically
can be described by the Hamiltonian on oxidized Si substrates for the tank circuits. An external
A e capacitanceC; was used to permit changing the resonant
H=- 5 0% 50z (1)  frequencywt=1/JL+C+. The linewidth of the 30 coil wind-

ings was 2um, with a 2 um spacing. The quality factor of

At bias ¢=0, the two lowest levels of the qubit anticross the tank wa€);~ 1500 atw+~20 MHz. The 3JJ qubit struc-
(Fig. 1a), with an energy ga@. With & changing sign, the ture was fabricated out of Al in the middle of the coil by the
qubit can either adiabatically transform frogp to g stay-  conventional shadow evaporation technique. The Josephson
ing in the ground state& _ or switch to the excited state, . junctions with critical current density,~300 A/cn? have

The probability of the lattefcalled a Landau—Zener transi- areas~130x 620 nm, 12X 600 nm, and 118610 nm, re-
tion) for linear sweep:(t) = vt ande changing from—o to  spectively. The loop area was §0n?, with Ly=39 pH. The

% was calculatetito be P, ,=exp(—mA%/24v). fabricated structure is shown in Fig. 2.

In order to demonstrate the principle of the IMT mea- We measured/{(P4.) by a three-stage cryogenic am-
surements of this system, let us consider the internal fluplifier placed at~2 K.'? Results for small driving voltage
representatioriFig. 1b) instead of the energy representation are shown in Fig. 3. For the smallest voltages no dissipative
(Fig. 1a). A similar picture is usually used for explanation of response is observed; the two “quantum” peaks appear
the operation of the conventional radio-frequengyf)  around 10.7uV (Ref. 13 and subsequently move apart with-
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FIG. 2. Electron micrograph of the qubit at the center of the tank coil.

out significant broadening. The “classical” peak appears in
the center, and with an ac bias threshdtulblethat of the
guantum peaks—both as predicted above.

Now assume that the probability of a Landau—Zener

Il'ichev et al.

wherek=M/yL 4L+ is the tank—qubit coupling coefficient,
with M being the mutual inductance between them. The
ground-state curvature'ts

d?E_ 2E3A2\? "
dbZ  DF(AEINZZ+ AR @
where
P, 1
fX:c}TO_ E! (5)

and \ is the normalized flux-to-energy conversion factor.
Since all quantities in Eq$3)—(5) can be measured indepen-
dently, experimental results can be compared with theoretical
expectationg®

Strictly speaking, Eq(3) describes a measurement of the
quantum object with vanishing back-action. Therefore, its
validity should be proved’ Taking into account the influ-
ence of the tank on the qubit, the Hamiltonidn should be
rewritten as:

A

2

€ -~
H=- EO’Z_O'Z(Q0+f+’)/IT)+HT+HqB, (6)

Oy—

transition is small and the qubit changes adiabatically from

Y to g, always staying in the ground state . This
means that the hysteres#esCFD is “shunted” by the BE

where y=14M is the coupling coefficient between the qu-
bit's current,i,=140, and the current in the tank;. An

trajectory. Therefore there are no losses caused by the fluxfinitesimally small auxiliary force (t) is required for cal-

jumps in the qubit. However, in the vicinity @& (see Fig.

1b) a small change of the external magnetic flux causes @

considerable change of the flux inside the qubit. Due to cou
pling of the qubit to the tank, the effective inductance of the

culations of the qubit's magnetic susceptibility. A heat bath
peratorQ, and a HamiltoniaH ;5 describe internal mecha-
nisms of dissipation and fluctuations in the superconducting
loop. The high-quality tank, treated here as a quantum cavity,

tank—qubit system is changed, which leads to a change of the characterized by photon creation/annihilation operators
resonant frequency. In this context a convenient measure ef* a, which obey the Bose commutation rulgs,a®]_

that change is the imaginary part of the total impedahce
expressed in terms of the phase angleetween the driving
current Iy dt)=1,.coswt and the tank voltageV{(t)
=V cost+x). For smallL, and if the amplitude of ¢ is
negligible, the results are summarized-by

d2E_(f,)

tany=k’Q+L

AVT (0.1 pV per division)

RPN AN ATt e S
0.46 0.48 0.50
q)dc /(DO

=1, etc. The quantum-mechanical operators of the current
and voltage in the tank are defined as

I1=\Vhot/2Lt(a+a"),
Vr=iVhw/2Ci(a* —a).

For the Hamiltonian of the tank driven by a bias currbfy
and coupled to its own heat ba®, we get the expression

Hr=fiwr(a*a+1/2)—(a+a")Qy— Lyl tlpast Hrp.
7

The internal heat bath of the tafk,, characterized by a
free HamiltoniarH g, results in a finite lifetime of the pho-
tons, yT_l, and, because of this, in a finite quality factor,
Qr=wt/yy. Assuming thati=1, kg=1, we derive the

Heisenberg equations for the tank operatcirﬁ;VT/LT,
and

d2
gt g ter

®

- _ 1.
Vr= &+ M 0Tos+ & lbias
T

whereé+(t) is a fluctuation source with zero average value,

(€)=0, and with a correlatofé,(w) &) that is proportional
to the linewidth of the tanky; and the tank temperatuie
(&y(w) &) =(2y:T/Cr) w2 Because of inductive coupling,

FIG. 3. Tank voltage versus magnetic flux bias near the degeneracy point gha currentTT and voItage\?T in the tank affect the qubit

the qubit®,/2. From the lower to upper curve, the driving voltage is 10.2,
10.7, 11.2, 13.1, 17.2, 21.3, and 224 rms (the data have been shifted
vertically for clarity).

current: qulqaz. Using linear response theory, we can
present this influence as
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Sa,(t) Y=+ KLl forxs{ w7), (15)

. A -
0,= 050t L_f dt1<m> Vi(ty), 9
T 1 is taken into account. The magnetic susceptibility of the qu-
where the operatow,, describes fluctuations of the qubit bit (Eq. (10)) is calculated from the Bloch equations written
current caused by its internal heat ba@y, which is not  in the form
correlated with the heat bath of the tarid, . We also take .
R, . <UX>+FX(<UX>—U)O():—8<Uy>,

into account the relations 8(8l1)=\(8/5f) and It

=Vr/Ls. (o) +T(oy)=—A o) +e(o)—2fo), (16)
The function{ 5a,(t)/ 5f(t,)) involved in Eq.(9) is pro- ()=o)

portional to the derivative of the qubit currehy(t)=(i,) z v

with respect to the fluxbr=L+l; created by the tank, where I'y and I'y are qubit's damping rates, and

8l4(t)/6d(t,), or to the second derivative of the qubit en- 0d=— (Al wc)tanh@/2T) is the steady-state polarization of

ergy profile E(®) with respect to the fluxg?E(®)/9d®?  the qubit with energy splitting .= JAZ+ &2, which is much

(compare with Eq(3)). It is convenient to characterize the higher than the resonant frequency of the tamk> wr.

qubit response to the action of the tank by means of thé&ecause of this the decoherence and relaxation rates drop out

magnetic susceptibility,{w), defined a¥ of the expression for the magnetic susceptibility:
Sa,(t) do , A? VA?+ g2
— |  ale(t—t") — ! _
< (Sf(t,) f 20 € Xzz(w) (10) XZZ(wT) XZZ(wT) 2 (A2+82)3/2tanh 2T . (17)
Then the voltage in the tank obeys the equation As a result, the phase angle between the voltage in the tank
42 d and the bias current is given by the formula
f dtl —2+7T—+w$) 5(t—tl) L |2_ A2 3/2 /—A2+ >
dt dt tany=— 2kz% QT m tanhTs. (18)

R B ).
Vr(t) =&t hoT070 It can be shown by simple algebra thafTat 0 Egs.(3) and
(18) are equivalent. Therefore, by measuring }eas a func-
tion of the bias applied to the qubit one can indeed determine

the qubit’'s tunneling raté.

It is evident from this equation that the tank voltage contains In order to realize the adiabatic response of the qubit
) . : o experimentally, we fabricated a 3JJ Al qubit with the follow-
information about the magnetic susceptibiljy,(w) of the b Y d

e : L , ing parameters. Two of the junctions were nominally equiva-
qubit. Similarly to the classical case this information can b gp J v ed

G h with f hile th
extracted from measurements of the phase apgdliefollows ent, each with an area of about 19850 nm, while the

. . third was smaller, so that=E;3/E;; ,~0.8. The value of
frorqltr;_e averfatghethc{liLl) tl?at the ZTﬁl'tquS of har{nonlc the critical current for the larger junctions was determined to
I(;Stgdirll(r)cr)]jgﬁ € tank voltage and the bias current are rep, . |.~380 nA. The qubit inductance, tank parameters, and

measurement setup were the same as in the case of the

_)\_2 2 o04(t)
Ly “T\ 5f(ty)

, 1.
+ A a)-ra | bias* (11)

. A2 Landau—Zener transitions described above.
Vye = —iw[ wf 1— L—xéz(w) —ow?—io|yr The measureg(f,) curve at a nominal mixing-chamber
T temperatureT=10 mK is shown in Fig. 4. The curve was
A2 % , 7l|ac fitted by Eqgs.(3) and (4) with A as a free parameter. The
T oly Xz4A ©) } c, (120 calculated curve for the best-fit parametgh =650 MHz is

with x,(w) and x,(w) being the real and imaginary parts
of the qubit magnetic susceptibilitf10). In the case when
the tank is driven exactly at the resonant frequency,
o= w7, the voltage amplitudd/; can be found from the
equation

Iac ’
vT=C—T{[k2LqI§waZZ<wT)]2 B
=
+[yr+ KLl qorxsdwn) 13 72, (13
whereas for the voltage—current phase shift we obtain the
expression 10
= -0.008 -O. . :
tany=— kZLqI SQTXzz(wT)- (14) 0.004 0 0.004 0.008

fx

Here Q.T: wT/YT IS a.n effective qual,lw _fathr of the tank FIG. 4. Tank phase shift versus flux bias near degenefgey. The dots
wherein the broadening of the tank’s linewidth due to thegorrespond to experimental data, and the solid line is the theoretical fit with

qubit, A/h=650 MHz.
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also shown Fig. 4. This value of the energy gap is in goodank, w.>wt. Because of this, the contribution of equilib-
agreement with that determined independently from temsium qubit noise to the voltage spectrum of the tank is ex-

perature measuremertfs. pected to be negligibly small. An external microwave source
with a frequencyw, tuned to resonance with the energy
3. RABI SPECTROSCOPY splitting of the qubitw. induces periodic variations of the

. _ _ population difference between the excited and ground state

Quite generally, a two-level quantum systeéimcluding  of the qubit, which are characterized by a frequerizy
qubity, should exhibit coherentRabj time oscillations in = [(A/w)2F2+ 52 that dependson the amplitude of the
nance with the spacing between the qubit's energy levels willyith nonzero biasg #0, the left and right wells of the qubit
quency proportional to the microwave amplitude. Indeed, copscillations between the energy eigenstates will be accompa-
herent oscillations between energy levels of the supercorhied by low-frequency transitions of the qubit from the left
ducting qubit have been detect€d: to the right well and back. The tank detects this kind of

In this Section we show that the tank can be used fofoy-frequency noise, which is described by a Lorentzian
detection of Rabi oscillations as well. If a resonant micro-spectrum centered at the Rabi frequefigywith a linewidth
wave signal is applied, the phase-coherent oscillations of thgependent on the qubit decoherence fteBoth the tank
level occupation will only last for a finite time, which is (r.) and the internal heat batfi'§) contribute to the deco-
usually called the coherence time. The correlation betweeRerence ratel =T'y+I'y. It should be emphasized that the
t_he occgpations_ can be expressed by an autocor_relation fungsternal microwave field affects the qubit—bath coupfihg,
tion or its Fourier transform, the spectral density. For ex-thys causing a distinction between the nonequlibrium decay

ample for the IMT, when the flux qubit is coupled induc- rateT and its equilibrium counterparig,,T', that enter the
tively to a tank circuit, the spectral density of the tank-gjoch equationg16).

voltage fluctuations rises above the background noise when  aAp informative part of the spectrum of voltage fluctua-

the qubit's Rabi frequenc§2 coincides with the tank's reso- tjgns, Svo(w), incorporates the qubit Lorentzian multiplied

nant frequencywr. This forms the basis for our measure- py the transmission function of the tank, having a sharp peak
ment technique oRabi spectroscopyRabi oscillations cause ¢ the frequencyo :

changes of the qubit’s magnetic moment and, therefore, ex-

cite the tank. The tank circuit accumulates photons which e? qulﬁ

were emitted by the qubit. This approach is similar to the one SVQ(w)ZZw_gk Cr

in entanglement experiments with Rydberg atoms and micro-

wave photons in a cavify 0%
Indeed, quantitative information can be extracted from X(w2_9§)2+w2r2‘

the noise spectruns,(w) of the voltage fluctuationsgthe

Fourier transform of the correlatorM(t,t')=(1/2) The Iinewidth of lthe tank is assumed to be much less than

X([VT(t),VT(t')]+> in the tank”), which incorporates the the qubit's damping ratey;<I'. Because of this, the spec-

noise spectrum of the tan&,, supplemented by the qubit's trum of voltage noisé€22) as a function of frequency rep-

2
wT

—2 2\2 22

II)ZFO

(22

contribution ie.S,= )+ ), where resents a Lorentzian with a widt and an amplitude which
S ) Sv=Svr(@)+Svolw) is given by a Lorentzian function of the Rabi frequency with

Sur( )=2w— Tyr (19 its maximum neaw; and a widthI'. Measurements of the
T (02— 0d) P+ 0P noise spectrum amplitude at different values of the micro-

wave powerP allow one to extract information not only

‘about the existence of Rabi oscillations but also about the

nonequilibrium decoherence rdfeof the qubit. We note that

o1 kZqungSzz(w) due to gtrong nonequilibriu_m conditions the populqtions of
Svolw)=w = (2= w2+ 05l (200 the qubit's levels are practically equal, and the noise spec-
T 4 trum amplitude does not depend on the temperature. The

Here S, () is the Fourier transform of the correlator (1/2) signal-to-noise ratio,

X{[o,0(t),0,0(t")]+), which describes internal fluctuations

in the qubit(not related to the tankHand in hand with the Svolw) 3 8_2 ) Lgl5 To w30%

tank’s damping rateyr (15), the resonance frequency of the  Syr(@)*~T w2~ T 31 (02— 03)+ 2?2’

tank,_ , is also shifted because of the qubit—tank interac- . .
el d peaks wher)z= w7 . At the same point, the back-action of

The qubit’s part of voltage noise can be found from the sto
chastic equatiori1l) for the tank voltage:

(23

tion, the measuring devicé&ank) on the quantum bit, which is
5T=wT\/1—k2LqI§X;i(wT). (21) described by the damping ralg;,
The spectrum of voltage fluctuations has a peak near the g2 Tyr
resonant frequency of the tank;, and it therefore contains T=4KLglg— 0t 7o a7z (24)
T we (07— QR+ QYT

information about the low-frequency compon&)i(wt) of

the qubit spectrum. The equilibrium part of this spectrumreaches its maximum as well. However, the tank contribution
peaks at the energy splitting,= JAZ+ &2 of the tunneling  to the qubit decoherence decreases drastically with small de-
doublet, which differs significantly from the frequency of the tuning of the Rabi frequencfr from wt: y1<|Qg— w1
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FIG. 6. a—Comparing the data to the theoretical Lorentzian. The fitting
parameter ig~0.02. The letters in the picture correspond to those in Fig. 5.
b—The Rabi frequency extracted from)( versus the applied UHF ampli-

6.280 6.284 6.288 6.292 tude. The straight line is the predicted dependengéwr=\P/P,. The
Frequency, MHz good agreement provides strong evidence for Rabi oscillations.

FIG. 5. The spectral noise amplitude of the tank voltage for UHF powers

P,<P,<p. at 868 MHz. The bottom curve corresponds to the background 2.2 2
noise without an HF signal. SvomadW) wog (9/2)

S W12+ g? (w-1)%+ (g2

(25

<I'. At the same time, the efficiency of measurementsW=r/o1 (= VP/Py theoretically ﬁ?dg:r/“’T-_Th_e best
(S\/Q(w)/s\/T(w))\w:wTv remains practically unchanged. fitis found forI'~0.0201~8x 10° s~ 1. Thus the lifetime of

Sincel'< (g, the spectroscopic monitoring of Rabi oscilla- :he Rak?r O“:'.C |Ilat|on|§t |sfattleaskab_i:AZ//1;; 2;57/6gble_?gmg
tions with the low-frequency tank circuit falls into the cat- 0 Ian € e%'\t/e ?_uﬁ' y fac oc?'iﬁb‘_ (bt ) d ' tlesl?
egory of weak continuous quantum measurements. values substantially excee 0se obtaned recently for a

The measurement setup and sample fabrication wergodified 3JJ qubit fgas 150 ns);* which IS not surpris-
similar to those described in the previous Section. Micro-"9: In our setup the qubit is read out not with a dissipative

wave irradiation(a UHF signal was introduced to the dc SQUID but with a high-quality resonant tank. The latter is

sample through a commercial coaxial cable at temperature‘geakly coupled to the qubitkt~10"%), suppressing the

between room and-2 K and by a ThermoCoax resistive noise leakage to i

coaxial cable betweernr 2 K and 10 mK. In order to reduce

external disturbances, a 20 dB commercial attenuator wal RESONANT SPECTROSCOPY

installed at 2 K. To measut®,, we tuned the UHF signal to In this Section we show that the IMT can be also used

resonance with the qubit level separation. We found noticefor resonant spectroscopy, which is a well-known experimen-

able output signal only whew/27=(868*=2) MHz, in  tal method for investigation of quantum systems. As an ex-

agreement with the estimated splittimgh~1 GHz. Note ample of such IMT application let us consider an

that there is a difference of two orders of magnitude betweeinterferometer-type charge quBf-?® The device’s core ele-

wns and the readout frequenayy. Together with the high ment is a single-Cooper-pair transistor—a small island, sepa-

Qq, this ensures that the signal can only be due to resonamated by two mesoscopic Josephson junctions, which is ca-

transitions in the qubit itself. This was verified by measuringpacitively coupled to the gate. The transistor can be

Sy when biasing the qubit away from degeneracy. A signaldescribed by the Hamiltonian matffx°

exceeding the background, that is, emissior-& MHz pho-

tons by the q_ublt in response to a resonant UHF fleld_m Hnm:4Ec(N—ng)25nm—T(5n,m+1+ Som-1)»

accordance with Eq24), was detected only when the qubit

states were almost degeneraté below Eq.(22)). The mea- (26)

surements were carried out at nominal temperatlire whereN is the number of Cooper pairs on the islaag,, is

=10 mK. No effect of radiation was observed above 40 mKthe Kronecker delta, anB-=e?/2Cs is the single-electron

(with 40 mK/hkg~830 MHz, i.e. close ta\/h). We plotted  charging energy expressed in terms of the total island capaci-

Sv(w) for different HF powersP in Fig. 5. AsP is in-  tance Cy. The dimensionless parametag=CgVy/2e is

creasedwg grows and passes, leading to a nonmono- continuously controllable by the gate voltayg via the ca-

tonic dependence of the maximum signalfnin agreement  pacitanceCy. The effective Josephson energy

with the above picture. This and the sharp dependence on the 2 2

detuning ofwy, from the qubit frequency confirm that the o3(@)=[Ejy+ Ejp+ 2E5,Epp cosg ] @7

effect is due to Rabi oscillations. is a function of the total phase difference across both junc-
For a quantitative comparison between theory and extions ¢= ¢, — ¢,, whereE;; ;, and ¢, , are the Josephson

periment, we subtracted the measured signal without an HEoupling energies and phase differences of the first and sec-

power from the observe8, , yielding the qubit's contribu- ond junction, respectively.

tion Syo=Sy—Sy1(w). Subsequently, we extracted the peak  If the transistor is closed by a superconducting loop with

values versus UHF  amplitude, Syq madVP/Po) low inductance L,, the total phase difference isp

=max,S,o(w)~Syo(wr), WherePy is the power causing the ~27®./d,, and the ground-state curvatut®E _ /d<I>§

maximum response; see Figa.Gn the same figure, we plot can be obtained by finding the lowest eigenvalue of the

the theoretical curve foBy g max NOrmalized to its maximum Hamiltonian matrix(26) as a function ofP.. Using(3), we

Sy, can calculate the phase shift of the tank inductively coupled

gy(e)
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FIG. 7. Tank phase shify versus gate parametey without microwave )
power (lowest curve and with microwave power at different excitation fre- FIG. 8. Energy gag between the ground and upper bands of the transistor
quencies. The data corresponctg,/27=8.9, 7.5, and 6.0 GH{from top determined from the experimental data for the cdser. Some examples

to botton). The magnetic fluxp .= ®,/2 threading the interferometer loop of these da_ta are shown in Fig. 7. The_dots represent the experimental data,
provides a total phase differend= 7 across the single-Cooper-pair tran- @nd the solid line corresponds to the(fif. tex).

sistor. (The upper curves are shifted for clarjty.

dependence is shown in Fig. 8. We fitted the experimental

ata by using the numerical solution of the energy spectrum

. Lo . d
to the charge qubit and compare it with experimental result%f the Hamiltonian matrix26). The best fitting parameters
obtained by IMT®? The principle of resonant spectroscopy is were found to bes,(m)=4.4 GHz andEq=2.2 GHz. This

]\c/ery simple. If the q(LjJ_blt |ts |trrr]ad|ated by mlct:o;/vaves with value of the Josephson coupling energy is in very good
reg%ency gorrespo? 'n? El € ;—:'hnerﬁ)t/tgarl) elvxéeen groun&greement with the estimated value, and, as expected, the
(n=0) and upper eve =1), € latter level becomes  .,arging energy is smaller than estimated.

populated also. In this sense the microwave irradiation acts
like temperature, i.e., suppresses the tank phase(sh#tEq. 5 NONRESONANT SPECTROSCOPY OF TWO COUPLED

(18). , . QUBITS
Similarly to the phase qubits, the interferometer-type

charge qubit was fabricated out of Al by the conventional  After the successful demonstration of quantum coher-
shadow evaporation technique and was placed in the middfence in many types of superconducting qubits, an observa-
of the Nb coil by making use of a flip-chip configuration. tion of entangled states in two coupled qubits presents the
The geometric loop inductance of the interferometer was call€xt step on the road to the quantum processor. Entangled
culated to bel ;=0.8 nH. The layout size of the junctions States were recently observed in both the ciidrged the
was 140< 180 nm. Deviations from the nominal dimensions current-biased Josephson juncfibwubits. In this Section
caused by the fabrication process were estimated from th¥€ demonstrate that entangled states in a system of two in-
micrograph of the real structure and found to be less thafluctively coupled flux qubif§ can be detected by the IM¥.
15%. The charging energy was overestimated within the The system of two Al flux qubits inductively coupled to
framework of the plate capacitor model from the junctionseaCh other and to the Nb tank is shown in Fig. 9. The area of
delivering Ec=7 GHz. In fact and also in accordance with each qubit and the self-inductance and critical current were
the experimental results below, this value is reduced due t§q=80 M, La=39 pH, and ;~400 nA, respectively, and
the strong tunneling regim®.The measurements were per- Ec~3.2 GHz. The mutual inductance between the qubits
formed at a mixing chamber temperature of 10 mK.

