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An open thermodynamic system is considered. Its state is determined by a one-dimensional
temperature fieldT(x,t) and a heat fluxI (x,t), on which nonlocal nonlinear external feedback is
imposed. The change in the Clausius entropy and its production in response to the excitation
of auto-oscillations in the system is calculated on the basis of the results of a dynamical analysis.
The use of the relative increment of the total entropy of the system, normalized to the total
entropy production, as a measure of the ordering of motion is proposed. The analogy between the
formalism of the Andronov–Hopf bifurcation theorem and the Landau–Ginzburg theory of
phase transitions is traced in the second part of the paper. It is shown that in the initial stage of
auto-oscillations the phase matching condition, which determines the amplitude of the
oscillations within the Andronov–Hopf formalism, becomes meaningless because of fluctuations.
In this case the amplitude should be regarded as an order parameter, and the actual state of
the system should be determined from the requirement of a minimum for the nonlinear part of the
increment of entropy production. The proposed approach permits a description of transient
regimes and qualitatively accounts for ‘‘soft’’ and ‘‘hard’’ bifurcations as being due to
nonequilibrium first- and second-order phase transitions. ©1998 American Institute of
Physics.@S1063-7842~98!00101-9#

1. One of the problems in the theory of the self- the Clausius entropyS5*(dQ/T)1S0. This raises the ques
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organization of nonlinear processes in open dynamical
tems is selecting fundamental quantitative characteristic
the ordering of motion.1 A comparative analysis of differen
ordering criteria is given in Ref. 2. In particular, the measu
of order for Thomson systems~oscillatory systems with dis
sipative nonlinearity! is the Boltzmann entropy

S~ t !52kBE f ~X,t !ln f ~X,t !dX1S0 ,

where f (X,t) is the single-particle distribution function an
X denotes the set of variables which determine the stat
the system.3

As was shown in Ref. 4, the energy-normalized entro
of an auto-oscillatory system decreases upon pas
through the generation threshold and can serve as a crite
of self-organization~Klimontovich’s S-theorem!.

In open dynamical systems self-organization can t
the form of auto-oscillations. In studies of self-organizati
auto-oscillations have been treated predominantly as ord
states of Thomson systems. Considerably less attention
been focused on the investigation of auto-oscillations in d
tributed relaxational systems, and open relaxational syst
with nondissipative nonlinearity have scarcely been con
ered. At the same time, the self-organization processe
such systems call for a detailed treatment because of spe
features of the methods used to describe them.

In the overwhelming majority of cases the macrosco
level is sufficient for describing the motion of an open rela
ational system, i.e., its mathematical model has the form
deterministic system of parabolic equations. Let us cons
the simplest case, in which the motion in a dynamical sys
is determined only by the diffusion of heat. It would be na
ral to calculate the entropy of such a deterministic system
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tion of whether the Clausius entropy for a relaxational s
tem is of the same order of magnitude as the Boltzma
entropy for a Thomson system. The evolution of the entro
and its production in a distributed auto-oscillatory rela
ational system in response to variation of a control param
is investigated below. The calculations presented are ba
on the results of an analysis5 of a mathematical model of the
system.

2. A convenient object for studying self-organizatio
processes in relaxational systems is the mathematical m
of the temperature-stabilization system shown schematic
in Fig. 1. In such devices all the elements, except the c
trollable object~dielectric medium1 in the present case! can
be considered localized, and the mathematical model of
system can be reduced to a boundary-value nonstatio
heat-conduction problem. For simplicity we assume that
nonuniform temperature field of the system is on
dimensional, and we write the boundary-value he
conduction problem in the form

Ṫ~x,t !5aT9~x,t !, ~1!

T~0,t !50, ~2!

T8~x,t !ux515 f @b2T~x0 ,t !#•s@b2T~x0 ,t !#. ~3!

It must be stressed that in system~1!–~3! self-
organization is possible only as a result of the self-interact
of a single degree of freedom involving external feedback
is simulated by the nonlocal boundary condition~3!, which
assigns the heat flux at the boundaryx51 as a function of
the temperature at the internal pointx0. Here f @b2T(x0 ,t)#
is a certain smooth function of the temperature having a c
cave course over its entire domain, which is a necess
condition for the existence of stationary states;s is the
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Heaviside step function, which cuts off fromf the positive
feedback branch corresponding to positive values of the
gument of f ; and b is a constant. Such a feedback mod
enables us to cover practically all cases of proportional te
perature regulation.

In Ref. 5, where the problem defined by~1!–~3! was
investigated for the case of quadratic nonlinearity off , it was
shown that all the parameters which determine the leve
negative feedback can be grouped into a single dimens
less parameterA. There is a certain~critical! value
A[Ac,0, which is such that for anyA.Ac the system is
locally exponentially stable and exists in a stationary sta

T̄~x!5Cx, ~4!

whereC is the root of the equation

C5F~12Cx! ~5!

corresponding to the conditionA,0.
When A,Ac , the equilibrium state loses stability, an

the stable periodic solution

T~x,t !5C~«!x1
2

f 9
HA «

b2
@V1~x!exp~ iv~«!t !

1V1* ~x!exp~2 iv~«!t !#1
«

b2

2uV1~x0!u2

12Ac
x

1
«

b2
@V2~x!exp~ i2v~«!t !1V2* ~x!

3exp~2 i2v~«!t !#J ; ~6!

v~«!5
vc

11~c2 /b2!«

FIG. 1. Temperature-stabilization system:1—controlled object, 2—
thermostat,3—differential thermocouple,4—regulator,5—standard voltage
source,6—heater.
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«5(A2Ac)/Ac is the supercriticality of the system
V1(x)5@sinhAvc/2a(11 i )x# is the spatial part of the solu
tion of the linearized boundary-value problem~1!–~3!; v(«)
and vc are the frequencies of the auto-oscillations of t
nonlinear and linear systems, respectively; andc2 andb2 are
Lyapunov coefficients, which can be calculated by t
method described in Ref. 5.

The results in Ref. 5 can easily be generalized to the c
of nonlinearity of any type, provided thatf is a globally
concave smooth function which satisfies the condit
f 8(0)50. Then f can be expanded in a Taylor series
powers of the oscillating component of the temperature,

f @b2 T̄~x0!2 T̃~x0 ,t !#5C~«!1
A

x0
T̃~x0 ,t !

1 f 9
T̃2~x0 ,t !

2!
1 f-

T̃3~x0 ,t !

3!
. . . 1, ~7!

and a nonlinear analysis can subsequently be performed
ing the algorithm presented in Ref. 5. If, in addition to th
quadratic nonlinearity, the cubic terms in the expansion of
are taken into account in condition~7!, the general form of
the solution of the problem defined by~1!–~3! remains un-
changed, but the dynamics of the system can undergo
nificant changes. The derivativef- can be positive or nega
tive; therefore, the coefficientb2 can take either sign. If
b2.0, the soft cycle-creation bifurcation~6! can take place
in system ~1!–~3!. When b2,0, the onset of the auto
oscillations is ‘‘hard,’’ and the asymptotic form~6! of the
periodic solution has meaning only in the subcritical regio
where it corresponds to an unstable limit cycle.

The expressions presented above for the tempera
field enable us to calculate the entropy of the systemS and
the entropy productionP and to trace their evolution whe
auto-oscillations are excited. Since the temperature field a
consequently,S andP are determined by the supercriticalit
of the control parameterA, the dependence ofS andP on «
is henceforth investigated as the latter parameter is va
from 21 to 0 for hard bifurcation and from«521 to
20,«!1 for soft cycle-creation bifurcation.

3. As was noted in constructing the mathematical mo
~1!–~3!, the only distributed~accumulating! element in the
system shown in Fig. 1 is the dielectric medium1. Let all the
energy supplied to the system in the form of Joule heat
released in an infinitely thin layer on the surface atx5d, and
let the lower surface have the temperature of the thermo
T0. Then the entropy of the systemS in excess of the entropy
of the thermostatS0 will be confined and produced onl
within the distributed element1 and on its surface. We in
troduce the notations(x,t)5dS/dV for the density of the
deviation of the entropy of the medium fromS0 for a certain
temperature distributionT(x,t)1T0. Being an additive func-
tion of state, the entropy density can be calculated as
result of a reversible process performed over an elemen
volumedV, which in the present case is an isothermal lay
of thicknessdx and areaV ~we recall that the height o
element1 is equal to unity!
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Here cv is the volumetric specific heat, an
Q(x,t)5T(x,t)/T0 is the normalized temperature. When E
~8! is taken into account, the entropy balance equation tra
forms into the diffusion equation

ṡ~x,t !5as9~x,t !1
a

cv
@s8~x,t !#2, ~9!

where the nonlinear term is the source density or the lo
entropy production.

Relation~8! enables us to find the exact value of the to
entropy of the stationary state,

S̄5VE
0

1

s~x!dx5CpH F11
1

Q̄~1!
G ln@11Q̄~1!#21J , ~10!

and to evaluate its variation in response to the excitation
auto-oscillations. For this purpose, we substitu

Q(x,t)5Q̄(x)1Q̃(x,t) into ~8! and represent the resultin
expression in the form

s~x,t !5cv ln@11Q̄~x!#1cv lnF11
Q̃~x,t !

11Q̄~x!
G . ~11!

The entropy density increment corresponding to the
citation of auto-oscillations

Ds~x,t !5cvF Q̃~x,t !

11Q̄~x!
2

1

2

Q̃2~x,t !

@11Q̄~x!#2
1¯G ~12!

will be characterized using the average value of the entr
density^Ds(x,t)&P(«) over the periodP(«). Utilizing solu-

tion ~6! and calculating the average values ofQ̃ and Q̃2 to
within terms of order«

^Q̃~x,t !&P~«!5
2

f 9T0

«

b2

2uV1~x0!u2

12Ac
x,

^Q̃2~x,t !&P~«!5
4

~T0f 9!2

«

b2
2uV1~x!u2 ~13!

and then substituting them into~12!, we obtain

^Ds&P~«!5
4«

b2f 9

cv

@11Q̄~x!#T0

3F uV1~x0!u2

11uAcu
x2

1

f 9

uV1~x!u2

@11Q̄~x!#T0
G . ~14!

It follows from ~14! that the entropy density incremen
corresponding to the excitation of auto-oscillations can
either positive or negative. The sign of the increment of
total entropy calculated as the volume integral of~14! de-
pends significantly only on the coordinate of the temperat
sensorx0 and the quadratic nonlinearity of the system, whi
is characterized byf 9. Clearly, in a weakly nonlinear system
( f 9!1) the excitation of auto-oscillations will always be a
companied by lowering of the total entropy of the system
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determined by the fluxes of entropy at the boundaries and
production within the system. We shall show that the low
ing of the entropy asf 9→0 is not associated with a decrea
in its production and that, conversely, it occurs agains
background of an increase in energy production. Using~9!,
we express the total entropy production by heat flow in ter
of the rate of variation of the total entropy and the differen
between its fluxes at the boundaries. After adding the
tropy production by a heat source to the expression obtain
we find the total entropy production in the system

P5I s~0!1
] S̃

]t
, ~15!

whereI s(0)5VlQ8(x,t)ux50 is the flux of entropy into the
thermostat andS̃ is the oscillating component of the tota
entropy.

The period-averaged value of the total entropy prod
tion

^P&P~«!5Vl@Q̄81^Q̃8~0!&P~«!#

5
Vl

T0
FC~«!1

2

f 9

«

b2

2uV1~x0!u2

11uAcu G , ~16!

which depends only on the stationary component of the h
flux, increases upon the excitation of auto-oscillations by

amount^Q̃8(0)&P(«) , which is evaluated at the steady-sta
temperature in solution~7!. Thus, whenf 9 decreases and th
other parameters remain unchanged, the total entropy
duction in the system increases.

It follows from a comparison of~14! and ~16! that the
entropy decreases as the nonlinearity of the system increa
In other words, the ordering of an open system increase
the entropy flux passing through it increases. Obviously,
degree of order can be evaluated correctly from the chang
entropy only if its production is constant. In this case it
reasonable to normalize the average value of the total
tropy of the system̂S&P(«) to the average value of its pro
duction, and to take the relative increment of the normaliz
mean value

So5
D~^S&P~«! /^P&P~«!!

^S&P~«! /^P&P~«!
'

D^S&P~«!

^S&P~«!
2

D^P&P~«!

^P&P~«!
,

~17!

where the approximate equality holds for small changes iS
andP, as the measure of the ordering of motion.

In particular, for the degree of order of an aut
oscillatory state relative to a stationary state we have

So'
^S&P~«!

S̄c

2
^P&P~«!

P̄c

, ~18!

whereS̄c andP̄c are the critical values of the entropy and i
production in the stationary state. It is clear that So w
simultaneously be a criterion of the ordering of motion. F
example, if we take two auto-oscillatory states with the sa
entropy value, the state with greater entropy production,
with a smaller value of So, is more ordered.

3A. S. Rudy 
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principle, the real stationary state of an open thermod
namic system is characterized by the minimum local entr
production with respect to the possible stationary states.
analytical expression of this principle for a system withN
degrees of freedom, in which some of the thermodyna
forcesXj j 50,1, . . . ,k are fixed, has the form

]p

]Xi
50, ~19!

where Xi denotes the thermodynamic forces that are
fixed.

In a stationary state the system of equations~1!–~3! has
only one degree of freedom, i.e., the state is completely
fined, if one thermodynamic variableT85C(«) is assigned.
According to Ref. 7, two cases are possible for a system w
one degree of freedom: 1! k51, where the state of the sys
tem is completely defined by an external force; 2! k50,
where the system is closed, and its entropy is maximal. T
can be classified after de Groot as first- and zero-order
tionary states, respectively. A third case, which does no
this classification and which is considered in the pres
work, appears in systems with external feedback@for ex-
ample, like~5!#. In the latter case the actual state will clear
be indistinguishable in any way by the sign of the entropy
its production from the other stationary states, since it
uniquely specified by Eq.~5!. Nevertheless, after the syste
deviates from the stationary state under the action of so
external force, it will tend to return to it, i.e., will be stable
the sense of Le Chatelier’s principle.

To illustrate this statement, we bring the nonloc
boundary condition~5! into the form

I ~ t !2w@ I 02I ~ t !#50, ~20!

whereI 5lVT8 and I 05blV/x0.
We assume that the action of an external thermodyna

force DXext in the system results in the creation of an ad
tional heat fluxDI ext. The resultant change in the fluxDI is
determined from the coupling condition

I 1DI 5w~ I 02I 2DI !1DI ext. ~21!

Taking into account only the term that is linear wi
respect to the flux in the expansion of the function of t
control signal, we obtain the following relation:

DI 5
1

12A
DI ext, ~22!

which is an analytical expression of Le Chatelier’s princip
Relation~22! can easily be transformed into the expressio

dP

dXext
5

1

12A

dPext

dXext
, ~23!

according to which the rate of variation of the entropy p
duction in response to variation of the external thermo
namic force in a system with feedback is 12A times smaller
than in a system without feedback and tends to zero
A→2`.
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phase transitions and self-organization processes in o
thermodynamic systems, which have been termed none
librium phase transitions.8 They include auto-oscillations in
Thomson systems, since an influx of energy from withou
needed to sustain them, and, therefore, an auto-oscilla
system is a nonequilibrium system.3 We shall show that the
excitation of auto-oscillations in a distributed relaxation
system also completely fits the scheme of a nonequilibri
phase transition.

Let us draw some analogies between the phase tra
tions in condensed media and in the system under cons
ation. The hydrodynamic mode of a condensed system
given state corresponds to the unstable mode

T~x,t !5jV~x!exp@ iv~«!t#, ~24!

whose amplitude is determined by a complex paramete
order j. The choice of the control parameter is also qu
obvious: the reduced temperature in Landau’s the
t5(T2Tc)/Tc parallels the supercriticality«5(A2Ac)/Ac

of the system.
We note that in the general case the Landau concep

phase transitions does not provide an adequate descriptio
the picture of a nonequilibrium phase transition. As follow
from the brief outline of the current theory of nonequilibriu
phase transitions presented in the review by Olemsko�and
Koplyk,9 it differs from the original Landau concept in that
employs at least three additional degrees of freedom, wh
correspond to the control parameter, the conjugate field,
the order parameter. A transitionper se, which can be re-
garded as the spatiotemporal evolution of a hydrodyna
mode, whose amplitude is specified by the order parame
is a result of the competition between two types of feedba
viz., the positive feedback on the order parameter from
control parameter and the negative feedback on the o
parameter from the field that is conjugate to it. The lat
implements Le Chatelier’s principle. A quasistatic Land
phase transition takes place when the order parameter is
portional to the field, and the control parameter does
depend on the order parameter.9 In the present case it is
assumed for reasons that are discussed below that the co
parameter and, therefore, the supercriticality« do not depend
on the order parameter.

Let «.0, and let the temperature oscillationsT̃(x,t) be
established in the system. We write the periodic solution
system of equations~1!–~3! in the general form

T̃~x,t !5 (
n51

`

uju2nT̄2n~x!1
2

f 9
@jV1~x!exp~ ivt !

1j* V1* ~x!exp~2 ivt !#1@j2V2~x!exp~ i2vt !

1j* 2V2* ~x!exp~2 i2vt !#

1uju2@jW1~x!exp~ ivt !1j* W1* ~x!

3exp~2 ivt !#1uju2@jV3~x!exp~ i3vt !

1j* V3* ~x!exp~2 i3vt !#1... , ~25!

4A. S. Rudy 
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count the nonlinearity-induced additions to the station
temperature, which can be determined in each even ste
the algorithm described in Ref. 5, an
V1(x)5@sinhAvc/2(11 i )x# is the spatial part of the solu
tion of the linearized boundary-value problem~1!–~3!.

Using expansion~7!, we substitute~25! into condition
~3! and average the latter over an oscillation period

S uju2T̄28~x!1 (
n52

`

uju2nT̄2n8 ~x!D
x51

5
Ac

x0
uju2T̄2~x0!

1
Ac

x0
(
n52

`

uju2nT̄2n~x0!1
Ac

x0
«D T̄~x0!

1
f 9

2 H D T̄2~x0!1uju2
8

f 92
uV1~x0!u2

1uju4
4

f 9
@W1~x0!V1* ~x0!1W1* ~x0!V1~x0!#

12uju4uV2~x0!u21¯J 1
f-

3•2 H D T̄3~x0!

1D T̄
24

f 92
uju2uV1~x0!u21uju4

12

f 92
@V2~x0!V1*

2~x0!

1V1
2~x0!V2* ~x0!#1¯J . ~26!

In condition ~26! we equate the terms accompanyi
uju2. With consideration of the equalityT̄2(x0)/x05 T̄28(x0)
this gives

T̄285
2

f 9

2uV1~x0!u2

11uAcu
. ~27!

This solution coincides with the solution obtained
Ref. 5, as can be seen by comparing~27! with the addition to
the stationary temperature in~6!.

To go from a dynamical description to a thermodynam
method we turn to the algorithm for constructing the asym
tote of a periodic solution in the Andronov–Hopf theore
In a certain step of this algorithm the nonlinear proble
defined by~1!–~3! is transformed into a recurrent sequen
of linear inhomogeneous boundary-value problems with n
local feedback conditions. These conditions must be satis
by the amplitude and phase of the solution of each of
problems in the sequence. The oscillation amplitude is fo
from the condition of solvability, which follows from the
condition for the complex amplitude of the third problem
the sequence.

If we henceforth follow the dynamical method, in acco
dance with the formalism of the Andronov–Hopf theore
we must expand the supercriticality« of the system in a
series in powers ofj, and after equating the remaining term
of the same order with respect to the small parameter in~26!,
we must expressT2n(x) in terms of the higher moments o
the temperature oscillations atx0. At this point, of course,j
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the algorithm. However, as will be shown below, in the v
cinity of the bifurcation point the system is not complete
deterministic, and the oscillation amplitude should be sou
on the basis of other considerations.

We assume that 0,«!1 and that the system is so clos
to the critical point that the oscillation amplitude of the se
ond harmonic atx0 is comparable to the temperature fluctu
tions. Then the condition for the complex amplitude of t
third problem in the sequence becomes meaningless. At
same time, it is no longer necessary to take into account
feedback on the order parameter from the control parame
since this feedback is realized through fundamen
frequency oscillations which enter into the nonlinearity a
inhomogeneity of the third problem in the sequence. In t
case the oscillation amplitude should be regarded as an o
parameter, i.e., as an additional degree of freedom, relativ
which the system can undergo virtual displacements. T
actual state is then determined by the minimum of a fu
tional of a certain thermodynamic potential, whose nat
follows from condition~26!. To make this clearer, we subjec
this condition to several transformations.

We perform the following substitutions in~26!:

(
n52

`

uju2n
T̄2n~x0!

x0
→(

n52

`

uju2nT̄2n8 ~x0!→D T̄8~x0!

and after utilizing the equalityD T̄8(x0)5D T̄8(1), wemove
2uAcuD T̄8(1) over to the left-hand side of the condition
Taking into account that D T̄8(1)5D T̄8(0) and
D T̄8(0)5(T0 /Vl)D Ī s(0)5(T0 /Vl)^DP&P(«) , we obtain

^DP&P~«!5
Vl

T0~11uAcu! S Ac

x0
« (

n52

`

uju2nT̄2n~x0!

1
f 9

2 H F (
n52

`

uju2nT̄2n~x0!G2

1u«u4
4

f 9
@W1~x0!V1* ~x0!1W1* ~x0!V1~x0!#

12uju4uV2~x0!u21¯J
1

f-
3•2 H uju2

24

f 92
uV1~x0!u2(

n52

`

uju2nT̄2n~x0!

1uju4
12

f 92
@V2~x0!V1*

2~x0!

1V1
2~x0!V2* ~x0!#1¯J D . ~28!

Thus, the potential determining the actual state of
system is the entropy production or, more precisely, the
dition to the entropy production caused by the higher m
ments of the temperature oscillations. It is noteworthy t
the principle of minimum entropy production is satisfied

5A. S. Rudy 
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tropy production increment is 11uAcu times smaller than the
entropy production caused by the perturbing heat flux@the
right-hand side of~28!#.

Grouping the terms with identical powers ofj on the
right-hand side of ~28! and taking into account tha
D T̄2(x0)/x05 f 9uV1(x0)u2/(11uAcu), we arrive at the fol-
lowing relation between the entropy production increm
and the order parameter

^DP&P~«!52a«uju21Buju4, ~29!

where

a5
Vl

T0

uAcu

~11uAcu!2
2

f 9
2uV1~x0!u2,

B5
Vl

T0~11uAcu! S f 9

2
T̄2

2~x0!1 f 9uV2~x0!u2

12@W1~x0!V1* ~x0!1W1* ~x0!V1~x0!#

1
4 f-

f 93

4uV1~x0!u4

11uAcu
1

f-

f 92
2@V2~x0!V1*

2~x0!

1V1
2~x0!V2* ~x0!# D .

We note that the value of the coefficientB is not defined
here, and only the question of the correctness of estimatin
using the solutions obtained within the dynamical appro
can be posed. The value of the order parameter is determ
by the requirement that the entropy production incremen
extremal:

uju25
a«

2B
. ~31!

It is clear that among the periodic solutions which sati
the extremum condition~31!, the solution which correspond
to the entropy production minimum will be orbitally stable

A transition can be described in general terms as
lows. The oscillations of the fundamental frequency wh
satisfy the feedback condition generate oscillations at hig
harmonics, whose second and higher moments, as well a
higher moments at the fundamental frequency, create a
tional fluxes that produce additional entropy. The amplitu
of the oscillations is established such that the entropy p
duction^DP&P(«) is minimal. Of course, the picture chang
as soon as the supercriticality reaches a value at which
phase-matching condition is satisfied for the third harmon
Despite the restriction of this scheme by the requirement
small supercriticality, it leads to the same results as the
namical method at the qualitative level of the description

6. The relaxation of unconserved order paramete
which include the temperature, to the equilibrium value
described by the Ginzburg–Landau evolution equation

]j

]t
52

dF

dj
, ~32!
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thermodynamic potential which has a minimum in the eq
librium state.8,9

Since in the case under consideration the total entr
production~29! is such a functional, the right-hand side
Eq. ~32! takes the form

]

]j*
^DP&P~«!52a«j12Buju2j, ~33!

where the complex amplitudej is a function of the ‘‘slow’’
time.

Substituting~33! into ~32! and performing the normal
ization toj5c/A2B, we arrive at the following form of the
Ginzburg–Landau equation

]c

]t
5a«c2ucu2c. ~34!

Its solution

uc~t!u25
a«

11~a«/uc0u221!exp~22a«t!
, ~35!

where c05c(0), describes the transient processes in
auto-oscillatory system under consideration.

Expressions~31! and~35! enable us to describe soft an
hard cycle bifurcation on the qualitative level. In fact, th
coefficientB can be positive or negative, depending on t
relationship betweenf 9 and f-. Plots of the dependence o
the entropy production on the order parameter are show
Fig. 2. If B.0, then, according to~31!, a stable limit cycle
exists in the transcritical region, i.e., for«.0. The process
of establishing a limit cycle is described by Eq.~35!, in
which we should setc05d, whered is the magnitude of the
fluctuations of the order parameter. In this case the li
cycle is clearly an attractor, i.e., phase trajectories from
ferent initial states tend to the equilibrium value of the ord
parameteruc ū25a« ~Fig. 3a!.

If B,0, Eq. ~31! holds only for «,0, and the corre-
sponding limit cycle is unstable. As«→0, the unstable cycle
shrinks from a region of negative values to an equilibriu
point, which then loses its stability. In this case, when t
system passes through the bifurcation point, the onset of
auto-oscillations is hard, and the amplitude is infinite with
the model under consideration. To characterize qualitativ
the time dependence of the order parameter forB,0 and
«,0, only the sign of the exponent in~35! must be changed
Let B,0 and«,0, and let the system be displaced from t
equilibrium state as a result of a fluctuation of the ord
parameter. After settinguc0u25au«u6d, whered!au«u, and
performing some obvious transformations, we obtain

uc~t!u2'
au«u

q7~d/au«uexp~2au«ut!!
. ~36!

As expected, this cycle is unstable~Fig. 3b!, and the
auto-oscillations either damp or their amplitude increase
infinity in response to even an infinitesimal deviation fro
the equilibrium value of the order parameter.

6A. S. Rudy 
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In a real system the oscillation amplitude is always
stricted by a strong nonlinearity, which corresponds to
global minimum of the entropy production in Fig. 2b corr
sponds. For example, in the system under consideration
the supply voltage, whose restricted character is not refle
in the model described by~1!–~3!. Therefore, after passag
through the bifurcation point, the system finds itself in a n
stable state. However, whereas under soft auto-oscilla
excitation conditions the order parameter is a smooth fu
tion of «, under hard conditions it changes abruptly. Th
hard and soft bifurcation can be interpreted as first- a
second-order nonequilibrium phase transitions.

7. The results of an investigation of the evolution of t
entropy of a relaxational system with nonlinear exter
feedback in response to variation of a control paramete
the vicinity of a bifurcation point allow us to draw the fo
lowing conclusions. The entropy increment on excitation
auto-oscillations will be smaller, the larger is the entro
flux caused by the external source. The relative incremen
the Clausius entropy normalized to its total production c
serve as a measure of the ordering of motion in such a
tem. In the subcritical region the system considered is sta
in the Le Chatelier sense, i.e., when an infinitesimal dev
tion from the equilibrium state arises under the influence
an external force, fluxes which weaken the influence of t
force arise in the system. In the transcritical region
Chatelier’s principle is supplemented by the principle
minimum entropy production, according to which the amp
tude of the temperature oscillations is established such
the addition to the entropy production created by the hig

FIG. 2. Dependence of the entropy production increment on the order
rameter c. When B.0, the equilibrium value of the order paramet

uc ū25a« is determined by the minimum on the^DP(c)&P(«) curve, and the
absolute value of the order parameter is a smooth function of the super
cality « of the system. WhenB,0 and«,0 ~b!, the stationary state (c50)
is metastable, i.e., when the perturbation is sufficiently strong, the sys
can pass into a more stable oscillatory state. IfB,0, the order paramete
changes abruptly upon passage through the bifurcation point, which i
terpreted as a first-order nonequilibrium phase transition.
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moments of the temperature oscillations is minimal. T
principle, which was formulated under the assumption t
the control parameter does not depend on the order pa
eter, allows us to treat the ordering of motion as a quasist
phase transition. In particular, hard and soft bifurcations
be interpreted within this hypothesis as first- and seco
order nonequilibrium phase transitions, and the Ginzbu
Landau evolution equation can be used to describe the t
sient processes.

1V. S. Anishchenko,Complex Oscillations in Simple Systems@in Russian#,
Nauka, Moscow~1990!.

2Yu. L. Klimontovich, Turbulent Motion and the Structure of Chaos, Klu-
wer, Dordrecht~1991!.

3Yu. L. Klimontovich, Statistical Physics, Harwood, Chur, Switzerland
–New York ~1986!.

4Yu. L. Klimontovich, Pis’ma Zh. Tekh. Fiz.9, 1412 ~1983! @Sov. Tech.
Phys. Lett.9, 606 ~1983!#.

5A. S. Rudyi, Int. J. Thermophys.14, 159 ~1993!.
6G. Nicolis and I. Prigogine,Self-Organization in Nonequilibrium System
From Dissipative Structures to Order Through Fluctuations@Wiley,
Chichester~1977!; Mir, Moscow ~1979!#.

7I. P. Bazarov, E´ . V. Gevorkyan, and P. N. Nikolaev,Nonequilibrium
Thermodynamics and Physical Kinetics@in Russian#, Izd. Mosk. Univ.,
Moscow ~1989!.

8H. Haken,Synergetics: An Introduction: Nonequilibrium Phase Trans
tions and Self-Organization in Physics, Chemistry, and Biology, 2nd enl.
ed., Springer-Verlag, Berlin–New York~1978!; Mir, Moscow ~1980!.

9A. I. Olemsko� and I. V. Koplyk, Usp. Fiz. Nauk165, 1106~1995! @Phys.
Usp.38, 1061~1995!#.

Translated by P. Shelnitz

a-

iti-

m

n-

FIG. 3. Approximate form of the time dependence of the order param
for various initial conditions: a—stable cycle, b—unstable cycle.

7A. S. Rudy 



Propagation of a normal–superconductor boundary along a high- Tc superconducting

ing
film heated by microwave radiation
N. A. Buznikov

Scientific Research Center for Problems in Applied Electrodynamics, Russian Academy of Sciences,
127412 Moscow, Russia

A. A. Pukhov

Institute of High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
~Submitted June 14, 1996!
Zh. Tekh. Fiz.68, 111–116~January 1998!

The dynamics of the superconducting–normal~S–N! transition in a thin high-temperature
superconducting film heated by microwave radiation is investigated theoretically. The dependence
of the rate of propagation of the normal–superconductor~NS! interphase boundary on the
intensity of the radiation is obtained by solving the two-dimensional nonstationary heat conduction
equation. It is shown that in calculating this dependence it is important to take into account
two-dimensional effects connected with nonlinearity of heating over the substrate thickness, the
reverse side of which is stabilized with respect to temperature. The results obtained may be
important in investigating S–N transitions in superconducting devices used in the microwave
range. © 1998 American Institute of Physics.@S1063-7842~98!02101-1#
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Incident electromagnetic radiation can cause a film
high-temperature superconducting material on a dielec
substrate to go from its superconducting to its normal s
~an S–N transition!. This phenomenon has excited consid
able interest in recent times, since such films are use
various superconducting devices that operate in the mi
wave and infrared regions.1–3 The abrupt change in electro
dynamic characteristics of a film undergoing this switchi
process has suggested potential applications for these
as antennas and resonators,4 screens and filters,1,2 switches
and power limiters,5,6 etc. The thermal mechanism for th
S–N transition discussed in detail in Refs. 7 and 8 leads
qualitatively correct description of the nonlinear effects co
nected with S–N switching of resonators9,10 observed
experimentally.11 The abrupt increase in resistance of film
when the critical temperatureTc is exceeded leads to th
appearance of thermal bistability. For certain values of
incident microwave powerP the film can be in two stable
uniform states: a superconducting state~with temperature be-
low critical! and a normal state~with temperature above
critical!.7–10

This S–N transition occurs uniformly over the enti
length of the high-Tc film only when the length is relatively
small. When this is not true, the thermal disruption of t
superconducting state will, as a rule, be local in characte
which case the S–N transition takes place by propagatio
a temperature switching autowave along the film. This au
wave consists of a moving NS interphase boundary
transforms the sample ahead of it from the superconduc
to the normal state. The asymptotic behavior of the
boundary is characterized by a constant velocity of propa
tion v. The nucleation, propagation, and stability of the
autowaves, and also the dependence ofv on the film param-
eters, were discussed in considerable detail in Refs. 12
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a transport current.
The propagation of an NS boundary in thin high-Tc films

heated by microwave radiation or by a transport current
been investigated both experimentally14–17 and
theoretically.10–18 The S–N transition in a film–substrat
system exhibits a large number of peculiarities that canno
described within the framework of the standard on
dimensional theory of propagation of temperatu
autowaves.12,13 These features are connected with the pr
ence of nonuniform heating over the cross section~heat is
released only in the thin high-Tc film18! and with the nonlin-
ear distribution of temperature over the thickness of the s
strate, which has a high thermal conductivity and plays
role of a ‘‘heat bath’’ for the high-Tc film. In Refs. 7–10, the
authors analyzed the S–N transition in a high-Tc film under
the action of microwave radiation by assuming that the te
perature varies linearly over the substrate thickness~from the
film temperatureT to the temperatureT0 of the heat sink that
stabilizes the back side temperature of the substrate!. Using
this assumption, they were able to solve the problem
propagation of an NS boundary in the one-dimensional
proximation; however, their solution is valid only when th
S–N transition takes place uniformly over the length of t
film. A correct description of propagation of an NS bounda
in this system will, generally speaking, require the soluti
of a two-dimensional nonstationary heat conducti
equation.18

ONE-DIMENSIONAL APPROXIMATION

The heating of a high-Tc film with thicknessD f placed
on a dielectric substrate with thicknessDs ~Fig. 1! by micro-
wave radiation is described in the one-dimensional appro
mation by the heat conduction equation:7–9

10000-05$15.00 © 1998 American Institute of Physics



-
ac

-

s

o
c

uc
b
as
tu

a

th
-
n

e

,

.
f
-
a

a-

n

¸~T!5¸nh~T2Tc!. ~3!
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CsDs

2

]T

]t
5ksDs

]2T

]X2
2

ks

Ds
~T2T0!5Q~T!D f , ~1!

whereT is the film temperature,Cs andks are the heat ca
pacity and thermal conductivity of the substrate, whose b
side is stabilized at a temperatureT0, Q(T)5¸(T)•P is the
specific heating power supplied to the film,P is the intensity
of the incident radiation, anḑ(T) is the microwave absorp
tion coefficient of the film.

Equation~1! incorporates the fact that for typical ratio
of the parameterskfDs@ksD f , CfD f!CsDs , kf!ks ~where
Cf andkf are the heat capacity and thermal conductivity
the film! the film temperature is uniform over its cross se
tion, while the effective heat capacity and thermal cond
tivity of the film–substrate system are determined only
the properties of the substrate. The justification for this
sertion comes from the fact that this is in fact the tempera
distribution established in the substrate for the case of
S–N transition in a high-Tc film that is uniform with respect
to length (]T/]X50).

The temperature dependence of¸(T) is connected with
the abrupt change in the electrodynamic properties of
high-Tc film during an S–N transition, and within the frame
work of the two-fluid model of a superconductor this qua
tity can be described by the relation7

¸~T!5¸n

~Tc2T0!2

~Tc2T0!21b~Tc2T!2h~Tc2T!
. ~2!

Here ¸n54r /(2r 11)2 is the absorption coefficient of th
film in the normal state,r 5(«0 /m0)1/2(r/D f), r is the resis-
tivity of the film in the normal state, b5@( f / f 0)
3(2r 11)#22, f is the frequency of the incident radiation
f 052r(Tc2T0)/pm0l2Tc , l is the London penetration
depth atT5T0, and h(x) is the Heaviside step function
From Eq.~2! it follows that the temperature nonlinearity o
¸(T) is strong whenf ! f 0, which leads to microwave bista
bility of the film. For typical values of the parameters of
Y–Ba–Cu–O film in the range of liquid nitrogen temper
turesT0>77 K, Tc>90 K, r>531027V•m, l>1027m we
find that f 0'331012 Hz. Thus, in the microwave regio
( f ! f 0) the temperature dependence of¸(T) can be approxi-
mated by the step function

FIG. 1. A sketch of the propagation of an NS interphase boundary alo
superconducting film on a substrate. The reverse side of the substra
stabilized at a temperatureT0.

101 Tech. Phys. 43 (1), January 1998
k

f
-
-

y
-

re
n

e

-

The temperatures at which uniform steady states o
high-Tc film on a thermally stabilized substrate can exist a
determined from the condition that the heat liberated in
film equals the removal of heat to the substrate. From Eq.~1!
we obtain the equation for heat balance wh
]T/]t5]2T/]X250:

¸~T!•P5
ks

D fDs
~T2T0!, ~4!

whose solutions are the temperatures of the steady-stat
perconducting (T15T0) and normal
(T25T01¸nPDfDs /ks) states. The NS boundary consis
of a switching autowave between these two stable state
the high-Tc film.

Assuming for simplicity that the temperature depe
dences of the heat capacity and thermal conductivity of
substrate can be neglected, and introducing the dimens
less parameters

x5
X

Ds
, t5

t

CsDs
2/ks

,

Q5
T2T0

Tc2T0
, p5P

¸nD fDs

ks~Tc2T0!
, ~5!

let us write Eq.~1! in the form

1

2

]Q

]t
5

]2Q

]x2
2Q1ph~Q21!. ~6!

The propagating NS boundary is described by a s
similar solution to Eq.~6! of the form Q(x,t)5Q(x1ut)
which satisfies the boundary conditionsQ(2`)50 and
Q(1`)5p. Hereu5v/vh , vh5ks /CsDs is a characteristic
‘‘thermal’’ velocity of the NS boundary. Note thatvh is de-
termined only by the properties of the substrate, and for ch
acteristic values of the parameters of a MgO substr
(Cs>53105 J•m23

•K21, ks>350 W•m21
•K21) or a

Al2O3 substrate (Cs>43105 J•m23
•K21, ks>650

W•m21
•K21) of thickness Ds>1023 m we obtain

vh'1 m/s. The dimensionless propagation velocity of t
NS boundaryu depends on the value of the control para
eterp, which is the ratio of film heating in the normal state
the characteristic removal of heat to the substrate.

Equation~6! is a piecewise-linear equation and can
solved analytically,12,13which allows us to obtain the follow-
ing expression for the propagation velocity of the NS boun
ary:

u52
p22

Ap21
. ~7!

Equation~7! determines the functionu(p) over the en-
tire range of bistability values 1,p,`. The normal phase
emerges from the superconducting phase (u.0) when the
intensity of the radiation exceeds a threshold valuepp52
~the ‘‘propagation intensity’’!. From Eq. ~7! we find that
u>23(p22) for p>pp and u>2p1/2 for p@pp . In the

a
is
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superconductivity is re-established in the film.

TWO-DIMENSIONAL APPROXIMATION

We mentioned above that the one-dimensional appr
mation is valid when the temperature variation over
thickness of the substrate is linear. However, this situatio
encountered only far from the front of the NS boundary.
more correct description of propagation of the NS bound
requires the inclusion of the two-dimensionality of the pro
lem. For this, we must consider the film and substrate se
rately as two interacting thermal subsystems. F
kfDs@ksD f the temperature distribution along the film sa
isfies the one-dimensional heat conduction equation

Cf

]T

]t
5kf

]2T

]X2
1u~T!1

ks

D f

]T

]Y
, 0,Y,D f . ~8!

The last term in Eq.~8! corresponds to the removal o
heat from the film to the substrate. The temperature distr
tion in the substrate is described by the two-dimensional h
conduction equation

Cf

]T

]t
5ks

]2T

]X2
1ks

]2T

]Y2
, D f,Y,D f1Ds . ~9!

Taking into account that D f!Ds and
Q(T)5P¸nh(T2Tc), along with Eq.~5!, let us write Eqs.
~8! and ~9! in dimensionless form:

C
]Q

]t
5K

]2Q

]x2
1ph~Q21!1

]Q

]y
, y50, ~10!

]Q

]t
5

]2Q

]x2
1

]2Q

]y2
, 0,y,1, ~11!

whereC5CfD f /CsDs , K5kfD f /ksDs , y5Y/Ds .
It is necessary to supplement Eq.~11! by a boundary

condition aty 5 1. Taking into account that from the sid
opposite the film the substrate is temperature stabilized
that T5T0, we have

Q50, y51. ~12!

Thus, the dynamic temperature variation in the film
substrate system is described by the two-dimensional non
tionary heat conduction Eq.~11! with the boundary condi-
tions ~10! and ~12!. Simple estimates show that for Y–Ba
Cu–O films (Cf>93105 J•m23

•K21, kf>5 W•m21
•K21)

with thicknessesD f>1027– 1026 m on MgO or Al2O3 sub-
strates with thicknessesDs>1024– 1023 m the parameters
C and K are small:C'1023, K'1025; therefore, we may
neglect the first two terms in Eq.~10!.

The substrate temperature distribution in a system of
ordinates moving with the NS boundary (z5x1ut) satisfies
the equation

]2Q

]z2
1

]2Q

]y2
2u

]Q

]z
50. ~13!
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is in the uniform statesQ(z,0)50 as z→2` and
Q(z,0)5p asz→`, and the temperature profile in the su
strate is linear. Let us pick the coordinate origin such that
conditionQ(0,0)51 is fulfilled @this is always possible due
to the translation invariance of Eq.~13!#. Then the boundary
conditions on Eq.~13!, which are determined by Eqs.~10!
and ~12! taking C!1, K!1 into account, can be written in
the form

]Q

]y U
y50

52p•h~z!, QU
y51

50. ~14!

The temperature distribution in the film–substrate s
tem is determined by solving a Dirichlet-Neumann proble
in the strip 0,y,1 for the two-dimensional equation~13!
with boundary conditions~14!, which can be done by the
method of separation of variables~see Appendix!. This al-
lows us to obtain the following expression for the velocity
propagation of the NS boundary:

p22

2p
5u(

k50

`
1

lk
2Au214lk

2
, ~15!

wherelk5p(2k11)/2.
It follows from Eq. ~15! that the velocity of the NS in-

terphase boundaryu 5 0 at the ‘‘propagation intensity’’
pp52. From Eq.~15! it is convenient to obtain approximat
expressions for the functionu(p) for p>pp and forp@pp .
For p>pp (u!1) we have

u>
p

14•z~3!
~p22!'1.84~p22!, ~16!

wherez(x) is the Riemannz function.
Using the Euler–Maclauren summation formula wh

p@pp (u@1), we find from Eq.~15! that

u>~2/p!p. ~17!

In the range of small propagation velocities of the NS int
phase boundary (u<1), Eqs.~7! and~15! are almost identi-
cal, but whenu>1 the functionu(p) is qualitatively differ-
ent~Fig. 2!. This difference comes from the fact that for hig
propagation velocitiesu>1 of the interphase boundary th
substrate cannot be heated within the time of passage o
NS boundary front.

The solution to Eq.~13! with the boundary conditions
~14! also allows us to obtain an estimate for the width of t
NS boundary frontL ~see the Appendix!:

L5
4Ds

p2
Au21p2. ~18!

It follows from Eq. ~18! that L>4Ds /p2;Ds for
p>pp . Thus, for a high-Tc film on a thermally stabilized
substrate the characteristic scale of the NS boundary fron
determined by the substrate thicknessL;Ds .

A HIGH-Tc FILM HEATED BY A TRANSPORT CURRENT

Let us now discuss the propagation of an NS bound
along a high-Tc film carrying a transport current. In this cas
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the thermal bistabililty observed experimentally14–17 is con-
nected with Joule self-heating of the film. The temperat
distribution in the film–substrate system is described by
~1! in the one-dimensional approximation and Eqs.~8!, ~9! in
the two-dimensional approximation. The specific heat
power delivered to the film by the transport current is giv
by the expression12,13

Q~T!5r j 2
•h~T2Tr !, ~19!

where j is the transport current density,Tr5T01(12 j / j c)
3(Tc2T0) is the temperature of the resistive transition, a
j c is the critical current density atT5T0.

From Eqs.~1!, ~2!, ~9!, and ~19!, it follows that the di-
mensionless velocity of the NS boundary in a film heated
a current depends only on the single dimensionless par
eter j5ks(Tr2T0)/r j 2D fDs , while the expression foru
can be obtained from Eq.~7! ~the one-dimensional approx
mation! and Eq.~15! ~the two-dimensional approximation!
by making the replacementp→1/j. Thus, foru we obtain in
the one-dimensional approximation

u52
a i 212i 22

A~a i 21 i 21!~12 i !
~20!

and in the two-dimensional approximation

a i 212i 22

a i 2
5u(

k50

`
1

lk
2Au214lk

2
. ~21!

Herea5r j c
2D fDs /ks(Tc2T0) is the effective Steckl param

eter of the substrate–film system, whilei 5 j / j c . From Eqs.
~20! and~21! it follows that the NS boundary is at rest for
‘‘propagation current’’ j p5 j c@(112a)1/221#/a. For typi-
cal values of the film and substrate parameters given ab
along with j c>1010 A•m22, we obtaina'1 – 10, i.e., for a
high- Tc film the quantity j p is comparable toj c . Near the
propagation currentj > j p (u!1), from Eq.~21! we obtain
u>@2p3/7z(3)#( j 2 j p)/ j c'7.36(j 2 j p) j c , which differs

FIG. 2. Dependence of the propagation velocity of the NS boundary on
radiation intensity:1 — calculation using Eq.~7!, 2 — calculation using Eq.
~15!.
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only slightly from the expressionu>8( j 2 j p)/ j c that fol-
lows from Eq. ~20!. An important distinction arises whe
j > j c (u@1): in the one-dimensional approximation w
haveu>2@a i 2/(12 i )#1/2, whereas from Eq.~21! it follows
that u>(2/p)a i 2/(12 i ) ~Fig. 3!.

CONCLUSION

In this paper we have discussed the dynamics of S
transitions induced by microwave radiation heating or
transport current in a high-Tc film on a thermally stabilized
substrate. The systems we have discussed are characte
by significant nonuniformity of the heating over the cro
section and a nonlinear distribution of temperature throu
the thickness of the substrate, which possesses a high
mal conductivity and plays the role of a ‘‘heat bath’’ for th
high-Tc film. These facts imply that the dynamics of th
thermal transition cannot be correctly described within
framework of the one-dimensional theory of propagation
an NS boundary.12,13

By solving the two-dimensional nonstationary heat co
duction equation we obtain the functionv(P). When the
velocity of the NS interphase boundary is small, i.
v<ksCs

21Ds
21 @P>Pp52ks(Tc2T0)/¸nD fDs#, this func-

tion almost coincides with the functionv(P) obtained within
the framework of the one-dimensional approximation. F
‘‘fast’’ propagation of the NS interphase bounda
v>ksCs

21Ds
21(P@Pp) the function v(P) differs qualita-

tively from the one-dimensional form: in the two
dimensional approximation we havev}P, whereas the one
dimensional approximation predicts thatv}P1/2. This
circumstance arises from the fact that whenv>ksCs

21Ds
21

the substrate cannot be fully heated within the transit time
the NS boundary front and its temperature distribution de
ates significantly from linear. An analogous feature of t
propagation of the NS boundary occurs when the film
heated by a transport current.

eFIG. 3. Dependence of the propagation velocity of an NS boundary on
transport current density:1 — calculated from Eq.~20!, 2 — calculated
from Eq. ~21!, a55.
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where the high-Tc film is placed on a substrate that is com
pletely immersed in liquid nitrogen.16,17 In this case, simple
estimates show that the Biosystem parameter for
substrate–film system is small, i.e.,hDs /ks!1 ~the heat-
removal coefficient in nitrogen ish>104 W•m22K21,
Ds>1023 m, ks>102 W•m21K21) and the temperature i
practically unchanged throughout the substrate thickn
Consequently, the S–N transition can be satisfactorily
scribed within the framework of the one-dimensional theo
of propagation of the NS boundary.16,17

This work was carried out with the support of the S
ence Advisory on Problems in High-Tc Superconductivity
~Project No. 93027! and the Russian Fund for Fundamen
Research~Project No. 96-02-18949!.

APPENDIX

Let us seek a solution to the problem~13!, ~14! by the
method of separation of variables, which allows us to wr
Q(z,y) in the form of a Fourier series:

Q~z,y!5ph~z!~12y!1 (
k50

`

f k~z!cos~lky!, ~A1!

wherelk5p(2k11)/2, f k(z) is an unknown function.
Expression~A1! is a general solution to Eq.~13! that

satisfies the boundary condition~14!. Substituting Eq.~A1!
into Eq. ~13! and solving the resulting ordinary differentia
equations, we find for the functionf k(z)

f k~z!5H Ak expH S u

2
1mkD zJ , z,0,

Bk expH S u

2
2mkD zJ , z.0,

~A2!

where Ak , Bk are numerical coefficients an
mk5(u2/41lk

2)1/2.
Using the expansion

12y52(
k50

`

lk
2 cos~lky!,

we have from Eqs.~A1! and ~A2! that

Q~z,y!55
(
k50

`

Ak expH S u

2
1mkD zJ cos~lky!,

z,0,

(
k50

` F2p

lk
2

1Bk expH S u

2
2mkD zJ Gcos~lky!,

z.0.
~A3!

The coefficientsAk andBk are determined from the con
dition of continuity of the temperature and its derivative w
respect toz on the linez50. Omitting intermediate calcula
tions we present the expression for the temperature distr
tion in the substrate:
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Q~z,y!5p

¦

(
k50 lk

2S 12
2mk

D
3expH S u

2
1mkD zJ cos~lky!, z,0,

(
k50

`
1

lk
2F22S 11

u

2mk
D

3expH S u

2
2mkD zJ Gcos~lky!, z.0.

~A4!

Taking into account that the coordinate origin was ch
sen so thatQ(0,0)51, we obtain from Eq.~A4!

p22

2p
5u(

k50

`
1

lk
2Au214lk

2
. ~A5!

From Eq. ~A4! we can also obtain an estimate for th
width of the NS boundary front, which obviously is dete
mined by the smallest value ofmk : m05(u21p2)1/2/2. Fi-
nally, for the width of the front
L5Ds /(m01u/2)1Ds /(m02u/2) we have

L5
4Ds

p2
Au21p2. ~A6!
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A study of the microwave dielectric permittivity of liquid crystals in electric and

ea-
magnetic fields
B. A. Belyaev, N. A. Drokin, V. F. Shabanov, and V. N. Shepov

L. V. Kirenski� Physics Institute, Siberian Department, Russian Academy of Sciences, 660036 Krasnoyarsk,
Russia
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Zh. Tekh. Fiz.68, 117–121~January 1998!

A microwave detector based on a self-sustained oscillator circuit is proposed as a means to
investigate the real and imaginary components of the dielectric permittivity of liquid crystals in
external electric and magnetic fields. Results are given for measurements of a 500 MHz
oscillator frequency for two types of nematic crystals, 5CBP and MBBA. Fundamental regularities
are identified in the behavior of the microwave dielectric permittivity of samples in electric
and magnetic fields. It is shown that the minimum of the high-frequency dielectric loss in liquid
crystals correspond to a situation in which the long axes of the molecules are oriented
parallel to the direction of the microwave electric field. ©1998 American Institute of Physics.
@S1063-7842~98!02201-6#
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As a rule, the dielectric constants of liquid crystals a
studied in the frequency rangef 50 – 107 Hz, where the dis-
persive properties of the materials arising from the orien
tional mechanisms for polarizing the molecules are m
strongly manifest. In contrast, in the higher frequency de
meter wavelength range (f 5108– 109 Hz! the behavior of
the dielectric permittivity of liquid crystals and its interrela
tion with molecular orientation processes in electric a
magnetic fields have been practically unstudied. This
mostly due to experimental difficulties, since traditional d
tectors based on lumped elements no longer work in
frequency range, while electrodynamic structures with d
tributed parameters are too cumbersome, and hence po
inadequate sensitivity.

In order to study liquid crystals in the decimeter wav
length range, we developed a new and original miniat
microwave detector structure built around microst
circuits.1 We showed that microstrip measurement cells c
be used to accurately identify changes in both the real
imaginary components of the dielectric permittivity of liqu
crystals subjected to an external electric field, even for q
small liquid crystal samples~with volumes.1023 cm23).
The thickness of the sample layer in the microwave dete
is determined by a gap between measurement plates,
ordinarily is .100mm. This is comparable to the thicknes
of real liquid crystal cells used in various practical devic
Gaps of this size allow us to obtain important informati
about the influence of surfaces that bound the liquid cry
sample on the behavior of the dielectric characteristics of
material.

The microstrip detectors described in Ref. 1 were c
structed for operation in tandem with standard devices
measuring amplitude-frequency characteristics. In this pa
we discuss complete microwave detector structures in wh
the microstrip measurement resonator is included as pa
the frequency-defining loop of a microwave self-sustain
oscillator circuit. This arrangement significantly increas

105 Tech. Phys. 43 (1), January 1998 1063-7842/98/01
-
t

i-

d
is
-
is
-
ess

-
e

n
d

te

or
nd

.

al
e

-
r
er
h
of
d
s

surements. The operation of the system is illustrated by
results of experimental studies of the behavior of the diel
tric constant of two typical nematogens: 4-n-pentyl-4- cyan
biphenyl ~5CBP! and 4-methoxybenzinidene-4- butylanilin
~MBBA ! under the action of dc electric and magnetic field
Discussion of the results obtained is based on description
processes whereby electric and magnetic fields orient the
pole molecules of the liquid crystals and change the value
the microwave dielectric loss connected with them.

SELF-SUSTAINED OSCILLATOR DETECTOR CIRCUIT

The frequency-defining loop of the microwave detec
self-sustained oscillator circuit~Fig. 1! is a microstrip
‘‘ring’’ resonator that includes the vertical measureme
plates.1 The oscillator is placed in a metal package with d
mensions 30324315 mm. The resonator structure itse
which serves as the top cover of the package, is made
substrate of polycor («59.8) with thicknessh51 mm, di-
mensions 24330 mm. In this case the lower metallized sid
of the substrate, which we referred to as the ground pla
was soldered to the walls of the metal package of the de
tor along its entire perimeter. The picture shown in Fig.
also includes the wires on the upper side of the substr
Gold-plated measurement plates (a) with dimensions 2.5
32.5 mm were soldered to the metal pads at the ends of
striplines of the microstrip resonator vertical to the plane
the substrate so that the measurement gap had a valu
100mm. A liquid crystal placed in the gap is subjected
surface tension forces. In order to decrease the effect of
capacitance between the edges of the detector package
the measurement plates, the latter were located close to
center of the substrate, at the expense of bending the
lines. To do this, a rather small portion of the metalliz
screen was removed from the backside of the substrate
rectly under the detector measurement plates by chem
etching.

