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The photophoresis of a coarse solid spherical aerosol particle in a one-component gas of
nonuniform temperature is examined with consideration of the inertial effects in the hydrodynamic
equations and the temperature jump in the Knudsen layer. The problem is solved in the
spherical coordinates, ®, and ¢. The photophoresis of a homogeneous particle is considered
first. Then the results are generalized to an inhomogeneous patrticle. A particle whose

thermal conductivityx; varies as a function af is chosen as a model which describes a broad
class of natural and artificially produced aerosol particles. It is shown that the error can

be significant if the variable internal thermal conductivity= x;(r) of the particle is ignored

and only the value of the thermal conductivity on its surfag@) is considered, on the

assumption that the particle is homogeneous. It is also shown that a particle with a variable internal
thermal conductivityx; = x;(r) and a density of heat sources withirgj{r,®) can be

regarded as a homogeneous particle with a thermal conduciiwitie) and a heat-source density
m(r)q;(r,®). Recurrence formulas foy andm(r) in the general case are presented.

Analytical expressions fory and m(r) are found for a model particle with pronounced
inhomogeneity. ©1998 American Institute of Physids$$1063-784£98)00104-4

INTRODUCTION field was only of scientific interest at first, since few mani-
festations of this effect of practical importance were noted
The idea that a particle can move under the influence offor example, the influence of solar radiation on the settling
light was suggested long ago by Kepler. Newton’s corpuscuef aerosol particles in the earth’s atmosphere was considered
lar theory reinforced this idea, and the existence of lightin Refs. 3 and % In recent years the situation has changed
pressure was demonstrated in Russia by Lebedev. Howevefiamatically as a result of the use of lasers, and the interest
Ehrenhaft discovered an effect in the motion of dust par- in photophoresis has increased. There have been a number of
ticles suspended in air in the beam of a high-intensity lamptheoretical and theoretical papers on the theory of photo-
some particles moved toward the light source. This effecphoresis(see, for example, Refs. 5%:8Numerous applica-
could not be attributed to the light pressure force. Ehrenhaftions of the motion of macroparticles in a laser beam have
called the effect which he discovered photophoresis. Th@een proposed: the separation of particles in a liquid, the
motion of particles in the direction of light propagation was optical levitation of particles in air and in a vacuum, the
termed positive photophoresis, and motion in the oppositérapping and retention of particles in a laser beam, etc. The
direction was termed negative photophoresis. This effect cahigh monochromaticity of laser radiation and the possibility
be explained briefly as follows. The absorption of light by aof tuning the wavelength permit the control of the motion of
particle leads to distribution of the electromagnetic energy ofnacroparticles and the selective isolation particles of as-
the incident optical radiation throughout the volume of thesigned properties from an aerosol stream by selecting the
particle. Sources of thermal energy appear within the particleutput wavelength within the absorption band of the particle
with a certain volume density;(r,®) and heat it nonuni- material.
formly. Gas molecules colliding with the surface of the par-  The magnitude of the photophoretic force caused by the
ticle are reflected with a greater velocity from the heated sideollisions of gas molecules with a nonuniformly heated par-
of the particle than from the cold side. As a result, the pardicle surface is generally much greater than the light pressure
ticle acquires an uncompensated momentum directed froforce. In rare cases it is necessary to consider the combined
the warm side of the particle to its cold side. Either theaction of the two forces. In addition, the effect of the reaction
illuminated or the dark side of the particle can be warmerof vaporized molecules is significant in some cases.
depending on the dimensions and the optical properties of The theoretical methods used to derive expressions for
the particle material. Therefore, both positive and negativeéhe photophoretic force and the photophoretic velocity are
photophoresis can occur. In addition, if the radiation flux ischosen by comparing the radiasof the particle with the
nonuniform over its cross section, transverse motion of thenean free path of the gas molecules. If the Knudsen num-
particle relative to the direction of propagation of the elec-ber Kn=\/a is large, then, according to the classification of
tromagnetic radiation can appear in a gas. particles in the physics of disperse systems in air, the particle
After Ehrenhaft, the effect was investigated in a numbeiis termed small. The theory of photophoresis for large Knud-
of studies, but the motion of particles in an optical radiationsen numbers is devised on the basis of the kinetic theory of
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gases. The main assumption here is that a particle has littiemperature relative to the particle in the absence of external
influence on the velocity distribution of the gas surroundingforces, we arrive at the following equations of motiort*
it. The most exact results for the photophoretic force and the oV 1
photophoretic velocity were presented in Ref. 9. In the ex- U —=-=-Vp+»V2V, diw=0, )
pressions for the photophoretic force and the photophoretic 26 p
velocity of small pgrtlcles thg tangentla! m.o'mentum and en- Vyw=U, Vy|r4>oo:01 Vi w=0, Plin=DPes,
ergy accommodation coefficients are significant. The results
Ne (?Te)

of the experiments in Refs. 8 and 10 are in good agreement dle
peleod | 9O

with the theory. If the Knudsen number is small, the particle
is termed “coarse,” and in this case the theory of photo- . o o
phoresis is devised on the basis of the hydrodynami¢VhereV is the flow velocity,p is the densityp is the pres-
method, i.e., the hydrodynamic equations and the heaffure in the gasKrsis the thermal slipping coefficient, 7
transfer equations are solved togetheAt small values of IS the viscosity of the gas mediurfie is the temperature of
the Reynolds number RelJa/v, whereU is the velocity of ~ the gas(everywhere below the subscriptdenotes the gas
the stream of gas flowing past the particle at large distancé@€dium, and denotes the particleandTeo is the value of
from it and v is the kinematic viscosity, the hydrodynamic Te atr=0. _ . _ _

equations are replaced by linearized equatiérdThe same Equations(1) were obtained with consideration of the
approach was used to solve the problem of the photophoretl€ding inertial terms in the Navier—Stokes equatitine
motion of moderately coarse aerosol particles. Detailed re@Seen method). We assume tha¥,, Ve, p, andT, are
views of the work on the theory of photophoresis can pdunctions of onlyr and®. In our formulation of the problem
found in Refs. 14 and 15. However, in the case of coars¢/¢=0- _ o _
aerosol particles there is some disparity between the theoret- 1€ electromagnetic radiation impinging on the particle
ical values for the photophoretic velocity and the experimeniS absorbed by it and distributed throughout its volume. As a
tal data. This fact is stimulating a search for new effects/esult, sources of thermal energy appear within the particle
whose inclusion can improve the known models. with a certain densityg;, which we also assume to be a

The present work examines the photophoretic motion ofunction ofr and@._ Therefosre, the thermal part of the prob-
a coarse solid spherical aerosol particle of nonuniform therl€m has the following forni!

Vr|r:a:Or V(~)|r:a:KTSI , (2

r=a

mal conductivity suspended in a one-component gas at small y27_ =g ©)
. . . . . e ’
Reynolds numbers with consideration of the inertial effects )
in the hydrodynamic equatiorithe Oseen methocand the div(»;VT;)+q;=0, (4)
temperature jump in the Knudsen layer. aT. aT
! = —F
(zi 7)r=a_ e or .

EQUATIONS AND BOUNDARY CONDITIONS

dTe
(-I—e_Ti)lr::a:CT)\07_r ) (5

We begin the treatment of the motion in a coordinate r=a

system, whose origin coincides with the center of gravity of 1| #00, T, .=Te.. (6)
the gas medium. Electromagnetic radiation impinges on the . o .

particle and heats its surface. The gas begins to slip along tHder€ Ti is the temperature within the particle, and; are
surface of the particle in the direction of increasing temperath® thermal conductivities of the gas and the particle, respec-

ture. The thermal slipping gives rise to a photophoretic forceliVely: andCy is the temperature jump coefficietftwe as-

The particle undergoes accelerated motion under the inflSUMe thafl; is a function ofr and®. We assume that the
ence of the photophoretic force. When the magnitude of thgonvergence under the conqmons at infinity is uniform with
photophoretic force becomes equal to the magnitude of thEESPECt td. The value ofx, is assumed to be constant, and
force of viscous drag of the medium, the particle begins to Will be discussed below.

move linearly and uniformly with a certain photophoretic
velocity Uyy,. Because of the small value of the thermal re-
laxation time, we assume that the heat-transfer process in t
particle/gas-medium system is quasistationary. We shall Let us first consider the thermal part of this problem. In
work all the time below in a Ryz coordinate system, whose this case Eq(4) of systems(3)—(6) can be written in the
origin coincides with the center of the particle and whoge 0 form

axis is parallel to the propagation direction of the uniform V2T = —a /. 7
radiation flux impinging on the particle. Going over to : di /% @)
spherical coordinates, we shall measure the aBgie®m the Using the theory of harmonic functiori&cluding the
positive direction of the R axis. In the &yz coordinate theory of functions that are regular at infirlity, we can
system the particle is stationary, and the gas flows past thehow on the basis of the maximum princitland Zarem-
particle. The velocity of the gas at infinit.. is clearly equal ba’s principlé® that this problem has a unique solution. We
to Uy, with the opposite signV..= —U,,=Ui. Considering  seek the solution of this problem in a class of expansions of
the stationary motion of a one-component gas of nonunifornthe form

PHOTOPHORESIS OF AN AEROSOL PARTICLE OF
IFORM THERMAL CONDUCTIVITY
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Ti= 2, Tin(r)Pn(cos ©),

oo

=2 T

Ten(r)Pp(cos®),

where theT,;,(r) andT.,(r) are unknown functions, and the
P, are Legendre polynomials.
For the existence of a solution we also assume that

q.=n§O Qin(r)Pn(cos®),

where theg;,(r) are certain functions, which can be found in

terms ofq; on the basis of the orthogonality of the Legendre

polynomials according to the following formula:

2n+1 (= )
qin(r):Tf gi(r,®)P,(cos #)sin ©d0O.
0

We proceed to a proof of the existence of a solution.

From Eq.(3) with consideration of6) we obtain

Te Tex+2 Pn(cos®),

n+l )
where theA.,, are undetermined coefficients.
From Eq.(7) we obtain the following differential equa-

tion for T;, :

q.
rz—=

i

T +2rT—n(n+ 1) Tip=— ©

Solving Eq.(9) by standard method$,we obtain

_ Ai“ n
Tin_rn_+1+r Bin+

(2n+1)x

1 ' n+2 n ' dr
X l,n+1 Qinf dr—r qinrn—l .
a a

Now substituting the expansions found foy and T,
into the boundary condition®) and taking into account con-

dition (6), we obtain a combined system of linear equations

for determining the coefficient&,,, A;,, andB;,. The ex-
istence of a solution has been proved.
We move on to an analysis of the hydrodynamic part

[Egs. (1) and (2)] of the problem. We are interested in the

expression for the photophoretic velocity, which, in turn, is
derived from the expression for the force. If, instead of Egs.

(1), we consider the equations

1
0 —;Vp-HJVZV, div V=0, (10
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and the tangential componevw, is sought in the form of the
expansion

Vo E Von(r)Jdn:1(cos®),

(12)

sin QR

where theV,, andVg, are unknown functions, and tldg, ;
are Gegenbauer functions.

It is known'! that to determine the magnitude of the
force it is sufficient to determine the first ternise., the
terms corresponding to=1) in expansiong11) and (12).
Let VD, v and T be the first terms ir11), (12), and
(8), respectively. Then it follows from conditiof2) that

aTeH
(1) _ 779 e
Vo'lr-a KTSI—peTeoa ~0 (13
If we introduce the notation
(1)
B Te JaTg
_KTSIPeTeOa 70 ) ' 4

() /

the Stokes formulfg F.= 67U, for the force exerted on a
spherical particle is generalized in the following manner:

F.=677U, (15

€
3 u
The following formula for the photophoretic velocity
can easily be derived from E{L5):

2
Uphz—sl.

3 (16)

Thus, from the thermal part of the problem orf{"
appears in the expression for the photophoretic velocity. If
is sought with consideration of the inertial effects in the hy-
drodynamic equations on the basis of E(B. and if T, in
condition(2) is replaced byT{"), Eq.(15) can be generalized
in the following mannef®

142 Rel[1+ 255
gelitzg)t

It follows from (17) that the photophoretic velocity is

insensitive to consideration of the inertial effects in the hy-
drodynamic equations within the approach described here. It
follows from (8) that

dTe _ Aa

90 |i—a a’’
O=mu/2

F.=6mnUa a7

(18

It was stated during the proof of the existence of a solu-
tion that the system of linear equations for determining the
coefficientsAq,, Ain, andB;, is a combined system. From

we obtain a generalization of the Stokes method to théhis system we can find, in particular, that

nonisothermal case. The boundary condition for thermal slip-
ping (2) now breaks up into an infinite number of equations,

since the radial component, of the mass velocityV is
sought in the form of the expansion

V, = 21 Vin(r)Py(cos®), (12)

3 (D, 1)
A7 2%+ (1+2CiNa) %’

Aer= (19

where

=Uv(qi,r,i)dv)i

(20
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is the dipole moment of the heat-source denéitg integra- It follows from (22) that one particular solutioM ,,, of
tion is carried out over the entire volume of the partigle ~ the homogeneous equation corresponding to the inhomoge-
On the basis of Eq$16), (14), and(18)—(20) we obtain  neous differential equatiof24) can be found in a class of

oK L generalized power serié$?! Let
—ZV

Upmam— o —J(Qi.r,i)dV i,

P 3Teo(2%e+%B8) \V Jv

-1
21 Sx; s_EjS:Nfi ibs—j
bp=2, b;=—=, bs=— : ,
0 ! %0 ® %i,0
B=1+2Cq\/a. (21
wheres=2.
VARIABLE THERMAL CONDUCTIVITY a(n)\.Ne use the coefficientbg to define the coefficients
NN

Generally speakingy; is a variable which depends an
and ©. For most natural and artificially produced aerosol al"=1, aV=-— ,
particles the dependence sf on r is significant, and the ® s(s+2n+1)
dependence ofd is weak, as, for example, when an aeroso'wheresal.
particle forms on a condensation nucleus and then solidifies Then it can be show that the power series
while maintaining its inhomogeneous internal structure, the
variation of the thermal conductivity being due to the differ- i
ent compositions of the core and shell of the particle. The Mln=r“2 Of(sn)rs

. . s=0
dependence of; on O in such particles can be caused by the
known dependence of; on T;, which, in turn, is a function converges in (0b) and satisfies Eq24). The second solu-
of r and ®. However, the dependence af on T; can be tion M,, (of the corresponding homogeneous equation
neglected. In fact, the real temperature ddfp over the  which is linearly independent witM,,,, can be found using
radius of the particle is of the order afT;=a|(VTe).|. the formuld®
Taking into account thaa~10~% m, we note that fosT; to
be at least of the order of 100 K, the value| ¥ T,)..| must Moo= M fr dr
be of the order of 1DK/m, which is never encountered in 2n 1 Ja rzxian'
real aerosol systems on earth. In our opin&in~100 K is
the minimum temperature drop over the radius of a particle

— N :
at which the influence of the variation of the temperature o 1n=r". The functionsM,,, and M, form a fundamental

the thermal conductivity of known substances begins to b(?yStem of equations of the homoggneous equation corre-
manifested at all. We, therefore, assume tat  (r). We sponding to Eq(24). The general solution of E§24) can be

construex;(r) as a positive function assigned in a certainertten in terms of these functions in the foffn
half interval [0, b) containing the segmenD, a). We also Tin=Ai Mo+ BinM 1, — My,
assume thak;(r) can be represented in the form

SP_y(nt+s—j)al”;b;

We note thaM ;,~r" whenr — 0, and if x;=const, then

r r
* Xj Maninrzdr+M2nJ M 1nQinf 2dr.
x(r)=2, x 4% rel0,b). (22) 2 a
=0 Now substitutingT, andT; into the boundary conditions
We also assume that the continuatigfi(t) of x;(r) (5) and taking into account the boundary condition Tiqr
onto the complex plan€ on the basis 0f22) does not have from (6), we obtain the combined system of linear equations

zeros within the circldt| <b. for determining the coefficiens,,,, A;,, andB;, . Thus, the
existence of a solution has been proved. In particular,
A > (BLD (25)
PHOTOPHORESIS OF AN AEROSOL PARTICLE WITH 1" 47 To 220t y7(2) B]

VARIABLE THERMAL CONDUCTIVITY

where
We start out from the thermal pdiEgs. (3)—(6)] of the

problem. In this case Ed4) takes on the form

D’=(fv(m(r)qir,i)dv)i,

VZT_Z____;_ 23
! x I @3 _aMyy(r) __Myy(a)

(N=——"-, y=a :
We also seek the solution of this problem in the form of rMys(a) Mia(a)

expansions in Legendre polynomials. It is clear thathas We find the photophoretic velocity on the basis of Egs.
form (8). To find T;,, instead of Eq(9) we obtain the fol-  (1g), (14), (18), and(25)

lowing differential equation:

3

U= —2veKrg
rTi’n—n(n+1)Tm=—r2% (24) P 3T ool 2%+ y2i(@) B]

%i’
2+r—
x

1 . .
| v Jv(m(r)qi,r,l)dv i

r2T +
xi (26)
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Let @=x./%i(a). ThenU,, can be expressed in terms
of Uph|"i5”i(a)' which is calculated from Eqg(21) with

»;=x;(a), in the following manner:

(R=1)(B+2a)+(1-y)B
2a+ By '

Uph=Upnl %i%i(a)[ 1+
(27)

where

R= fv(m(r)qir,i)dv/ fv(qir,i)dv.

We note that ifx;=x;(a), Mq4(r)=r; therefore,y=1,
R=1, and in this case Ed26) coincides with Eq(21).

BLACKBODY
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P expix)—1—x
I X exp(x) —1-x—0.5¢ e ak
M (1) 6(exp(x)—l—x—O.Sx2
= 3
r X x=—kr

Thus, herey andM ;4(r) have analytical representations.
In the case of a blackbody, whose thermal conductivity
obeys an exponential law, it is easy to show that the inequal-
ity 0.2<y<8 is equivalent to the inequality-10<ak
=<10. However,ak characterizes the relative drop in the
thermal conductivity over a distance equal to one particle
radius. Therefore, we now have a physical interpretation for
the condition ony from the preceding section. This condition
covers a broad spectrum of relative drops in the thermal con-
ductivity over a distance equal to one patrticle radius.

When the particle absorbs electromagnetic radiation as a
blackbody, absorption occurs in a thin layer of thickness

5<a adjacent to the heated part of the surfacekt Ifs the
intensity of the incident radiation, then

r

o
0, 0s®<§, O=r=a,
qi(r,0)=¢ O, gs(@sm O=r<a-—§,
E e 7T<®< a—oJosr=a
\ 5 €080, S<O=m, =r=a.

Therefore, in the case of a blackbody, E26) takes on
the following form:

14
KISty (@Bl
For a blackbody Eq(27) is simplified to
Uph=Uphl o=@ (1 + (@, 8,%)),
(1-y)B
20+ By’
Let 10 3<a<1, 1<B<1.6, and 0. y=<8. The con-

u

fla,B,7)=

dition on a covers a broad spectrum of medium-particle

combinations. The condition o covers the region of small

PRINCIPAL CONCLUSIONS

The velocity of the particle remains insensitive to con-
sideration of the inertial effects in the hydrodynamic equa-
tions. Since the influence of the variable internal thermal
conductivity ;= x;(r) of a particle on its photophoretic mo-
tion can be significant, only homogeneous aerosol particles
obtained by artificial means should be used in experiments.
Particles of nonuniform thermal conductivity that can be de-
scribed by the model that we selected with an internal ther-
mal conductivity »;=x;(r) and a volume density of heat
sources within the particlg;(r,®) can be regarded as ho-
mogenous particles with a constant value of the thermal con-
ductivity yx;(a) and a volume density of heat sources within
the particleq;(r,®)aM1(r)/[rM 1y(a)].
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Analogs of the Lagrange equation for particles evolving in a space of fractal dimension are
obtained. Two cases are consideredwhen the space is formed by a set of material pojatso-
called fractal continuum and 2 when the space is a true fractal. In the latter case the

fractional integrodifferential formalism is utilized, and a new principle for devising a fractal
theory, viz., a generalized principle of least action, is proposed and used to obtain the
corresponding Lagrange equation. The Lagrangians for a free particle and a closed system

of interacting particles moving in a fractal continuum are derived. 1998 American Institute of
Physics[S1063-784£98)00204-9

INTRODUCTION tained on the basis of the principle of least action. If a space
(or a spatial objegtis a true fractal, the equation of motion
Such physical processes as the explosion of wires andan be obtained on the basis of the generalized principle of
the breakdown of insulators belong to a single class of pheleast action, which is proposed as a fundamental principle for
nomena, which are known as critical phenomena. Such pradevising a fractal theory. The concept of an inertial fractal
cesses are described using the methods of the theory of critieference frame, analogs of Galilean transformations, and the
cal phenomena, renormalization group analysis, and serig3alilean relativity principle are introduced in a space of frac-
expansions according to approximation thebffOne of the  tal dimension. The Lagrangian for a free particle and a
most important postulates of the theory of critical phenom-closed system of interacting particles moving in the fractal
ena is scale invariance, which essentially involves the introeontinuum is also derived.
duction of a new symmetry, viz., similarity symmetry, into a
space. This postulate forms the basis of renormalization. MODIFIED LAGRANGE FORMALISM

group analysis. However, it is now more important for us . . -

that when similarity(more precisely, self-similarijyproper- . L?t there be a set of mgtenal pomts comprising a space,
ties are introduced in a space, it can be classified as an obje'@t which an c_:bservable point particle can pe Qetected as it
with a fractal structure. Therefore, the description of the ex—eVOIV?S' We impart the property of self-similarity to the set
plosion of wires and the breakdown of insulators within theOf points introduced, and we call such a set a fractal con-

concept of fractals would be of interest. tiHUl\J/\r;]é now formulate the problem as the description of the
Theoretical investigations of various physical phenom- P P

. motion of a certain material point in a fractal continuum. To
ena on fractal§more precisely, on systems of the fractal . : . )
ntroduce an analog of action from ordinary mecharlitse

type) and within fractals have been based on the fractionalOIIOWing condition for the variablet (the tim@ must be
integrodifferential formalisni; ® nonstationary analysfsetc. . " ” : . .
added: it must “scan” all motion phenomena. This requires

This has been motivated by the following statenfettie : : L :
. . : . fulfillment of the following condition: each generalized co-
propagation of particles and waves in true fractal media

should be described by other. more general equations WhiC(I)qrdinate must be a continuous function together with the first
y ’ 9 q ' derivative with respect to the scanning variable. Our next

gioaover to the conventional linear equations for smooth MCask is to introduce the generalized principle of least action.
The diverse investigations of fractalas a conception
have reached a new level, i.e., the systemization and orderi
of the information that has been accumulated. The methods Let there be a set of generalized coordinateand a
and possibilities of the new theories are gradually takingso-called scanning variabte with respect to which the set of
shapé">’ However, the lack of fundamental principles has coordinatesx and their first derivatives are continuous. In
delayed the formulation of a general fractal theory. Anotherother words, the evolution of the generalized coordinates is
delaying factor is the absence of generally accepted mattebserved in terms of. The rate of variation ofk is deter-
ematical machinery for treating problems involving fractals.mined by the ordinary derivativd«/dr. We now postulate
The use of the fractional integrodifferential formalism wasthat the state of the system is described completely by as-
proposed for this purpose in Refs. 4 and 8. signing the entire set of generalized coordinates and the gen-
In this paper the equation of motion of a particle in aeralized velocitiesc.. Then the generalized principle of least
fractal continuum(the definition is given in Sec.)lis ob-  action can be formulated by the following statement: each

r?g GENERALIZED PRINCIPLE OF LEAST ACTION
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mechanical system is characterized by a definite functiod. PRINCIPLE OF RELATIVITY IN A FRACTAL CONTINUUM
L(«,x,,7), which is continuous, as is the first derivative,

and by 7. Motion of the system occurs under the following : . . o
geneous and isotropic relative to an “inertial” reference

condition. frame, the reference frame itself must be a fractal of the same
Let the system occupy positions characterized by the two '

. . dimension as the fractal continuum. To fix ideas, we call
sets of values of the generalized coordinatgs and «;,, at -
. ; such a reference frame an inertial fractal reference frame,
the values of the scanning variabte= 7, and 7= 71,. Then,

- . which is inertial in the sense that the fractal continuum is
the system moves between these positions in such a manr’ﬁr . . . . .
that the integral omogeneous and isotropic relative to it, and the scanning

variable 7 is homogeneous.

The form of the Lagrangiah(x, «,,t) of a free material
point in the inertial fractal reference frame is specified by the
following arguments: the homogeneity of the fractal con-
tinuum and the scanning variable means thatbes not con-
tain explicit dependence ok and 7, and the isotropy indi-
cates that there is no dependence on the direction of the
generalized velocity vectdin other wordsL depends on a
scalar quantity formed by components of the generalized ve-

Let us assume that for a fractal continuum to be homo-

Tp .

S=J L(k,k,,t)d7 (0]
71

would have the smallest possible val(imore precisely, an

extremum valug The functionL is called a generalized La-

grangian, ancs is called a generalized action.

3. LAGRANGE EQUATION IN TERMS OF THE FRACTIONAL locity, e.g., E|KITKT|), i.e., L=L(|«,]®. In this case the
We consider the motion of a certain system as evolution d JL aL
in terms of the scanning variable(when 7 is the time, we d7 947~ 0— 7,7 =const, ©6)
T T

refer to temporal evolution, but in the general cass not )
identified with the timg We vary the action according to a Where the superscritlabels the components of the gener-

standard schemgsee, for example, Ref. 10 alized coordinatesor velocities.
It is taken into account here that./dx'=0 under the
5S=f 2L(;<+ S i+ Sic,, 7)dr a}ssumptlon of homog'enelty of the fractal continuum. Equa-
m tion (6) has the following solution
v «! =const. @)
—f 7L(k,x,,7)d7=0. (2) ) ) )
Thus, in an inertial fractal reference frame any free ma-

As a result, we obtain the Lagrange-Euler equation  terial point moves so that the components of the generalized
velocity are conserved. This result is a generalization of the

ﬁ_ i iz &) familiar law of inertia in classical mechanics.

Ik drdk, Let us now consider two different initial fractal reference

At this point we note that in the case of a fractal Con_frames: K and K, the latter of which moves with a constant

. . | . .
tinuum the relationship between the generalized coordinategeneralized velocitfX:}. A maten’al Ppoint has the sets of
x, and the coordinates of an ordinary spagéhas a scaling 9eneralized coordinatesq} and{«} in the K and K ref-

character and that the scanning variabie the timet (in the ~ €rénce frames. There is a relationship between the sets of
simplest case of the typ@““XID wherel labels the coordi- coordinates(the evolution of the scanning variable is as-

nates andl is the fractal dimension Therefore, when we go sumed to be identical in both inertial fractal reference
over to the laboratory reference frame of an ordinary spacdl@mes:
we obtain equations of the tygeuch an equation is an ana- p—l +X|TT' p— (8)
log of the Lagrange equation in a fractal contingum
. d (L

The transformation$8) of the generalized coordinates
are analogous to the familiar Galilean transformations. The
requirement that the equations of motion of mechanics in a
fractal continuum be invariant with respect to the transfor-

We perform the limiting transition from a fractal con- mations(8) is a generalization of the Galilean relativity prin-
tinuum to a true fractal by going from the smooth function gjp|e.

L(x,«,,7) to the fractal functiorL(x,x,t), which is every-
where nondifferentiable. The transition is accomplished by
replacing the ordinary derivatives with Riemann—Liouville 5. LAGRANGIAN OF A FREE MATERIAL POINT

=0. 4

derivatives of fractional order In developing a mechanics in a space with a noninteger
. ' d . . dimension we shall bear in mind that upon asymptotic pas-
DP[L(x,x,t)]— gt DE[L(x,x,t)]zo. (5)  sage to an ordinarfone-, two-, or three-dimensionapace

the form of the functions and the equations describing the
Expression5) is an analog of the Lagrange equation in motion of a material point must coincide with the classical
terms of the fractional integrodifferential formalism. expressions.
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We proceed to constructing the Lagrangian of a free ma-  The interaction of the particles can be taken into account
terial point moving in a fractal continuum. The reasoning isafter Ref. 8 by adding a definite function of the generalized
analogous to that in Ref. 8. The functibnof a free material coordinates t@15) (as follows from the instantaneous nature
point does not depend on the scanning variabline gener-  of interaction transfer
alized coordinate, or the direction of the generalized ve- N

locity vector. ThusL depends on the square of the absolute E mb(KT)b O (16)
value of the generalized velocity: b=
L~|«x,|% (99 whereN is the number of particles and is the radius vector

The relationship to the laboratory coordinate frame, inOf anhartche Irt]' the fr?ctalt'contmuurgt. ined by pluggia6)
which the position of the point is specified by the coordinate. ; the equa |?_ns(;)Lmo lon are o t_aune. y pluggag
X, is defined by the expressigr is a proportionality factor Ito the generalized Lagrange equations.

— D _ . D-1 d oL dL dKI U
K=aX", k;=aX" X,. (10 il T
. o | dronl o M T ok a7
The Lagrangian of a free material point is systematically
brought into the form where the superscriptlabels the components of the vector.
, The transition to the laboratory reference frame is ac-
L= m Kk, (11) complished by transformations of the coordinates:
2 1
D;
m mv2 KIZ,ZO IBIiXi L (18)
L=—=(xP " Ix,)=L=——x?°"2 '
2 2 Then the equations of motion in the laboratory reference
m=m'e? v=X,, (120  frame can be written in the form
, 1 11
wherem andm are constants. _ _ _ . =3 ﬁ“D”Kp” 1= (19
Assuming that the fractal dimension differs only slightly Si_oBiDy v, Dil W, -0 ! Fi

from D=1, we expand the function into a series in the small

parameter D —1): where we have introduced the notation for the generalized

velocity, acceleration, and force

(?XZDfl
L=Lo| 1+ (D-1) ki 9K U
A P V=g WiT gz RiEgs (20)
2,,2D—-1
X D—1)2 i.e., in a fractal continuum the relationship between the force
sz )+ ; ) P _
dD b1 acting on a particle and the acceleration is not the directly

proportional relation(19) in the general case.
=Lo(1+2(D—1)In(x)+{2(D—1)In(x)}?+...)

CONCLUSIONS

=L, ngo {2<D—1>In<x>}”), (13)

A space which is formed by a set of material points and
has a fractal structure cannot be identified with a true fractal,
therefore, such an object was termed a fractal continuum.
Such objects are observed in media in which phase transi-

whereLy=(mv?)/2.
If |2(D—1)In(x)|<1, the expression takes the following

form: tions occur(for example, the explosion of wires and the
Lo breakdown of insulatojs The equation of motion of par-
L= T 2= D) (14 ticles within such an object has been derived on the basis of

a generalized principle of least action. In a theoretical study
The result is not, in principle, unexpected, since it isof the motion of particlequasiparticlesin a true fractal,
known that a term with InQ appears when quasi-two- devising a Lagrange formalism is complicated by the fact
dimensional  (quasi-one-dimensional structures  are that the function describing such motion belongs to the class
considered! of fractal functions. As we know, fractal functions are every-
where nondifferentiable; therefore, the usual procedure for
finding the action extremum cannot be used. A way out of
6. LAGRANGIAN OF A SYSTEM OF MATERIAL POINTS this situation has been proposed on the basis of a generalized
principle of least action, which contemplates the introduction
An expression for the Lagrangian of a free particle wasof a scanning variable, with respect to which the Lagrangian
derived above. It can be obtained for a system of noninteris continuous? For example, we offer the following prob-
acting particles, if we take into account the additivitylaf lem. “A biological object, viz., a cell with a set of chromo-
N somes, is given. We make a mark on some fragment of one
L= 2 mb K )b (15) particular chromosome. Two sets of chromosomes form dur-
ing cell division (in the first stage Let Nth divisions take
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place. Determine the location of the marked fragment.” Thelﬁz[fz[f(x)]]=f(x)
XL X '

set of pointg(in this case a point is a cell nucleus isomor-
phic to a Cantor set. The role of the scanning variable can be
played by the number of the act of division.

Generalization of the law of inertia, the Galilean relativ-
ity principle, and Galilean transformations have been ob-
tained by introducing the concept of an inertial fractal refer-
ence frame into a space of fractal dimension.

Ti[bimx)]]:f(x)—gl DZ M f(x)]

(2] (X_Z)ka
s v(z—k+1)°
(A6)

Laplace and fractional integration operators can be com-

Expressions for the Lagrangians of a free particle and ined:

system of interacting particles, whose motion takes place in a
self-similar space of noninteger dimension, have also been
obtained in terms of the laboratory reference frame. In con-
trast to an ordinary isotropic space of integer dimension, here
there is a dependence on the radius vector of the laboratory

. . . ~ Z\ A B ~
reference frame and the dimension of the fractal Cont'n”“me([f(x)g(x)]=go (k) D2 k[f(x)]D)li[g(X)],

APPENDIX: FRACTIONAL INTEGRODIFFERENTIAL
FORMALISM

The mathematical machinery of fractional integration

LI FO011=p L[ F(x)]. (A7)

In conclusion, we introduce a generalized Leibnitz rule

o0

(A8)

©

z

DL 0g(0]= 2 (k+b)6i*’k[f(x)]b*;*k[g(xn,

=—o0

(A9)

and differentiation is already sufficiently developed for ap-where the generalized binomial coefficient equals

plying it to problems in theoretical physics. However, this

machinery has not yet been widely employed. (z
b

A fractional Riemann-Liouville integral is defined by
the following expression

TT(b+1)I(z—b+1)

I'iz+1) sifm(b—2)]T'(z+1)I'(b—2)
I'(b+1) '

(A10)

and a Leibnitz equation with a residual term

12 (f(0]= RELC Al
X ( (X)]_F(Z) b (X—t)l_x . ( ) A n—-1 _ ) »
Di[f(x)g(x)]=k20 (k) DX [f(x) 1D g(x)]+ Ry,
Definition (7) is a generalization of the identity (A11)
x x x x where
— 1 n—1
/dx. /dx/f(x)dx— m/(x—l) f(t)dt . (_1)n fx t 7271]‘ ot
b b b b n_l-\(_z)(n_l)l Z(X ) ( )
(A2) x .
Xf (x—s)""'Dglg(s)]ds.
t
A fractional integral satisfies the identity
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The cross sections for the elementary processes involving a change of the charge states of both
particles during the interaction of Fieions with fullerene molecules are for the first time
measured over a broad energy range of electron-volt energies. It is found that processes involving
the capture of one or two electrons by the?Héons are accompanied by additional

ionization of the fullerene and that the collisional contribution of the transfer-ionization processes
increases with increasing velocity. Single-electron capture is rarely accompanied by
fragmentation of the fullerene. Double-electron capture leads, with a higher probability, to
fragmentation with the formation of several light charged fragments and, with a smaller
probability, to fragmentation with the formation of a heavy charged fragment containing

an even number of carbon atoms and light fragments in an uncharged staff@98American
Institute of Physicg.S1063-784298)00304-3

1. INTRODUCTION wherek=1,2 is the number of electrons captured by the

projectile; @—K) is the number of free electrons formed as a

Active research _has begn carried out on th:si_réteraction 0rfesult of electron capture with ionization of the tar¢eans-
fullerenes and their ions with electrdrfsand ionsi™® Mass- (o, ionization; C." is a fragment containing carbon atoms

spectrometric analyses of the ions formed have revealed thgt,: \vas formed upon fragmentation of the molecule; and
Cy ions withq=1-5 form in collisions of fullerenes with | _51 s the charge of the fragment. '
both ions and electrons. It was shown in an investigation of 11,4 generally accepted notation containing the initial
the electron-impact ionization of fullerertethat fragmenta- and final charge states of both collision partné2o(2

tion is significant only in processes with multiple ionization —K)q} is used below to denote the elementary processes
t ; +
of the molecule. In collisions with slow10—-100 eV Na without fragmentation.

and N€ ions the role of the processes with fragmentation of
the fullerene is relatively minor in comparison with the for-
mation of a singly charged {gion.*°

The precision analysis of the energy of the ions detected A monokinetic, well collimated beam ofHe*" ions
after interactions with fullerenes in Ref. 7 showed that thecrossed a jet of fullerene molecules emerging from the cap-
pure excitation and ionization of a fullerene in theillary of an effusion source heated to 450-480 °C. The
kiloelectron-volt collision-energy range are negligible in charge state of the ions in the beam after the collisions was
comparison with the single- and double-electron-capture proanalyzed using a 30° cylindrical electrostatic analyzer. The
cesses. slow ions were drawn out of the interaction zone by a uni-

All of these investigations were based on an analysis oform electric field with an intensity of 50 V/cm and were
the charge state of only one of the collision partners, with thejirected into a time-of-flight analyzer. The potentials of the
exception of Ref. 3, in which measurements were performegbn-optical system of the analyzer were adjusted so as to
with the detection of both particles, but only at a single valueminimize the spread of the times of flight of the ions formed
of the collision energy. The purpose of the present work wasn the interaction zone of the primary beam with the
to directly investigate processes with alteration of the charggullerene jet.
state of both collision partners upon the capture of electrons The cross sections for specific elementary processes of
by ions over a broad range of collision velocities in the cas@ype (1) were determined from the experimentally measured
of fullerenes. These processes can clearly lead to both addipectra of the delay time between detection of the projectile
tional ionization of the target molecule and its fragmentation.and the recoil particle participating in the same collision. The
In the case of He" ions the scheme of the processes invesdetection scheme included provisions for the possibility of
tigated can be written down as introducing a regulated time delay between the signals in

each of the two particle detection channels. This permitted
HE" +Cgo—HE2 ™M+ CIT) " +C +(q—k)e™, (1)  separation of the processes accompanied by fragmentation

2. EXPERIMENTAL METHOD

1063-7842/98/43(4)/3/$15.00 358 © 1998 American Institute of Physics
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o o FIG. 2. Relative cross sections for elementé4®01q} processes due to
FIG. 1. Mass spectrum of the recoil ions formed in single-electron-capturgingle-electron capture®—{201%, 0—{2012, V—{2013.

processes. Energy of tHele’” ions: E=68 (a), 6 keV (b).

into one charged fragment and one neutral fragment from thgass spectrum for the capture of one electron. Near each
processes with fragmentation into two or more charged fragPeak corresponds to the formation of,Cions with q>1
ments of different mass. All the data presented below on théhere is a group of satellites due to fragmentation of the

cross sections are given in the same relative units. molecule. The most intense group corresponds to the capture
of two electrons with ionization and with the formation of a
3. EXPERIMENTAL RESULTS series of ¢._ fragments. The probability of the fragmenta-

tion of CIy ions increases with the magnitude of their
charge, and the process involves the detachment of an even
Y%umber of carbon atoms. It was established from an analysis
?)f mass spectra obtained with different delay times in the
channel for detecting the projectile that the processes under
consideration are characterized by the formation of a light
ragment in an uncharged state. As follows from our wifrk,
Such a fragmentation scheme is energetically more favorable,
ince the polarizability coefficient of the heavy fragment is
g?éniﬁcantly greater than that of the, @Golecule.
In the left-hand part of the mass spectrum there is a

group of peaks with values dfl/q from 4 to 12, which is
associated with the fragmentation of the fullerene. It was

f the t tH the fracti 8ei d : "Shown experimentally that this part of the spectrum corre-
ot the target. However, Ihe fraction ofzgions un ergoing sponds to processes with the fragmentation of the fullerene
fragmentation during the capture of one electron with doublqmO two or more charged fragments

ionization amounts to less than 10% of the cross section for
this process.

The {2001 process is the main process according to the
size of the cross sectio(Fig. 2) over the entire range of
collision velocities investigated. The relative role of the
{201g} transfer-ionization processes, which lead to the for-
mation of multiply charged g ions withq=2 and 3, in- 750
creases in the velocity range investigated from 14 to 45% a:
the collision velocity increases. This is apparently attribut—as
able to the increase in the probability of the capture of one of 3 sgp
the innero electrons of the molecule due to an increase in®
the velocity of the colliding particles, which, as follows from
the structure of a fullererfeJeads to the formation of an 250
autoionization state. An increase in the contribution of the
cross sections for the transfer-ionization processes as a rest
of the capture of inner electrons is typical of the interaction
of « particles with many-electron targets.

Double-electron captureThe mass spectrum of the re-
coil ions formed as a result of the capture of two electrons byg. 3. Mass spectrum of the recoil ions formed in double-electron-capture
a He" ion (Fig. 3 is significantly more complicated than the processes. Energy of thiéle?* ions: E=6 keV.

Single-electron capturélypical mass spectra of the tar-
get particles formed upon the capture of one electron b
3He?t ions are presented in Fig. 1. The spectrum contain
clearly displayed peaks corresponding to the formation o
singly and doubly chargedggand G ions during a colli-
sion. The{2011 single-electron-capture processes and th
{2012 transfer-ionization processes do not cause appreciab
fragmentation of the fullerene. Only at large collision ener-
gies does the spectrum contain a series of satellites caused
fragmentation of the target molecule with the ejection of
light fragments having a mass that is a multiple of two car-
bon atoms near theggt peak, which corresponds to the
{2103 process with electron capture and double ionizatio

7+
ctl
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[ VI VY panied by the capture of two electrons by a?Héon are
* T 261 presented in Fig. 4. Herf200qfr} denotes the total cross

1 sections for the processes with the formation g €Clg
fragments, an@&(4-11) denotes the total cross section for
the processes with the formation of several light charged
fragments. The contribution of th&(4-11) channel to
double-electron capture is very large over the entire range
investigated and increases with the velocity of the colliding
particles. Just this finding allows us to assume that the pro-
cesses with breakup of the fullerene into several fragments,
which requires a great expenditure of energy, are caused by
the capture of two inner fullerene electrons by a He ion

in the ground state of the helium atom. The formation of a
recoil ion with two inner vacancies followed by Auger decay
of the autoionization state, as well as the direct transfer of the
FIG. 4. Relative cross sections for elementd800q} processes due to Projectile momentum to the carbon atoms, are the most
double-electron capture. Processes without fragmentafien{2002, B— likely reasons for the dominant role of the processes with the

{2003, A—{2004; processes with fragmentation into a heavy chargedfgrmation of several charged fragments.
Ci60-2n) fragment withn=1—6 and light neutral fragment§]—{2002fr};

V—{200Fr}, @—{2004r}; *—3,(4-11) for processes with fragmentation

into two or more charged fragments.