The presence of the microwave power significantly
changes the obtained dependence, namely, peaks appear in
the x(ng) curve (see the upper curves in Fig). The peak
position depends on the microwave frequency and does not
depend on the amplitudéhe shape depends slightiyfhese
peaks disappear when the phase bias is far froas well as
at higher temperatures. Therefore, we believe that they cor-
respond to the excitation of the system from the ground to
the upper state.

The microwave-induced transitiofiboth the frequency
of the microwave and the phase difference across the tran-
sistor, o=, are fixed from the ground to the upper state
occurs only at certain value of the gate charge. From the
position of the peaks on thg(ng) curves at different fre-
guencies of the microwave, we have reconstructed the en-

ergy difference bemeen ground and upper states as a_funﬁI'G. 9. Micrograph of the two-qubit system coupled to a resonant tank
tion of the quasicharge on the island. The obtainecircuit.

=1l

SEI  15.0kV x2.200 10um WD7.3mm
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M.p,=2.7 pH was estimated numerically from the electron
micrograph. The magnetic flux through the qubits was cre-
ated by the dc component of the current in the ¢gjl and 0.2
by the bias currenty., through a wire close to one of the ?
qubits. This allowed independent control of the bias in each E -0.4
qubit. The system of Fig. 9 is described by the Hamiltonian &

H=Hqy+Ht+H;y+ Hgiss, Where the two-qubit Hamiltonian x-06
in the two-state approximation is expressel as = 08
O -\
Ho=—A,0@—Apo®+ 6,0 +e,0P+36@
(28) -1.0
H; is the tank Hamiltonian(a harmonic oscillatgr the -1.2 t ! Lt L S L
qubit—tank interaction is @, /@, (0.005 @, per division)

FIG. 10. Normalized tangent of the current—voltage angla the tank
versus external flux bia® . at 50 mK. A relative flux biag ¢, between the

) . . .. qubits is created by changing the currépt, in the additional wire. The
andH s describes the standard weak coupling of the quItSshh‘ted curves correspond tQe,=27.3 uA, while the central curve is for

icairnati 7
to a dissipative batﬁ-_ _ lgez=—2.7 uA. The experimental data are denoted by the ddtg,(
Here the coefficients are\,p,=Mgptlan, Where  =27.3uA) and triangles (4= —2.7 wA). The solid curves correspond to

Mg 7 is the qubit—tank mutual inductande,y, is the self-  the theoretical fit.
inductance, antl,,, is the amplitude of the persistent current
in the corresponding qubit. In the standard two-state approxi- . .

: ponding 9 - (a/b) PPIOXAt low frequenciesw= w1<|E,—E,| and in a weak damp-
mation, the qubit current operators dtg,=1,,0;" . The K

- . ing regimeI' ,,<|E,—E,|, the decoherence rat&s,, have
qubit biases are given by ,=1,Pq(fy—0.5+ o), €p © K . Y o
1, ®o(F,— 0.5+ 7f ), Where the dimensionless fluk, no effect on tary but are responsible for an equilibrium dis

) ! o . tribution in the system.
~Id_c1 desgrlbes the field created by the niobium coil in both The first two terms in Eq(32) are nonzero even if the
qubits, while the parametefsii~4c; and 7=M /M 4y

<1 give the bias difference between the qubits created btwo—qubit states are factorized. The fitsecond term corre-

. . . )éponds to the contribution of quldt(b) and is nonzero near
the additional wire. Heré/ .(MbW) are the .”.‘“t“a' mdu'c— the qubit's degeneracy point. These contributions are practi-
tances between tha (b) qubit and the additional dg wire cally independent of whether the qubits’ degeneracy points
(for our sampleM,,, and M, were calculated numerically,

ieldi ~0.32) Th bit—qubit i tadt coincide or not.
yielding z7=0. .).' € qubit=qubit coupiing consta The second line in Eq.32) describes coherent flipping
=Ml 4l p is positive because the two qubits are in the same.

| e 10 side. leading t tif i ) both qubits, which is only possible for nonfactorizable
plane side to side, leading o antirerromagnetic coup(ay (entangledl eigenstate$u),|v). Therefore the difference be-
cording to the north-to-south attraction [aw

Th licati f the IMT f ¢ f 1w tween the coinciding IMT dip of the two qubits and the sum
€ appiication of the Vi1 for Spectroscopy o © of two single-qubit IMT dips provides a measure of how
coupled qubits, similar to the single-qubit problésee Sec.

: . . . .coherent is the two-qubit dynamidshat is, whether en-
2), can be conveniently discussed in terms of their magnet"fangled eigenstates of the two-qubit Hamiltonian &) are
susceptibility y,,. In the linear-response approximation the

. - . .~ formed. This is a necessary condition for the system to be in
magnetic susceptibilityy,(w) of the two-qubit system is d sary y
: } . an entangledpure or mixedl state.
expressed in terms of retarded Green'’s functions of the qubit The measurement results are shown in Fig. 10. Compari-

operator?:rézb))& callculated W.'th the equilibrium density ma- o, o 4o single-qubit dips with the coincident IMT dip
trix p=e"~ "o, with Ho,as n Eq.(28). It can be generally shows clearly that the contribution to tgnfrom the en-
assumed that the Ia?ters. eigenvalugs, '“:1’2’:.3’4 are tangled eigenstates is significant. Indeed, the amplitude of
nondegene_rate_ and its eigenstates _or’thonormgll(mldQ the central dip in Fig. 10 afi=50 mK is 1.12, compared to
:.5#.” _Taklng Into acﬁi%ént the qu'tS interaction with a a value of 1.69 for the sum of the single-qubit dips. This
dissipative environment,™“we derive means that the entangled teriitise second line in Eq32))
- are responsible for a negative contribution .ef-0.57 to
Xzz(w): - 2 pﬁ Py f P,u.vv (30) tany. P ’
izv otE,—E, +il',, X )
At 50 mK the temperature is comparable to the charac-
Qr Pu—Py teristic energies in the two-qubit systefat the two-qubit
tany = _ZL_TM@ ?EMP#V’ 31 degeneracy point the gap between the ground state and top
excited state is- 100 mK). Since the characteristic measure-
where p,=exp(~E,/T)/Z is the thermal population of the ment time in our approach is dictated by the much smaller
uth energy levelZ=%, exp(-E,/T), I',,, are the decoher- tank frequencywy, the system will have time to equilibrate.
ence rates of the double-qubit system, and Indeed, the excellent quantitative agreement between the ex-
2 (a) (a) 2 (b) periment(Fig. 10 and the theory Eq31) confirms that the
Pur=Nalpl oz |w) (o) Mol o2 v) system is described by the equilibrium density matrix with
X(v|o® | w) + N akp( | 2| 0) (w] )| ) the Hamiltonian Eq(28) (all the parameters of which we
determined from the experimentn other words, our system
+Xakp(l 0| v)(v] 0| w). (32) s an equilibrium mixture of entangled two-qubit states.

Hint= — (a0 @+ Xpa ™)1 1, (29)
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We study the dynamics of a single spin embedded in the tunneling barrier between two
superconductors. As a consequence of pair correlations in the superconducting state, the spin
displays rich and unusual dynamics. To properly describe the time evolution of the spin we derive
the effective Keldysh action for the spin. The superconducting correlations lead to an

effective spin action, which is nonlocal in time, leading to unconventional precession. We further
illustrate how the current is modulated by this novel spin dynamic2004 American

Institute of Physics.[DOI: 10.1063/1.1789934

INTRODUCTION The Hamiltonian of the system reads

The analysis of spins embedded in Josephson junctions H=Hg+Ht, Ho=H_ +Hr—uB,S,, (1)
has had a long and rich history. Early on, Kdl&rgued that
spin flip processes in tunnel barriers reduce the critical Jo-  74.= 2 ei¢/2C1|;{ka[T05aa’+Tlo-aa"S]CLpa’+h'C'1
sephson current as compared to the Ambegaokar—Baratoff kpa,a'
limit.> More than a decade later, Bulaevsktial® conjec- )
tured thatw-junctions may be formed if spin flip processes whereH, andHy are the Hamiltonians in the left and right
dominate. The competition between the Kondo effect and theuperconducting leads, Wh”ﬁm (Cix,) creategannihilate$
superconductivity was elucidated in Ref. 4. Transport propan electron in the lead in the statewith spin « in the right
erties formed the central core of these and many other piodeft) lead fori=L(R). The vectoro represents the three
neering works, while spin dynamics was relegated to a relapauli matrices angk is the magnetic moment of the spin.
tively trivial secondary role. In the present article, we reportwhen a spin is embedded in the tunneling barrier, the con-
on new nonstationary spin dynamics and illustrate that thejuction electron tunneling matrix, not too surprisingly, be-
spin is affected by the Josephson current. As a consequenggmes spin-dependeni':=[T01+T18-€r].5'6 Here T, is a
of the Josephson current, spins exhibit novel nonplanar Pr&pin-independent tunneling matrix element dndis a spin-
cessions while subject to the external magnetic field. ASpinependent matrix element originating from the direct ex-
in a magnetic field exhibits circular Larmor precession abOUEhange coupling of the conduction electron to the localized
the direction of the field. As we report here, when the spin isspin S. We take both tunneling matrix elements to be mo-
further embedded between two superconducting leads, neéentym independent. This is not a crucial assumption and is
out-of-plane longitudinal motion, much like that displayed merely introduced to simplify the notation. Typically, from
by a mechanical top, will arise. We term this new effect they,q expansion of the work function for tunneling, /T,
Josephson nutation. We further outline how transport is, in\,‘]/u, whereU is the height of a spin-independent tunnel-
turn, modulated by this rather unusual spin dynamics. Ou[ng barrier’ A weak external magnetic fiel,~100 G does

predictions are within experimental reach, and we propose got influence the superconductors, and we may ignore its
detection scheme.

THE SYSTEM

The system under consideration is illustrated in Fig. 1. It
consists of two identical ideawave superconducting leads
coupled each to a single spin; the entire system is further
subject to a weak external magnetic field. In Fig.d, g

denote the chemical potentials of the left and right le&ds, S
a weak external magnetic field along tkzeaxis, and S
=(5.S,,S,) is the operator of the localized spin. FIG. 1. Magnetic spin coupled to two superconducting leads.

1063-777X/2004/30(7-8)/5/$26.00 629 © 2004 American Institute of Physics
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effect on the leads. In what follows, we abbreviaiB, by

B. The operator 'é”? is the single electron number operator.
When the junction is linked to an external environment, the
coupling between the junction and the environment induces
fluctuation of the superconducting phagse

THE EFFECTIVE ACTION

Josephson junctions are necessarily embedded into ex-
ternal electrical circuits. This implies that the dynamics will
explicitly depend on the superconducting phasdhe evo-
lution operator is given by the real-time path integral
FIG. 2. The sphere of radiu8 for the vectorsS“!(t) is shown. The patiC

— e ; ) describes the evolution of the spin along the uppey and lower ()
z f DD SexfiScircuil ¢) + ISSP'”( S) branches of the Keldysh contour. To properly describe the spin dynamics on
) this closed contour, we analyze the WZNW action; see(By.For clarity,
+iSwunnel €, 1- (3)  we have drawn a small piece of the closed trajectories.

The effective actior5,,,¢ describes the junction itself. We
generalize the formerly known effective tunneling action forpynamics

a spinless junctidh'°to the spin-dependent arena to obtain , »
P ] P P We now perform the Keldysh rotation, defining the val-

ues of the spin and the phase variables on the forward/
backward branches of the Keldysh contdsee Fig. 2,S"!
for the upper and lower brancheasnd rewriting all the ex-
t)—o(t’ ions i i i
OSM—Z i; dt fﬁ dt’ B(t,t') pressions in terms of their averaggassical componer)
K K

Sunne™= — 2 ngdt jQKdt'a<t,t'>[TS+TiS<t>-S<t'>]

e 2 and differencgquantum compone:
. o(H) + (1) S=(8'+9)/2, |I=s"-3, S.I=0. (10
X[To=TiS(H)- (') Jeos 2 ’ @ After the Keldysh rotation we obtaif**

where —ifld fdt[S“(t )-(9,9(t, )
ia(t,t)=G(L,t)G(t',1), iB(L)=F(tt)F (L) Swanw=gp | 47 S
and the Green functions are X (0 S'(t,7))— (u—1)]. (11

N F o The relative minus sign stems from the backward time order-
G(t.t )=_'; (TkCro(t)Cio(t')), (5) ing on the return part o€. The individual WZNW phases
for the upper (1) and lower () branches are given by the
areas spanned by the trajectori®'(t) on the sphere of

Ftt )E_'; (T (DC-i (1)), ©®  adiuss divided by the spin magnitudeS|. The WZNW
term contains odd powers bflnsofar as the WZNW term of
FT(t,t’)E—iE <TKCET(t)C1k1(t’)>- @) Eq. (11) is concgrned, the standarq Keldysh trgnsformatmn
K to the two classical and quantum fiel&andl, mirrors the

In Eq. (4) $ denotes integration along the Keldysh con- decomposition of the spin in an antiferromag(®&F) to the

tour. We now express the spin action on the Keldysh contoum/0 ?rtho_gc()jna.:jslﬁwvsgﬁ\f/(a/s: f|eld§'.!'heEd|ﬁ1e1rer1C(athbetween
in the basis of coherent states € wo Individua erms in Eq(11) is the area

spanned between the forward and backward trajectories. For
B close forward and backward trajectories the WZNW action
Sepin= 3ngtB'S+ Swznw ®) on the Keldysh loop may be expressed as

Here S denotes the magnitude of the sp The second, Sy __f dtl- (Sx 4,9)
Wess—zZumino—Novikov—WittenN WZNW), term in Eq. ZNW™ g2 =
(8) depicts the Berry phase accumulated by the spin as
result of motion of the spin on a sphere of radifig!!?
Explicitly,

(12

Por the spin part of thésemiclassicalaction we then obtain

1
sspm:f dtB-|+§J dtl- (Sx4,9). (13

1 (1
SWZNW:?L dr %Kdt[s(t’ﬂ'(aTS(t'T)X&tS(t'T))]' Next, we perform the Keldysh rotation to the classical
9) and quantum components with respect to both the phase and

The additional integral over allows us to express the action spin variables in the tunneling part of the effective action.

in a local form. At7=0 the spin is set along thedirection Towards this end, we introducewith notation following

at all times,S(t,0)=const; atr=1 the spin field corresponds Refs. 8 and 1P
to the physical configuration§(t,1)= S(t). o=(e"+oN/2, y=¢"— ol (14
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With these definitions in hand, the tunneling part of the acdLangevin terms(see, e.g., Ref. 10are, in our case, sup-

tion reads pressed at temperatures much lower than the superconduct-
ing gap (T<<A), due to the exponential suppression of the
Stunne= Sat Sg, (19  correlatorsfX(w) and a®(w) at w<A.

_ . . _ To obtainR, we start from the Gorkov Green functions
where the normalquasi-particlg tunneling partS, is ex-

pressed via the Green functions
=0t—t')(a"—a%); aw)=a”+a%, Fo(t,t')= _izk: ziEkeiEk(tt’),
where
i (L) =G (L1)G=(t' 1): F>T(t,t’)=i2k ZiEkeiEk(tt/)’ an

ia=(t,t")=G=(t,t")G~(t',1).
where the quasiparticle ener@y =A%+ ezk, €, being the

free-conduction-electron dispersion in the leads. Putting all
of the pieces together, we find that

Similarly the Josephson-tunneling p@j is expressed via
the off-diagonal Green’s functions

BR=0(t—t) (B~ —B7); B (w)=B"+p",
A% ,
where BR(t—t")=0(t—t )% FkEpS|r1[(|zk+Ep)(t—t )].
iB7(Lt)=F (tL,t)F™(tt'); (18)
IB=(LE)=F~(Lt)FI=(tt"). The kernelR(t—t') decays on short time scales of order

In this paper we are interested in the interaction betweet@ (7/4). Varying the total action with respect to the guan-

the supercurrent and the spin. Thus we provide the expreéum components and  and setting these to zero, we obtain
sion for the Josephson part: coupled equations of motion for both the spin and phase:

sﬁ=J dtf dt'4/3R(t,t')[[[2T§—2T§S(t) %=S(t)><B+T§f At 48R (1—t) SO X S()
x(M) o x(t) 1 '
.S(t’)]s“’]TCOST_ET%I(t) XCOSM' (19)

x(t) X(t’)} () +e(t)
Xsin

-1(t")cos sin
4 4 2 5Scircuit

fdt 2BR(t—t')(T5—T2S(1)- S(t'))

0, (1)
( )- S(t )cos%)cos%t)—TIS( t) ! .
o)+ (")
) ) ><smT. (20
1(t)sin X( ) X )]Cosw(t)+¢(t )}
4 2
Note that if the rest of the circuit contains dissipative
f dtf dtBK(t,t’ )H[4TO 4T? IS(t) elements, e.g., resistors, th8g.i: will contain the nonvan-
ishing Keldysh components, the corresponding Langevin
X xt) terms should be included in ER0). The rather complicated
-S(t’)]sinT sinT +TII(t) equations of motiori19) and(20) are very general. To make
headway, we now adopt a perturbative strategy. In(E&§),
X( ) x(t) o)+ o(t") we first assume an ideal voltage bias, i.e., an imposed phase
1(t")co cos— ] S > ¢(t)=w,t, where the “Josephson frequency;=2eV/%.
To this lowest order, we neglect the influence of the spin on
x(t) ( ") the phase. Next, we use the separation of characteristic time
[ZTZI(U St )cos—sm +2T§S(t) scales to our advantage. To this end, we note that the spin

) ) dynamics is much slower as compared to electronic pro-
A(t')si X( ) X(t )}Sin‘P(t)+‘P(t )}_ (16)  Cesses, i.ew;, B<KA. This separation of scales allows us to
4 2 setS(t’)=S(t)+ (t—t’')dS/dt in the integrand of Eq(19),
whereby we obtain

The normal-tunneling par§, is obtained fromSg; by the

following substitution: BRX(t,t")— a¥K(1,t"), (p(t )— ] .

—o(t'), andx(t')— — x(t'). The Keldysh termsthose in- as_ S

cluding 8K and ), which normally give rise to random at - M¥at Sinw,t+SxB. 21
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Here
t [S)
= —4T2f dtt,BR(t)sm— ~— 2T1wjf dt t?8R(1)

|A|7| T2
=2 _ -
“’JE ExEp(Eyt Ep)°

_ 2T2p22 f f led 22
oA (coshz; + coshz,)3
_ 7 2 291 91 @y
8 AT 32A

(22

with g;=(27T,p)? being the spin channel conductance. In

Eq_ (22) we employ the separation of time Scaleﬁg(é A) FIG. 3. The resulting spin motion on the unit sphere in the general case. As

again. When expressed in the spherical coordinéteshe in the motion of classical spinning top, the spin exhibits undulations along
. . . . . . the polar direction.

semiclassical limjt S=S(sinf#cosg,sinfsing,cosé), Eq.

(21) transforms into two simple first-order differential equa-

tions:

As a consequence, in addition to a contributio8 the field

(23)  hacquires a componentS'A, which leads to the first term
on the right-hand side of E@21).

dgo_ B
dt 1+ SAZsik(wyt)’

The right-hand side of the second equation of motion
do de ) .
= —S)\—smasmeL (24)  (20) clearly corresponds to the Josephson current. Indeed, in
dt dt the Keldysh formalism one hds=(27/®,)dS/dy (instead
=(2m/Py)dS/d¢). Thus we obtain for the Josephson

These equations can be solved exactly. For a spin oriented 8{ L ent

time t=0 at an angle), relative toB,

2
- B— N IJ(t):(ij dt’2BR(t—t")(T2—T25(t)- S(t'))
o(t) ) tan [ V1+ S\ tanwyt)], 0

wsin?Ht o) (25)
o(t)=2 tan L (1—ccoqw;t))(1+c)|” 60) 2 '
=2 tan —1,
(1+ccogwyt))(1-c) We start from the lowest-ordéfocal in time) adiabatic ap-

with =S\ {1+ S\ andy= — S\BJ2wyc. ForSk<1we  Promaton. ie. we se(t)=S(t") and(t) = (). This

have ¢=—Bt and 6= 60y,— S\(B/w;)sinfycoswit. Typi- yields

cally, whenever a spin is subjected to a uniform magnetic 21 %

field, the spin precesses azimuthally with the Larmor fre- |J(t)=¢TEJ,o(1—-|TzSZ sing(t), (26)
quencyw; =B. In a Josephson junction, however, the spin 0 0

exhibits addltlonal pola¢d) displacements. The resulting dy- where E;=2Tj fdt,BR(t) WZPZTZA (1/4)goA is the
namics may be likened to that of a rotating rigid top. Thespin-independent Josephson enér(pyo being the conduc-
Josephson current leads to a nonplanar gyroscopic motidiance of the spin-independent chann@&he second term of
(Josephson nutationef the spin much like that generated by Eq. (26) gives the spin-related reduction of the Josephson
torques applied to a mechanical top. For smalve find  critical current studied in Ref. 1. We now evaluate the
nutations(see Fig. 3 of amplitude lowest-order correction to this equation due to deviations
from locality in time and spin precessions. Expand8{¢’)

in Eqg. (25 in (t’ —t) and using the fact that for the Larmor
precession we hav@S=0 andS:$=B?(S2—S?), we find a
correction to the Josephson current which dependsfon

995)\8'058'0
1 e w_JS|n x g:lKS"'] .