The self-sustained oscillator circuit was tuned for ex

10505-05$15.00 © 1998 American Institute of Physics
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tation of the fundamental half-wave mode of oscillation
the microstrip resonator. In order to feed the transistor wit
constant current, the upper strip of the resonator is sh
circuited by a jumper to the package at a point of minimu
high-frequency voltage~point b in Fig. 1!. In this case the
collector of the transistor was connected directly to the s
of the microstrip resonator at point (c) in order to create
conductive~autotransformer! coupling with the resonator a
high frequencies. An orienting electric field was creat
across the measurement plates by applying a dc voltag
the latter through the decoupling resistorsR1 and R2. In
order to galvanically decouple the power supply we us
divider capacitorsC1 andC2. The microwave oscillator was
designed to have two outputs: one for measuring freque
and the other for measuring the amplitude of the s
sustained oscillations. The circuit was tuned by setting
optimum conductive coupling between the resonator and
microwave transistor, i.e., we looked for an optimum point
connect the transistor collector to the strip line of the re
nator (c), and carefully chose point (b) near the midpoint of
the stripline of the microwave resonator as ground. Pour
liquid crystal into the measurement gap significantly redu
the Q-factor of the resonator half- wave mode, and we fou
that the oscillator spontaneously switched to higherQ
‘‘parasitic’’ resonances. In order to avoid this instability w
needed to position the circuit components compactly near
resonator and choose a capacitanceC3 to shunt the higher
resonances to ground. The working frequency of the s
sustained oscillator microwave detector, which was m
sured using a digital frequency meter, was around 500 M
when the sample of liquid crystal was poured into the gap
this case the microwave oscillation amplitudes measured
a digital volt meter at the output to the microwave detec
were found to be about 0.1 V.

Note that all our experiments on liquid crystals we
carried out at a temperatureT52460.1 °C. Therefore, the
microwave detector was placed in a miniature thermos
which was placed between the poles of an electromag
The magnetic field could be varied up to a valueH52.3 kOe.
The self-sustained oscillator package could be rotated

FIG. 1. Basic circuit for the self-sustained oscillator detector.1—output
~frequency!, 2—output ~amplitude!.
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of the field H was either parallel or perpendicular to th
direction of the high-frequency and external dc elect
fields.

SAMPLES AND METHODS OF INVESTIGATION

As we have already mentioned, as samples for our
vestigations we used two widely known nematogens—
compound 5CBP, with a relatively high positive dielectr
anisotropy,2 and the weakly anisotropic liquid crystal MBBA
with negative anisotropy.3–5 Our measurement method wa
the following: the liquid crystal was placed in the gap b
tween the measurement plates of the self-sustained oscil
microwave detector, and was kept there for an hour in or
for it to reach its equilibrium state. Within this time, th
temperature of the detector stabilized and initial values of
frequency and amplitude of the self-oscillations were est
lished. For each sample of liquid crystal a magnetic fieldH
was applied, and the dependence of the relative freque
changeF(H) was measured along with the relative chan
in amplitudeP(H) of the detector self-sustained oscillation
in the steady-state regime. Analogous functionsF(U) and
P(U) were measured when an electric potentialU was ap-
plied to the measurement plates of the detector. We a
investigated the dependence of the changes in the microw
parameters of the self-sustained oscillator under the c
bined action of electric and magnetic fields on the liqu
crystal.

For an optimal choice of the structural coupling betwe
the microstrip resonator and the microwave transistor,
level of self-oscillations in the oscillator depended linea
on the Q-factor of the frequency-determining resonat
which in turn was related in this experiment to the dielect
loss tangent of the liquid crystal sample. As a result,
observed change in the microwave oscillation amplitu
P(U,H) was inversely proportional to the change in t
imaginary component of the dielectric permittivity of th
sampleD«9. As is well known, changing the real compone
of the dielectric permittivity of the liquid crystal sampleD«8
leads to a change in the resonant frequency of the s
sustained oscillator detector: the frequency increases as
dielectric permittivity«8 decreases, and conversely. Cons
quently,F(U,H);(D«8)21.

RESULTS OF EXPERIMENTAL INVESTIGATIONS

Figure 2 shows the dependence of the relative chang
the level of microwave oscillations of a detector containing
sample of 5CBP. For convenience of comparison the dep
dences on electric potentialP(U) and on magnetic field
P(H) are shown on the same figure. Analogous curves p
ted for a sample of MBBA are shown in Fig. 3. Curves1 on
these figures were plotted for no magnetic field (H50!,
while curves 2 and 3 were plotted for no electric field
(U50!. The dependences 2 were plotted for the case wh
the direction of the dc magnetic fieldH was parallel to the
direction of the high-frequency fielde in the measuremen
gap of the detector, while the curves3 were opposite, i.e., the
direction of the fieldH was perpendicular to the direction o
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e. Moreover, the functionsP(U) were plotted while a mag
netic fieldH52.3 kOe acted simultaneously on the samp
this field was directed either parallel toe ~curves4) or per-
pendicular toe ~curves5).

The features observed in the behavior of the cur
P(U) andP(H) are connected with the well-known secon
order orientational phase transitions that have been given
name Fredericks transitions.5 These transitions are a cons
quence of the competition between two forces that act
molecules of the sample, one exerted by the walls of the
that bound the liquid crystal and the other by the exter
field. The primary feature of a Fredericks transformation
the presence of critical fields above which the initial orie
tational configuration of the molecules created by the w
becomes unstable and the director of the molecules shif
a new state determined by the magnitude and direction of
external fields. For liquid crystals of nematic type wi
anisotropies in the dielectric permittivity«a5« i2«' and
magnetic susceptibilityxa5x i2x' , the relation between
the critical electric fieldsEc and magnetic fieldsHc can be
described by the following expression6:

1

2
xaHc

25
«aEc

2

8p
. ~1!

From Figs. 2 and 3 it is clear that the critical fields a
easy to determine from the experimental results. For

FIG. 2. Dependence of the relative level of microwave oscillations in
detector with a sample of 5CBP on the electric potentialP(U) and magnetic
field P(H).

FIG. 3. Dependence of the relative level of microwave oscillations o
detector with a sample of MBBA on the electric potentialP(U) and mag-
netic fieldP(H).
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Ec'3 V/mm. Since the anisotropy of the diamagnetic su
ceptibility of the crystalxa is a quantity of order 1027, Eq.
~1! allows us to infer that the anisotropy of the dielectr
permittivity «a'2. This value of«a is in good agreemen
with the results of other measurements on liquid crystals
this type.

The measurements on the samples of liquid crys
MBBA ~Fig. 3! show that the electric and magnetic critic
fields are almost an order of magnitude larger in the
samples than in the crystal 5CBP. This is entirely natu
since it is well known that the crystal MBBA is only weakl
anisotropic.

By analyzing the behavior characteristics of the elec
and magnetic dependencesP(U) and P(H) in fields above
the critical fields we can obviously determine qualitative
the initial configuration of the molecular states and the p
cesses that orient them under the action of these compe
forces. Note that the orienting action of the magnetic field
connected with the diamagnetic component of the susce
bility caused by the presence of benzene rings in the com
sition of the molecules. The minimum in magnetic ener
corresponds to a state where the plane of the benzene
lies in the direction of the magnetic field. This implies that
this type of liquid crystal the long axis of the molecule
oriented parallel to the magnetic field.

Let us first discuss the effect of dc magnetic and elec
fields on the value of the microwave dielectric loss for t
liquid crystal 5CBP. As is clear from Fig. 2, when the exte
nal magnetic field is parallel to the high-frequency fielde,
the amplitude of the self-sustained oscillations of the det
tor increase monotonically with increasingH up to saturation
~curve2). In this case the long axes of the dipole molecu
are rotated normal to the plane of the measurement pla
i.e., parallel to the high-frequency fielde, which appreciably
decreases the microwave dielectric loss in the liquid cry
sample.

However, in the opposite case, when the direction of
magnetic fieldH'e, the amplitude of the self-sustained o
cillations, and consequently the dielectric loss in the liqu
crystal sample, are almost unchanged~curve 3 in Fig. 2!.
Obviously this direction of the magnetic field should orie
the long axes of the molecules along the measurement pl
that is the long axes of the molecule should rotate perp
dicular to the direction of the high-frequency field. As a r
sult, the dielectric loss should increase and the amplitude
the self-sustained oscillations should decrease. The fact
experiments do not reveal any significant change inP(H) in
this situation is evidence that all the dipoles are already
ented along the walls of the measurement plates due to
orienting forces exerted on the molecules by the surface

Since«a is positive for the liquid crystal 5CBP, the pa
allel orientation of the director along the microwave fie
should be established even when the external field applie
the measurement plates acts on the sample as well. An
fact, as is clear from Fig. 2, the behavior of the functi
P(U) ~curve1) shows practically no difference from that o
the corresponding ‘‘magnetic’’ curve(2). Based on what we
have said above, it is not difficult to explain the behavior

a

a
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maximum magnetic fieldH52.3 kOe acting on the sample a
the same time. Obviously the strong magnetic field app
parallel to the high-frequency field in this experiment alm
completely orients the liquid crystal, rotating the long ax
of the molecules along the direction ofe. As a result, as the
additional electric field applied in this direction increases
observe only a rather small rotation of the molecular ax
therefore, there is only a slight increase in the oscillat
amplitudeP(U) ~curve4).

However, for a perpendicular applied magnetic field t
long axes of the molecules are oriented almost perpendic
to the direction ofe. As a result, we require a considerab
larger dc electric field to rotate the molecular axis by 9
because it is necessary to overcome not only the orien
forces exerted by the surfaces of the measurement plate
also the orienting forces exerted by the magnetic fie
Therefore, in these experiments we observe a significan
crease in the value of the critical fieldE0 ~Fig. 2, curve5).

The liquid crystal MBBA differs from the crystal 5CBP
by the negative anisotropy of its dielectric permittivi
(«a520.59); however, the anisotropy of the diamagne
susceptibilityxa51.2331027 in these materials is positive
As a result, the long axes of the MBBA molecules are o
ented along the direction of the magnetic field, just as in
crystal 5CBP, while the ‘‘magnetic’’ functions shown in Fig
3 ~curves2, 3) are very similar to the analogous curves f
5CBP ~Fig. 2!. The magnetic field parallel to the high
frequency field orients the axis of the molecules alonge;
therefore, the dielectric loss decreases to a minimum~curve
2). Keeping in mind the fact that increasing the magne
field H' causes only a slight change in ofP(H) in this
experiment~Fig. 3, curve3), we may assert that the orientin
forces exerted by the walls of the measurement plates
primarily directed in the planes of the plates for MBBA, ju
as for 5CBP.

However, in contrast to the previous cases, when
simultaneously apply the maximum magnetic fieldH i to the
sample of MBBA crystal and increase the voltageU, we
observe a slight decrease in the value ofP(U), i.e., an in-
crease in the dielectric loss in the crystal~curve 4). This
implies that in this case the electric field causes the direc
of the molecular axes to deviate from the direction of t
parallel orienting magnetic field. This anomalous behavio
P(U) is explained by the fact that the parallel and perp
dicular components of the dielectric permittivity in th
MBBA crystal differ only slightly from one another
« i55.17,«'54.58.5 In this case the direction of the resul
ing polarization vector is determined as the vector sum
these two quantities. Since the polarization vector at largU
is oriented along the dc electric field, the long axis of t
molecule turns out to be rotated relative to its original state
U 5 0. As a result, the microwave dielectric loss increa
accordingly. The angle through which the long axes of
molecules rotate can be determined from the relation

w5arctan~«' /« i!542.34°. ~2!

As a proof of what was said above, in Fig. 3 we sho
curve 6, which was plotted for a magnetic field oriented
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change in the quantityP(H) is in rather good agreemen
with the maximum change inP(U), which confirms that an
oblique orientation of the director forms in the electric fiel
The rather small values of the dielectric anisotropy in t
liquid crystals MBBA, as we already mentioned abov
causes the critical field to increase significantly
Ec550 V/mm ~curve 1), and to increase toEc5140 V/mm
~curve5) when a perpendicular magnetic field acts simul
neously on the sample.

Note that in all the experiments the relative change in
self-sustained oscillator frequency did not exceed a value
F'0.6%. Decreasing the microwave loss in the liquid cry
tal samples under the action of electric or magnetic dc fie
as a rule, led to a decrease in the frequency of self-susta
oscillations of the detector, i.e., to an increase in the real
of the dielectric permittivity, and conversely. Thus, these e
periments show that even in the decimeter wavelength ra
the processes that orient the molecules are accompanie
rather large changes not only in the imaginary part but a
the real part of the components of the microwave dielec
permittivity of these liquid crystal samples.

CONCLUSIONS

The self-sustained oscillator detector scheme descr
in this paper for studying the properties of liquid crystals
microwave frequencies allows us to identify operationa
and with good accuracy the relative changes in both the
and imaginary components of the high-frequency dielec
permittivity of samples subjected to external fields. The h
sensitivity of this method reveals even greater potential
performing new and very precise experiments connec
with the study of orienting processes in liquid crystals, a
also distinctive features of the interaction between liqu
crystal molecules and surfaces made from various mate
that bound the sample.

In this paper we have shown that the changes in mic
wave dielectric characteristics of the liquid crystals 5CB
and MBBA are uniquely related to processes that orient
dipole molecules. We have also shown that the case wh
the microwave electric field is parallel to the longitudin
component of the dielectric permittivity of the liquid cryst
corresponds to a minimum dielectric loss. In this situati
we established experimentally that the value of the dielec
losses in liquid crystal samples at microwave frequencies
comparatively large, although, as follows from other pap
~see Refs. 2–4,6! the dielectric permittivity of liquid crystals
has the tendency to decrease rapidly as the frequency
creases due to the large inertia of the polarization oscillati
of the molecules. From this point of view, in the microwa
range a liquid crystal should have only insignificant diele
tric losses approaching those of the optical absorption c
ficient in magnitude.

It would be logical to assume that strong absorption
microwave power observed in these experiments is cau
by charging of ion complexes or impurities that are pres
in liquid crystals,7,8 whose concentration can be quite hig
However, this assumption does not explain the fact that
electric loss in the experiments changes significantly wh

108Belyaev et al.



the molecules of these crystals are oriented in dc electric and
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magnetic fields. Therefore, it is most likely that the nature
the observed high losses in liquid crystal samples at mic
wave frequencies are connected with the broad spectrum
relaxation oscillations of individual ring molecular group
connected with the benzene rings, the so-called ‘‘tails.’’
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Linear topological defects in electromagnetic vector fields
M. O. Sopin

Yu. Fed’kovich State University, 274012 Chernovtsy, Ukraine
~Submitted June 8, 1996!
Zh. Tekh. Fiz.68, 122–124~January 1998!

An analysis is made of the topological structure of an electromagnetic vector field near the point
where the amplitude of the field vanishes. Linear topological defects in the form of
dislocations of the wave front and disclinations are studied. It is shown that the polarization of
the field near a zero of the amplitude differs from the initial value. The structural stability
of the amplitude zeros is studied. ©1998 American Institute of Physics.
@S1063-7842~98!02301-0#

1. In 1931, Dirac drew attention to the fact that the phaseHere f j 1 j 2 . . . j m
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of a wave function, by its very meaning, is defined on
modulo 2p. Dirac considered the exceptional case enco
tered when a wave function goes to zero — in that case
phase of the wave function becomes meaningless.1 A situa-
tion where the phase is indeterminate was considered in
2 with reference to linear scalar waves. The phase singu
ties which are lines in space or points on a plane about wh
the phase undergoes a jump of 2p were called wave-front
dislocations. It was shown that the dislocations are the
structure of the wave field in the sense that they reveal
usual phase topology on a scale level determined by
wavelength. Amplitude zeros and associated wave-front
locations have been studied in statistical fields3,4 and in fields
having a deterministic nature.5 Note that the problem wa
analyzed in the scalar approximation. An attempt to all
for the vector character of the speckle field was made in R
6. In the present paper it is shown that allowance for
vector properties of the electromagnetic field yields intere
ing new results which are not found in scalar waves.

2. Therefore, let us consider a monochromatic elect
magnetic wave field possessing spatial inhomogeneity.
shall position the origin at a certain point in space where
amplitude of the field vanishes, directing thex3 axis along
the wave vectork. Because of the wave character, the vec
potential of the field may be taken in the form of a tw
component function

A5Fu1~x1 ,x2 ,x3!eiu1

u2~x1 ,x2 ,x3!eiu2
Gei ~vt2kx3!. ~1!

Hereu1 andu2 are certain real constants. As usual, the fi
obeys the wave equation and the additional gauge condit7

hA50, ~2!

div A50. ~3!

Assuming that the components of the vector potential
smooth and considering for generality the case of anm-fold
zero, we express the field amplitude in a certain neighb
hood of the zero point in the form

u1,2~x1 ,x2 ,x3!5 (
j 1 , j 2 , . . . ,j m51

3

f j 1 j 2 . . . j m

~1,2! xj 1
xj 2

. . . xj m
.

~4!
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ditions ~2! and~3! has the result thatu1,2 are harmonic func-
tions of two variablesx1 and x2. Two cases may then b
distinguished.

3. Let us assume thatf j 1 j 2 . . . j m

(1,2) are complex quantities

This allowsu1,2 to be considered as a function of a compl
variable. It is natural to impose the constraint that these fu
tions are analytic~if x11 ix2 is considered to be variable! or
antianalytic~when x12 ix2 is variable!. Thus, two types of
local solutions are constructed, which have the followi
form in the cylindrical coordinate system (r, w, x3):

A65armF 1

6 i Gei ~vt2kx36mw!. ~5!

Herea is a complex constant which is unimportant to us. W
assume that the vectorsk, E, andH are pairwise orthogona
(E52]A/c]t andH5curl A are the electric and magneti
field strengths!. The two types of solution correspond to fie
states with right and left circular polarization. The phase s
faces of the solutions are helicoids of opposite twist, wh
the direction of twist and the character of the circular pol
ization are rigidly interrelated. As a result of the analytici
~antianalyticity! of the components of the complex amp
tude, the zero is an isolated point in thex350 plane but may
describe some curve in three-dimensional space. This lin
phase singularity, being a carrier of an amplitude zero, w
be a screw dislocation line. Topologically stable solutio
correspond to lines having no beginning or end.

The nontriviality of the topological structure of the ele
tromagnetic field near the zero can be seen if we consider
plane field of the phase gradientw5(]1C,]2C). The inte-
gral trajectories of this field are closed and describe pla
vortices. The topological invariant is

Q[
1

2p R w22~w1dw22w2dw1!5m,

which expresses the number of rotations of the vectorw
about the zero point.8 For physicists, this quantity has bee
called the topological charge and in this case may have i
ger valuesQ50 ~background!, Q511 ~monopolar vortex!,

11010-02$15.00 © 1998 American Institute of Physics



Q512 ~dipolar vortex!, and so on. It can be seen from Ref.
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5 that unlike topological charges may be assigned to the
types of solution.

4. Let us assume thatf j 1 j 2 . . . j m

(1,2) are real quantities. The

vector potential near the zero then has the form

A5rmFa1 cosmw1a2 sin mw

a2 cosmw2a1 sin nw
Gei ~vt2kx3!. ~6!

Here,a1 anda2 are real constants which are unimportant
us. We again impose the constraint that the set of three
tors k, E, andH should be pairwise orthogonal. An impo
tant difference from the previous case is that the polariza
is linear near this zero.

The nontriviality of the topological structure of the ele
tromagnetic field near the zero can be seen if we conside
invariant

Q[
1

2p R
x3 ,t5const

A22~A1dA22A2dA1!52m.

For m51 the vector field is nondegenerate at the z
point.9 In this case, the zero, being an isolated point in
planex350, may describe some curve in three-dimensio
space. The topologically stable solutions correspond to li
without a beginning or end. These lines, where the direc
of the vector is indeterminate, are called disclinations, a
they will be carriers of a zero of the amplitude in this pa
ticular situation. The topological charge can generally ha
negative integer values:Q50 ~background!, Q521 ~mo-
nopolar charge!, Q522 ~quadrupolar charge!, and so on.

5. It is known9 that a plane smooth vector field defin
some continuous map of a circle in a circle. The introduct
of the topological charge allows the set of these maps to
divided into nonintersecting classes of equivalence in te
of Q. This separation makes the problem of the creat
~annihilation! of topological defects nontrivial. Nevertheles
considering the merging of two dislocations of the sa
strength but of opposite twist, we obtain

A11A252armF cosmw

2sin mw
Gei ~vt2kx3!. ~7!

It can be seen that the dislocations annihilate to crea
disclination having a zero of the corresponding order.
mechanism for the creation of two unlike dislocations from
point zero of the amplitude point was indicated in Ref.
Our example implies that there can be conjugation of dis
nations with the ends of unlike dislocations, or, in oth
words, pairs of dislocations may originate from disclinatio
and terminate in disclinations.

6. Finally, we make some observations on the reason
the structural stability of the amplitude zeros of the elect
magnetic vector field under study. We recall that a funct
is described as structurally stable if its critical points do n
change their type for any sufficiently small smoo
perturbations.10 It follows from Eq. ~3! that a smooth func-
tion F(x1 ,x2) can always be found such that the amplitu
components of the vector potential of the field will be e
pressed in terms of the derivatives of this functi
u15]F/]x2, u252]F/]x1, and as beforeu3[0. Formally,
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structure defined by the 2-formdx1 /`dx2 near the zero
point. In this case, the amplitude of the vector potential
expressed in the form of the skew-symmetric gradi
u5s gradF. The zero of the field amplitude is therefore th
critical point of the functionF(x1 ,x2). It is known that the
critical point is structurally stable when and only when it
nondegenerate, and the degeneracy of the zero is then d
mined by the rank of the Hessian matrixi]2F(0,0)/]xj]xki
~Ref. 10!. It is easy to see that only the simple amplitu
zeros are structurally stable~the functionF has the Morse
form! while the zeros of higher multiplicity do not posse
this property. In other words, a small perturbation~of the
boundary conditions, for example! only shifts the position of
a simple zero in the planex3 5 const, without destroying it.
A zero of higher multiplicity may be destroyed by such
perturbation, as was noted for a dislocation in Ref. 11.

7. Thus, in spatially inhomogeneous electromagne
wave fields a distinction should be made between amplit
zeros associated with wave-front dislocations and amplit
zeros associated with disclinations. Although both are to
logically stable formations, only the simple amplitude zer
possess properties of structural stability. In this sense,
zeros of higher multiplicity are atypical topological object
Regardless of the nature of the field, its polarization char
teristics are strictly determined near an amplitude zero,
polarization being circular near one type of zero and lin
near the other type. The presence of topological objects
dislocations and disclinations — converts a simply co
nected manifold into a multiply connected one. The quan
tative characteristic of these linear defects is a certain inv
ant — the topological charge. Note that local properties o
general type of field have been considered here. The siz
the zero neighborhood in this formulation of the proble
will be determined by the characteristic parameter of
field — the wavelength. In our next study we shall show th
the two types of zeros considered here by no means exh
all the fine-structure possibilities of an electromagnetic wa
field.
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Liquid-crystal diode generator of low-frequency oscillations

Ya. Barton’ and A. A. Kal’nin

St. Petersburg State Electrical Engineering University, 197376 St. Petersburg, Russia
~Submitted December 29, 1995!
Zh. Tekh. Fiz.68, 125–127~January 1998!

The excitation of rhythmic current oscillations in a diode cell containing a nematic liquid crystal
is studied. The external electric field in the interelectrode gap is directed parallel to the
surfaces which orient the liquid crystal molecules. The current oscillations are accompanied by
the formation of an autosoliton at the cathode, which propagates and disappears at the
anode. A hypothetical model is proposed to explain this current instability. ©1998 American
Institute of Physics.@S1063-7842~98!02401-5#

The present investigation is concerned with a dynamicpower supply via a series-connected resistanceRs51.2 MV
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effect accompanied by current instability in nematic liqu
crystals. It has been established that under nonequilibr
conditions various types of instabilities appear in nematic1

A classical example is the formation of Kapustin–William
domains in an external electric field transverse to the s
faces orienting the liquid crystal molecules.2 This effect is a
manifestation of self-organization in open systems3 and is
characterized by a threshold external electric field and by
establishment of spatial ordering at the macroscopic le
The nonlinearity caused by the anisotropy of the liquid cr
tal properties creates preconditions for the action of an a
catalytic mechanism~internal positive feedback! which pro-
motes the buildup of instabilities.4 Studies of nematic liquid
crystals have mainly been carried out in a transverse fi
and comparatively few have examined the response of th
crystals to the action of a longitudinal field, i.e., acting p
allel to the molecule-orienting surfaces.

Here we investigate the current instabilities in a plan
diode structure and we attempt to develop a simple econo
cal generator of current oscillations in the biorhythmic fr
quency range. This necessitated finding the conditions for
excitation of current instability in a nematic liquid crysta
As a result of carrying out numerous probe experiments
which the orientation of the liquid crystal molecules relati
to the direction of the external electric field, the size, sha
and relative position of the electrodes in the liquid cryst
and the microgap between the surfaces defining the mol
lar orientation were varied, we succeeded in identifying
conditions required for the buildup of current instability.

The design of a planar diode cell is shown schematic
in Fig. 1. Two metal electrodes were placed in the gap
tween two glass or quartz plates1 and the space between th
electrodes was filled with an MBBA nematic liquid crystal
a mixture of MBBA and EBBA. The gap between the plat
was 50–100mm and that between the electrodes was 0
1.0 mm. The width of the electrodes was 0.1–0.5 mm. T
surfaces of the dielectric plates wetted by the liquid crys
were preprocessed to produce a microtexture to control
orientation of the liquid crystal molecules. The surfaces w
first carefully cleaned to remove any contaminants usin
1M KOH solution, followed by a 50%~mol! HNO3 solution,
and were then washed with distilled water.

The electrodes of the diode cell were connected t
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to allow the current instabilities to be observed with an o
cilloscope.

The results of the experimental observations are as
lows:

1. As the interelectrode voltage is increased, a dom
structure forms but it is less clearly defined than that o
tained when the field is perpendicular to the planes of
dielectric plates.

2. As the voltage is increased further to a certain criti
value Uc , a region exhibiting strong light scattering
formed at specific points on the cathode surface. This reg
appeared at the cathode and propagated as a traveling
~autosoliton! toward the anode where it disappeared at
surface. The nucleation, propagation, and disappearanc
the autosoliton was a periodic process. As soon as this re
of anomalous light scattering disappeared at the surfac
the anode, it reappeared again at the cathode.

3. Current oscillations with a large difference betwe
their extremum values appeared, matched with the autos
ton motion. Typically, the maximum current was 3–5mA
and the minimum was 0.2–0.5mA. Before the oscillations
appeared, the direct current was some tens of nanoamp
~prethreshold regime!. The threshold external field wa
Ec5(122)3103 V/cm ~interelectrode gapl 51 mm!.

Oscilloscope traces demonstrating the current osc
tions are shown in Fig. 2, where it can be seen that
amplitude of the oscillations and the frequency depend
the voltage. These dependences are plotted in Fig. 3.

Observations using an optical microscope showed
the current has a maximum at the beginning of the autos
ton and a minimum when it reaches the anode. As the ex
nal voltage is increased further, the current oscillations
come stochastic at the upper level of the average.

4. The oscillations only occur for small gapsh between
the plates (h<150 mm!. In this case, the orientation of th
liquid crystal director has a strong influence. The investig
tions showed that no current oscillations occurred in samp
for which the director was oriented parallel and perpendi
lar to the external field. Experiments with homeotropica
oriented liquid crystal molecules also yielded no positive
sult. A traveling autosoliton regime was only observed in
twisted nematic~and was particularly clearly defined whe
the angle of relative rotation of the plates was close to 180

11212-02$15.00 © 1998 American Institute of Physics
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Thus, the homogeneous orientation of the liquid crystal m
ecules must be impaired for these oscillations to occur.

5. In the experiments, we observed cases where the
tosolitons did not propagate along the shortest path from
cathode to the anode but along a curvilinear ‘‘trajectory’’

FIG. 1. Schematic of nematic-liquid-crystal diode generator of electr
oscillations:1 — dielectric plates with surface geometric anisotropy,2 —
metal electrodes, and3 — nematic liquid crystal.

FIG. 2. Oscilloscope traces of current obtained for different voltages
electrodes of diode cell. The voltages are given on the appropriate tra
MBBA, l 51 mm, andd5100 mm.
113 Tech. Phys. 43 (1), January 1998
l-

u-
ewere generated not at the cathode but in the interelectr
gap. Pulsations of the autosoliton propagation velocity
companied by complex~multimodal! current oscillations
were also observed.

The following hypothetical model may be put forward
explain these current oscillations in a planar diode structu
It is known that the electrical conductivity of nematic liqu
crystals is of an ionic impurity type against a background
a negligible electron component. An ion oxidation proce
takes place at the anode with neutralization~reduction! at the
cathode.5 The process can take place reversibly without
liquid crystal undergoing decomposition. In a twisted ne
atic the field is concentrated in the central part of the g
between the plates.

Anisotropy of the electrical conductivity of the nemat
liquid crystal is required for the formation of an autosolito
~for MBBA this is s i /s'51.3). Molecules oriented with the
director perpendicular to the field impede the ion motion a
form a kind of gate. When a large number of ions accum
late at the cathode, the ion pressure increases, causing
liquid crystal molecules to rotate parallel to the direction
action of the field and the ‘‘gate’’ opens, releasing the ac
mulated ions~the conductivity increases froms' to s i). The
formation of autosoliton fronts is caused by the ion mobil
gradient. After the accumulated ions have been released
initial orientation of the liquid crystal molecules is restore

1A. S. Sonin,Introduction to the Physics of Liquid Crystals@in Russian#,
Nauka, Moscow~1983!.

2L. K. Vistin’, A. Yu. Kabaenkov, and S. S. Yakovenko, Kristallografiy
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tems@Wiley, New York, 1977; Mir, Moscow, 1979#.
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FIG. 3. Amplitude~a! and frequency~b! of current oscillations as a function
of average electric field strength in the interelectrode gap.
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Limiting role of desorption in hydrogen transport across a deposited beryllium film

po-
A. V. Samsonov, A. Yu. Koren’kov, I. E. Gabis, and A. A. Kurdyumov

St. Petersburg State University, Scientific-Research Institute of Physics, 198904 St. Petersburg, Russia
~Submitted May 19, 1997!
Zh. Tekh. Fiz.68, 128–130~January 1998!

Hydrogen transport across a deposited beryllium layer has been investigated using the hydrogen
permeability and concentration pulse methods. A layer of beryllium was deposited on a
prepurified nickel membrane by cathode sputtering in a glow discharge plasma in ‘‘especially
pure’’ grade hydrogen. An analysis of the experimental results showed that the main
limiting process for hydrogen transport is desorption from the layer rather than diffusion in the
bulk of the layer. A mathematical transport model is proposed and used to determine the
rate constant of hydrogen desorption from beryllium. ©1998 American Institute of Physics.
@S1063-7842~98!02601-4#

The proposed use of beryllium as a protective coating inberyllium was used for the deposition process. The com
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the ITER fusion reactor, and also plasma disruptions wh
lead to sputtering of the protective material, have stimula
increased interest in the interaction between hydrogen
beryllium. This problem is scientifically topical because b
ryllium is one of thes metals, whose interaction with hydro
gen has clearly not been sufficiently well studied. Howev
the interaction between hydrogen and beryllium is difficult
study because of the nonremovable oxide film present on
surface and because of its toxicity and related technolog
difficulties. This accounts for the relative lack of studies, t
wide scatter in the results, and the lack of any unified phy
cal picture of the interaction.

Our previous studies of the thermal desorption of hyd
gen from polycrystalline beryllium1 allowed us to formulate
a probable model of the transport process. According to
model, the hydrogen atom exhibits high diffusion mobility
the bulk of the grain and the limiting transport stage is
transfer from one grain to another, i.e., apparently, the esc
of the diffusate from the bulk of the grain to its surface. He
we propose to study hydrogen transport across a sputt
layer of beryllium which, not being polycrystalline, ca
serve as a model for a single grain of a polycrystalline m
terial, and we propose to check the accuracy of this mod

The investigations were carried out using an ultrahig
vacuum automated experimental system2 by the concentra-
tion pulse method, which was described in detail in Ref.
The substrate for this layer was made of NVK-gra
vacuum-melted nickel. The parameters of its interaction w
hydrogen are known in detail, and the high rates of the
sorption and desorption processes allow high-quality rec
gular concentration pulses of dissolved hydrogen to be
tained in the subsurface region by switching on and of
hydrogen dissociator~incandescent tungsten filament! along
the surface. The substrate was purified by high-tempera
annealing in vacuum (T51023 K! and by bombardmen
with hydrogen ions from a glow discharge plasma. A layer
beryllium was then deposited on the outer surface of
membrane by cathode sputtering using extra-pure hydro
in a glow discharge plasma. Since no oxygen is presen
the vacuum chamber, this procedure eliminates any ox
formation on the surface of the film. Hot-pressed TGP-gra
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sition of the components was 97.8% Be, 1.6% O, and 0.1
C. The deposition was carried out in runs of 4–6 h, and a
each run the sample was annealed in vacuum atT5673 K
until the hydrogen background pressure was established

This nickel–beryllium system was investigated in t
temperature range 523–723 K at intervals of 25 K. High
temperatures were not used in order to avoid dissolution
the beryllium layer in the nickel. The experiments show
that an upper temperature of 723 K does not cause any
of the results. At temperatures below 500 K, the nickel for
ing the base of the two-layer system shows some devia
from the classical limitation of a penetrating diffusion flu
which makes the transport model extremely complex.

After each deposition run, concentration-pulse expe
ments were carried out. Hydrogen was supplied to the
coated~inner! side of the membrane and rectangular conc
tration pulses of hydrogen dissolved in the subsurface reg
were generated. At the end of the transport processes, a
riodically varying penetrating flux was recorded on the o
side of the membrane, this was Fourier expanded, and
phase–frequency characteristic of the membrane was d
mined.

An analysis of the phase–frequency characteristic of
system as a function of the deposition time~Fig. 1a! revealed
the following. Deposition of beryllium for 14 h produces
continuous film, since subsequent deposition runs do no
ter the phase–frequency characteristic. Diffusion across
deposited layer is not the main limiting factor for the tran
port process in the Ni–Be system since the phase–freque
characteristics do not depend on the deposition time, i.e.
the layer thickness.

The hydrogen permeability isotherms, i.e., the dep
dence of the steady-state penetrating flux on the root of
hydrogen pressurep, were measured before and after dep
sition of the beryllium film. Figure 1b gives the permeabili
isotherms atT5673 K for pure nickel and for a Ni–Be sys
tem after deposition for 56 h. It can be seen that deposi
of the beryllium film substantially reduces the penetrati
flux and changes the profile of the hydrogen permeabi
isotherm. The isotherms are not approximated by the dep
denceJ;Ap, typical of hydrogen transport limited only b

11414-03$15.00 © 1998 American Institute of Physics
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FIG. 1. a — Phase–frequency cha
acteristics of system atT5673 K: 1
— pure nickel,2–5 — deposition for
14, 30, 46, and 58 h, respectively;
— hydrogen permeability isotherms
at T5673 K: 1 — pure nickel,2 —
after deposition for 56 h.
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suggests4 that the flux across the system is slowed subst
tially because of the low rate of hydrogen desorption fro
the beryllium film. This is also indicated by the appearan
of even harmonics in the Fourier spectrum of the concen
tion pulse curves after deposition of the layer. These h
monics do not appear in the spectrum of pure nickel.

The results may be explained in terms of the followi
model of hydrogen transport across a sputtered layer of
ryllium. The hydrogen atoms exhibit high diffusion mobilit
in the bulk of the layer and repeatedly cross the layer, be
reflected from the exit boundary, since the process of es
ing from the dissolved state into vacuum involves overco
ing a high potential barrier. Thus the beryllium layer depo
ited on the substrate, while not presenting any diffus
resistance to the hydrogen, is responsible for its low rate
desorption.

Our experimental data can be used to check the accu
of this model and to obtain the rate constant for desorption
hydrogen from berylliumbBe. We consider a nickel mem
brane of thicknessl in which the diffusion of hydrogen is
described by Fick’s law with the diffusion coefficientD

FIG. 2. Experimental and theoretical kinetic curves of penetrating flux
T5573 K.
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]x2
, xP@0,l #. ~1!

A first-order boundary condition is satisfied on the insi
of the membrane

C~ l ,t !5 f ~ t !. ~2!

In the case of the concentration pulse method, the fu
tion f describes rectangular pulses with an inverse duty cy
of 2. The density of the steady-state penetrating flux
clearly given by

J5bNiC
2~0!5bBeCBe

2 , ~3!

where CBe is the hydrogen concentration in the beryllium
which we assume to be independent of the coordinate,
bNi is the effective rate constant for the desorption of hyd
gen from the nickel, which allows for the influence of th
beryllium film.

The introduction of the constantbNi reduces the
boundary-value problem to a simple form — diffusion ove
homogeneous membrane with a low rate of desorption on
exit side.

Assuming, as always that the local equilibrium conditi
C(0)/CBe5GNi /GBe is satisfied at the interface between t

FIG. 3. Arrhenius curve of the rate constant for desorption of hydrog
from beryllium.
t
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metals, whereGNi andGBe are the solubilities of hydrogen in
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nickel and beryllium, respectively, we can easily derive
relation to link the rate constantsbBe andbNi :

bBeGBe
2 5bNiGNi

2 . ~4!

The solubilities of hydrogen in beryllium and nicke
were taken from Refs. 5 and 4, respectively. The bound
condition on the outside is expressed as the balance o
diffusion and desorption fluxes,

bNiC
2~0,t !5D

]C

]x
~0,t !. ~5!

This boundary-value problem~1!, ~2!, ~5! gives excep-
tionally good agreement with the experiment. As an e
ample, Fig. 3 gives the experimental curve obtained
T5573 K for a pulse period of 200 s, together with th
superimposed model curve. The experimental curves w
used to determine the temperature dependence of the
constantbNi . Using Eq.~4!, we then used this dependence
116 Tech. Phys. 43 (1), January 1998
ry
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tion of hydrogen from beryllium plotted in Fig. 3, and w
determined the numerical values of the pre-exponential
tor and the activation energyb057.760.9310214 @cm4/s#
and E51361 @kcal/mol#. This activation energy is the po
tential barrier preventing the hydrogen dissolved in the
ryllium from escaping to the surface, with a subsequent
sociation to form a molecule and then desorption.
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Thermal superconducting–normal transition of superconducting films, induced by the

re
heating of nonsuperconducting defects in microwave fields
A. A. Zharov and A. N. Reznik

Institute of Physics of Microstructures, Russian Academy of Sciences, 603600 Nizhni� Novgorod, Russia
~Submitted May 19, 1997!
Zh. Tekh. Fiz.68, 131–133~January 1998!

A study is made of the thermal superconducting–normal~S–N! transition induced in high-
temperature superconducting films by the Joule heating of small nonsuperconducting defects in a
microwave field. It is shown that the loss of superconductivity either leads to the formation
of a finite region of normal phase localized near the defect or encompasses the entire film.
Estimates of the threshold and S–N switching time show good agreement with the
experimental data. ©1998 American Institute of Physics.@S1063-7842~98!02501-X#

1. Various recently published experimental studies havez5H. Converting to the dimensionless temperatu
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reported observations of the transition of high-temperat
superconducting~HTSC! films from the superconducting~S!
to the normal~N! state~S–N switching! stimulated by mi-
crowave radiation.1–3 The observed S–N switching pro
cesses had a threshold amplitude of the incident wave
and the N state either occurred locally as small regions~do-
mains! on the surface of the film1 or encompassed the entir
film ~breakdown of the superconductor!.2,3 Loss of supercon-
ductivity may be caused by magnetic and thermal effec4

for which the S–N transition has different thresholds a
exhibits different overall space–time behavior. An adequ
interpretation of the experimental data cannot be given w
out studying each of these mechanisms.

Studies of the thermal mechanism for loss of superc
ductivity have established that the interphase bound
propagates over the surface of the superconductor in
form of a thermal autowave.5–7 However, estimates of the
threshold rf field strengths needed to excite such an a
wave in perfect samples yielded a result between one
two orders of magnitude higher than that observed.1! The
times of the transition processes were also between two
three orders of magnitude higher than those obtained f
the measurements.2,5 It will be shown below that one mecha
nism which can explain the comparatively low thresho
and short breakdown times for HTSC films is the heating
structural defects in the films.

2. We shall analyze a thin HTSC film deposited on
thermally stabilized dielectric substrate of thicknessH, as
shown in Fig. 1. Incident electromagnetic radiation hav
the energy flux densityP0 is partially absorbed in the film
and is completely shielded from the substrate. The h
transfer processes in this system are described by the
conduction equation in the substrate

cs

]T

]t
5¸sDT1q, ~1!

wherecs and¸s are the specific heat and thermal conduct
ity of the substrate, andq is the heat source associated w
heating of the film by the electromagnetic radiation.

Since the HTSC film is thin, we assume that the sourcq
is localized in ad layer on the surface of the substrate
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Q5(T2T0)/(Tc2T0) and expressingq in explicit form, we
have

cs

]Q

]t
5¸sDQ1

a~Q!

Tc2T0
P0d~z2H !, ~2!

whereTc is the critical temperature of the S–N transition,T0

is the coolant temperature, anda(Q) is the total absorption
coefficient of a HTSC film with defects.

The absorption coefficientaF of a film without defects
depends on the temperatureQ and increases rapidly nea
Q51. The dependenceaF(Q) in the wavelength range
l.1 cm may be approximately described by a step functi

Let us assume that the structure of the HTSC film co
tains a foreign inclusion of radiusa ~Fig. 1! ~we shall sub-
sequently call this a defect! whose absorption coefficientaD

does not depend on temperature and may differ substant
from that of the film in the S and N states. Fora(Q), we
finally obtain the following expression:

a~Q!5aF~Q!1aD , ~3!

where

aF5H an , Q.1,
r .a,

0, Q<1,

aD5H han , r<a,

0, r .a.

The parameterh characterizes the difference betwe
the absorption coefficient of the defect and the absorp
coefficient of the superconductor in the normal state.

Let us assume that in the absence of the electromagn
field the HTSC film is in the S state with the temperatu
Q50. When exposed to microwave radiation, only the d
fect absorbs energy@see Eq.~3!#. As a result of heat conduc
tion, the superconductor is heated in the vicinity of the d
fect, and the film temperature may exceed the critical va
Q51. As a result, the film, being switched to the N sta
itself begins to absorb electromagnetic waves and beco

11717-03$15.00 © 1998 American Institute of Physics
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an additional source of heat. Ultimately, a steady state
established, achieved by a balance of heat release and
removal when the N state occupies a finite region of radiul
around the defect~Fig. 1!. The evolution of thermal break
down arbitrarily corresponds to the absence of any ste
states with finitel in the solution of Eq.~2!. Thus, the solu-
tion of the stated problem reduces to determining the stea
state boundaryl of the region of destroyed superconducti
ity. In the assumed approximations the steady-state solu
of the nonlinear Eq.~2! with the boundary conditionsQ50
at z50 anddQ/dz5aP0 /¸s(Tc2T0) at z5H may be de-
termined accurately by means of a Fourier transforma
with respect to the coordinates along the surface of the fi
Omitting the cumbersome, but fairly obvious calculation
we directly give the final result for the steady-state tempe
ture distribution over the film:

Q~H,r !5
anP0

~Tc2T0!¸s
H a2~h21!

3E
0

`

J0~kr !J1~ka!tanh~kH!
dk

ka

1 l 2E
0

`

J0~kr !J1~kl !tanh~kH!
dk

kl J , ~4!

where J0,1(x) is a Bessel function and the radiusl of the
thermal domain~region of destroyed superconductivity! is
obtained from the conditionQ(H,r 5 l )51.

If the size of the defecta and the domainl are small
compared withH, the integrals in Eq.~4! may be taken in the
explicit form:

Q~H,r !5
anP0

~Tc2T0!¸s
H a2~h21!

2r
FS 1

2
,
1

2
,2,

a2

r 2 D

FIG. 1. Geometry of the problem. The shaded area on the surface of the
is a defect and the zone bounded by the dashed line is the region o
stroyed superconductivity~thermal domain!.
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whereF(a,b,g,d) is a hypergeometric function.
Expression~5! corresponds to the temperature distrib

tion inside the domain~a similar expression can obviously b
obtained forr . l ). We find the dependence of the doma
radius l on the radiation energy flux densityP0, for which
we assume in Eq.~5! r 5 l andQ(H,r 5 l )51. We then have

P05Pc

hs

p/4~h21!FS 1
2 , 1

2,2,
1

s2D1s2

, ~6!

wheres5 l /a; Pc5p¸s(Tc2T0)/2hana is the threshold for
nucleation of a domain corresponding tos51.

Figure 2 gives curves ofs(P0) for various values of the
parameterh. It can be seen that the typical value ofh is
h0'2. For h,h0 the conditionP0.Pc(h) immediately
leads to thermal breakdown of the superconductor. Howe
if h.h0, a steady-state normal-phase domain is formed
tially, and breakdown sets in only at values ofP0 slightly in
excess ofPc . In this last case, an increase inP0 for
P0>Pc(h) corresponds to an increase in the average sur
resistance of the film, as was observed in Refs. 2 and 3~it is
natural to assume that superconductors may have many
fects of similar size and properties at which domains app
independently!.

We estimate the magnetic field strength in the incid
wave which corresponds to the threshold energy flux den
of the waveP05(c/8p)Bm

2 5Pc (c is the speed of light!.
Taking ¸s'33106 ~erg/s•cm•K!, a'1024 cm, Tc2T0

510 K, h51, andan'1022, we obtainBm'200 Gs, which
agrees with the experimental data.2–4 Estimates of the time
taken to heat the regions of film near defects toT;Tc for
P0<Pc also yield values similar to those observed in Refs
and 3:

t'
csl

2

2¸s
f ~P0!;1027s,

lm
e-

FIG. 2. Size of thermal domain as a function of the energy flux density
the incident radiation:h: 1 — 0.7,2 — 1.0,3 — 2, 4 — 3, and5 — 5. The
arrows indicate the critical values ofP0 /Ps(h51) corresponding to ther-
mal breakdown.
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wherecs'107 erg/~K•cm2), f (P0) is a form factor of;1
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1!It was shown in Ref. 7 that the threshold may be lowered by local heating
of the superconductor by an external source.
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which depends logarithmically onP0.
3. To conclude, if allowance is made for the defects

HTSC films, the thresholds for thermal S–N switchin
stimulated by microwave fields and the characteristic tim
of the transition processes are similar to those observed
perimentally. Depending on the flux density of the incide
radiation and the power released at the defect as a resu
absorption, the S–N transition may either lead to therm
breakdown, destroying the superconductivity over the en
surface of the film, or it may result in the formation of the
mal domains.

This work was supported by the Russian Fund for F
damental Research~Grants Nos. 95-02-04996 and 96-0
16997!.
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Three-body recombination of electrons and ions in the presence of two-level atoms

m-
A. N. Tkachev and S. I. Yakovlenko

Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia
~Submitted August 20, 1996!
Zh. Tekh. Fiz.68, 15–19~January 1998!

The distribution function of bound electrons and the recombination rate of electrons and ions in
the presence of two-level atoms is considered within a diffusion model. Two cases are
considered:~a! it is assumed in accordance with traditional theories that relaxation occurs as a
result of binary collisions;~b! it is assumed that the anomalous drift previously discovered
on the basis of a first-principles simulation takes place. It is shown that the distribution of bound
electrons obtained on the basis of the theory of binary Coulomb collisions is not consistent
with the results of a numerical many-particle dynamics simulation, while a kinetic model which
utilizes the theory of anomalous drift is consistent with the simulation results. ©1998
American Institute of Physics.@S1063-7842~98!00301-8#
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A many-particle dynamics~MPD! simulation for Cou-
lomb particles bears fruitful results, if it is accompanied
an analysis of corresponding kinetic models.1–5 In Refs. 6
and 7 the results of an MPD simulation of the relaxation o
system of Coulomb particles in a heat bath of two-level
oms were compared with kinetic models that contradict
principle of detailed balance, and good agreement was
tained. In view of the different opinions expressed in Re
8–12 in regard to the interpretation of the results of the M
simulation in Refs. 1–3, it would be useful to check on
again to what extent the simulation results contradict
traditional models of recombination based on the theory
binary Coulomb collisions and the principle of detailed b
ance.

In this context, below we examine the form of the d
tribution function following from a diffusion model with ki-
netic coefficients which are obtained on the basis of tra
tional models of binary Coulomb collisions and obey t
relations following from the principle of detailed balanc
This function is compared with the results of an MPD sim
lation and the function obtained with kinetic coefficients th
do not correspond to the principle of detailed balance.

FORMULATION OF THE PROBLEM IN THE
BINARY-COLLISION MODEL

The Fokker–Planck equation.For the distribution func-
tion f («) of electrons with respect to their total energy« we
use the Fokker–Planck equation

] f /]t52]G/]«,

G5A f2]~B f !/]«[Ãf 2B] f /]«.

HereG is the electron flux along the energy axis~in the case
of recombinationG,0); A andB are the kinetic coefficients
for mobility and diffusion along the energy axis, respe
tively; and Ã5A2]B/]« is the modified mobility coeffi-
cient. The use of the diffusion approximation presumes t
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plished in small steps and that the kinetic coefficients v
weakly in these energy intervals.

As usual, below we shall use the steady-state appr
mation] f /]t50, G5const, whence it follows that

G5Ã~«! f ~«!2B~«!d f~«!d«5const. ~1!

The boundary conditions for this equation depend
which process~recombination or ionization! is being de-
scribed; they will be formulated below. For now, we on
note that the determination of the relaxation flux~i.e., the
number of electrons which recombine or detach from io
per unit time! on the basis of the steady-state Fokker–Plan
equation ~1! does not require precise specification of t
boundary between the bound and free electrons. This is
portant, because, as a rule, highly excited electrons canno
unequivocally classified as bound or free particles, and
position of the boundary between them can be indicated o
approximately.

Principle of detailed balance.At thermodynamic equi-
librium the distribution function of plasma electrons wi
respect to the total energy is of the Boltzmann type:

f B~y!5g~y!exp~2y!,

g~y!5
C

Tt 5
2

p1/2
y1/2 for y@d1/3,

p3/2

4
duyu25/2 for uyu@d1/3, y,0,

where y5«/Te is the reduced energy andd52e6Ni /Te
3 is

the nonideality parameter of the plasma.
According to the principle of detailed balance, substi

tion of the Boltzmann distribution into the diffusion equatio
should cause the expression for the flux to vanish identica
This imposes the following relation on the expressions
the diffusion and mobility coefficients:

Ã~«! f B~«/Te!2B~«!d fB~«/Te!/d«50. ~2!

As we know, in the case of binary collisions, the pri
ciple of detailed balance follows from the temporal reve

1212-04$15.00 © 1998 American Institute of Physics
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principle of detailed balance is a consequence of the assu
tion that the system under consideration is ergodic.

Kinetic coefficients.The expression used below for th
diffusion coefficient of a bound electron in Coulomb col
sions with plasma electrons was derived in Refs. 13 and
It can be represented in the form

Bc5
8Ap

3
e4NeLA2Te

me
x1/2m~x!,

m~x!5
x1/2

A116x10.75x21px3/16
.

Herex52y is the binding energy of an electron normaliz
to the electron temperature, andL5A119/4pd is the Cou-
lomb logarithm. The expression for the diffusion coefficie
of a bound electron under the action of inelastic collisio
with two-level atoms was obtained in Refs. 5 and 6~see also
Ref. 2!:

Ba5
4

3p
D«2s0NaA2Te

me
Ax.

Here D«.0 is the energy difference between the atom
levels,Na is the atom density, ands0 is the cross section fo
the excitation of an atom by electron impact near the thre
old. For simplicity, it is assumed within the model fro
Refs. 5 and 6 that the cross section does not vary when
threshold is exceeded. We note that this leads to some o
estimation of the relaxation rate for tightly bound electro
It is assumed, in addition, that the populations of the grou
and excited states obey a Boltzmann distribution with
atom temperatureTa ; this simulates the action of a heat ba
of two-level atoms.

Justification of the use of the diffusion approximatio
requires fulfillment of the condition that the transition ener
be small compared with the characteristic scale for varia
of the distribution function. In particular, it requires th
D«!Te ,Ta .

Stationary drainage equation and boundary condition
We assume that the diffusion of an electron along the ene
axis as a result of collisions with atoms and with electro
takes place independently. Then the kinetic coefficients
Eq. ~1! are the sums of the corresponding quantities, and
equation for the distribution function takes the form

G5~ Ãa1Ac! f ~«!2~Ba1Bc!d f~«!d«5const.

Introducing a function which characterizes the deviat
of the recombination distribution from the Boltzmann dist
bution

F~«/Te!5 f ~«!/ f B~«/Te!,

and using the principle of detailed balance fore2e ande2a
collisions

Ãc~«! f B~«/Te!2Bc~«!d fB~«/Te!/d«50,

Ãa~«! f B~«/Ta!2Ba~«!d fB~«/Ta!/d«50,

we have
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dx 11Bc /Ba f B~x!Ba~11Bc /Ba!

wherex52«/Te andu5Te /Ta .
We write the boundary conditions in the form

limx→`F(x)50, limx→0F(x)51. They reflect the fact tha
the distribution should go over to the Boltzmann distributi
at small electron binding energies and that it should be m
smaller than the Boltzmann distribution at large binding e
ergies. These boundary conditions correspond to the ste
state drainage of electrons from the continuum to tigh
bound states. The time for establishment of the distribut
function corresponding to stationary drainage is of the or
of the time between Coulomb collisions~for further details,
see Refs. 1–3, and 14!.

DISTRIBUTION OF ELECTRONS ALONG THE ENERGY AXIS
AND RECOMBINATION RATE IN THE BINARY-
COLLISION MODEL

Starting equation.Using concrete expressions for th
diffusion coefficients, we can bring Eq.~1! into the form

dF~x!

dx
1F~x!

