
LOW TEMPERATURE PHYSICS VOLUME 30, NUMBERS 7–8 JULY–AUGUST 2004
Superconducting and mesoscopic structures „Preface …

@DOI: 10.1063/1.1789091#
fe
at

o
sy
ion
io
o

k
fe
o

l
ct
cr
a
h
ro
to

t
rr
pa
s
a

d
.
n
n
e

-
th
s
s

an
is

tte
n

pe
ie
i

ia
ion
su
ic

e
rs

uper-
The
ting
s for
d by

r-
The
ing
is

f
k

t in
an

es
the
hor
ano-
er-
pa-
m

e
spin

nel-
o-

–S

ak
on
ern

un-

-
su-

nal
t to
nc-
eak
nt–
are
in

ori-
he

of
It is remarkable that for 40 years the Josephson ef
has maintained its position at the center of condensed m
physics. The reason probably lies in the very concept
weak coherent coupling between macroscopic quantum
tems. It allows one to separate the effects of interact
which creates the long-range order, from the correlat
themselves, corresponding to this order. It provided the p
sibility to investigate the overlap of mutually exclusive~in
the bulk! long-range orders. It gives the opportunity to loo
at the effects of finite size of the system. Josephson ef
also gives a framework for the discussion and realization
macroscopic quantum phenomena~beyond the almost trivia
fact that superconductors are macroscopic quantum obje!.
The last five years have seen the demonstration of ma
scopic quantum resonant tunneling, quantum coherence,
quantum entanglement in Josephson structures. Josep
physics repaid the physics of bulk superconductivity by p
viding a means of investigation of unusual superconduc
~e.g., demonstratingd-wave symmetry in high-Tc cuprates!.

Brian D. Josephson discovered his remarkable effec
1962. Josephson predicted that a zero voltage supercu
could flow in a junction between two superconductors se
rated by a tunnel barrier. The magnitude of the Joseph
current is related to the difference of the phases of the m
roscopic wave functions~complex order parameters! of the
superconductors forming the junction. P. W. Anderson an
M. Rowell first observed this dc Josephson effect in 1963
a dc voltageV is applied to the junction, an ac supercurre
with the frequency 2eV/\ appears between the superco
ductors. The first direct observation of the ac Josephson
fect was made 40 years ago in Kharkov, Ukraine~I. K. Yan-
son, V. M. Svistunov, and I. M. Dmitrenko, Zh. E´ksp. Teor.
Fiz. 47, 2091 ~1964!; 48, 976 ~1965! @Sov. Phys. JETP20,
1404 ~1965!; 21, 650 ~1965!#!. Soon after Josephson’s pre
dictions for the tunnel junctions, it became clear that
effects are much more general and occur whenever two
perconductors are weakly coupled. The physics of weak
perconductivity~a term introduced by P. W. Anderson! be-
came an area of a great interest for experimental
theoretical investigations. More than forty years after its d
covery, the Josephson effect still attracts considerable a
tion and keeps providing us with exciting new physics a
applications.

This issue is devoted to aspects of the physics of su
conducting and mesoscopic structures. It represents rev
and original articles on the subject. The issue opens w
papers by Yanson and Dmitrenko which review the init
steps in study of the ac Josephson effect in tunnel junct
and further experimental investigation of weakly coupled
perconductors at the Institute for Low Temperature Phys
and Engineering in Kharkov.

The Josephson effect arises in superconducting w
links—junctions of two weakly coupled superconducto
5131063-777X/2004/30(7–8)/2/$26.00
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~massive banks! S1 and S2 . The coupling allows the ex-
change of electrons between the banks and establishes s
conducting phase coherence in the system as a whole.
weakness of the coupling means that the superconduc
order parameters of the banks are essentially the same a
disconnected superconductors, and they are characterize
the phases of the order parametersx1 andx2 . The Josephson
weak link can be considered as a ‘‘mixer’’ of the two supe
conducting macroscopic quantum states in the banks.
result of the mixing is a phase-dependent current-carry
state with current flowing from one bank to another. Th
current is determined~parameterized! by the phase differ-
encew5x22x1 across the weak link. The specific form o
the current–phase relationI (w) depends on the type of wea
link.

A number of papers consider the coherent transpor
Josephson weak links with coupling more complicated th
just a tunneling barrier. In the paper by Kulik different typ
of superconducting weak links are reviewed, focusing on
origin of jumps in the current–phase relations. The aut
also discusses persistent currents in mesoscopic and n
scopic Aharonov–Bohm structures. Novel effects in sup
conducting nanojunctions are studied theoretically in the
per by Zaikin. It is shown that interplay between quantu
interference effects and Andreev reflection inS–N–Sjunc-
tions with insulating barriers may qualitatively modify th
Josephson current. Several papers included deal with
effects in mesoscopic Josephson junctions. Shnirmanet al.
study the dynamics of a single spin embedded in the tun
ing barrier between two superconductors. A new effect, ‘‘J
sephson nutation,’’ is predicted. The paper by Kriveet al.
reviews the charge and spin effects in S–Luttinger liquid
and S–quantum wire–S junctions.

The properties of the current carrying states in a we
link depend not only on the manner of coupling but also
the properties of the superconducting banks. The mod
physics of superconductivity is essentially the physics of
conventional superconductivity.

The discovery ofd-wave symmetry of the order param
eter in high-temperature superconductors and of triplet
perconductivity in compound Sr2RuO4 has caused a stream
of theoretical and experimental research on unconventio
superconductors. The sensitivity of the Josephson effec
the symmetry of the complex order parameter in the ju
tion’s banks stimulated numerous studies of Josephson w
links between unconventional superconductors. The curre
phase relations for unconventional Josephson weak links
quite different from the conventional ones. For example,
grain-boundary junctions, depending on the angle of mis
entation of d-wave order parameters in the banks, t
current–phase relation is changed from a sin(w)-like curve to
a 2sin(2w) dependence.

Clearly, this determines new features in the behavior
© 2004 American Institute of Physics
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such Josephson junctions in applied voltage or magn
field. A considerable number of the papers included in t
issue concern the study of unconventional Josephson w
links. One of the most striking manifestations of the unco
ventional order parameter symmetry is the appearanc
spontaneous current flowing along the contact interface
addition to the Josephson current. The spontaneous cu
arises due to the breaking of the time-reversal symmetryT)
in the system. The study ofT-breaking phenomena is no
only of fundamental significance but also attracts inter
from the standpoint of realization of qubits, basic units
quantum computers. The review by Kolesnichenkoet al. fo-
cuses on spontaneous currents in junctions betweend-wave
and triplet superconductors. It also contains the review
superconducting qubit basics with emphasis on the prope
of d-wave qubits. A theoretical paper by Tanakaet al. con-
siders the impurity scattering effect on charge transpor
high-Tc cuprate junctions. The results of experimental inv
tigations of high-Tc grain boundary junctions and heter
structures are presented in the papers by Tafuriet al. Ko-
missinskiet al. and Timofeevet al. The specific features o
ac Josephson effect in unconventional superconductors
reported in the theoretical paper by Kwonet al.Note that the
problem of existence of the fractional ac Josephson effec
ic
s
ak
-
of
in
ent

t
f

f
es

n
-

re

in

unconventional superconductors needs further theore
and experimental investigations.

Mesoscopic structures consisting of several Joseph
junctions are now being studied intensively from the point
view of qubit realization. A paper by Il’ichevet al. summa-
rizes the results of implementation of advanced impeda
measurement technique for characterization
interferometer-type superconducting qubits. In a theoret
paper by Ioffeet al. a new class of Josephson arrays is
troduced. These arrays have nontrivial topology and exh
novel quantum states at low temperatures. In the pape
Kuplevakhky, a detailed theory of Josephson vortices in l
ered superconductors is developed. The quantum dyna
of the order parameter and time-dependent BCS pairin
investigated in the framework of the Wigner distributio
function by Aminet al.

A single issue cannot cover all aspects of the researc
gives the reader a brief overview of the current state of
tivities, which, we hope, will be useful and will stimulat
further investigations in the field of superconducting and m
soscopic structures.

We greatly appreciate helpful discussions with all t
contributors during the preparation of this issue.

A. N. Omelyanchouk
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An historical review of the discovery and the early period of research on the Josephson effect is
given. Experiments on the tunneling effect in superconductors done in the 1960s at the
Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of
Ukraine, Kharkov~ILTPE!, which led to the observation of Josephson electromagnetic
radiation are described in detail. The experimental data are illustrated by the original curves, and
the dates they were taken are indicated. The physical mechanism for the generation of rf
radiation in superconducting tunnel junctions is examined, and some of the more promising
applications of the ac Josephson effect are briefly listed. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1789911#
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1. INTRODUCTION

In the first half of the year 1962 the young English th
oretical physicist Brian Josephson, still a postgraduate
dent, calculated the tunneling current between two superc
ductors and found additional terms. According to Josephs
the barrier could be penetrated not only by ‘‘normal’’ ele
trons, i.e., current carriers whose motion in a metal me
with resistance and leads to heat release, but also, wi
comparable probability, by ‘‘superconducting’’ electron
which through their interaction with the crystal lattice a
attracted to each other, forming so-called Cooper pairs w
charge 2e (e is the elementary electric charge!. The super-
conducting electrons, when moving in a metal with a velo
ity not exceeding a critical value, do not encounter res
tance. The penetration of normal electrons through
insulating layer several nanometers thick finds a natural
planation in the framework of the quantum tunneling effe
The tunneling of Cooper pairs can loosely be called
‘‘double’’ quantum effect, since it derives its existence fro
the wave nature of the whole ensemble of superconduc
electrons as a whole, described by a single quantum w
functionC~r!. Naturally, from the standpoint of quantum m
chanics, if the phenomenon of superconductivity is not ta
into account, the simultaneous tunneling of two electron
proportional to the square of the coefficient of transpare
of the potential barrier, which is ordinarily a negligibly sma
quantity. It is unusual that the transparency of the barrier
a Cooper pair is actually of the same order of magnitude
for a single normal electron.

In a brief communication published in one of the fir
issues of the newly launched journalPhysics Letters1

~6/8–7/1/1962!1! Josephson very briefly set forth the imp
cations of his theoretical calculations. Besides thedc super-
conducting current flowing atzerovoltage across the barrie
there should also exist anac superconducting current tha
flows when adc voltage is applied across the barrier. At
potential difference of 1mV the frequency of the alternatin
current is 483.6 MHz. In fact, in order to be observable,
ac Josephson current must give rise to a small ac compo
5151063-777X/2004/30(7–8)/7/$26.00
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of the potential difference across the barrier, which is resp
sible for some mechanism of dissipation of the oscillati
energy. Josephson also pointed out the kinds of experim
that would most clearly manifest the unusual properties
the Cooper-pair tunneling current. For direct current this
the oscillatory dependence of the critical~i.e., maximum pos-
sible! supercurrent on the value of a weak magnetic fi
piercing the cross-sectional area of the tunnel junctions. T
dependence is a consequence of the sensitivity of the p
x(r ) of the wave functionC(r )5uC(r )ueix(r ) of the super-
conducting electrons to magnetic field, or more precisely
the field of the vector potentialA(r ). Another experiment
that would indicate the existence of an alternating superc
rent is the extremely unusual detection of external elec
magnetic radiation in the microwave range by a Joseph
tunnel structure. Since the frequency of the alternating c
rent is proportional to the voltage across the tunnel juncti
a small microwave component induced by an external fi
will lead to frequency modulation of the alternating curre
and dc components will appear in the spectrum each time
dc voltage across the contact satisfies the relation

2eV5n\v ~n51,2,3,...!. ~1!

Consequently, the current–voltage~I–V! characteristic will
have vertical segments~steps! at which the current change
at a nearly constant voltage.

Relation~1! is easily interpreted from a physical stan
point. The Cooper pairs have a total spin equal to zero
therefore obey Bose–Einstein statistics. At temperatures
below the transition temperature of the metal to the sup
conducting state, as a result of Bose condensation almos
of the Cooper pairs occupy the same energy level, co
sponding to the chemical potential of the conduction el
trons. If a static voltage is applied between two superc
ductors in tunneling contact, their chemical potentials w
differ by eV. Consequently, an elementary tunneling event
a Cooper pair having charge 2e in this case will be a proces
accompanied by the emission or absorption of one or sev
© 2004 American Institute of Physics
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quanta of energy\v. It is easy to see that relation~1! is an
expression of the energy conservation law in such an
ementary process.

The events leading to the experimental discovery of
predicted effects developed rapidly. A half year after pub
cation of Josephson’s first paper1 under the cautious title
‘‘Possible new effects in superconductive tunneling,’’ P.
Anderson and J. M. Rowell published an experimen
paper4 ~1/11–3/15/1963! under the similarly cautious title
‘‘Probable observation of the Josephson superconduc
tunneling effect,’’ in which they presented certain facts th
did not fit in with the existing~before Josephson! theory of
the currents through a tunnel contact and which find a nat
explanation in Josephson’s theory of the dc supercurrent.
complete triumph of Josephson’s ideas came in mid-19
when Rowell reported the observation of an oscillatory
pendence of the critical current5 ~7/24–9/1/1963!, which
gave direct proof of the existence of the dc supercurrent
experiments with detection of external electromagne
radiation6 ~6/13–7/15/1963! S. Shapiro observed the curre
steps predicted by Josephson, which could be regarde
convincing indirect proof of the existence of an alternati
current. A summary of these successes was presented a
International Conference on Superconductivity at Colg
University~USA!, August 26–29, 1963. There, in addition
the achievements already mentioned, M. D. Fiske prese
a report7 containing experimental confirmation of the pr
dicted temperature dependence of the Josephson critical
rent and the observation of vertical current steps at fin
voltages in the absence of external microwave radiation
the same issue of the journal the famous English scientis
B. Pippard, in a discussion section, made a guess~later bril-
liantly confirmed! that the mechanism for the onset of the
steps is a consequence of the excitation of electromagn
oscillations of a miniature strip resonator with open wa
formed by the tunnel junction. Pippard and Anderson can
regarded as the ‘‘godfathers’’ of the Josephson effect, si
they were the ones with whom Josephson discussed his i
and obtained from them complete mutual understanding
support. Besides, Anderson made a large contribution to
development and interpretation of the physical essence o
effects predicted by Josephson. In particular, in collabora
with A. N. Dayem, he first showed8 ~6/18–8/10/1964! that
the Josephson effects are also observed in supercondu
microbridges, thereby expanding the class of objects ex
iting ‘‘weak superconductivity,’’ i.e., structures in whic
these effects are manifested. Josephson himself had m
tioned in his first report that the effects he was predict
could take place not only in metal–insulator–metal tun
structures but also in the so-calledS–N–Sstructures, i.e.,
two superconductors separated by a thin layer of nor
metal.

2. START OF TUNNELING RESEARCH ON
SUPERCONDUCTORS AT ILTPE

The first tunneling measurements of the energy gap
the spectrum of quasiparticle excitations of superconduc
were done in 1960 by I. Giaever9 in the USA.2! In that same
year the Institute for Low Temperature Physics and En
neering of the National Academy of Sciences of Ukra
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~ILTPE! was founded in Kharkov. Tunneling in superco
ductors was included in the plan of scientific research of t
institute. However, since it was necessary to create the e
experimental base from ‘‘zero,’’ Giaever’s results were n
reproduced until early 1963. These were measurement
the I–V characteristics of thin-film tunnel structures of t
type aluminum–~aluminum oxide!–~lead, tin, or indium!.
One of the first characteristics on which the energy gap
lead (D51.34 MeV) was clearly revealed is shown in Fig.

By mid-1964 the technology of fabricating high-quali
superconductor–insulator–superconductor tunnel struct
had been developed,10 making it possible to study the Jo
sephson effects. In the very first paper11 ~7/30–12/1964! it
was shown that the tin–oxide–tin structures we had fa
cated had a thin and uniform potential barrier. The charac
istic oscillatory dependence of the maximum Josephson
rent was obtained in a new experimental setup, in which
‘‘external’’ magnetic field was created by an additional cu
rent flowing along one of the films. For tunnel junctions
which the width of the superconducting films is less than
so-called Josephson penetration depth of the magnetic
into the tunnel junction~which usually amounts to a few
tenths of a millimeter!, the dependence of the critical curre
on the fieldH0 applied parallel to a film of widthL conforms
well to the relation

I c~H0!5I 0Usin~pF/F0!

~pF/F0!
U, ~2!

whereI 0 is the maximum dc Josephson current,F05h/2e is
the magnetic flux quantum in the superconductors, equa
2310215 Wb, F5(d12lL)LH0 is the magnetic flux
threading the tunnel junction,d is the thickness of the insu
lating layer~the oxide separating the superconducting film!,
andlL is the so-called London penetration depth of a sta
or not too high-frequency alternating magnetic field into t
superconductor. Figure 2 shows the dependence of the
sephson critical currentI c(H0) on the magnetic field for the
junction on which the electromagnetic radiation predicted
Josephson was first observed. In this case the dimension
the junction exceeded the Josephson penetration depth.

FIG. 1. Current–voltage characteristic of an Al–Al2O3– Pb junction.
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sequently, the magnetic field penetrated nonuniformly i
the junction, in the form of quantized lines or tubes of ma
netic flux. This circumstance is responsible for the deviat
of the observed dependence from formula~2!. Nevertheless,
the oscillatory dependence with a decaying envelope
clearly observed, indicating the uniformity of the insulatin
spacer and the absence of microshorts in the tunnel barr11

At comparatively high magnetic fields the magnetic field d
tribution in the junction becomes close to uniform, and t
field dependence of the critical current approaches form
~2!.

The temperature dependence of the Josephson cr
current was also confirmed, and the so-called ‘‘subharmo
gap structure’’ was observed.11

Of particular interest for the theme of this article is th
the so-called stepped structure of the I–V characteristic
biases less than the threshold value~i.e., for eV less than the
energy gapD! was observed in those measurements. A ty
cal example of such structure is shown in Fig. 3, wh
shows the I–V characteristic of the junction on which t
Josephson electromagnetic radiation was first observed.

FIG. 2. Dependence of the critical current on an additional current along
film, expressed in terms of magnetic field strength in the tunnel junctio

FIG. 3. Stepped structure of the I–V characteristic of the tunnel junction
which the Josephson electromagnetic radiation was first observed~note the
step enclosed by the dotted circle!.
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dotted circle indicates the step on which the working po
was set at the time of these experiments. One can somet
observe unusual behavior at such steps: with increasing
rent the working point can jump not to higher but to low
voltage,3! a finding that cannot be explained by the possi
destruction of some superconducting current paths conne
in series. It was conjectured11 that the stepped structure ‘‘ca
probably be attributed to the excitation of the alternati
supercurrent predicted by Josephson.’’ Thus in mid-1964
work had approximately reached the level that had b
achieved abroad back in August of 1963.4!

3. OBSERVATION OF JOSEPHSON ELECTROMAGNETIC
RADIATION

In spite of the fact that the mechanism producing t
vertical segments on the I–V characteristics of tunnel ju
tions was unknown to us, there was no doubt in our min
that it involved the ac Josephson current. This could
proved by the direct observation of electromagnetic radiat
accompanying the ac supercurrent. Registration of the ra
tion would be direct evidence of the tunneling of Coop
pairs with the emission of photons—one of the two fund
mental quantum processes predicted by Josephson. Be
that there existed only the indirect evidence mention
above.6,7

It was known that the voltage should be related to
radiation frequency by the Josephson relation

\v52eV. ~3!

In addition, it had been noted that the position of the steps
the voltage axis depended on the dimensions of the tun
junction. The wider films are characterized by a shorter d
tance between adjacent steps. This made it possible to ch
in an empirical way those films of a width such that t
voltage at which any step corresponding to relation~3!
would be observed at the frequency at which the radiat
was detected. The height of the steps depended on the s
magnetic field applied in the plane of the tunnel junction.

As a radiation receiver we used a P5-10 microwave
diometer for the 3-cm wavelength range. It had the adv
tage of a high threshold sensitivity ('10216 W), self-
calibration, and relatively compact size. It would later tu
out that the choice of a receiving device with the high
threshold sensitivity was the key to the success of the wh
experiment, since the power initially detected was very l
~at a level of'10214 W); Fig. 4.

The experiments were done as follows12 ~12/9/1964–3/
1965!. Films of such a width that a step was observed on
I–V characteristic at the required voltage~approximately
19.6mV! were selected. From a number of tunnel structur
we selected those for which the critical current oscillat
with a smoothly decaying envelope in a static magnetic fi
parallel to the films~like the dependence shown in Fig. 2!.
Satisfaction of this requirement attested to the presence
thin and uniform oxide layer. After that a value of the ma
netic field was chosen such that the required step would h
maximum height. The sample was an 18318 mm glass sub-
strate~a microscope cover slip! on which two tin films with
a width of around 1 mm and thickness of 1024 mm had been
deposited at right angles to each other in a high vacuum.
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first film had been covered by a thin insulating layer~2 nm
thick! formed by oxidation in air or in oxygen. Thus th
tunnel junction was the;13131024 mm region where
these films overlapped. The remaining elements of the st
ture served for connection of the current and potential lea
The tunnel junction was held at liquid helium temperature
a standard 3-cm waveguide parallel to its wide wall and cl
to the short-circuiting plunger. The P5-10 receiver w
mounted on the other end of the waveguide, away from
cryostat.

Figure 4 shows the initial part of the I–V characteris
~panel a! together with the output signal of the radiatio
detector~panel b!, taken with a smooth variation of the cu
rent through the junction~and of the voltage across it!. The
step satisfying relation~3! for the frequencyf 0 to which the
receiver was tuned was placed in the region of marks 6
7. Marks 1–7 correspond to the same points in time in
graphs in Fig. 4a,b. The P5-10 receiver has a comparati
narrow passband (;1 MHz), and so the signal is observe
only in the neighborhood of a certain point on the step. Wh
the receiver is tuned to another~nearby! frequency, this point
shifts on the step in accordance with relation~3!. One can
also notice a slight increase in the signal in the region
mark 4, which corresponds to relation~1! for n52, i.e., a
slight increase observed in the signal was due to the sec
harmonic of the Josephson radiation. The radiation powe
the first experiments was very low (;10214 W). This is be-
cause only a small fraction of the radiation generated lea
into the waveguide and could be detected. A large fraction
it was scattered inside the tunnel junction and converted
heat. In addition, in the first experiments the static magn
field was directed along the axis of the waveguide and, he
the direction of propagation of the electromagnetic field g
erated by the wave of Josephson current was, strictly sp
ing, orthogonal to the axis. Nevertheless, because of the
uniformity of the field near the edges of the junction,
significant amount of the electromagnetic energy was ra
ated along the waveguide axis and could therefore be
tected. In the later experiments13 the typical radiation power
was '10212 W and in certain cases could be increased

FIG. 4. Simultaneous recording of the I–V characteristic near a step~a! and
the output signal of a microwave receiver with detection of the radiation~b!.
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1029 W ~Ref. 14! through better matching with the oute
space. Although the power observed was extremely low
was generated in a volume of the order of 1026 cm3, and so
the specific microwave power was as high as 10 mW/cm3,
and it could be raised to 1 – 10 W/cm3. The main advantage
of Josephson tunnel microwave generators is the ease
which they can be incorporated in integrated film microc
cuits operating at low temperatures and, hence, having
noise.

Among the output devices of the P5-10 receiver is
loudspeaker, which served as an indicator of the noise sig
in the band of sonic frequencies. Upon tuning to the work
point of the I–V characteristic where the Josephson f
quency relation is satisfied, there was usually a noticea
increase in the noise. Interestingly, on one occasion when
voltage across the junction reached a value satisfying
Josephson frequency relation~3!, music was heard coming
from the speaker instead of noise. It turned out that the
trinsic linewidth of the Josephson radiation is so narrow t
the rf induction signal from a nearby radio translation stat
led to frequency modulation of the Josephson microwa
radiation. After a double heterodyning in the P5-10 receiv
the signal of that radio station was reproduced in the lo
speaker.

Thus our work on the direct observation of the elect
magnetic radiation helped forge a link in the compelli
chain of discoveries due to Josephson’s predictions.

Abroad, the main thrust of experimental research on
ac Josephson effect was toward explaining the mechanis
the indirect manifestations of the existence of the ac sup
current. R. E. Eck, D. J. Scalapino, and B. N. Taylo15

~5/18–7/6/1964! observed a broad resonance peak in
I–V characteristic of lead–oxide–lead tunnel junctions at
ases less than half of the width of the energy gap of le
(DPb51.34 meV). The position of this peak was propo
tional to the strength of the magnetic field applied in t
plane of the junction. This peak arises as a result of
self-detection of the traveling electromagnetic wave exci
by the traveling wave of ac Josephson current. Becaus
the large damping and structural inhomogeneities charac
istic for lead tunnel junctions, reflection of electromagne
waves from the boundaries of the junction were not o
served. Somewhat later16 those same authors observed a
explained the stepped structure for lead junctions of be
quality. The steps arise as a consequence of the self-dete
of resonance types of electromagnetic oscillations gener
by the ac Josephson current. An analogous explanation
given by D. D. Coon and M. D. Fiske17 ~10/5/1964–5/3/
1965! for the stepped structure in the case of tin tunnel ju
tions. Unfortunately, the last two papers mentioned remai
unknown to us for a long time, and we arrived at simil
results independently@see Ref. 18~5/18–7/1/1965! and Ref.
19 ~6/12–8/1/1965!#.

In parallel with the elucidation of the mechanism of ge
eration of Josephson radiation, other researchers condu
experiments on its direct observation. For example, in R
17 an attempt was undertaken to observe the radiation
means of transmission line expanding smoothly from;1 nm
~the distance between the film and the tunnel junction! to the
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macroscopic size of the coaxial cable or waveguide.
power was detected down to 10212 W, even though one o
the junctions gave a tunneling current of 30 mA at a volta
of ;20 mV. We now know that the reason for the failure la
in the insufficient sensitivity of the radiation receiver, sin
the wave impedance mismatch of a tunnel junction~as a
stripline! and a standard waveguide is large.

4. MECHANISM OF GENERATION OF ELECTROMAGNETIC
RADIATION AT RESONANCE FREQUENCIES OF A
TUNNEL JUNCTION

Two superconductors separated by a thin insulator la
can act as a stripline for the propagation of electromagn
waves. These waves were considered by J. C. Swihart.20 He
showed that at a thickness of the insulating spacer much
than the penetration depth of magnetic field into the sup
conductor, electromagnetic waves are strongly slowed.
penetration depth of magnetic field into a superconducto
given by

lL5S mc2

4pnse
2D 1/2

.

Heree andm are the charge and mass of the electron,c is
the speed of light,ns is the density of superconducting ele
trons, which is of the same order of magnitude as the den
of conduction electrons in a metal under the condition t
the temperature is significantly below the critical temperat
Tc of the transition to the superconducting state. For tinTc

53.7 K and lL550 nm. The thicknessd of the insulator
layer in a tunnel junction does not exceed 2 nm. Con
quently, the electric and magnetic fields are separated
space. The first is concentrated in the insulating gap, w
the second is mainly in the subsurface layers of the su
conductor, occupying a total distance along thex axis of L
52lL1d'100 nm~Fig. 5!.

The wave impedance of such a stripline is several ord
of magnitude lower than that of free space, and electrom
netic waves are almost completely reflected from the ed
of the tunnel junction as from the open end of a transmiss
line. Bounded on two sides, a tunnel junction is a strip re
nator with resonance frequencies

vn5
pn

L
c0 , n51,2,3,...,

FIG. 5. Model of a tunnel junction and the electromagnetic fields and
rent in it.
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which are inversely proportional to the dimensionL of the
junction along which the standing electromagnetic wave
established. The phase velocity of the slowed electrom
netic wave is given by

c05cS d

«0L D 1/2

and for typical values of the parameters is about 20 tim
lower thanc, the speed of light in free space. It follow
immediately that a tunnel junction with dimensions som
what large than 1 mm will resonate in the 3-cm wavelen
range.

In analogy with how a density-modulated electron be
excites slow electromagnetic waves in microwave electro
devices, in a superconducting tunnel junction the wave
Josephson supercurrent densityj x(z,t) excites resonance
electromagnetic oscillations of the miniature microwa
resonator made up of the crossed superconducting films~Fig.
5!. The Josephson current flows along thex axis, i.e., be-
tween the superconducting films. Its time dependence is
termined by the frequency~3!. The dependence of the Jo
sephson current density on the coordinates can be contro
by means of a static magnetic fieldH0 applied in the plane of
the junction. In the simplest case the rather weak coup
between the two superconductors~i.e., at a sufficiently low
barrier transparency for the tunneling of Cooper pairs! this
dependence is of a harmonic character for thez direction,
which lies in the plane of the junction but perpendicular
the external magnetic field:

j 5 j c sin~vt2kz!; k5
2eLH0

c
; v5

2eV

\
.

The phase velocity of the Josephson current den
wave is given by

vp5
v

k
5c

V

LH0

and it depends on both the voltageV across the junction and
on the magnetic fieldH0 , which provides a means for con
trolling the phase velocity independently of the electroma
netic waves which are excited. The maximum interaction
a Josephson current density wave and an electromag
wave in a tunnel junction is brought about when the ph
velocities of the field and current density are equal. T
condition corresponds to the equality

V5
c0

c
H0 ,

which gives the value of the magnetic field at which t
self-induced step on the current–voltage characteristic o
tunnel junction has its maximum height. This relation cor
sponds to equality of the wavelengths of the Josephson
rent density wave and electromagnetic wave. As the m
netic fieldH0 is increased, the wavelength of the Josephs
wave decreases, and a dephasing occurs between the cu
wave and the field excited. However, each time the curre
density wave becomes an integer multiple of the field wa
the efficiency of interaction again increases. Therefore,
intensity of the generation on each type of oscillation a
along with it, the height of the corresponding step on t

r-
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current–voltage characteristic, oscillates with increas
magnetic field, and the amplitude of those oscillations gra
ally decays.

Figure 6 shows how the height of the self-induced st
on the I–V characteristic of a Sn–SnO2– Sn Josephson tun
nel junction depends on the external magnetic field. T
numbern of each step in the sequence is indicated near
corresponding principal maximum, the position of which
the voltage axis as a function of field is given in the inset
this figure. The deviation of the Josephson critical curr
~corresponding ton50) from relation~2! is due to the fact
that this junction, like that on which the radiation was fir
detected, has dimensions exceeding the Josephson pe
tion depth. The scheme for automatic registration of th
curves works in such a way that the field dependence of e
successive step can be determined provided that its pos
on the I–V curve is at a higher current than the one befor
Identical steps~except forn50) correspond to the same so
of shading for an envelope rendered as a solid line or to
same shape of the envelope in the absence of shading.
complicated dependence that is observed is described
on the whole, by the existing theory.

5. SOME PROMISING TOPICS FOR FURTHER RESEARCH
AND APPLICATIONS OF THE AC JOSEPHSON
EFFECT

Although the Josephson effects were discovered r
tively long ago, research and development work on them
still intensively pursued. A whole region of low-temperatu
electronics involves the application of so-called SQUIDs
superconducting quantum interference devices, which
based on the very high sensitivity of the Josephson curren
a static magnetic field. SQUIDs are used as sensors hav
record sensitivity to the strength and gradient of an app
magnetic field and for amplifying and measuring small c
rents and voltages. They find application in geological pr
pecting for mineral resources and in medical diagnost
where they are a basic element of devices such as the m
netocardiograph and magnetoencephalograph, and in o
areas.

Josephson tunnel junctions as nonlinear elements ca
used for the mixing of signals, frequency conversion, h
monic generation, and detection of electromagnetic radia
at frequencies up to the threshold frequency correspondin

FIG. 6. Height of the characteristic steps on the I–V characteristic o
Josephson tunnel junction in an external magnetic field.
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the value of the energy gap in the spectrum of quasi-part
excitations. For superconductors such as lead and tin the
ter lies in the far-infrared region of the spectrum, while f
superconductors with higher critical temperatures~e.g.,
Nb3Sn or the new high-temperature materials YBa2Cu3O72d

etc.! it lies in the infrared. Recently there has been increas
interest in the application of Josephson junctions as ac
microwave devices~heterodynes, mixers, and frequency co
verters! in thin-film integrated circuits. From a single tunn
junction one can extract a microwave power of up
1027 W, and from a system of coupled junctions, up to
mW. For this application barriers with higher transparen
are used. Then the Josephson current exciting the reson
modes of a strip resonator propagate in the junction no
the form a traveling wave but as a soliton representing
quantum of magnetic flux which is multiply reflected fro
the edges of the junction. Such a soliton, which is also ca
a fluxon, is generated by the tunneling current itself, and
this case the external magnetic field is absent.

When speaking of the promising applications of the
Josephson effect one must not fail to mention quantum v
age standards, which have long been used in a numbe
countries as primary government standards for the volt. S
devices are easily compared with each other, since they
checked by comparing the frequencies of the standard an
the device to be checked. Precision measurements of rela
~1! have permitted refinement of the ratio of fundamen
constantsh/e and to eliminate any seeming contradictio
between the predictions of quantum electrodynamics and
periment, which had arisen because of the use of a previ
inaccurate value of this ratio.21

*E-mail: yanson@ilt.kharkov.ua
1!This is how we shall indicate the dates of acceptance and publication

pioneering works. As recounted by P. W. Anderson,2 in choosing the jour-
nal for publication it was decided not to send the first-claim report to
established American journalPhysical Review Lettersbecause of the im-
portance and unusual nature of the results obtained and the fear that
would not be understood by the referees. As the further course of ev
would show,3 even the two-time Nobel laureate John Bardeen did not ag
with Josephson’s conclusions at first.

2!In 1975 Giaever, Josephson, and L. Esaki, who had even earlier discov
the tunneling of electrons in highly doped semiconductors, were awa
the Nobel Prize.

3!It should be noted that the I–V characteristic is usually taken usin
current source. Therefore the descending part of the I–V character
cannot be recorded directly but is manifested as hysteresis on recordi
the forward and reverse directions.

4!The materials of the Colgate Conference on Superconductivity, publis
in the January 1964 issue ofReviews of Modern Physics, became known to
the author only in the Fall of that year.

1B. D. Josephson, Phys. Lett.1, 251 ~1962!.
2P. W. Anderson, Phys. Today23~11!, 23 ~1970!.
3J. Bardeen, Phys. Rev. Lett.9~4!, 147 ~1962!.
4P. W. Anderson and J. M. Rowell, Phys. Rev. Lett.10, 230 ~1963!.
5J. M. Rowell, Phys. Rev. Lett.11, 200 ~1963!.
6S. Shapiro, Phys. Rev. Lett.11, 80 ~1963!.
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In the study of the phenomena of superconductivity th
have been turning points that have opened up new field
research. For example, such a role was played by Shub
ov’s discovery of the ideal diamagnetism of superconduct
an effect which was later named after Meissner, who, follo
ing a visit to Kharkov, published his results somewhat ear
than Shubnikov.

The concept of superconductivity, which was develop
phenomenologically by Fritz London in the years betwe
1934 and 1950 as a result of his attempt to explain
strangeness of the Meissner effect, was of fundamental
portance.

The well-known quantum expression for the curre
written with the aid of the wave functions of the carriers, c
be reduced to the form

j s5
ens

m S \¹w2
e

c
AD

on the assumption that the square modulus of the wave f
tion of the ‘‘superfluid’’ electron is equal to the densityns of
such electrons. The supercurrentj s contains two terms: a
paramagnetic part due to the gradients of the phasew, and a
diamagnetic part due to the vector potentialA.

A chief element of London’s concept was the postul
of phase coherence of the wave functions of the superc
ducting electrons over macroscopic lengths and times. In
case the phase gradient vanished, and the direct couplin
the current and vector potential remained. Taking the cur
both sides of the equation gave the second London equa
which describes the Meissner effect.

London’s concept implied a result no less strange th
the Meissner effect—quantization of the magnetic flux
superconductors~F. London,Superfluids~1950!!. But only
after 11 years did ‘‘the ice start to move:’’ as we know, flu
quantization was observed simultaneously in Europe
America.1 The year before, Ivar Giaever had realized t
tunnel effect in superconductors. A year later, Brian Jose
son, a postgraduate student doing a theoretical study o
tunneling effect, predicted his famous Josephson effects2

In 1960 the Institute for Low Temperature Physics a
Engineering of the National Academy of Sciences of Ukra
~ILTPE!, with a Department of Cryogenic Electronics, w
founded in Kharkov. It soon became clear that supercond
5221063-777X/2004/30(7–8)/6/$26.00
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ors were most promising in such a connection, and first
tempt to use them was to create a detector of electromagn
radiation based on a tunnel junction.

The first junctions were obtained in a temporary buildi
~a bomb shelter under a residence! in conditions unsuitable
for such studies. In 1964, now in the new building of t
institute, I. K. Yanson obtained junctions of better quality
tin films and soon saw current at zero voltage~the dc Joseph-
son effect!.3 It should be mentioned that in that paper r
ported the first observation of subharmonics of the gap
the current–voltage~I–V! characteristics of a Sn–SnO2– Sn
junction. Good agreement with the theory was obtained
the dependence of the critical current onT andH. At the end
of that year, with the aid of the most sensitive receiver in
3-cm range then available~the P5-10! and a good under-
standing of the physics of the processes occurring in a tun
junction, he successfully observed the radiation (W
;10214 W) generated in the ac Josephson effect in a dir
experiment.4

A number of studies were subsequently done to stu
this radiation.5 I. O. Kulik developed an electrodynamics o
the Josephson tunnel junction,6 and our experimental result
were successfully interpreted in the framework of th
theory.

We also studied the processes of aging of tun
junctions,7 which are accompanied by growth of the critic
current and a lowering of the normal resistance. Althoug
tunnel junction is the limit of weak coupling of superco
ductors, with the growth of the critical current~coupling en-
ergy! we were able to observe in the spectrum of curr
steps on the I–V characteristic the subharmonic steps tha
characteristic of the limit of strong coupling of superco
ductors, as studies of clamped point contacts would sho

The first weak link between superconductors that
studied was a tunnel junction. But such a link can also
created in contacts with direct conduction—point contac
through a normal metal layer, etc.

Subsequent studies were done for delicate point cont
of the tip–plane type. Stable results in the presence of vib
tions were obtained after a special mechanism was c
structed~Fig. 1!.8 The mechanism permitted placement
the tips in the waveguide with an accuracy of 200–300
This made it possible to made very smooth variations ofRN ,
© 2004 American Institute of Physics
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the critical current, and, as it turned out, the coupling ene
of the superconductors through the contact.

The earliest manifestations of the Josephson effect w
observed on high-resistance contacts. Fluctuations first
rupt the current at zero voltage. The ac effect is more sta
against fluctuations; it was first manifested in oscillations
the slope of the I–V characteristic, and at a fixed curren
leads to the characteristic oscillations~Fig. 2!.9

As the critical current increases, the spectral proper
of the contacts~the spectrum of the steps on the I–V cha
acteristic and the dependence of their height on the mi
wave radiation! change substantially.10

The Josephson relation

j ~w,t !5 j 0 sinw~ t !, ~1!

where j 0 is the maximum value of the dc Josephson curr
and w is the phase difference, is well known. Ifj (w) has
such a dependence andw(t) is a linear function, then every
thing is simple and beautiful: the spectrum of the steps
harmonic, and their height as a function of the microwa

FIG. 1. Mechanisms for creating point contacts2 in a resonator1 ~a! and in
a waveguide1 ~b!; 3—elastic elements~flat spring and bracket!; 5,6 ~a! and
4,5 ~b!—differential threads with a pitch difference of 0.05 mm. The gear
11 and clutch10 are used to rotate the center plate12 to obtain a new
contact.

FIG. 2. Oscillations of the voltage across a superconducting point con
~data of a previous figure! for two fixed values of the current and with
change of the incident power.
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field varies as the modulus of the Bessel function of
corresponding order. But if the dependencej (w,t) differs
from sinusoidal, then one must use the more gene
expression10–12

j ~w,t !5 (
n51

`

j n sinnw~ t !. ~2!

Even for a tunnel junction, as the transparency of
barrier increases the dependencew(t) deviates from linear,13

and j (w) is not described by Eq.~1!.14 Research on the spec
tral properties of point contacts have led to the conclus
that value of the coupling energy is the key.15 A nonsinusoi-
dal dependencej (w) leads to the appearance of subharmo
steps, and a characteristic alternation of extrema of
Bessel function gives way in the strong-coupling limit to
single maximum~Fig. 3!. By fitting Bessel functions one ca
approximate the dependence of the height of the step on
value of the microwave field~Fig. 4!, having determined the

t

ct

FIG. 3. Dependence of the zero current and step heights on the lev
microwave powerP delivered to superconducting point contacts: a hig
resistance Ta–Ta contact~a!; a contact between the same pair, enlarged
movement of the tip, the resistance decreasing to 0.08V ~b!. The contact
pair was placed in a standard 3-cm waveguide at a distance of a qu
wavelength from the short-circuiting plunger.
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degree of deviation of the dependencej (w) from a sine and
the effective number of elements of the series~2!.

The inverse Josephson effect was studied on point c
tacts in Ref. 16; previously it had been observed only
tunnel junctions~the appearance of continuous and quant
dc voltages under the action of microwave radiation in
absence of a transport current!.

Besides individual point contacts, we realized on
dimensional chains of point contacts between grains of n
bium powder17 and investigated interference effects in t
joint action of microwave and magnetic fields on statisti
systems of point contacts.18

On point contacts of theS–N–S type we observed a
new type of detection of microwave radiation in the abse
of transport current through the contact, controlled by
external magnetic field.19 The methods developed for makin
contacts of the point type20 made it possible to study th
characteristic steps on the I–V characteristics of contact
various strip resonators.21

If more than one microcontact is placed in a strip s
tem, it becomes possible to control the microwave genera
by means of small magnetic fields. This opens up interes
possibilities in microwave and measurement technique.

It should be noted that a coherent lattice of contacts w
generate the same frequency for any contact resistanceRN ,
since the ‘‘banks’’ are superconducting and the potential
ference across all contacts is the same. And changing the
by half a quantum rotates the phase of the microwave os
lations of adjacent contacts byp, i.e., it quenches the gen
eration at the output.

Figure 5 is shown as an example. In contrast to the s
induced by an external microwave source, the position of
characteristic steps along theV axis changes with tempera
ture as a result of the change in penetration depth and ei
frequencies of the strip resonator.

Current-controlled Josephson contacts were propose

FIG. 4. Experimental and calculated curves of the height of the first cur
step versus the amplitude of the microwave field for a low-resistance Ta
point contact. Approximation of the sum by eight Bessel functions.
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us and studied in a crossed film geometry~Fig. 6!.22 A the-
oretical model for such control was developed in Ref. 2
Similar geometries have subsequently been investigated
fectively in systems of multiterminal interferometers.24

Interesting weak links arise at phase-slip centers~PSCs!
and the recently discovered and investigated phase-slip l
~PSLs!.25 PSLs arise in narrow superconducting channe
where the current and order parameter are uniform over
cross section, the magnetic field can be neglected, and A
kosov vortices do not form. The current–voltage charac
istics have the characteristic stepped form due to volt
steps. Such structures of the I–V characteristic have a
been observed for wide films, where it is usually assum
that the resistive state is due to a dynamic mixed state~DMS!
in which a flow of the vortices from the external field or th
field of the current occurs at a current exceeding the vor
pinning strength.

nt
Ta

FIG. 5. I—current–voltage characteristic of a Nb–Sn contact withRN

50.1 V and a system of harmonic characteristic steps. The contact is
tiply connected, and therefore the I–V characteristics forF5nF0 and F
5(n11/2)F0 are substantially different. II—I–V characteristic of a Nb–S
contact withRN50.01V with subharmonic characteristic steps.

FIG. 6. Photograph of a cross-shaped thin-film structure. Magnifica
12003. Variants of the weak coupling in the cross-shaped sample (I is the
transport current;i is the control current!.
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A fundamentally important result was obtained in stud
of the dependence of the critical current of wide films on
value of a magnetic field perpendicular to the film~Fig. 7!.26

Besides the oscillations of the critical current itself
H.H8, at H,H8 the I–V characteristics have the sam
stepped character as a narrow channel, but, important, in
region of fieldsH.H8 where the vortices remain in place
the film, the I–V characteristic initially has the smooth, no
linear form characteristic for a DMS, but then a new mec
nism of resistivity, due to the formation not of PSCs but no
~for the wide film! of PSLs, is turned on. This reflects, on th
one hand, a more general case of resistivity of supercond
ing films ~coexistence of two different mechanisms of res
tivity of the films! and, on the other, confirms the existen
of PSLs.

Interesting results on the dynamics of vortex motion
zones of charge imbalance~the neighborhoods of PSLs an
theSN boundary! have been obtained on wide films.27 Later
A. G. Sivakov implemented a two-contact interferome
based on PSLs.28

PSLs were first observed visually with a low
temperature laser microscope at ILTPE~Fig. 8!.

Research on quantum interference, which was starte
S. I. Bondarenko, continued first on two-contact dc SQUI
~more precisely, interferometers, since the SQUID is a dev
with electronics, a magnetic antenna, etc.!. Later V. I.
Shnyrkov began his studies of single-contact rf SQUID
which have proved to be fruitful and novel among the ma
papers on these superconducting devices.

Two-contact interferometers have been studied in a n

FIG. 7. I c(H') curves for two tin film samples:w53 mm ~d! and 5.4mm
~s! ~a!; schematic superpositoin of the initial parts of the I–V characte
tics for H,H8 andH.H8 with the dependence for films of widthw,l'

andw.l' ~b!.26,27
s
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w

resistive regime at currents larger than the critical. This,
has become clear, does not affect the fluxoid quantizatio
the interference.29

The rectifying properties of asymmetric interferomete
were discovered29 independently of the work of Ouboter a
the Leiden laboratory.30 An important role in interferometers
is played by circulating fluxoidal current, equal to zero f
integer numbers of quanta of the external magnetic field
reaching a maximumi m at half-integer flux quantaFe5(n
11/2)F0 ; i m5F0/2L, whereL is the magnetic inductanc
of the circuit.

-

FIG. 8. Images of the voltage response of a uniform tin film as the trans
current through the film is increased (w.l'). The dark regions are the
locations of phase slip lines along the length of the film. The current
creases for~1! to ~4! ~a!. Stepped structure of the I–V characteristic of t
films shielded by a superconducting screen~b!.
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When the kinetic inductanceLkin5mc(t/s)/@e2ns(T)#
is taken into account, wheret is the length ands is the cross
section of the weak link, the conditions of fluxoid quantiz
tion in the linear approximation has the form

gLi m1Fe1Li m5nF0 ,

where g5Lkin /L and i m(T)5F0@11g(T)#21/2L. With
growth of g the magnetic quantization becomes degene
~see p. 178 of Ref. 21!.

The properties of an interferometer depend substanti
on the ratio of the critical currentI c to i m(T)}lL

22(T)}(1
2t4), wheret is the reduced temperature. NearTc this de-
pendence is much steeper thanI c(T)}DT or DT2/3. What we
have said is illustrated in Figure 9a~p. 199 of Ref. 21!. For
T.T* the critical current of the interferometer is nonzero
part of the oscillation period, and the amplitudeDI c of the
oscillations of the critical current increases asI c(T). At T
5T* the I c(T) curve bends over and goes practically
saturation~Fig. 9b!. For T,T* the critical currentI c(Fe)
does not reach zero at anyFe . Such behavior has been in
sufficiently studied, as has the question of the superposi
of the circulating current, equilibrium current, and noneq

FIG. 9. Schematic illustration of the relationship between the critical cur
I c and the maximum circulating currenti m with changing temperature of the
superconducting quantum interferometer. The regionDT in which the criti-
cal current is not observed because of the effect of fluctuations is shade~a!.
TheDI c(T) curves. Curves1 and2 are recorded for different inductances
the quantizing circuit~b!.
-

te

ly

n
-

librium transport current. It follows from experiments th
the modulation depthDI c(Fe) is equal to 2i m . This is pos-
sible if the critical current of the contact decreases indep
dently of the direction of the circulating current in relation
that of the transport current. In Ref. 29 this was interpreted
terms of a kinetic depairing and on the assumption of
existence of independent fluxes in the electron condensa

These arguments can be valid only for the case when
transport current interacts with a stable fluxoid curre
which cannot vary so long as fluxoid quantization holds.

If i m(Fe) becomes greater thanI c , then in the interval
of fluxesFe near half-integer values of the quantum the fl
F5Fe , the circulating current is equal to zero, and ma
netic quantization gives way to kinetic quantization (g
@1). The role of the kinetic inductance in fluxoid quantiz
tion was demonstrated back in 1964 in an experiment
T. K. Hunt and J. E. Mercereau.31 Theoretically the I–V
curves of superconducting interferometers were calculate
Ref. 32.

Many new results have been obtained on single-con
rf interferometers.33–38For example, V. I. Shnyrkov has stud
ied the classical and then the quantum dynamics of
SQUIDs, made a detailed study of the nonhysteretic regi
observed and studied, at temperatures around 1 K, the ‘‘
quantum’’ phenomena of macroscopic tunneling and mac
scopic quantum interference of the quantum states o
SQUID which are degenerate in energy but lie on oppo
branches of theU(F) parabola~Fig. 10!, studied quantum
noise, and observed for the first time on a SQUID the regi
of stochastic oscillations—chaos.

It should be mentioned in closing that the normal res
tance that determines the dissipation and damping and w
is due to the presence of ‘‘normal electrons’’ increases ex
nentially with decreasingT in point contacts~contacts with
direct conduction!, just as in tunnel junctions.

t

FIG. 10. Potential energyU(F) for Fe50 and the experimental I–V char
acteristics with their derivatives; the dashed lines show the states c
sponding to resonant tunneling of the macroscopic system.
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Spontaneous and persistent currents in superconductive and mesoscopic structures
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We briefly review aspects of superconductive persistent currents in Josephson junctions of the
S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase
dependences, and discuss in more detail the persistent and the ‘‘spontaneous’’ currents in
Aharonov–Bohm mesoscopic and nanoscopic~macromolecular! structures. A fixed-
number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable
against structural transformation removing spatial symmetry~in particular, azimuthal periodicity!
of its electron–lattice Hamiltonian. In the case when the transformation is blocked by
strong coupling to an external azimuthally symmetric environment, the system becomes bistable
in its electronic configuration at a certain number of electrons. Under such a condition, the
persistent current has a nonzero value even at an~almost! zero applied Aharonov–Bohm flux and
results in very high magnetic susceptibilitydM/dH at small nonzero fields, followed by an
oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory
magnetization in cyclic metallo-organic molecules by Gatteschiet al. can be attributed to
persistent currents. If this proves correct, it may present an opportunity for~and, more generally,
macromolecular cyclic structures may suggest the possibility of! engineering quantum
computational tools based on the Aharonov–Bohm effect in ballistic nanostructures and
macromolecular cyclic aggregates. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1789111#
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1. SUPERCONDUCTIVE WEAK LINKS

Current can flow in a dissipationless manner under
control of an external parameter, the Josephson phase a
a superconductive weak link1,2 ~Fig. 1a! or a phase difference
along a mesoscopic normal-metallic loop3–5 ~Fig. 1b!. In
both cases, the phase is related to the magnetic flux pier
the loop. The flux can be considered as one created by a
infinitely long solenoid producing no magnetic field outsi
its interior ~and therefore in a loop! but nevertheless affect
ing the quantum states of electrons in the loop. This nonlo
effect of magnetic flux on quantum states is known as
Aharonov–Bohm effect.6 The phase shiftw due to magnetic
flux F5rA•dl is equal to

w52p
F

F0
, ~1!

where F05hc/e* is the flux quantum. In the Josephso
junction, w is the phase of the pair wave function, and t
effective chargee* equals twice the charge of the electro
e* 52e. In case of a normal-metal ring,e* is a single-
electron charge,e.

The current in a loop can be calculated as the deriva
of the energy of the junction with respect tow,

J5
e*

\

]E

]w
. ~2!
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Superconductive junction theory considers contact ty
S/I/S ~tunnel junctions!,7 orifice-type contacts S/O/S,8 and
the superconductor–normal metal–superconductor cont
S/N/S.9–11The S/O/S and S/N/S contacts can include barri
at the interface between superconducting electrodes or in
the normal metal, respectively. The zero-temperature fea
of the current–phase relation on which we will focus o
attention is the existence of jumps at certain values ofw, in
particular atw5p or w50. In the latter case~which is in
effect a property of the Aharonov–Bohm weakly coupl
loop considered in the next Section!, the current assumes
nonzero value at zero flux. Jumps inJ(w) in superconductive
contacts are eliminated by the adjustment of the electro
system to the appropriate value of the gap parameterD(r ).
In the Aharonov–Bohm loop the adjustment will be achiev
by the rearrangement of atoms in the loop~the Peierls or the
Jahn–Teller effects, or more complex lattice transformatio!.

The Ambegaokar–Baratoff and Kulik–Omelyancho
theories resulted in an interpolated current–phase rela
suggested by Arnold12 ~see also the review13!

J~w!5
pD0

2eR0

sinw

Ar 21t2 cos2~w/2!
, ~3!

whereR0 is the resistance of the junction in the normal sta
andr 2 andt2 are the reflection and transmission probabiliti
~with r 21t251) in the normal state.D0 is the order param-
© 2004 American Institute of Physics
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eter of the superconductor~the BCS energy gap atT50). At
t!1, formula~3! reduces to the Ambegaokar–Baratoff re
tion

JAB5
pD0

2eR0
sinw ~4!

whereas at r 50 ~no barrier! it gives the Kulik–
Omelyanchouk formula

JKO5
pD0

eR0
sin~w/2!, 2p,w,p ~5!

corresponding to twice as large a critical current at the sa
value of the contact resistence. The energy versus phas
lation in the S/O/S structure with barriers is given by

ESOS52
p\D0

2e2R0t2 Ar 21t2 cos2~w/2! ~6!

and is presented in Fig. 2. The S/N/S junction is represen
by theE(w) dependence atT50

ESNS52
\vF

6d
N't2F12S wmod2p

p D 2G ~7!

where vF is the Fermi velocity of the metal andN'

5SkF
2/4p is the number of perpendicular conducting cha

nels in the normal bridge between superconductors of len
d and cross sectionS. From the above expression, the cu
rent in the S/N/S structure atT50 becomes

FIG. 1. Superconducting loop with a weak contact~crossed! (a). Normal-
metal mesoscopic loop carrying currentJ (b).

FIG. 2. Energy of the S/O/S contact versus phase atT50 ~1!. Supercurrent
versus phase~2!. The solid curves correspond tor 50, the dotted curves to
r 50.2. TheJ(w) curves are shifted upward arbitrarily for clarity.
e
re-

d

-
th

J~w!'
2\vF

3peR0d
w, 2p,w,p ~8!

and is presented in Fig. 3 together with theE(w) depen-
dence.

2. PERSISTENT CURRENTS IN MESOSCOPIC SYSTEMS

Persistent currents~first discovered and termed nond
caying currents4! have been predicted for mesoscopic co
ducting loops3–5 which do not show the effect of supercon
ductivity. The current appears in the presence of magn
field as a result of the Aharonov–Bohm effect.6 As discussed
in a review paper,14 persistent currents are similar to th
orbital currents in normal metals first considered by Telle15

in his interpretation of Landau diamagnetism in metals,16 but
specific to the doubly connected geometry of the conduc
~loops, hollow cylinders, etc.!. Observations of persisten
currents have been made in indirect17,18 as well as in
direct19–21 experiments, showing single-flux-quantumF0

5hc/e periodicity in the resistance of thin Nb wires17 and
networks of isolated Cu rings,18 and in single-loop experi-
ments on metals,19 semiconductors,20 and macromolecular
metallo-organic compounds.21 Contrary to the authors o
Ref. 21~an interpretation of magnetic oscillation21 based on
antiferromagnetic ordering of Fe ions in a ‘‘ferric whee
@Fe(OMe)2(O2CCH2Cl)#10!, we propose that the 6T-
periodic magnetization in this compound is due
Aharonov–Bohm persistent current flowing in the outer ri
of O atoms while the inner ring of Fe atoms serves a
concentrator of magnetic field to the center of the ring.
Ref. 22 the 8T-periodic variation of resistivity in molecula
conducting cylinders~carbon nanotubes! was attributed to
the Altshuler–Aronov–Spivak effect,23 a companion effect
to the classical Aharonov–Bohm mechanism but with
twice smaller periodicity in magnetic fluxDF5hc/2e.

Aspects of the Aharonov–Bohm persistent currents
complex and correlated systems have been considere
various papers, in particular by studying the stro
coupling24–26 and localization27,28 effects, thermodynamic–
statistical properties,29–31 polaron effects,32,33 effects of
strong magnetic field34,35 and spin–orbit interaction,36,37

FIG. 3. Energy of the S/N/S contact versus phase atT50 ~1!. Supercurrent
versus phase~2!. TheJ(w) curve is shifted upward arbitrarily for clarity.
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Peierls transition,38–40Wigner crystallization41 and Coulomb
blockade,42 persistent current oscillation in hollow cylinde
with toroidal geometry,43 nonequilibrium and time-
dependent effects,44–48 weak links in the loop,49 as well as
the nontraditional phase effects~geometrical and Berry’s
phase, instantons, etc.!50–53 summarized in recen
reviews.14,54–57Further trends in the macromolecular pers
tent and spontaneous currents58–60 include quantum
computational61 prospects of using Aharonov–Bohm loop
as quantum bits~qubits! with the advantages of easie
~radiation-free! manipulation of qubit states and increas
decoherence times as compared to macroscopic ‘‘Sc¨-
dinger cat’’ structures~Josephson junctions!. The smallest
~three-site! persistent current ring displays aL-shaped en-
ergy configuration59 with two degenerate ground states
external fluxF05hc/2e. The spontaneous persistent curre
loop will achieve the degenerate state at zero field or, if
degeneracy is lifted by the electron–phonon coupling, a
reasonably low field.

Persistent current is a voltage-free nondecaying cur
which exists as a manifestation of the fact that the grou
state of a doubly connected conductor in a magnetic fiel
a current-carrying one. This statement has been proved
ballistic loops4 and for diffusive rings.5 There is no funda-
mental difference between these two extremes. Counteri
itively, ballistic structure does not show infinite conductivit
as has sometimes been naively supposed; the dc resistan
the loop is infinite rather than zero when a dc electric field
applied to the system. In the case when a current is
through the structure, no voltage appears provided that
magnitude of the current is smaller than a certain criti
value. This applies to both elastic and inelastic scatter
The magnitude of the critical current of the ballistic rin
smoothly matches the current of the diffusive ring when
mean free pathl becomes large. In the dirty limit,l !L,
whereL is the ring circumference, the critical value of th
supercurrent decreases proportionally tol /L according to
Ref. 62, or to (l /L)1/2 according to a numerical simulation.14

The nondecaying current does not even require severe
striction on the so-called ‘‘phase breaking’’ electron me
free path. In fact, the normal-metal supercurrent is an ana
of the ‘‘incoherent’’ Josephson effect,63,64 in which the phase
of the superconductor is considered as a classical varia
Stronger criteria~that the dephasing length is larger than t
system size, and the analogous requirement in the time
main, that the ‘‘decoherence time’’ is larger than the char
teristic time of observation! apply to persistent current ring
as quantum computational tools mentioned above, which
the analogs of the macroscopic quantum tunneling.65–67

3. SPONTANEOUS PERSISTENT CURRENTS

Persistent current appears in a ballistic ring due to
Aharonov–Bohm field. The current, however, can also or
nate when the external field is zero—the ‘‘spontaneous’’ c
rent. This situation has been noticed accidentally by vari
authors, in particular, in Refs. 68–70, but it has not seem
convincing due to the fixed-chemical-potential configuratio
and it has been attributed to the effect of Peierls instability
the ring40 ~criticized in Refs. 71 and 72 in regard to th
inaccuracy of the mean field approximation!. In fact, the
-
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fixed-number-of-particles ring with an odd number of ele
trons displays a number of structural instabilities: the Peie
transformation73 and the Jahn–Teller effect74 are the best-
known examples, and the~generally more complex! atomic
rearrangement when the ground state proves degenerate
symmetric configuration.

In Fig. 4 we show the dependence of the maximal p
sistent current, as well as the spontaneous current, on
number of electrons in a ring which was modeled as a fin
length hollow cylinder with rectangular cross sectionL1

3L2 containing a finite number of perpendicular electr
channelsN'5L1L2kF

2/2p2. Note that the magnitude of th
current in a ballistic ring is notevF /L, as is sometimes
suggested (vF is the Fermi velocity!, but rather approaches
value Jmax;(evf /L)N'

1/2 ~see Ref. 4!. The dependence
Jmax(N) at T50 is irregular due to the addition of negativ
and positive currents from different electron eigenstates
longitudinal and transverse channels.

Figure 5 shows the bistability effect in a ring. While

FIG. 4. Persistent current versus number of electrons in a ring with a rat
cross-sectional dimensionsL:L1 :L2510:1:1 ~spinfull configuration!. The
upper curve is the maximum current in units ofJ05evF /L at givenN, the
dotted curve is the amplitude of the first harmonic ofJpers(F), and the curve
at negativeJ is the spontaneous persistent current as defined below, als
units of J0 . The dashed curve is the square root of the number of perp
dicular channelsN' plotted againstN.

FIG. 5. Bistable configuration in a ring: Energy versus flux in a ring of
electrons~1! and 11 electrons~2!. The second curve is shifted downward fo
convenience~but not rescaled!.
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an even number of electrons the electronic energy ha
minimum atF50, it acquires a maximum when the numb
of electrons is odd.~The inductive energy, to be include
below, will shift the position of the minima in curve2 of Fig.
5 to the origin, so that a degenerate state will appear in
near vicinity ofF50.)

The spontaneous current has the same order of ma
tude as the maximal persistent current and represents a
separable part of the Aharonov–Bohm effect. The structu
transformation is investigated below in an exact way by c
sidering the ring dynamics in the tight binding approxim
tion. The ‘‘lattice’’ ~the atomic configuration of the loop! can
respond to the degenerate ground state by making an at
readjustment similar to the Peierls transition~doubling of the
lattice period in a one-dimensional atomic chain; see, e
Refs. 75 and 76!, or a more complex atomic rearrangeme

In fact, such a possibility clearly shows up in the case
a 1D loop with the discrete quantum states~u is the azi-
muthal angle!

cn5
1

AL
exp~ inu! ~9!

corresponding to energies

«n5
\2

2mR2 ~n2 f !2, ~10!

where n50,61,62,... and f 5F/F0 is the magnetic flux
threading the loop in units of the flux quantumF054
31027 G•cm2.

As an example, the loop with 3 electrons has energy

E~ f !5«0F f 21
1

2
~612 f !2G1

LJ0
2

2c2 J2~ f ! ~11!

corresponding to two spin-1/2 states withn50 and one state
with n51 or n521. The last term in Eq.~11! is the mag-
netic inductive energy andL is the inductance~of the order
of the ring circumference, in the units adopted!. The current
J52(e/h)]E/] f is equal to

J~ f !5J0~6123u f u!, J05e«0 /h ~12!

and is nonzero atf 50 in either of the states6. The ratio of
magnetic energy to kinetic energy is of order

h5
LJ0

2

2c2«0
.

e2

4pmc2R
;1026

a0

R
, ~13!

wherea0 is the Bohr radius. This is a very small quantit
and therefore the magnetic energy is unimportant in the
ergy balance of the loop. The flux in the loop equalsf
5 f ext12h j f , where f ext is an external flux and j f

5J( f )/J0 . The correction for the externally applied flux
essential only atf ext;h; otherwise, we can ignore this con
tribution.

The property of nonzero persistent current thus dem
strated for the noninteracting electrons survives stro
electron–electron coupling but collapses when the coup
to the lattice is included~see below!. Nevertheless, when th
loop is on a rigid background~say, a cyclic molecule on a
substrate of a much more rigidly bound solid! the degeneracy
may not be lifted, or may remain in a very narrow interval
a

e

ni-
in-
al
-

-

ic

.,
.
f

n-

-
g
g

f

externally applied fields. We will investigate this possibili
in the tight binding approximation,77,78in which electrons are
bound to certain atomic locations~traps! and make the loop
conducting by resonant tunneling between these location

In the tight binding approximation, Hamiltonian of th
loop in the second-quantized form reads

H5(
j 51

N

~ t jaj s
1 aj 11,seia j1h.c.!1U(

i 51

N

ni↑ni↓

1V (
i 51,s,s8

N

nisni 11,s81
1

2
K(

j 51

N

~u j2u j 11!2, ~14!

wheret j is the hopping amplitude between two near config
rational sites,j and j 11,

t j5t01g~u j2u j 11!, nis5ais
1 ais , ~15!

anda j is the Aharonov–Bohm phase~a Peierls substitution
for the phase of hopping amplitude!

a j5
2p f

N
1~u j2u j 11! f . ~16!

aj s
1 is the creation~andaj s , the annihilation! operator of an

electron at sitej with spins, u j , j 51,2,...,N are the angles
of distortion of site locations from their equilibrium position
u j

052p j /N and satisfy the requirement( j 51
N u j50, andg is

the electron–phonon coupling constant. The interaction~15!
reflects the fact that the hopping amplitude depends on
distance between the localization positions and assumes
the displacementu j2u j 11 is small in comparison to 2p/N.
U andV are Hubbard parameters of the on-site and intra
interactions. The parameters are assumed such that syst
not superconductive~e.g.,U.0; and anyway, superconduc
tivity is not allowed for a 1D system and is ruled out for
small system!. The last term in Hamiltonian~14! is the elas-
tic energy, andK is the stiffness parameter of the lattice.

In the smallest loop, the one with three sites (N53), the
only two free parameters of the lattice displacement,X1 and
X2 , are

u15X11X2 , u252X11X2 , u3522X2 ~17!

which are decomposed to second-quantized Bose oper
b1 andb2 according to

X15S 3K

v D 1/4

~b11b1
1!, X253S K

3v D 1/4

~b21b2
1!.

~18!

The system~14! is solved numerically with the ABC
compiler,79 which includes the creation–annihilation oper
tors as its parameter types. These are generated as com
macros with sparse matrices

An5Cn
~N1!

^ 1~N2! fermionic sector

Bn51~N1!
^ Cn

~N2! bosonic sector, ~19!

where 1(N) is a unit matrix of dimension 2N and Cn
(N) , n

51,...,N are Fermi/Bose operators in a space of the sa
dimension,

Cn
~N!5~u^ !N2na~ ^ v !n21, ~20!
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a, u, andv are the 232 matrices~^ is the symbol of the
Kronecker matrix product!

a5S 0 0

1 0D , u5S 1 0

0 1D , v5S 1 0

0 h D , ~21!

andh is a parameter

h5H 21 fermionic sector

1 bosonic sector.
~22!

Bosons are considered as ‘‘hard-core bosons,’’ such
there are only two discrete states for each mode of displ
ment. We calculate the ground state of Hamiltonian~14! as a
function of magnetic fluxf ~a classical variable!. In applica-
tion to real atomic~macromolecular! systems, we can con
sider X1 and X2 as classical variables, since the quantu
uncertainties in the coordinates (DX1,2;(\/Mv)1/2) are
typically much smaller than the interatomic distances (M is
the mass of an atom andv;1013 s21 is the characteristic
vibration frequency!. The energy of the loop is calculated a
function of X1 , X2 and further is minimized with respect t
X1 , X2 for each value off . The nonzero values ofX1 , X2

will signify the ‘‘lattice’’ ~the ionic core of the macromol
ecule! instability against the structural transformation whi
is analogous to the Peierls transition.

For the 3-site loop, theE( f ) dependence is shown i
Fig. 6 together with the dependence of the current onf . The
latter shows a discontinuity atf 50 of the same order o
magnitude as the standard value of the persistent current.
current atf 50 is paramagnetic, since the energy versus fl
has a maximum rather than a minimum atf 50. On-site in-
teraction reduces the amplitude of the persistent current
zero flux ~Fig. 7! but doesn’t remove its discontinuity atf
50. Therefore, the strongest opponent of the Aharono
Bohm effect, the electron–electron interaction, leaves
qualitatively unchanged.

On the other hand, the electron–phonon interaction fl
tens theE( f ) dependence near the peak value; see Fig. 8
large stiffnessesK this flattening remains important only fo
small magnetic fluxes, much smaller than the flux quanti

FIG. 6. Current versus magnetic flux in the 3-site loop with 3 noninterac
electrons~1!. Energy versus flux for theN53, n53 loop at the value of the
hopping parametert0521 ~2!. The energy is rescaled and arbitrarily shifte
upward for clarity.
at
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tion periodDF5F0 . Note that the persistent current peak
reduced in amplitude only slightly nearF50. As is seen
from Fig. 9, the electron–phonon interaction splits the s
gularity atF50 into two singularities atF56Fsing. Out-
side the interval2Fsing,F,Fsing the structural transfor-
mation is blocked by the Aharonov–Bohm flux. The range
magnetic fluxes between2Fsing and Fsing determines the
domain of the developing lattice transformation, whi
manifests itself in nonzero values of the lattice deformatio
X1 , X2 . The latter property allows us to suggest that t
spontaneous persistent current state~a peak of dissipationles
charge transport at, or near, zero flux! remains for nonzero
flux when the electron–phonon coupling is not too strong
when the lattice stiffness is larger than certain critical val

4. CONCLUSION

We have considered the Aharonov–Bohm effect in
angular-periodic macromolecular loop like, e.g., an aroma
cyclic molecule, and found that the Aharonov–Bohm fl
applied to the loop arrests the lattice instability~rearrange-

g
FIG. 7. Spontaneous persistent current versus flux fort0521 and various
values of the Hubbard parameterU:0 ~1!; 22 ~2!; 2 ~3!; 25 ~4!; 5 ~5!; 210
~6!; 10 ~7!.

FIG. 8. Energy versus flux in a loop of noninteracting electrons coupled
the lattice with the value of the coupling parameterg51 and various values
of the stiffness parameterK:2 ~1!; 3 ~2!; 5 ~3!; 10 ~4!; 20 ~5!.
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ment of molecular atoms or blocks within the molecul!.
This is a consequence of the fact that the weak-coup
effect of electron hopping between sites of electron locali
tion cannot provide enough energy for initiating a shift of t
atoms from periodic locations except at quite small magn
fields. As a result, the ground state of the system at a ce
electron concentration becomes current-carrying at zero~or
very small! magnetic flux—a state with ‘‘spontaneous’’ pe
sistent current. This effect suggests the possibility of us
appropriately engineered macromolecular structures as
ementary qubits, the degenerate or near-degenerate s
sought for processing of quantum information.61 As was
shown in Ref. 59, the three-site Aharonov–Bohm loop s
ports all logical operations~the quantum logic gates! re-
quired for quantum computation and quantum commun
tion, which are effected by static voltages applied to the lo
perpendicular to the magnetic flux and such that the loo
driven to aL-shaped energy configuration with the two d
generate ground states making elements of the qubit and
third, higher-energy state implementing radiation-free qu
tum logic gates. Very strong magnetic fields are required
the formation of such states~corresponding to a flux equal t
half of the flux quantum!. The spontaneous persistent cu
rents discussed in the present paper allow one to reduce
fields by orders of magnitude.
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The modern physics of superconductivity can be called the physics of unconventional
superconductivity. The discovery of thed-wave symmetry of the order parameter in high-
temperature superconductors and the triplet superconductivity in compound Sr2RuO4 has caused
a huge stream of theoretical and experimental investigations of unconventional
superconductors. In this review we discuss some novel aspects of the Josephson effect which are
related to the symmetry of the order parameter. The most intriguing of them is spontaneous
current generation in an unconventional weak link. The example of a Josephson junction in the
form of a grain boundary between two disorientatedd-wave or f -wave superconductors is
considered in detail. Josephson current–phase relations and the phase dependences of the
spontaneous current that flows along the interface are analyzed. The spontaneous current
and spontaneous phase difference are manifestations of the time-reversal symmetry~T ! breaking
states in the system. We analyzed the region of appearance ofT-breaking states as function
of temperature and mismatch angle. A review of the basics of superconducting qubits with
emphasis on specific properties ofd-wave qubits is given. Recent results in the problem of
decoherence ind-wave qubits, which is the major concern for any qubit realization, are
presented. ©2004 American Institute of Physics.@DOI: 10.1063/1.1789112#
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1. INTRODUCTION

The modern physics of superconductivity can be cal
the physics of unconventional superconductivity. It should
noted that right after the famous paper1 of Bardeen, Cooper
and Schriffer ~BCS! it became clear that~conventional!
s-wave singlet pairing is not the only possibility,2,3 and
more-complex superconducting~superfluid! states may be
realized, with nonzero orbital and spin momenta of the C
per pairs. Because of the success of the BCS theory in
scribing properties of the known metallic superconducto
theoretical research on unconventional superconducti
was of purely academic interest and did not attract m
attention. Interest in unconventional pairing symmetry h
increased after the discovery of superfluidity in3He, with
triplet spin symmetry and multiple superfluid phases.4,5 Low-
temperature experiments on complex compounds led to
discovery of unconventional superconductivity in heav
fermion systems.6 The heavy-fermion metal UPt3 , like 3He,
has a complex superconducting phase diagram, which sh
the existence of several superconducting phases, whi
weak temperature dependence of the paramagnetic susc
bility indicates triplet pairing. Another triplet superconduct
is the recently discovered compound Sr2RuO4.

The real boom in investigations of unconventional sup
conductivity started after the discovery by Bednorz a
Müller7 of high-temperature~high-Tc) superconductivity in
cuprates, because of its fundamental importance for both
5351063-777X/2004/30(7–8)/19/$26.00
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sic science and practical applications. Numerous experim
show that high-Tc cuprates are singlet superconductors w
nontrivial orbital symmetry of the order parameter~a so-
calledd-wave state, with the orbital moment of pairsl 52).

The Josephson effect8 is extremely sensitive to the de
pendence of the complex order parameter on the momen
direction on the Fermi surface. Thus the investigation of t
effect in unconventional superconductors enables one to
tinguish among different candidates for the symmetry of
superconducting state. This has stimulated numerous the
ical and experimental studies of unconventional Joseph
weak links. One of the possibilities for forming a Josephs
junction is to create a point contact between two mass
superconductors. A microscopic theory of the station
Josephson effect in ballistic point contacts between c
ventional superconductors was developed in Ref. 9. La
this theory was generalized for a pinhole model in3He,10,11

for point contacts betweend-wave high-Tc super-
conductors,12–14and for triplet superconductors.15 A detailed
theory of the Josephson properties of grain-boundaryd-wave
junctions was developed in Ref. 16. In those papers it w
shown that the current–phase relations for the Josephson
rent in unconventional weak links are quite different fro
those of conventional superconductors. One of the m
striking manifestations of a unconventional order-parame
symmetry is the appearance, together with the Joseph
current, of a spontaneous current flowing along the con
© 2004 American Institute of Physics
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interface. The spontaneous current arises due to the brea
of the time-reversal symmetry~T! in the system. Such a situ
ation takes a place, for example, in a junction between
d-wave superconductors with different crystallographic o
entations. Thed-wave order parameter itself doesn’t bre
the T symmetry. But the mixture of two differently oriente
order parameters~proximity effect! forms aT-breaking state
near the interface.17 Such spontaneous supercurrentj spon

~and corresponding spontaneous phase difference! exists
even if the net Josephson current equals zero. The state o
junction with the spontaneous current is twofold degener
and in fact, two values6 j spon appear. An interesting poss
bility arises then to use these macroscopic quantum state
the design ofd-wave quantum bits~qubits!.

This review consists of three parts. In Sec. 2 the gen
features of unconventional superconductivity are presen
The different types of order parameters are described.
briefly outline the essence ofT-symmetry breaking in uncon
ventional superconductors and experimental tests for or
parameter symmetry. In Sec. 3~and Appendix II! the theory
of coherent current states in Josephson junctions betw
d-wave superconductors and between triplet superconduc
is considered. The current–phase relations for the Josep
and spontaneous currents, as well as the bistable states
analyzed. Section 4 is devoted to Josephson phase q
based ond-wave superconductors. It contains a review of t
basics of superconducting qubits with emphasis on spe
properties ofd-wave qubits. Recent results in the problem
decoherence ind-wave qubits, which is the major concer
for any qubit realization, are presented.

2. UNCONVENTIONAL SUPERCONDUCTIVITY

2.1. Order-parameter in unconventional superconductors.
s -wave, d -wave, p -wave ... pairing

The classification and description of unconventional
perconducting states can be found, for example, in
book18 and review articles.19–23In our review we do not aim
to discuss this problem in detail. We present only gene
information on the unconventional superconductors and t
most likely model descriptions.

It is well known1 that a Cooper pair has zero orbit
momentum, and its spin can be eitherS50 ~singlet state! or
S51 ~triplet state!. It follows from the Pauli exclusion prin-
ciple that the matrix order parameter of the supercondu
Dab(k) ~a,b are spin indices! changes sign under permut
tion of particles in the Cooper pair:Dab(k)52Dba(2k).
Hence, the even parity state is a singlet state with zero
moment,S50:

D̂~singlet!~k!5g~k!i ŝy ;

g~k!5g~2k!. ~1!

The odd parity state is a triplet state withS51, which is
in general a linear superposition of three substates with
ferent spin projectionSz521,0,1:

D̂~ triplet!~k!5~d~k!s!ŝy ;

d~2k!52d~k!. ~2!
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Here theŝ i are Pauli matrices (i 5x,y,z); d~k! and s
5(ŝx ,ŝy ,ŝz) are vectors in the spin space. The compone
of the vectord~k! are related with the amplitudesgSz

(k) of
states with different spin projectionsSz5(21,0,1) on the
quantization axis:

g152dx1 idy ; g05dz ; g215dx1 idy . ~3!