The origin of the first term on the right-hand side of Eq.
(21) can be understood as followthis origin can be also 2 Ti 5 )
traced in the calculatiopsthe spin is subject to the electron-  1o(0)= 5~ EJ,O( 1- FSZ +0E;(S;—9) [sine(t),
induced fluctuating fielch=T,>€*?cToc+h.c. The same 0 0 27)
coupling may be thought of as an influence of the spin on the
leads, which results in a nonzero low-frequency contributionVhere
6h to h. Since the response function of the electron liquid is 2
isotropic but retardedgh(t) is not aligned withS(t) but 5EJE—TfBZJ dt,BR(t)t2=l—6T§p2(BZ/A).
contains information about the values 8ft’') at earlier
times. The response function decays on a time sediéA, Here we have clearly elucidated the manner in which the
much shorter than the period of the spin precessioh/B. spin dynamics alters the Josephson current.
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sephson junction containing the spin is used both for driving
the nutations and, together with the second junction of the
SQUID, for detecting them.

Magnetic atom
or cluster in
the weak link

dc SQUID

CONCLUSION

In this article we have illustrated that the dynamics of a
spin embedded in a Josephson junction is richer than appre-
F1G. 4. A SOUID-based detect o The SOUID fors th ciated hitherto. We have reported unusual nonplanar spin
e e B el e v ™Smoton (in a statc field which might be probed directy and
which was further shown to influence the current in the Jo-
sephson junction. Using a path-integral formalism, we de-

For S=1/2 the semiclassical approximation is insuffi- scri_be_d this nor_wpla_mar spin dynami_cs and the ensuing current
cient. In this case it is easier to perform a calculation withvarations that it triggers. To describe the time evolution we
spin operatoré® rather than a path integral. One then derived the effective action for a spin of arbitrary amplitude

obtaind® an expression for the Josephson current identical t¢> N the Keldysh contour. In passing, we noted a similarity

Eq. (25) but with S(t) being the spin operator in the interac- between the resultant effective action and that encountered in
tion representation. Using the commutation relations of thélu@ntum antiferromagnetic spin chains. Our central results
spin operators, one obtains an extra contribution to the Jg2'® €ncapsulated in the effective actids).

sephson current proportional & . This permits reading out In the semiclassical limit of larg&, relevant to ferro-

of the spin state via the Josephson current. This extra contr@gnetic spin cluster$,we obtained two coupled equations

bution scales as while the spin-dependent contributions in ©f motion (Egs. (19) and (20)). These equations may be
Eq. (27) scale ass?. solved perturbatively, as outlined above, or numerically. We

presented an exact limiting-case solution and illustrated how

the new spin dynamics may be experimentally probed.
DETECTION The formalism developed can also be applied to the
minimal S= 1/2 system. In this case, however, it is simpler to
perform a calculation with spin operatbtsather than a path

We now briefly discuss a detection scheme for the Jo
sephson nutations f@>1, e.g., in the semiclassical limit. In

principle the nutations should affect the Josephson currentt€dral.
The level of approximation employed in this paper was, 1hiS work was supported by the US Department of En-

however, insufficient to describe this effect. Indeed, one ha€9Y under LDRD X1WX, the CFN of the DFG, and the S.
to substituteS(t) containing the nutations into E¢5). As Kovalevskaya AwardY. M.). We thank L. N. Bulaevskii and

the amplitude of the nutations is of the ordgr, the correc- G. Schan for discussions.
tion to the current will be of the ordey?. We will study this . , _ _
i Isewhere. Here we discuss a more direct detegt, M2l Shnirman@tfp.uni-karlsruhe.de ,
C_O”ecuon elsew ; . . QThese two orthogonal AF fields represéntthe slowly varying staggered
tion strategy. The spin motion generates a time-dependentpin field(the antiferromagnetic staggered momentaking on the role of
magnetic field, S and(ii) the rapidly oscillating uniform spin fieltl(paralleling our). In
the antiferromagnetic correspondence, the two forward time spin trajecto-
Mo 2 ries at two nearest neighbor AF sites become the two forwajdafd
4715 [3r(r-m(t))—r“m(t)], backward () single spin trajectories of the nonequilibrium problem. This
staggered doubling correspondence is general.
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We review recent results on a new class of Josephson arrays which have nontrivial topology and
exhibit novel quantum states at low temperatures. One of these states is characterized by
long-range order in a two-Cooper-pair condensate and by a discrete topological order parameter.
The second state is insulating and can be considered as being the result of an evolution of

the former state due to Bose-condensation of usual superconductive vortices with a flux quantum
®,. The quantum phase transition between these two states is controlled by variation of the
external magnetic field. Both the superconductive and insulating states are characterized by the
presence of -degenerate ground states, withbeing the number of topologically

different cycles existing in the plane of the array. This degeneracy is “protected” from the
external perturbation&@nd nois¢ by the topological order parameter and spectral gap. We show
that under ideal conditions the low-order effect of the external perturbations on this

degeneracy is exactly zero and that deviations from ideality lead to only exponentially small
effects of perturbations. We argue that this system provides a physical implementation of an ideal
guantum computer with a built-in error correction. A number of relatively simple “echo-

like” experiments possible on small-size arrays are discusse@0@ American Institute of

Physics. [DOI: 10.1063/1.1789936

1. INTRODUCTION Insensitivity to random fluctuations means that any cou-

pling to the external environment neither induces transitions

Quantum computintf is in principle a very powerful among these ¥ states nor changes the phase of one state

technique for solving classic “hard” problems such as fac-with respect another. Mathematically, this means that one

torizing Iarge numbersor Sorting Iarge list. The remark- requires a system whose Hilbert space contains a
able discovery of quantum error correction algoritAms 2K_gimensional subspace (called “the  protected
shows that there is no problem of principle involved in build- subspace™% within which any local operatoé has (to a

ing a functioning quantum computer. However, implementagn accuracy only state-independent diagonal matrix ele-
tion still seems dauntingly difficult: the essential ingredient jants:

of a quantum computer is a quantum system with(®ith

K>100) quantum states which are degenetatenearly so

in the absence of external perturbations and are insensitive to (n|O|m)=048mn+0(exp(—L)),

the “random” fluctuations which exist in every real system,

but which may be manipulated by controlled external fields

with errors less than I®. Moreover, the standard schemeswherel is a parameter such as the system size that can be
of error correction(assuming an error rate of order 19 made as large as desired. It has been very difficult to design
require very big system size&~10*—1CP, to correct the a system which meets these criteria. Many physical systems
errors(i.e., the total number of all qubits is a factor of 100— (for example, spin glass¥% exhibit exponentially many dis-
1000 larger than the number of qubits needed to perform thénct states, so that the off-diagonal matrix elements of all
computational algorithm under the “ideal” conditions of no physical operators between these states are exponentially
error9. If the frequency of errors could be reduced by orderssmall. In such systems the longitudinal relaxation of a super-
of magnitude, the conditions for residual-error correctionposition of these states is very slow. The absence of the
would becomes much less stringent, and the total Kiz#f  transverse relaxation which is due to the different diagonal
the system would be much smalfer. matrix elementsO,,,— O, is a different matter: it is a

1063-777X/2004/30(7-8)/12/$26.00 634 © 2004 American Institute of Physics
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highly nontrivial requirement that is not satisfied by usual
physical systemsgsuch as spin glasseand which puts sys-
tems satisfying it in a completely new class.

One very attractive possibility, proposed in an important
paper by Kitae{and developed further in Ref. 11, involves a
protected subspat@created by a topological degeneracy of
the ground state. Typically such degeneracy happens if the
system has a conservation law such as conservation of the
parity of the number of “particles” along some long contour,
and the absence of any local order parameter. Physically, it is
clear that two states that differ only by the parity of some big
number that cannot be obtained from any local measurement o o

imilar to each other. A “cartoon” example of this FIG. 1. Examples of the proposed Josephson junction array. The thick lines
?‘re very simi ’ . p show superconductive wires, each wire containing one Josephson junction
idea can be presented as follows. Consider two locally flaks shown in the detailed view of one hexagon. The width of each rhombus
surfaces, one with the topology of a simple cylinder and thds such that the ratio of the area of the Star of David to the area of one

e : : ; : rhombus is an odd integer. The array is put in a magnetic field such that the
other a Mdius strip, and Imagine an observer moving Or"ﬂux through each elementary rhombus and through each Star of David

one of these surfaces. Clea:rly: the onlly way to decide ORcribed in each hexagbis half-integer. The thiin lines show the effective
which surface the observer is located is to walk the wholéebonds formed by the elementary rhombi. The Josephson coupling provided
|00p around the strip and find himself either at the samey these bonds isr-periodic. An array with one opening; generally the

s . . . effective number of qubitsK is equal to the number of openings. The
point (In which case the surface is a cyllnaier on the other choice of boundary condition shown here makes the superconducting phase

side of the surfacéa Mobius strip. unique along the entire length of the outemen boundary; the state of the
The model proposed in Ref. 7 has been shown to exhibigntire boundary is described by a single degree of freedom. The topological

many properties of the ideal guantum computer; howevegrder parameter controls the phase difference between the inner and outer
. . C . oundaries. Each boundary includes one rhombus to allow experiments with
before now no robust and practical implementation Wasj,x penetration; the magnetic flux through the opening is assumed to be
known. In a recent paper we and others proposed a Josep{i/2+m)d /2 with any integem (a). With this choice of boundary circuits
son junction network which is an implementation of a similarthe phase is unique only inside the sectors AB and CD of the boundary; the

. - . topological degree of freedom controls the difference between the phases of
model with protected degeneracy and which is pOSS(IH)lle these boundaries. This allows a simpler setup of the experimental test for the

though difficuly to build in the laboratory? signatures of the ground state described in the text, e.g., by the SQUID
In this paper we review our recent results on the furtheiinterference experiment sketched here, which involves a measuring loop

development of the ideas of Ref. 12. We propose a newith flux @, and a very weak junctiod balancing the arrayh).
Josephson junction network that has a number of practical

advantagesa shorter account of this approach can be found - . :
in Refs. 13 and 14 This network operates in a phase regimedegeneracy appears due to the possibility of putting a half

. . : vortex inside the opening, without paying any energy.
(i.e., when Josephson energy is larger than the charging en- Below we first describe the physical array, with the “to-

ergy, which reduces “”.des'Fed effectg of paras'tlc.St.raypological superconductor” state, and identify its relevant
charges. All Josephson junctions in this array are similar,

. oo o . low-energy degrees of freedom and the mathematical model
which should simplify the fabrication process. This system,[hat desgr)i/besgtheir dynamics. We then show how the pro-

h.as f—degenerate. ground s.tates “prc_;tected” to even Sected states appear in this model, derive the parameters of
higher extent than in Ref. 12: the_ matrix elements of_localthe model, and identify various corrections appearing in a
operators scale &SL wheres_so.l Is a measure of no_n_lde— real physical system and their effects. Then we discuss the
ality of the system's fabricatiore.g., the spread of critical l[generalization of this array that is needed to obtain in a con-

currents of different Josephson junctions and geometrical af-

£ diff ¢ ol ¢ lis in th Xh rollable way a second “topological insulator” phase. Fi-
eas of different elementary cells in the networkhe new nally, we discuss how one can manipulate quantum states in

array does not require a fine tuning of its parameters into g putative quantum computer based upon those arrays, and

narrow region. The relevant degrees of freedom of this nevi o physical properties expected in a small arrays of this

array are described by a model analogous to the one p“?ype. We remark that the properties of the excitations and
posed in Ref. 7.

; o topological order parameter exhibited by the system we pro-
In physical terms, the array we propose may exist in tWOpose here are in many respects similar to the properties of the

different phases:)itopological superconductor, which is & jny exchange and frustrated magnet models discussed re-
superfluid of & composite objects, and)itopological insu- cently in Refs. 8, 9, and 15-25.

lator, which is a superfluid of superconductive vortices with
a flux quantumd,=hc/2e. The topological degeneracy of
the ground state) iarises becauseeexcitations have a gap.
Indeed, in such system with the geometry of an annulus, one The basic building block of the lattice is a rhombus
extra Cooper pair injected at the inner boundary can nevemade of four Josephson junctions with each side of the
escape it; on the other hand, it is clear that two states differrthombus containing one Josephson contact; these rhombi
ing by the parity of the number of Cooper pairs at the boundform a hexagonal lattice as shown in Fig. 1. We denote the
ary are practically indistinguishable by a local measuremententers of the hexagons by letterd,... and theindividual

In the ground state)iithe lowest excitation is a “half-vortex” rhombi by @b),(cd),..., because each rhombus is in one-
(i.e., vortex with a fluxdy/2), and topological double- to-one correspondence with the linglf) between the sites

2. ARRAY 1: TOPOLOGICAL SUPERCONDUCTOR
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of the triangular lattice dual to the hexagonal lattice. Theby * /4 in each junction clockwise around the rhombus.
lattice is placed in a uniform magnetic field so that the fluxWe denote these states|asand||), respectively. In the limit
through each rhombus &,/2. The geometry is chosen in of large Josephson energy the space of low-energy states of
such a way that the flusb through each Star of David is a the full lattice is described by these binary degrees of free-
half-integer multiple of ®y:®=(ng+ 1/2)(1)0.1) Finally, = dom, and the set of operators acting on these states is given
globally the lattice contains a numbirof big openinggthe by Pauli matricesrsy"*. We now combine these rhombi into
size of the opening is much larger than the lattice constant; hexagons forming the lattice shown in Fig. 1. This gives
lattice withK =1 is shown in Fig. &). The dimension of the another condition: the sum of phase differences around the
protected space will be shown to be equél Zhe system is hexagon should be equal to the fldx through each Star of
characterized by the Josephson enefgy=(#/2e)l., of  David inscribed in this hexagon. The choigg= /2 is con-
each contact and by the capacitance matrix of the islandsistent with the flux® 4 being equal to a half-integer number
(vertices of the lattice We shall assuméas is usually the of flux quanta. This state minimizes the potential end@jy
casg that the capacitance matrix is dominated by the capacief the system. This is, however, not the only choice. Al-
tances of individual junctions; we write the charging energythough flipping the phase of one rhombus changes the phase
as Ec=e?/2C. The “phase regime” of the network men- flux around the star byr and thus is prohibited, flipping two,
tioned above implies thd;>E.. The whole system is de- four and six rhombi is allowed; generally the low-energy
scribed by the Lagrangian configurations olU(¢) satisfy the constraint

1
£=2 ja; (b e)* T Escodoimgmay), () Pa=l] o%=1, )
where ¢; are the phases of individual islands aagl are \\nere the product runs over all neighbdrsof site a. The
chosen to produce the correct magnetic fluxes. The Lagrangi,mper of (classical states satisfying the constraif8) is
ian (1) contains only gauge invariant phase differenags, i)l hyge: the corresponding configurational entropy is ex-
=¢i~¢j—aj, SO it will be convenient sometimes to treat o qjye (proportional to the number of sifese now con-
them as independent variables satisfying the constrainfiyer the charging energy of the contacts, which results in the
Zrgij=2mdr/Po+2mn, where the sum is taken over g,anim dynamics of the system. We show that it reduces

closed loopl” andn is an arbitrary integer. this degeneracy to a much smaller numbér, Zhe dynam-
As will become clear below, it is crucial that the degrees;.q ¢ the individual rhombus is described by a simple
of freedom at the boundary have dynamics identical to thosﬁamiltonianH—To but the dynamics of a rhombus em
=to,, -

in the bulk. To ensure this one needs to add additional supeps . L L i
. . . . edded in the array is different because individual flips are
conducting wires and Josephson junctions at the boundarx. : . : .
o .hot compatible with the constraifi8). The simplest dynam-
There are a few ways to do this; two examples are shown in : . . : :

. . ) . ics compatible with(3) contains flips of three rhombi belong-
Fig. 1a and Fig. b: type | boundarythe entire length of the | . N ‘% x
boundaries in Fig. 4, parts AB and CD of Fig. ), and type N9 t0 the elementary trianglea(b,c), Qabe=0apTbcTca
Il boundary BC,AD). For both types of boundaries one and therefore the simplest quantum Hamiltonian operating
needs to include in each boundary loop a flux equal tP" the subspace defined t§) is
32, Dy, whereZ, is the coordination number of the dual
triangular lattice site. For instance, for the four-coordinated H=-—r 2 Q(abg) - (4)
boundary sites one needs to enclose an integer flux in these (abo)
contours. In the type | boundary the entire boundary correWe discuss the derivation of the coefficienin this Hamil-
sponds to one degree of freeddthe phase at some pojpt tonian and the correction terms and their effects below, but
while the type Il boundary includes many rhombi so it con-first we solve the simplified modéB), (4) and show that its
tains many degrees of freedom. ground state is “protected” in the sense described above and

Note that eactiinner and outerboundary shown in Fig. that excitations are separated by a §ap.
la contains one rhombus; we included it to allow flux to Clearly, it is very important that the constraint is im-
enter and exit through the boundary when that is energetiposed on all sites, including boundaries. Evidently, some

cally favorable. boundary hexagons are only partially complete but the con-

straint should be still imposed on the corresponding sites of
3. GROUND STATE, EXCITATIONS AND TOPOLOGICAL the corresponding triangular lattice. This is ensured by addi-
ORDER tional superconducting wires that close the boundary hexa-

gons in Fig. 1.

~ In order to identify the relevant degrees of freedom in~ g pote that constraint operators commute not only with
this highly frustrated system we consider first an |nd|V|duaI,[he full Hamiltonian but also with individuaIQ(abc):

rhombus. As a function of the gauge invariant phase differ-

ence between the far ends of the rhombus the potential erg-P’Q(aPC)]:O' The Hamlltc_)nlan(_4) w!(thout constraint has
ergy is an obvious ground statf), in which 3= 1 for all rhombi.

This ground state, however, violates the constraint. This can
U(eij)=—2E;(|cod ¢;j/2)| +[sin(¢;;/2)]). (2 pe fixed, noting that since operatafs commute with the
This energy has two equivalent minima, afj= = /2, I:|ami|tonian, any state obtained froj®) by acting on it by
which can be used to construct an elementary unprotecteld, is also a ground state. We can now construct a true
qubit; see Ref. 26. In each of these states the phase changg®und state satisfying the constraint by
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commutes with the Hamiltonian and is not fixed by the con-
straint. Physically these operators count the parity of “up”
rhombi along such contour. The presence of these operators
results in degeneracy of the ground state. Note that multiply-
ing such an operator by an appropridlg gives a similar
operator defined on the shifted contour, so all topologically
equivalent contours give one new integral of motion. Further,
multiplying two operators defined along the contours begin-
ning at the samée.g., outer boundary and ending in differ-
ent openingsA, B is equivalent to the operator defined on
the contour leading from\ to B, so the independent opera-
tors can be definetk.g) by the set of contours that begin at
one opening and end at the outer boundary. The $@Gje
constructed above is not an eigenstate of these operators, but
this can be fixed by defining

R LIPS
,‘/2 1

le>=1} @

wherec,=*1 is the eigenvalue of the operatiig defined
on the contoury,. Equation(7) is the final expression for
the ground-state eigenfunctions.

Construction of the excitations is similar to the construc-
tion of the ground state. First, one notices that since all op-

erators@abC commute with each other and with the con-
straints, any state of the system can be characterized by the

eigenvalues Qap.= +1) of Q... The lowest excited state
correspond to only on®,,. being — 1. Notice that a simple
flip of one rhombugby the operatorrfab)) somewhere in the
system changes the sign of the two eigenvalQgs. corre-
sponding to the two triangles to which it belongs. To change
only oneQ,,. one needs to consider a continuous string of
these flip operators starting from the boundaj¢abc))
=Vapd0) With v,,c=11,, 0(.q , Where the product is over
FIG. 2. Location of the discrete degrees of freedom responsible for thell rhombi (cd) that belong to the path’ that begins at the
dynamics of the Josephson junction array shown in Fig. 1. The spin degreq§oundary and ends aabc) (see Fig. 2, which shows one

of freedom describing the state of the elementary rhombi are located on th ; :
bonds of the triangular latticeshown by thick lines while the constraints Such path This operator changes the sign of only @@g.,

are defined on the sites of this lattice. The dashed line indicates the boundaﬁpe one that corrgsponds to the “!aSt” triangle. This construc-
condition imposed by the physical circuitry shown in Fig. Contoursy  tion does not satisfy the constraint, so we have to apply the

andy' are used in the construction of the topological order parameter an&gme “fix” as for the ground-state construction above
excitations @). The lattice withK=3 openings; the ground state of the

Josephson junction array on this lattice {s=B-fold degenerateh). ~
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1+c,T 1+P
a'q a
v = v 0 (8)
) | (abc)> 1;[ V2 1;[ V2 (abc)| >
1+P,
|G>:1;[ 3 |0). ® 1o get the final expression for the lowest-energy excitations.

The energy of each excitation ig 2Note that a single flip

Here (1+ P,)/v2 is a projector onto the subspace satisfyingexcitation at a rhombusap) can be viewed as a combination
the constraint at sita and preserving the normalization. of two elementary excitations located at the centers of the

Obviously, the Hamiltonian(4) commutes with any triangles to which rhombusap) belongs and has twice their
product ofP, which is equal to the product af%, operators ~ €nergy. Generally, all excited states of the modglcan be
around a set of closed loops. These integrals of motion argharacterized as a number of elementary excitatiBnsso
fixed by the constraint. However, for a topologically non- they give an exact quasiparticle basis. Note that creation of a
trivial system there appear a number of other integrals ofluasiparticle at one boundary and moving it to another is
motion. For a system wittK openings a product of%,  equivalent to the operatdF,, so this process acts a§ in
operators along a contoyr that begins at one opening and the space of the "2 degenerate ground states. As will be

ends at anothefor at the outer boundary; see Fig, 2 shown below, in the physical system of Josephson junctions
these excitations carry charge,2so that the proces% is
i—q: H iy, (6) equivalent to the transfer of charge #om one boundary to

(7g) another.
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Consider now the matrix elemen@aB:<Ga|©|GB> of dominant contribution. There are in fact many processes that

a local operatorQ, between two ground states, e.g., of ancontribute to this transition: the phase of islancan change
operator that is composed of a small numberogf,. To by + w_and, in_ add_ition, in each rombus one can choose
evaluate this matrix element we first project a general operg@'bitrarily the junction at which the phase changes by

tor onto the space that satisfies the constraisPOP, *3ml2; the amplitude of all these processes should be
B A ) ' added. This does not change the result qualitatively unless
where P=Il,(1+P,)/2. The new(projected operator iS yoqe amplitudes exactly cancel each other, which happens

also local; it has the same matrix elements between groun&inly if the charge of the island is exactly half-integée-
states but it commutes with &, . Sinﬂce itis local, it can be  cause phase and charge are conjugate, the amplitude differ-
represented as a product of, and Q operators, and this ence of processes that are different hyig exp(2riq)). We
implies that it also commutes with a‘TIq. Thus, its matrix ~assume that in a generic case this cancellation does not oc-
elements between different states are exactly zero. Furthezyur. External electrical fieldécreated by stray charges, for
using the fact that it commutes wifh, and T, we write the ~ €xamplé might induce noninteger charges on each island,
difference between its diagonal elements evaluated betweédhich would lead to a randomness in the phase and ampli-

the states that differ by parity over contogiras tude ofr. The phase of can be eliminated by a suitable
R gauge transformatioft ) .,— explaap)|1)ap and has no effect
_ 1+Pi. at all. The amplitude variations result in a position-dependent
0.-0-= < 0 H Y Tq0 0> ' ©) quasiparticle energy.