12u

11m~x!/c1
1

const•x2ex

11m~x!/c1
50,

where the parameter

c15
1

2p3/2

D«2s0

e4L

Na

Ne

characterizes the ratio between the rates of Coulomb c
sions and inelastic collisions of electrons with atoms. Sin
this equation is linear, it is simple to write down its solutio
in quadratures. However, the corresponding integral exp
sions are not convenient for obtaining concrete results. I
simpler to analyze limiting cases and to perform direct n
merical integration of the differential equation in the inte
mediate region.

Limiting cases.When c1→0, neglecting the inelastic
collisions with atoms, we have the familiar expressions
the distribution function and the recombination flux13,14

f c~x!5 f B~x!

3F E
x

`

dzz2 exp~2z!/m~z!G Y
F E

0

`

dzz2 exp~2z!/m~z!G ,
uGcu5

4

5.004

25/2p3/2

9

e10L

Ame

Ne
2

Te
9/2

.

The distribution function is approximated to within a
accuracy no poorer than 5% by the expression

f c~x!5
p3/2

4
d

11x10.476x210.0657x3

x5/2
,

which gives correct asymptotic behavior. Whenc1→`, ne-
glecting the Coulomb collisions, we can obtain~compare
Refs. 6 and 7!

13A. N. Tkachev and S. I. Yakovlenko
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f a~x,u!5
p3/2
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d

212ux1u2x2

2x5/2
,

uGau5
21/2p1/2

3

e6s0D«2NeNa

AmeTa
3Te

3/2
.

Calculation results.As the results of the calculation
show~Fig. 1!, in cases in which neither the Coulomb nor t
inelastic collisions can be neglected, the distribution funct
lies between the limiting expressions presented above.
resultant recombination flux can be represented in the fo

G5Gc@11c1u3j~c1 ,u!#, ~3!

where the functionj(c1 ,u) describes the transition regio
for the recombination rate~Fig. 2!.

DISTRIBUTION OF ELECTRONS ALONG THE ENERGY AXIS
AND RECOMBINATION RATE IN THE MODEL OF
ANOMALOUS DRIFT

Microfield distribution.It was conjectured in Ref. 1~see
also Refs. 2 and 3! on the basis of the results of numeric
simulation that a quasisteady-state distribution of electr
~for G50) differing from the equilibrium Boltzmann distri
bution can arise. It forms because the mobility and diffus
coefficients of an electron along the energy axis do not o

FIG. 1. Distribution functions of particles with respect to the total ene
for the model with fulfillment of the principle of detailed balance:1,5—
limiting cases of the absence and predominance of inelastic collisi
2–4—calculation forc150.1, 0.3, and 1, respectively.

FIG. 2. Dependence of the fraction of the recombination flux due to ine
tic collisions on the coefficient characterizing the efficiency of the inela
collisions.u51 ~1!, 2.5 ~2!, and 5~3!.
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In this case there is anomalous electron drift along the ene
axis: it is anomalously directed~from the region of electrons
with negative energies into the region of positive energi!
and anomalously strong~it exceeds the Coulomb drift!. On
the basis of approximate arguments we obtained an exp
sion for the ‘‘microfield’’ distribution function

f f~y!5
2C

Ap H Ayexp~2y!, y.ad1/3,

C3 exp~C1y1C2y2/2!, uyu<ad1/3,

C4 exp~by/d1/3!, y,2ad1/3,
~4!

which takes into account the anomalous drift along the
ergy axis. Here

C15@2111/~2ad1/3!1b/d1/3#/2,

C25@2111/~2ad1/3!2b/d1/3#/~2ad1/3!,

C35a1/2d1/6 exp@2ab1/3~11C11C2ad1/3/2!#,

C45a1/2d1/6 exp@ab2ab1/3~112C1!#,

C21512~2/Ap!g~3/2,ad1/3!1~2C3 /Ap!

3E
2ad1/3

ad1/3

exp~C1y1C2y2/2!dy

1~2C4d1/3/bAp!exp~2ab!,

wherea51.5 andb50.4 are coefficients, whose numeric
values are selected such that the microfield distribution fu
tion would describe the results of the numerical calculatio
most faithfully.

Starting equation.On the basis of the expressions for th
kinetic coefficients obtained in Refs. 6 and 7~see also Ref.
3!, the equation for the diffusion of an electron along t
energy axis under the action of plasma microfields and
elastic collisions with two-level atoms can be written in t
following form

d f~x!

dx
1 f ~x!

a~x!

b~x!
1

const

b~x!
50,

where

a~x!5
b

d1/3
1c18S 5

2Ax
2Axu D , b~x!511c18Ax

are the dimensionless mobility and diffusion coefficients;

c185
4

0.75•3p

D«2s0

e4

Na

Ne

is a parameter which characterizes the efficiency of the
elastic collisions; and the solution should transform into
microfield distribution whenc18→0.

The boundary conditions are determined from the con
tion that the distribution function sought be small compar
with the Boltzmann distribution at large binding energies,
well as from the condition for matching with the microfie
distribution at small binding energies:

s;

s-
c
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lim
x→`

f ~x!/ f B~x!50, lim
x→ad1/3

f ~x!5 f f~ad1/3!.

Calculation results.Analytical expressions for the case
of predominance of the Coulomb interaction and inelas
collisions were presented in Refs. 3,6, and 7. Here we s
consider only some results of the numerical calculations.
the calculation results show~Fig. 3!, in the case of the mi-
crofield distribution function a ‘‘tail’’ appears at negativ
energies due to the inelastic collisions. However, the form
the distribution of the electrons in the tail differs significan
from the form which would be observed when the princip
of detailed balance holds. When anomalous drift takes pl
the drop in the distribution function with increasing bindin
energies is, of course, significantly steeper. In this model
recombination flux is a function of three parameters and
be represented in the form

uG f u5Ne~2Te /me!
1/2~e2/Te!

2h~c18 ,u,d!.

As the efficiency of the inelastic collisions increases,
recombination flux increases monotonically~Fig. 4!.

A comparison with the data from the MPD simulation6,7

shows that the traditional model based on theories of bin

FIG. 3. Distribution functions of particles with respect to the total ene
for the model with anomalous drift for a plasma with the paramet
d50.11 andu52.5: 1—case of the absence of inelastic collisions;2,3 cal-
culation for the collision ratesc1850.1 and 0.2;4,5—limiting distributions
for the model with fulfillment of the principle of detailed balance. Points
results of the MPD simulation in Ref. 3~see also Ref. 6! for a plasma with
the parametersd50.11,u52.5, andc18'0.1.

FIG. 4. Dependence of the recombination rate~for the model with anoma-
lous drift! on c18 for d50.11 andu51 ~1!, 1.5 ~2!, 2.5 ~3!, 5 ~4!.
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not account for the form of the distribution obtained in t
calculations~Fig. 3!.

CONCLUSIONS

The results of the present work are consistent with
concept reviewed in Refs. 1–3. The essential points of
concept are as follows. The translational and positional
grees of freedom in a system of Coulomb particles mix
an anomalously long time in comparison with the situati
which would be observed if relaxation of the bound sta
were described by binary Coulomb collisions. On the ba
of the known entropy conservation law for Hamiltonian sy
tems, it would be natural to conclude that relaxation to
state of statistical equilibrium in a dynamic system tak
place only in the presence of external~with respect to the
dynamic equations! stochastic disturbances. Translation
degrees of freedom are unstable with respect to external
turbances; therefore, even small errors in the numerical
culation lead to the establishment of a Maxwellian distrib
tion. At the same time, the establishment of equilibriu
between free and bound states for classical Coulomb
ticles does not correspond to the theories of binary Coulo
collisions1! and the applicability of the principle of detaile
balance in the transitional formulation in the present cas

The simulation of both a system of classical Coulom
particles protected from stochastic disturbances and a sy
that is subjected to external stochastic disturbances sh
that there is anomalous electron drift along the energy axi
is possibly caused by collective plasma oscillations.5 The
occurrence of anomalous drift leads to the formation o
metastable state of a classical Coulomb plasma.

1!As was shown in Refs. 5 and 6~see also Refs. 2 and 3!, the discrete nature
of the bound states promotes predominance of the role of binary collis
for light Coulomb particles.
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Sputtering of gold by krypton ions in the inelastic region of energy loss

he
G. I. Akap’ev, A. N. Balabaev, N. A. Vasil’ev, S. V. Latyshev, V. M. Nazarov,a) A. R.
Piuto, I. V. Rudsko , and Yu. N. Cheblukov

Institute of Theoretical and Experimental Physics, 11725 Moscow, Russia
~Submitted November 11, 1996!
Zh. Tekh. Fiz.68, 134–135~January 1998!

The sputtering coefficient of gold was determined experimentally as a function of the incident
krypton ion energy in the inelastic region of energy loss. It is shown that this dependence
does not differ from that predicted by the cascade theory. The work was carried out using the U-
400 cyclotron beam at the Joint Institute for Nuclear Research, Dubna. ©1998 American
Institute of Physics.@S1063-7842~98!02701-9#

It was shown for the first time in Ref. 1 that the coeffi- leaves the metal and will contribute to the sputtering. T
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cient of sputtering of metals by multiply charged ions, f
which the inelastic energy loss (dE/dx)e is considerably
greater than the elastic loss in atomic collisions, differs fr
that predicted by the cascade theory. The sputtering co
cient S of coarse-grained gold by 5.5 MeV/nucleon uraniu
ions was found to be (1262) atoms/ion. An estimate ofS
for this uranium ion energy, allowing only for elastic inte
actions, givesS;1. This experimental result provided th
stimulus for a more thorough investigation of the sputter
of metals in the inelastic range of energy losses using he
ion beams in the U-400 cyclotron at JINR, Dubna.

Here we report the experimentally determined dep
dence of the sputtering coefficientS of gold on the energyE
of the incident krypton ions~see Fig. 1!. This dependence
was obtained by collecting the sputtered gold using a spe
target consisting of many alternating layers of gold, carb
and aluminum foils. The carbon foils collected the sputte
gold atoms and the aluminum foils were used to vary
krypton ion energy. The gold foils, 0.2mm thick, were an-
nealed beforehand in a vacuum furnace at 400 °C to el
nate any intergranular structure. This design allowed us
determine the sputtering coefficient of gold at various kry
ton ion energies during a single exposure of the target
monoenergetic beam. The quantity of sputtered gold at
carbon collectors was determined by activation analysis
Faraday cup was positioned behind the target to measur
quantity of ions transmitted by the multilayer target. Duri
the experiment the target was heated to;200 °C to clean
the surface of the gold foils.

According to a model proposed earlier to describe
sputtering of a metal by fast multiply charged ions,2 a hot
electron gas with a temperature of 20–25 eV, which exce
the ionization potentials of the lattice ions, forms near the
trajectory. At the metal–vacuum interface, as a result of
high pressure inside the hot electron gas the spatial distr
tion of the electrons differs from the ion density profil
which leads to the formation of an electric double layer.
surface metal ion which has zero binding energy abov
certain critical temperature of the electron gas2 is accelerated
by the double layer without being confined by the restor
force. If a surface ion located in a hot spot has time to
quire an energy higher than the binding energy during co
ing of the electron gas to the critical temperature, the
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sputtering process therefore has a threshold nature. Usin
results of Ref. 2, it can be shown that for;100 MeV kryp-
ton ions, the threshold value of the inelastic loss in gold
(dE/dx) t'2.1 keV/Å. The energy loss of;100 MeV kryp-
ton ions in gold (dE/dx)e'2.7 keV/Å ~Ref. 3! exceeds the
threshold value. It can be seen from Fig. 1 that the exp
mental dependence shows no deviation from the casc
theory. In the particular energy range studied the kryp
ions ~see Fig. 1! have similar parameters to fission fragmen
so that the sputtering coefficient of gold by fragments can
be influenced by the inelastic loss, as was suggested by
authors of Refs. 2 and 4 when comparing the theoret
sputtering coefficient with the experimentally measur
value.

In our view, the energy dependence of the sputter
coefficient of gold by 100–500 MeV uranium ions, whe
the energy loss (dE/dx)e increases abruptly and is quite a
preciable, must be determined experimentally to estab
definitively how the sputtering process of metals is infl
enced by the inelastic energy loss. This experiment is sch
uled using the U-400 cyclotron beam at JINR.

The authors would like to thank Yu. Ts. Oganesyan a
V. A. Shchegolev for support of the experiments, and Yu.
Yavlinski� for discussions of the results.

FIG. 1. Sputtering coefficient of gold versus incident krypton ion energ
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Magnetic properties of an amorphous microconductor in the microwave range

n-
S. A. Baranov
~Submitted December 20, 1996!
Zh. Tekh. Fiz.68, 136–137~January 1998!

The frequency dispersion of the magnetic permeability is taken into account in a calculation of
the impedance of an amorphous microconductor. Possible methods of measuring the
magnetic parameters are analyzed, and the main characteristics of an amorphous microconductor
in the microwave range are described. ©1998 American Institute of Physics.
@S1063-7842~98!02801-3#
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the magnetic permeabilitym are needed to develop absor
ing screens in the microwave range~see Ref. 1, for example!.
As far as we are aware, a cast amorphous microconduct
a unique material because, as a result of the natural fe
magnetic resonance in the frequency range up to 10 G
~Refs. 2–4!, composites based on this material possess a
dio absorbing property.5

Note that becausem has a resonant character2–8 in this
frequency range, model calculations of radio absorbing m
dia which neglect the frequency dispersion cannot really
applied to composites based on a cast amorphous micro
ductor. The present study is confined to questions of m
surement of the magnetic characteristics of an amorph
microconductor.

An important difference when allowance is made for t
dispersion is that an expansion is obtained for the elec
and magnetic fields in a long cylindrical section of t
microconductor:9

E
H→(

n

An

Bn
f n,k~r ,f!,

f n,k~r ,f!5e6 infJn~kr !, ~1!

whereJn(x) is a Bessel function,r ,f are cylindrical coordi-
nates, andk is the wave vector, which tends to the followin
value9 in the case under study, i.e., for the mode of unifo
precession of the natural ferromagnetic resonance:

k→~11 i !/d, ~2!

whered is the skin layer depth.
Unlike the dispersion-free case when only one mode

ists and the wave impedance is expressed by7

Z15constk
J0~krc!

J1~krc!
, ~3!
TABLE I.
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ductor, in our case we have

Z5(
n

Zn , ~4!

where

Zn;constk
Jn21~krc!

Jn~krc!
. ~5!

The magnetic permeability is not an additive quanti
but for each mode we can introducemn which, according to
the method proposed in Ref. 7, may be calculated num
cally using the equation

dmn

dt
'

2mn

2t2nt22nmn

~6!

~the boundary conditions and choice of roots are deriv
from physical reasoning7,9!.

Specific calculations show that we can only confine o
selves tom1 (n51) for a fairly thick (r c;5 mm! micro-
conductor. Note that modes withn.1 are attenuated mor
rapidly in a waveguide. Standard VSWR meters are not g
erally suitable for measuring the parameters of natural fe
magnetic resonance in thin microconductors, since ifr c&d,
the microconductor is ‘‘transparent’’ for the field.

The reflectometric method proposed in Refs. 6 and 7
another fundamental limitation. When allowance is made
dispersion at a frequency close to those of the maximum
the imaginary part of the magnetic permeabilitym9, the real
partm8 tends to zero. This necessitates taking account of
reactance of the conductor–waveguide contact which c
tributes to the systematic error. Without giving the equiv
lent circuit ~see Ref. 10, for example!, we merely observe
that in this case
width,

122f Physics
Characteristics of Resonance frequencies Imaginary part of magnetic Estimated half-
amorphous alloy GHz permeability at resonance GHz

Iron-based alloy 7–10 23102–103 0.5–2
Alloy of cobalt and iron
in the ratio 5/2 6–3.5 2–53102 1–2
Alloy of cobalt and iron
in the ratio 6/1.5 up to 3 1.5–33102 2
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(T andR are the transmission and reflection coefficients! and
the moduliuTu and uRu are not sufficient to calculateZ, but
we need to know the phase betweenR andT. However, an
estimate of the imaginary part of the magnetic permeab
for a thick microconductor is more accurate in this method
measurement~as was noted in Refs. 4 and 8!.

Table I gives characteristics of the magnetic proper
of amorphous microconductors in the natural ferromagn
resonance range, which may be used in radio absorbing
terials.
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Asymptotic fractality and the anomalous transport of particles having finite velocity

V. V. Ucha kin

Ulyanovsk State University, 432700 Ulyanovsk, Russia
~Submitted January 22, 1997!
Zh. Tekh. Fiz.68, 138–139~January 1998!

A generalized time-dependent transport equation is obtained for particles whose free motion has
a finite velocity, which includes ‘‘Le´vy flights’’ and the effect of ‘‘traps.’’ It is shown that
as a result of allowing for the finite velocity, the asymptotic~with respect to time! distribution of
a particle walking in one dimension has a fractal nature only when the power-law tails of
the mean-free-path distributions and particle residence times in the trap have the same exponents.
© 1998 American Institute of Physics.@S1063-7842~98!02901-8#

Studies of the chaotic behavior of dynamical systems The authors of Ref. 8 consider formula~5! to be ‘‘ . . . a
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have provided the impetus for the development of a n
branch of transport theory — anomalous diffusion
‘‘strange kinetics.’’1–4 The main difference between anom
lous transport and normal transport is that the particle m
free pathsj ~‘‘Lé vy flights’’ ! have a power-law distribution

p~j!;aj0
aj2a21, j→`, 0,a,2 ~1!

and the analysis includes temporal residence of the par
in a state of rest~‘‘traps’’ !, also having a wide power-law
distribution

q~t!;bt0
bt2b21, t→`, 0,b,2. ~2!

When the first effect predominates, we talk of superd
fusion and in the opposite case, we talk of subdiffusion. T
authors of Refs. 5–8 considered integral equations
anomalous transport, whereas the authors of Refs. 9–12
lyzed equations in fractional derivatives. Both approac
neglect the particle transit time between collisions, i.e.,
velocity of the free particle motion is assumed to be infini
In this approximation, the one-dimensional symmetric wa
ing, fractal in space and time (a,1 andb,1), is given by
@formula ~58! in Ref. 8#

^uxu&5E
2`

`

uxuc~x,t !dx;consttb/a, t→`, ~3!

where c(x,t) is the coordinate distribution of a particl
walking along thex axis at timet, having been created a
time t50 at the pointx50.

However, formula~3! is inaccurate, since fora,1 the
absolute first-order moment is infinite as a result of condit
~1!. The result obtained in Ref. 8 can be correctly formula
if formula ~57! from that study is expressed in the form

c~x,t !;
1

m~ t !
C~a,b!S x

m~ t ! D , t→`, ~4!

where

C~a,b!~x!5
1

~2p!2i
E

c2 i`

c1 i`

duE
2`

`

dq
Bub21

Bub1Auqua
eu2 iqx,

m~ t !5tb/a. ~5!
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basic result that provides extensive opportunities for disc
sion . . . ’’ ~p. 154!. Here we show that allowance for the finit
velocity of the particle motion between collisions signi
cantly alters the situation.

We assume that a particle is created at the origin at t
t50 in state 0~trap! with the probabilityp0 or in state 1
~flight with the velocityv5Vv, v5const) with the probabil-
ity p1, and we assume that the angular distributions of p
ticles created in state 1 and particles leaving the traps are
same and equal toW(V)

E W~V!dV51

Following the logic of the derivation of the time
dependent integral equation in normal transport theory~see
Ref. 13!, under the assumptions made here we arrive at
following equation for the spatial distribution density of
walking particle at timet:

c~r ,t !5E
0

`

dt8Q~ t8!F0~r ,t2t8!

1v21E dr 8P~r 8!F1~r2r 8,t2r 8/v !, ~6!

F0~r ,t !5E dr 8p~r 8!F1~r2r 8,t2r 8/v !1p0d~r !d~ t !,

~7!

F1~r ,t !5E
0

`

dtq~t!F0~r ,t2t!1p1d~r !d~ t !, ~8!

where

Q~ t !5E
t

`

q~t!dt, p~r !5@W~r /r !/r 2#p~r !,

P~r !5@W~r /r !/r 2#E
r

`

p~j!dj.

It can be confirmed that for exponential distributio
p(j) and q(t) this result agrees with the usual singl
velocity theory of delayed neutron transport, whereas fov
→` it yields the known integral equations of anomalo
diffusion.1,5,8,12

12424-02$15.00 © 1998 American Institute of Physics



For a one-dimensional symmetric walk along thex axis

rm
th
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he

We note in passing that allowance for the finite particle
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d
d

with the direction vectorex , we have

W~V!5~1/2!@d~V2ex!1d~V1ex!#. ~9!

Substituting Eq.~9! into Eqs. ~6!–~8! and integrating
over the transverse coordinatesy andz, we can easily obtain
an equation for the one-dimensional density

c~x,t ![E E c~x,y,z,t !dydz.

Adopting the same procedure as in Ref. 8, i.e., perfo
ing a Fourier–Laplace transformation with respect to
variablesx and t, using distributions~1! and ~2!, and con-
verting to the asymptotic formt→`, we obtain an analog o
expression~4! for walking with the finite velocityv:

c~x,t !;t2b/aCv
~a,b!~xt2b/a,tb/a21!, ~10!

where

Cv
~a,b!~x,t !5

1

~2p!2i
E

2`

`

dqE
c2 i`

c1 i`

du

3
Bub211v21~qj0!a21U@ut/~vq!#

Bub1~qj0!aV@ut/~vq!#
eu2 iqx,

B5G~12b!t0
b , U~z!5E

0

`

x2a cosxe2zxdx,

V~z!5E
0

`

x2a~sin x1z cosx!e2zxdx.

It is easy to see that forv→` this result has the form
~4!–~6!, but when the particle velocity is finite, the sel
similar behavior of the distribution~10! can only be obtained
for equal exponentsa5b, when

c~x,t !;t21Cv
~a,a!~xt21,1!.

Only in this case can we talk of the fractal nature of t
anomalous walks, at least in the sense of a monofractal.
125 Tech. Phys. 43 (1), January 1998
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velocity under normal diffusion conditions does not alter t
self-similar character of the asymptotic form of the spat
distribution,

c~x,t !;
1

At
FS x

At
D , t→`,

F~x!5
1

A2p^j2&/^t1j/v&
expH 2

x2

2^j2&/^t1j/v&
J .
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Influence of electron irradiation of the NOVER-1 vacuum resist on its resistance to ion-

t

beam etching
Yu. I. Koval’ and V. T. Petrashov
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Russian Academy of Sciences, 142432 Chernogolovka, Moscow District, Russia
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The influence of electron irradiation on the resistance of the NOVER-1 resist to ion-beam
etching is studied. Etching is carried out by argon ions with energies between 300 and 2500 eV.
It is found that, depending on the energy and angle of incidence of the ions on the surface
of the resist, electron irradiation may either speed up or slow down the NOVER-1 etching. A clear
correlation is observed between the penetration depth of the ions in the resist and the
influence of the electron irradiation on the resistance of the resist to etching. At ion energies
higher than 500 eV~ion penetration depth*3.5 nm! the resistance decreases, passes through a
minimum at low electron irradiation doses, and returns to the etching rate of the initial
resist at high doses. For glancing etching angles (;70° to the surface normal! and low ion energies
~300 eV!, i.e., small ion penetration depths (&2.5 nm!, an electron-irradiated resist is etched
more slowly than the initial resist at all the electron irradiation doses studied. This effect may be
used to enhance the resistance of resist structures whose height exceeds their width, which
in this case is determined mostly by the rate of etching of the inclined facets. ©1998 American
Institute of Physics.@S1063-7842~98!03001-3#

One of the important characteristics of resists is theirenhance their masking properties.5 The behavior of the resis
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resistance to ion-beam etching. It is known that polymer
sists have a relatively low resistance to ion-beam etch
and this is a serious disadvantage when these resists are
as etching masks. Thick resists can be used to satisfy
resistance requirements but for submicron and particul
nanometer dimensions, an increase in the thickness of
resists leads to a deterioration in the resolution of the lith
raphy and therefore is unacceptable in practice. In addit
thick masks give rise to various well known deleterious
fects such as sputtering, the formation of grooves around
perimeter of structures caused by retroreflection of ions fr
the high walls of the resist, and a substantial difference in
resistance of structures of different sizes as a result of
faceting effect~see, e.g., Ref. 1!.

The possibility of improving the resistance of resists h
been considered on many occasions,2–4 but our understand
ing of the mechanisms responsible for the etching of polym
materials is clearly inadequate to enable a specific searc
be carried out. At present, it can be confidently asserted t
in many respects, the low resistance of resists is cause
the nature of the polymer materials, and that ion-beam e
ing of polymers does not involve physical sputtering but it
also largely determined by radiation-stimulated processe
the subsurface layer of material.5

The influence of different types of radiation on the res
tance of resists to ion-beam etching may also provide in
mation on the etching mechanisms of polymer materi
Thus, a study of the influence of electron irradiation on
resistance of materials to ion-beam etching seems to be
gently required. In addition, electron irradiation of the stru
tures in a resist is of practical interest. For instance, it
been shown that electron irradiation of structures in an e
tronic resist such as polymethyl methacrylate~PMMA! can
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under heating during ion-beam etching also improved, a
the influence of faceting diminished.

For our investigations we selected the NOVER-1 res
~negative organic vacuum e-beam resist!. NOVER-1 was de-
veloped as a resist for electron-beam lithography capabl
performing an entirely dry vacuum cycle — deposition, e
posure, development, and etching. It has been shown in
cent studies that in addition to the advantages character
of a vacuum resist~the possibility of uniform deposition on a
surface of complex topology, the absence of any contact w
developer fluids, and the possibility of avoiding contact b
tween the samples and air!, NOVER-1 has a high resolution
~better than 30 nm! and forms continuous stable films les
than 30 nm thick.6,7

In our experiments a resist around 0.3mm thick was
deposited by thermal evaporation from a boat at 150 °C. T
substrates were Si wafers. Electron irradiation was car
out in a BS-300 relativistic electron machine with a pr
grammed beam control system. The electron energy wa
keV and the beam current 300 pA. Sections of dimensi
15320 mm were exposed to doses between 331023 and
931021 C/cm2. The resist was then etched with 300–25
eV Ar1 ions in an ion-beam etching system.8 A difference
between the rates of ion-beam etching of the unirradiated
irradiated regions resulted in the formation of a relief on t
Si surface. After the resist had been completely removed
etching, the difference in heightDh between the unirradiated
and irradiated regions was measured using an optical in
ferometer. The Si etching depthh0 in the sections unpro-
tected by the resist was also measured. The resistance o
resist was defined as (h02Dh)/h0. This method can be use
to obtain experimental points for the same sample at
same ion energy under known identical conditions of ex

12626-03$15.00 © 1998 American Institute of Physics
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FIG. 1. Thickness of the resist film~1! and
the resistance to ion-beam etching~2–5!
versus the electron irradiation dose. Etc
ing was carried out along the normal to th
surface of the resist using 2500~2!, 500
~3!, and 300 eV~4! ions and at an angle of
70° relative to the normal to the surface a
500 eV ~5!.
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As a result of the electron irradiation, the thickness

the film decreases negligibly~curve1 in Fig. 1!. The kinetics
of the decrease in thickness is described by the logarith
dependenceH(D)5H0(12A ln(11D/D0)), whereH0 is the
initial thickness of the resist,A andD0 are parameters, an
D is the electron irradiation dose. It is known that the d
crease in thickness is a consequence of radiation dam
The low-molecular fragments formed leave the resist and
cavities are filled with surrounding molecules which reduc
the volume of the material~in our case, the thickness of th
resist!. Estimates made using a method proposed in Re
show that the radiation yieldge of gas formation in
NOVER-1 per atom forming part of the volatile fragments
0.45 atoms per 100 eV of absorbed energy. A compari
with other resists suggests that NOVER-1 has a relativ
high resistance to radiation damage~for example,ge512 for
PMMA!.

The rate of ion-beam etching of organic materials cor
lates with their resistance to radiation damage. This is
cause resists are etched as a result of the simultaneous a
of physical sputtering processes and the formation of wea
bound low-molecular fragments, which may be desorb
Thus, the high resistance to radiation damage is one re
for the relatively high resistance of NOVER-1 to ion-bea
etching. For instance, for 300 eV, 500 eV, and 2500 eV io
the rate of etching is 19 nm/min, 38 nm/min, and 97 nm/m
respectively, for an ion current density of 1 mA/cm2.

Since the resist under study is a negative, damage u
electron irradiation is dominated by cross linking process
At high irradiation doses the resist is converted into
strongly cross-linked hydrocarbon network in which the fo
mation of weakly bound fragments is less likely in ion-bea
etching, and enhanced resistance to ion-beam etching c
be expected. However, the experiments have shown tha
influence of electron irradiation on the resistance to io
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etching conditions — by the energy and angle of inciden
of the ions.

For ion-beam etching by 2500 eV ions the etching res
tance decreases by;30% at doses higher than 331022

C/cm2, reaching a plateau in the range 531022–431021

C/cm2. A further increase in the preliminary electron irradi
tion dose increases the etching resistance almost to the in
state. A similar dependence is observed for the 500 eV io
However, the dependence does not have a plateau nea
minimum, the etching resistance decreases by only;20%,
and begins to increase from substantially lower do
(631022 C/cm2). When the ion energy is reduced to 30
eV, no minimum is observed and the etching resistance
creases monotonically with increasing electron irradiat
dose. Finally, for etching by 500 eV ions at an angle of 7
to the normal to the surface of the sample, the etching re
tance is more than doubled, reaching saturation in the d
range of 631022 C/cm2.

Thus, for this resist, the dependence of the resistanc
ion-beam etching on the electron irradiation dose clearly c
relates with the ion penetration depth. For etching at an an
of 70°, 500 eV ions penetrate to a depth of less than 1
and a substantial increase in the etching resistance is
served. Normally incident 300 eV ions penetrate to a grea
depth — around 2.5 nm, and the etching resistance of
resist increases as before, but substantially less. When
ion penetration depth equals 3.5 nm~500 eV ions!, the etch-
ing resistance begins to vary nonmonotonically, and unl
the previous cases, it decreases in a certain range of d
This behavior is observed most clearly for 2500 eV ion
whose penetration depth is greater than 7 nm. In this c
the range of electron irradiation doses in which the etch
resistance decreases becomes substantially greater, and
teau appears on the curve, as has already been discuss

In spite of the correlation observed between the beha
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of the etching resistance of the resist and the ion penetration
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1Plasma Processing for VLSI, edited by N. G. Einspruch and D. M. Brown,
Vol. 8 of VLSI Electronics@Academic Press, New York, 1984; Mir, Mos-

cl.

g.

i-
depth, the available data are insufficient to explain the
served dependences. However, the observed effect ma
used to strengthen masks of the NOVER-1 resist with sm
structure dimensions~less than the thickness of the resist!. In
this case, the etching resistance of the resists is mainly
termined by the etching resistance of the facets at the e
of the structure, whose normals are at 60–70° to the be
The possibility of more than doubling the etching resistan
of the structure edges more than doubles the etching re
tance of the masks. In addition, strengthening the walls
reduce the drift of the dimensions for structures with dime
sions of the order of or greater than the thickness of the re
films.
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ERRATA
Erratum: Atomic structure of silver clusters on silicon †Tech. Phys. 67, 1429–1432
„December 1997 …‡

M. V. Gomoyunova, I. I. Pronin, and N. S. Faradzhev

A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
Zh. Tekh. Fiz.68, 144 ~January 1998!

@S1063-7842~98!03201-2#

On pages 1430–1432 the planes$110% and$111% should In Sec. 3, Results and discussion, the phrase ‘‘low-
ea

he
x

instead read$111% and $110%, respectively.
In Sec. 2,Experimental techniques, 6 lines up from the

bottom of p. 1429, the sample dimensions should r
2231430.25 mm rather than 223430.25 mm.
129 Tech. Phys. 43 (1), January 1998 1063-7842/98/0101
d

temperature atomic planes’’ in the sixth line up from t
bottom of the right-hand column should read ‘‘low-inde
atomic planes.’’

Translated by Steve Torstveit
12929-01$15.00 © 1998 American Institute of Physics



Parameters for the inclined-path sensing of molecular hydrogen in the atmosphere

by lidar with a YAG:Nd laser

G. V. Laktyushkin, V. E. Privalov, and V. G. Shemanin

Baltic State Technical University, 198005 St. Petersburg, Russia
~Submitted December 16, 1996!
Zh. Tekh. Fiz.68, 20–22~January 1998!

The lidar equation for the vibrational backscattering of neodymium laser radiation and its
harmonics by hydrogen molecules is solved numerically. Inclined paths in the atmosphere are
investigated with the aim of selecting the transmitter wavelength for detecting the lowest
concentrations of hydrogen. ©1998 American Institute of Physics.@S1063-7842~98!00401-2#

YAG:Nd laser radiation, especially its second, third, and
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fourth harmonics, is widely used in remote sensing syste
and permits the generation of pulses with a duration of 10
and energies from 1 to 100 mJ at pulse repetition rates
high as 50 Hz. The radiation at the third and fourth harm
ics of such a laser can be used for the remote sensin
molecular hydrogen in the atmosphere by a Raman lid1

Therefore, it would be interesting to numerically solve t
lidar equation for the vibrational Raman backscattering of2

molecules for a YAG:Nd laser and inclined paths in the
mosphere at a distance of 6 km and an altitude of 6 km
the purpose of selecting the wavelength of a Raman l
transmitter for detecting the smallest possible concentra
of hydrogen.

We write the equation for Raman backscattering, as
Ref. 2, in the form

P~l,R!5P0~l0!KDRA2T~l0!T~l!S ds

dV DNaiR22, ~1!

whereP(l,R) is the power of the Raman scattering signal
the photodetector at the wavelengthl arriving from a dis-
tanceR, P0(l0) is the power of the laser at its wavelengt
K is the lidar constant,DR is the spacing with respect to th
distance,A2 is the area of the receiving telescope,T(l0) and
T(l) are the transmission of the atmosphere at the wa
lengths of the laser radiation and the Raman backscatte
signal, respectively, (ds/dV) is the differential cross sectio
for the vibrational Raman scattering of the molecule un
investigation,Na is the concentration of the molecules, a
R is the distance to the sensing point.

The wavelengths of the Raman scattering bands of
H2 molecules investigated were calculated for differe
wavelengths of laser radiation from the formula

lRH51S 1

l0
2 ñ D , ~2!

where ñ is the frequency of the eigenmodes of H2, and are
presented in the fourth column in Table I.

Following Ref. 1 and replacing the angular frequencyv
by the wavelengthl, we can determine the differential cros
section for vibrational Raman backscattering from t
formula

16 Tech. Phys. 43 (1), January 1998 1063-7842/98/01
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5
l4@12exp~2hc/lkT!#

H aj 1
45

n j J , ~3!

wherebj is the amplitude of the zero-point vibrations of th
j th mode,gj is its degree of degeneracy, 3aj andn j are the
trace and the anisotropy of the tensor of the derivative of
polarizability of the molecule with respect to the normal c
ordinategj , T is the vibrational temperature of the molecul
k and h are Boltzmann’s and Planck’s constants, resp
tively, andc is the speed of light.

Leaving only the dependence onl, we can rewrite Eq.
~3! in the form

S ds

dV D
j

5A/l4, ~4!

where the constantA is determined from the known value o
the cross section of a H2 molecule for the emission wave
length of a nitrogen laser l05337.1 nm, viz.,
(ds/dV) j58.7310230 cm3/sr, which is presented in the las
row of Table I. The constant obtained equa
1.13065310217 cm2nm4.

The cross section values obtained for the laser wa
lengths selected are presented in the second column of T
I. Henceforth, for the specific case of our lidar the const
K1 depends on the spectral sensitivityjn(l) of the photo-
multiplier photocathode as

K15K2jn~l!. ~5!

The remaining multipliers in Eq.~1! have the following
values: DR57.5 m for the measurement timetd550;
A250.008 m2; K250.495 for a wavelength of 532 nm~the
measurement result!; the energy of a laser pulseE05100 mJ;
the sensing distanceR51,2,3,4,5, and 6 km; and the altitud
H52,3,4,5, and 6 km. The values of the spectral sensitiv
of the FÉU-79 and FE´ U-140 ~FÉU-124! photocathodes in
the ultraviolet region were taken from Ref. 3, and their re
tive values are listed in the sixth column of Table I. Th
transmission of the atmosphere was calculated, as in Re
using the formula

T~l,R!5expF2E
0

R

k~l!dRG ~6!

from the values of the attenuation factork, which were taken
from Ref. 4 and are presented in the third and fifth colum

1616-03$15.00 © 1998 American Institute of Physics
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TABLE III. Results of calculations of the minimum power that can be
detected by a lidar for wavelengths of Raman scattering bands of hydrogen

km.

TABLE I. Values of the differential cross sections, wavelengths of the
Raman scattering bands of hydrogen molecules, attenuation factors of the
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of Table I for the wavelengths of interest to us. The variat
of the attenuation factor with the altitudeH was taken into
account in accordance with the data in Ref. 4, which w
approximated by a function of the form

k~H !5k~0!exp~20.79H !. ~7!

Using the parameters presented above, we performed
merical calculations of the Raman backscattering power
the basis of Eq.~1! for the wavelengths selected and a las
pulse energyE05100 mJ in the range of sensing distanc
from 1.0 to 60 km with variation of the altitude also from 1
to 6.0 km for the purpose of finding the optimum waveleng
for detecting a very small concentration of hydrogen m
ecules. The results of the calculations for the waveleng
that we selected are presented in Table II. It follows from
that increasing the angle of inclination of the sensing path~or
its altitude! leads to a decrease in the Raman scatte

atmosphere, relative spectral sensitivity of the photomultiplier, and spe
brightness of the background solar radiation calculated for the wavelen
of the second, third, and fourth harmonics of a YAG:Nd laser and wa
lengths of the Raman scattering bands (n54161 cm21).

l, nm
(ds/dV)•1030,

cm/sr k, km21 lKR , nm k, km21 jp(l)
Sb•103,
W/m•sr

532 1.40 0.16 683.2 0.145 0.25 7.9
355 7.07 0.31 416.5 0.21 0.52 12.4
266 22.41 0.785 299.1 0.45 0.30 6.0
337.1 8.7 392.7

TABLE II. Results of calculations of the Raman backscattering power o

2 molecules for wavelengths of harmonics of a YAG:Nd laser with a pu
energy of 100 mJ, a sensing distance of 1–6 km, an altitude of 1–6 km,
a concentration of molecules equal to 1020 cm23.

R, km

1.0 2.0 3.0 4.0 5.0 6.0

H, km l, nm P, nW

0.0 683.2 7696 1426 469.7 195.5 92.79 47.7
416.5 65900 9888 2643.0 891.1 342.30 142.
299.1 58060 4224 545.6 88.5 16.77 3.3

1.0 683.2 1931 358 117.9 49.05 23.28 11.9
416.5 16530 2481 663.1 223.60 85.89 35.8
299.1 14570 1060 136.9 22.21 4.21 0.8

2.0 683.2 1031 191.1 62.9 26.19 12.43 6.4
416.5 8828 1325.0 354.1 119.40 45.86 19.1
299.1 7779 565.9 73.1 11.86 2.25 0.4

3.0 683.2 776 143.7 47.33 19.70 9.35 4.8
416.5 6640 996.3 266.30 89.79 34.49 14.3
299.1 5851 425.6 54.98 8.92 1.69 0.3

4.0 683.2 682 126.3 41.59 17.31 8.22 4.2
416.5 5835 875.5 234.00 78.91 30.31 12.6
299.1 5141 374.0 48.31 7.84 1.48 0.3

5.0 683.2 643 119.1 39.22 16.32 7.75 4.0
416.5 5502 825.6 220.70 74.41 28.59 11.9
299.1 4848 352.7 45.56 7.39 1.40 0.2

6.0 683.2 626 116.0 38.19 15.90 7.54 3.8
416.5 5358 803.9 214.90 72.46 27.83 11.6
299.1 4721 343.4 44.36 7.20 1.36 0.2
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power, which, however, is smaller than in the case of sens
on a horizontal path without variation of the spectral dep
dence of the multipliers appearing in the lidar equation~1!.
As the distance is increased, the Raman scattering po
decreases by almost four orders of magnitude in the ra
from 1 to 6 km, but when the altitude is increased to 6 k
this decrease amounts to only 14 fold. This difference
attributed to the strong influence of the absorption of
laser radiation in the layer of the atmosphere near
ground. An analysis of these results shows that the use
laser operating at the third harmonic with a wavelength
355 nm is optimal, since it provides the maximum value
the Raman backscattering power for the molecules inve
gated in this range of distances and altitudes.

However, these calculations were performed for the c
of the absence of background illumination or for precisi
sensing. Since the solar background radiation has a st
influence on the Raman scattering power detected by a li
we performed calculations of the background power in
photodetectorPb(l,R) and examined the influence of th
background illumination on the potential capabilities of
lidar. The value of the spectral brightness of the solar rad
tion for different dates during the year, times of day, a
weather conditions were taken from Ref. 5. The conditio
for a bright sunny day were chosen as the severest condit
for lidar operation, and the data in Refs. 1,6, and 7 were u
~because of the uncertainty regarding the orientation of
telescope axis relative to the direction to the sun! to construct
the spectral distribution of the background radiationS0(l),
whose values are presented in the last column of Table I
the wavelengths selected. Using these values ofS0(l) and
the equation

molecules, sensing distances from 1 to 6 km, and altitudes from 1 to 6

R, km

1.0 2.0 3.0 4.0 5.0 6.0

H, km l, nm Pm , fW

0.0 683.2 81.52 17.74 6.85 3.35 1.86 1.13
416.5 248.09 50.32 18.15 8.28 4.29 2.42
299.1 54.55 8.70 2.46 0.88 0.36 0.14

1.0 683.2 40.81 8.89 3.43 1.68 0.93 0.56
416.5 124.39 25.21 9.09 4.14 2.13 1.21
299.1 27.36 4.36 1.24 0.42 0.18 0.08

2.0 683.2 29.83 6.50 2.50 1.23 0.68 0.41
416.5 91.0 18.39 6.64 3.03 1.57 0.88
299.1 20.0 3.19 0.90 0.32 0.13 0.06

3.0 683.2 25.89 5.63 2.18 1.06 0.59 0.34
416.5 78.74 16.09 5.76 2.62 1.36 0.58
299.1 17.36 2.76 0.76 0.28 0.11 0.05

4.0 683.2 24.30 5.28 2.04 1.00 0.55 0.34
416.5 73.53 15.02 5.41 2.47 1.27 0.72
299.1 16.26 2.59 0.73 0.27 0.10 0.05

5.0 683.2 23.56 5.11 1.98 0.97 0.54 0.33
416.5 71.69 14.56 5.24 2.39 1.26 0.70
299.1 15.73 2.52 0.71 0.26 0.10 0.05

6.0 683.2 23.27 5.07 1.95 0.96 0.53 0.32
416.5 70.77 14.33 5.11 2.36 1.22 0.69
299.1 15.56 2.48 0.70 0.25 0.10 0.05
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Pb~l,R!5Sb

TABLE IV. Results of calculations of the minimum detectable concentrations of H2 molecules with a lidar for
wavelengths of harmonics of a YAG:Nd laser, sensing distances from 1 to 6 km, and altitudes from 1 to 6 km.

18 Tech. Phy
R, km

1.0 2.0 3.0 4.0 5.0 6.0

H, km l, nm NA , cm23

0.0 683.2 1.131015 1.231015 1.531015 1.731015 2.131015 2.431015

416.5 3.831014 5.131014 6.931014 9.331014 1.331015 1.731015

299.1 9.431013 2.131014 4.531014 9.931014 2.231015 4.231015

1.0 683.2 2.131015 2.531015 2.931015 3.431015 4.031015 4.731015

416.5 7.531014 1.031015 1.431015 1.931015 2.531015 3.431015

299.1 2.031014 4.131014 9.131014 1.931015 4.331015 9.531015

2.0 683.2 2.931015 3.431015 4.031015 4.731015 5.531015 6.431015

416.5 1.031014 1.431015 1.931015 2.531015 3.031015 4.631015

299.1 2.631014 5.631014 1.231015 2.731015 5.831015 1.331016

3.0 683.2 3.331015 3.931015 4.631015 5.431015 6.331015 7.531015

416.5 1.231015 1.631015 2.231015 2.931015 3.931015 4.031015

299.1 3.031014 6.531014 1.431015 3.131015 6.531015 1.531016

4.0 683.2 3.531015 4.231015 4.931015 5.831015 6.731015 8.031015

416.5 1.331015 1.731015 2.331015 3.131015 4.231015 5.731015

299.1 3.231014 6.931014 1.531015 3.431015 6.831015 1.731016

5.0 683.2 3.731015 4.331015 5.131015 5.931015 7.031015 8.331015

416.5 1.331015 1.831015 2.431015 3.231015 4.431015 5.831015

299.1 3.231014 7.131014 1.631015 3.531015 7.131015 1.831016

6.0 683.2 3.731015 4.431015 5.131015 6.031015 7.331015 8.331015

416.5 1.331015 1.831015 2.431015 3.331015 4.431015 5.631015

299.1 3.331014 7.231014 1.631015 3.531015 7.431015 1.931016
~l!T~l,R!K2jn~l!A2V~R!Dl ~8!
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@V(R) is the solid angle of the field of vision of the recei
ing telescope, andDl is the spectral width of the receptio
channel#, which is similar to the equation in Ref. 7, we ca
culated the values of the background powerPb(l,R) for our
case. Assuming, as in Ref. 1, a minimum permissible sig
to-noise ratio (S/N) equal to 1.5, as in Ref. 1, we can dete
mine the minimum powerPm that can be detected by a lida
according to the equation

Pm5~S/N!Pb~l,R!. ~9!

The calculation results obtained are presented in Ta
III. A comparison of these results with the data in Table
allows us to conclude that the largest excess of the Ra
scattering power above the background level was obta
for the wavelengths of 266 and 355 nm over the entire ra
of distances and altitudes. A 10 MW laser operating at th
wavelengths permits the detection of the concentrations
H2 molecules listed in Table IV. It should be noted that t
values of the minimum detectable concentrations increase
all the wavelengths by a factor of 3–4 as the altitude
varied from 0 to 6 km and by a factor of 2.2 for 523 nm,
s. 43 (1), January 1998
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the range of distances from 1 to 6 km selected. A minim
concentration of 0.431013 cm3 is provided by fourth-
harmonic radiation at a distance of 1 km.

Thus, the results obtained demonstrate the possibility
the optimum choice of the wavelength of laser radiation
sensing molecular hydrogen in a required concentration
inclined paths in the atmosphere at an assigned distance
consideration of the background conditions.
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Instability of the flat surface of a magnetic fluid in a cylindrical cavity in the presence of

a vertical magnetic field

V. M. Korovin and A. A. Kubasov

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted January 19, 1996!
Zh. Tekh. Fiz.68, 23–30~January 1998!

The problem of a magnetic liquid which completely fills a vertical cylindrical cavity in an
undeformable horizontal layer of a magnet having the same magnetic properties as the liquid is
considered. The entire system is immersed in a uniform vertical magnetic field. in a linear
formulation of the problem an approximate solution in the form of series is obtained for the
evolution of an initial small deviation of the free surface of the liquid from its flat
equilibrium shape. An experiment is performed which shows that the initially flat free surface
takes on a stable domed shape as the field strength is increased~from zero! and that a
further increase in the field in a certain restricted range leads to the formation of an annular
corrugation. The structures observed, which are the result of the nonlinear stage in the development
of the initial perturbation, are qualitatively similar to the first two modes of the solution
obtained. ©1998 American Institute of Physics.@S1063-7842~98!00501-7#
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The instability of the free surface of a nonviscous ma
netic liquid in a fairly strong orthogonal magnetic fiel
which was discovered and first investigated about 30 ye
ago,1,2 is one of the best-known surface phenomena cha
teristic of magnetic liquids. The experimental study and l
ear analysis of the influence of a vertical magnetic field
the stability of the initially flat, free surface of a magnet
liquid occupying the lower half space in Ref. 1 prompt
both an investigation of this question within complicated fo
mulations based on the linearized equations
ferrohydrodynamics3 and the study of the appearance a
reorganization~as the field is increased! of the periodic hex-
agonal structure on an initially flat, unbounded surface o
magnetic liquid in a nonlinear formulation~see, for example
the references cited in Refs. 2 and 4!.

In this paper we investigate the instability of the flat fr
surface of a magnetic liquid occupying a vertical cylindric
cavity in a horizontal undeformable layer of a magnet, who
magnetic permeability is equal to the permeability of t
liquid, due to a uniform vertical magnetic field. Unlike th
previous studies, here the influence of the vertical wal
taken into account approximately in the theoretical analy
This factor imposes a condition on the surface that the n
mal component of the velocity vanishes during developm
of the initial perturbations, which ultimately leads to destru
tion of the original hydrostatic state of a liquid with a fl
free surface. An approximate solution of the problem of
development of an initial perturbation of the shape of
free surface is obtained analytically in a linear formulatio
the first two modes exhibit a qualitative similarity to th
structures observed in our experiment.

EQUILIBRIUM STATE

A magnetic liquid~Fig. 1!, which completely fills a ver-
tical cylindrical cavity1 of radiusa in a horizontal layer of a
magnet2 with undeformable boundaries, whose magne
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vertical magnetic fieldH` , is considered. A nonmagneti
vertical wall 3 is located above the layer of the magn
strictly along the boundary of the cavity. The liquid is co
fined from below by a nonmagnetic plate4, which is in close
contact with the magnet, while the upper surface of the liq
is free. The depth of the liquid is equal to the thicknessd of
the layer. In the case where the contact angleQ formed by
the liquid in contact with the material of the vertical boun
ary is equal top/2, the free surface is obviously horizonta
In the general case there is a meniscus5 near the wall due to
the capillary rise of the liquid wetting the wall.

Following the reasoning used in Quincke’s classic
problem2 to justify the neglect of the menisci near two fl
vertical magnetic pole shoes that are parallel to one ano
and are partially immersed in a reservoir containing a m
netic liquid, we shall consider a cavity of sufficiently larg
radius so that the bending of the free surface due to capil
rise would be manifested only in an annular region tha
narrow compared witha and is adjacent to the wall. In view

FIG. 1.

1919-08$15.00 © 1998 American Institute of Physics



of the small size of this region it will henceforth be ne-
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glected, and it will be assumed that the free surface of
liquid is flat and lies at the same level as the upper bound
of the magnet.

Utilizing the solution of the problem of the shape of th
free surface of a liquid which is in a gravitational field and
contact on one side with a vertical flat wall,5 in the cases of
QÞ0 andQÞp/2 we can easily write~within an order of
magnitude, i.e., without consideration of the influence of
meniscus on the distribution of the magnetic field! the con-
dition for applicability of such an approach

@2B0
21~12sin Q!#1/2tan Q!1,

where B05rga2/a is the Bond number,a is the surface
tension,r is the density of the liquid, andg is the accelera-
tion of gravity.

Within the assumptions made the magnetic fieldH0 is
uniform both in the liquid and within the layer of the magne
Assuming that the functionm5m(H) is known, we can eas
ily expressH0 in terms ofH` on the basis of the condition o
continuity of the normal component of the inductio
B05mH0 on the horizontal boundaries of the region occ
pied by the liquid and the magnet.

We introduce the cylindrical coordinate systemr ,q,z,
whosez axis is directed vertically upward and whosez50
plane coincides with the free surface of the motionless m
netic liquid and the upper surface of the layer of the magn
Owing to the uniformity of the induction, the strong influ
ence of the magnetic field on the liquid is effected in the c
under consideration only by the surface ponderomotive fo
localized at the liquid–air interface, i.e., the magnetic pr
sure according to the terminology in Ref. 2. Using the eq
tion of hydrostatics and the condition of continuity of th
normal stress on the liquid–air interface, we obtain, as in
case of an ordinary liquid, the linear variation of the press
p0 with the depth

p05pa1
m0

2
M0

22rgz, M05
1

m0
B02H0 . ~1!

Herepa is the pressure of the air near the free surface of
liquid, andm04p31027 H•m21 is the magnetic constant.

It is known2 that physical realization of the hydrostat
state of a layer of a magnetic liquid extended in horizon
directions with a flat free surface in the presence of an
thogonal magnetic field requires that the magnetizationM0

be smaller than a critical value. In the case under consi
ation, of course, the critical magnetization differs from t
value calculated in Refs. 1 and 2.

FORMULATION OF THE STABILITY PROBLEM

Assuming that the liquid is nonviscous, we obtain a l
ear formulation of the problem of the stability of a hydr
static state H0, p0 with a flat free surface~1!. Let
z5h(r ,q,t) be the equation of the free surface of the liqu
in the presence of standing waves of small amplitude, wh
t denotes the time. Introducing the potential of a small p
turbation of the magnetic fieldh5(r ,q,z,t)5Dc, we write
the magnetic fields, the induction, and the magnetization

20 Tech. Phys. 43 (1), January 1998
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caused by the waves, respectively, in the form

H5D~H0z1c!, B5B01b, M5M01m,

H j5D~H`z1c j !; j 51,2,

where the index 1 refers to the field in the regionz.h, and
the index 2 refers to the regionz,2d.

We also represent the distribution of the pressure in
liquid in the presence of a waveP5p01p in a similar man-
ner. With accuracy to within small first-order quantities, w
have

H2H05
]c

]z
, M2M05x t

0 ]c

]z
, x t

05
dM

dH U
H5H0

,

m5xc
0D2c1x t

0 ]c

]z
az , xc

05
M0

H0
,

b5mc
0D2c1m t

0 ]c

]z
az , mc

05
B0

H0
, m t

05
dB

dH U
H5H0

,

D25
]

]r
ar1

1

r

]

]q
aq ,

wherear , aq , andaz are unit vectors along the respectiv
coordinate axes.

When m5m(H), in the case under consideration th
magnetic forcem0MDH, as well as the motion of the liquid
are related to potentials. Introducing the velocity poten
v5Dw, from the continuity equation we have

¹2
2w1

]2w

]z2
50, ¹2

25
]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]q2
. ~3!

Using~2!, from the linearized equation of motion we ca
easily obtain a linearized Cauchy–Lagrange integral, wh
can be used to calculate the perturbation of the pressurep,

p52r
]w

]t
1m0M0

]c

]z
. ~4!