The functionsg(k) andd~k! are frequently referred to a
an order parameter of the superconductor. For the isotro
model g(k)5const the paring state is singlet. In a tripl
superconductor the order parameterd~k! is a vector~some
authors call it the gap vector! in the spin space and in an
case it depends on the direction on the Fermi surface. T
vector defines the axis along which the Cooper pairs h
zero spin projection.

The angular dependence of the order parameter is
fined by the symmetry groupG of the normal state and th
symmetry of the electron interaction potential, which c
break the symmetryG. In a model of an isotropic conducto
the quantum states of the electron pair can be describe
terms of an orbital momentuml and itsz projectionm. The
singlet ~triplet! superconducting state is the state with
even~odd! orbital momentuml of Cooper pairs. The respec
tive states are labeled by letterss,p,d,... ~similar to the la-
beling of electron orbital states in atom! and are called
s-wave,p-wave,d-wave, . . . states. In the general case t
superconducting state may be a mixture of states with dif
ent orbital momental .

The spherically symmetrical superconducting sta
which now is frequently called the conventional one, cor
sponds tos-wave singlet pairingl 5m5S50. In this case of
isotropic interaction, the order parameter is a single comp
function g5const. Fortunately, this simple model satisfac
rily describes the superconductivity in conventional meta
where the electron–phonon interactions leads to spin-sin
pairing with s-wave symmetry. The simplest triplet supe
conducting state is the state withp-wave pairing and orbital
momentum of a Cooper pairl 51. In the case ofp-wave
pairing different superconducting phases with differentm5
21,0,1 are possible. A Cooper pair in ap-wave supercon-
ductor has internal structure, because forl 51 it is intrinsi-
cally anisotropic. The next singletd-wave state has the or
bital momentum of Cooper pairsl 52.

In unconventional superconducting states the Coo
pairs may have a nonzero expectation value of the orbitaL
or ~and! spin S momentum of a pair. States withSÞ0 (S
50) are usually called nonunitary~unitary! triplet states.

The gapD~k!

D2~k!5 1
2 TrD̂†~k!D̂~k! ~4!

in the energy spectrum of elementary excitations is given
the relations

D~singlet!~k!5ug~k!u; ~5!

D~ triplet!~k!5A@ ud~k!u26ud~k!3d* ~k!u#. ~6!

In unconventional superconductors the gap can be equa
zero for some directions on the Fermi surface, and for n
unitary states (SÞ0, so-called magnetic superconductors! the
energy spectrum has two branches.
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In the absence of magnetic field the transition to a
perconducting state is a second-order phase transition.
cording to the Landau theory24 of second-order phase trans
tions, the order parameter of such a state must transf
according to one of the irreducible representations of
point symmetry groupG of the normal phase, i.e., the sym
metry group of the superconducting state is a subgroup of
symmetry group of the normal state. The symmetry grouG
of the normal state contains the symmetry operati
Gspin-orbit in spin and orbital~coordinate! spaces, the opera
tion of time reversalT, and the gauge transformationU(1):

G5U~1!3T 3Gspin-orbit.

The transition to a superconducting state breaks
gauge symmetryU(1), andstates with different phases o
the order parameter become distinguishable. The con
tional superconducting state is described by the symm
groupH5T 3Gspin-orbit. If another point symmetry propert
of the superconducting state is broken, such a super
ductor is termed an unconventional one. The order param
of different superconducting states can be expanded on b
functions of different irreducible representations of the po
symmetry groupG. For non-one-dimensional represent
tions the order parameter is a sum of a few complex fu
tions with different phases, and such an order paramete
called a multicomponent one.

In real crystalline superconductors there is no classifi
tion of Cooper pairing by angular momentum (s-wave,
p-wave,d-wave,f -wave pairing, etc.!. However, these term
are often used for unconventional superconductors, mea
that the point symmetry of the order parameter is the sam
that for the corresponding representation of theSO(3) sym-
metry group of an isotropic conductor. In this terminolo
conventional superconductors can be referred to ass-wave.
If the symmetry ofD̂ cannot be formally related to any irre
ducible representation of theSO(3) group, these states ar
usually referred to as hybrid states.

2.2. Pairing symmetry in cuprate and triplet superconductors

Cuprate superconductors. All cuprate high-temperature
superconductors (La22xSrxCuO4, Tl2Ba2CaCu2O8,
HgBa2CaCu2O6, YBa2Cu3O7, YBa2Cu3O72d ,
Bi2Sr2CaCu2O8 and others! have a layered structure with th
common structural ingredient—the CuO2 planes. In some
approximation these compounds may be considered as q
two-dimensional metals having a cylindrical Fermi surfa
It is generally agreed that superconductivity in cuprates
sically originates from the CuO2 layers. Knight shift
measurements25 below Tc indicate that in the cuprate supe
conductors pairs form spin singlets, and therefore ev
parity orbital states.

The data of numerous experiments~see, for example, the
review article19!, in which the different properties of cuprat
superconductors had been investigated, and the absen
multiple superconducting phases attests that the super
ducting state in this compounds is most probably descri
by a one-component nontrivial order parameter of the fo

g~k!5D~T!~ k̂x
22 k̂y

2!, ~7!
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whereD(T) is a real scalar function, which depends only
the temperatureT, andk̂5( k̂x ,k̂y). This type of pairing is a
two-dimensional analog of the singlet superconducting s
with l 52 in an isotropic metal and usually is calle
‘‘ d-wave’’ ~or dx22y2) pairing. The excitation gapug(k)u has
four line nodes on the Fermi surface atwn5(p/4)(2n11),
n50,1,2,3 ~Fig. 1!, and the order parameterg(k) changes
sign in momentum space.

Triplet superconductivity, an analog of triplet superfluid
ity in 3He, was first discovered in the heavy-fermion com
pound UPt3 more than ten years ago.26,27Other triplet super-
conductors have been found recently: Sr2RuO4 ~Refs. 28, 29!
and (TMTSF)2PF6 ~Ref. 30!. In these compounds, the triple
pairing can be reliably determined, e.g., by Knight sh
experiments.31–33 It is, however, much harder to identify th
symmetry of the order parameter. Apparently, in crystall
triplet superconductors the order parameter depends on
direction in momentum space,k̂, in a more complicated way
than the well-knownp-wave behavior of the superfluid
phases of3He. While numerous experimental and theoretic
works have investigated various thermodynamic and tra
port properties of UPt3 and Sr2RuO4, the precise order-
parameter symmetry is still to be determined~see, e.g., Refs
34–37 and references therein!. Symmetry considerations al
low considerable freedom in the choice of irreducible rep
sentation and its basis. Therefore numerous authors~see, for
example, Refs. 34–40! consider different models~so-called
scenarios! of superconductivity in UPt3 and Sr2RuO4, based
on possible representations of crystallographic point grou
A conclusion as to the symmetry of the order parameter
be reached only after a comparison of the theoretical res
with experimental data.

Pairing symmetry inSr2RuO4. In experiment, Sr2RuO4

shows clear signs of triplet superconductivity below the cr
cal temperatureTc51.5 K. Investigation of the specific
heat,41 penetration depth,42 thermal conductivity,43 and ultra-
sound absorption44 shows a power-law temperature depe
dence, which is evidence of line nodes in the energy gap
the spectrum of excitations. The combination of these res
with the Knight shift experiment32 led to the conclusion tha
Sr2RuO4 is an unconventional superconductor with sp
triplet pairing. A layered perovskite material, Sr2RuO4 has a
quasi-two-dimensional Fermi surface.45

The first candidate for the superconducting state
Sr2RuO4 was the ‘‘p-wave’’ model45–47

FIG. 1. The modulus of the order parameterug(k)u ~7! in momentum space
for a d-wave superconductor.
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d~k!5D ẑ~ k̂x6 i k̂y!. ~8!

The order parameter of the form~8! is a two-dimensional
analog (k̂5( k̂x ,k̂y)) of the order parameter in theA phase of
3He. Thed vector pointing along thez direction implies that
the spin part of the Cooper pair wave function is the sp
triplet state withSz50, i.e., in-plane equal-spin pairing~thez
direction is along thec axis of Sr2RuO4). In a system with
cylindrical symmetry the orbital part of the pair wave fun
tion is a state with finite angular momentum along thez axis,
Lz561.

However, the model~8! does not describe the whole co
pus of the experimental data. Recently36,37 it was shown that
the pairing state in Sr2RuO4 most likely has lines of nodes
and some others models of the order parameter have
proposed:36,37

d~k!5D ẑk̂xk̂y~ k̂x6 k̂y!. ~9!

d~k!5D ẑ~ k̂x
22 k̂y

2!~ k̂x6 i k̂y!. ~10!

In unitary states~8!–~10! the Cooper pairs haveL561 and
S50.

Theoretical studies of specific heat, thermal conductiv
and ultrasound absorption for different models of triplet s
perconductivity show considerable quantitative differen
between calculated dependences for ‘‘p-wave’’ and
‘‘ f -wave’’ models.34–36,40

Heavy fermion superconductorUPt3 . One of the best-
investigated heavy fermion superconductors is the hea
fermion compound UPt3 ~Refs. 34 and 35!. The weak tem-
perature dependence of the Knight shift,31 multiple
superconducting phases,26 unusual temperature dependen
of the heat capacity,48 thermal conductivity,49,50 and sound
absorption51 in UPt3 show that it is a triplet unconventiona
superconductor with a multicomponent order parameter.

The heavy-fermion superconductor UPt3 belongs to the
hexagonal crystallographic point groupD6h . The models
which have been successful in explaining the properties
the superconducting phases in UPt3 is based on the odd
parity two-dimensional representationE2u . These models
describe the hexagonal analog of spin-tripletf -wave pairing.

One of the models corresponds to the strong spin–orb
coupling with vector d locked along the latticec axis
(ci ẑ).34,35 For this modeld5 ẑ@h1Y16h2Y2#, where Y1

5kz(kx
22ky

2) andY252kxkykz are the basis functions of th
representation. For the high-temperature polar phaseh1

51,h250)

d~k!5D ẑk̂z~ k̂x
22 k̂y

2!, ~11!

and for the low-temperature axial phase (h151,h25 i )

d~k!5D ẑk̂z~ k̂x6 k̂y!2, ~12!

wherek̂5( k̂x ,k̂y ,k̂z).
Both are unitary states. The state~11! has zero expecta

tion value of orbital momentum, while in the state~12! ^L&
562. For the polar phase~11! the gap in the energy spec
trum of excitationsud~k!u has an equatorial nodal line atu
5p/2 and longitudinal nodal lines atwn5(p/4)(2n11),
n50,2,3,4 ~Fig. 2!. In the axial state~12! the longitudinal
-

en

,
-
s

y-

of

al

line nodes are closed and there is a pair of point nodeu
50,p ~Fig. 3!.

Other orbital state candidates, which assume weak ef
tive spin–orbital coupling in UPt3 , are the unitary planar
state

d~k!5D k̂z@ x̂~ k̂x
22 k̂y

2!12kxkyŷ#, ~13!

and the nonunitary bipolar state

d~k!5D k̂z@ x̂~ k̂x
22 k̂y

2!12ikxkyŷ#. ~14!

More models for the order parameter in UPt3 are dis-
cussed in Refs. 21, 34 and 35. The models~8!–~10!, ~12!,
~14! are interesting in that they spontaneously break tim
reversal symmetry~T -breaking!, which we discuss in the
next Section.

2.3. Breaking of the time-reversal symmetry in
unconventional superconductors. Spontaneous magnetic
fields and currents

Time-reversal symmetry means that the HamiltonianH
5H* , because ifc~r ! is a solution of the Schro¨dinger equa-
tion, thenc* (r ) is also a solution of the same equation. T
time-reversal operationT is equivalent to complex conjuga
tion TĈ5Ĉ* . The simplest example, when both the tim

FIG. 2. The modulus of the order parameterud~k!u ~11! in momentum space
for the polar phase in anf -wave superconductor.

FIG. 3. The modulus of the order parameterud~k!u ~12! in momentum space
for the axial phase in anf -wave superconductor.
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reversal symmetryT and parityP are broken, is a charge
particle in an external magnetic fieldH, wherec~r ,H! and
c* (r ,2H) are solutions of the Schro¨dinger equation, while
c(r ,2H) and c* (r ,H) describe different degenerate stat
of the system. This fact is crucial for understanding of t
appearance of nondissipative~persistent! currents in mesos
copic rings, that reflects the broken clockwise
counterclockwise symmetry of electron motion along t
ring, caused by the external vector potential.

Unconventional superconductivity allows for a large v
riety of possible phases. In some of themT andP are vio-
lated; such superconductors are frequently calledchiral ones.
~The word ‘‘chiral,’’ literally ‘‘handed,’’ was first introduced
into science by Lord Kelvin~William Thomson! in 1884.!
The time reversal~that is, complex conjugation! of a one-
component order parameter is equivalent to its multiplicat
by a phase factor and does not change the observa
Therefore only in unconventional superconductors with
multicomponent order parameter can theT-symmetry be bro-
ken. In particular, all superconducting states possessing
zero orbital or/and spin momenta are chiral ones.

If the T-symmetry is broken, the superconducting pha
is determined not only by the symmetry of the order para
eter but also by the topology of the ground state. The latte
characterized by the integer-valued topological invarianN
in momentum space.52–58Among the various implications o
chirality, perhaps the most striking is the set of chiral qua
particle states, localized at the surface. These chiral st
carry spontaneous dissipation-free currents along the sur
They are gapless, in contrast to bulk quasiparticles of
superconductor.55

Volovik and Gor’kov52 have classified chiral supercon
ducting states into two categories, the so-called ‘‘ferrom
netic’’ and ‘‘antiferromagnetic’’ states. They are distin
guished by the internal angular moment of the Cooper pa
In the ‘‘ferromagnetic’’ state the Cooper pairs possess a fi
orbital or ~for nonunitary states! spin moment, while in the
‘‘antiferromagnetic’’ state they have no net moments.

In high-temperature superconductors with the order
rameter~7! the time reversalT-symmetry is preserved in th
bulk. However, it has been shown theoretically~see the
review22 and references therein! that the puredx22y2 pair
state is not stable against theT-breaking states, such a
dx22y21 idxy or dx22y21 is, at surfaces and interfaces, ne
impurities, or below a certain characteristic temperature (dxy

or s means an admixture of thed-wave state withg(k)
;2kxky or the s-wave state withg(k)5const. It turns out
that such states have larger condensation energy.
dx22y21 idxy-wave state represents a ferromagnetic pair
state, while thedx22y21 is-wave state is antiferromagnetic

Among the heavy-fermion superconductors there are
well-known systems which haveT-violating bulk supercon-
ducting phases: UPt3 and U12xThxBe13 (0.017,x,0.45).
These materials show double superconducting transition
decreasing temperature, andT-violation is associated with
the second of them. The proposed models~12! and ~14! of
the order parameter in UPt3 correspond to theT-violating
states. A more recent candidate forT-violating superconduc-
tivity is Sr2RuO4. The ‘‘p-wave’’ and ‘‘f -wave’’ unitary
models~8!–~10! describe theT-violating bulk superconduct
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ing phases with finite orbital moments of the Cooper pair
T-breaking leads to interesting macroscopic physics i

superconductor. Local currents generating orbital angu
momenta flow in the bulk. In general, superconductivity a
magnetism are antagonistic phenomena, but in this case
superconducting state generates its own magnetism.
Meissner–Ochsenfeld effect, however, prevents unifo
magnetization inside the superconductor, and magnetism
restricted to areas of inhomogeneities—that is, around im
rities and domain walls or at interfaces and surfaces. In th
regions, spontaneous supercurrents flow. The surface cu
generates a spontaneous magnetic moment.59,60 In triplet su-
perconductors all nonunitary models break time-rever
symmetry. For these states Cooper pairs have finite sp
while the magnetization in the bulk is negligible. It was dem
onstrated that chiral superconductors could show quan
Hall-like effects even in the absence of an external magn
field:61 a transverse potential difference would appear in
sponse to the supercurrent.

2.4. Tests for order parameter in unconventional
superconductors

The simplest way to test the unconventional superc
ducting state is to investigate the effect of impurity scatter
on kinetic and thermodynamic characteristics. Fors-wave
superconductors, nonmagnetic impurities have no effects
Tc ~Anderson’s theorem!. In superconductors with uncon
ventional pairing the nonmagnetic impurities induce pa
breaking and suppress superconductivity. Increasing impu
concentration leads to the isotropization of the order para
eter. In the state with broken spatial symmetry the only w
to achieve it is make the order parameter to zero over en
Fermi surface. This happens ifD0t;1, whereD0 is of the
order of the average gap magnitude in the absence of im
rities at T50, and t is the quasiparticles’ mean fre
time.62–64

The Knight shiftdv of the nuclear magnetic resonanc
~NMR! frequency~for details, see Ref. 65! is the most suit-
able instrument for determining the spin structure of the
perconducting state. Because it results from electron inte
tion with nuclear magnetic moments,dv is proportional to
the Pauli paramagnetic susceptibilityx of normal electrons,
the temperature dependence ofdv(T) depends strongly on
whether the pairing is singlet or triplet. In singlet superco
ductors the Cooper pair spinS50, and the density of norma
electrons goes to zero atT→0. Thereforedv→0 as well. In
triplet superconductors both Cooper pairs and excitati
contribute to the susceptibilityx, which changes little with
decreasing temperature.

The presence of point and line nodes of the order par
eter in unconventional superconductors may be determ
from the temperature dependence of thermodynamic qua
ties and transport coefficients. In fully gapped (D5const)
s-wave superconductors they display thermally activated
havior (;exp(2D/T)). In a superconductor with nodes in th
gap of the elementary excitation spectrum the thermo
namic and kinetic quantities have power-law temperature
pendence.

The most-detailed information on the order parame
can be obtained from phase-sensitive pairing symmetry te
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These are based on Josephson tunneling and flux quan
tion: SQUID interferometry, tricrystal and tetracrystal ma
netometry, magnetic flux imaging, and thin-film SQUI
magnetometry ~for review see Ref. 19 and referenc
therein!.

3. JOSEPHSON EFFECT AND SPONTANEOUS CURRENTS
IN JUNCTIONS BETWEEN UNCONVENTIONAL
SUPERCONDUCTORS

3.1. Superconducting weak links

The Josephson effect8 arises in superconducting wea
links—the junctions of two weakly coupled superconduct
~massive banks! S1 andS2 . The coupling~contacting! allows
the exchange of electrons between the banks and establ
the superconducting phase coherence in the system
whole. The weakness of the coupling means that the su
conducting order parameters of the banks are essentially
same as for separate superconductors, and they are ch
terized by the phases of the order parametersx1 andx2 . The
Josephson weak link could be considered as the ‘‘mixer’
two superconducting macroscopic quantum states in
banks. The result of the mixing is a phase-dependent curr
carrying state with current flowing from one bank to anoth
This current ~Josephson current! is determined ~param-
etrized! by the phase differencew5x22x1 across the weak
link.

Classification. General properties. According to the type
of coupling, Josephson junctions can be classified as follo
1! Tunnel junctions~originally considered by Josephson!,
S–I–S~I is an insulator layer!. Weak coupling is provided by
quantum tunneling of electrons through a potential barrier!
Junctions with direct conductivity,S–c–S~c is a geometrical
constriction!. These are the microbridges or point contac
To have the Josephson behavior the constriction size mu
smaller than the superconducting coherence lengthj
;\vF /D. 3! Junctions based on the proximity effec
S–N–S~N is a normal metal layer!, S–F–S~F is a ferro-
magnetic metal layer!. The different combinations of thes
types of junctions are possible, e.g., S–I–N–I–S or S–I–
c–S structures. Another type of Josephson weak links are
multiterminal Josephson microstructures, in which the s
eral banks~more than two! are coupled simultaneously wit
each other.66–69

An important characteristic of a Josephson junction
the current–phase relation~CPR! I s(w). It relates the dc su-
percurrent flowing from one bank to another with the diffe
ence of the phases of the superconducting order parame
the banks. The maximum value ofI s(w) determines the criti-
cal currentI c in the system. The specific form of the CP
depends on the type of weak link. Only in a few cases d
it reduce to the simple formI s(w)5I c sin(w) that was pre-
dicted by Josephson for the case of a S–I–S tunnel junct
In the general case the CPR is a 2p-periodic function. For
conventional superconductors it also satisfies the rela
I s(w)52I s(2w). The latter property of CPR is violated i
superconductors with broken time-reversal symmetry.70–73

For general properties of the CPR and its form for differe
types of weak links the reader is referred to the books
reviews.66,74–76
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Unconventional Josephson weak links. The properties of
the current-carrying states in the weak link depend not o
on the manner of coupling but also on the properties of
banks states. For example, the S–c–S junction with
banks subjected to external transport current was consid
in Ref. 77. In such a system the time-reversal symmetry
artificially broken, which leads to some interesting featu
in the junction properties~the appearance of vortex-lik
states and a surface current flowing opposite to the tange
transport current in the banks!. In this review we consider the
junctions formed by unconventional (d-wave and triplet! su-
perconducting banks, which we call unconventional Jose
son weak links. The most striking manifestation of the u
conventional symmetry of the order parameter in t
junction is the appearance of a spontaneous phase differ
and spontaneous surface current in the absence of cu
flowing from one bank to the other.

3.2. Junctions between d -wave superconductors

Measurements of the characteristics of unconventio
Josephson weak links give information about the symme
of superconducting pairing~see the review78!. There are sev-
eral approaches to the calculation of coherent current st
in unconventional Josephson junctions. These include
Ginzburg–Landau treatment,22 description in the language o
Andreev bound states,79 and the numerical solution of th
Bogoljubov–de Gennes equations on a tight bind
lattice.80 A powerful method of describing inhomogeneo
superconducting states is based on the quasiclassical E
berger equations for the Green’s functions integrated o
energy.81 It was first used in Ref. 9 to describe the dc Jose
son effect in a ballistic point contact between conventio
superconductors. The Eilenberger equations can be gen
ized to the cases ofd-wave and triplet pairing~Appendix II!.
In this Section we present the results of quasiclassical ca
lations for the Josephson and spontaneous currents in
grain boundary junction between d-wave
superconductors.12,16,17

3.2.1. Current –phase relations

We consider a Josephson weak linkS1
(d) –S2

(d) which is
formed by the mismatching of the orientations of the latt
axes in the banksS1

(d) and S2
(d) , as shown in Fig. 4. Thex

axis is perpendicular and they axis is parallel to the interface
between two superconducting 2D half-spaces with differ

FIG. 4. Interface between twod-wave superconductorsS1 and S2 with
different orientationsx1 andx2 of the lattice axesa–b.
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a–b axis orientations~anglesx1 andx2 in Fig. 4!. Far from
the interface (x→7`) the order parameter is equal to th
bulk valuesD1,2(vF). In the vicinity of the interfacex50, if
the anglesx1 andx2 do not coincide, the value ofD deviates
from D1,2. To describe the coherent current states in
system, the Eilenberger equations~A4! for the Green’s func-
tions must be solved simultaneously with the equation foD
~A5!. The equation of self-consistency~A5! determines the
spatial distribution ofD~r !. The problem of solving the
coupled equations~A4! and~A5! can be treated by numerica
calculations. Analytical solutions can be obtained for t
model ~non-self-consistent! distribution ofD~r !:

D~vF ,r !5H D1~vF!exp~2 iw/2!, x,0,

D2~vF!exp~ iw/2!, x.0.
~15!

The phasew is the global phase difference between sup
conductorsS1 andS2 . In the following we consider the cas
of an ideal interface with transparencyD51. For the influ-
ence of interface roughness and effect of surface reflecta
(DÞ1) as well as the numerical self-consistent treatmen
the problem, see Ref. 16.

Analytical solutions in the model with the non-sel
consistent order-parameter distribution~15! are presented in
Appendix II. Using the expressions~A9!, ~A12! and ~A13!,
we obtain the current densitiesj x(x50)[ j J and j y(x50)
[ j S :

j J54peN~0!vFT (
v.0

K D1D2ucosuu
V1V21v21D1D2 cosw L sinw,

~16!

j S54peN~0!vFT (
v.0

K D1D2 sinusign~cosu!

V1V21v21D1D2 cosw L sinw.

~17!

We denote byj J the Josephson current flowing fromS1

to S2 and by j S the surface current flowing along the inte
face boundary. Expressions~16! and ~17! are valid ~within
the applicability of the model~15!! for arbitrary symmetry of
the order parametersD1,2. In particular, fors-wave super-
conductors from Eq.~16! we have the current–phase relatio
for the Josephson current in a conventional (s-wave! 2D bal-
listic S–c–Scontact:9

j J52eN~0!vFD0~T!sin
w

2
tanh

D0~T!cos~w/2!

2T
.

The surface currentj S ~17! equals zero in this case.
For aS1

(d) –S2
(d) interface~DD junction! betweend-wave

superconductors, the functionsD1,2(vF) in ~16! and ~17! are
D1,25D0(T)cos 2(u2x1,2). In Appendix I the temperature
dependence of the maximum gapD0(T) in d-wave super-
conductors is presented for reference. The results of the
culations ofj J(w) and j S(w) for a DD junction are displayed
in Fig. 5 for different mismatch anglesdx between the crys-
talline axes across the grain boundary and at tempera
T50.1Tc ~assuming the same transition temperature on b
sides!. The interface is between twod-wave superconductor
S1 andS2 with differenta–b lattice axis orientationsx1 and
x2 .

In these figures, the left superconductor is assumed t
aligned with the boundary, while the orientation of the rig
e

e

r-

cy
f

al-

re
th
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t

superconductor varies. The Josephson current–phase rel
~Fig. 5a! demonstrates a continuous transition from
p-periodic ~sawtooth-like! line shape atdx545° to a 2p-
periodic one for smalldx, as expected in the case of a cle
DND junction.82 The phase dependence of the surface c
rent ~Fig. 5b! is also in qualitative agreement with results f
SND and DND junctions.83

3.2.2. Spontaneous currents and bistable states

In contrast to the weak link between two convention
superconductors, the currentj S is not identically equal to
zero. Moreover, in some region of anglesx1 andx2 a value
of the equilibrium phase differencew5w0 exists at which
(d jJ(w)/dw)w5w0

.0 and j J(w0)50 but j S(w0)Þ0. These
spontaneous phase differencew0 and spontaneous curren
j S(w0)[ j spon correspond to the appearance of time-rever
symmetry breaking states in the system~in fact, two values
6w0 of the phase and corresponding spontaneous curr
6 j spon appear!. The region ofT-breaking states~as a func-
tion of temperature and mismatch angle! is shown in Fig. 6.
In Figs. 6 and 7 we also present the self-consistent nume
result,16 for comparison. Only in the asymmetricdx545°
junction does the degeneracy~at w56p/2) survive at all
temperatures, due to its special symmetry which leads
complete suppression of all odd harmonics ofI (w); gener-

FIG. 5. Josephson current (a) and spontaneous current (b) versus the phase
difference in a clean DD grain boundary junction calculated in a non-s
consistent approximation. Current densities are in units ofj 0

54peN(0)vFT and T50.1Tc . The mismatch angles arex150 and x2

545° ~1!, 40° ~2!, 34° ~3!, and 22.5°~4!.
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ally, w0→0 at some temperature that depends on the or
tation. The equilibrium value of the spontaneous curren
nonzero in a certain region of angles and temperatures~Fig.
7!, which is largest in the case of the asymmetricdx545°
junction.

The Josephson currentI J(w) is related to the Josephso
energy of the weak linkEJ(w) through I J(w)5(2e/\)
3(]EJ(w)/dw). The Josephson energy for DD junction
function of phase difference is shown schematically in F
8. The arrows indicate two stable states of the system. Th
are two macroscopic quantum states which can be used
d-wave qubit design~see Sec. 4 below!.

3.3. Junctions between triplet superconductors

The Josephson effects in the case of triplet pairing w
first discovered84,85 in weak links in3He. It was found that at
low temperatures the mass current–phase dependenceJ(w)
can essentially differ from the case of a conventional sup
conductor, and a so-called ‘‘p-state’’ (J8(p).0) is
possible.85,86 In several theoretical papers the Josephson
fect has been considered for a pinhole in a thin wall sepa
ing two volumes of3He-B.10,11,13,87–90The discovery of
metal superconducting compounds with triplet pairing
electrons has made topical the theoretical investigation of
Josephson effect in these superconductors. The Josep
effect is much more sensitive to dependence ofD~k! on the

FIG. 6. Equilibrium phase difference in a clean DD grain boundary junct
as a function ofdx5x22x1 ~keeping x150), at different values oft
5T/Tc . The circles and triangles correspond to non-self-consistent~NSC!
and self-consistent~SC! calculations, respectively. For nonzerow0 the
ground state is twofold degenerate (w56w0).

FIG. 7. Spontaneous current in the junction of Fig. 6.
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momentum direction on the Fermi surface than are the th
modynamic and kinetic coefficients. In this Section the co
sideration of the Josephson effect in point contacts is ba
on the most favorable models of the order parameter in U3

and Sr2RuO4, which were presented in Sec. 2.

3.3.1. Current density near an interface of misoriented
triplet superconductors

Let us consider a model of the Josephson junction a
flat interface between two misoriented bulk triplet superco
ductors~Fig. 9!. In this Section we follow the results of Re
15. In order to calculate the stationary Josephson cur
contact we use ‘‘transport-like’’ equations forj-integrated
Green’s functions80 ~see Appendix II.3!. Here we consider
the simple model of a constant order parameter up to
surface. The pair breaking and the electron scattering on
interface are ignored. For this non-self-consistent model
current–phase relation of a Josephson junction can be ca
lated analytically. This makes it possible to analyze the m
features of the current–phase relations for different scena
of ‘‘ f -wave’’ superconductivity. We believe that under th
strong assumption our results describe the real situa
qualitatively, as was justified for point contacts betwe
‘‘ d-wave’’ superconductors12 and pinholes in3He.91

n
FIG. 8. Josephson energy of a DD junction.

FIG. 9. Josephson junction as interface between two unconventional s
conductors misorienated by an anglea and with order parameterd~k!.
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Knowing the componentğ1(0) ~A29! of the Green’s
function ğ( k̂,r ,«m), one can calculate the current density
the interface,j ~0!:

j ~0!54peN~0!vFT (
m50

`

dk̂k̂ Re~ ğ1~0!!, ~18!

where

Re~ ğ1~0!!5
D1D2

2 (
6

sin~6u!

m
2 1V1V21D1D2 cos~6u!

.

~19!

The real vectorsD1,2 are related to the gap vecto
d1,2( k̂) in the banks by the relation

dn~ k̂!5Dn~ k̂!exp~ icn!. ~20!

The angle u is defined by D1( k̂)•D2( k̂)
5D1( k̂)D2( k̂)cosu, and (k)5c2( k̂)2c1( k̂)1w.

Misorientation of the crystals would generally result
the appearance of a current along the interface,17 as can be
calculated by projecting the vectorj on the corresponding
direction.

We consider a rotationR in the right superconducto
only ~see Fig. 9!, ~i.e., d2( k̂)5Rd1(R21k̂)). We choose the
c axis in the left half-space along the partition between
superconductors~along thez axis in Fig. 9!. To illustrate the
results obtained by computing the formula~18!, we plot the
current–phase relation for different below-mentioned s
narios of ‘‘f -wave’’ superconductivity for two different ge
ometries corresponding to different orientations of the cr
tals to the right and to the left at the interface~see Fig. 9!: ~i!
The basal planeab to the right is rotated about thec axis by
the anglea; ĉ1i ĉ2 . ~ii ! Thec axis to the right is rotated abou
the contact axis (y axis in Fig. 9! by the anglea; b̂1i b̂2 .

Further calculations require a definite model of the v
tor order parameterd.

3.3.2. Current –phase relations and spontaneous surface
currents for different scenarios of ‘‘f-wave’’
superconductivity

Let us consider the models of the order parameter
UPt3 which are based on the odd-parityE2u representation of
the hexagonal point groupD6h . The first of them corre-
sponds to the axial state~12! and assumes the strong spin
orbital coupling, with the vectord locked along thec axis of
the lattice. The other candidate to describe the orbital sta
which imply that the effective spin–orbital coupling in UP3

is weak, is the unitary planar state~13!. The coordinate axes
x,y,z here and below are chosen along the crystallograp
axesâ,b̂,ĉ as at the left in Fig. 9. These models describe
hexagonal analog of spin-tripletf -wave pairing.

In Fig. 10 we plot the Josephson current–phase rela
j J(w)5 j y(y50) calculated from Eq.~18! for both the axial
@with the order parameter given by Eq.~12!# and the planar
@Eq. ~13!# states for a particular value ofa under the rotation
of the basal planeab to the right @the geometry~i!#. For
simplicity we use a spherical model of the Fermi surface.
the axial state the current–phase relation is just a sla
sinusoid, and for the planar state it shows a ‘‘p-state.’’ The
t
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-

n

s,

ic
e

n

r
ed

appearance of thep-state at low temperatures is due to t
fact that different quasiparticle trajectories contribute to
current with different effective phase differences (k̂) @see
Eqs. ~18! and ~19!#.11 Such a different behavior can be
criterion for distinguishing between the axial and the plan
states, taking advantage of the phase-sensitive Josephso
fect. Note that for the axial model the Josephson curr
formally does not equal zero atw50. This state is unstable
~does not correspond to a minimum of the Josephson
ergy!, and the state with a spontaneous phase differe
~value w0 in Fig. 10!, which depends on the misorientatio
anglea, is realized.

The remarkable influence of the misorientation anglea
on the current–phase relation is shown in Fig. 11 for
axial state in the geometry~ii !. For some values ofa ~in Fig.
11 it is a5p/3) there are more than one state which cor
spond to minima of the Josephson energy (j J50 and
d jJ /dw.0).

The calculatedx andz components of the current, whic
are parallel to the surface,jS(w), are shown in Fig. 12 for the
same axial state in the geometry~ii !. Note that the current
tangential to the surface as a function ofw is nonzero when
the Josephson current~Fig. 11! is zero. This spontaneou
tangential current is due to the specific ‘‘proximity effect
similar to spontaneous current in contacts between ‘‘d-wave’’
superconductors.17 The total current is determined by th
Green’s function, which depends on the order parameter
both superconductors. As a result, for nonzero misorienta

FIG. 10. Josephson current densities versus phasew for axial ~12! and
planar ~13! states in the geometry~i!; misorientation anglea5p/4; the
current is given in units ofj 05p/2eN(0)vFD0(0).

FIG. 11. Josephson current versus phasew for the axial state~12! in the
geometry~ii ! for different a.
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angles a current parallel to the surface can be generate
the geometry~i! the tangential current for both the axial an
planar states atT50 is absent.

The candidates for the superconducting state in Sr2RuO4

are the ‘‘p-wave’’ model~8! and the ‘‘f -wave’’ hybrid model
~10!. Taking into account the quasi-two-dimensional electr
energy spectrum in Sr2RuO4, we calculate the current~18!
numerically using the model of a cylindrical Fermi surfac
The Josephson current for the hybrid ‘‘f -wave’’ model of the
order parameter~Eq. ~10!! is compared to thep-wave model
~Eq. ~8!! in Fig. 13 ~for a5p/4). Note that the critical cur-
rent for the ‘‘f -wave’’ model is several times smaller~for the
same value ofD0) than for the ‘‘p-wave’’ model. This dif-
ferent character of the current–phase relation enables u
distinguish between the two states.

In Figs. 14 and 15 we present the Josephson current
the tangential current for the hybrid ‘‘f -wave’’ model for
different misorientation anglesa ~for the ‘‘p-wave’’ model it

FIG. 12. z component (a) and x component (b) of the tangential current
versus phasew for the axial state~12! in the geometry~ii ! for different a.

FIG. 13. Josephson current versus phasew for hybrid ‘‘ f -wave’’ ~10! and
‘‘ p-wave’’ ~8! states in the geometry~i!; a5p/4.
In

n

.

to

nd

equals zero!. Just as in Fig. 10 for the ‘‘f -wave’’ order pa-
rameter~12!, in Fig. 14 for the hybrid ‘‘f -wave’’ model ~9!
the steady state of the junction with zero Josephson cur
corresponds to a nonzero spontaneous phase difference
misorientation angleaÞ0.

Thus, in this Section the stationary Josephson effect
planar junction between triplet superconductors is cons
ered. The analysis is based on models with ‘‘f -wave’’ sym-
metry of the order parameter belonging to the tw
dimensional representations of the crystallograp
symmetry groups. It is shown that the current–phase r
tions are quite different for different models of the ord
parameter. Because the order parameter phase depen
the momentum direction on the Fermi surface, the misori
tation of the superconductors leads to a spontaneous p
difference that corresponds to zero Josephson current an
the minimum of the weak-link energy. This phase differen
depends on the misorientation angle and can possess
value. It has been found that in contrast to the ‘‘p-wave’’
model, in the ‘‘f -wave’’ models the spontaneous current m
be generated in a direction which is tangential to the orifi
plane. Generally speaking this current is not equal to zer
the absence of the Josephson current. It is demonstrated
the study of the current–phase relation of a small Joseph
junction for different crystallographic orientations of ban
enables one to judge the applicability of different models
the triplet superconductors UPt3 and Sr2RuO4.

It is clear that such experiments require very clean
perconductors and perfect structures of the junction beca
of pair-breaking effects of nonmagnetic impurities and d
fects in triplet superconductors.

4. JOSEPHSON PHASE QUBITS BASED ON d-WAVE
SUPERCONDUCTORS

4.1. Quantum computing basics

As we have seen, unconventional superconductors s
port time-reversal symmetry breaking states on a mac
scopic, or at least, mesoscopic scale. An interesting poss
ity arises then to apply them in quantum bits~qubits!, basic
units of quantum computers~see, e.g., Refs. 92–94!, using
T-related states of the system as basic qubit states.

A quantum computer is essentially a set ofN two-level
quantum systems which, without loss of generality, can
represented by spin operatorsŝ ( i ), i 51...N. The Hilbert
space of the system is spanned by 2N statesus1& ^ us2& ^ ...

FIG. 14. Josephson current versus phasew for the hybrid ‘‘f -wave’’ state~9!
in the geometry~i! for different a.
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^usN&, si50,1. The information to be processed is contain
in complex coefficients$a% of the expansion of a given stat
in this basis:

uC&5 (
sj 50,1

as1s2 ...sN
us1& ^ us2& ^ ...^ usN&. ~21!

The unitary operations on states of the qubits are ca
gates, like in the classical case. Single qubit gates areSU(2)
rotations. An example of a two-qubit gate is aconditional
phase shift, CP(g), which, being applied to a two-qub
wave function, shifts its phase byg if and only if they are in
the same ~‘‘up’’ or ‘‘down’’ ! state. In the basis$u0&
^ u0&,u0& ^ u1&,u1& ^ u0&,u1& ^ u1&% it is

CP~g!5S eig 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eig

D . ~22!

Obviously, if CP(g) is applied to a factorized state of tw
qubits, uC&5(a1u0&1b1u1&) ^ (a2u0&1b2u1&), in the gen-
eral case we will obtain anentangledstate. Up to an unim-
portant global phase factor,CP(g) results from the free
evolution of two qubits, generated by the Hamiltoni
H5Jŝz

(1)
•ŝz

(2) , for a timeT5\g/(2J).
Another nontrivial example is thecontrolled-not gate

CN12, which, acting onus1& ^ us2&, leavess1 intact and flips
s2 (1→0,0→1) if and only if s151. The combination
SW125CN12CN21CN12 swaps~exchanges! the states of two
qubits.

It can be shown that a universal quantum computer~that
is, one that can realize any possible quantum algorithm,
way a Turing machine can realize any possible classica
gorithm! can be modeled by a chain of qubits with on
nearest-neighbor interactions:

H5(
i 51

N

$uisz
~ i !1D isx

~ i !%1 (
i 5 j 11

Ji j sz
~ i !
•sz

~ j ! . ~23!

Further simplifications are possible,95 but this would be irrel-
evant for our current discussion.

The operations of a quantum computer require that
parameters of the above Hamiltonian be controllable~more
specifically, one must be able toinitialize, manipulate, and
read out qubits!. For the unitary manipulations discusse
above, at least some of the parametersu, D, J of the Hamil-
tonian must be controllable from the outside during the e

FIG. 15. Tangential current density versus phasew for the hybrid ‘‘f -wave’’
state~9! in the geometry~i! for different a.
d

d

e
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e
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lution. Initialization and readout explicitly require nonunita
operations~projections!. Therefore any practical implemen
tation of a quantum computer must satisfy contradictory
quirements: qubits must be isolated from the outside world
allow coherent quantum evolution~characterized by a deco
herence timetd) for long enough time to allow an algorithm
to run, but they must be sufficiently coupled to each oth
and to the outside world to permit initialization, control, an
readout.94 Fortunately, quantum error correction allows o
to translate a larger size of the system into a longer effec
decoherence time by coding each logical qubit in seve
logical ones~currently it is accepted that a system withtd /tg

in excess of 104 can run indefinitely, wheretg is the time of
a single gate application~e.g., the timeT in the example of
CP(g)).

Note that the operation of a quantum computer based
consecutive application of quantum gates as described a
is not the only possible, or necessarily the most efficie
way of its use. In particular, it requires a huge overhead
quantum error correction. Alternative approaches have b
suggested~e.g., adiabatic quantum computing96–98! which
may be more appropriate for the smaller-scale quantum
isters likely to be built in the immediate future.

4.2. Superconducting qubits

The size of the system is crucial not only from the po
of view of quantum error correction. It is mathematical
proven that a quantum computer is exponentially faster t
a classical one in factorizing large integers; the number
known quantum algorithms is still small, but an active sea
for more potential applications is under way~see the above
reviews and, e.g., Refs. 96–98!. Nevertheless the scale o
which its qualitative advantages over classical computers
gin to be realized is about a thousand qubits. This indica
that solid-state devices should be looked at for the solut
The use of some microsopic degrees of freedom as qu
e.g., nuclear spins of31P in a Si matrix, as suggested b
Kane,99 is attractive due to both the largetd and well-defined
basis states. The difficulties in fabrication~due to small
scale! and control and readout~due to weak coupling to the
external controls! have not allowed realization of the schem
so far.

Among mesoscopic qubit candidates, superconduct
more specifically Josephson systems have the advantage
coherent ground state and the absence or suppression of
energy excitations, which increases the decoherence t
Together with well-understood physics and developed
perimental and fabrication techniques, this makes them
natural choice.

The degree of freedom which is coupled to the cont
and readout circuits determines the physics of a qubit. In
superconducting case, one can then distinguishchargeand
phasequbits, depending on whether the charge~number of
particles! or phase~Josephson current! of the superconducto
is well defined.

The simplest example of a Josephson qubit is an
SQUID,100 with the Hamiltonian

Hq5
Q̂2

2C
1

F0
2

8p2L
~w2wx!

22
I cF0

2p
cos~w!, ~24!
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whereL is the self-inductance of the loop, andI c andC are
the critical current and capacitance of the Josephson ju
tion. The charge on the junction,Q̂522ie]w , is conjugate
to the phase differencew across it. The external flux throug
the loop isFx5wxF0 /(2p). If it equalsexactlyF0/2 (wx

5p) the T-symmetry is broken. The potential part in~24!
acquires a symmetric two-well structure, with tunneling b
tween the wells possible due to the derivative term in~24!,
which reflects quantum phase uncertainty in a Joseph
junction with finite capacitance. The tunneling rate is of t
order ofvp exp(2U(0)/vp), where the frequency of oscilla
tions in one of the potential wellsvp;AEJEQ, and the
height of the potential barrier between themU(0);EJ .

The states in the right and left wells differ by the dire
tion of the macroscopic persistent current and can be use
qubit statesu0& and u1&. The dynamics of the system is dete
mined by the interplay of the charging energyEQ52e2/C
and Josephson energyEJ5hIc /(2e). Here EJ /EQ@1, and
charging effects are responsible for the tunneling splitting
the levels. Coherent tunneling between them has actu
been observed100 in a Nb/AlOx /Nb SQUID at 40 mK; the
magnetic flux difference was approximatelyF0/4, which
corresponded to currents of about 2mA. ~The actual design
was a little more complicated than the simple rf SQUID!
Fine tuning of the external flux is essential to allowresonant
tunnelingthrough the potential barrier.

In the case of small loop inductance the phase will
fixed by flux quantization. For phase to tunnel, one has
introduce extra Josephson junctions in the loop. In the th
junction design,101 two junctions are identical, each with
Josephson energyEJ , and the third one has a little smalle
energyaEJ , a,1. In the presence of external fluxwx , the
energy of the system as a function of phases on the iden
junctionsw1 ,w2 is

U~w1 ,w2!

EJ
52cosw12cosw22a cos~wx1w12w2!.

~25!

As before, ifwx5p, the system has degenerate minima. D
to the two-dimensional potential landscape, tunneling
tween them does not require a large flux transfer of or
F0/2, as in the previous case. Tunneling is again poss
due to charging effects, which give the system an effec
‘‘mass’’ proportional to the Josephson junction capacitan
C. Coherent tunneling between the minima has be
observed.102 The potential landscape~25! was recovered
from measurements on a classical 3-junction loop~with C
too large to allow tunneling!.103 Rabi oscillations were ob
served both indirectly, using the quantum noi
spectroscopy104 ~the observed decay time of Rabi oscillatio
observed in these experimentstRabi52.5 ms), and directly,
in time domain105 (tRabi5150 ns).

The above limitEJ /EQ@1 can be reversed. Then th
design must include a mesoscopic island separated from
rest of the system by two tunnel junctions~a superconducting
single electron transistor, SSET!. The Hamiltonian becomes

Hq5
~Q̂2Qx!

2

2C
2

I cF0

2p
cosw, ~26!
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where this time the role of externalT-symmetry breaking
parameter is played by the chargeQx induced on the island
by a gate electrode. The working states are eigenstate
charge on the island; at appropriateQx the states withQ
52ne and Q52(n11)e are degenerate due to a pari
effect,106 wheren is the number of Cooper pairs in the SSE
Quantum coherence in an SSET has been observed no
through the observation of level anticrossing near the deg
eracy point, as in Refs. 100 and 102, but also in the ti
domain.107 The system was prepared in a superposition
statesun&,un11&, kept at a degeneracy point for a controlle
time t, and measured. The probabilityP(t) of finding the
system in staten exhibited quantum beats.

A ‘‘hybrid’’ system, with EJ /EQ.1, so-called ‘‘quantro-
nium,’’ was fabricated and measured in the time domain
CEA-Saclay,108 with an extraordinary ratiotd /t t'8000~the
tunneling timet t can be considered as the lower limit of th
gate application timetg). Quantronium can be described as
charge qubit, which is read out through the phase varia
and is currently the best superconducting single qubit.

An interesting inversion of the quantronium design109 is
also a hybrid qubit, this time a flux qubit read out through t
charge variable. It promises several advantages over o
superconducting qubits, but has not yet been fabricated
tested.

Finally, a single current-biased Josephson junction
also be used as a qubit~phase qubit!.110,111The role of basis
states is played by the lowest and first excited states in
washboard potential. Rabi oscillations between them h
been successfully observed.

The charge, hybrid, and phase qubits are mentioned
only for the sake of completeness, since unconventional
perconductors are more naturally employed in flux qub
Various Josephson qubits are reviewed in Ref. 112.

4.3. Application of d -wave superconductors to qubits

One of the main problems with the above flux qub
designs is the necessity of artificially breaking t
T-symmetry of the system by putting a fluxF0/2 through it.
Estimates show that the required accuracy is 1025– 1026.
The micron-size qubits must be positioned close enough
each other to make possible their coupling; the dispersion
their parameters means that applied fields must be loc
calibrated; this is a formidable task given such sources
field fluctuations as fields generated by persistent current
qubits themselves, which depend on the state of the qu
field creep in the shielding; captured fluxes; magnetic im
rities. Moreover, the circuitry which produces and tunes
bias fields is an additional source of decoherence in the
tem.~Similar problems arise in charge qubits, where the g
voltages must be accurately tuned.!

These problems are avoided if the qubit isintrinsically
bistable. The most straightforward way to achieve this is
substitute the external flux by a static phase shifter, a Jos
son junction with unconventional superconductors with no
zero equilibrium phase shiftw0 . From ~25!, one sees that
e.g., a three-junction qubit would require an extrap-junction
(w05p).113 In the same way ap-junction can be added to
multiterminal phase qubit.114 The only difference compared
to the case of external magnetic field bias is in the decoh
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ence time: instead of noise from field generating circuits
will have to take into account decoherence from nodal q
siparticles~see below!.

A more interesting possibility is opened up if the bistab
d-wave system is employed dynamically, that is, if its pha
is allowed to tunnel between the degenerate values. In a
called ‘‘quiet’’ qubit113 an SDS8 junction ~effectively two SD
junctions in the~110! direction! is put in a low-inductance
SQUID loop in parallel with a conventional Josephson jun
tion and large capacitor. One of the SD junctions plays
role of ap/2-phase shifter. The other junction’s capacitan
C is small enough to make possible tunneling betweenp/2
and2p/2 states due to the charging termQ2/2C. Two con-
secutive SD junctions are effectively a single junction w
equilibrium phases 0 andp ~which are chosen as workin
states of the qubit!. The control mechanisms suggested
Ref. 113 are based on switchesc ands. Switch c connects
the small S8D junction to a large capacitor, thus suppress
the tunneling. Connectings for the durationDt creates an
energy differenceDE betweenu0& and u1&, because in the
latter case we have a frustrated SQUID with 0- a
p-junctions, which generates a spontaneous fluxF0/2. This
is a generalization of applying the operationsz to the qubit.
Finally, if switch c is open, the phase of the small junctio
can tunnel between 0 andp. Entanglement between qubits
realized by connecting them through another Josephson j
tion in a bigger SQUID loop. The suggested implementat
for switches is based on a low-inductance dc-SQUID des
with a conventional and ap-junction in parallel, withI c,0

5I c,p . In the absence of external magnetic field the Jose
son current through it is zero, while at external fluxF0/2 it
equals 2I c . Instead of external flux, another SDS8 junction,
which can be switched by a voltage pulse between th
~closed! and p ~open! states, is put in series with th
p-junction.

The above design is very interesting. Due to the abse
of currents through the loop during tunneling betweenu0&
and u1& the authors called it ‘‘quiet,’’ though, as we hav
seen, small currents and fluxes are still generated near th
boundaries.

Another design based on the same bistability115 only re-
quires one SD or DD boundary. Here a small island conta
a massive superconductor, and the angle between the o
tation of d-wave order parameter and the direction of t
boundary can be arbitrary~as long as it is compatible with
bistability!. The advantage of such a design is that the pot
tial barrier can to a certain extent be controlled and s
pressed; moreover, in general there are two ‘‘workin
minima 2w0 ,w0 ; the phase of the bulk superconduct
across the boundary is zero will be separated from each o
by a smaller barrier than from the equivalent states differ
by 2pn. This allows us to disregard the ‘‘leakage’’ of th
qubit state from the working space spanned by~u0&,u1&!,
which cannot be done in a ‘‘quiet’’ design with exa
p-periodicity of the potential profile. A convenient way o
fabricating such qubits is to use grain-boundary DD jun
tions, where a two-well potential profile has indeed be
observed.104 Operations of such qubits are based on the t
able coupling of the islands to a large superconducting ‘‘b
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and would allow the realization of a universal set of quant
gates.116

A more advanced design was fabricated and tested in
classical regime in Ref. 117. Here two bistabled-wave grain-
boundary junctions with a small superconducting island
tween them are set in a SQUID loop.~The junctions them-
selves are also small, so that the total capacitance of
system allows phase tunneling.! In the case when the two
junctions have the same symmetry but different critical c
rents, in the absence of external magnetic field there is
current passing through the big loop, and therefore the q
is decoupled from the electromagnetic environment~‘‘si-
lent’’ !. The second-order degeneracy of the potential pro
at the minimum drastically reduces the decoherence du
coupling to the external circuits.

4.4. Decoherence in d -wave qubits

Decoherence is the major concern for any qubit imp
mentation, especially for solid-state qubits, due to the ab
dance of low-energy degrees of freedom. In superconduc
this problem is mitigated by the exclusion of quasipartic
excitations due to the superconducting gap. This also
plains why the very fact of existence of gapless excitations
high-Tc superconductors long served as a deterrent aga
serious search for macroscopic quantum coherence in t
systems. An additional source of trouble may be zero-ene
states~ZES! in DD junctions.

Nevertheless, recent theoretical analysis of D
junctions,118,119 all using quasiclassical Eilenberger equ
tions, shows that the detrimental role of nodal quasipartic
and ZES could be exaggerated.

Before turning to these results, let us first do a sim
estimate of dissipation due to nodal quasiparticles in b
d-wave superconductors.120

Consider, for example, a three-junction~‘‘Delft’’ ! qubit
with d-wave phase shifters. Theu0& and u1& states support,
respectively, clockwise and counterclockwise persistent c
rents around the loop, with superfluid velocityvs . Tunneling
between these states leads to nonzero average^ v̇s

2& in the
bulk of the superconducting loop.

The time-dependent superfluid velocity produces a lo
electric field

E52
1

c
Ȧ5

m

e
v̇s , ~27!

and quasiparticle currentjqp5sE. The resulting average en
ergy dissipation rate per unit volume is

Ė5sE2'mtqp̂ n̄~vs!v̇s
2&. ~28!

Heretqp is the quasiparticle lifetime, and

n̄~vs!5E
0

`

d«N̄~«!@nF~«2pFvs!1nF~«1pFvs!# ~29!

is the effective quasiparticle density. The angle-avera
density of states inside thed-wave gap is121

N̄~«!'N~0!
2«

mD0
, ~30!



tiv
n
it

t

w

-

e-
si

o
ri

n
e
g

nc

m
t

-

ini-

er-
dis-

is
uc-
f

e
the

o
ent
less

ing

hile
ot
s.
-
sti-

all
115.
lly
ipa-
ted

r a
ze
n a

o-
sti-
tor

he
un

in

in

ur-

nite

548 Low Temp. Phys. 30 (7–8), July–August 2004 Kolesnichenko et al.
wherem5D0
21duD(u)u/du, andD0 is the maximal value of

the superconducting order parameter. Substituting~30! in
~29!, we obtain

n̄~vs!'N~0!
2

mD0
~2T2!@Li2~2exp~2pFvs /T!!

1Li2~2exp~pFvs /T!!#, ~31!

where Li2(z) is the dilogarithm. Expanding for smallpFvs

!T, we obtain

n̄~vs!'
N~0!

mD0
S p2T2

3
1~pFvs!

2D . ~32!

The two terms in parentheses correspond to thermal ac
tion of quasiparticles and their generation by a curre
carrying state. Note that a finite quasiparticle density by
self does not lead to any dissipation.

In the opposite limit (T!pFvs) only the second contri-
bution remains,

n̄~vs!'
N~0!

mD0
~pFvs!

2. ~33!

The energy dissipation rate gives the upper limitt« for
the decoherence time~since dissipation is a sufficient but no
necessary condition for decoherence!. Denoting by I c the
amplitude of the persistent current in the loop, byL the in-
ductance of the loop, and byV the effective volume of the
d-wave superconductor in which persistent current flows,
can write

t«
215

2ĖV

LI c
2 '

2mtqpN~0!VS p2T2

3
^v̇s

2&1pF
2^vs

2v̇s
2& D

mD0LI c
2 .

~34!

Note that the thermal contribution tot«
21 is independent of

the absolute value of the supercurrent in the loop (}vs),
while the other term scales asI c

2 . Both contributions are
proportional toV and ~via v̇s) to v t , the characteristic fre-
quency of current oscillations~i.e., the tunneling rate be
tween clockwise and counterclockwise current states!.

It follows from the above analysis that the intrinsic d
coherence in ad-wave superconductor due to nodal qua
particles can be minimized by decreasing the amplitude
the supercurrent through it, and the volume of the mate
wheretime-dependentsupercurrents flow.

Now let us estimate the dissipation in a DD junctio
First, following Refs. 115 and 122, consider a DND mod
with ideally transmissive ND boundaries. Due to tunnelin
the phase will fluctuate, creating a finite voltage on the ju
tion, V5(1/2e)ẋ, and a normal currentI n5GV. The corre-
sponding dissipative function and decay decrement are

F5
1

2
Ė5

1

2
GV25

Gẋ2

2 S 1

2eD 2

; ~35!

g5
2

MQẋ

]F
]ẋ

5
G

4e2MQ
5

4N'EQ

p
. ~36!

Here EQ5e2/2C, MQ5C/16e251/32EQ , and N' are the
Coulomb energy, effective ‘‘mass,’’ and number of quantu
channels in the junction, respectively. The last is related
a-
t-
-

e

-
f

al

.
l
,
-

o

the critical Josephson currentI 0 and spacing between An
dreev levels in the normal part of the system,ē5vF/2L, via

I 05N'e«̄. ~37!

We require thatg/v0!1, wherev05A32N'EQē/p is
the frequency of small phase oscillations about a local m
mum. This means that

N'!
«̄

EQ
. ~38!

The above condition allows a straightforward physical int
pretation. In the absence of thermal excitations, the only
sipation mechanism in the normal part of the system
through transitions between Andreev levels, induced by fl
tuation voltage. These transitions become possible iē

,2eV̄;Ax̄̇2;v0 , which brings us back to~38!. Another
interpretation of this criterion arises if we rewrite it asv0

21

@(vF /L)21 ~Ref. 115!. On the right-hand side we see th
time for a quasiparticle to traverse the normal part of
junction. If it exceeds the period of phase oscillations~on the
left-hand side!, Andreev levels simply do not have time t
form. Since they provide the only mechanism for coher
transport through the system, the latter is impossible, un
our ‘‘no dissipation’’ criterion holds.

For a normal-layer thicknessL;1000 Å and vF

;107 cm/s this criterion limitsv0,10212 s21, which is a
comfortable two orders of magnitude above the tunnel
splitting usually obtained in such qubits (;1 GHz) and can
be accommodated in the above designs. Nevertheless, w
presenting a useful qualitative picture, the DND model is n
adequate for the task of extracting quantitative prediction

A calculation123 using the model of a DD junction inter
acting with a bosonic thermal bath gave an optimistic e
mate for the quality of the tricrystal qubit,Q.108.

The role of size quantization of quasiparticles in sm
DD and SND structures was suggested in Refs. 113 and
The importance of this effect is that it would exponentia
suppress the quasiparticle density and therefore the diss
tion below the temperature of the quantization gap, estima
as 1–10 K. Recently this problem was investigated fo
finite-width DD junction. Contrary to expectations, the si
quantization as such turned out to be effectively absent o
scale exceedingj0 ~that is, practically irrelevant!. From the
practical point of view this is a moot point, since the dec
herence time due to the quasiparticles in the junction, e
mated in Ref. 119, already corresponds to a quality fac
tw /tg;106, which exceeds by two orders of magnitude t
theoretical threshold allowing a quantum computer to r
indefinitely.

The expression for the decoherence time obtained
Ref. 119,

tw5
4e

dw2I ~Dt/e!
, ~39!

where dw is the difference between equilibrium phases
degenerate minima of the junction~i.e., dw52x0 in other
notation!, contains the expression for the quasiparticle c
rent in the junction at finite voltage,D t /e ~whereD t is the
tunneling rate between the minima!. This agrees with our
back-of-the-envelope analysis: phase tunneling leads to fi
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voltage in the system through the second Josephson rela
and with finite voltage comes quasiparticle current and de
herence. The quality factor is defined asQ5twD t/2\, that is,
we compare the decoherence time with the tunneling ti
Strictly speaking, it is the quality factor with respect to t
fastest quantum operation realized by the natural tunne
between the minima at the degeneracy point. For the R
transitions between the states of the qubit this numbe
much lower~10–20 versus 8000; Ref. 108! on account of the
relatively low Rabi frequency.

A much bigger threat is posed by the contribution fro
zero-energy bound states, which can be at least two orde
magnitude larger. We can see this qualitatively from~39!: a
large density of quasiparticle states close to zero energy~i.e.,
at the Fermi level! means that even small voltages crea
large quasiparticle currents, which sit in the denominator
the expression fortw . Fortunately, this contribution is sup
pressed in the case of ZES splitting, and such splitting
always present due, e.g., to the finite equilibrium phase
ference across the junction.

A similar picture follows from the analysis presented
Ref. 124. A specific question addressed there is espec
important: it is known that theRC constant measured in DD
junctions is consistently 1 ps over a wide range of junct
sizes,125 and it is tempting to accept this value as the dis
pation rate in the system. It would be a death knell for a
quantum computing application of high-Tc structures, and
nearly that for any hope to see some quantum effects th
Nevertheless, it is not quite that bad. Indeed, we saw that
ZES play a major role in dissipation in a DD junction but a
sensitive to phase differences across it. Measurements o
RC constant are made in the resistive regime, when a fi
voltage exists across the junction, so that the phase di
ence grows monotonically in time, forcing the ZES to a
proach the Fermi surface repeatedly. ThereforetRC reflects
some averaged dissipation rate. On the other hand, in a
junction with not too high a tunneling rate the phase diff
ence obviously tends to oscillate aroundx0 or 2x0 , its equi-
librium values, and does not spend much time near zer
p; therefore the ZES are usually shifted from the Fer
level, and their contribution to dissipation is suppressed.

This qualitative picture is confirmed by a detailed calc
lation. The decoherence time is related to the pha
dependent conductance via

tw5
1

aF~x0!2dE
tanh

dE

2T
. ~40!

Here a is the dissipation coefficient,dE is the interlevel
spacing in the well, and

G~x!54e2a@]xF~x!#2. ~41!

For a realistic choice of parameters Eq.~40! gives a
conservative estimatetw51 – 100 ns, and quality factorQ
;1 – 100. This is, of course, too little for quantum compu
ing, but quite enough for observation of quantum tunnel
and coherence in such junctions.

5. CONCLUSION

We have reviewed one of the most intriguing aspects
unconventional superconductivity, the generation of spon
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neous currents in unconventional Josephson weak links.
mixing of the unconventional order parameters from t
junction banks leads to the formation of aT-breaking state in
the weak link. A consequence of the time-reversal symme
breaking is the appearance of a phase difference acros
Josephson junction in the absence of current through the
tact. This phenomenon, not present in conventional juncti
between standard superconductors, radically changes
physics of weakly coupled superconductors. The curre
phase relations for unconventional Josephson weak lin
which we have discussed forS(d) –S(d) andS(triplet)–S(triplet)

junctions, are quite different from the conventional one. D
pending on the angle of misorientation of thed-wave order
parameters in the banks, the current–phase relationI J(w) is
changed from a sin(w)-like curve to a2sin(2w) dependence
~Fig. 5!. Clearly, it determines new features in the behav
of such a Josephson junction in applied voltage or magn
field. We have discussed the simple case of an ideal inter
between clean superconductors in which the spontane
current generation effect is the most pronounced. Remain
beyond the scope of this review are a number of fact
which complicate the simple models. They are the influen
on the spontaneous current states of the interface roughn
potential barriers~dielectric layer!, and scattering on impuri-
ties and defects in the banks. For the case of a diffus
junction see the article of Tanakaet al. in this issue. For the
detailed theory of spontaneous currents in DD junctions
Ref. 16. The spatial distribution of spontaneous current
particular, the effect of superscreening, is considered in R
12 and 16. An important and interesting question conce
the possible induction of a subdominant order parameter n
the junction interface and its influence on the value of sp
taneous current. It was shown in Ref. 17 that the spontane
currents decrease when there is interaction in the subdo
nant channel. This statement, which may seem paradox
can be explained in the language of current-carrying Andr
states~see Fig. 5 in Ref. 17!. As a whole, the theory of
unconventional Josephson weak links with breaking oT
symmetry, in particular, the self-consistent consideration
nonstationary behavior, needs further development.
spontaneous bistable states in Josephsond-wave junctions
attract considerable interest also from the standpoint
implementation of qubits, the basic units of quantum co
puters. In Sec. 4 we analyzed the application ofd-wave su-
perconductors to qubits. Unlike the Josephson charge
flux qubits based on conventional superconductors,
d-wave qubits have not yet been realized experimenta
Nevertheless, the important advantages ofd-wave qubits,
e.g., from the point of view of scalability, not to mention th
fundamental significance of theT-breaking phenomenon, de
mand future experimental investigations of unconventio
weak links and devices based on them.

APPENDIX I. TEMPERATURE DEPENDENCE OF THE
ORDER PARAMETER IN A d-WAVE SUPERCONDUCTOR

In a bulk homogeneousd-wave superconductor the BC
equation for the order parameterD(vF) takes the form
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D~vF!52pN~0!T (
v.0

K V~vF ,vF8 !
D~vF8 !

Av21uD~vF8 !u2L
v

F8

~A1!

Or, writing V(vF ,vF8 )5Vd cos 2u cos 2u8, ld5N(0)Vd ,
D5D0(T)cos 2u, we have forD0(T)

D0~T!5ld2pT (
v.0

vc E
0

2p du

2p

D0~T!cos2 2u

Av21D0~T!2 cos2 2u
~A2!

(v5(2n11)pT, wherevc is the cutoff frequency!.
At zero temperatureT50, in the weak coupling limit

ld!1, for D0(T50)5D0(0) it follows from ~A2! that

D0~0!52vcb exp~22/ld!, ln b5 ln 221/2'1.21.

The critical temperatureTc is

Tc5
2

p
vcg exp~22/ld!, ln g5C50.577, g'1.78.

Thus,D0(0)/Tc5pb/g'2.14.
In terms ofTc , Eq. ~A2! can be presented in the form

ln
T

Tc
52pT (

v.0

` S 2E
0

2p du

2p

cos2 2u

Av21D0~T!2 cos2 2u
2

1

v D .

~A3!

In the limiting cases, the solution of equation~A3! has the
form

D0~T!5H D0~0!F123§~3!S T

D0~0! D
2G , T!Tc .

S 32p2

21§~3! D
1/2

TcS 12
T

Tc
D 1/2

, T;Tc .

For arbitrary temperatures 0<T<Tc the numerical solu-
tion of equation~A3! is shown in Fig. 16.

FIG. 16. Temperature dependence of the order parameterD0(T) in ad-wave
superconductor.
APPENDIX II. QUASICLASSICAL THEORY OF COHERENT
CURRENT STATES IN MESOSCOPIC BALLISTIC
JUNCTIONS

II.1. Basic equations

To describe the coherent current states in a superc
ducting ballistic microstructure we use the Eilenberg
equations80 for the j-integrated Green’s functions

vF•
]

]r
Ĝv~vF ,r !1@vt̂31D̂~vF ,r !,Ĝv~vF ,r !#50,

~A4!

where

Ĝv~vF ,r !5S gv f v

f v
1 2gv

D
is the matrix Green’s function, which depends on the M
subara frequencyv, the electron velocity on the Fermi su
facevF , and the coordinater ; here

D̂5S 0 D

D1 0 D
is the superconducting order parameter. In the general ca
depends on the direction of the vectorvF and is determined
by the self-consistent equation

D~vF ,r !52pN~0!T (
v.0

^V~vF ,vF8 ! f v~vF8 ,r !&v
F8
. ~A5!

Solution of the matrix equation~A4! together with the self-
consistent order parameter~A5! determines the current den
sity j (r ) in the system:

j ~r !524p ieN~0!T (
v.0

^vFgv~vF ,r !&vF
. ~A6!

In the following we will consider the two-dimensiona
case; N(0)5m/2p is the 2D density of states and̂...&
5*0

2pdu/2p... is the averaging over directions of the 2
vectorvF .

Supposing the symmetryD(2vF)5D(vF), from the
equation of motion~A4! and equation~A5! we have the fol-
lowing symmetry relations:

f * ~2v!5 f 1~v!; g* ~2v!52g~v!;

f * ~v,2vF!5 f 1~v,vF!; g* ~v,2vF!5g~v,vF!;

f ~2v,2vF!5 f ~v,vF!; g~2v,2vF!52g~v,vF!;

D15D* .

On the phenomenological level the different types
symmetry of the superconducting pairing are determined
the symmetry of the pairing interactionV(vF ,vF8 ) in Eq.
~A5!. For conventional (s-wave! pairing, the function
V(vF ,vF8 ) is constant,Vs , and the corresponding BCS inte
action constant isl5N(0)Vs . In the case ofd-wave pairing
V(vF ,vF8 )5Vd cos 2u cos 2u8, ld5N(0)Vd . The anglesu
andu8 determine the directions of vectorsvF andvF8 in the
a–b plane.
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II.2. Analytical solutions of Eilenberger equations in the
model with non-self-consistent order parameter distribution

The solutions of equation~A5! for the Green’s function
Ĝv(v f ,r ) can be easily obtained for model distribution~15!
of D~r !. For x<0:

f ~x,u!5
D1e2 iw/2

V1
1

e2 iw/2

D1
~hV12v!e2xV1 /uvzuC1 ;

~A7!

f 1~x,u!5
D1e1 iw/2

V1
1

e1 iw/2

D1
~2hV12v!e2xV1 /uvzuC1 ;

~A8!

g~x,u!5
v

V1
1e2xV1 /vzC1 . ~A9!

For x>0:

f ~x,u!5
D2e1 iw/2

V2
1

e1 iw/2

D2
~2hV22v!e22xV2 /uvzuC2 ;

~A10!

f 1~x,u!5
D2e2 iw/2

V2
1

e2 iw/2

D2
~hV22v!e22xV2 /uvzuC2 ;

~A11!

g~z,u!5
v

V2
1e22zV2 /uvzuC2 . ~A12!

Matching the solutions atx50, we obtain

C15
D1

V1

v~D12D2 cosw!1 ihD2V1 sinw

~V1V21v21D1D2 cosw!
,

C25
D2

V2

v~D22D1 cosw!1 ihD1V2 sinw

~V1V21v21D1D2 cosw!
. ~A13!

HereV1,25Av21uD1,2u2, h5sign(vx).

II.3. Quasiclassical Eilenberger equations for triplet
superconductors

The ‘‘transport-like’’ equations for thej-integrated
Green’s functionsǧ( k̂,r ,«m) can be obtained for triplet su
perconductors:

@ i«mť32Ď,ǧ#1 ivFk̂¹ǧ50. ~A14!

The functionǧ satisfies the normalization condition

ǧǧ521. ~A15!

Here «m5pT(2m11) are discrete Matsubara energies,vF

is the Fermi velocity, andk̂ is a unit vector along the electro
velocity, andť35t3^ Î , andt̂ i ( i 51,2,3) are Pauli matrice
in a particle–hole space.

The Matsubara propagatorg can be written in the
form:96

ǧ5S g11g1ŝ ~g21g2ŝ !i ŝ

i ŝ2~g31g3ŝ ! g42ŝ2g4ŝŝ2
D , ~A16!

as can be done for an arbitrary Nambu matrix. The ma
structure of the off-diagonal self-energyD in Nambu space is
x

Ď5S 0 idŝŝ2

i ŝ2d* ŝ 0 D . ~A17!

Below we consider so-called unitary states, for whichd
3d* 50.

The gap vectord has to be determined from the sel
consistency equation:

d~ k̂,r !5pTN~0!(
m

^V~ k̂,k̂8!g2~ k̂8,r ,«m!&, ~A18!

whereV( k̂,k̂8) is the pairing interaction potential;^...& stands
for averaging over directions of the electron momentum
the Fermi surface;N(0) is the electron density of states.

Solutions of Eqs.~A14!, ~A18! must satisfy the condi-
tions for the Greens’s functions and the vectord in the banks
of superconductors far from the orifice:

ǧ~7`!5
i«mť32Ď1,2

A«m
2 1ud1,2u2

; ~A19!

d~7`!5d1,2~ k̂!expS 7
iw

2 D , ~A20!

where w is the external phase difference. Equations~A14!
and ~A18! have to be supplemented by the boundary co
nuity conditions at the contact plane and conditions of refl
tion at the interface between superconductors. Below we
sume that this interface is smooth and the electron scatte
is negligible. In a ballistic case the system of 16 equatio
for the functionsgi andgi can be decomposed into indepe
dent blocks of equations. The set of equations which ena
us to find the Green’s functiong1 is

ivFk̂¹g11~g3d2g2d* !50; ~A21!

ivFk̂¹g212i ~d3g31d* 3g2!50; ~A22!

ivFk̂¹g322i«mg322g1d* 2 id* 3g250; ~A23!

ivFk̂¹g212i«mg212g1d2 id3g250, ~A24!

whereg25g12g4 . For the non-self-consistent model (D1,2

does not depend on the coordinates up to the interface!, Eqs.
~A21!–~A24! can be solved by integrating over ballistic tr
jectories of electrons in the right and left half-spaces. T
general solution satisfying the boundary conditions~A19! at
infinity is

g1
~n!5

i«m

Vn
1 iCn exp~22sVnt !; ~A25!

g2
~n!5Cn exp~22sVnt !; ~A26!

g2
~n!5

22Cndn2dn3Cn

22shVn12«m
exp~22sVnt !2

dn

Vn
; ~A27!

g3
~n!5

2Cndn* 1dn* 3Cn

22shVn22«m
exp~22sVnt !2

dn*

Vn
, ~A28!

where t is the time of flight along the trajectory, sign(t)
5sign(z)5s; h5sign(vz); Vn5A«m

2 1udnu2. By matching
the solutions~A25!–~A28! at the orifice plane (t50), we
find the constantsCn andCn . The indexn numbers the left
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(n51) and right (n52) half-spaces. The functiong1(0)
5g1

(1)(20)5g1
(2)(10), which determines the current de

sity in the contact, is

g1~0!5
i«m~V11V2!cos§1h~«m

2 1V1V2!sin§

D1D21~«m
2 1V1V2!cos§2 i«mh~V11V2!sin§

.

~A29!

In formula ~A29! we have taken into account that fo
unitary states the vectorsd1,2 can be written as

dn5Dn expicn , ~A30!

whereD1,2 are real vectors.
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We consider the charge and spin effects in low-dimensional superconducting weak links. The
first part of the review deals with the effects of electron–electron interaction in
Superconductor/Luttinger liquid/Superconductor junctions. The experimental realization of this
mesoscopic hybrid system can be an individual single-wall carbon nanotube that bridges
a gap between two bulk superconductors. The dc Josephson current through a Luttinger liquid is
evaluated in the limits of perfectly and poorly transmitting junctions. The relationship
between the Josephson effect in a long SNS junction and the Casimir effect is discussed. In the
second part of the paper we review the recent results concerning the influence of the
Zeeman and Rashba interactions on the thermodynamic properties of ballistic S–QW–S junction
fabricated in a two-dimensional electron gas. It is shown that in a magnetically controlled
junction there are conditions for a resonant Cooper pair transition which results in a giant
supercurrent through a tunnel junction and a giant magnetic response of a multichannel
SNS junction. The supercurrent induced by the joint action of the Zeeman and Rashba interactions
in 1D quantum wires connected to bulk superconductors is predicted. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1789291#
is
nc
n
be
c
ec
in

n
u

e

in

o-

so

e
ce

fe

on-

r

e
re-
that
t to

ics
lop-
s in
lly

tubes

es
e-
ted
t
e

ur-

nsi-
the
ou-
u-
on
K

f a
1. INTRODUCTION

Since the discovery of superconductivity in 1911 th
amazing macroscopic quantum phenomenon has influe
modern solid state physics more then any other fundame
discovery in the 20th century. The mere fact that five No
Prizes already have been awarded for discoveries dire
connected to superconductivity indicates the worldwide r
ognition of the exceptional role superconductivity plays
physics.

Both at the early stages of the field development a
later on, research in basic superconductivity brought s
prises. One of the most fundamental discoveries mad
superconductivity was the Josephson effect.1 In 1962 Joseph-
son predicted that when two superconductors are put
contact via an insulating layer~SIS junction! then ~i! a dc
supercurrentJ5Jc sinw (Jc is the critical current,w is the
superconducting phase difference! flows through the junction
in equilibrium ~dc Josephson effect! and ~ii ! an alternating
current (w5vJt, vJ52eV/\, whereV is the bias voltage!
appears when a voltage is applied across the junction~ac
Josephson effect!. A year latter both the dc and the ac J
sephson effect were observed in experiments.2,3 An impor-
tant contribution to the experimental proof of the Joseph
effect was made by Yanson, Svistunov, and Dmitrenko,4 who
were the first to observe rf radiation from a voltage-bias
contact and who measured the temperature dependen
the critical Josephson currentJc(T).

As a matter of fact the discovery of the Josephson ef
5541063-777X/2004/30(7–8)/14/$26.00
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gave birth to a new and unexpected direction in superc
ductivity, namely, the superconductivity of weak links~weak
superconductivity; see, e.g., Ref. 5!. It soon became clea
that any normal metal layer between superconductors~say,
an SNS junction! will support a supercurrent as long as th
phase coherence in the normal part of the device is p
served. Using the modern physical language one can say
the physics of superconducting weak links has turned ou
be part of mesoscopic physics.

During the last decade the field of mesoscopic phys
has been the subject of extraordinary growth and deve
ment. This has mainly been due to the recent advance
fabrication technology and to the discovery of fundamenta
new types of mesoscopic systems such as carbon nano
~see, e.g., Ref. 6!.

For our purposes metallic single-wall carbon nanotub
~SWNT! are of primary interest since they are strictly on
dimensional conductors. It has been demonstra
experimentally7–9 ~see also Ref. 10! that electron transpor
along an individual metallic SWNT at the low-bias-voltag
regime is ballistic. At first glance this observation looks s
prising. For a long time it was known~see Ref. 11! that 1D
metals are unstable with respect to the Peierls phase tra
tion, which opens up a gap in the electron spectrum at
Fermi level. In carbon nanotubes the electron–phonon c
pling for conducting electrons is very weak while the Co
lomb correlations are strong. The theory of metallic carb
nanotubes12,13 shows that at temperatures outside the m
range the individual SWNT must exhibit the properties o
© 2004 American Institute of Physics
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two-channel spin-1/2 Luttinger liquid~LL !. This theoretical
prediction was soon confirmed by transport measurement
metal-SWNT and SWNT–SWNT junctions14,15 ~see also
Ref. 16, where the photoemission measurements on a SW
were interpreted as a direct observation of the LL state
carbon nanotubes!. Both theory and experiments reveale
strong electron–electron correlations in SWNTs.