_ . . We now consider the corrections to the mo@#l One
This equation can be viewed as a sum of productsrof  jmportant source of corrections is the difference of the actual
operators. Clearly to get a nonzero contribution each  magnetic flux through each rhombus from the ideal value
should enter even number of times. Edtleontains a closed /2. If this difference is small, it leads to a bias of “up”

loop of sixc” operators, so any product of these terms is alsaersus “down” states; their energy difference becomes
a collection of closed loops af?. In contrast to it, the op-

erator'T'q contains a product af” operators along the loop 2¢=2m2 & E,. (12)
so the product of them contains a stringodfoperators along Do
a contour that is topologically equivalent o Thus one gets Similarly, the difference of the actual flux through Star

anonzerd, —O_ only for the operator® which containa  of David and the difference in the Josephson energies of
string of o operators along a loop that is topologically individual contacts leads to the interaction between “up”
equivalent toy, which is impossible for a local operator. states:

Thus we conclude that for this model all off-diagonal matrix

elements of a local operator are exactly zero, and all the 5H1:(azb) Vapolp+

V 02 0%y, (12)
diagonal elements are exactly equal. (ab).(cd)TapT cd

(ab),(cd)
whereV,,= € for a uniform field deviating slightly from the
ideal value anaV ,p) cqy#0 for rhombi belonging to the
We now come back to the original physical system de-same hexagon. Consider now the effect of perturbations de-
scribed by the Lagrangiafl) and derive the parameters of scribed bydH;, Eq. (12). These terms commute with the
the model4) and discuss the most important corrections to itconstraint but do not commute with the main tekh, so the
and their effect. We begin with the derivation. In the limit of ground state is no longéG..). In other words, these terms
small charging energy the flip of three rhombi occurs by acreate excitationg8) and give them kinetic energy. In the
virtual process in which the phagge at one(6-coordinateyl  leading order of the perturbation theory the ground state be-
islandi changes byr. In the quasiclassical limit the phase comes |G. )+ (€/4r)2 apo(ay|Gix). Qualitatively, this
differences on the individual junctions agg,q= = m/4; the  corresponds to the appearance of virtual pairs of quasiparti-
leading quantum process changes the phase on one junctiéles in the ground state. The density of these quasiparticles is
by 37/2 and on others by- 7/2, changing the phase across €/r. As long as these quasiparticles do not form a topologi-
the rhombusip— ¢+ 7. The phase differences satisfy the  cally nontrivial string, all of our previous conclusions remain
constraint that the sum of them over the closed loops remaingalid. However, there is a nonzero amplitude for forming
equal to 27(n+d,/d,). The simplest such process pre- such a string; it is now exponential in the system size. With
serves the symmetry of the lattice, and changes simultaéxponential accuracy this amplitude ig/Zr)", which leads
neously the phase differences on the three rhombi containinig an energy splitting of the same order for the two ground-
islandi while leaving all other phases constant. The actiorstate levels and for the matrix elements of typical local op-
for such process is three times the action of elementary trargrators:
sitions of individual rhombiSy: E.—E_~0,-0_~(el2r)*.

3414 _ _ I=T=N
r~EyBc exp—3%), S=16LE,/Ec. (10 The physical meaning of the ¢ excitations becomes

In the alternative process the phase differences betivaed  clearer if one consider the effect of the addition of arfe
other islands change in turn, via a high-energy intermediateperator to the end of the string defining the quasiparticle: it
state in which one phase difference has changed while otherssults in a charge transfer oé2cross this last rhombus. To
remain close to their original values. The estimate for thisprove this, note that the wave function of a superconductor
action shows that it is larger thanSg, so (10) gives the corresponding to the state that is a symmetric combination of

4. EFFECT OF PHYSICAL PERTURBATIONS
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[1) and|]) is periodic with periodm and thus corresponds to 0.2
charge which is multiple of €, while the antisymmetric
combination corresponds to chargen(21)2e. The action
of one ¢? induces a transition between these states and thus
transfers a chargee2 Thus, these excitations carry charge
2e. Note that continuous degrees of freedom are character-
ized by long-range order in cosfp and thus correspond to
the condensation of pairs of Cooper pairs. In other words,
this system superconducts with elementary chargeadd
has a gap 2 to the excitations carrying chargee2It was
shown in a recent pap@rthat a similar pairing of Cooper 0 M Ec/E,
pairs occurs in a chain of rhombi, and in Ref. 30 it was
predicted that a classical superconductive state with effectivelG. 3. Schematic of the phase diagram for half-intebgiat low tempera-
charge @ is formed in a frustrated Kagome wire network. Furgs:&cbd is the deviation of the magnetic flux through each rhombus from

The modek4) completely ignores the processes that ViO-ItS ideal yalue. SC stan_ds for the usual supercqnductlng phase, SCT for the

! " phase with cos(@) long-range order of the continuous degrees of freedom

late the constraint at each hexagon. Such processes migiHd a discrete topological order parameter, discussed extensively in the text.
violate the conservation of the topological invariafitsand ;gﬁsisti%; phase and SC phase are separated by a 2D quantum Ising phase
thus are important for the long-time dynamics of the ground- '
state manifold. In order to consider these processes we need

to go back to. the full descr.iption involying the cqntinuous larger or smaller thad ). In the absence of half-vortices the
superconducting phases. Since potential energ?) is pe-  qel s equivalent to the Kitaev modellaced on triangular
riodic in it is convenient to separate the degrees of freejayice in the limit of the infinite energy of the excitation
dom into a continuous paftefined modulor) and discrete violating the constraints.

parts. The continuous parts have a long-range order: o aniitatively, the expression for the parameters of the
(cos(Zp—2¢))~1. The elementary excitations of the con- n,qe|(4) becomes exact only E,>E. One expects, how-
tinuous degrees of freedom are harmonic oscillations ang e that the qualitative conclusions remain the same and the
vortices. The harmonic oscillations interact with discrete deTormuIas derived above provide reliable estimates of the
grees of freedom only throu_gh_the local currents that_the;gcmes even foE;~E., provided that the charging energy is
generate. Further the potenti@) is very close to quadratic, ¢ 5o large as to result in a phase transition to a different

so we conclude that they are practically decoupled from th%hase. One expects this transition to occUE&E 7E, , with

rest of the system. In cont.rast to this, vortices have an |.m-77~l, its exact value being reliably determinable only from
portant effect. By construction, the elementary vortex carries, ,merical simulations.

flux 7 in this problem. Consider the structure of these vorti- Practically, since the perturbations induced by flux de-

ces in greater detail. The superconducting phase should{,iions from®, are proportional to §&/®)(E,/r) andr

change by 0 or 2 when one moves around a closed 100p. INyo.comes exponentially small at smé} , the optimal choice
a half-vortex this is achieved if the gradual changebis of the parameters for the physical systemEis~EZX . We

compensate(br gugm_ente)jbya discrete change byona  gnqy the schematics of the phase diagram in Fig. 3. We
sfmng ‘_)f rhombl, which costs no energy. Thus,_ from theassume here that the transition to the insulating phase is di-
V|ewpo!nt of discrete degrees of freedomz th? position of therect; another alternative is an intermediate phase in which the
vortex is the hexagon where constrail is violated. The  ono4y of the vortex becomes finite instead of being logarith-
energy of the vortex is found from the usual arguments,  ic 'if this phase indeed exists it is likely to have properties
E more similar to the one discussed in Ref.(ili the next
E,(R)= _J(|n R+c), c~1.2; (13)  Section we consider a generalized JJ array, where such an
4.6 intermediate phase does eXisthe “topological” phase is
. L . stable in a significant part of the phase diagram. The phase
it is logarithmic in the vortexAS|zeR. The process that transition between “topological superconductor ” and usual
changes the topological invarial, is the one in which one  syperconductor belongs to the class of quantum spin-1/2 2D
half-vortex completes a circle around an opening. The amrsing model on a hexagonal lattice, placed in a transverse
plitude of such a process is exponentially small:fig|g:
(t/E, (D))", wheret is the amplitude for the flipping of one
rhombus and\ is the length of the shortest path around the Hising= — €, s}‘sﬁ‘—rE . (14)
opening. In the quasiclassical limit the amplitutiean be (n !
estimated analogously t¢10): t~ VE;Eqexp(—S). The  Herei, j denote sites of the hexagonal lattice, the eigenvalue
half-vortices would appear in a realistic system if the fluxof operators/ measures the parity of the numhgrof Coo-
through each hexagon is systematically different from theper pairs on théth island:n;(mod 2)=3(1—s7); the param-
ideal half-integer value. The presence of free vortices deetersr ande are defined in Eqg10) and(11). As long as the
stroys topological invariants, so a realistic system should eiratio A =r/€ is larger than some critical value,, the ground
ther be not too largéso that deviations of the total flux do state is one with an even number of Cooper pairs on each
not induce free vorticesor these vortices should be localized island, which corresponds to our “topological superconduct-
in prepared trapse.g., Stars of David with fluxes slightly or” phase. The values of, for square, triangular, and cubic
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lattices was found via quantum Monte—Carlo simulatidhs; PR
in particular,\!®"%~4.6+ 0.3, and\3%"%=2.7+0.3. There » + 4+ )‘\\
are no available data for a hexagonal lattice; based upon the ¢ ¥ ++ x x
results cited above, one could estimaf§~2+0.5. ,' % X X ‘\
Furthermore, since the vortex excitations have logarith- _P( K +*+‘
mic energy, we expect that this phase survives at finite tem- :+ * +|
peratures as well. In the thermodynamic limit, @t 0 A X % !
one gets a finite density of €carrying excitations Y )‘)(x )(’Z‘ ,’
(n,~exp(=2r/T)), but vortices remain absent as long as the \‘\ X 44 ¢
temperature is below the BKT-like depairing transition for ‘s X 44 ’4'

half-vortices. A

5. ARRAY 2: TOPOLOGICAL INSULATOR > b’\ /
R, | | SRR B
Generally, increasing the charging energy in a Josephson db‘!ﬁll&db&%‘
junction array makes it an insulator. This transition is due to ’.?/ \ii%‘b&
an increase of phase fluctuations in the original array and the : :’::‘:
resulting appearance of free vortices that form a superfluid of %I I.‘.”‘
their own. The new situation arises in a topological super- ‘L J%’qﬁ’q
conductor because it allows half-vortices. Two scenarios are ae % S et
. ) ey : - LA TN
now possible. The “conventional” scenario would involve qg.,%p.,%’.’p
condensation of half-vortices since they are conjugate to /A AR AT

charges 4. In this case we get an insulator with elementary
excitations carrying chargee4 An alternative is condensa-
tion of full vortices (pairs of half-vorticeswith a finite gap

to half-vortices. In this case the elementary excitations ar€IG. 4. Schematics of the array. The main figure: Global structure of the
charge-2 objects. Similar fractionalization was discussed inarray. Discrete variables controlling the low energy properties are defined on

; ; the links of the hexagonal lattice. Generally, the lattice might h&vieig
the context of hlghTC superconductors in Refs. 19 and 32 holes; here we show the examp{e=1. Zoom in: Each inner bond of the

and in the context of spin or quantum dimer systems in Refﬁattice contains a rhombus made out of four Josephson junctions; some
22 and 33-36. Such an insulator acquires interesting top@onds also contain an effective weaker link made of two Josephson junc-
logical properties on a lattice with holes, because each holéons so that each hexagon of the lattice contéins3 such links. The flux
leads to a new binary degree of freedom which describes thirough each rhombus is a half flux quantuln/2; the flux through a loop
. constituting a weak link is close to a half flux quantyis ®/2+ 5. The

presence or absence of a half-vortex. The energies of the%@undary of the lattice contains rhombi and weak links so that each bound-
states are equal up to corrections which vanish exponentiallyry plaquette has the same numberof weak links as the bulk hexagon.
with the size of the holes. These states cannot be distin-
guished by local measurements and have all the properties
expected for a topological insulator. They can be measured;ooper pair binding. We assume that each elementary hexa-
however, if the system is adiabatically brought into the su-gon contains exactlig such junctions: in the case where each
perconductive state by changing some control parametelink contains one weak junctiok=6, but generally it can
Here we propose a modification of the “topologically super-take any valuk=1. As will be shown below, the important
conductive” array that provides such a control parameteicondition is the number of weak junctions that one needs to
and, at the same time, allows us to solve the model andross in the elementary loop. Qualitatively, a vakxel en-
compute the properties of the topological insulator. The keysures that it costs a little to put a vortex in any hexagon.
idea of this modification is to allow full vortice®f flux @) For the general arguments that follow below, the actual
to move with large amplitude between plackets of the hexconstruction of the weak links is not important; however,
agonal lattice, so that they lower their energy due to delocalpractically it is difficult to vary the ratio of the capacitance to
ization and eventually Bose-condense, while half-vortices rethe Josephson energy, so weaker Josephson contact usually
main (almos} localized. implies larger Coulomb energy. This can be avoided if weak

Consider the array shown in Fig. 4, which containscontact is made from a Josephson junction loop frustrated by
rhombi with junctions characterized by Josephson and chargnagnetic field. The charging energy of this system is half the
ing energieE ;> E and weak junctions witle;<e-<E. charging energy of an individual junction, while the effective
Each rhombus encloses half of a flux quantum, leading to adosephson junction strength ég=2mw(6P/Dy)E,y, where
exact degeneracy between the two states of opposite chiraliy, is the Josephson energy of each contact add=d
of the circulating current>?® This degeneracy is a conse- —®/2 is the difference of the flux from the half flux quan-
guence of the symmetry operation which combines the retum. This construction also allows one to control the system
flection about the long diagonal of the rhombus and a gaugby varying the magnetic field.
transformation needed to compensate the change of the flux Under these conditions the whole array is insulating. As-
d/2——Dy/2. This gauge transformation changes thesume thak; sets the lowest energy scale in this probighe
phase difference along the diagonal byThis Z, symmetry  exact condition will be discussed belpwihe state of the
implies conservation of the parity of the number of pairs atarray is controlled by discrete variablag= 0,1, which de-
each site of the hexagonal lattice and is the origin of thescribe the chiral state of each rhombus, and by continuous
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phasesp;; that specify the state of each weak lithere and  on the sites of the dual lattica, b. Indeed, a convenient
belowi, j denote the sites of the hexagonal latticé the  way to describe different states that sati$ly’) is to note
Josephson coupling;=0, different islands are completely that operatoﬂj(,)rx does not change the value Bfu;; for
decoupled and the potential energy does not depend on thiee second type of tunneling processes. Thus, one can fix the
discrete variables;; . For smalle; we can evaluate its effect values of2qu;;=v, on all hexagonal plaquett@sand im-

using perturbation theory: pose the constrairl7). In physical terms the binary values
Kk e, \ k-1 v;=0,1 describe the positions of half-vortices on the dual
V(u)= —Wcos( T, uj; ) W= _EJ(_J) (triangulay lattice. This degeneracy between different states
hex k! 8ec is lifted when the subdominant terms are taken into account.

(19  The main contribution to the potential energy of these half-
This potential energy lowers the relative energy of classicavortices comes fron{15), it is simply proportional to their
configurations ofu;; that satisfy the constrainEeu=0 number. The dynamics of these vortices is due to the pro-
(mod 2 but it does not prohibit configurations with,e,u cesses in which only one rhombus changes its state, with a
=1 (mod 2. corresponding flip of the phase across the weak junction. The
Now consider the dynamics of discrete variables. Genamplitude of this process is

erally, two types of tunneling processes are possible. In the =
first type the phase changes hyacross each of the three T~E§’4E(l:’4exp( -3, ~S°:1'61\ﬁ'

rhombi that have a common site. This is the same process Ec

that gives the leading contribution to the dynamics of the

Superconducting arrg[’v; its amp”tude is giverﬁn the quasi- In this apprOXimation the effective Hamiltonian control-
classical approximationby Eq. (10) above. In the second ling these vortices becomest. Eq. (14)):

type of process the phase changes across one rhombus and

across one weak junction. Because the potential energy of H,= —rE TRON— WE oz, (18

the weak junction is assumed to be very small, the main (ab)

effect of the weak junction is to change the kinetic energywhere the operators, act in the usual way on the states
The total kinetic energy for this process is the sum of theyjth/without half-vortices at plaquetta and the first sum
terms due to the phase across the rhombi and across the wegqs over adjacent plaquetteal(). This Hamiltonian de-
link. Assuming that these phase varlatlons are equal and ORgribes an Ising model in a transverse field. For s
DOSlte in sign, the former is abouic'¢® and the latter <) _~1 its ground state is “disorderedto?) =0 but{o)
ec 142, so the effective charging energy of this process is(Q while for WIT>\, it is “ordered”: (¢?)#0, (c*)=0.
Ec= (EC +ec 1~ For ec<Ec this charging energy is The critical value of the transverse field is known from ex-
small, and the process is suppressed. Thus, under these caensive numerical simulatiori$:\ ;~4.6+ 0.3 for the trian-
ditions the dominating process is the simultaneous flip ofgular lattice. The “disordered” state corresponds to a liquid
three rhombi, as in the superconducting case. In the followef half-vortices, while in the “ordered” state the density of
ing we restrict ourselves to this case. Further, we shall asfree half-vortices vanishes, i.e., the ground state contains an
sume that >W, so that in the leading order one can neglecteven number of half-vortices, so the total vorticity of the
the potential energy compared to the kinetic energy corresystem is zero. To prove this we start from the stdpe
sponding to the flip of three rhombi. A4/ is increased by which is the ground state @W=0, and consider the effect
turning one, the continuous phasg;; orders, and the tran- of TX ., 007 in perturbation theory. Higher energy states
sition to the superconducting state happensatec. At  are separated from the ground state by the japso each
largere;, W becomes equal te; and with a further increase order is finite. Further, in each order the operatqury cre-
of €5, for e;>r vortices completely disappear from the low- ates two more half-vortices, proving that the total number of
energy spectrum, and the array becomes equivalent to thealf-vortices remains even in each order. The states with odd
one studied in Ref. 13. numbers of half-vortices have a gagr/W) which remains
The low-energy states are the ones that minimize th@onzero forW/f>\..
kinetic energy corresponding to simultaneous flip processes: In terms of the original discrete variable defined on the
rhombi the Hamiltoniar{18) becomes
=1 ] = (16)

Lo Ho=—T> 7-wX [] 7, (19
Here j(i) denote the nearest neighbors of siter) is the () I
operator that flips discrete variableg, andr is given by  where ther operators act on the state of each rhombus. This
(10). The states minimizing this energy satisfy the gaugeHamiltonian commutes with the constraitif7) and is in fact

invariance condition the simplest Hamiltonian of the lattic&, gauge theory. The
disordered regime corresponds to a confined phase o£this
H |\If> (17) gauge theory, leading to elementarg dharge excitations,

while the ordered regime corresponds to the deconfined
The Hilbert space of states that satisfy the conditibp is phase.
still huge. If all weaker terms in the Hamiltonian are ne- Now consider a system with nontrivial topology, e.g., a
glected, all states that satisfyl7) are degenerate. These hole. In this case the set of variableg is not sufficient to
states can be visualized in terms of half-vortices positionedietermine uniquely the state of the system, one has to
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TABLE I. The typical properties of topological superconductor and insulator.

State Topological superconductor Topological insulator
Ground state Condensate of 4e charges Condensate of 2r phase vortices
Fluxons Gapful, charge 2e Gapful, n phase vortices
Pseudocharges Half fluxes with energy ¢~ Ejlog L Charge 2e with € =27 + Bec min [log L, log (c/c) P
Ground-state degeneracy Charge on the inner boundary mod 4e Number of = vortices inside the hole mod 2
Ground-state splitting D/ tDO)(E]/r)L FwHk

Comment: HereB is a number~1, c is the capacitance of a weak link, anglis the self-capacitance of an island.

supplement it by the variable,==, u,,, where the sum is the second term in(19), i.e., satisfies the condition
taken over a closed contolr that goes around the hole. Hj(i)rizj|llf>=|\lf>; it can be explicitly written as
Physically, it describes the presence/absence of a half-vortex
1+1(1) 71,)1;1 =) - (20
j@

in the hole. The effective Hamiltonian of this additional vari- 10)ins= 11 E
able has only a kinetic part because the presence or absence 2

of a half-vortex in a hole which hasweak links in its pe-  Thjs state is a linear superposition of the degenerate states
rimeter gives a potential energyfo=ce;(e;/ec)’ which is  \ith P=1 andP=—1:

exponentially small fol>1. The kinetic part is similar to

other variablesH,= —TX . 0,00 ; it describes a process in 1

which a half-vortex jumps from the hole into the inner |0>ins:5(|+>in5+|—>ins) (21
boundary | of the system. In the state witjo?)#0 R _ _ _

this process increases the energy of the system bgnd |t_c0|nC|des with the ground state) of discrete vari-
WE/wW) (W0)=W and W(\)=0). In the state with ables in the superconducting arr@y. Eq. (5)). The orthogo-

(o) #0 it costs nothing. Thus, the process in which a half-Nal Superposition oP=*1 states,

vortex jumps from the hole into the system and another half-

vortex exits into the outside region appears in second order |1)ins=—(|+ Yins—| = ing (22)

of perturbation theory, and the amplitude of this process is V2

t,=T%Zi.1jc0Yan, Where the summation is performed over corresponds to a half-vortex inside the hole. The energy dif-

all sites of the innerl() and outer ©) boundaries, and ference between the above two stafss- E, is exponen-
tially small in the insulating state of the array, whereas it is

x> large in the superconductive state.