The distribution of the potential of the perturbation
the magnetic field is described by the Laplace equation
the region occupied by the liquid and the layer of the ma
net, from the equations of magnetostatics with considera
of ~2! we obtain

¹2
2c1

1

s2

]2c

]z2
50, s5Amc

0

m t
0
>1, ~5!

while outside of this region we have

¹2
2c j1

]2c j

]z2
50; j 51,2. ~6!

The linearized kinematic and dynamic conditions on t
free surface of the liquid with consideration of~2! and~4! are
written in the following manner

z50:
]h

]t
5

]w

]z
, ~7!

20V. M. Korovin and A. A. Kubasov



z50: r
]w

1rgh2a¹2h2m0M
]c

50. ~8!
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]t 2 t 0 ]z

The last term in the dynamic condition~8! represents the
perturbation of the surface ponderomotive force due to
deformation of the free surface caused by the waves.

We impose a condition that the normal component of
velocity must vanish on the impermeable cavity boundar

r 5a, 2d<z<0:
]w

]r
50, ~9!

0<r<a, z52d:
]w

]z
50. ~10!

In the approximation under consideration the continu
conditions of the magnetic field potential and the norm
component of the induction on the horizontal interfaces
tween the magnetic and nonmagnetic media have the fo

z50: c2c15M0h for 0<r ,a,

c5c1 for a,r ,`,

z50: m t
0 ]c

]z
5m0

]c1

]z
for 05r ,`,

z52d: c5c2 ,

m t
0 ]c

]z
5m0

]c2

]z
for 0<r ,`. ~11!

Of course, physical meaning is attached only to the
lutions of Eqs.~5! and ~6! which ensure fulfillment of the
conditions

uc~0,q,z,t !u,`, uc j~0,q,z,t !u,`; j 51,2,

Dc→0, Dc j→0 for r 21z2→`.

We assume that in the initial moment in time a nonfl
shape is assigned to the free surface and that the liquid
a state of rest:

h~r ,q,0!5 f ~r ,q!, w~r ,q,z,0!50. ~12!

To simplify the further mathematical manipulations, it
expedient to rewrite the dynamic condition~8! on the free
surface. Differentiating~8! with respect to time, with consid
eration of kinematic condition~7! and Laplace equation~3!
we obtain

z50: r
]2w

]t2
1rg

]w

]z
1a

]3w

]z3
2m t

0M0

]2c

]t]z
50. ~13!

Thus, in the linear formulation the development of t
initial perturbation~12! is described by Laplace equation
~3!, ~5!, and~6!, whose solutions must satisfy boundary co
ditions ~7!, ~9!–~11!, and~13!.

APPROXIMATION SOLUTION

In the problem under consideration the magnetic and
drodynamic fields influence one another because of the
ditions for matching of the functions sought on the free s
face. Its shape is known only att50, and it is subject to

21 Tech. Phys. 43 (1), January 1998
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initial moment, when the shape of the boundaries separa
the magnetized and unmagnetized media is known ev
where, calculating the magnetic field perturbation caused
deformation of the free surface of the liquid is a compl
task. The possibility, in principle, of obtaining a solution fo
it is associated with the use of numerical methods.

Although discussing the computational algorithm is n
our purpose, let us assume that there is an iteration me
for calculating the functions sought at anyt based on their
systematic calculation in the regions

Di5$0<r ,a, 0<q<2p, 2`,z,`%,

De5$a,r ,`, 0<q<2p, 2`,z,`%,

which have a common boundaryG in the form of a cylindri-
cal surface of radiusa, on which, of course, the normal com
ponent of the induction and the field potential are contin
ous. When the first approximation is calculated inDi , we
assume that

z5a:
]c

]r
50,

]c1

]r
50,

]c2

]r
50. ~14!

It should be noted that these boundary conditions co
spond to the case of ideal conductivity of the medium inDe ,
into which the magnetic field introduced inDi at t50 does
not manage to penetrate within the characteristic time for
development of waves on the free surface. Such a schem
approach is widely used in problems of magnetic hydro
namics.

A calculation of the functionsc, c1, andc2 in Di using
~14! gives the values ofcuG , c1uG , andc2uG on theDi side,
which are then employed as the boundary conditions atG for
calculatingc, c1, andc2 in De . After finding these func-
tions in De , we can calculate the values of]c/]r , ]c1 /]r ,
and ]c2 /]r at G on theDe side and use them to find th
second iteration inDi . This process is then repeated.

Within the proposed approach the first step on the way
calculating the functions sought inDi can be implemented
using the Fourier method. We set

w~r ,q,z,t !5F~r ,q!Y~z!S~ t !,

c~r ,q,z,t !5c~r ,q!Z~z!T~ t !, ~15!

c j~r ,q,z,t !5c j~r ,q!Zj~z!Tj~ t !; j 51,2.

After substituting expressions~15! into Laplace equa-
tions ~3!, ~5!, and~6! and separating the variables, we hav

¹2
2F1k2F50, ¹2

2c1k0
2c50,

¹2
2c j1kj

2c j50; j 51,2, ~16!

Y92k2Y50, Z92k0
2Z50,

Zj92kj
2Zj50; j 51,2. ~17!

With consideration of the condition that the perturb
tions vanish asuzu→`, from Eqs.~17! we find
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Y5a1 exp~kz!1a2 exp~2kz!, Z15c1 exp~2k1z!,
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ts

ce

set
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nts:
Z5b1 exp~k0z!1b2 exp~2k0z!, Z25c2 exp~k2z!.

As a result of the substitution of expressions~15! into
boundary conditions~9! and ~14!, we have

r 5a:
]F

]r
50,

]c

]r
50,

]c j

]r
50; j 51,2. ~18!

The solution of the original initial-boundary problem ca
be constructed in the form of series in the eigenfunctions
the two-dimensional Helmholtz equations~16! in analogy to
the case of the vibrations of a round membrane. It sho
however, be noted that, in contrast to the case of a memb
clamped along its edge,6 the eigenvaluesk2, k0

2, k1
2, andk2

2 of
problems~16! and~18! can be expressed in terms of the roo
¸n,m , n50,1,2, . . . ;m51,2, . . . of theequationsJn8(x)50,
whereJn(x) is a Bessel function of the first kind:

kn,m
2 5S ¸n,m

a D 2

; n50,1,2,. . . ; m51,2, . . . . ~19!

The set of rootş n,m is denoted byQ. Each eigenvalue
~19! corresponds to two eigenfunctions

v1,n,m~r ,q!5Jn~kn,mr !cosnq,

v2,n,m~r ,q!5Jn~kn,mr !sin nq.

Assuming that the initial perturbation of the free surfa
~12! at r 5a satisfies the condition] f /]r 50, we expand
f (r ,q) in a series in the eigenfunctions:

f ~r ,q!5(
n,m

Fn,m~r ,q!,

where

Fn,m~r ,q!5An,mv1,n,m~r ,q!1Bn,mv2,n,m~r ,q!,

An,m5iv1,n,mi22E
0

2pE
0

a

f ~r ,q!v1,n,m~r ,q!rdrdq,

Bn,m5iv2,n,mi22E
0

2pE
0

a

f ~r ,q!v2,n,m~r ,q!rdrdq,

iv2,n,mi25iv1,n,mi25E
0

2pE
0

a

v1,n,m
2 ~r ,q!rdrdq

5
pa2

2
«nS 12

n2

¸n,m
2 D Jn

2~¸n,m!,

«n5H 2 for n50,

1 for nÞ0.
~20!

Taking into account the initial conditions~12!, expan-
sion ~20!, and the form of the solutions of equations~17!, we
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h~r ,q,t !5(
n,m

Fn,m~r ,q!cos~vn,mt !,

w~r ,q,z,t !5(
n,m

Fn,m~r ,q!@a1,n,mexp~kn,mz!

1a2,n,m exp~2kn,mz!#sin~vn,mt !,

c~r ,q,z,t !5(
n,m

Fn,m~r ,q!@b1,n,m exp~kn,mz!

1b2,n,m exp~2kn,mz!#cos~vn,mt !,

c1~r ,q,z,t !5(
n,m

Fn,m~r ,q!c1,n,m

3exp~2kn,mz!cos~vn,mt !,

c2~r ,q,z,t !5(
n,m

Fn,m~r ,q!c2,n,m

3exp~kn,mz!cos~vn,mt !. ~21!

Here aj ,n,m , bj ,n,m , and cj ,n,m ( j 51,2) are arbitrary con-
stants, andvn,m denotes the permissible frequencies of t
standing waves, which are to be determined in the cours
solving the problem. After substituting expressions~21! into
the conditions~7!, ~10!, and ~11! for matching of the func-
tions on the interfaces between the media, we arrive a
system of algebraic equations with respect to the consta

a1,n,m2a2,n,m52
vn,m

kn,m
,

exp~2kn,md!a1,n,m2exp~kn,md!a2,n,m50,

b1,n,m1b2,n,m2c1,n,m5M0 ,

sm t
0~b1,n,m2b2,n,m!1m0c1,n,m50,

exp~2skn,md!b1,n,m1exp~skn,md!b2,n,m

2exp~2kn,md!c2,n,m50,

sm t
0@exp~2skn,m ,d!b1,n,m2exp~skn,md!b2,n,m#

2m0exp~2kn,md!c2,n,m50.

Hence we find

a1,n,m52
vn,m

2kn,m

exp~kn,md!

sinh~kn,md!
,

a2,n,m52
vn,m

2kn,m

exp~2kn,md!

sinh~kn,md!
,

b1,n,m5
m0

2tn,m
M0~m01sm t

0!exp~skn,md!,

b2,n,m52
m0

2tn,m
M0~m02sm t

0!exp~2skn,md!,
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c 52
s

m0M @m cosh~sk d!
tn,m5sinh~skn,md!@m0

21~sm t
0!2#

ions
1,n,m tn,m
t 0 0 n,m

1sm t
0 sinh~skn,md!#,

c2,n,m5
m0s

tn,m
m t

0M0 exp~skn,md!,
m

y
an

i-
y

e

12sm0m t
0 cosh~skn,md!.

When these equalities are taken into account, the express
for potentials~21! take the form
the
w~r ,q,z,t !52(
n,m

vn,m

kn,m

cosh@kn,m~z1d!#

sinh~kn,md!
Fn,m~r ,q!sin~vn,mt !,

c~r ,q,z,t !5m0M0 (
n,m

m0 sinh@skn,m~z1d!#1sm t
0 cosh@skn,m~z1d!#

sinh~skn,md!@m0
21~sm t

0!2#12sm0m t
0 cosh~skn,md!

Fn,m~r ,q!cos~vn,mt8!

c1~r ,q,z,t !52sm t
0M0 (

n,m

sm t
0 sinh~skn,md!1m0 cosh~skn,md!

sinh~skn,md!@m0
21~sm t

0!2#12sm0m t
0 cosh~skn,md!

Fn,m~r ,q!exp~2kn,mz!cos~vn,mt !,

c2~r ,q,z,t !5sm0m t
0M0 (

n,m

Fn,m~r ,q!exp@kn,m~z1sd!cos~vn,mt !#

sinh~skn,md!@m0
21~sm t

0!2#12sm0m t
0 cosh~skn,md!

.

When the series representingw and c are substituted 7, always includes a single element which minimizes

ith

a
to
into the transformed dynamical condition~13!, which has not
yet been used, we obtain a dispersion relation, which can
utilized to calculate the permissible frequencies:

vn,m
2 5tanh~kn,md!H f kn,m2

skn,m
2

r

3
m0m t

0M2
2@m01sm t

0 tanh~skn,md!#

2sm0m t
01tanh~skn,md!@m0

21~sm t
0!2#

1
a

r
kn,m

3 J .

~22!

Thus, when all the defining parameters of the proble
exceptM0, are fixed as functions ofM0, each of the permis-
sible frequenciesvn,m is either a real or a purely imaginar
quantity. In the former case the flat free surface is stable,
in the latter case it is unstable. It follows from~22! with
consideration of~19! that the critical value of the magnet
zation of the liquidM* , above which the onset of instabilit
occurs, is specified by the formula

M* 5 min
¸n,mPQ

H rga

m0m t
0

11B0
21¸n,m

2

s¸n,m

3
2sm0m t

01tanh~ss¸n,m!@m0
21~sm t

0!2#

m01sm t
0 tanh~ss¸n,m!

J 1/2

,

s5
d

a
.

It is not difficult to see that the countable setQ of roots,
of which a fairly representative group was presented in R
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right-hand side of this expression. In the case of a liquid w
a linear magnetization law, we have

s51, m t
05m, M05H`~12m r

21!, m r5m/m0 ,

so that the critical value of the external magnetic fieldH` is
specified by the expression

H *̀ 5 min
¸n,mPQ

F rga

m0

m r~11B0
21¸n,m

2 !

¸n,m~m r21!2

3
2m r1~11m r

2 tanh!~s¸n,m!

11m r tanh~s¸n,m! G 1/2

. ~23!

This formula, which, of course, does not claim to be
quantitative definition of the critical field, can be used
estimate it.

FIG. 2.
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EXPERIMENT

An experiment was carried out in the context of t
problem considered here for the purpose of comparing
theoretical representation ofh(r ,q,t) expressed by the firs
equality in~21! with the physically observed evolution of th
shape of the free surface of a magnetic liquid asH` is in-
creased.

The experimental setup is shown schematically in Fig
A cylindrical cell containing a magnetic liquid1, into which
a thin-walled nonmagnetic cylindrical insert2 was lowered
coaxially to the cell to the entire depth of the liquid, w
placed in solenoid3. The surface of the magnetic liquid wa
illuminated by a beam of light rays created by light source4

FIG. 3.

FIG. 4.

24 Tech. Phys. 43 (1), January 1998
e

.

and diffuser5 and was photographed by camera6. Axial
illumination in a scheme utilizing a beam splitter,8 which is
labeled by the number7 in Fig. 2, was employed.

A magnetic liquid for which r5992 kg/m3,
a52.731022 N/m, andm r51.23 was employed in the ex
periment; the radius of the insert wasa51.8531022 m, the
radius of the cell was 3.331022 m, and the depth of the
layer of the liquid wasd5631023 m. The Bond number for
these values of the defining parameters isB05123, and the
critical field calculated from formula~23! is H *̀ 536.57
kA/m. As can be seen from Fig. 3, the minimizing element
the set of roots is theņ3,3511.3459. All the values of̧ n,m

for which 0<n<10 and 1<m<5 were used to construct th
plot in Fig. 3.

Figure 4 presents a downward view of the surface of
liquid in the absence of a magnetic field. In this figure1 is
the wall of the cell,2 is the wall of the cylindrical insert,3 is

FIG. 5.

FIG. 6.

24V. M. Korovin and A. A. Kubasov
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the capillary meniscus, and4 ~the bright circular area! is the
flat part of the free surface. The bright ring between the w
of the cell1 and the wall of the insert2 corresponds to the
depression on the surface of the liquid between the men
i.e., the dark rings near the walls.

Figure 5 shows the free surface forH`59.31 kA/m. The
number4 in it marks the relatively flat~in comparison to the
meniscus next to the wall of the insert! part of the free sur-
face, which has the form of a bright ring. It is followed in th
direction leading to the center of the cell by a rise5 of the
free surface caused by the magnetic field~the dark ring!,
which gives way to relatively flatter central portion6 ~the
bright spot!. Thus, in a magnetic field the free surface to
on a domed shape rising with distance from the wall of
insert. It should be stressed that the structure shown in F
is the result of the nonlinear stage of development of
instability.

Figure 6 shows the free surface forH`511.78 kA/m. A
comparison of Figs. 5 and 6 reveals that increasing the m
netic field causes a depression to form in the central por
of the dome that had been observed in the lower fi
H`59.31 kA/m. The incline7 ~the dark ring! and the rela-
tively flat bottom of the depression8 ~the central bright spot!
are labeled in Fig. 6. As a whole, the surface structure
arises has the form of an annular corrugation.

A further increase in the field leads to the formation
more complicated surface structures, whose shape dep
on the azimuthal angle. Figure 7 presents the free surface
H`513.77 kA/m as an example. For technical reasons
was the highest value of the magnetic field strength used
before, in this figure the bright regions correspond to re
tively flat portions of the free surface.

The structures presented in Figs. 5 and 6 are qua
tively similar to the first ~Fig. 8a! and second~Fig. 8b!
modes of the representation~21! of the free surface, which
correspond to the rootş0,153.8317 anḑ 0,257.0156. In the
former case the critical field~for the respective mode! equals
46.75 kA/m, and in the latter case it equals 38.5 kA/m. T

FIG. 7.

25 Tech. Phys. 43 (1), January 1998
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structure shown in Fig. 7 exhibits some qualitative similar
to the mode containingJ4(k4,1r )cos4q and J4(k4,1r )sin4q,
for which ¸4,155.3174 andH *̀ 541.49 kA/m. Level lines of
this mode are shown in Fig. 8c, in which elevated areas
marked by plus signs and depressions are marked by m
signs, the latter being separated from one another by ra
nodal lines.

CONCLUSIONS

It follows from the approximate solution of the proble
of the stability of an initially flat free surface of a magnet
liquid filling a vertical cylindrical cavity in a flat horizona
layer of a magnet under the action of a vertical magne

FIG. 8.
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Onset of turbulence in open liquid flows as a nonequilibrium noise-induced second-

an
order phase transition
P. S. Landa

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted June 10, 1996!
Zh. Tekh. Fiz.68, 31–39~January 1998!

It is shown that there is a profound analogy between the transition to turbulence in open liquid
flows and the noise-induced excitation of oscillations of a pendulum with a randomly
oscillating pivot. It is significant that this analogy is based not on the similarity of the equations
describing these processes, but on the generality of the laws of the theory of oscillations.
The existence of this analogy makes it possible to understand and account for numerous
phenomena observed in both numerical simulations and real experiments. Moreover, this
analogy suggests several recommendations to experimenters for achieving a more thorough
suppression of undesirable turbulent pulsations in subsonic jets. ©1998 American
Institute of Physics.@S1063-7842~98!00601-1#

INTRODUCTION tion describes a wave which is periodic in space and has
s

ve
is
o
or
c

ci
a

s
he
un
nc
pl
th
y-
ri
a
ll
is
te

.
o
he
nl
l-

.
n
y
h
ce

rin
tio
nt
xi-

lu

y
or

tu-
the
e-
te
tur-

uto-
an
eld

de-
of a

vari-
cal
ons

ally
in

tory
e as
ries
nce
d
the
e-

ap-
to-
are,
on
to
ns
ill

-

00
Liquid flows in channels are laminar at low flow rate
and become turbulent at high flow rates.1–3 The problem of
the nature of turbulence has attracted the attention of in
tigators for a long time. If the nature of turbulence is d
cussed from the standpoint of the theory of oscillations, m
scientists would classify turbulence as an auto-oscillat
process without always thinking over this question, sin
they employ investigative methods that are suitable spe
cally to such processes. The foundation for such an appro
was laid in the work of Landau,4 according to whose idea
turbulence appears in the following manner. At first, t
equilibrium state corresponding to laminar flow becomes
stable, and auto-oscillations are excited at one freque
Landau wrote a phenomenological equation for the am
tude of these auto-oscillations, which has the form of
well-known abridged van der Pol equation. ‘‘As the Re
nolds number increases further,’’ wrote Landau, ‘‘new pe
ods continue to appear in succession. As to the newly
pearing motions themselves, they have increasingly sma
scales.’’ As a result, according to Landau’s hypothes
multiple-frequency auto-oscillations with incommensura
frequencies, i.e., quasiperiodic motion, are established
phase space such auto-oscillations should correspond t
attractor in the form of a multidimensional torus. When t
number of frequencies is large, such motion differs o
slightly in form from chaotic motion, and, therefore, deve
oped turbulence can be regarded as a random process
spite the fact that Landau’s theory is phenomenological a
in general, does not follow from the equations of hydrod
namics, it has not been challenged for a long time and
been confirmed by almost all investigations of turbulen
Landau’s theory was further developed by Stuart,5–8 who
proposed a method for calculating the coefficients appea
in Landau’s equation on the basis of an approximate solu
of the Navier–Stokes equation. Stuart thereby ‘‘substa
ated’’ Landau’s theory. However, the form of the appro
mate solution assigned by Stuart, viz.,A(«t)exp$i(vt2kx)%,
is incorrect from the physical standpoint. In fact, this so
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assigned wave numberk and an amplitude that varies slowl
with time. Strictly speaking, such a solution is valid only f
an annular flow of lengthL52pn/k, wheren is an integer,
i.e., for a flow with feedback. The solution assigned by S
art does not take into account the convective character of
instability of laminar flow. Nevertheless, even recently, p
riodic boundary conditions along the longitudinal coordina
have been assigned quite often in numerical studies of
bulent flows~see, for example, Ref. 9!.

The opinion that turbulence can be regarded as a
oscillations in a continuous medium, i.e., in a system with
extremely large number of degrees of freedom, was also h
by G. S. Gorelik, as is known from Rytov’s recollections.10

In the nineteen-seventies, an opinion that regards the
velopment of turbulence as the instantaneous appearance
strange attractor in a phase space of several dynamical
ables became popular following the discovery of dynami
chaos.11,12 These ideas were presented in the latest editi
of Fluid Mechanicsby L. D. Landau and E. M. Lifshitz1 and
Statistical Fluid Mechanicsby A. S. Monin and A. M.
Yaglom.2 Since the concept of strange attractors gener
refers only to auto-oscillations, it was tacitly assumed
these books that turbulence is specifically an auto-oscilla
process. On the basis of a representation of turbulenc
auto-oscillations, a group of investigators published a se
of papers on the simulation of the development of turbule
in the form of an infinite chain of unidirectionally couple
oscillators13,14 and on the use of such characteristics as
correlation dimension of an attractor for a quantitative d
scription of turbulent flows.15

It was theorized in Refs. 16–18 that the turbulence
pearing in open liquid flows does not consist of au
oscillations, and all the approaches described above
therefore, not applicable to it. This hypothesis was based
the fact that the instability of the solutions corresponding
laminar flow in such open flows is convective. This mea
that a disturbance appearing at a certain point in a flow w
not grow with time without bound~in the linear approxima-
tion! but will drift downstream. It follows from the proper

2727-08$15.00 © 1998 American Institute of Physics
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in themselves, are not auto-oscillatory but are only amplifi
of disturbances. To make such a system auto-oscillatory
must introduce feedback, for example, by closing the sys
in the form of a ring. Disturbances are unavoidably pres
in all real systems due to both external factors~so-called
technical fluctuations! and internal factors~natural fluctua-
tions!. These disturbances can be included in the equatio
motion of a system as additional random forces, wh
strength in the general case depends on the variables des
ing the state of the system. The forces created by nat
fluctuations in hydrodynamic flows on the basis of t
fluctuation-dissipation theorem were calculated
Klimontovich.19

If the gain of an amplifier is sufficiently small, the pre
ence of fluctuations can be neglected, and it can be assu
that the output signal of the amplifier derives solely from t
input signal. In hydrodynamic flows the gain is genera
fairly large. In this case the presence of fluctuations is
fundamental significance, since, in our opinion, they de
mine the turbulent disturbances observed. Hence it follo
that an approach to the investigation of turbulence~or of
ordinary amplifiers with a large gain! within the theory of
dynamical systems will be inadequate if fluctuations are
taken into account. The amplified fluctuations and nonline
ity in a system can give rise to a phase transition in which
system passes into a qualitatively new state. It can be
sumed that the onset of turbulence characterized by the p
ence of large-scale, highly regular structures against a b
ground of small-scale random motions corresponds preci
to such a transition. In our opinion, application of the theo
of noise-induced phase transitions to the investigation of
bulence may be very fruitful.

NIKITIN’S NUMERICAL SIMULATION AND ITS
INTERPRETATION FROM THE STANDPOINT OF NOISE-
INDUCED PHASE TRANSITIONS

Indirect evidence that the turbulence in open flows is
auto-oscillatory is provided by Nikitin’s numerica
simulation20 of turbulent flow in pipes of finite length. He
investigated flow in a round pipe of radiusR with an as-
signed velocity in the entrance cross section and so-ca
‘‘soft’’ boundary conditions in the exit cross section, whic
were of the form

]2u

]x2
5

]2j

]x2
5

]2h

]x2
.

Here u is the longitudinal component of the flow velocity
and j and h are the radial and angular components of
vorticity V5curlV, whereV is the flow velocity vector in
the cylindrical coordinatesx, r , Q.

The velocity components in the entrance cross sectio
the pipe were assigned in the form

u5u0S 12
r 2

R2D 1ARe~u8~r !e2 ivt!cosQ,

v5ARe~v8~r !e2 ivt!cosQ,
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w5ARe~w8~r !e2 ivt!sin Q,

wherev andw are the radial and angular components of t
flow velocity, respectively;u8(r ), v8(r ), and w8(r ) are
eigenfunctions of the Orr–Sommerfeld equation for an
signed real value of the frequencyv; R is the radius of the
pipe; andA and v are the amplitude and frequency of th
disturbance.

The frequency of the disturbance was chosen
v50.36u0 /R, and the velocityu0 and the pipe radiusR
corresponded to a Reynolds number of 4000. At the ini
time a Poiseuille velocity profile was assigned through
the flow, i.e.,

Vu t505H u0S 12
r 2

R2D ,0,0J .

When the amplitudeA of the disturbance exceeds a ce
tain critical value, random high-frequency pulsations th
cover the entire lower portion of the pipe, beginning at
certain valuex5x0, which depends weakly on the distancer
from the axis of the pipe, appear in the flow after a short ti
interval. The value ofx0 is smaller, the larger is the ampli
tudeA of the disturbance. The appearance of turbulent p
sations is accompanied by significant alternation of the p
file of the longitudinal component of the mean flow velocit
it decreases on the axis of the pipe and increases nea
wall. The instantaneous distributions of the longitudin
component of the velocity in a steady-state regime
A/u050.04 are shown in Fig. 1, which was borrowed fro
Ref. 20. If the amplitudeA of the periodic disturbance is
gradually decreased, below a certain value the turbulent
gion is carried along by the flow, and the flow in the tu
becomes laminar. As we know~see, for example, Ref. 21!,
Poiseuille flow in a round pipe, unlike Poiseuille flow in
flat channel, has the property that laminar flow at any R
nolds number is stable against infinitesimal perturbatio
However, in the case of fairly large Reynolds numbers, s
flow is unstable with respect to disturbances of finite mag
tude. If an attractor corresponding to a turbulent regi
would be present in the system in the absence of the dis
bance, and the role of the disturbance would be reduce

FIG. 1. Instantaneous distributions of the longitudinal velocity compon
in a steady-state regime: a—near the axis of the pipe (r /R50.02), b—near
the wall (r /R50.93).
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only directing phase trajectories into the region of attract
of that attractor, the turbulence should not vanish when
disturbance causing it is removed. Actually, another sit
tion, in which an attractor appears in the presence of
asynchronous disturbance, is also possible, in principle.22,23

In this case it should vanish when the disturbance is
moved. The following arguments against this situation c
be cited: first, it follows from the general theory of the asy
chronous excitation of auto-oscillations22,23 that such a situ-
ation is possible only in a narrow range of paramete
whereas a transition to turbulence was observed by Nik
over a broad range of Reynolds numbers; second, the a
chronous excitation of auto-oscillations is equally possi
both for positive and negative detuning of the excitation f
quency relative to the frequency of the oscillations that ar
while a transition to turbulence was observed only at l
excitation frequencies.

It can be postulated that the observed developmen
turbulence whenA>Acr is attributable to the appearance of
noise-induced phase transition, which leads to the forma
of an induced attractor. The similarity of both the extern
and statistical characteristics of the turbulence appearin
this case to turbulence in a pipe under periodic bound
conditions,9 where there is feedback and auto-oscillations
excited, supports the latter hypothesis. The outward sim
ity is demonstrated in Fig. 2, which was constructed on
basis of Nikitin’s data. If these hypotheses are correct,
role of the periodic disturbance at the pipe entrance in
development of turbulence reduces to only stimulating
phase transition, as will be shown in the next section in
example of a pendulum.

NOISE-INDUCED PHASE TRANSITION IN A PENDULUM
WITH A RANDOMLY OSCILLATING PIVOT

A comparatively simple example of a noise-induc
phase transition that leads to the appearance of undam
random oscillations, which are very reminiscent of turbule
pulsations, was considered in our earlier studies.24,25 The
equation describing the oscillations of a pendulum with
randomly oscillating pivot was investigated analytically a
numerically. If an additive noise is also taken into accou
which was not done in the studies just cited, the equa
takes the form

ẅ12b~11aẇ2!ẇ1v0
2~11j1~ t !!sin w5kj2~ t !, ~1!

FIG. 2. Form of turbulent velocity pulsations in a pipe with periodic boun
ary conditions~a! and in a pipe with an assigned harmonic signal at
entrance~b!.

29 Tech. Phys. 43 (1), January 1998
n
e
-
n

-
n
-

,
n
n-

e
-
e,

of

n
l
in
ry
e
r-
e
e
e
a
e

ed
t

a

t,
n

its equilibrium position; 2b(11aẇ )ẇ is a quantity that is
proportional to the moment of the forces of friction, which
assumed to be nonlinear;v0 is the eigenfrequency of the
small oscillations;j1(t) is the acceleration of the pivot
which is a comparatively broad-band random process wit
nonzero spectral density at 2v0; and kj2(t) is the additive
noise, whose intensity can be varied by varying the coe
cient k.

Let us first discuss the case ofk50. It was shown in
Refs. 24 and 25 that when the intensity of the pivot oscil
tions exceeds a certain critical value, which is proportiona
the coefficient of frictionb, parametric excitation of pendu
lum oscillations occurs, which is manifested by the fact th
the rms deviation of the rotation angle of the pendulum
comes nonzero. Examples of such oscillations and the de
dence of the mean square of the rotation angle of the pen
lum on the ratio of the spectral density of the noise¸(2v0)
to its critical value, which were obtained by numerical
solving Eq.~1!, are presented in Fig. 3. As can be seen fro
the figure, near the excitation threshold the pendulum os
lations have the property of intermittency,1! i.e., the pendu-
lum oscillates about its equilibrium position over long tim
intervals~these are so-called ‘‘laminar’’ phases!; these seg-
ments give way to short spikes~‘‘turbulent’’ phases!. As we
move away from the threshold, the duration of the lamin
phases shortens, and then the duration of the turbulent ph
increases, and the laminar phases disappear completely
result. During this process, the rms deviation of the rotat
angle increases. We note that turbulence also has the p
erty of intermittency in the region of transitional Reynold
numbers~see, for example, Refs. 9 and 26–29!. It is no
accident that researchers specializing in turbulence were
first to consider the theory of intermittency in detail30 and
that the terminology~laminar and turbulent phases! was bor-
rowed from the theory of turbulence.

When an additive noise is present, the excitation thre
old is obliterated, and the dependence ofw2 on
¸(2v0)/¸cr(2v0) becomes smooth. This is demonstrated
Fig. 4a for the case in which the rms deviation of the addit
noise is proportional to that of the multiplicative noise, wi
a proportionality factor equal to 0.05. The weak additi
noise causes intermittency to begin to be observed at in
sities of the multiplicative noise that are smaller than t
critical value in the absence of the additive noise~Fig. 4b!. It
is quite surprising that in this case the pendulum oscillatio
are similar in form to turbulent pulsations in the presence
intermittency. An example of such pulsations in a subso
jet near a nozzle is shown in Fig. 4c.2! We note that if the
intensity of the multiplicative noise is sufficiently high, eve
a very appreciable additive noise has practically no influe
on the form of the oscillations excited~compare Figs. 3c and
4c!.

If there is no additive noise, and the intensity of th
multiplicative noise is less than the threshold value, the
citation of pendulum oscillations can be caused by weak
ditional low-frequency oscillations of the pivot. These osc
lations can be taken into account if we replacej1 by
j11a cosvat in Eq. ~1!, where a and va are quantities

-
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which are proportional to the amplitude and frequency of
additional oscillations of the acceleration of the pivot. In t

FIG. 3. Plots of w(t) and ẇ(t). v051, b50.1, a5100, k50;
k(2)/kcr(2)51.02 ~a!, 1.2 ~b!, and 5.6 ~c!; d—dependence ofw2 on
k(2)/kcr(2). Solid line—w250.01151(k(2)/kcr(2)21).

30 Tech. Phys. 43 (1), January 1998
e

case in which the intensity of the multiplicative noise e
ceeds the critical value, the additional low-frequency sig
increases the intensity of the noise-induced oscillations.
results of the numerical solution of Eq.~1! for two values of
¸(2)/¸cr(2) and various values ofa are presented in Fig. 5
We see that in the case of̧(2),¸cr(2) the excitation of
oscillations exhibits a threshold character asa is increased.
When va50.318 and ¸(2)/¸cr(2)50.51, the threshold
value ofa is equal to 1.1. The dependence of the rms dev
tion of the rotation angle on the difference between the a
plitude of the low-frequency signal and its critical value
nearly linear~Fig. 5d!. Whena.acr , the oscillations excited
are virtually indistinguishable from the oscillations whic
appear only as a result of noise, the intensity being high
the greater is the value ofa. This means that the low
frequency signal stimulates the appearance of a phase
sition and the creation of an induced attractor.

FIG. 4. Dependence ofw2 on k(2)/kcr(2) without an additive noise

~squares! and with an additive noisek2j2
250.05j1

2 ~squares! @solid line—
w250.01151(k(2)/kcr(2)21)# ~a!, dependence of w(t) for

k2j2
250.000125j1

2 andk(2)/kcr(2)50.92 ~b!, pulsations of the longitudinal
component of the flow velocity on the axis of a round subsonic jet a
distance from the nozzle amounting to 0.1 of the nozzle diameter~c!, and

plots of w(t) and ẇ(t) for k(2)/kcr(2)55.6 andk2j2
250.05j1

2 ~d!.
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FIG. 5. Plots ofw(t) and ẇ(t) for v051,
b50.1, a5100, k50, k(2)/kcr(2)50.51,
va50.318, anda51.1 ~a!, 1.2 ~b!, and 1.5
~c!; dependence of (w2)1/2 on a @solid line—
(w2)1/250.48(a21.1)# ~d! and dependence
of (w2)1/2 on a for k(2)/kcr(2)52.23 and
va51.5 ~e!.
NOISE-INDUCED PENDULUM OSCILLATIONS AND

is
a

de

turbulence~coherent structures! appears in jets at a definite
se

ses.
d by

a
gly
TURBULENCE IN JET FLOWS. CONTROLLING THESE
PROCESSES

The analogy between turbulent processes and no
induced pendulum oscillations can also be traced in the c
of the development of turbulence and the control of its
velopment in jet flows. Its is known17,31,32 that large-scale

31 Tech. Phys. 43 (1), January 1998
e-
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distance from the nozzle, mainly in a boundary layer, who
width increases almost linearly as this distance increa
The appearance of coherent structures is accompanie
variation of the mean flow velocity.

It is also known that a weak acoustic signal acting on
jet in the region where it issues from the nozzle can stron

31P. S. Landa



FIG. 6. Dependence of«u on St for«ua50.02 and
x/D54, wherex is the distance from the nozzle
rim ~a!, and dependence of (w2)1/2 on va for
a50.5 andk(2)/kcr(2)51.01 ~b!.
influence the hydrodynamic processes in the jet. If the fre-
e
in
ta

th
na
th

s

resonance character. As an example, Fig. 6a presents the plot

rms
o-

the
quency of this signalf a lies in a certain region, which can b
called the resonance region, it transforms into an intensify
hydrodynamic wave. This is confirmed by the experimen
results presented in Ref. 33. It follows from these results
above a certain value of the amplitude of the acoustic sig
the dependence of the rms value of the pulsations of
hydrodynamic velocity on the frequency of the signal ha
g
l

at
l,
e

a

for «ua
5Aua

2/U050.02, whereua is the oscillatory velocity

in the acoustic wave andU0 is the mean flow velocity on the
axis of the jet near the nozzle, of the dependence of the
value of the relative pulsations of the longitudinal comp
nent of the hydrodynamic velocity«u5Au2/U0 on the fre-

quency of the acoustic signal expressed in terms of
FIG. 7. Experimental dependence of«u on the

relative amplitude of the acoustic pressurep̃a

measured in decibels for St52.35 andx/D58
~a! and dependence of (w2)1/2 on a for a pendu-
lum when v051, b50.1, a5100,
k(2)/kcr(2)55.6, andva53.5 ~b!, 6 ~c!, 11 ~d!,
and 19.75~e!.
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the nozzle. We see that«u reaches a maximum whe
St'0.3. A similar dependence is obtained for the rms dev
tion of the rotation angle of the pendulum under consid
ation for additional harmonic vibration of the pivot. The co
responding dependence fora50.5 and¸(2)/¸cr(2)51.01 is
presented in Fig. 6b. We note that in the absence of
additional signal«u'0.04 andAw2'0.0317.

It has been shown in several publications~see, for ex-
ample, Ref. 17 and 34! that, depending on its frequency, a
acoustic signal can either stimulate or suppress the deve
ment of large-scale turbulence: stimulation occurs when
frequency of the signal is low, and suppression occurs w
it is high. This fact alone suggests that the turbulence in
is not an auto-oscillatory process. As we know,22,23 the
stimulation or suppression of oscillations in auto-oscillato
systems does not depend on whether the frequency of
acoustic signal is lower or higher than the frequency of
auto-oscillations. These effects are determined only
whether the auto-oscillatory system is a system with hard
soft excitation.

The experimental dependence of the rms magnitude
the pulsations of the longitudinal component of the hydro
namic velocity«u on the acoustic pressure at St52.35 is
presented in Fig. 7a. We see that the turbulent pulsation
first decrease with increasing amplitude of the acoustic
nal and then increase.

We have already discussed the stimulation of a no
induced phase transition in a pendulum in the preceding
tion. Let us now consider the possibility of suppressi
noise-induced oscillations by a high-frequency harmonic s
nal. Numerical simulation of Eq.~1! with the replacement o
j1 by j11a cosvat, whereva.2, showed that such sup
pression actually occurs. The results of the simulation
presented in Figs. 7b–7c and 8. We see that if the amplit
of the high-frequency signal is small, it has practically
influence on the existing oscillations. In addition, it is se
from Fig. 7 that in the case of signals with not very hig
frequencies the intensity of the noise-induced oscillation
first decreases with increasing amplitude, as in the exp
ment described above, to a certain minimum value, whic
smaller, the higher is the frequency of the signal, and t
begins to increase. True, the higher the frequency, the hig
is the amplitude of the signal at which this minimum value
achieved. When the frequency of the signal is sufficien
high, the oscillations are completely suppressed. Thus, on
basis of the analogy with the oscillations of a pendulu
experimental investigators can be advised to increase the
quency of the acoustic signal to avoid an undesirable
crease in the turbulent pulsations as the amplitude of
signal is increased. As far as we know, this advice has b
found to hold true.

The suppression of noise-induced oscillations of a p
dulum by an additional signal of sufficiently high frequen
is demonstrated in greater detail in Fig. 8, which prese

plots of the dependence ofw and ẇ on the time for various
values of the amplitude of a signal whose frequency equ
19.757. It is seen that the intensity of the noise-induced
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cillations decreases with increasing amplitude, while the
ration of the segments corresponding to ‘‘laminar’’ phas
increases. When the amplitude exceeds a certain cri
value ~it was found to be equal to 42 for the case und
consideration!, the oscillations are completely suppresse
When the amplitude of the signal is increased further,
oscillations reappear, but now because the correspon
parametric resonance conditions begin to be satisfied.

It should be noted that the stimulation and suppress
of noise-induced pendulum oscillations occur not only un
a parametric harmonic signal, but also under a force sig

FIG. 8. Plots ofw(t) and ẇ(t). v051, b50.1, a5100,k(2)/kcr(2)55.6,
k50, va519.757, anda55 ~a!, 15 ~b!, 30 ~c!, and 40~d!.

33P. S. Landa



si
ith

s

n
a
.
er
o
re
no
e
lo
ey

in

ex

workers.

y
g

4

ics,

TP

in.

s

es

-

the effectiveness of such a signal being even greater.
When an additive noise is present, complete suppres

no longer occurs, but it is very significant, especially w
respect to the variablew. This is evidenced by Fig. 9, which
presents plots of the time dependence ofw and ẇ for two
values of the amplitude of the signal, whose frequency, a
Fig. 8, is equal to 19.757.

CONCLUSIONS

In summary, we have shown that there is a profou
analogy between such apparently dissimilar phenomen
turbulence and noise-induced oscillations of a pendulum
is very interesting that this analogy is based on the gen
nature of the laws of the theory of oscillations, rather than
a similarity between the equations of motion. Serious
search is certainly required to prove that this analogy is
superficial and that it reflects the essence of the phenom
taking place. Nevertheless, the existence of such an ana
once again confirms the well-known fact that nature ob
common laws.

We thank N. N. Nikitin and A. S. Ginevski� and their
co-workers for supplying the data which they obtained
numerical simulations and real experiments.

1!For further information on the phenomenon of intermittency, see, for
ample, Ref. 26.

2!These data were obtained and supplied to us by A. S. Ginevski� and co-

FIG. 9. Plots ofw(t) andẇ(t). k2j2
250.05j1

2; a540 ~a!, 50 ~b!; the remain-
ing parameters are the same as in Fig. 8.
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Influence of an electric field on the dynamic viscosity of liquid dielectrics

no
A. A. Ostapenko

Scientific-Research Institute of Radiophysics, St. Petersburg State University, 198904 St. Petersburg, Russia
~Submitted December 11, 1996; resubmitted July 2, 1997!
Zh. Tekh. Fiz.68, 40–43~January 1998!

Experimental dependences of the dynamic viscosity of dielectric liquids on the applied voltage
are considered. The experiment is remarkable because of the elimination of the electric
current through the liquid in a series of measurements by insulating one of the electrodes from
the liquid. The change in the viscosity of the liquid media can be a consequence of
alteration of the structure of the liquid and the formation of ion–molecule groups differing from
the previously existing ones. The variation of the mechanical properties of the medium
with variation of the applied field strength points out the influence of charge formation on them.
The dependences for polar and nonpolar liquids are considered. ©1998 American
Institute of Physics.@S1063-7842~98!00701-6#

Previously performed investigations of the behavior of aboth electrodes are insulated from the liquid, there will be
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liquid dielectric subjected to the action of a transverse e
tric field have shown that the viscosity of the dielect
changes. This phenomenon, which has been termed ‘‘e
troviscosity,’’ has been described by various investigators1–3

However, the poor reproducibility of the data and the oft
apparent contractions between the data of different inve
gators have made it impossible to clearly single out the m
mechanism among the numerous phenomena that migh
the cause of the viscosity change. The possible candid
include the transport of momentum by means of the elec
phoresis of ions, the orientation of polar molecules,10 the
formation of clusters near an electrode,1,4 and the influence
of space charge and the electrohydrodynamic effect.5 Despite
the diverse interpretations of the phenomenon, all the inv
tigators agree with the need for the passage of an ele
current through the liquid. The absence of this phenome
in nonpolar media was pointed out in some papers.1,2 How-
ever, significant changes in the viscosity of nonpolar liqu
in an electric field were noted when poorly purified liqui
were used.2,7 This and several other phenomena indicate t
the appearance of space charge at the electrode can b
cause of the viscosity change.

Some investigators believe that the viscosity change
caused by electrohydrodynamic flows appearing in the
uids and that the influence of the field on the molecular tra
port of momentum is negligibly small. On the other han
there is an opinion that the action of electric fields can le
to perceptible viscosity changes. A basis for this can be p
vided by data on the influence of electric fields on the th
mal conductivity,6 since it, like the viscosity, is a characte
istic of molecular transport in a liquid.

The influence of charge formation on a medium can
investigated by insulating one of the electrodes from the
uid, which does not eliminate the influence of the elect
field on the medium. It is known8 that electrohydrodynamic
flows do not appear when no current passes through a li
dielectric. Thus, the study of the behavior of a liquid flowin
through a cell with one insulated electrode allows us to r
out the influence of electrohydrodynamic flows, on the o
hand, and to effect charge injection, on the other hand
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injection, and only the influence of the electric field on t
liquid will be realized.

The equipment and techniques of capillary viscome
were previously employed in Refs. 1 and 2. A diagram of
measuring apparatus is shown in Fig. 1. The time of pass
of a liquid dielectric between the marks was measured us
a stopwatch or a photorecording device to within 0.1 s. T
part of the system to which a high voltage was supplied
the form of a flow-through cell of rectangular cross secti
placed in a housing of an insulating material~Figs. 1b,c!.
The dimensions of the channel are as follows: length,
mm; width, 3.5 m; height 0.7 mm. The upper and low
walls of the channel are copper electrodes. A cell with
lower electrode insulated from the liquid~Fig. 1c! was em-
ployed during the development of the experiment. The el
tric field was recalculated to find the field actually existing
the channel. The thickness of the dielectric layer was
mm. The length of the portion of the capillary before the c
was selected such that the flow would have a steady-s
character over the entire length of the cell.

Then the dynamic viscosity is

h5A
DP

Q
, ~1!

whereA is a constant of the apparatus andDP is the pressure
drop which causes the flow rateQ.

When an electric field is supplied,

hel5A
DP

Qel
. ~2!

Hence the viscosity change is

hel2h

h
5

tel2t

t
,

where tel is the time of emergence of the liquid when th
electric fieldE is applied, andt is the time of emergence o
the liquid in the absence of an electric field.

It should be noted that the viscosity value obtained wi
out application of a field differed from the values known

3535-04$15.00 © 1998 American Institute of Physics



from the
FIG. 1. Diagram of the experimental system. a—overall view; b, c—flow-through cell with an uninsulated electrode and an electrode insulated
liquid; A—source of the light signal,B—regenerator,C—vessel,E—electrodes;1—insulating layers,2—metallic ~copper! layers,3—insulating plate.
the literature by no more than 3%. In both cases the passage
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10 to 160% when the electrodes were uninsulated and from 5

and

a

5

2

of a current through the cell was monitored by an elect
metric amplifier, which permits the measurement of curre
as small as 0.1 nA. The range of field strengths used
0.8–120 kV/cm at a temperature of 20 °C.

The objects of investigation were liquids with differe
dielectric parameters@for example, acetone, which is a pol
liquid («520.1, and its dipole momentm59.47310230 C
•m!, and hexane, which is a nonpolar liquid («51.9,m50)
~Table I!#. The liquids are all dielectrics and are fairly typic
representatives of considerable groups of the latter. As a
sult of the experiment, we obtained plots of the viscos
change as a function of the applied voltage for both the
with one insulated electrode and the cell with uninsula
electrodes. The liquids were divided into two groups acco
ing to the magnitude of the viscosity change: in one gro
~the polar liquids! the viscosity changes in the two kinds
cells ~with uninsulated and insulated electrodes! ranged from
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to 40% when one electrode was insulated~Figs. 2a,b!. In the
other group~the nonpolar liquids! the viscosity changes did
not exceed 6% in the system with uninsulated electrodes
4% in the system with insulated electrodes~Figs. 2c,d!. For
the most part, all theh(E) curves have two segments:
rapid increase and slow variation~saturation!. The curves for

TABLE I.

Liquid h5103, Pa•s « m, C•m J, eV DH Z̄

Nitrobenzene 0.18 35 10.2310230 7 8.2 20.1
Acetone 0.32 21.2 9.47310230 9.7 8.9 9.7
Hexane 0.35 1.9 0 10.5 10.2 33.
Toluene 0.59 2.4 1.7310230 9 10.8 23.5
Chlorobenzene 0.83 5.3 5.2310230 9.4 12.4 19.7
Decane 0.92 1.2 0 11 12.2 40.
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acetone and benzene are clearly distinguished from the
ers by their steep ascending segment. The curves for the
with one insulated electrode are similar in form. The curv
for the nonpolar liquids can also be divided into two se
ments: a rapid increase and slow variation. The curves
the two types of cells are similar. It should be noted that
magnitude of the viscosity change is higher when a curr
flows though the cell than in the absence of a current~for
example, the corresponding values for decane differ b
factor of 1.5 when the field strength equals 60 kV/cm, a
the values for chlorobenzene differ by a factor of 4 wh
E510 kV/cm!. When a current is passed through the cel
E.Ecr , the increase in viscosity is probably caused by co
bined electroconvective and molecular momentum transp
while electroconvection does not occur in the cell with t
insulated electrode. Qualitative explanations can be propo
for the viscosity change~in this case!. It is known9 that

h5S hN

Vm
DexpS DQ

RTD5A expS DQ

RTD ,

whereh is the dynamic viscosity,T is the absolute tempera
ture, Q is the free enthalpy,h is Planck’s constant,K is
Boltzmann’s constant,R is the universal gas constant,N is
Avogadro’s number, andVm is the molar volume.

In this experimentA andT are constants. Then the vis
cosity change in an electric field can be associated only w
DQ: hel5A exp(DQel /RT). From the experiment we hav
hel.h; therefore,DQel.DQ5DH2TDS, where DS and
DH are the enthalpy and entropy of activation for flow. T
estimates in Ref. 10 showed that the change in the free

FIG. 2. Relative viscosity change as a function of the strength of the tr
verse electric field in polar~a, b! and nonpolar~c, d! liquids in cells with one
electrode insulated from the liquid~a, c! and uninsulated electrodes~b, d!. a,
b: 1—acetone,2—nitrobenzene,3—chlorobenzene,4—toluene; c, d:1—
hexane,2—decane.
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in DH. The values ofDQel andDHel were calculated from
the formulas10

DQel5RT lnS Vmhel

hN D ,

DHel5RTF ln
Vmhel

hN
2S T

Vm
D ]Vm

]T G .
It is also known9 that DH. w̄m , wherew̄m is the molar

energy density of the molecular interaction, i.e., flow sho
be accompanied by deformation of the ‘‘supramolecu
structure’’ of the liquid and the structure of the local env
ronment, which can be described by the parameter

Z̄5
DH

w̄ p

N

2

~Ref. 10!,

where Z̄ is the mean number of molecules for which corr
lation of their interactions is observed when the liquid flow
and w̄ p is the mean energy of the intermolecular pair inte
action.

To estimate the energy of the interaction of molecules
the liquids investigated within the first coordination sphe
we use a variant of the London-Debye-Keesom potential11

w̄12 Z̄1w̄ p5 Z̄1F4

3
Ja212m2a12

m4

3KTG 1

r̄ 1
6

,

whereJ is the ionization potential,a is the polarizability of
the molecules,m is the dipole moment of the molecules,w̄ p

is the mean energy of the intermolecular pair interaction,Z̄1

is the number of molecules averaged over the entire volu
and r̄ 1 is the radius of the first coordination sphere.

The application of an electric field should lead to
increase in the dipole moment of the liquid

mel5m1Fa1
m2

3KTGE
and, accordingly, inw̄ p , but the estimates showed that th
change in the dipole moment of the liquid is small~no
greater than 1%! for the parameters used and can be n
glected. We can still postulate that the increase in visco
in an electric field is due mainly to enhancement of the c
relation between the molecules in the local environme
Then we can write by analogy

DHel5 Z̄elw̄ p

N

2
,

where Z̄el is the mean number of molecules for which th
correlation is observed when the liquid flows in an elect
field.

It was found experimentally~Table II! that Z̄el. Z̄ both
in the presence of a current flowing through the cell and
the absence a current. Moreover,Z̄el is greater in the pres
ence of a current than in its absence.

Thus, this research has shown that a change in visco
occurs in both polar and nonpolar liquids when an elec

s-
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TABLE II.

.1

.8
.5
.1
.6
.3
Liquid
No current flowing through the liquid Current flowing through the liquid

E, kV/cm Dh/h DHel , J/mol Z̄el
E, kV/cm Dh/h DHel , J/mol Z̄el

Nitrobenzene 10 0.40 9.0 22.0 10 0.4 8.8 23
Acetone 10 0.35 10.0 11.5 10 1.26 10.9 11
Hexane 60 0.025 10.0 33.1 60 0.05 10.6 34
Toluene 10 0.10 12.0 24.8 30 0.15 12.1 25
Chlorobenzene 10 0.20 13.2 21.5 20 0.20 12.9 20
Decane 60 0.04 12.9 41.5 60 0.045 13.3 42
field is applied across the flow of a liquid dielectric. The
f
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tional Conference on Conduction and Breakdown in Dielectric Liquids,

s,
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effect is observed both with and without the passage o
current through the liquid. The effect is stronger in the pr
ence of a current. In this case it can be assumed that mom
tum is transferred by combined convective and molecu
transport. The main viscosity change occurs because o
increase in the number of molecules for which a correlat
is observed, i.e., because of the formation of new structu
in the liquid. The presence of an injecting electrode allows
to theorize that the structure-formation centers may be io
i.e., that ion–molecule complexes appear.
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Generation and transport of high-current, low-energy electron beams in a system with

en-
a gas-filled diode
V. N. Devyatkov, N. N. Koval’, and P. M. Shchanin

Institute of High-Current Electronics, Siberian Branch of the Russian Academy of Sciences,
634055 Tomsk, Russia
~Submitted July 26, 1996!
Zh. Tekh. Fiz.68, 44–48~January 1998!

Investigations of the generation and transport of a high-current, low-energy electron beam are
performed in a system with a gas-filled diode based on a plasma cathode. At accelerating
voltages of up to 20 kV and pressures of~1–5!31021 Pa, a beam with an emission current of
600 A, emission current density of 12 A/cm2 and pulse duration of 30ms if obtained in
a diode with a grid-stabilized emission opening having a diameter equal to 8 cm. The beam is
transported in the absence of an external magnetic field over a distance of 20 cm. The
beam is compressed by its self-magnetic field, and the current density at the collector reaches
100 A/cm2 when the beam diameter is 3 cm. ©1998 American Institute of Physics.
@S1063-7842~98!00801-0#
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One of the effective ways to improve the service ch
acteristics of structural materials is to treat the surface w
pulsed beams of charged particles. It is desirable to carry
surface modification with highly efficient utilization of th
energy transported by the beam and a uniform distribution
the current density over a beam cross section with an are
to several tens of square centimeters. These conditions
satisfied if the beam energy is released in a thin~of the order
of several microns! layer upon irradiation with a power den
sity of 1062109 W/cm2. The release of energy in such a th
layer is ensured by the pulsed high-current ion beams use
investigate surface modification processes, where the ion
ergy usually amounts to 1002300 keV.1

High-current electron beams may be an alternative to
ion beams used in pulsed heat treatment if they can pro
the required power density at electron energies not excee
20–30 keV. However, when the electron energy is low, i
extremely difficult to obtain high beam current densities b
cause of the restriction of the current in vacuum diodes
cording to a 3/2 power law, as well as because of the app
ance of both radial and longitudinal dips in the potenti
created by the self-charge of the beam during the transpo
intense beams. On the other hand, in this case the dimen
of the source can be reduced significantly, and the mean
radiation protection, which is an important factor in develo
ing industrial equipment, can be simplified considerably.