An undoped individual SWNT is not intrinsically a su
perconducting material. Intrinsic superconductivity has be
observed only in ropes of SWNTs~see Refs. 17 and 18!.
Here we consider the proximity-induced superconductiv
in a LL wire coupled to superconductors~SLLS!. The experi-
mental realization of the SLLS junction could be an ind
vidual SWNT bridging a gap between two bu
superconductors.19,20

The dc Josephson current through a LL junction w
evaluated for the first time in Ref. 21. In that paper a tun
junction was considered in a geometry~see subsection 2.2!
that is very suitable for theoretical calculations but proba
difficult to realize in an experiment. It was shown that t
Coulomb correlations in a LL wire strongly suppress t
critical Josephson current. The opposite limit—a perfec
transmitting SLLS junction—was studied in Ref. 22, whe
it was demonstrated by a direct calculation of the dc Jose
son current that the interaction does not renormalize the
percurrent in a fully transparent (D51, whereD is the junc-
tion transparency! junction. In subsection 2.2 we re-deriv
and explain these results using the boundary Hamilton
method.23

The physics of quantum wires is not reduced to the
vestigations of SWNTs. Quantum wires can be fabricated
a two-dimensional electron gas~2DEG! by using various ex-
perimental methods. Some of them~e.g., the split-gate tech
nique! originate from the end of the 1980s, when the fi
transport experiments with a quantum point contact~QPC!
revealed unexpected properties of quantized electron ball
transport~see, e.g., Ref. 24!. In subsection 2.1 we briefly
review the results concerning the quantization of the criti
supercurrent in a QPC.

In quantum wires formed in a 2DEG the electron
electron interaction is less pronounced25 than in SWNTs
~presumably due to the screening effects of the nearby b
metallic electrodes!. The electron transport in these system
can in many cases be successfully described by Fermi liq
theory. For noninteracting quasiparticles the supercurren
an SNS ballistic junction is carried by Andreev levels. Fo
long (L@j05\vF /D, whereL is the junction length andD
is the superconducting energy gap!, perfectly transmitting
junction the Andreev–Kulik spectrum26 for quasiparticle en-
ergiesE!D is a set of equidistant levels. In subsection 2
we show that this spectrum corresponds to twisted perio
boundary conditions for chiral~right- and left-moving! elec-
tron fields and calculate the thermodynamic potential of
SNS junction using field theoretical methods. In this a
proach there is a close connection between the Josep
effect and the Casimir effect.

In Section 3 of our review we consider the spin effects
ballistic Josephson junctions. As is well known, the elect
spin does not influence the physics of standard SIS or S
junctions. Spin effects become significant for SFS junctio
on

T
n

n

y

s
l

y

y

h-
u-

n

-
in

t

tic

l

lk
s
id
in

ic

n
-
on

n
S
s

~here ‘‘F’’ denotes a magnetic material! or when spin-
dependent scattering on magnetic impurities is conside
As a rule, magnetic impurities tend to suppress the criti
current in Josephson junction by inducing spin-fl
processes.27,28Another system where spin effects play an im
portant role is a quantum dot~QD!. Intriguing new physics
appears in normal and superconducting charge trans
through a QD at very low temperatures when the Kon
physics starts to play a crucial role in the electron dynam
Last year a vast literature was devoted to these problem

Here we discuss the spin effects in a ballistic SNS ju
tion in the presence of:~i! the Zeeman splitting due to a loca
magnetic field acting only on the normal part of the junctio
and~ii ! strong spin–orbit interaction, which is known to e
ist in quantum heterostructures due to the asymmetry of
electrical confining potential.29 It is shown in subsection 3.1
that in a magnetically controlled single-barrier junction the
are conditions when superconductivity in the leads stron
enhances electron transport, so that a giant critical Josep
current appears,Jc;AD. The effect is due to resonant ele
tron transport through de Gennes–Saint-James energy le
split by tunneling.

The joint action of Zeeman splitting and superconduct
ity ~see subsection 3.2.! results in yet another unexpecte
effect—a giant magnetic response,M;N'mB , (M is the
magnetization,N' is the number of transverse channels
the wire, andmB is the Bohr magneton! of a multichannel
quantum wire coupled to superconductors.30 This effect can
be understood in terms of the Andreev level structure wh
gives rise to an additional~superconductivity-induced! con-
tribution to the magnetization of the junction. The magne
zation has peaks at special values of the superconduc
phase difference when the Andreev energy levels atE65

6DZ (DZ is the Zeeman energy splitting! become 2N'-fold
degenerate.

The last two subsections of Sec. 3 deal with the infl
ence of the Rashba effect on the transport properties
quasi-1D quantum wires. Strong spin–orbit~SO! interaction
experienced by 2D electrons in heterostructures in the p
ence of additional lateral confinement results in a dispers
asymmetry of the electron spectrum in a quantum wire a
in a strong correlation between the direction of electron m
tion along the wire ~right/left! and the electron spin
projection.31,32

The chiral properties of electrons in a quantum w
cause nontrivial effects when the wire is coupled to bu
superconductors. In particular, in subsection 3.4 we sh
that the Zeeman splitting in an S–QW–S junction induces
anomalous supercurrent, which is a Josephson current
persists even at zero phase difference between the supe
ducting banks.

In Conclusion we once more emphasize the new featu
of the Josephson current in ballistic mesoscopic structu
and briefly discuss the novel effects that could appear in
ac Josephson current through an ultrasmall superconduc
quantum dot.
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2. JOSEPHSON CURRENT THROUGH A
SUPERCONDUCTOR–QUANTUM
WIRE–SUPERCONDUCTOR JUNCTION

In this chapter we consider the Josephson current
quantum wire coupled to bulk superconductors. One co
expect that the conducting properties of this system dep
strongly on the quality of the electrical contacts between
QW and the superconductors. The normal conductance
QW coupled to electron reservoirs in Fermi liquid theory
determined by the transmission properties of the wire~see,
e.g., Ref. 33!. For the ballistic case the transmission coe
cient of the system in the general situation of nonreson
electron transport depends only on the transparencies o
potential barriers which characterize the electrical conta
and does not depend on the lengthL of the wire. As already
was mentioned in the Introduction, the Coulomb interact
in a long 1D ~or few transverse channel! QW is strong
enough to convert the conduction electrons in the wire int
Luttinger liquid. Then the barriers at the interfaces betwe
the QW and electron reservoirs are strongly renormalized
electron–electron interaction, and the conductance of
N–QW–N junction at low temperature strongly depends
the wire length.34 For a long junction and repulsive electron
electron interaction the current through the system
strongly suppressed. The only exception is the case of pe
~adiabatic! contacts when the backscattering of electrons
the interfaces is negligibly~exponentially! small. In the ab-
sence of electron backscattering the conductanceG is not
renormalized by interaction35 and coincides with the conduc
tance quantumG52e2/h ~per channel!. From the theory of
Luttinger liquids it is also known36 that for a strong repulsive
interaction the resonant transition of electrons through
double-barrier structure is absent even for symmetric ba
ers.

The well-known results listed above for the transp
properties of a 1D Luttinger liquid~see, e.g., Ref. 37! allow
us to consider two cases when studying ballistic S–QW
junctions:~i! a transparent junction (D51), and~ii ! a tunnel
junction (D!1). These two limiting cases are sufficient
describe the most significant physical effects in S–QW
junctions.

2.1. Quantization of the Josephson current in a short
ballistic junction

At first we consider a short,L!j0 , ballistic S–QW–S
junction. One of the realizations of this mesoscopic devic
a quantum point contact~QPC! in a 2DEG~see Fig. 1a!. For
a QPC the screening of the Coulomb interaction is qual
tively the same as in a pure 2D geometry and one can ev
ate the Josephson current through the constriction in a n

FIG. 1. A schematic picture of a superconducting point contact (a). Quan-
tum wire adiabatically connected to bulk superconductors (b).
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interacting electron model. Then due to Andre
backscattering of quasiparticles at the SN interfaces, a se
Andreev levels is formed in the normal part of the junction26

In a single-mode short junction the spectrum of bound sta
takes the form38 (L/j0→0)

E656DA12D sin2~w/2! ~1!

wherew is the superconducting phase difference. This sp
trum does not depend on the Fermi velocity, and theref
the Andreev levels, Eq.~1!, in a junction withN' transverse
channels are 2N' degenerate~the factor of 2 is due to spin
degeneracy!.

It is well known ~see, e.g., Refs. 39 and 40! that the
continuum spectrum in the limitL/j0→0 does not contribute
to the Josephson current,

J5
e

\

]V

]w
, ~2!

whereV is the thermodynamic potential. It is evident fro
Eqs. ~1! and ~2! that the Josephson current through a Q
(D51) is quantized.39 At low temperatures (T!D) we
have39

J5N'

eD

\
sin

w

2
. ~3!

This effect1! is the analog of the famous conductance qu
tization in QPCs~see Ref. 41!.

Now let us imagine that the geometry of the constricti
allows one to treat the QPC as a 1D quantum wire of fin
length L smoothly connected to bulk superconductors~Fig.
1b!. The 1D wire is still much shorter than the coheren
lengthj0 . How does the weakly screened Coulomb intera
tion in a 1D QW influence the Josephson current in a fu
transmitting (D51) junction? Notice that the charge
freely transported through the junction, since the real el
trons are not backscattered by the adiabatic constricti2

Thus it is reasonable to assume that the Coulomb interac
in this case does not influence the Josephson current a
We will prove this assumption for the case of a long juncti
in the next Section. If the QW is separated from the leads
potential barriers~quite a natural situation in a real exper
ment! the charging effects have to be taken into account.
a rule, the Coulomb correlations, which tend to keep
number of electrons in the normal region~quantum dot in
our case! constant, suppress the critical supercurrent due

FIG. 2. A schematic illustration of Andreev reflection.
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the Coulomb blockade effect~see, e.g., Ref. 43, where
consistent theory of the Coulomb blockade of Josephson
neling was developed!. They can also change thew depen-
dence of the Josephson current. One possible scenario
how charging effects influence the Josephson current
short SNS junction is considered in Ref. 44.

2.2. Luttinger liquid wire coupled to superconductors

A consistent theory of electron–electron interaction
fects in weak superconductivity has been developed fo
on

al-

ic
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long 1D or quasi-1D SNS junction, when the normal regi
can be modeled by a Luttinger liquid~LL !. The standard
approach to this problem~see, e.g., Ref. 23! is to use for the
description of electron transport through the normal reg
the LL Hamiltonian with boundary conditions which tak
into account the Andreev45 and normal backscattering o
quasiparticles at the NS interfaces.

The LL HamiltonianHLL expressed in terms of charg
density operatorsr̃R/L,↑/↓ of right/left moving electrons with
up/down spin projection takes the form~see, e.g., Ref. 46!
~4!
del

n-
-
v
ro-
ons

left
ce.

he

ng

r.

rba-
the
the
where V0 is the strength of electron–electron interacti
(V0;e2) and the velocityu5vF1V0/2p\. The charge den-
sity operators of the chiral (R/L) fields obey anomalous
Kac–Moody commutation relations~see, e.g., Ref. 46!:

@ r̃R~L ! j~x!,r̃R~L !k~x8!#56
d jk

2p i

]

]x
d~x2x8!,

j ,k5↑,↓.

The Hamiltonian~4! is quadratic and can easily be diagon
ized by a Bogoliubov transformation

HLL
~d!5p\E dx@vr~rRr

2 1rLr
2 !1vs~rRs

2 1rLs
2 !#, ~5!

where vr(s) are the velocities of noninteracting boson
modes~plasmons!, vr(s)5vF /gr(s) , and

gr5S 11
2V0

p\vF
D 21/2

, gs51. ~6!

Heregr andgs are the correlation parameters of a spin-1
LL in the charge~r! and spin~s! sectors. Notice thatgr

!1 for a strongly interacting (V0@\vF) electron system.
The Andreev and normal backscattering of quasipartic

at the NS boundaries (x50 andx5L) can be represented b
the effective boundary HamiltonianHB5HB

(A)1HB
(N) , with

HB
~A!5DB

~ l !@CR↑~0!CL↓~0!1CR↓~0!CL↑~0!#1DB
~r !

3@CR↑~L !CL↓~L !1CR↓~L !CL↑~L !#1h.c., ~7!

HB
~N!5VB

~ l !(
j ,s

C j s
† ~0!C j s~0!1VB

~r !(
j ,s

C j s
† ~L !C j s~L !,

~8!

where j 5(L,R) and s5(↑,↓). Here DB
( l ,r ) is the effective

boundary pairing potential at the left~right! NS interface,
andVB

( l ,r ) is the effective boundary scattering potential. T
values of these potentials are related to the phase of the
perconducting order parameters in the banks and to the
mal scattering properties at the left and right interfaces. T
can be considered either as input parameters~see, e.g., Ref.
s

su-
or-
y

47! or they can be calculated by using some particular mo
of the interfaces.23 In what follows we will consider two
limiting cases:~i! poorly transmitting interfacesVB

( l ,r )→`
~tunnel junction! and ~ii ! perfectly transmitting interfaces
VB

( l ,r )→0.
At first we relate the effective boundary pairing pote

tials DB
( l ,r ) to the amplitudesr A

( l ,r ) of the Andreev backscatter
ing process.48,49 Let us consider for example the Andree
backscattering of an electron at the left interface. This p
cess can be described as the annihilation of two electr
with opposite momenta and spin projections atx50. The
corresponding Hamiltonian ishA;r A*

( l )ap,↑a2p,↓ , or
equivalently in the coordinate representationhA

;r A*
( l )CR↑(0)CL↓(0). Herer A is the amplitude of Andreev

backscattering at the left interface,

r A
~ l !5

ut ~ l !u2 exp@ i ~w l1p/2!#

Aut ~ l !u414ur ~ l !u2
, ~9!

t ( l ) is the transmission amplitude (ut ( l )u21ur ( l )u251), andw l

is the phase of superconducting order parameter at the
bank. An analogous expression holds for the right interfa
Notice that for a tunnel junctionut ( l ,r )u2!1 the amplitude of
Andreev backscattering is small—it is proportional to t
transparencyDl ,r[ut ( l ,r )u2!1 of the barrier at the right~left!
interface. Thus in our model the effective boundary pairi
potential is

DB
~ l !5C\vFr A*

~ l ! , DB
~r !52C\vFr A*

~r ! , ~10!

whereC is a numerical factor which will be specified late

2.2.1. Tunnel junction

For poorly transmitting interfacesDr ,l!1 the amplitude
of Andreev backscattering is small and we can use pertu
tion theory when evaluating the phase-dependent part of
ground state energy. In second-order perturbation theory
ground-state energy takes the form
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dE~2!~w!5(
j

u^ j uHB
~A!u0&u2

E02Ej

5
1

\ E
0

`

dt^0uHB
~A!†~t!HB

~A!~0!u0&. ~11!
y
a

’’

n
s-
s

nd

ely
es
Here HB
(A)(t) is the boundary Hamiltonian~7! in the

imaginary-time Heisenberg representation. After substitut
Eq. ~7! into Eq. ~11! we get the following formula fordE(2)

expressed in terms of electron correlation functions:
~12!
-

s

s
um
-
ors
We will calculate the electron correlation function b
making use of the bosonization technique. The stand
bosonization formula reads

Ch,s~x,t !5
1

A2pa
exp@ ihA4pFh,s~x,t !#, ~13!

where a is the cutoff parameter (a;lF), h5(R,L)
[(1,21), s5(↑,↓)[(1,21). The chiral bosonic fields in
Eq. ~13! are represented as follows~see, e.g., Ref. 51!:

Fh,s~x,t !5
1

2
ŵh,s1P̂s

x2hvt

L
1wh,s~x,t !. ~14!

Here the zero mode operatorsŵh,s andP̂s obey the standard
commutation relations for ‘‘coordinate’’ and ‘‘momentum,

@ŵh,s ,P̂s8#52 ihds,s8 . They are introduced for a finite
length LL to restore correct canonical commutation relatio
for bosonic fields.50,51 Notice that the topological modes a
sociated with these operators fully determine the Joseph
current in a transparent (D51) SLLS junction.22 The non-
topological componentswh,s(x,t) of the chiral scalar fields
are represented by the series

wh,s~x,t !5(
q

1

A2qL
$exp@ iq~hx2vt !#b̂q1h.c.%, ~15!

where b̂q and b̂q
† are the standard bosonic annihilation a

creation operators;L is the length of the junction, andv is
the velocity.
rd

s

on

It is convenient here to introduce46 the charge~r! and
spin ~s! bosonic fieldsws ,ur , which are related to the
above-defined chiral fieldswh,s by the simple linear equa
tion

S ws

ur
D5

1

&
~wR↑6wL↑7wR↓2wL↓! ~16!

~the upper sign corresponds tows and the lower sign denote
ur). After straightforward transformations Eq.~12! takes the
form

dE~2!~w!54C\vF
2D coswE

0

`

dt@P1~t!1P2~t!#,

~17!

whereD5DlDr!1 is the junction transparency and

P6~t!5~2pa2!22 exp$2p@^̂ ws~t,2L !ws&&

1 ^̂ ur~t,2L !ur&&6 ^̂ ur~t,2L !ws&&

6 ^̂ ws~t,2L !ur&&#%Q6~t!. ~18!

Here ws[ws(0,0), ur[ur(0,0), and the double bracket
^^...&& denote the subtraction of the corresponding vacu
average at the points (t,x)5(0,0). Note that the supercon
ducting properties of a LL are determined by the correlat
of the bosonic fieldsur andws , unlike the normal conduct-
ing properties, where the fieldsus and wr play a dominant
role. The factorsQ6(t) originate from the contribution of
zero modes,
~19!
s
FIG. 3. A schematic picture of an SLLS junction formed by an effectiv
infinite Luttinger liquid coupled to bulk superconductors by side electrod
 .

FIG. 4. A Luttinger liquid wire of lengthL coupled to bulk superconductor
via tunnel barriers with transparenciesDl (r ) .
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With the help of a Bogoliubov transformation the chir
bosonic fields in Eq.~16! can be expressed in terms of no
interacting plasmonic modes with known propagators~see,
e.g., Ref. 46!. Two different geometries of SLLS junctio
have been considered in the literature, viz., an effectiv
infinite LL connected by side electrodes to bu
superconductors21 ~see Fig. 3! and a finite LL wire coupled
via tunnel barriers to superconductors.47,52 Notice that both
model geometries can be related to realistic contacts
single-wall carbon nanotube with metals~see, e.g., Ref. 53
and references therein!. The geometry of Fig. 3 could mode
the junction when electron beam lithography is first used
define the leads and then ropes of SWSN are deposite
top of the leads. A tunnel junction of the type shown sch
matically in Fig. 4 is produced when the contacts are app
over the nanotube rope.

The topological excitations for an effectively infinite L
(L→`) play no role, and the corresponding contributio
can be omitted in Eqs.~15! and~18!, Q6(t)[1. The propa-
gators of noninteracting chiral bosonic fields are~see, e.g.,
Refs. 46!

^̂ wR/L, j~ t,x!wR/L,k&&52
d jk

4p
ln

a7x1skt

a
, ~20!

where j ,k51,2 and the plasmonic velocitiess15vr , s2

5vs5vF ~see Eq.~6!!. Finally, the expression for the Jo
sephson current through a ‘‘side-contacted’’ LL~Fig. 3! takes
the form21

JLL
~ i !5Jc

~0!Ri~gr!sinw, ~21!

whereJc
(0)5(DevF/4L)(C/p) is the critical Josephson cur

rent for noninteracting electrons, andRi(gr) is the
interaction-induced renormalization factor (Ri(gr51)51):

Ri~gr!5
gr

Ap

G~1/2gr!

G~1/211/2gr!
FS 1

2
,
1

2
;

1

2gr
1

1

2
;12gr

2D
3S a

L D gr
21

21

. ~22!

Heregr is the correlation parameter of a spin-1/2 LL in th
charge sector~Eq. ~6!!, G(x) is the gamma function, and
F(a,b;g;z) is the hypergeometric function~see, e.g., Ref.
54!. The expression forRi(gr) in integral form was derived
for the first time in Ref. 21. In the limit of strong interactio
V0 /\vF@1 the renormalization factor is small:

Ri~gr!1!.
p

2 S \vF

V0
D 3/2S a

L D A2V0 /p\vF

!1, ~23!

and the Josephson current through the SLLS junction
strongly suppressed. This is nothing but a manifestation
the Kane–Fisher effect34 in the Josephson current.

To evaluate the correlation function, Eq.~18!, for a LL
wire of finite length coupled to bulk superconductors v
tunnel barriers~Fig. 4!, we must first formulate boundar
conditions for the electron wave function:

Cs~x!5exp~ ikFx!CR,s~x!1exp~2 ikFx!CL,s~x!,

s5↑↓ ~24!
ly

a

o
on
-
d

is
of

at the interfacesx50,L. To zeroth order of perturbation
theory in the barrier transparencies the electrons are confi
to the normal region. Therefore the particle currentJs

;Re(iCs*]xCs) through the interfaces is zero. For a singl
mode LL this requirement is equivalent to the followin
boundary condition for the chiral fermionic fields:50,52

CR,s* ~x!CR,s~x!ux50,L5CL,s* ~x!CL,s~x!ux50,L . ~25!

These boundary conditions~LL with open ends! result in
zero eigenvalues of the ‘‘momentum’’-like zero mode ope
tor P̂s and in the quantization of nontopological modes on
ring with circumference 2L ~see Ref. 50!. In this case the
plasmon propagators take the form

^̂ wL, j~ t,x!wRL,k&&52
d jk

4p
ln

12exp@ ip~6x2skt1 ia !#

pa/L
.

~26!

Using Eqs.~2!, ~17!–~19!, and ~26!, one readily gets the
expression, analogous to Eq.~21!, for the Josephson curren
JLL

( f )5Jc
(0)Rf(gr)sinw, where now the critical Josephson cu

rent of noninteracting electron isJc
(0)5(DevF/4L)(C/p)

and the renormalization factor (Rf(gr51)51) reads

Rf~gr!5
2gr

2

22gr
2 FS 2

gr
;

2

gr
2gr ;

2

gr
2gr11,21D

3S pa

L D 2~gr
21

21!

. ~27!

ComparingJc
(0) with the well-known formula for the critical

Josephson current in a low-transparency SINIS junction~see,
e.g., Ref. 40!, we find the numerical constantC5p.

In the limit of strong interaction,gr!1, Eq. ~27! is re-
duced to the simple formula

Rf~gr!1!.
p

2

\vF

V0
S pa

L D 2A2V0 /p\vF

!1. ~28!

The dependence of the renormalization factor given by E
~22!, ~27! on the strength of the electron–electron interact
V0 /\vF is shown in Fig. 5. The behavior of the Josephs
current as a function of the interaction strength is similar

FIG. 5. Dependence of the renormalization factorRi ( f ) on the dimensionless
electron–electron interaction strengthV0 /\vF . Curve1 corresponds to the
case of a ‘‘side-coupled’’ LL wire (i ), curve2 to an ‘‘end-coupled’’ LL wire
( f ).
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the two geometries considered. However we see that the
teraction influences the supercurrent more strongly for
case of an ‘‘end-coupled’’ LL wire.

2.2.2. Transparent junction

This is the case of perfectly transmitting interfaces
terms of the boundary Hamiltonians~7!, ~8!, which formally
correspond to the limitVB→0 and not smallDB . It cannot
be treated perturbatively. Physically this means that charg
freely transported through the junction and only pure A
dreev reflection takes place at the NS boundaries. It is w
known that at energies much smaller than the supercond
ing gap (E!D) the scattering amplitude of quasiparticl
becomes energy independent~see Eq.~9!!. This enables one
to represent the Andreev scattering process as a boun
condition for a real-space fermion operator. It was shown
Ref. 22 that the corresponding boundary condition for ch
fermion fields takes the form of a twisted periodic bounda
condition over the interval 2L,

CL/R,6s~x62L,t !5exp~6 iq!CL/R,6s~x,t ! ~29!

~the upper sign corresponds to the left-moving fermions,
lower sign—to right-moving particles!, whereq5p1w, w
is the superconducting phase difference, and the phasep is
acquired due to the Andreev reflection on two interfaces~see,
e.g., Eq.~9!!. Thus the problem can be mapped22 to the one
for the persistent current of chiral fermions on a ring of c
cumference 2L. It is well known51,55 ~see also Ref. 56! that
the persistent current in a perfect ring~without impurities! in
the continuum model does not depend on the electr
electron interaction due to the translational invariance of
problem. This ‘‘no-renormalization’’ theorem allows us
conclude that the Josephson current in a perfectly trans
ting SLLS junction coincides with the supercurrent in a lo
one-dimensional SNS ballistic junction:26,57

JLL5Jnonint5
4eT

\ (
k51

`

~21!k11
sinkw

sinh~2pkT/DL!
, ~30!

where T is the temperature andDL5\vF /L. The formal
proof of this statement22 consists in evaluating the partitio
function of the LL with the twisted boundary conditions, E
~29!, supplemented by a connection between theCR,s and
CL,s fields that follows from the chiral symmetry. The s
perconducting phase differencew couples only to zero mode
of the charge-current fieldur . In a Galilelian invariant sys-
tem zero modes are not renormalized by the interaction,
the partition function for an SLLS junction exactly coincid
with that for a long SNS junction.

We notice here that Eq.~30! holds not only for perfectly
transmitting interfaces. It also describes asymptotically aT
!D the Josephson current through a tunnel junction w
the interaction in the wire is assumed to be attractive.
have seen already in the previous subsection that
electron–electron interaction renormalizies the bare trans
ency of the junction due to the Kane–Fisher effect. T
renormalization is known to suppress the electron current
a repulsive interaction and to enhance it for an attrac
forces.34 Thus one could expect that for an attractive inter
tion the electron interface scattering will be renormalized
low temperatures to perfect Andreev scattering.23
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2.3. Josephson current and the Casimir effect

More then fifty years ago Casimir predicted58 the exis-
tence of small quantum forces between grounded meta
plates in vacuum. This force~a kind of van der Waals force
between neutral objects! arises due to a change of th
vacuum energy~zero-point fluctuations! induced by the
boundary conditions imposed by the metallic plates on
fluctuating electromagnetic fields~see Refs. 59 and 60!. This
force has been measured~see, e.g., one of the recen
experiments61 and the references therein!, and in quantum
field theory the Casimir effect is considered as the most sp
tacular manifestation of zero-point energy. In a general s
ation the shift of the vacuum energy of fluctuating fields in
constrained volume is usually called the Casimir energyEC .
For a field with zero rest mass dimensional considerati
result in a simple behavior of the Casimir energy as a fu
tion of geometrical size. In 1D,EC;\v/L, wherev is the
velocity. Now we will show that the Josephson current in
long SNS junction from a field-theoretical point of view ca
be considered as a manifestation of the Casimir effe
Namely, the Andreev boundary condition changes the ene
of the ‘‘Fermi sea’’ of quasiparticles in the normal regio
This results in the appearance of:~i! an additional cohesive
force between the superconducting banks,30 and~ii ! a super-
current induced by the superconducting phase difference

As a simple example we evaluate the Josephson cur
in a long, transparent, 1D SNS junction by using a fie
theoretical approach. Andreev scattering at the NS interfa
results in twisted periodic boundary conditions, Eq.~26!, for
the chiral fermion fields.51 Thus the problem is reduced t
the evaluation of the Casimir energy for chiral fermions
an S1 manifold of circumference 2L with ‘‘flux’’ q. Notice
that the left- and right-moving quasiparticles feel oppos
~in sign! ‘‘flux’’ ~see Eq.~29!!. The energy spectrum take
the form (DL5\vF /L)

En,h~L,w!5pDLS n2
1

2
1h

w

2p D ,

n50,61,62,...,h561, ~31!

and coincides~as it should! with the electron and hole ener
gies calculated by matching the quasiparticle wave functi
at the NS boundaries.26 The Casimir energy is defined as th
shift of the vacuum energy induced by the boundary con
tions

EC~L,w!52S 2
1

2D F(
n,h

En,h~L,w!2(
n,h

En,h~L→`!G .
~32!

Notice that the factor (21/2) in Eq.~32! is due to the zero-
point energy of chiral fermions, and the additional factor o
is due to spin degeneracy. Both sums in Eq.~32! diverge, and
one needs some regularization procedure to manipu
them. One of the most efficient regularization methods in
calculation of vacuum energies is the so-called generali
zeta-function regularization.62 For the simple energy spec
trum in Eq.~31!, this procedure is reduced to the analytic
continuation of the infinite sum overn in Eq. ~32! to the
complex plane,
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EC~w!52pDL lim
s→21

(
n52`,h561

`

~n1ah!2s

52pDL (
h561

@z~21,ah!1z~21,2ah!1ah#,

~33!

where z(s,a) is the generalized Riemannz function54 and
ah5(p1hw)/2p. Expressingz(2n,a) in terms of Ber-
noulli polynomials using a relation that is well known fro
textbooks~see Ref. 54!, one gets the desired formula for th
Casimir energy of a 1D SNS junction as

EC52p
\vF

L F S w

2p D 2

2
1

12G , uwu<p. ~34!

The Casimir forceFC and the Josephson currentJ at T50
are

FC52
]EC

]w
5

EC

L
, J5

e

\

]EC

]w
5

evF

L

w

p
, uwu<p.

~35!

The expression for the Josephson current coincides with
zero-temperature limit of Eq.~30!. The generalization of the
calculation method to finite temperatures is straightforwa
The additional cohesive force between two bulk metals
duced by superconductivity is discussed in Ref. 30. In t
paper it was shown that for a multichannel SNS junction t
force can be measured in modified AFM–STM experimen
where force oscillations in nanowires have been observe

The calculation of the Casimir energy for a system
interacting electrons is a much more sophisticated probl
In Ref. 47 this energy and the corresponding Josephson
rent were calculated analytically for a special exactly so
able case of a double-boundary LL. Unfortunately the c
considered there corresponds to the attractive regime of
(gr52 in our notation; see Eq.~6!!, and the interesting re
sults obtained in Ref. 47 cannot be applied for electron tra
port in quantum wires fabricated in a 2DEG or in individu
SWNTs, where the electron–electron interaction is known
be repulsive.

3. THE EFFECTS OF ZEEMAN SPLITTING AND SPIN–ORBIT
INTERACTION IN SNS JUNCTIONS

In the previous Section we considered the influence
electron–electron interactions on the Josephson current i
S–QW–S junction. Although all calculations were pe
formed for a spin-1/2 Luttinger liquid model, it is readil
seen that the spin degrees of freedom in the absence
magnetic field are trivially involved in the quantum dynam
ics of our system. In essence, they do not change the re
obtained for spinless particles. For noninteracting electr
spin only leads to an additional statistical factor of 2~spin
degeneracy! in the thermodynamic quantities. At the fir
glance spin effects could manifest themselves in SLLS ju
tions, since it is known that in a LL the phenomenon
spin–charge separation takes place.46 One could naively ex-
pect some manifestations of this nontrivial spin dynamics
the Josephson current. Spin effects for interacting electr
indeed do not reduce to the appearance of statistical fa
he
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However, as we have seen already in the previous Secti
the dependence of the critical Josephson current on the in
action strength is qualitatively the same for spin-1/2 a
spinless Luttinger liquids. Thus for ease of calculations it i
common practice to investigate weak superconductivity
the model of a spinless Luttinger liquid.47

Spin effects in the Josephson current become impor
in the presence of a magnetic field, spin–orbit interactio
or spin-dependent scattering on impurities. At first we co
sider the effects induced by a magnetic field. Genera
speaking a magnetic field influences both the normal par
the junction and the superconducting banks. It is the la
influence that determines the critical Josephson curren
short and wide junctions. The corresponding problem w
solved many years ago, and one can find analytical res
for a short and wide junction in a magnetic field parallel
the NS interface~e.g., in Refs. 63 and 64!.

In this review we are interested in the superconduct
properties of junctions formed by a long ballistic quantu
wire coupled to bulk superconductors. We will assume tha
magnetic field is applied locally, i.e., only to the normal pa
of the junction ~such an experiment could be realized f
instance with the help of a magnetic tip and a scanning t
neling microscope!. In this case the only influence of th
magnetic field on the electron dynamics in a single chan
~or few-channel! QW is due to the Zeeman interaction. F
noninteracting electrons the Zeeman splitting lifts the dou
degeneracy of Andreev levels in an SNS junction and res
in a periodic dependence of the critical Josephson curren
magnetic field.65

Interaction effects can easily be taken into account fo
1D SLLS junction in a magnetic field by using bosonizati
techniques. The term in the HamiltonianĤZ , which de-
scribes the interaction of the magnetic fieldB with the elec-
tron spinS(x) is in bosonized form~see, e.g., Ref. 46!

ĤZ52gfmBBzE dxSz~x!,Sz~x!5
1

A2p
]xws , ~36!

wheregf is theg factor, mB is the Bohr magneton, and th
scalar fieldws is defined in Eq.~16!. As is easy to see, this
interaction can be transformed away in the LL Hamiltoni
by a coordinate-dependent shift of the spin bosonic fi
ws⇒ws1DZx/\vFA2p, whereDZ5gfmBB is the Zeeman
splitting. Thus the Zeeman splitting introduces an ex
x-dependent phase factor in the chiral components of
fermion fields, and so the Zeeman interaction can be rea
taken into account66 by a slight change of the bosonizatio
formula ~13!

ch,s
~Z! ~x,t !5exp~ iK h,sx!ch,s~x,t !,

Kh,s5
Dz

4\vF
hs, h,s561. ~37!

The phase factor appearing in Eq.~37! results in a periodic
dependence of the Josephson current on magnetic field
the presence of Zeeman splitting the critical current, say,
an SLLS tunnel junction, Eq.~21!, acquires an additiona
harmonic factor cos(DZ /DL), the same as for noninteractin
particles.
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3.1. Giant critical current in a magnetically controlled tunnel
junction

Interesting physics for low-transparency junctions a
pears when resonant electron tunneling occurs. In this s
section we consider the special situation when the condit
for resonant tunneling through a junction are induced by
perconductivity. The device we have in mind is an SNIN
ballistic junction formed in a 2DEG with a tunable tunn
barrier ~‘‘I’’ ! and a tunable Zeeman splitting which can
provided for instance with the help of a magnetic tip and
scanning tunneling microscope~STM!. In quantum wires
fabricated in 2DEG the effects of electron–electron inter
tions are not pronounced, and we will neglect them in w
follows.

Resonant electron tunneling through a double-bar
mesoscopic structure is a well studied quantum phenome
which has numerous applications in solid state physics.
manifestations of resonant tunneling in the persistent cur
have recently been studied both in superconducting67 and in
normal systems.68

In these papers a double-barrier system was formed
the two tunnel barriers at the NS interfaces67 or in a normal
metal ring.68 It was shown that for resonance conditions~re-
alized for a special set of junction lengths67 or interbarrier
distances68! a giant persistent current appears which is of
same order of magnitude as the persistent current in a sy
with only a single barrier. In the case of the SINIS juncti
considered in Ref. 67 the critical supercurrent was found
be proportional toAD. Notice that the normal transmissio
coefficient for a symmetric double-barrier structure~i.e., the
structure with normal leads! at resonance conditions does n
depend on the barrier transparency at all. This means tha
the hybrid structure considered in Ref. 67 the supercond
tivity actually suppresses electron transport.

Now we show69 that in a magnetically controlled single
barrier SFIFS junction~‘‘F’’ denotes the region with nonzero
Zeeman splitting! there are conditions when superconduct
ity in the leads strongly enhances electron transport. Nam
the proposed hybrid SFIFS structure is characterized b
giant critical currentJc;AD, while the normal conductanc
G is proportional toD.

For a single-barrier SFIFS junction of lengthL, where
the barrier is located at a distancel !L measured from the
left bank, the spectrum of Andreev levels is determined fr
the transcendental equation69

cos
2E6DZ

DL
1R cos

2E6DZ

DL22l
1D cosw50, ~38!

whereDx5\vF /x, D1R51, andDZ is the Zeeman split-
ting. In the limit DZ50 Eq. ~38! reduces to a well-known
spectral equation for Andreev levels in a long ballistic SN
junction with a single barrier.40,70

At first we consider the symmetric single-barrier jun
tion, i.e., the case when the scattering barrier is situate
the middle of the normal region,l 5L/2. Then the second
cosine term in the spectral equation is equal to 1, and
~38! is reduced to a much simpler equation which is eas
solved analytically. The evaluation of the Josephson cur
shows69 that forD!1 and for a discrete set of Zeeman spl
tings,
-
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DZ
k5p~2k11!DL , k50,1,2,..., ~39!

a resonance Josephson current~of orderAD) is developed.
At T50 it takes the form

Jr~w!5
evF

L
AD

sinw

usin~w/2!u
. ~40!

This expression has the typical form of a resonant Joseph
current associated with the contribution of a single Andre
level.40 One can interpret this result as follows. Let us a
sume for a moment that the potential barrier in a symme
SNINS junction is infinite. Then the system breaks up in
two identical INS-hybrid structures. In each of the two sy
tems de Gennes–Saint-James energy levels with spa
2pDL are formed.71 For a finite barrier these levels are sp
due to tunneling with characteristic splitting energyd
;ADDL . The split levels, being already localized on th
whole lengthL between the two superconductors, are no
ing but the Andreev–Kulik energy levels, i.e., they depe
on the superconducting phase difference. Although the
tial current of a single level is large (;AD) ~see Refs. 40
and 67!, the current carried by a pair of split levels is sma
(;D) due to a partial cancellation. AtT50 all levels above
the Fermi energy are empty and all levels belowEF are
filled. Thus, in a system without Zeeman splitting the part
cancellation of currents carried by pairs of tunnel-split e
ergy levels results in a small critical current (;D). The
Zeeman splittingDZ of orderDL ~see Eq.~39!! shifts the two
sets~‘‘spin-up’’ and ‘‘spin-down’’! of Andreev levels so tha
the Fermi energy lies in between the split levels. Now aT
50 only the lower state is occupied, and this results in
uncompensated large (;AD) Josephson current. Since th
quantized electron–hole spectrum is formed by Andre
scattering at the NS interfaces, the resonance structure
single-barrier junction disappears when the leads are in
normal ~nonsuperconducting! state. Thus the electron trans
port through the normal region is enhanced by supercond
tivity. Electron spin effects~Zeeman splitting! are crucial for
the generation of a giant Josephson current in a single-ba
junction.

The resonant transport described can occur not only
symmetric junction. For a given value of the Zeeman sp
ting DZ

(k) from Eq.~39! there is a set of points69 ~specified by
their coordinatesxm

(k) measured from the middle of the junc
tion!

xm
~k!56

m

2k11
L ~41!

(m is an integer in the interval 0<m<k11/2) at which a
barrier still supports resonant transport. The temperature
pendence of the giant Josephson current is determined b
energy scaled;ADDL and therefore at temperaturesT;d,
which are much lower thanDL , all resonance effects ar
washed out.

3.2. Giant magnetic response of a quantum wire coupled to
superconductors

It is known that the proximity effect produced in a wir
by superconducting electrodes strongly enhances the no
conductance of the wire for certain value of the superc
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ducting phase difference~giant conductance oscillations72!.
For ballistic electron transport this effect has a simple phy
cal explanation73 in terms of Andreev levels. Consider a mu
tichannel ballistic wire perfectly~without normal electron
backscattering! coupled to bulk superconductors. The wire
assumed to be connected to normal leads via tunnel cont
In the first approximation one can neglect the electron le
age through the contacts, and then the normal part of
Andreev interferometer under consideration is described b
set of Andreev levels produced by superconducting mirro
When the distanceL between the mirrors is much longe
than the superconducting coherence lengthL@j05\vF /D
~D is the superconducting gap!, the spectrum takes a simp
form:26

En,6
~ j ! 5

\vF
~ j !

2L
@p~2n11!6w#, n50,61,62,..., ~42!

wherevF
( j ) is the Fermi velocity of thej th transverse channe

( j 51,2,...,N'). It is evident from Eq.~42! that at special
values of the phase differencewn5p(2n11) the energy
levels belonging to different transverse channelsj collapse to
a single multi-degenerate (N'-fold! level exactly at the
Fermi energy. Thus resonant normal electron transp
through a multichannel wire~the situation which is possible
for symmetric barriers in the normal contacts! will be
strongly enhanced atw5wn . The finite transparency of th
barriers results in a broadening and a shift of the Andr
levels. These effects lead to a broadening of the resona
peaks in giant conductance oscillations at lo
temperatures.73

The magnetic properties of a quantum wire coupled
superconductors can also demonstrate a behavior analo
to the giant conductance oscillations. We consider a lo
perfectly transmitting SNS junction in a local~applied only
to the normal region! magnetic field. In this case the onl
influence of the magnetic field on the Andreev level struct
comes in through the Zeeman coupling. The thermodyna
potentialVA(w,B) calculated for Zeeman-split Andreev lev
els is30

VA~w,B!54T(
$ j %

N'

(
k51

`
~21!k

k

coskw coskx j

sinh~2pkT/DL
~ j !!

. ~43!

Herex j5DZ /DL
( j ) , whereDZ5gmBB is the Zeeman energ

splitting, DL
( j )5\v f

( j ) , vF
( j ) is the Fermi velocity in thej th

transverse channel, and$ j % is the set of transverse quantu
numbers. In Ref. 30 the normal part of the SNS junction w
modeled by a cylinder of lengthL and cross-sectional are
S5V/L. Hard-wall boundary conditions for the electro
wave function on the cylinder surface were assumed. T
the set$ j % is determined by the quantum numbers (l ,n) that
label the zeroesg l ,n of the Bessel functionJl(g l ,n)50, and
the velocityvF

( l ,n) takes the form

vF
~ l ,n!5A2

m S «F2g ln
2 p\2L

2mV D . ~44!

It is evident from Eq.~43! that the superconductivity-induce
magnetization

MA52
]VA~w,B!

]B
~45!
i-

ts.
-
e
a

s.

rt

v
ce

o
ous
g,

e
ic

s

n

at high temperatures (T@DL) is exponentially small and
does not contribute to the total magnetization of the juncti
At low temperaturesT the magnetization has peaks atMA

;N'gmB , where the superconducting phase difference is
odd multiple ofp ~see Fig. 6, which is adapted from Re
30!. A qualitative explanation for this resonance behavior
the magnetization is as follows. It is known74 that for w
5wn[(2n11)p (n is an integer! the two Andreev levels
EA

(6)56DZ/2 become 2N'-fold degenerate.
At T→0 the filled stateEA

(2) dominates in the magneti
zation atw5wn , since at other values of superconducti
phase the sets of Andreev levels corresponding to diffe
transverse channels contribute to the magnetization@Eqs.
~43!, ~45!# with different periods in ‘‘magnetic phase’’x j

~i.e., in general, incoherently!, and their contributions par
tially cancel each other. Notice also that for a fixed volum
V, the number of transverse channelsN' has a steplike de-
pendence on the wire diameter. Thus at resonance value
the phase differencew5wn one can expect a steplike beha
ior of the magnetization as a function of wire diameter30

This effect is a magnetic analog of the Josephson cur
quantization in a short SNS junction,39 considered in Sec
2.1.

3.3. Rashba effect and chiral electrons in quantum wires

Another type of system where spin is nontrivially in
volved in the quantum dynamics of electrons are conduc
structures with strong spin–orbit~SO! interaction. It has long
been known29 that the SO interaction in the 2DEG formed
a GaAs/AlGaAs inversion layer is strong due to the stru
tural inversion asymmetry of the heterostructure. The app
ance in quantum heterostructures of a spin–orbit coup
linear in electron momentum is now called the Rashba eff
The Rashba interaction is described by the Hamiltonian

HSO
~R!5 iaSOS sy

]

]x
2sx

]

]yD , ~46!

wheresx(y) are the Pauli matrices. The strength of the spi
orbit interaction is determined by the coupling constantaSO,
which ranges over a wide interval (1 – 10)310210 eV•cm
for different systems~see, e.g., Ref. 31 and referenc
therein!. Recently it was shown experimentally75–77 that the
strength of the Rashba interaction can be controlled by a

FIG. 6. Dependence of the magnetizationM of an SNS junction on the
superconducting phase difference for different temperatures.
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voltageaSO(VG). This observation makes the Rashba eff
a very attractive and useful tool in spintronics. The b
known proposal based on the Rashba effect is the s
modulator device of Datta and Das.78

The spin–orbit interaction lifts the spin degeneracy
the 2DEG energy bands atpÞ0 ~p is the electron momen
tum!. The Rashba interaction@Eq. ~46!# produces two sepa
rate branches for ‘‘spin-up’’ and ‘‘spin-down’’ electron state

«~p!5
p2

2m
6

aSO

\
upu. ~47!

Notice that under the conditions of the Rashba effect
electron spin lies in a 2D plane and is always perpendic
to the electron momentum. By the terms ‘‘spin-up’’~‘‘spin-
down’’! we imply two opposite spin projections at a give
momentum. The spectrum~47! does not violate left–right
symmetry; that is, the electrons with opposite momen
(6p) have the same energy. Actually, the time reversal sy
metry of the spin–orbit interaction@Eq. ~46!# imposes less
strict limitations on the electron energy spectrum, nam
«s(2p)5«2s(p), and thus the Rashba interaction can
principle break the chiral symmetry. In Ref. 31 it was sho
that in quasi-1D quantum wires formed in a 2DEG by
laterally confining potential the electron spectrum is char
terized by a dispersion asymmetry«s(2p)Þ«s(p), This
means that the electron spectrum linearized near the F
energy is characterized by two different Fermi velocit
v1(2)F and, what is more important, electrons with lar
~Fermi! momenta behave as chiral particles in the sense
in each subband~characterized by Fermi velocityvF

(1) or
vF

(2)) the direction of the electron motion is correlated w
the spin projection31,79~see Fig. 7!. It is natural in this case to
characterize the spectrum by the asymmetry parameter

la5
v1F2v2F

v1F1v2F
, ~48!

which depends on the strength of the Rashba interac
la(aSO50)50. The asymmetry parameter grows with i
crease ofaSO and can be considered in this model as
effective dimensional strength of the Rashba interaction

FIG. 7. Schematic energy spectrum of 1D electrons with dispersion as
metry. Particles with energies close to the Fermi energy«F have an almost
linear dependence on momentum and are classified by their Fermi velo
(v1F subband1, v2F subband2!. The solid lines for spin projections corre
spond to the case of weak SO interaction; the arrows in parentheses ind
the spin projections in subband1 for strong Rashba interaction.
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1D quantum wire.31 Notice that the spectrum proposed
Refs. 31 and 79~Fig. 7, solid lines for spin projections! does
not hold for strong SO interactions, whenla is not small.
Spin is not conserved in the presence of the SO interact
and the prevailing spin projection of electron states
quasi-1D wires has to be independently calculated. It w
shown in Ref. 32 by a direct calculation of the average el
tron spin projection that for energies close to«F the electron
spin projection for strong Rashba interaction~comparable
with the band splitting in the confining potential! is strongly
correlated with the direction of the electron motion. Name
the right-moving (R) and left-moving (L) electrons always
have opposite spin projections regardless of their veloci
~see Fig. 7, where the parentheses indicate the spin pro
tion for strong Rashba interaction!. For our choice of Rashba
SO Hamiltonian, Eq.~46!, the R electrons (kx.0) will be
‘‘down-polarized’’ (^sy&521) and the L electrons (kx

,0) will be ‘‘up-polarized’’ (^sy&511) to minimize the
main part of electron energy;(\2/2m)^kx1symaSO/\&2 in
the presence of strong spin–orbit interaction.32

Chiral electrons in a 1D quantum wire result in su
interesting predictions as ‘‘spin accumulation’’ in norm
wires32 or Zeeman-splitting-induced supercurrent in
S–QW–S junction.69

3.4. Zeeman-splitting-induced supercurrent

It was shown in the previous subsection that under
conditions of the Rashba effect in 1D quantum wires the s
degree of freedom is strongly correlated with the elect
momentum. This observation opens up the possibility
magnetic control of an electric current. It is well known th
in ring-shaped conductors a current can be induced by m
netic flux due to the momentum-dependent interaction of
electromagnetic potentialA with a charged particle,H int

5(e/mc)p"A. Chiral properties of electrons in quasi-1
quantum wires allow one to induce a persistent current v
pure spin ~momentum-independent! interaction H
5gmBS"H. Below we consider the Josephson current in
ballistic S–QW–S junction in the presence of Rashba sp
orbit interaction and Zeeman splitting. We will assume
first that SO interactions exist both in the normal part of t
junction and in the superconducting leads, so that one
neglect the spin rotation accompanied by electron ba
scattering induced by SO interactions at the NS interfaces
other words the contacts are assumed to be fully adiab
This model can be justified at least for a weak SO inter
tion. The energy spectrum of electrons in a quantum wire
shown in Fig. 7 and the effect of the SO interaction in th
approach is characterized by the dispersion asymmetry
rameterla , Eq. ~48!.

For a perfectly transparent junction (D51) the two sub-
bands1 and 2 ~see Fig. 7! contribute independently to th
Andreev spectrum, which is described by two sets of leve69

En,h
~1! 5pDL

~1!S n1
1

2
1h

w1x1

2p D ,

~49!

Em,h
~2! 5pDL

~2!S m1
1

2
1h

w2x2

2p D ,
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where the integersn,m50,61,62,... are ordinary quantum
numbers which label the equidistant Andreev levels in a lo
SNS junction,26 h561, DL

( j )5\v jF /L ( j 51,2), andw is
the superconducting phase difference. The magnetic ph
x j5DZ /DL

( j ) characterize the shift of Andreev energy leve
induced by the Zeeman interaction. Notice that the rela
sign between the superconducting phasew and the magnetic
phasex j is different for channels1 and 2. This is a direct
consequence of the chiral properties of the electrons in
model. In the absence of dispersion asymmetry (v1F5v2F

[vF) the two sets of levels in Eq.~49! describe the ordinary
spectrum of Andreev levels in a long, transparent SFS ju
tion ~‘‘F’’ stands for a normal region with Zeeman splitting!:

En,h,s5pDLS n1
1

2
1h

w

2p
1s

x

2p D , h,s561.

~50!

Knowing the energy spectrum explicitly@Eq. ~49!#, it is
straightforward to evaluate the Josephson current. It takes
form69

J~w,T,DZ!5
2eT

\ (
k51

`

~21!k11F sink~w1x1!

sinh~2pkT/DL
~1!!

1
sink~w2x2!

sinh~2pkT/DL
~2!!G . ~51!

HereT is the temperature. The formal structure of Eq.~51! is
obvious. The two sums in Eq.~51! correspond to the contri
butions of magnetically shifted sets of levels1 and2 in Eq.
~49!. In the absence of any SO interaction the Zeeman s
ting results only in an additional factor of cos(kDZ /DL) in the
standard formula for the supercurrent through a perfe
transmitting long SNS junction.57 The most striking conse
quence of Eq.~51! is the appearance of an anomalous
sephson currentJan[J(w50), when both the Zeeman spli
ting (DZ) and dispersion asymmetry (la) are nonzero. At
high temperaturesT>DL

( j ) the anomalous supercurrent is e
ponentially small. In the low-temperature regimeT!DL

( j ) it
is a piecewise-constant function of the Zeeman energy s
ting DZ ,

Jan~DZ!5
e

pL (
k51

`
~21!k11

k Fv1F sinS k
DZ

DL
~1!D

2v2F sinS k
DZ

DL
~2!D G . ~52!

For rational valuesv1F /v2F5p/q (p<q are integers!
Jan is a periodic function of the Zeeman energy splitting w
perioddDZ52pqDL

(1) ; otherwise it is a quasiperiodic func
tion. The dependence of the normalized supercurrentJan/J0

~hereJ05evF /L, vF5(v1F1v2F)/2) on the dimensionles
Zeeman splittingx[DZ /DL for la50.1 and for different
temperatures is shown in Fig. 8. We see that atT50 the
Zeeman-splitting-induced supercurrent appears abruptl
finite values ofDZ of the order of the Andreev level spacin

Let us now imagine the situation when the Zeeman sp
ting arises due to a local magnetic field~acting only on the
normal part of the junction! applied in the 2D plane norma
to the quantum wire. Then the vector product of that m
g

es

e

ur
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netic field with the electric field~normal to the plane! that
induces the Rashba interaction determines the direction
the anomalous supercurrent. In other words the change o
sign of the SO interaction in Eq.~46! or the sign ofDZ

makes the supercurrent Eq.~52! change sign as well.
We now discuss briefly the case of a strong Rashba

teraction~the characteristic momentumkSO5m/\aSO(Vg) is
of the order of the Fermi momentum!. The electrons in a
quantum wire with strong Rashba coupling are chiral p
ticles; that is, the right- and left-moving particles have opp
site spin projections.32 There is no reason to assume a stro
SO interaction in the 3D superconducting leads. We will f
low the approach taken in Refs. 32 and 80, where the sys
was modeled by a quantum wire (aSOÞ0) attached to semi-
infinite leads withaSO50. In this model the SN interface
acts as a special strong scatterer, where backscattering i
companied by a spin-flip process. For a general nonreso
situation the dispersion asymmetry is not important in
limit of strong Rashba interaction, and we can putv1F

'v2F'vF . Then, up to a numerical factor, the Josephs
current atT50 takes the form

J~w,DZ!'Deff~aSO!
evF

L
sinS w1

DZ

DL
D . ~53!

Here Deff(aSO)!1 is the effective transparency of th
junction. It can be calculated by solving the transition pro
lem for the corresponding normal junction.32 Anyway, in the
NS-interface model considered~nonadiabatic switching on
of the Rashba interaction! even in the limit of strong Rashb
interaction the anomalous supercurrentJan5J(w50,DZ) is
small because of the smallness of the effective transpare
of the junction. One could expect a large current only for t
special case of a resonant transition. This problem has
yet been solved.

4. CONCLUSION

The objective of our review was to discuss the quali
tively new features of the Josephson effect that appea

FIG. 8. Dependence of the normalized anomalous Josephson currentJan/J0

(J05evF /L) on the dimensionless Zeeman splittingDZ /DL (DL

5\vF /L) for asymmetry parameterla50.1. The different plots correspond
to different temperaturesT: 0.1T* ~1!; 1.5T* ~2!; 3.5T* ~3!, where T*
5DL/2p.
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S–QW–S hybrid structures. Quantum wires are charac
ized by a 1D or quasi-1D character of the electron cond
tivity. Electron transport along QWs is ballistic, and due
the weak screening of the Coulomb interaction in 1D it
described by a Luttinger liquid theory. Thus the first quest
wanted to answer was, what is the Josephson effect in
SLLS junction? It was shown that although electrons do
propagate in a LL weak link the supercurrent in a perfec
transmitting SLLS junction coincides exactly with that in a
SNS junction.22 This ‘‘no renormalization’’ theorem is analo
gous to the result known for a LL adiabatically coupled
nonsuperconducting leads.35 For a tunnel SILLIS junction
the dc Josephson current is described by the famous Jos
son current–phase relation, only now the effective trans
encyDeff!1 defined byJ5J0Deff sinw ~whereJ05evF /L),
depends strongly on the aspect ratiod/L of the LL wire (d
;lF is the width of the nanowire!, temperature, and
electron–electron interaction strength. This result21 is a
manifestation of the Kane–Fisher effect34 in mesoscopic su-
perconductivity. It was also interesting for us~and we hope
for the reader as well! to find a close connection, rooted i
the Andreev boundary conditions, between the physics
long SNS junction and the Casimir effect~see Sec. 2.3.!.

Qualitatively new behavior of the proximity-induced s
percurrent in nanowires is predicted for systems with stro
spin–orbit interactions. The Rashba effect in nanowires
sults in the appearance of chiral electrons,31,32 for which the
direction of particle motion along the wire~right or left! is
strongly correlated with the electron spin projection. For c
ral electrons the supercurrent can be magnetically indu
via Zeeman splitting. The interplay of the Zeeman a
Rashba interactions and proximity effects in quantum wi
leads to effects that are qualitatively different from tho
predicted for 2D junctions.81

It is worthwhile to mention here another important tre
in mesoscopic superconductivity, namely, the fabrication
investigation of superconductivity-based qubits. Among d
ferent suggestions and projects in this rapidly develop
field, the creation of a so-called single-Cooper-pair b
~SCPB! was a remarkable event.82 The SCPB consists of a
ultrasmall superconducting dot in tunneling contact with
bulk superconductor. A gate electrode, by lifting the Co
lomb blockade of Cooper-pair tunneling, allows the deloc
ization of a single Cooper pair between the two superc
ductors. For a nanoscale grain the quantum fluctuation
the charge on the island are suppressed due to the s
charging energy associated with a small grain capacita
By appropriately biasing the gate electrode it is possible
make the two states on the dot, differing by one Cooper p
have the same energy. This twofold degeneracy of
ground state provides an opportunity to create a long-li
coherent mixture of two ground states~qubit!.

A superconducting weak link which includes a SCPB
a tunnel element could be very sensitive to external ac fie
This problem was studied in Ref. 83, where the reson
microwave properties of a voltage-biased single-Cooper-
transistor were considered. It was shown that the quan
dynamics of the system is strongly affected by interfere
between multiple microwave-induced interlevel transitio
As a result, the magnitude and the direction of the dc Jose
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son current are extremely sensitive to small variations of
bias voltage and to changes in the frequency of the mic
wave field. This picture, which differs qualitatively from th
famous Shapiro effect,3 is a direct manifestation of the rol
the strong Coulomb correlations play in the nonequilibriu
superconducting dynamics of mesoscopic weak links.
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Some novel effects in superconducting nanojunctions
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In this paper we address several new developments in the theory of the dc Josephson effect in
superconducting weak links. We analyze the interplay between quantum interference
effects and Andreev reflection in SNS nanojunctions with insulating barriers and demonstrate that
these effects may qualitatively modify the Josephson current in such structures. We also
investigate the impact of the parity effect on persistent currents in superconducting nanorings
interrupted by a quantum point contact~QPC!. In the limit of zero temperature and for
an odd number of electrons in the ring we predict complete suppression of the supercurrent across
a QPC with one conducting mode. In nanorings with SNS junctions ap-state can occur for
an odd number of electrons. Changing this number from even to odd yieldsspontaneous
supercurrent in the ground state of such rings without any externally applied magnetic
flux. © 2004 American Institute of Physics.@DOI: 10.1063/1.1789914#
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In 1926 Albert Einstein posed a remarkable questio1

‘‘Of particular interest is the question whether a link betwe
two superconductors also turns superconducting.’’ The
swer to this question was provided by Brian Josephson
1962.2 It was predicted by Josephson that dissipativel
flow of Cooper pairs between two different superconduct
separated by an insulating barrier is possible provided
supercurrentI s does not exceed some critical valueI c . Fur-
thermore, the dependence of this current on the phase
macroscopically coherent wave functions of Cooper pa
was established in a very simple form:2

I s5I c sinf, ~1!

where f is the difference between the phases of the B
order parameters of two superconductors. Equation~1! rep-
resents thedc Josephson effect. Einstein’s question1 turned
out to be answered in the affirmative.

What if the total currentI flowing through the barrier is
larger thanI c? In this case a part of the net current across
barrier is transferred by normal electrons~quasiparticles! and
the rest of it is carried by Cooper pairs. While the seco
contribution, I s , remains dissipativeless and is again d
scribed by Eq.~1!, the first—quasiparticle—contribution t
the current is dissipative and, hence, causes a nonzero
age dropV across the insulating barrier. In the presence
this voltage the coherent phase differencef acquires a time
dependence described by another famous Josephson re

]f

]t
5

2eV

\
. ~2!

Combining Eqs.~1! and ~2!, one immediately arrives at th
conclusion that for any nonzeroV the supercurrentI s

changes in time. In the case of time-independent volta
one hasf52eVt/\ and, hence, the Josephson current~1!
will oscillate in time with a fundamental frequency propo
5681063-777X/2004/30(7–8)/11/$26.00
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tional to the voltageV. Equation~2! and the related oscilla
tions of the supercurrent represent the essence of theac
Josephson effect.

Soon after Josephson’s predictions a microscopic the
of both the dc3 and ac4,5 Josephson effects was constructe
and these effects have been observed experimentally.6,7 A
huge number of publications and several monographs h
been devoted to various aspects of these effects. It has tu
out that the physics encoded in these phenomena is very
and important for understanding the basic properties of
perconductivity itself. More than forty years after its disco
ery the Josephson effect is still attracting the attention
many researchers and keeps providing us with new and
teresting physics.

In this paper we will discuss several new phenomena
which a theoretical understanding has only very recen
been achieved. In the next Section we very briefly revi
already well-known and established results which conc
the dc Josephson effect in various types of superconduc
weak links. Sections 2 and 3 are devoted to possible n
effects8,9 which emerge and gain importance as one
creases the size of a weak link, eventually turning it to
nanostructure with only few conducting channels. Fabri
tion of such quantum point contacts~QPCs!—unthinkable at
the time of discovery of the Josephson effects—is now
coming a routine procedure. Hence, the new effects
cussed here can be directly observed and investigated
modern experiment.

1. INSTEAD OF INTRODUCTION

Relatively soon after Josephson’s discovery it was
derstood that the nondissipative transport of Cooper p
between two superconductors can take place not o
through a~usually very thin! insulating barrier but also in
various other situations. One of such situation is realized
the so-called SNS structures, i.e., if a piece of a normal m
is placed in-between two superconductors. In contrast to
© 2004 American Institute of Physics
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nel junctions, in SNS systems at sufficiently low tempe
tures appreciable supercurrent can flow even if the nor
layer is as thick as few microns. This is because the w
function of Cooper pairs or, more precisely, the anomal
Green function, penetrates into the normal metal from a
perconductor at the length;vF /T for ballistic and;AD/T
for diffusive metals~here and belowD5vFl /3 andl are the
diffusion coefficient and the elastic mean free path, resp
tively!. Clearly, at temperatures much lower than the criti
temperatureTc of a superconductor this length becom
large ~as compared, e.g., to the superconducting cohere
length!, and macroscopic quantum coherence is establis
between two superconducting banks separated by a no
metal.

Further studies revealed an interesting mechanism
Cooper pair transfer in such systems. It turned out that
supercurrent flow is directly related to another fundament
important phenomenon: Andreev reflection.10 Suffering An-
dreev reflections at both SN interfaces, quasiparticles w
energies below the superconducting gap are effectiv
‘‘trapped’’ inside the N layer and form a discrete set
levels.10 It was demonstrated11 that in the presence of a phas
differencef across the SNS junction these levels acquir
shift proportional to this phase difference. Thus, on the o
hand, the position of the quasiparticle energy levels in s
systems can be tuned by the passage of supercurrent, an
the other hand, the magnitude of this supercurrent can
established by taking the derivative of the quasiparticle
ergy with respect tof with subsequent summation over th
whole energy spectrum. The microscopic theory11,12 leads to
the following expression for the current density throu
clean SNS systems:

j 5
e2pF

2vF

6p2d
f, 2p,f,p. ~3!

This expression is valid atT→0 and for N-metal layers with
thicknessd@j0;vF /D, whereD is the superconducting or
der parameter. The most important features of this result
~i! the strongly nonsinusoidal current-phase relation, cf. E
~1! and ~3!, and~ii ! the linear dependence of the current
the gap in the quasiparticle spectrumeqp;vF /d in the direc-
tion normal to the NS interfaces.

It is interesting that qualitatively both features~i! and~ii !
survive not only for ballistic but also for diffusive SNS junc
tions, even though in the latter case the discrete Andr
levels are washed out due to elastic scattering of quasip
cles on impurities in the N metal. It has been demonstra
microscopically13–15 that at low temperaturesT!D/d2 the
current-phase relation in diffusive SNS junctions also de
ates from the sinusoidal one1! and the critical Josephson cu
rent is again proportional to the gap in the quasiparticle sp
trum, in this case the Thouless energyeqp5D/d2. The exact
value of the critical Josephson current in long diffusive S
junctions can be established only numerically. One finds15

I c510.82
eqp

eRN
, ~4!

whereRN is the junction normal state resistance.
The above results—both for the ballistic and diffusi

limits—are valid for sufficiently long junctions. One can als
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decrease the thicknessd of the normal metal and graduall
cross over to the limit of short superconducting constrictio
A microscopic description of the dc Josephson effect in t
type of weak links was developed by Kulik an
Omel’yanchouk.16 Also in such systems at low temperatur
the current-phase dependence deviates from sinf and the
critical currentI c(T→0) is again proportional to the comb
nation eqp /eRN , where noweqp5D. A crossover between
the two limits of long SNS junctions and short supercondu
ing weak links can also be described microscopically. In
clean case this task can be accomplished trivially by solv
the Eilenberger equations,17–19 while in the dirty limit one
must use the Usadel equations,20 which can be solved only
numerically. The latter task has recently been carried ou
Ref. 15.

Let us also note that in all the above considerations
intermetallic interfaces were assumed to be perfectly tra
parent. It is also straightforward to generalize the analysi
include electron scattering at an insulating barrier that can
present inside a weak link. For short superconducting ju
tions containing an insulating barrier with an arbitra
energy-independent transmission the corresponding gene
zation has been worked out by Haberkornet al.21 This analy-
sis yields a general formula for the Josephson current wh
matches with the Ambegaokar-Baratoff result3 in the weak
tunneling limit and crosses over to the Kulik-Omel’yancho
expression16 for clean constrictions at transmissions a
proaching unity. It is interesting that the result of Ref. 16 f
diffusive constrictions can also be recovered from the f
mula of Ref. 21 after its slight generalization. In order to
so one should assume that the transmission is not the s
for all conducting channels but rather obeys the Dorokh
distribution formula. Combining this formula with the ex
pression from Ref. 21 and summing over all conducti
channels, one arrives at the result of Ref. 16 for diffus
weak links.

One can also investigate the transport properties
more-complicated layered structures which contain both n
mal metal layers and insulating barriers. For instance, S
systems with one insulating barrier, such as SINS a
SNINS, have been analyzed by a number of authors.22–28For
an extended review summarizing various features of the
Josephson effect in different types of superconducting w
links and further references we refer the reader to Refs.
31.

Most of the results reviewed above were obtained a lo
time ago and are by now well established and well und
stood. One can think that considering dc Josephson effe
even more complicated structures like, for instance, S
structures with two or three insulating barriers, may at m
yield somewhat more cumbersome expressions but wo
not reveal any new physics beyond what has already b
understood in simpler situations. Below we will show th
that is not the case. On the contrary, in the next Section
will demonstrate that qualitatively new effects may occur
SNS junctions with more than one insulating barrier, in p
ticular, provided the cross section of such junctions is
duced to where it is comparable to the square of the Fe
wavelength.
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2. JOSEPHSON EFFECT AND QUANTUM INTERFERENCE
OF QUASIPARTICLES

In this Section we will analyze the dc Josephson effec
SNS systems which contain several insulating barriers
this case electrons scattered at different barriers can inte
inside the junction. We will demonstrate that such interf
ence may lead to qualitatively new effects and cause se
modifications of the supercurrent across the junction. We
see that these modifications can go in both directions,
the Josephson current can be dramatically decreased bde-
structive interferenceof quasiparticles or, on the contrar
increased as a result of theirconstructive interference.

The first situation is realized for sufficiently short jun
tions, while for longer ones the second effect might beco
more pronounced. The phenomenon of quantum interfere
of quasiparticles is of primary importance for SNS structu
with few conducting channels. The interest in such structu
has grown considerably after several experimental gro
succeeded in connecting a carbon nanotube to two super
ductors and performing transport measurements in s
systems.32–34 More-conventional SNS structures with man
conducting channels and several insulating barriers are
of considerable interest, for instance in connection with p
sible applications~see, e.g., Ref. 35 and further referenc
therein!. We will demonstrate that for such systems quant
interference effects are also important provided there e
more than two scatterers inside the junction.

On the theoretical side, a significant difficulty is that t
powerful formalism of quasiclassical energy-integrat
Eilenberger Green functions17–19,30 supplemented by the
Zaitsev boundary conditions36 cannot be directly applied to
systems containing more than one insulating barrier. An
portant ingredient of the derivation36 is the assumption tha
such barriers are located sufficiently far from each other
that interference effectsemerging from electron scatterin
can be totally neglected. It is also essential that Zait
boundary conditions do not depend on the scattering pha
Since here we are just interested in investigating the quan
interference of quasiparticles, we are not in a position to
the quasiclassical Eilenberger formalism for our purpos
One possible way of circumventing this problem is to ap
the formalism37,38 within which the presence of an arbitrar
number of barriers in the system can be accounted for
linear boundary conditions. Another, even more straightf
ward, possibility for analyzing the dc Josephson effect
structures with several insulating barriers is to directly so
the exact Gor’kov equations.39 Here we will follow the sec-
ond approach.

The results presented in this Section were obtained
collaboration with Galaktionov.8 A similar approach has als
been used independently by Brinkman and Golubov.40

2.1. General formalism

In what follows we will assume that our system is un
form along the directions parallel to the interfaces~coordi-
natesy andz). Performing the Fourier transformation of th
normalG and anomalousF1 Green function with respect to
these coordinates,
n
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Gvn
~r ,r 8!5E d2ki

~2p!2 Gvn
~x,x8,ki!eiki~r i2r i8!,

we express the Gor’kov equations in the following stand
form:

S ivn2Ĥ D~x!

D* ~x! ivn1Ĥc
D S Gvn

~x,x8,ki!

Fvn

1 ~x,x8,ki! D 5S d~x2x8!

0 D .

~5!

Herevn5(2n11)pT is the Matsubara frequency, andD(x)
is the superconducting order parameter. The HamiltonianĤ
in Eq. ~5! reads

Ĥ52
1

2m

]2

]x2 1
k̃i

2

2m
2«F1V~x!. ~6!

Here k̃i5ki2 e/c Ai(x), eF is the Fermi energy, the term
V(x) takes into account the external potentials~including the
boundary potential!, and Ai is the vector potential. The
HamiltonianĤc is obtained fromĤ ~6! by inverting the sign
of the electron chargee.

As usual, it is convenient to separate fast oscillations
the Green functions}exp(6ikxx) from the envelope of these
functions, which changes over distances much larger t
atomic scales. Then one can construct a particular solutio
the Gor’kov equations~5! in the following form:

S Gvn
~x,x8,ki!

Fvn

1 ~x,x8,ki! D 5f̄11~x!g1~x8!eikx~x2x8!

1f̄22~x!g2~x8!e2 ikx~x2x8! if x.x8

~7!

and

S Gvn
~x,x8,ki!

Fvn

1 ~x,x8,ki! D 5f̄21~x! f 1~x8!e2 ikx~x2x8!

1f̄12~x! f 2~x8!eikx~x2x8! if x,x8.

~8!

These functions satisfy Gor’kov equations atxÞx8.
Heref̄6 are two linearly independent solutions of the equ
tion

S ivn2Ĥ6
a D~x!

D* ~x! ivn1Ĥ6c
a D f̄650. ~9!

The solutionf̄11 does not diverge atx→1`, while
f̄12 is well-behaved atx→2`. Similarly, the two linearly
independent solutionsf̄21,2 do not diverge, respectively, a
x→2` andx→1`.

In Eq. ~9! we defined

Ĥ6
a 57 ivx]x2

e

c
Ai~x!vi1

e2

2mc2 Ai
2~x!1Ṽ~x!. ~10!

Herekx5mvx5AkF
22ki

2, Ṽ(x) represents a slowly varying
part of the potential which doesnot include fast variations
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possibly occuring at metallic interfaces. The latter will
taken into account by the boundary conditions to be con
ered below.

The functionsf 1,2(x) and g1,2(x) are determined with
the aid of the continuity condition for the Green functions
x5x8 and the condition resulting from the integration
d(x2x8) in Eq. ~5!.

A general solution of the Gor’kov equations has the fo

S Gvn
~x,x8!

Fvn

1 ~x,x8! D 5S Gvn
~x,x8!

Fvn

1 ~x,x8! D
part

1@ l 1~x8!f̄11~x!

1 l 2~x8!f̄12~x!#eikxx1@ l 3~x8!f̄21~x!

1 l 4~x8!f̄22~x!#e2 ikxx. ~11!

For systems which consist of several metallic layers
particular solution is obtained with the aid of the procedu
outlined above, provided that both coordinatesx and x8
belong to the same layer. Shouldx andx8 belong to different
layers, the particular solution is zero because in that c
the d function in Eq. ~5! fails. The functionsl 1,2,3,4(x8) in
each layer should be derived from the proper boundary c
ditions. These are just the matching conditions for the w
functions on the left and on the right side of a potent
barrier, A1 exp(ik1xx)1B1 exp(2ik1xx) and A2 exp(ik2xx)
1B2 exp(2ik2xx), respectively. These conditions have t
standard form~see, e.g., Ref. 41!:

A25aA11bB1 , B25b* A11a* B1 ,

uau22ubu25
k1x

k2x
. ~12!

The equations

R5UbaU
2

, D512R5
k1x

k2xuau2
~13!

define, respectively, the reflection and transmission coe
cients of the barrier. Applying these boundary conditions
each insulating barrier, one uniquely determines all the
known functions in Eq.~11! and thereby completes the co
struction of the Green functions for our problem. For furth
details we refer the reader to Ref. 8.

We are now in a position to specify the general expr
sion for the Josephson current across ballistic SNS junct
which contain an arbitrary number of insulating barriers.
what follows we will assume that a thin specularly reflecti
insulating barriers~I! are situated at both SN interface
Additional such barriers can also be present inside the
metal. Transmissions of these barriers may take any v
from zero to one. We also assume that electrons propa
ballistically between any two adjacent barriers and that
electron-electron or electron-phonon interactions are pre
in the normal metal. For simplicity we will restrict our atten
tion to the case of identical superconducting electrodes w
singlet isotropic pairing and neglect suppression of the
perconducting order parameter in the electrodes close to
SN interface. The phase of the order parameter is set t
2f/2 (1f/2) in the left ~right! electrode. As before, the
thickness of the normal layer will be denoted byd.

Employing the standard formula for the current dens
-
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E d2ki

~2p!2 ~¹x82¹x!x8→xGvn
~x,x8,ki! ~14!

and making use of the expressions for the Green functio
one arrives at the following result:

J54eT (
vn.0

E
0

kF kxdkx

2p

sinf

cosf1W
, ~15!

where the functionW depends on the number of insulatin
barriers. This function will be specified below for the case
two and three barriers.

Note that the integral overkx in Eq. ~15! can be replaced
by a sum over independent conducting channels:

A
2p E

0

kF
kxdkx~ ...!→(

m

N

~ ...!, ~16!

whereA is the junction cross section. In this caseD1,2 and
R1,2 may also depend on the channel indexm.

2.2. SINI8S junctions with few conducting channels

Let us first consider SNS junctions with two insulatin
barriers, one at each NS interface. In this case the functioW
in ~15! takes the form

W5
4AR1R2

D1D2

Vn
2

D2 cosx

1
Vn

2~11R1!~11R2!1vn
2D1D2

D1D2D2 cosh
2vnd

vx

1
2~12R1R2!

D1D2

Vnvn

D2 sinh
2vnd

vx
. ~17!

Herex52kxd1w is the phase of the producta2* b2a1* b1* .
Equations~15!, ~17! provide a general expression for the d
Josephson current in SINI8S structures valid for arbitrary
transmissionsD1 andD2 .

Let us first analyze the above result for the case of o
conducting channelN51. We observe that the first term i
Eq. ~17! contains cos(2kxd1w), which oscillates at distance
of the order of the Fermi wavelength. Provided at least o
of the barriers is highly transparent and/or~for sufficiently
long junctionsd*j0) the temperature is highT@vF /d this
oscillating term is unimportant and can be neglected. Ho
ever, at lower transmissions of both barriers and for re
tively short junctionsd&vF /T this term turns out to be o
the same order as the other contributions toW ~17!. In this
case the supercurrent is sensitive to the exact positions o
discrete energy levels inside the junction, which can in tu
vary considerably ifd changes at the atomic scales;1/kF .
Hence, one can expect sufficiently strong sample-to-sam
fluctuations of the Josephson current even for junctions w
nearly identical parameters.

Let us first consider the limit of relatively short SINI8S
junctions, in which case we obtain

I 5
eD

2

T sinf

D tanhFDD

2T G , ~18!

where we have defined

D~f!5A12T sin2~f/2! ~19!
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and an effective normal transmission of the junction

T5
D1D2

12R1R212AR1R2 cosx
. ~20!

Equation~18! has exactly the same functional form as t
result derived by Haberkornet al.21 for SIS junctions with an
arbitrary transmission of the insulating barrier. This resul
recovered from our Eqs.~18!, ~20! if we assume, e.g.,D1

!D2 , in which case the total transmission~20! reduces to
T.D1 .

As we have already discussed, the total transmissioT
and, hence, the Josephson current fluctuate depending o
exact position of the bound states inside the junction. T
resonant transmission is achieved for 2kxd1w56p, in
which case we get

Tres5
D1D2

~12AR1R2!2
. ~21!

This equation demonstrates that for symmetric junctionsD1

5D2 at resonance the Josephson current does not depen
the barrier transmission at all. In this caseTres51, and our
result ~18! coincides with the formula derived by Kulik an
Omel’yanchouk16 for ballistic constrictions. In the limit of
low transmissionsD1,2!1 we recover the standard Brei
Wigner formulaTres54D1D2 /(D11D2)2 and reproduce the
result obtained by Glazman and Matveev42 for the problem
of resonant tunneling through a single Anderson impu
between two superconductors.