1
gab:<U§H_EOUb
6. QUANTUM MANIPULATIONS
has the physical meaning of the half-vortex tunneling ampli- ) . )
tude from the inner to outer boundaries. At sridllv, deep We now discuss the manipulation of the protected states

in the insulating phase, we can estimatg, using the per- fqrmed in this system. We start fromsaiperconductiveer-
turbation expansion if/W: the leading contribution appears Sion of the array. .
in |a—b|th order of perturbation theory, and thug,, First, we note that here the topological invaridgthas a
oc('"r'/W)|a* bl Thus for smalf/W the tunneling amplitude of simple physical meaning—it measures the total phase differ-
the half-vortex is exponentially small in the distaricérom  ence(modulo 2r) between the inner and outer boundaries. In
the outer to the inner boundary; we expect that it remaingh array with even number of rhombi between internal and
exponentially small for alf/W<\.. ForF/W>\, this am-  outer boundaries, the state with eigenvatye 1 has a phase
plitude is of the order of%/W and is therefore significant. ~ difference of 0, whereas the state with eigenvatye: —1

In different language, in the system with a hole we canhas a phase difference af This means that measuring this
construct a topological invariarﬁ?:Hyrﬁ (contour y is  phase dlfferens:e measures the state of the qubit in the same
shown in Fig. 4 which can take values 1. Note that now basis in whichT is diagonal. For the following discussion
the contour goes via triangular lattice siteghere vortices we define a set of Pauli matric@s¥* acting in the 22
are definegl whereas in the firgisuperconductive arraywer-  qubit space, such thétéqu .
sion the corresponding path was drawn via sites of the basic Introducing a weak coupling between these boundaries
hexagonal lattice. The same arguments as used for the supéy a very weak Josephson circigharacterized by a small
conducting array show that any dynamics consistent wittenergye;) would change the phase of these states in a con-
constraint(17) preservesP. Thus, formally, the properties of trollable manner, e.g., in a unitary transformation
the topological insulator are very similar to the properties of - . 2
the topological superconductor discussed in Ref. 12, if one U —exp(leJtEq). (23
replaces the words Cooper pair by half-vortex and vice versalhe transformation coupling two qubits can be obtained if
We summarize this duality in Table I. one introduces a weak Josephson circuit that connects two

Note that at smallf/W—O0 the ground state of the different inner boundariescorresponding to different qu-
Hamiltonian(19) satisfies the conditioiLl7) and minimizes bits). Namely, it will produce the operation
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Uf,,q=eXF(ieJt2§2f,)- (24) in this caseA, is the half-vortex tunneling amplitude be-
tween holeg andg.

Analogously, the virtual process involving half-vortex mo-
tion around the ppening gives the tunne_ling amplituelg, 7. PHYSICAL PROPERTIES OF SMALL ARRAYS
between topological sectors, e.g., the unitary transformation
U*=exp(te,Zy). This tunneling can be controlled by mag- 7-1. Superconducting array
netic field if the system is prepared with some number of  Eyen without these applications for quantum computa-
vortices that are pinned in the idle state in a speciation the physical properties of this array are remarkable: it
plaquette, where the flux is integer. The sldadiabati¢  exhipits a long-range order in the square of the usual super-
change of this flux towards a norméghalf-integej value conducting order parametsitos(2¢o—¢;)))~1 without the
would release the vortex an~d result in the transitions betweeyjg;3] order{cos(gy—¢;))=0; the charge transferred through
topological sectors witle , ~t/D?. the system is quantized in the units af.4This can be tested

These operations are analogous to usual operations onimthe interference experiment sketched in Fig,. ds a func-
qubit and are prone to usual sources of errors. This systenion of external flux®,, the supercurrent through the loop
however, allows another type of operations that are naturallghould be periodic with half the usual period. This simpler
discrete. As we show above, the transmission of the elemerarray can be also used for a kind of “spin-echo” experiment:
tary quasiparticle across the system changes its sta¥ by applying two consecutive operations€13,)/v2 described
This implies that a discrete process of one-pair transfeabove should again give a unique classical state, while ap-
across the system is equivalent to tBg transformation. plying only one of them should result in a quantum superpo-
Similarly, a controlled process in which a vortex is movedsition of two states with equal weight.
around a hole results in a discrdg transformation. More- The echo experiment can be used to measure the deco-
over, this system allows one to make discrete transformationiserence time in this system. Generally one distinguishes pro-
such asy>*Y. Consider, for instance, a process in which, bycesses that flip the classical states and processes that change
changing the total magnetic flux through the system, oneheir relative phases. In the NMR literature the former are
half-vortex is placed at the center of the system shown irmeferred to as longitudinal relaxation and the latter as trans-
Fig. 1b and then released. It can escape through the left overse. The transverse relaxation occurs when a vortex is cre-
through the right boundary; in one case the state does neited and then moved around the opening by an external
change, in the other it changes By. The amplitudes add, noise. Assuming a thermal noise, we estimate the rate of this

resulting in the operation (£i%%)/v2. Analogously, using processr| *~t exp(~Ey(L)/T). Similarly, the transfer of a
the electrostatic gats) to pump one charge&from one  quasiparticle from the outer to the inner boundary changes
boundary to the island in the center of the system and thethe relative phase of the two states, leading to longitudinal
releasing it results in a (£iX*)/v2 transformation. This relaxation. The rate of this is proportional to the density of
type of processes admits a straightforward generalization tauasiparticles,r‘(l: Rexp(-2r/T). The coefficientR de-
an array with many holes: there an extra half-vortex ofpends on the details of the physical system. In an ideal sys-
charge should be placed at equal distances from the inner aggny with some nonzero uniform value ef(defined above
outer boundaries. (12) the quasiparticles are delocalized d®e e/L2. Random
The degenerate ground states in ithgulatingarray can  deviations of the fluxed, from a half-integer value produce
be manipulated in the same way as in the superconductor, Wandomness i, in which case one expects Anderson local-
to duality (half-vortex-Cooper pair andvice versa As  jzation of quasiparticles due to off-diagonal disorder, with a
mentioned above, these staf6$,s and|1);,s correspond to  |ocalization length of the order of the lattice spacing: thus
the absence or presence of a half-vortex inside the hole. V\ﬁ~?exp(—cL) with c~1, ande is a typical value of. Stray
define by 3*Y% the Pauli operators acting in the space charges induce randomness in the values, dfe., add some
spanned by 0);,s and |1);,s. An adiabatic change of local diagonaldisorder. When the random part of denotedsr,
magnetic field that drags one half-vortex across the systemecomes larger thaa the localization becomes strongé:
will flip the state of the system, providing us with the imple- ~¢(e/sr)t, wheredr is a typical value ofsr. Upon a fur-
mentation of the operat&* acting on the state of the qubit. ther increase of stray charge field there appear rare sites
Analogously, the motion of elementary charge&ound the wherer; is much smaller than the average value. Such sites
hole will change the relative phase of the staes,; and act as additional openings in the system. If the density of

|1)ns by 7, providing us with the operat&?. The operators these sites is significant, the effective length that controls the

/ix,z can be realized in a way similar to that described for adecoherence becomes the distance between these sites. For

; - ; typical Ey(L)~E;~2 K the transverse relaxation time
superconductive array. Rotation by an arbitrary angdfe . . .
=~ i ~0.1 K, while realistice/r ~0.1 impl
=exp(a2’), which is an analog of the operat®3), can be reaches seconds far whre Py

hieved b difvingduring timet) th tor i that due to a quasiparticle localization in a random case the
achieved by modifyingduring time't) € parameter in longitudinal relaxation reaches the same scale for systems of
such a way as to produce a non-negligible amplitédef

. sizeL ~10; note that the temperatufehas to be only some-
half-vortex tunneling across the systeay= At. In the same P y

. i . hat lower than the excitation gap 2n order to make the
way, a two-qubit entanglement operation can be reallzeﬁ\fv

hich | | f 1624)- ongitudinal rate low.
which is an analog of operat@24): Most properties of the array are only weakly sensitive to

~ ] < xx the effect of stray charges: as discussed above, they result in
Upq=explitApg2p2q); (25 a position-dependent quasiparticle potential energy which
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has very little effect because these quasiparticles had no kparameter is much smaller than for the array considered
netic energy and were localized anyway. A direct effect ofhere. This makes them more difficult to build in the interest-
stray charges on the topologically protected subspace cang regime.
also be described physically as a effect of the electrostatic We are grateful to G. Blatter, D. Ivanov, S. Korshunov,
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We present a complete, exact solution of the problem of the magnetic properties of layered
superconductors with an infinite number of superconducting layers in parallel fields Based

on a new exact variational method, we determine the type of all stationary points of both

the Gibbs and Helmholtz free-energy functionals. For the Gibbs free-energy functional, they are
either points of strict, strong minima or saddle points. All stationary points of the Helmholtz
free-energy functional are those of strict, strong minima. The only minimizers of both the
functionals are the Meissnéd-soliton solution and soliton solutions. The latter represent
equilibrium Josephson vortices. In contrast, nonsoliton configuratintespreted in some previous
publications as “isolated fluxons” and “fluxon latticeg’are shown to be saddle points of

the Gibbs free-energy functional: They violate the conservation law for the flux and the stationarity
condition for the Helmholtz free-energy functional. For stable solutions, we give a topological
classification and establish a one-to-one correspondence with Abrikosov vortices in type-

Il superconductors. In the limit of weak interlayer coupling, exact, closed-form expressions for
all stable solutions are derived: They are nothing but the “vacuum state” and topological

solitons of the coupled static sine-Gordon equations for the phase differences. The stable solutions
cover the whole field rangesOH <<« and their stability regions overlap. Soliton solutions

exist for arbitrary small transverse dimensions of the system, provided theHfieddsufficiently

high. Aside from their importance for weak superconductivity, the new soliton solutions

can find applications in different fields of nonlinear physics and applied mathemati@0®
American Institute of Physics[DOI: 10.1063/1.1789938

1. INTRODUCTION insulating layey. We have termed this solution “a vortex
plane” because its field distribution has symmetry typical of
In Ref. 1, concerned with a microscopic model, and Refplane defects.
2, concerned with the phenomenological Lawrence—Doniach  The present paper complements and completes the in-
(LD) model 3, we have shown that the problem of the mini-vestigation of Refs. 1 and 2 in two major respects. First, we
mization of the Gibbs free-energy functional of layered su-determine the type ddll stationary points of the Gibbs free-
perconductors with an infinite number of superconductingenergy functional, which allows us to classify all of the so-
(S) layers (N=0) in parallel magnetic field$1>0 admits |utions available in the literature with regard to their stability.
an exact solution. Advanced mathematical methods, emn particular, we show that, except for the Meissner solution,
ployed in Refs. 1 and 2, allowed us to overcome the compliall nonsoliton solutiongsuch as, e.g., “vortex lattice®"4
cations related to mutual dependence of the phagesf the  correspond to saddle points. Second, in the limit of weak
S layers.(Unfortunately, these complications were not no-interlayer coupling, we derivexact, closed-fornanalytical
ticed in previous publications on the LD modef which led  expressions for the full set of stable solutions with
to a loss of minimizerg.The main results of Refs. 1 and 2 =0,1,2,.... These solutions cover the whole field range 0
are worth recalling: The set of minimizers derived in Refs. 1<sH <, as they should, and include the results of Refs. 1
and 2 comprises the topologically trivial Meissner configu-and 2 as particular cases. They illustrate all the features of
ration and true solitorivorteX) configurations. As in the case the Meissner state and vortex structure in weakly coupled
of the Meissner state and Abrikosov vortiog®., the topo-  superconductorgsuch as, e.g., overlap of the stability re-
logical solitons®~*3 of the Ginzburg—Landau equation®  gions and the soliton nature of Josephson voricesl es-
continuum type-1l superconductors, all these configurationsablish true isomorphism with Abrikosov vortices in type-II
are characterized by the conserved topological inblex superconductors. Moreover, they refute the erroneous
=0,1,2,...(the vortex number, =0 for the Meissner state  belief:>1® that Josephson vortices “do not exist” in small
and the conserved magnetic flux. For this reason, the topdalong the S layejsstructures.
logically nontrivial solution withN,=1 has been identified Although the issue of stability is crucial for the determi-
as an elementary Josephson vortex in layered superconductation of the equilibrium vortex structure in layered super-
ors atH>0. Physically, such a solution can be regarded as @onductors, it has not been addressed in any previous
bound state of interlayer flux quantane flux quantum per publicationst Mathematically, a classification of stable solu-

1063-777X/2004/30(7-8)/15/$26.00 646 © 2004 American Institute of Physics
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tions amounts to the determination of all points of localand soliton(vortex-plang solutions. The uniqueness of these
minima of the energy functionals. A local minimum of the solutions as minimizers of botR and Q  is verified by
Gibbs free-energy functional of layered superconductors igonsideration of the exact lower bounds of the related Helm-
determined by the relatioffs™® holz free-energy functiondl,,, which depend explicitly on
the conserved topological indé, . In Sec. 2.4 we present a

désf dé i ificati i i
50| sf, | n P @n SAH -0, 1) Fopologmgl classification of the stablg solutions and establish
dy dy e A isomorphism between vortex planes in layered superconduct-

e ors atH>0 and Abrikosov vortices in type-Il superconduct-

v — ors.

Q| f+of,, %4_ %,an+ Sen, %+ %, In Sec. 3, in the limit of weak interlayer coupling, we
dy dy dy dy derive exact, closed-form expressions for all stable solutions

df. do of the LD model(the Meissner and the soliton, or vortex,
A+ SA:H } Eﬂ{f_n , d_” o, %K H}, 2) ones. The properties of these solutions are thoroughly inves-

y y

tigated; all major limiting cases are considered. Isomorphism
where &1 is the first variation of the Gibbs free-energy func- b_etweep vo.rtex.planes qnd ordinary Josephson vortices in the
single junction is established.

tional, induced by small variationsf,, den, oA of the The results obtained are summarized and discussed in
modulus of the order parametefi,§, phase ¢n), and vector o 4 | particular, we explain where unstable nonsoliton
potential (), respectively:” [For example, the numerical sojutions come from. We also draw a comparison between
nonsoliton solutions of Ref. 16 satisfy the stationarity condi-g,;, approach to layered superconductors and those of other
tion (1) but do not meet the condition of the minimui@.]  aythors. Mathematical flaws of these latter approaches are
The value of() on the right-hand side of2) is associated explicitly pointed out.
with the thermodynamiéobservablgGibbs free energy. The In Appendix A we discuss analytical properties and the
true equilibrium state corresponds to the minimum of thesoution of coupled static sine-Gord¢8G) equations for the
thermodynamic Gibbs free enerdye., the absolute mini-  phase differences, considered in some previous publications.
mum of the Gibbs free-energy functionait a givenH>0.  \ne prove that the Meissner and vortex-plane solutions, de-
The rest of the states, satisfyifg), (2) at a givenH>0, are  rjyed in Sec. 3, are the unique stable solutions to the SG
thermodynamically metastable: As an illustration, we refer t0equations atH>0. We also establish a relationship to the
the Meissner state of the semi-infini@long the layerslay-  exact variational principle of Refs. 1 and 2. In Appendix B
ered superconductor near the superheating figld-* we verify the fulfilment of the Jacobi—Weierstrass—Hilbert
To eliminate any questions about the actual equilibriumgficient condition for a strong minimum for the exact,
field configurations in layered superconductorsiat0, we  |gsed-form solutions of Sec. 3. In Appendix C we draw a
present an explicit mathematical proof that the Meissfer  comparison between the soliton solutions of Sec. 3 and the
soliton) and vortex-planésoliton) configurations arenique nonsoliton (“lattice” ) solutions of Refs. 6, 7 and 14 this

solutions that satisfy the conditions of the minimd, (2).  comparison serves as a good illustration of the general re-
Moreover, we show that all the minima amdrict and  gyits of the main text.

strong®® For the sake of diversification, we employ a new

method of exact minimization of the Gibbs free-energy func-

tional that, in contrast to Refs. 1 and 2, does not involve

variation with respect to the phases: The new method 2- EXACT MINIMIZATION OF THE LD FUNCTIONAL

starts directly from the definitiol), (2) and automatically  2.1. Formulation of the problem

yields the conservation law for the flux and a full set of
soliton boundary conditions. For definitiveness, we restric
ourselves to consideration of the popular LD model: Owing . . :
to the relationshipbetween the LD model and the true mi- d!rected aI(_)ng the S layers, withL<y<-+L b_emg the re-
croscopic model of Ref. 1, all the results hold for the latter9'ON occu_pled by the sys_teho_r TEsys oo, if L:U.;]' A

model as well. The present paper is mostly concerned witff e, uniform external field is applied alo.ng theams:.H

mathematical aspects of the problem; all major derivationsz(o’o’H;O)' The case of external current is not considered,

) . ) : . Sl.e.,1=0.
are given in full detail. As regards a comparison with experi-"~" . . .
ment, the reader is referred to Refs. 1 and 2. Under the assumption of homogeneity along zhaxis,

Section 2 of this paper is devoted to exact minimization'V€ ¢an write the Gibbs free-energy functional of the LD

of the Gibbs free-energy functional. In Sec. 2.1 we specif)}mdeI as
the geometry of the problem, introduce the Gibbs free-
energy functional of the LD modef) , and discuss some

of its properties. Using the conditions of the minimum, in Qip
Sec. 2.2 we reduce the problem of the minimizatior)gf,

to that of a simpler functional), that possesses the same set L 2 4

of minimizers ad) p . In Sec. 2.3 we prove that the station- x I,Ldy; ‘ —fa(y)+12f5(y) + £5(T)
ary points of Q) belong to two types: minima and saddle

points. From the conditions of the minimum 8fwe derive ><[dfn(y)
the conservation law for the flux, which yields the Meissner dy

The geometry of the problem is that of Refs. 1 and 2:
he layering axis ix, with p being the period; thg axis is

df,  de, ] PHIT)
o gy #n gy A }— a2

2 d N
} +52<T>[—‘Pd;y)
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2 T L np
—ZeA,(np,y)} fﬁ(y)+¥[fﬁfl(y)+fﬁ(y) <I>=f7Ldy§n§ 1, IXPO6Y)
_2fn(y)fn—1(y)C05‘I’n,n—1(Y)] _J‘L g N J‘(n+i)p dxh
| ASETINAT) (o X[aAy(x,y) =)W, XRY)
p (n—1)p IX L
19AX(X,y) 2 :f_Ldy[Ay[(n+N)pvy]_Ay(np!y)]
- n . @ |
+> f(nﬂ)p dX[Ag(X,—L)—Ay(x,L)]
. =1 Jin—1+i)p
(Dn,n—l(y):(Pn(y)_‘»on—l(y)_zef dXA(X,Y) 1 N
(nmue =562 [Pnvin-14i(L) = Priino1si( L] (D)
np =
=¢n(y)—2ej(n_l)pdxA((x,y). 4 What we are going to do now is to find all sets of allowed

field configurationg f,, ¢, ,A} that at a giverH satisfy the
condition of the minimum2), i.e.,

df, de,
n1d_ya(Pn1d_y1

— df, _ de, —_H}

Herefi=c=1; A=(A,A,0) is the vector potentialV, is
the length of the system in thedirection W,—); f,(y)
X[0<fn(y)<1] and ¢,(y) are, respectively, the reduced LD
modulus and the phase of the pair potertig(y) in thenth
superconducting layerA,(y)=A(T)f,(y)expid.(y); ¢,

=¢,—¢n_1; He(T) is the thermodynamic critical field; =Qp
r(T) is a dimensionless phenomenological parameter of the
Josephson interlayer coupling;(T) and A(T) are the
Ginzburg—Landau coherence length and the penetration
depth, respectively. The local magnetic field=(0,0h)
obeys the Maxwell equation

A:H

f“’d_y'(P“’d_y’A’
dfy, dey
f”’d_y’%'d_y’

Where{fuqan,A}_beIong to a sufficiently small neighbor-
hood of{f,,¢,,A}.

EminQLD A,H , (8)

2.2. A new minimization method

IASXY)  IA(XY)

h(x,y) =% ®)

% Our approach is standdrdand consists in the determi-
nation of an exact lower bound @B) at a givenH and
The variablesf,, ¢,, and A are subject to standard finding the field configuration{f,, ¢, ,A} that makes(3)
requirements? f,, and ¢, are supposed to be smooth in the equal to this lower bound. We begin with the stationarity
whole interval—L<y=<L, whereasA is piecewise smooth condition(1) for Q.
on the domain of definition, becausexat np only the con- Variation with respect td, immediately yields a set of
tinuity of A can be required. The summation in E8) runs  equations
over all the S layer indices n. To avoid mathematical com- 5
licati | h f infini hil 3 d*fa(y) _r(M
plications related to the appearance of infinite sums while f.(y)—f3(y)+ X(T) 2= ——[2f,(y)
retaining the property of the periodicity of the barrier poten- " dy 2
tial and the absence of outer boundaries inxtdirection, it
' —f cosd —fn_ cosd,, -
is reasonable to compactify the motfeby imposing peri- n+1(Y) n+10(Y) = Fo-a(y) nn-1(Y)]

odic boundary conditions on observable quantities, ) do,(y) 2
+Z4(T) dy —2eA(np,y) | faly) 9)
fren=Ffno Prinnen-1(Y) =Py n-a(y), and boundary conditions
df, L
h(x+Np,y)=h(x.y), ©®) ay (FL=0 (10
Variation with respect t&\, leads to the Maxwell equa-
denn(y) den(y) tion
—qy 2eAl(N+N)py]=—
y y hey) _,
~2eA(npY), gy Anany)
o E47TjOfn(Y)fn—l(y)smq)n,n—l(y)’ (11
and proceed to the thermodynamic yim. Q. p/N=wp the regions i—1)p<x<np, and the boundary condi-

< in the final expressiongThe existence of this limit will
be proved in Sec. 2.8.Using(6), we can write the total flux
through the system as h(x,=L)=H. (12

tions
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In Eq. (11) the quantityj, ,—1(y) is the density of the Jo- (Y .
sephson current between the-{1)th and thenth layers, Alx,y)= 477]OJ7Lden(u)fnfl(u)sm¢n(u)+H
andjo=r(T)p/16mel*(T)N?(T).
By variation with respect té\,, we obtain the Maxwell 1 den(y)
equation X(x=np)+ 52 dy
an(x,y) r(T) J
IX =0 (13) 4e§2(T) f den(u)
in the regions K—1)p<x<np, and the boundary condi- X[fn-1(u)sing,(u) = a(U)singn1(u)],
tions at the S layers (23
—1)p<x=np,
pr(Y) [den(y) (n
h(hp—O'Y)—h(np"' O,Y)— 29)\2(1-) dy where
fa(=y)=fn(y), (24)
—2eA(npy)|. (14)
A dn(—y)=—(y)+2m7Z,, Z,=0,x1,%2,.., (25

At this point, it is convenient to partially fix the gauge by 2nd the phase differences,= ¢, — ¢,-, obey the solvabil-

the conditioR ity conditions
dénia(y) 1
Axx.Y)=0, Ay(XY)=A(X,Y), (15) % 32 dufn+1(U)fn(U)sm¢n+1(u)
J
which turns Egs(5), (11) and (13) into a system of linear &2
inhomogeneous differential equations f#fx,y): +2epH+ —z —hf duf,q(u)
n+l
F?A(X, .
%=4m‘ofn(y>fn_1<y>sin¢n<y>, (16) XLIn(Wsingna(W)
—fara(u)sing,»(u)]
PA(X,Y) y _
—QZ O 17) y: f dufy(w[f,-1(u)sing,(u)
fn(y) -L

with the boundary conditions

—frra(w)sing, (W) ]|. (26)

A(np—0y)=A(np+0y), (19

(np=0y (np+0y In Egs.(26), we have introduced the Josephson penetra-

tion depth\ ;= (87ej,p) ~*? and a dimensionless parameter

e=p/\ (Ref. 2. By virtue of(24), (25), equationg26) yield
d¢n+1 dén _d¢

L)= +L)=——(=L), 2
—2eAtnpy) |, 19 (xL)=57,FL=5,(=L) (27)

d—(ﬁ(iL)=2epH. (28)

A A pfa(y) [den(y)
&_X(np_O:Y)_ (7_X(np+ O!y)_ 29)\2(1—) dy

JA

—(X,=L)=H. (20

X For givenf,, obeying relation$24), equationg26) constitute

a system of nonlinear integro-differential equations g,

of first order with respect to differentiation. The formulation

of the boundary value problem for these equations requires

imposition of boundary conditions onp,,. Appropriate

+L)=0 (22) bouqdary con'ditions at=0 are providgd by the symmetry
relations(25), i.e., the boundary conditions are

From (19), (20), we get the conditions for the vanishing of
the intralayer currents at the outer boundaries

and the conservation law for the total intralayer current én(0)=nZ,, Z,=0£1,+2,.... (29)
don(y) The main issue now is to find all solutions 6), (29)
2 fﬁ(y) enly —2eAnp,y)|=0. 22) that actually maké&3) a minimum. As was shown in Refs. 1

and 2, this issue is equivalent to exact minimization(3)f
with respect to the phases,. (See also Appendix A.Be-
In Refs. 1 and 2, relatiof22) was employed for the minimi- low, we present an alternative, simpler method of exact mini-
zation of (3) with respect to the phases,. mization.