Relative cross sections

V(167 cm/s)
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The positions of the local and quasilocal levels of an adsorption system and their contributions to
the occupation number of an adatom are found within the Anderson Hamiltonian using a

simple model of the density of states. The dependence of the occupancy of an adatom on the
conduction bandwidth of a metallic substrate is analyzed.1998 American Institute

of Physics[S1063-78428)00404-9

INTRODUCTION MODEL

Let us consider the ground state of an adsorbed one-
electron atom, which is described by an Anderson Hamil-
tonian of the form

Among the numerous applications of the Anderson
Hamiltonian!? which was originally proposed for describing
magnetic impurities in a metal, its use in the problem of
adsorption has become very popular since the papers by
Grimley® and Newn$. In addition, the so-called infinitely-

broad-band approximation has been used in many publica- ) ) ) )
tions, as well as in Anderson’s original papet.is assumed Hereeg, is the dispersion law of the metallic electrons of the

that the quasilevel of an impuritor, in the terminology of substrate;c, (c) is the creation(annihilation operator of

. . e electrons in stat&; a*(a) is the creatior(annihilation op-
the adsorption problem, the quasilevel of an adatisrfairly erator of an electron at the, level; andV is the matrix

far from the conduction band edge of the metal, i.e., it is S%lement describing the hybridization of the states of the atom

far that the finite value of the conduction bandwidth can be,yng the metal. For simplicity, we omitted the spin index and
neglected. Such an approach is justified in many problemseglected the correlation repulsion of two electrons with op-
Let us, however, imagine the following situation. Let thereposite spins, assuming it to be so great that the presence of
be a ternary system consisting of a solid metallic substrate, @&vo electrons in one orbital is ruled out.

submonolayer filnfi.e., a film in which the relative concen- Let us consider a system consisting of an adatom and a
tration of adatoms or the coverage<1), and an atom ad- metallic substrate. We assign the density of states of the
sorbed on the film. We now assume that the coverdge latter p(w) by the expression

increases. The surface ba.m.d formeq by the overlappir.lg orbit- p(0)=1D, |w|<D, p(w)=0, |w|>D. 2

als of the adatoms comprising the film broadens, and its form

is modified®® A similar problem can arise in a two-layer Here the position of the center of the band is taken as zero

system consisting of a substrate and a submonolayer coating€ray- Itis easy to shogeee, for example, Refs. 10 and)11
in which the desorption of an atom from the adsorbed film ishat the adatom Green’s functio, corresponding to
studied as a function of the concentration of adatoms in it. “ﬁamlltonlan(l) has the form

this case the probability of electron exchange between a de- 6;1: w—e,— Aw)+iA(w). 3

sorbed atom and coating atoms, or charge exchange, will

depend significantly on the conduction bandwidth of the lat-1€ré« is the energy, and the broadenitgnd shiftA of the
uasilevel are given, respectively, by the expressions

ter. Clearly, it is not possible to describe such a situation i
the framework of the broad-band approximation. In addition, ~ A=#V?/D, |w|<D, A=0, |o|>D, (4)
as will be shown below, if the conduction bandwidth is fi- )

nite, when an atom is adsorbed, even if its energy level lies _ V—In Dto (5)
within the band, there is a possibility of the appearance of D |D-o|

localized states above and below the band edges, whose pres- The functionsA(w) and A(w) are presented in Fig. 1.
ence is completely ignored in the infinitely-broad-band ap-generally speaking, the transition to the infinitely-broad-
proximation. Thus, the finite value of the conduction band-hang model P— ) is somewhat artificial: it is assumed
width of the metallic substrate must be taken into account irhat the shift of the atomic level can be neglected in this
numerous adsorption problems. The present work is devotegection, while the broadeniny must be taken into account.
to an investigation of this question. The density of states in the adatgm is

H=> sl ceteatatVy, (ciath.c). (1)
k k
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FIG. 2. Dependence of the position of the local and quasilocal lexElen
_ the energy of the atomic leved,. o}, ,=+DR; a—2v¥D*>1, b—
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wy |wy, | fa

0 w, wpy wy ® o\/2
% p Wpz Ws 2 o1 1D

FIG. 1. Broadening functiohA(w)] and shift function A(w)] of an atomic th*ere are two _SOIUtiO_nS corresponding to_the local levels
level. The conduction band of the metal is located in the rdageD. The @7 », one of which(1) lies below the conduction band of the
roots of Eq.(7) corresponding to local and quasilocal levels are denoted bysubstrate, while the oth€R) lies above it, and one solution
arrows; a—2/*/D*>1, b—2/*/D?*<1. corresponding to the quasilocal lewet (Fig. 1a. The ful-
fillment of inequality (11), which corresponds to the so-
called case of a “surface moleculéih which the strength of

the adatom/substrate-atom interaction exceeds the strength of

palw)= i A —. (6) the interaction between substrate atgniss simply ruled out

7 [w=ea=Aw)]"+A in the infinitely-broad-band model. The following circum-
The position of the local or quasilevels of the adsorptionstance should be noted here. The use of expres8jdor the
system is specified by the equation density of states gives the shift functiof(w), which has
discontinuities atw=*=D [see Eq.(5) and Fig. 1. In this
w—ega— A(w)=0. (7)  case Eq(1) always has the local solutions; ,. If, however,

a more realistic model of the density of states of the sub-
strate, which does not have a stepwise character, is used, the
function A(w) has extrema of finite magnitude at=*D,

and, as a result, the solutions likg , can be abserisee, for
example, Refs. 4 and 12f £,<0 and|e,|>D, then

The graphical method for solving E¥) is presented in Fig.
1.

The band contribution,, to the occupation number of an
adatom level is specified by the expression

V2 (e dw
= — 2 2
=17 f,D [w—e,— A(w)]2+ A2 8 w{sL V82a+8V
whereeg; is the Fermi energy. . 5
The contributionn, of a local level lying outside the w; =D{1+2exd -D(D—e,)/V°]},
band of the continuous spectrum of the substrate to the oc-  , _ . B . 2
cupation number of the adatorm'is ©*=D{1=2exi ~D(D—ea)/V7]}. (12
e Whene,>D, the solutionw3 has the same form as}
n=|1- A , (9) from (12), but with a plus sign in front of the radical, angf
Jo| and w* are specified by the second and third formulas in

- ) (12), but with a minus sign in front of the right-hand side and
where o is the root of Eq.(7) corresponding to the local \ith the replacement off — e,) by (D +&,) in the numera-

state. _ _ _ tor of the exponential function.
Substituting the expression {8) therein, we obtain When|e,|<D, we have
2Vv? * P22
ne=| 1+ ——-D2|. (10 w*=—D[1+2 expg —D2/V?)],
(@) w%=D[1+2 exg —D2/V?)],
LOCALIZED AND QUASILOCALIZED LEVELS IN AN w*=—g,/[(2V?/D?)—1]. (13

ADSORPTION SYSTEM
The dependence of the roots of Ed@) on the energy of

Let us investigate the solutions of E(f). An analysis the atomic levek, for (11) in the general case is shown in
shows that for Fig. 2a. If the inequality



Tech. Phys. 43 (4), April 1998

2V?

Sr<1 (14)

is satisfied, i.e., if a “weak-binding” regime exists, E()

has only three roots, which are similar to those described

above, or five roots: twéw} andw3) corresponding to lev-

els localized below and above the conduction band and three
(w51, whp, and wf) corresponding to quasilocalized levels
located, respectively, in the lower half of the conduction

band (3,), in its central region ), and in its upper half

(wy,). Five solutions exist when the energy of the atomic

level ¢, satisfies the relation

8a|<8a<832, (15)
where
B V2 1+R
€a12= + DRiBIn ﬁ,
2V
= 1- F (16)

The dependence of the roots of Ed@) on the energy of
the atomic levek, for case(14) is presented in Fig. 2b. We

note that in the special case in which the energy of the

atomic levele , coincides withe 5, Or &4, there are only four
different solutions, since in these cases eithf;= w§

_ * ok _
= w1 OF Wgy= Wg = Wo2-

ELECTRON OCCUPANCY OF AN ADATOM

Let us now proceed to an investigation of the occupancy

of an adatom. We first consider the contributionof the
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l(er<wp)
1 , 2+ 2¢\F, cogal2)+F,
= sin(a/2)In
47\F1 2—2¢\F, cogal2)+F,
2_Fl {=Ef—Xp1
+2 cogal2)arctan———
% 20\F, sin(al2) A
(21)
Here
E,=De,/mV?%, E¢=De¢/mV?
d:DZ/'?TVZ, XO]_:_dR,
) 1 1+R
Fi=f5+1, fo;=—dR—E,+ ;In 1R’
sin(af2)=[(1+ fo,/F)/2]*2 (22

In (21) the lower integration limit is taken equal to,
rather than to the exact valde= —d—Xy;. This was done to
take into account the fact that the integrand @, i.e., the
density of states in the adatom, vanishesecas —D, be-
cause the shift functiol goes to infinity.

When8f>wz§ ,

np=[l1(er=wp) +1(er>wp)]. (23

Here l,(es>wg) is given by(21) after the replacement of
Fi by F,, fo1 by fgo, andxg; by Xq», where
1+R

1
F%Zf(2)2+1, fOZZdR_Ea_;ln 1_R, XOZZ_XOIV

sin(al2)=[(1—f,/F,) ]2 (24)

the upper integration limit ig=E;—Xq,, and the lower in-

local states which lie above the band and have the energyggration limit is {= w} —Xg,. If Eq—D, the upper limit

o7 . Whene,— —, the local levelw —¢,, and
n—(1+2V?%s?) 71, (17)

if the inequality(11) holds, andh,— 1 in the case described
by (14). Whene,—0, we havew] defined by(13); there-

fore,
n={1+(2V4D?)[(1+exp—D?/V?))?—1]}"1. (19

Whene,—«, we havew} ——D andn,—0.

Let us now consider the contribution of the band state

ny, to the occupancy of an adatom.
In an approximation we obtain

1 D(w'+D)

D(
ny=_|arctan—

o' —&f)
—arctan .

Herew’ = w* in the case of the fulfillment of conditiofl1),
and ' = wg , if condition (14) is satisfied, but, lies out-
side the interval £,1,£4,) [see(15)]. If the inequality(14)
holds ande, lies in the interval §,1,245), and if e;<wyg ,
ny can be estimated using the following expression

(20

should be replaced by infinity. We note tha®), (21), and
(23) give overestimated values af,.

DEPENDENCE OF THE OCCUPANCY OF AN ADATOM ON
THE CONDUCTION BANDWIDTH

The results of the calculations of the contribution of the
local staten, and the contribution of the bamal, are pre-
sented in Figs. 3-5, respectively. It follows from Fig. 3
thatn, decreases with increasiigy. The slope of then (D)
Lurve is proportional to the proximity of the energy of the
local statew? to the lower conduction band edge-D)
[whenD=1, in Fig. 3a we havew] = —3.16 for curvel,

o} =-1.81 for curve2, wj=-1.03 for curve3, and
o} =-D, while n, vanishes for curved and 5; see Eq.
(13)]. When w7 is at a distance from the lower conduction
band edge exceediri, the value ofw} is specified by(12)
and, therefore, depends very weakly Bn(curve 1 in Figs.
3a and 3b

Dependences of the band contributiop to the occu-
pancy of an adatom as a function@fare presented in Figs.
4 and 5 for various values of the occupancy of the bangl.
We first consider the weak-binding reginiEig. 4). When
e£.>D, the energy of the quasilevel*=—-D (Fig. 2), and
from (19) we obtain
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FIG. 3. Dependence of the contribution of a local level lying below the
conduction band to the occupation number on the conduction band®idth
(solid lines, as well as variation of the position of the local leydhshed
line) and the position of the lower conduction band edgdet-dashed ling
e,=—3 (1), —1.5(2),0(3),1.5(4), 3(5; V=0.5(a) and 2(b); in case(a)

the values of, for e,=1.5 and 3 are very small and are not shown in the

figure.

1

As D ande; increase, the value ofy, also increases, as
is observed in Fig. 4a. In the case ©f<0 and|e,|>D,
wherew* =D, the descending,(D) curve presented in Fig.

D(D + Sf)
Ny= ; arctanw—.

4c is determined by the expression

. t t D(D_Sf)
n0=; arc anw—vz arc anW—.

1

As D—®, n,—0, anddn, /de;— V[D(D—¢¢)?], i.e.,
the slope of then,(D) curve increases as; increasesFig.
4¢). A change in the character of,(D) from an increasing

2D?
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FIG. 4. Dependence of the band contributionto the occupation number
of an adatom on the conduction bandwidh(V=0.5). e,=3 (a), 0 (b),

—3(c); £4=0.5D (1), 0(2), and—0.5D (3).
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FIG. 5. Same as in Fig. 4, but f&f=2. The results of the calculation for
e£,=23, 0, and— 3 coincide on the scales of the figure.

function to a decreasing function ag varies from—o to
+o occurs when the energy of the atomic term crosses the
conduction band of the metallic substrate.

Then,(D) curve for the surface-molecule regime is pre-
sented in Fig. 5. The values of, for the three values of the
energy of the atomic levet,=3, 0, and—3 are indistin-
guishable on the scales of the figure. In fact, whew?
>D?, instead 0f(19) we obtain

D(D+8f)

Ve
i.e., the value of the occupancy does not depend on the po-
sition of the quasilevel.

Thus, the calculations show that a change in the conduc-
tion bandwidth of the substratéD leads to a significant
change in the occupancy of an adatém,. Moreover, the
effect of broadeningor narrowing of the band can exceed
the effect of a change in its occupancys(). If we are
referring to a three-layer system consisting of a solid sub-
strate with a submonolayef& 1) metal film deposited on it
and an atom adsorbed on the surface of the film, the follow-
ing can be noted. First, within both the tight-binding
model*!*and the free-electron approximatidihe width of
the surface band of the film is proportional & 2, where
a=a(0) is the distance between nearest neighbors, which
depends on the relative concentration of atoms in the film
0=N,/N,(ML), N,(ML) being the surface concentration
of atoms in a monolayer. Sinch,=a 2 and Ny,(ML)
=d 2, whered is the distance between nearest neighbors in
a monolayerML ), we have

D(#)=D(ML)- 6. (28)

When there is a dipole-dipole interaction between the
adatoms, the concentration shift of the Fermi level of the
adsorption systemde; equals ®- 6¥%(n,,—1), where ®
=2e?1?A/d® [l is half of length of the dipole formed by an
adsorbed ion and its image in the metallic substrates, the
distance between nearest-neighbor adatoms in a monolayer

(27)

Np=
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film, n,, is the occupancy of an adatom, aAe=9 (Refs. 5 5S. Yu. Davydov, Fiz. Tverd. Telé_eningrad 19, 3376(1977 [Sov. Phys.
and 16]. In the case of alkali metal atoms,lifs assumed to _Solid Statel9, 1971(1977)].

T . .. 8S.Yu. Davydov, Fiz. Tverd. Telé_eningrad 20, 1752(1978 [Sov. Phys.
be equal to half of the sum of their ionic and atomic radii, Solid State20, 1013(1978],

and the distance between nearest neighbors in a crystal of th&s vy, pavydov, Fiz. Tverd. TeléLeningrad 20, 1998(1978 [Sov. Phys.
alkali metal is taken ad, we obtaind=10 eV. Thus® and Solid State20, 1153(1978].

D are of the same order of magnitude. Therefore, the linear S- Yu. Davydov, Fiz. Met. Metallovedi7, 481 (1979.
variation of the conduction bandwidth can play the decisive, ' Davdov, Poverkhnost' No. 8, 17991.
play €oc, Kittel, Quantum Theory of Solid®Viley, New York (1963, Chap. 18

role, i.e., it can influence charge exchange more strongly [Russian trans., Nauka, Moscad67), 491 pp.
than can variation of the occupancy. YE D. M. Haldane and P. W. Anderson, Phys. RevLB 2553(1976.
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Dispersion relations are derived for the capillary oscillations of a charged viscous spheroidal
droplet by scalarization within perturbation theory using an expansion in two small parameters,
viz., the magnitude of the perturbation of the spheroidal surface as a result of thermal
fluctuations and the magnitude of the deviation of the equilibrium spheroidal droplet shape from
a spherical shape. It is shown analytically that the motion spectrum of the liquid consists

of two components that interact in the linear theory: toroidal vortex motion and poloidal potential
motions. A numerical analysis reveals that the instability growth rates of the higher modes

of a highly charged droplet increase with enhancement of the degree of spheroidal strain and
decrease rapidly as the viscosity of the liquid increases.1998 American Institute of
Physics[S1063-784£98)00504-2

The investigation of the capillary oscillations of a spheroidal shape of a charged droplet on the growth rates of
charged droplet of a viscous liquid and its stability against itshe instability of its various modes toward its self-charge.
self-charge is of interest for geophysics, technical physics, 1. We shall solve the problem of the axisymmetric cap-
chemical engineering, etc. The experimental and technicallary oscillations of a charged prolate spheroidal droplet of a
investigation of this object has been the subject of numerousiscous, ideally conducting liquid, assuming that the spheroi-
publications' Nevertheless, many questions related to thisdal shape of the droplet is caused either by virtual deforma-
problem have been studied to only a small extent. This referion or by the action of some stationa¢got dependent on
primarily to the physical mechanism for the development ofthe time and the droplet shapextraneous forces of nonelec-
the instability of a charged droplet with respect to its self-trical nature(see the Appendijx We present the solution in
charge. Rayleigh show@dhat the first of the infinite set of dimensionless variables, setting the radiusf the original
capillary modes of a highly charged droplet to experiencespherical droplet, the density, and the surface tensiom
instability is the fundamental mode, which is proportional toequal to unityR=1, p=1, o=1. Then, as units of measure
the Legendre polynomid#,(cos). The development of in- of the distance, time, charge, pressure, velocity, and viscos-
stability causes the droplet to stretch out into a figure that idty, we obtain the characteristic values* R, t,
spheroidal in the linear approximation with respect to the=R¥%*?0"12 ~ Q, =R¥%¢*?, «=R7lo, u,
square of the eccentricifyThis naturally raises the question =R~ 1/2 1/2 1/2 andv, =RY% 1/2 v,
of how alteration of the shape of an originally spherical The equatlon of the surface of a prolate spheroid per-
droplet influences the laws governing the realization of thgurbed by capillary wave motion in spherical coordinates in
instability of the higher capillary modes. The correspondingthe linear approximation with respect &3, i.e., the square
problem was formulated in Ref. 3, but it was solved only onof the eccentricity of the spheroid, has the form
a qualitative level of rigor. Nevertheless, it was ascertained ]
that the critical conditions for the realization of the instability r=r(6)+&0,H)=1+e*h(0)+ £(6,0);
of capillary modes higher than the fundamental mode ease, (1—e?)16 1
as the eccentricity of a highly charged spheroidal droplet r(6)= ;. h(#)==(3cog 6-1),

. . : o . (1—e? cog 9)T? 6

increases. This phenomenon underlies the qualitative physi- (1.1)
cal mechanism for the realization of the instability of a '
charged droplet proposed in Ref. 3. In Ref. 4 an attempt wawhich describes an equilibrium spheroidal droplet surface
made to find the spectrum of capillary oscillations and dampperturbed by capillary oscillations that occur because of the
ing decrements for a charged spheroidal droplet of a viscouthermal motion of the molecules and have an amplitude
liquid in a one-dimensional electrostatic field by writing out ~ \kT/o (herek is Boltzmann's constant, and is the ab-
the Lagrangian of the oscillatory system with considerationsolute temperatuje We also note that for most liquids the
of the dissipation. The spectra of the capillary oscillationsamplitude of such thermal capillary oscillations is of the or-
and their damping decrements for a spheroidal viscous dropler of an angstrom unit.

let were calculated analytically in Refs. 5 and 6. The ensuing analysis is performed within perturbation

The investigation of the temporal evolution of the am-theory using an expansion in the small paramefeasd e
plitude of the fundamental mode of a droplet which is un-(in the order indicatedto terms~ ¢ and ~e?¢, i.e., in the
stable toward its self-charge in Ref. 7 called for a search folinear approximation with respect t6 We note that the
a rigorous solution of the problem of the influence of thesmall parameters? and¢ are independent, but it is assumed

1063-7842/98/43(4)/7/$15.00 366 © 1998 American Institute of Physics
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thate?s> &. For this reason, it would appear that, if we retainthe unperturbed surface of the spheroidal dropletr (6)
the terms~e?¢, we should also take into account the terms~1-+e?h(#6), since they consist of terms that are lineakin
~e* However, as will be seen below, only the termsg andé&.
and ~e?¢ make contributions to the dispersion relation The system of vector equatioi($.2) and(1.3) with the
sought, while the terms-e? and ~e* vanish when the ki- boundary conditiong1.4—(1.6) and the additional condi-
nematic boundary conditiofwhich contains a partial deriva- tions (1.7) and (1.8) comprises the complete mathematical
tive with respect to timeis taken into account. Therefore, formulation of the problem posed.
retention of the terms-e* in the calculations would only 2. We solve the system of equatiofik.2) and(1.3) by
lead to an unjustified increase in the unwieldiness of thescalarization, which was described in detail in Ref. 8. For
mathematical manipulations. this purpose, we represent the velocity fiéldr,t) in the
The time dependences of the velocity fidldr,t), the  form of the expansion
pressure fieldp(U,t), and the perturbatiog(6,t) are as-
sumed to _be exponential, i.exexp(st). . . U(r,t) = Ry®(r,t) + Ro®o(r,t) + Rady(r,t), 2.1
We write out the system of hydrodynamic equations de-
scribing the motion of a viscous liquid in a droplet that is
caused by a small perturbatiaf{6,t) of the shape of its
equilibrium surface and is therefore characterized by a ve
locity field U(r,t), which is proportional to the small param-
eter £ The system consists of a linearized Navier-Stokes

where thed;(r,t) are scalar functions, and thé are differ-
ential vector operators, which have the following forms in a
spherical coordinate system:

equation and the incompressibility condition leV; NZEVXr; Ngst(er). (2.2
E: —V(p(U,1))+ »V2U; (1.2) Substituting the expansia.1) into (A1.2) and (}.3) qnd
at using the properties of operatof8.2 N,V?=V?N,, N/
div U=0, 13 -N=0 (for k#j) andN; =—N;, we can easily transform

the system of vector equatioft.2) and(1.3) for U(r,t) and
wherep(U,t) is an addition to the pressure within the liquid, p(U,t) into a system of scalar equations for the scalar func-
which is first-order with respect to (with respect tcf). tions @ (r,t):
The following boundary conditions should hold on the
droplet surfacdl.1): s
V2®,(r,t)— ;(1— O)Pi(r,t)=0 (k=1,2,93);

IF(r,t)
+U-VF(r,t)=0;
F(r,t)=r—[1+e?h(0)+&(6,t)]=0; (1.9
. Here the superscript plus sign denotes a Hermitian conjugate,
m(n-V)U+n- (7 V)U=0; 19 and & is the Kronecker delta.
—p(U,t)+2vn-(n-V)U—pge(&)+p,(£)=0, (1.6) The boundary condition&l.4)—(1.6) should also be re-

written in terms of the scalar functiom,(r,t). Using(2.1)
wheren and 7 are the vectors of a normal and a tangent toand (2.2) and writing out the representations of the compo-
the surface, angg (&) and p,(€) are additions to the pres- nents of the velocity vectdd(r,t) in terms of the functions
sure of the electric field and the pressure of the surface tenb,(r,t), after some simple, but cumbersome mathematical
sion forces that result from the perturbation of the equilib-transformationwe can obtain the kinematic boundary con-
rium surface of the spheroid and are first-order with respedilition for the axisymmetric case in the linear approximation

to &. with respect toe?
We also require fulfillment of the condition for con-
stancy of the droplet volume b, _, [ Ps , 9
JW r=1 Sf—HT— Q T —e h(@)g
6,t)sin 6 d6=0 1.7
0 g( ) (9@1 2 @3 i J
X|———-Vg|— +s|n¢9cos¢9—(9
and the condition for a stationary center of mass o J
2@ [ q)l 19 AL
J f £(6,0)e sin 6 do dp=0, (1.8 XN+ 757 P || =0; (2.4
0 0

wheree, is the radial unit vector of the spherical coordinatethe dynamic boundary condition for the tangential compo-
system. nents of the stress tens(r.5) breaks up into two conditions

We note that in solving the problem in the first-order in accordance with the need to select two mutually perpen-
approximation with respect to the small parametérandé, dicular vectors as unit vectors that are tangential to the sur-
it is sufficient to take the boundary conditiofis4)—(1.6) on  face
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b o
r=1: [VZ[—Z——ZJreZ(cosza—l)
a
D, Jd o
2 2 2
XV )+h(a)vﬂm((9r r)

+sin 6 cos 0—(4+V )

7)o

e e b

PDd, 10D,
r or

—2e?

(3cog - 1)[

—(2cog 9—-1)V3

10®
XV% F_3

-+ (4cod 6—1)V3

1%
Vi o ar 2_

r o

azcbl 1P, cI>l
+sin @ cose ————(2+4V} (2.7

-

and the dynamic boundary condition for the normal compo- (2.7) for &

a0 a2 r ar

, (103
—2(1+Vo)| ¢ )—(2 v3)

or

nent of the stress tensor is

r=1: [s

I
@, +e?h(6) a—rl}

EEON EEON J

+ —V3|=| =] |+€*h(6)—
2v| |2 o or eh(6) ar
U TR rsin 6 cos 8
(9[‘2 Q ar sin @ cos 90

200, @, /D ®
(|20 21, 75, 72
r or r ar c?f r

-Va

—PE(§)+pg(§)] =0;

2 1 Jd d
VQE_6_0 sin (9

System of equation$2.3) with conditions (2.4)—(2.7)

1 ) (5cog 6—2)
(O3 1 18
r_z)_ih(a) (1.9.

.22l

&l
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D, Hr,t)= >, c,zﬁm(\/%r)v?n(a)exqst), (2.9

wherei ,(x) is a modified spherical Bessel function.
It is also convenient to represef(td,t) in the form of an
expansion in spherical functions

(2.9

£0t)= 2 Z.Y%(0)exp(st), (2.9

where theZ,,, are constants.
In expansiong2.8) and(2.9) the minimum value of the
index m=2 because of the additional conditiofk.7) and

3. The relation between the unknown consta@fs (k
=1, 2, 3) in expansion&.8) and the coefficientZ,, in the
expansion of the perturbation functi@gé,t), as well as the
expression for the complex frequency of the capillary oscil-
lationss are determined from the boundary conditid@sl)—

It is easy to see that in the case of axisymmetric oscilla-
tions the boundary conditio2.5) for ®,(r,t) is completely
autonomous, i.e., it does not contain any other unknown
function. Therefore, we describe its treatment, concentrating
our attention on the boundary conditiof2.4), (2.6), and
1(r,t), ®5(r,t), and&(o,t).

Substituting solutions(2.8) and (2.9) into conditions
(2.4), (2.6), and(2.7), using the recurrence relations for cy-
lindrical spherical functions, representing the products
cog 6-Y2(6), h(6)-YS(h), and

(2.6

aYo(0)
96

sin 6-cos 6

in the form of expansions in spherical functichand ne-
glecting the interaction between different modes, in the lin-
ear approximation with respect t from the kinematic
boundary condition we can obtai@.4)

2.7 Cafm+e’m(m—1)—3]xy}+D5,

S S
\/; fm( \[;)(m(m+ 1)-3)

X{m(m+1)+e?x,

comprises the mathematical formulation of the problem be-

ing solved in a scalarized form. The solutions of Egs3) in
the spherical coordinate system which are regular at the point

r=0 have the form

o0

Dy(r,t)= mE:2 Cirmy?(6)exp(st);

+(m+1)(m(m—-1)—3) ]—sZm=0, (3.1

from the dynamic boundary condition for the tangential com-
ponent of the stress tens(.6) we can obtain
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m(m+1)
S S S
—+2(m2—1)—2\ﬁfm(\/:>
14 14 14
S
;(m—2)+2(m2—1)

el Vel VY
(M=~ mmen) T Vel V5

o

c}n[z(m— 1)+e2xm2(m—1)[(m—2)—

+Dr3n[

+62%m

X

s
X ;+2(m2+m+2)+

m(m+1)

and from the dynamic boundary condition for the normal

component of the stress teng@:7) we can obtain

1 2
Cnh +e“xp,

S S
—+2m(m—1) -m
14 14

+2(m3—3m?—4m+3) |} + D%{ 2m(m+1)

\/g \/g
(M=1)+\/~ fml \/~
14 14

é(m(m+ 1)—3)+(m+1)(m3—3m?—4m+3)

NG fm( \/§)<4m<m+“‘3)ﬂ

Om
+Zm[(m— 1)(m+2) -

X +e?x,2

X

2 am m?
+ e xpy (m+2)(m—4)7—37“=0. (3.3

In expressiong3.1)—(3.3) we introduced the following

notation:

m(m+1)

— . N33 S|,
*m=3(2m-1)(2m+3)’ Dm_cm'm( \[V)
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Q@ <
Pe()~ 7~ 2, {[(m-1)+e?

X (M—=4) 2] Zn} YO (0) exp(st);

po(i)%mZ:2 {{(M—1)(m+2)—e?2

X (M2 4 M+ 4) 2] Znk YO,(6) exp(st).

The condition that the determinant of the system of
equationg3.1)—(3.3) vanish yields the dispersion relation of
the problem being solved in the linear approximation with
respect toe?

s[s?+m(m—1)(m+2)an]+2v| s> (m—1)(2m+1)

— — fm —
14 14

s s

—4v*’m(m—1)(m+ 2)3\/; fm( \[;)

+e2xm( s| (s+m(m—1)(m+2)a,)

2(m—1)+ \/% fm< \/% )

=3((2m-1)(m+2)an+ m3)}

(s2+m(m—1)(m+2) ay,)

X

+2v

o) s
;m

52( 2m3—8m2+4m— 10+ =

Y:

2 2 _ 2_
X| s 2m —m+2+ m(m+ 1) +3(2m m+3
° +2) oy +3m3| | +402 \/gf \/g
(m+1) (M+2)apy+3m Vs v M v
3 2 —_—— =
X|5m°+5m+2m m+1) 0. (3.9

The general form of the motions of the liquid realized
(the branches of the dispersion relajiam the form of plots
of Res=Res(W) and Ims=Im s(W) obtained by numerical
calculations using3.4) for m=2, »=0.03, ande?=0.2 is
presented in Fig. 1. Branchds-3 correspond to capillary
motions of the liquid, and branchds5, 6, and7 correspond
to aperiodically damped poloidal vortex motions. The gen-
eral form of thes=s(W) curves for the higher modes of
capillary oscillations(with m>2) is qualitatively similar.
Thus, the roots of Eq(3.4) form an infinite set with two
parameters: the first parameter is the mode number of the

Equation (3.3) was written using expressions for the capillary oscillationsm, and the second parameter is the
first-order additions to the pressure of the electric forceswumber of the root of Eq.3.4) for a fixed value ofm.
pe(é) and the pressure of the surface-tension fogg&) It is seen from Fig. 1 that the poloidal vortex motions
with respect to the small parametgemwhich have the follow-  exhibit aperiodically rapidly damped behavior. The calcula-
ing forms in the axisymmetric case with neglect of the inter-tions show that their damping decrements increase rapidly as
action between different mode¥ the mode numbem increases. As the degree of spheroidal
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7} and for various values of the viscosity of the liqumlrve 1
2 corresponds tor=0.03, curve2 to v=0.1, curve3 to
v=0.36, curved to v=0.8, and curves to v=1.2).
It is not difficult to see from Fig. 1 that the growth rate
of the fundamental mode decreasegamcreasesggenerally
25 J0W speaking, this is consistent with Le Chatelier's principle
1 \\ ' ' The growth rates of the higher modes behave differently as
e? increases, depending on the value of the viscosityat

~— small v they decrease with increasirg, and beginning at a
D
6
7
|

Re &
(=]

certain value ofy, which differs for different modes, they
begin to increase with increasirgf. The same behavior is
associated with the effect of two different responses of
physical parameters of an oscillatory systemhich a droplet
is) to an increase i®?: on the one hand, an increaseéh
should lead to an increase in the growth rates of the higher
modes because of the increase in the surface charge density
on the apices of the spherolchnd, on the other hand, the
. suppressing influence of the viscosity should have the stron-
B ¢ 25 W gest effect on the fast motions of the liquidaused by the
- large growth rates of the higher modeSince the damping
decrements of the capillary oscillations decrease with in-
creasinge?, while the growth rates increase, at a certain
-3F viscosity these two tendencies should neutralize one another,
as was found in the numerical calculations. This effect be-
FIG. 1. Dependence of the real and imaginary components of the frequenagins to be manifested for different modes at different values
on the value of t_he Rayleigh parameWr which characterizes the stability of the viscosity(which we shall mark with an asterDskfor
of a droplet against its self-charge. the mode withm=4 at v=v,+~0.58, for m=6 at vg«
~0.165, and fom=10 at v, ~0.068. The plots of Re
strain increasefas e? increasel the decrements of the po- ~ReS(€’) calculated for such values of the parameters are
loidal motions (as well as the motions corresponding to Straight lines parallel to the? axis, i.e., they do not depend

branche<2 and 3) decrease slightlyby hundredths of their 0N €. Whenv>w , the instability growth rate of thenth
relative magnitude mode increases & increases.

As for the laws governing the realization of the instabil- The foregoing statements can pe iIIustrgted by an analy-
ity of different modes of a highly charged droplet as theSis of Ed.(3.4) asy—0. The dispersion relatio8.4) for an
degree of spheroidal strain increases, Figs. 2a—c preselte@l liquid (v=0) takes the form
plots of the dependence of the instability growth rates for the

fundamental =2), sixth (m=6), and tenth =10) st~ —{m(m—1)(m+2)ay,—e]m—(2m—1)
modes on the square of the eccentrigfy Res=Res(€?).
The plots presented in Fig. 2 were calculated numerically m(m+1)
using (3.4) for W=16 [the critical value of the Rayleigh X (M+2)]apy] 2m=1)(2m+3) | (3.9
parameter for the realization of droplet instability, i.e., for
loss of stability of the fundamental mode M¢=4 (Ref. 2] It is easily seen frond3.5) that the sign of the addition to
Res
a "o b ua\c\_,_
7 uy‘:\\ wa
“r 2 ﬂ.ﬁ—\*\_—z bd 2
ok 3 |
8.8 // 3
4..5“///__
3t 3 6.7k
4 A
[
4 ast 5 21f
2 \ 26 —/// 15 5
L 1 2.5 1 t 1.4 ___—-’lp_—_'
0 0.25 0.5 e* g 0.25 050 &*

FIG. 2. Dependence of the instability growth rates on the square of the eccentricity.
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the instability growth rate associated with the spheroidal
shape of the droplet is determined by the sign of the expres-
sion in the square brackets. Whem®>(2m—1)
X (m+2)|ay|, as in the case o= 16 form< 4, the sign of
the addition is negativéunder this condition the multiplier 2L
|ay| determines the degree of supercriticality of the droplet 300
charge for each of the modedVhen the opposite relation
holds, i.e., when the mode number is high, the sign of the
addition is positive. Similar dependences are also discovered
in a numerical analysis of the dispersion relati@v) when -ﬁwz %
the viscosity is taken into accouf(fig. 2).

It should be noted that the range of variationedffrom FIG. 3. I_Dependence of the fir;t several roots_of the disp_er;ion relgtign
0 to 0.5, which was used to construct the p|0tS in Fig. 2, Waéor aperiodically damped toroidal vortex motions of a liquid on the mod_e

. L . numberm. The numbers of the curves correspond to the roots of the dis-

taken only for clarity and for the possibility of qualitatively persion relation for toroidal vortex motions.
predicting the possible behavior of the growth rates as the
degree of spheroidal strain increases, since Bg) was
derived for the range®<1. the results of a numerical calculation of the spectrum of to-

The dispersion relation for the oscillatory frequencies ofroidal motions withe?=0.2 for the first 22 modes in the
a charged spherical droplet of a viscous lidditi can  form of plots of
be obtained in a relatively simple manner fraf4) when
e’=0. s = E(m),

4. Returning now to consideration of the boundary-value v V
problem defined by2.3) and (2.5 for the scalar function wherem is assumed by convention to vary continuously,
®,(r,t) and substituting solutiof2.8) into condition(2.5),  rather than discretely, for the first several roots. It is seen that
we can easily write an equation of the form liquid motions of this type are aperiodically strongly

damped. The dependence of the damping decrements of the
) s s

\/E \f toroidal vortex motions ore? is very weak and does not
-3 v fm ) %m exceed hundredths of their relative magnitude in the range of

variation of €2 from 0 to 0.5. The set of solutions of the

v

1
2B m

+(m—1)+e?

N s (m—1)—1+ 12 o E” —o- dispersion relatiori4.2) has two parameters: the first param-
v m(m+1)/"™ 3 ’ eter is the mode number of the capillary oscillatiensand
the second parameter is the number of the root of (E®)
s for a fixed value ofm.
Dﬁ]z Cﬁqi m( \[;) (4.7 It is noteworthy that the boundary-value problem for de-

termining ®@,(r,t) is completely autonomous and is not re-
. o lated in any way to the perturbation of the surfag®,t) or
Condition (4.1) can be satisfied N WO ways. ~ to®(r,t) andP(r,t). It follows from this that in the linear
1) By setting all the coefficient®y, equal to zero. This  tormylation of the problem solved here a toroidal motion

corresponds to setting the entire scalar functs(r.t)  §oes not have any influence on the capillary oscillations of
equal to zero. Essentially just this case was considered aboyge droplet as a wholé.e., does not have an influence on

when®, was disregarded. The motions of the liquid appearsnaping the surface relief of the dropland does not interact
ing in a droplet are then characterized by the dispersion régith the poloidal motions of the liquid. An interaction be-
lation (3.4) and do not have a toroidal component, sinCeyeen these two types of motions with the formation of a

U,=0. . o single toroidal-poloidal vortex is realized only in the nonlin-
2) By equating the expression in the curly brackets togg, stage.

zero. If the relation obtained in the latter case is solved for g According to the results obtained above, the values of

fm(\/S/v) in the linear approximation with respect €3, it e growth rates of the unstable modes with-3 decrease

takes the form with increasing viscosity and increase as the degree of sphe-
roidal strain increases. This finding points out the possibility

\/g ¢ \F 1 2 of a path for the development of the Rayleigh instability of a

ym v Hm-1)+e7 |- highly viscous droplet other than the one described in Ref.
12 for low-viscosity liquids. In the case of low-viscosity lig-

[ (P m—3)+ 12 e z] —0. 42 uids, When the §tapi|ity griteriqn .for the fundamental .mode

m(m+1) 3 of capillary oscillations is satisfied, the droplet begins to

stretch into a spheroid, thereby generatibgcause of the
Expression(4.2) is the dispersion relation characterizing increase in the local charge density on the apices of the
the spectrum of toroidal vortex motions of the liquid de- spheroid the instability of the higher modes of capillary
scribed by®,(r,t), as well the poloidal motions described waves. The superposition of the unstable higher modes leads
by ®4(r,t), due to thermal fluctuations. Figure 3 presentsto the formation of emitting tips on the apices of the droplet
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(Taylor cone&®!, from which the emission of highly dis- the pressure of the surface-tension forces on the equilibrium
perse, highly charged smaller droplets that carry off chargelroplet surface. It follows from the Navier-Stokes equation
and mass from the unstable droplet begins. The growth anthat p®=const. For an extended spheroid in the linear ap-
formation of such emitting tips takes place on a backgroungroximation with respect to the square of the eccentricity of
of the continuedbecause of the increase in the amplitude ofthe spheroice? it is not difficult to obtairf

the very unstable fundamental modgretching of the drop- Q2

let into a spheroid, which stops only after the emission of =
charge and mass begins. In the case of highly viscous lig- 87
uids, it should be taken into account that, according to the
data presented above, the degree of suppression of the insta- p9,=2
bility growth rates of the various modes by the viscosity
increases as the mode number increases. Thus, the situation To maintain the equilibrium spheroidal shape of a drop-
in which the instability growth rates of the higher modeslet, an external pressumg®™ which does not depend on the
(with m=10) are smaller than the instability growth rate of time or the shape of the droplet surface must be created. This
the fundamental mode for a highly viscous droplet is real. Inpressure is specified by the pressure balance condition

this case, before the emitting tips are formed and the emis- ( 2

1
1+ §e2(3 cog —1)

pe=

1+ %e2(3 cog 60— 1)}.

sion of charge and mass begins, the droplet is so stretched p®=p°®—2|1— %
out that the criterion for its instability toward dividing into m
halves at high degrees of strain is satisfiétf As a result, This pressure can be, for example, an ultrasonic pres-
the droplet breaks into two parts of comparable size, each afure.
which is then stable toward its self-charge.

Thus, for highly viscous liquids, in which the dimension-
less parameter[ p/(Ro) ]2 is greater than unity, a qualita-

1
1+ §e2(3 cog /—1)
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The dependence of the ion current density in an expanding laser plasma on the parameters of the
laser radiation, the target material, and the distance from the target is investigated

theoretically. Calculations needed to design laser ion sources for accelerator technology are
performed. An explanation for the two-peaked shape of the collector signals observed in some
experiments with a laser plasma is given. Additional possibilities for obtaining information

on the experimental conditions from collector signals are consideredl998 American Institute

of Physics[S1063-78428)00604-7

In this paper we calculate the ion current densityeration of the classical restriction of the heat ffulieat ex-
j=2Znyu in a laser plasma expanding along a normal to thechange between electrons and ions in elastic collistdns;
target surface and investigate the dependence of this quantitynization processes in the mean-charge approximation with
on the parameters of the laser radiation, the target materiatonsideration of electron-impact ionization, three-body re-

and the distance from the target is the mean charge of the combination, dielectronic recombination, and
ions,n, is the ion density, and is the expansion velocity of photorecombinatiof! and the energy balance for the inelas-
the ions along the normal tic processes. In the energy balance for the inelastic pro-

There have been only a few calculations modeling thecesses the energy returned to plasma electrons upon the
collector signals in experiments with a laser plasrhand  three-body recombination of ions through highly excited
they did not address the problem of elucidating the depenstates is taken into account using the formula proposed in
dence of the ion currents on the parameters of the experRef. 12,
ment. This topic is important both for designing laser ion _ e 213
sources for accelerator technology and for interpreting the B =7X10 "(ne/2)770 [ erd],
results of collector diagnostics of expanding laser plasmas.where®, is the electron temperature in electron-volts.

This is the essential difference between the present

model and the models of other authors.
QUASI-TWO-DIMENSIONAL MODEL OF A LASER PLASMA

All the calculations in the present work were performed
using the quasi-two-dimensional two-temperature hydrodypEPE'\”DE'\lCE OF THE ION CURRENT DENSITY ON THE
ARAMETERS OF THE LASER RADIATION, THE

namic model of a laser plasm.a proposed in Ref. 3. Thi ARGET MATERIAL, AND THE DISTANCE FROM THE
model was previously used with success to calculate tht13,ARGET

charge composition of ions in an expanding laser pla$ma,

the temperature of the laser plastand several recombina- The simplest functional dependence of the ion current
tion effects®’ According to this model, a laser plasma is density j=eZmu on the parameters of the experiment
simulated by “large particles” of equal mass in the form of can be obtained by assuming thag~W,,/(ZT.L%) and

thin disks. Under the action of the forces of the gas-kineticu~ (ZT./m;)*2, whereW,,s/ZT, is an estimate of the num-
pressure, the disks can move along a normal to the targdber of ions generated by the laser pulsehe distance from
and their radius can vary. The transverse expansion of ththe target, and the expansion velocity of the ions is estimated
disks is considered in the self-similar approximation, i.e., thefrom the velocity of soundi in the heating phase. Hence we
radial expansion velocities of inner points on a disk are re-obtain

lated to the radial velocity of the disk boundary by the law . 31 112

v, (&)=u,&lr, where¢ is the radial coordinate of the inner J=eWad-my T2/ Te) ™ @)
point on the disk, and and u, are the radius and radial It is seen from formuldl) that the ion current density is
velocity of the disk boundary. Thus, the quasi-two- proportional to the laser pulse energ).s, is inversely pro-
dimensional model is something midway between the purgortional tomil/z, and depends most strongly-( ~3) on the
one-dimensional model of a plasma and the cylindricallydistance to the target. All the remaining dependences are less
symmetric two-dimensional model. significant.