Gas-filled and plasma-filled diodes, in which the ele
trons are accelerated in a space-charge layer formed u
definite conditions between the cathode and the an
plasma, have a higher perveance than vacuum diodes.
example, current densities up to 1 kA/cm2 have been ob-
tained in a diode with an exploding cathode and in a plas
diode2 in the microsecond range of pulse durations. Plas
emitters with a grid-stabilized emission surface have a h
emission capacity.3,4 Emission current densities up to 6
A/cm2 have been achieved4 in a quasistationary regime wit
a pulse duration of 300ms and a current of 30 A.
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eration and transport of a quasistationary low-energy e
tron beam in a system with a plasma cathode that provid
current of hundreds of amperes.

DESIGN AND OPERATING PRINCIPLE OF THE ELECTRON
SOURCE

The design of the electron source is represented s
matically in Fig. 1. Cylindrical magnesium cathode1 with a
diameter of 4 mm and a length of 15 mm and perman
magnet3, which creates a magnetic field with an inductio
equal to 0.02 T are mounted on a Teflon insulator in the s
of cathode section2, which simultaneously serves as the tri
ger electrode. Cylindrical hollow anode5 with a diameter of
150 mm and a length of 160 mm has an emission window6
with a diameter of 80 mm, which is covered by a fine m
tallic grid with holes measuring 0.130.1 mm and a geomet
ric transparency equal to 40%, on its end. The hollow an
is connected to the trigger electrode through a resistor w
R575 V. Within the hollow anode there is a spherical di
tributing electrode4 with a diameter of 10 mm, which is a
the potential of the trigger electrode, at a distance of 20 m
from the cathode section. Electrode4 improves the unifor-
mity of the distribution of the density of the emission plasm
near the grid electrode and, accordingly, the uniformity
the distribution of the emission current density and also p
mits reduction or elimination of the intrusion of the catho
material into the beam-formation region and its appeara
on the treated surfaces of samples. Accelerating electrod7,
which is fashioned in the form of a diaphragm with an ope
ing having a diameter of 85 mm, is located at a distance o
mm from the emission electrode and is connected to d
tube8, which has a diameter of 100 mm and a length of
mm. Collector9 is located at a distance of 100–600 m
from the emission electrode. The working gas~air, helium or
argon! is injected with a flow rate up to 30 mPa•m3/s

3939-05$15.00 © 1998 American Institute of Physics



FIG. 1. Diagram of the electron source.
through a channel in the magnesium cathode. The pressure in
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the system is regulated in the range from 531023 to 1 Pa by
adjusting the gas injection rate.

The discharge currentI 0, the emission currentI 1, the
beam current at the collectorI 2, and the current reaching th
accelerating electrodeI 3 were measured by Rogowski loop
placed in the respective circuits with consideration of
influence of the plasma formed by the electron beam at
collector.5 The collector was equipped with a special prote
tive ring, which prevents closing of the electrode gaps by
plasma.

When a regulated current pulse in the range from 100
1000 A with a duration of 45ms, which is formed upon the
discharge of capacitor into the primary winding of a pu
transformer, is supplied to the cathode, a discharge app
at first over the surface of the insulator between the cath
and the trigger electrode, which initiates the appearance
cathode spot and ignition of an arc discharge between
cathode and the hollow anode. The plasma fills the hol
anode and the electrons drawn through the holes in the
enter the accelerating gap. In the electron source under
sideration the use of a permanent magnet in the cathode
tion and the separation of the cathode and anode region
the discharge by a contracting opening in the trigger e
trode permit considerable lowering of the ignition voltage
the arc discharge due to the increase in the pressure in
cathode region as a result of the pressure drop in the
tracting channel and prolongation of the residence time
the electrons in the magnetic field.

Under the conditions of a gas-filled diode, electrons

40 Tech. Phys. 43 (1), January 1998
e
e

-
e

o

ars
de

a
he
w
id
n-

ec-
of
-

f
the
n-
f

-

creating an anode plasma in the region of the accelera
electrode and the collector. The plasma acquires a pote
close to the anode potential,6 and a space-charge layer,
which electrons are accelerated, forms between the
emission electrode and the anode plasma. The pervean
the plasma-filled gap exceeds the perveance of a vacuum
due to compensation of the negative charge by ions supp
from the anode plasma. The mechanism for formation of
space-charge layer and variation of the perveance were
sidered in Ref. 2 for the case in which the accelerating ga
filled with a plasma before the accelerating voltage is s
plied. In the case considered here, in contrast to the cas
Ref. 2, the anode plasma, which is responsible for comp
sation of the beam space charge and its formation, is cre
in the absence of an external magnetic field as a resul
ionization of an injected working gas by electrons extrac
from a plasma cathode based on the quasistationary
pressure arc discharge and compression of the beam b
self-magnetic field.

EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 presents typical oscillograms of the emiss
current I 1, the current in the collector circuitI 2, and the
current in the accelerating electrodeI 3, and Fig. 3 presents
experimental current–voltage characteristics of the gas-fi
diode for various values of the discharge current~curves
1–3! and the dependence of the current on the voltage
culated according to the 3/2 power law for a plane-para

40Devyatkov et al.
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vacuum diode with a 5 mm gap~curve4!. As is seen from
Fig. 3, the diode operates in a saturation regime, and
emission current is determined by the discharge current
can significantly exceed the current of a vacuum diode. T
electrons are accelerated in the space-charge layer bet
the grid of the plasma emitter and the movable boundary
the anode plasma, which is created by ionization of the
by electrons supplied from the gas-discharge plasma thro
the opening in the emitter electrode. The increase in the
veance of the diode as the accelerating voltage is lowere
a result of displacement of the anode plasma toward
emitter electrode. The boundary of the anode plasma is

FIG. 2. Oscillograms of the emission currentI 1 ~1!, the collector currentI 2

~2!, and the current reaching the accelerating electrodeI 3 ~3! in the absence
~a, b! and in the presence of an accelerating grid~c!. I 05300 A; p, Pa: a—
531021; b, c—531022; d—131022.
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tablished on the basis of the condition of equality of t
saturation ion current from the anode plasma and the
current in the space-charge layer determined from the
power law

l'A«0 /neU
3/4/~ekTe!

1/4, ~1!

where l is the width of the space-charge layer,«0 is the
dielectric constant,U is the accelerating voltage,e is the
charge of an electron,k is Boltzmann’s constant, andTe and
ne are the electron temperature and density in the plasm

If it is taken into account that, according to Refs. 7 a
8, the plasma densityne created by a beam under simila
conditions can be one to two orders of magnitude grea
than the electron density in the beamnb , then fornb51010

cm23, Te55210 eV, andne51011 cm23 the width of the
space-charge layerl 57 mm, if U510 kV, and 4 mm, if
U55 kV. At pressures above 121021 Pa the electron ex-
traction efficiency~the ratio of the emission current to th
discharge currenta5I em/I 0) is a50.520.7, and the elec-
tron beam entering the drift tube is transported in the plas
to the collector with small losses when the drift distance
approximately equal to 20 cm~Fig. 2a!. The high transport
efficiency attests to compensation of the beam space cha
Even without an external magnetic field, the collector curr
greatly exceeds the limiting current calculated from t
Bogdankevich-Rukhadze formula for the vacuum case

I m5
4p«0m0c3@~11eU/m0c2!2/321#3/2

e@112 ln~R/r !#
, ~2!

wherem0 is the electron rest mass,c is the velocity of light,
andR and r are the radii of the drift and beam tubes.

The compensated beam is compressed by its s
magnetic field, and the beam diameterd measured by burn-
ing thin aluminum foils located at various distancesL from
the entrance opening of the tube decreases along the fol
ing sequenced157 cm for L52 cm, d255 cm for L510
cm, andd353 cm for L520 cm.

Figure 2a presents current oscillograms. At the beg
ning of a pulse an electron current flows in the circuit of t
drift tube. It is formed by accelerated electrons scattered
the tube and plasma electrons. After a certain time, wh

FIG. 3. Current–voltage characteristics of the electron source.p51021 Pa;
I 0, A: 1—600,2—400,3—270.
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depends on the pressure, the current drops to zero, and
the sign sometimes changes. It can clearly be assumed th
the moment when the current on the drift tube equals ze
the beam space charge is completely compensated.

The oscillogram-determined pressure dependence of
time t, at which the current in the drift tube circuit become
equal to zero, is presented in Fig. 4. In this case, if heliu
whose ionization cross section is smaller than that of nit
gen, is employed as the working gas, a higher pressur
required to compensate the beam space charge. The timt0,
after which the concentration created by the beam in the d
space is comparable to the electron concentration in
beam, can be determined from the expression

t05
1

n0s iA2eU/m
, ~3!

wheren0 is the concentration of neutrals ands i is the ion-
ization cross section.

Under the conditions of an experiment with a beam ele
tron densitynb51010 cm23, n052.331013 cm23, U510
kV, and s i510217 cm23, we find t053 ms. The disparity
between the calculated and experimental values of the c
pensation time is attributable either to the finite rise times
the electron current or to the fact that the escape of plas
electrons is hampered in the transverse direction to
beam’s self-magnetic field and they can leave the ionizat
zone only along the beam toward the collector, while io
escape into the accelerating gap and onto the lateral sur
of the drift tube.

The character of the extraction and transport of the be
changes drastically~Fig. 2b!, if the pressure in the system i
lowered. At a fixed discharge current, the emission and c
lector currents decrease by a factor of 1.5–2, considera
current fluctuations appear, and most of the beam curr
reaches the drift tube. The fluctuations are associated ma
with the instability of the current flow in the acceleratin

FIG. 4. Dependence of the compensation time of the beam space charg
the pressure of the working gas:1—air; 2—helium. I 05600 A, and the
accelerating voltageU510 kV.
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current and the emission capacity of the plasma emitte
low pressure, the anode plasma cannot ensure the stabl
istence of the space-charge layer in the accelerating gap
to the decrease in the ionization frequency@ I e'I i(M /m)1/2#.
At pressures belowp51022 Pa the beam transport effi
ciency also decreases, since even the calculated beam s
charge compensation time exceeds 10ms. This is confirmed
by the fact that replacement of the accelerating electrod
the form of a diaphragm by a grid electrode for the purpo
of stabilizing the boundary of the anode plasma at low pr
sure permits an;1.5-fold increase in the emission and co
lector currents and significantly reduces their fluctuatio
~Fig. 2c!.

At intermediate pressures of~1–2!31022 Pa ~Fig. 2d!,
if the anode plasma provides a number of ions sufficient
compensating the beam space charge and for stable exis
of a space-charge layer during a time comparable to or
than the duration of the discharge current pulse, the fluc
tions of the emission and collector currents decrease, and
currents reach values corresponding to the those measur
elevated pressures.

When the accelerating voltage is lowered, the comp
sation time decreases in accordance with~3! due to the in-
crease in the ionization cross section, and the time of
transition to a fluctuation-free current-flow regime shifts
the beginning of the pulse. For example, switching the ac
erating voltage from 10 to 5 kV causes a 10ms shift in the
time of the transition to the fluctuation-free regime. Und
the conditions of our experiment at pressures exceeding 121

Pa, we, unlike Vlasovet al.,6 did not observe the develop
ment of instabilities or a decrease in the current at the en
a pulse. However, no special investigations of the microw
radiation or plasma diagnostics were performed in the
periments.

Calorimetric measurements established that at elev
pressures the energy transferred by the beam to the colle
during a pulse is approximately 20% less than the ene
calculated from the oscillograms of the voltage on the g
and the current in the collector. A high current densi
reaching 602100 A/cm2, causes partial melting of a coppe
collector located at a distance of 20 cm from the emit
electrode. The electron beam obtained was used in exp
ments on the pulsed modification of metal surfaces
quenching from a melt.

CONCLUSIONS

Investigations of a gas-filled diode with a plasma emit
based on a low-pressure arc have been carried out, a
high-current electron beam with a perveance significantly
ceeding the perveance of a vacuum diode beam calcul
for a fixed gap has been transported. At 1021 Pa the rela-
tively high ionization efficiency of the low-energy beam r
sults in compensation of its space charge in the drift spa
The compensated beam is compressed by its self-mag
field and transported in the drift tube in the absence of
external magnetic field over a distance of 20 cm. Due to

on
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compression, the current density of the beam at the collector
2

io

4A. V. Zharinov, Yu. A. Kovalenko, I. S. Roganov, and P. M. Tyuryu-
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permitting its use in experiments on the pulsed modificat
of metal surfaces by quenching from a melt.
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Consideration of vacancies in the interaction between a liquid phase and a solid phase

s to
A. A. Veksler and A. P. Savitski 

Institute of the Physics of Strength and Materials Science, Siberian Branch of the Russian Academy
of Sciences, 634021 Tomsk, Russia
~Submitted July 16, 1996!
Zh. Tekh. Fiz.68, 49–52~January 1998!

An analytical expression is obtained for the time dependence of the concentration of the second
component in the diffusion zone of a solid phase during its interaction with a liquid phase.
A relation describing the deformation of a powdered body with time is found on the basis of the
equations derived. Analytical and experimental curves are compared. ©1998 American
Institute of Physics.@S1063-7842~98!00901-5#

It has been established that the passage of a solid phaseas a result of which the concentration of vacancies tend
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into a melt during dissolution is preceded and then acco
panied by the diffusion of atoms of the second compon
from the liquid phase into the solid, which results in t
formation of solid solutions or intermetallic compounds
the surface layer of the solid phase adjoining the melt, wh
concentration enables this layer to pass into the liquid ph
by melting.1 The law discovered enables us to understand
essence of such phenomena as contact melting2 and the
variation of the mechanical properties of metals and all
stretched in the presence of melts on their surface~the Re-
binder effect3!. In addition, expressions relating the relati
change of the linear dimensions of powdered bodies to
concentrations of the components established in the solid
liquid phases as a result of liquid-phase sintering have b
obtained on the basis of new theories regarding the diffus
interaction between a liquid phase and a solid phase.1 The
relations obtained not only agree well with the experimen
data, but can also be used very effectively to analyze
physical processes occurring during the liquid-phase sin
ing of concrete systems. Unfortunately, there is still no ma
ematical model of the diffusive interaction between a liqu
phase and a solid phase that takes into account the kineti
the real process.4–6 The theoretical analysis of diffusion pro
cesses for regions with mobile phase boundaries in a non
tionary formulation has shown that the analytical metho
for solving such problems are unacceptable in the gen
case, because the regions where they can be solved va
the phase boundary moves.6,7 The method used to numer
cally solve the Stefan problem for a system consisting
interacting solid and liquid phases with a mobile pha
boundary is quite tedious.6 In the present work an attempt
made to obtain an analytical time and temperature dep
dence of the concentration of a component of a liquid ph
in a solid phase due to the diffusive mixing of these pha
in the first stage of the interaction on the basis of the vaca
mechanism of diffusion in metals.

RECURRENCE RELATIONS

We start out from the assumption that two interrela
processes take place in the diffusion zone. One process i
filling of vacancies by atoms from the liquid phase, as
result of which the concentration of vacancies tends to
crease. The second process is the creation of new vacan
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increase to the equilibrium value. The equilibrium conce
tration, in turn, continuously increases, because the chem
composition of the diffusion zone varies during diffusio
and the energy for the formation of vacancies decreases
us consider a certain region of the crystal lattice of a so
phaseG, which consists of an ensemble ofNA of atoms ofA
and adjoins the liquid componentB. Let there beN atoms of
B per square centimeter of interface, the total contact a
being equal toS. Atoms of B diffuse through the phase
boundary into regionG by the vacancy mechanism, sinc
they can be accommodated only in lattice sites. At the ini
moment in time regionG contains an equilibrium number o
vacancies8

b~0!5~NA1b~0!!expH 2
u

kTJ .

According to the definition of the diffusion coefficient5

during the time

R5
ba2

DBASN
~1!

b atoms ofB diffuse into regionG. In ~1! a is the inter-
atomic distance, andDBA is the diffusion coefficient. In the
subsequent time intervalst( i ) the number of equilibrium va-
cancies in regionG is determined from the recurrenc
formula8

t~ i !5(
j 51

i

R~ j !, R~ i !5
b~ t~ i 21!!a2

DBASN
,

b~ t~ i !!5S NA1(
j 50

i

b~ t~ j !!D expH 2
u

kT
1

r

NAkT

3(
j 50

i

b~ t~ j !!J Y S 12expH 2
u

kT
1

r

NAkT

3(
j 50

i

b~ t~ j !!J D ; i>1, t~0!50, ~2!
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wherer is a constant, which takes into account the additional
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formation of vacancies as a consequence of the replace
of a certain fraction of the strongerA2A atomic bonds by
weakerA2B bonds.

Under the assumption that most of the equilibrium v
cancies are replaced by atoms of the second componen
concentration of atoms ofB in regionG is described by an
equality, which has the form

CB~ i !'S (
j 50

i

b~ j !1NAD 21

(
j 50

i

d~ j !. ~3!

Equations~2! and~3! are valid for the values of the tim
at which the limiting saturation concentration of atoms ofB
in the solid phase is not achieved in regionG and correspond
to averaging over all the possible configurations of
system.8

We write equalities~2! for continuous division of the
time. For this purpose we assume thatNA5NB(t) and that,
in accordance with some functional measure, the functi
b(t) and t(u) have a limit:

lim
h→0

@b~ t~u1h!!2b~ t~u!!#/h5db~ t !/dt.

Then the following system of integrodifferential equ
tions is valid:

db~ t !

dt
5expH 2

u

kT
1

r

NA~ t !kTE0

t

b~x!dxJ b~ t !S 11
r

kT

1
r

NAkTE0

t

b~x!dxD 1
db~ t !

dt
1

d~ t !2

NAkT

1
dNA~ t !

dt
1H b~ t !1E

0

t

b~x!dx1NA~ t !J
3S dNA~ t !

dt

r

NA
2~ t !kT

E
0

t

b~x!dxD ,

t~z!5E
0

zb~ t~u!!a2

DBASN
du. ~4!

The proof for this statement is based on the use of
pansions of the functions in Taylor series.

The distribution function of the vacanciesF(x,y,z,t) in
regionG is needed to describe the concentration distribut
of the atoms ofB in it. Then the concentration distribution o
the atoms ofB in regionG has the form

CB~x~ t !,y~ t !,z~ t !,t !5S E
0

t

b~u!dF~x,y,z,u!1NAD 21

3E
0

t

b~u!dF~x,y,z,u!,

where the integration is construed in the Lebesgue se
The total concentration ofB in regionG in the first stage of
the diffusion process is determined from the following fo
mula @NA(t)5NA is a constant#:
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whereNB(t) is the number of atoms ofB in regionG at the
time t.

According to ~4!, at values oft that are so small tha
NA(t) is constant and

b~ t !2/NAT!1, b~ t !2/NAT@1,

we have

b~ t !5b~0!exp$at%, ~6!

where

a5expH 2
u

kTJ b~0!S 11
r

kTD Y S 12expH 2
u

kTJ D .

Therefore,

CB~ t !5~NB~ t !1NA!21NB~ t !,

NB~ t !5b~0!exp$at%/a. ~7!

The fact that Eq.~7! assigns an exponential growth la
for the number of vacancies as a function of time and that
distribution function of the vacancies can have an unlimi
‘‘tail’’ partially accounts for the experimentally observed
fairly rapid formation of a solid solution based on the so
phase due to the diffusion of atoms of the second compon
in it.

SinceCB(t)<CS* , whereCS* is the saturation concen
tration of atoms from the liquid phase in the solid pha
according to the phase diagram, from~2! we have

r<u~12CS* !/CS* . ~8!

DEFORMATION OF THE DIFFUSION ZONE

The diffusion of atoms from the liquid phase into th
solid phase in the first stage, in which supersaturation has
yet been achieved in the surface layer, causes displace
of the phase boundary in the direction of the melt~the Kirk-
endall effect!, since new sites occupied by foreign atom
form in the diffusion zone. Therefore, the magnitude of t
displacement of the boundary in this stage of the proces
proportional to the number of atoms passing into the latti
The formation of the first portion of liquid in the surfac
layer of the solid phase after it has been supersaturated
nifies that the phase boundary has reversed its directio
motion and traversed a distance equal to the thickness o
layer of the liquid phase formed in the direction of the so
phase.

If particles of a metallic powder that are thoroughly we
ted by the melt act as the solid phase interacting with
liquid phase, diffusion from the liquid phase into the so
phase should cause an increase in the size of the particl
the bulk. Conversely, the passage of the surface layer of
particles of the solid phase into the melt by melting sho
decrease the dimensions of the particles. This obvious r
tionship between the changes in the volume of the partic
and the direction of predominant mass transfer on the ph
boundary provides researchers with a unique possibility
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studying the nature of the interaction of a solid phase wit
liquid phase by measuring the volume changes in powde
bodies directly during liquid-phase sintering. In this case
perimental results of dilatometric measurements of
growth of powdered bodies in the first stage of liquid-pha
sintering can be used to evaluate the efficiency of the rela
obtained~7!. The relative change in the linear dimension o
powdered body upon sintering in this stage~the displacemen
of the phase boundary in the direction of the melt! is de-
scribed by the relation1

L~ t !2L~0!

L~0!
5

CB~ t !

3~12CB~ t !!
, ~9!

where the functionL(t) specifies the linear dimension of
powdered body at the timet.

Substituting~7! into ~9!, we have

L~ t !2L~0!

L~0!
5

b~0!

3~aNA~ t !!
exp$at%,

r>u~12CS* !/CS* . ~10!

Let us calculate~10! for a concrete aluminum–coppe
system, for whichCS* 50.033,1 u>1.2176644310219 J, and
k51.38310223 J/K at T5833 K.8 The results of the calcu
lation and the experiment are presented in Fig. 1. Curv1
was constructed according to~10!, while curve2 corresponds
to experimental dilatometric data.1 As can be seen from th
figure, curves1 and2 nearly coincide at times correspondin
to the first stage of the process. The difference between
curves becomes significant only after the third minute
sintering, when the shrinking of the powdered body due
displacement of the phase boundary toward the solid ph
begins to be superimposed on the growth process.

FIG. 1. Dependence of the relative change in the linear dimension
powered body of the Al–Cu system during sintering.
46 Tech. Phys. 43 (1), January 1998
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t, since it was assumed during its derivation that the en
regionG is in the solid state. However, with the passage
time, some of the atoms ofA, together with a certain numbe
of atoms ofB, appear in the composition of the liquid phas
This occurs, because along with the increase in the amo
of the solid phase in the second stage of the interaction,
of it is lost due to melting on the boundary ofG after the
critical concentration is achieved in the surface layer. Th
the increase in the dimension of a powdered body of
aluminum-copper system after the third minute of sinter
lags behind an exponential increase~see Fig. 1!. The same
fact follows directly from Eq.~4!, if it is noted that in the
second stage of the processNA(t) is a nonincreasing func
tion, i.e.,

dNA~ t !

dt
,0.

CONCLUSIONS

Recurrence relations~2!–~4! enable us to predict the
variation of the dimensions of powdered bodies in t
growth stage during liquid-phase sintering as a function
the time and temperature. Their derivation is based on a
lecular model of the diffusive interaction between a liqu
phase and a solid phase. The expressions obtained, w
relate the concentration of equilibrium vacancies in the so
phase to the diffusion time, are of more general interest fr
the standpoint of their use as tools in the theory of diffus
processes.
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Kinetics of the irreversible propagation of a thermal instability in the presence of a

ent
nonuniform temperature distribution over the cross section of a superconducting
composite

V. R. Romanovski 

Kurchatov Institute Russian Science Center, 123182 Moscow, Russia
~Submitted July 27, 1997!
Zh. Tekh. Fiz.68, 53–57~January 1998!

The conditions for the irreversible propagation of a normal zone along a composite
superconductor are investigated within the model of a continuous medium with consideration of
its transverse thermal conductivity under the assumption of a uniform distribution of the
current over the cross section of the wire. The numerical experiments performed for a current-
carrying element of circular cross section with variation of the cooling rate and the
transverse dimensions are compared with known results of the one-dimensional theory. It is
shown that the one-dimensional theory, as opposed to the two-dimensional theory, leads to
underestimated values of the velocity of a thermal instability. The size effect modifies the
propagation conditions of a normal zone to the greatest extent as the heat-transfer coefficient
increases. This law is based on an increase in temperature at the center of the wire with
a simultaneous decrease on its surface, as a result of which the mean temperature over the cross
section of the composite increases as its radius increases. ©1998 American Institute of
Physics.@S1063-7842~98!01001-0#

Providing conditions for the stable operation of the the processes taking place. In this context, in the pres
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current-carrying elements of superconducting magnetic
tems is one of the main problems in technical supercond
tivity. The formulation of these conditions is based on inve
tigations of the processes taking place in the current-carry
elements as a result of the appearance and developme
instabilities of various nature. A significant role in unde
standing the physical features of these phenomena is pl
by the theory of thermal stabilization.1,2 Its main assump-
tions were formulated within very simple one-dimension
models. This made it possible to obtain the principal crite
for the stability of a superconducting state, such as, in p
ticular, the stationary-stabilization condition3 and the equal-
area theorem.4 In addition, analytical expressions have be
derived in the one-dimensional approximation to calcul
the velocity of a normal zone in the case of irreversib
propagation along a superconductor,5–7 the stability of the
superconducting state of current-carrying elements tow
thermal perturbations has been analyzed as a function o
duration and spatial extent of the sources of external h
release,8,9 and the critical energies of the permissible pert
bations have been determined with variation of the perc
age of the superconductor in the composite,10 its properties,
the induction of the external magnetic field, and the tempe
ture of the coolant.11,12 However, the details of the develop
ment of a normal zone in a composite stipulated by the p
ence of transverse heat flow are disregarded in o
dimensional models.13,14 Another factor that is not so
obvious at first glance, on which the conditions for the th
mal stabilization of current-carrying elements depend, is
variation of the temperature of the surface of t
composite.15 Therefore, further development of the theory
thermal stabilization should be based on solving proble
which take into account the multidimensional character
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work we investigated the features of the irreversible pro
gation of a thermal instability along a composite.

Let us consider a cooled superconducting composite
circular cross section with a current uniformly distribute
over its cross section, which is immersed in a constant
ternal magnetic field and placed in a coolant with an
signed temperatureT0. We describe the variation of its ther
mal state within the model of a continuous medium w
temperature-averaged parameters using a two-dimens
equation of the form2

c
]T

]t
5lx

]2T

]x2
1l r

1

r

]

]r S r
]T

]r D1
I 2

S2
r~T!,

~1!

t.0, 0,x, l , 0,r ,r 0 .

Here c is the volumetric specific heat of the composite;lx

andl r are the thermal conductivities in the respective dire
tions; I is the current;S is the cross-sectional area;r(T) is
the effective resistance of the composite

r~T!5r05
1, T.TCB ,

T2TC

TCB2TC
, TC<T<TCB ,

0, T,TC5TCB2~TCB2T0!
I

I C
,

wherer0 is the resistivity of the matrix,TCB is the critical
temperature of the superconductor at zero current in the
signed magnetic field, andI C is the critical current of the
composite at the temperature of the coolant.

In assigning the necessary initial and boundary con
tions we start out from the following assumptions. Let a loc
site in the composite be heated instantaneously to a temp

4747-05$15.00 © 1998 American Institute of Physics
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in time as a result of heat release that is symmetric w
respect to the coordinate origin and uniformly distribut
over the cross section. Such a change in the thermal state
occur under the action of numerous irreversible mechan
loads, to which current-carrying elements are subjected
addition, we take into account that the thermal state of
terminal regions will not have an influence on shaping
thermal wave in the composite, if the total spatial extent
the composite is many times greater than the so-called M
length.2 We also assume that heat transfer with a cons
heat-transfer coefficienth takes place on the surface of th
composite and that the end surfaces of the cylinder are m
tained at the temperature of the coolant.

According to the assumptions presented above, the
tial boundary conditions have the form

T~x,r ,0!5H T15const, 0<x<x1 ,0<r<r 0 ,

T0 , x.x1 ,

]T

]x U
x50

50, Tux5 l5T0 , l r

]T

]r
1h~T2T0!U

r 5r 0

50. ~2!

We introduce the dimensionless variables

X5x/Lx , R5r /Lr , i 5I /I C ,

t5lxt/~cLx
2!, Q5~T2T0!/~TCB2T0!,

where

Lx,r5~lx,rS
2~TCB2T0!/I C

2 r0!1/2,

which permit simplification of the analysis being perform
by using generalized variables that do not depend on
heat-transfer coefficient.16 After the new variables are subst
tuted into Eq.~1! and condition~2!, we obtain

]Q

]t
5

]2Q

]X2
1

1

R

]

]R S R
]Q

]RD

1 i 2H 1, Q.1,

Q211 i

i
, 12 i<Q<1,

0, Q,12 i ,

Q~X,R,0!5H Q1 , 0<X<X1 , 0<R<R0 ,

0, X.X1 ,
~3!

]Q

]X U
X50

50, QuX5L50,
]Q

]R
1bQuR5R0

50,

whereL5 l /Lx , R05r 0 /Lr , X15x1 /Lx , and

b5
hS

I C
ATCB2T0

l rr0

is the dimensionless heat-transfer coefficient. It is related
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a5
I C

2 r0

hpS~TCB2T0!

by the expression

a5
1

b

S

pLr

(p is the perimeter being cooled!.
Problem~3! enables us to investigate the principal phy

cal features of the kinetics of a normal zone with consid
ation of the size effect. A finite-difference method was us
to solve it because of the piecewise-linear dependence o
effective resistivity of the composite on the temperature. T
propagation rate of a thermal instability along a composite
the form of a typical temperature wave was determined
merically with consideration of the qualitative features of
formation.16

First, it was taken into consideration that a temperat
wave forms under the action of a thermal perturbatio
whose energy exceeds a certain threshold value, which
scribes the upper limit of permissible perturbations. To illu
trate this, Fig. 1 presents curves which show the temp
variation of the spatial extent of a normal zone in the cen
part of a composite and on its surface, which is determin
from the equationQ(Xn ,R,t)512 i , for various initial tem-
peratures of the region of the composite that is in the nor
state. The calculation was performed for the following p
rameters:L5100, b50.1, i 50.9, R052, andX151. It is
seen that in the case under consideration the thermal in
bility acquires an irreversible character whenQ1.1.7.

Second, since the velocity of a temperature wave d
not depend on the character of the initial perturbation, the
of the transcritical parametersX1 andQ1 can take arbitrary
values when the velocity is determined numerically. The c
responding plots of the temporal variation of the spatial
tent of a normal zone are constructed in Fig. 2 for the cas
irreversible propagation along the composite forL5100,
b50.1, i 50.9, R052, Q151, and various values of the
initial spatial extent of the normal zone. This figure grap
cally demonstrates the formation of a thermal wave and
propagation with the same velocity for various values ofX1

when the latter is virtually independent of the location of t
point in the radial direction, in which the velocity is dete
mined.

Third, to completely eliminate the influence of the tra
sient process preceding the formation of the thermal wa
its velocity was determined only after the distribution of t
temperature over a cross section of the composite in the m
strongly heated part scarcely varied with time~Fig. 3!. In
other words, we took into account states that are sufficie
distant from the initial moment in time, which are asympto
cally close to the steady-state distribution of the tempera
of the thermal wave.

The features noted enable us not only to reduce the e
in the numerical determination of the velocity of a therm
instability on the basis of the solution of the nonstationa

48V. R. Romanovski 



e

s
l

FIG. 1. Propagation of a normal zon
at R50 ~—! and R5R0 ~——*——!
under the influence of perturbation
with an energy close to the critica
value. Q i : 1—1, 2—1.6, 3—1.7,
4—2.
heat-conduction equation, but also to avoid a priori assign-
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FIG. 2. Propagation of a normal zone atR50 ~—! andR5R0 ~——*——!
under the influence of transcritical perturbations.X1: 1—5, 2—10, 3—20.
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ment of the temperature of the composite surface.
Figure 4 shows calculated plots of the dimensionle

propagation rate of a thermal instability as a function of t
transport current for various cooling conditions and wir
with two characteristic radius values: a thermally thin co
posite (R051, Fig. 4a! and a thermally thick composite
(R0510, Fig. 4b!. The dotted line shows the results of th
corresponding calculations according to the one-dimensio
model.16

As would be expected, the velocity of the thermal wa
in a thermally isolated composite (b50) does not depend on
its transverse dimension, since the thermal state of
current-carrying element is uniform over a cross section.
the same time, the difference between the velocities o
normal zone calculated according to the one- and tw
dimensional models for cooled composites depends on
value ofb and the transverse dimensions. For example,
dependence ofV( i ) for a thermally thin wire in the two-
dimensional approximation slightly exceeds the correspo
ing values in the one-dimensional model over a broad ra
of variation of the current. However, thermally thick curren
carrying elements display significant disparity between
one- and two-dimensional theories. This difference can h
not only a quantitative character, but also a qualitative ch
acter because of the significant increase in the calcula
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two-dimensional values of the velocity of a normal zon
Switching from the one-dimensional model to the tw
dimensional model results in a significant decrease in
range of currents with negative velocity values, which cor
spond to stable superconducting states. Therefore, if the
sient processes in a thick current-carrying element are in
tigated on the basis of one-dimensional models, and
particular, the states which are stable toward arbitrary per
bations~at V,0) are determined, under real conditions w
the parameters under consideration it can be in a metas
state (V.0).

The laws noted are based on the corresponding varia
of the thermal state of a composite in a cross section, wh
is not taken into account in the one-dimensional theory. Ab
increases and, particularly, as heat transfer improves,
temperature distribution in a cross section becomes m
nonuniform. As a result, the temperature increases in
central portion of a thick composite and decreases on
surface~Fig. 3!. Therefore, despite the fact that in the tw
dimensional model, in contrast to the one-dimensio
model, there is a conductive heat flow in the transverse
rection, the mean temperature in the most strongly hea
part increases. To more rigorously prove this claim, let
consider the problem

1

R

d

dRS R
dQmax

dR D1 i 250,

dQmax

dR
1bQmaxU

R5R0

50,

which describes the distribution of the temperature in a cr
section of a composite that is in the normal state after a la
time interval has passed. Its solution is a dependence o
form

FIG. 3. Increase in the temperature of a composite in the cross sectio
X50 for X155 ~—! andX1520 ~– – – –!.
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Qmax~R!5
i 2R0

2b
~11bR0/2!2

i 2R2

4
,

which can be used to easily determine the mean tempera
over the cross section

^Q&5
1

SES
Qmaxds5 i 2~a1R0/8

2 !.

Furthermore, the expression shows that, as oppose
the corresponding one-dimensional value, which equalsa i 2,
consideration of the size effect leads to a monotonic incre
in ^Q& with increasingR0. The dependence ofV( i ) is modi-
fied accordingly.

at

FIG. 4. Dependence of the velocity of a normal zone on the current ca
lated according to the one-dimensional~– – – –! and two-dimensional
models.
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Thus, a two-dimensional calculation of the kinetics of
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4

thermal instability along a composite shows that the o
dimensional theory underestimates the values of the rat
irreversible propagation of a normal zone. This difference
based on the increase in the mean temperature of the c
posite in its most strongly heated part. This difference will
observed to the greatest degree in well cooled thick curr
carrying elements. It must be taken into account in devel
ing large superconducting magnets.
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Surface plasmon–phonon polaritons of hexagonal zinc oxide

h

A. V. Mel’nichuk, L. Yu. Mel’nichuk, and Yu. A. Pasechnik

Ukrainian State Pedagogical University, 252030 Kiev, Ukraine
~Submitted May 21, 1996!
Zh. Tekh. Fiz.68, 58–62~January 1998!

The anisotropy of surface plasmon–phonon polaritons of the first and second types in hexagonal
zinc oxide is investigated at various electron concentrations and orientations of theC axis
of the crystal relative to its surface. It is shown that surface plasmon–phonon polaritons of a third
type are generated when the electron concentration in ZnO is greater than 231018 cm23

and the orientation corresponds toK'C andxy'C. The spectrum of the surface plasmon–phonon
polaritons of the third type are calculated, and the conditions for the existence of surface
plasmon–phonon polaritons of the third type in ZnO single crystals are determined. ©1998
American Institute of Physics.@S1063-7842~98!01101-5#

The interaction of electromagnetic waves with the latticesponding toKiC andxyiC. The spectra were recorded wit
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vibrations of a film and a substrate alters the spatial struc
of the fields, the existence regions, and the dispersion r
tions of various surface excitations of the solid-sta
system.1,2 The surface plasmon–phonon polaritons
heavily doped anisotropic semiconductors were first inve
gated in Ref. 3. The number of dispersion relations for s
face plasmon–phonon polaritons in a uniaxial semicondu
depends on the charge-carrier concentration and on the
entation of theC optical axis of the crystal relative to itsxy
surface. The experimental dispersion curves of the sur
plasmon–phonon polaritons in heavily doped hexagonal
con carbide~SiC 6H! were obtained in Ref. 4. Howeve
their differences are determined predominantly by the ani
ropy of the electron effective mass in SiC 6H. In the pres
work the anisotropy of the surface plasmon–phonon pol
tons of a hexagonal zinc oxide single crystal was inve
gated with various orientations of theC axis of the crystal
relative to its surface. The mutually consistent parameter
the model of ZnO obtained in Ref. 5 were used in the cal
lations.

Zinc oxide crystallizes in the wurtzite structure wi
space groupC6V

4 (P63mc).6 Experimental modified attenu
ated total reflection~ATR! spectra of ZnO polaritons wer
obtained using an IKS-29M spectrometer and an NPVO
adapter. A KRS-5 semicylinder with a refractive inde
n52.38 was selected as the ATR element. The dimens
of the ZnO single crystals (103838 mm! allowed us to
obtain spectra in polarized radiation with various orientatio
of the C axis relative to thexy surface.

Figure 1 ~points! shows three experimental dispersio
curves ofns(K) for the ZO2-3 sample, which correspond
the high-frequencyn1 branches of the polaritons.3 Curve1
was obtained forKiC and xyiC. The dimensionless wav
vector q5Kc/vTi , whereK is the wave vector of the sur
face plasmon–phonon polaritons,c is the speed of light,vTi

is the angular frequency of the transverse optical pho
whenEiC, andE is the electric vector of the infrared radia
tion. Curve2 is a plot of ns(K) for K'C and xy'C, and
curve3 is for K'C andxyiC.

Figure 2 presents the experimental spectra of the ZO
sample for the orientation of the ZnO single crystal cor
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an air gap of thicknessd526 ~curves1 and 2! and 3mm
~curves3–5! between the ATR element and the sample, a
with the angles of incidencea of the IR radiation in the ATR
element indicated in the captions to Fig. 2. The minima
the spectra correspond to the frequenciesnmin5408, 450,
496, 518, and 527 cm21, and the widths of the spectra ar
Gs532, 27, 22, 17, and 15 cm21. Curve 8 was calculated
using the data on the ZC1M sample~with an electron density
n054.231018 cm23) for polaritons of the third type.

The ns(K) curves~Fig. 1, solid curves! were obtained
from the expression

Kx
25@« i~n!2«'~n!« i~n!#/@12«'~n!« i~n!#, ~1!

whereKx5Kc/v, v is the angular frequency,n is the fre-
quency of the radiation, and«'(n) and« i(n) are the dielec-
tric functions of ZnO in the directions perpendicular a
parallel to theC axis.

Equation~1! was written forK'C andxy'C ~curve2!.
If «'(n) and« i(n) are interchanged, thens(K) curve~curve
1! can be obtained using~1!. Curves1 and2 in Fig. 1 cor-
respond to extraordinary surface polaritons. Ordinary pol
tons appear whenK'C and xyiC. Equation ~1! is trans-
formed by replacing«'(n) by « i(n) ~curve3!.

Agreement between the calculated and experimental
was achieved when the optical parameters of ZnO obtai
on the basis of a dispersion analysis of the reflection spe
of the ZO2-3 sample with an electron densityn059.331016

cm23 were used in the calculation and the anisotropy of
electron effective mass in ZnO was taken into account.5 The
frequencies of the plasmon–phonon modes~curves2 and3!
are 548 and 560 cm21, respectively, and the plasma resona
frequencies arenp'590 cm21 and npi5100 cm21 ~for
E'C andEiC).

Equation ~1! enables us to obtain two dispersio
branches in analogy to the isotropic case. The hi
frequencyn1 branch begins atn5nT' , and whenK@v/c,
ns asymptotically approaches the value corresponding to
solution of the dispersion equation with neglect of the la
«'521:

5252-04$15.00 © 1998 American Institute of Physics
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FIG. 1. Dispersion curvesns(K) for
the surface plasmon–phonon polar
tons of ZnO ~the ZO2-3 sample,
n059.331016 cm23). 1—KiC,
xyiC; 2—K'C, xy'C; 3—K'C,
xyiC; a—KiC, xyiC.
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jT'
2 5@~11«0'!/~11«00'!#nT'

2 ,
~2!

jp'
2 5«00'np'

2 /~11«00'!.

The low-frequencyn2 branch exists for all values ofK.
The polaritons investigated appear under two sets of con
tions:

1)«',0, « i,0; 2)«',0, « i.Kx
2 . ~3!

In contrast to the isotropic case, new branches appea
ZnO whenKiC andxyiC. The number of existence region
for them depends on the electron density in the conduct
band and on the relative positions of thenT,',i , nL',i ,
np',i , n',i

1,2 , andV',i
1,2 signals. The last eight quantities ar

defined by the relations3

FIG. 2. ATR spectra of ZnO~the ZO2-3 sample,KiC, xyiC). 1,2—d526,
3–5—3 mm; 1–5—a525.3, 28, 34, 42, and 52°, respectively;Gs532, 27,
22, 17, and 15 cm21; 6,7—calculation:d572 and 49mm, gph511 cm21;
a6525.2°;a7525.7°;n65401 cm21, n75423 cm21, Gs6.7512 cm21; 8—
calculation for the ZC1M sample:gph56 cm21, gp'5gpi51 cm21,
a528°, andd526 mm.
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n

«'~V'
1,2!51, « i~V i

1,2!51,

n',i
1,25~1/2!1/2$~nL',i!

21~np',i!
26@~~nL',i!

2

1~np',i!
2!224~np',i!~nT',i!

2#1/2%1/2. ~4!

The maximum number of branches can be 4. Wh
K@v/c, their frequencies asymptotically approach the c
off frequencies corresponding to the solutions of the eq
tion «'« i51. Only the portions of the curves which lie i
regions of the (n,K) plane where conditions~3! hold corre-
spond to surface polaritons. The relation«'« i51 is a fourth-
order equation with respect ton2, but only one, two, or three
solutions lie in regions where«',0, i.e., they are confined
to finite values ofK.

In the isotropic case an ordinary polariton has one lo
frequencyn2 branch, which begins atn50 and increases up
to n2 asK→`. The dispersion curves of the surface pola
tons have two branches:ns

1,2(K). Figure 3 shows thens(K)
curves of ZnO forKiC and xyiC. Ordinary polaritons ap-
pear in this orientation. Calculations of the dispersion cur
were performed in reference to the ZO2-3~curves1 and2!
and ZO1-3 samples~curves3 and 4!. Curves1 and 2 were
obtained fornp'590 cm21, and curves3 and 4 were ob-
tained fornp'5240 cm21. Thus, we havenp f

1 5561 cm21

and np f
2 559 cm21, and when Kc/vTi→`, we have

np f
1 5578 cm21 and np f

2 5152 cm21. The subscriptp f is
used for the cutoff values corresponding to the values
n1,2 obtained according to Eq.~2!. The calculations show
that the frequencies of the polaritons are higher, the great
the concentration of free charge carriers~electrons in ZnO!.
Curves1–4 correspond to polaritons of the first type, whic
exist for anyKx

2.1 ~Ref. 7!.
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For ZnO we havenTi,nT',nLi,nL' , and thens(K)
dispersion curves begin at the frequencies on the optical
v5Kc:

n50; n5nT'~«'500! and
~5!

n5V i
1 , n5V i

2~« i51!.

For zinc oxide single crystals nonfulfillment of the co
dition V i

1,n,n'
1 leads to the presence of only three d

persion branches ofns(K). Figure 4 shows thens(K) curves
for the ZC1M sample, in whichnp'5605 cm21 and
npi5650 cm21. The calculation reveals the existence
three dispersion curves~curves 1–3!. Here we have
np f

1 5719 cm21 ~curve 1! and np f
2 5305 cm21 ~curve 2!.

Curve3 begins atV i
25309.9 cm21 for Kc/vTi50.815 and

ends atn'
25318.4 cm21 for Kc/vTi51.632. Curve3 is pre-

sented on a magnified scale in Fig. 5a.
Figure 5 shows the dispersion curves of the surface

laritons of ZnO whennp'51300 cm21 and npi51430
cm21. In this casenp f

1 51273.7 cm21, andnp f
2 5363.6 cm21

when Kc/vTi→00. Herens(K) ~curve 3! begins at 363.8
cm21 and tends ton35390 cm21 asKc/vTi→00. The cal-
culation of ns(K) for ZnO with np'51500 cm21 and
npi51650 cm21 gives np f

1 51450 cm21 and np f
2 5367.7

cm21. The cutoff frequency of the third dispersion curve
n35395.5 cm21. The third branch ofns(K) for ZnO differs
from thens(K) curves previously investigated in anisotrop
crystals. When the data for the ZC1M sample were u
~Fig. 4!, a spectrum of the third type was calculated~Fig. 2,
curve 8!. The spectrum was obtained forgph'5gphi56
cm21, gp'5gpi51 cm21, an anglea528°, and a gap

FIG. 3. Dispersion curvesns(K) for the surface plasmon–phonon polarito
of ZnO whenK'C andxyiC.
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width d526 mm. The minimum of the spectrum of the thir
type was atn35312.5 cm21 whenKc/vTi50.92.

The anisotropy of the polariton is manifested wh
Kc/vTi.1.2. For example, it is manifested whe
Kc/vTi52dns518 cm21 ~curves 1 and 3!. As K→00,
curves1 and2 tend to 548 cm21. Figure 1a shows the part o
the ns(K) curve in the frequency range 380–420 cm21 on a
magnified scale. Surface plasmon–phonon polaritons of
second type, whose existence is restricted by the condit
«x(n),0 and«z(n).Kx

2 ~Ref. 7! are exhibited in this range
up to 412 cm21. The points show the experimental data f
the frequenciesns of surface plasmon–phonon polaritons
the second type, which are consistent with the calculati
the ns(K) curves of polaritons of the first type@«x(n),0
and «z(n),0# begin at 412 cm21, and the experimenta
ns(K) curve~curve1! is continuous. We simulated the spe
tra of polaritons of the first and second types on a compu
at points near 412 cm21 ~the ‘‘stopping point’’!.8 The spec-
tra were calculated forKiC and xyiC at the frequencies
nsp25411 cm21 and nsp15413 cm21 with gaps equal to
d572 and 49 mm and the damping coefficient of th
transverse-optical phononsgph511 cm21 ~Ref. 5!. Here
Ksp25Kc/vTi51.10415, andKsp15Kc/vTi51.11054. Both
spectra have the same intensity at the minimum and the s
width Gp512 cm21. The spectra practically overlap eac
other, indicating that surface polaritons of the first and s
ond types are generated simultaneously in the presenc
damping at an emission frequency of 412 cm21.

The experimental spectrum with a minimum at 4
cm21 hasGp532 cm21, which corresponds to the dampin
coefficient of surface plasmon–phonon polaritonsGsp54
cm21. The cutoff frequencies are determined using Eq.~2!.

FIG. 4. Dispersion curves ofns(K) for the surface plasmon–phonon polar
tons of ZnO whenK'C andxy'C.
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Curve2 in Fig. 1 corresponds to thens(K) curve forK'C
andxy'C. It begins at 412 cm21 and tends to the frequenc
np f

1 5548 cm21 as Kc/vTi→`. Polaritons of the second
type can be displayed only when«',0 and« i.Kx

23 . In the
case of ZnO the existence region of polaritons of the sec
type is restricted to the range 380–412 cm21 ~Fig. 1a!. They
are exhibited when the orientation of the sample correspo
to KiC andxyiC.

The ns(K) dispersion curves begin atn50, n5nT'

(«'500) and atn5V i
1 , n5V i

2 (« i51), which coincide
with the straight linev5Kc. The dispersion curves ofns(K)
for the polaritons of the third type, which are displayed on
in anisotropic crystals at charge-carrier concentrations ab
a definite value, are of special interest. The existence re
of ns(K) for polaritons of the third type is bounded by th
straight line « i51 and by the straight linesv5Kc and

FIG. 5. Dispersion curvesns(K) for the surface plasmon–phonon polarito
of ZnO when K'C and xy'C. 1—np f

1 51273.7 cm21, 2—np f
2 5363.5

cm21, 3—n35390 cm21; V i5363.8 cm21; n i
25363.6 cm21; a—ns(K) of

the surface plasmon–phonon polaritons of ZnO forK'C and xy'C;
np'5605 cm21, npi5650 cm21 ~the ZC1M sample!, n'

25318.4 cm21;
Kc/vTi51.632 («150), V i

25309.9 cm21; Kc/vTi50.815 (« i51),
n i

25306.5 cm21; Kc/vTi50.017 (« i50).
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V i >301.1 cm , polaritons of the third type begin to b
exhibited atnp'>550 cm21. The condition for the existence
of the polaritons of the third type of ZnO is 550 cm21

<np',1077.3 cm21. Figure 4 shows thens(K) curve of
polaritons of the third type~the ZC1M sample! at np'5605
cm21. In this case n i

25306.5 cm21, Kc/vTi50.017
(« i50), V i

25309.9 cm21, Kc/vTi50.815 (« i51), and
n i

25318.4 cm21, Kc/vTi51.632 («'50).
The polaritons of the third type of the ZC1M samp

exist in the frequency range 306.5–318.4 cm21. The disper-
sion curves ofns(K) in Fig. 5 were obtained for ZnO in the
orientation corresponding toK'C and xy'C at n0.n1

(n'
2.nTi), where the cutoff frequencyn35390 cm21. At

n'
2.nTi polaritons exist whenKc/vTi→`. The condition

for their existence at frequencies fromV i
2 to nTi is similar to

the case of polaritons of the second type, and polariton
the first type appear in the range fromnTi to n'

2 . The low-
frequencyns

2(K) curves of the polaritons begin atn.0,
where Kx

2.1. As the carrier concentration is increase
ns(K) varies from 0.54 to 9.5 cm21.

In summary, we have investigated surface plasmo
phonon polaritons of the first and second types in dop
anisotropic single crystals of zinc oxide with various orie
tations of the wave vector relative to the surface and opt
axis of the crystal. We have shown that a new dispers
curve for polaritons of a third type forms in ZnO when th
electron concentration is greater than 231018 cm23 and the
orientation corresponds toK'C andxy'C. We have deter-
mined the existence conditions for polaritons of the new ty
and have calculated their dispersion relations and spectr
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Relationship between the electronic properties of the interface and the interphase

interactions in NbN–GaAs heterostructures

A. A. Belyaev, E. F. Venger, V. G. Lyapin, R. V. Konakova, V. V. Milenin,
and Yu. A. Tkhorik

Institute of Semiconductor Physics, Ukraine Academy of Sciences, 252650 Kiev, Ukraine
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Institute of Surface Chemistry, Ukraine Academy of Sciences, Kiev, Ukraine
~Submitted August 13, 1996!
Zh. Tekh. Fiz.68, 63–66~January 1998!

Peculiarities of contact formation in the system NbN–GaAs upon a change in the structural–phase
state of the deposited metal are investigated. It is shown that the role of the chemical factor
in the processes of contact formation decreases as the degree of structural perfection of the NbN
alloy increases. The causes of the corresponding changes in the electronic structure of the
interface as a result of the phase transition NbN–Nb4N3 are discussed. The Auger spectrum and
current–voltage and capacitance–voltage characteristics of NbN–GaAs surface-barrier
structures are measured before and after annealing in vacuum atT5850 °C for 10 s. ©1998
American Institute of Physics.@S1063-7842~98!01201-X#
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Despite active efforts directed towards clarifying the fe
tures of the interactions between metals and the semicon
tors that are widely used in practical applications, at this ti
there is no universal model capable of qualitatively desc
ing or predicting the parameters of the Schottky barriers
form when they come in contact. This state of the problem
due to the extreme complexity of the processes that t
place when a metal is deposited onto a semiconductor
general, these processes include diffusion-induced mix
and chemical interactions between the components of
heterojunction pair, which lead to chemical heterogeneity
the interphase boundary, and the formation and decomp
tion of solid solutions~alloys! in the transition layer of the
contact. Neither the intensity and direction of these proces
nor the structural states of the reaction products can be
dicted from the bulk state diagrams, because the thermo
namic constants at the surface of the semiconductors d
from their corresponding values in bulk. Symmetry breaki
changes in the atomic force constants near the semicond
surface, and the presence of electric and mechanical field
the reaction zone of the contact all cause significant chan
in the thermodynamic and kinetic parameters of the inter
ing phases.

These facts give us grounds to assert that the proce
of interaction between a metal and a semiconductor dep
not only on the physical and chemical state of the semic
ductor surface but also to a considerable degree on the
of the thin-film condensate, its structural and morphologi
characteristics, and its ‘‘reactivity,’’ all of which can chang
the intensity of diffusion processes and phase formation
the contact. One consequence of this is the appearanc
transition regions with structure and chemical contents
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experimentally justify these conclusions, in this paper
investigate how the structural–phase state of the metal c
tact affects the characteristics of a NbN–GaAs Schottky c
tact.

EXPERIMENTAL METHOD

Layers of NbN (d>1002150 nm! were obtained by re-
active sputtering of Nb~purity 99.95%! in a mixture of argon
and nitrogen onto a substrate ofn-type GaAs:Te
(n>531016 cm23) with ~100! surface orientation.5 Before
the sputtering, the substrate was etched in H3PO4 : H2O and
chemically cleaned in a solution of(1:10) NH4OH : H2O.

The structures of the niobium nitride films were inves
gated by x-ray phase analysis. Data on the physical
chemical composition of the substrate surfaces prepared
sputtering were obtained using x-ray photoelectron spect
copy. The character of the distribution of atomic compone
in the NbN–GaAs heterostructures was determined by la
by-layer Auger analysis. The electrical parameters of
surface-barrier junctions were studied by current–volta
and capacitance–voltage characteristics. The diode and
structures were subjected to annealing for 10 s
T58002950 °C in vacuum.