The solution of(16), (17) under the condition&l8)—(20) Instead of minimizing with respect tg,,, we introduce
is straightforward and has the fofm a new functionak) via the relation
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df,  de, df,
QLD fnvd_yv¢nad_y1A;H =0 fna d 1§0n1A H
PHATZA(TIW, fL den(y)
0 4 8 —Ldyzg dy
2
—ZeAy(np,y)} f2(y), (30
where
HZ(T)pNLW.
(4= 0, p(0)= — L DPNEWe (3D)

4

is the LD free energy foH=0. The functional) will be
considered on the same class of functiéps ¢,, A as the
functional Q, p:
to satisfy conditiong14) at the internal boundaries and natu-
ral conditions at the outer boundarigs = L.

The advantage of the new functional

df,

n:d_yqunuA;Hj|:

L 1
Y [5[1

o

— 13y P+ 2 (T)[ “(”}

dy
r(T
+%[fﬁ_1(y)+fﬁ(y)
—2fa(y)fh_1(y)cos®, ,_1(y)]
P (n—=1)p
IASXY)  IAAXY)
de[ X ay HH
(32

is that it has simple properties: Minimization 2) does not
require variation with respect tg,, .

Moreover, a local minimum of) at a givenH, min{},
provides a lower bound fof .

Indeed, the functional is positive, i.e.,

f
Qlf,, = 0., AH|=0, (33

nvd

and its exact lower bound &t=0, inf(Q=0, is achieved on
the field configurations

enY)=9(y), A=0, A=—- (34

__— d¢
fn(y)zlu d

~<

where ¢(y) is an arbitrary smooth functioriNote that the
exact lower bound of3) atH=0, infQ, =, is achieved
on the same field configuratiori84).] Because 0f33), the
continuous functional32) necessarily has a minimum at any
H>0 in the allowed class of functions, specified abbVBy
virtue of (30) and the definition of the minimum,

In particular, these functions are supposed

S. V. Kuplevakhsky

df, d(,on df,
QLD fnadya(Pny dy an,d ,(Pn,AH
. df,
+QOZmInQ ns dy,gon,A H +QO: (35)

where the right-hand side of the second inequality provides
the desired lower bound fdR, 5 at a givenH.

To determine mif, we first find all field configurations
{f,on,A} that satisfy the stationarity conditiof). Varia-
tion with respect to‘n yields the equations

foly)~ £+ 22T ”(y)
()
= 5 [210(y) = fa 1(¥)COSPp 1Y)

—fa-1(y)cos®@p n_1(y)] (36)

and boundary condition€l0). Variation with respect t@\,
leads to the Maxwell equatiofll) in the regions (—1)p
<x<np and the boundary conditiori$2). By variation with
respect toA,, we obtain the Maxwell equatio(L3) in the
regions —1)p<x<np and new boundary conditions at
the S layers,

h(np—0y)=k(np+0y). (37
Application of (37) to (14), in turn, yields
d
an(y)—ZeA(np,y)=0. (39
dy
Combining(14) with (13), we get
h(x,y)=h(y), (39)
which, upon substitution int¢ll), results in
fao1(y)sin®y n—1(y) =i 1(y)sin® 1 4(y). (40)

Relations(40) reflect the continuity of the Josephson cur-
rents atx=np and constitute a consequenceldfl) gauge
symmetry: They can be obtained directly, by varyif8p)
with respect top,, .22 In view of (39), the solution of these
relations is straightforward:

=), Boa2(1)= ()~ 26 [ Tdxnoxy).
)

Note that relationg39), (41) identically satisfy the periodic
boundary conditiong6). According to(41), the phasesp,
obey the finite difference equatio@,,—2¢,+ ¢, 1=0
wiztlh the boundary conditio,— ¢,,_ 1= ¢, whose solution
is

en(y)=no(y)+u(y), (42

wherey(y) is an arbitrary smooth function.

Our next course of action follows the steps leading to
Egs. (23)—(29): We fix the gauge by15) and solve the re-
sulting equations foA(x,y). As a consequence, in addition
to (42), we arrive at coupled equations forand ¢,

d?f (y)

fly)— f3(y)+§(T) +r(T)[1—cose(y)]f(y)=0,
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W(tL)zo, (43
dﬁ;y) %f duf?(u)sing(u)+2epH, (44)
d(—y)=—¢(y)+2wZ, Z=0,x1,%2,.. (45
and explicit expressions
C1odg(y) 1 di(y)
A(X,y)—z—epd—y +ﬁ)d—y’ (46)
do(y)
h(y )_Zep dy (47)

Any minimizer{f,,¢,,Al of (32), at a givenH, neces-
sarily satisfies(15) and (41)—(47). At the same time, this
minimizer automatically satisfie$9)—(14) and (16)—(298).
Moreover, as can be easily verified by direct substitution,

—df _ — _df
QLD f!@lﬁpn:A;H :Q f,@,QDn,A;H +QO
) df,
=minQ| f ”’d ,(pn,AH +Qp.

(48)

According to(35) and the definition of the minimur{8), this
means that

—_df _ — ) df, de,
QLD f,a/,(Pn,A;H :IanLD ns d yPns 3 dy A H
, df,  do
=minQ p|f ”’dy’(Pn’ dy T AH/,
(49

i.e., any sef{f,, ¢,,A} that in the gaugél5) satisfies(41)—
(47) and minimizeg32) is a minimizer of(3). On the other
hand, for any seff,,¢,,A} that in the gaug€15) does not
satisfy (41)—(47) we have

alt, 3 9o gl L Ak
LD dvaDn! dy ’ 1 n» dvaDn! ]
) df,
+Qo=minQ fn,d—y,QDn,A;H +Q,

_df _ _df _
:Q f,@,@n,A;H +QO:QLD f,@,@n,A;H

, df,  do
=minQp fn,d—;,son,d—;,A;H}- (50

A strict ineﬂuality_in the first line of(50) means that the
minimizer {f,,, o, ,A} makes(3) a strict minimum?° [Note

that the gaugé€l5) was employed here for the sake of con-
venience only: It allowed us to obtain an explicit solution for

A by simple means.

Summarizing, we have proved the following: A set 6} of, —

{fn ®n ,A} minimizes the LD functiona(3) if and only if it

is a minimizer of the functional32) and, hence, necessarily

satisfies the symmetry relatio41), with the resulting local
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magnetic field obeying39). In the next subsection, we will
show that a full set of the minimizers ¢82), and, respec-
tively, of (3), comprises the solitofvortex-plang solutions
and the Meissnef0-soliton) solution?

2.3. The conservation law for the flux and soliton boundary
conditions

To determine all the minimizers @82), we first rewrite
this functional as follows:

df d¢ | NpWWH? d¢
Q f,a/,gﬁ,d_y, _T+QH f,¢,d_y:|
HDW,
VY (51)
where
df d¢] NpHXT) L1
Qy f,@, ,d—y}zTWzJ_Ldy[z[l—fz(Y)]z
z%n[ (yy) +r<T>{[1—cos¢<y)]
de(y)
X f2(y )+7 ay H} (52)
and the total flux7), in view of (15) and(41), is given by
N B 1 (v deé(y)
=2—e[¢(L>—¢<—L)]=N®OEJ_Ldyd—y,
(53

with ®y= /e being the flux quantum. Note that the first
term on the right-hand side @61) is merely the energy of
the magnetic field in the absence of Josephson coupling.

Note that both(Q) and Q) explicitly satisfy Legendre’s
necessary condition of thetrong minimurt®

FOH)  NpHAT)W, |
Gty - 2n L (D=0
P04y NpHITW, ,
[5(dpldy)]2 an r(TN3(T)>
6ZQ(H) _ 5ZQ(H) B
3(dfdy)a(dgidy) ~ sdgidy)satidy) > &4

Therefore, all stationary points d®,(),, are eitherstrong
minimaor saddle points

The stationarity condition for botl) and Q0 requires
that first variations with respect tband ¢ vanish[compare

with (1)]. Variation with respect tdf yields Egs.(43), as

expected. Consider now the first variation(®dfand(} with
respect tog:

daf 5 800 1 [ dot - dog
b, — gy 1|7 o0 ot 5o d)’d_y
HWZacD 55
lrye , (55)
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dst  dép] NpHA(T)W,r(T)
69“[ T dy 0, dy} 4o
L
><f dy[fz(y)sind)(y)
-L
2p(y) 1 d¢
_)\3_2_} So(y)+ epdy
W,
X(~L) g 80, (56)
where the variation of the flux is
_ N
—£[5¢(|—)—5¢(—L)]
1 (L d
EN¢05<ZJ dy%). (57)

The requirement of the vanishing of the volume variation in
both (55) and (56) yields

d2 2
_z_(;ﬁ;w —2—;” ing(y), (59)

which is a mere consequence (@#). However, the require-
ment of stationarity with respect to surface variatj@rhich

is proportional to the variation of the flu7)] is stronger
for (56) than for (55). The surface variation i55) cancels
out owing to the boundary conditiori28). In contrast, con-

S. V. Kuplevakhsky
d¢ dé
d¢  do¢
dy dy

HW,
A

of — 5
d_y'¢+

df _d¢
f’dy P dy dy|
d¢ dé
d¢  do¢

dy " dy

_ df
Q| 4 8f, o+

|

—250=Qy

o4
(62

which is the condition for the minimum of),. For this
reason, it is sufficient to find all the minimizers 6f, .

Physically, conditiong59), (60) ensure the stability of
the flux ® against any small perturbations, represented by
the variations¢— ¢+ 6¢, which is a manifestation of the
Meissner effect? Conditions(59), (60) also imply thatd
plays the role of a thermodynamic variable(%1), which, in
turn, allows us to identify(),,; as the Helmholz free-energy
functional.

Now we will derive the Meissne(0-soliton and vortex-
plane(soliton) boundary condition's? from the conservation
law for the flux(59), (60). As a starting point, we note that
all the extremals of},; that satisfy(58), (28) possess the
symmetry propertie$45). Since trial functions of this type
take on only discrete valuesyat 0, ¢(0)=7Z, the require-
ment of continuity of variation$¢ imposes the constraint

df
T+ of

-Qy 'dy

dof —

6¢(0)=mSZ=0. (63
Equations(57), (59), in turn, yield
Op(L)=36p(—L). (64)

ditions (28) do not ensure the vanishing of the surface varia-

tion in (56), and the stationarity o), at H>0 requires

6P =0, (59
or, equivalently,
1 d
O=Nbj— f dy ¢ =const0, (60
2 —L

where the inequality sign correspondsHe=0.

Note that higher variations dof) and Q) are equal to
each others“Q = 6Q, (k=2). Thus, all the minimizers of
Q,, also minimize(). On the other hand, the functionfl

has no minimizers other than those that simultaneously mini-

mize(Qy . Indeed, le{f, #} be a minimizer of} in a class of
trial functions that admit arbitrary variatiord&sb. Then{f, ¢}
is necessarily a minimizer df in a subclass of trial func-
tions that satisfy(59). From the condition for the minimum
of Q)

d dy’ ’dy dy '
= f f N0) 'H 61
dy 'dy’ ( )

[compare with(2)] on this subclass of trial functions, we
have

On the other hand, relatiortd5), applied aty=L, by virtue
of (63) yield

op(L)=—06¢(—L). (65)

Combining(64) with (65), we arrive at the conditions

Sp(+L)=0. (66)
Using (60), we write:
¢(L)_¢(_L)—ide de(y)
2 C2m) L y dy
1 (v deé(y)
N ZJ—Ld dy }
1 d
+|Zf_Ldy%y))=constao,
(67)

where[ x] and{x} are, respectively, the integer and fractional
parts ofx [0<{x}<1]. On the other hand, taking account of
(45) and(63), (66), we have

d(L)—¢(—L) $(—L)
T

=7Z- =const0.
21

(68)

A comparison of(67) with (68) leads to the identification

$O) o [1 [t déy)]
T_Z_N EJLdyd—y =0, (69)

b=
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oL _[ 1t deé(y) NpHZTW, (L [1
= [zwf Yy }"“<¢<‘L>$°- CETXLdy (1= P+
(70 .
. : df(y)
Relations(69), (70) are exactly the MeissneMN(=0) and X dy =0.

vortex-plane N,=1,2,..) boundary conditions employed in
Refs. 1 and 2. The conserved topological indék

=0,1,2.... has a clear meaning of the number of soliton X . X
(i.e., vortex planes or th@osephson vorticgsat H>0. The ~©© Prove the —existence and stability of soliton

H 0-12,23 . .
conserved flux(60), rewritten via the conserved quantities solutions. In our case, inequality74) shows tha(52)
N, and #(—L), takes the form has an exact lower bound in the class of functidfisp}

parameterized by the conserved quantitiesand ¢(—L):

énequalities of the typd74) are employed in soliton theory

|p(—L)|
©=NPg N, + ———|. (7D _ df  d¢
infQy f,@,cﬁ,d—y}:M[Nw‘i’(_L)]’
As follows from (71), the solution with givenN, appears
when 2
2NpPHZ(T)W,r (T)\,f
WINy (L) 1= e D (DR [Nﬁl
¢(=L)=0, ¢(0)==N,, &(-L)=27N,, (72 m
-L
which corresponds to the minimum of the Josephson energy —cosqﬁ(2 )}, (75

density[the third term on the right-hand side &2)] at the

boundariesy=*L. This solution vanishes when )
wheref, >0 is the same for all the sef, ,(—L)}.

S(=L)=*m, ¢,(0)=mN,, (73 In view of the continuity ofQ,'° the exact lower
bound(75) is achieved on the corresponding solutidn¢}
which corresponds to the maximum of the Josephson energy (43), (58), (69), and(70). According to Sec. 2.2, this so-
density aty=*L and saddle-point instability. B{28), con-  lution represents the desired minimizer(8j. Given that for
ditions (72), (73) determine, respectively, the exact lower any minimizer
and upper bounds of the stability regions of the Meissner
(N,=0) and vortex N,=1,2,..) configurations in the ex- df
ternal fieldH=0. QLD{f_,_,an ACH
We will show now that condition$69), (70) for the SG dy
equations(58) together with (44) actually specify all the
minimizers of (52) [and, accordingly, o{51)]. Indeed, let where w, p<, we have thus proved the existence of the
f(y) be an arbitrary smooth function that fore[—L,L]  thermodynamic limit forN—cc.

satisfies the conditions Of<1, (df/dy)(+L) 0, and For practical applicati_ons, we note the first integral of
Egs.(43), (568 that immediately follows from(52):

_df _ —
=N p f,a/APmA;H ,

fo mlnf(y) Using the elementary inequalities+b
=2\/ab (a,b>0) and—|q|<q=|q], we derive a sequence

2 2
of inequalities for(52) with f=1: gz(-l-)[df r(TIAS [d_ﬂ PSR
2 dy 2
df d¢|_  NpH(MWr(T) [ —cos¢]f?=C (76)
Q| f ¢ dy yp= xf_Ldy foll
21 deb(y) where the constant of integration can be determined from the
—coso(y)]+ > d—yy} } boundary conditions at=—
2 £ 1
~C+ NpHC(T)WZr(T))\JfO C:2e2p2)\§H2+f2(_L)_ _f4(_|_)
- 4 2
f ‘ ¢(y)‘d¢(y) —r(M[1-cos¢(—~L)IF*(—L). (77)
X d

2.4. A topological classification and isomorphism to

) _
+ 2NpH(T)W.r (T)A,fo Abrikosov vortices in type-1l superconductors

o

The above results can be given a very clear interpreta-
d(— L)} tion within the framework of the theory of topological de-

XN, +1=-cos— (74 fects in continuous medi®-122* Consider the thermody-

namic LD free energy, obtained by the substitution of a
where minimizer{f,,¢,,A} into (3):




654 Low Temp. Phys. 30 (7-8), July—August 2004

NpWWH?2
8w

HOW,
4

L
[
-L

2
+r(T)

Qp(H)=Qo+

NpHZ(T)W,
_|_ N —
A

1 —
S[1-T2y) )2

df(y)
dy

2(y)[1

I
Owing to the symmetry relation&4), (41), (45 and the
boundary conditiong10), (28), the density ofQ p(H) is
equal aty=—L andy=+L and thus corresponds to the
degenerate equilibriurffvacuum”) state, unperturbed by to-
pological defectgsolitong. Mathematically, the boundary of
the interval—L<y=<L can be considered as a 0-dimensional
sphere:3°={—L,+L}. Given that configurationg and ¢
+2wZ (Z=0,£1,£2,...) arephysically indistinguishable,
we can fix the valueg(—L) as in(70) and regard the func-

+¢3(T)

\S

=
—cos¢(y)]+ > o)

dy

(78)

tions
(L) +H(—L) [ 1L de(y)
pHl)=——"F—=2= ﬁf_Ldyd—y}
(79

as continuous maps of the boundary into the additive grou
¢

of the integersZ: S°—Z. (Z is the group of the degeneracy

of the equilibrium state, or the order-parameter spatke
fact of the existence of topologically nontrivial maps of this

S. V. Kuplevakhsky

3. THE EXACT, CLOSED-FORM SOLUTION FOR r(T)<1
AND ISOMORPHISM TO JOSEPHSON VORTICES IN THE
SINGLE JUNCTION

Equations(43) and (58) with the soliton boundary con-
ditions (69) and(70) can be solved by perturbation methods
for arbitrary values of the interlayer couplingT). Of par-
ticular interest, however, is the limit of weak coupling,
r(T)<1.

In the case (T)<1 the zeroth-order solution {@3) has
the form fy=1. Upon substitution intd58), we obtain the
well-known static sine-Gordon equation:

dp(y)
dy?
Under the condition$69), (70), the exact solution t¢82) is

Fsin d(y). (82
J

Bp=rN-D+2 anl kK], @
J
L V1-Kk? Hg
dn(k—)\],k)—TW, NU—2m, m=0,1,...; (84)
b(y)=mN, +2 am 2k (85)
y)=m k)
dn — k| —k" N —2m+1, m=0.1 86
nm, = H—S, ,=2m+1, m=0,1,.., ( )

Qhere am() and dn() =(d/du)am(u) are the Jacobian el-
liptic functions, andK (k?) is the elliptic integral of the first
kind.®

The stability ranges for the solutigB83)—(86) are deter-

type, realized by soliton solutions, can be expressed in termsined from(28), (72) and(73). They are given by

of the zeroth homotopy grodp 1324 7,(M), where the in-
dex “0” stands for the boundang® and M is the order-
parameter space:

mo(Z)=Z. (80
The external fieldH>0 breaks the symmetryp— — ¢ [see
the third term on the right-hand side @18)]. Therefore, only
the valuesz=N,=0,1,2,... are allowed, wittN,=0 being
the “vacuum” Meissner state. In this way, we arrive at a
natural classification of the minimizers (8) with respect to
the conserved topologic&lortex) numberN, .

Note that in the case of Abrikosov vortices in continuum

O0<H<H,, N,=0; 87
VHE —1—HSsH<Hy, N,=1.2,.. (88)

The upper bounds itB7) and(88), Hy (N,=0,1,2,..), are
determined by the implicit equation

2
s
g2
HNU

S

HNUK

N

Aj

(N, +1) , N,=0,12,..., (89)

whereH = (ep\,) ! is the superheating field of the Meiss-
ner state in a semi-infinite @y<oeo) layered
superconductor? and Hy=H, >H, is the superheating

type-Il superconductors the boundary is topologicallyfie|q of the Meissner state fdr<oc. Upon substitution of

equivalent to the circl&®, the order-parameter space is also
the circle:M =S (Refs. 10—13 Thus, the pertinent homo-
topy group is the fundamental group of the circle:

m(SH=2Z. (81)

Since in the presence of an external field~0 the topologi-
cal indices for Abrikosov vortices take on the valugs
=N,=0,1,2,.., relations(80) and(81) establish an isomor-

(83)—(86) into (78) (with f=1, ¢=¢), one can verify the
lower-bound estimate&74), (75). In Appendix B, we show
that the solution(83)—(89) satisfies the Jacobi—Weierstrass—
Hilbert sufficient condition for a strong minimurhof (52)
[and hence of3)].