The model incorporates the following physical pro- Let us consider the main dependences of the ion current
cesses: the absorption of laser radiation by an inverse bremdensity on the parameters of the heating radiation in the ex-
strahlung mechanism and reflection from a plasma layer witlample of an expanding gold plasma heated by a rectangular
the critical density® electronic heat conduction with consid- pulse from a CQ@laser. All the calculations of the ion current

1063-7842/98/43(4)/5/$15.00 373 © 1998 American Institute of Physics
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t’f"" the ion pulse as opposed to the increase in it due to the
FIG. 1. Dependence of the ion pulse on the power of the laser radiation. Aul,nCrease in the expansion V_eIOCIty' . .
d=1mm, r=100 ns, \=10.6 um, L=1m: P, Wicn?: 1—1C°, 2—3 The dependence of the ion pulse on the atomic weight of
X 108, 3—1CP. the target is presented in Fig. 3. As the atomic weight of the
target increases, the amplitude of the ion pulse decreases in
accordance with estimatd), and the delay time of the ion
pulse increases. These dependences are attributed to the de-
densities presented in this section correspond to a distanegeases in the expansion velocity and the number of ions as
from the target equal to 1 m, unless stated otherwise. Ifhe atomic weight of the target increases.
addition, for brevity, the time dependence of the ion current  The dependence of the ion pulse on the wavelength of
density will be called the ion pulse below. - the laser radiation is presented in Fig. 4. It is the weakest of
_ Figure 1 presents the ion pulses for various laser powerg)| the dependences considered. The relatively small increase
P in the range 18-10° W. The laser pulse duration and the jn the amplitude and delay time of the ion pulse with de-
focal spot diameter were=100 ns andd=1 mm. The cal-  creasing wavelength is attributed to some decrease in the
culations presented in Fig. 1 attest to an increase in the aMemperature and lateral expansion of the plasma as the wave-
plitude of the ion pulse in accordance with estiméieand  jength of the laser radiation is diminished. When the focus-
to a decrease in the delay time of the beginning of the iofng is sharper, the decrease in the quantity of material vapor-
pulse as the power of the laser radiation increds@sdelay  jzeq due to the decrease in the absorption of long-wavelength
time is measured from the beginning of the laser pulSach  |aser radiation in comparison to short-wavelength radiation
dependences are attributed to increases in the laser pulse §Ri| act in the same direction.
ergy and, consequently, in the number of ions generated by
the laser radiation, as well as to increases in the plasma tem-
perature and, consequently, in the expansion velocity of the S0l
ions.

Figure 2 presents the ion pulses for various diameters of
the focal spot of the laser radiation and equal values of the -
other parameters. The results presented in Fig. 2 attest to a g
decrease in the amplitude of the ion pulse and the delay time Nk
of the ion pulse as the focal spot diameter decreases. There is E
also a fairly simple explanation for these dependences. As ~
the focal spot diameter decreases, the plasma temperature
and, consequently, the expansion velocity of the ions in-
crease, causing a decrease in the delay time of the ion pulse.
On the other hand, when the focusing is sharper and the -
energy of the laser radiation is fixed, the amount of plasma
produced in the heating phase decreases, and, more impor- 0
tantly, the lateral expansion of the plasma increases. The
latter _Ieads to a considerable decreasg in the number of _iorH;G_ 3. Dependence of the ion pulse on the target materl.
traveling along a normal to the target in the far zone, which_ 1 wicn? d=1mm, r=100 ns,\ =10.6 um, L=1m: 1—C, 2—Fe,
is the decisive factor causing a decrease in the amplitude af—Au.
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FIG. 4. Dependence of the ion pulse on the wavelength of the laser radia-
tigné Au, P=10° W/en?, 7=100 ns,L=1m; \, um: 1—1.06,2—3.0,3— FIG. 6. Dependence of the ion pulse on the distance from the target. Au,

e P=10° W/cn®?, d=1 mm, 7=1000 ns;L, m: 1—1, 2—2, 3—3.

The dependence of the ion pulse on the laser pulse du-

ration turned out to be highly significant. The results of theorigin is associated with the initial nonstationary heating re-
calculation of the ion pulses for laser pulse durations fromgime of the laser plasma, and the slow peak is associated
100 to 1000 ns in Fig. 5 show that in the general case the iowith ions which appear already in the steady stationary heat-
pulse consists of two peaks: a fast peak and a slow peak. Ang regime. The appearance of the slow peak requires the
small laser pulse durations the ion pulse consists of one fagaser pulse duration to be much greater than the characteristic
peak. As the laser pulse duration increases, a second pehkdrodynamic time, i.e.7j,s>3—5d/us.

appears at slow velocities. When the pulse duration is suffi-  Single-peaked and two-peaked collector signals have
ciently long, the slow peak begins to strongly predominatédeen recorded in different laser plasma experiments employ-

over the fast peak. The fast peak is caused by ions whoseg collector diagnostics' In addition, multiple-peaked
collector signals have been observed in several experiments,

apparently due to the complex form of the laser pulse and to
the electrostatic mechanism of ion acceleration at high laser
- radiation flux densities®
- The ion pulse depends most strongly on the distance to
the target. The corresponding calculations presented in Fig. 6
show that as the distance to the target increases, there
200\ are sharp decreases in the amplitudes of both the fast and
slow peaks in the ion pulse approximately according to a
g j~L "% law, as well as a linear increase in the delay time of
the ion pulse.

J,mA/cm?
V

i 7 INTERPRETATION OF THE COLLECTOR DIAGNOSTICS OF
700 - THE LASER PLASMA

One clear and very important conclusion that can be
i 3 drawn from the results considered in the preceding section is
- that the ion current density is very sensitive to most of the
} 4 parameters of the experiment, such as the distance from the
Lot L4 ¥ L target, the power and duration of the laser radiation, the tar-
70 get material, etc. This suggests that additional information
t’f“ regarding the experimental conditions can be obtained by
FIG. 5. Dependence of the ion pulse on the duration of the laser radiationaChlevmg the _closest possible fit between_ the calculated daFa
P=10° W/cn?, d=1mm, \=10.6 um, L=1m: r, ns:1—1000,2—600,  and the experiment. However, any experiment whose condi-
3—300,4—100. tions are known inexactly can be “reconciled” fairly easily
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FIG. 7. Comparison of experimental and theoretical current density pulses
of carbon ions.P=5x10" W/cn?, =35 ns, d=0.3 mm, A\=1.06 um,
andL=2. Solid curve—theory, dashed line—experiment.

FIG. 8. Comparison of experimental and theoretical current density pulses
of zirconium ions. P=4x10" W/cn?, 7=2000 ns, d=0.4 mm, \

. . =10.6 um, andL=2 m. Solid curve—theory, dashed line—experiment.
with calculated results by correcting the calculated param- # y P

eters in a particular direction. We shall demonstrate this situ-

ation in the case of two experimerjrfsl.‘f . energy of 18 J, and a focal spot diameter equal to 460

In Ref. 13 a neodymium laser with a maximum pulseThe corresponding experimental and calculated collector sig-
energyW~30 J, a laser pulse duration at half maximum 55 are presented in Fig. 8. The calculations showed that the
~25ns, and a focal spot diametdr-300 um was used. fast peak of the collector signal is caused by ions which
The most abundant information is available for the collectoltgrmed under the action of the laser radiation peak and that
signals of carbon ions at a distanck2om from the target,  the slow peak of the collector signal is caused by ions from
which were obtained in experiments in which the energy ofe {4l of the laser pulse.
the laser radiation was reduced by a factor of 5 using a cali-  cajculations of both experiments showed that the experi-
brated absorber. In addition, according to the authors’ estimental and calculated collector signals can be closely recon-
mates, an additional twofold decrease in the laser pulse eRgieq without departing from the reasonable ranges of the
ergy occurred in the optical system due to the geometriggicylated parameters. The set of optimal parameters was
divergence of the radiation. The radiation was reduced byite rigidly specified in both cases. For example, twofold
about two more fold as a result of reflection of the laseryariation of any of the parameters of the laser radiation, such
radiation from the numerous elements of the optical systéMys the energy, the duration, and the focal spot diameter led to
Thus, the energy of the radiation observed by the target wag fajlure to observe satisfactory agreement between theory

apparently equal to 1-2 J. A set of calculations showed thagng experiment for any variations of the other parameters.
the calculation in which the laser pulse energy was 1.1 J, the

focal spot diameter was 30@m, and the laser pulse was
modeled by a half sinusoid with a duration along the base O?ONCLUSIONS
35 ns agrees most closely with the experiment. This calcula- The quasi-two-dimensional hydrodynamic model of a la-
tion of the collector signal and the corresponding experimenser plasma has been found to be suitable for calculating the
tal signal are presented in Fig. 7. ion current density in an expanding laser plasma despite the
A CO, laser, whose pulse consisted of a peak of duratiorvery rough simulation of the lateral spreading of the plasma.
200-300 ns with an energy of about 10 J and a tail of dura- The dependence of the ion current density in an expand-
tion 2 us with an energy up to 20 J, was used in Ref. 14. Thdng laser plasma on the parameters of the laser radiation, the
collector signal for zirconium ions at a distande2om from  target material, and the distance from the target has been
the target had a two-peaked structure. The corresponding sietvestigated theoretically. Calculations needed to design la-
of calculations shows that the theoretical collector signaker ion sources for accelerator technology have been per-
most closely approximates the experimental signal when th®ormed. An explanation for the two-peaked shape of the col-
calculation parameters have the following values: a laselector signals observed in some experiments with a laser
pulse peak approximated by a half sinusoid with a duratiorplasma has been given.
along the base equal to 250 ns and an energy of 6.4 J, a tail The possibility of extracting additional information on
approximated by a straight line descending from the halthe experimental conditions from collector signals using a
height of the peak to zero with a duration of 1,45 and an  series of approximation calculations has been demonstrated.
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Photographs of pulsed microwave discharges initiated by a metallic sphere placed at the focus of
a quasioptical electromagnetic beam with linear polarization of the field in air, sulfur

hexafluoride, hydrogen, and helium under a pressure of several hundred Torr are presented. The
common and distinctive features of the discharges in these gases are noté898©

American Institute of Physic§S1063-78428)00704-]

INTRODUCTION in air and Sk is more complicated than inj41and He is an

) ) _ atomic gas. Thus, the spectrum of differences between the
As a pulsed gas microwave discharge in a focused miyases investigated is fairly broad.

crowave TEM wave develops, it can pass through such suc-

cessive stages: as the diffuse, ionization-overheating,

streamer, res_onant, apd cumulative stalgas.a fixed dis-  EypERIMENTAL CONDITIONS

charge duratiornty, their sequence remains unchanged, but

the number of stages realized increases as the gas prgssure Pulsed TEM radiation having a rectangular envelope
and the amplitude of the electric component of the initialwith linear polarization and a wavelength of 8.5 cm was used
microwave fieldE, are increased. The last of the stages re-n the experiment3.in the focal region the field had an ap-
alized at the time of completion of the microwave pulseproximately Gaussian distribution with a characteristic scale
largely determines the outward appearance of the plasmoielqual to several centimeters in the plane perpendicular to the
that develops. In this sense the terms diffuse, ionizationPoynting vectodl. Along II it was uniform and also had a
overheating, streamer, etc. can be used to describe the forseale of several centimeters. The maximum valug pfvas

of the dischargé. about 6.5 kV/cm. The microwave pulse had a duration of 40

The main physical factors which determine the proper-us. The pauses between pulses lasted at least a minute.
ties of a discharge in each of the stages just enumerated do A hermetically sealed quartz tube with flat endcaps made
not depend on the kind of gas. However, while the generalrom optically transparent glass was positioned symmetri-
picture of the development of discharges in different gases isally to the axis of the beam at its focus. The tube had an
qualitatively consistent, its specific details may diftérThe  inner diameter of 8 cm, a wall thickness of 0.4 cm, and a
distinctive features derive, for example, from quantitativelength of 50 cm. Its axis was perpendiculadicandE,. The
differences in the level of the breakdown fieligly, in the  tube, which was preliminarily evacuated to £0Torr, was
values of the kinetic coefficients, in the presence or absenddled with the gas under investigation, whose pressureas
of ionizing ultraviolet radiation from the discharge region, fixed to within £0.75 Torr. The tube was surrounded by air
etc. at atmospheric pressure.

The experiments in Ref. 1 and 5 showed that, in prin- A lead sphere with a diameter of 0.25 cm on a thread
ciple, there are no significant differences between electrodewith a thickness of 102 cm was placed in the tube at the
less and initiated discharges. At the same time, the employfocus of the electromagnetic beam. The thread extended
ment of an initiator, especially at high, permits significant along a diagonal of the central cross section of the tube per-
expansion of the range of variation Bf. Moreover, the use pendicular tdEy. The surface of the sphere was the source of
of an initiator in the form of a metallic sphere, for example, initiating electrons. For this purpose it was illuminated by
permits effective calibration of the absolute level of the fieldultraviolet (UV) radiation with a duration of 1Qs. In the
according to the method described in Ref. 6. experiments the time of breakdown of the gases investigated

To supplement the data on microwave discharges irtoincided with the beginning of the UV pulse. By shifting it,
various gases, in this paper we present photographs of mwe could vary the discharge tintg, which extends from the
crowave discharges initiated by a sphere in a focused travebnset of the pulse of UV illumination to the end of the mi-
ing electromagnetic wave in air, sulfur hexafluoride {§SF crowave pulse.
hydrogen (H), and helium(He) at values ofp equal to The values ofg, andty were adjusted so that the dis-
hundreds of Torr. Their common features and differences areharge, which began on the sphere, would not reach the inner
noted. Among the gases just listed, air ang &fe electrone- surface of the tube.
gative, and the electron attachment coefficient is significantly  The discharge was photographed through the endcaps of
greater in Sgthan in air. The composition of the molecules the tube. The exposure time exceedgdIn the photographs

1063-7842/98/43(4)/4/$15.00 378 © 1998 American Institute of Physics
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FIG. 1. Microwave discharge in air @t=300 Torr withEy=6.5 kV/cm.

presented belovg, is vertical, andll is directed from right FIG. 3. Microwave discharge in sulfur hexafluoride @90 Torr with
to left. The diameter of the sphere serves as a geometric scdfe=5 kviem.
on them. On all the imageg =10 us.

theory® Thus, the presence of the tube at the focus of the
OBSERVATION RESULTS electromagnetic beam scarcely distorted its structure or the
strength of the original field.

Figure 3 shows a discharge in $&t 90 Torr withEg
=5 kV/cm. Itis seen that it is also a streamer discharge. The
Ieathering channels are longer than those in the air dis-
charges. This creates the impression of a greater volume den-
sity of discharge channels. Their diffuse “fur” is less pro-
nounced than in air. The presence of a large number of
comparatively long feathering channels is the main distin-
guishing feature of the SFdischarges.

When Ey=5 kV/cm, Sk undergoes breakdown only at
p=<105 Torr. This corresponds t6,=1500. This value is
approximately 30% greater than the valuessffor sulfur
hexafluoride usually presented in handbooks. For example,
Ref. 7 gives a valu&,=100p, and Ref. 8 gives 11¥.

Figure 4 presents a discharge i Ht 300 Torr with
Eo=5kV/cm. Under these conditions the hydrogen dis-
charge is also of the streamer type. The discharge channels
exhibit practically no streamer feathering or diffuse fur, cre-
ating the impression that they are rarefied. The absence of
the fine details in the Hdischarge is its principal outward
distinction.

When p=300 Torr, H undergoes breakdown only at
Eo=4.4 kVicm, i.e., Eo/p)ps=15p, and atp=660 Torr, it
undergoes breakdown only at 6.5 kV/cm, which gives
(Eo/p)pg=10p. The latter value coincides with the value of
(Eo/p)pg in @ uniform field presented, for example, in Refs.

8 and 9. It can be assumed that in the experimental setup
under consideration the function of the sphere is confined
only to ensuring the presence of breakdown-initiating elec-
trons and that the region of the tripled field on its poles is
simply not “noticed” by electrons, which readily diffuse in
H,. In addition, in hydrogen, even at a valuepamounting

to hundreds of Torr, inhomogeneity of the microwave beam
with a characteristic scale equal to several centimeters must
FIG. 2. Microwave discharge in air @t=300 Torr withEy=5.7 kV/cm. be taken into account in the calculation of the breakdown

Figure 1 presents a discharge in air at 300 Torr with
Eo=6.5 kV/cm. It is seen that it is a typical streamer burn-
ing in the microwave rangeThe individual portions of the
main streamers and their ends are “feathered” by thin shor
plasma channels with a weak diffuse corona.

At this pressure air did not undergo breakdownEgt
<5.7 kV/cm (the discharge for 300 Torr andg,
=5.7 kVIcm=E,, is presented in Fig.)2 Therefore, in the
experimentE,=1/3E,, where E,=40p is the so-called
critical breakdown fieldhere and in the analogous formulas
below, p is expressed in Torr ané, in V/cm). We recall
that at the poles of the sphere, whé&gis perpendicular to
its surface, the field equal€E3. The measured value &y
is only 17% higher than the value following from the
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FIG. 4. Microwave discharge in hydrogen g@=300 Torr with E,
=5 kvicm. FIG. 6. Microwave discharge in helium ap=760 Torr with E,
=5.5 kV/cm.

fields. The experimentally detected increase Hy/p)yq
with decreasing is attributed to just such inhomogeneity.
Finally, Fig. 5 presents a discharge in He at 300 Torr(E,/p),q=15, and in the experiment at 760 Torr it under-
with Ep=4.4 kV/cm. It is seen that under these conditionsgoes breakdown at 5.5 kV/cm, i.eE{/p)yq=7. According
the He discharge is realized practically in the diffuse form.to various published source€{/p),q=3 (Ref. 8, 4.7 (Ref.
When Ey is increased tdE, at this value ofp, the dis-  4), and 1-3(Ref. 9. Therefore, in He, just as in}ielectron
charge takes the ionization-overheated form and still doediffusion plays a significant role in the evaluation of the
not become a streamer discharge. This finding supports thsreakdown fields under spatially inhomogeneous conditions.
conclusions of Ref. 4, in which the realization of a streamer
discharge in He was indicated only @500 Torr. In fact,
Fig. 6 shows a discharge in He at 760 Torr wiky,
=5.5 kV/cm. The figure reveals that it is already a streameg&oNcLUSIONS
discharge, although it has a significant diffuse background,
on which there are only outlines of feathering channels. Thus, the main features microwave discharges in air,
Under the conditions of the experiment agb Sk, H,, and He at pressures equal to hundreds of Torr in a
=300 Torr, He undergoes breakdownkg=4.4 Vicm, i.e., focused TEM beam are similar. At the same time, the dis-
charges in the electronegative gasas and Sk) take the
streamer form already at relatively low valuespfless than
100 Torp, but a discharge in He, for example, takes this
form only atp>500 Torr. A significant difference between
the streamer forms of discharges in different gases is the
presence or absence in them of a comparatively small-scale
streamer structure, which is manifested as feathering of the
main discharge channels. For example, while it is practically
absent in H, the rudiments of it can already be seen in He.
The small-scale streamer structure is more pronounced in air,
and in Sk it largely determines the entire outward appear-
ance of the discharge. In He at valuespotlose to atmo-
spheric pressure, the diffuse background and the diffuse co-
rona around the streamer channels are still significant, while
in H,, for example, they are already absenpat300 Torr.
The experiment showed th&,=150p[ Torr] V/cm in
SFK. This value is higher than the value given in handbooks.
The values of Ey/p)pg in H, and He obtained in the
experiments can serve as reference points in devising a
theory for the microwave breakdown of these gases with
FIG. 5. Microwave discharge in helum ap=300 Torr with E,  consideration of the diffusive phenomena in spatially inho-
=4.4 kvicm, mogeneous Gaussian beams.
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This paper gives a theoretical treatment of the distribution of potentials within a Knudsen diode
with surface ionization in the underneutralized regime in the presence of electron emission

from the collector surface. A method is derived to calculate the potential distribution. It is shown
that if the emission from the collector is sufficiently strong, spatially oscillatomavelike™ )

potential distributions do not form; instead, a continuous transition occurs from a distribution with
a virtual anode to one with a virtual cathode. Particular attention is focused on the
neighborhood of the transition point from one of these distributions to the othel 998
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Thermionic converters of thermal to electrical energyter work function. It is worth noting that optimal values of
have their highest efficiency in the Knudsen regime, wherthe barium vapor pressure can only be reached when the
the mean free path of electrons is larger than the intereledarium heat source temperature is 1000 K or higher, and the
trode gap. In this regime, the emitter is simultaneously &collector temperature should be even higher than this. A hot
source of electrons and iorithe electrons are generated by collector coated with barium adsorbed on the surface pos-
thermionic emission, while the ions arise from surface ion-sesses a rather high emissivity, comparable to that of the
ization), and the thermionic converter is a Knudsen diodeemitter, and the emission from the collector can have a sub-
with surface ionization. When there is no electron emissiorftantial effect on the potential distribution. Thus, the inves-
from the collector surface, the ideal current—voltateV) tigation of self-consistent potential distributions that include
characteristic of a Knudsen diode with surface ionizationthe reverse current from the collector is an important prob-
consists of two segments: a retarding segment, over whiclg™M- _ _ o _
the current increases exponentially with increasing collector N @ Knudsen diode with surface ionization, ions flowing
potential, and a saturation segment, over which the current i§ from the emitter neutralize the electron space charge emit-
independent of the collector potential. At the boundary bet€d by both the emitter and collector. The calculation of self-
tween these two segments, the external voltdgaquals the consistent solutions for the potential distribution in the pres-

difference between the emitter work functian and the ence of three groups of particles is complicated by the fact
collector work functionec , i.e.,U=og— oc that these solution depend on a large number of parameters.

In Ref. 1, Dobretsov optimized a thermionic converter inThIS problem was first solved by Mcintyre in Ref. 3; how-

the Knudsen regime without taking into account the specia?ver’ he did not attempt any systematic calculations. In this

features of the potential distribution in the interelectrode gappaper we propose a method for calculating and analyzing the

In Ref. 2, Babaniret al, calculated the optimal parameters potential distribution for a Knudsen diode with surface ion-

. ; o . ization in the underneutralized regime, assuming that the col-
of a Knudsen diode with surface ionization using calcula- 9 g

tions of the potential distribution in which the collector cur lector emission is unbounded. We briefly described some
P results of these calculations previously in Ref. 4.

rerlwlt was neglectgd. 'gz.m Ref. 1H tr;ey to%k Into acc%un't thde 1. One of the important parameters used to characterize a
collector current by adding it to the forward current obtainedy , ,ysen diode with surface ionization is the degree of neu-

from a self-consistent calculation. They showed that a therfralization:

mionic converter reaches its highest efficiency when the

emission currents from the emitter and collector surfaces are 4

comparable. y= n; (0) 1)
In a thermionic converter using Cs as a filler, the cesium ns (0) '

vapor acts both to neutralize the electron space charge and to

lower the electrode work functions. Because the optima{,vherenr(o) andn/ (0) are the densities of ions and elec-
emitter work function is achieved only at rather high cesiumirons emitted from the emitter surface. Decreasing the emit-
vapor pressures, the Knudsen regime can be reached only f@r work function while keeping all the other parameters un-
small interelectrode gapsd€&10 pm). For wider gaps changedfor a Cs—Ba thermionic converter this can be done
(d=1 mm), the Knudsen regime can be reached in thermi-experimentally by increasing the barium vapor presswik

onic converters that use Cs—Ba as a filler. In these deviceslecreasey. As long asy>1 (the overneutralized regime
barium vapor is used as an independent regulator of the emithe saturation current increases with decreasing

1063-7842/98/43(4)/10/$15.00 382 © 1998 American Institute of Physics
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The transition to the underneutralized regime<(1) is 0.025 ¢+ a I
marked by the appearance of a retarding barrier for electron:
near the emitter, which limits the growth in the electron cur-
rent. A characteristic of this regime is the existence of a
potential well for ions. Depending on how efficiently this
well is populated by ions in the underneutralized regime, asg 0.015
v decreases the saturation current is either unchamed- te
plete occupationor decreases. In Ref. 5 the authors advance.
the point of view that the potential well is fully occupied. 0.0
However, in their paper they did not include boundary ef-
fects, which lead to expulsion of ions from the well. More- 0.005
over, nonuniformity of the surface of a real emitter can lead
to the removal of ions, since spots with large work functions
will be effective ion absorbers. This effect is especially im-
portant in the neighborhood af=1, where the well depth is
comparable to the scatter in the values of the work functions
of different spots.

In the calculations described in Refs. 6-9 it was as-
sumed that the potential wells were not populated by ions. In
this case it was found that a virtual cathode appears near th
emitter, consisting of a barrier that retards electrons followed
by an accelerating potential fall. Calculations of the structure
of this virtual cathode showed that its height increases with
decreasingy, and consequently the directed electron velocity v
increases. In Refs. 10 and 11 a method was developed fo
diagnostics of the plasma in a Knudsen diode with surface Yﬂ/\v/\v{lﬂ\vf\v/\véﬂ T
ionization using a transverse magnetic field; in Ref. 12 it was \\
shown experimentally that in the underneutralized regime 2L n W
there is in fact a high virtual cathode, and that the degree ot
occupation of the potential well with ions is close to zero.FIG. 1. Example of a current-voltage-V) characteristi¢a) and potential
Therefore, in calculating the potential distribution in a Knud- distributions(b) at certain points on this I~V characteristic in the underneu-

. . L . tralized regime of a Knudsen diode with surface ionization and a nonemit-
sen diode with surface |0r1|zat|0r1 anq an emlttlng collectorting collector. The value of the interelectrode gamiis 100\ g .
one can neglect the trapping of ions in the potential well.

2. Let us first pause to discuss the basic methods for

calculating potential distributions within a Knudsen diode ,its of the Debye radius, and the potentiad relative to

with surface ionization without including electron emission iha emitter potential is plotted in units ki /e. Here and in
from the collector, and the results that follow. Calculationswhat follows, we will use the following dimensionless coor-

of this kind have been described in a number ofyinaie and potentials:
paper$813-9t is known that for sufficiently large values of
the interelectrode gap, the potential distribution in a Knudsen ¢{=Z/Ap, 7=e®/kTg, u=eU/kTg, (©)]
diode with surface ionization is determined by two externalyherem is the electron mass,is Boltzmann’s constang is
parameters: the degree of neutralization and the dimensiofne electron chargdlg is the emitter temperature, atdl is
less collector potential, and that monotonic potential distrithe external voltage.

butions, spatially oscillating‘wavelike” ) potential distribu- The Debye radius is defined in terms of the emitter tem-

gap. In the underneutralized regime, the minimum value OP

the potential for a nonmonotonic potential distribution is Np=(kTe/2m)*H(e))~V2m= 14, (4)
reached at a point close to the emitter, where the electric field At a temperaturd==2000 K andj=1 Alcn? the De-
is zero. The most detailed discussion of the structure of thgye radius\p=4.6 um. In Fig. 1 the quantityjg, i.e., the
virtual cathode and wavelike potential distributions, and theirconduction current density Corresponding to the boundary of
effect on the 1-V characteristics, is given in Ref. 6. As ang virtual cathode or a wavelike potential distributigoint B
example, Fig. 1a shows several |-V characteristics ¥for in Fig. 19, was used as the characteristic current for a given
=0.01, while in Fig. 1b potential distributions are plotted for \ ;. The dimensionless potentials of the collector, plasma,
a number of points on these |-V characteristics. In Fig. 1laand point of minimum potential are denoted by, 7p, and
the current is plotted in units of the emission current from they, - respectively. In Fig. 1by,, corresponds to the peak of
emitter: the virtual cathode, or the minimum closest to the emitter for
CF Y At 1/2 a wavelike potential distribution. In the underneutralized re-
Je (0)=eny (0)(2kTe/mm) 5 @ gime, the electron conduction current is determined by the
and in Fig. 1b the distancefrom the emitter is measured in value of nc only for large negative values of the collector
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potential, while in the rest of the potential range it is deter- 1
mined by the minimum value of the potential in the inter- 2\ -3}
electrode gap. At large negative collector potentials the po-
tential distribution is monotoni¢curvel in Fig. 1b. PointA
marks the transition to a wavelike potential distribution, 2 3
while at pointB this wavelike potential distribution becomse
a distribution with a virtual cathode. N\ /]
An important feature of the Knudsen regime is the fact
that the potentials at characteristic points of the potential ~3' L ; L
distribution can be found without completely solving the lgv
self-consistent system of Vlasov equations. Thus, when a
virtual cathode is present two conditions hold that allow us 7s
to determinen, and 7, : quasineutrality in the neighborhood 3 2
of the central plateau:

. - Ta
nl|77=77p n9|77=7/p 5 sk,

and average neutrality over the external part of the virtua|: _ _ . L

. , . IG. 2. Region of existence of various types of potential distributions in a
FathOde- Th's follows from Gauss S theorem and the V_an'ShKnudsen diode with surface ionization and a nonemitting collectos-
ing of the field at the peak of the virtual cathode and in themonotonic potential distributior2 — wavelike potential distribution3 —

plateau region: virtual cathode.
7p
J,,m(n‘( 7) = Ne(7))d7=0. ©) It can in fact be shown analytically that a cold collector

cannot support a state with a quasineutral plasma wijen
In Eq. (6), the integration over coordinates has been redies betweeny, and g . To show this, let us consider, e.g.,
placed by an integration ovey. In fact, from the Poisson a monotonic potential distribution witlyc=7,, and then

equationdE/dz=4me(n;—ny) it follows that increase the value afc somewhat. The potential plateau, if
1 d(E?2 one exists, should be smaller thgg. Then the condition of
- ( )=47-rEe(n-—n ). guasineutralityn;=n, must hold at the boundary between
2 dz boe the plasma and the cathode fall, and
By integrating this equation between the peak of the vir-  d(n;—ng)

tual cathode and the plasma plateau, and taking into account dy ~ <0. (7

thatE=—d®/dzandE?|,_, =E?,- »,= 0, we obtain Eq. 7= o0

(6). This relation follows from Gauss’s theorem, taking into

The functionsn; andn, are proportional ts."(0) and ~ account the sign of the electric field in the cathode sheath
nZ (0), anddepend not only on the local potential, but also region. The densities of ions and electrons for these specific
on values of the potential at several characteristic points oASsumptions are determined in the following way:
th_e pptential di_stribution_ to be_ found: When th_e velocity dis- n= ni+(0)exer$— 7, ®)
tribution of emitted particles is semi-Maxwellian, the func-
tions n; and n, can be calculated analyticallithe corre- Ne= ng(O)e”p exergn—1,). 9
sponding expressions for the more general case of a Knuds x
diode with surface ionization and an emitting collector will(?_i]ere exers()=e’(1-erfyx), and
be given below In this case, the integral in E¢6) can be 2 (x
done analytically as well. This system of transcendental erf(x)= \/——f e “dt.
equationg5) and(6) can be used to find values gf, and 7, 0
for given y and 7¢. In taking the derivatives in Ed7) it is seen that a term

For a wavelike potential distribution, it is necessary tong(O)exp(np)/(w(n— np))l’2 appears irdn./d», which goes
fix »m as a parameter, i.e., the value of the conduction curto +% as 7— 7,0, While the remaining terms are finite.
rent (j =exp(y,)). Thenn, can be found from an equation Consequently, conditiori7) is not satisfied, and solutions
analogous to Eq6) (Fig. 10, and»; from the condition that ~ with a quasineutral plasma cannot exist #g™> 7, . It can
the charge equals zero in the strip,(,73). It is easy to find be shown analogously that no stationary regime can coexist
the boundaries of the region where wavelike potential distriwith a quasineutral plasma fat7,<7g as well. Conse-
butions occur by settinggc= 77, for a monotonic potential quently, in the interval 4,B) only wavelike potential distri-
difference or a virtual cathode. In Fig. 2 these boundaries arbutions can occur.
plotted as functions ofy: na(7y) is the boundary between The authors of Refs. 6 and 7 made detailed calculations
monotonic potential distributions and wavelike potential dis-of wavelike potential distributions in a Knudsen diode with
tributions, andxg(y) is the boundary between wavelike po- surface ionization and used them to construct the portion of
tential distributions and a virtual-cathode distributions. the 1-V characteristics in the range,<nc<#ng. They
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showed that in this range there are many regions on the |-V
characteristic with negative internal resistance. The |-V
characteristic shown in Figure l1a, which corresponds to a
wavelike distribution, is bounded by the curvigs D, L, U
Changing the magnitude of the interelectrode gap changes
the |-V characteristics; specifically, increasing the gap in-
creases the number of segments with negative resistance.
However, for values of the gap larger than a certain mini-

2.0F

N\

mum value (-10\p) the |-V characteristics are confined 1.0
within the region bounded by the curv&s D, L, U Thus,
the appearance of wavelike potential distributions for a cer- 0 1 L ; s

tain set of values of the collector potential is a characteristic
property of a Knudsen diode with surface ionization and a
nonemitting collector. g
In Ref. 3 Mclntyre investigated the effect of electron
emission from the collector theoretically for the first time,
and showed that the solution to this problem depended on
many parameters. In addition to the degree of neutralization
v and the dimensionless collector potentigl, he intro-
duced two more dimensionless parameters8c
=n_ (n¢c)/ng (0) (whereng (7¢) is the density of electrons
near the collector that leave its surface and move toward the -1.2 1 1 1
emitte) and®* =T /Tg. It was noted that the ion and elec- 0
tron densities depend on both the local value of the potential
n and on the shape of the potential distribution. An analyti-
cal expression was obtained for the square of the electric

N |

'
S
-+

. D

o o

\

field in the form of a certain functiog(»;y, 7¢c,Bc,0%), ~1.8¢F
where o,
4 _ % 2.8+ '::.\/
dg(n)/dn=ng (7)+ Bcne (0%, 7)— yni( 7). \
The terms on the right-hand side of the equation are the ~d8r
densities of electrons emitted by the emitter and collector -4 . . \ ,
and the density of ions at a point with potential Mcintyre '80 5 120 15 20 25

developed two procedures to find the potential: in one, he
directly integrated the Poisson equation, while in the other he
integrated a first-order equation in which the derivative of
the potential is written in terms of the functign The results -12
of these calculations are shown in Fig. 3. It is worth noting
that these calculations were done for various collector poten-
tials belonging to the same |-V characteristic, and for
close to the region of transition from overneutralized to un-
derneutralized. Specifically, the external parameters were: -5.2k
v=0.9,8:=0.5, and®* =0.5. A comparatively small value
of the emission current from the collector was chofsarout
035, (0)]. % wm L

Mclntyre’s calculations covered only a few examples
and in fact serve only as rough estimates of the effect ofIG. 3. Computed potential distributions gg changes, based on Ref. 3.
emission from the collector. In discussing his results, he
mentions that the region of wavelike potential distributions
turns out to be quite sensitive to change@in. However, he  so large that the flux of electrons entering the plasma is lim-
obtained no systematic data on account of the large numbéed only by the potential barrier near the collector, and not
of parameters and the complexity of the calculations. Suclthe collector emissivity. Discussion of this limiting case re-
data are clearly necessary if the role of collector emission iseals how strongly emission from the collector can affect the
to be understood, with particular attention paid to the case gbotential distribution.
strong emission. At rather large negative voltages, emission from the col-

3. Let us now consider a Knudsen diode with surfacelector leads to the appearance of a negative current in the
ionization in the underneutralized regime with an emittingcircuit — that is, a region of reverse currents appears on the
collector. We will assume that emission from the collector isl-V characteristics. An example of the potential diagram
unbounded. This implies that emission from the collector isfrom this region is shown in Fig. 4. When there is no emis-

-J.2
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InT— Fi(n)=exerg—n);
a
| Fee(7, 7m) = 2€7—e"mexers n— 1),
1 2 Fec(7,7m,0) =exers(n—7y,)0). (12
Xe Here ®=Tg/T-. The condition for quasineutrality of the
% Im plasma can be written as follows:
77
g 5 F(7p,7m) =0, (13
where
Xe u F(ﬂpaﬂm):'yFi(ﬂp)_FeE(npynm)
_IBFeC("]pJ]ma®)- (14)
L I T Here the functiond=;, F.g, andF.c are determined from
7 Eq. (12) for »=n,, v is given by Eq.(1), and
FIG. 4. Potential diagram for a Knudsen diode with surface ionization and a _
virtual anode:1 — boundary of the cathode sheath,— boundary of the _ Ne (77m)

virtual anode 3 — top of the virtual anodey,; = 7,= 7y, 73= 7. n+(0) ’ (15
e
It should be noted that the paramegdepends ony,,,
and consequently on the potential distribution to be found.
Equation (13) relates the potentials at pointg, and »y,
(points3 and2 in Fig. 4). A second equation that relates the

sion from the collector, a large negative voltage will always
correspond to a monotonic potential differen@dgg. 1b.

Now, however, this Is n_ot_ SO: near th_e c_oIIector, a Vlrtualpotentials at these points can be derived from the condition
anode forms, and the minimum potentigl, is now located

near the anode at the virtual anode peak. In this otentit at the total charge equal zero in a layer between these
. . o peax. P oints, analogous to the derivation of E§). These contri-
diagram the following notation is usegz=e@g/kTg and

. L . : butions to the charge we denote by (0)G; , ,
xc=eec/kTg, i.e., these guantities are dimensionless work li' ge w by (0)Gi(7p, 7m)

functions of the emitter and collector respectively. It is clearggr(l(gG(eE(np )7] :g) ,CZ::: i?;tég”g G;\(t:én?at?r;n i?])e Eg?r;in%—n 4-
from the figure that the effective work function of the col- s\ 7p » 7m y Integ g b

lector v equals ing function F between the limitsy,, to 5,. For an arbi-
Xc €d trary interval A,B) we have
Xc=XxcTA. (10) .

Here A is the height of the potential barrier for electrons Gs(A.B)= fA Fs(n)d7. (16)
emitted by the collector. The density of charged particles at - )
an arbitrary point between the emitter and the virtual anode  The condition that the total charge equal zero in the layer

is determined as follows: (7p,7m) has the form
n(7)=n"(0)-Fi(7); Neg=ng(0)-Fee( 7, 7m); G(7p, 7m) =0, (17)
Nec=ng (7m) - Fec 7, 71m)- 1y “Where

Heren, (#,,) is the density of electrons expelled by the col- G, 7m) = ¥Gi(7p. 71m) = Gee 7p ., 7m)

lector and arriving at the virtual anode, evaluated at the peak —BGec(7p, 7m)- (18

of the latter(at the point,,). As a unit for measuring the
density of electrons emitted by the collector, we choose th
quantityn, (»,,) rather tham, (n¢c) (see Ref. B which is
natural when the emission from the collector is unbounded. f
The functiong= are labeled so as to indicate the origin of the
corresponding particles. Since all the potentials are measurdtherelr () =exers() +2(n/m)*2,

in units of kT /e, the functionF (7, 7,,) depends on the It is clear from Eq.(12) that calculating the functiof®
ratio of the emitter and collector temperatures. For a fixededuces to calculating integrals like EQL9) between the
value of this ratio the quantityi; (7, is determined by the POINts 77, and 7y, In this case

minimum potential in the interelectrode gap and does not G=—Ir(—n)|":

depend on the collector work function. Ag varies, redis- ' m'
tribution of the potential takes place only within a narrow

ét is easy to show that

Bexer$7;)d7;=lr(B)—Ir(A), (19
A

Gee=(2e"—e"mlr (7= 1m)| P;

1 Ry
layer between the top of the virtual anode and the collector. GeC=6|r(77)|g’7p e (20
Let us assume that the emitted particles have a semi-
Maxwellian distribution with respect to velocity and tem- In order to find#n, and 7, it is necessary to solve the

perature of the corresponding electrode. Then the functionsystem of transcendental equatidh8) and(17). In this sys-
Fi,Feg, andF ¢ take the following fornf tem B cannot be treated as an independent parameter. Let us
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show that it can be expressed in termsygf and the param- do.ou
etersyg, ® andu. To do so, we use several additional i )
relations. From Eq(10) and the potential diagraffrig. 4) it {
follows that \
-10.03
Xe=Xet U= 7. (21 3
For electrons that enter the interval between emitter and 1 0.0z
the point#,, (points0 and3 in Fig. 4), we have the follow- )
ing absolute values of the currents: )
. _ o P 2 +
jS(0)=ATZ-e 7%, o (nm)=ATz-e . (22) Ho.01 £
[
From this 4 |
() L BslTm I ' 0
Je (7m _ -20 ~10 * p=
T =0 Zexpxe— OXE). (23 N
je (0) 7
If we take into account that electrons at the top of the -1-0.01
virtual anode moving toward the emitter have a semi-
Maxwellian velocity distribution with a temperatufe., and !
thatj,=en,- vt for the semi-Maxwellian distribution, where ! —4-0.02

the thermal speed of the electrons~T*? [see Eq.(2)],

then using Eq(]_5) we obtain for the left-hand side of Eq. FIG. 5. n-dependence of the charged particle density over the external
(23) portion of the virtual anode#,,73). xg=15,0=2,u=-25;1 — yE;,
2— FeFv 3— ﬁFer 4— (nifne)/m;(o)-

J;( Mm) _ B (24)
INORRC) 4. The parameters that characterize the peintan be
found analytically. In the region between the poings
=7, and 3=, (Fig. 4) the charge density, i.en;—ng,
B=0"32.exp((7n—u)® — xg(®—1)). (25) should change sign, otherwise, its integral over this layer
. N cannot equal zero. Therefore, the functiop-n, goes to
Note thatB depends oru in addition to the external zerq at least twice: at the poing, (according to the condi-
parametersd and yg. Now the system(13), (17) can be  ton of quasineutralityand at some other point on the exter-
solved and the quantitieg,, 7, found, and theB can be g portion of the virtual anode. As an illustration of this, in
found from Eq.(25). Knowing 7y, and g, it is easy to com-  Fig 5 the dependence af—n, on 7 is plotted on the inter-
pute the current in the external circ@ithout including the /5 (72, 73). Note that at the poini, we must haved(n;

Finally, taking Eq.(22) into account, we have

ion curreny —ng)/d%<0 in order for the quasineutral plasma potential

. - L to match the potential fall. Between the two points at which

i _Je(mm—] (’7”‘)_ the function f;—n,) goes to zero there is a point where it
jg(O) je (0) reaches a maximum. Consequently, in the intervgl, ¢73)

there necessarily exists a pointhich we denote by;*) at
which the derivatived(n;—ng)/d#» vanishes. As the height
OéT the virtual anode decreases we hayg— 7,, and all
three pointsys, 77,, andz* approach infinitesimally close to
one another as well as tg,, .