Note that our results~18!–~20! also support the conclu
sion reached by Beenakker43 that the Josephson curre
across sufficiently short junctions has a universal form a
depends only on the total scattering matrix of the weak li
which can be evaluated in the normal state. Although t
conclusion is certainly correct in the limitd→0, its applica-
bility range depends significantly on the physical nature
the scattering region. From Eqs.~15!, ~17! we observe that
the result~18!, ~19! applies atd!j0 not very close to the
resonance. On the other hand, at resonance the above
is valid only under the more stringent conditiond
!j0Dmax, where we defineDmax5max(D1,D2).

Now let us briefly analyze the opposite limit of suffi
ciently long junctionsd@j0 . Here we will restrict ourselves
to the most interesting caseT50. From Eqs.~15!, ~17! we
obtain

I 5
evx sinf

pdz1
FarctanAz2 /z1

Az2 /z1
G ,

z1,25cos2
f

2
1

1

D1D2
~R162AR1R2 cosx!, ~22!

where R15R11R2 . For a fully transparent channelD1

5D251 the above expression reduces to the well kno
Ishii-Kulik result:11,12

I 5
evxf

pd
, 2p,f,p, ~23!

whereas if one transmission is small,D1!1, andD2'1, we
reproduce the result22
s

the
e

on

y

d
,

is

f

sult

n

I 5
evxD1 sinf

2d
. ~24!

Provided the transmissions of both NS interfaces are l
D1,2!1, we obtain in the off-resonance region

I 5
evx

4pd
D1D2 sinfY@x#, ~25!

whereY@x# is a 2p-periodic function defined as

Y@x#5
x

sinx
, 2p,x,p. ~26!

In the vicinity of the resonance,uuxu2pu&Dmax, the above
result no longer holds. Exactly at resonance,x56p, we get

I 5
evxAD1D2 sinf

4dH cos2
f

2
1

1

4
SAD1

D2

2AD2

D1
D 2J 1/2. ~27!

For a symmetric junction,D1,25D, this formula yields

I 5
evxD sinf/2

2d
, 2p,f,p, ~28!

while in the strongly asymmetric case,D1!D2 , we again
arrive at expression~24!. This implies that at resonance th
barrier with higher transmissionD2 becomes effectively
transparent even ifD2!1. We conclude that forD1,2!1 the
maximum Josephson current is proportional to the produc
transmissionsD1D2 off resonance, whereas exactly at res
nance it is proportional to the lower of the two transmissio
D1 or D2 .

We observe that both for short and long SINI8S junc-
tions interference effects may enhance the Josephson e
or partially suppress it, depending on the exact positions
the bound states inside the junction. We also note tha
order to evaluate the supercurrent across SINI8S junctions it
is in general not sufficient to derive the transmission pro
ability for the corresponding NINI8N structure. Although the
normal transmission of the above structure is given by
~20! for all values ofd, the correct expression for the Jo
sephson current can be recovered by combining Eq.~20!
with the results21,43 in the limit of short junctionsd!Dj0

only. In this case one can neglect suppression of the ano
lous Green functions inside the normal layer, and, hence,
information about the normal transmission turns out to
sufficient. On the contrary, for longer junctions the decay
Cooper pair amplitudes inside the N layer can no longer
disregarded. In this case the supercurrent will deviate fr
the form ~18! even though the normal transmission of t
junction~20! will remain unchanged. This deviation becom
particularly pronounced for long junctions, i.e., ford@j0 off
resonance and ford@Dj0 at resonance.

Generalization of the above results to the case of
arbitrary number of independent conducting channelsN.1
is trivial: The supercurrent is simply given by the sum of t
contributions from all the channels. These contributions
in general not equal because the phase factorsx52kxd1w
change randomly for different channels. Hence, mesosc



i
r

b

i
y
uc
b
a
it
s

c
fo
e

ng
e

he
at

x

th
f.
a

ne

e

o

s
of
s

-
ards

ion

t is
ses.

his

c
over
av-

ing
l

ter-
the
the

n-
e
the
an-

nt in
ally
ev
f-
n of

be

573Low Temp. Phys. 30 (7–8), July–August 2004 A. D. Zaikin
fluctuations of the supercurrent should become smaller w
increasing number of channels and eventually disappea
the limit of largeN.

In the latter limit the Josephson current is obtained
averaging over all values of the phasex. This limit has al-
ready been studied in detail8,40 and will not be considered
here. We will only point out that, as was demonstrated
Ref. 8, in the limitN→` interference effects are effectivel
averaged out, and exactly the same result can be reprod
by means of the Eilenberger formalism supplemented
Zaitsev boundary conditions. It is also worthwhile to emph
size that the latter statement applies only to junctions w
two insulating barriers. Below we will show that for system
with more than two barriers quasiparticle interference effe
turn out to be even more significant, and the correct result
the current cannot be recovered with the aid of Zaits
boundary conditions even in the limitN→`.

2.3. Josephson current in SINI 8NI9S junctions

Let us now turn to SNS structures with three insulati
barriers. As before, two of them are located at SN interfac
and the third barrier is inside the N layer at distancesd1 and
d2 , respectively, from the left and right SN interfaces. T
transmission and reflection coefficients of this intermedi
barrier are denoted asD0 andR0512D0 , whereas the left
and the right barriers are characterized byD1512R1 and
D2512R2 , respectively.

The supercurrent is calculated along the same lines
for the case of two barriers. The final result is again e
pressed by Eq.~15!, where the functionW is now defined by
a substantially more cumbersome expression than for
case of two barriers. This expression was evaluated in Re
and will not be presented here. We will skip to the fin
results.

2.3.1. One-channel limit

Let us first discuss the case of one conducting chan
In the limit of short junctionsd!j0Dmax we again reproduce
the result~18!, where the total effective transmission of th
normal structure with three barriers takes the form

T5
2t1t0t2

11t1t0t21C~f1,2,t0,1,2!
, ~29!

where

C5cosx1A~12t0
2!~12t1

2!1cosx2A~12t0
2!~12t2

2!

1~cosx1 cosx22t0 sinx1 sinx2!A~12t1
2!~12t2

2!.

~30!

Here we definet0,1,25D0,1,2/(11R0,1,2) and x1,252kxd1,2

1w1,2. For later purposes let us also perform averaging
this transmission over the phasesx1,2. We obtain

^T&5
2t1t0t2

A2t1t0t21t1
2t0

21t1
2t2

21t0
2t2

22t1
2t0

2t2
2

. ~31!

In particular, in the case of similar barriers with small tran
parenciesD0,1,2'D!1 the average normal transmission
our structure iŝ T&;D3/2. Suppression of the average tran
th
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mission below the value;D is a result of destructive inter
ference and indicates the tendency of the system tow
localization.

Let us now proceed to the limit of a long junctiond1,2

@j0 and T50. In the off-resonance region ford15d2 we
find

I 5
evxD1D0D2 sinf

8pd1

Y@x1#2Y@x2#

cosx22cosx1
. ~32!

This expression diverges at resonance~i.e., atx1.p or x2

.p), where it becomes inapplicable. In the resonant reg
x2.p we obtain

I 5
evxAD1D0D2 sinf

4dA2~11cosx1!@T212sin2~f/2!#
. ~33!

2.3.2. Many-channel junctions

As was already discussed, in the many-channel limit i
appropriate to average the current over the scattering pha
Practically in any realistic physical realization the widthsd1

and d2 fluctuate independently on the atomic scale. In t
case averaging overx1 and x2 should also be performed
independently. Ifd1 and d2 do not change on the atomi
scale but are incommensurate, independent averaging
the two phases is to be performed as well. Independent
eraging cannot be fulfilled only in the~physically irrelevant!
case of strictly commensurated1 andd2 , which will not be
considered below.

Technically, independent averaging over the scatter
phasesx15x andx25lx amounts to evaluating the integra
of the expression 1/@ t1cosxcos(lx)# from x50 to some
large valuex5L. At l51 the result of this integration is
L/At(11t). However, if l is irrational, the integral ap-
proaches the value 2LK(1/t2)/pt, whereK(h)5F(p/2,h)
is the complete elliptic integral.

Let us assume that the transparencies of all three in
faces are small compared to unity. After averaging over
two scattering phases we arrive at the final expression for
current:

J5
ekF

2

p2 Deff sin~fT! (
vn.0

D2

Vn
2 KFD2 sin2~f/2!

Vn
2 G , ~34!

where we define the effective transmission

Deff5E
0

1

dmmAD0D1D2. ~35!

Hence, for similar barriers we obtain the dependenceJ
}D3/2 rather thanJ}D ~as would be the case for indepe
dent barriers!. The latter dependence would follow from th
calculation based on Zaitsev boundary conditions for
Eilenberger propagators. We observe, therefore, that qu
tum interference effects decrease the Josephson curre
systems with three insulating barriers. This is an essenti
quantum effect which cannot be recovered from Zaits
boundary conditions even in the multichannel limit. This e
fect has exactly the same origin as a quantum suppressio
the average normal transmission^T& due to localization ef-
fects. Further limiting expressions for short junctions can
directly recovered from Eq.~31!.
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We also note that the current-phase relation~34! deviates
from a pure sinusoidal dependence even though all th
transmissions are small,D0,1,2!1. At T50 the critical Jo-
sephson current is reached atf.1.7, which is slightly
higher thanp/2. Although this deviation is quantitatively no
very significant, it is nevertheless important as yet one m
indication of quantum interference of electrons inside
junction.

Finally, let us turn to the limit of long junctionsd1,2

@j0 . We again restrict ourselves to the case of lo
transparency interfaces. At high temperaturesT@vF/2pd1,2

we get J}D0D1D2 exp(2d/j(T)), where d5d11d2 and
j(T)5vF /(2pT). In this case the anomalous Green fun
tion decays strongly deep in the normal layer. Hence, in
ference effects are not important and the interfaces can
considered as independent from each other. In the oppo
limit T!DvF /d, however, interference effects become im
portant, and the current becomes proportional toD5/2 rather
than toD3. Explicitly, at T→0 we get to logarithmic accu
racy

J5
ekF

2vF sinf

16p2Ad1d2
E

0

1

dmm2D1D2AD0 ln D0
21. ~36!

We see that, in contrast to short junctions, in the limit
thick normal layers interference effects increase the Jos
son current as compared to the case of independent bar
The result~36!, as well as one of Eqs.~34!, ~35!, cannot be
obtained from the Eilenberger approach supplemented
Zaitsev boundary conditions.

2.4. Some conclusions

By directly solving the Gor’kov equations we evaluat
the dc Josephson current in SNS junctions containing
and three insulating barriers with arbitrary transmissio
SINI8S and SINI8NI9S junctions, respectively. Our resul
can be directly applied both to the junctions with few co
ducting channels~such as, e.g., superconductor–carb
nanotube–superconductor junctions32–34! and to more con-
ventional SNS structures in the many-channel limit. We ha
demonstrated that an interplay between the proximity ef
and quantum interference of quasiparticles may play a
cial role in such systems, causing strong modifications of
Josephson current.

For the system with two barriers and few conducti
channels we found strong fluctuations of the Josephson c
cal current depending on the exact position of the reson
level inside the junction. For short junctionsd!j0D at reso-
nance the Josephson current does not depend on the b
transmission D and is given by the standard Kulik
Omel’yanchouk formula16 derived for ballistic weak links. In
the limit of long SNS junctionsd@j0 resonance effects ma
also lead to strong enhancement of the supercurrent, in
case atT→0 and at resonance the Josephson current is
portional toD and not toD2, as it would be in the absence o
interference effects.

While the above results for few conducting chann
cannot be obtained by means of the approach emplo
Zaitsev boundary conditions, in the many-channel limit a
for junctions with two barriers the latter approach does all
e
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one to recover the correct results. This is because the co
butions sensitive to the scattering phase are effectively a
aged out during summation over conducting channels.

Quantum interference effects turn out to be even m
important in the proximity systems which contain three
sulating barriers. In this case the quasiclassical appro
based on Zaitsev boundary conditions fails even in the li
of many conducting channels. In that limit the Josephs
current isdecreasedfor short junctions (J}D3/2) as com-
pared to the case of independent barriers (J}D). This effect
is caused by destructive interference of electrons reflec
from different barriers and indicates the tendency of the s
tem towards localization. In contrast, for long SNS junctio
with three barriers an interplay between quantum interf
ence and the proximity effect leads to enhancement of
Josephson current atT→0: We obtained the dependenceJ
}D5/2 instead ofJ}D3 for independent barriers.

3. PARITY-INFLUENCED JOSEPHSON CURRENT

Let us now turn to a different issue which, to the best
our knowledge, has not yet attracted much attention in
literature. Namely, we will discuss an interplay between
parity effect and the dc Josephson current in superconduc
weak links. The results presented in this Section have b
obtained in collaboration with Sharov.9

It is well known that the thermodynamic properties
isolated superconducting systems are sensitive to the p
of the total number of electrons44,45even though this numbe
N is macroscopically large. This parity effect is a direct co
sequence of the fundamental property of a superconduc
ground state described by the condensate of Cooper p
The number of electrons forming this condensate is nec
sarily even; hence, for oddN at least one electron alway
remains unpaired, having an extra energy equal to the su
conducting energy gapD. At sufficiently low temperatures a
clear difference between the superconducting states
even and oddN has been demonstrated experimentally.45,46

Can the supercurrent be affected by this parity effect?
the first sight the answer to this question should be nega
because of the fundamental uncertainty relationdNdf*1.
Should the electron numberN be fixed, fluctuations of the
superconducting phasef become large, disrupting the supe
current in the system. On the other hand, suppressing fl
tuations of the phasef will destroy the parity effect becaus
of large fluctuations ofN.

Despite that, we will demonstrate below that in certa
superconducting structures the parity effect can coexist w
nonvanishing supercurrent. Consider a superconducting
tem which can support circular persistent currents~PCs!. An
example is provided by an isolated superconducting r
pierced by a magnetic fluxF, in which case a circulating PC
is induced in the ring. In accordance with the number–ph
uncertainty relation the global superconducting phase of
ring fluctuates strongly in this case; however, these fluct
tions are decoupled from the supercurrent and therefore
be integrated out without any influence on the latter. In w
follows we will show that the parity effect may substantial
modify the PC in superconducting nanorings, in particu
for an odd number of electrons.
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3.1. Parity projection formalism

In order to investigate systematically the influence of
electron parity number on persistent currents in superc
ducting nanorings we will employ the well-known pari
projection formalism.48–50 Let us recapitulate the key point
of this approach, closely following Ref. 49.

The grand canonical partition functionZ(T,m)
5Tr exp@2b(H2mN)# is connected to the canonical on
Z(T,N) by means of the following equation:

Z~T,m!5 (N50

`

Z~T,N!expS mN
T D . ~37!

Here and belowH is the system Hamiltonian,N is the total
number of electrons, andb[1/T. Inverting this relation and
defining the canonical partition functionsZe andZo , respec-
tively, for even (N[Ne) and odd (N[No) ensembles, one
gets

Ze/o~T!5
1

2p E
2p

p

du e2 iNe/ouZe/o~T,iTu!, ~38!

where

Ze/o~T,m!5
1

2
Tr$@16~21!N#e2b~H2mN!%

5
1

2
@Z~T,m!6Z~T,m1 ipT!# ~39!

are the parity projected grand canonical partition functio
For N@1 it is sufficient to evaluate the integral in~38!
within the saddle-point approximation, which yields

Ze/o~T!;exp@2b~Ve/o2me/oNe/o!#, ~40!

whereVe/o52Tln Ze/o(T,m) are the parity projected ther
modynamic potentials. They can be presented in the form

Ve/o5V f2T lnF1

2
~16e2b~Vb2V f !!G , ~41!

where

V f /b52T ln@Tr$~61!Ne2b~H2mN!%#. ~42!

The chemical potentialsme/o are defined by the saddle-poin
conditionNe/o52]Ve/o(T,me/o)/]me/o .

The main advantage of the above analysis is that it
lows one to express the canonical partition functions a
thermodynamic potentials in terms of the parity projec
grand canonical ones, thereby enormously simplifying
whole calculation. We further note thatV f is just the stan-
dard grand canonical thermodynamic potential andVb rep-
resents the corresponding potential linked to the partit
function Z(T,m1 ipT). It is easy to see49 that in order to
recover this function one can evaluate the true grand can
cal partition functionZ(T,m), express the result as a su
over the Fermi Matsubara frequenciesv f52pT(m11/2)
and then substitute the Bose Matsubara frequenciesvb

52pTm instead of the Fermi ones. This procedure will a
tomatically yield the correct expression forZ(T,m1 ipT)
and, hence, forVb .

Having found the thermodynamic potentials for the ev
and odd ensembles one can easily determine the equilib
e
n-

.

l-
d
d
e

n

ni-

-

n
m

current I . Here we will be interested in describing the cu
rents flowing in isolated superconducting rings pierced
the external magnetic fluxFx . Then in the case of even/od
total number of electrons one obtains

I e/o5I f6
I b2I f

eb~Vb2V f !61
, ~43!

where the upper/lower sign corresponds to the even/odd
semble and we have defined

I e/o52cS ]Ve/o

]Fx
D

m~Fx!

, I f /b52cS ]V f /b

]Fx
D

m~Fx!

.

3.2. Parity effect in nanorings and blocking of the
supercurrent

Let us now make use of the above general express
and investigate the influence of the parity effect on the PC
superconducting nanorings with quantum point conta
~QPCs!. Before turning to concrete calculations we sh
specify the model for our system. We shall consider mes
copic superconducting rings with cross sections and perim-
eter L52pR. The rings will be assumed sufficiently thin
i.e., As!lL , where lL is the London penetration length
Superconductivity will be described within the~parity pro-
jected! mean field BCS theory. At sufficiently low tempera
tures this description is justified provided that the quant
phase slips~QPS!51–53 in the nanorings can be neglecte
This requirement in turn implies that the ring cross sect
should be sufficiently large. With the aid of the results
Ref. 51 one concludes that the QPS tunneling amplitude
mains exponentially small provided that the conditions
@lF

2Aj0 / l is satisfied. HerelF is the Fermi wavelength
j0;vF /D is the coherence length, andl is the electron elas-
tic mean free path, which is assumed to be shorter thanj0 .
For generic systems QPS effects can usually be negle
provided that the transverse sizeAs of the wire/ring exceeds
;10 nm. Hence, the total number of conducting channel
the ring Nr;s/lF

2 must inevitably be largeNr@1. In addi-
tion, the ring perimeterL should not be too large, so that on
can disregard the QPS-induced reduction of the
amplitude.53 Finally, we will neglect the difference betwee
the mean field values of the BCS order parameter for
even and odd ensembles.48,49 This is legitimate provided the
volume of the superconducting ring is large enough,V5Ls
@1/nD, wheren is the density of states at the Fermi lev
and D is the BCS order parameter for the bulk superco
ductor atT50. All these requirements can easily be met in
modern experiment.

The task at hand is now to evaluate the thermodyna
potentialsV f b . Within the mean field treatment these qua
tities can be expressed in terms of the excitation energie«k

and the superconducting order parameterD(r ). One finds49

V f5Ṽ22T(
k

lnS 2 cosh
«k

2TD , ~44!

Vb5Ṽ22T(
k

lnS 2 sinh
«k

2TD , ~45!
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where Ṽ5*d3r uD(r )u2/g1Tr$ĵ%, g is the BCS coupling
constant, andĵ is the single-particle energy operator:

ĵ5
1

2m S 2 i\
]

]r
2

e

c
A~r ! D 2

1U~r !2m, ~46!

A~r ! is the vector potential, andU(r ) describes the potentia
profile due to disorder and interfaces.

The excitation spectrum«k has the form

«k5«~p!5pvs1Aj21D2, ~47!

where p is the quasiparticle momentum,j5(p22m̃)/2m,
and m̃5m(Fx)2mvs

2/2. The superconducting velocity vec
tor vs is oriented in the direction along the ring and is defin
by the well-known expression

vs5
\

2mR
minnS n2

Fx

F0
D . ~48!

This expression and the excitation spectrum~47! are periodic
functions of the fluxFx with period equal to the supercon
ducting flux quantumF05hc/2e.

Consider the most interesting caseT→0. Making use of
the above expressions, one easily finds

I e5evsres, me5m~re!1mvs
2/2 ~49!

for the even ensemble and

I o5evsros2e
vF

L
sgn~vs!, ro5r1

1

V
uvsu
vm

~50!

for the odd one. Herere/o5Ne/o /V are the electron densitie
for the even and odd ensembles,r is the grand canonica
electron density atT50, vm5A2m/m, andvs is assumed to
be small as compared to the critical velocityvc5D/pF . We
also note that the second equation in~50! is an implicit equa-
tion for the chemical potentialmo .

Equation ~49!, taken together with Eq.~48!, coincides
with that obtained for the grand canonical ensemble. In p
ticular, the currentI e represents the well known ‘‘saw-tooth
dependence on magnetic flux. In contrast, for odd ensem
there exists an additional flux-dependent contribution to
~50! which cannot be viewed as just a renormalization ofro .

Unfortunately, this parity effect is rather small in mult
channel rings, as we mentioned above. Estimating the le
ing contribution toI e/o as I;evFNr /L, we find

~ I e2I o!/I;1/Nr!1.

The results~49!, ~50! hold as long asT!\vF /L. At
higher temperatures the parity effect gets even smaller
eventually disappears at temperatures exceeding
parameter45 T* 'D/ ln(nVADT* ). The corresponding ex
pressions are readily obtained within our formalism, but
will not consider them here.

Rather we turn to a somewhat different system—a sup
conducting ring interrupted by QPC—in which the par
effect turns out to play a much more important role. In th
case the thermodynamic potentialV of the system consists o
two different contributions2!

V5V~r !~m,T,Fx ,f!1V~c!~m,T,f! ~51!

from the bulk part of the ring and from the QPC, respe
tively.
r-

es
C

d-

nd
he

e

r-

-

The optimal value of the phase differencef across the
QPC is fixed by the condition]V/]f50, which reads

2c
]V~r !

]Fx
52

2e

\

]V~c!

]f
. ~52!

Here we have made use of the fact that the thermodyna
potentials of the ring depend both onFx andf only via the
superfluid velocity vs5(1/4pmR)(f22pFx /F0), in
which case one can put]/]Fx52(2e/\c)(]/]f). The left-
hand side of Eq.~52! represents the current flowing insid
the superconducting ringI (r )52c]V (r )/]Fx.(evFNr /L)
3(f22pFx /F0). This value should be equal to the curre
across the QPC, which is given by the right-hand side of
~52!. Estimating the maximum value of the latter for
single-channel QPC as 2eTD/\, we obtain

f.2p
Fx

F0
, if L!L* , ~53!

f.2pn, if L@L* , ~54!

whereL* 5j0Nr /T@j0 . In a more general case of a QP
with N conducting channels, in the expression forL* one
should set

T→(
n

N

Tn .

In what follows we will consider the most interestin
limit N!Nr and L!L* . Due to Eq.~53! in this case the
dependenceI e/o(Fx) is fully determined by the current
phase relation for the QPC, which can be found by mean
Eq. ~43! with I f /b52(2e/\)]V f /b

(c) /]f. It is convenient to
employ the formula8

I f /b5
2e

\ (
n51

N

T(
v f /b

sinf

cosf1Wn~v f /b!
. ~55!

In the case of short QPS one has

Wn~v!5~2/Tn!~11v2/D2!21,

whereTn is the transmission of thenth conducting channel
Substituting this function into~55! and summing overv f ,
one recovers the standard result16,21

I f~f!52
2e

\ (
n51

N
]«n~f!

]f
tanh

«n~f!

2T
, ~56!

where

«n~f!5DA12Tn sin2~f/2!. ~57!

The same summation over Bose Matsubara frequenciesvb

yields

I b52
2e

\ (
n51

N
]«n~f!

]f
coth

«n~f!

2T
. ~58!

Finally, the differenceVb2V f[Vb f is evaluated as a sum
of the ring (Vb f

(r )) and QPS (Vb f
(c)) contributions. The latter is

found by integratingI f /b(f) over the phase differencef:

Vb f
~c!52T(

n51

N

ln cothS «n~f!

2T D , ~59!
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while the former is defined by the standard expression49

bVb f
~r !52VE d3p

~2p\!3 lnS coth
«~p!

2T D.vVADTe2DT.

Combining all these results with Eq.~43!, we get

I e/o52
2e

\ (
n51

N
]«n~f!

]f
tanh

«n~f!

2T

3F 16

S coth
«n~f!

2T D 2

21

ebVb f
~r !

)
i 51

N S coth
« i~f!

2T D 2

61
G . ~60!

Equation ~60! represents the central result of this Sectio
Together with Eq.~53! it establishes the complete depe
dence of the PC on the magnetic fluxF in isolated supercon
ducting nanorings with QPCs.

Consider the most interesting limitT→0. In this case for
an even number of electrons in the ring the PC is given
expression~56!, which coincides identically with that fo
grand canonical ensembles.16,21 On the other hand, for an
odd number of electrons the PC will acquire an additio
contribution which turns out to be most important for t
case of a single-channel QPC,N51. In that case the expres
sion in the square brackets of Eq.~60! reduces to zero, i.e.
the PC will be totally blocked by the odd electron. Thus,
predict a novel mesoscopic effect—parity-influenced blo
ing of PC in superconducting nanorings with QPCs.

This result has a transparent physical interpretation.
deed, it is well known47 that the result~56! can be expresse
via the contributions of discrete Andreev levelsE6(f)5
6DD(f) inside the QPC as

I ~f!5
2e

\ F]E2

]f
f 2~E2!1

]E1

]f
f 1~E1!G , ~61!

whereD(f) is defined in Eq.~19!. Using the Fermi filling
factors for these levelsf 6(E6)5@11exp(E6(f)/T)#21 one
arrives at Eq.~56!. If we now fix the number of electron
inside the ring and consider the limitT→0 the filling factors
will be modified as follows. For even numbersN all of the
electrons are paired, occupying states with energies be
the Fermi level. In this case one hasf 2(E2)51, f 1(E1)
50, the current is entirely determined by the contribution
the quasiparticle stateE2 , and Eq. ~61! yields the same
result as for the grand canonical ensemble. By contras
the case of an odd number of electrons, one electron alw
remains unpaired and occupies the lowest available en
state—in our caseE1—above the Fermi level. Hence, fo
odd N one hasf 6(E6)51, the contributions of two quasi
particle energy states in Eq.~61! exactly cancel each othe
and the current across the QPC remains zero for anyf or
magnetic fluxFx . This is just the blocking effect which we
have already obtained above from a more formal consid
ation.

For N.1 and/or at nonzero temperatures this pari
influenced blocking of PC becomes incomplete. But also
this case the parity effect remains essential at temperat
.
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T,T* , substantially affecting, e.g., the current-phase re
tion for the QPC. ForT.0 this relation will deviate from the
grand canonical one both for even and odd ensembles.9

Finally, we consider superconducting rings containing
piece of a normal metal. Here we restrict our attention
transparent SNS junctions with lengths of the normal me
d@j0 . In this case for v!D one has Wi(v)
5cosh(2vd/vF). Substituting this function into~55! and re-
peating the whole calculation as above, in the limitT→0 we
obtain

I e5
evFN

pd
f, I o5

evFN

pd S f2
p sgnf

N D . ~62!

These results apply for2p,f,p and should be 2p-
periodically continued otherwise. We observe that the curr
I e again coincides with that for the grand canonic
ensembles,11 while for odd N the current-phase relation i
shifted by the valuep/N. This shift has a simple interpreta
tion as being related to the odd-electron contributi
(2e/\)]E0 /]f from the lowest~above the Fermi level! An-
dreev stateE0(f) inside the SNS junction. Unlike in QPC
this contribution does not compensate for the current fr
other quasiparticle states. Rather it provides a possibility
a parity-inducedp-junction state in our system. Indeed, a
cording to Eq.~62! for single mode SNS junctions the ‘‘saw
tooth’’ current-phase relation will be shifted exactly byp.
For more than one conducting channelN.1 within the in-
terval 2p,f,p there exists a twofold degenerate min
mum energy~zero current! state occurring atf56p/N.54

In the special caseN52 the current-phase relationI o(f)
turnsp-periodic.

The well known feature of superconducting rings inte
rupted by ap-junction is the possibility ofspontaneoussu-
percurrent developing in the ground state.55 Although this
feature is inherent to any type ofp-junctions, in the case o
the standard sinusoidal current-phase relation, such spo
neous supercurrents can occur only for sufficiently large v
ues of the ring inductanceL.55 In contrast, in the situation
studied here the spontaneous current state is realized for
inductance of the ring because of the nonsinusoidal dep
denceI o(f) ~62!.

In order to demonstrate that, let us assume that no ex
nal flux is applied to our system. Then atT→0 the energy of
an SNS ring with an odd number of electrons can be writ
in the form

Eo5
F2

2cL 1
p\vFN

F0
2d S F2

F0 sgnF

2N D 2

, ~63!

whereF is the flux related to the circular current flowing i
the ring. Minimizing this energy with respect toF, one eas-
ily observes that a nonzero spontaneous current

I 56
evF

d F11
2evFN

d

L
F0

G21

~64!

should flow in the ground state of our system. This is yet o
more remarkable consequence of the parity effect: Jus
changingN from even to odd, one can induce nonzero P
without any external fluxFx . In the limit of low inductances
L!F0d/ev fN, which is easy to reach in the systems und
consideration, the value ofI does not depend on the numb
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of channelsN and is given by the universal formulaI 5
6evF /d. For generic parameters this value can easily be
large asI;10 nA.

In summary, new physical effects emerge from an int
play between the electron parity number and persistent
rents in superconducting nanorings. These effects can b
rectly tested in modern experiments and possibly used
engineering new types of superconducting flux–charge
bits.
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It is known that the zero-bias conductance peak~ZBCP! is expected in tunneling spectra of normal-
metal/high-Tc cuprate junctions because of the formation of the midgap Andreev resonant
states~MARS! at junction interfaces. In the present review, we report the recent theoretical study
of impurity scattering effects on the tunneling spectroscopy. In the former part of the
present paper, we discuss impurity effects in the normal metal. We calculate tunneling conductance
for diffusive normal metal~DN!/high-Tc cuprate junctions based on the Keldysh Green
function technique. Besides the ZBCP due to the MARS, we can expect ZBCP of a different
origin, i.e., caused by coherent Andreev reflection~CAR! assisted by the proximity effect
in DN. Their relative importance depends on the anglea between the interface normal and the
crystal axis of high-Tc superconductors. Ata50 we find the ZBCP by the CAR for low-
transparency junctions with small Thouless energies in DN; this is similar to the case of diffusive
normal metal/insulator/s-wave superconductor junctions. Under increase ofa from zero top/4,
the contribution of MARS to ZBCP becomes more prominent and the effect of the CAR
is gradually suppressed. Such complex spectral features would be observable in conductance spectra
of high-Tc junctions at very low temperatures. In the latter part of our paper, we study
impurity effects in superconductors. We consider impurities near the junction interface on the
superconductor side. The conductance is calculated from the Andreev and the normal reflection
coefficients, which are estimated by using the single-site approximation in an analytic
calculation and by the recursive Green function method in a numerical simulation. We find
splitting of the ZBCP in the presence of the time reversal symmetry. Thus the zero-field splitting
of ZBCP in the experiment does not perfectly prove the existence of a broken time reversal
symmetry state. ©2004 American Institute of Physics.@DOI: 10.1063/1.1789915#
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1. INTRODUCTION

Nowadays, charge transport in unconventional superc
ductor junctions has become one of the most important
ics in solid state physics. The most remarkable propert
the so-called zero bias conductance peak~ZBCP! observed
in tunneling experiments. The ZBCP arises from the form
tion of midgap Andreev bound states~MARS! at the
interface.1–5 The MARS, which are created by injected an
reflected quasiparticles feeling different signs of the pair
tential, can play an important role in determining the pairi
symmetry of unconventional superconductors. The exp
mental observation of the ZBCP has been reported for v
ous unconventional superconductors of anisotropic pai
symmetries.5–20A basic theory of the ballistic transport in th
presence of MARS has been formulated in Refs. 3 and
Stimulated by this theory, extensive studies of MARS in u
conventional superconductor junctions have been perfor
during the last decade: in the case of broken time reve
symmetry state,21–28 in triplet superconductor junctions,29–34
5791063-777X/2004/30(7–8)/12/$26.00
n-
p-
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i-
i-
g

5.
-
ed
al

in quasi-one-dimensional organic superconductors,35–38

MARS and the Doppler effect,39–43 MARS in ferromagnetic
junctions,44–52 influence of MARS on the Josephso
effect,53–62 and other related problems.63–71 However, the
impurity scattering effect on the ZBCP in realistic norm
metal/high-Tc cuprate junctions has not been clarified y
The aim of the present paper is to review the import
progress on this topic.

The organization of the paper is as follows. In Sec. 2,
discuss the impurity scattering effect in normal metal. W
calculate the tunneling conductance for diffusive norm
metal ~DN!/high-Tc cuprate junctions based on the Keldy
Green function technique. Besides the ZBCP due to
MARS, we can expect ZBCP caused by a different mec
nism, i.e., coherent Andreev reflection~CAR! assisted by
proximity effect in DN. In Sec. 3, we discuss impurity effec
in superconductors. The random potential near junction
terfaces causes splitting of the ZBCP even in the presenc
the time reversal symmetry.
© 2004 American Institute of Physics
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2. THEORY OF CHARGE TRANSPORT IN DIFFUSIVE
NORMAL METAL ÕHIGH-Tc CUPRATE SUPERCONDUCTOR
CONTACTS

Before discussing charge transport in high-Tc cuprate
junctions, we should review the progress of charge trans
in mesoscopic superconducting systems. The low-ene
transport in mesoscopic superconducting systems is g
erned by Andreev reflection,72 a unique process specific t
electron scattering at normal metal/superconductor in
faces. The phase coherence between incoming electrons
Andreev reflected holes persists at a mesoscopic length s
in the diffusive normal metal, which enhances interferen
effects on the probability of Andreev reflection.73 The coher-
ence plays an important role at sufficiently low temperatu
and voltages when the energy broadening due to either v
ages or temperatures becomes of the order of the Thou
energyETh in mesoscopic structures. As a result, the cond
tance spectra of mesoscopic junctions may be significa
modified by these interference effects. A remarkable exp
mental manifestation of the electron–hole phase coheren
the observation of the zero-bias conductance peak~ZBCP! in
diffusive normal metal~N!/superconductor~S! tunneling
junctions.74–84

Various theoretical models of charge transport in dif
sive junctions extend the clean limit theories developed
Blonder, Tinkham, and Klapwijk85 ~BTK! and by Zaitsev.86.
In Refs. 87–92, the scattering matrix approach was used
the other hand, the quasiclassical Green function metho
nonequilibrium superconductivity93 is much more powerful
and convenient for the actual calculations of the conducta
at arbitrary bias voltages.94 Using the Kuprianov and
Lukichev ~KL ! boundary condition95 for a diffusive SIN in-
terface, Volkov, Zaitsev and Klapwijk~VZK ! have obtained
the conductance spectra with ZBCP, the origin of which w
attributed to coherent Andreev reflection~CAR!, which in-
duces the proximity effect in the diffusive metal.94 Several
authors have studied the charge transport in mesosc
junctions, combining this boundary condition with th
Usadel96 equation that describes superconducting corre
tions in the diffusive metal.97–103 The modified boundary
conditions were studied by several authors.104,105 Important
progress was achieved by Nazarov,97,106 who developed a
much more intuitive theory~the so-called ‘‘circuit theory’’!
for matrix currents, which allows one to formulate bounda
conditions for Usadel-like equations in the case of arbitr
transparencies.107 Recently we have succeeded in extend
this circuit theory for unconventional superconductors.108–110

In order to resolve the charge transport in high-Tc cuprate
junctions, we apply above theory ford-wave superconduct
ors. We have shown that the formation of MARS strong
competes with the proximity effect that is an essential ing
dient for CAR in diffusive conductor~DN!. We consider a
junction consisting of normal and superconducting reserv
connected by a quasi-one-dimensional DN with a lengthL
much larger than the elastic mean free path. The interf
between the DN and the US~unconventional supercon
ductor! electrode has a resistanceRb , while the DN/N inter-
face has zero resistance. The positions of the DN/N interf
and the DN/S interface are denoted asx52L and x50,
respectively. According to the circuit theory,106 the constric-
rt
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tion area between DN and US is considered as compose
a diffusive isotropization zone, a left side ballistic zone,
right side ballistic zone, and a scattering zone. The scatte
zone is modeled as an insulating delta-function barrier w
the transparencyTn54 cos2 w/(4 cos2 w1Z2), where Z is a
dimensionless constant,w is the injection angle measure
from the interface normal to the junction, andn is the chan-
nel index. We assume that the sizes of the ballistic and s
tering zones along thex axis is much shorter than the supe
conducting coherence length.

Here, we express insulating barrier as a delta-funct
model Hd(x), whereZ is given byZ52mH/(\2kF) with
Fermi momentumkF and effective massm. In order to
clarify the charge transport in DN/US junctions, we mu
obtain the Keldysh–Nambu Green function, which has in
ces of the transport channels and the direction of mot
along thex axis, taking into account the proper bounda
conditions. For this purpose it is necessary to extend a g
eral theory of boundary conditions which covers the cro
over from the ballistic to the diffusive case,106 formulated for
conventional junctions in the framework of the circu
theory.97,106 However, the circuit theory cannot be direct
applied to unconventional superconductors, since it requ
isotropization. The latter is simply incompatible with th
mere existence of unconventional superconductivity.
avoid this difficulty we restrict the discussion to the conve
tional model of a smooth interface by assuming moment
conservation in the plane of the interface. We apply the q
siclassical Keldysh formalism for calculation of the condu
tance. The spatial dependence of the 434 Green function
GN(x) in DN, which is expressed in matrix form as

ǦN~x!5S R̂N~x! K̂N~x!

0 ÂN~x!
D , ~1!

must be determined. The Keldysh componentK̂N(x) is given
by K̂N(x)5R̂N(x) f̂ 1(x)2 f̂ 1(x)ÂN(x) with retarded compo-
nent R̂N(x) and advanced componentÂN(x) using distribu-
tion function f̂ 1(x). We put the zero of electrical potential i
the S electrode. In this case the spatial dependence ofǦN(x)
in DN is determined by the static Usadel equation,96

D
]

]x
F ǦN~x!

]ǦN~x!

]x
G1 i @Ȟ,ǦN~x!#50, ~2!

with the diffusion constantD in DN, whereȞ is given by

Ȟ5S Ĥ0 0

0 Ĥ0
D ~3!

with Ĥ05«t̂3 .
The boundary condition forǦN(x) at the DN/S interface

is given by

L

Rd
F ǦN~x!

]ǦN~x!

]x
GU

x502

52
h

2e2Rb
^ Ǐ n0&. ~4!

Ǐ is given by

Ǐ n05
4e2

h
@Ǧ1 , B̌n# ~5!
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with

B̌n5~2T1n@Ǧ1 ,Ȟ2
21#1Ȟ2

21Ȟ12T1n
2 Ǧ1Ȟ2

21Ȟ1Ǧ1!21

3~T1n~12Ȟ2
21!1T1n

2 Ǧ1Ȟ2
21Ȟ1!. ~7!

HereȞ65(Ǧ216Ǧ22)/2. Rd andRb denote the resistanc
in DN and that at the DN/S interface, respectively. The
tailed derivation of the matrix current is shown in Ref. 10
The average over the various angles of injected particle
the interface is defined as

^ Ǐ ~f!&5E
2p/2

p/2

df cosf Ǐ ~f!Y E
2p/2

p/2

dfT~f!cosf,

~8!

with Ǐ (f)5 Ǐ andT(f)5Tn . The resistance of the interfac
Rb is given by

Rb5
h

2e2

2

E
2p/2

p/2

dfT~f!cosf

, ~9!

with Sharvin resistanceR0. ǦN(2L) coincides with that in
the normal state. We denote the Keldysh–Nambu Gr
function Ǧ1 , Ǧ26 ,

Ǧ15S R̂1 K̂1

0 Â1
D , Ǧ265S R̂26 K̂26

0 Â26

D , ~10!

where the Keldysh componentK̂1,26 is given by K̂1(26)

5R̂1(26) f̂ 1(2)(0)2 f̂ 1(2)(0)Â1(26) with the retarded compo
nent R̂1,26 and the advanced componentÂ1,26 using distri-
bution function f̂ 1(2)(0). In theabove,R̂26 is expressed by

R̂265~g6t̂31 f 6t̂2! ~11!

with g65«/A«22D6
2 , f 65D6 /AD6

2 2«2, and Â26

52 t̂3R̂26
† t̂3 , where « denotes the quasiparticle energ

measured from the Fermi energy.f̂ 2(0)5 f 0S(0)
5tanh@«/(2kBT)# in thermal equilibrium with temperatureT.
-
.
at

n

Using ǦN(x), one expresses the electric current as

I cl5
2L

4eRd
E

0

`

d«TrF t3S ǦN~x!
]ǦN~x!

]x
D KG ~12!

where (ǦN(x) ]ǦN(x)/]x)K denotes the Keldysh compone
of (ǦN(x) ]ǦN(x)/]x). In the actual calculation, we intro
duce a parameteru(x) which is a measure of the proximit
effect in DN, where we have denotedu(0)5u0 . Using
u(x), R̂N(x) can be written as

R̂N~x!5 t̂3 cos~x!1 t̂2 sinu~x!. ~13!

ÂN(x) and K̂N(x) satisfy the following equations:ÂN(x)
52t3R̂N

† (x) t̂3 , and K̂N(x)5R̂N(x) f̂ 1(x)2 f̂ 1(x)ÂN(x),
with the distribution function f̂ 1(x) given by f̂ 1(x)
5 f 0N(x)1 t̂3f 3N(x). In the above,f 3N(x) is the relevant
distribution function which determines the conductance
the junction we are now concentrating on. From the retar
or advanced component of the Usadel equation, the sp
dependence ofu(x) is determined by the following equation

D
]2

]x2 u~x!12i« sin@u~x!#50, ~14!

while for the Keldysh component we obtain

D
]

]x F] f 3N~x!

]x
cosh2 u Im~x!G50 ~15!

with u Im5Im@u(x)#. At x52L, since DN is attached to the
normal electrode,u(2L)50 and the conditionf 3N(2L)
5 f t0 is satisfied, with

f t05
1

2 H tanhS «1eV

2kBT D2tanhS «2eV

2kBT D J , ~16!

whereV is the applied bias voltage. Next, we focus on t
boundary condition at the DN/S interface. Taking the
tarded part of Eq.~4!, we obtain
L

Rd

]u~x!

]x U
x502

5
^F&
Rb

, ~17!

F5
2Tn@cosu0~ f 11 f 2!2sinu0~g11g2!#

~22Tn!~11g1g21 f 1 f 2!1Tn@cosu0~g11g2!1sinu0~ f 11 f 2!#
. ~18!

On the other hand, from the Keldysh part of Eq.~4!, we obtain

L

Rd
S ] f 3N

]x D cosh2@ Im~u0!#U
x502

52
^I b0& f 3N~02!

Rb
, ~19!

I b05
Tn

2

C0f 3N~02!

u~22Tn!~11g1g21 f 1 f 2!1Tn@cosu0~g11g2!1sinu0~ f 11 f 2!#u2
, ~20!

~21!
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After a simple manipulation, we can obtainf 3N(02):

f 3N~02!5
Rbf t0

Rb1
Rd^I b0&

L E
2L

0 dx

cosh2 u Im~x!

. ~22!

Since the electric currentI el can be expressed viau0 in the
form

I el52
L

eRd
E

0

`S ] f 3N

]x D U
x502

cosh2@ Im~u0!#d«, ~23!

we obtain the following final result for the current:

I el5
1

e E0

`

d«
f t0

Rb

^I b0&
1

Rd

L E
2L

0 dx

cosh2 u Im~x!

. ~24!

Then the total resistanceR at zero temperature is given by

R5
Rb

^I b0&
1

Rd

L E
2L

0 dx

cosh2 u Im~x!
. ~25!

We will discuss the normalized conductancesT(eV)
5sS(eV)/sN(eV), where sS(N)(eV) is the voltage-
dependent conductance in the superconducting~normal! state
given by sS(eV)51/R and sN(eV)5sN51/(Rd1Rb), re-
spectively.

It should be remarked that in the present circuit theo
Rd /Rb can be varied independently ofTn , i.e., of Z, since
we can change the magnitude of the constriction area in
pendently. In other words,Rd /Rb is no longer proportiona
to Tav(L/ l ), whereTav is the averaged transmissivity andl is
the mean free path in the diffusive region, respective
Based on this fact, we can chooseRd /Rb andZ as indepen-
dent parameters.

First, we focus on the line shapes of the conductan
whered-wave symmetry is chosen as the pairing symme
of the unconventional superconductor. The pair potent
D6 are given byD65D0 cos@2(w7a)#, wherea denotes the
angle between the normal to the interface and the crystal
of the d-wave superconductors andD0 is the maximum am-
plitude of the pair potential. In the above,w denotes the
injection angle of the quasiparticle measured from thex axis.
It is known that quasiparticles with injection anglew such
that p/42uau,uwu,p/41uau feel the MARS at the inter-
face, which induces ZBCP. In the following, we choose
relatively strong barrierZ510. Results for the high-
transparency cases are written in detail in Ref. 109.

Let us first choosea50, where ZBCP due to the MARS
is absent. We calculatesT(eV) for various Rd /Rb . For
ETh5D0 @see Fig. 1a#, the magnitude ofsT(eV) for ueVu
,D0 increases with the increase ofRd /Rb . First, the line
shape of the voltage-dependent conductance rem
V-shaped, and only the height of the bottom value is
hanced~curves2 and3!. The V-shaped line shape originate
from the existence of nodes of thed-wave pair potential.
Then, with a further increase ofRd /Rb , a rounded bottom
structure ~curve 4! appears, and finally it changes into
nearly flat line shape~curve5!. For ETh50.01D0 ~Fig. 1b!,
the magnitude ofsT(eV) has a ZBCP once the magnitude
Rd /Rb deviates slightly from 0. The order of magnitude
,

e-

.

e,
y
ls

is

ns
-

the ZBCP width is given byETh as in the case ofs-wave
junctions.107 When the magnitude ofRd /Rb exceeds unity,
sT(eV) acquires a zero bias conductance dip~ZBCD! ~curve
5!. The qualitative features of the line shapes ofsT(eV) is
different from those ins-wave junctions~see Figs. 1 and 2 in
Ref. 37!. It should be remarked that even in the case
d-wave junctions we can expect ZBCP by CAR as in t
case of ans-wave junction fora50.

Next, we focus onsT(eV) and u0 for aÞ0 (0,a
,p/4). First we focus ona5p/8, where MARS is formed
for p/8,uwu,3p/8. sT(eV) has a ZBCP due to the forma
tion of MARS at the DN/US interface. The height of ZBC
is reduced with the increase ofRd /Rb ~see Fig. 2a!. Contrary
to the corresponding case ofa50, sT(eV) is almost inde-
pendent ofETh ~see Fig. 2b!. This is because the proximity
effect is almost completely suppressed due to the comp
tion of MARS, and the magnitude ofu(x) is reduced. In the
extreme casea5p/4, thesT(eV) is completely independen

FIG. 1. Normalized conductancesT(eV) for Z510, a50, andETh5D0

(a), ETh50.01D0 (b) at differentRd /Rb : 0 ~1!, 0.1 ~2!, 1 ~3!, 2 ~4!, and 10
~5!.
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of ETh . The results obtained are plotted in Fig. 3.
In the present Section, a detailed theoretical investi

tion of the voltage-dependent conductance of diffusive n
mal metal/unconventional superconductor junctions is p
sented.

1. The ZBCP is frequently seen in the shape ofsT(eV).
For aÞ0, the ZBCP is robust, being independent of the d
fusive resistanceRd . Fora50, the ZBCP is due to the CAR

2. The appearance of the ZBCP is different for t
MARS and CAR mechanisms. The first mechanism may l
to arbitrarily largesT(0). The second mechanism cann
provide sT(0) exceeding unity. While for the first mecha
nism the width of the ZBCP is determined by the transp
ency of the junction, for the second it is determined by
Thouless energy. These two mechanisms compete, sinc
proximity effect and the MARS in singlet junctions are ge
erally incompatible.108

3. In the extreme casea5p/4 the proximity effect and
the CAR are absent.sT(eV) is then given by a simple

FIG. 2. Normalized conductancesT(eV) for a5p/8, ETh5D0 (a) and
ETh50.01D0 (b) at differentRd /Rb : 0 ~1!, 1 ~2!, 2 ~3!, and 10~4!.
-
r-
-

-

d

r-
e
the

Ohm’s law:sT(eV)5(Rb1Rd)/(RRd501Rd), Rb being the
resistance of the interface.

4. We have clarified various line shapes of the cond
tance including ZBCP. The results serve as an import
guide to analyze the actual experimental data of the tun
ing spectra of high-Tc cuprate junctions. We want to stres
that the height of the ZBCP is strongly suppressed by
existence of DN, and the resultingsT(0) is not so high as
obtained in the ballistic regime.3 In the actual fit of the ex-
perimental data, we strongly hope to take into account
effect ofRd . In such a case without solving the Usadel equ
tion sT(eV) can be simply approximated by

sT~eV!5
Rd1Rb

RRd501Rd
, ~26!

RRd505
Rb

^I b0&
, ~27!

^I b0&5

E
2p/2

p/2

coswI b0dw

E
2p/2

p/2

coswT~w!dw

, ~28!

I b05
T~w!$11T~w!uG1u21@T~w!21#uG1G2u2%

u11@T~w!21#G1G2u2
, ~29!

G65
D6

«1A«22D6
2

, ~30!

Rb5
2R0

E
2p/2

p/2

dfT~f!cosf

, ~31!

with D65D0 cos@2(w7a)# and«5eV. This expression is a
convenient one for fitting of experimental data. However,
the quantitative discussions including much more gene
cases, one must solve the Usadel equation, as was do

FIG. 3. Normalized conductancesT(eV) for a5p/4 at differentRd /Rb : 0
~1!, 1 ~2!, 2 ~3!, and 10~4!.
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the present paper. Recently, mesoscopic interference ef
have been observed in actual cuprate junctions.111 We expect
the present results will be observed in many experiment
the near future.

3. IMPURITY IN HIGH-Tc CUPRATE NEAR THE INTERFACE

The MARS is sensitive to the time reversal symme
~TRS! of junctions because the retro-reflectivity of the A
dreev reflection assists the constructive interference effec
a quasiparticle.112 Actually, the ZBCP in NS junctions splits
into two peaks under magnetic fields.25,39–43The peak split-
ting is also discussed21–26,113,114when a broken time reversa
symmetry state~BTRSS! is formed at the interface. Theore
ical studies showed that such BTRSSs are characterize
the s1 idxy ~Ref. 26! or dxy1 idx21y2 ~Ref. 115! wave pair-
ing symmetry. In the presence of the BTRSS, splitting of
ZBCP is expected in zero magnetic field. The experimen
results, however, are still controversial.116,117 Some experi-
mental papers reported splitting of the ZBCP at zero m
netic field,9,17,18,118–122while in others the splitting was no
observed.8,10,11,15,20,123In addition, a recent experiment ha
shown the near absence of BTRSS in high-Tc grain boundary
junctions.124

In previous papers, we showed that random potential
the NS interface cause the splitting of the ZBCP at the z
magnetic field by using the recursive Green function meth
in numerical simulations55,125and by the single-site approx
mation in an analytical calculation.126 We also showed tha
the splitting due to the impurity scattering can be seen m
clearly when realistic electronic structures of high-Tc mate-
rials are used.127 Our conclusion, however, contradicts tho
of a number of theories69–71,128,129based on the quasiclass
cal Green function method.2,86,130–132While it is a common
conclusion of all the theories that the ZBCP is drastica
suppressed by interfacial randomness, the theories of
quasiclassical Green function method conclude that the
dom potentials do not split the ZBCP. Thus this issue has
been fixed yet. There are mainly two reasons for the d
agreement in the two theoretical approaches~i.e., the recur-
sive Green function method and the quasiclassical Gr
function method!. One is the treatment of the random pote
tials, and the other is the effects of the rapidly oscillati
wave functions on the conductance. In our simulations,
calculate the conductance without any approximation to
random potentials and the wave functions; this is an adv
tage of the recursive Green function method.55,133Our results
indicate that the splitting of the ZBCP in experiments do
not constitute direct evidence of the BTRSS at the interf
of NS junctions.

Let us consider two-dimensional NS junctions as sho
in Fig. 4a, where the normal metal (x,0) andd-wave su-
perconductor (x.0) are separated by a potential barr
VB(r )5Hd(x). We assume the periodic boundary conditi
in the y direction, and the width of the junction isW. Thea
axis of high-Tc superconductors is oriented at 45 degrees
the interface normal. The pair potential of a high-Tc super-
conductor is described byDk52D0k̄xk̄y in momentum
space, wherek̄x5kx /kF5cosw and k̄y5ky /kF5sinw are
the normalized wave number on the Fermi surface in thx
andy directions, respectively. A schematic illustration of t
cts
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pair potential is shown in Fig. 4. The NS junctions are d
scribed by the Bogoliubov–de Gennes equation,

E dr 8S d~r2r 8!h0~r 8! D~r ,r 8!

D* ~r ,r 8! 2d~r2r 8!h0~r 8!
D S u~r 8!

v~r 8! D
5ES v~r !

v~r ! D , ~32!

h0~r !52
\2¹2

2m
1V~r !2mF , ~33!

V~r !5VB~r !1VI~r ! ~34!

where

D~r ,r 8!5Q~x!~1/Vvol!(
k

Dk exp@ ik•~r2r 8!#.

The normal conductance of clean junctions is given byGN

5(2e2/h)NcTB with TB being the transmission probabilit
of the junction, andNc5WkF /p is the number of propagat
ing channels on the Fermi surface. In the low-transpare
junctions~i.e.,Z@1), we findTB}1/Z2. In what follows, we
redefinez05Z/25Hm/\2kF . We consider impurities nea
the interface on the superconductor side as indicated
crosses in Fig. 4. The potential of the impurities is given
VI(r )5Vi( j 51

Ni d(r2r j ), whereNi is the number of impuri-
ties. Effects of impurities on the wave functions are tak
into account by using the Lippmann–Schwinger equation

c~ l !~r !5c0
~ l !~r !1(

j 51

Ni

Ĝ0~r ,r j !Vi ŝ3c~ l !~r j !, ~35!

wherel indicates a propagating channel characterized by
transverse wave numberky

( l ) andĜ0(r ,r 8) are the real-space
Green functions in the clean junctions and can be obtai
analytically. Herec0

( l )(r ) is the wave function in which an

FIG. 4. The normal-metal/d-wave superconductor junction is schematica
illustrated. In (a) the crosses represent impurities. In (b) the open, filled,
and gray circles represent the normal metal, insulator, and supercondu
respectively.
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FIG. 5. In (a), the trace of the Green function in the superconductor is shown as a function ofE. The peak width of the imaginary part is given byEZEP

5D0 /z0
2. In (b) the local density of states is shown as a function ofxkF , whereE50, z0510, andD050.1mF . The numerical and analytical results a

represented by the solid and broken lines, respectively.
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electron like quasiparticle withky
( l ) is incident on the NS

interface from the normal metal and is described as

c0
~ l !~r !5x l~y!F S 1

0Dexp~ ik lx!1S 0
1Dexp~ ik lx!r NN

he ~ l !

1S 1
0Dexp~2 ik lx!r NN

ee ~ l !G , ~36!

for x,0, wherex l(y)5exp@iky
(l)y#/AW, kl is the wave num-

ber of a quasiparticle in the normal metal and satisfieskl
2

1ky
( l )2

5kF
2 , r NN

ee ( l ) and r NN
he ( l ) are the normal and the An

dreev reflection coefficients, respectively, of the clean ju
tions. The wave function forx.0 is expressed in the sam
way. The wave function at an impurityc ( l )(r j 8) can be ob-
tained by lettingr→r j 8 in Eq. ~35!:

c0
~ l !~r j 8!5(

j 51

Ni

@ŝ0d j , j 82Ĝ0~r j 8 ,r j !Vi ŝ3#c~ l !~r j !. ~37!

It is possible to calculate the exact conductance if
obtainc ( l )(r j ) for all impurities by solving Eq.~37!. In this
paper, we solve Eq.~37! within the single-site approxima
tion, where the multiple scattering effects involving ma
impurities ~Anderson localization! are neglected. Howeve
the multiple scattering by an impurity is taken into accou
to infinite order in the scattering events. In the summation
j in Eq. ~37!, only the contribution withj 5 j 8 is taken into
account in the single-site approximation.134 In this way, the
wave function atr j is given approximately by

c~ l !~r j !'@ŝ02Ĝ0~r j ,r j !Vi ŝ3#21c0
~ l !~r j !. ~38!

Substituting the wave function at impurities in Eq.~38! into
Eq. ~35!, we obtain the wave function in the presence
impurities. The normal reflection coefficientsBl 8,l and the
Andreev reflection coefficientsAl ,l 8 are then calculated ana
lytically from the expression for the wave function
x→2`. The differential conductance in the NS junctions
calculated from the normal and the Andreev reflect
coefficients,85
-

e

t
f

f

GNS~eV!5
2e2

h E
2`

`

dES ] f FD~E2eV!

]~eV! D
3FNcg

~0!24(
j 51

Ni

G j G , ~39!

g~0!52E
0

p/2

dw
D0

2 cos7 w sin2 w

E2z0
41D0

2 cos6 w sin2 w
. ~40!

The first term of Eq.~39!, Ncg
(0), is the conductance in the

clean junctions, f FD(E) is the Fermi–Dirac distribution
function, andV is the bias voltage applied to the junctions.
Eq. ~39!, G j represents effects of the impurity scattering
the conductance. An explicit expression forG j is given in
Ref. 126.

Before discussing the conductance, the local density
states~LDOS! near the junction interface should be clarifie
because the LDOS affects the scattering events of a qu
particle. The LDOS is given by

Ns~E,x!52
1

p
Im Tr Ĝ0~r ,r !, ~41!

54N0z0
2 exp~2x/j0!

3
2

p E
0

p/2

dw
D0

2 cos4 w sin2 w sin2~kFx cosw!

E2z0
41D0

2 cos6 w sin2 w
. ~42!

In the second line, we use the conditionE!D0 ~Ref. 126!.
As shown in Fig. 5a, the imaginary part of the Green func
tion has a large peak aroundE50, reflecting the MARS
formed at the junction interface, wherexkF56, z0510, and
D050.1mF. The energy scaleEZEP5D0 /z0

2 characterizes the
width of the peak of the LDOS. Since the self-energy
impurity scattering is roughly proportional to the LDOS, e
fects of scattering becomes strong for a quasiparticle w
E,EZEP. At E50, we find

Ns~E50,x!.4N0z0
2 exp~2x/j0!xkF , ~43!
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whereN05m/(p\)2 is the normal density of states per un
area. In Fig. 5b we plot Eqs.~42! and~43! with the solid and
broken lines, respectively. The results show the remarka
enhancement of the local density of states aroundx;j0 ,
wherej05(\vF /pD0) is the coherence length and is abo
6/kF . This implies that the MARS is formed aroun
x;j0 .

In the presence of impurities, the self-energy of the i
purity scattering depends on the LDOS. Thus the impuri
aroundx;j0 are expected to be strong scatterers. At
same time, scattering effects become remarkably str
around E;0. The conductance in disordered junctions
shown in Fig. 6, where impurities are distributed randomly
the range 1,xjkF,LsKF , r i5NilF

2/WLs is the dimension-
less area density of impurities, andz0510. The conductance
is calculated from the expression

FIG. 6. The conductance in the presence of impurities distributed rando
in the range 1,xjkF,20, wherer i is the dimensionless area density
impurities near the interface. The conductance for low-density strong im
rities with ViN050.1 andr i50.2 is shown in (a). The conductance for
high-density weak impurities withViN050.005 andr i50.6 is shown in (b)
for several choices of temperature. The conductance in the clean juncti
the zero temperature is plotted with a dot-and-dash-line.
le

t

-
s
e
g

GNS5
2e2

h
NcE

2`

`

dES ] f FD~E2eV!

]~eV! D
3Fg~0!2r i

kFLs

p
^G&G , ~44!

^G&5K 1

Ni
(
j 51

Ni

G j L , ~45!

where^...& means the ensemble average. The broken line
notes the conductance in the clean limit. The width of t
ZBCP in clean junctions is also characterized byEZEP. We
chooseLskF520 in Fig. 6 because we focus on the impu
ties near the interface andj0kF;6. In Fig. 6a we show the
conductance of junctions in which low-density strong imp
rities are distributed~i.e., ViN050.1 andr i50.2). The con-
ductance for high-density weak impurities~i.e., ViN0

50.005 andr i50.6) is shown in Fig. 6b. There is no peak
splitting in Fig. 6a, whereas the conductance clearly spl
into two peaks in Fig. 6b at zero temperature. The impurit
scattering affects the ZBCP in two ways:~i! it decreases the
conductance around zero bias, and~ii ! it makes the ZBCP
wider. Roughly speaking, the product ofViNs(E50,j0)
characterizes the strength of the impurity scattering. The s
pression of the zero-bias conductance always happens
spective ofViNs(E50,j0). The widening, however, happen
only if impurity scattering is sufficiently weak thatViNs(E
50,j0);O(1) is satisfied.126 Since Ns(0,j0)/N0@1, as
shown in Fig. 6, the zero-bias conductance is drastically
creased by impurities. WhenViNs(E50,j0)@1, as shown in
Fig. 6a, the suppression of the zero-bias conductance do
nates over the widening of the ZBCP. The conductance
creases from that in the clean junctions for almost the all b
region foreV,EZEP, as is seen in Fig. 6a, which leads to no
splitting. On the other hand, for weak scattering potentia
ViNs(0,j0);O(1), impurities cause widening of the con
ductance peaks as well as the suppression of the zero
conductance. As a consequence, the conductance splits
two peaks, as shown in Fig. 6b. The splitting peaks merge
into a single peak at finite temperatures such
T50.1EZEP, which is comparable to peak splitting width a
zero temperature. The results obtained indicate that str
random potentials are not necessary for splitting of
ZBCP. High-density impurities with weak random potentia
are responsible for the splitting of the ZBCP in low
transparency junctions.

The analytical results can be confirmed by numeri
simulations based on the recursive Green function method
two-dimensional tight-binding lattice, as shown in Fig. 4b.
The system consists of three regions: a perfect normal m
~open circles!, an insulator~filled circles!, and a supercon-
ductor~gray circles!. The gray sites correspond to Cu atom
on CuO2 layers. The Hamiltonian reads

H52 (
r ,r8,s

~ t r ,r8cr ,s
† cr8,s1h.c.!1(

r ,s
~« r2m!cr ,s

† cr ,s

2(
r ,r8

~D r2r8cr ,↑
† cr8,↓

†
1h.c.!, ~46!
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where t r ,r 8 and D r2r8 are the hopping integral and the pa
potential betweenr and r 8, respectively.

We consider the nearest-neighbor hopping,tn , in normal
metals and insulators. The on-site potential« r is fixed at zero
in normal metals and isVB in insulators. In superconductor
we consider nearest-neighbor hopping,t1 , and second-
nearest-neighbor hopping,t2 . The random potential at th
interface is taken into account through the on-site poten
given randomly in a range of2VS/2<« r<VS/2, as shown in
Fig. 4b. The amplitude of the pair potential between t
nearest-neighbor sites isD0 , and the sign of the pair poten

FIG. 7. The conductance calculated by the recursive Green function me
The degree of randomness is represented byVS .
l,

tial is determined to satisfy ad-wave symmetry. The
Bogoliubov–de Gennes equation derived from the Ham
tonian of Eq.~46! is solved numerically by using the recu
sive Green function method.55 The transmission and reflec
tion coefficients of the junction are computed exactly in t
simulation. We obtain the differential conductance fro
these coefficients using the Blonder–Tinkham–Klapw
formula.85

In Fig. 7 we show the conductance as a function of
bias voltage, where the Fermi energy in normal metals
22.0tn , W530, and the conductance is divided by the n
mal conductance of the junction,GN . The potential barrier at
the insulators isVB /tn53.0, and the transparency of the in
sulating layers is of the order of 0.01. The Fermi energymS ,
D0 , t1 , and t2 are determined from an analysis of thet –J
model135 for 10% hole doping. The degree of disorder
VS /tn50.0 ~broken lines!, 0.1, 0.3, 0.5, and 1.0 from top t
bottom. The conductance is averaged over a numbe
samples with different random configurations. The resu
show the drastic suppression of the ZBCP even for w
random potential atVS /tn50.1. The split of the ZBCP can
be seen for slightly stronger potentials such asVS /tn50.3
and 0.5. ForVS /tn51.0, we find dip structures aroun
eV;0 instead of the ZBCP. These results may correspon
the dip structures observed in disordered NS junctions in
experiment.136

Several experiments9,122 have shown a sensitivity of the
conductance peaks to external magnetic fields. Here we
cuss the conductance in the presence of magnetic fields.

d.
ion

FIG. 8. The conductance in external magnetic fields for low-density strong impurities withViN050.1 andr i50.2 are shown in (a), whereT is fixed at
0.05EZEP. Those for high-density weak impurities withViN050.005 andr i50.6 are shown in (b). In the insets, the peak positions are plotted as a funct
of magnetic field. The conductance of clean junctions is shown in (c).



n

ti
e
rit

s

si
ec

w
ca
ti
th

ri-
ng
o
he
d

u
ta
es
Th
m
th
b
la
th
n

c
o
-

ra,

M.

C.

tt.

ys.

g,

tt.

r,

nd

ys.

A.

.

.

p.

oc.

oc.

s

i,

Jpn.

588 Low Temp. Phys. 30 (7–8), July–August 2004 Tanaka et al.
effects of magnetic fields are taken into account phenome
logically by using the Aharonov–Bohm-like phase shift112,137

of a quasiparticle. Since the impurity scattering in magne
fields is itself a difficult problem to solve analytically, w
neglect the interplay between magnetic fields and impu
scattering. Within the phenomenological theory,112 effects of
magnetic fields are considered by replacingE in Eq. ~40! by
E1uD0 cosw sinwuwB :

gB
~0!5E

2p/2

p/2

dw
D0

2 cos7 w sin2 w

EB
2z0

41D0
2 cos6 w sin2 w

, ~47!

EB5E12D0ucosw sinwuwB , ~48!

wB52p
Bj0

2

w0
tanw5B0 tanw, ~49!

wherew052p\c/e andB050.001 corresponds toB51 T.
A quasiparticle acquires the Aharonov–Bohm-like pha
shift wB while moving near the NS interface.112 In a previous
paper, we found that ZBCP in clean junctions remains
single peak even in strong magnetic fields,112 as is shown in
Fig. 8c, wherez0510 andT50.05EZEP. In Figs. 8a and 8b
we show the conductance in the presence of low-den
strong impurities and high-density weak impurities, resp
tively, whereVi andr i are same as those in Figs. 6a and 6b,
respectively. A temperature is fixed atT50.05EZEP. In con-
trast to clean junctions in Fig. 8c, the ZBCP in disordered
junctions splits into two peaks in magnetic fields, as is sho
in Fig. 8a. The results obtained within the phenomenologi
theory indicate that the sensitivity of the ZBCP to magne
fields depends on the degree of impurity scattering. In
insets, the circlets show the peak positions (deV) plotted as
a function of magnetic field. For high-density weak impu
ties in Fig. 8b, we also found that the degree of peak splitti
increases with increasing magnetic fields. In the limit
strong fields,deV tends to be saturated, as shown in t
inset. These characteristic behaviors have been foun
experiment.9

In summary of this Section, we conclude that the imp
rity scattering causes the split of the ZBCP in normal-me
high-Tc superconductor junctions. We consider impuriti
near the junction interface on the superconductor side.
conductance is calculated from the Andreev and the nor
reflection coefficients, which are estimated by using
single-site approximation in an analytic calculation and
the recursive Green function method in a numerical simu
tion. The strength of the impurity scattering depends on
transparency of the junction, the position of impurities, a
the energy of a quasiparticle, because the MARS are form
at the interface. We find splitting of the ZBCP in the presen
of the time reversal symmetry. Thus the zero-field splitting
ZBCP in the experiment9 does not perfectly prove the exis
tence of BTRSS.
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We review results on two novel types of grain-boundary Josephson junctions in the high-critical-
temperature cuprate superconductors. The quality of YBa2Cu3O72d biepitaxial grain-
boundary Josephson junctions has been improved using a new growth geometry to the point that
‘‘tunnel-like’’ characteristics are reproducibly obtained. The consequent low barrier
transmission probabilities are apparently favorable for isolating intrinsicd-wave induced effects.
We also focus on peculiar aspects of spontaneous currents in HTS Josephson junctions,
which are unique and reflect the intimate relation between vortex matter and the Josephson effect.
Bicrystal grain-boundary Josephson junctions have also been fabricated using artificial
superlattice films with as few as six superconducting copper–oxygen planes. Extrinsic and intrinsic
d-wave effects in these junctions are discussed within the framework of novel designs for
p-circuitry and qubits. ©2004 American Institute of Physics.@DOI: 10.1063/1.1789917#
su

Th
c

tu

n
th
a

te
tly
S

th
d

rit
nd
al
th

r
ca
in
re
tr

by
in-

t of
ll as
nd,
e
c-

ble
TS
-
n-
es

f an
nc-
in

in-

ese
n
s.

ect
r
s.
INTRODUCTION

Ever since the discovery of high-critical-temperature
perconductors~HTSs!, the fabrication of high-quality junc-
tions has presented a difficult materials science task.
goal of producing a trilayer structure, which could reprodu
the very successful achievements of low-critical-tempera
superconductor~S! junctions, with an insulating~I! barrier1

~S–I–S!, was always aimed at, but never really pursued i
systematic and reliable way. This situation reflected
structural complexity of HTSs, and the difficulty of finding
good material science recipe for growing a barrier on
highly nonuniform HTS electrode, which was also charac
ized by poor surface superconducting properties. Recen
significant step in the direction of the goal of an all-HT
trilayer with an insulating barrier was achieved through
structure composed of La1.85Sr0.15CuO4 electrodes separate
by a one-unit-cell-thick La2CuO4 barrier.2 The conditions
required to fabricate a trilayer structure are apparently c
cal and currently limited to a very few special HTS a
barrier materials. Significant achievements have been
obtained by alternative junction techniques such as
YBCO–Au–Nb edge trilayer3 and the engineered-interface4

technique.
Despite the slow progress in material science issues

lated to the realization of HTS junctions, the new physi
aspects which have been raised are particularly excit
What has made the novel physics interesting is mostly
lated to the unconventional order parameter symme
5911063-777X/2004/30(7–8)/8/$26.00
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~OPS!.5–7 The OPS was made experimentally accessible
reproducible and good quality junctions, such as gra
boundary ~GB! Josephson junctions~JJs!.8 The bicrystal
technology was fundamental for the development of mos
the pioneering experiments on fundamental issues, as we
for simple applications such as SQUIDs. On the other ha
the flexibility of the bicrystal technology, which can provid
arbitrary GB orientation, is hindered by the fact that jun
tions have to be placed basically only on one line~three on a
quite sophisticated tricrystal substrate!. More recently the
biepitaxial technique was revealed to be particularly suita
to study relevant issues of the physics of HTSs and H
Josephson juncions.9,10 The first biepitaxial technique pro
vided 45° tilt GBs.11 We extended the same biepitaxial co
cepts to novel configurations, in which one of the electrod
does not grow along thec axis orientation. Although this
geometry appears to be complicated by the presence o
off-axis electrode, it gives major advantages in terms of ju
tion flexibility and junction properties, as demonstrated
this paper.

In the present paper we will discuss some important
sights into the debate of HTS weak links andd-wave in-
duced effects, which have been achieved by using th
double-angle CeO2-based biepitaxial junctions, and mentio
novel approaches to HTS junctions based on ultrathin film
What will drive our approach to the problem is the prosp
of exploiting the ‘‘unique’’ properties of HTS junctions fo
quantum circuitry, and the need for tunnel-like junction
© 2004 American Institute of Physics
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This problem clearly involves the fundamental issue of tra
port in junctions. We will also focus on peculiar aspects
spontaneous currents in HTS JJs, which are unique and
flect the intimate relation between vortex matter and the
sephson effect.

THE QUBIT PROPOSALS: NEED FOR JUNCTIONS WITH
TUNNEL-LIKE PROPERTIES

When considering new and exciting physical aspects
sociated with unconventional OPS and Josephson juncti
the idea of developingp-circuitry and, in particular, more
novel designs of ‘‘quiet qubits’’12–15 is among the most fas
cinating. The ‘‘quiet’’ aspect of HTS proposals~no need to
apply a constant magnetic bias, as opposed to systems b
on low-temperature-superconductor Josephson juncti!
probably represents the most relevant feature motivating
interest for HTS qubit systems. Furthermore, the conce
behind the various ‘‘qubit’’ proposals combine several oth
exciting physical aspects related tod-wave OPS, such a
Andreev bound states,16,17 time reversal symmetry
breaking,18 an imaginary component of the order parame
and so on.

The ‘‘qubit’’ proposals involving high-Tc superconduct-
ors basically exploit the fact that JJs with an additionalp
shift in the phase between the electrodes can be produce
the absence of an externally applied supercurrent or fi
when using superconductors with adx22y2-wave order pa-
rameter symmetry.7 This may lead to intrinsically doubly de
generate systems, i.e., systems based on JJs with an en
phase relation with two minima. Current versus t
superconducting phase (I c–w) measurements on 45° asym
metric and 45° symmetric bicrystal GB JJs have dem
strated the prevalence of the 2w component under som
conditions.19,20On the other hand, the state of the art of HT
JJs and the actual understanding of transport mechanism
GBs do not presently allow the reproducible determinat
of the conditions for observation of the 2w component. Sub-
sequent investigations have raised concerns about the q
ness of these devices. It was argued that, while on the
hand a 45° misorientation of the OPS in one electrode
necessary to generate thep-behavior, it may on the othe
hand lead to spontaneous currents related to Andreev re
tion and more precisely to Andreev bound states.16,17 Such
currents may cause additional noise13 and enhance decohe
ence mechanisms. This analysis led to the developmen
alternative designs, in which a five-junction loop~with four
ordinary junctions and ap-junction! takes the place of the
original s-wave–d-wave superconductor junction. In th
‘‘macroscopic analog’’ of Ref. 12, thep-junction removes
the need for a constant magnetic bias nearF/2.

Contributions to dissipation due to different transp
processes, such as channels due to nodal quasiparticl
midgap states or their combination, have been identified
distinguished.21 In particular cases, decoherence times a
quality factors have been calculated. It has been also arg
that problems in observing quantum effects due to the p
ence of gapless quasiparticle excitations can be overcom
choosing the proper working phase point.22 In particular, de-
coherence mechanisms can be reduced by selecting app
-
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ate tunneling directions because of the strong phase de
dence of the quasiparticle conductance of ad-wave GB
junction.

The Chalmers group has discussed the dynamics of
junctions in the zero-bias quantum regime and the dep
dence on junction parameters of the decoherence time in
system,23 determining also the Josephson and Coulomb
ergies in submicron junctions. The same group has also s
ied experimentally the possibility of using size effects in su
micron junctions to freeze out low-energy quasiparticles, a
to induce a prevailing 2w component in the I c–w
dependence.20

These are experimental and theoretical examples of
novative work towards a ‘‘quantum’’ treatment of HTS jun
tions, and are quite encouraging. Nevertheless a comp
‘‘quantum’’ approach to junction properties and parameter
still missing, and typical quantum effects, such as mac
scopic quantum tunneling, have not been observed up
now. A lot of work has to be done in this respect, coveri
several different issues, but some ‘‘trends’’ and constrai
on junction properties are becoming clear. It is reasonabl
expect that for macroscopic quantum tunneling experime
for instance, it is important to rely on junctions in the tunne
like limit with relatively high values of the normal-state re
sistance. A favorable quantum regime may nevertheless
hindered by the lack of understanding of the junction tra
port processes and of the interplay between OPS effects
barrier/microstructure effects. It may be important to reac
regime in which ‘‘intrinsic’’ d-wave induced effects are iso
lated from ‘‘extrinsic’’ effects. Intrinsic effects are only du
to the d-wave order parameter, while extrinsic effects a
mostly due to thed-wave order parameter and occur only
junctions with particular morphologies and/or properties. E
amples of extrinsic effects are the anomalous dependenc
the critical current on the magnetic field3,24 and the presence
of specific spontaneous currents revealed through scan
SQUID microscopy~SSM!.25 Extrinsic effects may be unde
sirable and even mask the features of the intrinsic effects.
will discuss in the following Sections how it is possible
reach some regimes of HTS JJs in which intrinsic effects
be isolated.