Note that equatioi82) was first analyzed in the context
of a single Josephson junction a long time 489’ It has
been discussed in numerous subsequent publicatidds-

phism between the vortex structure in type-1l superconductfortunately, the complete, exact, closed-form soluti68)—

ors and that in layered superconductorsHat 0, with N, (89), valid for arbitrary values ot >0 andH=0, has not

=0 for the Meissner state and a single Abrikosov vortexbeen obtained until now. This situation was reflected in the
(N,=1) standing in a one-to-one correspondence with absence of any clear mathematical definition of the Joseph-
single vortex plangnot an “isolated fluxon” as is claimed in  son vortex aH>0 and gave rise to the erroneous béfiéf
previous publicatiorfs). that Josephson vortices “do not exist” far<\ ;.
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Equations(83)—(89) provide an explicit form for the whereN,=[epHW =] [see(69)]. The overlap of states with
complete set of minimizers of the LD mode) with r(T) different N, now practically vanishes, and the period of the
<1 and generalize the results of Refs. 1 and 2. Rgr  vortex structure foN,=1 is P=x/epH, which refutes the
=1,2,... they provide a complete set of soliton solutions toclaims->*®that Josephson vortices “do not exist” in the limit
the coupled static SG equatio®1) and establish a one-to- L<\;.
one correspondence between vortex planes in layered super- The substitution 0f92) into (78) gives the equilibrium
conductors and ordinary Josephson vortices in the singlealue of the LD free-energy functionéhe thermodynamic
junction. (The only difference lies in the definition of the free energy.
Josephson length;.) For these reasons, the properties of

_ ial i H2(T)pNLW,
(83)—(89) are of crucial importance. _ 0 p(H)= = p z 1411
Equationg83)—(86) reflect a general soliton feature: So- A
lutions (83), (84) with evenN, cannot be continuously trans- .
formed into solution$85), (86) with odd N, by changingH _ |sin(epHW)| cos?(epHV;oH' (93)
andvice versa Solutions withN, =1 are pure solitongvor- epHW 8(epA;H)

tex planegonly atH= \/Hsz_l— HSZ, which corresponds to
the boundary condition&2). In the rest of the region@8g), 4. DISCUSSION
we have solitons “dressed” by the Meissner fielhe
Meissner and the vortex fields cannot be separated from eatl‘,g
other, because the principle of superposition does not appI‘X’
to the nonlinear equation@®1). Unfortunately, this impor-
tant issue was not understood in previous publicatfdns.
Of special interest is the overlap of the regi@8g), (88)
for N,=N, andN,=N,+ 1. Owing to this property, the so-

lutions obtained cover the whole field rangesBl <=, as  tg|3ted Helmholtz free-energy function@erived from (3)
they should. The overlap practically vanishes i >Hs. 1y settingH=0]: For the Gibbs free-energy functional, they
Given that allHy ~decrease wheW=2L increases, the are either points dftrict, strong minimaor saddle pointsAll
overlap is stronger for larg&V and can involve several stationary points of the Helmholtz free-energy functional are
neighboring states. As explained in the Introduction, the acthose ofstrict, strong minima

tual equilibrium state is the one that corresponds to the mini- By evaluating the surface variation of the Helmholtz
mum of the thermodynamic Gibbs free energy for givén  free-energy functional, we have found a complete set of
A transition from the state Witn\jvzﬁv to the stateN, stable, equilibrium field configurations: Namely, the Meiss-
—N,+1 with lower Gibbs free energy is a phase transition"€r (0-soliton or “vacuum’) solution and soliton(vortex-

of the first-order typé: In particular, the lower critical field Plang solutions. These solutions conserve the flux and real-
H., is determined from the requirement that the Gibbs fredZ€ €xact lower bounds of the Helmholtz free-energy
energy of the statdl, =1 be equal to that of the Meissner functional in the corresponding topological sectors. As is

state —0) and satisfv the relation/HZ — H2<H shown in Appendix A, the absence of soliton solutions of the
<H,, Num )the case f)zlj<|_<oo s given f)ly “fluxon” and “lattice” types at H>0 is due to the boundary
sL+ ’

Hoy = 2H, /.12 conditions on the derivatives of the phase differendsss.
C S . . . . .
Equations83)—(89) contain the corresponding results of (27), (28)] that require the continuity of the local field at the

Refs. 1 and 2 as limiting cases. For example, by making thQuter interfaces. Physically, the fact that a vortex plane lo-
change of variablg—y—L and proceeding to the limit cally minimizes the free-energy functionals means that, con-
—» in Egs. (83), (84) with N,=0, we obtain the exact trary to a widespread beliéfthe effective interaction be-

tween flux quanta positioned ulifferentinsulating layers is
attractive The topological methods of Sec. 2.4 establish the

We have obtained a complete, exact solution of the prob-
m of the magnetic properties of layered superconductors
ith an infinite number of superconducting layelé= ) in
parallel fieldsH>0, in the absence of transport currents.
Based on a new exact variational meth&#kcs. 2.2 and 2.3
and Appendix A, we have determined the type of all station-
ary points of the Gibbs free-energy functior@) and the

Meissner solution in the semi-infinite interwak [0,+ ©):

H exd —y/\;] true mathematical analogy between the vortex structure in
ply)=—4 arctanm. (90 continuum type-II superconductors and that in layered super-
s s conductors aH>0: It consists in an isomorphism between a

By proceeding to the limit.—c in Egs. (85), (86) with  Single Abrikosov vortex and a singl®rtex plane (Note the
N, =1, we arrive at the vortex-plane solution in the infinite role of the conservation law for the flux in the derivation of

intervaly e (— o, +): these results: Such conservation laws in nonlinear field theo-
ries always vyield soliton solutions that minimize the energy
¢(y)=4 arctan expy/\ ;]. (9D  functionalst®13

In the limit of weak interlayer coupling;(T)<1, we

e derived exact, closed-form analytical expressions for all
stable solution§Eqgs.(83)—(89)]. Solutions(83)—(89) explic-

itly satisfy the SG equation@\1) with a full set of boundary

When the screening by Josephson currents is negligibl)ﬁav
small, i.e.,(i) for L<\; and arbitraryH, or (ii) for Hg<H
and arbitraryL, equationg83)—(89) become

—1)No conditions. They meet the Legendre necessary and Jacobi—
¢(y)=7N,+2epHy- m[s"‘(zeDHV) Weierstrass—Hilbert sufficient conditions for a strong
J minimumt® and contain the exact results of Refs. 1 and 2 as
—2epHycogepHW ], (92 particular limiting cases. Expressio83)—(89) provide an
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adequate description of real physical systems wiNh minima of the Gibbs free-energy function&las never been
>[e"1], e<1 (see Appendix A when boundary effects posed in previous theoretical publicatiofi$his fact is not
along the layering axis can be neglected. surprising in view of the neglect of the conservation law for
We can now answer the question what kind of configu-the flux and accompanying uncontrolled mathematical
rations correspond to saddle points (8f. As is shown in  approximations)] Unfortunately, the issue of stability was
Sec. 2.3 and Appendix A, all saddle-point configurations arelisregarded in numerical simulatidfisfor finite (N< )
nonsoliton and violate the conservation law for the flux.Josephson-junction stacks as well: hence the
Saddle points of the first type appear if one increases theisunderstanding of the profound physical and mathemati-
external fieldH beyond the stability region$87), (88). cal difference between soliton and nonsoliton solutions.
(Saddle points of this type exist already in the case of a In summary, the central result of this paper is that equi-
single Josephson junctigrSaddle points of the second type librium Josephson vortices in layered superconductors with
appear as solutions to the boundary value prol&m (28), N=co are topological solitons of the static SG equations for
(A18) for (A1), where theZ, violate (A22). Nonsoliton so- the phase differences. This result should be viewed in the
lutions of this type, interpreted as “vortex lattices,” have general context of vortex solutions in nonlinear field
been considered in some previous publications on the LRheoriest®~13(For example, Abrikosov vortices in continuum
model®"*As is shown in Appendix C, they are just pertur- type-ll superconductors are topological solitons of the GL
bations of the soliton solution®3)—(86) with N,>0. Note  equations. Mathematically, the exact, closed-form expres-
that nonsoliton numerical solutiolfs” for finite (N<») sions (83)—(89) represent a new class of soliton solutions.
Josephson-junction stacks, interpreted as “isolated fluxons,Aside from their importance for weak superconductivity,
belong to the same type: They are characterized by the cotthey can find applications in different fields of nonlinear

dition physics and applied mathematics where the SG equations are
L deny) involved*
— f dy ny =0
27 )L dy
APPENDIX A

for all n and thus constitute perturbations of the Meissne
solution (83), (84) with N,=0.

It is instructive to compare our mathematical approach  In the limit of weak coupling, considered in Sec. 3, the
with previous approaches. Both in Refs. 1 and 2 and in th&eroth-ordefwith respect tor (T)<1] solution to(9), (10)
present paper, we start by exact minimization of the Gibbdas the formf,=1. Upon substitution into Eqg26) and
free-energy functional. By determining a complete set ofsubsequent differentiation with respectytothe latter equa-
minimizers, we arrive at a natural physical interpretation oftions are reduced to coupled static SG equations
all relevant mathematical relations and the identification of 2h(y) 1
equilibrium Josephson vortices as topological solitors- )\ﬁ—dr= —22 G Y(n,m)singy(y),n=1,...N,
tex planes [In the weak-coupling limit, they are just the y & m
soliton solutions to the SG equatio1).] In contrast, pre- (A1)
vious publications on the LD model started with taeriori where G~(n,m) is a Jacobian matrix with elements
assumption that the vortex structure in layered superconduc& ™ *(n,n)=2+¢? (n=1,...N), G Y(n+1n)=G (n,n
ors resembled that in continuum type-Il superconductots. +1)=—1 (n=1,...N—1), andG *(n,m)=0 for [n—m)|
Unfortunately, similarities in the spatial distribution of field >1. Owing to the periodic boundary conditions
configurations were erroneously sought. However, unlike the _
true analogy in terms of homotopy theot@ec. 2.4, any Pnen(Y)=nl¥) (A2)
analogy in the configurational space is precluded by fundafsee(6)], the matrixG™~*(n,m) is cyclic. EquationgAl) are
mental differences between the Gibbs free-energy functionaubject to condition$27), (28), and their solutions obey the
(3) and that of continuum type-Il superconductors. symmetry relationg25).

We have already pointed oRefs. 1 and 2 and the In the limit N—o, equations(Al) were derived by a
Introduction the inadequacy of mathematical methods ofdifferent method in a number of publicatiohé.Unfortu-
previous publications. It should be added that the necessitately, their analytical properties have not been studied. The
of ensuring the vanishing of the surface variation in the stamain property can be formulated as the following proposi-
tionarity condition for the Helmholtz free-energy functional tion:
was not taken into accouf"°As a result, the conservation Proposition. Consider Egs.(Al) on the whole axis
law for the flux and soliton solutions were lost. Since the—><y<+¢c. The initial value problem for Eq¢A1) with
exact solvability and soliton solutions of the SG equationgarbitrary initial conditions
(A1) were not noticed, no mathematical definition of the Jo- do,
sephson vortex could be given. This situation has led to con-  ¢,(yg) = a,,, d—(yo)Zﬁn (lyo| <o)
fusion as to what might be called the Josephson vortex at y
H>0 even in the simplest case of the single junction: Hencdias a unique solution in the whole intervalo <y< +oo,
the erroneous claim%!that Josephson vortices “do not ex- This solution has continuous derivatives with respect tf
ist” for L<\j. arbitrary order and depends continuously on the initial data.

The problem of the stability of the proposed nonsoliton ~ To prove the Proposition, we note that E¢&1) satisfy
configurationdi.e., whether they correspond to any points ofthe conditions of Picard’s theorem on the existence and

rThe solution of coupled static SG equations
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uniqueness of global solution® This property is rather un-
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In the case of a finite intervafe[ —L,L] the constant of

usual for nonlinear differential equations: A global characterintegrationC can be determined from the conditiof®7),
of the solution and its infinite differentiability are ensured by (28):

the fact that theg,, enter the right-hand side of Eq&A1)
only as arguments of the sine.
Equations(Al) can be rewritten in an equivalent form:

d?pr(y)

d—yz,n=l,...N. (A3)

sing,(y)=e2\3>, G(n,m)

The matrixG(n,m), being the inverse o~ 1(n,m), has the
form

[n—m| 2
G(n,m)= —————, =l+——8\/1+82/4,
(mm 2e\1teld 2
(A4)
and obeys the summation rule
1
> G(nm)=— (A5)
m &

The matrixG(n,m) is positive definite, because all its eigen-

valuesey are positive:

)\E )\ 8)\3
ey= ) = ’
KTe3 Y 21 62—2 cog2mkIN)
N
k=0,+ 1,..{5 . (A6)

The quantities\y in (A6) are the characteristic length scales

of Egs.(Al). [Note that(Al) is characterized by a distribu-

tion of length scales, not just two length scales, as is claimed

in some previous publicatiosThe distribution of the length
scales becomes quasicontinuous under the condition

N>[e 1], (A7)

2NH?
—+ >, coSey(—L).
HZ 4

(A11)

C=N in the infinite intervaly e (— oo, + ).

Now, we will prove that Eqs(83)—(89) provide a com-
plete set of stable solutions (81) atH>0. Using equations
of Secs. 2.1, 2.2 witli,=1 and introducing the “local mag-
netic field” in the regions —1)p<x<np via

which can be regarded as a criterion of applicability of the

LD model to layered superconductors.
The fact that equilibrium solution®83)—(89) correspond
to the largest length scabe,,,=\o=M\; is by no means sur-

prising: In equilibrium, the system tends to minimize the

diamagnetic response to the external field Note that for
N—oo, H=0, L=, equationgAl) admit an exact soliton—
antisoliton solution

dn(Y)=(—1)"¢(y), ¢(y)=4arctan ex(j)\?;_n) ,
(A8)
8)\J
A min= )\[NIZ]:m- (A9)

However, solution(A8), (A9) vanishes for anyH>0, L
<o,
Note the first integral ofAl):

2 JE 2 G( ¢n(Y) d¢m(y)

dy
(A10)

dém
()= ZepE onm <Y, (A12)
we rewrite(3) as follows:
de, do,
00| . mH | =0+ 0 m%;H}, (A13
Q* ¢n1_! } [_[1
1
—00s¢n(y) ]+ —z[hn+a(y)
_hn(y)]2+[hn(Y)_H]2}
_NpWV\i}H . do,
_TJFQH[(ﬁ”’d_y}
HDW,
- =0, (A14)
4ar
where
2
O3] b } P J { [1—cosén(y)]
2T T enm
d¢>n(y) dém(y)
dy dy }/o (A15)

is the Helmholtz free-energy functional, and the total flux is
given by

1
=552 [da(L)= bn(—L)]. (A16)
n
The treatment of the functionafd*, Q}; is fully analogous
to that of Q,Q in Sec. 2.3. Thus, by virtue of positive
definitiveness ofA4), the Legendre necessary condition for

a strong minimunt®

2 2 G(MMprpn>0, 2 pi#0, (A17)
where p,, are arbitrary real numbers, is explicitly fulfilled.
The functionals)*, O}, have a common set of minimizers.
The stationarity condition fof)}; involves the vanishing of
the volume variation, which yields Eq$A3), and of the
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surface variation, which leads, b{27) and (A16), to the . d¢ NWW, [de 2
conservation law for the flu¥®=0. By analogy with(69), Q| ¢nin(—L), == (=L) |= 55—~ | 55 (—L)
. . " dy 32we‘p| dy
(70), we arrive at soliton boundary conditions
6o(0) L[t dg(y) HpW, (4 s
n_=an _J dy nlY }20(n=1,...N), + 167 L y ~ [1—2<:os¢n(y)+cos¢n
T 27 )L dy
(A18) x(—L)]. (A25)
_ $n(—L) - i JL dyd¢“(y) J—— Taking the variation 0ofA25) with respect tap,, we imme-
0 2m ) -1 dy diately arrive at the relations
< —L)=<0. Al . .
n(—L)=0 (A19) SiNbo(y)=Sin . 1(y) (A26)
The soliton solution in the sectdZ,,...,Zy\} first ap-
pears under th&l conditions [Compare W|t|’(4o):|, and hence the Cond|t|((m22) and Egs.
(83)—(89).
p1(—L)=...=n(—L)=0 (A20)
[see(A19)] and theN—1 conditions
APPENDIX B
dgy  dén,
d_y (-L)=...= d_y( —L)=2epH*=0, (A21) Verification of the Jacobi—Weierstrass—Hilbert sufficient

condition for a strong minimum
where the fieldH* is as yet undetermineftompare with

(27), (28)]. Given that the general solution {&1) contains Legendre necessary condition for a strong minimun€f

i:ycggztszgseg rxfr?géaéf:s’t;gpgc;tfzfti&s?){hfaAkfc}L)J rEZY; Conr_educes to the second relation(B¥). Complemented by the
ditions (A18). For this reason, we have to set requirement that the explicit solutidi®3)—(89) can be em-

bedded into a field of extremals, this condition becomes the
Z,=..Zy=2=N,=0,1,.... (A22)  Jacobi—Weierstrass—Hilbestfficientcondition for a strong
minimum®
For H* =0, by the Proposition, the unique solution to the In view of the symmetry relations(y)=— &(—Yy)
initial value problem (A20), (A21) in the interval +27N, the conditions on variationgé(=L)=0, 5¢(0)
ye[—L,L]is the trivial Meissner configuratiosh,=...¢n =, it suffices to verify the Jacobi—Weierstrass—Hilbert con-

~0, N,=0. For arbitraryH* >0, by the Proposition, the gjtion forye[—L,0]. At H>0, the desired field is given by
initial-value problem(A20), (A21) also admits a unique So- the one-parameter family

lution in the intervalye[ —L,L], and its explicit form is

In the weak-coupling limitr (T)<<1, whenf(y)=1, the

y+L B yva+p
d1(y)=..=In(Y)=(y)=—7+2 arr( o é(y,B)=m(N,—1)+2 a”’<2—)\3
J
4 2
FK(K) K], (A23) K —)— | B1
4+ %) Ja+ g2 (B
H*2+H3
Upon substitution ofA23) and (27) into (A18), with (A22) (v.B) =N, +2 an{ﬁz )
andN,=1,2,.., we determineH*=\/HNv_1—H§, where o5 ’ 2\, h
the Hy are given by(41). In this way, we arrive at the
v N,=2m+1, m=0,1,..,, (B2)

solutions(83)—(89), which proves their uniqueness as mini-
mizers of(A13)—(A15). This proof clearly demonstrates that
the absence of soliton solutions of any other types is a resuﬁg
of the physical boundary conditiori#21) [or (27), (28)].

To establish a connection to the exact variational method do 3
of Refs. 1 and 2, we note thé83)—(89) can also be obtained #(0,8)=7N,—(0,8)= —. (B3)
by the minimization of(A13)—(A15) with respect to the dy Ay
phasesp,, . (We recall thatp=¢,— ¢,,_1). However, as was _ _ _
first noticed in Refs. 1 and 2, we must take into account thaFor 8= 8, where 8=21-k?/k in the case(B1), and 3
not all theg, are independent: The conservation law for the=2/k in the case(B2), we have¢(y,B)= ¢(y), i.e., rela-
current(22) constitutes a constraint ahp,/dy. This prob-  tions (B1) and (B2) yield the solutiong83), (84) and (85),
lem can be easily circumvented by making use of the firs{86), respectively. To prove that the family(y,3) indeed
integral (A10), (A11). The substitution 0fA10), (All) into  forms a field of extremals, we have to show that any two
(A15) yields representativesp;= ¢(y,B1) and ¢,=d(y,B2), where 0

here>0. The family ¢(y,B) explicitly satisfies(82) and
e initial conditions
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<pB1<f,, do not intersect in the interv@lL,0). From the
first integral of(82) [equation(76) with f=1] and(B3), we
have

%( ! +cos¢1=%+(—1)'\‘v,

dy

2 2

d
b +cos¢2=%+(—1)'\‘v.

dy
We will prove the absence of points of intersectionfgfand
¢, by contradiction.
Consideryg(y)= ¢,(y) — d1(y). As EQq.(82) yields
d?¢y d?¢,
d—yz(o)— d—yz(o)—O,
for y e (— 61,0), whereé; is sufficiently small, we have

P(y)=(B1— B2)|y|+0(y?)>0.

By continuity of #/(y), relation(B5) implies the existence of
a finite interval y e (yg,0) where (y)>0. Let y=yge
X[—L,0) be a point of intersection, i.e.,
d?¢; d?¢,
$1(Yo) = #2(Yo), d—yz(yo) = d_yZ(yO)'
For ye(yq,Yo+ 6), where 6>0 is sufficiently small, we
have

(B4)

de, dey

WY)=| gy Vo)~ gy Vo) |(Iyol = IyD +0l(y —¥0)°]
>0 (BS)
which, in view of the arbitrariness af, implies
d d
b2 b1 86)

d_y(yO)B d_y(YO)-

However, equationgB4), by virtue of d¢,/dy,d¢,/dy
>0, yield

de d¢
d_yz(YO)<_l(YO)-

dy (B7)

The contradiction betwee(B6) and(B7) proves the absence

of points of intersection in the whole intervalL,0), as
expected. Thus, the solutid83)—(89), for anyH >0, can be
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A solution of this type was proposed, e.g., in Refs. 7 and 14,
where it was erroneously interpreted as a “dense triangular
lattice of Josephson vortices.” As an illustration of the gen-
eral results of this paper, it is instructive to compare this
solution with the exact closed-form analytical soliton solu-
tion (92), valid in a wider field rangéd>Hj;.

By introducing a dimensionless variahle-2epHy and
new functionsy,(u)=®,(u/2epH), we rewrite Eqs.(Al)
as

2
: f&gU) B (2sesAJH)2§ G H(n,m)sinym(u),
n=1,..N. (C3)
The boundary conditions, Eq&C2), become
di, B -
du (£2epHL)=1, ¢,(0)=mn. (C4)

Taking into accountC1), we seek the solution t@C3), (C4)
as an asymptotic expansion in powers of BpR;H)?:

wn(U)=k§0 PP(u), (C5)

where ¢ (u) is of order 1/(2epx;H)? (k=0,1,..). Re-
taining only the first two terms ifC5), we obtain

o 4+8% (-1 )
$aly) =m0+ 2ePHY = =5 Zraor, 2 S2epHy)
LAret O H cé
o7 2epr2r COSEPHWY. (C6)

The sum of the first three terms on the right-hand side of
(C6) in the limit e<1 gives the solution of Refs. 7 and 14.
The presence of the last term on the right-hand sidgCéf,
resulting from the boundary conditioli€2) aty= =L, was
not noticed in Refs. 7 and 14, and therefore the solution of
Refs. 7 and 14 does not meet the boundary conditions at
=*L in required order. In contrast to the exact closed-form
analytical soliton solutiori92), valid in the same field range
and minimizing the LD functiona(3), the nonsoliton solu-
tion (C6) is just a saddle point af3): see Secs. 2.3 and 4 and
Appendix A. This is illustrated below.