Using the expressions fd¥s from Eq. (12), we obtain

Here j (7, is the fraction of electron current from the
emitter that overcomes the virtual anode and reaches the ¢
lector. It is obvious that, (7m) =]4 (0)exp@). Taking Eq.
(24) into account, we have

J =@m— A _ (26)  after differentiation
i+
je (0)
d(ni_ne) N % *
Thus, for a givenu the current is determined, i.e, we — ~ g, *——VFi(n )~ Fee( 7", 7m)
have found a point on the -V characteristic. n=n
The external parameters that determine the form of the — 0O BFec( 7%, 9m,0)+ yI—77p*
-V characteristic arey, yg, and 0. If for fixed values of .
these parameters we increase the voltageeginning with —e7” IN7(n* = nm)
large negative values, the height of the virtual ano
ge ned g % { +BING T = 7. @7

— 7m) Will decrease and eventually will go to zero. The po-

tential of the plasma at which this takes place we denote by  As 7,— 7,, the last two terms in E¢27) become the
7, for the case of a nonemitting collector it corresponds tomain ones, each going to infinity ag®— 7,. In order for
the transition from a monotonic potential distribution to athe derivative(27) to go to zero in this limit it is necessary
wavelike potential distributiofpoint A on Fig. 1. that
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TABLE I.
lgv 11
-2.5 20 -15  -10 -0.5 [ 0.5 i it
< LA 4 l ; < Y ] Ug Jalie (0) Ta Ba
% 02 16 —7.23192 0.0133037 —3.50178  0.0238305
1.8 —-853668 0.0137910 —3.47281  0.023128
2.0 —9.57041 0.0159099  —3.44767  0.022500
22  —10.4809  0.0177439  —3.42558  0.021932
] 24  —11.1016  0.0193525 —3.40593 0.021415
-3 26  —11.6834  0.0207790 —3.38830  0.020941
& 28 —121785  0.0220556 —3.37236  0.020503
30 —12.6048  0.0232071  —3.35783  0.020098
01 16 —7.52310 0.00519999 —4.27827  0.010963
-5 18 —8.88207 0.00634015 —4.24990 0.010633
2.0 —-9.95982  0.00731058 —4.22529  0.010339
22  —10.83312 0.00814945 —4.20366 0.010073
24  —1155570 0.00888458 —4.18444  0.0098314
-4-7 26  —12.16270 0.00953578 —4.16720  0.0096100
28  —12.67946 0.0101181 —4.15160  0.0094060
FIG. 6. The functiony,(y) for various values 00.0:1—2,2—3,3— 3.0 —13.12447  0.0106492 —4.13739  0.0092171
10,4 — 100,5 — . 001 16 —8.46136  0.000425978 —6.78029  0.00089804
1.8 —9.99439  0.000519007 —6.75286  0.00087023
20 —11.21116 0.000597756 —6.72920  0.00084534
22  —12.19936 0.000665757 —6.70840  0.00082294
Bl, . —emd\®. (28) 24  —13.01724 0.000725295 —6.68988  0.00080263
m™ 7p 26  —13.70488 0.000778027 —6.67324  0.00078408
The condition of quasineutralityl4) for »,= 7, then 28 —14.29088  0.000825034 —6.65824  0.00076698
L 30  —14.79591 0.000867390 —6.64455  0.00075119
simplifies to
YFi(n,)—e%—p=0. (29
Using Eq.(28) we obtain a relation between the potential method for two dimensions. In the plang , 7, we choose
at the pointa and the parameterg and O: three points that do not lie on a line, and at these points we
e7a calculate the quantitie;. We then pass a plane through the
y= ﬁ(]ﬂ‘ 1/{0). (30)  corresponding three points in the spdg¢e7,, 7m, and find
i\

its line of intersection with the plang;=0. An analogous
From this it is easy to find the quantity, giveny and  line is found forf, as well. Then the point of intersection of

0. From Egs.(25), (26), and(28) we have at the poini these lines is chosen as a new point on the plape 7,
) and the procedure is repeated. This iterative process is con-
Ja —e7a(1-1/0) tinued untilf, andf, become smaller than some given value
ja (0) ’ (in these calculations, usually 16). This process converges
quite rapidly, but in the neighborhood af, complications
Uy=(7,=xe)(1-1/0)—In 6/06, sometimes arise due to the closenesgpfind 7, .
B.=e"/ 0. (31)
Note thaty,, j,, andg, depend only ony and®, and 170 ] 20 25 Le
that the only quantity that also depends on the emitter work ' ' ' '
function yg is the potentialu, of the external circuit at the \
point @. The quantityu,, is conveniently written in the form 1
of a sum of two termsi"(y,0) +u®(xe,0). Here ,
uM(7,0)=7,(70)(1-1/0)—In /0, -10 5
U (xe,0)=~xe(1-1/0). 3 4
In the limit ®—~ Eq. (30) goes over to the function 3
na(y) for a nonemitting collectofFig. 2). Figure 6 shows 6
curvesy,(y) for various®. Table | lists values of the re- ~a0r 7
maining quantities at the point for yg=15, y=0.2, 0.1,
and 0.01, and a number of values®f In Fig. 7 the func- 8
tionsu'®(xg) are plotted for several values 6. 9
5.1In order to investigate the regian<u,, it is necessary
to solve the system of two transcendental H@8) and (17) ~d0r 10

using Eq.(25). Let us denote the left-hand side of H34) FIG. 7. The functionsi®(xg) for various values oP. ©: 1 — 1.2,2 —

by f1(7p,7m) and that of Eq(18) by f5(7,,7m). Tosolve 143164 —185— 2.0,6— 2.6,7— 3.0,8 — 5.0,9 — 10.0,
this system numerically we used the generalized chordo— .
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In order to study this region we can linearize the system

of Egs.(13), (17) in the neighborhood of a known solution
(%..u,). Let us setu=u,+u. Using the notation7,,

=W~ %a, Mp=7p(U) = e, B=B(U)—Ba, and
0=y~ Pm= Mp— Wm,» WE Obtain after linearization

B=B 11— 1)0;

oF,
Fi:Fi(Ua)JFE

Mo s
N=TNy
OF o ~  OFe
Fee=Fee(7.)+ an | Mt — 0
n=1,
Fec=F o PFec 32
ec=Fec(7,) 9o g. (32

We then substitute Eq32) into Eq. (14) and group all
the coefficients ofr:

(9FeE &Fec_ e’a ®Ba

+ — _
do Pa do Voo 7Oo

—0B,=—e"/0.
(33

Here we have used the definition Bf, given in Eq.(31).

Substituting Eq(32) into the quasineutrality conditiofiL3)

and using Eq.(33) and the definitions ofr and B,, we
obtain

R~ -
Vol e € mpm e O~ =0,
n=mn

a

HeredoF;/dnl,-, =1N—mn,~Fi(1n,). From this we find

- \/6e77a

mo=koll Ky= .
PP P (1+)e_7’a—y(9Fi/(97]|,7=,7a

The coefficientK, as a function ofy,,(u) in the neigh-
borhood of the pointr is determined from the condition that
the charge within the exterior part of the virtual andde)
equal zero. For this, the functiorfs; in integrals like Eqg.

(16) are expanded out to terms of first order of smallness, the

integration is performed, and values Bf are substituted
along with their derivatives at the poiat. It turns out that
Kn=Kp.

We can continue the expansion of the functiopsand
7m iN powers ofu. Let us consider the solution in the form

M= Nat Knl+BnU? 7= 7,+K,u+Bu? (34
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A= yiF; 17|, —(1+0)e,

B=2/Jm(K(1—0)+0)e7,

2
= L

(36)

1
C=0%K—1)%"+K2e«— > yK29F? a7

Thus, when the virtual anode disappears, the functions
7m(u) and n,(u) have a common point and the same de-
rivative at that point. As we move in the negative direction
with respect tau,,, these curves at first almost coincide, and
then they diverge; the absolute valuegf increases some-
what more rapidly tham,, i.e., a virtual anode of consider-
able height appears.

In order to investigate the evolution of the potential dis-
tribution asu changes, we developed a special program. The
primary task of this program is to calculate the quantities that
are characteristic of the state In the neighborhood of this
point the values ofy, and 5, are found approximately using
Egs.(34)—(36). Then these values are refined using the pro-
cedure described above, which generalizes the chord method.
Each time a new value af is chosen, approximate values of
7, and 7, are found by extrapolating the corresponding de-
pendences at the previous points.

6. Let us now discuss how the potential distribution
changes fou>u,. As we have said, when the collector is
nonemitting the transition to this new potential arrangement
eliminates distributions with a quasineutral plasma. The im-
possibility of matching the potential of the quasineutral
plasma with that of the anode sheath stems from the conflict-
ing requirements imposed on the behavior of charge in the
sheath by the charged-particle equations of motion and by
the the Poisson equation. This conflict strongly perturbs the
potential distribution over the entire gap, leading to a transi-
tion to the wavy potential distributiofFig. 1b, curvedll,

IV). This nonlocal effect of a change in the external voltage
is characteristic of the Knudsen regime.

The presence of emission from the collector changes
things considerably. As we already noted in deriving Egs.
(27), (28), in the neighborhood of the point the reverse
current from the collector is redistributed so as to compen-
sate the infinite contribution téF.g/dn as n—1n,. As a
result, the height of the virtual anode can go smoothly to
zero. Foru>u, emission from the collector compensates the
infinite derivative F.g/d 7. As a result, the conditiong) for

obtain

n=K,=K=—0e"/A;

2
Bn,=C/(2A)+ §(B/A)2;

B,=C/(2A)+ g(B/A)Z. (35)

Here

potential of the anode sheath can be satisfied, and it becomes
possible for a virtual cathode to appear in the neighborhood
of the pointa.

The potential diagram for this proposed potential distri-
bution with a virtual cathode is shown in Fig. 8. Now the
fundamental characteristic points of the distribution of poten-
tial turn out to be pointl with potential »,,, and point2 with
potentialn,. The passage from virtual anode to virtual cath-
ode leads to a change in the functiég. On curvel the
collector potentialyc<0, and forn,<n<n, we havé
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FIG. 8. Potential diagram for a Knudsen diode with surface ionization and a
virtual cathodel — top of the virtual cathode2 — boundary of the cathode
sheath;n,= 7, 7,=7,; ee — Fermi level of the emitterEc — Fermi
level of the collector.

FIG. 9. The functionsyy,(u) (curvel ) and n,(u) (curvell ).

trode gap. For example, we can find the electric field at an
arbitrary point» on the segment between the top of the
virtual anode(or virtual cathodgand the plasma plateau. We

Fi(n)=exers—7n);  Fee(n)=e™exersn— nm);

Fec(7)=2e°7" ) —exerg®(n— npy)). (37

Note thatF;(#) changes whem:>0, and the ion den-
sity increases due to reflection from the anode sheath.

Let us continue this discussion fg<<0. We now must
satisfy Eqs(13) and(17) using the function$ of Eq. (37)

denote the dimensionless electric field at the pajnby
e(7). If we choose the Debye radius E¢) with character-
istic currentj = (0) as the unit of length, convert E) to
dimensionless variables, and integrate frgmto », we ob-
tain

and the functionsGg calculated from them. For a virtual

n

cathode, all the considerations invoked in deriving Egs. —582(77)2 (nij(np)—ng(n))dy

(21)—(26) remain in force. In particular, Eq25) and the Tm

equation for the curren26), which relateg to »,,, and the or

external parameters, are still valid. All the conclusions of

Sec. 4 still hold, and in the limit as the height of the virtual - 582( 7)=G(7,7m) = YGi( 7, 7m) — Gee 7, 7m)

cathode goes to zero a transition occurs to the same state
as the one in which there is no virtual anode.

Proceeding by analogy with our discussion of the virtual
cathode region in Sec. 5, we investigated the curyg) The functionG, can be calculated analytically from Eq.
and #,(u) in the vicinity of the pointa. We showed that (20) with 7, replaced by,, and consequently the function
here K,,=K,=K as well. Furthermore, the values of the (%) can be found analytically. Using the known function
coeﬁ|C|entsK Bm, andB, do not change as we go from the €(7) and the relatiors=—d#/d{ it is easy to find the po-
virtual anode region to the virtual cathode region. Thus, atential distribution(Z) on the segment#y,,7,) as well.
the pointa the curvesy,,(u) and 7,(u) are tangent to one Analogously we can construct the potential distribution on
another, and the point of tangency is approached very
smoothly(Fig. 9. The quantitiesp, and »,, were calculated
in the neighborhood of the virtual cathode using the same
scheme that we used in the neighborhood of the virtual
anode. Figure 9 shows the functiong,(u) and »,(u) for
vy=0.01, yg=15, xc=7.5, and®=2.0. It is clear that for
large negativeu the potentialy,, decreases almost linearly
with decreasingu, while the plasma potential is practically
unchanged. Because of the continuity of the derivative
d#»,/d#n at the pointa, no kinks are observed in the |-V

= BGed( 7, 7m)- (39

10.03

characteristics as we go from the virtual anode region to the N . o _~ N 0
virtual cathode regiofFig. 10. It is seen from the figure that -25 -20 -10 -5

a kink occurs au= yg— xc=7.5, marking the point where 1 U

reflection of ions from the anode potential fall begins. .01

7. 0nce the potentials at the characteristic poipssand

7m for fixed external parametgrs a.nd_a g_i“e“_nre foqnd, it FG. 10. Computed 1-V characteristic of a Knudsen diode with surface
is easy to calculate the potential distribution in the interelecionization and an emitting collector.
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and possesses a high emissivity due to barium adsorbed on
the surface. We can decide whether or not a collector possess
“unbounded” emission by measuring the collector current
as the emitter temperature changes. Increasinfpr fixed y

and T¢ leads to an increase in the flux of ions and to a
decrease in the height of the virtual anode. As a result, when
the emissivity of the collector is high, increasifig must
increase the collector current. If, however, the current is lim-
ited by the emissivity of the collector, its value will not
change. Experimental studies over a wide range of emitter
temperatures show that the collector in a thermionic con-
verter with Cs—Ba filler satisfies the criterion of unbounded
emission. Thus, the assumption made in these calculations
that the collector emission is unbounded turn out to be close

FIG. 11. Potential distribution at points labeled on the -V characteristic oft0 the real situation in thermionic converters with a Cs—Ba
Fig. 10. .
filler.
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A new parameter is proposed for characterizing boundary friction between solids—the
probability Q that some contact spot will be converted to a wear particle as the real contact area
shifts by one mean contact-spot diameter. A method is proposed for the phenomenological
detection of optimum regimes of boundary friction, which are characterized by the minimum wear
intensity of the sample material, and for measuring the corresponding qu@ntiQ°". For

babbitt, one of the most frictionless materials, the valu®8t is found to be~2x 10 %% When

data on the linear wear intensity, the contact pressung,, and the hardnedd are

available,Q can be calculated for the given test conditions. Deviation® dfom the valueQ°

(for a given materiglcan serve as a criterion for how closely a prepared surface structure
approaches the optimal. @998 American Institute of Physids$S$1063-784£98)00904-(

It is customary to sort the various friction mechanismsmade of a given material rather than the wear resistance of
into three basic categories: dry, boundary, and liquid. In drythe material itself. A quantity that is somewhat more useful
friction, the interaction of the bodies in contact is so strongin this regard is the so-called wear factdr, defined by the
that it often leads to scoring, which limits the use of dryrelation ®=1,/p,,, wherep, is the nominal contact pres-
friction in practical applications. Dry friction is also charac- sure. However, this quantity is also unsatisfactory, since it
terized by intense wear. In liquid friction, the bodies in con-can be completely different under different external condi-
tact are separated by a layer of liquid lubricant and are not iions and at different stages of the wear process. Moreover, it
contact with one another, which leads to almost no weardoes not take into account the differing wear resistances of
Only in boundary friction, which is intermediate between materials with different strengths or hardnesses. Samples
liquid and dry friction, can we conveniently observe andmade of harder materials may have better wear resistance
study the run-in processes that are characteristic for variou$an softer materials, but this tells us nothing about their
materials in contact:3 These processes give rise to changesperformance under optimal conditions, for which their wear
in the surface structure of the contacting bodies at the macragesistance could be even highghe wear resistance is in-
and microscopic levels that lead to minimum wear intensityversely proportional the wear intensity or the wear factor
for a given set of friction conditions. In Ref. 6, Archard established that the following relation

In determining the wear intensity of materials, the testholds for dry sliding friction:
conditions and materials that make up the bodies in contact I =k )
are usually chosen in such a way that the wear on one of the " Pn.
bodies can be neglected, while the second body whose weaiherek is a constant coefficient.
is being measured is used as a test sample. This leads to the |n the literature it has been reported more than once that
following question: does there exist some material charactera certain range of contact pressures exists for which the
istic that will indicate an optimum regime of boundary fric- quantityl,, is a linear function ofp,,, not only for dry fric-
tion (and probably an optimum structure of a sample supfacetion but also for other kinds of friction. Constancy &f
and accordingly the minimum wear intensity of the samplewithin this pressure range implies that the wear mechanism
material under various test conditioffgressure, type of lu- is not changing. On the other hand, the pioneering studies by
bricant, etd? A second question also arises: can we charackhrushchoV of sliding friction between nonconforming bod-
terize wear for a set of materials with the help of this quan-ies in lubricated contact revealed that over a wider range of
tity and rank these materials based on its corresponding,, friction with lubrication is characterized by a more com-
values? plicated functionl,=f(p,) (Fig. 1), with intense wear ob-

In this paper we will attempt to answer these questionserved on segmeit(p,<p,<p,), followed by a sharp fall-
by evaluating those properties of materials that are relevardff in the wear on segmert (py<p,<pp) and practically
to the problem of optimizing surface structures so as to minino wear at all on segmehtl (p,<pog).
mize wear intensity during boundary sliding friction. Unfortunately, the literature contains very few system-

The magnitude of the linear wear intensity is often  atic studies of boundary friction between two bodies of the
cited as a characteristic of wear resistahd¢¢owever, this same kind in contact over a wide range of external condi-
guantity depends on the test conditions, and tends to measutiens. In Ref. 8, Markov showed, in agreement with our own
the wear resistance of machine components and mechanismpecessing of Khrushchov's détésee belowy, that wear is

1063-7842/98/43(4)/4/$15.00 392 © 1998 American Institute of Physics
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regime in which the curve is directed toward the coordinate
| origin. Note that the functions,(p,,) shown in Fig. 2 are

| plotted in logarithmic coordinates in order to include all the

: experimental data. In ordinary coordinates, straight-line seg-
I ments likelll that point to the coordinate origin become

; more extended. We will assume that it is these segments of
| type lll that characterize the approach of the surface struc-
: ture to optimal under the conditions of our tests. This as-
{ sumption is confirmed by the fact that these typeseg-

= ments lie on the same straight line for both experimental
} curves(line 4 in Fig. 2) and are in fact continuations of each
|

|

!

!
r

other.

Processing of the results of another series of tests of the
same materials gives cur@dn Fig. 2. This curve exhibits no
typedll segment, probably because we did not obtain any
lower values of the pressufand in this case the test lasted
FIG. 1. A plot of linear wear intensity versus pressure under conditions of12 days). However the lowest point on cun& correspond-
lubrication according to Ref. 7. ing to the smallest value df,, obtained, falls right on the
same straight lind (Fig. 2). Thus, the straight lind in Fig.

2 describes a function of typd):

observed on segmeinitl (although it is sma)jl To illustrate

this, let us use the results of Ref. 7 mentioned above, which | OPt= K %Pl . 2)

are unusual in that their experimental conditions involve the

same two materials. In these experiments, a rotating cylin- The same coefficient of proportionalitg°"* character-
drical ingot of St-45 steel was placed in contact along azes the minimum observed wear intensities for all three ex-
generator of the cylinder with a stationary flat sample madgerimental curves shown in Fig. 2 obtained under various
of babbitt B83(83% Sn, 11% Sbh, 6% GuThe lack of mat- initial loads and various types of lubrication. As we men-
ing of the contact surfaces led to a constantly changing cortioned above, constancy of this proportionality coefficient in
tact area, allowing us to obtain valueslgffor babbitt over situations described by functions likd) implies that the

a wide range of pressures. wear mechanism does not change. Consequently, we may

Using the tabulated data given in Ref. 7, we were able tassume that when we fix all the friction conditions except the
construct the functiom,(p,). For two such functions,(p,,) dependence on load and type of lubricant, the wear mecha-
(Fig. 2, curvedl, 2) we observed a bend at the lowest inves-nism is the same for the wear curves shown in Fitptdeast
tigated values op,,, corresponding to a transition to a wear for curvesl1 and 2) at the minimum values of the external
pressure. Since in this case the wear is minimal, we will
assume that the corresponding surface structure of babbitt
under friction is optimal for the conditions of boundary fric-
tion. This optimal structure does not depend either on the
applied load or the type of lubricant. Its wear is described by
the function(2) and is characterized by a linear wear inten-
sity for optimal boundary frictior 2.

Let us attempt to understand the physical meaning of the
coefficientK P in expression(2). For further mathematical
calculations we will follow Ref. 6 and assume that the wear
particle volumeVy is proportional to the area of the contact
spot. Then we have

2077

07?

T T 1117

Vy~Ahd?, 3

5‘l
]
LERALREALY |

whered is the diameter of the contact spot aadh is the
height of the wear particle.

Let us denote by the number of contact spots con-
verted into wear particles and detached as the surface is worn
107" N B W | il down when the real contact area shifts by the average diam-

170° 10’ y/ad eter of a contact spot. Then the probability that any given

Py»MPa contact spot is converted into a wear parti@le principle,
everal wear particles can be formed out of one contac} spot

T |ll|||]

FIG. 2. Plots of linear wear intensity versus pressure constructed from datg
presented in Ref. 7. Material — babbitt B83, rotating ingot — St-45 steel.€quals

The rate of sliding was 3 m/s. Loads i 1,3— 100,2 — 300. Lubricants:

1,2—Avtol, 3—kerosened—the functionl ,=kp, . Q=aln, (4)
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wheren=A, /d? is the overall number of contact spots that
make up the real contact aréa.

Combining expression&) and(4), we find the specific
volume wear during a shift by one contact spot diameter:

Ve=QnAhd?. ®)

It is well known that the magnitude of the specific wear
intensity is determined by relatin

in=Ve/A.d. (6)
Substituting Eq(5) into Eq. (6), we obtain

~_ _Ah .
h=Q- (7)

On the other hand, in steady-state wear regimes the mag

nitude of the intensity of linear wedy, is connected with the
specific wear intensity,, by the following relatiofi

A 8

h_IhA_n, ( )
whereA,, is the nominal contact area.

If, as in Ref. 9, we assume that

3F,
Ar% H ’ (9)

whereF , is the normal load an#i is the Brinell hardness of
the material, then taking Eq$6) and (8) into account, we
obtain

3AhQ

|h%an- (10

In Eq. (10) we have the relatiomh/d<1; equality to
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FIG. 3. Dependences of the probabilities of formation of a wear part@le,
on the pressure, for wear-resistant antifriction materials. The curves and
experimental points are labeled with the number of the material in Table I.

the wear particled h andd, and the coefficien® that char-
acterizes the stochastic character of the process.

It is natural to assume that for the optimum regime of
boundary friction the probability of forming a wear particle
from a given contact spot is a minimum. Let us denote it by
Q°" In order to determine the value Q" for babbitts we
used the plots given in Fig. 2. Using cur¢€Fig. 2), we can
compute the coefficierit°, and use it in Eq(10). Then if
we setAh=d and use well-known data on the hardness of

unity corresponds to the case of a wear particle with in thebabbitt, we can compute the quanti®°P'=K°PH/3. This
form of a lump, which is observed quite often in the wear ofvalue, which appears in Fig. 3 as a horizontal line parallel to

metals. During the wear of polymer materials the wear parthe abscissa, can serve as a single reference parameter to

ticles can have platelet shapes, and then the catiéd is
considerably less than 1.

Thus, comparing Eq€2) and(10) allows us to express
the coefficientK°™ in terms of a number of physical quanti-

characterize the minimum wear for well tested antifriction
materials such as babbitts.

Let us compare our value @ with values computed
from literature data on other materials. To do so, we use Eq.

ties with well-defined meanings, i.e., the macroscopic char¢10) in those cases where valueslgf p,,, and the hardness

acteristics of the wear proceks, the microcharacteristics of

are given in the literature for tested materials with high wear

TABLE |. Characteristic values of the probabiliy for wear-resistant antifriction materials.

No. of Brinell Hard- Pressure, Probability
curve Friction pair ness, MPa MPa Lubricant Q, 10710 Ref.
1 Babbitt B-83 — St-45 steel 300 -230 Avtol-10, kerosene 2 7
2 FGM

(Teflon-4+ graphite+ MoS,) — 3X13 steel 60 110 Without lubric. 20 10
3 BrOTsS5-5-5 bronze — St-45 steel 600 25 Industrial oil 250 4
4 St-45 steel — BrOTsS5-5-5 bronze 2300 25 " 950 4
5 BrOF-10-1 bronze — 20X steel 900 - 1-30 99 11
6 BrOTsS5-5-5 bronze — ShKh-15 steel 600 - 1-30 100 11
7 Titanium carbide coating

on St-20 steel — St-45 steel AL 43 I-40A 185 12
8 Pig iron — tin-coated ring 3000 6 Motor oil 3 4
9 Pig iron — chrome-coated ring 3000 6 " 4.2 4

*Value of the microhardness. The valuesQfare determined for the first-named material in each of the friction pairs listed in the first column.
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resistance. Data for such materials used in machine compo- 2. The quantityQ° for babbitt, one of the most friction-

nents are listed in Table I, and the results of calculationdess materials, was found to bex20~1°. We assert that this

plotted on the same Fig. 3. In all cases the computed valueglue depends only slightly on the nature of the bodies in

of Q are at least no smaller than the valueQ@ for bab-  contact for the case of sliding friction, and it has a value of

bitts, and for the cast-iron bushings of motors with high wearhe order of~101°.

resistance they are close @' for babbitts. 3. In any frictional regime for which data on the linear
This last fact suggests that the minimum wear is characyear intensityl;,, the contact pressur,, and the hardness

terized by roughly the same values@?' for other materials H gre available, we can compute the probabi@iyor form-

as well. _ ing a wear particle from a contact spot. The deviation of
We can regard the value Qop_t for babbitts as a refer- 5ues ofQ calculated under these experimental conditions

ence characteristic relative to which we can rank other mag.qm, the value ofQ°! for this material can serve to estimate

terials. Conversely, if we determine values@ for other 1, much the prepared surface structure departs from the
materials, then if the values @ calculated under given test optimum

conditions always deviate from the val@®" for a given 4. At this time the value 0= 2x 102 obtained for
material, the deviation can serve as an estimate of the eXtep&bbiltt is the smallest value Gi computed for any material
to which the prepared surface structure departs from optimal.

o ccording to published data.
Thus, in this paper we have proposed to use the value 0 . . -
o . oot . This work was carried out within the framework of the
the probability of forming a wear particl®°" under condi-

tions of boundary friction in an optimum steady-state regimeRuss'_an Suenc:,a, and_ Te‘?‘h”."'o‘%’,y Program “Fullerenes and
omic Clusters” (Project “Tribol”).

as a reference parameter to characterize the minimum weg}I
of materials.

It is assumed that this quantity depends only slightly on
the nature of the bodies in contact when these bodies come in
contact under conditions of sliding friction, and that it has a |

value of the order of~10" 10 B. E. Klamecki, Weal58, 325(1980.

2B. I. Kostetski, Dokl. Akad. Nauk Ukr. SSR Ser. A, No.4, pp. 52-57
(1989.
CONCLUSIONS 3B. I. Kostetski, Trenie Iznosl4(4), 73 (1993.

. . . “41. V. Kragel'skii, M. M. Dobychin, and V. S. KombalovPrinciples of
1. AnaIyS|S of the literature shows that by measuring the Computations for Friction and Weafin Russian, Mashinostroeniye,

linear wear intensity,, over a wide range of variation of the  Moscow (1977, 440 pp.

contact pressur@,, (for example, by using nonconforming °V. S. Kombalov,Estimating the Tribotechnical Properties of Surfaces in
bodies in contagt and by varying the initial loads and types _Contact(in Russiai, Nauka, Moscow(1983, 324 pp.

of lubricants, we can reach regimes of friction characterized;?; E: Archard. J. Appl. Phys4, 981 (1953.

o ! . 9 . . M. M. Khrushchov, Studies of the Performance of Alloys Used in Ball
by.mm'mum wear under given eXPe”mental Cond|t|0n5-_ Re- Bearings and Trunniongin Russiai, USSR Acad. Sci. Publ., Moscow,
lations of typel "'=K°'p, are valid ways to characterize Leningrad(1946, 252 pp.
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Experimental results are presented on the changes in the optical characteristics of lithium fluoride
induced by an electron beam with time-varying density and pulse energies close to the

threshold for destruction of the material. The spatial distribution of color centers is investigated,
especially near breakdown channels. Mechanisms for nonuniform accumulation of defects

are discussed, along with the fundamental causes of the inhomogeneous energy distributions
induced by the high-current electron beam. Concrete results of calculations of the field

intensity distribution in LiF crystals during irradiation are presented, based on models of
“uniform” and nonuniform charging of the sample. An abrupt increase in the electric field
intensity is predicted near the breakdown channel. 1998 American Institute of Physics.
[S1063-784298)01004-9

INTRODUCTION scheme$ based on the Moller—Bethe angular distribution.

Subjecting materials to pulsed high-current eIectronThe energy loss due to ionization is determined from the

beams can produce levels of excitation high enough to Cau%ethe—Bloch formula, while the average ionization potential
damagé:2 making it possible to obtain concentrations of or the constituent elements is based on the Sternheimer

10 :
short-lived products sufficient for the detection and investi—formm?' q Thi shtapfe of thNazgglet:atmg voltalge [t)ulse and
gation of the mechanisms of defect formation in sofi$n current density)(t) for a ) ased accelerator were

addition to generating electrons and holes, high-current eledVenin Ref. 11. The current densili,aat the maximum of

tron beams also create strong electric fields in the irradiateﬂqe excitation pulse varied from 1 to 100 A/&mAt the pulse

sample, and dynamic mechanical stresses that can influeng@Ximum, the accelerating voltage was 260 kV. In these

both the efficiency of creation and decay of primary radioly_calculatlons, a variable-density excitation pulse of duration

sis products and post-irradiation processes. Because the 02e3—’ ns was divided up inta monoenergetic pulseSn our

gree to which these factors affect a material has been inad2S€ =23 with a duration ofAt=1 ns orn=230 for

equately studied, it is difficult to include them correctly in ?t_:g} ns)_ Wt'rt]h _(ilhectnl)n en(;rg)g "_"”?h current (tjensllty
analyzing experimental results. i~ Didmax IN € 1N pulse, wheres; 1S the current pulse

When alkali halide crystals are irradiated by higlh-currents'h"’lpe normalized to have a maximum Of. unity.
In the range of electron energies of interest to(4@—

electron beams with energy densities above their dama AT .

thresholdg0.1 J/cn?; see Refs. 5 and)@he electric field of g?G(()j_kte\/) thg (:lsttrrl]butlon to fl '?‘b?"ébed e(ljecttror;str\]/v 'th .rf slpect

the injected charge initiates multichannel electrical break-0 dIStance Into the crystal 1S independent ot the inital en-
ergy of the incident electrons within error limits<6%).

down. This in turn leads to deviations in the spatial distribu-Wh lotted i duced dinates. this distribution fol
tion of radiation defects and luminesceragives rise to fine en plotted 1h reduced coordinates, this distrioution 1ol-
rJ%WS a universal curvé=(U;;) normalized to have a unit

structure on the acoustic pulse, and is one of the mechanis ) .
P maximum na.=1). HereU;;=Z;/R(E;) is the reduced

for brittle fracture in insulator§. How effectively the . lot dinate for theth oul R(E) is the total
electric-discharge channel dissipates energy depends on tl’\t(—p plot coordinate for theth puise, an (Ei) IS the fota
ange of an electron with enerdy calculated by integrating

density of the high-current electron beam, the properties of . ) .
the material, and the irradiation geometry. the Bethe—Bloch functiofIn Ref. 11, we published detailed

In this paper we analyze theoretically the phenomend@P'es ofF (Ui, R(Ei).’ aqd the fraction O.f reflectgd elec-
pap y y P trons P,=N/N;,, which is a weak function oE; in the

that occur in the high-resistance material LiF excited by a }
g y nergy range 40-300 keV, for ten materigd8Br, KJ, KClI,

high-current electron beam, either in the absence of or in th .
course of multichannel electric breakdown. Our primary fo- <+ NaCl. Nal, LiF, Cak, CdS, and polymethylmethacrylate

cus is on the space—time distribution of the space charge, tf{%MMé])'t The{]t;het_distrit;ut:i]on of .ih? volurr|1e chharg:ﬁ dfe T
profile of energy release, and the electric field intensity in>' y p(Zity) at the time of the excitation pulse has the fol-

this material. We also investigate experimentally the effec{owing form in absolute coordinates for various densities and

of breakdown on the spatial distribution and structure of de_arbitrary pulse shapen{<n):

fects in LiF. m
P(Zitm) =] Imad 1= Pr)AtZ GiF(U; j)/R(E;) /
SPATIAL DISTRIBUTION OF ABSORBED ELECTRONS =1
In calculating the distribution of absorbed electrons in a le(U)dU _ (1)
crystal, we make use of one of several “coarsened” collision 0

1063-7842/98/43(4)/6/$15.00 396 © 1998 American Institute of Physics
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41 . 12 2 FIG. 2. Time dependence of energy density absorbed in 4,ifm: 1 —
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2k 44
surface(the integrated energy release profile at the end of the
] o pulse of irradiating electrons is shown in Fig. 1

1
g 00 20 300 These results show that the irradiation time of a layer of
SHpm crystal decreases as its distance from the irradiated surface
FIG. 1. Distribution of injected charge densipfz) (1), absorbed energy Increases. The,VO|ume e”erg,V, d,enSIty’ a,nd a(?cordlngly the
densityW(z) (2), and electric fieldE(z) (3) after irradiation by a high- ~'ate of generation of nonequilibrium carriers, is maximum
current electron beam. for a layer located at a depth of 150—20afh. Thus the stop-
ping of a high-current beam leads to space—time nonunifor-
mity of the energy release and at the same time to the onset
Equation(1) allows us to solve the self-consistent problem of of an electric field.
including the retarding effect of the space charge in the crys-  The distributionE(z) depends on the sample thickness.
tal on the incident high-current electron beam by replacingas this thickness increases, the field intensity at the irradi-
R(E;) in Eq. (1) by R(E; = ®;_;), where®; _, is the poten-  ated surfaceE(0) increases, reaching a limiting value of
tial at the surface of the sample after1 single pulses. Es=Qinj(1—P,)/(ge0), whereQyy is the surface density of
Including the retarding effect of the field leads to a shift ininjected charge, while at the unirradiated surface the field
the maximum of the volume charge density toward the irra£(L) decreases. We have proposed empirical expressions to
diated sample surface with increasing beam current densitgjetermineE(0), E(L) and Ve=dEg/dt (with an error of
and the beam electrons can be completely reflected from the 109%) at any time during the excitation pulse when
sample at the end of the excitation pulse. In all the calculat >R _ in a sample with both surfaces grounded, or when
tions that follow,p(Z,t) incorporates the retarding effect of the distance between the surface of the sample and a surface

the field of the injected charge. with @ =0 is much smaller than the sample thickné&sglus
corresponds t&(0), a minus toE(L), andZ. is the effec-
CALCULATION OF THE ENERGY-RELEASE PROFILE FIELD tive charge of atomic nuclei in the crystal

IN A UNIFORM SAMPLE EXCITED BY A HIGH-

R S o Ecer= (1~ Pr) Qinl (L~ 2R/ Ln(2Ze) /L = 1]/(282),

)
For a uniform planar sample with knows(z), in order Vo) =(1=PI(L=2Re JLN(2Z D)L +113()/(2
to find the potential distributionb(z) and field intensity o+~ Pl max! LN(2Ze) /L= LI/ 88‘&’)

E(z) in quasi-steady-state it is sufficient to solve the tridi- .
agonal matrix Poisson equation by the method of doubld N® numerical values d&e;andV, computed from Eqs(3)

CyCIiC redUCtiOIle in the form and (4) for ‘]maXZZO A/CTT'F (Qmj=2.4>< 1071 C/Cf'nZ) are
) more than an order of magnitude lower than the criterion for
D1 =20+ Dy, = APW)=W, (2)  streamer breakdowH.In contrast to this prediction, break-

with boundary conditiorbo=®,=0, where 0<j<J; A is down is observed experimentdifywhen J,,,,<20 Alcn?.
the mesh stepin our case,A<10 um); WP=p, /(&4¢): The disagreement arises from the lack of criteria for initia-
J=L/A- L is the distance between surfaces with zero p'otenlion of breakdown in this model, the fact that the change in

tial; and ¢ and s, are the dielectric constant of the samplethe charge distribution due to the nonuniformity of the elec-
and the permittivity of free space respectiv@ly. tron emission from the surface was not included, etc.

Calculations showFig. 1) that forL = Ry, (WhereRax
is the maximum range of the electrgrthe maximum field
intensity is reached at the surface being irradiated.

An important feature of the interaction between the high-  According to Ref. 14, the emission current from one
current electron beam and the sample is the complicatedhannel is large enough to completely neutralize the charge
space—time variation of absorbed energy in the latter. Figurajected into the volume from an irradiated surface region
2 shows the time dependence of the volume density of erwith a radius of up to 15@m. Therefore, our calculations
ergy released in LiF at various distanafsom the irradiated were done for a cylindrical sample with radiRg= 150 um,

FIELD CALCULATIONS UNDER CONDITIONS OF
NONUNIFORM CHARGING OF THE SAMPLE
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in which a single breakdown channel develops perpendicular
to the surface and the degree of neutralizat&ncan reach
1.

For a system with radial symmetry, the Poisson equation
in cylindrical coordinates has the form

d?>d/dZ2+d?®/dr?+ (1r)dd/dr= —p(r,2)/(eep),
d’®/de?=0; O0<r<Ry;
0<Z<Zk; dCI)/dI’|r=o=O. (5)

Approximating the operatord?/dz?, d?/dr?, d/dr by
difference operators on a meblJ with stepsA;=Z,/J and
Ai=R\/1 (we will treat the general case whefg+ A; and
Aj=H-A;, whereH is a scale factgr and assuming that the
function p; ; is determined at each mesh poinfj{, we find

that Eq.(5) can be transformed into a five-point matrix equa_FIG. 3. Distribution of injected charge densit§y’'—4') and electric field
tion (1-4) at various times during a high-current electron beam p(tsens).

1,0 —5;2,2 —10;3,3 — 15;4,4 — 23.
Q1= 20 j+ D o FHA(L+1/2) Dy, g — 2D

; 2
H(A=D®i-g]=—Afpi/(ee0), ©6) r'=1um, and the radius of the neutralized volume
with boundary conditionsb; ;=®; j=0; ®;_1;=P;, ;. R=150 um. As the degree of neutralization increases to 1,
For the boundary conditions chosen, the potentiaJls  the magnitude oE(z) at the leading edge of the breakdown
and p; ; can be expanded in Fourier sine series along thehannel already exceeds the dynamic electrical breakdown

pe10°,0om™?

columns of the mesh (€@ <J): strength of LiF, which is 3.2 MV/cm, during the first nano-
-1 seconds of irradiatiof!® An increase inE(z) is also ob-
D, j:E (i)i(k)sin(a-rkj/J); served as the radius of the breakdo_vvn (_:hann_el decreases.
1ok=1 Thus, forr’=0.5 um andG,=1, the field intensity at the

leading edge of the breakdown increases to 180 MV/cm, i.e.,
@) much higher than the electrical breakdown strength of LiF
and approaching the value of the intrinsic crystalline field.
N R o . ) With distance from the breakdown channel in the radial
where®;(k) andp;(k) are coefficients of the Fourier series. girection the field intensity(r) first decreases rapidly near
Substituting Eq(7) into the five-point equatioié), e the channel and then more slowly at distanceg3—4)r’.

J-1

pii= 2 pillksin(mkild),

obtain When G,=1 a high value ofE(r)>10° V/icm is observed
J A A for r>100 um from the breakdown channel.
gl {HZ[(1+ 1/20) D, 1(k)—2d;(k)+(1—-1/2) These calculations indicate that for large valuesGgf

and small breakdown channel radii conditions for the ini-
tiation of electrical breakdown are satisfied even in the first
nanoseconds of irradiation whép,,,=100 A/cn?, in agree-

+ (AJZI(SSO));l(k)}S”'](WkJ/J) =0. (8) ment with eXperimental results.
Because Eq(8) holds at every poini, we can individually

set the amplitude of each Fourier harmonic equal to zerospATIAL DISTRIBUTION OF DEFECTS IN LIF
Then for eactk we have a tridiagonal matrix equation

X ®;_1(K)]+[2cog mkj/I)—2]d; (k)

. . ) The results given above imply that when an ionic crystal
AiCDi+1(k)+B(k)(I)i(k)+Ci<IJi_1(k)=\7Vi(k), 9 is irradiated by a high-current electron beam, the processes
where  A=H2(1+ 1/20), C=H2(1—1/2), B(K) of th_ermalization of nonequilibrium electrons and holes,_pro-

) n A 2 A duction and decay of excitons, and secondary conversion of
=2(cosrkjl)—1-H"), W(k)=—[Aj/(eeo)]pi(k), and primary structural defects all take place under the influence
pi(K)=(20) =] pisin(mkj/J). This equation is solved for of a number of factors: the rate of generation of electrons and
{®,(k)} by the method of double cyclic reductidfln ad-  holes is nonuniform in time on account of the differing time
dition, the potential and electric field are determined accorddependences of the specific volume density of the energy
ing to Eq.(7) at every mesh pointi(j) at any time within  released at different deptlBig. 2), there is an electric field
the excitation pulse. produced by the space charge, and there are mechanical

Figure 3 shows the calculated distributions of the spacatresses induced by pulsed heating of the region where the
chargep(z) and electric fieldE(z) in the direction of inci- electron beam is stopped. In addition, irradiation by a high-
dence of electrons in the pulsed irradiation of a LiF crystal,current electron beam with an above-threshold current den-
plotted at a distance=1 um from the breakdown channel sity leads to multichannel electric breakdown, which gener-
when G,=0.5. The radius of the breakdown channel isates local dynamic stresses, a high electric field with space—
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time nonuniformities (Fig. 3, a thermal field, and D _—h

electromagnetic radiation emitted by the plasma in the break-

down channel. 10f
In order to estimate the effect of these factors on the

high-current electron beam, we studied the post-radiation

spatial distribution of electronic color centers in LiF crystals. 051~

The choice of LiF as a system to study was dictated by its

high mechanical strength, which allows multichannel break- N

down to create visually observable tracks without brittle 0 T

fracture, thereby ensuring that the coordinates of the region z,pm

being probed can be determined. Moreover, the optical char-

acteristics of the electron color centers created in LiF b)/:IG' 4. Distrib_ution of optical density in LiF in the direction along the

irradiation are quite well-studield. Whereas irradiation of .n?rmal :0 ﬂ;e 'rLZd'atec: Su;zce' ?ml;\e_aizms q;(meug C.Jr3d° (?;7?

LiF crystals at 295 K by a pulsed electron beam leads prigffeaianrg;(; iwg)rii;{go_nm?r S e e 2 e

marily to the generation oF center$®, more complicated

F-aggregate centers are created by post-irradiation processes.