NEW BIEPITAXIAL TECHNIQUE

Grain-boundary Josephson junctions are obtained at
interface between a~103! YBa2Cu3O72d ~YBCO! film
grown on a~110! SrTiO3 substrate and ac-axis film depos-
ited on a~110! MgO ~Fig. 1a! or CeO2 ~Fig. 1b! seed layer.
The presence of the CeO2 produces an additional 45° in
plane rotation of the YBCO axes with respect to the in-pla
directions of the substrate.10,26 As a consequence, the GB
are the product of two 45° rotations, a first one around thc
axis, and a second one around theb axis. This configuration
produces the desired 45° misorientation between the
electrodes to enhanced-wave OPS effects, as shown in Fi
1d and as opposed to the MgO case of Fig. 1c, where no
in-plane rotation occurs. MgO-based junctions have b
proved to be of high quality and their properties to be ve
weakly influenced by OPS.26 In this paper MgO based junc
tions will be discussed mostly for comparison with th
CeO2-based junctions.
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Furthermore, the degrees of freedom of the fabricat
process allow the selection of any possible in-plane orie
tion for the GB interface. Details about the fabrication pr
cess can be found elsewhere.9,10,26 We will define the GB
interface angleu with respect to the@001# in-plane SrTiO3

direction. In the two limiting configurations,u50°, u
590°, the GBs are characterized by a~100! 45° tilt or twist,
respectively, of thec axis with respect to the interface, plus
45° tilt around thec axis. In this paper they will be referre
to as tilt–tilt and twist–tilt GBs. It is reasonable to assum
that these MgO-based and CeO2-based junctions can be con
sidered complementary from the OPS point of view from
circuit design perspective.26

TRANSPORT PROPERTIES: GENERAL FEATURES

The analysis of current versus voltage (I –V) character-
istics, while revealing basic properties of the junctions, i
broad topic that goes beyond the aims of this paper.
confine our attention to some specific properties, which
of relevance in our discussion ofd-wave induced effects in
HTS JJs. The general conclusion of different studies reali
on the MgO-based and CeO2-based junctions sketched abo
is that in our GBs, the crucial feature of relatively low
barrier transmission seems to be associated with ac-axis tilt.
The normal-state resistancesRN and critical currentsI c are
the relevant parameters. A direct comparison of theI –V
curves for MgO-based and CeO2-based junctions in the ex
treme tilt and twist limit cases~see Fig. 2! reveals that the
barrier transparency may be strongly connected to OPS
figuration. In this case the 45° in-plane rotation of one of
electrodes producesp-contact behavior. For MgO-base

FIG. 1. Sketch of the grain-boundary structures. The two limit configu
tions, tilt and twist, are indicated for junctions based on the MgO or Ce2

seed layer, respectively.

FIG. 2. Current versus voltage (I –V) characteristics of MgO and CeO2

biepitaxial junctions are reported in the extreme cases of tilt and twisT
54.2 K) for junctions of the same width~10 mm!, respectively. In the MgO
tilt case the current is multiplied by a factor of 10 for clarity.
n
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junctions, higher critical current densities and lower norm
state resistances characterize the twist limit when compa
with the tilt case, reflecting the different grain-boundary m
crostructures. On the other hand, for CeO2-based junctions
the influence of the resultingp-contacts cancels out any dif
ference in critical current densities between the tilt and tw
cases. Details will be given in the next Section.

The values of the critical currentI c and specific resis-
tanceRNA ~whereA is the junction area! are compared with
published data8 in Figs. 3a and 3b. The data available in the
literature mostly pertain to GB junctions for which the ang
refers to an in-plane tilt. Our grain boundary is more co
plicated, as discussed in the previous subsection. As a m
of fact, our critical current densityJc andRNA values are the
lowest and the highest values, respectively, indicating a tr
toward tunnel-like behavior. Values ofRNA typically range
from 1027 to 1025 V•cm2 at T54.2 K, on average at leas
one order of magnitude higher than the values extracted f
measurements on other~in particular, bicrystal! types of GB
junctions.8 The values ofJc typically range from 102 to
53103 A/cm2.

The tilt and twist configurations are the limiting case
clearly different from each other~see Fig. 2!. A fine tuning of
the I –V curves has been clearly observed by changing
interface angle orientations, as shown in Fig. 4a. The tuning
of the junction properties follows a very peculiar behav
indicative ofd-wave OPS~as discussed in the next subse
tion!, while the junction parameters fall in the ranges giv
above. TheI –V curves are mostly described by the res
tively shunted junction~RSJ! model. We also note the repro
ducible presence of hysteretic behavior~switching currents!
in the I –V characteristics in Figs. 4a,b. The hysteretic be-
havior is mostly observed in the angle rangeu>45° ~twist-

-

FIG. 3. (a) Critical current densities of CeO2-based junctions of the presen
work ~arrows! are compared with data published in Ref. 8. (b) Normal-state
resistances of CeO2-based junctions are compared with data published
Ref. 8.

FIG. 4. Current versus voltage characteristics of biepitaxial junctions m
sured atT54.2 K for various interface orientations (a) and of a twist junc-
tion (90°) atT50.8 K for three different values of the magnetic field (b).
In (a) the curves are shifted along thex axis for clarity.
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like regime! and for lower values ofJc , confirming a genera
trend towards tunnel-like behavior. The presence of s
switching currents may be important for a series of differ
experiments, such as those aimed at detecting macrosc
quantum effects.

ANISOTROPY MEASUREMENTS: EVIDENCE FOR d-WAVE
INDUCED EFFECTS

In Fig. 5 we report the dependence ofI c on the angleu
for junctions 4mm wide. A clear oscillatory dependence
the critical currentI c on u was observed10 as expected in
structures dominated byd-wave induced effects. This ha
been observed for various sets of junctions of differ
widths.

Minima in the critical current are observed foru50°,
34°, and 90°, respectively. These values correspond to
figurations in which the tunneling direction~the normal to
the barrier! points towards a node of the OP on one of t
two sides. The minima atu50° and 90° arise from the po
sition of the nodes in thec-axis oriented side of the junction
The minimum atu534° occurs when the projection in th
a8b8 planes of the normal to the barrier points towards
node of the OP on the~103! side. In the Sigrist–Rice~SR!
phenomenological approach, the Josephson current de
of an all d-wave junction is given by5

Jc5J0~nx
22ny

2!L~nx
22ny

2!R sinw. ~1!

In this expressionJ0 is the maximum Josephson current de
sity, w is the difference between the phase of the OP in
two electrodes, andnx andny are the projections of the un
vectorn onto the crystallographic axesx andy in the left~L!
and right ~R! electrode, respectively. Traditionally the S
formula has been applied to junctions where both electro
are c-axis oriented. Specifying the expression above
our noncoplanar configuration (Jc;sin 2u(22cos2 u)(1
23 sin2 u)/(11sin2 u)), and assuming a more efficient tunne
ing in the lobes directions,10 we obtain the curve plotted a
open circles in Fig. 5. The experimental behavior is w
reproduced by the SR-like theoretical prediction. TheI c(u)
dependence in agreement with the SR formula appare
seems to be mostly determined by the OPS.

FIG. 5. Dependence ofI c on the angleu; experimental data~filled circles!
are compared with theoretical predictions based ondx22y2-wave pairing
symmetry~open circles!.10 In the inset three different interface orientation
are given as examples. The junction is 4mm wide.
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We believe that our junction configuration, with low ba
rier transmission probabilities, preserves the directionality
the Cooper pairs, whether the transport be by tunneling
some other mechanism. Therefore it is in principle more s
sitive to the angular dependence of the order parameter s
metry and therefore revealsd-wave induced behavior. The
anisotropy measurements have demonstrated for the
time that ‘‘intrinsic’’ d-wave effects are dominant in the ph
nomenology of the Josephson junctions themselves~not in-
serted in any loop! independently of the interface details.10

The good agreement with the SR formula apparently s
gests that theI c(u) dependence is mostly determined by t
OPS. In this case the grain-boundary microstructure, wh
is the other main effect ruling the junctions’ properties, do
not significantly contribute to the qualitative behavior
I c(u). In other words, deviations from the Sigrist–Rice b
havior may indicate a more significant contribution play
by the actual GB microstructure to the angular depende
of I c . The GB microstructure definitely contributes to form
‘‘tunnel-like’’ barrier, characterized by higher values of th
normal-state resistance.

SCANNING SQUID MICROSCOPY AND SPONTANEOUS
CURRENTS

In this Section and the next we will deal with som
aspects related to vortex matter and the Josephson effect
in particular to the presence of spontaneous currents~i.e.,
spontaneous magnetization with random orientation and
half flux quantum effect! in CeO2-based biepitaxial junc-
tions. Phenomena related to spontaneous currents are p
liar to HTS Josephson junctions andp-contacts systems
Scanning SQUID microscopy25 is an appropriate techniqu
for the imaging and study of the magnetic response of
ferent samples, and can be used in appropriate configura
to study phenomena in zero-field cooling, and theref
spontaneous currents. Spontaneous currents may have d
ent origins depending on the system in which they are
served. The half flux quantum effect~such as observed in th
tricrystal experiments! was the first remarkable example o
spontaneous currents.7 In this case the different flux distribu
tions depend only on the intentionally introduced sample
ometry and on the typical scaling lengths of the junctio
involved. SSM has also demonstrated the presence of
domly distributed spontaneous currents along GBs.24 These
are determined by naturally occuringp-loops due to a com-
bination of thed-wave OPS and the junction morpholog
~faceting!.24,27,28

Spontaneous magnetization with random orientation

We first address spontaneous currents due top-loops and
how it is possible to prevent their formation.28 To this aim
we investigated through SSM the magnetic behavior of gr
boundaries of biepitaxial samples cooled in zero field a
characterized by different junction parameters.

In Fig. 6a we give evidence of the presence of spon
neous currents along the GBs in the tilt, twist, and interm
diate situations represented, for instance, by the sides o
photolithographically defined triangles sketched in Fig. 6b.
This behavior is consistent with the presence ofp-loops
along the GBs and with expectations based on faceted in
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faces, in agreement with other experiments on bicrystal24 and
biepitaxial junctions.27 The noise associated with such cu
rents, due top-loops along GBs, provide a simple examp
of how HTS JJs may be intrinsically noisy. Such a behav
is associated with samples characterized by higher crit
current densitiesJc .29 In the literature it has been shown th
the presence ofp-loops is accompanied by an anomalo
magnetic pattern3,24 such as the one reported in Fig. 6c, mea-
sured on one of our junctions. In this case theI –V charac-
teristic is hysteretic, and we report both the critical esca
and retrapping currents.

In Fig. 7, where a scanning SQUID microscope image
an 8003800 mm area is reported, no spontaneous magn
zation was detected along any of the GB interfaces, wh
had arbitrary orientation.28 Single-flux-quantum Josephso
vortices are randomly present along the GBs. In this case
have changedJc and, as a consequence, the Josephson
etration depth. This was done by reducing the thickness

FIG. 6. (a) SSM image of a 6003400 mm area. The GBs are marked b
the presence of spontaneous currents. The sample was cooled and ima
T54.2 K in nominally zero field. (b) Sketch of the grain boundaries image
in (a). (c) Magnetic pattern of a hysteretic twist biepitaxial junction me
sured atT54.2 K. The two different curves refer to the critical and th
retrapping currents. The junction is 20mm wide.

FIG. 7. SSM image of an 8003800 mm area, enclosing tilt–tilt and twist–
tilt GBs. The sample was cooled in nominally zero field and imaged
T54.2 K. No randomly oriented spontaneous magnetization was dete
along the GB interfaces.
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the film in Fig. 7 to about one-third of the thickness of th
sample reported in Fig. 6a. Differences in theJc values cor-
respond to the general feature in HTS JJs, thatJc does not
perfectly scale with the film thickness.8

If we try to interpret these results, keeping in mind t
d-wave nature of these junctions, as revealed by the ani
ropy measurements, we attribute the absence of any spo
neous magnetization to the locally reducedJc . This experi-
mental conclusion is consistent with numerical solutions
the sine-Gordon equation for a 0–p Josephson junction.30–32

In this modeling the spontaneous magnetization decre
when the ratio of the Josephson penetration depthlJ to the
facet spacing becomes large, as is discussed in detail in R
28 and 31. We have modeled this for a regular array, vary
the facet widthLp . For the faceted configuration there is
threshold for observation of spontaneous magnetizationLp

.lJ).
28 Sufficiently long penetration depths made the me

surements of the Josephson critical currents as a functio
the misorientation angle insensitive to faceting effects, a
represent the crucial feature in preventing the formation
spontaneous currents due top-loops in the systems analyzed

We recall another interesting related configuration
which spontaneous currents with random orientation h
been observed.33 This case enriches possible scenarios
spontaneous currents. We refer toc-axis YBCO thin films
grown on a MgO seed layer on a~110! SrTiO3 substrate
~which basically represents thec-axis electrode of the MgO
based biepitaxial configuration!. Spontaneous currents wer
observed to be spatially correlated with impurities due to
presence of the so-called green phase due to Y exces
c-axis films. The origin of such currents is unclear. It may
due to time reversal symmetry breaking~BTRS! or due to
the spontaneous nucleation of topological defects in ph
transitions~for instance, the pinning of a vortex tangle, pr
duced nearTc in a Berezinskii–Kosterlitz–Thouless34 type
transition in the nearly two-dimensional superconduc
YBCO!. BTRS may be related to an imaginary component
the OPS near a surface facing the insulating green pha18

This would in principle be the only configuration able
prove the origin of BTRS as due to an imaginary compon
of the order parameter, since in junction interfaces the sa
effect could also be due simply to Andreev bound states.35,36

The lack of an experiment showing reproducible, we
defined isolated spontaneous currents in controlled syst
is a limitation for the former interpretation and for relate
arguments on fractional vortices. More recent studies
phase transitions on the amorphous superconductor Mo3Si in
ring geometry make the latter possibility feasible.37 Further
investigations are required for a definitive answer.

Half flux quantum

Once the conditions which lead to the absence of sp
taneous currents due top-loops along GBs were determined
we studied if and how the well-known half flux quantu
effect occurs in our peculiar junction configurations.

Figure 8 is a three-dimensional SSM image of a lar
area of a biepitaxial sample containing different interfac
and types of grain boundary, cooled in presence of a sm
magnetic field. Various types of vortices and spread flux c
be observed. We notice on the left, four standard in-pla
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Abrikosov vortices characterized by flux well localized in
narrow area. On the top anisotropic vortices in the~103! part
of the YBCO film are also visible. These are more spre
than the in-plane Abrikosov vortices. Both these types
vortices are a useful reference for determining the fl
present in the center of the image along the lithographic
pre-determined contours~triangles in particular!. In contrast
with the ordinary vortices, the flux along the triangles w
not vanish even in zero-field cooling. This is due to the p
ticular triangular shapes~defined by grain boundaries wit
different orientations! which were designed in order to ob
serve the half flux quantum effect.

A schematic of a section of the sample imaged in Fig
a set of 16 isosceles triangles~triangle sideL550 mm), is
shown in Fig. 9a. Each triangle is rotated clockwise by 3
from the last in moving from bottom to top along the rows
triangles, and from left to right along the columns. Corn
which have a sign change in the product of the normal co
ponents of the gap functions on opposite sides of the g
boundaries are expected to have spontaneously generate
sephson vortices with a flux localized at them equal to hal
the superconducting flux quantum, if the Josephson dep
short relative to the length of a side of the triangle. In th
design the half flux quantum vortices should systematic
shift to different corners as the triangle orientation
changed. Figure 9b shows the corresponding SSM image

FIG. 8. SSM image of a 6003600 mm area, enclosing different types o
Gbs. The sample was cooled in a small magnetic field and imagedT
54.2 K. Flux tubes appear randomly localized in bulk material and al
grain boundaries. Magnetic flux also appears along some grain-boun
lines.

FIG. 9. (a) Schematic diagram of the sample geometry. (b) SSM image of
a 4503450 mm area, enclosing a set of 16 triangles with various interfa
orientations. The image was taken atT54.2 K. (c) Simulated spontaneou
fluxes along the triangle interfaces, assumingd-wave momentum depen
dences of the pairing wave function.
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the sample cooled and imaged in a magnetic field such
there is approximately 1 flux quantum (F0) trapped per tri-
angle. This image is the two-dimensional view of the cent
part of the image of Fig. 8. Spontaneous~since it was ob-
served also when the sample was cooled in zero field! mag-
netization is visible along some interfaces and at some
ners, and a systematic behavior clearly appears in mov
from the top row, where the flux is spread along GBs, do
to the bottom, where the flux is more localized in som
corners.

The fact that under some circumstances the half fl
quantum can be spread along the grain boundaries ra
than being concentrated in the corner, is consistent with l
Josephson penetration depths and low bar
transmissions,38 occurring in our junctions. For comparison
simulations of the expected spontaneous currents in our
angular grain boundaries are shown in Fig. 9c. These simu-
lations numerically solve the sine-Gordon equation for a f
eted grain boundary,31 with the sign and magnitude of th
Josephson critical current density along the grain bounda
chosen using the Sigrist–Rice expressions,5 assuming the
standarddx22y2-like pairing symmetry.28 It was assumed
there was a total of oneF0 of magnetic flux in each triangle
The Josephson penetration depthlJ was set equal to
lJ0 /Au j c(u)u, where j c(u) contains the dependence of th
critical current on grain-boundary geometry. For the simu
tions lJ(0) was assumed to be 5 microns. Details about
simulations can be found in Ref. 28. Apart from minor loc
deviations, there is qualitative agreement between the exp
mental data and the modeling.

DISCUSSION: EXTRINSIC AND INTRINSIC d-WAVE
EFFECTS IN GRAIN-BOUNDARY JUNCTIONS

The features discussed in the previous Section prove
existence of ‘‘pure’’ intrinsicd-wave effects in GB JJs, a
indicated in anisotropy transport measurements and the
flux quantum effect, in agreement with theoretical expec
tions. Moreover experimental conditions can be chosen
which spontaneous extrinsic currents may be substant
reduced. It is possible therefore in the biepitaxial technolo
to observe the half flux quantum effect and to suppress sp
taneous magnetization with random orientations. In ot
words there seems to be an accessible scaling range of
tion parameters for reaching a favorable ‘‘regime’’ whe
d-wave induced intrinsic features are very robust, and ext
sic features such as noise fromp-loops can be severely lim
ited. The coherence related to the OPS seems to be prese
on a scale larger than the faceting and/or any interface
purity characteristic lengths. Both from anisotropy transp
measurements and SSM analysis, results on junctions ca
reasonably explained without invoking a significant ima
nary component of the OPS.18,35

A study based on radio-frequency and SS
measurements39 on the same tilt–tilt samples seemed
show the absence of the type of spontaneous magnetiza
reported, for instance, in Fig. 7, and Andreev bound sta
are effects which can co-exist. This also means that the p
sibility of preventing the spontaneous currents discus
above applies only to those generated byp-loops. However,
a threshold of 0.01 of the flux quantumF0 for other addi-
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tional mechanisms generating noise in HTS JJs is se
SSM measurements. The tunnel-like behavior inferred fr
different experiments is the other crucial feature of the
biepitaxial junctions; it favors a promising regime whe
junction quantum effects could manifest. The additional
gree of freedom offered by the biepitaxial technique, to v
the interface orientation, can be crucial for finding more p
cise conditions in which to optimize specific performanc
and even to reduce decoherence mechanisms.22 For instance,
in the range 50°<u<80° we could obtain a regime wher
the I –V curves are hysteretic and the effect of midgap sta
should be reduced.

JOSEPHSON JUNCTIONS BASED ON ULTRATHIN CBCO
FILMS

In this Section we discuss a ‘‘novel’’ type of HTS JJ
The philosophy is to develop controlled systems which m
in the proper limit give more uniform barrier interfaces. Th
is realized by exploiting GB junctions and ultrathin film
i.e., artificially layered HTSs,40 such as
@Ba0.9Nd0.1CuO21x#m /@CaCuO2#n (CBCCO–m3n). These
films ~similarly to all existing HTS cuprates! are composed
by a stacking sequence of two structural subunits hav
different functions, namely the charge reservoir~CR! block
and the infinite layer~IL ! superconducting block~see inset
(a) in Fig. 10!. The IL block always consists of CuO2 planes
seperated by an alkaline earth~mostly Ca! plane, while the
structure and the chemical composition of the CR block v
from compound to compound. The structural and transp
properties of these compounds have been discu
elsewhere.40,41 We have for the first time realized Josephs
junctions composed of only a few superconducting Cu2

planes~6 layers in particular!. For this experiment we hav
focused in particular on ultrathin@Ba0.9Nd0.1CuO21x#5 /
@CaCuO2#2 /@Ba0.9Nd0.1CuO21x#5 /@CaCuO2#n /
@Ba0.9Nd0.1CuO21x#5 ~5/2/5/2/5! structures and have em
ployed the bicrystal technique. The junction schematic d

FIG. 10. I –V curve in zero field for a bicrysal junction 1 mm wide. Th
misorientation angle in this case is 24°, and the configuration is asymme
The typical stacking sequence of the charge reservoir~CR! block and the
infinite layer ~IL ! superconducting block characteristic of HTS compoun
and of the CBCO compound used in this experiment is reported in inseta).
A schematic diagram of the grain boundary is shown in inset (b): only 6
superconducting CuO2 planes are present on each electrode; Josephson
nomena should be associated only with such planes.
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gram is shown in inset (b) of Fig. 10, where the six super
conducting CuO2 planes are shown. The CBCO film is on
8 nm thick.

The current–voltageI –V curves reported in Fig. 10 cor
respond to aw51 mm wide bicrystal junction measured
T54.2 K. The misorientation angle in this case is 24°, a
the configuration is asymmetric. Similar behavior was o
served for symmetric junctions up to 5 mm wide. The sha
is RSJ-like and theI –V curves are modulated by the ma
netic field. Details will be discussed elsewhere.

The simple structure of the grain boundary composed
6 superconducting CuO2 layers~due to the highly controlled
structure of the 5/2/5/2/5 artificial structure! also allows a
reliable estimation of the coupling along theab planes of
two CuO2 layers separated by a 24° asymmetric or symm
ric GB: in particular, we calculate a critical current dens
per plane of about (0.2– 0.3)3102 A/cm2.

Additional evidence of the Josephson behavior com
from the observation through SSM of Josephson vortic
which will be discussed elsewhere. In this case the magn
fields associated with the Josephson vortices are influen
by the extremely large Pearl lengths of these very thin film

CONCLUSIONS

We have discussed different issues of grain-bound
HTS Josephson junctions. To produce high-quality junctio
is a crucial step in pursuing quantum circuitry based
HTSs and to for investigating reliably all the exciting ph
nomenology occurring in HTS junctions. Good quali
‘‘tunnel-like’’ Josephson junctions can be fabricated by e
ploiting the biepitaxial technique. The anisotropic transp
measurements and the half flux quantum effect, both
agreement with theoretical expectations, prove the existe
of ‘‘pure’’ intrinsic d-wave effects in GB JJs. If this is com
bined with the absence of spontaneous magnetization in
ations where faceting could be expected to be an issue, t
seems to be an accessible scaling range of junction pa
eters to reach a favorable ‘‘regime’’ whered-wave induced
intrinsic features are very robust and dominant over extrin
features such as noise fromp-loops. A remarkable feature i
the presence of Josephson phenomena in nano-struc
systems~ultrathin films! along macroscopic dimensions o
the order of a few millimeters. More specifically we are ab
to identify Josephson phenomena in films with 6 superc
ducting layers in a nominally very uniform configuration. N
analogous situation exists for other HTS junctions w
thicker electrodes. This more controlled system could a
open up some prospects for further understanding of
transport mechanisms in grain-boundary junctions.

This work has been partially supported by the E
projects ‘‘P-Shift’’ and ‘‘QUACS.’’ The authors would like
to thank A. Barone, T. Bauch, S. Kubatkin, K. Moler, an
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Research results on electron transport in Au/YBa2Cu3Ox and Nb/Au/YBa2Cu3Ox thin-film
heterojunctions are reviewed. The experimental current–phase relations of Nb/Au/YBa2Cu3Ox

heterojunctions onc-oriented YBCO films exhibit a second harmonic, temperature
dependence, and a phase shift that is explained in terms of a combined symmetrydx22y21s of
the superconducting order parameter of YBa2Cu3Ox . The current–voltage characteristics
of Au/YBa2Cu3Ox and Nb/Au/YBa2Cu3Ox heterojunctions on (1 1 20)YBa2Cu3Ox thin films with
an inclined crystallographicc axis display an anomaly of the conductance at low voltages,
the behavior of which is studied at various temperatures and magnetic fields. The experimental
results are analyzed in the framework of a model for the appearance of bound states
caused by multiple Andreev reflection in junctions containing a superconductor withdx22y2

symmetry of the superconducting order parameter. Studies of the noise characteristics of
Nb/Au/(1 1 20)YBa2Cu3Ox heterojunctions atT54.2 K reveal the presence of thermal and
shot components. However, enhancement of the shot noise due to multiple Andreev reflection is
not observed in the experiment. ©2004 American Institute of Physics.
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1. INTRODUCTION

The results of various experiments indicate that in
majority of metal oxide superconductors a complex type
symmetry of the superconducting order parameter is r
ized, in which the dx22y2 component is dominan
(d-superconductors!.1 Unlike superconductors with isotropi
~having s symmetry! superconducting order paramete
(s-superconductors!, in d-superconductors the order param
eter changes sign upon a 90° change in direction of the q
siparticle momentum in theab plane. As a consequence,
Josephson junctions based ond-superconductors, when
transport current is flowing in theab plane in a direction for
which the magnitude of the superconducting order param
equals zero, the shape of the current–phase relation~CPR!
can differ from sinusoidal.2 A nonsinusoidal CPR, containin
components proportional to sinw and sin 2w, has been ob-
served in experiments3 in symmetric 45° bicrystal Josephso
junctions with a@001#-inclined bicrystal boundary.

A different situation is realized ind/s heterojunctions
~the slash/denotes a potential barrier! for the direction per-
pendicular to theab basal plane~along the crystallographicc
axis!. Because of thed symmetry of the order parameter, th
superconducting current in such heterojunctions should
small ~proportional to the second power of the bounda
transparencyD̄2) and should contain a sin 2w component
corresponding to the second harmonic of the CPR.2 How-
ever, the experimentally observed4–6 product of the critical
currentJc times the normal resistanceRN of the Josephson
junction depends weakly on the boundary transparency, b
5991063-777X/2004/30(7–8)/11/$26.00
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decreases if an epitaxial film having twin boundaries is u
instead of a single crystal.5 The experimental data can b
explained by assuming that in thin films both types of sy
metry of the superconducting order parameter (s andd) are
realized and that a change in sign of thes component~a
change of its phase byp! occurs at a twin boundary, while
thed component remains unchanged.6 Studies of the CPR of
Pb/YBa2Cu3Ox junctions on c-oriented YBa2Cu3Ox films
(c-YBCO! from the appearance of fractional Shapiro ste
under irradiation by millimeter waves have shown the a
sence of a second harmonic of the CPR.5

In tunnel junctions of ad-superconductor with a norma
metal (N/d), with an s-superconductor (s/d), or with an-
otherd-superconductor (d/d8) the change in sign of the su
perconducting order parameter of thed-superconductor for
the incident and Andreev-reflected quasiparticle gives rise
an additional phase shift byp.7 Such a process is realized
for example, in N/d junctions with a ~110!-oriented
d-superconductor. The sequence of specular and Andree
flections of a quasiparticle in this case causes Andreev bo
states to form at low energies on the~110! plane of a
d-superconductor, localized near the interface1! at a distance
of the order of the coherence length.8 Low-energy Andreev
bound states~LABSs! are manifested in the appearance o
conductance peak at zero bias~conductance anomaly! on the
current–voltage~I–V! characteristic of anN/d junction.9

Tunneling spectroscopy of metal oxide superconducto
YBCO in particular, is difficult because of the short cohe
ence length of the material ('3 nm) and also the high sen
© 2004 American Institute of Physics
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FIG. 1. Image of a portion of the surface, obtained with an atomic force microscope:c-oriented (a) and ~1 1 20!-oriented (c) YBCO films. Profiles of the
surface of thec-oriented (b) and~1 1 20!-oriented (d) YBCO films along the white lines in (a) and (c), respectively; the inset to panelb shows a schematic
illustration of the structure of the surface of thec-oriented films.
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sitivity to defects of the crystal lattice and to the presence
impurities. At the same time, as the experiment of Ref
showed, the conductance anomaly has been observed inN/d
ands/d heterojunctions, bicrystal junctions, end heterojun
tions, and the point contacts of a scanning tunneling mic
scope. Therefore, of the two possible causes for the ons
the conductance anomaly, viz., the presence of magnetic
purities in the barrier9 and LABSs in ad-superconductor,8 a
preference must be given to the latter. Theoretical stud
have predicted the existence of LABSs on crystallograp
planes ofd-superconductors differing slightly from~110!,10

for example, on ‘‘faceted’’ surfaces,11 and that prediction has
been confirmed in experiments.12 The experimentally ob-
served splitting of the LABSs at high magnetic fields12 was
explained by a Doppler shift of the levels, caused by the fl
of the screening current—the excitation of an imaginarys
component of the superconducting order parameter in a
face layer of ad-superconductor.12

In this paper we review the results of experimental
search on Au/YBCO and Nb/Au/YBCO heterojunctio
based onc-oriented YBCO films on (001)SrTiO3 substrates
(c heterojunctions,c-HJs! and also single-domain films o
~1 1 20!YBCO, which were prepared on specially orient
(7 10 2)NdGaO3 substrates ~inclined heterojunctions
IHJs!.13 We study the I–V characteristics of heterojunctio
at low temperatures and low magnetic fields and also un
irradiation by monochromatic millimeter-wave radiation. W
analyze the current–phase relations of Nb/Au/YBCO hete
junctions of both types, obtained by the methods of rf sup
conducting quantum interference~SQUID!14 and Shapiro
f
9
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-
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steps.15 We present the temperature dependence
magnetic-field dependence of the observed conducta
anomaly on the I–V characteristic of the IHJ. In the Nb/A
~1 1 20!YBCO IHJ at low temperatures we measured t
noise characteristics and revealed the presence of the
and shot components. The experimental results are discu
in the framework of a model for the onset of bound sta
due to Andreev reflection in superconductors withd-type
symmetry of the superconducting order parameter.

2. PREPARATION OF THE HETEROJUNCTIONS AND THE
MEASUREMENT TECHNIQUES

The c-oriented YBCO superconducting films wer
grown on (001)SrTiO3 substrates. Thec axis of the YBCO
films grown on~7 10 2!NGO deviated from the normal to th
plane of the substrate by an anglea'11° of rotation in the
~110!YBCO plane. As a result, the orientation of the YBC
film was close to~1 1 20!YBCO. YBCO epitaxial films 150
nm thick were laser deposited at a temperature
770– 790 °C in an oxygen atmosphere with a pressure of
mbar. The resulting YBCO films had a critical temperatu
Tc585– 90 K and a critical current densityJc'23106 and
53104 A/cm2 at 77 K for the c- and ~1 1 20!-oriented
YBCO films, respectively.2!

The morphology of our YBCO films was studied on a
atomic force microscope. For thec-oriented YBCO films
(a50) the maximum surface roughness was 3–4 nm~Fig.
1a,b!. With increasing anglea, growth steps appear on th
surface, and ata511° @for ~1 1 20!YBCO# their height is 20
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nm ~Fig. 1c,d!. The long and short sides of the growth ste
are the~001! and~110! planes of YBCO, respectively. There
fore, in planar heterojunctions prepared on such YBCO fil
the total transport current is made up of the currents flow
through the contacts to the~001! and ~110! crystallographic
planes of YBCO. Because of the anisotropy of the cond
tivity of YBCO, a large part of the current flows through th
~110!-oriented faces of the surface of the YBCO film.16 We
note that the surface roughness of~120!YBCO films on the
~001!- and~110!-oriented faces is 1–2 lattice constants of t
YBCO film.

For the formation of heterojunctions with areasA rang-
ing from 535 to 30330 mm we use the method of rf mag
netron sputtering of Au and Nb, photolithography, and io
beam etching in an argon atmosphere.17 The eletrophysical
parameters of the heterojunctions were measured in a f
point scheme in the fixed-current regime in the tempera
rangeT54.2– 300 K, at magnetic fields up to 5 T, and und
electromagnetic irradiation at frequencies of 40–100 G
The noise properties of the Nb/Au/~1 1 20!YBCO heterojunc-
tions were investigated by two methods: direct measurem
of the noise spectral density with a low-noise cooled am
fier working in the frequency range 1–2 GHz, and by t
method of estimating the linewidth of the characteristic
sephson generation from the selective detector response
weak external microwave signal.

3. HETEROJUNCTIONS ON c-ORIENTED YBCO FILMS AND
THEIR PROPERTIES

3.1. Temperature dependence of the conductance of c
heterojunctions

Figure 2 shows the temperature dependence of the r
tanceR0(T) at a low bias current~1 mA! for Au/YBCO and
Nb/Au/YBCO c-HJs. At T.Tc the resistanceRe of the
YBCO leads is much larger than the resistance of thec-HJs,
and therefore in this temperature regionR0(T) characterizes
the conductance of the leads in theab basal plane of YBCO.
It is seen in Fig. 2 that both curves correspond to a meta
type of conduction—the values ofR0 decrease with decreas
ing temperature. The valueTc584 K of the YBCO leads for
the Nb/Au/YBCOc-HJ is considerably lower than the anal

FIG. 2. Temperature dependence of the zero-bias resistanceR0(T) for c-HJs
Au/YBCO ~dotted curve! and a Nb/Au/YBCO~solid curve! measured at a
bias current of 1mA.
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gous valueTc589.5 K for the Au/YBCOc-HJ, probably
because of the large number of technological operation
the fabrication of the Nb/Au/YBCOc-HJ and the resulting
oxygen deficit in the surface layer of the YBCO film. AtT
,Tc the behavior ofR0(T) is fundamentally changed. Fo
the Au/YBCOc-HJ atT,Tc one observes the characterist
growth of R0 for superconductor–insulator–normal met
tunnel junctions, while for the Nb/Au/YBCOc-HJ the resis-
tance R0(T)'const and remains unchanged down to t
temperature of the transition of the niobium electrode to
superconducting state,TcNb'9.1 K. Such behavior ofR(T)
for the Nb/Au/YBCOc-HJ is apparently due to the presen
in thesec-HJs of a second interface, with a high transp
ency, between Nb and Au: in this regard the Au/Nb/YBC
c-HJ can be regarded as a highly asymmetric double-ba
structureN/N8/s, the conductance of which has a linear tem
perature dependence.18

3.2. I–V characteristics of Nb ÕAu ÕYBCO c-HJs

The I–V characteristics and the voltage dependence
the differential resistanceRd(V) of the junction are shown in
Fig. 3. The I–V characteristic of thec-HJ reveals the exis-
tence of a supercurrent withJc51 – 10 A/cm2 and I cRN

510– 80mV in the c-HJ samples studied. HereRN is the
normal resistance of the junction, which is determined fro
the value of the differential resistanceRd of the junction at
voltagesV>2 mV. We also note that atV.2 mV theRd(V)
curve is descending with increasing voltage, like that of
Au/YBCO c-HJ. The descending trend ofRd(V) persists
even atV.Dd520 mV, the value obtained in tunneling m
croscope experiments.19

At low voltages the I–V characteristic of the junctio
corresponds well to a resistive model of the Josephson ju
tion, with low capacitance~see the inset in Fig. 3!. When the
voltage is increased toV.2 mV the I–V characteristic has
the form V5(I 1I e)RN , whereI e,0 is the excess current
I e.0 is observed in superconducting junctions with dire
~not tunneling! conduction.20,21NegativeI e ~a current deficit!
is typical of double-barrier superconducting heterostructu
s/N/s8, in which with decreasing proximity effect in theN
layer a change in sign ofI e is observed~a transition from a

FIG. 3. I–V characteristic~1! and the voltage dependence of the different
resistanceRd(V) of a Nb/Au/YBCOc-HJ atT54.2 K ~2!. The dotted curve
shows the dependence that follows from formula~1!; the dot-and-dash line
is Ohm’s lawV5IRN . The inset shows the I–V characteristic in the ran
of voltagesV,0.3 mV.
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current excess to a current deficit!.20 As we see in Fig. 3, the
I–V characteristic of the junctions is well described by t
relation typical fors/N/s8 structures:22

V5IRN1I eRN tanh~eV/kT!. ~1!

From the experimentally measured I–V characteristic for t
junction we haveI e52145 mA at T54.2 K. According to
Ref. 22,I e5(2D̄Dd2DNb)/(eRN)'2270 mA, whereDNb

51.2 mV is the superconducting gap of Nb, andD̄'7.6
31025 is the transparency, averaged over the area of
junction, of the Au/YBCO boundary, calculated according
the formula20–22

D̄52r l /3r , ~2!

where r 5RNA54.431026 V•cm2 is the characteristic re
sistance of the contact (RN[R0(Tc)), and r5rc;5
31023 V•cm and l 5 l c'1 nm are, respectively, the resi
tivity and mean free path in the superconductor, the la
being equal to the distance between CuO2 planes in the
YBCO film ~Ref. 16!.3!

The Rd(V) curve exhibits a feature in the form a loc
minimum atV51.2 mV, which coincides in value withDNb

and has a temperature dependence close to that give
BCS theory. This feature on the I–V characteristic vanis
together with the critical current atT58.5– 9.1 K, and the
temperature dependence ofI c(T) is close to that ofDNb(T).
We note that previously the gap structure of t
s-superconductor Pb was observed in a Pb/YBCOc-HJ.4

To estimate the contribution to the measured resista
from the electron transport caused by the contact to theab
basal plane of the YBCO film, we used a parallel-resis
model for the resistances of the sharp boundaries betwee
and YBCO along thec axis (r c) and in the basal plane o
YBCO (r ab). Herer for the heterojunctions was determine
from the condition

r 5r cr ab /~r ab1r c tang!, ~3!

where tang'Aab/A'0.04 andAab is the total area of the
contacts to theab plane of the YBCO film~see the inset to
Fig. 1b!. In Refs. 17 and 23 it was shown that for YBCO th
experimentally observed values ofr c are an order of magni
tude larger thanr ab . Consequently, for surface irregularitie
observed in experiment (g'2°), thecontribution to the total
current from the component of the contacts to theab planes
is small. This is confirmed by the absence of a conducta
peak at low voltages—the conductance anomaly due to
dreev reflection in thed-superconductor—for the Nb/Au
YBCO junctions atT.TcNb ~see also Sec. 4 of the prese
paper!.8 We recall that the theory predicts the appearance
such an anomaly for rough boundaries ofN/d heterojunc-
tions even in the case of an arbitrarily orient
d-superconductor.11

We note that superconducting shorts do not form in
gions of possible punchthrough of the Au film~e.g., nonsto-
ichiometric particles on the surface of the YBCO film!. In
particular, studies of Nb contacts to YBCO without the A
spacer layer on specially prepared samples revealed the
sence of supercurrent andr c;1 V•cm2, which is apparently
s
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a consequence of the active chemical interaction of Nb w
oxygen from the YBCO film, with the formation of Nb2O5

and other oxides of Nb~see also Ref. 24!.

3.3. Phase dependence of the supercurrent
of a Nb ÕAu ÕYBCO c-HJ

For measurement of the dependence of the supercu
on the phase different of the wave functions,I s(w), we used
a method in which a Nb/Au/YBCOc-HJ with dimensions of
10310 mm was shorted by a ring of YBCO film with an
inductanceL'80 pH and by another Nb/Au/YBCOc-HJ
with a substantially larger area of 1003100 mm, forming a
SQUID. The current–phase relation was calculated from
measurements of the amplitude–frequency characteristic
an rf resonator inductively coupled with this SQUID. Th
method is differential with respect tow and gives high sen-
sitivity in measurements of current–phase relations.14

In the temperature rangeT51.7– 6.0 K in which the
CPR was measured, the normalized critical currentbL

52pLI c /F0 (F052.07310215 Wb is the magnetic flux
quantum! of the Nb/Au/YBCOc-HJ under study lay in the
interval from 0.27 to 0.4, i.e.,bL,1. Therefore the CPR
could be determined for a whole period of variation ofw.14

The CPR of a Nb/Au/YBCOc-HJ is shown in Fig. 4. It is
seen that with decreasing temperature the shape of
current–phase relation begins to deviate from sinusoida
Fourier analysis of the measured CPR showed that its s
trum contains a finite number of first and second harmon

FIG. 4. Current–phase relation for a Nb/Au/YBCOc-HJ at temperatures of
1.7, 2.5, 3.5, 4.2, and 6.0 K (a). Temperature dependence ofI 1(T) ~squares!
andI 2(T) ~circles!. The solid lines show the theoretical curves ofI 1(T) and
I 2(T) calculated according to formulas~6! and ~7! (b).
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and that the amplitudes of higher-order harmonics are sm
Therefore, the superconducting component of the current
be written in the form

I s~w!5I c1 sinw1I c2 sin~2w1w0!. ~4!

The experimentally observed sign of theI c2 term is always
opposite to that of theI c1 term, i.e.,w05p. If T'1.7 K,
then I c151.57mA, I c2520.25mA, and uI c2 /I c1u'0.16.
The temperature dependence ofI c1(T) and I c2(T) is shown
in Fig. 4b.25

After completion of the measurements of the CPRs
YBCO superconducting inductive ring of the SQUID w
locally cut by a focused ion beam. In the resulting geome
we then measured the I–V characteristic and theRd(V)
curve of the same Nb/Au/YBCOc-HJ for which the CPR
had been measured. From theRd(V) curve we determined
the value RN'60 V, which corresponds tor c5631025

V•cm2, and then, using Eq.~2!, obtained the transparenc
of the givenc-HJ: D̄'5.631025.

The CPR of thec-HJ was also measured by a differe
method, based on measurement of the critical current an
the Shapiro steps on the I–V characteristic of a Nb/A
YBCO c-HJ as functions of the amplitude of an extern
monochromatic electromagnetic wave irradiating t
heterojunction.15,26 Under external monochromatic electr
magnetic irradiation at frequencyf e'40 GHz Shapiro steps
I n corresponding to the fundamental frequency and a h
monic component appeared on the I–V characteristic at v
ages ofn(h f /2e) (n is an integer!. At a voltage of1

2(h f /2e)
(n51/2) the first subharmonic Shapiro step was also
served, with an amplitudeI 1/2/I c50.08 atT54.2 K. Figure
5 showsI c , I 1 , andI 1/2 as functions of the amplitude of th
rf current. The solid curves show the theoretical dependen
I c(a), I 1(a), and I 1/2(a), where a5I RF /I c is the experi-
mental value of the normalized rf current, which was det
mined from a comparison of the experimentalI 1(a) curve
with the theoretical one in respect to the first minimum
this quantity.15 We note that for low amplitudes of the exte
nal radiation the first Shapiro step is symmetric with resp
to the autonomous I–V characteristic, a circumstance
attests to the coherence of the Josephson generation in
tonomous junctions.26 Thus the subharmonic Shapiro ste
observed on the experimental I–V characteristic may be
dicative of a deviation of the dependenceI s(w) from sinu-
soidal. At T54.2 K the ratios of the harmonics of the CP
determined by the rf SQUID method and also from the a
plitudes of the Shapiro steps areuI c2 /I c1u'0.12 andI 1/2/I c

50.08 for twoc-HJs on one substrate.
The presence of the two harmonicsI c1}sinw and I c2

}sin 2w in the spectrum of the CPR of a Nb/Au/YBCOc-HJ
can be explained by the existence of a combinedd1s sym-
metry of the superconducting order parameter in YBCO.
calculation of the supercurrent we use the expression25

I s~w!5
2e

\ (
k,u

kBT(
v

3
D~u!DRDk sinw

2VRVk1D~u!~v21VRVk1DRDk cosw!
. ~5!
ll.
an

e

y

of
/
l

r-
lt-

-
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-

f

t
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In formula ~5! DR and Dk denote the superconducting ga
of Nb and YBCO, respectively, andVR,k5Av21DR,k

2 .
Keeping in Eq.~5! terms up to second order in the sma
quantityD(u)!1 inclusive, we obtain25

I c1~T!RN'
Ds

Dd*
DR~T!

e
, ~6!

I c2~T!RN'2
p

8
D̄

DR~T!

e
tanhS DR~T!

2kBT D , ~7!

where Dd* 5pDd@2ln(3.56Dd /kBTcR)#21. In deriving for-
mulas~6! and~7! we have used an expression for the sup
conducting gap of YBCO of the formD(u)5Dd cos 2u
1Ds, whereDd andDs are the amplitude values of thed and
s components of the superconducting order paramete
YBCO, whereDd@Ds ,DR . There are differing estimates o
the parameterDs /Dd* of YBCO in the literature. For
example, in tunneling microscope experiments the val
Ds'1 MeV andDs /Dd* '0.05 were obtained,19 while for a
Pb/YBCOc-HJ a rangeDs /Dd* '0.3– 1.1 was found.23

An additional factor that influences the value ofI 1 is the
presence of twinning in the YBCO film. In this case thes
component can enter the expressionD(u)5Dd cos 2u1Ds

with a minus sign as well, which is a reflection of the chan
in sign of s on passage through a twin boundary in YBC
although the sign of thed component remains unchange

FIG. 5. Critical currentI c and the first Shapiro stepI 1 (a) and the first
subharmonic Shapiro stepI 1/2 (b) on the experimental I–V characteristic o
a Nb/Au/YBCOc-HJ as functions of the amplitude of 40-GHz electroma
netic radiation, normalized toI c , at T54.2 K. The solid and dashed curve
show the corresponding dependences that follow from a resistive mod
the Josephson junctions.
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here.6 Consequently,I c150 in the limiting case of equal ar
eas of the two twin domains. However, it has been show27

that the areas of the twinned domains can be different e
when a YBCO thin film is deposited on a SrTiO3 substrate,
which has a cubic crystal lattice. Denoting the areas of t
twin domains as (11z)/2 and (12z)/2, we find that the
experimentally measured valueI c1}z. Using the values
Ds /Dd* '0.3– 1.1 andDR51.2 mV for Rd(V) ~see Fig. 3!
and substituting the experimental value ofI c1 into ~6!, we
obtainz50.07– 0.21, in qualitative agreement with the val
z50.14 obtained for a YBCO film 100 nm thick.25,27

The maximum valueI c2520.25mA for T'1.7 K is

obtained from~7! for D̄'3.231022, which strongly ex-

ceeds the value of the transparencyD̄ of the Au/YBCO bar-
rier. This discrepancy can be explained by assuming that
transparency of the Nb/Au/YBCOc-HJ varies over the are
of the junction. The transparency of a Nb/Au/YBCOc-HJ is
determined by the transparency of the Au/YBCO bounda
the uniformity of which over the area of thec-HJ depends on
the uniformity of the distribution of the oxygen content
the surface layer of the YBCO. The finite surface roughn
of a YBCO film leads to local diffusion of oxygen from th
coating contacts toward theab planes of YBCO. This can
lead to scatter in the values ofr and l over the area of the
junction, resulting in fluctuations of the value of the tran
parency of the Au/YBCO boundary.

It should be noted that the second harmonic of the C
also arises in the model ofd1 is type symmetry of the su
perconducting order parameter of YBCO, which was p
posed in Ref. 28 (i 5A21). However, in the framework o
that model a phase shiftw05p/2 betweenI c2 andI c1 should
exist, in disagreement with the valuew05p determined
from experiment and also with the results of Ref. 6.

A possible alternative explanation of the experimenta
observed CPR is the model proposed by Millis.29 In that
model one can represent the Nb/Au/YBCOc-HJ as a lattice
of 0- and p-junctions connected in parallel, with a lattic
constant equal to the characteristic size of a twin domain
c-oriented YBCO film, 10 nm. Then, as was shown in R
29, spontaneous currents arise in the ground state of ac-HJ,
and the energy of thec-HJ is minimum forw56p/2. Esti-
mates of the value of the amplitude of the second harmo
of the CPR (I c2m) arising on account of this mechanis
showed thatI c2m /I c2,0.03.25 Consequently, the contribu
tion of this mechanism to the value ofI c2 is small.

Another alternative cause for the appearance of the
ond harmonic in the CPR in Nb/Au/YBCOc-HJs may be the
presence of the Nb/Au boundaries, which have high tra

parency (D̄Nb/Au;1021), which is reflected in the shape o
the I–V characteristic~see Fig. 3!. As we have said, a Nb
Au/YBCO c-HJ can be represented as a highly asymme
double-barrier structure, in which the second harmonic of
CPR can appear.18 On the other hand, simple estimates bas

on Eq. ~9! of Ref. 18 show that in such a caseI c2 /I c1;D̄,
and consequently the amplitude of the second harmoni
the CPR is much smaller than that observed experiment
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4. HETEROJUNCTIONS ON INCLINED FILMS „1 1 20…YBCO
AND THEIR PROPERTIES

4.1. Temperature dependence of the resistance of inclined
heterojunctions

Figure 6 shows the temperature dependence of the re
tanceR0 measured at a current of 1mA on inclined hetero-
junctions ~IHJs! Au/YBCO ~1 1 20! and Nb/Au/YBCO
~1 1 20!. It is seen that forT.53 K the resistanceR0 of the
Au/YBCO IHJ increases exponentially with decreasing te
perature, and forT,53 K a deviation ofR0(T) from the
exponential dependence is observed. In the case of
Au/YBCO IHJ one does not observe any significant chan
of R0 at T'Tc , since the resistanceRN of the IHJ itself4! is
substantially larger than the resistance of the YBCO~1 1 20!
leads. This is the typical situation for Au/YBCO IHJs pr
pared by depositing the Au film on YBCO~1 1 20! ex situ. In
this case the escape of oxygen atoms from the YBCO~1 1 20!
surface layer decreases the transparency of the boundary
characteristic boundary resistancer varied over wide limits,
1022– 1026 V•cm2, depending on the technique used
prepare theoretical IHJ. In particulate, for an IHJ for whi
the boundary between the Au and YBCO~1 1 20! was formed
by depositing the Au filmex situ, r increased by 3–4 order
of magnitude as compared to IHJs for which the bound
between Au and YBCO~1 1 20! was formedin situ. Here one
can speak of a decrease inD̄ by the same factor by whichr
increases.

The behavior ofR0(T) is completely different forRN

!Re , which is the situation when the Au film has bee
depositedin situ. This is the case for the Nb/Au/YBCO IH
whose R0(T) dependence is shown in Fig. 6. AtT'Tc

553 K a sharp increase ofR0 is observed, due to the tran
sition of the leads to the superconducting state. Upon furt
decrease of the temperature belowTc to TcNb'9.2 K the
zero-bias resistanceR0 increases monotonically. The tem
perature at whichR0(T) for the Au/YBCO IHJ deviates from
the exponential dependence coincides withTc553 K.

In Au/YBCO and Nb/Au/YBCO IHJs the behavior o
R0(T) for T,Tc is due to the turning on of a current tran
port channel involving Andreev reflection as the temperat

FIG. 6. Temperature dependence of the resistanceR0 of two types of in-
clined heterojunctions: Nb/Au/YBCO~solid curve! and Au/YBCO~dashed
curve!, measured at a bias current of 1mA. The dotted curve shows the
dependenceR@kV#50.1113 exp(2T@K#/85), which is a good approxima
tion for the experimental dependence ofR0(T) of the Au/YBCO IHJ at
T.Tc553 K.
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is lowered.7 For IHJs on YBCO~1 1 20! films the influence of
the LABSs should be manifested on the I–V characteristic
the form a conductance peak appearing at low voltages,
the conductance anomaly that is observed experimentall

4.2. Broadening of the Andreev states

Figure 7 shows the transformation ofs(V) with decreas-
ing temperature for a Au/YBCO IHJ. ForT.Tc the s(V)
curve ~the T550 K curve in Fig. 7! can be approximated
well by a parabola~the dashed curve in Fig. 7! in the frame-
work of the tunneling theory ofN/N8 junctions with allow-
ance for the influence of the voltage on the shape of
potential barrier.30 For T,Tc the s(V) curve at smallV
exhibits a deviation from the parabolic shape in the form
a conductance anomaly, increasing with decreasingT. The
deviation ofR0(T) for a Au/YBCO IHJ from the exponentia
growth corresponds to the onset of the conductance anom
on the I–V characteristic. We note that the conducta
anomaly is absent for thec-HJ Au/YBCO ~dashed curve in
Fig. 7!.

Figure 8 showss(V) for a Nb/Au/YBCO IHJ in the
temperature region 9–40 K in which the conductan
anomaly is most strongly expressed. We note thats(V)
'consts atT5Tc . This corresponds to the tunneling of qu
siparticles through a delta-function-like barrier which is u
form over area, while forT,Tc a conductance anomaly ap
pears on the I–V characteristic of the Nb/Au/YBCO IHJ, ju
as for the Au/YBCO IHJ. For both types of IHJ one observ
growth of the amplitude and a decrease of the half-widthDV
of the conductance anomaly as the temperature is lowe
Together with the thermal smearing of the conducta
anomaly the LABS levels broaden on account of the fin
lifetime of the states. For a quasiparticle with energy« at
«,D0 (D0 is the amplitude value of the energy gapD(u)
5D0 cos 2u for thed-superconductor! one uses the following
form of the density of statesN(«,u):8,12,31

N~«,u!5
p21G2~u!

~«2«b!21G~u!2 , ~8!

FIG. 7. Conductivity versus biass(V) for an inclined Au/YBCO hetero-
junction at different temperatures~the solid curves from bottom to top!: 4.2,
10, 20, 30, 35, 40, 45, and 50 K. The dotted curve shows the para
approximating the dependences(V) at T550 K. The dashed curve corre
sponds tos(V) at T54.2 K for the Au/YBCOc-HJ. The inset showss(V)
for IHJs Au/YBCO atT54.2 K ~inverted triangles! and Nb/Au/YBCO at
T510 K ~squares! in the low-voltage regionuVu,6 mV. The solid chamber
is the approximation ofs(V) for the Au/YBCO IHJ by a Lorentzian.
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whereu is the angle of incidence of the quasiparticle relati
to the normal to the boundary, and«b describes the shift of
the energy levels of the Andreev states, e.g., on accoun
the the flow of current along theN/d boundary. In formula
~8! the level broadening is characterized by the param
G(u);\/t(u), wheret~u! is the lifetime of a quasiparticle
in the LABS. In the general caseG~u! is determined by the
tunneling of quasiparticles,G tunn(u), the diffusive scattering
due to the rough surface of the YBCO film,Gdiff(u), um-
klapp processes of quasiparticle scattering with a chang
the normal component of the momentum,GU(u), and scat-
tering on lattice defects and impurities,G imp :31

G~u!5G tunn~u!1Gdiff~u!1GU~u!1G imp . ~9!

If upon the formation of the LABSs the dominant contrib
tion to their broadening comes from scattering on defects
impurities,G imp , which is independent of the direction of th
quasiparticle momentum, then, as follows from~8! and ~9!,
the dependence of the conductance anomaly has the sha
a Lorentzian of widthG. The inset in Fig. 7 shows the ex
perimental dependences(V) at low voltages (V,6 mV) for
the Au/YBCO IHJ atT54.2 K ~inverted triangles! and the
Nb/Au/YBCO IHJ atT510 K ~squares!. Thes(V) curve for
the Au/YBCO IHJ is well approximated by a Lorentzia
consequently, it is scattering on defects and impurities t
determines the half-width of the conductance anomaly in
case. It is also seen from the inset in Fig. 7 that the shap
s(V) for the Nb/Au/YBCO IHJ is not Lorentzian.

In the Au/YBCO IHJ the formation of the boundary wa
done with the vacuum broken~ex situ!, and the
~1 1 20!YBCO surface of the film was subjected to the atm
sphere for about an hour prior to the deposition of Au. As
result of the interaction with the atmosphere, various imp
rities such as CO2 and OH were precipitated on the surfa
of the YBCO film, and oxygen-deficient regions, which a
lattice defects, also formed. The factors mentioned lead
the formation of a large number of scattering centers in
surface layer of the YBCO film and may give the governi
contribution to the broadening of the conductance anom
The degree of diffuseness of the surface layer on
Au/YBCO boundary can be characterized with the aid of
parametert/ l , where t is the thickness of the disordere

la

FIG. 8. s(V,T) for the Nb/Au/YBCO IHJ.



y
f.

n
a
gh
as
th
b

le

e

H

no
nc

ia
tw

f t
te
en
es
ly
tri
v

tic

r-
fie
ed

th
c
-

p

m
o
th

th

r
of
a-

t
uld
ob-

c

he
is
e
(

of

ates
-
de-

eev

s

m
es
een

r

r to

of the

ve

low

606 Low Temp. Phys. 30 (7–8), July–August 2004 Komissinski et al.
layer.2 Here t/ l 50 corresponds to the ideal Au/YBCO
~1 1 20! boundary, whilet/ l 5` corresponds to a completel
diffuse boundary. Unfortunately, there are no data in Re
for the regiont/ l .0.1, which corresponds to the Au/YBCO
IHJ under study here.

Among the LABS broadening mechanisms that depe
on the direction of the momentum of the incident quasip
ticles are tunneling, scattering on the YBCO surface rou
ness, and scattering with a change in direction of the qu
particle momentum. With increasing transparency of
boundary the probability of escape of the quasiparticles
tunneling through the barrier increases, and that should
to an increase ofG tunn(u).31,32 However, for the Nb/Au/
YBCO IHJ the values ofD̄ are at least an order of magnitud
larger than for the Au/YBCO IHJ, althoughDV at low tem-
peratures is several times smaller for the Nb/Au/YBCO I
than for the Au/YBCO IHJ. For example, atT510 K one
hasDV'1 mV for the Nb/Au/YBCO IHJ and 6.8 mV for
the Au/YBCO IHJ. ThusDV in the IHJs falls off with in-
creasingD̄ and, hence, the tunneling of quasiparticles is
the governing factor for the broadening of the conducta
anomaly.

The LABS broadening that leads to the non-Lorentz
shape of the conductance anomaly is apparently due to
processes: diffusive scattering due to the rough surface o
YBCO film, and umklapp processes of quasiparticle scat
ing with a change in the normal component of the mom
tum. The experimental study of the influence of each of th
processes on the broadening of the conductance anoma
difficult because of problems in determining the exact dis
bution of transparency over the area of the junction and o
anglesu, and also of determiningG~u! for each process.

4.3. Magnetic-field dependence

When anN/d IHJ is placed in a perpendicular magne
field a screening current arises ind, shifting the LABS levels
~Doppler shift of the levels!.11 Analogously, spontaneous cu
rents can also arise in the absence of external magnetic
if on the surface ofd, e.g., when the temperature is lower
below a certain critical valueTs , a transition occurs to a
mixed type of symmetrydx22y21 is of the superconducting
order parameter. In both cases this leads to splitting of
LABS levels. As a result, the peak of the conductan
anomaly in anN/d IHJ is split into two peaks. In a perpen
dicular magnetic fieldH the LABS level splitting is12

«b5~e/c!vFHlL sinu, ~10!

where c is the speed of light in vacuum,vF is the Fermi
velocity in the ab plane of YBCO, andlL is the London
penetration depth of the magnetic field in thec direction of
YBCO. For studying a Au/YBCO IHJ in magnetic fields u
to 5 T perpendicular to the plane of the substrate~making an
angle of approximately 79° with theab plane of YBCO!,
after subtraction of the analogous dependence forH50 the
presence of splitting of the conductance anomaly beco
obvious~Fig. 9!. The inset in Fig. 9 shows the dependence
the splitting of the conductance anomaly on the value of
magnetic field,d(H), in a Au/YBCO IHJ atT54.2 K. In the
high magnetic field region (H.2 T) the splittingd(H) is
practically constant and can be approximated well by
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dependenced(H) obtained in the framework of a Dopple
shift model for the LABS levels owing to the generation
an additionals component of the superconducting order p
rameter atT,Ts(YBCO)'7 K ~the solid curve in the inse
of Fig. 9!.11,32 In this case the conductance anomaly sho
also be split at zero magnetic field, which has not been
served in experiment, even though the conditionT,Ts is
met. It has been shown32 that the splitting in zero magneti
field vanishes when the doping level of thed-superconductor
goes from overdoping to underdoping. Apparently it is t
underdoping by carriers due to the oxygen deficit that
realized in the YBCO films, as is indirectly confirmed by th
low transition temperature to the superconducting stateTc

553 K). In the low-magnetic-field region (H,1 T) the ex-
perimental data are insufficient for making a comparison
experiment with the theory.11

4.4. Influence of Andreev states on the supercurrent

The dependence of the energy of Andreev bound st
on the phase differencew of the superconducting order pa
rameter of the electrodes forming the Josephson junction
termines the supercurrent that flows through the Andr
bound states~see, e.g., Ref. 33!:

I s~w!} (
2p/2

p/2

cosun

dEn~u,w!

dw
f ~En~u!!du, ~11!

where the summation overn goes over all the Andreev state
with energiesEn , and f («) is the Fermi distribution func-
tion. We note that for tunnel junctions made fro
s-superconductors (D̄!1) the energies of the Andreev stat
lie near the gap. For the Andreev states of a contact betw
an s-superconductor (DR) with the ~110! plane of a
d-superconductor (s/d(110)) there are also LABS levels fo
«!Dd :8,33

FIG. 9. Ds(V,H)5s(V,H)2s(V,0) at T54.2 K for a Au/YBCO IHJ at
various values, from 0 to 5 T, of the magnetic field applied perpendicula
the plane of the substrate. The curve forH50 corresponds to a straight line
passing through zero. In the inset the squares show the dependence
splitting, calculated as half the distance between maxima ofDs(V,H) and
normalized toD0520 MeV, on the magnetic field strength. The solid cur
corresponds to a calculation in a model in which an additionals component
of the order parameter in YBCO is generated at temperatures be
Ts,7 K, wherein Ds2YBCO51.2 meV, D0520 MeV, H0516 T, and
Hc51 T.12
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En5DRDdD̄ sinw/@2DR1D̄~Dd2DR!#1O~D̄2!. ~12!

It was shown in Ref. 33 that ind/d(110) junctions at
low temperatures (kT!D̄Dd/4&), just as in s/s junc-
tions I c}D̄ and I cRN;pD1 /e, but I s(w) differs strongly
from sinusoidal, I s(w);cosw (0,w,p) ~case a). At
higher temperatures (D̄Dd/4&<kT<Dd/2)I c}D̄2, I cRN

;(pDdD̄/4e)(Dd/2kT21) andI s(w);sin 2w ~caseb). On
the other hand, ifDd/2<kT<kTc , then I cRN'0.33 Since
D̄;1024– 1025 in the Nb/Au/YBCO iHJs studied here, w
haveD̄Dd/4&,0.01 K, and atT54.2 K caseb is realized.
For example, for a Nb/Au/YBCO IHJ withD̄;2.531025

one calculatesI cRN'10 mV, which agrees in order of mag
nitude with the value observed in experiment. TheI c(T)
curve measured experimentally for the Nb/Au/YBCO IH
falls off monotonically with increasing temperature. Th
nonmonotonicity ofI c(T) predicted in Ref. 33 is not ob
served. At the same time, tunneling experiments ins/d c-HJs
have revealed the presence of an additionals component of
the superconducting order parameter of YBCO, with an
ergy gapDs2YBCO. In that case the temperature depende
of the supercurrent, determined from formula~6! with allow-
ance for the fact that, owing to the high transparency of
Nb/Au boundary and the proximity effect in the Au spac
layer, an order parameter with a critical temperatu
Tc8<TcNb can be manifested, in qualitative agreement w
the experimental observations on Nb/Au/YBCO IHJs.

4.5. Phase dependence of the supercurrent of inclined
NbÕAu ÕYBCO heterojunctions

Figure 10 shows the I–V characteristic of a 3
330 mm Nb/Au/YBCO IHJ under irradiation by monochro
matic electromagnetic radiation with a frequencyf e

'46.4 GHz. The I–V characteristic shows the critical cu
rent I c , harmonic Shapiro stepsI 1 and I 2 , and also the first
subharmonic step, withI 1/2/I 1'0.1 at 4.2 K.5! The upper
inset in Fig. 10 shows the dependence ofI c , I 1 , and I 2 on

FIG. 10. I–V characteristic of a Nb/Au/YBCO IHJ of area 30330 mm
under irradiation by microwave radiation with a frequency of 46.4 GHz
T54.2 K. The upper inset shows the critical currentI c and the firstI 1 and
secondI 2 Shapiro steps as functions of the amplitude of the microw
radiation. The lower inset shows the selective detector responseh(V) ob-
tained during irradiation by a low-power signal atf 555.7 GHz. The arrow
indicates the subharmonic response.
-
e

e
r
e

-

the normalized amplitude of the rf current for an IHJ of ar
30330 mm. The amplitudes ofI c , I 1 , and I 2 oscillation
with increasing amplitude of the external influence; this c
responds to a resistive model of Josephson junctions.15 The
subharmonic Shapiro steps observed experimentally on
I–V characteristic of bothc-HJ and IHJ Nb/Au/YBCO at
V5 1

2(h f /2e) are indicative of a deviation of the CPR from
sinusoidal form. It should be noted that the high-amplitu
irradiation of the heterojunctions under study from an ext
nal microwave source can alter the quasiparticle Fermi
tribution function that appears in formula~11! for the phase
dependence of the supercurrent.34 We therefore made mea
surements of the selective detector response at a low am
tude of the external microwave signal relative to the value
the critical current of the Josephson junction under stu
I RF!I c .

The lower inset in Fig. 10 shows the selective detec
responseh(V) obtained under the influence of a low-pow
signal I RF!I c with f 555.7 GHz. The arrow on theh(V)
curve indicates the feature at voltageV5 1

2(h f /2e), corre-
sponding to the first subharmonic Shapiro step, the app
ance of which in the given case cannot be explained by
onset of a nonequilibrium energy distribution function for t
quasiparticles. For a Nb/Au/YBCO IHJ withA510
310 mm andI c,3 mA we were unable to observe subha
monic Shapiro steps on the I–V characteristic, probably
cause of their small amplitudes.

4.6. Noise properties of inclined Nb ÕAu ÕYBCO
heterojunctions

The noise properties of Nb/Au/YBCO IHJs were studi
by two methods: direct measurement of the noise spec
density by a low-noise cooled amplifier working in the fr
quency range 1–2 GHz, and by the method of estimating
linewidth of the characteristic Josephson generation from
selective detector response to a weak external microw
signal. The I–V characteristic and the dependence of
noise power on the bias current for a Nb/Au/YBCO IHJ
area 10310 mm are shown in Fig. 11a. Unlike the case of
d/d contacts,35 there is no increase in the noise on the res
tive part at low values of the bias current. We note that
drop in the noise power upon the transition of the IHJ fro
the superconducting to the resistive state is caused b
change in the output impedance of the sample relative to
50-V input impedance of the amplifier. Upon a significa
increase in the bias voltage a growth of the noise spec
densityS(V) at the contact is observed; see Fig. 11b. The
inset to Fig. 11b shows the part of theS(V) curve for uVu
,9 mV in greater detail. The dependence found is explain
by growth of the shot-noise intensitySI52eI as the current
I c through the heterojunction increases. We note that qu
tatively similarS(V) curves have been obtained previously35

for d/d superconducting Josephson junctions with an av
aged boundary transparencyD̄;0.01. The question of noise
has been studied theoretically36–38 for s/d junctions with
relatively high transparency,D̄.0.1, quite unlike the
Nb/Au/YBCO IHJs studied experimentally, for whic
D̄;1025.

It follows from Refs. 36–38 that suppression of the e
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cess shot noise occurs as the transparency decreases a
bias voltages for Josephson junctions with
d-superconductor as one or both electrodes. Most likely
absence of excess shot noise at low voltagesuVu,1 mV in
Nb/Au/YBCO IHJs can be explained by a decrease in
probability of Andreev reflection. The absence of exce
noise is also shown by a second method of estimating
characteristic noise temperature of a heterojunction, whic
the framework of the resistive model of Josephson juncti
should be close to the physical temperature of the sample
estimate of the linewidthD f of the characteristic Josephso
generation of a Nb/Au/YBCO IHJ based on the depende
h(V) ~the lower inset in Fig. 10! gives a valueD f 54.4
GHz, which is only 30% higher than the theoretical estim
made from the resistive model of Josephson junctions w
only the contribution of the thermal fluctuations to the li
broadening of the characteristic Josephson generation t
into accout. This fact again confirms the absence of exc
noise in the Nb/Au/YBCO IHJs at low bias voltages.

CONCLUSION

We have investigated experimentally the supercond
ing and quasiparticle electron transport in thin-film HTS
heterojunctions Au/YBCO and Nb/Au/YBCO on the basis
c- and ~1 1 20!-oriented YBCO films on (001)SrTiO3 and
(7 10 2)NdGaO3 substrates, respectively. Studies of the d
pendence of the supercurrent on the phase difference o

FIG. 11. I–V characteristic~1! and the dependence of the noise power
the bias current~2! for a Nb/Au/YBCO IHJ, obtained with the use of
low-noise cooled amplifier atT54.2 K (a); dependence of the noise spe
tral densityS(V) on the voltage atV>50 mV; the inset shows the part o
S(V) for V,9 mV (b).
low
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superconducting electrodes revealed a deviation from s
soidal form for both types of Nb/Au/YBCO heterojunction

A conductance peak on the I–V characteristics of
Au/~1 1 20!YBCO and Nb/Au/~1 1 20!YBCO at low voltages
was found and investigated; this is the conductance anom
due to multiple Andreev reflection in the junctions from s
perconductors with adx22y2 type of order-parameter symme
try. The Lorentzian shape and the}1/T temperature depen
dence of the amplitude of the conductance anomaly in
YBCO heterojunctions indicate that its broadening is due
quasiparticle scattering on impurities and lattice defec
which is independent of the direction of the quasiparti
momentum, in the YBCO near the boundary. We have inv
tigated the shot and thermal noise in Nb/Au/~1 1 20!YBCO
heterojunctions, but we observed no excess noise due to
effect of Andreev reflection.

*E-mail: gena@hitech.cplire.ru
1!In the presence of the order-parameter suppression near the bounda

N/d junctions, bound states can also form at finite energies.8

2!X-ray diffraction experiments on~1 1 20!YBCO films have shown that
such films are single-domain and have a single twin complex,13 unlike, for
example, YBCO films on (110)SrTiO3 and ~120!NGO substrates.12

3!Formula~2! is valid in the case of a spherical Fermi surface of the ma
rials in contact. We note that even in the absence of an insulating laye
transparencyD̄!1 for the case of a large mismatch of the Fermi velociti
of the metals in contact.

4!For the Nb/Au/YBCO IHJ one hasRN[R0(Tc), while for the Au/YBCO
IHJ the value ofRN was determined from the I–V characteristic as t
maximum value of the resistance at 4.2 K. The low values ofTc for the
Nb/Au/YBCO IHJ (Tc'53 K) are apparently due to the escape of oxyg
from the openab planes of the YBCO~1 1 20! films during preparation of
the samples.

5!We note that, as in the case of the Nb/Au/YBCOc-HJ, at low amplitudes
of the external influence the first Shapiro step is symmetric with respec
the autonomous I–V characteristic; this attests to the coherence o
Josephson generation in autonomous junctions.26
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On the nonmonotonic temperature dependence of the magnetization of YBCO single
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The results of experiments on the low-field dc magnetic response of YBa2Cu3O72x single
crystals having unidirectional twinning planes are presented. The nonmonotonicity observed in the
temperature dependence of the magnetization of the samples is interpreted in the framework
of a possible model for the existence of a system of Josephson weak links on the twinning planes
and of anisotropy of the order parameter. ©2004 American Institute of Physics.
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Research on high-Tc superconductors~HTSCs! by mag-
netometric methods is topical both from the standpoint
understanding the nature of the formation of hig
temperature superconductivity and for applied purposes.
advantage of such methods is their unique sensitivity in s
ies using SQUID magnetometry and the absence of conta
which could alter the structure of the object near the surfa
Despite numerous theoretical and experimental studie
metaloxide HTSCs,1,2 a number of questions remain to b
clarified, for example, in connection with the magnetic fl
dynamics and the appearance of spontaneous curren
weak magnetic fields and at temperatures close to the cri
point in the presence of various structural inhomogeneiti3

In the design of rf SQUIDs and their input antenna eleme
~flux transformers! the solubility to these problems is u
gently needed in order to reduce the inherent magnetic n
of sensors and to improve the sensitivity of equipm
cooled at the nitrogen level.

Here we report the results of observations of nonmo
tonic temperature dependence of the magnetization of YB
single crystals at very low magnetic fields~0.01–0.2 Oe!,
possibly caused by a thermally activated transformation o
system of Josephson weak links on unidirectional twins
the region near the superconducting phase transition. As
object of study we chose impurity-free oriented single cr
tals of YBa2Cu3O72x grown by flux-melt technology at a
low longitudinal temperature gradient.4 After annealing in an
oxygen flow the single crystals had a superconducting tr
sition temperatureTc of 93 K, which was measured by
resistive method at ‘‘zero’’ magnetic field, and the width
the superconducting transition was 0.3 K, which attests to
high quality of the samples. The annealing necessary for
timal doping in an oxygen flow at 400 °C leads to a tran
formation of the tetragonal structure of the crystals to ort
rhombic and, as a consequence, to the formation of twinn
planes. To study the influence of these planar defects on
ning processes we chose single crystals of YBa2Cu3O72x

with dimensions close to 13130.02 mm, having unidirec-
6101063-777X/2004/30(7–8)/3/$26.00
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tional twin boundaries oriented parallel to thec axis of the
crystal.

The low-field measurements of the temperature dep
dence of the magnetization of YBa2Cu3O72x near the phase
transition temperature were made using a magnetic susc
bility meter based on a SQUID gradientometer~of the
dBz /dZ type! with cooling at the helium level. A standar
technique of dc magnetization measurement by registe
the response of an rf SQUID to motion of a sample along
axis of its antenna in the uniform magnetic field of
solenoid.5 The residual level of Earth’s magnetic field in th
region of the experimental chamber was reduced to 0.5 m
or less by the use of multilevel Permalloy shielding. Add
tional compensation of the residual field could be achiev
with the use of an auxiliary solenoid. This permitted cooli
of the sample and bringing it to the superconducting state
the zero-field cooling~ZFC! regime.

Figure 1 shows the typical temperature dependence
the output voltage of the susceptibility meter as the tempe
ture of one of the samples was increased in the region aro
the superconducting phase transition. The coefficient of c
version of magnetic moment into the voltage response of
experimental apparatus wask55310210 A•m2/V in the
working sensitivity range610 F0 , whereF0 is the mag-
netic flux quantum. The magnetic field of the solenoid ha
magnitude equal to 15.5 A/m ('0.2 Oe) and was directed
along thec axis of the single crystal. In this orientation th
magnetic field is parallel to the twinning planes, and the m
effective pinning of Abrikosov vortices is achieved. To
high degree of accuracy similar curves were obtained fo
number of YBCO single crystals with the optimum dopin
level. As can be seen in Fig. 1, the curve of the superc
ducting phase transition, unlike the data from resistive m
surements on YBCO single crystals,4 is nonmonotonic and
occupies a significant temperature interval (DT53 – 5 K).
The curves exhibited a smoothed step that cannot be
plained by melting of a vortex lattice1 at the low values of
magnetic field used in the experiment.
© 2004 American Institute of Physics
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Let us mention a few key points in this regard. In stud
ing the magnetic susceptibility of polycrystalline cuprates
the YBCO and RBCO type (R5Nd, Eu, Gd! the authors of
Ref. 6 found that some of the samples that had been
jected to annealing in oxygen had ZFC curves of the ph
transition with a smoothed steplike kink. This form of th
temperature dependence of the susceptibility of a HTSC
characteristic of the regime of the ‘‘glass–liquid’’ transitio
of the vortex matter, which occurs at a temperatureTg,Tc

in strong magnetic fieldsH.Hc1 . Since in the experimen
described in Ref. 6 the magnetic fields were weakH
510– 30 Oe), the observed stepped form of the phase c
acteristics was attributed to a transformation of a medium
Josephson weak links at low magnetic fields, which was p
dicted in the theoretical studies.7

The superconducting granules of a cuprate sample
coupled to each other in a random way by barriers of vari
transparency for Cooper pairs and thus form statistically
tributed current networks. The parameters of this Joseph
medium depend on the technology of preparation of
HTSC sample~pressures, degrees of oxygen saturation, e!,
the temperature of the sample, and the external magn
field used in the measurements. By analogy with the s
glass this medium is sometimes called an ‘‘orbital glas
since the orbital moments are identified with circulating
duced or spontaneous superconducting currents. The l
can exist under certain conditions, e.g., in the presence o
odd number of Josephsonp contacts in the random curren
loops. With increasing applied magnetic field the tempe
ture Tg of this transition shifts to lower values, and the st
vanishes completely at higher fields, where the susceptib
demonstrates typical diamagnetic behavior.

We have observed such effects in single-crystal sam
of YBCO. Figure 2 shows the temperature dependence o
magnetization normalized to its maximum value for one
the YBCO single crystals at three values of the magn
field Hic, equal to 8 A/m ('0.1 Oe), 15.5 A/m
('0.2 Oe), and 65.9 A/m ('0.83 Oe). We see that with
increasing fieldH the step shifts to lower temperatures a
becomes smoother.

Because of the anisotropy of the grains, granular su
conductors have a complex microstructure and are more

FIG. 1. Temperature dependence of the output voltage of the suscepti
meter with increasing temperature of the sample in the region of the su
conducting phase transition. The inset shows the temperature depende
the susceptibility of a ceramic HTSC from Ref. 6.
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vorable for the existence of an orbital glass. Abrikosov v
tices can penetrate through the grains along theab planes,
and in that case supercurrents can flow through loops clo
one or several granules. Similar plateaus on the phase
sition curves have also been observed in high-quality epi
ial film samples of YBCO in studies of the current–volta
characteristics and magnetization at high fields (B50.3 T).8

This behavior was interpreted by the authors in the fram
work of a model based on the existence of a one-dimensio
network of Josephson junctions with statistically distribut
lengths and with magnetic field-dependent barrier thi
nesses. There the transport current was treated as a tunn
current through this Josephson network. A given netw
consists of a number of current channels through the in
granular boundaries, and the pinning in this system is
fected at interblock boundaries and/or correlated defects
that case the sizes of the defects are comparable to the
of the current channels and also to the size of the vortex c
At high temperatures a significant fraction of these chann
break up into individual superconducting granules, reduc
the value of the critical current.