RESULTS AND DISCUSSION

Typical photoelectron spectra of the gallium arsenide
ter chemical processing and washing in deionized water
dicate that the dominant phases present at the surfac
GaAs prepared for sputtering are: Ga2O3 ~the binding energy
Eb of the 2p3/2 electrons of Ga is'1118.421118.9 eV!,
arsenic ~for which Eb'40.7241.6 eV!, and As2O3

5656-04$15.00 © 1998 American Institute of Physics



(Eb'44.2 eV!. The Ga : As concentration ratio is substo-
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ichiometric ('0.9), and the oxygen content reaches 80 at
in the subsurface layer.

When magnetron sputtering is used to deposit layers
niobium nitride on such a chemically heterogeneous surfa
the data from x-ray structural analysis depend on the con
of nitrogen in the working gas mixture. At nitrogen conce
trations less than 5% or more than 20%, diffraction ph
analysis does not reveal crystallographic phases corresp
ing to stoichiometric modifications of niobium nitride, an
the film structure is amorphous in this case. At intermedi
nitrogen concentrations the deposited layers have a polyc
talline structure consisting of grains of the NbN phase, w
a phase-centered cubic lattice whose lattice constant va
with the nitrogen concentration in the film. The facts that t
ratio of atomic radii of nitrogen and niobium is 0.59 and th
the solubility of nitrogen in niobium is small indicate th
layers deposited under these conditions are typical inters
phases with respect to their physical and chemical proper

Annealing at a temperature of 850 °C leads to crysta
zation of the amorphous layers of niobium nitride into t
face-centered cubic phase of NbN for films obtained with
nitrogen content of 5% in the working mixture, and into t
tetragonal phase for layers obtained at high ('20%) nitro-
gen concentrations. Thus, depending on the content of n
gen in the working mixture, layers of niobium nitride o
GaAs undergo various structural transformations under
same annealing conditions, which indicates that the p
cesses of nucleation and growth of the layers under th
conditions are different.

When polycrystalline layers in which the domina
phase is NbN are annealed, a structural transition is obse
with the formation of the phase Nb4N3.

Not a single case of an intermediate phase includ
components of the semiconductor substrate or impuritie
oxygen and carbon—was reliably identified. This is a pro
lem in need of further detailed investigation.

Thus the results of our structural–phase analysis of
ers deposited at a fixed discharge power with various ni
gen contents in the working gas and subsequently anne
suggest that our samples can be separated into three gr
Group I includes samples grown at 5% N2 content in the
working gas. Annealing these samples at 850° for 10 s le
to a structural transformation of the amorphous layer to
NbN phase. Group II consists of structures grown at 15%2.
These samples are characterized by a NbN–Nb4N3 structural
phase transition. Group III consists of structures grown
20% N2 content; annealing them leads to crystallization
the amorphous niobium nitride film into the phase Nb4N3.

Figure 1 shows the results of electrophysical studies
niobium nitride surface-barrier structures subjected to hi
temperature annealing. These curves imply that the Scho
barrier parameters and thermal stability depend on the c
ditions of preparation of the contacts. This is particualry o
vious in the reverse-current characteristics of the diode st
tures, which can change by several orders of magnitude

We can identify two factors that can modify the ele
tronic structure of heterointerfaces both as they form a
during subsequent anneals: a chemical factor associated
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the formation of new products when the components t
make up the heterojunction pair react with one another, an
structural factor due to peculiarities in the incorporation
the film condensate into the semiconductor lattice.

In order to estimate the influence of the first factor, w
studied the distribution of elements in the heterojunctions
layer-by-layer Auger analysis~Fig. 2!. Our data imply that
there is no appreciable difference in the mixing layers
either the as-grown or annealed structures. No clearly
pressed features that might indicate the creation of an a
tional phase were identified in the elemental distribution p
files within the junction region of the contact. The widths
the junction layers calculated from the data of Fig. 2
creased in the following sequence: for type I—amorpho
layer–Nb4N3, 122–134 Å, for type II—NbN–Nb4N3, 210
–257 Å, for type I—amorphous layer–NbN, 250–317 Å
the widths were not correlated with changes in the elec
physical parameters of the barrier structures. Therefore,

FIG. 1. Schottky barrier height~a!, ideality factor ~b!, and magnitude of
reverse current forU rev50.4 B ~c! versus the annealing temperature f
NbN–GaAs samples of types I, II, III.

57Belyaev et al.



g
FIG. 2. Profiles of impurity distributions in NbN–GaAs contacts~type I—upper, type II—middle, type III—lower!. a—as-grown contact, b—after annealin
at T5850 °C ~10 s!.
will assume that the factor connected with the structural state
he

Schottky barriers. In this case, not only is the structural com-
m-
on-
of the deposited film plays the more important role in t
processes that determine the electronic properties

58 Tech. Phys. 43 (1), January 1998
of
patibility between the metal film and the semiconductor i
portant, but also the degree of disordering of the semic
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layers were deposited. The degree of disorder determine
intensity of mass exchange in the metal–semiconductor
tem, which in turn can change the degree of doping of
subsurface layer of GaAs; evidence for this~exhibited by
structures of types I and II after annealing and type III bef
annealing! is the appearance of a voltage-independent s
ment that interrupts the linear trend of the inverse-squ
junction capacitance versus the applied bias. Moreover
polycrystalline films an important role is played by the ra
of diffusion fluxes through the volume of a grain and v
intergrain boundaries, which depends on the size of
grains and the layer thickness. Although a systematic
consistent inclusion of all the circumstances mention
above will require additional studies, for now we can say t
the best electrical parameters are exhibited by contacts
tween GaAs and crystalline Nb4N3 films, regardless of how
the latter phase is formed, i.e., by crystallization of an am
phous layer or as a result of a recrystallization Nb
→Nb4N3.

Calculations based on the principle of three-dimensio
matching, analogous to those of Ref. 4, show that direct
corporation of both Nb3N4 and NbN into the crystal lattice o
the GaAs substrate is accompanied by the appearance
appreciable concentration of electrically active defects at
boundary, while contacts with good electrophysical char
teristics are possible only when the defect concentratio
the boundary is small.

This latter difficulty probably could be addressed by p
ting an intermediate monolayer, e.g., of NbAs, between
GaAs substrate and Nb3N4 or NbN layer.
59 Tech. Phys. 43 (1), January 1998
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~1! The atomic structure of a niobium nitride layer d
pends on the growth conditions;~2! polycrystalline films of
niobium nitride obtained by magnetron sputtering are, a
rule, single-phase;~3! heat treatment of NbN/GaAs junction
causes the structural state of the deposited layer to cha
converting it from an amorphous layer to a crystalline
recrystallized layer, with the formation of a new phase;~4!
the best parameters of niobium nitride–GaAs Schottky c
tacts are achieved by heat treatment at 850 °C and co
spond to a film state whose dominant phase is Nb4N3.

In closing, the authors of this paper who are on the s
entific staff of the Institute of Semiconductor Physics, N
tional Academy of Sciences of the Ukraine, express our d
appreciation for joint funding by the government of th
Ukraine and the International Science Foundation~Grant
N R5R100!, which provided us with support while we ca
ried out these investigations.
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Production of highly enriched mercury isotopes by a photochemical method

at-
Yu. V. Vyazovetski  and A. P. Senchenkov

Kurchatov Institute Russian Science Center, 123182 Moscow, Russia
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The Foton-M automatic system for the production of mercury isotopes has been developed in
Russia. The isotopes are obtained by means of a photochemical reaction between excited
mercury atoms and oxygen in the presence of 1.3-butadiene. The possibilities for separating all
mercury isotopes, including those with overlapping resonance line profiles, are examined.
The Foton-M system can produce 98%, 99%, and 99% concentrations of the isotopes Hg-196,
Hg-198, and Hg-202, respectively, in sufficient quantities to meet demand in Russia and
for export abroad. ©1998 American Institute of Physics.@S1063-7842~98!01301-4#
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There is a steady demand for mercury isotopes in R
sian and in the world markets. One method of obtaining m
cury isotopes is the photochemical method, which has
cently seen intensive development. Technologies
automatic systems1 designed to produce appreciable quan
ties of mercury isotopes have been developed in Russia
the time, attention was focused mainly on studies aimed
the development of a technology to produce the rarest, m
expensive mercury isotope Hg-196. This isotope attrac
interest mainly because of its medical application for
diagnosis of various diseases2 and also to investigate the po
sibility of using mercury up to 2–4% enriched in Hg-196
enhance the luminous efficiency of light sources.3

The photochemical method of isotope production s
further progress with the development of a technology
Hg-202 enrichment of mercury to a concentration of 99.8
~Ref. 4!. The methods and techniques developed can prod
this high enrichment not only for Hg-202 but also for H
196 and Hg-200. The Foton-M photochemical system5 based
on the Foton system described earlier was used for th
experiments.

In some previous studies it was shown that the pho
chemical method of obtaining Hg-196 was more econom
than the electromagnetic technique.1 Mercury enriched in
Hg-196 was first obtained in 1968 by French researche6

Their experimental separating system delivered a product
riched in Hg-196 with a yield of around 1 mg/d. Some of t
main constants characterizing this process were measu
Slightly later, some German scientists published studies
various aspects of obtaining Hg-196 by using a photoche
cal mercury oxidation reaction in the presence
1.3-butadiene.7,8 The light source in these experiments wa
low-pressure lamp filled with Hg-198-enriched mercury.

American researchers proceeded to study the ph
chemical reaction between excited mercury atoms and
drogen chloride.9 The reaction with HCl has a substantial
higher quantum yield compared with the oxidation reacti
but the enrichment factor is lower.

The technology involved in producing mercury isotop
by a photochemical method has under development in Ru
for some years. The main process used in these experim
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oms and oxygen in the presence of 1.3-butadiene. The m
cury atoms are excited byl5253.7 nm resonance radiatio
from a low-pressure lamp. This reaction has the maxim
selectivity for the separation process, which is particula
important for the enrichment of mercury isotopes with ov
lapping 253.7 nm line profiles. In addition, the enrichme
process can be automated by using various physical
technological means so that it can be carried out round
clock with minimum supervisory staff.10

POSSIBILITIES FOR OBTAINING MERCURY ISOTOPES BY
THE PHOTOCHEMICAL METHOD

The isotopic hyperfine structure of the 253.7 nm m
cury resonance line is shown in Fig. 1. It can be seen
under real enrichment conditions, even when the merc
atom is excited by a fairly narrow radiation line, only th
isotopes Hg-202, Hg-200, and Hg-196 can be separated f
the isotope mixture. The other isotopes will be excited a
will therefore be separated in groups: Hg-199, Hg-201 a
Hg-204; Hg-198 and Hg-201; Hg-199 and Hg-201.

Furthermore, the radiation line of the mercury lamp us
to excite the mercury atoms is not monochromatic. Even
the lamp is filled with mercury enriched up to 99.8% in th
target isotope, a small percentage of its radiation will exc
other isotopes because of the nonlinearity of the lumin
efficiency. The mutual overlap of the emission line profil
of the lamp and the absorption line profiles of the mercu
atoms in the reaction cell has the result that the optical
lectivity of the process is limited.

The mutual overlap of the resonance line profiles of
Hg-198, Hg-199, Hg-201 and Hg-204 isotopes means
direct excitation of the target isotopes by radiation from
monochromatic light source is inadequate to obtain high
richment of these isotopes. However, this does not mean
isotopes with overlapping spectra cannot be separated by
photochemical method. Tested and proven procedures
available to separate all isotopes of mercury photoche
cally. Among these procedures, particular mention should
made of filtering the light source radiation to suppress t
component which reduces the selectivity of the process.
selectivity of the photochemical reaction can be enhan

6060-07$15.00 © 1998 American Institute of Physics



FIG. 1. Hyperfine structure of the
253.7 nm mercury resonance line.
considerably by optimizing the isotopic composition of the
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mercury in the filter, the type and pressure of the buffer a
quencher gas, and the cold point temperature of the filte

It is difficult and frequently impossible to obtain highl
enriched mercury isotopes without using ‘‘negative’’ enric
ment. Unlike the direct or ‘‘positive’’ enrichment proces
where radiation from the light source excites and separ
the target isotopes, in the reverse or negative enrichm
process impurity isotopes are excited and undergo a ph
chemical reaction. In this case, the valuable product is
only the mercury enriched in the target isotope but of
includes mercury enriched in impurity isotopes.

At least two procedures can be proposed to separat
the isotopes of mercury. In the first procedure,11 mercury of
mixed isotopic composition is irradiated by light from a me
cury lamp containing Hg-199, Hg-204, or a mixture of the
isotopes. The isotopes Hg-199, Hg-201, and Hg-204 are
excited and undergo a photochemical reaction. By expos
this isotope mixture to a lamp containing Hg-198, it is th
possible to remove Hg-201. The mixture of Hg-199 and H
204 is then separated using a lamp filled with Hg-196
Hg-204. The isotopes Hg-198, Hg-200, and Hg-202 can t
d
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Hg-201, and Hg-204 by using suitable light sources.
In the second procedure12 the mercury isotopes are sep

rated in several stages. At the first stage, mercury of arbit
isotopic composition is irradiated by a lamp containing H
198 and is separated into a mixture enriched in Hg-198
Hg-201 and a mixture depleted in these isotopes. The
topes Hg-198 and Hg-201 are separated using a lamp fi
with Hg-199 or Hg-204 or a mixture of these. Using th
same light source, a mixture of Hg-199 and Hg-204 isoto
is extracted from the mercury depleted in Hg-198 and H
201. The isotopes Hg-199 and Hg-204 may be separate
using light sources containing Hg-204 or Hg-196.

After significantly modernizing the separator system a
modifying its process cycle, it was found to be possible
separate all the isotopes of mercury on an acceptable
nomic basis.

FOTON-M UNIVERSAL AUTOMATIC SEPARATOR AND ITS
PROCESS CYCLE

A schematic of the Foton-M separator is shown in Fig.
-

,

FIG. 2. Schematic of Foton-M sepa
rator: 1—compressor,2 — reactant
flow rate meter,3—gas pressure re-
ducer, 4—cylinder containing reac-
tants, 5—mercury evaporator,6—
reaction cells,7—isotope collector,
8—mercury vapor density meter
9—mercury vapor trap, 10—
forepump, 1A–10A—automatically
controlled valves, D1–D3—valves
for fine regulation of the flow,11—
manual valve,12—hydrogen,13—
oxygen.
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especially isotopes with overlapping resonance line profi
the separator must be capable of achieving efficient di
enrichment of an isotope or group of isotopes, negative
richment, or a combination of these procedures, deep de
tion of the mixture in one or several isotopes to as low
fractions of a percent, and there must also be provision
filtering of the lamp radiation if required.

The process cycle of the separator consists of six c
secutive stages. At the first stage the circulation loop is fil
with a reactant mixture from the cylinder4 via a gas pressure
reducer3. The mercury lamps, compressor1, and heater of
the high-speed evaporator5 are switched on simultaneously
After the mercury atoms in the reaction cells6 have reached
a given density, recorded by a density meter8, the system
switches to the stage where enriched mercury oxide bu
up on the inner surfaces of the reaction cells. For spec
applications, the cells may be connected in parallel, in ser
or a combination of both. Mercury depleted in the targ
isotopes is collected in a mercury vapor trap9 cooled to
between250270 °C.

After this stage has been completed, the heater of
evaporator5 is switched off and the density of the mercu
atoms falls by more than an order of magnitude over sev
minutes. The incorporation of this stage in the process cy
substantially reduces the losses of raw material, which
frequently extremely expensive.

At the next stage, the mercury lamps and compressor
switched off and the reaction cells are purged with hydrog
to remove reactants and residual mercury vapor. The m
cury oxide enriched in the target isotope, which has b
deposited in the reaction cells, is reduced to the metal
hydrogen atmosphere by exciting an rf glow discharge in
cells ~this process was described in Ref. 10!.

At the last stage of the process cycle, the inner surfa
of the reaction cells are cleaned of polymer products~deriva-
tives of 1.3-butadiene! in an oxygen stream by exciting an
discharge. After this stage has been completed, a new w
ing cycle begins.

Given the technological capabilities of the system, wh
have already been demonstrated in the production of hig
enriched Hg-196 and Hg-202 isotopes and are demonstr
here in the separation of Hg-198, we have every confide
that other mercury isotopes will also be obtained.

SEPARATION OF THE MERCURY ISOTOPE Hg-198 FROM A
NATURAL MIXTURE

It is difficult to separate Hg-198 photochemically b
cause the absorption line profiles of Hg-198 and one of
components of Hg-201 in the hyperfine structure of the 25
nm resonance line completely overlap under real enrichm
process conditions. Nevertheless, a highly concentrated
198 isotope can be obtained from an arbitrary mixture
mercury isotopes by two methods. The first involves carry
out the enrichment process in two stages. At the first sta
mercury of complex isotopic composition, such as a natu
mixture, is irradiated by a lamp filled with Hg-198 enriche
mercury, and mercury enriched in Hg-198 and Hg-201
removed. At this stage the valuable products are both
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Hg-201, which may be used as a raw material to obtain ot
mercury isotopes and also for filling lamps intended for u
at the second enrichment stage.

At the second stage, mercury enriched in Hg-198 a
Hg-201 is irradiated by a lamp filled with mercury deplet
in these isotopes. At this stage the isotope Hg-201 and
other impurity isotopes are separated from the mixture
Hg-198 and Hg-201. The residual Hg-198 enriched prod
is collected in a trap.

In addition to Hg-198, this two-stage enrichment proce
yields Hg-201 and also mercury depleted in these isotop
which is a valuable raw material for obtaining other mercu
isotopes.

The second method—a single-stage process—is the
plest for the separation of Hg-198 from a natural mixtu
Natural mercury vapor is irradiated by a lamp filled wi
mercury depleted in Hg-198 and Hg-201. In this case, all
isotopes, except for Hg-198 which is collected in a trap,
excited and undergo a photochemical oxidation reaction.
using several enrichment cycles, it is possible to obtain
preciable quantities of highly enriched Hg-198 at relative
low cost. The high efficiency of producing Hg-198 by th
method can be attributed to the enhanced efficiency of
process in each successive cycle compared with the prev
one. In addition, the yield increases and the losses of
target isotope decrease as the number of cycles increas

DIRECT ENRICHMENT OF MERCURY IN ISOTOPES 198
AND 201

The method of direct enrichment of mercury isotop
has been fairly well studied and has so far been used
obtain Hg-196 and Hg-202. However, because of their ov
lapping absorption lines, enrichment of mercury in the is
topes Hg-198 and Hg-201 has various technological cha
teristics and dependences.

A lamp filled with mercury enriched in Hg-198 to a con
centration of 97.7% was used in experiments to study
direct enrichment of mercury in the isotopes Hg-198 a
Hg-201. The body of the lamp was made of a chemica
pure, transparent quartz tube with an inner diameter of
mm. A water-cooling jacket, also made of quartz glass, w
fused onto the tube over its entire length. Leads with ox
cathodes attached to their inner ends were fused onto
ends of the lamp. The operating mode of the lamp was o
mized in terms of the main parameters of the enrichm
process—the yield and the concentration of target isotope
the product. The temperature of the cooling jacket was ma
tained at 22–24 °C and the electrical power consumption
the lamp was around 100 W.

Mercury of natural isotopic composition was used as
raw material in the first enrichment cycle. In this cycle, a
particularly in the following cycles, all the experiments
separate Hg-198 and Hg-201 were carried out with the hi
est possible degree of extractionb of the target isotopes
from the raw material. The degree of extraction of the tar
isotope from the raw material is taken to be the ratio of
yield of this isotope to the amount supplied to the react
cell during this time.

62Yu. V. Vyazovetski  and A. P. Senchenkov



0

in
h

e
f

ar
th
pe
.

ce
fo

e
01
as

n

fir
an
se
w
.
m
n
of
sin
nd

98
e
e

able
e

on
on-
es
ex-
e-
as

01
ber
the
ost
lete
nd

the
is

of

201
can

le

:

Experience in obtaining the isotopes Hg-196 and Hg-2
by direct enrichment shows that the separation factora de-
creases with each successive cycle, i.e., with increasing
tial concentration of target isotopes in the raw material. T
separation factora is defined by the expression

a5
Ck~12C0!

~12Ck!C0
,

where C0 is the initial concentration of the target isotop
~expressed as a fraction! andCk is the final concentration o
the target isotope~also expressed as a fraction!.

Cycling of the process of mercury enrichment in the t
get isotopes is used to improve their concentration in
product. However, very appreciable losses of target isoto
as high as 25%, are observed for each enrichment cycle
experiments which were undertaken to increase the con
tration of target isotopes in the final product the losses
each enrichment cycle did not exceed 20%.

The results of these experiments to study the direct
richment of mercury in the isotopes Hg-198 and Hg-2
were used to plot the concentrations of these isotopes
function of the number of the enrichment cycle~Fig. 3!, and
the separation factorsa for Hg-198 and Hg-201 as a functio
of their concentrationsC0 in the raw material~Fig. 4!.

An analysis of these results showed that whereas the
and second enrichment cycles are justifiable, the third
subsequent cycles do not produce any appreciable increa
the concentrations of Hg-198 and Hg-201 and thus, if
take into account the losses, are not economically viable

The concentration of Hg-198 and Hg-201 may be i
proved by using a mercury-filled lamp with a total conce
tration of Hg-198, Hg-201, and Hg-204 isotopes
0.3–0.4% or less in the direct enrichment process or by u
an optical filter containing mercury depleted in Hg-198 a
Hg-201.

PREPARATION OF MERCURY DEPLETED IN Hg-198 AND
Hg-201

A light source containing mercury depleted in Hg-1
and Hg-201 should be used to separate the mixture of th
isotopes obtained by the direct enrichment method. The

FIG. 3. Isotope concentration versus number of enrichment cyc
j—Hg-198,m—Hg-201,C—isotope concentration, andNc—cycle num-
ber.
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ficiency of the separation process depends to a consider
extent on the ratio of the fraction of light emitted by th
impurity isotopes to the fraction in the Hg-198 absorpti
line. The technology used to separate Hg-198 may be c
sidered to be efficient when the amount of impurity isotop
extracted from the raw material substantially exceeds the
traction of Hg-198. Thus, the preparation of mercury d
pleted in Hg-198 and Hg-201 to fractions of a percent w
identified as a separate problem.

Figure 5 gives the concentrations of Hg-198 and Hg-2
in the depleted mercury as a function of the cycle num
NC . This shows that the rate of decrease in Hg-198 of
raw material exceeds the rate of loss of Hg-201. The m
probable reason for this phenomenon is the incomp
matching between the emission line profile of the lamp a
the absorption line profile of the Hg-201 component, i.e.,
center of the absorption line of the Hg-201 component
irradiated by the wing of the lamp emission line.

Figure 6 gives the yield of the system as a function
the cycle number.

The decrease in the concentration of Hg-198 and Hg-
isotopes in each cycle means that the depletion process

s:

FIG. 4. Separation factorK versus initial isotope concentration
j—Hg-198 andm—Hg-201.

FIG. 5. Isotope concentrationC versus number of cycles (Nc is the cycle
number!: m—Hg-198 andj—Hg-201.
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be carried out with an increasing rate of evaporation of r
material and therefore with increasing yield. These data
be used to predict the parameters of the preparation pro
for mercury depleted in Hg-198 and Hg-201 which may
used as a valuable raw material for the photochemical pre
ration of Hg-199 and Hg-204 as well as being used in lig
sources and optical filters designed to separate Hg-198.

Mercury containing less than 0.05% Hg-198 and le
than 0.15% Hg-201 was obtained in this experiment. A la
filled with this mercury was then used to study the negat
enrichment of mercury in Hg-198.

SEPARATION OF A MIXTURE OF Hg-198 AND Hg-201
ISOTOPES

The high concentration of impurity isotopes~Hg-199,
Hg-200, Hg-202 and Hg-204! in the product obtained by
direct enrichment makes it very difficult to obtain high
enriched Hg-201 from this mixture. Thus, only highly e
riched Hg-198 was separated at the second stage. The i
raw material for the second stage was mercury having
isotopic composition shown in Table I.

The raw material was irradiated by a lamp filled wi
mercury depleted in Hg-198 and Hg-201.

At this stage, all the isotopes except for Hg-198 are
cited by the mercury lamp and undergo a photochemical
dation reaction.

Figure 7 shows how the concentrations (C) of impurity
isotopes decrease as a function of the cycle numberNc .

The high concentration of Hg-201 relative to the oth
impurity isotopes in the raw material imposes constraints

FIG. 6. Separator yieldP versus number of cycles.

TABLE I.

Isotope Concentration, %

196 0.2
198 48.1
199 6.0
200 6.1
201 36.7
202 1.4
204 1.5

64 Tech. Phys. 43 (1), January 1998
w
n
ss

a-
t

s
p
e

tial
e

-
i-

r
n

the choice of various process parameters such as the de
of mercury atoms in the reaction cell. This constraint aris
from the need to maximize the extraction of impurity iso
topes from the raw material in each cycle.

An analysis of these results reveals that the rates of
traction of impurity isotopes differ and are mainly dete
mined by the light source intensity. The relatively low rate
extraction of the Hg-199 and Hg-204 isotopes is attributed
the insufficiently high concentration of these isotopes in t
mercury used to fill the light source.

The yield of the system at this stage of obtaining Hg-1
may be improved after optimizing the isotopic compositio
of the mercury intended for the light source. In order
equalize the rates of extraction of the impurity isotopes fro
the raw material, the concentrations of Hg-199 and Hg-2
in the lamp should be increased by reducing the concen
tion of Hg-200 and especially Hg-202. A typical isotopi
composition for this mixture is given in Table II. The prepa
ration of mercury intended for use in a light source to enri
the product of the first stage in Hg-198 does not present a
particular difficulties. By using a lamp filled with mercury
containing Hg-200 and Hg-202, mercury depleted in Hg-1
and Hg-201 can be depleted in Hg-200 and Hg-202 in
single cycle, with 65% and 80% of these isotopes being
tracted from the raw material, respectively.

FIG. 7. ConcentrationC of impurity isotopes versus number of cycles (Nc

is the cycle number!: m—Hg-199,j—Hg-200,3—Hg-201,d—Hg-202,
andl—Hg-204.

TABLE II.

Isotope Concentration, %

196 0.2
198 ,0.05
199 42.0
200 20.00
201 ,0.15
202 18.0
204 19.6
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TABLE III.
PREPARATION OF Hg-198 BY A SINGLE-STAGE PROCESS

The single-stage process for the production of Hg-19
also highly promising because it can produce highly enric
Hg-198 and also a mixture of isotopes depleted in Hg-1
which can then be used to obtain mercury enriched in H
201.

In the single-stage process a mixture of mercury isoto
of arbitrary isotopic composition, such as a natural mixtu
is exposed to light from a lamp containing mercury deple
in Hg-198 and Hg-201. All the isotopes except for Hg-1
are excited and undergo a photochemical oxidation react
A lamp filled with mercury having the isotopic compositio
given in Table III was used in the experiments to separ
Hg-198 by this process.

Since the absorption and emission lines of the Hg-1
Hg-201 and Hg-204 isotopes in the hyperfine structure of
253.7 nm resonance line overlap, the emission from the
199 and Hg-204 isotope components will excite and conv
to the oxide not only these isotopes but also Hg-201.
addition to these isotopes, the lamp radiation also exc
Hg-200 and Hg-202, and these isotopes should be exc
considerably more efficiently than the others because of t
high content in the lamp.

One of the main conditions for a high enrichment ef
ciency is the efficient removal of impurity isotopes from t
raw material at each stage. This primarily involves optim
ing the operating mode of the lamp. The width of the lam
emission lines should be sufficient to excite two compone
of the Hg-201 isotope line, the stronger one separated f
the emission line of the Hg-204 isotope by 0.03 cm21 and
the other weaker one separated from one of the compon
of the Hg-199 emission line by 0.011 cm21.

It was established experimentally that optimum con
tions are achieved when the lamp temperature is 28 °C
the electrical power consumption of the lamp is around 1
W. Graphs showing the rate of decrease in the impurity i
tope concentration (C) as a function of the cycle number a
plotted in Fig. 8.

An analysis of these experimental results showed
the rates of decrease in the concentrations of Hg-200
Hg-202 isotopes in the enriched product considerably exc
the rates of decrease in the concentrations of Hg-199,
204, and especially Hg-201 isotopes. By equalizing the ra
of extraction of the impurity isotopes, it will clearly be po
sible to reduce the number of enrichment cycles and enha
the concentration of Hg-198 in the final product. The deg
of extraction of impurity isotopes from the raw material

Isotope Concentration, %

196 0.11
198 0.05
199 21.33
200 26.87
201 0.15
202 41.93
204 9.58
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most strongly influenced by their concentration in the lam
It has been shown that the mercury used to fill the la
should be depleted in Hg-200 and Hg-202.

Mercury having a low concentration of Hg-198 and H
201 was depleted in Hg-200 and Hg-202 in a single cy
using a lamp containing a mixture of Hg-200 and Hg-2
isotopes. The isotopic composition of the mercury obtain
as a result of this process is shown in Table IV.

The mercury obtained was used to fill a lamp intend
for a new series of experiments to study the enrichmen
mercury in Hg-198.

As was to be expected, lamps containing mercury
nearly optimum isotopic composition yielded mercury up
99.2% enriched in Hg-198 within four enrichment cycles.

The operating efficiency of the system in the negat
enrichment regime may be improved substantially by vario
combinations of the separator cells, for instance, all in ser
two in parallel and the others in series, and so on.

CONCLUSIONS

An automatic system has been developed to ob
highly concentrated isotopes by a photochemical method
cluding isotopes with overlapping resonance line profil
For the first time this system has produced considera
quantities of the isotopes Hg-196, Hg-202, and Hg-198 w
concentrations higher than 96%, 99%, and 99%, resp
tively. These isotopes were obtained with a high econom
efficiency and exceed the demand in Russia.

FIG. 8. ConcentrationC of impurity isotopes versus number of cycles (Nc

is the cycle number!: m—Hg-199,j—Hg-200,3—Hg-201,d—Hg-202,
andl—Hg-204.

TABLE IV.

Isotope Concentration, %

196 0.3
198 0.1
199 42.1
200 15.1
201 0.3
202 23.7
204 18.4
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Potential distribution in a bounded piezoelectric in the presence of the

n

photothermoacoustic effect
D. A. Andrusenko and I. Ya. Kucherov

Taras Shevchenko Kiev University, 252017 Kiev, Ukraine
~Submitted June 17, 1996!
Zh. Tekh. Fiz.68, 75–79~January 1998!

The photothermoacoustic effect in a bounded piezoelectric is studied theoretically and
experimentally. Calculations are made of the potential distribution over the thickness and the
potential difference in a thin piezoelectric layer as a function of the coordinate of this
layer. The amplitude distribution of the potential oscillations over the thickness of the piezoelectric
reveals two maxima. The phase of the oscillations at these maxima is shifted by
approximately 180°. It is shown that the potential difference on the opposite surfaces of the plate
is zero regardless of the propagation constant of the thermal wave. An experiment was
carried out using a layered disk formed by seven identical piezoelements. The amplitude and
phase shift of the potential difference were investigated for each element at different
light modulation frequencies. The experimental results show good agreement with the theory.
© 1998 American Institute of Physics.@S1063-7842~98!01401-9#

The photothermoacoustic effect is now widely used to
1,2
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study materials in various aggregate states.In this effect,
an object is exposed to modulated light, is heated perio
cally by the absorption of optical energy and generate
thermal wave, which is recorded by some means. The am
tude and phase of the thermal wave carry information on
thermal and optical parameters of the object. A sensi
method of recording this thermal wave involves using a
ezoelectric transducer. In this method the piezoelectric tra
ducer records elastic vibrations, which are created in
sample as a result of the thermoelastic effect.1 Various stud-
ies have been devoted to the piezoelectric record
method.3–5 However, this topic has not been fully analyze
and solutions have only been obtained for various partic
cases because of the complexity of the problem. At the s
time, the piezoelectric transducer method has various ad
tages for studying physical processes in solids,6,7 so that its
further development is a matter of some urgency.

It was shown in Refs. 8 and 9 that when a bound
piezoelectric is heated nonuniformly, a complex polarizat
distribution ~with inversion of the sign! is observed. This
implies that the magnitude and phase of the signal recor
from the piezoelectric transducer must depend on the ge
etry of the sample–transducer system, and especially on
ratio of their thicknesses. The potential distribution over
thickness of the piezoelectric transducer in the presenc
the photothermoacoustic effect must be known to optim
the thicknesses of the components of the sample–transd
system. This aspect is also of independent interest from
point of view of identifying the characteristics of the photo
coustic effect in piezoelectrics. Here we report theoreti
and experimental studies of this topic.

We consider the following geometry~Fig. 1!. A piezo-
electric transducer in the form of a plate of thicknessh is
made of a classc6v crystal. TheC6 axis coincides with thez
axis of the coordinate system, The surfacez50 is uniformly
illuminated by light modulated at the frequencyv. The co-
efficient of absorption of light by the crystal isa. We con-

67 Tech. Phys. 43 (1), January 1998 1063-7842/98/01
i-
a
li-
e
e
-
s-
e

g

ar
e

n-

d
n

ed
-

he
e
of
e
cer
he

l

when a thermal wave is recorded via the elastic stresse
means of a piezoelectric transducer. To simplify the pro
lem, we shall assume that the plate is isotropic in terms
elastic and thermal parameters. The thermal wave gener
as a result of heating of the piezoelectric by the absor
light propagates in the direction of thez axis. The plate is
free, with vacuum on both sides. We find the distribution
the variable component of the temperature in the plate,
glecting the thermal radiation into the surrounding spa
This involves solving the heat conduction equation in t
presence of bulk heat sources produced by the absorbed

cr
]Q

]t
2¸

]2Q

]z2
5aP exp~2az! ~1!

together with the boundary conditions: the heat fluxes at
sample–vacuum interfaces are zero:

¸
]Q

]z
50U

z50,h

, ~2!

where Q is the variable component of the temperatu
P5(P0/2)(11cosvt) is the optical intensity,c, r, and¸ are
the specific heat, density, and thermal conductivity of
plate material, respectively.

We assume that all the absorbed thermal energy is c
verted into heat. As in Ref. 1, Eqs.~1! and ~2! yield the
following expression for the variable component of the te
perature

Q5Q0$~a/g!@exp~gz!1exp~2gh!exp~2gz!#/

@12exp~2gh!#1exp~2az!%exp~ ivt !,

Q052aP0 /@2¸~a22g2!#; ~3!

g5 l T
21~11 i !; l T5~2¸/crv!11/2.

Assumingah@1 anda@g, and omitting the time term
we simplify expression~3! to the form

6767-04$15.00 © 1998 American Institute of Physics
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Q5P0 /~2¸g!$Q1 exp~2gz!2Q2 exp~gz!%,

Q15~12exp~22gh!!21, Q25~12exp~2gh!!21,
~4!

g is the propagation constant of the thermal wave, andl T is
the thermal diffusion length.

As a result of the appearance of thermoelastic stres
this heating leads to electric polarization of the plate mate
caused by the piezoelectric effect. We consider the th
moelastic part of the problem in the quasistatic approxim
tion, i.e., for the case of relatively low modulation freque
cies, when the length of the acoustic waves is much gre
than the characteristic dimensions of the sample. We s
also assume that the plate is thin, i.e., its thicknessh is much
smaller than its other dimensions. In this case, under
action of the thermoelastic forces, the plate undergoes fo
oscillations which may be described by the quasistatic the
of thermoelasticity. The deformations are then a certain
perposition of the stretching and pure bending of the pla
while the elastic stresses may be expressed in the form10

T115T225@~aTE!/~12n!#H ~1/h!E
0

h

Qdz1~z2h/2!

3~12/h3!E
0

h

Q~z2h/2!dz2QJ , ~5!

where aT is the coefficient of thermal expansion,E is
Young’s modulus, andn is Poisson’s ratio.

The temperatureQ is defined by expression~4!. Using
this expression forT11, we obtain

T115@aTE/~12n!#$a1 /h1~12/h3!~z2h/2!a22Q%,

a15P0 /~2¸g2!, ~6!

a25a1h$~cosh~gh!21!/~gh sinh~gh!!21/2%.

The electric field inductionDz in the piezoelectric is
given by

Dz52d31T111«33E2 , ~7!

whered31 and«33 are the piezomodulus and the permittivit
andEz is the electric field strength.

SinceDz50 outside the plate, we findEz from the con-
dition thatDz be continuous using expression~7!:

FIG. 1. Geometry of the problem.
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The potential distribution over the thickness of the pla
is given by

E
0

z

dU52E
0

z

Ezdz. ~9!

Integrating expression~9! with allowance for Eqs.~8!,
~6!, and ~4!, we find the potential distributionU(z) in the
plate:

U~z!2U~0!5@~d31aTEP0!/~«33̧ g2~12n!!#

3$z/h16~~cosh~gh!21!/~gh sinh~gh!!

21/2!~z2/h22z/h!1sinh~g~h2z!!/

sinh~gh!21%. ~10!

It can be seen that the electric potential produced by
piezoelectric effect is a complex function of the coordinatez
as a result of the thermoelastic stresses. An important fa
here is that the total potential difference between the op
site surfaces of the sample (z5h) is zero, regardless of the
propagation constantg of the thermal wave. This resul
agrees with the data presented in Ref. 6, in which a sim
result was obtained for the particular case¸50, i.e., neglect-
ing effects caused by diffusion of heat.

Formula ~10! was used to calculate the amplitude a
phase distribution of the oscillations of the potential diffe
enceU(z)2U(0) over the thickness of the plate for variou
thermal diffusion lengthsl T and various light modulation
frequencies for a particular sample. The results of these
culations are plotted in Fig. 2. It can be seen from Fig.
that the amplitude distribution of the potential oscillatio
over the thickness of the piezoelectric~Fig. 2a! has two
maxima. The phase of the oscillations varies strongly w
the coordinate, particularly near the minimum amplitu
~Fig. 2b!. At the maximum amplitudes ofU(z) the phases of
the oscillations are shifted by approximately 180°, i.e.,
voltage oscillations in these parts of the plate are in
tiphase.

These results indicate that ifl T!h, then for a certain
ratio of sample and transducer thicknesses the samp
transducer system may be barely sensitive to the photoac
tic signal. For a more specific estimate of the optimum g
metric relations for this system, we need to know the lay
by-layer distribution of the potential difference for th
particular case. Thus, we calculated the potential differe
DU in a thin piezoelectric layerDh as a function of thez
coordinate of this layer:

DU52E
z2Dh/2

z1Dh/2

Ezdz5@~aTEd31P0!/~«33~12n!¸g2!#

3$Dh/h112@~cosh~gh!21!/~gh sinh~gh!!

21/2#~z/h21/2!Dh/h22 cosh~g~h2z!!

3sinh~gDh/2!/sinh~gh!%. ~11!
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FIG. 2. Distribution of the variable
component of the potential amplitud
A ~a! and phasew of the oscillations
~b! over the thickness of a piezoelec
tric plate:l T /h: 1—1/5,2—1/10, and
3—1/20.
Formula ~11! was used to calculate the amplitude and
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phase shift DU as a function of the coordinatez for
Dh/h50.001 and various values ofl T /h. The results of
these calculations are plotted in Fig. 3. It can be seen f
Fig. 3a that the amplitude dependenceDU(z) has two
minima, the first near the illuminated surface and the sec
closer to the opposite surface. Asl T increases, the minima
are shifted to higherz. The phase shift is also a fairly com
plex function of thez coordinate of the layer~Fig. 3b!. Near
the illuminated surface, wherel T /h!1, the phase change
appreciably ~up to 250°) ~curves 4–6!. The phase shift
caused by the thermal wave is the decisive factor here.
z. l T the phase shift is mainly determined by the elas
deformations. A characteristic feature here is the phase
versal point, at which the phase shift of the variable com
nent of the plate deformations changes sign. This point c
responds to the position about which the neutral pla
oscillates, i.e., the plane in which the variable componen
the deformations is zero at a given time. Forl T /h!1 ~curves
4–6! the neutral plane is almost fixed and has the coordin
z052h/3. In this case, the phase shifts fairly abruptly fro
p/2 to 2p/2, passing through zero atz5z0. As l T increases,
the phase reversal point shifts toward higherz and the de-
pendence of the phase shift on the coordinate has a m
m

d

or
c
e-
-
r-
e
f
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ch

result of an increase in the amplitude of the neutral pla
oscillations.

Although these calculations were made for a homo
neous system, they may also be used for an approximat
qualitative analysis of sample–transducer system if the
rameters of the elements are not too different.

For l T /h!1 ~this is the most typical case for photoa
coustic investigations using piezoelectric signal recordi!
the differences in the thermophysical parameters of
sample and the transducer do not play a significant r
since the thermal wave does not reach the transducer. H
attention is drawn to two possible cases. One is when
amplitude of the photoacoustic signal is large and depe
strongly on the parameters of the system, particularly onl T ,
and the other is when the phase of the photoacoustic sign
more sensitive to the parameters of the system. The first
will be found when the thickness of the piezoelectric tran
ducer is equal to approximately 1/3 of the dimensions of
sample–transducer system (Dh/h.0.33,z.0.83). It can be
seen from Fig. 3a~curves2–6! that the signal amplitude will
have a maximum for this case and will vary strongly withl T .
However, it can be seen from Fig. 2b~curves2 and3! that
the change in the phase shift for a layer of thickne
e

FIG. 3. Amplitude of the potential
difference~a! and phase shift~b! for
a thin layer Dh of a piezoelectric
plate as a function of the coordinat
(z/h) of this layer: l T /h: 1—1/5,
2—1/10, 3—1/20, 4—1/75, 5—
1/100, and6—1/130.
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Dh/h>0.3 near the rear surface is relatively small. For in-
,
b
t
2

nd
te
el

g
ic
-1

6

ift

.
a
in
a

-
e

s
b
a

tia

io

ex
th

th
th
io
th

photothermoacoustic effect show reasonable agreement with

he
e of
be-
one
the
tion
ave-
yer
ss is

the
the
the

er,
the
the
ith

py

an
stance, when the parameterl T /h decreases from 0.1 to 0.05
the amplitude varies fourfold while the phase shift varies
approximately 8°. The second case is achieved when
thickness of the piezoelectric transducer is approximately
of the thickness of the entire system (Dh/h.0.68,z.0.68).
It can be seen from Fig. 3~curves2–6! that the amplitude
has a minimum for this ratio but the phase shift depe
strongly on l T . For the same variations of the parame
l T /h the phase of the oscillations varies by approximat
75°.

The experimental investigations were carried out usin
layered disk formed by cementing together seven ident
piezoelectric elements made of the PZT ceramic TsTS
each 0.6 mm thick and 20 mm in diameter~the piezoceramic
is described by the same matrix constants as classC6v crys-
tals!. One of the end surfaces of the disk was exposed to
mW modulated light from an LG-38 laser (l50.63mm!.
Measurements were made of the amplitude and phase sh
the potential difference for each element of the sample~ex-
cept for the first! for various light modulation frequencies
No measurements were made for the first layer since, in
dition to the piezoelectric effect, the potential difference
this layer is strongly influenced by the potential generated
a result of the pyroeffect~TsTS-19 ceramic is a strong pyro
electric!. At the minimum modulation frequency used in th
experiments (f 542 Hz!, the thermal diffusion length in the
ceramic,l T.50mm, was substantially less than the thickne
of the elements. Thus, the pyroelectric effect should only
observed in the first layer. Since the pyroelectric effect w
not taken into account in the theory, the electric poten
was not analyzed in this layer.

The results of these investigations for three modulat
frequencies 42 (l T /h.1/75), 75 (l T /h.1/100), and 125 Hz
( l T /h.1/130) are shown by the asterisks in Fig. 3. The
perimental data for the amplitude were normalized to
theoretical data using the curve corresponding tof 575 Hz at
the point which refers to the seventh layer. The data for
phase shift did not need to be normalized. It can be seen
the experimental data describing the potential distribut
and its phase shift in a piezoelectric in the presence of
70 Tech. Phys. 43 (1), January 1998
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the theory.
To conclude, a complex potential distribution over t

thickness of a piezoelectric is established in the presenc
the photothermoacoustic effect. The potential difference
tween the opposite surfaces of a piezoelectric plate when
is exposed to modulated light is zero, regardless of
propagation constant of the thermal wave and the rela
between the thickness of the sample and the thermal w
length. In measurements of the signal in a double-la
sample–transducer system for a sample whose thickne
substantially greater than the thermal diffusion length~the
transducer is positioned at the back of the sample!, attention
is drawn to two possible cases. When the thickness of
sample is approximately twice that of the transducer,
maximum signal amplitude may be obtained. In this case,
phase of the signal oscillations is close to2p/2 and is al-
most independent of the thermal diffusion length. Howev
when the sample thickness is approximately half that of
transducer, the signal amplitude has a minimum although
phase of the signal oscillations varies substantially w
changes in the properties of the sample.
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Electromagnetic excitation of infrasound in a conducting medium

-

G. A. Lyakhov and N. V. Suyazov
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~Submitted July 16, 1996!
Zh. Tekh. Fiz.68, 80–83~January 1998!

A comparative analysis is made of the mechanisms of interaction between the electromagnetic
fields of a global resonator and hydrodynamic and acoustic disturbances in a conducting
medium. A universal boundary condition at the interface between air and the conducting medium,
which takes into account the motion of the electrolyte, is obtained in an explicit analytical
form to calculate the long-wavelength electromagnetic fields. The intensity of the electromagnetic
field excited by a vertical hydroacoustic wave is estimated together with the efficiency of
excitation of infrasonic oscillations of a conducting medium in the field of a global resonator.
© 1998 American Institute of Physics.@S1063-7842~98!01501-3#
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For electromagnetic oscillations in the ultralow
frequency~ULF! range (f <300 Hz! the wavelength is com
parable with the radius of the EarthRE56.43103 km or
with the altitude of the ionospherehi;70 km, so that their
propagation is strongly influenced by global resonance
resonant cavities formed between the Earth and the io
sphere.

For this range we typically find very low attenuation
air ~around 0.2 dB/Mm atf '8 Hz and around 1 dB/Mm a
f '100 Hz! and a large skin depthd in electrolytes and othe
conducting media. The depth of penetration in seawater,
instance, isd @m# '200f 21/2 @Hz# which means that radio
communication can be achieved with objects at depths
hundreds of meters.

Ultralow-frequency electromagnetic oscillations are
fective in geophysics — to study the distribution of thund
storms, electron density profiles in the ionosphere, geom
netic disturbances, and solar activity.1

Ultralow-frequency hydrodynamic disturbances, on t
other hand, have a substantial influence on biological obj
in the ocean, which has not yet been fully identified. Th
can reveal characteristic changes at frequencies up to 10
which show up as fluctuations in the volume scattering o
probe signal caused by the displacement of individual s
tering sources.2,3

It is therefore important to assess the efficiency of
interaction between ULF electromagnetic oscillations at f
quencies close to the natural frequencies of a global res
tor, with hydrodynamic, including infrasonic, disturbances
the ocean. This problem can naturally be generalized to
case of a conducting elastic medium of finite conductivi
An obvious practical application is the possibility of recor
ing ULF electromagnetic fields using solid-state acoustic
tectors.

MECHANISMS OF INTERACTION BETWEEN ULTRALOW-
FREQUENCY ELECTROMAGNETIC OSCILLATIONS
AND HYDRODYNAMIC DISTURBANCES OF A CONDUCTING
MEDIUM

If, to be specific, we consider an ocean~the generaliza-
tion is obvious!, the first mechanism involves the Earth
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duced in the seawater by the alternating electromagnetic
of the global resonator are acted upon by an Ampe`re force,
which then induces hydrodynamic and acoustic ULF dist
bances of the water at the frequency of the electromagn
oscillations. The opposite situation is also possible:
movement of highly conducting seawater induces an al
nating electromagnetic field.

Studies of the inverse effect~see Refs. 4–6! have shown
that the electromagnetic fields generated by the hydro
namic motion can be observed: a vertical electric field of
mV/m and a magnetic field of the order of 331026 Oe/m
parallel to the flow and increasing with depth are genera
in a slowly varying flow with a velocity of 1 m/s~Ref. 5!.
Note that these data only refer to the significantly low
frequency disturbances (f &1 Hz! or to the disturbances with
a horizontal wavelength much shorter thanhi andRE .

The second interaction mechanism is caused by a dif
ence between the mobilities and masses of the cations
anions in the electrolyte. These ions are entrained differe
by the moving solvent, which leads to charge separation,
formation of an electric current, and consequently leads
the generation of an electromagnetic field—the Deb
effect7—~new characteristics were investigated in Refs.
and 9!. Conversely, when the ions move under the action
the external field, the overall effect of their friction forc
with the solvent is uncompensated so that the solvent and
electrolyte move as a single entity.10,11

A system of hydrodynamic equations of motion for
multicomponent~solvent, cations, and anions! fluid is used
as the initial system to describe these effects:

rsdv/dt5F(
j

njVj21G“p1rsg1(
j

r jn j~vj2v!,

r jdvj /dt52njVj“p1r jg2r jn j~vj2v!

1ejnj~E1vj3H/c!. ~1!

Herep is the pressure,E andH are the electric and magneti
field strengths in the electrolyte,c is the speed of light,g is
the acceleration due to gravity,j is the number of the ion
species,rs , v andr j , vj are the average density and veloci

7171-04$15.00 © 1998 American Institute of Physics



of the solvent and the ions,Vj is the ion volume~taking into
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account the solvation sheath!, n j is the coefficient of friction,
nj andej are the ion concentration and charge, which sati
the electroneutrality principle( jejnj50. In the low-
frequency approximation 2p f n j

21!1 ( f ;10–103 Hz,
n j;1013 s21; Ref. 8! for low (uuj u!uvu) relative ion veloci-
ties uj5vj2v, system~1! yields the expression

uj'
ej

mjn j
FE1

v3H

c G2
mj2Vjr

mjn j
Fdv

dt
2gG , ~2!

wherer5rs1( jr j is the electrolyte density, andmj5r j /nj

are the effective ion masses~including the sheath!.
We write the equations for the electromagnetic field

the electrolyte, neglecting the displacement current («8 f !s,
where«8 is the real part of the permittivity! compared with
the conduction currentj5( jejnjuj , and expressing the latte
using expression~2!

“3H5~4ps/c!~E1v3H/c!1~4pg/c!~dv/dt2g!,

“3E52~1/c!]H/]t, “–H50, ~3!

wheres5( jej
2nj /n jmj , g52( jejnj (mj2rVj )/n jmj .

For sea water with sodium and chlorine ions and 3
salinity the data given in Ref. 8 yields>631010 s21,
g>1022 g1/2 cm23/2.

Summing the system~1! and then substituting the rela
tive velocitiesuj from expression~2! andE1(v3H)/c from
the first equation in system~3!, we obtain the equation o
motion for the electrolyte as a whole. Confining ourselves
the linear approximation with respect to the variable fie
and the electrolyte velocity, assuming that the disturban
are low-frequency 2p f (b2gh/s)!1, where
h52r21( jejnjn j

21 and b5r21(mjnjn j
21 ~in particular,

for seawater we haveh>1022 g21/2 cm3/2 andb>2310214

s!, and finally assuming that the magnetic field and veloc
depend harmonically on time, we obtain

ivv1“p/r52H03“3H/4pr1~ ihcv/4ps!~“3H!,

¹2H2~4p isv/c2!H5~4ps/c!~“3F!, ~“H!50. ~4!

Here we havev52p f , and the contribution of the electro
lyte motion to the variation of the effective electromagne
field is described by the vector

F5H03v/c2 igvv/s. ~5!

The boundary conditions at the air-electrolyte interfa
in the linear approximation assume continuity of the ma
netic field H and the tangential component of the elect
field Et5n(E3n), wheren is the normal to the interface. In
accordance with expression~3!, the electric field is related to
the magnetic filed by

E5~c/4ps!~“3H!1F. ~6!

The equations for the electromagnetic field in the Eart
ionosphere cavity have the simple form
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E52 i ~c/v!~“3H!. ~7!

The boundary with the ionosphere at altitudehi is char-
acterized by the effective impedanc
Zi5« i

21/2.( ivne)
1/2/ve , where« i is the permittivity of the

ionosphere,ve is the plasma frequency which is determin
by the electron densityNe (ve

254pe2Ne /me), andne is the
collision frequency. For frequenciesf .10 Hz the altitude is
hi.70 km, andZi.1022i 1/2 ~Ref. 1!, so that the ratio of the
impedances of seawater and the ionosphere isZ0 /Zi.1023

~Refs. 1 and 12!.
We estimate the degree of mutual influence of the

drodynamic and electromagnetic disturbances in seawa
assuming in Eq.~4!

u“3Hu;
4ps

c
uFu.

From this it follows that the self-consistent interaction
the subsystems as a result of the Earth’s static magnetic
~Ampère mechanism! is characterized by the parameter

¸A5H0
2s/rc2v. ~8!

For H0;0.3 Oe at frequenciesf ;10–103 Hz and typi-
cal parameters of seawater we have¸A510213–10215.

The coupling of the subsystems by the ion separat
~Debye! mechanism is characterized by the parameter

¸A5hgvs21. ~9!

For these conditions we havȩA510213–10211.
The difference between the frequency dependence

expressions~8! and ~9! leads to the existence of a bounda
frequencyf b for a given electrolyte for a fixed external mag
netic field:

f b'H0s/2puguc. ~10!

For frequenciesf , f b the Ampère effect is the dominan
mechanism of action of the electromagnetic field on the e
trolyte, whereas forf . f b the Debye mechanism predom
nates. For seawater in the Earth’s magnetic field we h
f b>10 Hz.

BOUNDARY CONDITIONS AT THE AIR–ELECTROLYTE
INTERFACE — EXCITATION OF OSCILLATIONS IN
AN ELECTROMAGNETIC RESONATOR BY THE MOTION OF
A CONDUCTING MEDIUM

In the assumed harmonic approximation we ha
v(r ,t)5v exp(ivt2ikr ), wherek5$kt ,kz%, and thez axis is
directed vertically upward (z50 at the interface!. Only fairly
large-scale motion of the electrolyte may be an effect
source of ultralong-wavelength electromagnetic waves.
instance, in the oceanic problem with a global cavity form
by the Earth’s surface and the ionosphere, the horizo
scale of this motion,kt

21 , is considerably greater than th
skin depthd ~see Introduction!. Let us assume that the dep
of the ocean,h0, also exceedsd

kt
21 ,h0@M #@200f 21/2@Hz#. ~11!
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If conditions ~11! are satisfied, it is natural to use the
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approximation of horizontal homogeneity to solve the eq
tions ~4!. In addition, we haveuZ0 /Zi u>1023!1, so that the
field in air above the interface atz50 satisfies the condition
uZ0u!u] ln H/]zuc/v!uZ0u21. This allows us to obtain an ex
plicit relation between the horizontal componentEt of the
electric field directly above the interface and the amplitu
of the velocityv:

Et52$~“3H0!t /c1 igvvt /s%/$12~ i /2!1/2dkz%.
~12!