For example, according to the mechanism proposed in Ref: decreases, the optical density in the bands at 3.@tea/fF ,

19, the formation of ar, center takes place in two stages: bang and 2.26 eV(the F, band increases. Moreover, we

first anF3 center forms when aR center interacts with an jdentified bands in the absorption spectra at 2.43, 2.5, and

anion vacancy, and then the new center captures an electrog.02 eV forz<70 um. According to Ref. 25, the band at

This mechanism, whose existence in LiF was verified in Ref2. 43 eV is due td-5 centers. Based on our analysis of the

20, was also found to generate more complicatedspectral content of the absorption, we obtained spatial distri-

F-aggregate defect.When crystals with a prior population putions of the real optical density with respectztéor bands

of electron color centers are irradiated, the nature of thessociated withF, |:3+, andF, centers(Fig. 4). From this

original centers can change as they interact with nonequilibanalysis we concluded that the closer the maximum of

rium electrons and holés:*In Ref. 17, Nahum proposed a D(\,z) is to the irradiated surface, the more complicated the

mechanism in whictF3 and F3 centers are generated via structure of the center is. When the probe beam intersected a

migration of aF, center and its interaction with centers. breakdown track, we observed some decrease in the overall

Hence, when LiF is irradiated at 295 K by a series of high-absorption over the spectral range of our measurements. In

current electron beam pulses, several mechanisms participaigée immediate vicinity of a channel breakdown track we ob-

in the generation oF-aggregate centers, the most effectiveserved a relative increase in the absorption for optical bands

of which are vacancy-related. caused by compleks, F; , F,, andFs centers, which are
The optical absorption spectra and optical densityclose to one another in energy.
D(X\,x,2) were measured as a function of the coordinates The changes in the optical density at 2.8 eV revealed by

of the region being explored using light at fixed wavelengthmeasurements in the direction were considerably more

A\ incident either normal to the irradiated surface, yieldingcomplicated when the probe beam intersected diverging
D(\,x), or parallel to it, yieldingD(\,z). Prior to these channel breakdown track&ig. 6) located in a plane parallel
measurements, the LiF samples were irradiated by a train @b the irradiated surface. In this case, the value of the optical
electron pulses until multichannel breakdown tracks apdensity exhibits well-defined modulations with alternating
peared, which were observed using a D11U11 microscopgnaxima between 35 and 46m. Furthermore, a comparison
and the samples were kept at 295 K until the color centergf the absorption spectra of regions near breakdown channels

stabilized. The time evolution of a multichannel breakdownand at distances 50, 100, and 15 from them shows that
track in LiF was described in detail in Ref. 23.

The distributionD(\,z) was measured for two sample
regions, the first containing a channel breakdown traek,
the probe beam intersects the chapmeld the second with-
out one(Fig. 4). Figure 5 shows portions of the optical ab-
sorption spectrum in the energy range 2.0-3.3 eV for crystal
layers located at various distancefrom the irradiated sur-
face. In layers far from the surface the spectrum is dominated
by an absorption band with a maximum of 2.8 eV, which
roughly coincides with th&, band. However, at=160 um
this 2.8 eV band is broadendids half-width is 0.24 eV as
opposed to 0.176 eV for thE, band due to overlap with
F5 center bands at 2.93 and 2.65 eV. The absorption spec-
trum is observed to become quite complex as the layer under
study approaches the irradiated surface. FIG. 5. Fragments of optical absorption spectra. Distanfrem the irradi-
In order to analyze the spectral content of the 2.8 €Vyeq surfaceym: 1 — 30, 2 — 70,3 — 100,4 — 130,5 — 160. Spectra
band, we used the Alentsev—Fok metiidtlVe found that as 6 and7 show the composition of spectral bagd




400 Tech. Phys. 43 (4), April 1998 Shtan’ko et al.

D ! H ated in the stopping region of the beam electrons when
:lA Bﬁ centers capture holes, a process similar to that observed in
3 i ANS z " KBr.2® An additional channel that leads to generation of an-
09t ¢ ion vacancies is the creation of these vacancies by dynamic
/\j stresses caused by the pulsed heating of the stopping zone by

the electrons. These stresses can reach values’oR/6

(Ref. 29. According to the data of Ref. 28, deforming

stresses of this magnitude can lead to anion vacancy concen-
¢ trations as large as ¥®cm™ 3, and the defect density in-

creases with increasing loading rate. It is logical to assume

08 ! L L that the high concentration of anion vacancies created by
7 100 200 J00 . . " i .
z,pm dynamic loading should also participate in the conversion of
?
electronic centers.
FIG. 6. Distribution of optical densityN= 445 nn) in LiF irradiated by a The second reason for spatial nonuniformity of the cu-

high-current electron beam with surface energy density of 0.162J/cm mulative effects of irradiation is the development of multi-

(Ima= 40 Alcn?) measured in thex direction (see the diagram of the h | electric b kd isel f the fol

measurement in the inget channel electric breakdown, or, more precisely, of the fol-
lowing associated factors: a spatially nonuniform electric
field, dynamic stresses, a thermal field caused by the dissi-

as we approach the channel the relative contribution to thB2tion of energy released in the breakdown channel, and
absorption from 2.8 e\, centers decreases, while that from electromggnenc radiation in the visible and I'R regions. .It Is
FI centers increases. In this case we also observe an imorth noting that each of t_hgse _chtors has its own |ntr|n3|_c
crease in the optical density at the maxima of EheandF,  time dependence, so that it is difficult to determine the effi-
bands. It should be noted that this spatial modulation of th&iency with which each of the factors affects the conversion
absorption for 2.8 eV is typical of a thin crystal layer parallel of electronic centers. However, it is only the near-channel
to the irradiated surface when the former contains a breakwolume that is subjected to these dynamic stresses and tem-
down channel track. peratures, which lead to both increased concentrations of an-
These results indicate that high-current electron beam®n vacancies and increased rates of diffusion processes, so
with energy densities above threshold create distributions ahat this complexification of the structure of the electronic
F-aggregate centers over the irradiated volume that are sigenters evolves in a well-defined way as the probe beam
nificantly nonuniform, and that each type of center has itsapproaches the breakdown channel. Another factor to take
own characteristic dependenbg\ ,x,z). There are at least into account is the increasingly complicated motion of anion
two fundamental reasons for this spatial nonuniformity. Theyacancies due to the electric field, whose intensity in this
first is the fact that the specific volume density of absorbeqegion is a maximuntFig. 3.
energy at a fixed coordinateis a function of time(Fig. 2), The processes that spatially modulate the concentrations
which accordingly leads to differing space—time rates ofof complex electronic defects as a breakdown channel is tra-
generation of electrons and holes in the sample. Consgzerseq(Fig. 6) are considerably more complex. The authors
quently, the efficiency of the reaction that createsFdh (¢ Rof 29 established that periodic damage struct(PExS
center via capture_ of a hole byF."’h cen.ter, Ilke.the reaction  ¢,rm in irradiated ionic crystals when the energy density of
I/Ci?ktl :i?)tlzs aﬂla:jne'ggr:/g%intcgevgt;gi'nn;;;%'?r?fﬁ;fér the high-current glectron beam reaches a cerjtain threshold
of prior irra,diation pulses for a crystal irradiated more thanvalue' In Ref. 30 it was showp that the generat.|on of a PDS
takes place synchronously with the time at which the high-

once, or, more precisely, on the concentration§ afind F, . Lo
- . current electron beam acts and is probably due to excitation
centers created. The efficiency of the reaction that converts

anF, center into arF} center via capture of a self-trapped of damaging stresses as the electromagnetic radiation gener-

hole (a Y, centey at temperatures above the detrapping tern_ated by self-oscillating plasmas in the breakgiowr) channel is
perature of the latter is also a function of coordinates, sinc bsorbed. The agreement between the maxima in the modu-

the relative fraction of self-trapped holes present after ardted distribution of--aggregate defects and the periodicity
excitation pulse depends on the fraction of band holes thetf @lternating zones of damage in the PDS allows us to con-
have reacted witlF and F, centers, or, more precisely, on clude that the modulated release of energy is due to the same
the space- and time-dependent rate of generation of holdgechanism in the two cases. This conclusion is verified by
and the spatial distribution of electronic defects created prethe fact that as the energy density of the high-current electron
viously. Qualitatively similar processes can probably be exPeam increases, the degree of modulation of the optical ab-
pected when more complex electronic centers are creategorption increases too.
e.g.,F; , Fs, F, centers, etc. Finally, we must point out that the development of a
A second structural element that participates in the conbreakdown channel in LiF in a plane parallel to the irradiated
version of electron centers is the anion vacancy. Therefore, gurface, due to the action of the strong electric field, must
is important to understand the processes that generate vacaaiter the conditions for stopping of the electron beam and
cies and their spatial distribution. Anion vacancies are creeonsequently must change the energy release profile.
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Kinetic transport theory is used to find analytical expressions for the absorbed doses of the
primary-particle flux and primary-particle energy as functions of distance into a solid with finite
or semi-infinite thickness when the surface of the latter is irradiated by a flux of accelerated

ions (atomg in the direction normal to the surface. The theory was compared with experiments in
which solid silicon films with thicknesses 50, 100, and 400 nm were irradiated by a flux of
accelerated boron atoms with energies from 10 to 20 keV. These expressions were used to
calculate the depth distribution of vacancies generated in a solid whose surface is irradiated

by a flux of accelerated ions. The method developed can be used to determine the depth
distribution of vacancies created by fluxes of accelerated electrons, neutrons, or photons.

© 1998 American Institute of PhysidsS1063-78428)01104-7

INTRODUCTION neighboring atoms of the solid target is much smaller than
&he energy of the primary particles. Therefore, the collision

The study of changes in the physical properties of a soli ; . .
y 9 phy prop of a primary particle with a target atom can be treated as a

induced by irradiation of its surface with a flux of accelerated” =~ """ .
ions is valuable for both scientific and appIications-rel<';1teoP‘3"rWIse Interaction. . L
reasons. For instance, ion implantation of alkali and alkaline- Assume that a flux of accelgrat_ed gto(mvns? IS Incl-
earth elements can strongly modify the emission propertiegem on the surface of a free solid film in the direction nor-

of materialst Reproducible bhvsical chanaes in the proper- &l t© the su.rface.. Let us focus on an infinitesimally small
I producibe phys ges | brop volume dV with thicknessdx at a depth ofx. Fluxes of

ties of materials find widespread application in ion-beam’ . . : . .
P bp primary particles will propagate within the volund¢/ in the

lithography? The problem of the first wall of a thermo- e .

nuclear reactor can be addressed to some extent by studyirt1 wadrd "’E[nd dbackygar?hdlrectlons, ?nd V\?"tk?lso thIe absqrbtehd.
the changes that occur in a solid within the active zone of thé order 1o describe the propagation of these Tiuxes in the
reactor>* The last decade has seen the beginning of intensg‘ate“al’ we use the following kinetic transport equation,

study of implantation in polyatomic targets, at present con-WhICh hOIdS_W'thm the microvolume of mattel_r\/ at a depth
and contains only average values of physical quanfitles:

sisting of the constituent basis of semiconductors and

insulators> Note that ion implantation can be used to create 1

high-temperature superconductbrand that irradiation of a —Wf(X,M)+stile(X,M'HM)f(X,M',M)dM'

film by accelerated ions can cause it to have magnetic

properties. All these effects serve to motivate the study of af(x,u)

interactions between currents of accelerated ions and matter. TR @

In this paper, fluxes of primary atoms in a solid are
modeled by transport theory in order to determine the energyhere x is the coordinate of the microvolum@V in the
they transport in the forward and reverse directions. Techdirection normal to the surface. Hefe' =cost’, u=co®,
niques are developed for computing the absorbed doses ¥fhere®’ and® are, respectively, the angle of incidence of

atoms and energy at various depths and for calculating th&€ primary-particle flux on the elementary volumi¥’ at a
depth distribution of vacancies. depthx and the scattering anglé(x, ) is the distribution

function of primary particles in the material,=ws+w,,, w

is the total macroscopic interaction cross sectisgandw,,

are the macroscopic scattering and absorption cross sections,
When the surface of a solid target is irradiated by a fluxwhich we write asv=x"%, wg=A_1, wy:)\;l, where\,

of accelerated ions in the 1-100 keV energy range, elastig_, and\, are average mean free paths for total scattering,

and inelastic collisions take place between primary partiCle%|astiC Scattering1 and absorption; anq()(,,u’_,,u) is the

and atoms of the target material. Because the energy lossggattering indicatrix, which is used to include anisotropy in

due to elastic processes greatly exceed losses due to inelas#ie scattering of the primary particle flux within the solid:
processes, the classical approximation can be used to de-

scribe the scattering of primary particles in the target. In this _dP(x,0",0) @
range of energies, the binding energy of a target atom to s vd® '

THEORY
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wheredps(x,0',0) is the probability of a primary particle dx
undergoing elastic scattering from the angular inted@l’ >
to the intervald®, andv is the average velocity of the pri- r\?’_/’—
mary particle at a deptR. il v / Y, (h-z) i (R
Since the energy loss during atomic collisions is due — / 1/ Ay
primarily to elastic rather than inelastic processes in the en- ————» Z
ergy range of interesf** we havexg<\,. Consequently, / .
w~Wws. Moreover, it is clear from general considerations Jp 0 Jr(‘r) /, -77(""7") o
that the average mean free path will be different at different z ’/ I
depthsx in the target material. Therefore, to first approxima- - i (h-.z-)é i @)
tion we can write -] 7 4_%_7_,
_ (@) Z
W= WX, 3 Z
where %
Z
Wo—N,o, /\Jf\——/

n, is the concentration of target atoms, amdis the total
microscopic cross section for the interaction of a primaryFIG. 1. Nominal sketch of primary particle fluxes within a free layer and
particle with an atom of the target material. The method foroutside it.
computing this quantity is described in Ref. 12.

If we assume that the isotropic properties of the material
do not depend on deptfi.e., Ws(x,u'— u) is a constant  Consequentlydn=uf(x,x)du. Substituting the distribution
then the following distribution function satisfies the kinetic function into Eq.(4) givesa0%3lg2. It follows from experi-

transport equation plus its boundary condititns ment that
)= (1-ro)dy [ expco(1—x3/h?)) ap~1.45R;?, (5)
2v°B;coskcy) Wa— u and thereford ,=1.43@R,. The value ofR, can be com-
) exp(—co(l—lehz))) i puted from the (;);prejzl(zlr; given in Ref. 13:
wat ' R —c AZ77+257) E,, ©6)

Pt Z1Z5p,

Wot 1 whereE, =10 keV; c,=137.4@,+ b,In(A/Ay)); A2> 2A;;
B,=w,In 2~ 2 a,= 0.6366;b,= 0.0611;Z, andZ, are the atomic numbers
wa—1 of the elements of the primary atoms and the targ§etand
F:AOWS+ Alv ao, AO! Al are Constantg:o is the integrated A2 are the atomic Welghts of the primary atoms and target
backscattering coefficient of the flux of primary particlesatoms;p; is the density of the target material; aig is the
from a free layer of thicknesh; y, is the flux density of kinetic energy of the primary particles.
primary atoms at the surface of the solid in the normal di- Let the elementary volumeV for which the kinetic
rection; andh is the thickness of the solid layer. transport Eq(1) was written be at a depth. Then the total
The constang, can be written in terms of the maximum Volume V can be divided up into two auxiliary volumes
longitudinal range of primary particles in the target materialV1(x) andVy(h—x) (Fig. 1). Irradiation of the surface by a
l,, whose value we define as the thickness of a layer througRarticle flux jo gives rise to forwardf,(x) and backward
which 0.01 of the initial primary particle flux passes. Then,ir(h—Xx) fluxes in each of these auxiliary volumes and also
starting from this definition, one can evaluate the maximunto absorption of the primary particles as a result of multiple

longitudinal range from the expression collisions with target atoms.
Writing a balance equation for the fluxes of primary par-

o= "“l' (J1(X)/Jo(x)), @ ticles in the volumeV,(h—x) gives
x—lp
J,(¥)=j(h=x)+h,(h=x)+h,(h), )

xdn X dn wherej,(h—x) is the flux density of backscattered primary
‘]O(X):f —dx, J;(x)= [ x=—dx, particles from a layer of thickne$s—x at a depttx; j,(x) is
o dx o dx the flux density of primary particles that have passed through

n is the number of accelerated primary particles per unif layer of thicknesx and have therefore penetrated into the
volume of material at a depth volume V,(h—x); j,(h—Xx) is the flux density of primary

According to the physical meaning of the distribution Particles absorbed in the volunvg(h—x); andj,(h) is the
flux density of primary particles leaving the free film of

whereco=agh?/2, w,=wy/a,, and

where

function, one can write

thicknessh.
F(X, )= dn When no sources of primary particles are present in an
i vdp” elementary volumelV there exist two physically indistin-



404 Tech. Phys. 43 (4), April 1998 Yu. D. Kornyushkin

guishable fluxes of primary particles propagating in opposite 1y, (x)=vy,(h)— y,(h—Xx),
directions:j,(x) andj,(h—x). Therefore, the resulting flux

of primary particles in the volumdV will be where y,(h) = y2(h—X)|x=o-
: . . Consequently,
J)=],(X)=jr(h=x). 8 .
Then after substituting,(x) from Eq. (7) into Eq. (8), D(X)=y1(X)= _~To_
we obtain(Fig. 1) costico)
J00=],(h=x)+] (). ) X (coshcg) — cost{cy(1—x3?/h?)). (15
Equation(9) can be written in terms of transmission and ~ Equation(15) allows us to compute the magnitude of the
absorption coefficients: absorbed flux of primary particles in a layer of thickness
i.e., to calculate the absorbed primary particle dose. If, how-
7(X)=y(h=x)+n(h), (10 ever, the average energy of the primary particles in a layer of

where 7(x)=](X)/jo, ¥(h—x)=],(h—X)/jo, and n(h) thicknessx is known, then the absorbed energy dose will be

=v,(h)/jo. _
As follows from Ref. 11, D(X.B)=ri(x)AE, (16)

whereAE is the average energy loss from the primary par-

p— r .
n(x)= ——coshcy(1—x2/h?)), (11)  fticles at a deptix.
coshico) The average energy loss from the primary particles can
wherer is the integrated backscattering coefficient from abe computed using the expressions given in Ref. 2, according
free layer of thicknesh. to which the average relative energy losses for eldstiand

The integrated backscattering coefficient from a layer ofinelasticb; scattering at a deptk are
thicknessh—x can be computed from the expression _ _
be=bix, bj=byx,

1-ry9 B,

—X)= ————— [ —x2/h? where
r(h—x) cosh(cy) B, sinh (co(1—x4/h?)),
B, 1 o DiZiZoA1poEy”
roz(l—B—zcoth(co)) (12 1 (22%+ 2231+ A,
In general the coefficient8,; andB, can be computed Do(Z1+2Z,5)ps
from the expressions given in Ref. 11: =T 1 (17)
AL AE,
2m TF(u')sin20'dO’
Blzf dgof - : andD;=167.36,D,=6240.
0 0 a” M Then the total relative energy loss will be
2 T ! H ! !
0 ml2 Wa—

and the average energy loss from the primary particles at a
If We(x,u'— ) in Eq. (2) is independent of the angles depthx is
0’ and®, then calculations show that
AE=DE,. (19

w
Bi=W,ln h_z’ Ba=Ww,ln W _al -1 Expressiong13) and (19) allow us to calculate the av-
2 2 erage relative energy transported by the flux of primary par-
We now can use Eqs8) and(12), according to Eq(7), ticles through an elementary volurd&/ at a depttx in only
to calculate the flux of primary particles at an arbitrary depthihe forward and only the reverse direction:
X that propagate only in the forward direction:
71(X,E)=(1-0bX) 71(x),

r(x,E)=(1-bxr(x), xshsl,. (20

o

m(COSHl— X2/h2))

71(X) =
B, . _— Equation (16) can be quite valuable in applications,
* B, sinh(Co(1—x/h)). (13 since it simplifies the calculation of absorbed doses of ioniz-
o . _ ing radiation in humans and animals, which is extremely
After substituting Eq.(11) into Eq. (10), we find that the  complicated to do under experimental conditions.
absorption coefficient for the flux of primary particles in a From Eq.(15) it follows that the depth profile of the
layer of thicknes$—x is absorbed radiation, when Ed5) is taken into account,
should have the form

o

cosficy) (cosl{co(1—x2/h?))—1), (14

h—x)=
v G- ) _ (A roax

= sinh(Co(1—x2/h?)). (21
while the absorption coefficient in a layer of thicknesis dx coshcy) (ol )- (21
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FIG. 2. h= 50 nm, E,= 10 keV: 1 — dose of absorbed particles 20 FIG. 3. h= 100 nm;1, 1', 2, 2 — the same as in Fig. 2, with,= 10 keV;
-D(x); 1" — distribution of absorbed particles with respect to depth E,= 20 keV: 3 — dose of absorbed energy, -20(x,E); 3' — depth
10*. G(x); 2 — dose of absorbed energy, I(x,E); 2' — depth distribu- distribution of dose of absorbed energy?1G(x,E); 4 — dose of absorbed
tion of dose of absorbed energy,“1G(x,E); E,= 20 keV:3 — dose of energy, 20D(x,E); 4 — depth distribution of dose of absorbed energy,
absorbed particles 20(x); 3° — depth distribution of dose of absorbed 10* G(x,E).

particles, 16- G(x).

, _ _ a thickness of 400 nm.
The depth profile of the absorbed primary-particle en- Figure 4 shows the functior®(x), D(x,E), G(x), and

ergy (the absorbed energy dosgccording to Eqsl16~(21)  g(x E) for a free film of thickness 400 nm. For primary

can be written in the form particle energie€,=< 20 keV the thickness of such a layer
D(x,E) dy,(x) may be treated as infinitely large, since no flux of primary
=(b1by)ya(x)+b—4 —. (220 particles passes through it in the forward direction. Compar-
ing the functiongG(x) andG(x,E) in Fig. 4 with the corre-
sponding functions in Figs. 2 and 3, we note that in Fig. 4
they monotonically approach the abscissa. This difference in

In Ref. 12 a method was proposed to calculate the totalh€ shapes of the curves allows us to establish qualitatively
microscopic cross section for interaction of atoms in a flux ofwhen the thickness of a film exceeds the average maximum
primary particles with atoms of a target material. The resultgnean free path of a primary particle, and when it is smaller.
of these calculations for the interaction of boron atoms withFrom Fig. 4 it is also clear that the position of the distribu-
silicon atoms in the energy range under discussion are foundon maxima with respect to depth for the absorbed dose of
to be in good agreement with the results of KumakhovPrimary particles G(x) and the absorbed energy dose
et al,** which in turn confirms the correctness of the ap-G(X,E) do not coincide. Therefore, e.g., in the implantation
proach used to estimate the magnitude of the effective miof boron ions in silicon one should use the functiGigx),
croscopic inteaction cross section. and to obtain the depth profile of the energy absorbed by the

Equationg(15), (16), (21), and(22) allow us to calculate material one should use the functi@{x,E). This approach
doses of absorbed primary particle flux and the energy tranghust be used in estimating radiation damage to a human or
ferred by the primary particles, and also the distribution ofanimal.
these doses with respect to depth for various thicknesses of Thus, when estimating the absorbed dose using equa-
the solid film. These calculations were done for Si layerdtions (15), (16), (21), (22), we must take into account the
irradiated by a flux of accelerated boron ions. To make these
results easier to visualize, we used layers with thicknesses
50, 100, and 400 nm and accelerated the ions to energies ¢
10 and 20 keV. We found that this choice of initial values for
the layer thickness and primary particle energies enabled us &
to arrive at several important qualitative conclusions.

Figure 2 shows the dose functioiyx), D(x,E) and
their depth distributionss(x), G(x,E) in a layer of thick-
ness 50 nm for boron ion energies of 10 and 20 keV. Be-
cause in this case the maximum longitudinal rahge 50 2
nm, we can assume that a significant number of primary
particles leave the free layer. From Fig. 2 it is clear that the
depth profiles of the particle and energy doses do not have
their maxima at the same position: the maximum of the ab-
sorbed energy dose profile is shifted farther into the bqu.E IG. ‘z‘bhkzvf'go ”g‘;fng ;zs‘;er\é;' g ;tizciei ;»(t:)? same as tlll’? ;g}iz;
Morepver, the ab,sorbed dose decreases Strongly as the %fion of dc;se of absorbed particl(fs,“lD(x}; 4 — dose ofpabsorbed
ergy increases. Figure 3 shows the same dependences as Fgergy, 20D(x,E); 4' — depth distribution of dose of absorbed energy,
2, but for a thickness of 100 nm, while Fig. 4 shows them for1¢*. G(x,E).

d
COGBE)=——
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physical and chemical features of the primary particles. If the gz}
primary particles are chemically active in an organism, then
the primary effect of these particles on that organism will be
determined by values @ (x), G(x). If, however, the energy 20
of the primary particles is high enough that their absorptiong
leads to considerable change in the tissue, then the mos}"’
important thing to do is to determine the valuesiofx,E) 8.0
andG(x,E). By using the expressions derived in this paper,
such an estimate can be made rather simply.

Thus, the method developed here allows us to calculate 0
with reasonable accuracy both the absorbed dose and th Z, nm.
distribution of absorbed primary particles within a layer of
thicknessx. The distribution that results when a flux of boron FIG- 5. (1) Depth distribution of dosé(x) of absorbed 20 keV boron

) X Lo in a free silicon | ith thick 4 h distribu-
ions at energies of 10, 15, and 20 keV irradiates the surfac‘?;r-toms in a free silicon layer with thickness 400 nm &2rdepth distribu

I . . : . on of vacancied/(x) arising in silicon when the surface is irradiated with

of a free silicon film with a thickness of 100 nm in the 175 kev arsenic atoméRef. 16. D(x) is in relative units, and/(x) is

direction normal to the surface was calculated in Ref. 12vacancies/ion in relative units.

The results given there are in good agreement with the ex-

periments of Ref. 15 and completely correspond with thethe correlation between the depth distributions of absorbed

results of the present paper. atoms in a material and the depth distribution of vacancies
In general, the primary particles lose energy in elasticcreated by collisions.

and inelastic collisions, and also by creating vacancies. The Thus, the distribution of absorbed flux of primary atomic

process of implantation is accompanied both by amorphizaparticles in a single-crystal material can be used to determine

tion of the target crystal lattice and by the production ofthe depth distribution of the amorphized layer, its half-width,

vacancies in it® For primary particle atoms with energies and the deposition depth. Conversely, the depth distribution

above 10 keV, the region where the largest absorption off the amorphized layer can be used to determine the depth

primary particle flux takes place is probably the region wheredistribution of energy flux absorbed from the primary atoms.

vacancies are generated. The region of intense generation of

. . ‘e A. Kh. Kasymov, Surface Properties of Solids Doped by lon Bombard-
vacancies is at a depth where the most intense collisions ofmem[in Russiaf), Fan, Tashkent1987, 130 pp.

primary particles with atoms of the material takes place.z2| grodie and J. J. MurayThe Physics of MicrofabricatiorPlenum Press,
Therefore, the distribution of vacancies in matter, and con- New York, 1982[Russian trans. Mir, Moscow, 1985496 pp.
sequently the distribution with respect to depth of the amor—is- A. 1L§89by‘2f' Bohdansky, W. Eckstegt al, Nucl. Fusion: Special
phized layer, ,ShOUIq coincide with _the depth di,StribUﬁO,n of “Astsoun?i(c an?i’ Plaspr':r)ﬁ-Material Interaction Data for FusjoNucl. Fusion
primary atomic particles absorbed in the material. In Fig. 4 syppl.1, 1 (1991.

we show the depth distributions of the absorbed primary par-D. Fink, J. P. Biersack, M. Behat al, Appl. Phys.58, 668 (1985.
ticles and the absorbed energy dose at normal incidence. InWang Ke-Ming, Liu Xi-Ju, Wang Ji-Hu®t al, , J. Phys. D21, 1624
Re_f. 16 Motooka and quland studied _the effe_ct of implan- 7\," <" bresselhaus and A. Lusnikow, Synth. M8, 401 (1988.

tation of (110) 100 keV single-crystal silicon with 100 keV  8yy. b. Kornyushkin, Fiz. Tverd. TeléLeningrad 20, 1175(1978 [Sov.
Siions and 175 keV Ge, As ions. It was established experi-gPhyS- Solid Stat@0, 676 (1978].

mentally that an amorphous layer and vacancies appear igY!: P- Komyushkin, Poverkhnost, No. 12, pp. 13—(#92.
y P Y PP MaE. S. Parilis, N. Yu. Turaev, F. F. Umarov, and S. A. Nizhnalfagory of

the sample. ) . . ) . Scattering of Medium-Energy Atoms by a Solid Surfac&ussiar, Fan,
For a more detailed theoretical analysis, the implantation Tashkent(1987, 212 pp.
process was simulated by the Monte Carlo method, fof'V. A. Kvilidze and S. S. Krasil'nikov,Introduction to the Physics of

which the TRIM code was Uséa The trajectories of ten Atomic Collisions[in Russiand, Moscow State Univ. Publ.,, Moscow
: (1985, 224 pp.

thousand ions were followed. The threshold energy changey p. kornyushkin, Poverkhnost, No. 7, pp. 40—GE92.
corresponding to the appearance of a vacancy in a cascaéi®l. A. Kumakhov and F. F. KomaroEnergy Losses and Ranges of lons
was chosen to equal 13 eV, for a binding energy betweerl14i£ Slto“di[iT” EUISSiaTﬂ (g’ghs‘& 1939;?32: F;PH AR o
lattice atoms of 4.5 eV. Figure 5 shows the depth distribution (1'993" o3 S‘pf" a 1. shiral, and <. A. Fhaneut, "M rep., Tokyo
of vacancies in a silicon layer whose surface is irradiated bysg N. Mukashev, V. V. Smirnov, Z. Kalbitser, and M. Yzer, Poverkh-

a flux of accelerated arsenic ions calculated in Ref. 16, alon%nost’, No. 3, p. 72—781990 [in Russian.

with the depth distribution of boron atoms obtained in the  T- Motooka and O. W. Holland, Appl. Phys. Le@l, 3005(1992.
present paper. A comparison of these profiles shows that”: - Biérsack: Nucl. Instrum. Methodg4, 257 (1980.

they are in rather good agreement. In this way we confirnmranslated by Frank J. Crowne
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Effect of thermal annealing on the magnetic properties of thin films of Co—Pd alloys
S. A. Gusev, Yu. N. Nozdrin, D. B. Rozenshtein, and A. E. Tselev

Institute of Microstructure Physics, Russian Academy of Sciences, 603600:Mplkgorod, Russia
(Submitted December 4, 1996
Zh. Tekh. Fiz68, 66—70(April 1999

The results of studies of the effect of thermal annealing on the magnetic properties of thin films

of Co—Pd alloys are described, along with a method for obtaining easy-axis perpendicular
anisotropy in these materials. The method consists of depositing layers of the alloy on a substrate
whose thermal expansion coefficient is considerably smaller than that of the film, and then
annealing it in a vacuum. This method is used to prepare samples with rectangular hysteresis loops
for magnetization perpendicular to the plane of the film, coercive forces of 750 Oe, and

Kerr rotation angles of 0.21°. Also presented are the results of experiments on thermomagnetic
recording on the samples. @998 American Institute of Physid§1063-784£98)01204-5

In recent years the multilayer Co/Pd and Co/Pt structuresaturation magnetization, and, = (3/2)\ o, where\ is the
have been studied intensely. Their large easy-axis perpemaagnetostriction constant of the film material amds the
dicular anisotropy, large Kerr rotation angle in the spectralvalue of the elastic stress.
region around 400 nm, and high corrosion resistance make In keeping with the customary conventions, a positive
them promising media for the magnetooptic devices to besign for K 4 corresponds to easy-axis perpendicular anisot-
used in the next generation of information storage systemsopy. The disordered Co—Pd alloys have a face-centered cu-
The perpendicular anisotropy of these multilayer structures ibic lattice, and the magnetocrystalline anisotropy in them is
due to properties of the boundaries between the Co and nobtgiite small. However, Co—Pd alloys also exhibit consider-
metal layers, i.e., it is a surface effect. A number of theoretable magnetostriction. In alloys with Co concentrations of
ical and experimental papefsee, e.g., Refs. 1 and Bave around 25 at. % the magnetostriction constant is negative
shown conclusively that the value of the perpendicular anand can be as large as= —1.5x 10 * (Ref. 7). Therefore,
isotropy depends strongly on the sharpness of the boundasjastic stresses can have a large effect on the magnitude of
between the layers, and decreases as the boundaries becoime anisotropy in this alloy. In Ref. 3 Hashimott al.
smeared out. This fact makes the technology of fabriactinghowed that in multilayer Co/Pd structures magnetostriction
multilayer Co/Pd and Co/Pt structures with the desired propean make a large contribution to the perpendicular anisot-
erties rather complicated. However, a number of papers inopy. In Ref. 8 by the same authors, perpendicular magnetic
which the magnetic and magnetooptic properties of thiranisotropy was observed in fiims of the alloy Co—Pd pre-
films of Co—Pd and Co—Pt alloys prepared by various methpared by magnetron sputtering. Perpendicular anisotropy in
ods were investigated have reported that easy-axis perpethese films occurs only for certain sputtering regimes, and
dicular magnetic anisotropy can be obtained in these alloysvas associated by Hashimotet al. with tensile elastic
In particular, films of Co—Pd alloy with perpendicular anisot- stresses caused by peculiarities in the process of film growth.
ropy were obtained by the authors of Refs. 3—5 using magEssentially the same phenomena was noted by Tsunashima
netron sputtering and electrolytic deposition, and by the auet al. in Ref. 9. According to estimates by the authors of the
thors of Ref. 6 using molecular-beam epitaxy. aforementioned papers, the elastic stresses in alloy films with

In this paper we investigate the effect of thermal annealperpendicular anisotropy are in order of magnitude equal to
ing on the magnetic properties of Co—Pd alloy films, and10® dyn/cnr.
develop a method for preparing films with perpendicular  The same magnitude of tensile elastic stress can be ob-
magnetic anisotropy that are suitable as magnetooptic re@ained by annealing films deposited on a substrate with a
cording media. thermal expansion coefficient considerably smaller than that
of the film. In fact, keeping the film at a high temperature
during the anneal leads to relaxation of the elastic stresses in
it. However, if the cooling is not too slow, tensile elastic
stresses will be stored in a film grown on a substrate with a

The magnetic anisotropy constant of a thin film can besmaller thermal expansion coefficient. Let us assume that the
expressed as a sum thermal expansion coefficient of the film equals the thermal

Ko Ko 4K —27M?2 expansion coefficignt of pure Pa~(130x 10 7 1/K). Then

eff = hme T Mo s’ when such a film is grown on a substrate made of quartz
whereK . is the contribution due to magnetocrystalline an-glass (whose thermal expansion coefficient is
isotropy, K, is the contribution due to elastic stress in the~5x10 7 1/K) and annealed at a temperature of 500°, its
film, and the third term describes shape anisotrdyyijs the  strain relative to the free state is 0.5% and the elastic stress

THE POSSIBILITY OF OBTAINING EASY-AXIS
PERPENDICULAR ANISOTROPY BY THERMAL ANNEALING

1063-7842/98/43(4)/5/$15.00 407 © 1998 American Institute of Physics
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in the calculation, while the magnetic anisotropy constant,
for example in an alloy film with a Co concentration of -
30 at. %, is 2.X10° erg/cnt. FIG. 2. Magnetization curves for one of the films.

Thus, annealing of Co—Pd alloy films grown on sub-
strates with considerably smaller thermal expansion coeffi-
cients can be a method for obtaining media with easy-axi§ffects at a wavelength of 630 nm. The composition of the
perpendicular anisotropy. In this paper we establish that it i§lms was determined by x-ray microanalysis.
indeed possible to obtain films of the alloy Co—Pd with per- ~ The samples were annealed in a vacuum chamber with a
pendicular magnetic anisotropy by this method, and investitesidual gas pressure of no more thar B ° Torr, and

gate several magnetic and magnetooptic properties of sucpoled naturally in the vacuum. The time for heating to a
structures. temperature of 300 °C was 4 minutes, and was 2 minutes

from 300 500 °C. Cooling from 500 to 300 °C took 5 min-
utes. The anneal time obviously should be no smaller than
SAMPLE PREPARATION the time required for relaxation of elastic stresses at the an-
i neal temperature. Experiments show that at a temperature of
_ Co-Pd alloy films were prepared by pulsed laser depoygg o the magnetic properties of the film cease to change
sition. A sketch of the deposition setup is shown in Fig. 1. Innoticeably for anneal times of more than two hours: at a
this apparatus we use a neodymium laser made of a ytm“%mperature of 300 °C this happens after more than 1 hour,
orthoaluminate _crystal with a wavelength of 1.Q6m (ILTI- at a temperature of 400 °C it happens after 15 minutes, and
207). For energies of 0.7 J per pulse, a power flux density oL 5 temperature of 500 °C 4 minutes is sufficient for stabil-
~2x10° W/en? s created at the target. Deposition takesjy, The xray diffraction and electron-microscope studies es-
place in vacuum at a pressure oka0 ® Torr from WO  iapjished that as-deposited films consist of polycrystals with
different targets made of Co and Pd illuminated one aftet, -in sizes of 106 150 A without any texture. Anneal tem-
another onto a substrate at room temperature. It is wello atures up to 400 °C change the film structure slightly.
known that the cloud of plasma evaporated by an intens nnealing at temperatures higher than 500 °C causes the
laser beam in vacuum contains a certain fraction of partide@rain size to increases to 450 A and the film acquires a tex-
with energies above 500 eV.When such particles collide e with the(111) axis perpendicular to the plane of the
with the surface of a growing film, they are capable off”m' Rocking curves around thél1l) peak of the large-
strongly disrupting its top layer and burying themselves inangle x-ray diffraction pattern have a width at half-height of

the thickness_(_)f its bUIk_ o a certai_n dep_th. _Specially OIe'4—9", indicating a high degree of texturization of the films.
signed deposition experiments and investigations of small-

angle diffraction by multilayer periodic Co/Pd structures

with a period of around 100 A have shown that the thicknessfQESULTS OF EXPERIMENTS
of the mixed layer at the boundary between Co and Pd layers Figure 2 shows how the magnetic anisotropy changes as
is roughly 10 A. This fact dictates that as the alloy films area result of annealing for a film with thickness 150 A and Co
deposited, the number of pulses of the sputtering laser arrivconcentration of 25 at. % deposited on a substrate made of
ing at a target during one period be chosen such that thguartz glass. In Figs. 2a and 2b, curves for the magnetization
period of modulation of the film composition should not ex- are shown for as-deposited films and fields applied perpen-
ceed 10 A. Using this approach, it is expected that the filmdicular and parallel to the plane of the sample respectively,
will consist of a practically uniform mixture of the two ma- obtained from the polafa) and meridional(b) Kerr effect.
terials. The average composition of the filgbncentration  Figures 2c and 2d show the same dependences for the same
is controlled by varying the relative numbers of laser pulsesample after annealing at a temperature of 500 °C for 5 min-
arriving at the Co and Pd targets. The magnetic properties aftes. It is clear that immediately after deposition the film has
the film were studied using the polar and meridional Kerra strong anisotropy of the easy-plane type. Annealing leads
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on temperature for these materials according to handbook

160
t datal! In order to prevent a chemical reaction between the
B / silicon and the alloy, we used the method of vacuum-arc
<720 sputtering to deposit a buffer layer of amorphous diamond-
N like carbon with a thickness of 200 A onto the silicon sub-
‘«; B strate. The results of these experiments are shown in Figs. 4,
;agg | -2 5, and 6. Figure 4 shows how the shape of the hysteresis loop
B I e T changes in applied magnetic fields perpendicular to the plane
- of the film, and the increase in anneal temperature for the
40 4 - example of a film on a substrate made of quartz glass. In
- T order to measure the characteristics of the hysteresis loops
[~ 5 perpendicular to the film plane, we chose the following fields
7] N bt Wb Iy MMM bt i (Fig. 4): H. is the coercive forceH, is the field at which

-
o w2 JZ” 400 500 600 domains nucleate in films that possess perpendicular anisot-
7,°¢ ropy; andHg is the field at which films with easy-plane an-
isotropy saturate. It is obvious that the magnitudes of these
FIG. 3. Temperature dependence of the thermal expansion coeffisieat  fields are directly related to the value of the magnetic anisot-
Egti"gg?;ges:;tftf‘ézpmhﬁteegj('i’”Zei'gilﬂgs_palfgft'yi)‘i' él:m?':gﬁ:sy.pe ropy for films prepared using the same technology. Figure 5
shows the function$i, and H,, plotted versus the average
thermal expansion coefficient of the substrate at two anneal
temperatures; in Fig. 6 we show the dependence of the same

to a change in the sign of the anisotropy, while the hysteresi -
quantities on anneal temperature for substrates made of

loop, which is taken in a field perpendicular to the film plane, _
becomes almost completely rectangular in form with a coerduartz and optical glass.

cive force of 750 Oe. This type of change in the anisotropy ~ From these plots it is clear that the magnitude of the
is typical for samples deposited on quartz glass. change in anisotropy is uniquely determined on the one hand

As we assumed, thes changes in the magnetic anisotropdy the anneal temperature, and on the other hand by the
of the film are due to the different thermal expansion coeffi-thermal expansion coefficient of the substrate. The smaller
cients of the film and substrate materials. In order to verifythe thermal expansion coefficient (ise., the larger the dif-
that it is the difference in thermal expansion coefficients ofference between the thermal expansion coefficient of the film
the film and substrate that is the decisive factor in changing@nd that of the substratethe smaller is the temperature re-
the anisotropy of the film, we performed a number of experi-quired to obtain the same change in anisotropy. Whereas
ments on the deposition and annealing of films on differenstarting from a certain anneal temperat(w#ich depends on
substrates. Films with the same composition and thicknesihe thermal expansion coefficient of the subsirdtether
were deposited on substrates made of KB-type quartz glasiicreases in the temperature do not lead to a change in the
silicon, sapphire, and BF12-type optical glass. Figure 3anisotropy. Such behavior of the anisotropy is probably ex-
shows the dependence of the thermal expansion coefficieplained by the fact that starting with a certain value of the

1
|
5 |
|
:
0 4,
25°C 200°C J00°¢
el
§ 7L FIG. 4. Changes in the shape of hys-
< ( teresis loops as the anneal temperature
\ is increased.
i !
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! L l L | L ! 4 A ) FIG. 7. Pattern of bands with oppositely directed magnetizations obtained
0 20 40 &0 a0 for one of the samples by thermomagnetic recordirdL000).

-7
Koo 1K

FIG. 5. Coercive forceH, (1,2 and domain nucleation fielt, (3,4 of  One onto the surface of a magnetic film in order to obtain an

films of Co—Pd alloy as functions of the thermal expansion coefficient of theinterference pattern. Then, after we first magnetized the film

;zbstr;teAAll thle films had a t!ligkness of ;io A4and Co concentration ofq gatyration, and illuminated it with laser pulses whose du-
at%. Anneal temperature, *@;3 — 590,2,4 — 450. ration was 100 ns and average intensity was1®* W/cn?.

In this case the sample was not placed in an external mag-
strain (if we measure strain from the state of a free jiilm netic field. After illumination by laser pulses, the sample was
which depends only on the film material, elastic stress in thénvestigated using a polarizing microscope in transillumina-
film ceases to be stored and the strain becomes almost cofon. Figure 7 shows the pattern observed in the illuminated
pletely plastic, and plastic deformation for such values doegegion of the film for almost-crossed polarizer and analyzer.

not change the magnetic anisotropy. The magnetization is in bands that are visible in Fig. 7, and
is directed perpendicular to the plane of the figure away from
EXPERIMENTS ON THERMOMAGNETIC RECORDING and toward the reader, alternating in direction from the light

o band to the dark band and conversely. The period of the

The angle of Kerr rotation in samples grown on quarzmaqnetic structure obtained was 5. It is clear from the
and optical glass at a wavelength of 630 nm is about 0.2%e getails that the size of a recording domain can be made
which is comparable to the same characteristics fotgnsigerably smaller than this value. No sign of structural
multilayer Co/Pd structures that are analogous with respegieqgradation was observed after several cycles of rewriting.
to thickness and average composition. In order to reveal the ~These results show that under the most favorable condi-
potential of these films as magnetooptic recording media, Wg,ns (sufficiently small thermal expansion coefficient of the
carried out experiments on thermomagnetic recording. TQpstrate, and a concentration of Co in the film correspond-
write information we used a laser with a wavelength Ofing to the highest value of the sum=(3/2))\a—27TM§for
1.06 um. We used a beam splitter to split the laser beamy, giyen value of elastic stres3eis is possible using the
into two roughly equal-intensity beams and directed eachyeihoqg described in this paper to obtain media with perpen-
dicular magnetic anisotropy that are suitable for magnetoop-
tic recording. The method proposed is distinguished by its
simplicity. The magnetic properties of the final structure are
insensitive to the method used to deposit the alloy films, due
to the last high-temperature anneal. Another advantages of
this medium over multilayer structures is its high thermal
4 — stability.