The results of our experiments with single-crys
samples of YBCO suggest that the twinning planes cre
conditions for the formation of similar Josephson netwo
with randomly distributed parameters. The twin boundar
include CuOx layers containing oxygen vacancies and hav
strong local influence on the suppression of the superc
ducting order parameter. The suppression of the super
ducting order parameter at twins leads to a lowering of
energy of the vortex lines trapped by the twins. The dens
of vortex lines at twins is therefore higher than in the rest
the crystal. Experiments on the decorrelation of the vor
structure showed that in fields of 20–40 Oe the density
vortices at twins is twice as high as in the bulk of th
crystal.9 Since in a field of 0.2 Oe the intervortex distan
a05(F0 /B)1/2'104 nm exceeds the intertwin distanc
d'103 nm and is comparable to the field penetration de
l'104 nm in the given temperature region, and since
interaction between vortices decays exponentially with
intervortex distance, it can be expected that all of the vorti
are localized at twins.

Subsurface superconducting regions separated by

ity
r-

e of
FIG. 2. Temperature dependence of the magnetization of a YBCO si
crystal, normalized to the maximum value, for different values of the m
netic fieldH @A/m#: 8 ~1!, 15.5 ~2!, 65.9 ~3!.
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boundaries form chaotic loops and networks for circulat
Meissner currents, which determine the resulting magnet
tion of a sample. As the temperature is raised the wea
links are broken, and a redistribution and attenuation of so
of the induced supercurrents occur on account of the cree
individual vortices. The twinning planes, while being effe
tive pinning centers, can simultaneously serve as direct
of facilitated thermally activated entry of magnetic flu
along them, providing regions where spontaneous curr
appear.2 To elucidate the contribution of these mechanisms
the behavior of the magnetization of YBa2Cu3O72x single
crystals the authors plan to continue our investigations
samples in which the twinning planes along thec axis
change direction to the opposite, from~110! to (11̄0), and
also to compare the magnetic responses with untwin
single crystals.

Thus the nonmonotonic dependence of the magnet
tion of optimally doped YBa2Cu3O72x single crystals in
comparison with the published results of studies of cera
and film samples permits the conclusion that a Joseph
character of the behavior of the twin boundaries is poss
in the presence of anisotropy of the order parameter.

The authors thank A. N. Omel’yancuk and M. A. Ob
lenskii for helpful discussions and assistance in organiza
of the research.
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Fractional ac Josephson effect in unconventional superconductors
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For certain orientations of Josephson junctions between twopx-wave or twod-wave
superconductors, the subgap Andreev bound states produce a 4p-periodic relation between the
Josephson currentI and the phase differencew: I}sin(w/2). Consequently, the ac
Josephson current has the fractional frequencyeV/\, whereV is the dc voltage. In the tunneling
limit, the Josephson current is proportional to the first power~and not the square! of the
electron tunneling amplitude. Thus, the Josephson current between unconventional superconductors
is carried by single electrons, rather than by Cooper pairs. The fractional ac Josephson
effect can be observed experimentally by measuring the frequency spectrum of microwave
radiation from the junction. ©2004 American Institute of Physics.@DOI: 10.1063/1.1789931#
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1. BRIEF HISTORY OF THE AC JOSEPHSON EFFECT

In 1962, Josephson1 predicted theoretically that if a d
voltageV is applied to a junction between two supercondu
ors, an ac supercurrent with the frequency 2eV/\ appears
between the superconductors. The ac Josephson radi
was first observed experimentally 40 years ago in Khar
by Yanson, Svistunov, and Dmitrenko.2,3 In Ref. 3, the spec-
trum of microwave radiation from tin junctions was me
sured and a sharp peak in the frequency spectrum at 2eV/\
was found. It is amazing that without any attempt to ma
the impedances of the junction and waveguide, Dmitren
and Yanson3 found a signal several hundred times strong
than the noise and a ratio of linewidth to the Josephson
quency less than 1023. This discovery was followed by fur
ther work in the United States4 and Ukraine.5 The results of
these investigations have been summarized in a cla
book.6 Since then, the ac Josephson radiation has been
served in many materials in various experimental setups.
example, a peak of Josephson radiation was found in Re
in indium junctions at a frequency of 9 GHz with a width
36 MHz. In Ref. 8, a peak of Josephson radiation was
served around 11 GHz with a width of 50 MHz i
Bi2Sr2CaCu2O8 single crystals with the current along thec
axis perpendicular to the layers.

The theory of the Josephson effect was originally dev
oped for conventionals-wave superconductors. In this pape
we study Josephson junctions between unconventional su
conductors, such asd-wave cuprates orpx-wave organic
superconductors. We show that the midgap Andreev st
in these materials produce a 4p-periodic relation between
the Josephson currentI and the phase differenc
w: I}sin(w/2). Consequently, the ac Josephson current
the fractional frequencyeV/\, half of the conventional
value. We hope that this effect can be observed experim
tally as a corresponding peak in the frequency spectrum
Josephson radiation from unconventional superconduc
such asd-wave cuprates, in a manner similar to the pione
6131063-777X/2004/30(7–8)/7/$26.00
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ing experiments2,3 performed on conventionals-wave super-
conductors.

2. INTRODUCTION

In many materials, the symmetry of the superconduct
order parameter is unconventional, i.e., nots-wave. In the
high-Tc cuprates, it is the singletdx22y2-wave.9 There is ex-
perimental evidence that, in the quasi-one-dimensio
~Q1D! organic superconductors (TMTSF)2X,10 the symme-
try is triplet,11 most likely thepx-wave,12 where thex axis is
along the conducting chains. The unconventional pair
symmetry typically results in the formation of midgap An
dreev bound states on the surfaces of these supercondu
For d-wave cuprate superconductors, the midgap Andr
states were predicted theoretically in Ref. 13 and discove
experimentally as a zero-bias conductance peak in tunne
between normal metals and superconductors~see Ref. 14!.
For the Q1D organic superconductors, the midgap sta
were theoretically predicted to exist at the edges perpend
lar to the chains.15,16 When two unconventional supercon
ductors are joined together in a Josephson junction, t
Andreev surface states hybridize to form Andreev bou
states in the junction. These states are important for the
sephson current. Andreev bound states in high-Tc junctions
were reviewed in Ref. 17. The Josephson effect between
Q1D p-wave superconductors was studied in Refs. 18 a
19.

In the present paper, we predict a new effect for Jose
son junctions between unconventional~nonchiral! supercon-
ductors, which we call the fractional ac Josephson effe
Suppose both superconductors forming a Josephson jun
have surface midgap states originally. This is the case
butt-to-butt junctions between twopx-wave Q1D supercon-
ductors, as shown in Fig. 1a, and for 45°/45° in-plane junc-
tions between twod-wave superconductors, as shown in F
3a. ~The two angles indicate the orientation of the juncti
line relative to theb axes of eachdx22y2 superconductor.!
© 2004 American Institute of Physics



ev
e
c

ha

d
fre
on

rre
d

p

ls
o

fe

a

th

ne
e
th
s
n
in
e

O
u
e

ir

s

s

face
that

the
n

-

e
-

-

1D
tors

ion

een

-

614 Low Temp. Phys. 30 (7–8), July–August 2004 Kwon et al.
We predict that the contribution of the hybridized Andre
bound states produces a 4p-periodic relation between th
supercurrentI and the superconducting phase differen
w: I}sin(w/2).20 Consequently, the ac Josephson effect
the frequencyeV/\, wheree is the electron charge,V is the
applied dc voltage, andh is Planck’s constant. The predicte
frequency is one-half of the conventional Josephson
quency 2eV/\ originating from the conventional Josephs
relation I}sinw with period 2p. Qualitatively, the predicted
effect can be understood as follows. The Josephson cu
across the two unconventional superconductors is carrie
tunneling of single electrons~rather than Cooper pairs! be-
tween the two resonant midgap states. Thus, the Cooper
charge 2e is replaced by the single chargee in the expres-
sion for the Josephson frequency. This interpretation is a
supported by the finding that, in the tunneling limit, the J
sephson current is proportional to the first power~not square!
of the electron tunneling amplitude.21–23Possibilities for ex-
perimental observation of the fractional ac Josephson ef
are discussed in Sec. 4.

The predicted current–phase relationI}sin(w/2) is quite
radical, because every textbook on superconductivity s
that the Josephson current must be a 2p-periodic function of
w.20 To our knowledge, the only paper that has discussed
4p-periodic Josephson effect is that of Kitaev.24 He consid-
ered a highly idealized model of spinless fermions on a o
dimensional~1D! lattice with superconducting pairing on th
neighboring sites. The pairing potential in this case has
px-wave symmetry, and midgap states do exist at the end
the chain. They are described by the Majorana fermio
which Kitaev proposed to use for nonvolatile memory
quantum computing. He found that, when two such sup
conductors are placed in contact, the system is 4p-periodic
in the phase difference between the superconductors.
results are in agreement with his work. However, we form
late the problem as an experimentally realistic Josephson
fect between known superconducting materials.

3. THE BASICS

In this paper, we consider singlet pairing and triplet pa
ing with the spin polarization vectorn having a uniform,

FIG. 1. Josephson junction between two Q1Dpx-wave superconductors
(a). The energies~left panel! and the currents~right panel! of the subgap
states in thes–s junction as functions of the phase differencew for D51
~thin lines! and D50.9 ~thick lines! (b). The same as (b) for the px–px

junction atD50.2 (c).
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momentum-independent orientation.11,12 If the spin quantiza-
tion axisz is selected alongn, then the Cooper pairing take
a place between electrons with the oppositez-axis spin pro-
jectionss and s̄: ^ ĉs(k) ĉs̄(2k)&}Ds(k), where ĉs(k) is
the annihilation operator of an electron with momentumk
and spins. The pairing potential has the symmetryDs(k)
57Ds̄(k)56Ds(2k), where the upper and lower sign
correspond to the singlet and triplet cases.

We select the coordinate axisx perpendicular to the
plane of the Josephson junction. We assume that the inter
between the two superconductors is smooth enough, so
the electron momentum componentky parallel to the junc-
tion plane is a conserved good quantum number.

Electron states in a superconductor are described by
Bogoliubov operatorsĝ, which are related to the electro
operatorsĉ by the following equations25

ĝnsky
5E dx@unsky

* ~x!ĉsky
~x!1vnsky

* ~x!ĉ
s̄ k̄y

†
~x!#, ~1!

ĉsky
~x!5(

n
@unsky

~x!ĝnsky
1v

ns̄ k̄y

* ~x!ĝ
ns̄ k̄y

†
#, ~2!

wherek̄y52ky , andn is the quantum number of the Bogo
liubov eigenstates. The two-component vectorscnsky

(x)
5@unsky

(x),vnsky
(x)# are the eigenstates of th

Bogoliubov–de Gennes~BdG! equation with the eigenener
giesEnsky

:

S «ky
~ k̂x!1U~x! D̂sky

~x,k̂x!

Dsky

† ~x,k̂x! 2«ky
~ k̂x!2U~x!

D cn5Encn , ~3!

wherek̂x52 i ]x is thex component of the electron momen
tum operator, andU(x) is a potential. In Eq.~3! and below,
we often omit the indicess and ky to shorten the notation
where this will not cause confusion.

4. JUNCTIONS BETWEEN QUASI-ONE-DIMENSIONAL
SUPERCONDUCTORS

In this Section, we consider junctions between two Q
superconductors, such as the organic superconduc
(TMTSF)2X, with the chains along thex axis, as shown in
Fig. 1a. For a Q1D conductor, the electron energy dispers
in Eq. ~3! can be written as«5\2kx

2/2m22tb cos(bky)2m,
wherem is an effective mass,m is the chemical potential,b
and tb are the distance and the tunneling amplitude betw
the chains. The superconducting pairing potentials in thes-
andpx-wave cases have the forms

D̂sky
~x,k̂x!5H sDb , s-wave,

Dbk̂x /kF , px-wave,
~4!

where\kF5A2mm is the Fermi momentum, ands is treated
as1 for ↑ and2 for ↓. The indexb5R,L labels the right
(x.0) and left (x,0) sides of the junction, andDb acquires
a phase differencew across the junction:

DL5D0 , DR5D0eiw. ~5!

The potentialU(x)5U0d(x) in Eq. ~3! represents the junc
tion barrier located atx50. Integrating Eq.~3! over x from
20 to 10, we find the boundary conditions atx50:
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cL5cR , ]xcR2]xcL5kFZc~0!, ~6!

Z52mU0 /\2kF , D54/~Z214!, ~7!

whereD is the transmission coefficient of the barrier.

4.1. Andreev bound states

The general solution of Eq.~3! is a superposition of
terms with momenta close toakF , where the indexa56
labels the right- and left-moving electrons:

cbs5ebkxFAbS ubs1

vbs1
Dei k̃Fx1BbS ubs2

vbs2
De2 i k̃FxG . ~8!

Here b57 for R and L. Equation~8! describes a subga
bound state with an energyuEu,D0 , which is localized at
the junction and decays exponentially inx within the length
1/k. The coefficients (ubsa , vbsa) in Eq. ~8! are determined
by substituting the right- and left-moving terms separat
into Eq.~3! for xÞ0, whereU(x)50. In the limitkF@k, we
find

ubsa

vbsa
5

Dbsa

E1 iab\kvF
, k5

AD0
22uEu2

\vF
, ~9!

wherevF5\kF /m is the Fermi velocity, andDbsa is equal
to sDb for the s-wave case and toaDb for the px-wave,
with Db given by Eq.~5!. Theky-dependent Fermi momen
tum \ k̃F5\kF12tb cos(bky)/vF in Eq. ~8! eliminates the dis-
persion inky from the BdG equation.

Substituting Eq.~8! into the boundary conditions~6!, we
obtain linear homogeneous equations for the coefficientsAb

and Bb . The compatibility condition for these equation
gives an equation for the energies of the Andreev bo
states. There are two subgap states, with the energieEa

5aE0(w) labeled by the indexa56:

E0
~s!~w!52D0A12D sin2~w/2!, s–sjunction, ~10!

E0
~p!~w!52D0AD cos~w/2!, px–pxjunction. ~11!

The energies~10! and ~11! are plotted as functions ofw
in the left panels (b) and (c) of Fig. 1. Without the barrier
(D51) the spectra of thes–s and px–px junctions are the
same and consist of two crossing curvesE57D0 cos(w/2),
shown by the thin lines in the left panel of Fig. 1b. A nonzero
barrier (D,1) changes the energies of the Andreev bou
states in thes–s and px–px junctions in different ways. In
the s–s case, the two energy levels repel nearw5p and
form two separated 2p-periodic branches shown by the thic
lines in the left panel of Fig. 1b.25,26In contrast, in thepx–px

case, the two energy levels continue to cross atw5p, and
they are separated from the continuum of states above1D0

and below2D0 , as shown in the left panel of Fig. 1c. The
absence of repulsion of the energy levels indicates that t
is no matrix element between these levels atw5p in the
px–px case, unlike thes–s case.

As will be shown in Sec. 5, the 45°/45° junction b
tween two d-wave superconductors is mathematica
equivalent to thepx–px junction. Equation~11! was derived
for the 45°/45° junction in Refs. 22, 23, and 27.
y

d

d

re

4.2. DC Josephson effect in thermodynamic equilibrium

It is well known25,28 that the current carried by a quas
particle statea is

I a5
2e

\

]Ea

]w
. ~12!

The two subgap states carry opposite currents, which
plotted versusw in the right panels (b) and (c) of Fig. 1 for
the s–s and px–px junctions. In thermodynamic equilib
rium, the total current is determined by the Fermi occupat
numbersf a of the states at temperatureT:

I 5
2e

\ (
a56

]Ea

]w
f a52

2e

\

]E0

]w
tanhS E0

2TD . ~13!

For thes–s junction, substituting Eq.~10! into Eq. ~13!, we
recover the Ambegaokar–Baratoff formula29 in the tunneling
limit D!1:

I s'D sinw
eD0

2\
tanhS D0

2TD5sinw
pD0

2eR
tanhS D0

2TD ~14!

and the Kulik–Omelyanchuk formula30 in the transparent
limit D→1:

I s'sinS w

2 D eD0

\
tanhS D0 cos~w/2!

2T D . ~15!

Taking into account that the total current is proportional
the numberN of conducting channels in the junction~e.g.,
the number of chains!, we have replaced the transmissio
coefficient D in Eq. ~14! by the junction resistance
R5\/2Ne2D in the normal state.

Substituting Eq.~11! into Eq. ~13!, we find the Joseph-
son current in apx–px junction in thermodynamic equilib-
rium:

I p5AD sinS w

2 D eD0

\
tanhS D0AD cos~w/2!

2T D
5sinS w

2 D pD0

ADeR
tanhS D0AD cos~w/2!

2T D . ~16!

The temperature dependences of the critical currents
the s–s andpx–px junctions are shown in Fig. 2. They ar
obtained from Eqs.~14! and ~16! assuming the BCS tem

FIG. 2. Critical current of thes–s ~dashed line! and px–px ~solid line!
Josephson junctions as a function of temperature forD50.3.
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perature dependence forD0 . In the vicinity of Tc , I p and I s

have the same behavior. With the decrease of temperaturI s

quickly saturates to a constant value, because, forD!1,
Ea

(s)'7D0 ~10!; thus for T&D0 , the upper subgap state
empty and the lower one is completely filled. In contrast,I p

increases rapidly with decreasing temperature, as 1/T, and
saturates to a value enhanced by the factor 2/AD relative to
the Ambegaokar–Baratoff formula~10! at T50. This is a
consequence of two effects. As Eqs.~14! and ~16! show,
I s}D and I p}AD, and thusI p@I s in the tunneling limit
D!1. At the same time, the energy splitting between the t
subgap states in thepx–px junction is small compared to th
gap: E0

(p)}ADD0!D0 . Thus, forADD0&T&D0 , the two
subgap states are almost equally populated, so the cri
current has the 1/T temperature dependence analogous to
Curie spin susceptibility.

Equation~16! was derived analytically for the 45°/45
junction between twod-wave superconductors in Refs. 2
and 22, and a similar result was calculated numerically
the px–px junction in Refs. 18 and 19. Notice that Eq.~16!
gives a Josephson currentI p(w) that is a 2p-periodic func-
tion of w, both forT50 andTÞ0. This is a consequence o
the thermodynamic equilibrium assumption. AtT50, this
assumption implies that the subgap state with the lower
ergy is occupied, and the one with the higher energy
empty. As one can see in Fig. 1, the lower energy is alw
a 2p-periodic function ofw. The assumption of thermody
namic equilibrium was explicitly made in Ref. 22 and w
implicitly invoked in Refs. 18, 19, and 21 in their use of th
Matsubara diagram technique. In Ref. 31, the tempera
dependence of the Josephson critical current was meas
in YBCO ramp-edge junctions with different crystal angl
and was found to be qualitatively consistent with the up
curve in Fig. 2.

4.3. Dynamical fractional ac Josephson effect

The calculations of the previous Section are applied
the static case, where a given phase differencew is main-
tained for an infinitely long time, so the occupation numb
of the subgap states have enough time to relax to therm
namic equilibrium. Now let us consider the opposite dynam
cal limit. Suppose a small voltageeV!D0 is applied to the
junction, so the phase difference acquires dependence
time t: w(t)52eVt/\. In this case, the state of the system
determined dynamically starting from the initial condition
Let us consider thepx–px junction atT50 in the initial state
w50, where the two subgap states~11! with the energies
6E0 are, respectively, occupied and empty. Ifw(t) changes
sufficiently slowly~adiabatically!, the occupation numbers o
the subgap states do not change. In other words, the s
shown by the solid and dotted lines in Fig. 1c remain occu-
pied and empty, respectively. The occupied state~11! pro-
duces the current~12!:

I p~ t !5
ADeD0

\
sinS w~ t !

2 D5
ADeD0

\
sinS eVt

\ D . ~17!

The frequency of the ac current~17! is eV/\, a half of the
conventional Josephson frequency 2eV/\. The fractional
frequency can be traced to the fact that the energies of
~11! and the corresponding wave functions have a period
,
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4p in w, rather than conventional 2p. Although atw52p the
spectrum in the left panel of Fig. 1c is the same as a
w50, the occupation numbers are different. The lower st
is empty and the upper state is occupied. Only atw54p are
the occupation numbers the same as atw50.

The 4p periodicity is a consequence of the energy lev
crossing atw5p. In contrast, in thes-wave case, the levels
repel atw5p in Fig. 1b, and so the energy curves are 2p-
periodic. As discussed at the end of Sec. 4.1, there is
matrix element between the crossing energy levels aw
5p. Thus, there are no transitions between them, so
occupation numbers of the solid and dotted curves in Figc
are conserved. In order to show this more formally, we c
write a general solution of the time-dependent BdG equa
as a superposition of the two subgap states with tim
dependentw(t): c(t)5(aCa(t)ca@w(t)#. The matrix ele-
ment of transitions between the states is proportional
ẇ^c1u]fc2&5ẇ^c1u]fĤuc2&/(E22E1). We found that
it is zero in thepx-wave case, and thus there are no tran
tions, and the initial occupation numbers of the subgap st
at w50 are dynamically conserved.

As one can see in Fig. 1c, the system is not in the groun
state whenp,w,3p, because the upper energy level
occupied and the lower one is empty. In principle, the syst
might be able to relax to the ground state by emitting
phonon or a photon. At present time, we do not have
explicit estimate for such an inelastic relaxation time, but
expect that it is quite long.~The other papers18,19,21,22that
assume thermodynamic equilibrium for each value of
phasew do not have an estimate of the relaxation time
ther.! To observe the predicted ac Josephson effect with
fractional frequencyeV/\, the period of Josephson oscilla
tions should be set shorter than the inelastic relaxation ti
but not too short, so that the time evolution of the Bd
equation can be treated adiabatically. Controlled nonequ
rium population of the upper Andreev bound state was
cently achieved experimentally32 in an s-wave Josephson
junction.

Equation~17! can be generalized to the case where i
tially the two subgap states are populated thermally
w50, and these occupation numbers are conserved in
dynamical evolution:

I p~ t !5
2e

\ (
a

]Ea@w~ t !#

]w
f @Ea~w50!# ~18!

5sinS eVt

\ D pD0

ADeR
tanhS D0AD

2T D . ~19!

Note that the periodicities of the dynamical equation~16!
and the thermodynamic equation~19! are different. The latter
equation assumes that the occupation numbers of the su
states are in instantaneous thermal equilibrium for eachw.

4.4. Tunneling Hamiltonian approach

In the infinite barrier limitD→0, the energies6E0
(p) of

the two subgap states~11! degenerate to zero, i.e., they b
come midgap states. The wave functions~8! are simplified as
follows:
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c605
cL0~x!7cR0~x!

&
, ~20!

cL05A2k sin~kFx!ekxS 1
i D u~2x!, ~21!

cR05A2k sin~kFx!e2kxS eiw/2

2 ie2 iw/2D u~x!. ~22!

Since atD50 the Josephson junction consists of two sem
infinite uncoupledpx-wave superconductors,cL0 and cR0

are the wave functions of the surface midgap states15 belong-
ing to the left and right superconductors. Let us examine
properties of the midgap states in more detail.

If ( u,v) is an eigenvector of Eq.~3! with eigenvalueEn ,
then (2v* ,u* ) for the s-wave case and (v* ,u* ) for the
p-wave case are the eigenvectors with the ene
En̄52En . It follows from these relations and Eq.~1! that
ĝ ns k̄y

5Cĝnsky

† with uCu51. Notice that in thes-wave case,

because (u,v) and (2v* ,u* ) are orthogonal for anyu and
v, the statesn and n̄ are always different. However, in th
p-wave case, the vectors (u,v) and (v* ,u* ) may be propor-
tional, in which case they describe the same state w
E50. The states~21! and ~22! indeed have this property:

vL05 iuL0* , vR052 iuR0* . ~23!

Substituting Eq.~23! into Eq. ~1!, we find the Bogoliubov
operators of the left and right midgap states

ĝL0sky

† 5 i ĝL0s̄ k̄y
, ĝR0sky

† 52 i ĝR0s̄ k̄y
. ~24!

Operators~24! correspond to the Majorana fermions di
cussed in Ref. 24. In the presence of a midgap state, the
over n in Eq. ~2! should be understood as(n.01 1

2(n50 ,
where we identify the second term as the projectionPĉ of
the electron operator onto the midgap state. Using Eqs.~23!,
~24!, and~2!, we find

Pĉaky
~x!5u0~x!ĝ0sky

5v0* ~x!ĝ
0s̄ k̄y

†
. ~25!

Let us consider two semi-infinitepx-wave superconduct
ors on a 1D lattice with the spacingl , one occupyingx< l̄
52 l and the otherx> l . They are coupled by the tunnelin
matrix elementt between the sitesl̄ and l :

Ĥt5t(
sky

@ ĉLsky

† ~ l̄ !ĉRsky
~ l !1 ĉRsky

† ~ l !ĉLsky
~ l̄ !#. ~26!

In the absence of coupling (t50), the subgap wave func
tions of each superconductor are given by Eqs.~21! and~22!.
Using Eqs.~25!, ~23!, ~21!, and~22!, we find that the tunnel-
ing Hamiltonian projected onto the basis of midgap state

PĤt5t@uL0* ~ l̄ !uR0~ l !1c.c.#~ ĝL0↑
† ĝR0↑1H.c.!

5D0AD cos~w/2!~ ĝL0↑
† ĝR0↑1ĝR0↑

† ĝL0↑!, ~27!

where AD54t sin2 kFl/\vF is the transmission amplitude
and we have omitted summation over the diagonal indexky .
Notice that Eq.~27! is 4p-periodic inw.24

Hamiltonian ~27! operates between the two degener
states of the system related by annihilation of the Bogoliub
-

e

y

th

um

is

e
v

quasiparticle in the right midgap state and its creation in
left midgap state. In this basis, Hamiltonian~27! can be writ-
ten as a 232 matrix:

PĤt5D0AD cos~w/2!S 0 1

1 0D . ~28!

The eigenvectors of Hamiltonian~28! are (1,71), i.e., the
antisymmetric and symmetric combinations of the right a
left midgap states given in Eq.~20!. Their eigenenergies ar
E6(w)57D0AD cos(w/2), in agreement with Eq.~11!. The
tunneling current operator is obtained by differentiating E
~27! or ~28! with respect tow. Becausew appears only in the
prefactor, the operator structures of the current operator
the Hamiltonian are the same, so they are diagonal in
same basis. Thus, the energy eigenstates are simultane
the eigenstates of the current operator, with the eigenval

I 656ADe
D0

\
sinS w

2 D , ~29!

in agreement with Eq.~17!. The same basis (1,71) diago-
nalizes Hamiltonian~28! even when a voltageV is applied
and the phasew is time-dependent. Then the initially popu
lated eigenstate with the lower energy produces the cur
I p5AD(eD0 /\)sin(eVt/\) with the fractional Josephson fre
quencyeV/\, in agreement with Eq.~17!.

4.5. Josephson current carried by single electrons rather
than Cooper pairs

In the tunneling limit, the transmission coefficientD is
proportional to the square of the electron tunneling am
tude t: D}t2. Equations~17! and ~29! show that the Jo-
sephson current in thepx–px junction is proportional to the
first power of the electron tunneling amplitudet. This is in
contrast to thes–s junction, where the Josephson curre
~14! is proportional tot2. This difference results in a larg
ratio I p /I s52/AD between the critical currents atT50 in
thepx- ands-wave cases, as shown in Fig. 2 and discusse
Sec. 4.2. The reason for the different powers oft is the
following. In thepx-wave case, the transfer of just one ele
tron between the degenerate left and right midgap states
real ~nonvirtual! process. Thus, the eigenenergies are de
mined from the secular equation~28! already in the first or-
der of t. In the s-wave case, there are no midgap states,
the transferred electron is taken from below the gap a
placed above the gap, at the energy cost 2D0 . Thus, the
transfer of a single electron is a virtual~not real! process. It
must be followed by the transfer of another electron, so t
a pair of electrons is absorbed into the condensate. This
plies that the current is proportional tot2.

This picture implies that the Josephson supercurr
across the interface is carried by single electrons in
px–px junction and by Cooper pairs in thes–s junction.
Because the single-electron chargee is a half of the Cooper-
pair charge 2e, the frequency of the ac Josephson effect
the px–px junction is eV/\, a half of the conventional Jo
sephson frequency 2eV/\ for the s–s junction. These con-
clusions also apply to a junction between two cupr
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d-wave superconductors in such an orientation that b
sides of the junction have surface midgap states, e.g., to
45°/45° junction~see Sec. 5!.

In both thepx–px and s–s junctions, electrons trans
ferred across the interface are taken away into the bulk
the supercurrent of Cooper pairs. In the case of thepx–px

junction, a single transferred electron occupies a mid
state until another electron gets transferred. Then the pa
electrons becomes absorbed into the bulk condensate
midgap state returns to the original configuration, and
cycle repeats. In the case of thes–s junction, two electrons
are simultaneously transferred across the interface and
come absorbed into the condensate. Clearly, electric ch
is transferred across the interface by single electrons at a
proportional tot in the first case and by Cooper pairs at
rate proportional tot2 in the second case, but the bulk s
percurrent is carried by the Cooper pairs in both cases.

5. JOSEPHSON JUNCTIONS BETWEEN d-WAVE
SUPERCONDUCTORS

In this Section we study Josephson junctions betw
two d-wave cuprate superconductors. As before, we se
the coordinatex perpendicular to the junction line and a
sume that the electron momentum componentky parallel to
the junction line is a conserved good quantum number. T
the 2D problem separates into a set of 1D solutions~8! in the
x direction labeled by the indexky . Using an isotropic elec-
tron energy dispersion law«5\2(kx

21ky
2)/2m2m, we re-

place the Fermi momentumkF and velocityvF by their x
componentskFx5AkF

22ky
2 and vFx5\kFx /m. Thus, the

transmission coefficientD in Eq. ~7! becomesky-dependent.
The total Josephson current is given by a sum over all oc
pied subgap states labeled byky .

For the cuprates, let us consider a junction parallel to

@1,1̄# crystal direction in thea–b plane and select thex axis
along the diagonal@1, 1#, as shown in Fig. 3a. In these co-
ordinates, thed-wave pairing potential is

D̂sky
~x,k̂x!5s2Dbkyk̂x /kF

2, ~30!

where the same notation as in Eq.~4! is used. Direct com-
parison of Eqs.~30! and ~4! demonstrates that thed-wave
superconductor with the 45° junction maps to thepx-wave
superconductor by the substitutionD0→s2D0ky /kF . Thus,
the results obtained in Sec. 4 for thepx–px junction apply to

FIG. 3. Schematic drawing of the 45°/45° junction (a) and 0°/0° junction
(b) between twod-wave superconductors. The thick line represents
junction line. The circles illustrate the Fermi surfaces, where positive
negative pairing potentialsD are shown by the solid and dotted lines. Th
points A, B, C, and D in momentum space are connected by transmis
and reflection from the barrier.
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the 45°/45° junction between twod-wave superconductor
with the appropriate integration overky . The energies and
the wave functions of the subgap Andreev states in
45°/45° junction are 4p-periodic, as in Eqs.~11!. Thus the ac
Josephson current has the fractional frequencyeV/\, as in
Eq. ~17!.

On the other hand, if the junction is parallel to the@0, 1#
crystal direction, as shown in Fig. 3b, then D̂sky

(x,k̂x)

5sDb( k̂x
22ky

2)/kF
2 . This pairing potential is an even func

tion of kx , and so it is analogous to thes-wave pairing
potential in Eq.~4!. Thus the 0°/0° junction between tw
d-wave superconductors is analogous to thes–s junction. It
should exhibit the conventional 2p-periodic Josephson effec
with the frequency 2eV/\.

For a generic orientation of the junction line, thed-wave
pairing potential acts likepx-wave for some momentaky and
like s-wave for otherky . Thus, the total Josephson current
a sum of the unconventional and conventional terms:20

I 5C1 sin~w/2!1C2 sin~w!1..., ~31!

with some coefficientsC1 andC2 . We expect that both term
in Eq. ~31! are present for any real junction betweend-wave
superconductors because of imperfections. However, the
tio C1 /C2 should be maximal for the junction shown in Fig
3a and minimal for the junction shown in Fig. 3b.

6. EXPERIMENTAL OBSERVATION OF THE FRACTIONAL
AC JOSEPHSON EFFECT

Conceptually, the setup for experimental observation
the fractional ac Josephson effect is straightforward. O
should apply a dc voltageV to the junction and measure th
frequency spectrum of microwave radiation from the jun
tion, expecting to detect a peak at the fractional freque
eV/\. To observe the fractional ac Josephson effect p
dicted in this paper, it is necessary to perform this expe
ment with the 45°/45° cuprate junctions shown in Fig. 3a.
For control purposes, it is also desirable to measure the
quency spectrum for the 0°/0° junction shown in Fig. 3b,
where a peak at the frequencyeV/\ should be minimal. It
should be absent completely in a conventionals–s junction,
unless the junction enters a chaotic regime with per
doubling.33 The high-Tc junctions of the required geometr
can be manufactured using the step-edge technique. Bicr
junctions are not appropriate, because the crystal axesa and
b of the two superconductors are rotated relative to e
other in such junctions. As shown in Fig. 3a, we need the
junction where the crystal axes of the two superconduc
have the same orientation. Unfortunately, attempts to ma
facture Josephson junctions from the Q1D organic superc
ductors (TMTSF)2X thus far have failed.

The most common way of studying the ac Joseph
effect is observation of the Shapiro steps.34 In this setup, the
Josephson junction is irradiated by microwaves with the f
quencyv, and steps in the dc current are detected at the
voltages Vn5n\v/2e. Unfortunately, this method is no
very useful for studying the effect that we predict. Indee
our results are effectively obtained by the substitutione
→e. Thus, we expect to see the Shapiro steps at the volta
Vm5m\v/e52m\v/2e, i.e., we expect to see only eve
Shapiro steps. However, when both terms are present in
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~31!, they produce both even and odd Shapiro steps, s
would be difficult to differentiate the novel effect from th
conventional Shapiro effect. Notice also that the so-ca
fractional Shapiro steps observed at the voltageV1/2

5\v/4e corresponding ton51/2 have nothing to do with
the effect that we propose. They originate from the hig
harmonics in the current–phase relationI}sin(2w). The frac-
tional Shapiro steps have been observed in cuprates35 but
also in conventionals-wave superconductors.36 Another
method of measuring the current–phase relation in cupr
was employed in Ref. 37, but the connection with our th
retical results is not clear at the moment.

7. CONCLUSIONS

In this paper, we have studied suitably orientedpx–px or
d–d Josephson junctions, where the superconductors
both sides of the junction originally have the surface A
dreev midgap states. In such junctions, the Josephson cu
I , carried by the hybridized subgap Andreev bound state
a 4p-periodic function of the phase differencew: I
}sin(w/2), in agreement with Ref. 24. Thus the ac Joseph
current should exhibit the fractional frequencyeV/\, a half
of the conventional Josephson frequency 2eV/\. In the tun-
neling limit, the Josephson current is proportional to the fi
power of the electron tunneling amplitude and not to
square, as in the conventional case.21–23Thus, the Josephso
current in the case considered is carried by single elect
with chargee rather than by Copper pairs with charge 2e.
The fractional ac Josephson effect can be observed ex
mentally by measuring the frequency spectrum of microw
radiation from the junction and detecting a peak ateV/\.
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We implement the impedance measurement technique~IMT ! for characterization of interferometer-
type superconducting qubits. In the framework of this method, the interferometer loop is
inductively coupled to a high-quality tank circuit. We show that the IMT is a powerful tool for
studying the response of an externally controlled two-level system to different types of
excitations. Conclusive information about the qubits is obtained from a readout of the tank
properties. ©2004 American Institute of Physics.@DOI: 10.1063/1.1789933#
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1. INTRODUCTION

Quantum effects in mesoscopic superconducting circ
of small Josephson junctions have attracted renewed a
tion. It was clearly demonstrated that Josephson devices
behave like single microscopic particles if they are su
ciently isolated from the environment. Therefore, ideas
veloped in atomic and molecular physics can be used
description of artificially fabricated circuits of macroscop
size. These concepts are stimulated further by the prospe
a promising way to realize quantum bits~qubits! for quantum
information processing.

Qubits are two-level quantum systems with externa
controlled parameters. Generally, two kinds of such devi
with small-size Josephson junctions have been develo
One approach is based on the charge degree of freed
basic states of this kind of qubit are distinguished by
number of Cooper pairs on a specially designed island.
alternative realization utilizes the phase of a Josephson j
tion ~or the flux in a ring geometry!, which is conjugate to
the charge degree of freedom. Due to macroscopic the siz
superconducting qubits, they are extremely sensitive to
6201063-777X/2004/30(7–8)/9/$26.00
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ternal disturbances. Thus the back-action of a detector sh
be as small as possible. Many different detectors have b
suggested in the literature~see Ref. 1 and references therein!.

In this paper we review our results obtained on sup
conducting qubits by the impedance measurement techn
~IMT !. Below we shall discuss several quantum effects
cluding macroscopic quantum tunneling, Landau–Ze
transitions, Rabi oscillations, and direct resonant spect
copy of the qubit energy levels. Finally, we present our ve
recent results of investigation of two coupled qubits.

2. MACROSCOPIC QUANTUM TUNNELING

For the flux qubits the Josephson energy dominates o
the charge energy,EJ@EC . It was predicted that such sys
tems should exhibit various quantum-mechanical effects,
cluding macroscopic quantum tunneling~MQT! of the flux.2

Indeed, the predicted effects have been obser
experimentally.3–6 In this Section we briefly discuss the ma
properties of the flux qubits and demonstrate that the IM
technique is a powerful tool for the investigation of th
MQT.
© 2004 American Institute of Physics
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One of the realizations of the flux qubit is a superco
ducting loop with low inductanceLq , including three Jo-
sephson junctions~a 3JJ qubit!.7 Its total Josephson energy
EJ5( i 51

3 EJi(w i), wherew i andEJi5\I ci/2e are the phase
difference and Josephson energy of thei th junction, respec-
tively. Due to flux quantization, onlyw1,2 are independent
with w352w12w222pFe /F0 (Fe is the external flux
bias andF05h/2e is the flux quantum!, for negligibly small
Lq ~though see Ref. 8!.

At Fe5F0/2 the potentialU(w1 ,w2) has two shallow
minima. These two minima correspond to the qubit statescL

and cR , carrying equal but opposite supercurrents arou
the loop. Therefore, according to the laws of quantum m
chanics, near degeneracy the system can tunnel betwee
two potential minima.

In the basis$cL ,cR% and nearFe5F0/2 the flux qubit
can be described by the Hamiltonian

H52
D

2
sx2

«

2
sz . ~1!

At bias «50, the two lowest levels of the qubit anticros
~Fig. 1a!, with an energy gapD. With « changing sign, the
qubit can either adiabatically transform fromcL to cR stay-
ing in the ground stateE2 or switch to the excited stateE1 .
The probability of the latter~called a Landau–Zener trans
tion! for linear sweep«(t)5nt and« changing from2` to
` was calculated9 to bePLZ5exp(2pD2/2\n).

In order to demonstrate the principle of the IMT me
surements of this system, let us consider the internal
representation~Fig. 1b! instead of the energy representati
~Fig. 1a!. A similar picture is usually used for explanation
the operation of the conventional radio-frequency~rf!

FIG. 1. a–Quantum energy levels of the 3JJ flux qubit versus external fl
The dashed lines correspond to the classical potential minima. In all gra
the statesA, B, C correspond to, say,CL with left-rotating supercurrent. As
Fe is increased, these lose classical stability in favor of the correspon
statesCR , denoted byD, E, andF. b—Internal versus external qubit flux
-

d
-
the

x

SQUID. The main difference between rf-SQUID and qu
behavior is the existence of the adiabatic trajectoryBE for
latter one~see Fig. 1a,b!. Let us assume that trajectoryBE is
forbidden and the ‘‘qubit’’ is inductively coupled to the high
quality resonant circuit. Then the system exhibits hystere
behavior.10 The tank circuit is simultaneously driven by a d
bias currentI dc and an ac currentI r f at a frequencyv close
to the resonance frequency of the tank circuit. The two c
rents produce a total magnetic flux applied to the qubitFe

5Fdc1F r f cosvt. If the amplitudeF r f .Fh , whereFh is
the half-width of the hysteresis loopACFD ~Fig. 1b!, the
tank circuit will register energy losses proportional to t
loop area, as long asuFdc2F0/2u,F r f 2Fh . These losses
occur due to the jumps fromE1 to E2 at the ends of the
loop. This idea was used by Silver and Zimmerman to bu
the first rf SQUID magnetometers.11 If F r f .Fh the rf volt-
age across the tank circuit is aF0-periodic function of ap-
plied dc flux VT(Fdc) with local minima at Fdc5F0/2
1nF0 , wheren is an integer.

Now, let us take into account the additional ‘‘quantum
trajectoryBE ~see Fig. 1b!. If its probability 12PLZ is non-
zero but less than 1, two new closed pathsABED and
BCFE are possible. There are two contributing trajectori
adiabatic and Landau–Zener transition. Therefore the
dissipation isPloss52PLZ(12PLZ) and vanishes ifPLZ is
either too small or too large.13 Due to the exponential depen
dence ofPLZ on the sweep rate, in practice this makes t
quantum losses observable only if the bias sweep narro
overshoots the anticrossing, i.e., if

UFdc2
1

2
F0U&F r f , ~2!

whenFe changes slowly. PlottingVT(Fdc) for F r f .Fh/2,
a plateau flanked by two peaks is expected. The position
the dips depends onF r f as follows from Eq.~2!. Therefore
in contrast to theVT(Fdc) dependence of an rf SQUID, th
qubit should exhibit two local minima~in one period! which
are symmetrical with respect toFdc5F0/2. For amplitudes
F r f .Fh the ACFD hysteresis becomes closed as we
Here, as in the rf SQUID, a local minimum should appear
the Vr f (Fdc) dependence exactly atFdc5F0/2. Note that
Fe here plays the role of a bias« for the Hamiltonian~1!.

To test the ideas discussed above, square-shaped Nb
cake coils with inductanceLT were prepared lithographically
on oxidized Si substrates for the tank circuits. An exter
capacitanceCT was used to permit changing the resona
frequencyvT51/ALTCT. The linewidth of the 30 coil wind-
ings was 2mm, with a 2mm spacing. The quality factor o
the tank wasQT'1500 atvT;20 MHz. The 3JJ qubit struc
ture was fabricated out of Al in the middle of the coil by th
conventional shadow evaporation technique. The Joseph
junctions with critical current densityj c'300 A/cm2 have
areas'1303620 nm, 1203600 nm, and 1103610 nm, re-
spectively. The loop area was 90mm2, with Lq539 pH. The
fabricated structure is shown in Fig. 2.

We measuredVT(Fdc) by a three-stage cryogenic am
plifier placed at'2 K.12 Results for small driving voltage
are shown in Fig. 3. For the smallest voltages no dissipa
response is observed; the two ‘‘quantum’’ peaks app
around 10.7mV ~Ref. 13! and subsequently move apart with

.
s,

g
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out significant broadening. The ‘‘classical’’ peak appears
the center, and with an ac bias thresholddouble that of the
quantum peaks—both as predicted above.

Now assume that the probability of a Landau–Zen
transition is small and the qubit changes adiabatically fr
cL to cR , always staying in the ground stateE2 . This
means that the hysteresisACFD is ‘‘shunted’’ by the BE
trajectory. Therefore there are no losses caused by the
jumps in the qubit. However, in the vicinity ofB ~see Fig.
1b! a small change of the external magnetic flux cause
considerable change of the flux inside the qubit. Due to c
pling of the qubit to the tank, the effective inductance of t
tank–qubit system is changed, which leads to a change o
resonant frequency. In this context a convenient measur
that change is the imaginary part of the total impedanc14

expressed in terms of the phase anglex between the driving
current I bias(t)5I ac cosvt and the tank voltageVT(t)
5VT cos(vt1x). For smallLq and if the amplitude ofI r f is
negligible, the results are summarized by15

tanx5k2QTLq

d2E2~ f x!

dFe
2 , ~3!

FIG. 2. Electron micrograph of the qubit at the center of the tank coil.

FIG. 3. Tank voltage versus magnetic flux bias near the degeneracy po
the qubitF0/2. From the lower to upper curve, the driving voltage is 10
10.7, 11.2, 13.1, 17.2, 21.3, and 22.0mV rms ~the data have been shifte
vertically for clarity!.
n

r

ux

a
-

he
of

wherek5M /ALqLT is the tank–qubit coupling coefficient
with M being the mutual inductance between them. T
ground-state curvature is15

d2E2

dFe
2 52

2EJ
2D2l2

F0
2~4EJ

2l2f x
21D2!3/2, ~4!

where

f x5
Fe

F0
2

1

2
, ~5!

and l is the normalized flux-to-energy conversion facto
Since all quantities in Eqs.~3!–~5! can be measured indepen
dently, experimental results can be compared with theoret
expectations.16

Strictly speaking, Eq.~3! describes a measurement of th
quantum object with vanishing back-action. Therefore,
validity should be proved.17 Taking into account the influ-
ence of the tank on the qubit, the Hamiltonian~1! should be
rewritten as:

H52
D

2
sx2

«

2
sz2sz~Q01 f 1g Î T!1HT1HqB , ~6!

whereg5I qM is the coupling coefficient between the q
bit’s current, Î q5I qsz and the current in the tankÎ T . An
infinitesimally small auxiliary forcef (t) is required for cal-
culations of the qubit’s magnetic susceptibility. A heat ba
operatorQ0 and a HamiltonianHqB describe internal mecha
nisms of dissipation and fluctuations in the superconduc
loop. The high-quality tank, treated here as a quantum cav
is characterized by photon creation/annihilation operat
a1, a, which obey the Bose commutation rules@a,a1#2

51, etc. The quantum-mechanical operators of the cur
and voltage in the tank are defined as

Î T5A\vT/2LT~a1a1!,

V̂T5 iA\vT/2CT~a12a!.

For the Hamiltonian of the tank driven by a bias currentI bias

and coupled to its own heat bathQb we get the expression

HT5\vT~a1a11/2!2~a1a1!Qb2LTÎ TI bias1HTB .
~7!

The internal heat bath of the tankQb , characterized by a
free HamiltonianHTB , results in a finite lifetime of the pho
tons, gT

21 , and, because of this, in a finite quality facto
QT5vT /gT . Assuming that\51, kB51, we derive the

Heisenberg equations for the tank operators:Î̇ T5V̂T /LT ,
and

S d2

dt2
1gT

d

dt
1vT

2D V̂T5jb1lvT
2ṡz1

1

CT
İ bias, ~8!

wherejT(t) is a fluctuation source with zero average valu
^j&50, and with a correlator̂jb(v)jb& that is proportional
to the linewidth of the tankgT and the tank temperatureT:
^jb(v)jb&5(2gTT/CT)v2. Because of inductive coupling
the currentÎ T and voltageV̂T in the tank affect the qubit
current: Î q5I qsz . Using linear response theory, we ca
present this influence as

of
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ṡz5ṡz,01
l

LT
E dt1K dsz~ t !

d f ~ t1! L V̂T~ t1!, ~9!

where the operatorsz,0 describes fluctuations of the qub
current caused by its internal heat bath,Q0 , which is not
correlated with the heat bath of the tank,Qb . We also take

into account the relations (d/dI T)5l(d/d f ) and Î̇ T

5V̂T /LT .
The function^dsz(t)/d f (t1)& involved in Eq.~9! is pro-

portional to the derivative of the qubit currentI q(t)5^ Î q&
with respect to the fluxFT5LTI T created by the tank
dI q(t)/dF(t1), or to the second derivative of the qubit e
ergy profile E(F) with respect to the flux,]2E(F)/]F2

~compare with Eq.~3!!. It is convenient to characterize th
qubit response to the action of the tank by means of
magnetic susceptibilityxzz(v), defined as18

K dsz~ t !

d f ~ t8! L 5E dv

2p
e2 iv~ t2t8!xzz~v!. ~10!

Then the voltage in the tank obeys the equation

E dt1F S d2

dt2
1gT

d

dt
1vT

2D d~ t2t1!

2
l2

LT
vT

2K dsz~ t !

d f ~ t1! L G V̂T~ t1!5jb1lvT
2ṡz,0

1lvT
2 1

CT
İ bias. ~11!

It is evident from this equation that the tank voltage conta
information about the magnetic susceptibilityxzz(v) of the
qubit. Similarly to the classical case this information can
extracted from measurements of the phase anglex. It follows
from the averaged Eq.~11! that the amplitudes of harmoni
oscillations of the tank voltage and the bias current are
lated through

VTe2 ix52 ivH vT
2F12

l2

LT
xzz8 ~v!G2v22 ivFgT

1
l2vT

2

vLT
xzz9 ~v!G J 21 I ac

CT
~12!

with xzz8 (v) andxzz9 (v) being the real and imaginary par
of the qubit magnetic susceptibility~10!. In the case when
the tank is driven exactly at the resonant frequen
v5vT , the voltage amplitudeVT can be found from the
equation

VT5
I ac

CT
$@k2LqI q

2vTxzz8 ~vT!#2

1@gT1k2LqI q
2vTxzz9 ~vT!#2%21/2, ~13!

whereas for the voltage–current phase shift we obtain
expression

tanx52k2LqI q
2Q̄Txzz8 ~vT!. ~14!

Here Q̄T5vT /ḡT is an effective quality factor of the tan
wherein the broadening of the tank’s linewidth due to t
qubit,
e

s

e

-

,

e

ḡT5gT1k2LqI q
2vTxzz9 ~vT!, ~15!

is taken into account. The magnetic susceptibility of the q
bit ~Eq. ~10!! is calculated from the Bloch equations writte
in the form

^ṡx&1Gx~^sx&2sx
0!52«^sy&,

^ṡy&1Gy^sy&52D^sz&1«^sx&22 f sx
0, ~16!

^ṡz&5D^sy&,

where Gx and Gy are qubit’s damping rates, an
sx

052(D/vc)tanh(vc/2T) is the steady-state polarization o
the qubit with energy splittingvc5AD21«2, which is much
higher than the resonant frequency of the tank,vc@vT .
Because of this the decoherence and relaxation rates dro
of the expression for the magnetic susceptibility:

xzz~vT!5xzz8 ~vT!52
D2

~D21«2!3/2 tanh
AD21«2

2T
. ~17!

As a result, the phase angle between the voltage in the
and the bias current is given by the formula

tanx522k2
LqI q

2

D
Q̄TS D2

D21«2D 3/2

tanh
AD21«2

2T
. ~18!

It can be shown by simple algebra that atT50 Eqs.~3! and
~18! are equivalent. Therefore, by measuring tanx as a func-
tion of the bias applied to the qubit one can indeed determ
the qubit’s tunneling rateD.

In order to realize the adiabatic response of the qu
experimentally, we fabricated a 3JJ Al qubit with the follow
ing parameters. Two of the junctions were nominally equiv
lent, each with an area of about 1903650 nm, while the
third was smaller, so thata[EJ3 /EJ1,2'0.8. The value of
the critical current for the larger junctions was determined
be I c'380 nA. The qubit inductance, tank parameters, a
measurement setup were the same as in the case o
Landau–Zener transitions described above.

The measuredx( f x) curve at a nominal mixing-chambe
temperatureT510 mK is shown in Fig. 4. The curve wa
fitted by Eqs.~3! and ~4! with D as a free parameter. Th
calculated curve for the best-fit parameterD/h5650 MHz is

FIG. 4. Tank phase shift versus flux bias near degeneracyf x50. The dots
correspond to experimental data, and the solid line is the theoretical fit
D/h5650 MHz.
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also shown Fig. 4. This value of the energy gap is in go
agreement with that determined independently from te
perature measurements.16

3. RABI SPECTROSCOPY

Quite generally, a two-level quantum system~including
qubits!, should exhibit coherent~Rabi! time oscillations in
the presence of resonant irradiation. Microwaves in re
nance with the spacing between the qubit’s energy levels
cause their occupation probabilities to oscillate, with a f
quency proportional to the microwave amplitude. Indeed,
herent oscillations between energy levels of the superc
ducting qubit have been detected.19–22

In this Section we show that the tank can be used
detection of Rabi oscillations as well. If a resonant mic
wave signal is applied, the phase-coherent oscillations of
level occupation will only last for a finite time, which i
usually called the coherence time. The correlation betw
the occupations can be expressed by an autocorrelation f
tion or its Fourier transform, the spectral density. For e
ample for the IMT, when the flux qubit is coupled indu
tively to a tank circuit, the spectral density of the tan
voltage fluctuations rises above the background noise w
the qubit’s Rabi frequencyVR coincides with the tank’s reso
nant frequencyvT . This forms the basis for our measur
ment technique ofRabi spectroscopy. Rabi oscillations cause
changes of the qubit’s magnetic moment and, therefore,
cite the tank. The tank circuit accumulates photons wh
were emitted by the qubit. This approach is similar to the o
in entanglement experiments with Rydberg atoms and mi
wave photons in a cavity.23

Indeed, quantitative information can be extracted fro
the noise spectrumSV(v) of the voltage fluctuations~the
Fourier transform of the correlatorMV(t,t8)5(1/2)
3^@V̂T(t),V̂T(t8)#1& in the tank17!, which incorporates the
noise spectrum of the tank,SVT , supplemented by the qubit’
contributionSVQ , i.e., SV5SVT(v)1SVQ(v), where

SVT~v!52
v2

CT

TgT

~v̄T
22v2!21v2ḡT

2 . ~19!

The qubit’s part of voltage noise can be found from the s
chastic equation~11! for the tank voltage:

SVQ~v!5v2
vT

CT

k2LqI q
2vTSzz~v!

~v̄T
22v2!21v2ḡT

2 . ~20!

HereSzz(v) is the Fourier transform of the correlator (1/2
3^@sz,0(t),sz,0(t8)#1&, which describes internal fluctuation
in the qubit~not related to the tank!. Hand in hand with the
tank’s damping rate,ḡT ~15!, the resonance frequency of th
tank, v̄T , is also shifted because of the qubit–tank inter
tion,

v̄T5vTA12k2LqI q
2xzz8 ~vT!. ~21!

The spectrum of voltage fluctuations has a peak near
resonant frequency of the tank,vT , and it therefore contains
information about the low-frequency componentSzz(vT) of
the qubit spectrum. The equilibrium part of this spectru
peaks at the energy splittingvc5AD21«2 of the tunneling
doublet, which differs significantly from the frequency of th
d
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n
nc-
-

en
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tank, vc@vT . Because of this, the contribution of equilib
rium qubit noise to the voltage spectrum of the tank is e
pected to be negligibly small. An external microwave sou
with a frequencyv0 tuned to resonance with the energ
splitting of the qubitvc induces periodic variations of th
population difference between the excited and ground s
of the qubit, which are characterized by a frequencyVR

5A(D/vc)
2F21d0

2 that dependson the amplitudeF of the
microwave source as well as on the detuningd05v02vc .
With nonzero bias,«Þ0, the left and right wells of the qubi
potential have different energies. As a consequence, R
oscillations between the energy eigenstates will be accom
nied by low-frequency transitions of the qubit from the le
to the right well and back. The tank detects this kind
low-frequency noise, which is described by a Lorentzi
spectrum centered at the Rabi frequencyVR with a linewidth
dependent on the qubit decoherence rateG. Both the tank
(GT) and the internal heat bath (G0) contribute to the deco-
herence rate:G5G01GT . It should be emphasized that th
external microwave field affects the qubit–bath coupling24

thus causing a distinction between the nonequlibrium de
rateG and its equilibrium counterpartsGx ,Gy that enter the
Bloch equations~16!.

An informative part of the spectrum of voltage fluctu
tions, SVQ(v), incorporates the qubit Lorentzian multiplie
by the transmission function of the tank, having a sharp p
at the frequencyvT :

SVQ~v!52
«2

vc
2 k2

LqI q
2

CT
v2G0

vT
2

~v̄T
22v2!21v2ḡT

2

3
VR

2

~v22VR
2 !21v2G2 . ~22!

The linewidth of the tank is assumed to be much less t
the qubit’s damping rate,gT!G. Because of this, the spec
trum of voltage noise~22! as a function of frequencyv rep-
resents a Lorentzian with a widthgT and an amplitude which
is given by a Lorentzian function of the Rabi frequency w
its maximum nearvT and a widthG. Measurements of the
noise spectrum amplitude at different values of the mic
wave powerP allow one to extract information not only
about the existence of Rabi oscillations but also about
nonequilibrium decoherence rateG of the qubit. We note that
due to strong nonequilibrium conditions the populations
the qubit’s levels are practically equal, and the noise sp
trum amplitude does not depend on the temperature.
signal-to-noise ratio,

SVQ~v!

SVT~v! uv5vT
5

«2

vc
2 k2

LqI q
2

T

G0

gT

vT
2VR

2

~vT
22VR

2 !1vT
2G2 , ~23!

peaks whenVR5vT . At the same point, the back-action o
the measuring device~tank! on the quantum bit, which is
described by the damping rateGT ,

GT54k2LqI q
2 «2

vc
2 vT

2 TgT

~vT
22VR

2 !21VR
2gT

2 , ~24!

reaches its maximum as well. However, the tank contribut
to the qubit decoherence decreases drastically with smal
tuning of the Rabi frequencyVR from vT : gT!uVR2vTu
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,G. At the same time, the efficiency of measuremen
(SVQ(v)/SVT(v)) uv5vT

, remains practically unchanged
SinceG!VR , the spectroscopic monitoring of Rabi oscill
tions with the low-frequency tank circuit falls into the ca
egory of weak continuous quantum measurements.

The measurement setup and sample fabrication w
similar to those described in the previous Section. Mic
wave irradiation ~a UHF signal! was introduced to the
sample through a commercial coaxial cable at temperat
between room and;2 K and by a ThermoCoax resistiv
coaxial cable between;2 K and 10 mK!. In order to reduce
external disturbances, a 20 dB commercial attenuator
installed at 2 K. To measureSV , we tuned the UHF signal to
resonance with the qubit level separation. We found not
able output signal only whenvh f/2p5(86862) MHz, in
agreement with the estimated splittingD/h;1 GHz. Note
that there is a difference of two orders of magnitude betw
vh f and the readout frequencyvT . Together with the high
QT , this ensures that the signal can only be due to reso
transitions in the qubit itself. This was verified by measuri
SV when biasing the qubit away from degeneracy. A sig
exceeding the background, that is, emission of;6 MHz pho-
tons by the qubit in response to a resonant UHF field
accordance with Eq.~24!, was detected only when the qub
states were almost degenerate~cf. below Eq.~22!!. The mea-
surements were carried out at nominal temperatureT
510 mK. No effect of radiation was observed above 40 m
~with 40 mK/hkB'830 MHz, i.e. close toD/h). We plotted
SV(v) for different HF powersP in Fig. 5. As P is in-
creased,vR grows and passesvT , leading to a nonmono
tonic dependence of the maximum signal onP, in agreement
with the above picture. This and the sharp dependence on
detuning ofvh f from the qubit frequency confirm that th
effect is due to Rabi oscillations.

For a quantitative comparison between theory and
periment, we subtracted the measured signal without an
power from the observedSV , yielding the qubit’s contribu-
tion SVQ5SV2SVT(v). Subsequently, we extracted the pe
values versus UHF amplitude, SVQ,max(AP/P0)
5maxvSVQ(v)'SVQ(vT), whereP0 is the power causing the
maximum response; see Fig. 6a. In the same figure, we plo
the theoretical curve forSVQ,max normalized to its maximum
S0 ,

FIG. 5. The spectral noise amplitude of the tank voltage for UHF pow
Pa,Pb,pc at 868 MHz. The bottom curve corresponds to the backgro
noise without an HF signal.
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SVQ,max~w!

S0
5

w2g2

~w221!21g2 '
~g/2!2

~w21!21~g/2!2 ; ~25!

w[VR /vT (5AP/P0 theoretically! andg5G/vT . The best
fit is found forG'0.02vT;83105 s21. Thus the lifetime of
the Rabi oscillations is at leasttRabi52/G'2.5 ms, leading
to an effective quality factorQRabi5D/(\G);7000. These
values substantially exceed those obtained recently fo
modified 3JJ qubit (tRabi;150 ns),22 which is not surpris-
ing. In our setup the qubit is read out not with a dissipat
dc SQUID but with a high-quality resonant tank. The latter
weakly coupled to the qubit (k2;1023), suppressing the
noise leakage to it.25

4. RESONANT SPECTROSCOPY

In this Section we show that the IMT can be also us
for resonant spectroscopy, which is a well-known experim
tal method for investigation of quantum systems. As an
ample of such IMT application let us consider a
interferometer-type charge qubit.26–28The device’s core ele-
ment is a single-Cooper-pair transistor—a small island, se
rated by two mesoscopic Josephson junctions, which is
pacitively coupled to the gate. The transistor can
described by the Hamiltonian matrix29,30

Hnm54EC~N2ng!2dnm2
«J~w!

2
~dn,m111dn,m21!,

~26!

whereN is the number of Cooper pairs on the island,dn,m is
the Kronecker delta, andEC5e2/2CS is the single-electron
charging energy expressed in terms of the total island cap
tance CS . The dimensionless parameterng5CgVg/2e is
continuously controllable by the gate voltageVg via the ca-
pacitanceCg . The effective Josephson energy

«J~w!5@EJ1
2 1EJ2

2 12EJ1EJ2 cosw#1/2 ~27!

is a function of the total phase difference across both ju
tions w5f12f2 , whereEJ1,J2 and f1,2 are the Josephso
coupling energies and phase differences of the first and
ond junction, respectively.

If the transistor is closed by a superconducting loop w
low inductance Lq , the total phase difference isf
'2pFe /F0 , and the ground-state curvatured2E2 /dFe

2

can be obtained by finding the lowest eigenvalue of
Hamiltonian matrix~26! as a function ofFe . Using ~3!, we
can calculate the phase shift of the tank inductively coup

s
d

FIG. 6. a—Comparing the data to the theoretical Lorentzian. The fitti
parameter isg'0.02. The letters in the picture correspond to those in Fig
b—The Rabi frequency extracted from (a) versus the applied UHF ampli-
tude. The straight line is the predicted dependencevR /vT5AP/P0. The
good agreement provides strong evidence for Rabi oscillations.
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to the charge qubit and compare it with experimental res
obtained by IMT.32 The principle of resonant spectroscopy
very simple. If the qubit is irradiated by microwaves wi
frequency corresponding to the energy gap between gro
(n50) and upper level (n51), the latter level become
populated also. In this sense the microwave irradiation a
like temperature, i.e., suppresses the tank phase shift~see Eq.
~18!!.

Similarly to the phase qubits, the interferometer-ty
charge qubit was fabricated out of Al by the convention
shadow evaporation technique and was placed in the mi
of the Nb coil by making use of a flip-chip configuratio
The geometric loop inductance of the interferometer was
culated to beLq50.8 nH. The layout size of the junction
was 1403180 nm. Deviations from the nominal dimensio
caused by the fabrication process were estimated from
micrograph of the real structure and found to be less t
15%. The charging energy was overestimated within
framework of the plate capacitor model from the junctio
delivering EC.7 GHz. In fact and also in accordance wi
the experimental results below, this value is reduced du
the strong tunneling regime.31 The measurements were pe
formed at a mixing chamber temperature of 10 mK.

The presence of the microwave power significan
changes the obtained dependence, namely, peaks appe
the x(ng) curve ~see the upper curves in Fig. 7!. The peak
position depends on the microwave frequency and does
depend on the amplitude~the shape depends slightly!. These
peaks disappear when the phase bias is far fromp as well as
at higher temperatures. Therefore, we believe that they
respond to the excitation of the system from the ground
the upper state.

The microwave-induced transition~both the frequency
of the microwave and the phase difference across the t
sistor,w5p, are fixed! from the ground to the upper sta
occurs only at certain value of the gate charge. From
position of the peaks on thex(ng) curves at different fre-
quencies of the microwave, we have reconstructed the
ergy difference between ground and upper states as a f
tion of the quasicharge on the island. The obtain

FIG. 7. Tank phase shiftx versus gate parameterng without microwave
power~lowest curve! and with microwave power at different excitation fre
quencies. The data correspond tovuh f/2p58.9, 7.5, and 6.0 GHz~from top
to bottom!. The magnetic fluxFe5F0/2 threading the interferometer loo
provides a total phase differenced5p across the single-Cooper-pair tran
sistor.~The upper curves are shifted for clarity.!
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dependence is shown in Fig. 8. We fitted the experime
data by using the numerical solution of the energy spectr
of the Hamiltonian matrix~26!. The best fitting parameter
were found to be«J(p)54.4 GHz andEC52.2 GHz. This
value of the Josephson coupling energy is in very go
agreement with the estimated value, and, as expected
charging energy is smaller than estimated.

5. NONRESONANT SPECTROSCOPY OF TWO COUPLED
QUBITS

After the successful demonstration of quantum coh
ence in many types of superconducting qubits, an obse
tion of entangled states in two coupled qubits presents
next step on the road to the quantum processor. Entan
states were recently observed in both the charge33 and the
current-biased Josephson junction34 qubits. In this Section
we demonstrate that entangled states in a system of two
ductively coupled flux qubits35 can be detected by the IMT.36

The system of two Al flux qubits inductively coupled t
each other and to the Nb tank is shown in Fig. 9. The are
each qubit and the self-inductance and critical current w
Sq580 mm2, Lq539 pH, andI c'400 nA, respectively, and
EC'3.2 GHz. The mutual inductance between the qub

FIG. 8. Energy gapD between the ground and upper bands of the transis
determined from the experimental data for the cased5p. Some examples
of these data are shown in Fig. 7. The dots represent the experimental
and the solid line corresponds to the fit~cf. text!.

FIG. 9. Micrograph of the two-qubit system coupled to a resonant t
circuit.
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Mab52.7 pH was estimated numerically from the electr
micrograph. The magnetic flux through the qubits was c
ated by the dc component of the current in the coilI dc1 and
by the bias currentI dc2 through a wire close to one of th
qubits. This allowed independent control of the bias in ea
qubit. The system of Fig. 9 is described by the Hamilton
H5H01HT1H int1Hdiss, where the two-qubit Hamiltonian
in the two-state approximation is expressed as8

H052Dasx
~a!2Dbsx

~b!1«asz
~a!1«bsz

~b!1Jsz
~a!sz

~b! ,
~28!

HT is the tank Hamiltonian~a harmonic oscillator!, the
qubit–tank interaction is

H int52~lasz
~a!1lbsz

~b!!I T , ~29!

andHdiss describes the standard weak coupling of the qu
to a dissipative bath.37

Here the coefficients arela/b5Ma/b,TI a/b , where
Ma/b,T is the qubit–tank mutual inductance,La/b is the self-
inductance, andI a/b is the amplitude of the persistent curre
in the corresponding qubit. In the standard two-state appr
mation, the qubit current operators areÎ a/b5I a/bsz

(a/b) . The
qubit biases are given byea5I aF0( f x20.51 f shift), eb

5I bF0( f x20.51h f shift), where the dimensionless fluxf x

;I dc1 describes the field created by the niobium coil in bo
qubits, while the parametersf shift;I dc2 and h5Mbw /Maw

,1 give the bias difference between the qubits created
the additional wire. HereMaw (Mbw) are the mutual induc-
tances between thea (b) qubit and the additional dc wire
~for our sample,Maw andMbw were calculated numerically
yielding h50.32). The qubit–qubit coupling constantJ
5MabI aI b is positive because the two qubits are in the sa
plane side to side, leading to antiferromagnetic coupling~ac-
cording to the north-to-south attraction law!.

The application of the IMT for spectroscopy of tw
coupled qubits, similar to the single-qubit problem~see Sec.
2!, can be conveniently discussed in terms of their magn
susceptibilityxzz. In the linear-response approximation th
magnetic susceptibilityxzz(v) of the two-qubit system is
expressed in terms of retarded Green’s functions of the q
operatorssz

(a/b) , calculated with the equilibrium density ma
trix r5e(F2H0)/T, with H0 as in Eq.~28!. It can be generally
assumed that the latter’s eigenvaluesEm , m51,2,3,4 are
nondegenerate and its eigenstates orthonormalized,^num&
5dmn . Taking into account the qubits’ interaction with
dissipative environment,17,38 we derive

xzz~v!52 (
mÞn

rm2rn

v1Em2En1 iGmn
Pmn , ~30!

tanx522
QT

LT
(
m,n

rm2rn

En2Em
Pmn , ~31!

where rm5exp(2Em /T)/Z is the thermal population of the
mth energy level,Z5(n exp(2En /T), Gmn are the decoher
ence rates of the double-qubit system, and

Pmn5la
2^musz

~a!un&^nusz
~a!um&1lb

2^musz
~b!un&

3^nusz
~b!um&1lalb^musz

~a!un&^nusz
~b!um&

1lalb^musz
~b!un&^nusz

~a!um&. ~32!
-
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At low frequenciesv5vT!uEm2Enu and in a weak damp-
ing regime,Gmn!uEm2Enu, the decoherence ratesGmn have
no effect on tanx but are responsible for an equilibrium dis
tribution in the system.

The first two terms in Eq.~32! are nonzero even if the
two-qubit states are factorized. The first~second! term corre-
sponds to the contribution of qubita (b) and is nonzero nea
the qubit’s degeneracy point. These contributions are pra
cally independent of whether the qubits’ degeneracy po
coincide or not.

The second line in Eq.~32! describes coherent flipping
of both qubits, which is only possible for nonfactorizab
~entangled! eigenstatesum&,un&. Therefore the difference be
tween the coinciding IMT dip of the two qubits and the su
of two single-qubit IMT dips provides a measure of ho
coherent is the two-qubit dynamics~that is, whether en-
tangled eigenstates of the two-qubit Hamiltonian Eq.~32! are
formed!. This is a necessary condition for the system to be
an entangled~pure or mixed! state.

The measurement results are shown in Fig. 10. Comp
son of the single-qubit dips with the coincident IMT d
shows clearly that the contribution to tanx from the en-
tangled eigenstates is significant. Indeed, the amplitude
the central dip in Fig. 10 atT550 mK is 1.12, compared to
a value of 1.69 for the sum of the single-qubit dips. Th
means that the entangled terms~the second line in Eq.~32!!
are responsible for a negative contribution of'20.57 to
tanx.

At 50 mK the temperature is comparable to the char
teristic energies in the two-qubit system~at the two-qubit
degeneracy point the gap between the ground state and
excited state is;100 mK). Since the characteristic measur
ment time in our approach is dictated by the much sma
tank frequency,vT , the system will have time to equilibrate
Indeed, the excellent quantitative agreement between the
periment~Fig. 10! and the theory Eq.~31! confirms that the
system is described by the equilibrium density matrix w
the Hamiltonian Eq.~28! ~all the parameters of which we
determined from the experiment!. In other words, our system
is an equilibrium mixture of entangled two-qubit states.

FIG. 10. Normalized tangent of the current–voltage anglex in the tank
versus external flux biasFe at 50 mK. A relative flux biasf shift between the
qubits is created by changing the currentI dc2 in the additional wire. The
shifted curves correspond toI dc2527.3mA, while the central curve is for
I dc2522.7 mA. The experimental data are denoted by the dots (I dc2

527.3mA) and triangles (I dc2522.7 mA). The solid curves correspond to
the theoretical fit.
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SUMMARY

We have shown that interferometer-type supercond
ing qubits can be characterized by making use of the imp
ance measurement technique. Moreover, weak continu
quantum measurements can be performed with this met
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We study the dynamics of a single spin embedded in the tunneling barrier between two
superconductors. As a consequence of pair correlations in the superconducting state, the spin
displays rich and unusual dynamics. To properly describe the time evolution of the spin we derive
the effective Keldysh action for the spin. The superconducting correlations lead to an
effective spin action, which is nonlocal in time, leading to unconventional precession. We further
illustrate how the current is modulated by this novel spin dynamics. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1789934#
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INTRODUCTION

The analysis of spins embedded in Josephson junct
has had a long and rich history. Early on, Kulik1 argued that
spin flip processes in tunnel barriers reduce the critical
sephson current as compared to the Ambegaokar—Bar
limit.2 More than a decade later, Bulaevskiiet al.3 conjec-
tured thatp-junctions may be formed if spin flip process
dominate. The competition between the Kondo effect and
superconductivity was elucidated in Ref. 4. Transport pr
erties formed the central core of these and many other
neering works, while spin dynamics was relegated to a r
tively trivial secondary role. In the present article, we rep
on new nonstationary spin dynamics and illustrate that
spin is affected by the Josephson current. As a consequ
of the Josephson current, spins exhibit novel nonplanar
cessions while subject to the external magnetic field. A s
in a magnetic field exhibits circular Larmor precession ab
the direction of the field. As we report here, when the spin
further embedded between two superconducting leads,
out-of-plane longitudinal motion, much like that displaye
by a mechanical top, will arise. We term this new effect t
Josephson nutation. We further outline how transport is
turn, modulated by this rather unusual spin dynamics. O
predictions are within experimental reach, and we propos
detection scheme.

THE SYSTEM

The system under consideration is illustrated in Fig. 1
consists of two identical ideals-wave superconducting lead
coupled each to a single spin; the entire system is fur
subject to a weak external magnetic field. In Fig. 1,mL,R

denote the chemical potentials of the left and right leads,B is
a weak external magnetic field along thez axis, and S
5(Sx ,Sy ,Sz) is the operator of the localized spin.
6291063-777X/2004/30(7–8)/5/$26.00
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The Hamiltonian of the system reads

H5H01HT , H05HL1HR2mBzSz , ~1!

HT5 (
k,p,a,a8

eiw/2cRka
† @T0daa81T1saa8•S#cLpa81h.c.,

~2!

whereHL andHR are the Hamiltonians in the left and righ
superconducting leads, whilecika

† (cika) creates~annihilates!
an electron in the lead in the statek with spin a in the right
~left! lead for i 5L(R). The vectors represents the thre
Pauli matrices andm is the magnetic moment of the spin
When a spin is embedded in the tunneling barrier, the c
duction electron tunneling matrix, not too surprisingly, b
comes spin-dependent:T̂5@T01̂1T1S"ŝ#.5,6 Here T0 is a
spin-independent tunneling matrix element andT1 is a spin-
dependent matrix element originating from the direct e
change couplingJ of the conduction electron to the localize
spin S. We take both tunneling matrix elements to be m
mentum independent. This is not a crucial assumption an
merely introduced to simplify the notation. Typically, from
the expansion of the work function for tunneling,T1 /T0

;J/U, whereU is the height of a spin-independent tunne
ing barrier.7 A weak external magnetic fieldBz;100 G does
not influence the superconductors, and we may ignore

FIG. 1. Magnetic spin coupled to two superconducting leads.
© 2004 American Institute of Physics
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effect on the leads. In what follows, we abbreviatemBz by
B. The operator eiw/2 is the single electron number operato
When the junction is linked to an external environment,
coupling between the junction and the environment indu
fluctuation of the superconducting phasew.

THE EFFECTIVE ACTION

Josephson junctions are necessarily embedded into
ternal electrical circuits. This implies that the dynamics w
explicitly depend on the superconducting phasew. The evo-
lution operator is given by the real-time path integral

Z5E DwDSexp@ iScircuit~w!1 iSspin~S!

1 iStunnel~w,S!#. ~3!

The effective actionStunnel describes the junction itself. W
generalize the formerly known effective tunneling action
a spinless junction8–10 to the spin-dependent arena to obta

Stunnel522 R
K
dt R

K
dt8a~ t,t8!@T0

21T1
2S~ t !•S~ t8!#

3cos
w~ t !2w~ t8!

2
22 R

K
dt R

K
dt8b~ t,t8!

3@T0
22T1

2S~ t !•S~ t8!#cos
w~ t !1w~ t8!

2
, ~4!

where

ia~ t,t8![G~ t,t8!G~ t8,t !, ib~ t,t8![F~ t,t8!F†~ t,t8!

and the Green functions are

G~ t,t8![2 i(
k

^TKcks~ t !cks
† ~ t8!&, ~5!

F~ t,t8![2 i(
k

^TKck↑~ t !c2k↓~ t8!&, ~6!

F†~ t,t8![2 i(
k

^TKck↑
† ~ t !c2k↓

† ~ t8!&. ~7!

In Eq. ~4! rK denotes integration along the Keldysh co
tour. We now express the spin action on the Keldysh cont
in the basis of coherent states

Sspin5 R
K
dtB"S1SWZNW. ~8!

Here S denotes the magnitude of the spinS. The second,
Wess—Zumino—Novikov—Witten~WZNW!, term in Eq.
~8! depicts the Berry phase accumulated by the spin a
result of motion of the spin on a sphere of radiusS.11,12

Explicitly,

SWZNW5
1

S2 E
0

1

dt R
K
dt@S~ t,t!•~]tS~ t,t!3] tS~ t,t!!#.

~9!

The additional integral overt allows us to express the actio
in a local form. Att50 the spin is set along thez direction
at all times,S(t,0)5const; att51 the spin field correspond
to the physical configurations,S(t,1)5S(t).
e
s

x-
l

r

ur

a

DYNAMICS

We now perform the Keldysh rotation, defining the va
ues of the spin and the phase variables on the forw
backward branches of the Keldysh contour~see Fig. 2,Su,l

for the upper and lower branches! and rewriting all the ex-
pressions in terms of their average~classical componentS!
and difference~quantum componentl!:

S[~Su1Sl !/2, l[Su2Sl , S• l50. ~10!

After the Keldysh rotation we obtain13,14

SWZNW5
1

S2 E
0

1

dtE dt@Su~ t,t!•~]tS
u~ t,t!

3~] tS
u~ t,t!!2~u→ l !#. ~11!