Relation ~12! exhaustively describes, in particular, th
influence of the movement of seawater on the electrom
netic field above the water and in the Earth–ionosphere c
ity. It specifies a boundary condition at the surface of
water, which refines the conditionEt50 conventionally
used to calculate the fields of a global resonator.

Disturbances at frequencies around 10 Hz can only
caused by acoustic waves with the vertical~to ensure hori-
zontal homogeneity of the amplitude of the disturban!
wave vectorkt→0 ~the surface gravitational waves make
small contribution because of their small-scale nature!. From
this it follows that the mechanism of ion separation is
ineffective source of electromagnetic field generation in
global resonator: the corresponding contribution in Eq.~12!
is proportional to the horizontal component of the veloc
vt , which tends to zero forkt→0.

We shall now consider the Ampe`re mechanism which is
associated with the static magnetic fieldH0 and vertical
acoustic waves. For acoustic disturbances a sound wav
flected from the surfacekz→2kz must be taken into accoun
in Eq. ~20!. With allowance for the phase of the reflection t
boundary condition for the electromagnetic field has
form

Et~z510!'2~v/c!~n3H0t!/~11 i f / f 0!, ~13!

whereH0t is the horizontal component of the Earth’s sta
magnetic field,n is the amplitude of the velocity perturbatio
in the sound wave at the interface, andf 052scs

2/c2 is the
frequency for which the skin depth is a quarter of the sou
wavelength (cs is the velocity of sound!. For seawater we
have f 0>2.8 Hz.

The electromagnetic modes propagating in the Ear
ionosphere cavity have different frequencies and vert
structures:1,12 (v l

2c222kt
2)1/2hi5p l , where the vertical

numberl is the number of half waves between the surface
the Earth and the ionosphere. Modes withl @1 only exist at
relatively high frequenciesf *2 kHz and are strongly attenu
ated at distances of the order ofRE . At frequenciesf *10
kHz their power attenuation is 2 dB/Mm, and as the cut
frequency is approached the attenuation increases to 10
dB/Mm at f 51–10 kHz~Ref. 12!. Thus for modes withl @1
there is no interference between waves repeatedly encirc
the globe.1 The lower frequenciesf .1–102 Hz correspond
to the waveguide TM mode~horizontal magnetic field! with
l 50, which depends weakly on the vertical coordinate. B
cause this mode is weakly attenuated, the interference
waves repeatedly encircling the globe produces Shum
resonances13
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The lowest (n51–3! Shumann frequenciesf are 7.8,
13.8, and 17.9 Hz for Q factors of 4.63, 5.76, and 6.5
respectively.1,12 Here attention is drawn to the fact that fo
seawater the boundary frequencyf b from Eq. ~10! and the
frequency 4f 0 ~for which the skin depth is half the infra
sound wavelength! are very close to the frequencies of th
lowest Shumann resonances.

Expression~13! gives an estimate of the electromagne
field excited by a hydroacoustic wave. For the Shuma
(n51) and vertical (l 51) resonancesf 58 Hz and 2 kHz
we take the amplitude of the vertical acoustic wave to be
the order of that typical for sea noise in a band equal to
width of the resonance maximumD f 5 f /Q (D f '1.7 and
400 Hz ~Refs. 1 and 12!: v'0.3 and 0.06 cm/s~this corre-
sponds to spectral noise densities of 33103 and 40 Pa
•Hz21/2 ~Ref. 3!!. An analysis of the equations~7! with the
boundary conditions~13! shows that the gain for a vertica
resonator caused by the resonant buildup which takes pla
the size of the region of acoustic excitation in the ocean
around 102 km, is (11uRi u)/(12uRi u)'4 ~Ref. 12!, where
Ri is the coefficient of reflection of an electromagnetic wa
by the ionosphere. Expression~13! then gives

uEtu.1024 mV/m, uHtu.4310215 Oe. ~14!

For a Shumann resonance, assuming that the excita
region has global dimensions, the resonant gain may be
siderably greater: the radial~vertical! component of the field
ER exceedsEt given by expression~13! by a factor of
cQ/vhi . However, the bounded nature of the excitation
gion reducesER by a factor of (n11/2)S/2pRE

2 , whereS is
the area of the excitation region. As a result, for the fi
Shumann resonancef >8 Hz ~for an excitation region of
33103 km! we obtain

uERu.0.3 mV/m, uHtu.10211 Oe. ~15!

The amplitudes of the electromagnetic fields estima
in formulas ~14! and ~15! can be measured although th
obviously requires precision methods of processing the
ceived signal at a level below the noise level of the glo
resonator. For the dominant storm sources, for example,
average amplitudes of the noise fields are (^Ht

2&)1/2;1028

Oe in the frequency band of the first Shumann resonanc

EXCITATION OF AN ACOUSTIC FIELD IN A CONDUCTING
MEDIUM BY THE ELECTROMAGNETIC FIELDS OF A
GLOBAL RESONATOR

In order to estimate the efficiency of the inverse proc
to that considered, we now assume that the electromagn
field in the global resonator is given. This corresponds to
situation where the right-hand side of the second equatio
~4! vanishes. We consider the frequency rangef , f b from
Eq. ~10!, in which the Ampe`re mechanism predominates.

The solution of Eq.~4! with a harmonic acoustic field fo
a conducting layer of depthh determines the required acou
tic field in the electrolyte

vz5
i 3/2j~ f 0 / f !1/2~Ht /H0!cs

11 i ~ f 0 / f !
Z~z!. ~16!
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sound by the underlying surface, and the depth depend
in Eq. ~16! describes the function

Z~z!5exp@~11 i !z/d#

1
exp~2 ivz/cs!1Rs exp@ iv~z22h!/cs#

12Rs exp~22ivh/cs!
.

In the oceanic problem the excitation of an infrason
wave has a low efficiency. It is more promising to use t
described excitation of infrasonic waves in a conducting m
dium for the concentrated reception of regular electrom
netic signals in the range 10–100 Hz. The detection sys
should incorporate a conducting volume made of a hig
elastic, highly conducting material positioned in the field o
permanent magnet with a fairly strong fieldH0. For a copper
plate in a moderate fieldH0.23103 Oe, for example, we
find j.1027 so that it follows from Eq.~16! that the acous-
tic rate of excitation forHt51026 Oe ~an antenna with a
current of 100–200 A at a voltage of 7 kV, having a rad
tion efficiency of 1023) is vz.4310211Q @cm/s#. The Q
factor of the copper plate may reachQ.23103. Under
these conditions we findvz.831028 cm/s so that the am
plitude of the acoustic displacement at 8 Hz
a5vz/2pv>1028 cm. These displacements can be detec
by optical interferometric systems.

CONCLUSIONS

Estimates have shown that this effect involving the e
citation of infrasonic oscillations of a conducting medium
the electromagnetic fields of a global resonator and the
verse effect involving the generation of ULF electromagne
waves by the acoustic motion of an electrolyte may be
served with not too stringent constants on the excitation
detection parameters. The next logical step is to optimize
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tection system. Attention is therefore drawn to the possi
use of sensitive bimodal systems,14 for some of which the
infrasonic frequency range contains known resonances o
terest in their own right, where the amplitude of the gen
ated electromagnetic fields may be greater than the m
square background values, even in a strongly distur
atmosphere.
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Two-dimensional scattering of electromagnetic waves from a permeable inclusion in an
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Integrodifferential equations for the cross section of the scatterer and a collocation method are
used to obtain a numerical solution of the problem of scattering of anH-polarized wave
by an anisotropic layer of a three-layer dielectric structure. ©1998 American Institute of Physics.
@S1063-7842~98!01601-8#
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monic electromagnetic waves and anisotropic objects is
interest for many physical applications, such as wavegu
optics, nondestructive testing, and remote sensing. Scatte
of waves by anisotropic objects in an unbounded homo
neous isotropic medium was considered, in particular,
Refs. 1–4, where the scatterers were simulated by a ho
geneous cylinder of circular1 and arbitrary2 cross section, by
an inhomogeneous cylinder of arbitrary cross section,3 and
by a three-dimensional inhomogeneity of arbitrary shape.4 A
more complex case where an anisotropic medium surrou
an ideally conducting or inhomogeneous permeable cylin
was investigated in Refs. 5 and 6. A wide range of top
relating to the propagation and scattering of waves in an
tropic waveguiding structures was addressed in Ref. 7. H
we generalize Refs. 5 and 6 to the case where an inhom
neous permeable cylinder is embedded in a homogen
layer of a three-layer structure, where the materials form
the layer and the inclusion may be anisotropic. The pres
study may also be considered to be a generalization of R
8 and 9, where the authors analyzed two-dimensional s
tering by an isotropic inhomogeneous scatterer in an iso
pic plane-layered medium.

2. The geometry of the problem is shown in Fig. 1.
homogeneous anisotropic layer of thicknessh is character-
ized by the permittivity tensor

«̂s5F «xx
~s! 0 0

0 «yy
~s! «yz

~s!

0 «zy
~s! «zz

~s!
G ~1!

with the constant elements«xx
(s) , . . . ,«zz

(s) . The layer is depos-
ited on a homogeneous isotropic substrate having the per
tivity «c and its upper boundary is with free space. The
gion S is the cross section of an inhomogeneous anisotro
cylindrical inclusion which is situated entirely within th
layer and is oriented along thex axis. The permittivity dis-
tribution within the inclusion is characterized by a tensor«̂p

similar to ~1!, whose elements«xx
(p) , . . . ,«zz

(p) may depend on
r5(0,y,z). These permittivity tensors describe uniaxial cry
tals with an inclined optic axis lying in theyz plane or a cold
electron plasma in a static external magnetic field direc
along thex axis. The magnetic permeability is assumed to
1 everywhere.
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electromagnetic fieldE , H , generated by harmonic
(;e2 ivt) external sources in the absence of an inclusi
does not depend onx. Then this field, like the fieldE, H
generated in the presence of an inclusion, separates intE-
and H-polarized components which propagate indep
dently. It follows from the Maxwell equations that the prop
gation and scattering of theE-polarized component take
place as in an isotropic structure with the permittivity giv
by thexx elements of the tensors«̂s and «̂p . This problem
has already been considered in Refs. 8 and 9. Thus we f
our attention on the more complex case of t
H-polarization, where anisotropy effects are pronounc
both in the layer and in the inclusion.

3. It follows from Maxwell’s equations that in this par
ticular case ofH polarization, the nonzero components of t
electric fieldEy andEz may be expressed in terms of a sing
nonzero magnetic field componentHx . When the observa-
tion point r is in free space, we have

Ey52
1

ik0

]Hx

]z
, Ez5

1

ik0

]Hx

]y
, ~2!

but for the region within the anisotropic half space but o
side the inclusion, the corresponding formulas are:

Ey52
1

ik0a S «yz

]Hx

]y
1«zz

]Hx

]z D ,
~3!

Ez5
1

ik0a S «yy

]Hx

]y
1«zy

]Hx

]z D .

Similar expressions for the substrate are obtained
mally from Eq. ~2! after dividing the right-hand side by«c

and, for points inside the inclusion, by replacing the su
script s with p on the right-hand side of Eq.~3!. Here
k05v/c is the wave number andc is the speed of light in
vacuum,

as5«yy
~s!«zz

~s!2«yz
~s!«zy

~s! , ap5«yy
~p!«zz

~p!2«yz
~p!«zy

~p! . ~4!

Note that in Eqs.~2! and ~3! terms containing externa
field sources have been omitted to simplify the notatio
Their absence is strictly justified when the field sources
positioned at infinity, which, for specificity, we shall henc
forth assume.

7575-05$15.00 © 1998 American Institute of Physics
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After elimination of Ey and Ez , Maxwell’s equations
yield equations for the main unknown functionHx . In free
space and in the substrate, these have the following fo
respectively:

~¹'
2 1k0

2!Hx50, ~5!

~¹'
2 1kc

2!Hx50, ~6!

where¹' is the del operator in theyz plane, andkc5k0A«c

is the wave number in the substrate material.
We write the equation forHx in the region2h,z,0,

assuming that the field within this region in the presence
an inclusion is identical to the field in the absence of
inclusion which would excite electric currents with the vo
ume density

Jp2~ ik0c/4p!@«̂p2 «̂s#E, ~7!

distributed withinS ~Ref. 10!. HereE is the~unknown! elec-
tric field inside the inclusion. The resulting equations forHx

for 2h,z,0 have the standard form

F«yy
~s!

]2

]y2
1«zz

~s!
]2

]z2
1~«yz

~s!1«zy
~s!!

]2

]y]z
1k0

2asGHx5asq ~8!

for points positioned both outside and inside the inclusi
The quantity

q5
4p

cas
F S «zy

~s!
]

]y
1«zz

~s!
]

]zD Jpy2S «yy
~s!

]

]y
1«yz

~s!
]

]zD JpzG
~9!

has the meaning of secondary sources ‘‘induced’’ by the
mary field in the inclusion, andJpy and Jpz have nonzero
values outside the regionS and are given by

Jpy52
ik0c

4p
~hyyEy1hyzEz!,

~10!

Jpz52
ik0c

4p
~hzyEy1hzzEz!

within S. Here the functionsh jk[« jk
(p)2« jk

(s) determine the
electrical contrast of the inclusion relative to the surround
medium (j ,k5y,z). In addition to the formulated equation

FIG. 1.
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the boundaries of the layerz50,2h and should thereby en
sure continuity ofEy andEz .

4. We introduce the solutionG(r ,r 8) of the boundary-
value problem forHx(r ) from the previous section, which
corresponds to the point sourceq(r )5d(r2r 8) positioned
inside the layer (2h,z8,0) and satisfies the radiation con
ditions at infinity (ur2r 8u→1`). This solution—a Green
function—may be obtained by applying a Fourier transf
mation with respect toy2y8 and solving the resultan
boundary-value problem with an independent variablez us-
ing a standard procedure.11 The final expressions forG(r ,r 8)
are given in the Appendix.

Having the Green function, we can invert the bounda
value problem forHx and replace it by the integral relation

Hx~r !5Hx
in~r !1E G~r,r 8!q~r 8!dr 8, ~11!

where integration is performed over the entire planeyz.
Taking into account the definition~9! of q and integrat-

ing by parts in Eq.~11!, we obtain

Hx~r !5Hx
in~r !1 ik0F@Ey ,Ez#~r !. ~12!

In this relationr is an arbitrary point in theyz plane,

F@Ey ,Ez#~r !5E
S
dr 8@Ly~r,r 8!Ey~r 8!

1Lz~r,r 8!Ez~r 8!#, ~13!

asLy~r,r 8!5@«zy
~s!«yy

~p!~r 8!2«yy
~s!«zy

~p!~r 8!#]G~r,r 8!/]y8

1@«zz
~s!hyy~r 8!2«yz

~s!hzy~r 8!#]G~r,r 8!/]z8,

~14!

asLz~r,r 8!5@«zz
~s!«yz

~p!~r 8!2«yz
~s!«zz

~p!~r 8!#]G~r,r 8!/]z8

1@«zy
~s!hyz~r 8!2«yy

~s!hzz~r 8!#]G~r,r 8!/]y8.

~15!

We substitute expression~12! for Hx into the direct for-
mulas forEy and Ez , assuming that the pointr belongs to
the regionS. As a result, we obtain a system of two coupl
integrodifferential equations

Ey~r !52
1

ap~r ! F«yz
~p!~r !

]

]y
1«zz

~p!~r !
]

]zG
3@Hx

in~r !/ ik01F~r !#, ~16!

Ez~r !5
1

ap~r ! F«yy
~p!~r !

]

]y
1«zy

~p!~r !
]

]zG
3@Hx

in~r !/ ik01F~r !#, ~17!

(rPS) for the electric field inside the inclusion. If the solu
tion of these equations is known, formulas~12! and~13! can
be used to find the functionHx at any point in theyz plane
and the corresponding direct formulas forEy andEz can be
used to calculate these values everywhere outside the in
sion. The outlined sequence of procedures forms the bas
the algorithm for this scattering problem.
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~17! by first using the rectangular mesh shown in Fig. 1
approximate the cross section of the inclusion by a step
figure consisting of identical cells having the dimensio
Dy3Dz. We then assumed as an approximation that, wit
each cell, the unknownsEy and Ez are constant and th
permittivity distribution is homogeneous. After taking th
integrodifferential equations~16! and ~17! at the center of
each cell, we finally obtain a system of linear algebraic eq
tions

Eym5 (
n51

M

~Kmn
yy Eyn1Kmn

yz Ezn!1Qm
y , ~18!

Ezm5 (
n51

M

~Kmn
zy Eyn1Kmn

zz Ezn!1Qm
z ~19!

(m51,2, . . . ,M ). HereEym andEzm are the unknown value
of Ey and Ez in the mth cell andM is the total number of
cells approximatingS. The explicit form of the coefficients
Kmn

yy , . . . , Kmn
zz and the right-hand sidesQm

y andQm
z is easily

determined from relations~16! and ~17!. For instance, we
have

Kmn
yy 52

1

ap~rm! F«yz
~p!~r !

]

]y
1«zz

~p!~r !
]

]zGU
r5rm

3E
Sn

dr 8Ly~r,r 8!, ~20!

Qm
y 52

1

ik0ap~rm! F«yz
~p!~r !

]

]y
1«zz

~p!~r !
]

]zG
3Hx

in~r !ur5rm
, ~21!

whereSn is the interior of thenth cell andrm is the central
point in themth cell.

The coefficientsKmn
jk ( j ,k5y,z) are calculated as fol

lows. Using a suitable expression for the Green funct
given in the Appendix, the values ofLy andLz from formu-
las ~14! and ~15!, and then the coefficientsKmn

jk may be ex-
pressed as a sum of two components~for instance,
Kmn

jk 5Kmn
jk(0)1Kmn

jk(r )), the first describing the scattering from
an inclusion in an unbounded medium with the parameter
an anisotropic layer and the second taking into account
finite thickness of the layer. The numerical calculations
Kmn

jk(0) which reduce to calculation of the linear integrals ov
the contour of the cell, are described in Refs. 9 and 12.
integrals with respect tor 8 within thenth cell encountered in
calculations of the coefficientsKmn

jk(r ) can simply be replaced
by the product of the integrand taken at the centerr 85rn of
the cell and the areaDyDz of this cell. Finally the Sommer-
feld integrals, which appear in the expressions forKmn

jk(r ) be-
cause of the Fourier integral on the right-hand side of f
mula ~A2! for the correction caused by reflectionsG(r ), are
calculated by shifting the original integration contour fro
the real axis into the complex planȩ. Details of the numeri-
cal implementation of this procedure are given in Ref. 9.
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The system of linear algebraic equations~18! and ~19!
for the following examples was solved numerically by th
Gauss method.

6. Figures 2–4 illustrate a numerical solution of th
problem for a scattered planeH-polarized wave of unit am-
plitude Ain51 incident from the upper half space normal t
the layer. The layer of electrical thicknessk0h52.0 is situ-
ated in a vacuum~i.e., «c51.0). The rectangular inclusion
~shown in the inset to Fig. 2! has the dimensionsk0a50.4,
k0b50.8, and its center of symmetry is located at the d
tancek0hc52.0 from the upper boundary of the layer. Fo
the numerical calculations, the inclusion was divided into
cells ~twelve horizontal divisions and six vertical divisions!.
In these figures the solid curve refers to the base model o
isotropic inclusion with the permittivity«c52.0, «p54.0,
respectively. The dashed curve corresponds to the c
which differs from the previous one in that the layer mater
is a uniaxial dielectric. The principal values of the permittiv
ity of this dielectric~i.e., the values along the optic axis an
in the transverse direction! are« i53.0, «'52.0 and the op-
tic axis lying in theyz plane is deflected downward at th

FIG. 2.

FIG. 3.
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angle w0530° relative to they axis. The elements of the
layer permittivity tensor«̂s in which we are interested hav
the following values

«yy
~s!5« i

~s! cos2 w01«'
~s! sin2 w052.25,

«zz
~s!5« i

~s! sin2 w01«'
~s! cos2 w052.75, ~22!

«yz
~s!5«zy

~s!5~«'
~s!2« i

~s!!sin w0 cosw0520.43.

The dotted curve describes the additional case where
layer material is an isotropic dielectric with the permittivit
«s52.0 and the inclusion is a uniaxial dielectric for whic
the principal values of the permittivity are« i

(p)55.0,
«'

(p)54.0, and the optic axis lies in theyz plane and is in-
clined downward at the anglew0530° relative to they axis.
The elements of the permittivity tensor«̂p are calculated us-
ing formulas similar to~22! and are given by

«yy
~p!54.25, «zz

~p!54.75, «yz
~p!5«zy

~p!520.43. ~23!

Figures 2 and 3 show the angular distribution of the fie
calculated in the upper half space~Fig. 2!. This distribution
is characterized by the value ofD(w) which is determined
by the asymptotic formula for thex component of the scat
tered magnetic field in the far-field zone outside the laye

Hx
sc~r !5AinD~w!

eik0L

AL
~24!

(k0L@1). The polar coordinatesL, w for the observation
point in the upper or lower half space are defined in Fig. 1
this particular case of a rectangular inclusion, the pointyc ,
zc coincides with the center of symmetry of this inclusio
Figures 2 and 3 clearly demonstrate how anisotropy in
layer or inclusion influences the formation of the scatter
field.

Figure 4 shows the distribution of the total fielduHxu at
the upper boundary of the layer. As was to be expected,
figure is symmetric relative to the pointy50 for an isotropic
inclusion and layer since a plane wave is incident norma
the layer. The oscillatory behavior of these curves reflects

FIG. 4.
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scattered and total fields. With increasing distance from
inclusion along the surface of the layer, these oscillatio
become smoother and the fielduHxu reaches the constan
value uHx

inu.

APPENDIX

If the observation point is located in the laye
(2h,z,0), then G(r,r 8) is expressed as a sum
G5G(0)1G(r ) of the Green functionG(0)(r,r 8) for an un-
bounded medium with the permittivity of the layer and t
correctionG(r )(r,r 8), which takes into account the reflectio
from the boundariesz50,2h. We then have

G~0!~r,r 8!5
as

4iAn
H0

~1!~k0s!, ~A1!

G~r !~r,r 8!5
as

2p i«zz
~s!E

2`

1` d¸

~g12g2!P
ei¸~y2y8!

3@exp~ ig1z!AR1exp~ ig2z!BQ#, ~A2!

whereH0
(1) is a Hankel function of the first kind,

n5«yy
~s!«zz

~s!2~1/4!~«yz
~s!1«zy

~s!!2, ~A3!

s25~as /n!@«yy
~s!~z2z8!21«zz

~s!~y2y8!22~«yz
~s!1«zy

~s!!

3~y2y8!~z2z8!#, ~A4!

g652¸
«yz

~s!1«zy
~s!

2«zz
~s!

6F k0
2as2¸2«yy

~s!

«zz
~s!

1¸2S «yz
~s!1«zy

~s!

2«zz
~s! D 2G 1/2

. ~A5!

A5ei ~g12g2!h@e2 ig2z81Qe2 ig1z8#, ~A6!

B5e2 ig1z81Rei ~g12g2!h2 ig2z8, ~A7!

P512QR exp@ i ~g12g2!h#, ~A8!

Q52
«zz

~s!g11«yz
~s!¸2g0as

«zz
~s!g21«yz

~s!¸2g0as

, ~A9!

R52
«zz

~s!g21«yz
~s!¸1gcas /«c

«zz
~s!g11«yz

~s!¸1gcas /«c

, ~A10!

g05~k0
22¸2!1/2, gc5~k0

2«c2¸2!1/2, ~A11!

(0<argg0 ,gc,p). If the observation point is outside th
layer, thenG(r,r 8) is expressed as the Fourier integral

G~r,r 8!5
as

2p i«zz
~s!

3E
2`

1` d¸

~g12g2!P
eik~y2y8!F~¸,z,z8!,

~A12!

where forz.0
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3@e2 ig1~z81h!1Re2 ig2~z81h!#, ~A13!

and forz,2h

F~¸,z,z8!5~11R!e2 igc~z1h!@e2 ig2z81Qe2 ig1z8#.
~A14!

Note that in these formulas it is assumed th
2h,z8,0.
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Transition radiation of a charge in media with a nonuniform potential

V. L. Fal’ko, S. I. Khankina, and V. M. Yakovenko

Institute of Radiophysics and Electronics, Ukrainian National Academy of Sciences, 310085 Kharkov,
Ukraine

I. V. Yakovenko

Molniya Scientific-Research and Design Institute, Kharkov Physicotechnical Institute, 310013 Kharkov,
Ukraine
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The influence of a potential barrier on the transition radiation in the form of volume and surface
electromagnetic waves emitted by a charged particle crossing an interface between media
is investigated. It is shown that the volume-wave radiation field arises not only as a result of the
jump in the dielectric constant at the boundary but also as a result of the velocity jump and
the reflection of an electron induced by the presence of a nonuniform potential barrier. The angular
distribution of the transition radiation intensity is obtained. ©1998 American Institute of
Physics.@S1063-7842~98!00201-3#

1. The radiation emitted by charged particles on crossing j15ev1d~r!@d~z2v1t !2Fd~z1v1t !#, ~4!
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an interface between media with different electromagn
properties has been the subject of a large number of pu
cations~see the references cited in Ref. 1 and, for exam
Refs. 2–7!. This phenomenon is of interest because tran
tion radiation is encountered quite often in very diverse pr
lems related to astrophysics, accelerator physics, pla
physics, and solid-state physics.

The presence of a potential barrier at the interface
tween two media is usually not taken into account in stud
of transition radiation. Nevertheless, its role is very sign
cant. This was shown, for example, in Refs. 3–5 in studie
the interaction of charged particles with surface plasmon

In the present work the features of the transition rad
tion of electromagnetic waves by a particle are investiga
with consideration of the influence of the potential barrierU
on the interface between two media.

Let a charged particle move uniformly and linearly
medium 1~for example, in a vacuum,z,0) with a velocity
v1 along a normal~the z axis! toward the interface betwee
the media. It is assumed thatU(z) has the form
U~z!50 for 2`,z,0,

U~z!5U0 for z>0

and that the height of the wallU0 is smaller than the kinetic
energy of the particle in the vacuumE5(m0v1

2)/2. Then the
velocity of the particle in medium 2 (z>0) equals

v25A2~E2U0!

m
; v2uuz. ~2!

The reflection coefficientF of the particle from the bar-
rier is determined from the Schro¨dinger equation and the
boundary conditions in Ref. 8:

F5S v12v2

v11v2
D 2

. ~3!

In medium 1 a current is induced by the particle as
moves toward the wall or after it has been reflected from
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and the current in medium 2 is induced by the particle a
it has passed over the barrier

j25Dev1d~r!d~z2v2t !. ~5!

HereD512F is the transmission coefficient of the partic
over the barrier, andr is a vector in the plane of the inter
face. The electromagnetic field in each of the media is de
mined from Maxwell’s equations, in which the current
charged particles is assigned by~4! or ~5!. The boundary
conditions are the conditions of continuity of the tangent
components of the electric~E! and magnetic~H! fields in the
z50 plane at the interface and the condition of radiation
z56`. Because of the axial symmetry of Maxwell’s equ
tions in an isotropic medium with a current along thez axis,
it is convenient to introduce a cylindrical system of the c
ordinatesr, w, andz, in which the TM (Hw ,Er ,Ez) and TE
(Ew ,Hr ,Hz) modes propagate independently. Only T
waves are excited by a charged particle moving along thz
axis. We represent the dependences of the field compon
of this wave on the time in the form of an expansion
Fourier integrals and their dependences onr in terms of
Fourier-Bessel integrals:

Ez~r,z,v!5E
0

`

¸Ez~z,¸!J0~¸r!d¸, ~6!

Er~r,z,v!5E
0

`

Er~z,¸!J1~¸r!d¸, ~7!

whereJn(¸r) is a Bessel function of ordern.
The relation between the magnetic (Hw) and electric

(Er) fields is defined by the equation

]Hw

]z
5

ivc

« i
Er , ~8!

wherei 51,2 labels the medium, and« i is the dielectric con-
stant of thei th medium.
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The delta functiond(r) can be written in terms of a
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Bessel function:

d~r!5
1

2pE0

`

¸J0~¸r!d¸. ~9!

As a result we find that the components of the elec
and magnetic fields have the form

Ez
~ i !5E

0

`

d¸¸J0~¸r!H A~ i !exp~2 il iz!1B~ i !exp~ il iz!

1
ie

pv
~12b i

2« i ! f iFC~ i !expS i
v

v i
zD1D ~ i !

3expS 2 i
v

v i
zD G J , ~10!

Hw
~ i !52 i

v

c
« iE

0

`

d¸J1~¸r!H A~ i !exp~2 il iz!

1B~ i !exp~ il iz!2 i
e¸2v i

2

pv3
f iFC~ i !expS i

v

v i
zD

1D ~ i !expS 2 i
v

v i
zD G J . ~11!

The expression for the field componentsEr
( i ) is easily

obtained from Eqs.~8! and ~11!. In ~10! and ~11! we intro-
duced the following notation: the coefficientsA( i ), B( i ), C( i ),
andD ( i ) in media 1 and 2 equal, respectively,

A~1!5A~¸!, B~1!50, C~1!51, D ~1!52F,
~12!

A~2!50, B~2!5B~¸!, C~2!5
v1

v2
~12F !, D ~2!50,

l i5Av2

c2
« i2¸2 ~Rel i.0!; ~13!

f i5
1

« i~b i
2« i2 ~¸2v i

2/v2! 21!
; b i5

v i

c
. ~14!

The coefficientsA(¸) and B(¸) in the expressions ar
found from the boundary conditions on the interface betw
the media atz50. They specify the transition radiation field
The coefficientA(¸) corresponds to a wave propagatin
along z,0, and B(¸) corresponds to a wave propagatin
along z.0. We are interested in the radiation field in m
dium 1, which is described by the first terms in formulas~10!
and ~11!:

A~¸!5
ie¸2v1

pv2D~v,¸!
H ~ f 12 f 2!«22

1

v
Av2

c2
«22¸2

3~ f 1«1v11 f 2«2v2!1FF ~ f 11 f 2!«2

1
1

v
Av2

c2
«22¸2~ f 1«1v12 f 2«2v2!G J . ~15!
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D~v,¸!5«2Av2

c2
«12¸21«1Av2

c2
«22¸2. ~16!

We note that the term proportional toF in ~15! appears
as a result of reflection of the particle from the potent
barrier ~1!.

Let us consider media with different values of the diele
tric constant«1,2(v).0. The radiation field in medium 1 is
obtained using the stationary-phase method. This radia
has the form of a spherical wave, in which the field comp
nents equal
Er~v!5E~v!cosQ, Ez5E~v!sinQ,

E~v!5
eb1cosQ sin Q

pc@«2 cosQ1A«1~«22«1 sin2 Q!#

3
exp~ i ~v/c!A«1R!

R

3H ~«22«1!~11b1A«22«1 sin2 Q2«1b1
2!

~12«1b1
2 cos2 Q!~11b1A«22«1 sin2 Q!

1
«1~b22b1!A«22«1 sin2 Q

~11b1A«22«1 sin2 Q!~11b2A«22«1 sin2 Q!

1FS «21«1b1A«22«1 sin2 Q

12«1b1
2 cos2 Q

1
«1

11b2A«22«1 sin2 Q
D J . ~17!

Here we have introduced the angleQ and the distanceR
from the point of contact of the particle with the interfac
between the media atz50 to the point of observation of the
radiation in medium 1 such thatR5r sinQ2iz cosQ ~i is a
unit vector parallel to thez axis!; it is assumed that the
condition (v/c)R@1 holds. The radiated energy flux~17! in
the solid-angle elementdV5sinQdQdw is easily calculated
from the formula

d2W

dVdv
5cR2uE~v!u2. ~18!

It is seen from expression~17! that the radiation field
consists of three parts. The first is the radiation which
caused by the jump in the dielectric constants on the bou
ary and exists in the absence of a potential barrier (U050).
The second part describes the radiation caused by the ve
ity jump on the boundary (U0Þ0) without consideration of
electron reflection from the potential barrier. The third te
specifies the fraction of the radiation associated with pro
gation of the de Broglie wave ‘‘reflected’’ from the bound
ary.

In the case of an infinitely high barrier (U0→`, F51)
we obtain

E~v!5
2e«2b1 cosQ sin Q

pc@«2 cosQ1A«1~«22«1 sin2 Q!#

9Fal’ko et al.
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3
~12«1b1

2 cos2 Q! R
. ~19!

The expression for the radiation field in the absence o
potential barrier (U050) is known.1 We note that in this
case (U050) the amplitude of the field and the radiate
energy are smaller than in the presence of an infinitely h
potential barrier (U0→`). For example, if medium 2 is an
ideal conductor(«2→`), the fieldE(v) ~Ref. 1! is two times
smaller than the radiation field of a particle in the presence
an infinitely high potential, and the energy flux differs by
factor of 4.

Let us assume that a particle moves in a semicondu
with a p2n junction, at which the bottom of the conductio
band can be described using a potential barrier of form~1!
(U0 is a finite quantity!. Since the dielectric constant is de
termined only by the properties of the crystal lattice, we m
set «15«25« in Eqs. ~17! and ~18!. The radiation field in
such a semiconductor has the form

E~v!5
e sin Q

2pc~11b2A«cosQ!

exp~ i ~v/c!A«R!

R

3F ~b22b1!A« cosQ

11b1A« cosQ

1F
21~b22b1!A« cosQ

12b1A« cosQ
G . ~20!

It can be seen from~20! that the angular distribution o
the intensity varies and that, in comparison to the class
case (U050, and «1Þ«2), the radiation pattern is
‘‘pressed’’ against thez50 plane. It should be noted that i
the general case@see ~17!# the angular distribution of the
field E(v) is characterized by the presence of a sharp m
mum, which appears in the vicinity of values of the angleQ
for which the condition for the Vavilov–Cherenkov effect
satisfied in medium 1:

cos2 Q5
1

«1b1
2

~here we are dealing with a maximum, rather than a sin
larity, since damping of the wave in the medium must
taken into account under real conditions!.

This feature is present both in the first term~it is asso-
ciated with reflection of the Cherenkov radiation produc
by the particle as it moves in the positive direction of thez
axis away from the boundary atz50) and in the third term
~the Cherenkov radiation in the same medium caused by
particle after reflection from the barrier!. In a semiconductor
with a p2n junction the maximum in the field distributio
E(Q) ~20! is determined only by the Vavilov–Cherenko
radiation of the particle after reflection from the boundary

As we know, surface waves can propagate on an in
face between media, if the dielectric constant of one of
media has a negative value. Let us assume that«2,0 and
u«2u.«1. In this case the functionD(v,¸) ~16! vanishes
when
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Equation~21! is the dispersion relation of a surface p
lariton. The contribution from pole~21! describes the transi
tion radiation field of a cylindrical surface wave

Ez~v!5E expS 2U¸UpA «1

u«2u
zDAu¸pu

r
exp~ i¸pr!,

Er~v!5 iA «1

u«2u
Ez~v!,

Hw~v!52A«1~ u«2u2«1!

u«2u
Ez~v!,

E52A2

p

eb1

c

3
u«2u5/2«1

3/2

~ u«2u2«11b1
2«1

2!~ u«2u2«11b2
2«2

2!~«2
22«1

2!

3expS i
p

4 D H ~11F !F u«2u2«11b2
2«2

2

«1

1 ib2

u«2u2«11b1
2«1

2

Au«2u2«1
G1~21F !F u«2u2«11b1

2«1
2

u«2u

1 ib1

u«2u2«11b2
2«2

2

Au«2u2«1
G J . ~22!

This result refers to the case where the pole¸p and the
stationary-phase point

¸s5
v

c
A~«1! sin Q

are far enough from one another that their contributions
integrals~10! and ~11! can be treated independently.

The energy flux of wave~22! through a circular area
(r, r1dr) at z50 equals

]2W

]r]v
52pv

«1
3/2

u«2u1/2
uEu2. ~23!

The energy of a cylindrical wave in the absence o
potential barrier (U050, F50) ~Ref. 1! is 4«2

2/(u«2u1«1)2

times smaller than the energy in the case of a perfectly
flecting boundary (U0→`, F51).

Thus, the radiation field in medium 1 is formed by
spherical volume wave and a cylindrical surface wave. T
spherical wave forms at large distances from the point
contact of the particle with the interface between the me
@R@c/(vA«1)#, as follows from the condition for applica
bility of the stationary-phase method!, and its intensity is
distributed in the range of angles 0,Q,p/2. The cylindri-
cal wave propagates along the interface between the m
(Q5p/2) and damps at a depth

10Fal’ko et al.
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A
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In the region of values of the frequencyv and the angle
Q ~nearp/2) which satisfy the conditions

up/22Qu,2A 2c

RvA«1

!1,

~24!
u«2u!«1 ,

the distance between the pole and the stationary-phase
becomes smaller than the width of the lines of the feature
the integrands in~10! and ~11!. Then the van der Waerde
method9 should be used to calculate the integrals in~10! and
~11!. We shall not present the expressions for the radia
field because of their cumbersome nature. We note th
cylindrical surface wave and a spherical volume wave e
in the range of angles~24!, but their amplitudes are sma
because of this inequality.

Let us next investigate the radiation of a moving charg
particle in a homogeneous medium with a potential barrie
the form of a rectangle or ad function. Such a potential ca
appear, for example, in a semiconductor medium due to
presence of an impurity or a defect. The reflection coeffici
of the particle in this case can be represented in the follow
manner:

F5
c~E,U0!

11c~E,U0!
, ~25!

where the form of the functionc(E,U0) is determined by
the form of the potentialU(z).

In the case of a rectangular barrier of widtha

U~z!5H 0 ~z,0!,

U0 ~0,z,a!,

0 ~a,z!,

~26!

the functionc(E,U0) equals8

c5
U0

2

4E~U02E!
sinh2

a

\
A2m~U02E!~U0.E!, ~27!

c5
U0

2

4E~E2U0!
sin2

a

\
A2m~E2U0!~E.U0!. ~28!

If the potential has the form of ad function, i.e.,
11 Tech. Phys. 43 (1), January 1998
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c5
mV0

2

2E\2
. ~30!

The expression forc can be obtained from formula~27!
if U0@E and (aA2mU0)/\!1, whereV05U0a.

The radiation field of the particle is a spherical wave a
can be described in the regionz,0 by ~17! and ~18!, if we
set «15«25« and b15b25b in them, and the reflection
coefficientF5F(E,U0) can be found from formulas~25!–
~30!:

E~v!5
eb sin Q

pc
F

exp~ i ~v/c!A«R!

R
. ~31!

If E.U0, then

d2W

dQdv
5

e2b2U0
4 sin3 Q

8E2~E2U0!2
sin4

a

\
A2m~E2U0!. ~32!

The radiated intensity oscillates, vanishing under
condition (a/\)p5pn(p5A2m(E2U0)), i.e., when a
whole number of half de Broglie wavelengthslD5(2p\)/p
fit into the barrier width. In this case there is some analo
with the transition radiation of a particle passing through
thin isotropic insulating plate, which exhibits oscillations
a result of variation of the ratio of the thickness of the pla
to the wavelength of the chargele5(2pv)/v.

We note that the phenomenon considered here can
utilized in the spectroscopy of solids.
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Influence of local dispersion on transient processes accompanying the generation

ble
of rf radiation by an electromagnetic shock wave
A. M. Belyantsev and A. B. Kozyrev

Institute of Physics of Microstructures, Russian Academy of Sciences, 603600 Nizhni� Novgorod, Russia
~Submitted July 15, 1996!
Zh. Tekh. Fiz.68, 89–95~January 1998!

Transient processes accompanying the conversion of a video pulse into a radio pulse in a
nonlinear transmission line having hysteretic properties are studied. It is established that the
transition process leading to the establishment of ‘‘steady-state’’~close in amplitude!
oscillations has a minimum when the electromagnetic shock wave front is phase-matched with
the wave excited by it at a frequency near the minimum local dispersion of the group
velocity. © 1998 American Institute of Physics.@S1063-7842~98!01701-2#
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Electromagnetic shock waves and processes involv
the propagation of electromagnetic radiation in nonlin
media~transmission lines! have been studied for some tim
The main fundamental principles and various possible ap
cations associated with the propagation of electromagn
signals in dispersive nonlinear media can be found in the
reviews and books.1–4

Recently published studies have examined the gen
tion of rf oscillations by direct conversion of a video pul
into a radio pulse during its propagation in dispersive n
linear media~transmission lines!.5–8

In Refs. 5 and 6 the authors discuss the generation
train of solitons inLC lines with a nonlinear capacitanc
varying as some functionC(V), and in dispersive periodic
structures~media! similar to an LC line. However, this
method of generating rf oscillations has several signific
disadvantages.1 The amplitude of the generated oscillatio
decays rapidly in the train, the spectrum of the genera
train is fairly wide because of the nonmonochromatic nat
of the generation process, and the number of generated
cillations rapidly saturates as the video pulse propagates
nonlinear transmission line.5,6

The authors of Refs. 7 and 8 proposed a significan
more effective mechanism for direct conversion of a vid
pulse into a radio pulse with a quasimonochromatic car
~filling ! during its propagation in a dispersive nonlinear m
dium ~transmission line!. In this mechanism, the front of a
intense electromagnetic shock wave excites a synchrono
traveling rf wave. It was shown in these studies that
monochromatic generation, the nonlinear medium behind
front should saturate and remain saturated for a long t
~compared with the period of the excited wave!. Under these
conditions, rf perturbations of finite amplitude will propaga
behind the electromagnetic shock wave front, as in a lin
medium. It is observed that the generation may be effic
and the carrier frequency may be stable because of the p
matching with the shock front and the wave excited by it.
undoubted advantage of this approach compared with so
generation is that first, the generated oscillations are alm
monochromatic, and second, the decay of the amplitud
the steady-state oscillations in the radio pulse is only cau
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to control the frequency of the generated oscillations
varying the initial conditions. It was noted in these stud
that in addition to the hysteretic dependence of the non
earity, the dispersion of the medium~transmission line! plays
an important role in the generation of monochromatic os
lations.

Here we investigate the transient processes accomp
ing the conversion of a video pulse into a radio pulse in
nonlinear transmission line of finite length which exhib
hysteretic properties, and we determine the constraints on
dispersion from the point of view of minimizing the trans
tion process leading to the establishment of ‘‘steady-sta
~close in amplitude! monochromatic oscillations in the cas
of weak rf losses.

QUALITATIVE DESCRIPTIONS OF THE TRANSITION
PROCESS AND THE ROLE OF LOCAL DISPERSION IN THE
CONVERSION OF A VIDEO PULSE TO A RADIO PULSE
IN A NONLINEAR MEDIUM

It was shown numerically in Ref. 8 that the transitio
process accompanying the generation of rf oscillations by
electromagnetic shock wave consists of the formation of
shock wave front, generation of quasimonochromatic os
lations ~with increasing amplitude!, and deformation of the
radio pulse envelope as a result of the dispersion of a tra
mission line with saturated nonlinearity. As the shock wa
propagates, the number of oscillations behind the sh
wave front increases in proportion to the length traveled
it, and the spectral composition of the generated radio pu
‘‘is enriched’’ at the frequency of a wave phase-match
with the steady-state front of the electromagnetic shock w
@vp(v0)5vs , wherevp is the phase velocity andvs is the
electromagnetic shock wave velocity#. Since in this case, the
wave packet is ‘‘rigidly attached’’ to the shock wave fro
~traveling radiation source! and moves along behind it, th
deformation of the wave packet in a linear medium beh
the shock wave front will entail both a lengthening of th
packet as a result of the generation of new oscillations
also its dispersional spreading. In general, this process
only be investigated by numerical methods.

However, some constraints imposed on the dispersio

8080-06$15.00 © 1998 American Institute of Physics



FIG. 1. Equivalent circuit of a transmission line with spatial dispersion.
a transmission line with saturated nonlinearity with a view to
ni
c

is

ow

it
ad
n
av
rly
t

ut

to
e

s
w
lle

tortion of the envelope of an extended wave packet
r a

-

the
ns-

s’’

the
e

i-
d
bi-
e,
g
ill

e
the

ow
ins
ial

the
nly

ion
e
e
the

im-
is

ite
minimizing the transition process, especially on the mi
mum time taken for establishment of quasisteady-state de
of the generated radio pulse may be predicteda priori by
analogy with the propagation of wave packets in linear d
persive media. It is known~see Ref. 9! that the rate of de-
formation of the envelope of a wave packet with a narr
frequency spectrum (Dv/v0!1, whereDv is the width of
the wave packet spectrum andv0 is the average frequency!
is determined by the local dispersion of the group veloc
near the average frequency. For the generation of a r
pulse by an electromagnetic shock wave, the case of a
row frequency spectrum is achieved when the shock w
front traverses a specific length of line, i.e., when a fai
extended radio pulse is generated. The local behavior of
dispersion near the average frequencyv5v0 may be ex-
pressed in the form

k~v!5k~v0!1S dk

dv D
v0

~v2v0!1
1

2S d2k

dv2D
v0

~v2v0!2

1
1

6S d3k

dv3D
v0

~v2v0!31 . . . , ~1!

wherek is the wave number.
In the first approximation with respect toDv/v0!1

~where Dv5v2v0), the wave packet propagates witho
distortions with the group velocity

vg5S dk

dv D
v0

21

.

It follows from the second approximation with respect
Dv/v0 ~Ref. 9!, that the spreading of the wave packet d
creases, the stronger the inequality

S d2k

dv2D
v0

Dv!S dk

dv D
v0

or

1

vg

dvg

dv U
v0

Dv5vg
22 dvg

dk U
k5k0

Dk!1. ~2!

It can be seen from Eq.~2! that the wave packet spread
more slowly as its frequency spectrum becomes narro
and the dispersion of the group velocity becomes sma
i.e., (dvg /dv)v0

or (dvg /dk)k5k0
. It is known that the dis-
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(Dv/v0!1) and its phase structure as it propagates ove
path l will be negligible if

l<l0
2S v0

Dv D 2Y S dvg

dv D
v5v0

, ~3!

wherel052pvp /v0.
Obviously, for (dvg /dv)v5v0

50 the value ofl will be
determined by higher derivatives ofvg and will be of a
higher order in (v0 /Dv). For the generation of rf oscilla
tions by an electromagnetic shock wave~direct conversion of
an extended video pulse into a radio pulse!, the number of
generated oscillations in the radio pulse increases as
shock wave front propagates in a dispersive nonlinear tra
mission line. Thus, its spectral composition also ‘‘narrow
(Dv/v0 decreases!. In accordance with condition~3!, as the
shock wave front propagates in the transmission line,
length l for which the dispersion distortion of the wav
packet remains negligible, will increase. Thus, for a sem
infinite ~or fairly extended! video pulse it may be expecte
that the decay profile of the generated radio pulse will sta
lize with time, even with low or no rf losses. In this cas
only part ~in the region between the leading and trailin
edges! of the electromagnetic shock wave structure w
come close to steady-state.

However, this reasoning is qualitatively valid from th
instant that the spectrum of the radio pulse generated by
electromagnetic shock wave becomes sufficiently narr
(Dv/v0!1). At the same time, the transition process beg
with the generation of a single oscillation, i.e., at the init
stage of generationDv;v0.

Thus, in general the influence of local dispersion on
rate of formation of a quasisteady-state radio pulse can o
be investigated by numerical methods.

DESCRIPTION OF MODEL. METHODS OF INVESTIGATION

As in Refs. 7 and 8, we shall consider the transmiss
line to be anLC line with capacitive cross couplings via on
element~Fig. 1!. An advantage of this system is that th
dispersion is easily controlled by a single parameter —
cross coupling coefficientg* 5C* /C0 (C* is the cross cou-
pling capacitance andC0 is the main capacitance of theLC
line! and that for specific values ofg* the dependence ofvg

on k or the phase shift per element has a minimum. To s
plify the analysis, we shall assume that one inductance
nonlinear, in which magnetization reversal of the ferr

81A. M. Belyantsev and A. B. Kozyrev
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FIG. 2. Phase~solid curves! and
group~dot-dash curves! velocities as
a function of the phase shift per ele
ment.g* : 1 — 0, 2 — 0.2,3 — 0.4,
4 — 0.6, and5 — 0.8.
takes place incoherently in strong fields. Typical dispersion
,
,

te

of
n
fe

r-
,

e

time (t05AL0C0), h is the filling factor of the inductance
nt
,

on
se

ti-
characteristics (Up5vp /v0 is the relative phase velocity
vp5d•v/w, Ug5vg /v0 is the relative group velocity
vg5d•dv/dw, d is the period of the system,w is the phase
shift per element, andv05d•t0

21) are plotted in Fig. 2.
These were calculated for several values ofg* using the
dispersion relation

sin2
w

2
24g*

v2

vc
2

sin2 w5
v2

vc
2

, ~4!

wherevc52/AL0C0.
The nonlinear processes in anLC line with cross cou-

plings and ferrite nonlinearities are described by the sys
of differential equations

i n2 i n111
1

r 0
~un2122un1un11!

1g*
d

dt
~un2222un1un12!5

dun

dt
,

din
dt

5un212un24phq0~12mn
2!i n ,

dmn

dt
5q0~12mn

2!i n .

The first two equations are essentially the Kirchh
equations for thenth element in the line. The last equatio
describes fast incoherent magnetization reversal of the
rite. In these equationsi n andun are the dimensionless cu
rent and voltage in thenth element of the transmission line
r 05R0 /Z0, Z05AL0 /C0 is the wave impedance of th
transmission line without cross coupling,mn5Mn /M is the
dimensionless magnetization of the ferrite (M is the satura-
tion magnetization: 4pM5Bs), t5t/t0 is the dimensionless
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by the ferrite,q0 is the dimensionless switching coefficie
@q05(ag0Mt0)/(11a2), a is the dissipation coefficient
and g051.763107 Oe21 s21 is the absolute value of the
gyromagnetic ratio for an electron.# This system of equations
is valid for n>3. For the first two elements we have

du1

dt
5 i 12 i 21g*

d

dt
~u32u1!,

di1
dt

5«~t!2 i 1r g2u1 ,

du2

dt
5 i 22 i 31g*

d

dt
~u42u2!,

di2
dt

5u12u2 .

For the last two elements we have

dunmax21

dt
5 i nmax212 i nmax

1g*
d

dt
~unmax232unmax21!,

dinmax21

dt
5unmax222unmax21 ,

dunmax

dt
5 i nmax

2 i nmax111g*
d

dt
~unmax222unmax

!,

where nmax is the number of elements in the transmissi
line, r g is the internal resistance of the input video pul
generator, normalized toZ0, and r load is the load resistance
normalized toZ0.

The initial conditions are:i n(t50)50, un(t50)50,
mn(t50)5m0 (21<m0<1), where m0 is the relative
magnetization of the ferrite. By varying the initial magne
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FIG. 3. Oscilloscope traces of the
voltage in 50, 100, 150, and 250 e
ements of the transmission line.w:
a—1.26, b—1.55, c—1.85;vp /v0:
a—0.7115, b—0.6728, c—0.6547
m0: a—0.068, b—20.049, c—
20.273; «0: a—14.43, b—14.69,
c—15.17.
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shock wave velocity and thus the generation frequency~the
position of the operating point on the dispersion curve can
varied!. The boundary condition at the entrance~the output
voltage of the video pulse generator«(t) supplied to the
transmission line! has the form

«~t!5«0H sin2
v1t

2
, 0<v1t<p,

1, p<v1t.

The values ofq0 and h were taken as 0.4 and 0.5, re
spectively. We assumedr 055000 so that the rf attenuatio
was negligible.

DISCUSSION OF THE NUMERICAL RESULTS

Figure 3 shows typical calculated oscilloscope traces
the voltagesVLn5un2(1/2)(din /dt) at the midpoint of the
inductance in a particular set of elements of the transmis
line ~Fig. 1! with g* 50.2 under phase matching condition
corresponding to different points on the dispersion charac
istic ~Fig. 2!. The electromagnetic shock wave velocity a
therefore the phase matchingvs5vp(v) at different frequen-
cies for different local dispersion of the group velocity w
regulated by varying the initial magnetization of the ferr
and the output voltage of the input video pulse genera
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w151.26 correspond to phase matching at the minimum
the group velocity (dvg /dw)w5w1

50, and forw2 and w3,

respectively, 0,(dvg /dw)w1
,(dvg /dw)w2

. It can be seen

from Fig. 3 that as the local dispersion of the group veloc
varies, the transition process and specifically duration of
trailing edge of the radio pulse vary substantially.

With some degree of arbitrariness, the train of oscil
tions formed behind the front may be divided into two cha
acteristic sections: the firstN1(n) ~wheren is the number of
the element in the line! comprises oscillations of almos
identical amplitude, and the secondN2(n) comprises oscil-
lations making up the trailing edge of the radio pulse~Fig.
3!.

Figure 4 givesN1 and N2 in different elements of a
transmission line withg* 50.2 for various electromagneti
shock wave velocities corresponding to phase match
vs5vp(v) at frequencies with very different values of th
first derivative of the group velocity. It can be seen from F
4 that for phase matching at the minimum of the group
locity (w151.26) the trailing edge of the radio pulse is of
quasisteady nature as the shock wave propagates thr
150 elements of the transmission line~see also Fig. 3!, after
which N2 remains constant in the subsequent elements
this case, the number of oscillationsN1 increases almost lin-
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early with the element number in the transmission line. T
traces plotted in Fig. 3a show that from the 150th elem
both the number of oscillations on the trailing edge of t
radio pulse and the envelope in this region remain const

For phase matching outside the minimum of the gro
velocity vg the increment ofN1 decreases andN2 increases
with increasingdvg /dw. An increase in the local dispersio
of the group velocity lengthens the process of formation
the quasisteady-state field structure because of the dis
sional spreading of the wave packet. Note that for the len
of transmission line being studied, the trailing edge of
radio pulse generated by the electromagnetic shock w
does not have time to form a steady-state structure in c
of appreciable local dispersion even in the first order
Dv/v @(dvg /dv)(v/vg) is 0.37, 0.49, and 0.56, respe
tively for w51.55, 1.7, and 1.85#. The narrowing of the radio
pulse spectrum@Dv/v;1/(N11N2)# is clearly insufficient
@see Eq.~3!# to stabilize the trailing edge of the generat
radio pulse with this dispersion after propagation throu
250 elements in the line. Note that the number of oscillatio
N1 in a radio pulse of the same amplitude will be highest
phase matching at the minimum ofvg ~Fig. 5!. Figure 5
gives the results of computer calculations and data obta
using an approximate formula forN1 for the establishment o
a quasisteady-state regime. This formula is derived from
condition for backflow of energy from the electromagne
shock wave front at the frequency of the excited oscillatio
and has the form~see also Ref. 8!