Moreover, the results of this work lead us to conclude
that a difference in thermal expansion coefficient of the film

T

1.0

i
I

H, M, H, , kOe
)
Y
1

“1.0r- and substrate can give an additional contribution to the an-
isotropy connected with elastic stresses. When thermal meth-
1T ods are used to measure the magnetic properties of
20k 1 | ' [ . \ multilayer Co—Pd structures, 'Fhe neglegt of this cpntribution
T 200 00 500 can also lead to errors and incorrect interpretations of the
7,°C measured results.
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The problem of finding the potential function in a weakly conductive anisotropic medium for an
assigned distribution of the potential on the boundary and sinusoidal variation with time is
solved. It is shown that for each phase of the supply voltage the distribution of the potential is the
same as it would be for a static field in an insulating crystal with a nonuniform anisotropy

that varies with the phase according to a definite law. 1898 American Institute of Physics.
[S1063-78498)01304-X]

Static and quasistatic electric fields in anisotropic media,  gp ) 5 92
including both insulators and conductors, have been thor- - =~ V5o, Va=0ikm, (4)
oughly studied. However, there is an extensive class of ma-
terials with low electrical conductivities which behave as 92
conductors with a conductivity in a low-frequency electric p= Vﬁqo, V§= S varval (5
. . : . : X ; IX; IXy
field and as insulators with a dielectric constarih a high-
frequency field: Hence it follows that there is an intermedi- After eliminating the unknowm therefrom, we obtain
ate frequency range, in which bothand o influence the
distribution of the field in the medium. This regime was ex- ,0¢ 2
perimentally investigated in Ref. 2 in the example of an elec- Ve ot +Voe=0. ®

trooptic gradient deflector made from a KDP crystal. At
room temperature this crystal behaves as a conductor with an Utilizing the fact that(6) is linear and that an harmonic
anisotropyo min/omax=0.86 in a static field and as an insula- time dependence is assumed in the boundary conditions, we
tor with & min/emax=0.5 at a frequency of 50 Hz. When it is seek a solution in the form

heated to 40—-50 °C, it belongs to the intermediate region due .

to an increase in the 50-Hz conductivity. As a result, a phe- ¢~ ¢ expliot). @)
nomenon is observed wherein the field configuration in the

rstal vari function of the oh £ th lied volt It is convenient to solve the problem in complex vari-
;gyes al varies as a function ot the phase of the applied vo ables, bearing in mind that the physically meaningful poten-

tial will be the real or imaginary part af7). Substituting(7)

We shall_examme_ the electric fields in cryst_als _spec_|f|-.mo (6), we obtain the equation fap, which is a complex
cally for the intermediate frequency range, bearing in mmdlfunction of the coordinates:

that a pure insulator¢—«) and a pure conductor(— 0)

must be obtained as special cases. (V2+iwV2)p=0. (8
To describe a quasistatic electric field in a weakly con-
ductive medium characterized by the parametesad o, we Let us mention some special cases. In a static field (
must consider the system of equations =0) Eq.(8) transforms intoV2¢=0, i.e., into the equation
d for an electrically conductive crystal, as was pointed out in
P div o grad ¢, (1) Ref. 1. At large values ob or in the case where the conduc-
dt tivity of the crystal is negligibly small¢=0), Eq.(8) gives

the usual equation for the electrostatics of an insulating crys-

tal V§¢=O. In both cases the equation becomes purely real,

whereg is the electric field potential anglis the bulk charge and its solutione is real-valued.

density. Below we shall consider the planar problem in the
Homogeneous crystals characterizedebgnd o tensors  coordinate plane, whose axes correspond toXheand Z

that do not depend on the coordinates are considered in thigystallographic axes of the KDP crystal, since we intend to

p=div ¢ grad ¢, (2

paper. use the approach developed to describe the operation of elec-
It is also assumed that the boundary conditionsd@n  trooptic devicegdeflectors and lensgs which the nonuni-
the closed boundarg are assigned: form fields are usually cylindrical fields, which do not de-

pend on one of the coordinates.
Going over to a coordinate system in which the tensors
Whene;, ando; are constant, Eq$l) and(2) take the o and g; simultaneously have a diagonal forfthis is
forms possible for many crystglswe obtain

¢ls=¢(S)-cos wt. ©)

1063-7842/98/43(4)/4/$15.00 412 © 1998 American Institute of Physics
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_ 2 _ 2 along with tanft+9), through all values from-o to + .
(o1 +ioey) 3_XZ+("2+""82) WZZO- (® A similar dependence was discussed in Ref. 4 in the case of
) . . ] a solution of Eq.(9) that was obtained without considering
This equation was also considered in Ref. 4. the stationary(in time) boundary conditions.

As we have said, the character of a quasistatic electric 3 Generally speaking, the effective anisotropy depends
field varies with time and depends on the phase of the supplyn, the coordinates, sinc@ depends on the coordinates.
voltage at which it is observetLet us find the law of this In the investigation of the electrooptic deflectors de-
variation. We assume that the solution of E8). under the  gcriped in Ref. 2, an increase in the conductivity of the crys-
assigned boundary conditiof® has been found and that the 515 was achieved by heating. It was found that the ratios of
physical field of potentia(7) has been constructed. Its dis- he principal values of the and o tensors varied insignifi-

tribution depends on time. We consider it at the titméVe  cantly and that only the value of the conductivity changed.
ascertain whether this instantaneous field distribution is simiTperefore. it would be useful to ascertain how the effective

lar to any static field distribution that would exist if the re- anisotropyé varies under the following conditions:
gion contained a crystal with a suitably chosen anisotr§py

which is construed as the ratio of the principal values of the oy we,

dielectric tensor of a nonconducting crystal, or, more pre- 8—=s=const, — =og=const, U—=r €(0).

cisely, whether there is a real equation 2 72 !
Re P We represent13) in the form
y . .
. oy,—lwe, ot+te o—g l-ir
which would be satisfied by the field). If such an equation a1+|a2=al_iw81 T2 2 1+
exists, what does the effective anisotrogyequal at each
moment in time? Since|(1—ir)/(1+ir)|=1, in the range &r <~ the
We substitutg7) into (10) and take the real part complex numbery; + i a, runs along a semicircle centered at
52 2 the point (¢ +¢)/2 and having a radiuso(— €)/2. The maxi-
¢ ¢ . , ;
Re{<—2+§—2> exp(iwt) |=0. (11) mum value ofa, is achieved at =1, and the dependence of
28 ay £ on the phase of the supply voltage according to #d@) is
Since® satisfies Eq(9), we have then most clearly manifested.

) ) 5 ) Figure 1 presents the variation éfas a function of the
ﬂ: _ o2tlwe, ﬂ: _aﬂ (12) phase of the supply voltage. The region between cudes
Ix* o1 tioe, dy° ay*’ (9=—13.1°) and3 (9=10.5°) contains the possible values

where of ¢ at different points of the apertufghe dependence af
on x andy) for r=1.13. In addition, curves close to the

_optiwe; limiting values r—0 (f=0.5Hz, curvel) and r—o>

=artias. (13 (=500 Hz, curved) are presented to show what happens

e i ) when one goes over from medium that is described simulta-
Substituting(12) into (11), we obtain neously by the two tensoks, and oy, to the limiting cases
PP of a pure insulator and a pure conductor.
Re{(é—a)a—yzexmwt) =0. (14 The pattern of field variations observed in Refs. 2 and 5
in a heated electrooptic deflector can be explained on the
Assuming that|9°#/dy?|#0 and introducing the nota- basis of the foregoing presentation. Let the deflector elec-

a= -
o1 tlweq

tion trodes, i.e., conjugate hyperbolas, be designed for a certain
9= Pdlay?), 15 anisotropy of the medium. It is seen from Fig. 1 that there is
arg.°¢l9y”) 9 always a phase of the supply voltage in whi€rs close to
we have the anisotropy inherent in the design of the electrodes and
R (£— a)expi(wt+ §)]=0, (16) that it has a larger or smaller value in other phases. However,

all these relations are approximate, siricdepends on the
whence coordinategthe vertical section of the region between curves
_ 2 and3); therefore, the field corresponds only approximately
¢= g~ ap Aot ). (17 to the field which would induced in the device if a homoge-
We point out some consequences(bf). neous electrooptic crystal were placed within the electrode
1. For each phase of the supply voltage, the field in arsystem.
assigned region coincides with the electrostatic field which  Let us consider the dependence of the effective anisot-
would be induced there if the region were filled by an inho-ropy on the coordinates. As follows frofd7), ¢ depends on
mogeneous mediurfin which ¢ depends on the coordinajes the coordinates only if depends on them. We ascertain
with anisotropy specified by a tensor having the principalwhether there are solutions of E€Q) for which 9= const
values 1 andt under the existing boundary conditions. and, if they exist, what are the boundary conditions for a
2. The effective anisotropy varies as a function of the potential which varies harmonically with time. We note that
phase of the supply voltage according(iy), i.e., it runs, if this is true for some solutiorb, then 9=0 for ® exp
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FIG. 1. Dependence of the effective anisotr@pyn the phase of the supply
voltage.

(—=i9), which differs by a constant factor and is therefore

also a solution of Eq(9). We seek such solutions.
We take Eq.(9) in form (12
9*P . P o
axz gy T

a=a;t+ia,, (19

q):(l)l+|q)2
From

o= &Z(I)— t
=arg oy =arcta

PD, 9°D,

ay?  ay?

we obtain
PP,
ay’

0, (19

whence
®,=F;(X)y+F,(x), (20

whereF, andF, are arbitrary functions at this point.
We separate the real and imaginary parts of 8@).
Taking into accoun{19) and(20), we have
(92(1)1_ &2(1)1_ aq 52(132
Xz oy T a, ox?

ag
= —[Fiy+F3(0)],
2
(21

ie.,

<1>1:Z—;[F1<x>y+Fz(x>]+f1<y>x+f2<y>, (22)
and, finally, from(21) and(22) we have
[FI(X)y+F5(x)]=—ay[ f1(y)x+f5(y)]. (23

Since there is a function linear ynon the left-hand side
of the equality and a function linear i on the right-hand
side, the functions=7, F5, f], andf} should be linear.
After a comparison of the coefficients in front of similar
terms and integration, we obtai@®;, b;, c,, andd, are
arbitrary physical constants

i

B. V. Krylov and V. E. Leparskil

FIG. 2. Lines of equal phas&(x,y).

fi(y)=a;y*+byy?+cy+dy,
fo(y)=azy*+byy?+coy+d,,
Fl(X) = — 26!2[a1X3+ 32X2+ a3X+ a4],

Fz(x): _zaz[b1X3+ b2X2+ b3X+ b4] (24)

Classes of solutions of E¢L8) for which condition(19)
is satisfied are demarcated by selecting the arbitrary con-
stants in(24).

In the case of boundary conditions that are symmetric
both with respect tox and with respect tg (an electrooptic
qguadrupole deflectpronly even powers of the coordinates
can appear in the solution. We then obtain

d=by(ax’—y?)+2a,b,—d=A(ax’?—y?)+B. (25

A similar solution of the equation was considered in Ref.
4, where it was shown that in the case of harmonic variation
of the potential with time the shape of the deflector elec-
trodes must vary continually, in contradiction to the bound-
ary conditions of a real device, which are stationary with
time. Therefore, it can be stated that conditi@®) will not
hold for the field existing in a deflector, i.e, will depend
on the coordinates.

To ascertain the dependencethbn the coordinates, we
must completely solve the problem of finding the electric
field potential which satisfies the concrete boundary condi-
tions and Eq(9). As an example, the field was calculated by
the method described in Ref. 6 for a quadrupole deflector
with the following initial data: anisotropy inherent in the
geometry of the electrodes, 0.79; radius of the circle that is
tangent to the electrodes tips, 1.75 mm; temperature,
51.8 °C; control voltage, 2000 V; parameters of the crystal:
£,=42, £,=21, £,=8.85x10 ® F/mm, ¢,/£,=0.5, oy
=0.6x10"S/mm, ¢,=0.51x10"1° S/mm,
=0.86, wey/oy=1.13.

The results of the calculation were used to construct a
map (Fig. 2) of lines of equal phas&(x,y) (the numerical
values of the phase of each line are given in degrémsa
phase of the supply voltage equal to zéitme voltage maxi-
mum). It is seen from Fig. 2 that the largest phase difference

o,loy
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In this paper two problems are formulated and solved: the problem of diffusion in a two-phase
system with a moving boundary, and the problem of taking into account the finite reaction

rate for formation of the new phase. A numerical solution is found by a variational method, which
has a number of practical advantages. 1@98 American Institute of Physics.
[S1063-7848)01404-4

INTRODUCTION and D(-) is the diffusion coefficient of impurities, whose
dependence on coordinates and time is connected with the
Process of formation of phage

" The boundary condition for Eq1)

The evolution of microelectronics has long required
mathematical models of the technological processes used
fabricating semiconductor devices. Although this need for
models has been the subject of an extensive litergaee, dC(x,1)
e.g., Refs. 1-) there are still a large number of problems X
that remain unsolved even today. In this paper, two of these
problems will be formulated and solved) the diffusion of ~ implies that the surface of the solid is impermeable to impu-
impurities in a semiconductor under conditions such that fortities. The diffusion coefficient in this model can be written
mation of a new phase takes plaeidation, silicide forma- in the form of two equivalent expressions:

=0 3)

x=0

tion, etc), and 3 formation of a new semiconductor phase D(x.t)=D:+(D.— DO (x—I(t 4
by a heterogeneous reaction with a finite rate. Both of these (x)=Dp+(Da=Dp)Ox=1(1)), @
problems are of the Stefanovshkype, although the first of D(x,t)=D,—(D,—Dp)O(l(t)—Xx). (5)

them is linear and the second nonlinear. Both were solvei?_| is the Heavisid it step functi d
numerically by a variational method, which has a number o ere (_') IS the Heaviside unit step functon, aint, anc
advantages in practical problems, notably the fact that the®’ which are constant quantities, are diffusion coefficients

results can be interpreted and described by a relatively small?r |mpur|t|e|sc,j n phta;]sea atnhd Z (Ijn orc.isr(tjo. S?:LV? tglsHprob-
number of plots or tables. em we could use the method described in Ref. 8. However,

it is simpler to use the method described below. After sub-
stituting Eq.(4) into Eqg. (1) we obtain

1. DIFFUSION OF IMPURITIES DURING A HETEROGENEOUS aC 9°C
REACTION E_Db_o_'xz =(Da—Dp)

a) Basic equationd_et a “pure” semiconductofphase 5
a) occupy the half spac&>0. The initial distribution of % @(x—l(t))£+5(x—l(t))£ ,
impurities is described by a functidh(x). At time t=0 the ax? IX
temperature of the sample is raised. For simplicity we will 6)
assume that the temperature rise occurs instantaneously.
Then a layer of phask begins to form at the surface of the whered(-) is the Dirac delta function.
semiconductor, with a whose thickness that varies according Treating the right side of the equation as an inhomoge-
to some functiori (t), wherel (0)=0. neous term, let us rewrite this equation in the form of an
At low temperatures, the diffusion of impurities can be integrodifferential equation:
neglected. At high temperatures, impurities begin to diffuse, -
and it is necessary to determine the distribution of impurities c(x,t):f dyGy(x,y;t)F(y)+(D,—Dy)
in phases andb at an arbitrary time. The problem as posed 0
is described by the diffusion equation

! ’ ’ ’ é)C(y’t’)
IC(x,t) 4 5 JC(x,t) L Xfodt Gp(X,I(t");t—t )—(9y y=1(t")
H . . . . . - % FC(y,t")
ereC(-) is the impurity concentration, which satisfies the +f dyGy(X,y;t—t" ) ————=|. 7)
initial condition It ay?
C(x,00=F(x), (2 HereGy(-) is the Green'’s function for the parabolic operator

1063-7842/98/43(4)/7/$15.00 416 © 1998 American Institute of Physics
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5 ¢
box

with boundary conditior{3). The explicit form of this func-
tion is well known?

Jd 4

ot ot

)2
Gp(X,y;t)=(4mDyt) "2 ex;{— ();DZI? }
(x+y)?
e)(%_'4Dbt 8

In order to transform Eq(7) we take into account that for
x>1(t) the functionC(-) satisfies the equation

fc_o

oxz

aC
ot

a
from which it is easy to obtain the relation
» §°C
- —dx
[(t) IX

Using these relations, let us rewrite E@) in the fol-
lowing form:

aC
ax

1 (»4C

—dx.
Dy Jiy ot

x=I(t)

Clx,t)= f:dyeb(x,y:wF(y)

Da_Db
Da

t o
J.dﬂf dy[Gp(x,y;t—t")
0 I(t")

—Gb(X,l(t);t—t’)]M-

: )
ot

If we use Eq(5) in the derivation instead of E¢4), then Eq.
(9) is replaced by

C(x.t)= J;dyea(x.y;t)F(w

Dy—

Da [t I(t)
+ dt’ dy[Ga(x,y;t—t")
Dy 0 0

dC(y,t")

—Ga(X,l(t');t—t')]T

(10)
whereG,(-) differs from G,(-) by the replacement dD,
by D,.
Equations(9) and (10) can be reduced to integral equa-
tions by the substitution
B dC(x,t)

P(x,t)= .

After differentiating Egs(9) and (10) with respect tat
we obtain

P(x.t)= fowdyeé,(x,y;tw(y)

Da_ Db
Da

t 0
+ f dt’j dy[GL(x,y;t—t")
0 It
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—Gp(x,I(t");t=t")]P(y,t"), (1)
e , Db_Da
P(x0)= | ayGixyinF(y) + =15
t ! l(t,) ' Y
xfodt fo dy[Gi(x,y;t—t")
=G I(t");t=t")]P(y,t"). 12
Here
IG( -
G'(-)= ;)

Equationg11) and(12) are the fundamental equations of
this section. In deriving them we have not needed to use any
matching conditions at the boundary between phasaad
b. In solving them by the variational method, these condi-
tions will be taken into account in choosing a trial function.
Thus these quantitites are of a quite general character. The
fact that Egs.(11) and (12) are mathematically different
ways of writing the same equation allows us to monitor the
accuracy of our numerical computations by comparing the
results obtained for each version of the equation.

Note also that the treatment given here does not include
the possibility of a difference in the molar volumes of phases
a and b. Inclusion of this difference does not change the
essence of the method illustrated and it is quite easy to do.
This remark also applies to Sec. 2.

b) Method of numerical calculatiorEquations(11) and
(12) were solved numerically by a variational method. In this
case, different approximations were used in the different
phases, and at the boundary of the phases the following
matching conditions were included:

C(l(t)—0t)=C(I(t)+0,),

dC
b ox

aC

= Da—
x=1(t)—0 2

(13

x=1(t)+0

The matching conditions given here are for a completely
permeable phase boundary. Assuming that at the initial time
the impurities are distributed according to a Gaussian,

-

we approximateC(-) by the following trial function:
X—Xo(1)

2
"(‘(W) ) x=1,

C(x,t)=N(t)
xo(t)exp<

This function depends on five functions of timd(t),
Xo(t), o (t), Xo(t), anda(t), from whichxq(t) ando(t) will
be treated as independent aN(t), X,(t), anda(t) will be
determined numerically from the matching conditi¢iB)

and the condition of conservation of the number of impuri-
ties:

x )2 (14
— , x<I(t).
o(t)
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JC(x,t)dx=f F(x)dx=const.
0 0

The form of the trial functiorP(-) is obtained from the
relations

9?C(x,t)
P(x,)=Da———, x=1(1), (15
ax
9?C(x,t)
x<I(t), (16)

P(X,t)=Dp———,
X

which follow directly from Eq.(1) and Eqgs.(4) or (5). Sub-
stituting Eqg.(14) into Eq. (15 and(16), we find the follow-
ing form of P(-):

2D, p(_ X_XO(t))Z)
a(t) & o(t)
_ 2
) w_ll, =1,
o (1)
P(x,t)=N(t) 2
ﬁx t)ex[{i)
72(1) of o(t)
X2
x| 2 4a|, x<I(t).
a“(1)

Zon et al.

6‘(7)
T it
AN -
_L(g): i 0 t=0
B | t=t /8
osf | i o/
| I ! =y
|
11 1 1 1 1 )
g 1 2 3 4 &5 6 7 8 § 107

FIG. 1. Depth profile of impurity concentration at various times measured
from the start of silicide formation fob,<Dy, .

¢) Numerical results and discussion.

1) D,<D,. A typical example of this case is provided
by diffusion of phosphorous during the formation of titanium
silicide TiSi. For T=600 °C the diffusion coefficients of
phosphorous ard,=Dg=0.26x10 2° cn?/s, D,=Drigi
=8x10 " c?/s 10 The results of the calculations are
shown in Fig. 1, wheré, is the time it takes the impurity
concentration to decrease from its maximum by a factor of 2,
and n=x/y4mDjty is a dimensionless variable having the
meaning of a length. The vertical dotted lines indicate the
position of the boundary between phases. In the calculations

The calculation was optimized by the method of theit was assumed that the time dependence of the boundary is
golden section from the condition of minimization of the & parabolic function. In units of,

norm of Eq.(11),

R,(t)= f:Qg(x,t)dx,

where
Da_Db

a

Qulx,t)= f:dyezxx,y;t)F(yH

t [
Xf dt’J [Gp(x,y;t—t")
0 I(t")

—Gp(x,I(t");t=t")]P(y,t")dy—P(x,t).

7t
I(t)= \E

The smooth profile for the distribution and accumulation
of impurities in phaseb is the result of the large ratio of
diffusion coefficientsDy,/D,=3x10*. Similar behavior of
impurities is observed experimentally in Refs. 11-13.

2) D,>Dy,. This situation arises during the formation of
silicides of the platinum metal grouf’d and Ptfor a wide
class of impurities(P, As, Sb, etd.'**15As a computa-
tional example the following values of diffusion coefficients
are  considered: D,=0.26x10 ®cn?/s, D,=0.8
X 10724 cré/s. The results of the calculations are shown in

In order to monitor the accuracy of the calculations weFig. 2. It is clear that this case corresponds to outflow of

also minimized the norm of Eq12),

Ry(t)= f:Qg(x,t)dx,

where
Q)= | “dyGixyvF)
D,—D, [t /
+ufdt’fm )[G;(x,y;t—t’)
Dy 0 0

—Gl(x,I(t");t=t")]P(y,t")dy— P(x,t).

The results of the calculation, which depend on the rela-

tion between the diffusion coefficients of phaseandb, are
given in the next section.

impurities from phasé.

)
71

FIG. 2. The same as in Fig. 1 f@,>D,,.
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e known parabolic regime of kinetidgrises in the limit of an

- infinitely rapid rate of the chemical reactidm—~. The goal
of this section is to take into account the finiteness of the
value ofk. Neglecting the possibility of the release or ab-
sorption of heat during the reaction, we assume that the re-

o5 action rate constark, like the diffusion coefficientD,,,
does not depend explicitly on time. It is easy to see that
S_(aM) oy 20
1 1 i 1 at R at
e 1 2 3 4 5§ & 7 8 9 10 7

where @M/dt)g denotes the change in the number of metal
atoms in a certain small region of space due to the reaction.
Assuming that there is no change in the volume of the
solid during the reaction, along with E¢L9) we can write
3) D,~Dy,. This case is rarely encountered in the theorythe following relation
of impurity diffusion in semiconductors; however, it is N+ Np=Nao, (22)
treated here because the results obtained could be useful in ) ) N )
solving other problems, for example in the theory of thermalVhere Nao is the concentration of silicon atoms in the
conductivity. The results of these calculations are shown inPure” silicon.

FIG. 3. The same as in Fig. 1 f@,~D,.

Fig. 3. The following case is considered,=0.26 Equation(21) expresses the law of conservation of sili-

X 1020 cné/s, D,=0.5% 10~20 cé/s. con atom density, which holds in the absence of silicon dif-
In the special case where the diffusion constants are ndsion. Substituting Eq(21) into Eq. (19), we obtain

very different (D,—Dy|<D,,D},), a small parameter ap- any,

pears in the theory. In this case E@9) and (10) can be —i ~ K(Nngo—nyp)M. (22)

solved by the method of successive approximations. We will

not pause to discuss this question. The solution to this equation with the condition

ny(x,0)=0 has the form
2. EFFECT OF FINITE RATE OF CHEMICAL REACTION ON ¢
THE STRUCTURE OF THE PHASE BOUNDARY Np(X,t)= nao[ 1—ex;{ - kf M(x,t’)dt’} + (23
0
a) Mathematical simulation of the proce$=or definite- o ) o
ness let us discuss a reaction that forms a silicide: we will Substituting this expression into Eq20) and (17), we
assume that the silicide forms as a result of diffusion of thdind @n equation for the distribution of free metal in the re-

metal into silicon. Let us assume that at the beginning of th&ion X=0:
process the metal occupies the spaed), and silicon occu- IM(x,t) 9 IM(x,t)
pies the space>0. Let us write the equation that describes ~ — 5 = 5( M T) —kngoM(x,t)
the process in the following form:
t
M _ 4 IM x{ex;{—kj M(x,t’)dt’“. (24)
o a_x( M x| £ S @ 0

whereM is the concentration of free metal atori, is the Equation (24) is a nonlinear integrodifferential equation;
therefore, its analytical investigation is quite difficult. A sig-

diffusion coefficient fo the metal, which in general depends™'* 1o atlaly A ; X
nificant simplification of the equation is obtained if we as-

on coordinate and time, arglis the density of the “sink” of i =t X >
metal atoms associated with the possibility of silicide forma-SUme that the diffusion coefficients of the metal in pure sili-
con and in the silicide are the same. It is this case that we

tion. _
The boundary and initial conditions for E@L7) have the ~NOW discuss. _
b) Analytical treatment of the case,3=const. We in-

general form ) - h
troduce the dimensionless variables

wheren, is the density of atoms in the pure metal. pz:E r—kngt, &= @)EX
In order to calculate the quantit$ let us consider the No ' o Ml
rate of formation of the silicide. Let, be the concentration
- o X M(&,7)
of free silicon atomsn, the silicide concentration. Then g(&7)= , (25)
No
an
[?—tb=knaM, (19 and rewrite Eq(24) and the subsidiary conditiof18) as
2
wherek is the rate constant of the reaction. a9(¢,7) 97, T "ds
; . _——p%g(¢&,m)exg — | g(¢,7)dr |,
Here we will treat the simplest case, where the stable JT & 0

silicide has the chemical formula MeSi. Note that the well- (26)
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g(0,r)=1, g(£0=0. holds, expressiof30) also simplifies:
We can transform the integrodifferential equati(@®) 87% 45272\ 2 ¢
into a differential equation by introducing a new dependent  f(¢ 7)~ _( 1— p_) ex;{ —plr— _)
variable Jméd &2 4r
4 2,2\ 71 2
f(g,r>=f g(é,7)dr’. A s _ 22 &
0 gem=—|1- 5| A e Py ] @9

The equation for f(¢,7) has the form of the

Kolmogorov—Petrovski-Piskunov equation Condition (34), and consequently E@35), are valid far

from the phase boundary beween silicide and silicon, where

of o ) the metal atom density is small. Finally, in the region

—=—+pi(exp(—H)—1), (27)

ar g2 1

> e\r <2 36
f0m)=r, f(£0)=0. 28) &5 n <2 (39
In this case the additional condition we have
_ ot ¢

9(&0=7-1:0 f(fm)z( T Z) exp(—pé), g(&7)=exp—pé).
is satisfied automatically. An analytical solution to the (37)
boundary value problent27) and(28) can be found in two  The region(36) is found to be close to the silicide—silicon
limiting cases. boundary; therefore the density of metal atoms falls off here

1) The regionf<1. The conditions for physical realiza- according to an exponential law, whereas in regi84) it
tion of this region will be clarified below. Expanding tais off like a Gaussian.

exp(—f) in Eq. (27) in a series and retaining the first two Expressions(35) and (37) become meaningless for

terms, we obtain a linear equation ¢=2p7. In this case,
or_oA °f 29 2¢\2
i e P 29 i_(_f){ g<1,
3 2p \mp
The solution to this equation with the subsidiary condi- fl 7= Z = 1
tion (28) has the following form: § 2 s
29 . (—<2p>3) exp—ps), 1L
p
1 & &
fEn=51| 75 |ex—pd)| 1+ pﬁ—T f 1
g N7 1 %)? £<1,
g § g 2 o ’
| Tt o | exppd)| 1@ P\/;"'_\/— : gl & m=5-]=4 (1 1 (38)
P oNT 2p §+<8wp§)§)
(30) ) -
Xexp—pé), >1.
Here®(-) is the probability integral. Equation(30) simpli- N P=pé ¢
fies when 2) The regionf>1. Here we can neglect the exponential
in Eq. (27) and write the solution to the boundary value
<7 <1. (32) problem in the following form:
In this case ) = )
£ £ ENT £
o - |- e - £
f(§,7)=(1— : )T. (32 2 V7| mw ar
NTT
]t 'is. not difficult to see that conditio(81) appligs during _p2f dr'® ¢ /) ) (39)
the initial stage of the reaction near the metal—silicon bound- 0 2\1—1
ary. In this region the density of metal atoms changes ac- . I
cording to a linear law: ][(r;rthe steady-state regime near the metal—silicide boundary
£ 2
=1— _ 33) ™1, &<r7 (40)
9(¢,7) Joe (
) o ] we can obtain the following expressions:
As is well known, the probability integral very rapidly
reaches its asymptotic value. Therefore, when the condition 2¢ &
f(é,7)=7| 1- —|, T)=1-— (41
e\7, €207 (34) ¢ N e e
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FIG. 4. Distribution of silicide concentration with respect to depth at variousFIG. 5. Time dependence of the silicide thicknéssand transition layer
times measured from the beginning of the process. thickness(2).

P — 2
In obtaining the latter expressions, we estimated the last dif(§,7i,7i41)= JT_ ?d’]’ f(ri ) +f(r)+p

term in Eq.(39) in the following way. After the change of
variable ¢/(2+7— 7')=s, the function®(-) is expanded in

Ti+1
a series: X in exp(—f(7)dr—(7i— 741
after substitution off(£,7) from Eq. (44) and replacing the
® oig2itl integral by its approximate value based on the trapezoid for-
d(s)= (42)  mula, can be written in the form

feXp( N2 G

. 17 _
if(£,77,711)= o {ex — a®) [ aEP 7
and is integrated term by term. As in ca@38), the metal-
atom density in this limit follows a linear law. In order to X(aBg=B=1)(1i+7is1) = 2]
find the dimensionless concentration of silicgie=ny, /ng in — pYexp(— 7, 1exp( — aéP))
each of the cases discussed here, it is sufficient to substitute
f(-) from Egs.(30), (32), (35), (37)—(39), or (41) into the +exp(— riexp( — aéP)) - 2]}
expression On each interval[7,7,,] the values of a((7

+7i41)/2) and B((7;+ 74+1)/2) were determined by the
method of the “golden section” by minimizing the quantity
On(£,7) = 1—exp(—f(£,7)). (43) ]
S'lefo dif 2(&, 7, 7i.41)dé. (45

Thus, our investigation of the linearized equati@y)
allows us to findg(¢,7) andg,(&,7) near the metal—silicide
boundary and far from the silicide—silicon boundary. In or-
der to find the distribution of metal and silicide concentra-
tions near the silicide—silicon boundary, it is necessary to

Once« and B were found, the values df andg, were
computed from Eqs(44) and (43) and the concentration of
metal was computed from the expression

resort to numerical methods even B, = const. 9(&7)=——. (46)
¢) Method of numerical calculationg.or f(-) we chose
the expression d) Results of calculations and discussiémthis section

we present the results of numerical solution to &7) using
the method described above, fgrranging from 0 to 16 and
f(&,7)=1 exp— a(7) &P ) (44) for p=1. From these calculations it follows th@t=1 under
these conditions, which allows us in principle to limit con-
sideration to just one function to be optimized,r). How-
which, starting from the boundary and initial conditions andever, it was not possible to confirm this ahead of time; there-
the analytical approximations, was used for numerical solufore, for generality in the calculations we optimized both
tion of Eq. (27). a(7) and B(7). Figure 4 shows the silicide concentration
The numerical dependences af7) and B(7) were profiles at different times measured from the beginning of
found by the method of optimization. For this, the entirethe reaction. It is clear that for small times the silicide con-
range of times of interest to us from the beginning of thecentration is smaller than the concentration of atoms of the
process was divided up into small intervids, 7, , 4|, within  original material even at the surface, and it falls off mono-
each of whicha and 8 may be treated as constants. Thetonically with depth in the crystal. This is a consequence of
guantity including the finite rate of reaction. As the reaction goes on,
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a silicide layer is formed in the subsurface region, with ato take into account the presence of a transition layer and to
constant concentration equal to the concentration of theompute its parameters as functions of the reaction condi-
original material. Behind it follows a transition layer of vari- tions.

able composition and then the original material. At still later

times in the process both ther -thiCkneSS- of the silicide IayerlFundamentals of Silicon Integrated Device Technology. Vol. 1: Oxidation,
ar?d the thickness Of t_he transition layer mcr_e@ge take the Diffusion and EpitaxyR. M. Burger and R. P. Donovaitds) [Prentice
thickness of the silicide layer to be the distance from the Hall, New Jersey(1967): Mir, Moscow (1969)].

surface to a plane with a silicide concentration of 0.9 of the 2J. M. Poate, K. N. Tu, and J. M. May€Eds), Thin Films — Interdiffu-
maximum and the thickness of the transition layer to be the,Sion and ReactiongNew Jersey(1978; Mir, Moscow (1982)].

distance between planes with concentrations of 0.9 and 0.1365‘&%? IT\;‘WS '“,\,T(')dsizvao(rlgsl‘as]l ApplicationgAcademic Press, New

of the maximun). In this case, the time dependence of the 4y, p. Maslo’v, v.G. Danilov, and K. A. Volosowlathematical Modeling
silicide layer thicknes$ (Fig. 5, curvel) is closer to linear of Thermal Mass-Transfer Procesgés Russiar), Nauka, Moscow, 1987.
than to |~\/;, the dependence that is characteristic of asR. IS Muller andkT. . Kal.mir)sDevice Electronics for Integrated Circuits
model of the process that does not take the finite reaction rateR’.V:Ee.yégzng% ;}?ﬁ%ﬂﬁ%ﬁ?&ﬂ}f ?ﬂérepo\,’ Poverkhnost’, No.
for silicide formation into account. The time dependence of 2, 1(1982.

the transition layer thicknessl| (Fig. 5, curve?) consists of ~ 'S. V. Vasiev and N. N. Gerasimenko, Poverkhnost', No. 7,(5986.

two segments, both of which are close to linear. The first B. Ya. Lobov, Theory of Crystallization in Large Volumés Russian,
Nauka, Moscow, 1975.

segment of more rapid grOV_V_th_ corresponds to the stage ifa N, Tikhonov and A. A. SamarskiEquations of Mathematical Physics
which the concentration of silicide at the surface has not yet [in Russiad, 4th ed.(Nauka, Moscow, 1972

saturated. This stage is characterized by the induction time qfP- S\filtst’mi.r 523“'5' TAihMig:?La:\'i AT%D'-T;:)/;-S% iﬁg\i%lfifi-s (1983
the _r(_aa_lctmn. After the surface concentrau_on saturates, a_ Igyef(\:"_' 3. Wei, W, 'Ka'tL agr{d C. Sr'nit'L Thin Solid Filno4, 21'5(1983_ '
of silicide begins to form on the surface side of the transitioniay,. wittmer and T. E. Seidel, Appl. Phyd9, 5827(1988.

region, resulting in a significant slowing of the increase in'l. Ohdomari, K. N. Tu, K. Sugaret al, Appl. Phys. Lett.38 1015
the transition layer thickness. To summarize, the model del—5(198]>-

scribed in this paper not only leads to a more correct deter- P. L. Thornton, Electron. Let7, 480(1981).

mination of the rate of silicide formation but also allows one Translated by Frank J. Crowne
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Time-resolved photoluminescence from porous silicon coated with a diamondlike carbon film is
investigated. The intensity of the photoluminescence from the carbon film is obserd to

increase after deposition, and there is an accompanying change in the intensity and a short-
wavelength shift of the photoluminescence band of porous silicon that depends on the porosity of
its original layers. These changes are explained by the formation of carbon nanoclusters on

the surface of the silicon filaments. @998 American Institute of Physics.
[S1063-78498)01504-9

INTRODUCTION the formation of graphite nanoclusters, which significantly
modify the PL spectrum of porous silicon. On the other
The prospect of creating light-emitting elements basedand, it was shown in Ref. 9 that under ordinary conditions
on porous silicon for silicon-based optoelectrohfchas at-  the weak luminescence of thesOmolecule is strongly en-
tracted considerable research interest in studying the propefianced when it is embedded in porous silicon, due to transfer
ties of this material. The ease of obtaining porous silicon an@f charge carriers from the silicon nanocrystallites to tlgg C
its intense photoluminescencBL) in the visible region of molecules adsorbed on their surfaces. At the same time, the
the spectrum has led to the publication of a large number oéffect of carbon in other forms, for instance in its diamond-
papers on this subjett? In the course of this activity, a like modification, on the properties of porous silicon remain
number of hypotheses have been put forward in order teinstudied. It should also be noted that in the majority of
explain the PL of porous silicon, involving assumptionsstudies of the luminescence properties of porous sificon
about size quantization of charge carriers localized in thirtraditional methods are used to measure the stationary spec-
silicon filaments,? chemabsorption of molecules at the po-trum of the photoluminescence. It is obvious that by using
rous silicon surface and the formation of siloxane, silicontime-resolved methods of measurement of the PL spéttra,
hydrides, etc>® and finally radiation at the silicon— especially in studying the porous silicon-adsorbate systems,
adsorbate boundarfyUnfortunately, the low degradation re- one should be able in a number of cases to discriminate
sistance of porous silic8rsignificantly restricts its potential between contributions to the resultant PL spectra from vari-
usefulness in applications. For this reason, there is mucbus sources of radiation, and consequently obtain additional
current interest in work directed, on the one hand, towardinformation about the PL mechanisms for these systems.
finding ways to increase the ruggedness of porous silicon The goal of this paper is to investigate the distinctive
and, on the other hand, to provide additional information thateatures of time-resolved PL from porous silicon coated with
would aid in understanding the mechanism responsible foa layer of diamondlike carbon.
the visible PL of porous silicon. As was mentioned in Ref. 8,
one way to obtain such information is the controlled removal
(or deposition of an adsorbate frorfor ontg the surface of -y pERIMENTAL METHOD
the silicon filaments. Such an adsorbate could be a gas, such

as molecular chloringcarbon in the form of fullerene mol- Samples of porous silicon were obtained by the standard
ecules implanted in the porous silicdmr some other mate- method of electrochemical etching of silicon. Wafere®i
rial. with a resistivity of 1@)-cm (KDB-10) and with the(100)

In light of the results reported in Refs. 8 and 9, there isorientation were used. Prior to preparation of the porous sili-
special interest in studying the effect of carbon on the phocon, aluminum Ohmic contacts were deposited on the back
toluminescence of porous silicon. Thus, in Ref. 8 it was esof these wafers, and then a layer of porous silicon was
tablished that increasing the carbon content of porous silicoformed in a Teflon cell with a platinum electrode. The etch-
can lead under annealing to agglomeration of the carbon witing took place in darkness in a solution of 48%HF,HZOH

1063-7842/98/43(4)/4/$15.00 423 © 1998 American Institute of Physics
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the presence of nonradiative recombination centers at the
boundary between the silicon and the diamondlike film. It
should also be noted that the PL of diamondlike films is
short-lived and appears only in spectra measured with nano-
3 second resolution. One of the reasons for this could be the
formation of tightly bound electron—hole pairs of small ra-
dius, which occurs on account of the low dielectric constant
of the diamondlike carbon filté'® In measuring the PL
spectrum of porous silicon with nanosecond resolution we
observe weak emission at wavelengths shorter than 590 nm.
//\ During the PL measurements whep=0, i.e., at the maxi-
o — mum of the laser pulse, the PL maximum is located around
440 nm(Fig. 1, curve3). The intensity of this PL maximum
300 Y 500 500 700 500 depends on the conditions under which the porous silicon
was obtained, and is usually observed after long etching.
FIG. 1. Photoluminescence spectrum of diamondlike film, porous siliconMoreover, a band at 600 nm also appears in the spectrum,
and porous silicon plus diamondlike film with nanosecond resolution. Inwhereas in integrated PL spectra for porous silicon emission
Ilzlig.trl]éjl\j\ivaeslég I;;gs. 2, 3, and 4 the scale along the ordinate is linear, anph the range\> 600 nm usua”y predominat@g.
g Deposition of a thin §=70 ng diamondlike film on the
porous silicon surface leads to a shift in the band from 600 to
with in a 1:1 ratio. The samples of porous silicon were pre->40 nm and a sharp increase in its intensftig. 1, curved).
pared using current densities of 10-75 mAfcand etch N this case the band at 440 nm observed in the PL spectrum
times of 1.5—10 minutes. of porous silicon disappears.