The relative minus sign stems from the backward time ord
ing on the return part ofC. The individual WZNW phases
for the upper (u) and lower (l ) branches are given by th
areas spanned by the trajectoriesSu,l(t) on the sphere of
radius S divided by the spin magnitude (S). The WZNW
term contains odd powers ofl. Insofar as the WZNW term of
Eq. ~11! is concerned, the standard Keldysh transformat
to the two classical and quantum fields,S and l, mirrors the
decomposition of the spin in an antiferromagnet~AF! to the
two orthogonal slow and fast fields.1! The difference between
the two individual WZNW terms in Eq.~11! is the area
spanned between the forward and backward trajectories.
close forward and backward trajectories the WZNW act
on the Keldysh loop may be expressed as

SWZNW5
1

S2 E dtl•~S3] tS!. ~12!

For the spin part of the~semiclassical! action we then obtain

Sspin5E dtB"l1
1

S2 E dtl•~S3] tS!. ~13!

Next, we perform the Keldysh rotation to the classic
and quantum components with respect to both the phase
spin variables in the tunneling part of the effective actio
Towards this end, we introduce~with notation following
Refs. 8 and 10!

w5~wu1wd!/2, x5wu2wd. ~14!

FIG. 2. The sphere of radiusS for the vectorsSu,l(t) is shown. The pathC
describes the evolution of the spin along the upper (u) and lower (l )
branches of the Keldysh contour. To properly describe the spin dynamic
this closed contour, we analyze the WZNW action; see Eq.~9!. For clarity,
we have drawn a small piece of the closed trajectories.
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With these definitions in hand, the tunneling part of the
tion reads

Stunnel5Sa1Sb , ~15!

where the normal~quasi-particle! tunneling partSa is ex-
pressed via the Green functions

aR[u~ t2t8!~a.2a,!; aK~v![a.1a,,

where

ia.~ t,t8![G.~ t,t8!G,~ t8,t !;

ia,~ t,t8![G,~ t,t8!G.~ t8,t !.

Similarly the Josephson-tunneling partSb is expressed via
the off-diagonal Green’s functions

bR[u~ t2t8!~b.2b,!; bK~v![b.1b,,

where

ib.~ t,t8![F.~ t,t8!F†.~ t,t8!;

ib,~ t,t8![F,~ t,t8!F†,~ t,t8!.

In this paper we are interested in the interaction betw
the supercurrent and the spin. Thus we provide the exp
sion for the Josephson part:

Sb5E dtE dt84bR~ t,t8!F H @2T0
222T1

2S~ t !

•S~ t8!#sin
x~ t !

4
cos

x~ t8!

4
2

1

2
T1

2l~ t !

• l~ t8!cos
x~ t !

4
sin

x~ t8!

4 J 3sin
w~ t !1w~ t8!

2

1H T1
2l~ t !•S~ t8!cos

x~ t !

4
cos

x~ t8!

4
2T1

2S~ t !

• l~ t8!sin
x~ t !

4
sin

x~ t8!

4 J cos
w~ t !1w~ t8!

2 G
1E dtE dtbK~ t,t8!F H @4T0

224T1
2S~ t !

•S~ t8!#sin
x~ t !

4
sin

x~ t8!

4
1T1

2l~ t !

• l~ t8!cos
x~ t !

4
cos

x~ t8!

4 J cos
w~ t !1w~ t8!

2

2H 2T1
2l~ t !•S~ t8!cos

x~ t !

4
sin

x~ t8!

4
12T1

2S~ t !

• l~ t8!sin
x~ t !

4
cos

x~ t8!

4 J sin
w~ t !1w~ t8!

2 G . ~16!

The normal-tunneling partSa is obtained fromSb by the
following substitution: bR/K(t,t8)→aR/K(t,t8), w(t8)→
2w(t8), andx(t8)→2x(t8). The Keldysh terms~those in-
cluding bK and aK), which normally give rise to random
-

n
s-

Langevin terms~see, e.g., Ref. 10! are, in our case, sup
pressed at temperatures much lower than the supercon
ing gap (T!D), due to the exponential suppression of t
correlatorsbK(v) andaK(v) at v,D.

To obtainbR, we start from the Gorkov Green function

F.~ t,t8!52 i(
k

D

2Ek
e2 iEk~ t2t8!,

F.†~ t,t8!5 i(
k

D

2Ek
e2 iEk~ t2t8!, ~17!

where the quasiparticle energyEk[AD21ek
2, ek being the

free-conduction-electron dispersion in the leads. Putting
of the pieces together, we find that

bR~ t2t8!5u~ t2t8!(
k,p

D2

2EkEp
sin@~Ek1Ep!~ t2t8!#.

~18!

The kernelbR(t2t8) decays on short time scales of ord
O(\/D). Varying the total action with respect to the qua
tum componentsl andx and setting these to zero, we obta
coupled equations of motion for both the spin and phase

dS~ t !

dt
5S~ t !3B1T1

2E dt84bR~ t2t8!S~ t !3S~ t8!

3cos
w~ t !1w~ t8!

2
, ~19!

dScircuit

dx~ t ! U
x→0

52E dt82bR~ t2t8!~T0
22T1

2S~ t !•S~ t8!!

3sin
w~ t !1w~ t8!

2
. ~20!

Note that if the rest of the circuit contains dissipati
elements, e.g., resistors, thenScircuit will contain the nonvan-
ishing Keldysh components, the corresponding Lange
terms should be included in Eq.~20!. The rather complicated
equations of motion~19! and~20! are very general. To make
headway, we now adopt a perturbative strategy. In Eq.~19!,
we first assume an ideal voltage bias, i.e., an imposed p
w(t)5vJt, where the ‘‘Josephson frequency’’vJ52eV/\.
To this lowest order, we neglect the influence of the spin
the phase. Next, we use the separation of characteristic
scales to our advantage. To this end, we note that the
dynamics is much slower as compared to electronic p
cesses, i.e.,vJ , B!D. This separation of scales allows us
set S(t8).S(t)1(t2t8)dS/dt in the integrand of Eq.~19!,
whereby we obtain

dS

dt
5lS3

dS

dt
sinvJt1S3B. ~21!
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Here

l524T1
2E

0

`

dttbR~ t !sin
vJt

2
'22T1

2vJE
0

`

dt t2bR~ t !

52vJ(
k,p

uDu2uT1u2

EkEp~Ek1Ep!3

52T1
2r2

vJ

D E E dz1dz2

~coshz11coshz2!3

5
p2

8
T1

2r2
vJ

D
5

g1

32

vJ

D
~22!

with g1[(2pT1r)2 being the spin channel conductance.
Eq. ~22! we employ the separation of time scales (vJ!D)
again. When expressed in the spherical coordinates~in the
semiclassical limit! S5S(sinu cosw,sinu sinw,cosu), Eq.
~21! transforms into two simple first-order differential equ
tions:

dw

dt
52

B

11S2l2 sin2~vJt !
, ~23!

du

dt
52Sl

dw

dt
sinu sinvJt. ~24!

These equations can be solved exactly. For a spin oriente
time t50 at an angleu0 relative toB,

w~ t !5 2
B

vJ A11S2l2
tan21@A11S2l2 tan~vJt !#,

u~ t !52 tan21S F ~12c cos~vJt !!~11c!

~11c cos~vJt !!~12c!G
g

tan
u0

2 D ,

with c5Sl/A11S2l2 andg52SlB/2vJc. For Sl!1 we
have w.2Bt and u.u02Sl(B/vJ)sinu0 cosvJt. Typi-
cally, whenever a spin is subjected to a uniform magne
field, the spin precesses azimuthally with the Larmor f
quencyvL5B. In a Josephson junction, however, the sp
exhibits additional polar~u! displacements. The resulting dy
namics may be likened to that of a rotating rigid top. T
Josephson current leads to a nonplanar gyroscopic mo
~Josephson nutations! of the spin much like that generated b
torques applied to a mechanical top. For smalll we find
nutations~see Fig. 3! of amplitude

u12u2}Sl
B

vJ
sinu}Sg1

B

D
sinu.

The origin of the first term on the right-hand side of E
~21! can be understood as follows~this origin can be also
traced in the calculations!: the spin is subject to the electron
induced fluctuating fieldh5T1(eiw/2c†sc1h.c. The same
coupling may be thought of as an influence of the spin on
leads, which results in a nonzero low-frequency contribut
dh to h. Since the response function of the electron liquid
isotropic but retarded,dh(t) is not aligned withS(t) but
contains information about the values ofS(t8) at earlier
times. The response function decays on a time scale;\/D,
much shorter than the period of the spin precession,;1/B.
at

ic
-

on

.

e
n
s

As a consequence, in addition to a contribution}S the field
h acquires a component}Ṡ/D, which leads to the first term
on the right-hand side of Eq.~21!.

The right-hand side of the second equation of mot
~20! clearly corresponds to the Josephson current. Indeed
the Keldysh formalism one hasI 5(2p/F0)]S/]x ~instead
of I 5(2p/F0)]S/]w). Thus we obtain for the Josephso
current

I J~ t !5
2p

F0
E dt82bR~ t2t8!~T0

22T1
2S~ t !•S~ t8!!

3sin
w~ t !1w~ t8!

2
. ~25!

We start from the lowest-order~local in time! adiabatic ap-
proximation, i.e., we setS(t)5S(t8) andw(t)5w(t8). This
yields

I J~ t !5
2p

F0
EJ,0S 12

T1
2

T0
2 S2D sinw~ t !, ~26!

where EJ,0[2T0
2*dtbR(t)5p2r2T0

2D5(1/4)g0D is the
spin-independent Josephson energy2 (g0 being the conduc-
tance of the spin-independent channel!. The second term of
Eq. ~26! gives the spin-related reduction of the Josephs
critical current studied in Ref. 1. We now evaluate t
lowest-order correction to this equation due to deviatio
from locality in time and spin precessions. ExpandingS(t8)
in Eq. ~25! in (t82t) and using the fact that for the Larmo
precession we haveS"Ṡ50 andS"S̈5B2(Sz

22S2), we find a
correction to the Josephson current which depends onSz

2 :

I J~ t !5
2p

F0
FEJ,0S 12

T1
2

T0
2 S2D 1dEJ~Sz

22S!Gsinw~ t !,

~27!

where

dEJ[2T1
2B2E dtbR~ t !t25

p2

16
T1

2r2~B2/D!.

Here we have clearly elucidated the manner in which
spin dynamics alters the Josephson current.

FIG. 3. The resulting spin motion on the unit sphere in the general case
in the motion of classical spinning top, the spin exhibits undulations al
the polar direction.
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For S51/2 the semiclassical approximation is insuf
cient. In this case it is easier to perform a calculation w
spin operators,13 rather than a path integral. One the
obtains13 an expression for the Josephson current identica
Eq. ~25! but with S(t) being the spin operator in the intera
tion representation. Using the commutation relations of
spin operators, one obtains an extra contribution to the
sephson current proportional toSz . This permits reading ou
of the spin state via the Josephson current. This extra co
bution scales asS while the spin-dependent contributions
Eq. ~27! scale asS2.

DETECTION

We now briefly discuss a detection scheme for the
sephson nutations forS@1, e.g., in the semiclassical limit. In
principle the nutations should affect the Josephson curr
The level of approximation employed in this paper wa
however, insufficient to describe this effect. Indeed, one
to substituteS(t) containing the nutations into Eq.~25!. As
the amplitude of the nutations is of the orderg1 , the correc-
tion to the current will be of the orderg1

2. We will study this
correction elsewhere. Here we discuss a more direct de
tion strategy. The spin motion generates a time-depen
magnetic field,

dB~r ,t !5
m0

4pr 5 @3r ~r "m~ t !!2r 2m~ t !#,

superimposed on the constant external fieldB. Herer is the
position relative to the spin, with magnetic momentm(t)
5mS(t). A ferromagnetic cluster of spinS5100 generates a
detectable fielddB;10210 T which appears a micron awa
from the spin. For a SQUID loop of micron dimensions l
cated at that position, the corresponding flux variationdF
;1027F0 (F0 is the flux quantum! are within reach of mod-
ern SQUIDs. For such a setup withT1 /T0;0.1, the typical
critical Josephson current isJS

(0);10 mA, uDu51 MeV, and
eV;1023uDu. We find that lS;0.1. Since Sx

5Ssinu cosw, Sy5Ssinu sinw, the spin components or
thogonal toB vary, to first order in (lS), with Fourier com-
ponents at frequenciesuvL6vJu (vL5B), leading to a dis-
cernible signal in the magnetic fieldB1dB. For a field
B;200 G one hasvL;560 MHz, and a new side band wi
appear atuvL2vJu, whose magnitude may be tuned
10–100 MHz. This measurable frequency is markedly diff
ent from the Larmor frequencyvL .

The efficiency of the detector may be further improv
by embedding the spin in one of the Josephson junction
the SQUID itself. The setup is sketched in Fig. 4. The

FIG. 4. A SQUID-based detection scheme. The SQUID monitors the m
netic field produced by the magnetic cluster in one of the junctions.
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sephson junction containing the spin is used both for driv
the nutations and, together with the second junction of
SQUID, for detecting them.

CONCLUSION

In this article we have illustrated that the dynamics o
spin embedded in a Josephson junction is richer than ap
ciated hitherto. We have reported unusual nonplanar s
motion ~in a static field!, which might be probed directly and
which was further shown to influence the current in the
sephson junction. Using a path-integral formalism, we
scribed this nonplanar spin dynamics and the ensuing cur
variations that it triggers. To describe the time evolution
derived the effective action for a spin of arbitrary amplitu
S on the Keldysh contour. In passing, we noted a similar
between the resultant effective action and that encountere
quantum antiferromagnetic spin chains. Our central res
are encapsulated in the effective action~16!.

In the semiclassical limit of largeS, relevant to ferro-
magnetic spin clusters,14 we obtained two coupled equation
of motion ~Eqs. ~19! and ~20!!. These equations may b
solved perturbatively, as outlined above, or numerically.
presented an exact limiting-case solution and illustrated h
the new spin dynamics may be experimentally probed.

The formalism developed can also be applied to
minimal S51/2 system. In this case, however, it is simpler
perform a calculation with spin operators13 rather than a path
integral.

This work was supported by the US Department of E
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1!These two orthogonal AF fields represent~i! the slowly varying staggered

spin field~the antiferromagnetic staggered momentm taking on the role of
S and~ii ! the rapidly oscillating uniform spin fieldl ~paralleling ourl!. In
the antiferromagnetic correspondence, the two forward time spin traje
ries at two nearest neighbor AF sites become the two forward (u) and
backward (l ) single spin trajectories of the nonequilibrium problem. Th
staggered doubling correspondence is general.
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We review recent results on a new class of Josephson arrays which have nontrivial topology and
exhibit novel quantum states at low temperatures. One of these states is characterized by
long-range order in a two-Cooper-pair condensate and by a discrete topological order parameter.
The second state is insulating and can be considered as being the result of an evolution of
the former state due to Bose-condensation of usual superconductive vortices with a flux quantum
F0 . The quantum phase transition between these two states is controlled by variation of the
external magnetic field. Both the superconductive and insulating states are characterized by the
presence of 2K-degenerate ground states, withK being the number of topologically
different cycles existing in the plane of the array. This degeneracy is ‘‘protected’’ from the
external perturbations~and noise! by the topological order parameter and spectral gap. We show
that under ideal conditions the low-order effect of the external perturbations on this
degeneracy is exactly zero and that deviations from ideality lead to only exponentially small
effects of perturbations. We argue that this system provides a physical implementation of an ideal
quantum computer with a built-in error correction. A number of relatively simple ‘‘echo-
like’’ experiments possible on small-size arrays are discussed. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1789936#
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1. INTRODUCTION

Quantum computing1,2 is in principle a very powerful
technique for solving classic ‘‘hard’’ problems such as fa
torizing large numbers3 or sorting large lists.4 The remark-
able discovery of quantum error correction algorithm5

shows that there is no problem of principle involved in bui
ing a functioning quantum computer. However, implemen
tion still seems dauntingly difficult: the essential ingredie
of a quantum computer is a quantum system with 2K ~with
K@100) quantum states which are degenerate~or nearly so!
in the absence of external perturbations and are insensitiv
the ‘‘random’’ fluctuations which exist in every real system
but which may be manipulated by controlled external fie
with errors less than 1026. Moreover, the standard schem
of error correction~assuming an error rate of order 1026)
require very big system sizes,K;104– 106, to correct the
errors~i.e., the total number of all qubits is a factor of 100
1000 larger than the number of qubits needed to perform
computational algorithm under the ‘‘ideal’’ conditions of n
errors!. If the frequency of errors could be reduced by ord
of magnitude, the conditions for residual-error correcti
would becomes much less stringent, and the total sizeK of
the system would be much smaller.6
6341063-777X/2004/30(7–8)/12/$26.00
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Insensitivity to random fluctuations means that any co
pling to the external environment neither induces transitio
among these 2K states nor changes the phase of one s
with respect another. Mathematically, this means that
requires a system whose Hilbert space contains
2K-dimensional subspace ~called ‘‘the protected
subspace’’7–9! within which any local operatorÔ has~to a
high accuracy! only state-independent diagonal matrix el
ments:

^nuÔum&5O0dmn1o~exp~2L !!,

whereL is a parameter such as the system size that can
made as large as desired. It has been very difficult to de
a system which meets these criteria. Many physical syst
~for example, spin glasses10! exhibit exponentially many dis-
tinct states, so that the off-diagonal matrix elements of
physical operators between these states are exponen
small. In such systems the longitudinal relaxation of a sup
position of these states is very slow. The absence of
transverse relaxation which is due to the different diago
matrix elementsOmm2Onn is a different matter: it is a
© 2004 American Institute of Physics
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highly nontrivial requirement that is not satisfied by usu
physical systems~such as spin glasses! and which puts sys-
tems satisfying it in a completely new class.

One very attractive possibility, proposed in an importa
paper by Kitaev7 and developed further in Ref. 11, involves
protected subspace8,9 created by a topological degeneracy
the ground state. Typically such degeneracy happens if
system has a conservation law such as conservation o
parity of the number of ‘‘particles’’ along some long contou
and the absence of any local order parameter. Physically,
clear that two states that differ only by the parity of some
number that cannot be obtained from any local measurem
are very similar to each other. A ‘‘cartoon’’ example of th
idea can be presented as follows. Consider two locally
surfaces, one with the topology of a simple cylinder and
other a Möbius strip, and imagine an observer moving
one of these surfaces. Clearly, the only way to decide
which surface the observer is located is to walk the wh
loop around the strip and find himself either at the sa
point ~in which case the surface is a cylinder! or on the other
side of the surface~a Möbius strip!.

The model proposed in Ref. 7 has been shown to exh
many properties of the ideal quantum computer; howe
before now no robust and practical implementation w
known. In a recent paper we and others proposed a Jos
son junction network which is an implementation of a simi
model with protected degeneracy and which is possible~al-
though difficult! to build in the laboratory.12

In this paper we review our recent results on the furt
development of the ideas of Ref. 12. We propose a n
Josephson junction network that has a number of prac
advantages~a shorter account of this approach can be fou
in Refs. 13 and 14!. This network operates in a phase regim
~i.e., when Josephson energy is larger than the charging
ergy!, which reduces undesired effects of parasitic st
charges. All Josephson junctions in this array are sim
which should simplify the fabrication process. This syste
has 2K-degenerate ground states ‘‘protected’’ to even
higher extent than in Ref. 12: the matrix elements of lo
operators scale as«L, where«<0.1 is a measure of nonide
ality of the system’s fabrication~e.g., the spread of critica
currents of different Josephson junctions and geometrica
eas of different elementary cells in the network!. The new
array does not require a fine tuning of its parameters int
narrow region. The relevant degrees of freedom of this n
array are described by a model analogous to the one
posed in Ref. 7.

In physical terms, the array we propose may exist in t
different phases: i! topological superconductor, which is
superfluid of 4e composite objects, and ii! topological insu-
lator, which is a superfluid of superconductive vortices w
a flux quantumF05hc/2e. The topological degeneracy o
the ground state i! arises because 2e excitations have a gap
Indeed, in such system with the geometry of an annulus,
extra Cooper pair injected at the inner boundary can ne
escape it; on the other hand, it is clear that two states dif
ing by the parity of the number of Cooper pairs at the bou
ary are practically indistinguishable by a local measurem
In the ground state ii! the lowest excitation is a ‘‘half-vortex’’
~i.e., vortex with a flux F0/2), and topological double
l

t

he
he

is

nt

t
e

n
e
e

it
r
s
ph-
r

r
w
al
d

n-
y
r,

a
l

r-

a
w
o-

o

e
er
r-
-
t.

degeneracy appears due to the possibility of putting a h
vortex inside the opening, without paying any energy.

Below we first describe the physical array, with the ‘‘to
pological superconductor’’ state, and identify its releva
low-energy degrees of freedom and the mathematical mo
that describes their dynamics. We then show how the p
tected states appear in this model, derive the paramete
the model, and identify various corrections appearing in
real physical system and their effects. Then we discuss
generalization of this array that is needed to obtain in a c
trollable way a second ‘‘topological insulator’’ phase. F
nally, we discuss how one can manipulate quantum state
a putative quantum computer based upon those arrays,
the physical properties expected in a small arrays of
type. We remark that the properties of the excitations a
topological order parameter exhibited by the system we p
pose here are in many respects similar to the properties o
ring exchange and frustrated magnet models discussed
cently in Refs. 8, 9, and 15–25.

2. ARRAY 1: TOPOLOGICAL SUPERCONDUCTOR

The basic building block of the lattice is a rhombu
made of four Josephson junctions with each side of
rhombus containing one Josephson contact; these rho
form a hexagonal lattice as shown in Fig. 1. We denote
centers of the hexagons by lettersa,b,... and theindividual
rhombi by (ab),(cd),..., because each rhombus is in on
to-one correspondence with the link (ab) between the sites

FIG. 1. Examples of the proposed Josephson junction array. The thick
show superconductive wires, each wire containing one Josephson jun
as shown in the detailed view of one hexagon. The width of each rhom
is such that the ratio of the area of the Star of David to the area of
rhombus is an odd integer. The array is put in a magnetic field such tha
flux through each elementary rhombus and through each Star of David~in-
scribed in each hexagon! is half-integer. The thiin lines show the effectiv
bonds formed by the elementary rhombi. The Josephson coupling prov
by these bonds isp-periodic. An array with one opening; generally th
effective number of qubits,K is equal to the number of openings. Th
choice of boundary condition shown here makes the superconducting p
unique along the entire length of the outer~inner! boundary; the state of the
entire boundary is described by a single degree of freedom. The topolo
order parameter controls the phase difference between the inner and
boundaries. Each boundary includes one rhombus to allow experiments
flux penetration; the magnetic flux through the opening is assumed to
(1/21m)F0/2 with any integerm (a). With this choice of boundary circuits
the phase is unique only inside the sectors AB and CD of the boundary
topological degree of freedom controls the difference between the phas
these boundaries. This allows a simpler setup of the experimental test fo
signatures of the ground state described in the text, e.g., by the SQ
interference experiment sketched here, which involves a measuring
with flux Fm and a very weak junctionJ balancing the array (b).
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of the triangular lattice dual to the hexagonal lattice. T
lattice is placed in a uniform magnetic field so that the fl
through each rhombus isF0/2. The geometry is chosen i
such a way that the fluxFs through each Star of David is
half-integer multiple of F0 :Fs5(ns11/2)F0 .1! Finally,
globally the lattice contains a numberK of big openings~the
size of the opening is much larger than the lattice constan
lattice withK51 is shown in Fig. 1a!. The dimension of the
protected space will be shown to be equal 2K. The system is
characterized by the Josephson energy,EJ5(\/2e)I c , of
each contact and by the capacitance matrix of the isla
~vertices of the lattice!. We shall assume~as is usually the
case! that the capacitance matrix is dominated by the cap
tances of individual junctions; we write the charging ener
as EC5e2/2C. The ‘‘phase regime’’ of the network men
tioned above implies thatEJ.EC . The whole system is de
scribed by the Lagrangian

L5(
~ i j !

1

16EC
~ ẇ i2ẇ j !

21EJ cos~w i2w j2ai j !, ~1!

where w i are the phases of individual islands andai j are
chosen to produce the correct magnetic fluxes. The Lagra
ian ~1! contains only gauge invariant phase differences,w i j

5w i2w j2ai j , so it will be convenient sometimes to tre
them as independent variables satisfying the constr
(Gw i j 52pFG /F012pn, where the sum is taken ove
closed loopG andn is an arbitrary integer.

As will become clear below, it is crucial that the degre
of freedom at the boundary have dynamics identical to th
in the bulk. To ensure this one needs to add additional su
conducting wires and Josephson junctions at the bound
There are a few ways to do this; two examples are show
Fig. 1a and Fig. 1b: type I boundary~the entire length of the
boundaries in Fig. 1a, parts AB and CD of Fig. 1b!, and type
II boundary (BC,AD). For both types of boundaries on
needs to include in each boundary loop a flux equal
1
4ZbF0 , where Zb is the coordination number of the du
triangular lattice site. For instance, for the four-coordina
boundary sites one needs to enclose an integer flux in t
contours. In the type I boundary the entire boundary co
sponds to one degree of freedom~the phase at some point!,
while the type II boundary includes many rhombi so it co
tains many degrees of freedom.

Note that each~inner and outer! boundary shown in Fig.
1a contains one rhombus; we included it to allow flux
enter and exit through the boundary when that is energ
cally favorable.

3. GROUND STATE, EXCITATIONS AND TOPOLOGICAL
ORDER

In order to identify the relevant degrees of freedom
this highly frustrated system we consider first an individu
rhombus. As a function of the gauge invariant phase dif
ence between the far ends of the rhombus the potential
ergy is

U~w i j !522EJ~ ucos~w i j /2!u1usin~w i j /2!u!. ~2!

This energy has two equivalent minima, atw i j 56p/2,
which can be used to construct an elementary unprote
qubit; see Ref. 26. In each of these states the phase cha
e
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by 6p/4 in each junction clockwise around the rhombu
We denote these states asu↑& andu↓&, respectively. In the limit
of large Josephson energy the space of low-energy state
the full lattice is described by these binary degrees of fr
dom, and the set of operators acting on these states is g
by Pauli matricessab

x,y,z . We now combine these rhombi int
hexagons forming the lattice shown in Fig. 1. This giv
another condition: the sum of phase differences around
hexagon should be equal to the fluxFs through each Star o
David inscribed in this hexagon. The choicew i j 5p/2 is con-
sistent with the fluxFs being equal to a half-integer numbe
of flux quanta. This state minimizes the potential energy~2!
of the system. This is, however, not the only choice. A
though flipping the phase of one rhombus changes the p
flux around the star byp and thus is prohibited, flipping two
four and six rhombi is allowed; generally the low-ener
configurations ofU(w) satisfy the constraint

P̂a5)
b

sab
z 51, ~3!

where the product runs over all neighborsb of site a. The
number of ~classical! states satisfying the constraint~3! is
still huge: the corresponding configurational entropy is e
tensive~proportional to the number of sites!. We now con-
sider the charging energy of the contacts, which results in
quantum dynamics of the system. We show that it redu
this degeneracy to a much smaller number, 2K. The dynam-
ics of the individual rhombus is described by a simp
HamiltonianH5 t̃sx , but the dynamics of a rhombus em
bedded in the array is different because individual flips
not compatible with the constraint~3!. The simplest dynam-
ics compatible with~3! contains flips of three rhombi belong
ing to the elementary triangle, (a,b,c), Q̂(abc)5sab

x sbc
x sca

x

and therefore the simplest quantum Hamiltonian opera
on the subspace defined by~3! is

H52r (
~abc!

Q~abc! . ~4!

We discuss the derivation of the coefficientr in this Hamil-
tonian and the correction terms and their effects below,
first we solve the simplified model~3!, ~4! and show that its
ground state is ‘‘protected’’ in the sense described above
that excitations are separated by a gap.2!

Clearly, it is very important that the constraint is im
posed on all sites, including boundaries. Evidently, so
boundary hexagons are only partially complete but the c
straint should be still imposed on the corresponding sites
the corresponding triangular lattice. This is ensured by ad
tional superconducting wires that close the boundary he
gons in Fig. 1.

We note that constraint operators commute not only w
the full Hamiltonian but also with individualQ̂(abc) :

@ P̂,Q̂(abc)#50. The Hamiltonian~4! without constraint has
an obvious ground state,u0&, in whichsab

x 51 for all rhombi.
This ground state, however, violates the constraint. This
be fixed, noting that since operatorsP̂a commute with the
Hamiltonian, any state obtained fromu0& by acting on it by
P̂a is also a ground state. We can now construct a t
ground state satisfying the constraint by
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uG&5)
a

11 P̂a

&
u0&. ~5!

Here (11 P̂a)/& is a projector onto the subspace satisfyi
the constraint at sitea and preserving the normalization.

Obviously, the Hamiltonian~4! commutes with any
product ofP̂a which is equal to the product ofsab

z operators
around a set of closed loops. These integrals of motion
fixed by the constraint. However, for a topologically no
trivial system there appear a number of other integrals
motion. For a system withK openings a product ofsab

z

operators along a contourg that begins at one opening an
ends at another~or at the outer boundary; see Fig. 2!,

T̂q5)
~gq!

sab
z , ~6!

FIG. 2. Location of the discrete degrees of freedom responsible for
dynamics of the Josephson junction array shown in Fig. 1. The spin deg
of freedom describing the state of the elementary rhombi are located o
bonds of the triangular lattice~shown by thick lines!, while the constraints
are defined on the sites of this lattice. The dashed line indicates the boun
condition imposed by the physical circuitry shown in Fig. 1a. Contoursg
andg8 are used in the construction of the topological order parameter
excitations (a). The lattice withK53 openings; the ground state of th
Josephson junction array on this lattice is 2k58-fold degenerate (b).
re

f

commutes with the Hamiltonian and is not fixed by the co
straint. Physically these operators count the parity of ‘‘u
rhombi along such contour. The presence of these opera
results in degeneracy of the ground state. Note that multip
ing such an operator by an appropriateP̂a gives a similar
operator defined on the shifted contour, so all topologica
equivalent contours give one new integral of motion. Furth
multiplying two operators defined along the contours beg
ning at the same~e.g., outer! boundary and ending in differ
ent openings,A, B is equivalent to the operator defined o
the contour leading fromA to B, so the independent opera
tors can be defined~e.g.! by the set of contours that begin a
one opening and end at the outer boundary. The stateuG&
constructed above is not an eigenstate of these operators
this can be fixed by defining

uGf&5)
q

11cqT̂q

&
uG&, ~7!

wherecq561 is the eigenvalue of the operatorT̂q defined
on the contourgq . Equation~7! is the final expression for
the ground-state eigenfunctions.

Construction of the excitations is similar to the constru
tion of the ground state. First, one notices that since all
eratorsQ̂abc commute with each other and with the co
straints, any state of the system can be characterized by
eigenvalues (Qabc561) of Q̂abc . The lowest excited state
correspond to only oneQabc being21. Notice that a simple
flip of one rhombus~by the operators (ab)

z ) somewhere in the
system changes the sign of the two eigenvaluesQabc corre-
sponding to the two triangles to which it belongs. To chan
only oneQabc one needs to consider a continuous string
these flip operators starting from the boundary:u(abc)&
5vabcu0& with vabc5)g8s (cd)

z , where the product is ove
all rhombi (cd) that belong to the pathg8 that begins at the
boundary and ends at (abc) ~see Fig. 2, which shows on
such path!. This operator changes the sign of only oneQabc ,
the one that corresponds to the ‘‘last’’ triangle. This constru
tion does not satisfy the constraint, so we have to apply
same ‘‘fix’’ as for the ground-state construction above

uv ~abc!&5)
q

11cqT̂q

&
)

a

11 P̂a

&
v ~abc!u0& ~8!

to get the final expression for the lowest-energy excitatio
The energy of each excitation is 2r . Note that a single flip
excitation at a rhombus (ab) can be viewed as a combinatio
of two elementary excitations located at the centers of
triangles to which rhombus (ab) belongs and has twice the
energy. Generally, all excited states of the model~4! can be
characterized as a number of elementary excitations~8!, so
they give an exact quasiparticle basis. Note that creation
quasiparticle at one boundary and moving it to anothe
equivalent to the operatorT̂q , so this process acts astq

z in
the space of the 2K degenerate ground states. As will b
shown below, in the physical system of Josephson juncti
these excitations carry charge 2e, so that the processtq

z is
equivalent to the transfer of charge 2e from one boundary to
another.
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Consider now the matrix elements,Oab5^GauÔuGb& of
a local operator,Ô, between two ground states, e.g., of
operator that is composed of a small number ofsab . To
evaluate this matrix element we first project a general op
tor onto the space that satisfies the constraint:Ô→PÔP,
where P5)a(11 P̂a)/2. The new ~projected! operator is
also local; it has the same matrix elements between gro
states but it commutes with allP̂a . Since it is local, it can be
represented as a product ofsz and Q̂ operators, and this
implies that it also commutes with allT̂q . Thus, its matrix
elements between different states are exactly zero. Fur
using the fact that it commutes withP̂a andT̂q we write the
difference between its diagonal elements evaluated betw
the states that differ by parity over contourq as

O12O25K 0U)
i

11 P̂i

&
T̂qÔU0L . ~9!

This equation can be viewed as a sum of products ofsz

operators. Clearly to get a nonzero contribution eachsz

should enter even number of times. EachP̂ contains a closed
loop of sixsz operators, so any product of these terms is a
a collection of closed loops ofsz. In contrast to it, the op-
eratorT̂q contains a product ofsz operators along the loopg,
so the product of them contains a string ofsz operators along
a contour that is topologically equivalent tog. Thus one gets
a nonzeroO12O2 only for the operatorsÔ which contain a
string of sz operators along a loop that is topological
equivalent tog, which is impossible for a local operato
Thus we conclude that for this model all off-diagonal mat
elements of a local operator are exactly zero, and all
diagonal elements are exactly equal.

4. EFFECT OF PHYSICAL PERTURBATIONS

We now come back to the original physical system d
scribed by the Lagrangian~1! and derive the parameters o
the model~4! and discuss the most important corrections to
and their effect. We begin with the derivation. In the limit
small charging energy the flip of three rhombi occurs by
virtual process in which the phasew i at one~6-coordinated!
island i changes byp. In the quasiclassical limit the phas
differences on the individual junctions arew ind56p/4; the
leading quantum process changes the phase on one jun
by 3p/2 and on others by2p/2, changing the phase acro
the rhombus:w→w1p. The phase differencesw satisfy the
constraint that the sum of them over the closed loops rem
equal to 2p(n1Fs /F0). The simplest such process pr
serves the symmetry of the lattice, and changes simu
neously the phase differences on the three rhombi contai
island i while leaving all other phases constant. The act
for such process is three times the action of elementary t
sitions of individual rhombi,S0 :

r'EJ
3/4EC

1/4exp~23S0!, S051.61AEJ /EC. ~10!

In the alternative process the phase differences betweeni and
other islands change in turn, via a high-energy intermed
state in which one phase difference has changed while ot
remain close to their original values. The estimate for t
action shows that it is larger than 3S0 , so ~10! gives the
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dominant contribution. There are in fact many processes
contribute to this transition: the phase of islandi can change
by 6p and, in addition, in each rombus one can choo
arbitrarily the junction at which the phase changes
63p/2; the amplitude of all these processes should
added. This does not change the result qualitatively un
these amplitudes exactly cancel each other, which happ
only if the charge of the island is exactly half-integer~be-
cause phase and charge are conjugate, the amplitude d
ence of processes that are different by 2p is exp(2piq)). We
assume that in a generic case this cancellation does no
cur. External electrical fields~created by stray charges, fo
example! might induce noninteger charges on each isla
which would lead to a randomness in the phase and am
tude of r . The phase ofr can be eliminated by a suitabl
gauge transformationu↑&ab→exp(iaab)u↑&ab and has no effect
at all. The amplitude variations result in a position-depend
quasiparticle energy.

We now consider the corrections to the model~4!. One
important source of corrections is the difference of the act
magnetic flux through each rhombus from the ideal va
F0/2. If this difference is small, it leads to a bias of ‘‘up
versus ‘‘down’’ states; their energy difference becomes

2e52p&
dFd

F0
EJ . ~11!

Similarly, the difference of the actual flux through St
of David and the difference in the Josephson energies
individual contacts leads to the interaction between ‘‘u
states:

dH15(
~ab!

Vabsab
z 1 (

~ab!,~cd!
V~ab!,~cd!sab

z scd
z , ~12!

whereVab5e for a uniform field deviating slightly from the
ideal value andV(ab),(cd)Þ0 for rhombi belonging to the
same hexagon. Consider now the effect of perturbations
scribed bydH1 , Eq. ~12!. These terms commute with th
constraint but do not commute with the main term,H, so the
ground state is no longeruG6&. In other words, these term
create excitations~8! and give them kinetic energy. In th
leading order of the perturbation theory the ground state
comes uG6&1(e/4r )( (ab)s (ab)

z uGi 6&. Qualitatively, this
corresponds to the appearance of virtual pairs of quasip
cles in the ground state. The density of these quasiparticle
e/r . As long as these quasiparticles do not form a topolo
cally nontrivial string, all of our previous conclusions rema
valid. However, there is a nonzero amplitude for formi
such a string; it is now exponential in the system size. W
exponential accuracy this amplitude is (e/2r )L, which leads
to an energy splitting of the same order for the two groun
state levels and for the matrix elements of typical local o
erators:

E12E2;O12O2;~e/2r !L.

The physical meaning of thev (abc) excitations becomes
clearer if one consider the effect of the addition of onesz

operator to the end of the string defining the quasiparticle
results in a charge transfer of 2e across this last rhombus. T
prove this, note that the wave function of a superconduc
corresponding to the state that is a symmetric combinatio
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u↑& and u↓& is periodic with periodp and thus corresponds t
charge which is multiple of 4e, while the antisymmetric
combination corresponds to charge (2n11)2e. The action
of onesz induces a transition between these states and
transfers a charge 2e. Thus, these excitations carry char
2e. Note that continuous degrees of freedom are charac
ized by long-range order in cos(2w) and thus correspond t
the condensation of pairs of Cooper pairs. In other wor
this system superconducts with elementary charge 4e and
has a gap 2r to the excitations carrying charge 2e. It was
shown in a recent paper29 that a similar pairing of Coope
pairs occurs in a chain of rhombi, and in Ref. 30 it w
predicted that a classical superconductive state with effec
charge 6e is formed in a frustrated Kagome wire network

The model~4! completely ignores the processes that v
late the constraint at each hexagon. Such processes m
violate the conservation of the topological invariantsT̂q and
thus are important for the long-time dynamics of the grou
state manifold. In order to consider these processes we
to go back to the full description involving the continuo
superconducting phasesw i . Since potential energy~2! is pe-
riodic in p it is convenient to separate the degrees of fr
dom into a continuous part~defined modulop! and discrete
parts. The continuous parts have a long-range or
^cos(2w022wr)&;1. The elementary excitations of the co
tinuous degrees of freedom are harmonic oscillations
vortices. The harmonic oscillations interact with discrete
grees of freedom only through the local currents that th
generate. Further the potential~2! is very close to quadratic
so we conclude that they are practically decoupled from
rest of the system. In contrast to this, vortices have an
portant effect. By construction, the elementary vortex car
flux p in this problem. Consider the structure of these vo
ces in greater detail. The superconducting phase sh
change by 0 or 2p when one moves around a closed loop.
a half-vortex this is achieved if the gradual change byp is
compensated~or augmented! by a discrete change byp on a
string of rhombi, which costs no energy. Thus, from t
viewpoint of discrete degrees of freedom, the position of
vortex is the hexagon where constraint~3! is violated. The
energy of the vortex is found from the usual arguments,

Ev~R!5
pEJ

4A6
~ ln R1c!, c'1.2; ~13!

it is logarithmic in the vortex sizeR. The process tha
changes the topological invariantT̂q is the one in which one
half-vortex completes a circle around an opening. The a
plitude of such a process is exponentially sma
( t̃ /Ev(D))L, wheret̃ is the amplitude for the flipping of one
rhombus andL is the length of the shortest path around t
opening. In the quasiclassical limit the amplitudet̃ can be
estimated analogously to~10!: t̃;AEJEQ exp(2S0). The
half-vortices would appear in a realistic system if the fl
through each hexagon is systematically different from
ideal half-integer value. The presence of free vortices
stroys topological invariants, so a realistic system should
ther be not too large~so that deviations of the total flux d
not induce free vortices! or these vortices should be localize
in prepared traps~e.g., Stars of David with fluxes slightly
us
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larger or smaller thanFs). In the absence of half-vortices th
model is equivalent to the Kitaev model7 placed on triangular
lattice in the limit of the infinite energy of the excitatio
violating the constraints.

Quantitatively, the expression for the parameters of
model~4! becomes exact only ifEJ@EC . One expects, how-
ever, that the qualitative conclusions remain the same and
formulas derived above provide reliable estimates of
scales even forEJ;EC , provided that the charging energy
not so large as to result in a phase transition to a differ
phase. One expects this transition to occur atEC* 5hEJ , with
h;1, its exact value being reliably determinable only fro
numerical simulations.

Practically, since the perturbations induced by flux d
viations fromF0 are proportional to (dF/F0)(EJ /r ) and r
becomes exponentially small at smallEC , the optimal choice
of the parameters for the physical system isEC'EC* . We
show the schematics of the phase diagram in Fig. 3.
assume here that the transition to the insulating phase is
rect; another alternative is an intermediate phase in which
energy of the vortex becomes finite instead of being logar
mic. If this phase indeed exists it is likely to have propert
more similar to the one discussed in Ref. 7~in the next
Section we consider a generalized JJ array, where suc
intermediate phase does exist!. The ‘‘topological’’ phase is
stable in a significant part of the phase diagram. The ph
transition between ‘‘topological superconductor ’’ and usu
superconductor belongs to the class of quantum spin-1/2
Ising model on a hexagonal lattice, placed in a transve
field:

H Ising52e(
~ i j !

sj
xsi

x2r(
i

si
z . ~14!

Herei , j denote sites of the hexagonal lattice, the eigenva
of operatorsi

z measures the parity of the numberni of Coo-
per pairs on thei th island:ni(mod 2)5 1

2(12si
z); the param-

etersr ande are defined in Eqs.~10! and~11!. As long as the
ratio l5r /e is larger than some critical valuelc , the ground
state is one with an even number of Cooper pairs on e
island, which corresponds to our ‘‘topological supercondu
or’’ phase. The values oflc for square, triangular, and cubi

FIG. 3. Schematic of the phase diagram for half-integerFs at low tempera-
tures:dFd is the deviation of the magnetic flux through each rhombus fr
its ideal value. SC stands for the usual superconducting phase, SCT fo
phase with cos(2w) long-range order of the continuous degrees of freed
and a discrete topological order parameter, discussed extensively in the
The SCT phase and SC phase are separated by a 2D quantum Ising
transition.
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lattices was found via quantum Monte–Carlo simulations31

in particular,lc
triang'4.660.3, andlc

square'2.760.3. There
are no available data for a hexagonal lattice; based upon
results cited above, one could estimatelc

hex'260.5.
Furthermore, since the vortex excitations have logar

mic energy, we expect that this phase survives at finite t
peratures as well. In the thermodynamic limit, atTÞ0
one gets a finite density of 2e-carrying excitations
(nv;exp(22r/T)), but vortices remain absent as long as t
temperature is below the BKT-like depairing transition f
half-vortices.

5. ARRAY 2: TOPOLOGICAL INSULATOR

Generally, increasing the charging energy in a Joseph
junction array makes it an insulator. This transition is due
an increase of phase fluctuations in the original array and
resulting appearance of free vortices that form a superflui
their own. The new situation arises in a topological sup
conductor because it allows half-vortices. Two scenarios
now possible. The ‘‘conventional’’ scenario would involv
condensation of half-vortices since they are conjugate
charges 4e. In this case we get an insulator with elementa
excitations carrying charge 4e. An alternative is condensa
tion of full vortices ~pairs of half-vortices! with a finite gap
to half-vortices. In this case the elementary excitations
charge-2e objects. Similar fractionalization was discussed
the context of high-Tc superconductors in Refs. 19 and 3
and in the context of spin or quantum dimer systems in R
22 and 33–36. Such an insulator acquires interesting to
logical properties on a lattice with holes, because each h
leads to a new binary degree of freedom which describes
presence or absence of a half-vortex. The energies of t
states are equal up to corrections which vanish exponent
with the size of the holes. These states cannot be dis
guished by local measurements and have all the prope
expected for a topological insulator. They can be measu
however, if the system is adiabatically brought into the
perconductive state by changing some control parame
Here we propose a modification of the ‘‘topologically supe
conductive’’ array that provides such a control parame
and, at the same time, allows us to solve the model
compute the properties of the topological insulator. The k
idea of this modification is to allow full vortices~of flux F0)
to move with large amplitude between plackets of the h
agonal lattice, so that they lower their energy due to delo
ization and eventually Bose-condense, while half-vortices
main ~almost! localized.

Consider the array shown in Fig. 4, which contai
rhombi with junctions characterized by Josephson and ch
ing energiesEJ.EC and weak junctions witheJ!eC!EC .
Each rhombus encloses half of a flux quantum, leading to
exact degeneracy between the two states of opposite chir
of the circulating current.13,29 This degeneracy is a conse
quence of the symmetry operation which combines the
flection about the long diagonal of the rhombus and a ga
transformation needed to compensate the change of the
F0/2→2F0/2. This gauge transformation changes t
phase difference along the diagonal byp. ThisZ2 symmetry
implies conservation of the parity of the number of pairs
each site of the hexagonal lattice and is the origin of
he
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Cooper pair binding. We assume that each elementary h
gon contains exactlyk such junctions: in the case where ea
link contains one weak junctionk56, but generally it can
take any valuek>1. As will be shown below, the importan
condition is the number of weak junctions that one needs
cross in the elementary loop. Qualitatively, a valuek>1 en-
sures that it costs a little to put a vortex in any hexagon.

For the general arguments that follow below, the act
construction of the weak links is not important; howev
practically it is difficult to vary the ratio of the capacitance
the Josephson energy, so weaker Josephson contact us
implies larger Coulomb energy. This can be avoided if we
contact is made from a Josephson junction loop frustrated
magnetic field. The charging energy of this system is half
charging energy of an individual junction, while the effectiv
Josephson junction strength iseJ52p(dF/F0)E0 , where
E0 is the Josephson energy of each contact anddF5F
2F0/2 is the difference of the flux from the half flux quan
tum. This construction also allows one to control the syst
by varying the magnetic field.

Under these conditions the whole array is insulating. A
sume thateJ sets the lowest energy scale in this problem~the
exact condition will be discussed below!. The state of the
array is controlled by discrete variablesui j 50,1, which de-
scribe the chiral state of each rhombus, and by continu

FIG. 4. Schematics of the array. The main figure: Global structure of
array. Discrete variables controlling the low energy properties are define
the links of the hexagonal lattice. Generally, the lattice might haveK big
holes; here we show the exampleK51. Zoom in: Each inner bond of the
lattice contains a rhombus made out of four Josephson junctions; s
bonds also contain an effective weaker link made of two Josephson j
tions so that each hexagon of the lattice containsk53 such links. The flux
through each rhombus is a half flux quantum,F0/2; the flux through a loop
constituting a weak link is close to a half flux quantumf5F0/21dF. The
boundary of the lattice contains rhombi and weak links so that each bo
ary plaquette has the same number,k, of weak links as the bulk hexagon.
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phasesw i j that specify the state of each weak link~here and
below i , j denote the sites of the hexagonal lattice!. If the
Josephson couplingeJ[0, different islands are completel
decoupled and the potential energy does not depend on
discrete variablesui j . For smalleJ we can evaluate its effec
using perturbation theory:

V~u!52W cosS p(
hex

ui j D , W5
kk

k!
eJS eJ

8eC
D k21

.

~15!

This potential energy lowers the relative energy of class
configurations ofui j that satisfy the constraint(hexu[0
~mod 2! but it does not prohibit configurations with(hexu
[1 ~mod 2!.

Now consider the dynamics of discrete variables. G
erally, two types of tunneling processes are possible. In
first type the phase changes byp across each of the thre
rhombi that have a common site. This is the same proc
that gives the leading contribution to the dynamics of
superconducting array;13 its amplitude is given~in the quasi-
classical approximation! by Eq. ~10! above. In the second
type of process the phase changes across one rhombu
across one weak junction. Because the potential energ
the weak junction is assumed to be very small, the m
effect of the weak junction is to change the kinetic ener
The total kinetic energy for this process is the sum of
terms due to the phase across the rhombi and across the
link. Assuming that these phase variations are equal and
posite in sign, the former is aboutEC

21w2 and the latter
eC

21w2, so the effective charging energy of this process
ẼC5(EC

211«C
21)21. For eC!EC this charging energy is

small, and the process is suppressed. Thus, under these
ditions the dominating process is the simultaneous flip
three rhombi, as in the superconducting case. In the foll
ing we restrict ourselves to this case. Further, we shall
sume thatr @W, so that in the leading order one can negle
the potential energy compared to the kinetic energy co
sponding to the flip of three rhombi. AsW is increased by
turning oneJ the continuous phasew i j orders, and the tran
sition to the superconducting state happens ateJ;eC . At
largereJ , W becomes equal toeJ and with a further increase
of eJ , for eJ@r vortices completely disappear from the low
energy spectrum, and the array becomes equivalent to
one studied in Ref. 13.

The low-energy states are the ones that minimize
kinetic energy corresponding to simultaneous flip proces

HT52r(
i

)
j ~ i !

t i j
x . ~16!

Here j ( i ) denote the nearest neighbors of sitei , t i j
x is the

operator that flips discrete variablesui j , and r is given by
~10!. The states minimizing this energy satisfy the gau
invariance condition

)
j ~ i !

t i j
x uC&5uC&. ~17!

The Hilbert space of states that satisfy the condition~17! is
still huge. If all weaker terms in the Hamiltonian are n
glected, all states that satisfy~17! are degenerate. Thes
states can be visualized in terms of half-vortices positio
the

l

-
e

ss
e

and
of

in
.
e
eak
p-

s

on-
f
-

s-
t
-

he

e
s:

e

d

on the sites of the dual lattice,a, b. Indeed, a convenien
way to describe different states that satisfy~17! is to note
that operator) j ( i )t i j

x does not change the value of(hexui j for
the second type of tunneling processes. Thus, one can fix
values of(hexui j 5va on all hexagonal plaquettesa and im-
pose the constraint~17!. In physical terms the binary value
v i50,1 describe the positions of half-vortices on the du
~triangular! lattice. This degeneracy between different sta
is lifted when the subdominant terms are taken into acco
The main contribution to the potential energy of these ha
vortices comes from~15!, it is simply proportional to their
number. The dynamics of these vortices is due to the p
cesses in which only one rhombus changes its state, wi
corresponding flip of the phase across the weak junction.
amplitude of this process is

r̃'EJ
3/4EC

1/4exp~2S̃0!, S̃051.61AEJ

ẼC

.

In this approximation the effective Hamiltonian contro
ling these vortices becomes~cf. Eq. ~14!!:

Hv52 r̃ (
~ab!

sa
xsb

x2W(
a

sa
z , ~18!

where the operatorssa act in the usual way on the state
with/without half-vortices at plaquettea and the first sum
runs over adjacent plaquettes (ab). This Hamiltonian de-
scribes an Ising model in a transverse field. For smallW/ r̃
,lc;1 its ground state is ‘‘disordered’’:̂sz&50 but ^sx&
Þ0 while for W/ r̃ .lc it is ‘‘ordered’’: ^sz&Þ0, ^sx&50.
The critical value of the transverse field is known from e
tensive numerical simulations:31 lc'4.660.3 for the trian-
gular lattice. The ‘‘disordered’’ state corresponds to a liqu
of half-vortices, while in the ‘‘ordered’’ state the density o
free half-vortices vanishes, i.e., the ground state contain
even number of half-vortices, so the total vorticity of th
system is zero. To prove this we start from the stateu↑&,
which is the ground state atr̃ /W50, and consider the effec
of r̃ ( (ab)sb

xsa
x in perturbation theory. Higher energy stat

are separated from the ground state by the gapW, so each
order is finite. Further, in each order the operatorsa

xsb
x cre-

ates two more half-vortices, proving that the total number
half-vortices remains even in each order. The states with
numbers of half-vortices have a gapD( r̃ /W) which remains
nonzero forW/ r̃ .lc .

In terms of the original discrete variable defined on t
rhombi the Hamiltonian~18! becomes

Hu52 r̃(
~ i j !

t i j
x 2W(

i
)
j ~ i !

t i j
z , ~19!

where thet operators act on the state of each rhombus. T
Hamiltonian commutes with the constraint~17! and is in fact
the simplest Hamiltonian of the latticeZ2 gauge theory. The
disordered regime corresponds to a confined phase of thiZ2

gauge theory, leading to elementary 4e charge excitations,
while the ordered regime corresponds to the deconfi
phase.

Now consider a system with nontrivial topology, e.g.,
hole. In this case the set of variablesva is not sufficient to
determine uniquely the state of the system, one has
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TABLE I. The typical properties of topological superconductor and insulator.
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Comment: Hereb is a number;1, c is the capacitance of a weak link, andc0 is the self-capacitance of an island.
supplement it by the variablev05(Luab , where the sum is
taken over a closed contourL that goes around the hole
Physically, it describes the presence/absence of a half-vo
in the hole. The effective Hamiltonian of this additional va
able has only a kinetic part because the presence or abs
of a half-vortex in a hole which hasl weak links in its pe-
rimeter gives a potential energyW05ceJ(eJ /eC) l which is
exponentially small forl @1. The kinetic part is similar to
other variables:H052 r̃ (aPIsa

xs0
x ; it describes a process i

which a half-vortex jumps from the hole into the inn
boundary I of the system. In the state witĥsz&Þ0
this process increases the energy of the system
W̃( r̃ /W) (W̃(0)5W and W̃(lc)50). In the state with
^sx&Þ0 it costs nothing. Thus, the process in which a ha
vortex jumps from the hole into the system and another h
vortex exits into the outside region appears in second o
of perturbation theory, and the amplitude of this process
tv5 r̃ 2( i PI , j POgab , where the summation is performed ov
all sites of the inner (I ) and outer (O) boundaries, and

gab5 K sa
x 1

H2E0
sb

xL
has the physical meaning of the half-vortex tunneling am
tude from the inner to outer boundaries. At smallr̃ /W, deep
in the insulating phase, we can estimategab using the per-
turbation expansion inr̃ /W: the leading contribution appear
in ua2buth order of perturbation theory, and thusgab

}( r̃ /W) ua2bu. Thus for smallr̃ /W the tunneling amplitude o
the half-vortex is exponentially small in the distanceL from
the outer to the inner boundary; we expect that it rema
exponentially small for allr̃ /W,lc . For r̃ /W.lc this am-
plitude is of the order ofr̃ 2/W and is therefore significant.

In different language, in the system with a hole we c
construct a topological invariantP5)gt i j

x ~contour g is
shown in Fig. 4! which can take values61. Note that now
the contour goes via triangular lattice sites~where vortices
are defined!, whereas in the first~superconductive array! ver-
sion the corresponding path was drawn via sites of the b
hexagonal lattice. The same arguments as used for the s
conducting array show that any dynamics consistent w
constraint~17! preservesP. Thus, formally, the properties o
the topological insulator are very similar to the properties
the topological superconductor discussed in Ref. 12, if
replaces the words Cooper pair by half-vortex and vice ve
We summarize this duality in Table I.

Note that at smallr̃ /W→0 the ground state of the
Hamiltonian~19! satisfies the condition~17! and minimizes
ex

nce

y
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the second term in~19!, i.e., satisfies the condition
) j ( i )t i j

z uC&5uC&; it can be explicitly written as

u0& ins5)
i

1

2 S 11)
j ~ i !

t i j
z D)

kl
u→&kl . ~20!

This state is a linear superposition of the degenerate st
with P51 andP521:

u0& ins5
1

&
~ u1& ins1u2& ins) ~21!

and it coincides with the ground stateuG& of discrete vari-
ables in the superconducting array~cf. Eq. ~5!!. The orthogo-
nal superposition ofP561 states,

u1& ins5
1

&
~ u1& ins2u2& ins), ~22!

corresponds to a half-vortex inside the hole. The energy
ference between the above two statesE12E0 is exponen-
tially small in the insulating state of the array, whereas it
large in the superconductive state.

6. QUANTUM MANIPULATIONS

We now discuss the manipulation of the protected sta
formed in this system. We start from asuperconductivever-
sion of the array.

First, we note that here the topological invariantT̂q has a
simple physical meaning—it measures the total phase dif
ence~modulo 2p! between the inner and outer boundaries.
an array with even number of rhombi between internal a
outer boundaries, the state with eigenvaluecq51 has a phase
difference of 0, whereas the state with eigenvaluecq521
has a phase difference ofp. This means that measuring th
phase difference measures the state of the qubit in the s
basis in whichT̂q is diagonal. For the following discussio
we define a set of Pauli matricesSq

x,y,z acting in the 232
qubit space, such thatSq

x[Tq .
Introducing a weak coupling between these bounda

by a very weak Josephson circuit~characterized by a sma
energyeJ) would change the phase of these states in a c
trollable manner, e.g., in a unitary transformation

Uz5exp~ ieJtSq
z!. ~23!

The transformation coupling two qubits can be obtained
one introduces a weak Josephson circuit that connects
different inner boundaries~corresponding to different qu
bits!. Namely, it will produce the operation
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Up,q
z 5exp~ ieJtSq

zSp
z!. ~24!

Analogously, the virtual process involving half-vortex m
tion around the opening gives the tunneling amplitude,e t

between topological sectors, e.g., the unitary transforma
Ux5exp(ite t Sq

x). This tunneling can be controlled by mag
netic field if the system is prepared with some number
vortices that are pinned in the idle state in a spec
plaquette, where the flux is integer. The slow~adiabatic!
change of this flux towards a normal~half-integer! value
would release the vortex and result in the transitions betw
topological sectors withe t ; t̃ /D2.

These operations are analogous to usual operations
qubit and are prone to usual sources of errors. This sys
however, allows another type of operations that are natur
discrete. As we show above, the transmission of the elem
tary quasiparticle across the system changes its state bySq

z .
This implies that a discrete process of one-pair trans
across the system is equivalent to theSq

z transformation.
Similarly, a controlled process in which a vortex is mov
around a hole results in a discreteSq

x transformation. More-
over, this system allows one to make discrete transformat
such asASx,y. Consider, for instance, a process in which,
changing the total magnetic flux through the system, o
half-vortex is placed at the center of the system shown
Fig. 1b and then released. It can escape through the lef
through the right boundary; in one case the state does
change, in the other it changes bySx. The amplitudes add
resulting in the operation (11 iSx)/&. Analogously, using
the electrostatic gate~s! to pump one charge 2e from one
boundary to the island in the center of the system and t
releasing it results in a (11 iSx)/& transformation. This
type of processes admits a straightforward generalizatio
an array with many holes: there an extra half-vortex
charge should be placed at equal distances from the inner
outer boundaries.

The degenerate ground states in theinsulatingarray can
be manipulated in the same way as in the superconducto
to duality (half-vortex→Cooper pair andvice versa!. As
mentioned above, these statesu0& ins and u1& ins correspond to
the absence or presence of a half-vortex inside the hole.
define by S̃x,y,z the Pauli operators acting in the spa
spanned byu0& ins and u1& ins. An adiabatic change of loca
magnetic field that drags one half-vortex across the sys
will flip the state of the system, providing us with the impl
mentation of the operatorS̃x acting on the state of the qubi
Analogously, the motion of elementary charge 2e around the
hole will change the relative phase of the statesu0& ins and
u1& ins by p, providing us with the operatorS̃z. The operators
AS̃x,z can be realized in a way similar to that described fo
superconductive array. Rotation by an arbitrary angleUx

5exp(iaS̃x), which is an analog of the operator~23!, can be
achieved by modifying~during time t) the parameterr in
such a way as to produce a non-negligible amplitudeA of
half-vortex tunneling across the system:a5At. In the same
way, a two-qubit entanglement operation can be reali
which is an analog of operator~24!:

Ũp,q
x 5exp~ i tApqS̃p

xS̃q
x!; ~25!
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in this caseApq is the half-vortex tunneling amplitude be
tween holesp andq.

7. PHYSICAL PROPERTIES OF SMALL ARRAYS

7.1. Superconducting array

Even without these applications for quantum compu
tion the physical properties of this array are remarkable
exhibits a long-range order in the square of the usual su
conducting order parameter:^cos(2(w02wr))&;1 without the
usual order:̂ cos(w02wr)&50; the charge transferred throug
the system is quantized in the units of 4e. This can be tested
in the interference experiment sketched in Fig. 1b; as a func-
tion of external fluxFm , the supercurrent through the loo
should be periodic with half the usual period. This simp
array can be also used for a kind of ‘‘spin-echo’’ experime
applying two consecutive operations (11 iSx)/& described
above should again give a unique classical state, while
plying only one of them should result in a quantum super
sition of two states with equal weight.

The echo experiment can be used to measure the d
herence time in this system. Generally one distinguishes
cesses that flip the classical states and processes that ch
their relative phases. In the NMR literature the former a
referred to as longitudinal relaxation and the latter as tra
verse. The transverse relaxation occurs when a vortex is
ated and then moved around the opening by an exte
noise. Assuming a thermal noise, we estimate the rate of
processt'

21; t̃ exp(2EV(L)/T). Similarly, the transfer of a
quasiparticle from the outer to the inner boundary chan
the relative phase of the two states, leading to longitudi
relaxation. The rate of this is proportional to the density
quasiparticles,t i

215R exp(22r/T). The coefficientR de-
pends on the details of the physical system. In an ideal s
tem with some nonzero uniform value ofe ~defined above
~12! the quasiparticles are delocalized andR;e/L2. Random
deviations of the fluxesF r from a half-integer value produc
randomness ine, in which case one expects Anderson loc
ization of quasiparticles due to off-diagonal disorder, with
localization length of the order of the lattice spacing; th
R;ē exp(2cL) with c;1, andē is a typical value ofe. Stray
charges induce randomness in the values ofr , i.e., add some
diagonaldisorder. When the random part ofr , denoteddr ,
becomes larger thanē the localization becomes stronger:R
;ē( ē/dr )L, wheredr is a typical value ofdr . Upon a fur-
ther increase of stray charge field there appear rare s
wherer i is much smaller than the average value. Such s
act as additional openings in the system. If the density
these sites is significant, the effective length that controls
decoherence becomes the distance between these sites
typical EV(L)'EJ'2 K the transverse relaxation tim
reaches seconds forT;0.1 K, while realistice/r;0.1 imply
that due to a quasiparticle localization in a random case
longitudinal relaxation reaches the same scale for system
sizeL;10; note that the temperatureT has to be only some
what lower than the excitation gap 2r in order to make the
longitudinal rate low.

Most properties of the array are only weakly sensitive
the effect of stray charges: as discussed above, they resu
a position-dependent quasiparticle potential energy wh
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has very little effect because these quasiparticles had no
netic energy and were localized anyway. A direct effect
stray charges on the topologically protected subspace
also be described physically as a effect of the electrost
potential on states with even and odd charges at the in
boundary; since the absolute value of the charge fluctu
strongly, this effect is exponentially weak.

7.2. Insulating array

The signature of the topological insulator is the pers
tence of trapped half flux inside the central hole~see Fig. 4!,
which can be observed by cycling the magnetic field so a
drive the system back and forth between insulating and
perconducting states. This trapping is especially striking
the insulator. Experimentally, this can be revealed by driv
slowly the array into a superconducting state and then m
suring the phase difference between opposite points suc
A andB in Fig. 4. In the state with a half-vortex the pha
difference isp/21pn while it is pn in the other state. The
pn contribution is due to the usual vortices that get trapp
in a big hole. This slow transformation can be achieved
changing the strength of weak links using the external m
netic field as a control parameter. The precise nature of
superconductive state is not essential because a phase d
encep between pointsA andB can be interpreted as due
a full vortex trapped in a hole in a conventional superco
ductor or due top-periodicity in a topological one, which
makes no essential difference. These flux trapping exp
ments are similar to the ones proposed for highTc

cuprates18,19 with a number of important differences: th
trapped flux is half ofF0 , the cycling does not involve tem
perature~avoiding problems with excitations! and the final
state can be either a conventional or topological superc
ductor.

8. CONCLUSION

We have shown that a Josephson junction array o
special types~shown in Fig. 1 and Fig. 4! have degenerate
ground states described by a topological order param
The manifold of these states is protected in the sense
local perturbations have exponentially weak effect on th
relative phases and transition amplitudes. The simpler a
of Fig. 1 possesses a superconductive state with topolog
order.

Its minor modification shown in Fig. 4 may be broug
into both superconductive and insulating ‘‘topologica
phases in a controllable manner.3! Both versions of the array
are expected to demonstrate very long coherence tim
‘‘spin-echo’’ type experiments and to be promising basic
ements for scalable quantum computers.

The main building block of the array is a rhombus whi
has two ~almost! degenerate states; in the array discus
here these rhombi are assembled into hexagons, but we
pect that lattices in which these rhombi form other structu
would have similar properties.

However, the dynamics of these arrays is described
spin exchange terms of quartic~or higher! order, which have
a larger barrier in a quasiclassical regime, implying that th
ki-
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parameterr is much smaller than for the array consider
here. This makes them more difficult to build in the intere
ing regime.
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1!The fluxFs can be also chosen so that it is an integer multiple ofF0 : this

would not change significantly the final results but would change the
termediate arguments and make them longer, so for clarity we discus
detail only the half-integer case here. Note, however, that the main q
titative effect of this alternative choice of the flux is beneficial: it wou
push upward the phase transition line separating the topological and s
conducting phases shown for the half-integer case in Fig. 3.

2!In a rotated basissx→sz, sz→sx this model is reduced to a special cas
of Z2 lattice gauge theory,27,28 which contains only a magnetic term in th
Hamiltonian, with the constraint~3! playing the role of a gauge invarianc
condition.

3!It is possible that the array shown in Fig. 1 also has a topological insul
phase, but we cannot prove it.
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Note added in proof
The approach to the construction of topologically stable supercond

tive qubits and anomalous superconducting states with Cooper-pair pa
that is reviewed in the present article has been further developed in two
recent papers: B. Douc¸ot, M. V. Feigel’man, L. B. Ioffe, and A. S.
Ioselevich, ‘‘Protected qubits and Chern Simons theories in Joseph
junction arrays,’’ cond-mat/0403712, and I. V. Protopopov and M.
Feigel’man, ‘‘Theory of 4e versus 2e supercurrent in frustrated Josephso
junction rhombi chain,’’ cond-mat/0405170.

This article was published in English in the original Russian journal. Rep
duced here with stylistic changes by AIP.
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Topological solitons of the Lawrence–Doniach model as equilibrium Josephson
vortices in layered superconductors
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of Ukraine, 47 Lenin Ave., Kharkov 61103, Ukraine
~Submitted January 22, 2004!
Fiz. Nizk. Temp.30, 856–873~July–August 2004!

We present a complete, exact solution of the problem of the magnetic properties of layered
superconductors with an infinite number of superconducting layers in parallel fieldsH.0. Based
on a new exact variational method, we determine the type of all stationary points of both
the Gibbs and Helmholtz free-energy functionals. For the Gibbs free-energy functional, they are
either points of strict, strong minima or saddle points. All stationary points of the Helmholtz
free-energy functional are those of strict, strong minima. The only minimizers of both the
functionals are the Meissner~0-soliton! solution and soliton solutions. The latter represent
equilibrium Josephson vortices. In contrast, nonsoliton configurations~interpreted in some previous
publications as ‘‘isolated fluxons’’ and ‘‘fluxon lattices’’! are shown to be saddle points of
the Gibbs free-energy functional: They violate the conservation law for the flux and the stationarity
condition for the Helmholtz free-energy functional. For stable solutions, we give a topological
classification and establish a one-to-one correspondence with Abrikosov vortices in type-
II superconductors. In the limit of weak interlayer coupling, exact, closed-form expressions for
all stable solutions are derived: They are nothing but the ‘‘vacuum state’’ and topological
solitons of the coupled static sine-Gordon equations for the phase differences. The stable solutions
cover the whole field range 0<H,` and their stability regions overlap. Soliton solutions
exist for arbitrary small transverse dimensions of the system, provided the fieldH is sufficiently
high. Aside from their importance for weak superconductivity, the new soliton solutions
can find applications in different fields of nonlinear physics and applied mathematics. ©2004
American Institute of Physics.@DOI: 10.1063/1.1789938#
e
ac
ni
u

in

em
pl

o

2
. 1
u
e

on

p

du
s

x
of

in-
we
-
o-
ty.
on,

ak

0
. 1
s of
led

e-

II
ous
ll

i-
er-
ious
u-
1. INTRODUCTION

In Ref. 1, concerned with a microscopic model, and R
2, concerned with the phenomenological Lawrence–Doni
~LD! model 3, we have shown that the problem of the mi
mization of the Gibbs free-energy functional of layered s
perconductors with an infinite number of superconduct
~S! layers (N5`) in parallel magnetic fieldsH.0 admits
an exact solution. Advanced mathematical methods,
ployed in Refs. 1 and 2, allowed us to overcome the com
cations related to mutual dependence of the phaseswn of the
S layers.~Unfortunately, these complications were not n
ticed in previous publications on the LD model,4–9 which led
to a loss of minimizers.! The main results of Refs. 1 and
are worth recalling: The set of minimizers derived in Refs
and 2 comprises the topologically trivial Meissner config
ration and true soliton~vortex! configurations. As in the cas
of the Meissner state and Abrikosov vortices~i.e., the topo-
logical solitons10–13 of the Ginzburg–Landau equations! in
continuum type-II superconductors, all these configurati
are characterized by the conserved topological indexNv
50,1,2,...~the vortex number;Nv50 for the Meissner state!
and the conserved magnetic flux. For this reason, the to
logically nontrivial solution withNv51 has been identified
as an elementary Josephson vortex in layered supercon
ors atH.0. Physically, such a solution can be regarded a
bound state of interlayer flux quanta~one flux quantum per
6461063-777X/2004/30(7–8)/15/$26.00
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insulating layer!. We have termed this solution ‘‘a vorte
plane’’ because its field distribution has symmetry typical
plane defects.

The present paper complements and completes the
vestigation of Refs. 1 and 2 in two major respects. First,
determine the type ofall stationary points of the Gibbs free
energy functional, which allows us to classify all of the s
lutions available in the literature with regard to their stabili
In particular, we show that, except for the Meissner soluti
all nonsoliton solutions~such as, e.g., ‘‘vortex lattices’’6,7,14!
correspond to saddle points. Second, in the limit of we
interlayer coupling, we deriveexact, closed-formanalytical
expressions for the full set of stable solutions withNv
50,1,2,... . These solutions cover the whole field range
<H,`, as they should, and include the results of Refs
and 2 as particular cases. They illustrate all the feature
the Meissner state and vortex structure in weakly coup
superconductors~such as, e.g., overlap of the stability r
gions and the soliton nature of Josephson vortices! and es-
tablish true isomorphism with Abrikosov vortices in type-
superconductors. Moreover, they refute the errone
belief15,16 that Josephson vortices ‘‘do not exist’’ in sma
~along the S layers! structures.

Although the issue of stability is crucial for the determ
nation of the equilibrium vortex structure in layered sup
conductors, it has not been addressed in any prev
publications.1 Mathematically, a classification of stable sol
© 2004 American Institute of Physics
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tions amounts to the determination of all points of loc
minima of the energy functionals. A local minimum of th
Gibbs free-energy functional of layered superconductor
determined by the relations18,19

dVFd f n ,
dd f n

dy
,dwn ,

ddwn

dy
,dA;HG

{ f̄ n ,w̄n ,Ā}

50, ~1!

VF f̄ n1d f n ,
d f̄n

dy
1

dd f n

dy
,w̄n1dwn ,

dw̄n

dy
1

ddwn

dy
,

Ā1dA;HG>VF f̄ n ,
d f̄n

dy
,w̄n ,

dw̄n

dy
,Ā;HG , ~2!

wheredV is the first variation of the Gibbs free-energy fun
tional, induced by small variationsd f n , dwn , dA of the
modulus of the order parameter (f̄ n), phase (w̄n), and vector
potential (Ā), respectively.1,2 @For example, the numerica
nonsoliton solutions of Ref. 16 satisfy the stationarity con
tion ~1! but do not meet the condition of the minimum~2!.#
The value ofV on the right-hand side of~2! is associated
with the thermodynamic~observable! Gibbs free energy. The
true equilibrium state corresponds to the minimum of
thermodynamic Gibbs free energy~i.e., the absolute mini-
mum of the Gibbs free-energy functional! at a givenH.0.
The rest of the states, satisfying~1!, ~2! at a givenH.0, are
thermodynamically metastable: As an illustration, we refe
the Meissner state of the semi-infinite~along the layers! lay-
ered superconductor near the superheating fieldHs .1,2

To eliminate any questions about the actual equilibri
field configurations in layered superconductors atH.0, we
present an explicit mathematical proof that the Meissner~0-
soliton! and vortex-plane~soliton! configurations areunique
solutions that satisfy the conditions of the minimum~1!, ~2!.
Moreover, we show that all the minima arestrict and
strong.19 For the sake of diversification, we employ a ne
method of exact minimization of the Gibbs free-energy fun
tional that, in contrast to Refs. 1 and 2, does not invo
variation with respect to the phaseswn : The new method
starts directly from the definition~1!, ~2! and automatically
yields the conservation law for the flux and a full set
soliton boundary conditions. For definitiveness, we rest
ourselves to consideration of the popular LD model: Ow
to the relationship2 between the LD model and the true m
croscopic model of Ref. 1, all the results hold for the lat
model as well. The present paper is mostly concerned w
mathematical aspects of the problem; all major derivati
are given in full detail. As regards a comparison with expe
ment, the reader is referred to Refs. 1 and 2.

Section 2 of this paper is devoted to exact minimizat
of the Gibbs free-energy functional. In Sec. 2.1 we spec
the geometry of the problem, introduce the Gibbs fre
energy functional of the LD model,VLD , and discuss some
of its properties. Using the conditions of the minimum,
Sec. 2.2 we reduce the problem of the minimization ofVLD

to that of a simpler functional,V, that possesses the same
of minimizers asVLD . In Sec. 2.3 we prove that the statio
ary points of V belong to two types: minima and sadd
points. From the conditions of the minimum ofV we derive
the conservation law for the flux, which yields the Meissn
l
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and soliton~vortex-plane! solutions. The uniqueness of thes
solutions as minimizers of bothV and VLD is verified by
consideration of the exact lower bounds of the related He
holz free-energy functionalVH , which depend explicitly on
the conserved topological indexNv . In Sec. 2.4 we present
topological classification of the stable solutions and estab
isomorphism between vortex planes in layered supercond
ors atH.0 and Abrikosov vortices in type-II superconduc
ors.

In Sec. 3, in the limit of weak interlayer coupling, w
derive exact, closed-form expressions for all stable soluti
of the LD model~the Meissner and the soliton, or vorte
ones!. The properties of these solutions are thoroughly inv
tigated; all major limiting cases are considered. Isomorph
between vortex planes and ordinary Josephson vortices in
single junction is established.

The results obtained are summarized and discusse
Sec. 4. In particular, we explain where unstable nonsoli
solutions come from. We also draw a comparison betw
our approach to layered superconductors and those of o
authors. Mathematical flaws of these latter approaches
explicitly pointed out.

In Appendix A we discuss analytical properties and t
solution of coupled static sine-Gordon~SG! equations for the
phase differences, considered in some previous publicati
We prove that the Meissner and vortex-plane solutions,
rived in Sec. 3, are the unique stable solutions to the
equations atH.0. We also establish a relationship to th
exact variational principle of Refs. 1 and 2. In Appendix
we verify the fulfillment of the Jacobi–Weierstrass–Hilbe
sufficient condition for a strong minimum for the exac
closed-form solutions of Sec. 3. In Appendix C we draw
comparison between the soliton solutions of Sec. 3 and
nonsoliton ~‘‘lattice’’ ! solutions of Refs. 6, 7 and 14; thi
comparison serves as a good illustration of the general
sults of the main text.

2. EXACT MINIMIZATION OF THE LD FUNCTIONAL

2.1. Formulation of the problem

The geometry of the problem is that of Refs. 1 and
The layering axis isx, with p being the period; they axis is
directed along the S layers, with2L<y<1L being the re-
gion occupied by the system@or 2`,y,1`, if L5`]. A
static, uniform external field is applied along thez axis: H
5(0,0,H>0). The case of external current is not consider
i.e., I 50.

Under the assumption of homogeneity along thez axis,
we can write the Gibbs free-energy functional of the L
model as

VLDF f n ,
d fn

dy
,wn ,

dwn

dy
,A;HG5

pHc
2~T!

4p
Wz

3E
2L

L

dy(
n

H 2 f n
2~y!112 f n

4~y!1z2~T!

3Fd fn~y!

dy G2

1z2~T!Fdwn~y!

dy
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22eAy~np,y!G2

f n
2~y!1

r ~T!

2
@ f n21

2 ~y!1 f n
2~y!

22 f n~y! f n21~y!cosFn,n21~y!#

1
4e2z2~T!l2~T!

p E
~n21!p

np

dxF]Ay~x,y!

]x

2
]Ax~x,y!

]y
2HG2J , ~3!

Fn,n21~y!5wn~y!2wn21~y!22eE
~n21!p

np

dxAx~x,y!

5fn~y!22eE
~n21!p

np

dxAx~x,y!. ~4!

Here\5c51; A5(Ax ,Ay,0) is the vector potential;Wz is
the length of the system in thez direction (Wz→`); f n(y)
3@0<fn~y!<1# and wn(y) are, respectively, the reduce
modulus and the phase of the pair potentialDn(y) in thenth
superconducting layer:Dn(y)5D(T) f n(y)expifn(y); fn

[wn2wn21 ; Hc(T) is the thermodynamic critical field
r (T) is a dimensionless phenomenological parameter of
Josephson interlayer coupling;z(T) and l(T) are the
Ginzburg–Landau coherence length and the penetra
depth, respectively. The local magnetic fieldh5(0,0,h)
obeys the Maxwell equation

h~x,y!5
]Ay~x,y!

dx
2

]Ax~x,y!