N1~n!5
~vs2vg!w

2pvs
n. ~5!

Some difference between the estimate and the nume
results may be attributed to the arbitrary division of t
nonsteady-state generated train into a main section an
trailing edge, made when analyzing the results.

The influence of the local dispersion in orders high
than the first inDv/v on the transition processes of gene
tion may be investigated by analyzing the phase matchin

FIG. 4. Number of oscillationsN1 ~solid curves! andN2 ~dot-dash curves!
as a function of the element number in the line~for phase matching corre
sponding to different points on the dispersion curve!. w: 1 — 1.26, 2 —
1.55,3 — 1.7, and4 — 1.85;vp /v0: 1 — 0.7115,2 — 0.6728,3 — 0.6613,
and 4 — 0.6547;m0: 1 — 0.068,2 — 20.049,3 — 20.229, and4 —
0.273;«0: 1 — 14.43,2 — 14.69,3 — 15.07, and4 — 15.17.
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minima of vg having different slopes. For the transmissio
line shown in Fig. 1,d2vg /dw2 may be varied at the mini-
mum of vg by varying the cross coupling coefficient. Figu
6 givesN1 andN2 as a function of the element number fo
the propagation of an electromagnetic shock wave in tra
mission lines withg* 50.2 and 0.8. It can be seen from Fi
6 that even for a small variation in vgww9
@(vgww9 )g

*
50.8/(vgww9 )g

*
50.2'1.07#, the number of oscilla-

tions in the quasisteady-state trailing edge varies by a fa
of 1.5–2. However, this quasisteady-state trailing edge fo
after propagation through approximately the same numbe
elements in transmission lines withg* 50.2 and 0.8. This is
evidently because, in the line withg* 50.8, the spectrum of
the generated radio pulse narrows faster than in the line w
g* 50.2 @N(n)ug

*
50.8/N(n)ug

*
50.2.1, N5N11N2]. Fig-

ure 7 shows the spectral density of the radio pulses forme
50, 150, and 250 elements of transmission lines w
g* 50.2 and 0.8. It can be seen that in both cases, the s
tral density of the radio pulses at the wave frequency pha

FIG. 5. Number of oscillationsN1 as a function of the phase shift pe
element obtained by computer calculations~curves with asterisks! and esti-
mated using formula~5!. n: 1 — 50, 2 — 150, and3 — 250.

FIG. 6. Dependences ofN1 ~solid curves! andN2 ~dot-dash curves! on the
element number.g* : 1 — 0.2,2 — 0.8; w: 1 — 1.26,2 — 1.04;vp /v0: 1
— 0.7115,2 — 0.5198;m0: 1 — 0.068,2 — 20.720;«0: 1 — 14.43,2 —
13.69.
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matched with the electromagnetic shock wave increases
increasingn. In these cases, the conditionDv/v!1 (Dv is
the half width of the spectrum at half maximum! is satisfied
for propagation of the shock wave through 150 elements.
g* 50.8 the spectrum narrows more rapidly.

Knowing the spectral composition and the local disp
sion, we can easily understand the nature of the amplit
modulation in the radio pulse generated by the electrom
netic shock wave~Fig. 3!. In particular, under phase match
ing vs5vp(v0) at the minimum ofvg(v0) all the spectral
componentsv06Dv for Dv/v!1 have the group velocity
vg(v).vg(v0). The energy of these spectral compone
‘‘lags’’ more slowly behind the shock wave front than that
the frequency of the phase-matched wave, and this show
as negligible amplitude modulation in the radio pulse~Fig.
3a!. For phase matchingvs5vp(v0) outside the minimum of
vg(v0), modulation is also observed at the trailing edge
the radio pulse ~Fig. 3c! because components wit
vg(v),vg(v0) are present in a narrow band of the rad
pulse spectrum. Strictly speaking, the amplitude-modula
part of the generated radio pulse, like its trailing edge, sho
be assigned to the transition process. It is easy to see

FIG. 7. Evolution of the spectral density of the radio pulses.g* : a — 0.2,
b — 0.8;vp /v0: a — 0.7115, b — 0.5198;m0: a — 0.068, b —20.720;«0:
a — 14.43, b — 13.69.
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transition process is stabilized after propagation through
elements of the transmission line, since the number of os
lations and the profile of the transition region of the rad
pulse are almost indistinguishable on the oscilloscope tra
for 150 and 250 elements. After the transition process
stabilized, the length of the radio pulse increases as a re
of an increase in the number of oscillations with an amp
tude that decreases with increasing distance from the fr
as in a steady-state electromagnetic shock wave, becau
rf losses in a transmission line with saturated nonlinear7

whereas at the trailing edge of the radio pulse, this is cau
by dispersion.

CONCLUSIONS

Thus, from the point of view of optimizing the transitio
process accompanying the direct conversion of a video p
into a radio pulse as this pulse propagates in nonlinear tr
mission lines possessing hysteretic properties, the optim
solution involves phase matching between the front of
electromagnetic shock wave and the wave excited by it
frequency near the minimum local dispersion of the gro
velocity. It has been shown for the example of anLC trans-
mission line with capacitive cross coupling that under ph
matchingvs5vp(v0) at the minimum of the group velocity
vs(v0), the trailing edge of the radio pulse relatively rapid
acquires a steady-state profile and its duration may be
periods of the generated oscillations. The possible direct c
version of a video pulse into a radio pulse with steep lead
and trailing edges is highly promising from the practic
point of view.

This work was supported financially by the Russi
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Some properties of the envelope equations used in the design and adjustment

of electron-optical beams

Yu. V. Zuev

D. V. Efremov Scientific-Research Institute for Electrophysical Apparatus, 189631 St. Petersburg, Russia
~Submitted June 17, 1996!
Zh. Tekh. Fiz.68, 96–102~January 1998!

An analytical transformation of the usual envelope equations is used to derive scale
transformation equations for a first-order electron-optic lens. Analysis of these equations, which
take into account both the particle temperature and the particle space charge, leads to the
identification of certain general principles for constructing and scaling beam systems of various
types. The properties of the transformation are illustrated by the example of the equations
for an axisymmetric electrostatic lens. ©1998 American Institute of Physics.
@S1063-7842~98!01801-7#
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The design of beam optics always includes, to some
tent or other, the solution to an inverse problem of dynam
i.e., that of finding structures and force-field intensities t
provide the required beam characteristics. In turn, any fo
field used to shape a beam is in the final analysis alw
determined by certain axial functions and their derivativ
@i.e., controlsu(z)]. Using the paraxial equation, we ca
write the linearr (z) and angularr 8(z) envelopes of a beam
in terms of the following integrals:

r ~z!5r 01E
0

z

r 8~z!dz, r 8~z!5r 081E
0

z

F@u~z!,p#dz.

Analogous expressions can be written down for abe
tion corrections that characterize the intensity of beam h
ing. From this starting point, the beam design should inclu
the successive solution of two problems: 1! finding an on-
axis field that ensures the desired optical properties of
system; and 2! extrapolating this field into the surroundin
space to determine the necessary field-shaping elements
first problem reduces to finding that controlu(z) which, for
the boundary conditions

u~0!5u0 , u~L !5uL , ~1!

would assign to functionals of the form

f ~u!5E
0

L

F@u~z!,p#dz,

h~u!5E
0

LE
0

z

F@u~z!,p#dzdz

two completely determined values

uh~u!2Au<dA , u f ~u!2Bu<dB ,

while ensuring as far as possible that

g~u!5E
0

L

V@u~z!,p#dz<C or g~u!→min. ~4!

Sometimes these requirements are combined:
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Here and in what follows,h(u) corresponds to the size an
f (u) to the slope angle of the envelope at the target, wh
g(u) estimates the finite temperature in the beam. The c
rent, charge, mass, and velocity of the particles, the tra
verse dimensions of the beam cross section at the entra
the slope of the envelopes, the emittance, etc. play the ro
parameters, here labeled by the setp.

In this formulation, such problems belong to the isop
rimetric class of variational problems and should be solv
using the corresponding methods. However, the use of th
methods is hindered in practice by the large number of c
straints imposed on the desired control, which makes it
possible to determine the functionals for all values of th
arguments. Usually these constraints, which ensure phys
realizability of the control, are expressed in terms of t
beam aperture

Rmin<E
0

zE
0

z

F@u~z!,p#dzdz<Rmax, 0<z<L, ~6!

the length of the structure

Lmin<L<Lmax, ~7!

the achievable field intensity

umin<u~z!<umax, ~8!

the rate of change of the control

uu8~z!u<umax8 ~9!

etc. The literature to date contains only isolated cases wh
these variational methods are used to solve problems of
kind.

More often, an attempt is made to describe the con
by a finite number of parameters and express the functio
in terms of them. Once this is done, the problem is redu
to finding an extremum of some effectiveness function on
variables. The quantity usually used as an effectiveness fu
tion is the so-called merit~quality, Q! function of the device,
which also includes deviations of the beam characteris
from their normal values. The search for the extremum

8686-07$15.00 © 1998 American Institute of Physics
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criterion optimization. Unfortunately, this transformation
made feasible largely by using a matrix description of
system, which is unsuitable for beams in which an import
role is played by the self-charge. Hence, in the overwhe
ing majority of cases the design procedure consists of find
multiple solutions to the direct problem, i.e., selecting p
rameters that describe the force field and then calcula
beam characteristics until the necessary transformation is
tained. The methods most widely used in this case are n
linear programming techniques.

Computer programs based on principles such as th
while guaranteeing physical realizability of the system d
signs, can only find a design solution if the initial approx
mation is good. This category includes such widely kno
programs as TRANSPORT and TRACE.1 The most impor-
tant cause of this difficulty is the fact that the inverse pro
lem is ill-posed. Problems of this kind, in which a cause a
effect relation is inverted, can have either a multiplicity
solutions or no solution at all, depending on the initial co
straints. Moreover, the method of solution also plays a n
trivial role. In the problem under discussion here, our task
not to optimize a function or functional, but rather to atta
definite values to them. These values do not necessarily l
the ‘‘bottom’’ that is closest to the starting point.

The goal of this paper is to develop a nonoptimizatio
method for solving this problem within the formulation us
currently in the design of beam optics, i.e., matching
parameters of the beam to the transfer characteristics o
accelerating structures or transport channels@conditions~2!,
~3! but without condition ~4!#. The few direct methods
known to the author for solving such problems apply to s
tems with a certain field structure~like, e.g., those in 1–4!
and negligibly small perveance.1–3,5,6

TRANSFORMATION OF THE ENVELOPE EQUATIONS BY A
COUPLING FUNCTION. GENERALIZED EQUATIONS
FOR SCALE TRANSFORMATIONS

Ordinarily, the envelope equations most often used
design first-order lenses in optical systems have the foll
ing forms. The envelope equation in a solenoid is

r 95FS~r ,B!, ~10!

whereFS(r ,B)5QSur 1«2ur 3– constrB2; B is the magnetic
induction on the axis;QS is a space charge parameter whi
depends on the value of the beam current and on the type
velocity of the particles; and« is the emittance.

In a quadrupole channel the envelope equations are

x95Gx1Fx , y952Gy1Fy . ~11!

Here the reduced gradientG of the lens plays the role of a
control; Fx(x,y)5Q/(x1y)1«x

2/x3, and Fy(x,y)
5Q/(x1y)1«y

2/y3. The system of Eqs.~11! can be reduced
to a single equation which relates only the transverse dim
sionsx andy of the beam:

yx91xy95Fq~x,y!, ~12!
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where Fq(x,y)5yFx1xFy . Then G5(x92Fx)/x
5(y92Fy)/(2y) ~in this type of description the specifie
dimensions of the beam act as the control!.

In a deflecting magnet the envelope equations are

x952
~12n!

R2
x1Fx , y952

n

R2
y1Fy

or

yx91xy95FM~x,y!. ~13!

Here R is the radius of deflection of the magnet,n is the
decay exponent of the field, andFM(x,y)5yFx

1xFy2(xy)/R2, nR225R221(x92Fx)/5(y92Fy)/
(2y).

It is most convenient to witness the advantages of t
approach for the example of the envelope equations in
axisymmetric electrostatic lens. The field of the lens is d
termined only by the axial distribution of the potentialU(z),
and the behavior of the envelope is determined by the in
conditionsr (0)5r 0, r 8(0)5r 08 and the equation

r 9U10.5r 8U810.25rU 95FU~r ,U !, ~14!

whereFU(r ,U)5QU /(AUr )1«H
2 /r 3, and«H is the normal-

ized emittance.
Consequently, the lens–beam system can be descr

by a curve in space~the solid curve in Fig. 1! in the coordi-
natesUrz, which are specified, e.g., by the projectionsU(z)
andr (z). Equation~14! is normally used in looking for pro-
jections of this curve on therz plane for a known projection
on theUz plane~or conversely!. The idea of this method is
to start from the projection on theUr plane. Then, by speci
fying some function that initially relates the control to th
beam, i.e., a coupling function, we determine beforehand
the values that both the beam radius and the potential in
lens can take. Particularly important among these values
their minimum, maximum, and boundary values, i.e., tho
that satisfy conditions~1!, ~2!, ~6!, and~8!; see Fig. 1.

There are also a number of advantages associated
the equation that establishes a relation between the coup
function and the optical axis. Its form

FIG. 1. A description of a lens–beam system in the space (U,r ,z).
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TABLE I.

88 Tech. Phy
z̈5
ż

h1(z)
@h2(z)2h3(z) ż2#

Type of optical system Coupling function z z h1 h2 h3

Solenoid r (B) B dz

dB

dr

dB
d2r

dB2

FS

B(r ) r dz

dr
1 0 FS

Axisymmetric
electrostatic system

r (U) U dz

dU
U

dr

dU
10.25r 0.5

dr

du
1U

d2r

dU2

FU

U(r ) r dz

dr
U10.25r

dU

dr 0.5
dU

dr
10.25

d2U

dr2

FU

Quadrupole channel y(x) x dz

dx
y1x

dy

dx x
d2y

dx2

Fq

x(y) y dz

dy
x1y

dx

dy y
d2x

dy2

Fq

Deflecting magnet y(x) x dz

dx
y1x

dy

dx x
d2y

dx2

FM

x(y) y dz

dy
x1y

dx

dy y
d2x

dy2

FM
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h1

~h22h3ż2! ~15!

is invariant with respect to selection of a new independ
variable and is correct for all the equations we have d
cussed above~see Table I!. This latter fact makes it possibl
to use unified principles to design systems of different typ
based on the properties of this equation.

Equation~15! can have nodal and saddle-point singula
ties. The character and position of these singularities de
mine the uniqueness or multiplicity of realizations of t
coupling function, or whether it is fundamentally nonreal
able~by a realization we here mean a solution to the ordin
envelope equation which gives a corresponding projection
theUr plane!. Multiplicity allows one to choose that realiza
tion which has at the boundaries not only the required val
of the control and beam radius but also all the necess
derivatives, i.e., the realization that completely solves
problem under consideration. Identification and analysis
TABLE II.
t
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-
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do not depend on the form in which the coupling function
represented.

The fundamental equation preserves its form when
convert from an explicit representation to a parametric o

Ṁ5
M

f 1~l!
@ f 2~l!2 f 3~l!M2# ~16!

~the expressions forf 1, f 2, f 3 are given in Table II; the dots
indicate differentiation with respect to the parameterl).

However, the variableM now plays the same role in a
the equations — it is the differential coefficient of a sca
transformation, since by definitionM[dz/dl. Furthermore,
Eq. ~16! reveals yet another series of properties that are u
ful not only in designing the optics but also in adjustin
them.

Because the expressions forf 2(l) and f 3(l) correspond
to the left and right sides of Eqs.~10! and~12!–~14! whenl
88. V. Zuev
M5
M

f 1(l)
@ f 2(l)2 f 3(l)M2#

Type of optical system Coupling function f 1(l) f 2(l) f 3(l) d f1(l)
dl

Solenoid $B(l),r (l)% ṙ r̈ FS f 2(l)

Electrostatic system $U(l),r (l)% 0.25U̇1Uṙ r̈U10.5rU̇ 10.25rÜ FU f 2(l)10.75ṙ U̇
Quadrupole channel $X(l),Y(l)% XẎ1YẊ XŸ1YẌ Fq f 2(l)12ẊẎ
Deflecting magnet $X(l),Y(l)% XẎ1YẊ XŸ1YẌ FM f 2(l)12ẊẎ
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when the parametrically specified coupling function co
cides with the solution to the ordinary equations. The la
suggests the idea of using as the coupling function the b
dimensions and the control of the system which is to
adjusted or which is being designed if it is necessary
change its characteristics. From this point of view, Eq.~16!
is a generalized equation for a scale transformation of fi
order optical systems with a coupling function used as
invariant. If the parametrically specified coupling functio
corresponds to a solution of the ordinary envelope equa
and admits multiple realizations, integration of Eq.~16! with
M0.1 gives a system with a greater lengthL5*M (l)dl
but smaller first derivatives along the axisd/dz5M 21d/dl.
Integration with M0,1 has the opposite effect, since th
integral curves of Eq.~16! do not intersect except for singu
lar points, and the quantity (M21) preserves its sign. Read
justments~redesign! of systems for a new value of the cu
rent, emittance, type of particle, etc., can be reduced
analogous integrations.

In the general case, on the other hand, parametric sp
fication of the coupling function, assuming that the para
eter used is the coordinate along the optical axis, may
regarded as an approximate~qualitative! description of the
desired behavior of the beam and control in the system.
ementary analysis of the singular points determines whe
the desired configuration is valid~realizable!. The fundamen-
tal equation of the transformation rescales the optical axi
that the beam and control specified by the coupling funct
are matched with respect to their derivatives in exact co
spondence with the ordinary envelope equation.

ANALYSIS AND PROPERTIES OF SINGULAR POINTS OF
THE FUNDAMENTAL EQUATION OF THE
TRANSFORMATION

It is not difficult to show that Eq.~16! with given initial
conditions has a unique solution over the entire range
variation of the independent variablel except for singular
points at which both the numerator and denominator of
equation equal zero:

f 1~ l̃ !50, M̃ @ f 2~ l̃ !2 f 3~ l̃ !M̃2#50.

At zeroes of the characteristic functionf 1(l), the cou-
pling function generates either one singularity~always zero!
or three different singularities~one zero and two symmetric!
corresponding to the real roots of Eq.~18!. The form of the
singularities will be the same as for a singular point of t

linearized equationṀ5 M̃̇1a(M2M̃ )/(l2 l̃ ) with coeffi-
cients a15 f 2( l̃ )/ ḟ 1( l̃ ) for M̃150, a2,3522a1 for

M̃2,356Af 2( l̃ )/ f 3( l̃ ). If a>0 @ ḟ 1( l̃ )Þ0#, then the singu-
lar point is a node. In the opposite case, a saddle-point
gularity occurs. Whenḟ 1( l̃ )50, the nature of the singula
point can only be determined by investigating terms
higher order~additional information is given in Ref. 7!. The
coupling function is unrealizable in principle only when th
corresponding integral curve of the transformation equa
passes through zero or suffers a discontinuity. Such solut
to Eq. ~16! can only be singular. The absence of singu
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pling function, specified by the initial conditions for integra
tion of Eq. ~16!. To eachM0 there corresponds a differen
scaling of the optical axis for which the derivatives of th
control and the beam derivatives change but the functi
themselves still satisfy both the ordinary envelope equa
and the coupling function chosen. In this case the ratio

their first derivatives remains unchanged:r 8/U85 ḟ /U̇.
The possibility of realization of a coupling function tha

forms zeroes of the characteristic functionf 1 depends on the
character of the singularities that arise in this case. The p

ence of nonzero singular points (M̃Þ0) always guarantee

that a suitable solution to Eq.~16! will exist nearl̃ . This is
either a unique solution passing through the center of a n
zero saddle point~which uniquely determines the admissib
initial value M0 and the only possible value of the bounda
derivatives!, or an infinite set of solutions with a commo

point at a nonzero node. Provided thatf 2( l̃ )Þ20.5ḟ 1(l),
the integral curves passing through this nonzero node
also have a common tangent at the singular point. This
lows us to join any two solutions obtained by integrating E
~16! from the left and the right of the singularity at the nod
in an ideal way that will ensure continuity of all the deriv
tives. This latter property also makes it possible to solve
problem~2!, ~3! formally by specifying the required bound
ary values as initial conditions.

In general, there can be several zeroes of the chara
istic function. Necessary conditions for realizability of a co
pling function in this situation naturally is realizability in th

vicinity of each zero, i.e.,f 2( l̃ i) f 3(l i).0, i 512N. This
condition is also sufficient if the adjacent nonzero singula
ties that form are of different type or are nodes. For adjac
saddle points a sufficient condition of general form has
yet been found.

There are two more properties of the transformation
have introduced that can be useful in adjusting and redes
ing optical systems.

Property A. Let$U(l),r (l)% be a realizable coupling
function in parametric form,C1 andC2 are arbitrary positive
constants; then$C1U(l),C2r (l)% is also a realizable cou
pling function provided thatf 3(U,r ) f 3(C1U,C2r )l5 l̃ i

.0,

since the positions of the zeroesl̃ i and the character of the
singular points of Eq.~16! are unchanged by such a transfo
mation of the coupling function.

Property B. Letp1 , . . . ,pK be the parameters enterin
into f 3 of a realizable system with a coupling functio
$U(l),r (l)%, and letx1..., xk be some functions ofl. Then
the coupling function$U(l), r (l)% will be realizable with
parameters x1p1 , . . . ,xKpK if f 3(U,r ,p1 , . . . ,pK)
f 3(U,r ,x1p1 , . . . ,xKpK)l5 l̃ l

.0, since the character of th

singular points for such changes in the parameters remain
before.

The only exception~but only from the point of view of
realizability! that can occur here is when adjacent nonz
saddle points are present. A unique integral curve that c
nects the centers of the saddle points exists only under
tain conditions, which can be violated as a result of scal
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GENERAL PRINCIPLES FOR CONSTRUCTING AND
SCALING BEAM SYSTEMS

From what was said above, it follows that the use
transformation equations reduces the procedure for de
~adjustment! of systems with respect to first-order optic
characteristics to a rather arbitrary choice~correction! of a
certain arbitrary function — the coupling function. For spe
fied boundary values, this function should~or should not!
generate some given sort of singularities of the fundame
equation. Analysis of the transformation equation reve
certain principles that are common for lenses of differ
types.

Any coupling function ensures the required transform
tion of the beam with respect to size if it is realizable and h
the appropriate boundary values.

The same coupling function is realizable, as a rule, o
a wide region of variation of current, emittance, partic
type, etc.~property B!. The boundaries of this region can b
used to determine the limiting values of these parameter

The coupling function can be subjected to linear scal
with preservation of the character of the singular poi
~property A!. This scaling of the envelope or control ca
significantly accelerate a redesign of optical systems tha
volves changes in the restrictions on maximum aperture
force-field intensity, making a readjustment to nearby be
parameters easier.

When the coupling function has a nonzero node adjac
to the boundary, it is possible to obtain a given beam size
any slope angle of the same sign.

When a nonzero saddle-point singularity is adjacen
the boundary, the boundary value of the slope for a be
that realizes the chosen coupling function is uniquely sp
fied. Certain combinations of boundary values of the char
teristic function f 1(l), for example f 1(0),0, f 1(L).0
when f 3(l).0, entail the formation of such points automa
cally. In order to obtain a required slope angle in this case
in the traditional design process, from a formal standpoin
remains only to exhaust all variants of the coupling with t
specified boundary values. However, problems with s
‘‘inconvenient’’ boundary conditions can be reduced to
equivalent problem by including in the system a suita
segment with optical properties that are known beforeha
which converts the boundary values of the beam and
control into more convenient values. A typical example
such boundary conditions is a converging input beam at z
force-field intensity. The simplest equivalent system in t
case need only contain a drift region of a length such t
beams that are converging at the input begin to diverge a
passing through the crossover.

By varying the positions of singularities and~or! cou-
pling functions between them, we can decrease the abe
tion ~4! and optimize the length and other properties of
system without changing the size and slope angle of
beam at the boundary. In contrast to the classical form
tion, optimization problems approached in this way are m
easier by the fact that Eq.~16!, as a special case of th
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Bernoulli equation, can be converted into a linear inhomo
neous equation with a solution in the form of quadrature7

The use of Eq.~16! allows us in principle to formalize
the procedure for designing a system of the desired len
Any length that is not less than a certain length cana priori
be guaranteed by that choice of coupling function for wh
two adjacent nonzero singularities of the node type are fo
on the interval of variation ofl. Then it remains only to
choose properly a suitable integral curve that joins these
nodes, i.e., to pickM0. Unfortunately, such a situation is no
always realizable. A corresponding change in the sign of
function f 3(l) is necessary. And the equation for a solen
dal lens, for example, can never have nonzero nodal po
under any conditions, sincef 2[d f1 /dl.

As an illustration of several possible uses of the meth
proposed here, in what follows we give a number of tra
formations of an axially symmetric unipotential lens with
proton beam that are typical for injection systems in acc
erating structures with spatially uniform quadrupole focus
~energy 60 keV, current 30 mA, normalized emittance 0
mm mrad!. The axial distribution of the lens potential, whic
gives the basic coupling function in parametric form, w
approximated by a sixth order polynomial with zeroes of t
first and second derivatives at the boundaries. The enve
function corresponding to it is found by numerical integr
tion of Eq. ~14! with initial valuesr (0)51.5 mm,r 8(0)50.
The shapes of the electrodes that realize the required a
distribution of the potential were determined by the fir
approximation equation

C5U~z!20.25U9~z!RA
2~z!

1QU$112 ln@RA~z!/r ~z!#%/AU~z!,

where C is the electrode potential andRA is the aperture
radius.

The potential of the middle electrode was chosen so a
form a beam at the input of the system with a radius of ab
1 mm and a convergence angle of 10 mrad. Figure 2 sh
the characteristics of this system. Since the coupling func
was obtained by integration of the ordinary envelope eq

FIG. 2. Characteristics of a unipotential lens and a beam at a curren
30 mA.
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tion, we havef 3[ f 2. The solution to Eq.~16! for a current
of 30 mA is given by the solid curves in Fig. 3. The integr
curveM51 corresponds to the basic realization of the co
pling function. The remaining realizations differed in th
value of the slope angle of the envelope at the input. On
interval from the nonzero node to the saddle point at
input, all of the realizations coincide. Figure 4 shows t
profile of the electrodes with potentials of the basic syst
that realize a coupling function with an angular beam en
lope at the output of 5, 10, and 20 mrad. The dashed cu
in Fig. 3 show the solution to Eq.~16! for the same system a
different currents; the beam angle at the output is kept eq
to 10 mrad. The axial potential distributions obtained fro
these solutions and the envelopes for the beam corresp
ing to them are shown in Fig. 5. Figure 6 shows the electr
profiles that allow the same transformation of beam rad
and slope angle to be implemented at currents of 20, 30
mA without changing the voltage on the electrodes.

FIG. 3. Integral curves of Eq.~16!. The solid curves are for a current of 3
mA; the dashed curves are~from top to bottom! currents of 10, 20, 40 and
50 mA.

FIG. 4. Profiles of electrodes for shaping a beam with the radius of 1
and angular envelope 20 mrad~—!, 10 mrad~– • –!, 5 mrad~- - -!.
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Of course, it is by no means true that every mathemat
realization of a coupling function is realizable physicall
The approach given here only allows us to formally satisf
number of constraints imposed on the control. The phys
realizability of a control can be improved by correcting t
coupling function, most importantly by changing the bea
envelope, on whose behavior remarkably few restrictio
have been imposed. A still more universal approach is
following procedure, which combines the advantages o
scale transformation with the possibility of explicit speci
cation of the control: 1! determine the basic coupling func
tion by solving the ordinary envelope equation with a phy
cally realizable control; 2! if the control chosen does no
ensure the necessary beam transformation, correct the
pling function such that it satisfies the required bound
values; 3! with the help of the generalized equation for sca
transformation, find a control that mathematically realiz
the corrected coupling function; 4! if the control obtained is
not realizable physically, replace it by the closest form th
admits this realization and return to point 1.

m

FIG. 5. Changes in the axial potential distribution and envelope as the b
current changes.1–5 — 50, 40, 30, 20, 10 mA, respectively.

FIG. 6. Geometry of a lens that implements the same beam transform
at currents of 20~– • –!, 30 ~- - -!, 40 mA ~—!.
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The transformation described in this paper leads t
unified approach to solving the problem of matching bea
to structures of various types. It is based on introducin
coupling function, which initially defines a relation betwee
the dependent variables of the ordinary envelope equa
and is invariant under the transformation. The properties
singularities of the basic transformation equation can be u
to formalize the process of design~adjustment! of beam sys-
tems based on their first-order optical characteristics, w
taking into account particle temperature and space charg

In many cases, these equations can be used to sc
previously designed system; to redesign it for new values
the current, emittance, beam energy, or new types of
ticles; to analyze the realizability of constraints on the for
field intensity, channel aperture, length, etc. For this reas
the problem of creating a catalog of standardized~basic! cou-
92 Tech. Phys. 43 (1), January 1998
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mations that occur in optical elements is of topical intere
The approach described here can also be used to solve
boundary value problems in dynamics.
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On envelope equations for electron beams in magnetic fields

N. D. Naumov
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A self-similarity approach is used to obtain envelope equations for an annular beam propagating
along a magnetic field, and also an electron beam injected at an angle to a magnetic field.
An exact solution is constructed for the self-consistent problem of transverse oscillations of a cold
annular beam in a magnetic field, and a comparison is made with approximate results from
the method of envelope equations. ©1998 American Institute of Physics.
@S1063-7842~98!01901-1#
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The use of envelope equations, which make it possibl
construct a number of analytical self-consistent models
beam propagation, has led to substantial progress in the
scription of the dynamics of charged-particle beams.1–4 The
existence of self-similar solutions to the equations of mot
for a gas of charged particles makes it possible to con
partial differential equations to ordinary differenti
equations.5 For curvilinear beams approximate solutions
self-similar type can be constructed when the ratio of tra
verse dimensions of the beam to its radius is small.6 How-
ever, in this case the adequacy of such approximate solut
to the nonlinear problem remains an open question.

In this paper transverse oscillations of a cold annu
beam of electrons in a magnetic field are discussed. It wil
shown that an approximate solution of self-similar type c
be constructed for a thin annular beam by using the met
of envelope equations, while the Green’s function meth
can be used to derive an exact solution to the nonstatio
self-consistent problem. A comparison of these two soluti
is of undoubted methodological interest.

In this paper envelope equations for a thin helical be
in a magnetic field are also derived. These equations
practical application in connection with the use of electr
beams to study the ionosphere. The injection of an elec
beam into an ionospheric plasma at an angle to the geom
netic field was discussed in Ref. 7, but the results obtai
there, as these authors themselves showed, cannot be ap
to the case of injection at pitch angles close to 90°. T
model derived here fills in this gap for time periods in whi
the ratio of transverse beam dimensions to its radius of
vature remains a small quantity.

ANNULAR BEAMS

The behavior of an axisymmetry cold beam of nonre
tivistic electrons propagating along a magnetic field is
scribed by the self-consistent system of equations of mo
for a gas of charged particles

d

dt
Vr2

Vu
2

r
52vcVu1

4pe2

mr E
0

r

n~x!xdx, ~1!

d

dt
Vu1

VrVu

r
5vcVr ,

]n

]t
1

]nVr

]r
50, ~2!
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the electron charge, andd/dt5]/]t1Vr]/]r .
It is not difficult to see that there is a stationary soluti

to the equation for the azimuthal velocity of the for
Vu5vL(r 1C2/r ), where vL5vc/2 is the Larmor fre-
quency. The constantC is determined from the condition
that particles located a distancer 5C from the beam axis
rotate with at the cyclotron frequency. This result is a co
sequence of the fact that the azimuthal component of
generalized momentum of a partic
Pu5r (pu1mrvL)5mvLC2 is conserved for an axisymme
ric beam.

An approximate nonstationary solution can be co
structed for the radial equation. As was shown previous6

such a solution can be obtained when the ratio of the tra
verse dimensions of a beam to its radius is small, in wh
case the terms entering into Eq.~1! that involve the azi-
muthal velocity can be expanded and only the first-or
terms kept with respect to the quantityd/r 1, wherer 1 is the
inner radius of the beam andd is the beam thickness. Th
almost linear variation of the self-electric field of the bea
can be exploited by choosing a corresponding profile for
beam density:

n~x,t !5
I

2pe0urd
H~j2j2!, ~3!

whereI andu are, respectively, the current and longitudin
velocity of the beam,H(x) is the Heaviside step function
andj5(r 2r 1)/d is the self-similarity variable.

For this class of nonstationary motions, the velocity
the electron gas depends linearly on the self-similar varia
therefore, the radial velocity of the beam has the followi
form: Vr5 ṙ 11jḋ. In this case the particle density~3! satis-
fies the equation of continuity~2!. Substituting this expres
sion into the linearized equations for the radial velocity~1!
leads to an equation for the internal radius of the beam
its thickness:

r̈ 11vL
2S r 12

C4

r 1
3 D 50, d̈1vL

2S 113
C4

r 1
4 D d5d0vp

2 ,

~4!

wherevp5A4pn0e2/m is the beam plasma frequency an
n05I /2pue0r 10d0.
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It should be noted that the collective field at the inner
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surface of the beam equals zero. Therefore, the equation
oscillation of the inner radius of the beam, in contrast to
equation for the beam thickness, is exact.

It is not difficult to see that for a cold beam the inn
radius does not depend on time if at the initial time t
particles at the inner surface of the beam rotate with
cyclotron frequency, i.e., whenC5r 10. In this case, as fol-
lows from Eq.~3!, the thickness and outer radius of a th
beam vary periodically with time:

r 25r 101d, d5d0@g1~12g!cosvct#, ~5!

whereg5vp
2/vc

2 .
It is obvious that ford51 a stationary state of the bea

is realized.

THE METHOD OF GREEN’S FUNCTIONS

An exact solution can be obtained for the self-consist
problem of transverse motion of an axisymmetric cold be
in a magnetic field. Although the problem as posed is ess
tially hydrodynamic, it is convenient in solving it to sta
from the distribution function of the electron gas,

F~x,Pu ,pz ,t !5 f ~x,t !d~Pu2mvLC2!d~pz2mu!,

where the collection of variablesr , pr is denoted byx for
brevity.

The solution to the Vlasov equation for the radial fun
tion f (x,t)

L f ~x,t !50,

L5
]

]t
1

pr

m

]

]r
1FeE1mvL

2S C4

r 3
2r D G ]

]pr

can be written by using the Green’s function of the opera
L:

H~ t ! f ~x,t !5E G~x,x0 ;t ! f ~x0,0!dx0 ,

LG~x,x0 ;t !5d~ t !d~x2x0!.

Here f (x,0) is the initial function for the beam distribution
which in the present case has the for
f (x,0)5n0rn(r )d(pr), wheren0n(r )5n(r ,0) is the initial
density distribution of particles.

The Green’s function is determined by the radial moti
of a single particler (t;x0), pr(t;x0) in the combined exter-
nal and collective fields forPu5mvLC2:

G~x,x0 ;t !5H~ t !d@r 2r ~ t;x0!#d@pr2pr~ t;x0!#.

The motion of an electron satisfies the following con
tions: r (0;x0)5r 0, pr(0;x0)5pr0.

The basic difficulty in implementing this method of sol
ing the self-consistent problem is connected with includ
the influence of the self-field of the beam on the motion
the particles, which is unknown beforehand and wh
changes as the beam propagates. This problem is simp
if the layers of particles translate in the radial direction
‘‘single file,’’ without overtaking each other. Then the valu
of the collective field acting on a particle does not depend
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positionr 0 and by the preset initial density distribution of th
particles:

Er@r ~ t;x0!,t#54pen0

Q~r 0!

r
, Q~r 0!5E

r 10

r 0
n~x!xdx.

~6!

In summary, we find for the functionf (x,t)

f ~x,t !5n0E dr0r 0n~r 0!d@r 2s~ t,r 0!#

3d@pr2mṡ~ t,r 0!#,

wheres(t,r 0) is the solution to the equation

s̈5vL
2S C4

s3
2sD 1Q~r 0!

vp
2

s
~7!

with the initial conditions(0,r 0)5r 0, ṡ(0,r 0)50. For the
hydrodynamic characteristics of the flow we obtain

n~r ,t !5E F~x,Pu ,pz ,t !d3p5n0

r~r ,t !n@r~r ,t !#

r uS~r ,t !u
, ~8!

Vr~r ,t !5
1

mnE prF~x,Pu ,pz ,t !d3p5U~r ,t !. ~9!

Here r(r ,t) is the solution to the transcendental equati
s(t,r 0)5r , i.e., s@ t,r(r ,t)#[r , and the following notations
have been introduced: S(r ,t)5R@ t,r(r ,t)#,
R(t,r 0)5]s/]r 0, U(r ,t)5 ṡ@ t,r(r ,t)#. A simpler method
can be used to calculate the hydrodynamic characteristic
the flow. It follows from expressions~8!, ~9!, that at timet
the particle density and radial velocity of the beam at a po
r 5s(t,r 0) equal

n~s,t !5n0

r 0n~r 0!

s~ t,r 0!uRu
, Vr~s,t !5 ṡ~ t,r 0!. ~10!

Let us find the equation for the functionR by differen-
tiating Eq.~7! with respect tor 0:

R̈5n~r 0!vp
2 r 0

s
2FvL

2S 113
C4

s4 D 1Q~r 0!
vp

2

s2 GR.

It is obvious that the initial conditions forR have the
form R051, Ṙ050.

Thus, calculation of the hydrodynamic characteristics
an axisymmetric cold flow of charged particles in a magne
field reduces to solving two ordinary differential equations
is obvious that for a solid beam the upper limit of integrati
in Eq. ~6! should be set equal to zero. For an annular be
Eq. ~10! can be used to obtain the characteristics of the be
at a given timet by steppingr 0 gradually with a sufficiently
small step size fromr 10 to r 20. Note that whens05r 10, Eq.
~7!, which in this case becomes the first of Eqs.~4!, deter-
mines the oscillations of the inner radius of the beam. Wh
s05r 20, Eq. ~7! describes the time dependence of the ex
rior radius of the beam; choosing the initial particle dens
in the form Eq.~3!, i.e., n5r 10/r , we obtain
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r̈ 25vL
2S C4

r 2
3

2r 2D 1d0vp
2 r 10

r 2
. ~11!

Figure 1 shows the results of calculating the exter
radius of the beam for initial conditionsC5r 10,
r 2051.05r 10 for g51 and 0.75. The solid curves correspo
to the solution to Eq.~11!, the dashed curves to analogo
data from the self-similar approximation Eq.~5!; the variable
T5vct. We can assert that the equation for envelopes g
a suitable description of the dynamics of the transverse
mensions of the beam at least at the initial stage of mot
Figure 2 shows a comparison of the exact and approxim
solutions for particle densities atg50.75 at timet55p/vc

~curves 1, 2!, t55.5p/vc ~curves 3, 4!, and t56p/vc

~curves5, 6!. For the particle density the exact and appro
mate results differ from each other to a larger extent.

HELICAL BEAM

Assume that the beam axis coincides with the traject
of a single electron in the magnetic field, i.e., it is in the fo
of a vortex line

Y~s!5
1

k
sin a cosksex1

1

k
sin a sin ksey1s cosaez .

FIG. 1. Oscillations of the external beam radius.

FIG. 2. Variation in particle density.
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and a is the angle between the magnetic field and init
electron velocity vectors.

The transverse beam dynamics are conveniently tre
in a system of curvilinear coordinatesr,s,z

x5Y~s!1rer1zb,

whereb5t3n, andt, n, b are the vectors of a Frenet tria
connected with the curveY(s).

For a vortex line, the direction of the normal vector
opposite that of the radial unit vectorn52er . In this system
of coordinates the external field has the for
B05B0(b sina1t cosa).

Let the ratio of transverse dimensions of the beam to
radius of curvaturer c51/k sina, and also to the radius o
torsionr t51/k cosa, be small quantities. To accuracy up
first-order terms, the longitudinal velocity of the beam
constant; therefore, settingV5ut1Ger1Lb and neglecting
second-order terms, we find from the Euler equation fo
charged gas the following equations for the functionsG,L:

MG1 f r5Fr , ML5Fz ,

M5
]

]t
1u

]

]s
1~G2wz!

]

]r
1~L1wr!

]

]z
, ~12!

wheref 5u2/r c
2 , w5u/r t , Fr , Fz are terms that give rise to

the self-field and the beam emittance.
Expressions for these terms when the beam has an e

tic cross section are most simply displayed in a system
coordinatesq1 , q2 connected with the axes of symmetry
the beam cross section,8

F15
hq1

a~a1b!
1

Hq1

a4
, F25

hq2

b~a1b!
1

Hq2

b4
.

Hereh54Ic2/I Ag2, I is the beam current,I A5gumc2/e0 is
the Alfvén current,a, b are semi-axes of the beam cro
section, andH5u«, where « is the beam emittance. Th
self-field of the beam is approximated by the electromagn
field of a rectilinear beam with elliptic cross section, sin
corrections due to the beam curvature will, as in the case
an annular beam,9 be terms of second order in smallness.

Because the orientation of the beam cross sec
changes as time passes, the coordinate axes for the sy
q1 , q2 will rotate with respect to the unit vectorser , b
through a certain anglec

q15r cosc1z sin c, q25z cosc2r sin c.

Accordingly, G, L should be written in terms of com
ponents of the gas velocityVi in the new system of coordi
nates:

G5V1 cosc2V2 sin c2zV,

L5V2 cosc1V1 sin c1rV,

whereV5ċ is the angular velocity of rotation of the bea
with respect to the Frenet triad.

If s is replaced by the variablet5s2ut, then the de-
rivative with respect tot in Eq. ~12! disappears. For this
reason the dependence of the beam characteristics ont is
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now parametric in nature and is determined by the ini
conditions when a beam with a given cross section is
jected. As a result, Eq.~12! for the functionVi leads to the
following equations:

NV122VV22q2V̇2lq11 f

3S q1 cos2 c2
q2

2
sin 2c D5F1 , ~13!

NV212VV12q1V̇2lq21 f

3S q2 sin2 c2
q1

2
sin 2c D5F2 , ~14!

where

N5
]

]t
1Vi

]

]qi
1wS q1

]

]q2
2q2

]

]q1
D ,

l5V~w1V!.

The transverse motion of a gas in the new system
coordinates can also include translation along with the el
tic current lines; therefore, the following starting express
should be used forVi in terms of the self-similar variable
j5q1 /a, h5q2 /b:

V15ȧj2vah, V25ḃh1vbj, ~15!

wherev is some function of time.
The particle density that satisfies the equation of co

nuity has the form

n~x,t !5
I

pabue0D
H~12j22h2!,

whereD511kr cosa.
Substituting Eq.~15! into Eqs. ~13!, ~14! eventually

leads to a system of ordinary differential equations for
time-dependent functionsa, b, v, V:

ä52vVb1S m1wv
a

b
2 f cos2 c Da1

h

a1b
1

H

a3
,

~16!

FIG. 3. Variation in the transverse dimensions of the beam.
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b52vVa1S m1wv
a

2 f sin c Db1
a1b

1
b3

,

~17!

V̇12V
ḃ

b
1v̇

a

b
12v

ȧ

b
1w

ȧ

a
1

f

2
sin 2c50, ~18!

V̇12V
ȧ

a
1v̇

b

a
12v

ḃ

a
1w

ḃ

b
2

f

2
sin 2c50, ~19!

wherem5l1v2.
Adding Eqs. ~18!, ~19! and integrating the resulting

equation gives the functionV in the form:

V5
1

2ab F2a0b0S V01
w

2 D
1v0~a0

21b0
2!2v~a21b2!G2

w

2
. ~20!

This relation between the angular velocity of rotation
the beam relative to the Frenet triad and the angular velo
of the internal motion of the gas can also be obtained fr
the condition of conservation of the longitudinal compone
of the vector (W1eB0 /mc)/n, whereW5curl V is the vor-
ticity and n is the gas density.

Figure 3 shows the results of calculating the transve
beam dimensions by numerically solving the system of E
~16!–~19!. The following values for the parameters we
chosen: a53p/8, v050, h/(vcas)

250.05, a05b05as ,
whereas is the equilibrium radius of a Brillouin flow propa
gating along the magnetic field with intensityB0 cosa. This
radius is determined from the expressio
w2/4as5h/2as1H/as

3 , since, as is clear from Eq.~20!, the
‘‘effective’’ Larmor frequency of a helical beam equalsw/2.
The lower curves correspond toa/as , the upperb/as ; the
variableT5vct. In these calculations two initial values o
angular velocity of the rotating beam were used:V050
~dashed curves! andV052w/2 ~solid curves!. These results
show that when a rotating beam is injected at an angle to
magnetic field, the spreading of the beam under the influe
of space charge is decreased.
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A study of the microstructure of thin a-C:H layers that orient liquid crystals
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The surface structure of thin layers ofa-C : H is studied by the method of island decoration,
using silver films. The changes in the dimensions and density of silver particles is tracked by an
electron microscope as a function of the thickness of thea-C : H layers. The electrical
microprofile is discussed, along with the nature of the silver crystallization centers on the surface
of the a-C : H layers. © 1998 American Institute of Physics.@S1063-7842~98!02001-7#

The surface microstructure of layers of amorphous hy-tained by chemical deposition of hydrocarbon vapors in a
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drogenated carbon (a-C : H! is being studied as backgroun
for the investigation of the orientation-sensitive interacti
of these layers with liquid crystals. Previous papers h
shown that thin layers ofa-C : H obtained by chemical depo
sition of toluene vapors in a glow-discharge plasma give
to planar orientation of liquid crystals based o
cyanobiphenyls.1,2 a-C : H has a spatially irregular structur
in which the average ordering is determined byp-bonded
clusters consisting of carbon atoms in thesp2 state linked by
a common system of conjugated multiple bonds. Along w
polycyclic aromatic groups, polyene chains can also en
into the composition of these clusters.3 Individual carbon
clusters can be observed by scanning tunnel microscop
amorphous carbon films obtained by deposition of graph
which do not contain hydrogen.4,5 In contrast to this, studies
of orientinga-C : H layers deposited on polycrystalline ele
trode layers~based on indium and tin oxides! by electron and
tunnel microscopy have not revealed any distinctive featu
of their structure. These microscopic investigations sh
that the thin layer ofa-C : H obtained from a carbon
hydrogen plasma simply repeats the relief of the surface
which it is deposited.6 This hinders the study of distinctiv
features of the surface structure ofa-C : H by direct meth-
ods.

The goal of this paper is to investigate the morpholo
of structures at the surface of thina-C : H layers by the
method of island decoration using silver films.

The method of decoration, which is based on selec
crystallization of a decorating material at a surface of a so
body, makes it possible to identify local active centers of
surface and its electrical microprofile.7 In this work the deco-
ration material we used was island-like films of silver wi
thicknesses of;50 Å, which were deposited by therma
evaporation in vacuum. In order to eliminate the influence
the evaporation rate and substrate temperature on the s
and size of particles of the metal condensate,8 the silver was
crystallized at room temperature with all other conditio
kept the same. This allowed us to relate the change in
shape and size, and also density distribution, of the si
particles to the structural features and electrical micropro
of the surfaces of our samples. We used a luminescence
tron microscope and the method of replicas to observe
morphological structure of the silver films.

The a-C : H layers investigated in this work were ob
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glow-discharge plasma. The substrates were polished in
der to eliminate the influence of their structure on the de
ration pattern, and oriented obliquely at an angle of 5° to
axis of the apparatus in accordance with the standard t
nology for depositing orientinga-C : H layers. The deposi-
tion of thea-C : H layers was carried out at the temperatu
of the surrounding medium from toluene vapor at a discha
power of 1.8 W and pressure 0.08 Pa.

Microphotographs of the island-like silver films at th
surfaces of germanium anda-C : H layers are shown in Fig
1. The deposition of ana-C : H layer on the germanium
changes the conditions for silver crystallization in an imp
tant way. Indications of this are the difference in density a
dimensions of the decorating particles seen in Figs. 1~a! and
1~b! ~at 50 0003 magnification!. The silver particles at the
surface of a;600 Å thick a-C : H layer are spherical in
shape@Fig. 1~b!#. When the thickness of thea-C : H layer is
increased by a factor of two, a change is observed in
shape and size of the silver particles@Fig. 1~c!, 50 0003
magnification#. Particles with irregular shapes appear due
coalescence of neighboring spherical particles. In a num
of cases, the observed changes in the silver particle den
were associated with defects in the layer structure. Fig
1~d! ~40 0003 magnification! shows an example of a cha
acteristic defect with a radial distribution of silver particle
The cause of this defect could be electrical breakdown at
substrate surface during condensation, which leads to a l
change in the structure of thea-C : H layer.

Figure 2 shows the results of statistical processing
microphotographs of the silver island films at the surface
a-C : H layers. Depositing ana-C : H layer onto a germa-
nium surface decreases the average size of the decor
silver particles from 3006140 to 120630 Å. As the thick-
ness of thea-C : H layer increases an increase in the silv
particle dimensions is observed@Fig. 2~a!#. In this case there
is a slight decrease in the density of the silver particle dis
bution on the a-C : H surface, from 1.931011 to
1.431011cm22, due to the increase in particle size@Fig.
2~b!#. We observed no significant structural differences
the morphology of silver island films on the surfaces
a-C : H layers obtained by orienting the substrates obliqu
and normally in the plasma. The films were isotropic, whi
is evidence that the deposition of hydrocarbon vapor in
plasma onto an obliquely oriented substrate does not lea

9797-03$15.00 © 1998 American Institute of Physics



FIG. 1. Microphotographs of the surfaces of germanium~a! anda-C : H layers~b, c, and d! decorated by island-like silver films with thickness;50 Å.
anisotropy of the surface of thea-C : H layers, as happens
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with condensates of inorganic materials.
The morphological structure of the island-like films

silver depends on the surface properties of the substrate
terial and the interaction between the metal particles and
solid surface. The authors of Ref. 9 explained the shape
size of silver spheroids at the surfaces of glassy carbon
pyrographite by invoking the influence of an electromagne
enhancement mechanism based on surface plasmons. Fo
rographite, increasing the film thickness results in an

FIG. 2. Dependence of the average size~a! and average density~b! of silver
particles at the surface ofa-C : H layers on the thickness of the latter.
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shared bya-C : H. However, it is noteworthy that the mor
phological structure of silver films at the surface of o
samples ofa-C : H different from that of the island-like sil-
ver films at the surface of pyrographite and glassy carb
The silver particles at the surface of pyrographite and gla
carbon are irregular in shape. For these materials, the m
length and width of 60-Å-thick island-like films at the su
face of glassy carbon were 360 and 230 Å, while at
surface of pyrographite they were 760 and 490 Å resp
tively. The dimensions of the silver particles we observed
the surface ofa-C : H were smaller, with an average size
the range 110–220 Å. The size of the smallest of these si
particles (;20 Å! matches that of the small graphite d
mains (;15 Å! observed in amorphous carbon films b
scanning tunneling microscopy.5

The electrically active centers of silver crystallization
the surfaces of pyrographite and glassy carbon could
graphite structures oriented parallel to the surface. Howe
in our view the current carrying regions of thea-C : H sur-
face include not only graphitelike clusters but also isola
sets of several closely spaced clusters that share a com
system of delocalizedp electrons. These could explain th
large scatter in the dimensions of silver particles at the s
face ofa-C : H from 20 to 400 Å.

The interstitial regions between silver particles at t
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do not carry an electric current. These could be hydrocar
clusters containing CH, CH2 and CH3 groups in thesp3

state,10 in which delocalization ofp electrons is impossible
In thin a-C : H films @Fig. 1~b!# the distances between ind
vidual silver particles range from 30 to 300 Å. When t
thickness of thea-C : H layer is increased to;1200 Å, the
distance between decorating particles decreases to 20–
@Fig. 1~c!#, which could be explained by the influence of th
layer bulk properties on the electrical surface profile. T
structure of thea-C : H surface can be viewed as an ‘‘arch
pelago of islands’’ made up of individualp clusters segre-
gated into groups with delocalization of thep electrons and
separated by ‘‘channels’’ of electrodeless space. The elec
density should have its maximum value near the carbon
oms in thesp2 state that enter intop-bonded clusters, and
drop to zero at its boundaries.

By using the method of decoration, we can identify t
electrical profile and establish the nature of active center
the surface of orienting layers. The results we have obtai
lead us to assert that the electrical microprofile of the surf
of orienting a-C : H layers has an isotropic structure ind
pendent of the layer thickness or position of the substrat
the plasma. In our picture, the centers of silver crystallizat
at the surface ofa-C : H are individualp clusters and seg
regated groups of these with a common system of delo
izedp electrons that possess electrical activity. The obser
increase in the size of the silver particles as the thicknes
thea-C : H layer increases attests to the influence of clus
located in the bulk on the electrical profile of the surfac
Our results allow us to formulate a hypothesis regarding
effect of thep-bonding interaction on the orientation of liq
uid crystals, whose molecules contain aromatic rings, at
99 Tech. Phys. 43 (1), January 1998
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liquid crystal of the cyanobiphenyl class, the planar orien
tion observed is made possible by the interaction ofp elec-
trons from the biphenyl core of the molecule withp elec-
trons of the polycyclic aromatic groups. The latter,
Baranovet al. have observed,11 are oriented parallel to the
a-C : H surface. Understanding of the interaction mechan
at the boundary of this solid-liquid crystal system will enab
us to perfect the technology for orienting liquid crystal mo
ecules, and thereby improve the characteristics of dev
based on them.

The studies described in this paper were made poss
thanks to partial support from the International Scien
Foundation~Grant No. NXQ300!.
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