The films of diamondlike carbon were deposited using a_ N our opinion, the observed changes are due to penetra-
capacitive rf discharge plasnia3.56 MH2 at low pressures tion of carbon into the pores of the porous silicon during the
(0.8 Torn and a room-temperature substré360 K). A gas- deposition of the diamondlike film gpd formanon of carbon
eous mixture of Cli: H, : N, was used. During the deposi- Nanoclusters at the surface of the silicon fllaméﬁthg con-
tion the substrate was subjected to an rf potential equal tgiderable increase in intensity of the PL band that is charac-
1900 V1! The thickness of the diamondlike film was mea- teristic of diamondlike filmgat 600 nm is probably due to
sured using an LE-3M laser ellipsometer at a wavelength of transfer of charge carriers from the silicon filaments to the
632.8 nm, and ranged from 50 to 100 nm. carbon clusters adsorbed on their surfaces. In this case the

Time-resolved PL spectra of porous silicon, the dia-Porous silicon plays the role of a generator of charge carriers,
mondlike film, and the combined system were measured ugnd the carbon clusters act as centers of radiative recombi-
ing the method described in Ref. 10. A nitrogen lager-(  nation analogous to surface states in the model proposed by
337.1 nm was used for excitation, with an excitation pulse Koch and co-authofsand used by the authors of Ref. 9 to
duration of 10 ns and an in-pulse power of 3 kW. A strobo-€XPlain the anomalous increase in PL intensity from
scopic system was used for recording, allowing us to meafullerene molecules adsorbed in porous silicon layers. The
sure the PL spectrum and investigate the kinetics of it$hort-wavelength shift we observe in the PL bands from 600
changes. PL spectra were recorded with nanosecond and njft 540 nm is probably a manifestation of quantum size ef-
crosecond time delaygy) relative to the maximum of the fects, and its value can depend on the dimensions of the

laser pulse at room temperature. carbon clusters.
A somewhat different character appears when the PL

spectrum of porous silicon coated with a diamondlike film of
thicknessd= 70 nm is measured with microsecond time
Figure 1 shows the nanosecond PL spectrum of a diadelays(Fig. 2. We emphasize that for the reasons described
mondlike carbon film deposited on a quartz substfateve  above, the diamondlike carbon films do not luminesce in the
2, d=70 nm and on an unetched Si surfacdeurve 1, microsecond range, i.e., the spectra shown in Fig. 2 are
d=70 nm. Here we also plot the nanosecond PL spectra otaused by luminescence of the porous silicon layer itself and
porous silicon(curve 3, j=75 mA/cn?, t=5 min) and the the material characterized as porous silicon plus diamondlike
combined systemd= 70 nm, curved). It is seen from Fig. 1  film. It is clear from Fig. 2 that an intense band is present in
(curve 2) that the PL spectrum of the diamondlike film de- the microsecond spectra for PL of porous silicon at 680 nm.
posited on a quartz substrate has a band with a maximum &ts the delay time is increased from 0 to @8, the maximum
600 nm and with shoulders on its short-wavelength side atf this band shifts towards the long-wavelength region of the
500 and 440 nm. However, the intensiyof PL from a thin ~ spectrum out to 720 nr(Fig. 2, curvesl—6). This could be
diamondlike layer =70 nm deposited on the unetched related to a scatter in the size of the silicon filamén@n
surface of Si(Fig. 1, curvel) is considerably smaller than this figure we show PL spectra of porous silicon after depo-
for the diamondlike film deposited on a quartz substrate, andition of a diamondlike carbon filnGFig. 2; curvesl’ —6’)
its spectrum has no structure. These spectral characteristiegere measured with the same time delays 030 It is
of diamondlike films on the surface of silicon could be due toclear that after deposition of the diamondlike film the spec-

J, linear scale

RESULTS AND DISCUSSION
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§ 680 nm. fact, it follows from Figs. 3 and 4, which show PL spectra
(taken with microsecond resolutibrof porous silicon ob-
tained forJ=35 and 50 mA/crh respectively, that there is
no significant shift in the 660 nm band when the diamondlike
film is deposited, in contrast to porous silicon samples with
higher porosity(Fig. 2, J= 75 mA/cn?). In this case the
intensity of the corresponding bands is somewhat lower than
that of the original porous silicon. It should be noted that the
observed changes in the PL spectrum of porous silicon plus
diamondlike film also can be related to the formation of car-
bon cluster—silicon chemical bonds in the process of carbon
adsorption at the boundaries, and consequently to the appear-
ance of new centers for radiative recombination. The latter
N can have a particularly strong effect on the PL intensity of
o E— = 0 - — the porous silicon-plus-diamondlike film system, depending
A,nm on the porosity of the original porous silicon, which is also
FIG. 2. Photoluminescence spectfa-6) of porous silicon plus diamond- observed in e_xperlmer(Flgs. 3 and 4 Or_] the other hand, .
like film (1'—6') with microsecond resolution. The prorous silicon was ob- the changes in the PL spectrum described here when dia-
tained using a current= 70 mA/cnt and an etch time of 5 minutes. The mondlike films are deposited cannot be explained by absorp-
sensitivity of curvesl’,2’,3',4',5",6" is increased by a factor of 2. Delay  tjon of light in the diamondlike film, nor as manifestations of
tmes, us:1—0,2—35,3—10,4—15,5—20,6 — 0. features in the absorption spectrum of the diamondlike film.
The spectral dependence shown in Fig. 5 for the absorption
trum of |ong_|i\/ed PL is shifted towards the short- coefficient of a diamondlike film shows that it is hlghly
wavelength region of the spectrum by roughly 50 nm. transprent in the spectral region under stdayt to 300 nn
The observed changes in the spectra of long-lived pland that its spectrum is featureless. Note also that the optical
from porous silicon when a diamondlike film is deposited arewidth of the band gap of the diamondlike films used was
also probably connected with the formation of carbon nanoabout 4 eV.
clusters on the surface of the silicon filaments. This conclu- Because of the low deposition temperatures and high
sion is confirmed by measurements of the PL made for pogrowth rates of the diamondlike fillhsused in our experi-
rous silicon layers obtained at different current densities andhents, the observed changes in the luminescence properties
consequently having differing porositiésSince a smaller of the porous silicon cannot be explained by removal of ad-
number of carbon atoms will penetrate into the pores duringorbates from the surface of the silicon wires eithear by
the process of diamondlike film deposition when the porositysurface modification in the rf discharge plasma, not to men-
decreases, it is logical to assume that in this case the numbton changes in the structure of the silicon nanocrystallites.
and possibly the size of the carbon clusters adsorbed at thehe effects described above are in our view caused by for-
surface of the silicon filaments will also become smaller. Inmation of carbon clusters at the surface of the silicon fila-

J, linear scale

* 860 nm

FIG. 3. The same as in Fig. 2 but for porous
silicon obtained using a currenl= 35
mA/cn? and an etch time of 10 minutes.
1-3 — porous silicon,1’—3" — porous sili-
con plus diamondlike film. The sensitiity of
curves1’' -3’ is increased by a factor of 5.
Delay time,us:1— 0,2 — 5,3 — 15.

dJ, linear scale
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£ FIG. 4. The same as in Fig. 2, but with

~ porous silicon obtained using a current
J= 50 mA/cnt and an etch time of 5
min. Delay times the same as in Fig. 3.
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300 400

ments in the process of deposition of the diamondlike filmscence, particularly in the long-wavelength region of the spec-
The presence of clusters, and also the fact that they can act alam, and, on the other hand, to an increase in the intensity of
effective centers for radiative recombination can also leadthe short-wavelengtfnanosecondphotoluminescence.
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A method for calculating the complex roots of a nonlinear equation is described whereby the
solution of the problem is reduced to quadratures. Applications of the method to the
investigation of dispersion relations for various open waveguide structures with a complex
dielectric permittivity are discussed. The possibilities of the prismatic excitation of modes
corresponding to the roots of the dispersion relations on different Riemann sheets are
analyzed. Solutions are obtained for the inverse problems of reconstructing complex mode
propagation constants and determining the parameters of films that guide waveguide and leaky
modes. The solution is based on processing of the angular dependence of the reflection
coefficient in a prismatic excitation scheme. 1898 American Institute of Physics.
[S1063-784198)01604-3

INTRODUCTION the contourC. We assume initially that all the roots are

_ o _ nondegenerate. th= 1, then by calculating the integralS’
The rigorous determination of complex roots of d|sper-and|£1) numerically, where

sion relations is of fundamental importance in the electrody- )
namic theory of open-ended waveguides. Despite the long <k>_i u‘du
history of this problem, a satisfactory solution has yet to be ¢ 2@ Je f(u)’

found for it. This dilemma accounts for the several alterna- ) ) ) i
tive computational approaches in use, including variound invoking the residue theorem, we find the value of the

interpolatiot™ and gradiert® methods. Their common Ot uy =1 1f m>1, then by successively shrinking
shortcoming is the need to specify a sufficiently accuratdhe domam_and caIcuI_atmg thg variations of the argument of
zeroth approximation for the root and to calculate the deriva¥V, We obtain a domai, that is bounded by a contodr,
tives of the dispersion relations, which poses a rather com@"d containsn—1 roots. For the excluded root we obtain

plex problem. Moreover, smoothness of the functions in- 1O
volved in the equations is essential for convergence, but ul:ﬁ_
unfortunately they suffer discontinuities at branch cuts. An- |c1 —le
other fundamental requirement is nondegeneracy of the

Repeating the process, we find all the roots in succes-

root;.ere we pronose a method. free of these limitations forSion' We note that the calculation of the variation of the
. Propo ' . . ' “argument ofW reduces to the calculation of the number of
rigorously calculating the complex roots of dispersion rela-

. . . . ..~ crossings of the boundaries of the coordinate quadrants. This
tions for planar waveguides having an arbitrary distribution . . . :

. . g : operation can be executed in parallel with the accumulation
of the complex dielectric permittivity. The method is an

elaboration of previously published resuftk.is based on a ?génr;eegtﬂdsums, enhancing the computational efficiency of
contour integration technique and can be used to find all the ) . .
We now generalize the computational scheme to the case

roots of a nonlinear equatioi(u) =0 in the domain of ana- involving a double rootu,. We treat this situation as the

lyticity of the functionf(u). limiting case whern;—u,—ug, whereu, andu, are simple
roots. We assume that two roots are present in the do@®ain
We introduce integral$(®) and1$®) in addition to!{*) and

1. METHOD FOR CALCULATING THE COMPLEX ROOTS OF IV, Using the residue theorem, we arrive at the system of
NONLINEAR EQUATIONS four equations

k) _ ,  Kkrer — Kp g7 - —

Let us suppose that it is required to find the roots of the 1=uf[f'(u)] *+us[f (up]™t (k=0,123 (1)
equationf(u) =0 in a simply connected, closed dom&mof  in the four unknownsiy, U,, f'(u;), andf’(u,). Its solu-
the complex variable: bounded by the contou. We also  tjgn has the form
assume that the functidi{u) is analytic in this domain. The

total number of rootam (taking their multiplicity into ac- Ui =al2+\(a/l2)*~b, 2
cound can be determined on the basis of the argument (D@ _(0)](3)

principle® wherebym is equal to 1/2 times the total varia- a= C(DCZ—(CO)(CZ), 3
tion of the argument of the quantity/=f(u) in traversing 1717 =171

1063-7842/98/43(4)/7/$15.00 427 © 1998 American Institute of Physics
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[|<C2>]2_ | <c3>| <c1) wherey(y) has the meaning of the componé&iytfor the TE
b= [P0 (4)  modes ancH, for the TM modes,v= Vk3eg—h?, andk,
€ c ¢ =2m/\, is the wave number in vacuum.
Forming Taylor expansions of the functidu) and its In the derivation of Eq(8) we have chosen the func-
derivatives, we obtain tional dependenc@s(y)= (0)expiwy), y=0. We use a
1 1 stratification method to specify the quantities appearing in
£/ (uy)=— = f"(up)Au— =" (u;)(Au)+ O[(Au)®], Eq. (8), representing the waveguide by a setnohomoge-
2 6 neous layers? In this case the quantitieg’ (+0) and y(0)
5 can be calculated from the recursion relatfons
1 1 R—_— /
(up)= 5 /(U Au+ S (U (Aw?+O[(Aw?], (®) T AKTES ©
¥ 1=(8j41/8) (Y] K= v7S), (10)
7(uy)=f"(uy) + " (uy) Au+O[(Au)?], (7)
wl: 11 (11)

whereAu=u,—u;. The application of Eq45)—(7) reduces
Egs.(1) to the form Pi=ivi(ealeq)T, (12

o__ 2 f(uy) L O(AU) where S=sin(yAy))/v;, K=cos@;Ay), vj= \/kzsj—hz, £
¢ 3 f"(uy) ' &g Ent2T Eg, ¥nt2=¥(0), l/qu+2=l/l'(+0), €j andij

are the permittivity and thickness of théh layer, T=0 for
TE modes, and =1 for TM modes; the field in the domain
y<-—d is represented ag(y)=exdiv(y+d)].

In the special case of a homogeneous thin-film wave-
guide (h=1), Eg.(8) with allowance for Eqs(9)—(12) re-

(1_
¢ (uy)

+ul P +0(Au),

4u
2 1 2,(0
1= +udl P+ 0(Au),

~f"(uy) duces to the form
6U2 €y T o T
(3)_ 1 3((0) F, = v(—) +v|—| |coqv,d
18 f”(u1)+u1|° +0O(Au). v=| 1 5, o gvod)
It follows from these expressions tha’/4—b and ) 12%7% sg T )
U;—U,—Ug=a/2 in the limit Au—0. Form>2 it is neces- hvet =~ ety sin(vd) =0. (13

sary once again to shrink the domain.nf—2 roots are

contained in the domai, , the values of the two excluded Itis convenient to choose= v; as the unknown in Egs.
roots can be calculated from Eq€)—(4) after the substitu- (8) and (13). Then v;=kj(ej— &5 +u® (j=2,...n+2;
tion 1010 —1%  For the double root we again obtain ¥n+2= v). According to Eqs(8)—(13), the functionF,(u) is
Up=a/2. ! bounded(in a finite part of the complex plapha@nd invariant

All not more than twofold-degenerate roots of the e0|ua-With respect to the chqice of signs of .(j <_n+2); the only
tion f(u)=0 can be found by combining the above- source of nonanalyticity of the function is the presence of

described computational schemes. The cadefold degen- branch pqlrllts_and. b_ranch cuts of .the ff‘”c“"‘“)- The
eracy (>2) can be treated analogously by computing thenonanalyucny is eliminated by working with the product
integrals 1%, wherek=0,1,.., 2—1. The corresponding f(u)=F (uWF_(u), (14)
expressions are rather cumbersome and will not be written . . )
out here, particularly in view of the fact that the roots of theWhich is an entire function of the variable (Ref. 9. The
dispersion relations for planar waveguides are not degeneraf@0ts of Eq.(14) coincide with those of Eqs(8) and (13)
as a rule, and only in rare situations encountered in the incorresponding to two branches of the functieu) (e.g., the
vestigation of anisotropic waveguides and systems oPranches Im<0 and Imy=0). We note that forv#0 Eq.
coupled waveguides are they twofold degenerate. (14) and the equatiorF. ,(u)=0 have roots of identical
multiplicity. Indeed, the multiplicity of the roots increases if

the system of equations,(u)=0, F_,(u)=0 holds, from
which, according to(8), it follows that #(0)=0 and ¢’
2. SOLUTION OF THE DISPERSION RELATIONS (+0)=0 (v#0). In this case the solution of the Cauchy
urnproblem for the differential equation describing the mode
field givesy(y)=0 andy’ (y)=0, contradicting conditions
(11) and (12). The casev+#0, on the other hand, can be
analyzed separately. We also note the implication of Egs.
n(8)—(12), that if d+ 0, then the quantitjw| grows exponen-
tially as|u|—ce. In this case the number of roots of HG4)
is m=0(r) in the limit r—o, wherer is the radius of the
circle C (Ref. 9, i.e., whenG is interpreted as the entire
F,=ig(0)v+y¢'(+0)=0, (8) complex plane, the numben is inboundedly large. But if

We consider a waveguide formed by a layered medi
which has a complex dielectric permittivity, is contained in
the domain—d=<y=0, and is surrounded by homogeneous
media with dielectric constantsy(y>0) ande(y<—d).
The dispersion relation for modes whose fields are expone
tial functions of the time and the coordinate,
exp(wt—ihz) has the form®
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o+ FIG. 2. Schematic diagram of the prismatic excitation device and graph of
the reflection coefficient of the exciting wave versus ztheomponent of its
G L wave vector fore,=3.811.
~
<~ -7
E
- and4— correspond to waves entering the waveguide from
-2k the domainy<—d (they grow asy— —), then leaking
from the waveguide into the domain>0 and decaying as
i y—o, whereas curve®+, 2+, and 4+ correspond to
-3 . M N waves entering the waveguide from both open domains and
g 7 2 J 2 24. 5 5 growing as|y|—<. A distinctive feature of all these waves
720 is the growth of the field ag—= (Im h>0, Fig. 1. It
FIG. 1. Dispersion curves for the modes of a homogeneous waveguide ad@!/lOWs from the above discussion that the sets of curves
an inhomogeneous waveguidg.Reh/ky; b) Im hk,. (1£,2*) and 3=, 4*) correspond to modes having simi-

lar properties. The solution of Eq414) has shown that in-

creasingd generates new setsbf,6+),(7x,8*),...,
d=0, we infer from(13) that m=2 for T=1, m=0 for  analogous to those already mentioned. The indicated promi-
T=0 andey#¢&s, andm=1 for T=0 andey=«;. nent characteristics of the behavior of the dispersion relations

Using the method described in Sec. |, we have obtainednd the mode fields remain in effect for TM-polarized

solutions of Eq(14) for several waveguide structures. Typi- modes. And they are similar in regard to inhomogeneous
cal plots ofh= \/kozss— V12 (Reh=0) as a function ofd/\y  waveguides. This statement is illustrated by curl/eis and
are shown in Figs. 1a and 1b. They have been obtained fdf — in Figs. 1la and 1b, which are calculated for TE modes
TE-polarized modes of a homogeneous waveguide witlof a waveguide having the index profile(y)=2.25-i3
£,=2.25-13X10° 6, £,=2.295225-i3.03x10 %, and Xx10 ®+(0.045225-i2.73x 10 %)exd —(y/d)?], y<0:e(y)
gq=1. The “+” and " —" signs in the figures identify =eg,=1,y>0. These curves are analogous to cu¢sand
curves pertaining to Im=0 and Imy<0, respectively. 0— discussed above. We note, however, that the results here
Curvesl+ and3=* correspond to Im,>0, Rev;>0. Curves are characteristic of waveguides having a higher permittivity
1+ and 3+, for which Rer>0, correspond to leaky waves than the surrounding media. The dispersion relations for
exiting from the waveguide into the two open domains waveguide media having a lower permittivifg.g., metal
>0 andy<—d, while curvesl— and3— (Rewv<0) corre- films on dielectric substrates and low-refraction films on
spond to waves which are leaky only in the domaia high-refraction substratgsexhibit distinct differences. We
—d. The inequality Re/<0 holds for curve®9=, 2+, and  shall examine them briefly below. We also note that the
4+. The indicated curves in Fig. 1la have points of tangencyabove-discussed inequalities k>0 and Imy>0 corre-
with the line Reh/ky=1.5. These points correspond to criti- spond to modes whose fields grow exponentially with in-
cal thicknessed=d, (k denotes the symbol enumerating the creasing distance from the waveguide. Such modes do not
curve3. For d>d, we have Re<0 and Imp;>0  occur in the complete sets of modesaking it necessary to
(k=0—,2—,4-) or Rey>0 and Imp<0 (k=0+,2+, ascertain the possibilities of their excitation and practical uti-
4+). In this case curve8—, 2—, and4— describe the usual lization.
dispersion curves for waveguide modes, whereas curves We consider the excitation of modes by means of a pris-
0+, 2+, and 4+ correspond to waves leaking from the matic couplet:’!? A schematic diagram of the coupler is
waveguide into the domairy>0. For d<d, we have shown in Fig. 2. The prism Fwhich we consider to be
Rev>0 and Imy;>0 (k=0—,2—,4—) or Rev<0 and unbounded for simplicityis separated from the waveguide
Rev>0 (k=0+,2+,4+). In this case curve®—, 2—, by a buffer layer of thicknesg. The prism and the buffer
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layer have real permittivities, ande4, wheres,<e,. The Y, a
structure is excited by a plane wave whose wave vector i o
forms an anglex with the base of the prism. Examining the
recursion relation$9) and(10) in the buffer layer, we obtain
the following expression for the reflection coefficient of the
exciting wave:

(1-90)F,—exp —2ivg)(1+8)F_,
(1+8)F,—exp(—2ivg)(1—-86)F_,’

5=(V/Vp)(8plsg)T, v=\/kozsg—kzz, Im v<0,

Vp=\/kgsp—k§, Rev,=0, k,=kg\ep cOsa. (15

4k 1 | 1 I !

The quantities, andF_, can be calculated from Eq&3)— 0 14885 1499 1495 15 15006 X,
(13), wherev;= \/kozs]-—kZE and in accordance with the ra-
diation condition Re/=0. Y. [

We know that the efficient excitation of waveguide b
modes characterized by the occurrence of resonance troughs 1
in the Ry(k,) curve R,=|R|?) takes place under the condi- | 3
tions of weak prism—waveguide couplifty!? 25

k2>Kieq, (16)

exp —ivg)<l. (17) a5k -

According to Egs(8)—(13) and(15-(17), R, can differ | 4
significantly from unity only ifF ,= O[ exp(—2ivg)]. Making 2
use of the fact that the variabkg in Eq. (15) belongs to the ~1.5l 1 | 1 1 1
real axis of the Riemann sheet Rg>0, we infer that the 1499 14985 15 15006 1501 1506 X,

stated condition can be satisfied if there is a dontdjrde- FIG. 3. Positions of the roots of the equatibp(k,)=0 on the Riemann
fined by the ineq.ualit3}'kz—h|<p (his the prqpagation con- sheets Re,>0 () and Ren<0 (b). Xab:'rg‘a bz+ B, , Rek,/ky, Yoy
stant of the excited mode, ang=O[exp(-2ivg)]), which  —c_ 4D, Imk/k; for curvesO— to 4—: A, =0, Byp=1, Cap=0,
contains a segment of the real axis of the sheetR® and D,=1¢, D,=10°; 1) A,=1.494,B,=5.45<10"°, C,=—0.44, D,=30;
in which the functionF ,(k,) is analytic. These consider- 2 A,=1.498, B,=1.47x10°, C,=-0.72, D;=19.7; 3) A,=1497,
ations are consistent with the obvious fact that resonanc p=2.65¢10"%, Cy=—9.77x10 7, Dy=14.8; 4-6) Aa=4'35><107.2’
L . L . ,=1,C,=0,D,=4X10" The arrows indicate directions of decreasihg
excitation is admissible only for modes whose fields decay
with increasing distance from the waveguide in the buffer
layer and whose propagation constants satisfy the equation
F,(h)=0. Fig. 2, curvel, which is calculated on the basis of Egs.
The analyticity properties of the functidn,(k,) in the  (9)-(12) and (15) for d/\;=3 and g/Ay=0.16. Its right
vicinity of the roots can be assessed from Figs. 3a and 3kminimum corresponds to a waveguide<) mode, and its
The solid curves represent the function kgtRek,) [equiva-  left minimum corresponds to a leaky{£) mode.
lent to Imh(Reh)] for the roots of the equatioR,(k,)=0. We now discuss the prismatic mode excitation of thin
The dashed lines indicate the cuts for the functig(k,) as  films having a lower real part of the permittivity than the
defined by the conditions Irkl,zké Im es/(2 Rek,) and  surrounding media. Curvebs-3 in Fig. 3a and 3b represent
k(z) Rees—(Reky)?+(Im k,)?<0. The cuts pass below the real solutions of the equatiof ,(k,)=0 for optical-range T™M
axes Imk,=0. CurvesO— through4— correspond to their modes guided by a silver filmeg=—18—10.47) surrounded
counterparts in Figs. 1a and 1b. It follows from Fig. 3a thatby dielectric media a$g=1ss=2.25—i3><10‘6). On curve
only the segments of curves- and 3— to the left of the 1 we have Re;>0 and Imy;>0, i.e., it refers to waves
branch point of the functiomw,(k,) can exist in the domain leaking into the domainy<—d. The start of the curve
H. An analogous situation is met for the segments of curvegd— ) corresponds to a plasmon mode of the interface
0—, 2—, and4— below the cut. In this case the domdh y=0, and the endd—0) corresponds to a surface-wave
belongs to a two-sheeted Riemann surface “glued” alongmode of the interface between two dielectrics. Culse
the edges of the cut. Now, looking at Figs. 1a and 1b, walong which Rev;<<0 and Im»,<0, begins at the point cor-
infer that the efficient excitation of waveguide modes is pos+tesponding to a plasmon mode of the interfgece—d and
sible only for waveguide films whose thicknesses exceedjoes to infinity[Rek,/kg)—°, Im(k,/ky)——=] asd—0. On
critical values ¢(>d,). On the other hand, resonance curvel we have Re;<0 and Imy;>0. It refers to waves
troughs corresponding to the excitation of leaky modes ass@ntering the waveguide from the domair —d, their fields
ciated with curved—, 3— and their analogs—, 7—,... can  growing asy— —« andz—o. According to the preceding
be observed fod<dy. These conclusions are illustrated in discussion, modes corresponding to cunteand 2 admit
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resonance excitation. An additional restriction for such exci-hation of the roots of entire functions by the method dis-
tation is given by conditiof16), which, in particular, rules cussed above.

out the possibility of the excitation of a dielectric-dielectric Expanding the functiorr ,(k,) in a Taylor series in the
interface(surface-wavemode. Curvegl—6 in Fig. 3a repre- domainH, we obtain the following approximation for the
sent solutions of the equatidh,(k,) =0 for the three lowest function R(k,) in the vicinity of resonancés

optical-range TE modes guided by a silicon dioxide film

(82:_2.121_975i2.9134>< 10‘_6) terminated in air §5=1) R— 1—5_ 46 Ah_+0(|Ah|). 19
and in a silicon substrates{(=15.21-i0.39). For all these 1+6 1-8k.—h

curves we have Reg >0 and Imy;>0, i.e., they refer to z

modes leaking into the substrate. Curvesb begin at the  Here sis calculated fok,=Reh, h is the mode propagation
point k; /ko= Vea (d—0), which is far from the cut of the  .,nqant of the waveguide—prism system, axio=h— h.
function vy(k,) (outside the field of view of the figureAc-  eq,ati0n(18) is defined in the case of the excitation of an

cordmgly, all the mvc_ashgated modes admlt resonance e,xc'érbitrary plane-layered waveguide structure, for which
tation. We have confirmed these conclusions by calculations

of the R,(k,) curves, which are characterized by resonance iv(l—d)exp —2ivg)

2 - ) .y Ah=— ’ (19
troughs(similar to those in Fig. Rcorresponding to excita (£4)7(1+ )l Reh
tion of the indicated modes. ’

o 2 2_d
:f ¥y y(—d) 20

Lo VY 20T

where the functiong/(y) with the normalizationy(0)=1
describes the distribution of the field of the excited mode,
and

The measurement of the complex mode propagation .
constant$ plays an important role in the investigation of the vi=vkges—h?,  v=—iy(Reh)’~ kgsg-
properties of waveguides and surface layers. An approach To solve the inverse problem fdr, it is convenient to
based on experimental recording of the resonance troughs Q{troduce the parametéfs
the R,(k,) curves®~®is widely used at the present time to
determineh. In this approach, however, rather limited infor- Imh
mation about the indicated curves is taken into account; only p1= K (21
the coordinates of the minima of the functioRs(k,) are 0
measured, and they are identified with the real parts of the 25vexp( — 2ivg)
propagation constants Re The imaginary parts Irh are Po=— (e)T(1—5)Iky Reh’
determined in additional measurements, where attenuation of 9 0
the modes is observed along the direction of their Reh—k
propagatiort? This procedure for the determination bfis p4:—z,
time-consuming in the experimental realm and has a funda- Ko

mental shortcoming in that the perturbing influence of theyhich characterize the mode attenuation of the external pris-
prism on the investigated structure is ignored. matic structure, the coupling of the prism with the wave-
One of the important applications of waveguide methodsyide, and the deviation of thecomponent of the exciting

s to rttre]co\?sltructgi ??\C\?mriteés of ;/VI?r\llev%lrild? dfllrms :]nbth'%vave vector from the resonance value of R&he param-
case the values ai Tor two modes of known order can be eter p, is complex-valued in general, i.g,=|p,|explo).

used to write a system of two dispersion relations containinq_lowever in the case of primary practical interest—weakly
inverse trigonometric functions; the numerical solution Ofdamped ,modes—the inequalitiéRel|>|Im I| and o<1
these equations gives the quantitigsandd (Refs. 13 and hold. They permit small quantitie®(¢?) to be omitted in

14). I_-|owever, d|ff|_cult|es are encountergd in connection with e subsequent calculations. Taking EG8)—(23) into ac-
the rigorous solution of the system, owing to the presence o ount. we obtain

branch points and cuts for the inverse trigonometric func-
tiops_. This problem is_ _particular_ly significant when modes Rz:|R|2:1+[4|p2|(p1+|p2|_p4g)]/(p§+ pi)_ (24)
existing under near-critical conditions are used.

More efficient approaches to the solution of the indicated It follows from Eq. (24) that the presence of mode at-
inverse problems are described below. The real and imagtenuation ¢#0) parts asymmetry to the functidR,(pa),
nary parts of a mode propagation constant of a planar wavéhe degree of asymmetry increasing as the losses increase
guide Structurdinhomogeneous in the genera| Cham de- (Flg 2) We now determine the coordinate of the minimum
termined simultaneously with allowance for the perturbingof Ra(ps), denoting it byp . Differentiating Eq.(24), we
influence of the prism by integrating the functi®g(k,) in ~ obtain
the vicinity of the resonance troughs. The quantitieandd 2
are determined by the system of equatiéhd) for two val- pO=— P1o (25)
ues ofh. The solution of the system reduces to the determi- 2(|p2|+p1)’

3. INVERSE PROBLEMS OF RECONSTRUCTING COMPLEX
MODE PROPAGATION CONSTANTS AND THE
PARAMETERS OF WAVEGUIDE FILMS

(22

(23
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TABLE I.
Mode Polari- h/kq h/kq Mode €5
order zation (exac) a/\g (reconstructed order (reconstructed d/ng
Waveguide film,e,=2.295225-13.03x 1075, d/\y=5
1 TEw 1.512636-19.819<10°° 0.28 1.51263619.819<10°° 1-2 2.295225i3.030< 10 ° 4.99998
2 TEw 1.505806-18.999x 10°° 1.505805-i8.999x 10~ ° 1-3 2.295222i3.030< 10 ° 5.00089
3 TMy 1.5125606-19.805< 10°° 1.512560-i19.806< 10~ ° 2-3 2.295225i3.030< 10 ° 4.99999
Waveguide film,e,=2.295225-13.03< 1075, d/\o=3
1 TEw 1.509681-i9.295< 10°° 0.16 1.509674i9.296x10°° 1-2 2.29525%+i3.031x107° 2.9943
2 TE, 1.498076-i3.363x 10 ° 1.498177-i3.585¢ 1073 1-3 2.295096-13.029x 10°° 3.0131
3 TMy 1.509436-19.223x 10 ° 1.509432-19.222x107° 2-3 2.29526913.031x 107° 2.9937
Silver film, e,=—18-10.47,d/\,=0.06
1 ™, 1.031124-i4.595< 1072 1.6 1.031198i4.668< 102 1-2 —18.0039-10.4694 0.06014
2 TMy 1.625144-i4.617x10°° 0.16 1.62491614.595< 103
Silicon dioxide,e,=2.121875-12.913< 10" 5, d/\ =3
1 TE, 1.448039-i2.524x 104 0.32 1.44803912.526<10°* 1-2 2.12197%i2.966<107° 2.99981
2 TE, 1.421781i9.937x 10 4 1.421779-19.960< 1074 1-3 2.12197#i2.967x107° 2.99983
3 TE, 1.377055-i2.279< 1072 1.377052-i2.290< 1072 2-3 2.12198%i3.517x10°° 2.99984
) 4|p,| (p1+|pal) Consequently, identifying®$” with the minimum value
Ry'=1+ -z (26)  of the functionR,(k,), we can determine the values of the
o o ! parameterp; , P, andpflo) . We first solve Eq(29) for py;
whereR,’=R,(py ). this equation has a single root by virtue of the monotonicity
It follows from Eq. (26) that of the functionf(x) =x arctang™ %) in the domairx<0. The
B 5 quantitiesp, and p;’ are then determined from Eq&5),
|2l =0.5p,[sgn(g/go— 1) VRY' — 1]. 27

Hereg, is the thickness of the buffer layer, for whidk,)
=0. To find the parameters, and o, we isolate the interval
(P — Ak, /ko,p?)+ Ak, ko) of variation of p, and form
the integrals

0
|1=f Ro(py +x)dx,
— Ak, Ikg

Ak, Tkg
I2=f R,(pY+x)dx,
0

whereR,(p,) is a function of the form(24).
Calculating the quantitied (+15,)/2 and (,—15,)/2, we
obtain

[1_R(20)]—1

P fAkZR kK +x)d
2Akz ~ Ak, 2( z X) X

p1Ko ’6Akz)
= arcta , 28
Ak, p1Ko 28
0 Ak,
o= J Rz(k(zo)+x)dx—J Ry (kY + x)dx
— Ak, 0
{4Ko|p2l[ (1+ (Kop1/Aky)?) ™
—In(1+(AK,/(kop1)A) 1}, (29

(27), and(29) by direct calculation. According to Eq&1)—
(23), the required mode propagation constant is

h=k+p+i[p1—pa(1-8)%(28) 1. (30)

We note that the quantity in (30) depends on Rh.
However, sincelp?’|, |pi|, and|p,| are small, it can be
evaluated forh=k§0) and, if necessary, refined by an itera-
tive procedure. We also note that the integration operations
in Egs. (28) and (29) ensure stability of the reconstructed
value ofh against noise of the functioR,(k,).

We now address the problem of reconstructing the pa-
rameters of a waveguide film, and d. We assume that
values ofh have been found for two modes, the values pf
and ¢4 are given,e, is situated in the domaic of the
complex plane, and lies in the interval d,,d,). We fix a
certaind in this interval and substitute the first value lof
into Eq. (13). We see at once th#t,(s,) is an entire func-
tion, so that its roots in the domai@ can be found by the
scheme of Sec. I. We note that, in general, there can be
several roots of this kindif G is interpreted as the entire
complex plane, the number of such roots can be unbounded
by virtue of the exponential asymptotic behaviorFof(e,)
in the limit |e,|—; Ref. 9. We denote the roots so ob-
tained bye$} (j=1,2,..). Solving Eq.(13) analogously, for
the second value oh we have a different set of roots

whereR,(k,) is the experimentally recorded function on the £ (k=1,2,..). Thequantity A=min; (A;) can be found

interval (K”— Ak, .k + Ak;), andk{” is the coordinate of
the minimum of this function.

by direct sequential inspection of the differendeg=|e%}
—&%)|. Now, plotting the functiomA(d), de (d;,d,), and
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determining its minimum, we arrive at the required values oftem of dispersion relations is poorly conditioned in the latter
g, andd. case.
Table | gives examples of how the above-described com-

putational scheme can be implemented for the thin-film:s . Talisa, IEEE Trans. Microwave Theory TedhTT-33, 967 (1985.
waveguide structures discussed in the article. The data hav&w. S. Borland, D. E. Zelman, C. Radeasal, IEEE J. Quantum Elec-
been obtained with the rigorously calculatBg(k,) curves — ron QE-23, 1172(1987.

. . Ll . « . C. Hulse and A. Knoeser, IEEE J. Quantum ElectrQE-28, 2682
(the one in Fig. 2 and others similar tQ iised as “experi- (1992,
mental” curves. The quantitpk, is chosen on the basis of 43 k. Shaw, A. K. Jordan, and W. R. Winfrey, J. Opt. Soc. Ao\ 1157
the conditionR,(k{¥+ Ak,) = (1+R®)/2. The first column ~_(1993.
of the table lists the conditional mode orders. The polariza- T+ A Burton and S. A. Cassidy, J. Lightwave Technbl-8, 1843

) : (1990.

tion of the modes is denoted by the symbols, ®d TM,, ek H. schiereth and M. Tack, IEEE J. Quantum ElectrQE-26, 627
where p=W for waveguide modes ang=L for leaky (1990.

modes. We note that the quantiIt&&hI increases a$|m h| "A. A. Romanenko, A. B. Sotskiand A. V. Khomchenko, IF ANB Pre-

increases, lowering the accuracy of approximation of Eq. g]['gcﬁa'cgigg;”BEI‘;?s%is&ggzp%”f;p'”S“t“te of Physics, Academy

(18). The growth of|Ah| f0||QWS from Eqgs.(19)-(22) with 8M. A. Lavrentev and B. V. Shabalethods of the Theory of Functions of
allowance for the fact that high-contrast resonance troughs ofa Complex Variabldin Russiad, Nauka, Moscow(1973, 736 pp.
the R,(k,) curve can be obtained fp,|~|Im h|/ky. The lat- lz:\//l \gdSheVCAhe’:k?' gi“‘f_re”‘ts- gr"i‘_”lﬁ_"\f/oo“(l?ggwl New York

. . . . . . . ams, An Introduction to Optica avegul lley, New York,
ter estimate is readlly obtamgd by comparing relatigr, 1982 [Russian trans., Mir, Mosco1984, 512 ppl.
(22), and(26) and taking the inequality<1 into account. 1R yirich, J. Opt. Soc. Am60, 1337 (1970.
On the other hand, all the data in the table have been oB2L. N. Deryugin, A. N. Marchuk, and V. E. Sotin, Izv. Vyssh. Uchebn.
tained for values ofg such thatR{®)<0.75. This remark Zaved. Radioektron. 13, 973(1970.

. . . . 13B. P. Singh and P. N. Prasad, J. Opt. Soc. Anb, B53(1989.
accounts for the noticeable increase in the error of solution ofi™ " Nikitin. A. A. Tishchenko. and A. 1. ChernyaZarub. Radioek-
the inverse problems as the losses of the selected modeson., No. 10, 141990.
increase. We also call attention to the possibility of recon—iZF- Yang and J. R. Sambles, J. Opt. Soc. AmL® 858 (1993.
structing the parameters of single-mafer a fixed polariza- '(:l'ggg”g' J. R. Sambles, and G. B. Bradberry, J. Appl. Pis.2187
t'oz) IWaIl/egwdc? 2Ims frsz the ';'/all:)tljeil dflf'ffor Wavegl'”def A, B. Sotsk[t, A. V. Khomchenko, and L. I] Sotskaya, Opt. Spektrogk.
and leaky modegrows 4—6 in Table e accuracy o 502 (1995 [Opt. Spectrosc78, 453 (1995].
reconstruction in this case is higher than witeis used for

orthogonally polarized waveguide modes, because the sySranslated by James S. Wood
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Method of eigenfunctions of singular operators in the theory of diffraction by a thick
vibrator
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A rigorous electrodynamic solution of the problem of the diffraction of electromagnetic waves
by the surface of a vibrator is described by a system of integrodifferential equations. The
method of eigenfunctions of singular operators is used to reduce the basic system to an infinite
algebraic Fredholm system of the second kind. The high efficiency of the proposed

method is demonstrated on concrete examples.1998 American Institute of Physics.
[S1063-7848)01704-9

INTRODUCTION The operatorsL and A have been investigated
previously' For the discussion that follows we need to se-

The solution of problems in the diffraction of electro- lect the spaces in which all four operators will act. We intro-

magnetic waves by a thick vibrator and other arbitrary ope : . B . I
surfaces reduces to the solution of systems of integrodiffe?—juce a Hilbert weight spade,,,,[ ~1,1] with the weighting

ential equations in the two tangential components of the denf-unCt'on pi(7)=(1—7%) "% and the orthonormal basis
sity of surface currents. The solution of diffraction problems NS n=1,
in this general setting is a difficult undertaking. So far nu- on(7)=
mericalgmethods haV(ga been formulated, but thgre are no con- V2im cog(n—1ljarccogr)], N=2,3,... '5
vergence theorems for them. ®)
In the class of all arbitrary surfaces we distinguish sur-The operatorL acts inL,, [~1,1], where the following
faces formed by the rotation of a piecewise-smooth linerelation holds:
open surfaces of revolution. The most commonly encoun-
tered geometries in the theory of antennas are cylindrical, (Le (D =Angn(7), Ag=In 2,
spherical, and conical surfaces of revolution. 1
It will be shown below that the problem for the indicated Ap=—>, h=2,3.... (6)
class of antennas can be reduced to a system of two one- n-1
dimensional integrodifferential equations, which admits a  Together withLzypl[—l,l] we also introduce the weight
mathematically rigorous solution. The objective of thegpace L, [—1,1 with the weighting function p,(7)
present study is to analyze the systems of integrodifferential (1-7) 12 and the orthonormal basis
equations:?
For brevity we confine the discussion to a cylindrical 1 \F .
surface, but the results can be extended to any surface of (1) = po(r) V7 sinn arccogn)], n=1,2,....

revolution. (7)
The operatorA acts in Lzypz[—l,l] and, as shown in
1. SINGULAR INTEGRAL AND INTEGRODIFFERENTIAL Ref. 1,
OPERATORS (Ag)(T)=nip(7), n=1,2,3,.... (8)
We introduce the four singular operators Next we consider the operat@L: Ly, —L,, . From
1 (1 u(b) 1 the definition of this operator and relatio6) we have
o= ) e g D (SLen(n=0, (SLen(N=tn (7,
14 (1 u® 1 n=2,3,.... (9)
(SLu(n)=—-2- f_l \/ﬁzln [7—1| dt, @) Analogously, for the operat®A L, —L,, we ob-
11 5 1 tain the fo!lowing re'lation by first integrating by parts and
(SAU(7)=— f_lu(t) J1-t2 —n |7Tt|dt’ 3y  then applying Eq(6):
(SAY)(T)=@nra(7), 7=1,2,.... (10
(Au)(7)= i i fl u(t)\/m iln Ldt (4) We have tr_]us completely described the giggnfunctions of the
TOIT J-1 ot |-t operators introduced above. We note incidentally that the

1063-7842/98/43(4)/5/$15.00 434 © 1998 American Institute of Physics
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operatorL is completely continuous, the operat@®4$ and 2m _

SA are bounded, and finally the operat&ris symmetric, fo jo expime’)ade’ =13(2"), (13
positive definite, and has a dense domain of definition. The

operator L arises in the problem of the diffraction of +oo

E-polarized waves by a perfectly conducting strip. The elec- E2= 2 EJ(z)exp(—ime),
tric currents induced by a wave on both sides of the strip run m=-=

parallel to the edge of the strip and increase without bound as +oo
the edge is approached. The functipp(7) describes this Eg: E Ez;'(z)exq—imqp)_ (14
behavior. m=-

The operatoA is encountered in the diffraction problem We also take into account the relations
for H-polarized waves. In this case the currents run perpen-

dicular to the edge and vanish as the edge is approach, as o exp—i(e—¢"))+expi(e—¢'))

does the functiom,(7). In the problem of diffraction by a codp—¢’)= 2 » (19
cylindrical tubular vibrator the currents flow both parallel i

and perpendicular to the edge. And it will be evident below , . ,

that all four singular operators arise. code—¢ )m;_oc Sm exp(—im(e—¢"))

+

oo

1
2. REDUCTION OF A SYSTEM OF TWO-DIMENSIONAL =5 (Sy_1+Smepexp—im(e—¢')). (16)
INTEGRODIFFERENTIAL EQUATIONS TO ONE- m= o

DIMENSIONAL SYSTEMS We use the expansions in Fourier series to reduce the
Under the influence of the primary fielcEQ,H%) cur-  System of two-dimensional integrodifferential equati¢hs)

rents are induced on the surface of a tubular vibrator with thd0 one-dimensional systems. At the same time we transform

current density (z,¢) =t,j ,(z,¢) +t,j ,(z.¢), wheret, and to dimensionless variables. To simplify the writing, we as-
t, are unit vectors along theand ¢ axes sume that denotes the electrical length of the akip anda
0 :

These currents generate a secondary field. The tangenti@@notes the electrical radiuslod. As a result, we obtain the
component of the total electric field must vanish on the perSYyStem

fectly conducting surface of the vibrator. From this condition 1 1S, im S, i \F
m| — _ m___ ™M — —EM
fl'Z(l drot ISm)“@a ar}dt k MEZ’

we deduce the system of integrodifferential equations

J AN
412 9z077

2

&
. ) - =0 . 2
+J¢a(925(p’ ds I\/;EZ’ fl |m_|m@+|m m_ISm_ISmfl'*_Serl dt
42 a o ¢l a? 2
f e +j S k? "G |dS
SJZ ao"Z,&(P J(p a2(9<pc9<p’ COi‘P go) _|_ i m
= E]. a7
k Vu ¢
€
=i \ﬁ Eg, (11)  The system of one-dimensional integrodifferential equations
K (17) must be solved for values of for which at least one of
where the functionsE}' ,E7 is nonvanishing.
exp—ikR) < , , ,
= e = 2 exp—im(e—¢')Sn(z,2),
47TkR m=—o
3. PARTITIONING THE PROBLEM INTO EVEN AND ODD
1 +oo PARTS; SEPARATION OF SINGULAR OPERATORS
Sw=52 f cogkx(z—2')]
mJo In the representation of the functid), by the Fourier
X1 (VX2 — 1ka) ky( VX2 — 1ka)dx, integral
. . 1 + o
andl,, andK,, are the modlﬂed Bessel_functlons. _ STt == f cogIx(r—1)]
We now form Fourier-type expansions of the functions 2

iz ie. Eo, andEY:

. X I m(VX2—1a)K p(Vx2—1a)dx (18

= > 17(z)exp(—ime), the spectral density,,K,, is an even function irx. Making

2ma m== use of this fact along with the form of the systdiv), we
27 partition the latter into two systems. We write the functions
fo j. expime )ade’ =13(2"), (120 E} andEY in the form
L+ ENz)=E)"(2)+EY (2), EJ(x2)=*=EJ"(2),

o=5ma 2, le@exp—ime), EM2)=ET () +EM (2, ET*(£2)=+EM*(2).
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On the basis of this representation we expand the col-
umn formed by the right-hand sides of the systér) into

two columns:

EY\ [(EFT)  [ET
Em) =\ em ) Em

A. V. Sochilin and S. I. Eminov

We therefore trace the intimate relationship between the
Meixner conditions at the edge and the eigenfunctions of the
singular operators of problems in diffraction by thin screens.
But now on the basis of the representati@i) we distin-

guish singular operators having a simple form for the four

19
singular integrodifferential operators describing the system

We use the representatiéh9) and the even property of (17)- We also write the system in the operator form
the kernels to reduce the systdi7) to two independent 1 im
. . + 11, + - 12 — +
systems. In the first of these systems, which we call the even |—AU +N-u™ + a SLv™+N*“v~ =e",

problem, the function' is even, and the functiot; is odd.
In the second system the situation is reversed. We consider
the even problem below. The investigation of the odd prob-

lem is analogous.