The substitution ofC6) into (A13), (Al4) yields a non-

embedded into a field of extremals and, as such, satisfies t'&]uilibrium value of the LD functional:
Jacobi—Weierstrass—Hilbert sufficient condition for a strong

minimum.

APPENDIX C

Comparison between soliton and nonsoliton
configurations

At fields
H>e H=(gepry) L,

(“lattice” )

(C1

the SG equationgAl) with N=2m—o admit an exact,

- H2(T)pNLW,
QLD(H):CTZX

—1+r(T)[1

[1+2/82]co§(epHV\bH (C7)

8(eph;H)?
Expression(C7) is to be compared with the thermodynamic

free energy(93) of the soliton solutior(92). Their difference
is

closed-form analytical nonsoliton solution under the condi-

tions

do,
dy

(xL)=2epH, ¢ (0)=mn. (C2

- - HZ(T)pNLW,r (T)
AQ p(H)=Q p(H)=Qp(H)= yp
[sifepHW)| cog(epHW)
T epAw T aepn,%?””
(C8)
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A technique for studying collisionless dynamics of a homogeneous superconducting system is
developed which is based on Riccati parametrization of the Wigner distribution function.

The quantum evolution of the superconducting order parameter, initially deviating from the
equilibrium value, is calculated using this technique. The effect of a time-dependent

BCS paring interaction on the dynamics of the order parameter is also studi@®O0®American
Institute of Physics.[DOI: 10.1063/1.1789939

1. INTRODUCTION quantum kinetic equation. Considering the collisionless evo-

In this paper we study the dynamics of the superconductl-lmon_Of the superconducting Om,'er pargmet&ﬁ €.), the
ing order parameter within the Wigner distribution function eguatlons for Fhe Keldysh Green’s f“”C“‘?”S are re‘?'“‘%efj to
approach. The problem of nonstationary phenomena in SLF__lmpler equations for the Green’s functions at comm_dlng
perconductors has been attracting attention for a long tfne, imes- The latter can be transformed to the quantum kinetic

The general method for description of nonstationary andgduation for the Wigner distribution functiofWDF). The
nonequilibrium processes is the Keldysh technique for noncollisionless kinetic equation for superconducting WDF can

equilibrium real-time Green’s functiordsThe equations for also be obtained directly _fr_om the generalized Hartree—Fock
superconducting Keldysh Green’s functibfsare a set of ~@pproach to the BCS pairing modésee also Refs. 10 and
quite complicated nonlinear integro-differential equations,1)- _ ) . o o
which are nonlocal in the time and space domains. These Wigner' has introduced a distribution function in the
equations can be simplified considerably in the quasiclassic&@nase space as a quantum analog of the classical Boltzman
approximation by integrating the Green’s functions oggr ~ distributions. In studying the quantum transport, the Wigner-
=p?/2m— u (u is the chemical potentiaf The quasiclassi- function formalism has many advantages. It is extensively
cal Larkin—Ovchinnikov equations are still nonlocal in time, used for the description of normal metal and semiconducting
but are local in space. In the stationary case, these equatioféctron devices whose behavior is dominated by quantum
transform into Eilenberger’s equatiohsyhich are effective interference effects, e.g., for self-consistent treatment of tran-
tools for solving stationary inhomogeneous problems. sient response to a change in the applied voltige recent
When the time-dependent processes in superconductoy&ars, Wigner functions have been widely used in the field of
are considered, three time scales are most essential. The tifflgantum optics to describe the effects of quantum coherence
tp~w;1 (wp is the plasma frequenggharacterizes the scale and superposition in optical systedfsSuch effects are of
at which the self-consistent scheme for the electromagnetigreat interest in qubitquantum bit for quantum computa-
fieldsA(r,t), &(r,t), and for the BCS pairing field (r,t) is  tion) investigations?
established. The timg~A ! (A is the modulus of the order The collisionless dynamics of the superconducting order
parameter is an intrinsic time for superconductors, during parameter has gained renewed attention after the discovery
which quasiparticles with the energy spectryfh®+ gzp are of the BCS-like paired state in dilute fermionic gas®$he
formed in the superconductor. The stage of the relaxation ofbility to control and change the strength of the pairing in-
a nonequilibrium disturbance in the quasiparticle distributionteraction in these systems opens up possibilities for new ex-
is determined by the energy relaxation timedue to inelas- perimental investigations of the dynamics of the order pa-
tic processes. For conventional superconductors, at temperegameter. Recently, time-dependent BCS pairing was studied
ture T not too close to the critical temperatufe, the hier-  theoretically in Ref. 17. The WDF technique developed in
archy of the characteristic times ig<ty<r7.. In the time  our paper provides a useful tool for studying such problems.
interval t~7,>ty the superconductor's dynamics is de- In Sec. 2, following Kulik's approach,we derive a
scribed by the quasiclassical Boltzman kinetic equation foquantum kinetic equation for the superconducting WDF in
the quasiparticle distribution function together with a self-(r,t) space. This equation is simplified for the case of a
consistent equation for A(r,t) (Aronov—Gurevich homogeneous statSec. 3 and then used to study the colli-
equation®). In the opposite case<r,, the dynamics of the sionless dynamics of the order parameter in small supercon-
superconducting order parameter should be described by tltkicting systemgSec. 4. We consider the problem of the

1063-777X/2004/30(7-8)/6/$26.00 661 © 2004 American Institute of Physics
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time evolution of the order parameter after an initial devia-and the angle brackets denote statistical averaging.
tion from the equilibrium value and found that on a time By introducing the “particle—hole”(Gor’kov—Nambu
scale much shorter thar), the time dependence & has an representation of the electron creation and annihilation op-
oscillatory character. Earlier, such a problem was studied bgrators in terms of 2-vectors,
other authors using a linear response apprdaassuming
small deviation from equilibrium. In the present paper, the A =| |
time dependences were obtained under arbitrary initial per- a—p|
turbations(not only smal). The time dependent response of Y1 (r)
the order parameter to a time-varying pairing potential isalso ~ W (r)= ( w’r(r)) , \I’T(r)=(¢$(r)zpl(r)), 9
studied. A numerical method for solving the equation for the !
WDF, which is based on the Maki—Schopohl we define the matriX,, in the “particle—hole” space,
transformatiort? is developed. :

f&?(t>=<Ap_% SDA (D),

apy

, Ap=(ap ap), (8)

2. WIGNER DISTRIBUTION FUNCTION FORMALISM FOR o
THE SUPERCONDUCTING STATE wherea,8=1,2 are the indices of the vectotg . The func-

tion fg{f is the Fourier transform of the Wigner distribution

We write the Hamiltonian of the superconductor asfynctionf,4(p,r,t) generalized to the superconducting case,
H=Hy+H,, whereH, includes electron interactions with

external fields, the vector potentiAl(r) and the scalar po- f =S dar AT DA .4 (t 10
tential ¢(r), as well as with the pairing field (r), ap(P.I ) % { pfg,a( MAp+3.6( ) (19
_ Correspondingly, the components of the maififp,r,t) are

Hn.= d i — 4+ p aly. p
0 0;,1 "ol pted(t)]iy(r) expressed in terms of the Nambu operatdrs(r,t) in the

Heisenberg representation as

—f dr[ A @I () +A* () g (N g ()],
(1)

2 It follows from Egq. (11) that f,; and f,, are real functions,
(2 and f1,="f3,. The self-consistency relations, Ed8), (6),

and(7), can be written in terms of as

fwzfdﬂ€mWWMrHVHN%U—WQDy (12)

_1 \Y eA
&= om| 7 A

(we use a system of units in whidh=kg=1). Here

d R
A=V0j —pgTrr,f(p), (12
I = =3 2, (1dP" 2
(o8 \/v p pO’ dp A
is the annihilation operator of an electron with spinThe p=ef (277)3’1—r 7 (p), 13
Hamiltonian H,; describes the impurity, electron—phonon, q
- i i . p_ -

electro_n electron, etc. scattering processes that provide the J:f -Trpt(p), (14)
relaxation. (2)

The pairing fieldA(r) is to be determined from the self-

wherep=p—emAlc, 7_=(1/2)(r,—ip), and 7; are the
consistency equation P=p—er; 7-=(12)(r—i7) 7i

Pauli matrices.
A*(r)=V( #‘(r) ¢I(r)>, 3 The evolution equation for the WDF can be derived from

: - . . the equation of motion for the electron field operators
whereV,, is the pairing potential. The electromagnetic poten-lr//: b (F0):

tials obey Maxwell's equations,

41 iif=[¢H] (19
VxA(r)sz(r), (4) at T
13 Restricting our consideration to the colli§ionless stage of the
V2p+——V-A=—4mp(r), (5) evolution, we neglect the interaction padt of the Hamil-
c ot tonian and obtain, from Edq15), the equations of motion for
where p(r) andj(r) are the charge and current densities,the Nambu operatord (r,t):
respectively:

1% A ,\
iE—T3(§+e¢)+A

0 A
V=0, A:(* » (16)
p(N)=e> (1)), 6) a* 0

where £= — (V+iersA/c)?/2m— u. By making use of the
definition of the WDF in Eq.(11), we arrive, after some
algebra, at the following dynamic equation fip,r,t):

(=== 3 (W0~ (VBU) (1)

ot

= _iv/9)2
A (Pp—iV/2)
at

o t|+i[eprs—A,F].=0, (17

Tg,f

2¢e? S (4
—m—CA(r) > (Yo h,(1)), (7)
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where[...] denotes the usual commutator, in which we con- ot ~ o L

siderV as an integral operator with the kerrf@ls(r —r’), —r Tilépms— AT+ v(f—=10)=0, (21
and thus §f)=—(fV)=V{. The quantity...], is defined -~ ) , o
as[A,B],=A®B—B®&A, where A®B)(p,r,t) is the Fou- where§P=§p+cI)+_mu_S/2. The p.henomenologlcal. collision
rier transform of the spatial convolutionAB)(r,,r,)  termv(f—fy) qualitatively describes slow relaxation of the

=[dr A(rq,r)B(r,ry): to its equilibrium vauAOW ich is associated with the
Jfdr A(rq,r)B(r,r,) WDF to i ilibri luef ; which d with th
interaction Hamiltoniarmd ;. In the collisionless limit consid-

(A® B)(p,r):f dr’e*ipr'(AB)(r+r’/2,r—r’/2) ered below, we will assume— + 0, in order to provide cor-

rect analytical behavior of the WDF &t +co.
Equation (21) has several important properties which

i
ZEXP[E[(?%?—*&?] A(p,r)B(p,r). can be derived from the equations for the matrix elements
of f,
(18)
: s dtyy dfy
By making wuse of the transformation f 'W:_' e —(Afy—A*fy), (22

—explmx/2)f exp(—ix/2), we can exclude the phageof
the superconducting order parameter and proceed to gauge- _ dfq,

invariant quantities, i.e., the momentum of the superfluid | 5 —2&pfazt A(f11—T20), (23)
condensat®g and the potentiadp defined by

1 2e 1(d i 2 Gk A (F1y— T2, 24

ps:mVSZE(VX_FA), =3 &—)t(+2e¢). (19 ot~ 28l AT (T~ T2 (24)

First, we note that only the differende,— f,, of the diago-
nal components of the matrik enters the equations for the
off-diagonal componentk;, andf,;. Furthermore, from Eg.
IPs (22), one finds that the sum of the diagonal componénis
eE=Jr ~ Vo, eH=-VXp,. @0 f,,=const. This allows us to present the functibim the
following form:

The electromagnetic fields are related pg and &
through

This results in the substitutiorfs— p+ 73ps ande¢p— @ in
the dynamical equatiofil7), as well as in the definition of ~ 1. = - [—9

the current in Eq(14). Note that the anisotropic ter vq f=5[1A-F)— 17 ], fz( - g)' (25
arising fromp in Eq. (17) commutes withf and thus drops

out from this equation. where f and g are isotropic functions, and the time-

While the physical sense g, is obvious, the interpre- independent quantities.. have the meaning of quasiparticle
tation of the gauge-invariant potentid is less evident. distribution functions which are conserved during the stage
Within the framework of the two-fluid model, it can be in- ©f the collisionless evolution. Assuming the system to be
terpreted as the differenck= zus— ., between the electro- Nitidlly in equilibrium and comparing Eq(25 with the
chemical potentials of the condensate of Cooper paics, equilibrium form of the WDF, which can be directly obtained
= u+(1/2)ax/dt, and quasiparticlesy, =u—ed; thus a rom the definition in Eq(10):
nonzero value ofd means nonequilibrium of the electrons in 1. 1 . R
the superconductor. In bulk superconductdrsandp, decay fo=3 { 1A=F )= = (T3~ A)J’L}] : (26)
within their corresponding lengths: the Lond¢skin) depth P
8 in the case opg, and the electric field penetration depth we find the distribution functions
\g for @.

1 E,+p-vs(0 €,—P-vs(0
fi:_ tanhLS()itanhLS() ,
2 2T 2T
3. WIGNER DISTRIBUTION FUNCTION FOR HOMOGENEOUS Ep: \lgs—l— |A|2, (27)

SUPERCONDUCTING SYSTEMS o )
and the equilibrium values of the functiofisandg

In what follows, we focus on homogeneous supercon- ~
ducting systems in the clean limit, assuming the scattering £ A _Sp 29)
rate is much smaller thah. To be more specific, we assume 0 '
the magnitude of the order parameteiand the gradient of
Its phase,VX, _to be uniform inside the §upercondugtor. TheWDF reduces to the following system of scalar equations for
spatially varying part of the phase df is included in the the functionsg andf:
homogeneoupg by means of an appropriate gauge transfor- '
mation. A “residual” spatially uniform phase is kept to de- a9 . af . ~
scribe the dynamics of the phase of the order parameter. It E:'(A f=Af"), EZZ'(Ag_fpf ), (29)
can be related to, e.g., possilldme-dependentphase on ) ) o
either side of a Josephson junction. In this case, the equatigfhich, together with Eq(28), lead to the normalization con-
for the WDF takes the form dition f2=1 or

In this representation the dynamic equati@i) for the
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92+ ff*=1. (30) functionsf andg. Due to the normalization conditiof30),
. , these functions can be expressed in terms of a single function
The self-consistency equation has the form a(é, b)
p! L
N [dQ, (e
an=-3 [ G2 agfie, 07, @ loax 2 a5
T J-wp 9= T7aa* l+aa*’

wherewp, is the Debye frequency,=N(0)V, is the dimen-
sionless pairing constani(0) is the electron density of
states per spin at the Fermi level, aflj, denotes angle Ja . ~ .2
variables associated with the momentum vector. The charge E—l(—nga—A a’+A). (36)
and current densities are given by

which satisfies a nonlinear Riccati-type equation,

In the stationary limit A = const), the solution of Eq36) is

dQ
p=—eno) [ 52 [ agaE0F., @ A
Qo= (37
) dQ, Eptep
J(t)_eWS(t)_eN(O)J 47 pf d&p/ - (33 In the general nonstationary case, one needs to integrate

Eq. (36) together with the self-consistency equati(3i).
Thus, proceeding to the discrete time variablesnét,
n=0,1,.., one has tealculate the new value @ from Eq.
(31) after each time stept and then use it for the next step.
For sufficiently smallst, A can be approximately considered
j(t)=envg(t) +e(ng—n)vg(0) as constant betwedrandt + 6t, which allows us to apply an
) analytical solution of Eq(36) within this time interval,
=j(0)+envs(t) —v(0)], (34)

whereng is the condensate density calculated for the initial
superfluid velocityg(0). This property reflects the specifics
of the collisionless regime, in which the normal component
of the current flow is not affected by scattering, and thereforeand thus to calculata(t+ ot) explicitly. As a result, the
the velocities of both the superfluid and normal componentgsiumerical procedure reduces to the numerical solution of the
of the electron fluid undergo equal changegt) —v¢(0):  self-consistency equation at each step of the calculations.
Vs(0)—vg(t), V,(0)=0—vg(t) —vs(0): From this we con- In our calculations, we use time stefis=0.02,. After
clude that at nonzero temperature, when the density of theach step, the values of the modulus and the phagg©)f
normal componentn,=n—ng, is nonzero, the current re- were recalculated by means of the self-consistency equation
verses its direction with respect ¥g(t) if the latter becomes (31). In Fig. 1, we present time variations of the order pa-
smaller tharvg(0)n,/n. rameter modulus for initial valueA(0) substantially differ-

ent from the equilibrium valud, at T=0. It is obvious that

equal values oA(0) may be obtained for different forms of
4. COLLISIONLESS EVOLUTION OF THE ORDER the initial Wigner distribution functiAorf(O). In ourevalua-
PARAMETER IN SUPERCONDUCTORS tion, we use the equilibrium form df(0) given by Eq.(26)

at T=0, with a formal parametet;,, which, however, ap-

In the paper by Volkov and Kogalfi,the problem of pears to be slightly different from the initial self-consistent
evolution of the order parametar(t) at a given initial value  value A(0). This difference depends weakly on the value of
of the WDF (and the corresponding initial self-consistent the pairing constank, for which in the following we put
value ofA=A(0)) wasanalyzed within a linear approxima- \=0.5. The initial value ofA;,=1.5A, leads to A(0)
tion, assuming small deviations af(t) and f(&,t) from ~1.3A, (Fig. 1a), whereasA;,=0.5A, yields a self-
their equilibrium values. It was shown that the time varia-consistentA (0)~0.67A, (Fig. 1b).
tions of A have the form of harmonic oscillations with a Another type of perturbation in the system is the switch-
period of the order ofA"! and an amplitude decreasing ing of A from one value to another, or, more generally, the
slowly ast 2. At larget>t,=A"(0), theorder parameter case of time-dependent BCS pairing. We have used the equa-
approaches a constant valle=A(t—), which is deter- tions (35), (36), (38), and (31) with time-dependent
mined by the initial conditions and coincides neither with A =\(t) to study this problem numerically. The collisionless

wheren is the net electron density. Equatit@B) shows that
the electric current is governed directly by the superfluid
velocity and has nothing to do with the evolution of the
WDF,

N y: _AK 2
a(t+ét)y=a(t)+ AWM 2§pa:(t) A (Var(t) , (38
A*(t)a(t)-ﬁ-gp—iEpCOT(Epﬁt)

A(0) nor with the equilibrium value\,. evolution of the order parameter aschanges in time is
In this paper, we address a more general nonlinear prolshown in Fig. 2.
lem, with arbitrary initial conditions, which may differ sub- It is interesting to note that the initial BCS form of the

stantially from the equilibrium state. In particular, this allows WDF automatically leads to conservation of arbitrary initial
us to consider the formation of the superconducting statealues of the order parameter phaséctually, this property
from the initial normal state at low enough temperatures, ois associated with the definite symmetry of the initial WDF
destruction of the initial superconducting state at high temwith respect to &,, f(&,,t)=f(—¢§,.1), 9(&.t)=—9g
peratures. To this end, we apply a numerical procedure, by—§&,,t), which holds during the time evolution and mani-
making use of the so-called Riccati parametrization of theests equality of the populations of the electron- and hole-
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1.3
a 1.0
1.2
s 1.1
©
< 40l g o5y
0.9
0.8 : . : : - . . . : .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t/ty /1y
1.2 FIG. 3. Instability of the equilibrium normal state &t=0. We start from
b A(0)=0.001A,.
1.1t
1.0¢ _ .
° The processes of formation and destruction of the super-
§ 0.9t conducting state can be also analyzed within the nonlinear
0.8 collisionless approach. By starting evaluations from a very
' small value ofA;, (~1073A,) in Eq. (28) at T=0, which
0.7 approximately represents an initial normal state, we observe
, a rapid increase in\(t) at the timet~ty up to A~Ag,
0.6 ' . : ’
0 5 10 15 20 25 30 followed by an oscillatory approach to a stable supercon-
t/t ducting stategsee Fig. 3 We note that the asymptotic value

A, appears to be noticeably lower than, which means
FIG. 1. Collisionless time evolution of the order pgrgmeter for an initial that the real equilibrium value of at the Superconducting
value A(0) larger @) or smaller b) than the equilibrium valuelo at o ngifion is formed via relaxation processes.
T=0. In all figures the time is normalized tg=1/A,. . i . X

Strictly speaking, at any temperature, including the re-

gion T<T,, the self-consistency equatid8) always has a
like excitations with equal energi@s, . The introduction of ~trivial solution A =0, which corresponds to the normal state.
an imbalance between the electron and hole branches of thgowever, atT<T. the normal state is associated with a
excitation spectrunti.e., violation of the above-mentioned Maximum of the free energy, and therefore Fig. 3 actually
symmetry produces an excess charge in the quasipartidglustrates the thermodynamic instability of the normal state
subsystem which, due to electroneutrality of the metalWith respect to an infinitesimad, which develops through
should be compensated by the opposite charge of the supdhe guantum kinetic process described by Egsand (29).
fluid condensate. This means the appearance of the diffeft is interesting to note that, despite the strong nonlinearity of
encesu between the electrochemical potentialsandu of ~ the process, the oscillations af(t) have an almost purely
excitations and the condensate, respectively, which producdrmonic shape.
time variations of the order parameter phase according to the The instability of the superconducting state at tempera-
relationshipdy/dt=25u. For a given constanfu, we find ~ turesT>T is illustrated by Fig. 4, which was obtained by

continuous variation of the phase with a constant rate. starting evaluations from the initial superconducting state in
Eq. (28) at the rather high temperatufe=2.5A,. The order

parameter decreases approximately exponentially with the

3.5
3.0
0.3}
2.5t
<102.0-
0.2}
s =
g
I MO
i 0.1}
05)-.-¢
* * * : : y . : . | ! AL 1
0 5 10 15 20 25 30 35 40 45 50 0 0.2 04 06 08 1.0
t/t, 1,

FIG. 2. Collisionless time evolution of the order parameter as the coupling=IG. 4. Instability of the superconducting stateTat 2.5A,>T,, with the
constant\ changes from the value 0.5 to 1.0. initial condition A(0)=0.31A,.
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