]y
. ~5!

The variablesf n , wn , and A are subject to standar
requirements:19 f n andwn are supposed to be smooth in th
whole interval2L<y<L, whereasA is piecewise smooth
on the domain of definition, because atx5np only the con-
tinuity of A can be required. The summation in Eq.~3! runs
over all the S layer indices n. To avoid mathematical co
plications related to the appearance of infinite sums w
retaining the property of the periodicity of the barrier pote
tial and the absence of outer boundaries in thex direction, it
is reasonable to compactify the model20 by imposing peri-
odic boundary conditions on observable quantities,

f n1N5 f n , Fn1N,n1N21~y!5Fn,n21~y!,

h~x1Np,y!5h~x,y!, ~6!

dwn1N~y!

dy
22eAy@~n1N!p,y#5

dwn~y!

dy

22eAy~np,y!,

and proceed to the thermodynamic limN→` VLD /N5vLD

,` in the final expressions.~The existence of this limit will
be proved in Sec. 2.3.!. Using~6!, we can write the total flux
through the system as
e

on

-
e
-

F5E
2L

L

dy(
n
E

~n21!p

np

dxh~x,y!

5E
2L

L

dy(
i 51

N E
~n211 i !p

~n1 i !p
dxh~x,y!

5E
2L

L

dy@Ay@~n1N!p,y#2Ay~np,y!#

1(
i 51

N E
~n211 i !p

~n1 i !p
dx@Ax~x,2L !2Ax~x,L !#

5
1

2e (
i 51

N

@Fn1 i ,n211 i~L !2Fn1 i ,n211 i~2L !#. ~7!

What we are going to do now is to find all sets of allow
field configurations$ f̄ n ,w̄n ,Ā% that at a givenH satisfy the
condition of the minimum~2!, i.e.,

VLDF f n ,
d fn

dy
,wn ,

dwn

dy
,A;HG

>VLDF f̄ n ,
d f̄n

dy
,w̄n ,

dw̄n

dy
,Ā;HG

[minVLDF f n ,
d fn

dy
,wn ,

dwn

dy
,A;HG , ~8!

where $ f n ,wn ,A% belong to a sufficiently small neighbor
hood of$ f̄ n ,w̄n ,Ā%.

2.2. A new minimization method

Our approach is standard19 and consists in the determ
nation of an exact lower bound of~3! at a givenH and
finding the field configuration$ f̄ n ,w̄n ,Ā% that makes~3!
equal to this lower bound. We begin with the stationar
condition ~1! for VLD .

Variation with respect tof n immediately yields a set o
equations

f n~y!2 f n
3~y!1z2~T!

d2f n~y!

dy2 5
r ~T!

2
@2 f n~y!

2 f n11~y!cosFn11,n~y!2 f n21~y!cosFn,n21~y!#

1z2~T!Fdfn~y!

dy
22eAy~np,y!G2

f n~y! ~9!

and boundary conditions

d fn

dy
~6L !50. ~10!

Variation with respect toAx leads to the Maxwell equa
tion

]h~x,y!

]y
54p j n,n21~y!

[4p j 0f n~y! f n21~y!sinFn,n21~y!, ~11!

in the regions (n21)p,x,np, and the boundary condi
tions

h~x,6L !5H. ~12!
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In Eq. ~11! the quantityj n,n21(y) is the density of the Jo
sephson current between the (n21)th and thenth layers,
and j 05r (T)p/16pez2(T)l2(T).

By variation with respect toAy , we obtain the Maxwell
equation

]h~x,y!

]x
50 ~13!

in the regions (n21)p,x,np, and the boundary condi
tions at the S layers

h~hp20,y!2h~np10,y!5
p fn

2~y!

2el2~T! Fdwn~y!

dy

22eAy~np,y!G . ~14!

At this point, it is convenient to partially fix the gauge b
the condition2!

Ax~x,y!50, Ay~x,y![A~x,y!, ~15!

which turns Eqs.~5!, ~11! and ~13! into a system of linear
inhomogeneous differential equations forA(x,y):

]2A~x,y!

]y]x
54p j 0f n~y! f n21~y!sinfn~y!, ~16!

]2A~x,y!

]x2 50. ~17!

with the boundary conditions

A~np20,y!5A~np10,y!, ~18!

]A

]x
~np20,y!2

]A

]x
~np10,y!5

p fn
2~y!

2el2~T! Fdwn~y!

dy

22eA~np,y!G , ~19!

]A

]x
~x,6L !5H. ~20!

From ~19!, ~20!, we get the conditions for the vanishing o
the intralayer currents at the outer boundaries

dwn

dy
~6L !22eA~np,6L !50 ~21!

and the conservation law for the total intralayer current

(
n

f n
2~y!Fdwn~y!

dy
22eA~np,y!G50. ~22!

In Refs. 1 and 2, relation~22! was employed for the minimi-
zation of ~3! with respect to the phaseswn .

The solution of~16!, ~17! under the conditions~18!–~20!
is straightforward and has the form2
A~x,y!5F4p j 0E
2L

y

du fn~u! f n21~u!sinfn~u!1HG
3~x2np!1

1

2e

dwn~y!

dy

2
r ~T!

4ez2~T!

1

f n
2~y!

E
2L

y

du fn~u!

3@ f n21~u!sinfn~u!2 f n11~u!sinfn11~u!#,

~23!

~n21!p,x<np,

where

f n~2y!5 f n~y!, ~24!

fn~2y!52fn~y!12pZn , Zn50,61,62,..., ~25!

and the phase differencesfn[wn2wn21 obey the solvabil-
ity conditions

dfn11~y!

dy
5

1

lJ
2 E

2L

y

du fn11~u! f n~u!sinfn11~u!

12epH1
«2

lJ
2 F 1

f n11
2 ~y!

E
2L

y

du fn11~u!

3@ f n~u!sinfn11~u!

2 f n12~u!sinfn12~u!#

2
1

f n
2~y!

E
2L

y

du fn~u!@ f n21~u!sinfn~u!

2 f n11~u!sinfn11~u!#G . ~26!

In Eqs.~26!, we have introduced the Josephson pene
tion depthlJ5(8pe j0p)21/2 and a dimensionless paramet
«5p/l ~Ref. 2!. By virtue of ~24!, ~25!, equations~26! yield

dfn11

dy
~6L !5

dfn

dy
~6L ![

df

dy
~6L !, ~27!

df

dy
~6L !52epH. ~28!

For givenf n obeying relations~24!, equations~26! constitute
a system of nonlinear integro-differential equations forfn ,
of first order with respect to differentiation. The formulatio
of the boundary value problem for these equations requ
imposition of boundary conditions onfn . Appropriate
boundary conditions aty50 are provided by the symmetr
relations~25!, i.e., the boundary conditions are

fn~0!5nZn , Zn50,61,62,... . ~29!

The main issue now is to find all solutions to~26!, ~29!
that actually make~3! a minimum. As was shown in Refs.
and 2, this issue is equivalent to exact minimization of~3!
with respect to the phaseswn . ~See also Appendix A.! Be-
low, we present an alternative, simpler method of exact m
mization.

Instead of minimizing with respect town , we introduce
a new functionalV via the relation
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VLDF f n ,
d fn

dy
,wn ,

dwn

dy
,A;HG5VF f n ,

d fn

dy
,wn ,A;HG

1V01
pHc

2~T!z2~T!Wz

4p
3E

2L

L

dy(
n

Fdwn~y!

dy

22eAy~np,y!G2

f n
2~y!, ~30!

where

V0[VLD~0!52
Hc

2~T!pNLWz

4p
~31!

is the LD free energy forH50. The functionalV will be
considered on the same class of functionsf n , wn , A as the
functional VLD : In particular, these functions are suppos
to satisfy conditions~14! at the internal boundaries and nat
ral conditions at the outer boundariesy56L.

The advantage of the new functional

VF f n ,
d fn

dy
,wn ,A;HG5

pHc
2~T!

4p
WzE

2L

L

dy(
n

F1

2
@1

2 f n
2~y!#21z2~T!Fd fn~y!

dy G2

1
r ~T!

2
@ f n21

2 ~y!1 f n
2~y!

22 f n~y! f n21~y!cosFn,n21~y!#

1
4e2z2~T!l2~T!

p E
~n21!p

np

3dxF]Ay~x,y!

]x
2

]Ax~x,y!

]y
2HG2G

~32!

is that it has simple properties: Minimization of~32! does not
require variation with respect town .

Moreover, a local minimum ofV at a givenH, minV,
provides a lower bound forVLD .

Indeed, the functionalV is positive, i.e.,

VF f n ,
d fn

dy
,wn ,A;HG>0, ~33!

and its exact lower bound atH50, infV50, is achieved on
the field configurations

f̄ n~y![1, w̄n~y![c~y!, Āx[0, Āy5
dc

dy
, ~34!

wherec(y) is an arbitrary smooth function.@Note that the
exact lower bound of~3! at H50, infVLD5V0 , is achieved
on the same field configurations~34!.# Because of~33!, the
continuous functional~32! necessarily has a minimum at an
H.0 in the allowed class of functions, specified above.19 By
virtue of ~30! and the definition of the minimum,
VLDF f n ,
d fn

dy
,wn ,

dwn

dy
,A;HG>VF f n ,

d fn

dy
,wn ,A;HG

1V0>minVF f n ,
d fn

dy
,wn ,A;HG1V0 , ~35!

where the right-hand side of the second inequality provi
the desired lower bound forVLD at a givenH.

To determine minV, we first find all field configurations
$ f n ,wn ,A% that satisfy the stationarity condition~1!. Varia-
tion with respect tof n yields the equations

f n~y!2 f n
3~y!1z2~T!

d2f n~y!

dy2

5
r ~T!

2
@2 f n~y!2 f n11~y!cosFn11,n~y!

2 f n21~y!cosFn,n21~y!# ~36!

and boundary conditions~10!. Variation with respect toAx

leads to the Maxwell equation~11! in the regions (n21)p
,x,np and the boundary conditions~12!. By variation with
respect toAy , we obtain the Maxwell equation~13! in the
regions (n21)p,x,np and new boundary conditions a
the S layers,

h~np20,y!5k~np10,y!. ~37!

Application of ~37! to ~14!, in turn, yields

dwn~y!

dy
22eA~np,y!50. ~38!

Combining~14! with ~13!, we get

h~x,y![h~y!, ~39!

which, upon substitution into~11!, results in

f n21~y!sinFn,n21~y!5 f n11~y!sinFn11,n~y!. ~40!

Relations~40! reflect the continuity of the Josephson cu
rents atx5np and constitute a consequence ofU~1! gauge
symmetry: They can be obtained directly, by varying~32!
with respect town .1,2 In view of ~39!, the solution of these
relations is straightforward:

f n~y![ f ~y!, Fn,n21~y![f~y!22eE
0

p

dxAx~x,y!.

~41!

Note that relations~39!, ~41! identically satisfy the periodic
boundary conditions~6!. According to ~41!, the phaseswn

obey the finite difference equationwn1122wn1wn2150
with the boundary conditionwn2wn215f, whose solution
is21

wn~y!5nf~y!1c~y!, ~42!

wherec(y) is an arbitrary smooth function.
Our next course of action follows the steps leading

Eqs. ~23!–~29!: We fix the gauge by~15! and solve the re-
sulting equations forA(x,y). As a consequence, in additio
to ~42!, we arrive at coupled equations forf andf,

f ~y!2 f 3~y!1z2~T!
d2f ~y!

dy2 1r ~T!@12cosf~y!# f ~y!50,
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d f

dy
~6L !50, ~43!

df~y!

dy
5

1

lJ
2 E

2L

y

du f2~u!sinf~u!12epH, ~44!

f~2y!52f~y!12pZ, Z50,61,62,... ~45!

and explicit expressions

A~x,y!5
1

2ep

df~y!

dy
x1

1

2ep

dc~y!

dy
, ~46!

h~y!5
1

2ep

df~y!

dy
. ~47!

Any minimizer $ f̄ n ,w̄n ,Ā% of ~32!, at a givenH, neces-
sarily satisfies~15! and ~41!–~47!. At the same time, this
minimizer automatically satisfies~9!–~14! and ~16!–~28!.
Moreover, as can be easily verified by direct substitution

VLDF f̄ ,
d f̄

dy
,w̄n ,Ā;HG5VF f̄ ,

d f̄

dy
,w̄n ,Ā;HG1V0

5minVF f n ,
d fn

dy
,wn ,A;HG1V0 .

~48!

According to~35! and the definition of the minimum~8!, this
means that

VLDF f̄ ,
d f̄

dy
,w̄n ,Ā;HG5 infVLDF f n ,

d fn

dy
,wn ,

dwn

dy
,A;HG

5minVLDF f n ,
d fn

dy
,wn ,

dwn

dy
,A;HG ,

~49!

i.e., any set$ f̄ n ,w̄n ,Ā% that in the gauge~15! satisfies~41!–
~47! and minimizes~32! is a minimizer of~3!. On the other
hand, for any set$ f n ,wn ,A% that in the gauge~15! does not
satisfy ~41!–~47! we have

VLDF f n ,
d fn

dy
,wn ,

dwn

dy
,A;HG.VF f n ,

d fn

dy
,wn ,A;HG

1V0>minVF f n ,
d fn

dy
,wn ,A;HG1V0

5VF f̄ ,
d f̄

dy
,w̄n ,A;HG1V05VLDF f̄ ,

d f̄

dy
,w̄n ,Ā;HG

5minVLDF f n ,
d fn

dy
,wn ,

dwn

dy
,A;HG . ~50!

A strict inequality in the first line of~50! means that the
minimizer $ f̄ n ,w̄n ,Ā% makes~3! a strict minimum.19 @Note
that the gauge~15! was employed here for the sake of co
venience only: It allowed us to obtain an explicit solution f
A by simple means.#

Summarizing, we have proved the following: A s

$ f̄ n ,w̄n ,Ā% minimizes the LD functional~3! if and only if it
is a minimizer of the functional~32! and, hence, necessari
satisfies the symmetry relations~41!, with the resulting local
magnetic field obeying~39!. In the next subsection, we wil
show that a full set of the minimizers of~32!, and, respec-
tively, of ~3!, comprises the soliton~vortex-plane! solutions
and the Meissner~0-soliton! solution.1,2

2.3. The conservation law for the flux and soliton boundary
conditions

To determine all the minimizers of~32!, we first rewrite
this functional as follows:

VF f ,
d f

dy
,f,

df

dy
;HG5

NpWWzH
2

8p
1VHF f ,f,

df

dy G
2

HFWz

4p
, ~51!

where

VHF f ,
d f

dy
,f,

df

dy G5
NpHc

2~T!

4p
WzE

2L

L

dyF1

2
@12 f 2~y!#2

1z2~T!Fd f~y!

dy G2

1r ~T!F @12cosf~y!#

3 f 2~y!1
lJ

2

2 Fdf~y!

dy G2G G . ~52!

and the total flux~7!, in view of ~15! and ~41!, is given by

F5
N

2e
@f~L !2f~2L !#[NF0

1

2p E
2L

L

dy
df~y!

dy
,

~53!

with F05p/e being the flux quantum. Note that the fir
term on the right-hand side of~51! is merely the energy of
the magnetic field in the absence of Josephson coupling

Note that bothV and VH explicitly satisfy Legendre’s
necessary condition of thestrong minimum:19

d2V~H !

@d~d f /dy!#2 [
NpHc

2~T!Wz

2p
z2~T!.0,

d2V~H !

@d~df/dy!#2 [
NpHc

2~T!Wz

4p
r ~T!lJ

2~T!.0,

d2V~H !

d~d f /dy!d~df/dy!
5

d2V~H !

d~df/dy!d~d f /dy!
[0. ~54!

Therefore, all stationary points ofV,VH are eitherstrong
minimaor saddle points.

The stationarity condition for bothV and VH requires
that first variations with respect tof andf vanish@compare
with ~1!#. Variation with respect tof yields Eqs.~43!, as
expected. Consider now the first variation ofV andVH with
respect tof:

dVFd f ,
dd f

dy
,df,

ddf

dy
;HG5dVHFd f ,

dd f

dy
,df,

ddf

dy G
2

HWz

4p
dF, ~55!
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dVHFd f ,
dd f

dy
,df,

ddf

dy G5
NpHc

2~T!Wzr ~T!

4p

3E
2L

L

dyF f 2~y!sinf~y!

2lJ
2 d2f~y!

dy2 Gdf~y!1
1

ep

df

dy

3~2L !
Wz

8p
dF, ~56!

where the variation of the flux is

dF5
N

2e
@df~L !2df~2L !#

[NF0dS 1

2p E
2L

L

dy
df~y!

dy D . ~57!

The requirement of the vanishing of the volume variation
both ~55! and ~56! yields

d2f~y!

dy2 5
f 2~y!

lJ
2 sinf~y!, ~58!

which is a mere consequence of~44!. However, the require-
ment of stationarity with respect to surface variation@which
is proportional to the variation of the flux~57!# is stronger
for ~56! than for ~55!. The surface variation in~55! cancels
out owing to the boundary conditions~28!. In contrast, con-
ditions ~28! do not ensure the vanishing of the surface var
tion in ~56!, and the stationarity ofVH at H.0 requires

dF50, ~59!

or, equivalently,

F5NF0

1

2p E
2L

L

dy
df~y!

dy
5const>0, ~60!

where the inequality sign corresponds toH>0.
Note that higher variations ofV and VH are equal to

each other:dkV5dkVH (k>2). Thus, all the minimizers o
VH also minimizeV. On the other hand, the functionalV
has no minimizers other than those that simultaneously m
mizeVH . Indeed, let$ f̄ ,f̄% be a minimizer ofV in a class of
trial functions that admit arbitrary variationsdF. Then$ f̄ ,f̄%
is necessarily a minimizer ofV in a subclass of trial func-
tions that satisfy~59!. From the condition for the minimum
of V

VF f̃ 1d f ,
d f̄

dy
1

dd f

dy
,f̄1df,

df̄

dy
1

ddf

dy
;HG

>VF f̄ ,
d f̄

dy
,f̄,

df̄

dy
;HG ~61!

@compare with~2!# on this subclass of trial functions, w
have
-

i-

VHF f̄ 1d f ,
d f̄

dy
1

dd f

dy
,f̄1df,

df̄

dy
1

ddf

dy
G

2VHF f̄ ,
d f̄

dy
,f̄,

df̄

dy
G2

HWz

4p
dF5VHF f̄ 1d f ,

d f̄

dy

1
dd f

dy
,f̄1df,

df̄

dy
1

ddf

dy
G2VHF f̄ ,

d f̄

dy
,f̄,

df̄

dy
G>0,

~62!

which is the condition for the minimum ofVH . For this
reason, it is sufficient to find all the minimizers ofVH .

Physically, conditions~59!, ~60! ensure the stability of
the flux F against any small perturbations, represented
the variationsf̄→f̄1df, which is a manifestation of the
Meissner effect.22 Conditions ~59!, ~60! also imply thatF
plays the role of a thermodynamic variable in~51!, which, in
turn, allows us to identifyVH as the Helmholz free-energ
functional.

Now we will derive the Meissner~0-soliton! and vortex-
plane~soliton! boundary conditions1,2 from the conservation
law for the flux ~59!, ~60!. As a starting point, we note tha
all the extremals ofVH that satisfy~58!, ~28! possess the
symmetry properties~45!. Since trial functions of this type
take on only discrete values aty50, f(0)5pZ, the require-
ment of continuity of variationsdf imposes the constraint

df~0!5pdZ50. ~63!

Equations~57!, ~59!, in turn, yield

df~L !5df~2L !. ~64!

On the other hand, relations~45!, applied aty5L, by virtue
of ~63! yield

df~L !52df~2L !. ~65!

Combining~64! with ~65!, we arrive at the conditions

df~6L !50. ~66!

Using ~60!, we write:

f~L !2f~2L !

2p
5

1

2p E
2L

L

dy
df~y!

dy

5F 1

2p E
2L

L

dy
df~y!

dy G
1H 1

2p E
2L

L

dy
df~y!

dy J 5const>0,

~67!

where@x# and$x% are, respectively, the integer and fraction
parts ofx @0<$x%,1#. On the other hand, taking account
~45! and ~63!, ~66!, we have

f~L !2f~2L !

2p
5Z2

f~2L !

p
5const>0. ~68!

A comparison of~67! with ~68! leads to the identification

f~0!

p
5Z5Nv[F 1

2p E
2L

L

dy
df~y!

dy G>0, ~69!
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2
f~2L !

p
[H 1

2p E
2L

L

dy
df~y!

dy J ,2p,f~2L !<0.

~70!

Relations~69!, ~70! are exactly the Meissner (Nv50) and
vortex-plane (Nv51,2,...) boundary conditions employed i
Refs. 1 and 2. The conserved topological indexNv
50,1,2.... has a clear meaning of the number of solit
~i.e., vortex planes or theJosephson vortices! at H.0. The
conserved flux~60!, rewritten via the conserved quantitie
Nv andf(2L), takes the form

F5NF0FNv1
uf~2L !u

p G . ~71!

As follows from ~71!, the solution with givenNv appears
when

f~2L !50, f~0!5pNv , f~2L !52pNv , ~72!

which corresponds to the minimum of the Josephson ene
density@the third term on the right-hand side of~52!# at the
boundariesy56L. This solution vanishes when

f~6L !56p, fn~0!5pNv , ~73!

which corresponds to the maximum of the Josephson en
density aty56L and saddle-point instability. By~28!, con-
ditions ~72!, ~73! determine, respectively, the exact low
and upper bounds of the stability regions of the Meiss
(Nv50) and vortex (Nv51,2,...) configurations in the ex-
ternal fieldH>0.

We will show now that conditions~69!, ~70! for the SG
equations~58! together with ~44! actually specify all the
minimizers of ~52! @and, accordingly, of~51!#. Indeed, let
f̄ (y) be an arbitrary smooth function that foryP@2L,L#

satisfies the conditions 0, f̄ <1, (d f̄ /dy)(6L)50, and
f̄ 0[min f̄(y). Using the elementary inequalitiesa1b
>2Aab (a,b.0) and2uqu<q<uqu, we derive a sequenc
of inequalities for~52! with f 5 f̄ :

VHF f ,
d f̄

dy
,f,

df

dy
G>C1

NpHc
2~T!Wzr ~T!

4p
3E

2L

L

dyF f̄ 0
2@1

2cosf~y!#1
lJ

2

2 Fdf~y!

dy G2G
>C1

NpHc
2~T!Wzr ~T!lJ f̄ 0

4p

3E
2L

L

dyUsin
f~y!

2 UUdf~y!

dy U
>C1

2NpHc
2~T!Wzr ~T!lJ f̄ 0

p

3FNv112cos
f~2L !

2 G , ~74!

where
s

gy

gy

r

C[
NpHc

2~T!Wz

4p
3E

2L

L

dyF1

2
@12 f̄ 2~y!#21z2~T!

3Fd f̄~y!

dy
G2G>0.

Inequalities of the type~74! are employed in soliton theory
to prove the existence and stability of solito
solutions.10–12,23In our case, inequality~74! shows that~52!
has an exact lower bound in the class of functions$ f ,f%
parameterized by the conserved quantitiesNv andf(2L):

infVHF f ,
d f

dy
,f,

df

dy G5m@Nv ,f~2L !#,

m@Nv ,f~2L !#>
2NpHc

2~T!Wzr ~T!lJf *
p FNv11

2cos
f~2L !

2 G , ~75!

where f * .0 is the same for all the sets$Nv ,f(2L)%.
In view of the continuity of VH ,19 the exact lower

bound~75! is achieved on the corresponding solution$ f̄ ,f̄%
to ~43!, ~58!, ~69!, and ~70!. According to Sec. 2.2, this so
lution represents the desired minimizer of~3!. Given that for
any minimizer

VLDF f̄ ,
d f̄

dy
,w̄n ,Ā;HG5NvLDF f̄ ,

d f̄

dy
,w̄n ,Ā;HG ,

where vLD,`, we have thus proved the existence of t
thermodynamic limit forN→`.

For practical applications, we note the first integral
Eqs.~43!, ~58! that immediately follows from~52!:

z2~T!F d f

dyG
2

1
r ~T!lJ

2

2 Fdf

dy G2

1 f 22
1

2
f 42r ~T!@1

2cosf# f 25C, ~76!

where the constant of integration can be determined from
boundary conditions aty52L:

C52e2p2lJ
2H21 f 2~2L !2

1

2
f 4~2L !

2r ~T!@12cosf~2L !# f 2~2L !. ~77!

2.4. A topological classification and isomorphism to
Abrikosov vortices in type-II superconductors

The above results can be given a very clear interpre
tion within the framework of the theory of topological de
fects in continuous media.10–12,24 Consider the thermody
namic LD free energy, obtained by the substitution of
minimizer $ f̄ n ,w̄n ,Ā% into ~3!:
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VLD~H !5V01
NpWWzH

2

8p
2

HFWz

4p

1
NpHc

2~T!Wz

4p E
2L

L

dyF1

2
@12 f̄ 2~y!#2

1z2~T!Fd f̄~y!

dy
G2

1r ~T!F f̄ 2~y!@1

2cosf̄~y!#1
lJ

2

2
Fdf̄~y!

dy
G2G G . ~78!

Owing to the symmetry relations~24!, ~41!, ~45! and the
boundary conditions~10!, ~28!, the density ofVLD(H) is
equal aty52L and y51L and thus corresponds to th
degenerate equilibrium~‘‘vacuum’’ ! state, unperturbed by to
pological defects~solitons!. Mathematically, the boundary o
the interval2L<y<L can be considered as a 0-dimension
sphere:S05$2L,1L%. Given that configurationsf̄ and f̄
12pZ (Z50,61,62,...) arephysically indistinguishable
we can fix the valuesf̄(2L) as in~70! and regard the func
tions

c~1L ![
f̄~1L !1f̄~2L !

2p
5Zn[F 1

2p E
2L

L

dy
df̄~y!

dy G
~79!

as continuous maps of the boundary into the additive gr

of the integers,Z: S0→
c

Z. ~Z is the group of the degenerac
of the equilibrium state, or the order-parameter space.! The
fact of the existence of topologically nontrivial maps of th
type, realized by soliton solutions, can be expressed in te
of the zeroth homotopy group10–13,24p0(M ), where the in-
dex ‘‘0’’ stands for the boundaryS0 and M is the order-
parameter space:

p0~Z!5Z. ~80!

The external fieldH.0 breaks the symmetryf̄→2f̄ @see
the third term on the right-hand side of~78!#. Therefore, only
the valuesZ[Nv50,1,2,... are allowed, withNv50 being
the ‘‘vacuum’’ Meissner state. In this way, we arrive at
natural classification of the minimizers of~3! with respect to
the conserved topological~vortex! numberNv .

Note that in the case of Abrikosov vortices in continuu
type-II superconductors the boundary is topologica
equivalent to the circleS1, the order-parameter space is al
the circle:M[S1 ~Refs. 10–13!. Thus, the pertinent homo
topy group is the fundamental group of the circle:

p1~S1!5Z. ~81!

Since in the presence of an external fieldH.0 the topologi-
cal indices for Abrikosov vortices take on the valuesZ
[Nv50,1,2,..., relations~80! and ~81! establish an isomor
phism between the vortex structure in type-II supercondu
ors and that in layered superconductors atH.0, with Nv
50 for the Meissner state and a single Abrikosov vor
(Nv51) standing in a one-to-one correspondence with
single vortex plane~not an ‘‘isolated fluxon’’ as is claimed in
previous publications41!.
l

p

s

t-

x
a

3. THE EXACT, CLOSED-FORM SOLUTION FOR r „T…™1
AND ISOMORPHISM TO JOSEPHSON VORTICES IN THE
SINGLE JUNCTION

Equations~43! and ~58! with the soliton boundary con
ditions ~69! and~70! can be solved by perturbation metho
for arbitrary values of the interlayer couplingr (T). Of par-
ticular interest, however, is the limit of weak couplin
r (T)!1.

In the caser (T)!1 the zeroth-order solution to~43! has
the form f 0[1. Upon substitution into~58!, we obtain the
well-known static sine-Gordon equation:

d2f~y!

dy2 5
1

lJ
2 sinf~y!. ~82!

Under the conditions~69!, ~70!, the exact solution to~82! is

f~y!5p~Nv21!12 amS y

klJ
1K~k2!,kD , ~83!

dnS L

klJ
,kD5

A12k2

k

Hs

H
, Nv52m, m50,1,...; ~84!

f~y!5pNv12 amS y

klJ
,kD , ~85!

dnS L

klJ
,kD5k

H

Hs
,Nv52m11, m50,1,..., ~86!

where am(u) and dn(u)5(d/du)am(u) are the Jacobian el
liptic functions, andK(k2) is the elliptic integral of the first
kind.25

The stability ranges for the solution~83!–~86! are deter-
mined from~28!, ~72! and ~73!. They are given by

0<H,H0 , Nv50; ~87!

AHNv21
2 2Hs

2<H,HNv
, Nv51,2,... . ~88!

The upper bounds in~87! and~88!, HNv
(Nv50,1,2,...), are

determined by the implicit equation

L

lJ
5~Nv11!

Hs

HNv

KS Hs
2

HNv

2 D , Nv50,1,2,..., ~89!

whereHs5(eplJ)
21 is the superheating field of the Meiss

ner state in a semi-infinite (0<y,`) layered
superconductor,1,2 and H0[HsL.Hs is the superheating
field of the Meissner state forL,`. Upon substitution of
~83!–~86! into ~78! ~with f̄ [1, f̄[f), one can verify the
lower-bound estimates~74!, ~75!. In Appendix B, we show
that the solution~83!–~89! satisfies the Jacobi–Weierstrass
Hilbert sufficient condition for a strong minimum19 of ~51!
@and hence of~3!#.

Note that equation~82! was first analyzed in the contex
of a single Josephson junction a long time ago.26,27 It has
been discussed in numerous subsequent publications.28 Un-
fortunately, the complete, exact, closed-form solution~83!–
~89!, valid for arbitrary values ofL.0 andH>0, has not
been obtained until now. This situation was reflected in
absence of any clear mathematical definition of the Jose
son vortex atH.0 and gave rise to the erroneous belief15,16

that Josephson vortices ‘‘do not exist’’ forL!lJ .
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Equations~83!–~89! provide an explicit form for the
complete set of minimizers of the LD model~3! with r (T)
!1 and generalize the results of Refs. 1 and 2. ForNv
51,2,... they provide a complete set of soliton solutions
the coupled static SG equations~A1! and establish a one-to
one correspondence between vortex planes in layered su
conductors and ordinary Josephson vortices in the sin
junction. ~The only difference lies in the definition of th
Josephson lengthlJ .) For these reasons, the properties
~83!–~89! are of crucial importance.

Equations~83!–~86! reflect a general soliton feature: S
lutions ~83!, ~84! with evenNv cannot be continuously trans
formed into solutions~85!, ~86! with oddNv by changingH
andvice versa. Solutions withNv>1 are pure solitons~vor-
tex planes! only at H5AHNv21

2 2Hs
2, which corresponds to

the boundary conditions~72!. In the rest of the regions~88!,
we have solitons ‘‘dressed’’ by the Meissner field.~The
Meissner and the vortex fields cannot be separated from
other, because the principle of superposition does not a
to the nonlinear equations~A1!. Unfortunately, this impor-
tant issue was not understood in previous publications.29!

Of special interest is the overlap of the regions~87!, ~88!

for Nv5N̄v andNv5N̄v11. Owing to this property, the so
lutions obtained cover the whole field range 0<H,`, as
they should. The overlap practically vanishes forHNv

@Hs .
Given that all HNv

decrease whenW52L increases, the
overlap is stronger for largeW and can involve severa
neighboring states. As explained in the Introduction, the
tual equilibrium state is the one that corresponds to the m
mum of the thermodynamic Gibbs free energy for givenH.
A transition from the state withNv5N̄v to the stateNv

5N̄v11 with lower Gibbs free energy is a phase transiti
of the first-order type.1,2 In particular, the lower critical field
Hc1 is determined from the requirement that the Gibbs f
energy of the stateNv51 be equal to that of the Meissne
state (Nv50) and satisfy the relationAHsL

2 2Hs
2,Hc1

,HsL . In the case lJ!L,`, it is given by
Hc152Hs /p.1,2

Equations~83!–~89! contain the corresponding results
Refs. 1 and 2 as limiting cases. For example, by making
change of variabley→y2L and proceeding to the limitL
→` in Eqs. ~83!, ~84! with Nv50, we obtain the exac
Meissner solution in the semi-infinite intervalyP@0,1`):

f~y!524 arctan
H exp@2y/lJ#

Hs1AHs
22H2

. ~90!

By proceeding to the limitL→` in Eqs. ~85!, ~86! with
Nv51, we arrive at the vortex-plane solution in the infini
interval yP(2`,1`):

f~y!54 arctan exp@y/lJ#. ~91!

When the screening by Josephson currents is neglig
small, i.e.,~i! for L!lJ and arbitraryH, or ~ii ! for Hs!H
and arbitraryL, equations~83!–~89! become

f~y!5pNv12epHy2
~21!Nv

4e2p2lJ
2H2 @sin~2epHy!

22epHycos~epHW!#, ~92!
o

er-
le

f

ch
ly

-
i-

e

e

ly

whereNv5@epHW/p# @see~69!#. The overlap of states with
different Nv now practically vanishes, and the period of th
vortex structure forNv>1 is P5p/epH, which refutes the
claims15,16 that Josephson vortices ‘‘do not exist’’ in the lim
L!lJ .

The substitution of~92! into ~78! gives the equilibrium
value of the LD free-energy functional~the thermodynamic
free energy!:

VLD~H !5
Hc

2~T!pNLWz

4p
3F211r ~T!F1

2
usin~epHW!u

epHW
1

cos2~epHW!

8~eplJH !2 G G . ~93!

4. DISCUSSION

We have obtained a complete, exact solution of the pr
lem of the magnetic properties of layered superconduc
with an infinite number of superconducting layers (N5`) in
parallel fieldsH.0, in the absence of transport curren
Based on a new exact variational method~Secs. 2.2 and 2.3
and Appendix A!, we have determined the type of all statio
ary points of the Gibbs free-energy functional~3! and the
related Helmholtz free-energy functional@derived from~3!
by settingH50]: For the Gibbs free-energy functional, the
are either points ofstrict, strong minimaor saddle points. All
stationary points of the Helmholtz free-energy functional a
those ofstrict, strong minima.

By evaluating the surface variation of the Helmho
free-energy functional, we have found a complete set
stable, equilibrium field configurations: Namely, the Meis
ner ~0-soliton or ‘‘vacuum’’! solution and soliton~vortex-
plane! solutions. These solutions conserve the flux and re
ize exact lower bounds of the Helmholtz free-ener
functional in the corresponding topological sectors. As
shown in Appendix A, the absence of soliton solutions of t
‘‘fluxon’’ and ‘‘lattice’’ types at H.0 is due to the boundary
conditions on the derivatives of the phase differences@Eqs.
~27!, ~28!# that require the continuity of the local field at th
outer interfaces. Physically, the fact that a vortex plane
cally minimizes the free-energy functionals means that, c
trary to a widespread belief,4 the effective interaction be
tween flux quanta positioned indifferent insulating layers is
attractive. The topological methods of Sec. 2.4 establish
true mathematical analogy between the vortex structure
continuum type-II superconductors and that in layered sup
conductors atH.0: It consists in an isomorphism between
single Abrikosov vortex and a singlevortex plane. ~Note the
role of the conservation law for the flux in the derivation
these results: Such conservation laws in nonlinear field th
ries always yield soliton solutions that minimize the ener
functionals.10–13!

In the limit of weak interlayer coupling,r (T)!1, we
have derived exact, closed-form analytical expressions fo
stable solutions@Eqs.~83!–~89!#. Solutions~83!–~89! explic-
itly satisfy the SG equations~A1! with a full set of boundary
conditions. They meet the Legendre necessary and Jac
Weierstrass–Hilbert sufficient conditions for a stro
minimum19 and contain the exact results of Refs. 1 and 2
particular limiting cases. Expressions~83!–~89! provide an
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adequate description of real physical systems withN
@@«21#, «!1 ~see Appendix A!, when boundary effects
along the layering axis can be neglected.

We can now answer the question what kind of config
rations correspond to saddle points of~3!. As is shown in
Sec. 2.3 and Appendix A, all saddle-point configurations
nonsoliton and violate the conservation law for the flu
Saddle points of the first type appear if one increases
external field H beyond the stability regions~87!, ~88!.
~Saddle points of this type exist already in the case o
single Josephson junction.! Saddle points of the second typ
appear as solutions to the boundary value problem~27!, ~28!,
~A18! for ~A1!, where theZn violate ~A22!. Nonsoliton so-
lutions of this type, interpreted as ‘‘vortex lattices,’’ hav
been considered in some previous publications on the
model:6,7,14As is shown in Appendix C, they are just pertu
bations of the soliton solutions~83!–~86! with Nv.0. Note
that nonsoliton numerical solutions16,17 for finite (N,`)
Josephson-junction stacks, interpreted as ‘‘isolated fluxo
belong to the same type: They are characterized by the
dition

F 1

2p E
2L

L

dy
dfn~y!

dy G50

for all n and thus constitute perturbations of the Meiss
solution ~83!, ~84! with Nv50.

It is instructive to compare our mathematical approa
with previous approaches. Both in Refs. 1 and 2 and in
present paper, we start by exact minimization of the Gib
free-energy functional. By determining a complete set
minimizers, we arrive at a natural physical interpretation
all relevant mathematical relations and the identification
equilibrium Josephson vortices as topological solitons~vor-
tex planes!. @In the weak-coupling limit, they are just th
soliton solutions to the SG equations~A1!.# In contrast, pre-
vious publications on the LD model started with thea priori
assumption that the vortex structure in layered supercond
ors resembled that in continuum type-II superconductors4–9

Unfortunately, similarities in the spatial distribution of fie
configurations were erroneously sought. However, unlike
true analogy in terms of homotopy theory~Sec. 2.4!, any
analogy in the configurational space is precluded by fun
mental differences between the Gibbs free-energy functio
~3! and that of continuum type-II superconductors.

We have already pointed out~Refs. 1 and 2 and the
Introduction! the inadequacy of mathematical methods
previous publications. It should be added that the neces
of ensuring the vanishing of the surface variation in the s
tionarity condition for the Helmholtz free-energy function
was not taken into account:4,7–9As a result, the conservatio
law for the flux and soliton solutions were lost. Since t
exact solvability and soliton solutions of the SG equatio
~A1! were not noticed, no mathematical definition of the J
sephson vortex could be given. This situation has led to c
fusion as to what might be called the Josephson vorte
H.0 even in the simplest case of the single junction: He
the erroneous claims15,16 that Josephson vortices ‘‘do not ex
ist’’ for L!lJ .

The problem of the stability of the proposed nonsolit
configurations~i.e., whether they correspond to any points
-
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minima of the Gibbs free-energy functional! has never been
posed in previous theoretical publications.@This fact is not
surprising in view of the neglect of the conservation law f
the flux and accompanying uncontrolled mathemati
approximations.3!# Unfortunately, the issue of stability wa
disregarded in numerical simulations16 for finite (N,`)
Josephson-junction stacks as well: hence
misunderstanding17 of the profound physical and mathema
cal difference between soliton and nonsoliton solutions.

In summary, the central result of this paper is that eq
librium Josephson vortices in layered superconductors w
N5` are topological solitons of the static SG equations
the phase differences. This result should be viewed in
general context of vortex solutions in nonlinear fie
theories.10–13~For example, Abrikosov vortices in continuum
type-II superconductors are topological solitons of the G
equations.! Mathematically, the exact, closed-form expre
sions ~83!–~89! represent a new class of soliton solution
Aside from their importance for weak superconductivi
they can find applications in different fields of nonline
physics and applied mathematics where the SG equation
involved.11

APPENDIX A

The solution of coupled static SG equations

In the limit of weak coupling, considered in Sec. 3, th
zeroth-order@with respect tor (T)!1] solution to~9!, ~10!
has the formf n[1. Upon substitution into Eqs.~26! and
subsequent differentiation with respect toy, the latter equa-
tions are reduced to coupled static SG equations

lJ
2 d2fn~y!

dy2 5
1

«2 (
m

G21~n,m!sinfm~y!,n51,...,N,

~A1!

where G21(n,m) is a Jacobian matrix31 with elements
G21(n,n)521«2 (n51,...,N), G21(n11,n)5G21(n,n
11)521 (n51,...,N21), andG21(n,m)50 for un2mu
.1. Owing to the periodic boundary conditions

fn1N~y!5fn~y! ~A2!

@see~6!#, the matrixG21(n,m) is cyclic. Equations~A1! are
subject to conditions~27!, ~28!, and their solutions obey the
symmetry relations~25!.

In the limit N→`, equations~A1! were derived by a
different method in a number of publications.6,7 Unfortu-
nately, their analytical properties have not been studied.
main property can be formulated as the following propo
tion:

Proposition. Consider Eqs.~A1! on the whole axis
2`,y,1`. The initial value problem for Eqs.~A1! with
arbitrary initial conditions

fn~y0!5an ,
dfn

dy
~y0!5bn ~ uy0u,`!

has a unique solution in the whole interval2`,y,1`.
This solution has continuous derivatives with respect toy of
arbitrary order and depends continuously on the initial da

To prove the Proposition, we note that Eqs.~A1! satisfy
the conditions of Picard’s theorem on the existence a
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uniqueness of aglobal solution.32 This property is rather un
usual for nonlinear differential equations: A global charac
of the solution and its infinite differentiability are ensured
the fact that thefn enter the right-hand side of Eqs.~A1!
only as arguments of the sine.

Equations~A1! can be rewritten in an equivalent form

sinfn~y!5«2lJ
2(

m
G~n,m!

d2fm~y!

dy2 ,n51,...,N. ~A3!

The matrixG(n,m), being the inverse ofG21(n,m), has the
form

G~n,m!5
m un2mu

2«A11«2/4
, m511

«2

2
2«A11«2/4,

~A4!

and obeys the summation rule

(
m

G~n,m!5
1

«2 . ~A5!

The matrixG(n,m) is positive definite, because all its eige
valuesek are positive:

ek5
lk

2

«2lJ
2 , lk5

«lJ

A21«222 cos~2pk/N!
,

k50,61,...,FN

2 G . ~A6!

The quantitieslk in ~A6! are the characteristic length scal
of Eqs.~A1!. @Note that~A1! is characterized by a distribu
tion of length scales, not just two length scales, as is claim
in some previous publications.# The distribution of the length
scales becomes quasicontinuous under the condition

N@@«21#, ~A7!

which can be regarded as a criterion of applicability of t
LD model to layered superconductors.

The fact that equilibrium solutions~83!–~89! correspond
to the largest length scalelmax[l0[lJ is by no means sur
prising: In equilibrium, the system tends to minimize t
diamagnetic response to the external fieldH. Note that for
N→`, H50, L5`, equations~A1! admit an exact soliton–
antisoliton solution

fn~y!5~21!nf~y!, f~y!54 arctan expS y

lmin
D ,

~A8!

lmin[l@N/2#5
«lJ

A41«2
. ~A9!

However, solution~A8!, ~A9! vanishes for anyH.0, L
,`.

Note the first integral of~A1!:

(
n

cosfn~y!1
«2lJ

2

2 (
n

(
m

G~n,m!
dfn~y!

dy

dfm~y!

dy

5C. ~A10!
r

d

In the case of a finite intervalyP@2L,L# the constant of
integrationC can be determined from the conditions~27!,
~28!:

C5
2NH2

Hs
2 1(

n
cosfn~2L !. ~A11!

C5N in the infinite intervalyP(2`,1`).
Now, we will prove that Eqs.~83!–~89! provide a com-

plete set of stable solutions to~A1! at H.0. Using equations
of Secs. 2.1, 2.2 withf n[1 and introducing the ‘‘local mag-
netic field’’ in the regions (n21)p<x,np via

hn~y!5
«2

2ep(
m

G~n,m!
dfm~y!

dy
, ~A12!

we rewrite~3! as follows:

VLDFfn ,
dfn

dy
;HG5V01V* Ffn ,

dfn

dy
;HG , ~A13!

V* Ffn ,
dfn

dy
;HG5

pWz

8p (
n
E

2L

L

dyFHs
2

2
@1

2cosfn~y!#1
1

«2 @hn11~y!

2hn~y!#21@hn~y!2H#2G
5

NpWWz
2H

8p
1VH* Ffn ,

dfn

dy G
2

HFWz

4p
>0, ~A14!

where

VH* Ffn ,
dfn

dy G5
Hs

2pWz

16p E
2L

L

dyF(
n

@12cosfn~y!#

1
«2lJ

2

2 (
n

(
m

G~n,m!

3
dfn~y!

dy

dfm~y!

dy G>0 ~A15!

is the Helmholtz free-energy functional, and the total flux
given by

F5
1

2e(
n

@fn~L !2fn~2L !#. ~A16!

The treatment of the functionalsV* , VH* is fully analogous
to that of V,VH in Sec. 2.3. Thus, by virtue of positiv
definitiveness of~A4!, the Legendre necessary condition f
a strong minimum,19

(
n

(
m

G~n,m!rnrm.0, (
n

rn
2Þ0, ~A17!

where rn are arbitrary real numbers, is explicitly fulfilled
The functionalsV* , VH* have a common set of minimizers
The stationarity condition forVH* involves the vanishing of
the volume variation, which yields Eqs.~A3!, and of the



o

he

-

i-
at
su

ho

ha
he

rs

the

n-

wo

658 Low Temp. Phys. 30 (7–8), July–August 2004 S. V. Kuplevakhsky
surface variation, which leads, by~27! and ~A16!, to the
conservation law for the fluxdF50. By analogy with~69!,
~70!, we arrive at soliton boundary conditions

fn~0!

p
5Zn[F 1

2p E
2L

L

dy
dfn~y!

dy G>0~n51,...,N!,

~A18!

2
fn~2L !

p
[H 1

2p E
2L

L

dy
dfn~y!

dy J , 2p

,fn~2L !<0. ~A19!

The soliton solution in the sector$Z1 ,...,ZN% first ap-
pears under theN conditions

f1~2L !5...5fN~2L !50 ~A20!

@see~A19!# and theN21 conditions

df1

dy
~2L !5...5

dfN

dy
~2L !52epH* >0, ~A21!

where the fieldH* is as yet undetermined@compare with
~27!, ~28!#. Given that the general solution to~A1! contains
2N constants of integration, conditions~A20!, ~A21! leave
only one undetermined constant to satisfy the boundary c
ditions ~A18!. For this reason, we have to set

Z15...ZN5Z[Nv50,1,... . ~A22!

For H* 50, by the Proposition, the unique solution to t
initial value problem ~A20!, ~A21! in the interval
yP@2L,L# is the trivial Meissner configurationf15...fN

'0, Nv50. For arbitraryH* .0, by the Proposition, the
initial-value problem~A20!, ~A21! also admits a unique so
lution in the intervalyP@2L,L#, and its explicit form is

f1~y!5...5fN~y![f~y!52p12 amS y1L

klJ

1K~k2!,kD , ~A23!

k5
Hs

H* 21Hs
2

. ~A24!

Upon substitution of~A23! and ~27! into ~A18!, with ~A22!
and Nv51,2,..., we determineH* 5AHNv212Hs

2, where
the HNv

are given by~41!. In this way, we arrive at the
solutions~83!–~89!, which proves their uniqueness as min
mizers of~A13!–~A15!. This proof clearly demonstrates th
the absence of soliton solutions of any other types is a re
of the physical boundary conditions~A21! @or ~27!, ~28!#.

To establish a connection to the exact variational met
of Refs. 1 and 2, we note that~83!–~89! can also be obtained
by the minimization of~A13!–~A15! with respect to the
phaseswn . ~We recall thatf[wn2wn21). However, as was
first noticed in Refs. 1 and 2, we must take into account t
not all thewn are independent: The conservation law for t
current~22! constitutes a constraint ondwn /dy. This prob-
lem can be easily circumvented by making use of the fi
integral ~A10!, ~A11!. The substitution of~A10!, ~A11! into
~A15! yields
n-

lt

d

t

t

VH* Ffn ;fn~2L !,
df

dy
~2L !G5

NWWz

32pe2p Fdf

dy
~2L !G2

1
Hs

2pWz

16p E
2L

L

dy(
n

@122 cosfn~y!1cosfn

3~2L !#. ~A25!

Taking the variation of~A25! with respect town , we imme-
diately arrive at the relations

sinfn~y!5sinfn11~y! ~A26!

@compare with~40!#, and hence the condition~A22! and Eqs.
~83!–~89!.

APPENDIX B

Verification of the Jacobi–Weierstrass–Hilbert sufficient
condition for a strong minimum

In the weak-coupling limitr (T)!1, when f (y)[1, the
Legendre necessary condition for a strong minimum ofVH

reduces to the second relation in~54!. Complemented by the
requirement that the explicit solution~83!–~89! can be em-
bedded into a field of extremals, this condition becomes
Jacobi–Weierstrass–Hilbertsufficientcondition for a strong
minimum.19

In view of the symmetry relationf(y)52f(2y)
12pNv the conditions on variationsdf(6L)50, df(0)
50, it suffices to verify the Jacobi–Weierstrass–Hilbert co
dition for yP@2L,0#. At H.0, the desired field is given by
the one-parameter family

f~y,b!5p~Nv21!12 amS yA41b2

2lJ

1KS 4

41b2D ,
2

A41b2D , ~B1!

Nv52m, m50,1,...;

f~y,b!5pNv12 amS yb

2lJ
,2b D ,

Nv52m11, m50,1,..., ~B2!

whereb.0. The familyf(y,b) explicitly satisfies~82! and
the initial conditions

f~0,b!5pNv

df

dy
~0,b!5

b

lJ
. ~B3!

For b5b̄, where b̄52A12k2/k in the case~B1!, and b̄

52/k in the case~B2!, we havef(y,b̄)5f(y), i.e., rela-
tions ~B1! and ~B2! yield the solutions~83!, ~84! and ~85!,
~86!, respectively. To prove that the familyf(y,b) indeed
forms a field of extremals, we have to show that any t
representativesf1[f(y,b1) and f2[f(y,b2), where 0
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,b1,b2, do not intersect in the interval@2L,0). From the
first integral of~82! @equation~76! with f [1] and~B3!, we
have

lJ
2

2 S df1

dy D 2

1cosf15
b1

2

2
1~21!Nv,

lJ
2

2 S df2

dy D 2

1cosf25
b2

2

2
1~21!Nv. ~B4!

We will prove the absence of points of intersection off1 and
f2 by contradiction.

Considerc(y)[f2(y)2f1(y). As Eq. ~82! yields

d2f1

dy2 ~0!5
d2f2

dy2 ~0!50,

for yP(2d1,0), whered1 is sufficiently small, we have

c~y!5~b12b2!uyu1o~y2!.0.

By continuity ofc(y), relation~B5! implies the existence o
a finite interval yP(y0,0) where c(y).0. Let y5y0P
3@2L,0) be a point of intersection, i.e.,

f1~y0!5f2~y0!,
d2f1

dy2 ~y0!5
d2f2

dy2 ~y0!.

For yP(y0 ,y01d), where d.0 is sufficiently small, we
have

c~y!5Fdf2

dy
~y0!2

df1

dy
~y0!G~ uy0u2uyu!1o@~y2y0!2#

.0 ~B5!

which, in view of the arbitrariness ofd, implies

df2

dy
~y0!>

df1

dy
~y0!. ~B6!

However, equations~B4!, by virtue of df1 /dy , df2 /dy
.0, yield

df2

dy
~y0!,

df1

dy
~y0!. ~B7!

The contradiction between~B6! and~B7! proves the absenc
of points of intersection in the whole interval@2L,0), as
expected. Thus, the solution~83!–~89!, for anyH.0, can be
embedded into a field of extremals and, as such, satisfies
Jacobi–Weierstrass–Hilbert sufficient condition for a stro
minimum.

APPENDIX C

Comparison between soliton and nonsoliton „‘‘lattice’’ …

configurations

At fields

H@«21Hs[~«eplJ!
21, ~C1!

the SG equations~A1! with N52m→` admit an exact,
closed-form analytical nonsoliton solution under the con
tions

dfn

dy
~6L !52epH, fn~0!5pn. ~C2!
he
g

-

A solution of this type was proposed, e.g., in Refs. 7 and
where it was erroneously interpreted as a ‘‘dense triang
lattice of Josephson vortices.’’ As an illustration of the ge
eral results of this paper, it is instructive to compare t
solution with the exact closed-form analytical soliton so
tion ~92!, valid in a wider field rangeH@Hs .

By introducing a dimensionless variableu'2epHy and
new functionscn(u)[Fn(u/2epH), we rewrite Eqs.~A1!
as

d2cn~u!

du2 5
1

~2«eplJH !2 (
m

G21~n,m!sincm~u!,

n51,...,N. ~C3!

The boundary conditions, Eqs.~C2!, become

dcn

du
~62epHL!51, fn~0!5pn. ~C4!

Taking into account~C1!, we seek the solution to~C3!, ~C4!
as an asymptotic expansion in powers of 1/(2eplJH)2:

cn~u!5 (
k>0

cn
~k!~u!, ~C5!

wherecn
(k)(u) is of order 1/(2«eplJH)2k (k50,1,...). Re-

taining only the first two terms in~C5!, we obtain

fn~y!5pn12epHy2
41«2

«2

~21!n

4~eplJH !2 sin~2epHy!

1
41«2

«2

~21!n

2eplJ
2H

cos~epHW!y. ~C6!

The sum of the first three terms on the right-hand side
~C6! in the limit «!1 gives the solution of Refs. 7 and 14
The presence of the last term on the right-hand side of~C6!,
resulting from the boundary conditions~C2! at y56L, was
not noticed in Refs. 7 and 14, and therefore the solution
Refs. 7 and 14 does not meet the boundary conditionsy
56L in required order. In contrast to the exact closed-fo
analytical soliton solution~92!, valid in the same field range
and minimizing the LD functional~3!, the nonsoliton solu-
tion ~C6! is just a saddle point of~3!: see Secs. 2.3 and 4 an
Appendix A. This is illustrated below.

The substitution of~C6! into ~A13!, ~A14! yields a non-
equilibrium value of the LD functional:

ṼLD~H !5
Hc

2~T!pNLWz

4p
3F211r ~T!F1

1
@112/«2#cos2~epHW!

8~eplJH !2 G G . ~C7!

Expression~C7! is to be compared with the thermodynam
free energy~93! of the soliton solution~92!. Their difference
is

DṼLD~H ![ṼLD~H !2VLD~H !5
Hc

2~T!pNLWzr ~T!

4p

3F usin~epHW!u
epHW

1
cos2~epHW!

4~eplJH !2«2G.0.

~C8!
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Thus the saddle-point, nonsoliton solution~C6! is nothing
but an unstable perturbation of the soliton solution~92!.

*E-mail: kuplevakhsky@ilt.kharkov.ua

1!Contrary to what is claimed in Ref. 17, for example, this issue canno
resolved by comparing ‘‘characteristic length scales’’ or values of the
ergy functionals for distinct field configurations. The main problem is
establish whether the configurations under comparisonlocally minimizethe
energy functionals.

2!This can be done by the gauge transformationA8(x,y)5A(x,y)
1¹c(x,y), wn8(y)5wn(y)12ec(np,y), wherec(x,y)52*C

x dt Ax(t,y).
3!For example, as was shown by Farid,30 field configurations of the type in

Refs. 4 and 5 do not constitute solutions in a true mathematical sense
add that equations~A1! for the phase differences@let alone the more gen-
eral equations~9!, ~10!, and~26!–~28!# were not derived in Refs. 4 and 5
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A technique for studying collisionless dynamics of a homogeneous superconducting system is
developed which is based on Riccati parametrization of the Wigner distribution function.
The quantum evolution of the superconducting order parameter, initially deviating from the
equilibrium value, is calculated using this technique. The effect of a time-dependent
BCS paring interaction on the dynamics of the order parameter is also studied. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1789939#
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1. INTRODUCTION

In this paper we study the dynamics of the supercond
ing order parameter within the Wigner distribution functio
approach. The problem of nonstationary phenomena in
perconductors has been attracting attention for a long tim1,2

The general method for description of nonstationary a
nonequilibrium processes is the Keldysh technique for n
equilibrium real-time Green’s functions.3 The equations for
superconducting Keldysh Green’s functions4,5 are a set of
quite complicated nonlinear integro-differential equatio
which are nonlocal in the time and space domains. Th
equations can be simplified considerably in the quasiclass
approximation by integrating the Green’s functions overjp

5p2/2m2m ~m is the chemical potential!.6 The quasiclassi-
cal Larkin–Ovchinnikov equations are still nonlocal in tim
but are local in space. In the stationary case, these equa
transform into Eilenberger’s equations,7 which are effective
tools for solving stationary inhomogeneous problems.

When the time-dependent processes in supercondu
are considered, three time scales are most essential. The
tp;vp

21 (vp is the plasma frequency! characterizes the scal
at which the self-consistent scheme for the electromagn
fieldsA(r ,t), f(r ,t), and for the BCS pairing fieldD(r ,t) is
established. The timet0;D21 ~D is the modulus of the orde
parameter! is an intrinsic time for superconductors, durin
which quasiparticles with the energy spectrumAD21jp

2 are
formed in the superconductor. The stage of the relaxatio
a nonequilibrium disturbance in the quasiparticle distribut
is determined by the energy relaxation timet« due to inelas-
tic processes. For conventional superconductors, at temp
ture T not too close to the critical temperatureTc , the hier-
archy of the characteristic times istp!t0!t« . In the time
interval t;t«@t0 the superconductor’s dynamics is d
scribed by the quasiclassical Boltzman kinetic equation
the quasiparticle distribution function together with a se
consistent equation for D(r ,t) ~Aronov–Gurevich
equations8!. In the opposite caset!t« , the dynamics of the
superconducting order parameter should be described by
6611063-777X/2004/30(7–8)/6/$26.00
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quantum kinetic equation. Considering the collisionless e
lution of the superconducting order parameter (t!t«), the
equations for the Keldysh Green’s functions are reduced
simpler equations for the Green’s functions at coincidi
times. The latter can be transformed to the quantum kin
equation for the Wigner distribution function~WDF!. The
collisionless kinetic equation for superconducting WDF c
also be obtained directly from the generalized Hartree–F
approach to the BCS pairing model9 ~see also Refs. 10 an
11!.

Wigner12 has introduced a distribution function in th
phase space as a quantum analog of the classical Boltz
distributions. In studying the quantum transport, the Wign
function formalism has many advantages. It is extensiv
used for the description of normal metal and semiconduc
electron devices whose behavior is dominated by quan
interference effects, e.g., for self-consistent treatment of tr
sient response to a change in the applied voltage.13 In recent
years, Wigner functions have been widely used in the field
quantum optics to describe the effects of quantum cohere
and superposition in optical systems.14 Such effects are of
great interest in qubit~quantum bit for quantum computa
tion! investigations.15

The collisionless dynamics of the superconducting or
parameter has gained renewed attention after the disco
of the BCS-like paired state in dilute fermionic gases.16 The
ability to control and change the strength of the pairing
teraction in these systems opens up possibilities for new
perimental investigations of the dynamics of the order
rameter. Recently, time-dependent BCS pairing was stud
theoretically in Ref. 17. The WDF technique developed
our paper provides a useful tool for studying such problem

In Sec. 2, following Kulik’s approach,9 we derive a
quantum kinetic equation for the superconducting WDF
(r ,t) space. This equation is simplified for the case of
homogeneous state~Sec. 3! and then used to study the coll
sionless dynamics of the order parameter in small superc
ducting systems~Sec. 4!. We consider the problem of th
© 2004 American Institute of Physics
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time evolution of the order parameter after an initial dev
tion from the equilibrium value and found that on a tim
scale much shorter thant« the time dependence ofD has an
oscillatory character. Earlier, such a problem was studied
other authors using a linear response approach,18 assuming
small deviation from equilibrium. In the present paper, t
time dependences were obtained under arbitrary initial p
turbations~not only small!. The time dependent response
the order parameter to a time-varying pairing potential is a
studied. A numerical method for solving the equation for t
WDF, which is based on the Maki–Schopo
transformation,19 is developed.

2. WIGNER DISTRIBUTION FUNCTION FORMALISM FOR
THE SUPERCONDUCTING STATE

We write the Hamiltonian of the superconductor
H5H01H1 , whereH0 includes electron interactions wit
external fields, the vector potentialA(r ) and the scalar po
tential f(r ), as well as with the pairing fieldD(r ),

H05 (
s5↑,↓

E dr cs
†~r !@«2m1ef~r !#cs~r !

2E dr @D~r !c↑
†~r !c↓

†~r !1D* ~r !c↓~r !c↑~r !#,

~1!

«5
1

2m F¹i 2
e

c
A~r !G2

~2!

~we use a system of units in which\5kB51). Here

cs~r !5
1

AV
(

p
aps~ t !eip"r

is the annihilation operator of an electron with spins. The
Hamiltonian H1 describes the impurity, electron–phono
electron–electron, etc. scattering processes that provide
relaxation.

The pairing fieldD(r ) is to be determined from the sel
consistency equation

D* ~r !5V0^c↑
†~r !c↓

†~r !&, ~3!

whereV0 is the pairing potential. The electromagnetic pote
tials obey Maxwell’s equations,

¹3A~r !5
4p

c
j ~r !, ~4!

¹2f1
1

c

]

]t
¹•A524pr~r !, ~5!

where r(r ) and j (r ) are the charge and current densitie
respectively:

r~r !5e(
s

^cs
†~r !cs~r !&, ~6!

j ~r !52
ie

m (
s

^cs
†~r !¹cs~r !2~¹cs

†~r !!cs~r !&

2
2e2

mc
A~r !(

s
^cs

†~r !cs~r !&, ~7!
-

y

r-

o
e

he

-

,

and the angle brackets denote statistical averaging.
By introducing the ‘‘particle–hole’’~Gor’kov–Nambu!

representation of the electron creation and annihilation
erators in terms of 2-vectors,

Ap5S ap↑
a2p↓

† D , Ap
†5~ap↑

† a2p↓!, ~8!

C~r !5S c↑~r !

c↓
†~r ! D , C†~r !5~c↑

†~r !c↓~r !!, ~9!

we define the matrixf̂ pq in the ‘‘particle–hole’’ space,

f pq
ab~ t !5^A

p2
q
2,b

†
~ t !Ap1

q
2a~ t !&,

wherea,b51,2 are the indices of the vectorsAp . The func-
tion f pq

ab is the Fourier transform of the Wigner distributio
function f ab(p,r ,t) generalized to the superconducting ca

f ab~p,r ,t !5(
q

eiqr^A
p2

q
2,a

†
~ t !Ap1

q
2,b~ t !&. ~10!

Correspondingly, the components of the matrixf̂ (p,r ,t) are
expressed in terms of the Nambu operatorsCa(r ,t) in the
Heisenberg representation as

f ab5E dr 8e2 ipr8^Ca
†~r1r 8/2,t !Cb~r2r 8/2,t !&. ~11!

It follows from Eq. ~11! that f 11 and f 22 are real functions,
and f 125 f 21* . The self-consistency relations, Eqs.~3!, ~6!,
and ~7!, can be written in terms off̂ as

D5V0E dp

~2p!3 Tr t2 f̂ ~p!, ~12!

r5eE dp

~2p!3 Tr t3 f̂ ~p!, ~13!

j5E dp

~2p!3 Tr p̃ f̂ ~p!, ~14!

where p̃5p2et3A/c, t25(1/2)(t12 i t2), and t i are the
Pauli matrices.

The evolution equation for the WDF can be derived fro
the equation of motion for the electron field operato
c5cs(r ,t):

i
]c

]t
5@c,H#. ~15!

Restricting our consideration to the collisionless stage of
evolution, we neglect the interaction partĤ1 of the Hamil-
tonian and obtain, from Eq.~15!, the equations of motion for
the Nambu operatorsC(r ,t):

F i
]

]t
2t3~ ĵ1ef!1D̂GC50, D̂5S 0 D

D* 0 D , ~16!

where ĵ52(¹1 iet3A/c)2/2m2m. By making use of the
definition of the WDF in Eq.~11!, we arrive, after some
algebra, at the following dynamic equation forf̂ (p,r ,t):

] f̂

]t
1 i F ~ p̃2 i ¹̃/2!2

2m
t3 , f̂ G1 i @eft32D̂, f̂ # ^ 50, ~17!
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where@...# denotes the usual commutator, in which we co

sider ¹̃ as an integral operator with the kernel¹rd(r2r 8),

and thus (¹̃ f̂ )52( f̂ ¹̃)5¹ f̂ . The quantity@ ...# ^ is defined
as@A,B# ^[A^ B2B^ A, where (A^ B)(p,r ,t) is the Fou-
rier transform of the spatial convolution (AB)(r1 ,r2)
5*dr A(r1 ,r )B(r ,r2):

~A^ B!~p,r !5E dr 8e2 ipr8~AB!~r1r 8/2,r2r 8/2!

5expH i

2
@] r

A]p
B2]p

A] r
B#J A~p,r !B~p,r !.

~18!

By making use of the transformation f̂

→exp(it3x/2) f̂ exp(2it3x/2), we can exclude the phasex of
the superconducting order parameter and proceed to ga
invariant quantities, i.e., the momentum of the superfl
condensateps and the potentialF defined by

ps5mvs5
1

2 S ¹x2
2e

c
AD , F5

1

2 S ]x

]t
12ef D . ~19!

The electromagnetic fields are related tops and F
through

eE5
]ps

]t
2¹F, eH52¹3ps . ~20!

This results in the substitutionsp̃→p1t3ps andef→F in
the dynamical equation~17!, as well as in the definition o
the current in Eq.~14!. Note that the anisotropic termp•vs

arising fromp̃ in Eq. ~17! commutes withf̂ and thus drops
out from this equation.

While the physical sense ofps is obvious, the interpre-
tation of the gauge-invariant potentialF is less evident.
Within the framework of the two-fluid model, it can be in
terpreted as the differenceF5ms2mn between the electro
chemical potentials of the condensate of Cooper pairs,ms

5m1(1/2)]x/]t, and quasiparticles,mn5m2ef; thus a
nonzero value ofF means nonequilibrium of the electrons
the superconductor. In bulk superconductors,F andps decay
within their corresponding lengths: the London~skin! depth
d in the case ofps , and the electric field penetration dep
lE for F.

3. WIGNER DISTRIBUTION FUNCTION FOR HOMOGENEOUS
SUPERCONDUCTING SYSTEMS

In what follows, we focus on homogeneous superc
ducting systems in the clean limit, assuming the scatte
rate is much smaller thanD. To be more specific, we assum
the magnitude of the order parameterD and the gradient of
its phase,¹x, to be uniform inside the superconductor. T
spatially varying part of the phase ofD is included in the
homogeneousps by means of an appropriate gauge transf
mation. A ‘‘residual’’ spatially uniform phase is kept to de
scribe the dynamics of the phase of the order paramete
can be related to, e.g., possible~time-dependent! phase on
either side of a Josephson junction. In this case, the equa
for the WDF takes the form
-

ge-
d

-
g

-

It

on

] f̂

]t
1 i @ j̃pt32D̂, f̂ #1n~ f̂ 2 f̂ 0!50, ~21!

where j̃p5jp1F1mvs
2/2. The phenomenological collision

term n( f̂ 2 f̂ 0) qualitatively describes slow relaxation of th
WDF to its equilibrium valuef̂ 0 which is associated with the
interaction HamiltonianH1 . In the collisionless limit consid-
ered below, we will assumen→10, in order to provide cor-
rect analytical behavior of the WDF att→1`.

Equation ~21! has several important properties whic
can be derived from the equations for the matrix eleme
of f̂ ,

i
] f 11

]t
52 i

] f 22

]t
52~D f 212D* f 12!, ~22!

i
] f 12

]t
52j̃pf 121D~ f 112 f 22!, ~23!

2 i
] f 21

]t
52j̃pf 211D* ~ f 112 f 22!. ~24!

First, we note that only the differencef 112 f 22 of the diago-
nal components of the matrixf̂ enters the equations for th
off-diagonal componentsf 12 and f 21. Furthermore, from Eq.
~22!, one finds that the sum of the diagonal componentsf 11

1 f 225const. This allows us to present the functionf̂ in the
following form:

f̂ 5
1

2
@ 1̂~12F2!2 f̂̃F1#, f̂̃ 5S 2g f

f * gD , ~25!

where f and g are isotropic functions, and the time
independent quantitiesF6 have the meaning of quasipartic
distribution functions which are conserved during the sta
of the collisionless evolution. Assuming the system to
initially in equilibrium and comparing Eq.~25! with the
equilibrium form of the WDF, which can be directly obtaine
from the definition in Eq.~10!:

f̂ 05
1

2 H 1̂~12F2!2
1

«̃p
~ j̃pt̂32D̂ !F1J , ~26!

we find the distribution functions

F65
1

2 F tanh
«̃p1p"vs~0!

2T
6tanh

«̃p2p"vs~0!

2T G ,
«̃p5Aj̃p

21uDu2, ~27!

and the equilibrium values of the functionsf andg

f 05
D

«̃p
, g05

j̃p

«̃p
. ~28!

In this representation the dynamic equation~21! for the
WDF reduces to the following system of scalar equations
the functionsg and f :

]g

]t
5 i ~D* f 2D f * !,

] f

]t
52i ~Dg2 j̃pf !, ~29!

which, together with Eq.~28!, lead to the normalization con

dition f̂̃ 251 or
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g21 f f * 51. ~30!

The self-consistency equation has the form

D~ t !5
l

2 E dVp

4p E
2vD

vD
djpf ~jp ,t !F1 , ~31!

wherevD is the Debye frequency,l5N(0)V0 is the dimen-
sionless pairing constant,N(0) is the electron density o
states per spin at the Fermi level, andVp denotes angle
variables associated with the momentum vector. The ch
and current densities are given by

r~ t !52eN~0!E dVp

4p E djpg~jp ,t !F1 , ~32!

j ~ t !5envs~ t !2eN~0!E dVp

4p
pE djpF2 , ~33!

wheren is the net electron density. Equation~33! shows that
the electric current is governed directly by the superfl
velocity and has nothing to do with the evolution of th
WDF,

j ~ t !5envs~ t !1e~ns2n!vs~0!

5 j ~0!1en@vs~ t !2vs~0!#, ~34!

wherens is the condensate density calculated for the ini
superfluid velocityvs(0). This property reflects the specific
of the collisionless regime, in which the normal compone
of the current flow is not affected by scattering, and theref
the velocities of both the superfluid and normal compone
of the electron fluid undergo equal changesvs(t)2vs(0):
vs(0)→vs(t), vn(0)50→vs(t)2vs(0): From this we con-
clude that at nonzero temperature, when the density of
normal component,nn[n2ns , is nonzero, the current re
verses its direction with respect tovs(t) if the latter becomes
smaller thanvs(0)nn /n.

4. COLLISIONLESS EVOLUTION OF THE ORDER
PARAMETER IN SUPERCONDUCTORS

In the paper by Volkov and Kogan,18 the problem of
evolution of the order parameterD(t) at a given initial value
of the WDF ~and the corresponding initial self-consiste
value ofD5D(0)) wasanalyzed within a linear approxima
tion, assuming small deviations ofD(t) and f̂ (j,t) from
their equilibrium values. It was shown that the time var
tions of D have the form of harmonic oscillations with
period of the order ofD21 and an amplitude decreasin
slowly ast21/2. At larget@t05D21(0), theorder parameter
approaches a constant valueD`[D(t→`), which is deter-
mined by the initial conditions and coincides neither w
D~0! nor with the equilibrium valueD0 .

In this paper, we address a more general nonlinear p
lem, with arbitrary initial conditions, which may differ sub
stantially from the equilibrium state. In particular, this allow
us to consider the formation of the superconducting s
from the initial normal state at low enough temperatures
destruction of the initial superconducting state at high te
peratures. To this end, we apply a numerical procedure
making use of the so-called Riccati parametrization of
ge

l

t
e
ts

e

-

b-

te
r
-
y

e

functions f andg. Due to the normalization condition~30!,
these functions can be expressed in terms of a single func
a(jp ,t),

g5
12aa*

11aa*
, f 5

2a

11aa*
, ~35!

which satisfies a nonlinear Riccati-type equation,

]a

]t
5 i ~22j̃pa2D* a21D!. ~36!

In the stationary limit (D5const), the solution of Eq.~36! is

a05
D

j̃p1 «̃p

. ~37!

In the general nonstationary case, one needs to integ
Eq. ~36! together with the self-consistency equation~31!.
Thus, proceeding to the discrete time variable,t5ndt,
n50,1,..., one has tocalculate the new value ofD from Eq.
~31! after each time stepdt and then use it for the next step
For sufficiently smalldt, D can be approximately considere
as constant betweent andt1dt, which allows us to apply an
analytical solution of Eq.~36! within this time interval,

a~ t1dt !5a~ t !1
D~ t !22j̃pa~ t !2D* ~ t !a2~ t !

D* ~ t !a~ t !1 j̃p2 i «̃p cot~ «̃pdt !
, ~38!

and thus to calculatea(t1dt) explicitly. As a result, the
numerical procedure reduces to the numerical solution of
self-consistency equation at each step of the calculations

In our calculations, we use time stepsdt50.02t0 . After
each step, the values of the modulus and the phase ofD(t)
were recalculated by means of the self-consistency equa
~31!. In Fig. 1, we present time variations of the order p
rameter modulus for initial valuesD~0! substantially differ-
ent from the equilibrium valueD0 at T50. It is obvious that
equal values ofD~0! may be obtained for different forms o
the initial Wigner distribution functionf̂ (0). In our evalua-
tion, we use the equilibrium form off̂ (0) given by Eq.~26!
at T50, with a formal parameterD in , which, however, ap-
pears to be slightly different from the initial self-consiste
valueD~0!. This difference depends weakly on the value
the pairing constantl, for which in the following we put
l50.5. The initial value ofD in51.5D0 leads to D(0)
'1.3D0 ~Fig. 1a!, whereas D in50.5D0 yields a self-
consistentD(0)'0.67D0 ~Fig. 1b!.

Another type of perturbation in the system is the switc
ing of l from one value to another, or, more generally, t
case of time-dependent BCS pairing. We have used the e
tions ~35!, ~36!, ~38!, and ~31! with time-dependent
l5l(t) to study this problem numerically. The collisionles
evolution of the order parameter asl changes in time is
shown in Fig. 2.

It is interesting to note that the initial BCS form of th
WDF automatically leads to conservation of arbitrary init
values of the order parameter phasex. Actually, this property
is associated with the definite symmetry of the initial WD
with respect to jp , f (jp ,t)5 f (2jp ,t), g(jp ,t)52g
(2jp ,t), which holds during the time evolution and man
fests equality of the populations of the electron- and ho
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like excitations with equal energies«̃p . The introduction of
an imbalance between the electron and hole branches o
excitation spectrum~i.e., violation of the above-mentione
symmetry! produces an excess charge in the quasipart
subsystem which, due to electroneutrality of the me
should be compensated by the opposite charge of the su
fluid condensate. This means the appearance of the di
encedm between the electrochemical potentialsmn andms of
excitations and the condensate, respectively, which prod
time variations of the order parameter phase according to
relationshipdx/dt52dm. For a given constantdm, we find
continuous variation of the phase with a constant rate.

FIG. 1. Collisionless time evolution of the order parameter for an ini
value D~0! larger (a) or smaller (b) than the equilibrium valueD0 at
T50. In all figures the time is normalized tot051/D0 .

FIG. 2. Collisionless time evolution of the order parameter as the coup
constantl changes from the value 0.5 to 1.0.
the

le
l,
er-
r-

es
he

The processes of formation and destruction of the sup
conducting state can be also analyzed within the nonlin
collisionless approach. By starting evaluations from a v
small value ofD in (;1023D0) in Eq. ~28! at T50, which
approximately represents an initial normal state, we obse
a rapid increase inD(t) at the time t;t0 up to D;D0 ,
followed by an oscillatory approach to a stable superc
ducting state~see Fig. 3!. We note that the asymptotic valu
D` appears to be noticeably lower thanD0 , which means
that the real equilibrium value ofD at the superconducting
transition is formed via relaxation processes.

Strictly speaking, at any temperature, including the
gion T,Tc , the self-consistency equation~3! always has a
trivial solutionD50, which corresponds to the normal sta
However, atT,Tc the normal state is associated with
maximum of the free energy, and therefore Fig. 3 actua
illustrates the thermodynamic instability of the normal sta
with respect to an infinitesimalD, which develops through
the quantum kinetic process described by Eqs.~3! and ~29!.
It is interesting to note that, despite the strong nonlinearity
the process, the oscillations ofD(t) have an almost purely
harmonic shape.

The instability of the superconducting state at tempe
turesT.Tc is illustrated by Fig. 4, which was obtained b
starting evaluations from the initial superconducting state
Eq. ~28! at the rather high temperatureT52.5D0 . The order
parameter decreases approximately exponentially with

l

g

FIG. 3. Instability of the equilibrium normal state atT50. We start from
D(0)50.001D0 .

FIG. 4. Instability of the superconducting state atT52.5D0.Tc , with the
initial condition D(0)50.31D0 .
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characteristic decay time 0.42t0 without any oscillations. In
the final stage of the evolution, the order parameter enters
fluctuation regime, which is outside of the framework of o
self-consistent approach.

In closing, the authors express their gratitude to B.
Spivak and A. M. Zagoskin for discussing problems enco
tered in this work.
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