Invoking the asymptotic forms of the modified Bessel

functions

1
Im(X)Km(X):Z—’_W—F-“: X— + o0

m?l
—z |

—im
SAu++N21u++( 3

)LV_+N22V_:h_.
(23
The operators\, SL, SA andL are defined in Sec. 1.

The operatorNPY (p,g=1,2) are integral operators of the
form

a

(20 .
(Npluﬂ(r):f ut () pa()NPY(7,t)dt, p=1,2,
-1

we separate the logarithmic singularity of the functi:
(24)

Si(7,t ! I —1 +Np(7,t 21
= 1

m(7,1) 477261 n |T—t| m(7,1). (21

(NPZV—)(T)=f v (t)p(HNP(7,t)dt, p=1,2.
1

The properties of the functioN,,(7,t) follow from the (25)
representatiori20). The first partial derivativegN,/d7 and ) )
N, /4t are continuous functions. The second partial deriva- 1 he Properties of the functioN™(r,t) depend on the
tive 2N, /arat has a logarithmic singularity. Moreover, the Properties of the functioN,(7,t). For example, the func-

11 H H H H 12
expansion(20) contains only terms in odd powers of g1/ 4O N*(7.t) has a Iogarltf&m;]c _smgu!alrlijN (7.1) af?d
We transform from the functiont™ and 1™ to the new N2%(7.t) are continuous, and their partial derivatives have a

functions logarithmic singularity. The properties of the function
22
N-4(r,t) are the same as those Mf,(,t).
17 ()=paAn)u* (), 157 (1)=p(7)v" (7).

We investigate the systeni23) in the spacel,,,
We omit the indexm below, because we are concerned®L2-Pl’ which is the direct sum of the Hilbert spaces,,
with the system for fixedn. The functionsp,(7) andp,(7)

(22

andL,,, .

describe the behavior of the currents near the edge according We have thus obtained a system of one-dimensional in-
to the Meixner condition. On the other hand, these functiongegrodifferential equations and analyzed the structure of each

guarantee orthogonality, as shown in Sec. 1.

singular operator separately.

ooz} o.04
Rel,(v) ImI(v)
_ ~ ooz~
Y &
e N
fia 0
Re 17%
~-0.0 7 el (t)
Im. I; (%) 2 ) ~0.02 1 1
g 8.5 1t g a.5 1%
x107
21 1 0.04f 1
Rel, (v,
7( )
— 05 « — 05
< 1t ~ a0z B
~ v g
g S 0 NS S 0
- e = g
o5t Re L, (v) i ] =
0.5 e 0.5
Im.Ir (7) In I’, (z)
g A 1 1 ~8.02 L A 1
a a.5 7 a 0.5 177

FIG. 1. ka= /20, 2=\/2.

FIG. 2. ka=m/2, 2l =\.
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TABLE I.
ka= /2, 21=\/2
114(n),A 12(7).A
N Rell*(r=0) Im 17+(=0) Rel (7=0.5) Im1_-(r=0.5)
1 —0.566748— 02 0.175142—-01 0.522298— 02 —0.602222—02
2 —0.535258— 02 0.184216—01 0.579558— 02 —0.722248—02
3 —0.535598— 02 0.184216-01 0.57800&— 02 —0.72218@—02
4 —0.53560@— 02 0.184556—01 0.578012— 02 —0.722192— 02
5 —0.53560@— 02 0.184558—01 0.578018— 02 —0.722204— 02
6 —0.53560@— 02 0.184556—01 0.57801&— 02 —0.72219@ 02
7 —0.53560@— 02 0.184558—01 0.57801&— 02 —0.722198 02
8 —0.53560@— 02 0.184558—01 0.578012—02 —0.72220@— 02
9 —0.53560@— 02 0.184558—01 0.578012— 02 —0.72220@— 02
10 —0.53560@— 02 0.184558—01 0.578012—02 —0.72220@— 02
ka=m/20, 2A=\/2
11+(7),A 12(7).A
N Rell*(r=0) Im 11(=0) Rel’~(r=0.5) Im1;~(7=0.5)
1 0.144908 - 02 0.26809%&— 04 0.766656— 04 —0.824154—06
2 0.11892@ - 02 0.256874— 04 —0.267392— 04 —0.613858—06
3 0.126772—02 0.26593&— 04 0.472216— 05 —0.234514—06
4 0.124768—02 0.263768— 04 0.839388- 05 —0.19355@— 06
5 0.12503@— 02 0.26407@— 04 0.575926— 05 —0.22464@— 06
6 0.12510@—02 0.264146—04 0.50102&— 05 —0.23292@ 06
7 0.125048— 02 0.264086— 04 0.514708— 05 —0.231322-06
8 0.12506&— 02 0.264106— 04 0.535972— 05 —0.22893& 06
9 0.12505@— 02 0.264108—04 0.531476—05 —0.229438— 06
10 0.125058— 02 0.264102—04 0.530634— 05 —0.22954@— 06
11 0.125056— 02 0.264108— 04 0.530094— 05 —0.22960@— 06
4. REDUCTION TO A FREDHOLM MATRIX SYSTEM OF THE 1 im im m?2l
SECOND KIND all=—, a12=;, a?l=— o azz—a— —1

To analyze the structure of the systd®8), we trans-

form from the operator system to an equivalent matrix sys-

tem. We expand the unknown function$(7) andv ™~ (7) in
basis functions:

u (T)—n:l Cn\/ﬁ%n—lﬁ). (26
v*<r>=n§1 dny2n—1¢,n(7). (27)

Substituting Eqs(26) and(27) into (23), we multiply the
first equation of the system by the function
Yon—1(7)/V2n—1 in spacel . and multiply the second

equation by the functiog2n—1¢,,(7) in spacel,, . As a

result, we obtain a matrix system to be analyzed in space

[L,®l, (I, is the Hilbert space of sequenges
+ oo

allc,+ >, cyNi+ald, + Z doN2 =e,,
m=1

+ o + o

a?lc,+ >, cpNZ+a?d,+ > dNZ2
m=1 m=1

lsn<+oo, (28

where

The basis functions are chosen in such a way as to make
al independent of. The numberd\NPY9 (p,q=1,2) are the
matrix elements of the operatoN®? in the corresponding
Hilbert spaces, and the numbezsandh,, represent the co-
efficients of the expansion of the right-hand sides in the basis
functions.

We note that fom=0, which corresponds to an axisym-
metrically driven vibrator, the systeii28) is separated into
two independent matrix equations. For all otihemwe trans-
form the system(28). To do so, we solve the system foy
andd,, and reduce it to the canonical form

cht >, cmN“+E d N2 =e,,
m=1

d,+ >, cmN21+E N2 = (29)
m=1

It is noted at once that the matrix elemeit&’, are formed

by linear combinations of the matrix elemeM§? and pre-
serve the properties of these elements. The following theo-
rem has been proved: The system of two matrix equations
(29) is a Fredholm system of the second kind.
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We conclude this section with the observation that thewhere the currents become infinite in accordance with the
approach developed here is applicable to problems of diffracMeixner condition(Fig. 1). A further increase in the vibrator

tion by an arbitrary open surface of revolution. produces the patterns shown in Fig. 2.
The following notation is used in the figures:
5. RESULTS OF NUMERICAL CALCULATIONS o 1 m=0
We consider the diffraction of a plane wave by a vibra-  1,(7)= 20 emly (1), &= 2 m>0
m= ] il

tor. The source of the primary field is a filament that carries
an electric current of unit amplitude and is situated parallel *
to the axis of the vibrator at a large distance from it in com- 1 ,(7)= > 2157 (7).
parison with the wavelength. m=1

The efficiency of the method proposed in the article is ~ The zeroth harmonic is no longer sufficient for determin-
demonstrated in Table |, which shows the results of calculaing the axial currents. The strongest excitation of axial cur-
tions of the first-harmonicrg=1) current. An analysis of rents takes place on the side where the primary wave is in-
the results shows that fdta==/2 and 2=X/2 (A is the cident. The azimuthal current function increases
wavelength the value ofI%*(r) converges with three-place simultaneously. The vibrator begins to radiate along its own
accuracy foN=2 and with six-place accuracy fo\=4 (N axis, and this is the fundamental difference of nonaxisym-
is the number of basis functionsThe value ofl i‘(r) con-  metric excitation of an electrically thick vibrator from axi-
verges more slowly: to three and six significant figures forsymmetric excitation.
three and eight basis functions, respectively. An analysis of ]
the convergence of the currents of other harmonics has alsb\'\;- ;\'-FF"O;TKS;‘(I;U%YU- Radtsig, and S. I.rinov, Zh. Vychisl. Mat.
disclosed a high r_ate of convergence of the CUtOff method. 2A.a\/.. Slcz>;:hillin and S. I.. Eminov, iMathematical Methods in Electromag-
Next, calculations have shown that only axial currents netic Theory (MMET-94)Kharkov, 1994, pp, 426—429.
are induced on the surface of thin vibrators, and they are®yu. Yu. Radtsig, A. V. Sochilin, and S. I.rEinov, Deposited at the
determined by the zeroth harmonic. Even for a vibrator of AII—Union Institqte of Scientific and Technical Information, VINITIn
radiusa= /40 azimuthal currents are faintly generated ev- Russiaf), Deposit No. 2640-V9gMoscow, 1993, 78 pp.
erywhere except at the ends of the vibrator and at the edgessanslated by James S. Wood
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The characteristics of the space-charge oscillations of a long-pulse relativistic electron beam in
magnetically insulated diodes are determined for different geometries of the electron

acceleration section and for explosive-emission cathodes of different materials. The important

role of the stream of electrons having high transverse velocities in the evolution of the

oscillations is demonstrated, and the laws governing the generation of this stream are determined.
Possible mechanisms of the space-charge oscillations are described, taking into account the
interaction of the electron stream in the beam halo with the main electron stream, the development
of diocotron instability in the stream of electrons emitted by the outer lateral surface of the
plasma emitter, and the instability of the space charge of “long-lived” electrons in the beam
transport channel. €998 American Institute of PhysidsS1063-784£98)01804-3

INTRODUCTION gated kind. However, the data have not been adequate for
unambiguously determining the nature of the beams. Here
The vast and by no means exhausted potential applicave report new results that lend better insight into the mecha-
tions of relativistic electron beam@&EBS in high-current  nisms of the collective processes and their relationship to the
electronics and power engineering, along with the search fogpecific characteristics of the formation and transport of
effective techniques to control their characteristics, accCOunREBs in magnetically insulated diodes, which are widely
for the ongoing fascination with this multifaceted researchused in practice.
object. So far, unfortunately, it is often impossible to gener-
ate REBs of sufficiently high quality. One obstacle, in par-
ticular, is the shortage of information on the functional rela- i
tions of the collective processes involved in such beams. Measurements have been carried out using thR-$E
The laws of the formation and transport of REBS andapparatus'*°in the experimental instrument shown in cross
their stability have been analyzed in a great many publicasection in Fig. 1. Electrons emitted by the edge explosive-
tions (see, e.g., Refs. 13.7The main causes of the develop- emission cathodd of diameterD, were accelerated in the
ment of instabilities, primarily those associated with the ex-gapL ., between the cathode and the an@de an energy of
istence of gradients of the velocities and density of electronapproximately 200 keV, whereupon they drifted into the
in the beams, have been discerned in theoretical studies. Team transport channeéd (of diameter D,=32 mm and
mechanism underlying the onset of instability under the indengthL;=1.2 m and were deposited on the surface of the
fluence of these factors is fairly general, manifesting itself incollector4 in the decaying edge magnetic field of the system
phenomena other than RERBsee, e.g., Refs. 8 and.9The  of solenoids5. An approximately uniform magnetic field
published theoretical studies have been carried out for highl3,=1 T was created in the entire beam-transport space ex-
idealized beam models and largely in the linear approximaeept in the edge zone. The deviations frBgpat the solenoid
tion. They are successful in explaining the disintegration ofunctions were less than 10%. The duration of the current
REBs but are generally inapplicable for determining thepulses on the collector and the current intenkityere varied
amplitude-frequency and space-time response characteristigsthe ranges-1.0—3.0 us and 0.7 1.1 kA, respectively.
of the collective processes occurring in them. Our primary concern in the study has been to ascertain
In experimental work, owing to the difficulties of the the influence of the beam-forming conditions on the charac-
diagnostics of high-current electron beams, the processdesristics of the space-charge oscillations generated in the
analyzed have been predominantly either very low-frequencpeam. Different cathode materials were ugs@inless steel
(<100 MH2 or substantially higher-frequency=3000 and carboj along with different cathode diametgi2 mm
MHz) (see, e.g., Refs. 2, 10-130nly recently through the and 20 mm, and the distancé ., between the cathode and
application of a relatively sophisticated, relatively nondisrup-the anode was varied from 12 mm to 27 mm. Moreover, the
tive investigative technique has information been obtainednfluence of local magnetic-field nonuniformities created by
on the characteristics of the collective processes over a brodtle auxiliary coils6 and7 situated at distances20 cm and
frequency band*~® The amplitude-frequency and space- ~60 cm from the cathode was tested in all the investigated
time responses of oscillations have been measured in longystems. The coils produced magnetic-field nonuniformities
pulse REBs, which previously have been the least investihaving a corkscrew configuration with a half-width along the

RESULTS OF MEASUREMENTS AND DISCUSSION

1063-7842/98/43(4)/5/$15.00 439 © 1998 American Institute of Physics
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FIG. 1. Schematic view of the cross section of the experimental instrument.

axis of the system-10 cm, and their amplitude in different
experiments was equal to 30% or 60% of the main beam-
confining fieldBy.

The characteristics of the oscillations were determined
by the procedure developed in Ref. 15 with the use of the
probes8 and 9, which were set up at distances from the
cathode of~40 cm and~80 cm, respectively. The probes
“communicated” with the beam through smaltiameter
~3 mm) Openings in the wall of the transport channel andFI!G. 2. Time variations ofl) the collector currenit; 2,3) the amplitudeA of

detected the induced signals associated with the motion 6["3e detected signals from the prol®and9, respectively, in a relativistic
electron beam-forming system with a graphite cathode), ehlracteristic

the space-pha_rge p_ackets "_7 the beam. The magnetic SpeCl{@es obtained with confinement of the REB in a uniform magnetic field
of the oscillations in a period~-6—15 ns and the pulsed By,=1 T; c,d data obtained with the introduction of local magnetic-field

variations of the detected probe pulses were recorded. nonuniformities of amplitude OB}, by means of the coil§ and7, respec-
The characteristics of the oscillations are qualitativelytiVey: @ De=20 mm,Lc,=12 mm; b,c,dD;=20 mm,Lc,=27 mm.

similar in all the investigated systems. The variations of the

oscillation amplitudeA with the timet and in space can be | o ] )

traced by observing the detected probe signals. Figure Qrmqple, its signals can be.attrlbuted not only to the ampli-

shows typicalA(t) curves of the probes 8 and 9. Also shown fication of waves propagating along the beam, but also to

are the time variations of the collector currénOur previ- oscillatory processes of another kind. Consequently, to deter-

ous investigatior’§ have shown that the probes are coupledmi”e the relations characterizing _the growth of the waves in
with the near field of the transport channel and reliably de!n® beam, we analyze the prominent features of the signal
tect REB space-charge oscillations until the dense cathodg@racteristics of the probe far from the cathode.

plasma, undergoing axial expansion, reaches the level of the AS the beam current is increased, the signal amplitudes
entrance openings into the probe section. of the probe9 increase with time, initially at a slow rate, but

The plasma oscillations are scarcely detected at all bjhen after a certain time intervai=t* specific to the given
the probe9 during the entire duration of the beam current SyStem the rate of the process increases abruity 2). The
pulse, but they are what determine the signal of the pgbe duantityt™ changes considerably when the geometry of the
in time intervals corresponding to the decay of the current offlectron acceleration sectl_on or the material of the pa}th_ode is
the collector. At the leading edge of the currémiulse we altered. Table | shoyvs typical vaI.uestﬁffor the relativistic
discern time segments characterized by buildup of the spac&!€ctron beam-forming systems investigated here.
charge oscillations with increasing distance from the cath-
ode. Their amplitude at the proBeattains values-10° V/m
in all the investigated systentse., ~10% of the static field
between the beam and the wall of the transport channel Cathode material

TABLE I.

These data indicate amplification of the wave processes in ,

. . Stainless
the interval between the probes and also that the'outpL.Jt SiQharacteristic steel Carbon
nals of the probe far from the cathode are determined, in the
given time interval at any rate, by growing waves in thePc: mm 20 12 20
beam. A lack of data on the spatial variation of the oscilla-5e2: ™™ 27 12 2 12 21
. . . . T, 05-06 | 02 0405 0-01 0.3-04
tion amplitude in the near field of the cathode makes it dif-;, s 0.6 0.15 0.4 01 0.35
ficult to assess the nature of the oscillations of the p&lte
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TABLE II.
1.0 a

Cathode material Vpi, cmis V|, cm/s

Stainless steel 310° 3x10°
Carbon 5<10° 5% 10°

A/Am‘l

vicinity of the probe9, on the other hand, there is a notice-
able drop in the intensity of the REB space-charge oscilla-
tions. Here the oscillation amplitude decreases by as much as
J 1 1.5-4 times(Fig. 29. Increasing this nonuniformity of the
magnetic field to 60% 0B, produces an additional two- to
fourfold reduction of the oscillation amplitude of the probe
” 9. The introduction of such nonuniformities by means of the
N coil 7 at a large distance from the cathode, in contrast with
the above-described influence of the djilessentially does
~ nothing more than accelerate the development of the oscilla-
< ions, not only in the beam propagating past it, but also at the
N 05 probe8 (Fig. 2d.
The observed influence of magnetic-field nonuniformi-
ties can be explained if we assume that their generation

, causes some of the electrons in the beam to be reflected,
W which has a strong influence on the characteristics of the
l L recorded oscillations. Taking into account the adiabatic

0 1 2 variation of the magnetic field near the auxiliary cdlsind
f, GHz 7, we can use the expression for the adiabatic invariant to
determine the reflection conditions, writing

1.0

I
[on

FIG. 3. Typical spectra of signals from the proBeobtained in a uniform
e e 30 ST o R VLol Vio=(Bo/AB) ®
=0.6 45 ((>1%); A aNdAp; are the maximum values of the amplitde  \yhereV, ;, andV), are the transverse and longitudinal com-
of the recorded spectré,,, /A =15. . o .
ponents of the velocity of electrons striking the magnetic
mirror, andAB is the amplitude of the magnetic field.
Since the influence of the magnetic-field nonuniformities
The spectrum of the oscillations of the proBealso  begins to be felt aBy/AB=3, it follows from Eq.(1) that
changes with time. At the initial timets<t*, when the signal  electrons having transverse velocitiés,=1.7V|, must be
amplitudes are small, comparatively low-frequency oscillareflected. Such velocities can be acquired by electrons exit-
tions in the frequency band 100 MEA <300 MHz are ing from the cathode plasma during motion in an electric
prevalent. But then in the presence of larger amplitu@és field transverse to the magnetic figl ~10° V/m. To de-
t>t*) discrete peaks are discernible in the spectrum in théermine the conditions for the generation of electrons with
range of higher frequencies approximately from 500 MHz tosuch high transverse velocities, we have estimated the fields
1500 MHz. Typical spectra of the oscillations of the pr&e at the surface of a plasma emitter having various dimensions
are shown in Fig. 3. and axial positions, taking into account the irregularities of
The influence of local magnetic-field nonuniformities its surface! The estimates show that fielé&s of the neces-
having a corkscrew configuration on the REB space-chargsary strength can occur at irregularities of the outer lateral
oscillations has been observed previod8iy®The measure- boundary of the plasma near the entrance to the transport
ments were performed in a relativistic electron beam-channel, i.e., with a delay relative to the beginning of the
forming system with a stainless steel cathode of diametecurrent pulse, the length of the delay depending on the dis-
D.=20 mm mounted at a distande.,=27 mm from the tance from this zone and the rate of expansion of the cathode
entrance to the transport channel. The data obtained in thdasma. The resulting data have enabled us to calculate the
present study can be used to generalize the conclusions délay timety for the investigated systen{able ). It has
the first measurements to different geometries of the electrobeen assumed in the calculations that the gain of the field
acceleration section and to different cathode materials. Thamplified at irregularities of the plasma emitter is identical
effect depends not only on the magnitude of the nonuniforand equal to 5 for all the systems. The values used for the
mity, but also on its position in the transport channel. A 30%transverse Y,,) and longitudinal ¥,) plasma velocities
increase in the magnetic field near the cath@@emeans of for stainless steel and carbon cathodes are given in Table II.
the coil 6) suppresses the signals of both probes. The signals They have been selected in accordance with published
of the probe8 decrease considerably in time intervals whendata on the motion of a cathode plasma in the vicinity of the
they are capable of coupling with the cathode plasma. In theathode’
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A comparison of the calculated values f with the  stream interaction mechanism is not the only one possible.
experimentally measured delay tintie to abrupt growth of  Of the alternatives, we lean toward a mechanism associated
the probe9 signals shows that these times are close for allith the development of diocotron instability in the stream of
the investigated systems. It seems clear to us that this agreelectrons emitted from the side of the plasma emitter. In this
ment confirms the important role of electrons with highcase the REB halo must acquire space-charge inhomogene-
transverse velocities in the development of convective instaities rotating in the azimuth direction. The frequencigsof
bility, which, as mentioned, determines the characteristicthese magnetron-type oscillations should increase when the
A(t) in the region of the transport channel far from the cath-electron drift velocityV4=E, /B, above the surface of the
ode. Such electrons, judging from the above estimates, exiplasma emitter and the mode order of the oscillatiops
only in the halo of the REB. Ztsevet al?® have previously =1,2,3, ... fm~nmXVy) increase. In the transport chan-
observed the influence of the electron stream in the REBel with a potential differencAU=200 kV, Bo=1 T, and
halo on the expansion of the wall of an annular beam in aa,,=1 these waves are characterized by a frequehgy
magnetic field. The authors of the paper postulated that the-600 MHz.
observed phenomenon is associated with the development of Azimuthal oscillations are also possible in the space
instability, but did not specify its mechanism. Our data cancharge of electrons arrested in the special kind of trap formed
be used to determine the most probable attributes of thibetween the cathode and the magnetic mirror. In view of the
mechanism. potential dropAU ~50 kV between the beam and the wall of

The current of electrons with high transverse velocitiesthe transport channel, the frequencies of the azimuthal space-
is weak in comparison with the beam current. It would becharge oscillations in this case should have a vdluen,
difficult in this light to assume that the experimentally ob- -150 MHz, wheren,=1, 2, 3, ... is the mode order of the
served strong observations are associated with processescillations in the trap. Oscillations of this kind can evolve,
strictly in the periphery of the beam. A possible cause of than principle, when the magnetic field is devoid of nonunifor-
generation of oscillations, it seems to us, is the developmenmnities responsible for electron reflections. As mentioned pre-
of a two-stream instabilif}® associated with the interaction viously, for example, in Ref. 21, it is also possible for space
of electrons in the periphery of the beam having the highestharge to build up and be trapped for a long time in the REB
transverse velocitiegand, accordingly the lowest longitudi- transport channel as a result of some of the electrons being
nal velocitiesV|,,) with electrons coming from the end of reflected first from the collector and then again by the elec-
the plasma emitter and having the maximum longitudinaltric field at the cathode.
velocities Vmay. This kind of interaction should be most The relative role of the modes of oscillation discussed
efficient when a fast space-charge wave in the first stream igbove is difficult to assess on the basis of existing experi-
in synchronism with a slow space-charge wave in the seconthental data and estimates. A realistic scenario appears to be
stream. In this case, equating the phase velocities of thene in which the collective processes in REBs are three-
waves, we readily obtain an expression for the frequérdy  dimensional in character, different modes of oscillatory mo-
the resulting development of instability of the oscillations: tion coexist, and a small change in the characteristics of the

1 Vo Iy _ beam or the beam transport channel is accompf':lnied by en-
fo = 5 2lmin@p max™ ¥jmaxPp mn (2)  ergy transfer from one degree of freedom of oscillatory mo-

2 Viimax= Vjmin tion to another in a process similar to that observed previ-

wherew, max and w,, mis are the reduced plasma frequenciesOusly in magnetron-type sysgtims with the axial motion of
of the streams with velociti€g)m,,) andVmin, respectively. electrons taken into accoufft:

Calculations using our previous data on the characteris-
tics of the space-charge distribution in REB28to deter-
mine the reduced plasma frequencies give valfie$00
—700 MHz, which roughly correspond to the strongest os-  Following is a summary of the most important results of
cillations observed in the experiments. the study.

The investigated two-stream model explains not only the  We have determined the amplitude-frequency response
range of frequencies of the observed oscillations, but also theharacteristics of the space-charge oscillations of relativistic
significant difference in how their characteristics are affectecklectron beams in magnetically insulated diodes for different
by magnetic-field nonuniformities generated in differentgeometries of the electron acceleration section and for
parts of the transport channel. The amplification of the oscil-explosive-emission cathodes of different materials.
lations upon activation of the distafftom the cathodgecaoil We have demonstrated the important role of the stream
7 can be attributed, for example, to the fact that the interacef electrons having high transverse velocities in the evolu-
tion of the stream of electrons emanating from the cathod¢ion of oscillations. We have also determined the functional
with electrons reflected by the magnetic mirror begins torelations involved in the formation of this stream.
exert an appreciable influence in this case. Similarly, the in- We have described possible mechanisms of the space-
teraction associated with activation of the d®itan be ren- charge oscillations, taking into account the interaction of the
dered ineffective by the substantially shorter length of theelectron stream in the halo of the beam with the main elec-
section between the cathode and the near coil. tron stream, the development of diocotron instability in the

The explanation of the space-charge oscillations obstream of electrons emitted by the outer lateral surface of the
served in our work as the result of the above-described twoplasma emitter, and the instability of the space charge of

CONCLUSION
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“long-lived” electrons in the REB transport channel.
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A method is proposed for investigating the spatial and time-of-flight properties of polar toroidal
charged-particle analyzers on the basis of calculations of the aberration integrals. The
efficiency of the method is illustrated by comparing the results of calculations based on it with
the results of numerical simulation and experimental measurementd4.998 American

Institute of Physics.S1063-78498)01904-7

Polar toroidal electrostatic charged-particle analyzershe field is very accurately described by the first few terms of
(toroidal capacitors in which the particle beam moves in thehe expansioril), whose coefficients are equal to
meridional directioh are widely used in systems for the 1
static and time-of-flight analysis of electron or ion beams  y (u,®)=u, W¥,u,d)=->(1+C)(u2-1),
with respect to angle and energy simultanectiSipr with 2
respect to mas$® In the past, new charged-particle beam 1
analyzers containing polar toroidal capacitors either exclu- W ,(u,d)==(1+C+C?)(u®—u),
sively or in combination with other elemeffshave been 3
designed by the time-consuming numerical simulation of 1 1
charged-particle patfs'®or by means of crude, semianalyti- Po(u,d)= [ ——(1+C)(1+C%»— =(1-C)(C+S?)
cal approximation§;'* making it difficult to obtain optimal 4 24
solutions requiring the simultaneous satisfaction of many fo- 111
cusing conditions in the presence of stringent geometrical ><(U4—1)+§ 3(1+0)(A+C+ C?)
constraints. The analytical method developed in Ref. 12 for
calculating the electrostatic field in a polar toroidal capacitor
suggests an effective approach to the investigation of the
spatial and time-of-flight properties of such a capacitor,
based on the computation of aberration integrals.

1
+ 5(1—C)((:+sz) (u?—1),

33 2 19 3 4 2
12+ —C+9C2+ - C3+12C*+4S

1
‘1’4(U,q3):§)

In this paper we investigate particle motion in the field 2 2
of a capacitor without regard for edge effects at its input and
output. These effects can be calculated on the basis of a 3022+ CS? (u5—u)+i —2—1—9C
method proposed earliét. 18 2
We introduce toroidal coordinatds ,®,0] (Fig. 1), 1
where0 is the angle of rotation about the symmetry afds —3C2— —C3-2C%-5%2+452C?%+ CSZ}
axig) of the system, andand® are polar coordinates in the 2
meridian plane relative to a point situated at a distaace X (Ud—u).

from the Z axis (this point is assumed to be the center of

curvature of the electrodes of the polar toroidal capacitor ifiere we have introduced the notatiolC = cosb/F,

the meridian plane The surfaces of the electrodes of the S=sin®/F, F=d+cosb, d=a/r,. We write the equations
polar toroidal capacitor are described by the equatians for the charged-particle paths in the polar toroidal capacitor
=r,%b, where D is the interelectrode gap. An analytical in cylindrical coordinates, because the initial conditions for
expression for the electrostatic potentit(r,®) between these paths are easier to determine in linear rather than an-
the capacitor electrodes, across which potentials of equdlular variables. We introduce cylindrical coordinates
value and opposite sign t&/ are specified, has been [p,¢,y] with the axis of the coordinate system oriented per-

obtained? in the form of the expansion pendicular to the meridian plart@=0 and passing through
the center of polar curvature of the electrode surfaces in this
o plane(i.e., situated at a distanegfrom the symmetry axis of
\I’(u,d)):vzl ¥i(u,®)e! (1)  the systemn In the indicated meridian plane we haye0,
=

p=r, and ¢=®, and the relations between the cylindrical
and toroidal coordinates are described by the equations

in powers of the parameter=Db/r,. For real analyzer con-
figurations this parameters is small, so that the potential of = \/pzsinzgo-i—[\/yz-i-(a-i-pCO&p)z—a]Z,

1063-7842/98/43(4)/5/$15.00 444 © 1998 American Institute of Physics
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R The equation for the normalized time of flight

7= \/ZKO/(mOrOZ) (r—tg), wheret is the time for an arbi-
trary particle to traverse the sector described by the angle of
rotation ¢, and to=¢@ymgrg/2Ky is the nominal time of
flight of a main particle over an arc of radiug of the same
sector, has the form

a Vi1 \/(1+x)2+x’2+y’2:L .
A THEN T (MY ©
9\] Z wherey is the relative deviation of the mass of an arbitrary

particle from its nominal value.
FIG. 1. Cross section of the electrodes of a polar toroidal capacitor in the ~ Substituting the equatiofil) for the potential distribu-
meridian plane. Only the upper part of the cross section is shown, as it ision, rewritten in the cylindrical coordinat€®), into the path
symmetrical about th& axis. and time-of-flight equation€3)—(5), we arrive at the follow-
ing equations for the terms of the fifs¢;,y;,71] and second
[X5,y2,7o] aberration orders describing the coordinates of
the charged-particle paths and the time of flight in the polar

tand = pSing toroidal capacitor:
2 2_ .
Vy2+(a+pcosp)*~a Xj—a,X]—aX;=as0+ay, (6)
tand— — yi—ayyi—ay:=0, @
a+pcosp
o T1=CxX1+Cs6+C,y+Co, (8)
We denotex=(p—rg)/rg, y=Y/ro and expand the ex- , , ' 5 ,
pressions for the toroidal coordinatesnd® in powers ofx X2 = B Xp = AxX2 = xryr X1 ™ T @X] F Ay kX1 Xq
andy. To within third-order terms these expansions have the

’ 12
form +aysX10+ay X 6+ ayyy;

1 1 + ayyy§+ a55621 (9)
BU=X+ 5 Uy Y2+ 5 UyyyXY?,

yg_ ay’yé_ ayYo=ayyX1Y1+ ay’xyixl—i_ ay5y15+ 2X£yi
1 1 +ay 519, (10)
o= o+ E (I)yyy2+ z (I)nyxyz, (2) ' Tt
' 2 ’2 2
where uy, = cosp/f, Uy, = —code/f?, d, = —sing/f, D, T2 O Xy O CiXa 0 g Xa Y+ Cyry Y17 By
= sing(d+2cosp)/f?, andf=d+ cosp. +C KXot Cosd+Cay Y+, 7P (11)
We now introduce the concept of a “main” particle as
one that moves around a circular path of radigsin the
capacitor in the limitt —0. LetK, be the kinetic energy of sd
this particle(which is related to the potentidf by the equa- ax'=ay'= —ay 5= — Ay 5~ —SZE,
tion V=2¢Ky/q), let mg be its mass, and let| be the
charge; we refer to these quantities as the nominal values of
the corresponding quantities. The exact equations for thex=Cc—2+¢&?
charged-patrticle paths in the polar toroidal capacitor are then

Here the coefficients are given by the expressions

5
-+ttt ——-———

10 19 c 1 10
6 3 6 2f2 22 3]’

written in the form 1 5 5
, a5=1+82 —§C2+ §C+§ ,
2x 2 A NL
X//_ _1_ T
1+x X (1+x)2 do ) 1 ) 2 2 L4 1 4Jr27 3 29 5
ap=g°| zc*—=c— = | +&* ——=c*+—=c*-—=c
(1+X)2+X'2+y’2 (3) 3 3 3 12 40 36
1+6-2¥ L3 c2 361 17c¢ L3371 67)
____C___ — e — ,
., 2X/yr B o . y/ g (1+X)2+X’2+y’2 18Of2 360 45 f2 180f2 20
1+x | dy  (1+x)2d¢| 1+6-2¥%

-t ——-—

__ 2
4) ay c+e 3 6 3 212 g2

11201)

whereé is the deviation of the energy of an arbitrary particle
from its nominal value, and the prime signifies differentia-
tion with respect to the angle.

1,5 5
——c?+—c+

CX:2+82 3 3 3
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18, 11,
C(;——E—Za‘ (c+ ), C7_§+ZS (C+ ),

oo 1o, 17, 11 5c 51
*\ T8 24" T2 T 24z 242 24
37
— _ 2 _ 2] A4 _ T34 A2
Ay c“+4c—5+¢“| C 120 + 3 (o

2¢2 25 7¢ 51 28)

32 3f2 3¢2 3
5 2., 4 2
Aox=8yx=&€"S _§C +§C_§ )
1 2 2
— 2/ a2, 2
ax/x/—l+8 3C 3C 3),
,[5 5 17 , 59 c
ays=—C+d5+e°| zC°— 5 C+—C—-—+ —+11

1
—e2_C 2
ayy==C 2C-l—s

T12y2 1212 4 g2 Ap

7 2 11c¢ 1cd 1 ld)

— 1+ 21 2 2 2
ayryr— & 30 3C 3 y
1 8 8
ass 1+e 30 3c 3),
1, 2 1c3d 5
— 2__ 2| A4y —R3, T —R2_ T
ayy=2c“—3c+e 2c +3c +2 - 6C >

1, 7,5 ¢ 1
6° 6 37 2p o

ays=C+e?

—1+2+25392+3 L1y

CXX——EC > 1—2C _ZC C—F ﬁ
1

Cs= —2+¢2 §c2—4c—4),

SPTC T P
Coy=Llte’| —gci+zct o,

I SUNEY I T SO A
Cyy=3 0t et 3 ¢ et 1)
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1 c?d
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1 1 ’ 3 15 ’
CX/XI:Cy!y!:§+ ZS (c+1), C55=§+l—68 (c+1),
1 3 2 1 >
Céy:—Z—gs (C+1), ny_—g—l—GS (C+1),

wherec=cosp/f ands=sing/f.

More cumbersome equations for higher-order aberra-
tions can be obtained analogously. In the limit of a capacitor
having an indefinitely narrow interelectrode gap-0 Egs.

(6) and(7) coincide with the paraxial path equations derived
in Ref. 14 on the assumption of a constant potential and a
constant field on the axial path of the particle beam.

Linearly independent solutions of the homogeneous lin-
ear equations whose left sides coincide with the left sides of
Egs.(6) and(7) can be calculated only by numerical integra-
tion. Once this has been done, however, solutions of the
inhomogeneous equatiori§) and (8)—(11) with zero initial
conditions are readily found by the method of variation of
arbitrary constants in the form of integrals; these aberration
integrals are too cumbersome to write out in explicit form.

We have thus reduced the general solution of the prob-
lem of calculating the paths and time of flight to the sum of
a combination of solutions of homogeneous linear equations
corresponding to the specified initial conditions and of the
indicated aberration integrals. Numerical experiments have
shown that even when third-order aberrations are taken into
account, the time to calculate the properties of the polar to-
roidal capacitor on the basis of the proposed approach is a
fraction of a second on a late-model personal computer,
bringing into reality the efficient optimization of devices
containing such capacitors, which requires the scanning of a
large number of alternative configurations.

We note that Eq(6) is inhomogeneous even for a main
particle with the nominal energys&0) owing to the pres-
ence of the coefficiers,. This means that the main particle
deviates somewhat from the circular optical axis in the ca-
pacitor. For this reason the exact values of the aberration
coefficients of a fixed order depend not only on the solutions
of the equations corresponding to this order, but also on the
higher-order aberration integrals. In particular, the paraxial
properties of the capacitor, determined as the solutions of
Egs.(6)—(8), are inaccurately described unless the contribu-
tions of the second-order aberration integrals are taken into
account.

To estimate these errors and to compare the accuracy of
the proposed computational approach with that of numerical
simulation methods and previously proposed approximate
approaches, we calculate the ion-optical properties of a two-
stage analyzer for investigations of the astrophysical
plasma the analyzer geometry is shown in Fig. 2. It consists
of two polar toroidal capacitors in series. The radii of the
optical axes arer;=43 mm in the first capacitor and
r,=60 mm in the second capacitor, corresponding to angles
of rotation ¢,=127.6° andg,=85°, respectively, and the
distances of the centers of meridional curvature of the elec-
trodes from the symmetry axis am@ =119 mm anda,
=100.2 mm. Theangle of entry of the particle beam into
the system relative to the direction of the axis of rotation is
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TABLE II. Comparison of calculated and measured transfer matrix coeffi-
cients for various positions of the plane of observation.

Calculated Measured
| I} 11 | 1l 1
(x]x) -1.31 0.89 138 —-1.30 0.90 1.40
(X|@) —-0.78 0.00 034 -0.86 —0.08 0.38
(X|5) 1.35 —-0.04 —-0.38 1.33 -0.17 -0.37

FIG. 2. Relative position of polar toroidal capacitors in a two-stage ana- . . . . . .
lyzer. 1) First stage2) second stage. nate is expressed in units of the radius of the axis of the first

stage, and the final coordinate is expressed in units of the
radius of the second stageo that, in particular, the product

@o="73°, the distance from the input slit to the first stage isof |inear (x|x) and angular ¢| ) magnifications in the table
I,=3 mm, the spacing of the capacitorsljs=11 mm, and  are not equal to unifly angular variables are expressed in the
the distance from the second stage to the plane of the detefgmgemS of angles, energy and mass deviations are expressed
tor is13=37.5 mm. We calculate the transfer matrix coeffi- iy ynits of their nominal values, and the time variable is
cients of the system from the input slit to the detector plangxpressed in the product of the relative deviation of the time
(standard notation such as that used in Ref. 15 are used § flight from its nominal value and the total length of the
represent the transfer matrix coefficienté/e note that the gptical axis divided by the radius of the second stage. It is
investigated configuration is characterized by angular focusayident from Table I that our results agree significantly better
ing in the radial directiothi.e., the transfer matrix coefficient \ith the results of the numerical calculations than do the
(x|a)=0, wherea is the angle of the path relative to the resylts obtained by the approximate method in Ref. 4 with
optical axis in the radial directiorand by zero spatial dis- the one exception of the coefficient|k), where the discrep-
persion with respect to energyx|¢)=0. ancies are of the same order of magnitude. We note that the

We have checked the accuracy of the proposed algagiscrepancy between our results and the numerical simula-
rithm by comparing the first-, second-, and third-order transtion results are of the order of one percent, which is not as
fer matrix coefficients of the analyzer as determined fromgood as the above estimate of the error of the method of
calculations of the aberration integrals, and also by highlyaperration integrals. The reason is that our calculations have
accurate numerical integration of the paths using methods G§nored edge effects at the boundaries of the capacitors.
differential algebra&® Our test shows that when the contribu- Table Il compares experimentally measured first-order
tions of aberration integrals up to and including third-orderyransfer matrix coefficients with those calculated by the

are taken into account, the first- and second-order aberratigethod of aberration integrals for a two-stage system whose

third-order aberration coefficients are calculated within 10%5tages in this system is the same as in Fig. 2, but the geo-
error limits. The large error of the third-order aberrations ismetrical parameters differ somewhat from those described in
attributable to the rejection of higher-order aberration inteRef. 4. For the given systenh;=6 mm, r;=44 mm,
grals, which, as explained above, are required in order 1@, =104 mm, ¢,=76°, ¢;=122.5°,1,=19 mm, r,=51
attain higher accuracy. . _ mm, a,=85.4 mm, andp,=86.3°. The measurement results
Table | shows a comparison of the first-order transferare taken from Table 2 in Ref. 7. In our Table Il column |
matrix coefficients, calculated by the method proposed in thgjyes the coefficients measured at a distance of 40 mm after
article with the contributions of aberration integrals up to andine first capacitofwithout the second ongcolumn Il gives
including third-order taken into accoufdolumn A, by the  the coefficients measured at a distance of 24 mm after the
approximate method proposed in Ref(eblumn AM), and  second capacitor, and column Iil gives the coefficients at a
by numerical calculations of the patlisolumn NQ. The  distance of 42 mm after the second capacitor. A comparison
results in the last two columns are taken from Ref. 4; theof the computational and measurement results indicates good
values of the coefficients are given in the d|men5|onles%greemem between them.
quantities used in the present study, where the initial coordi- ~ The proposed method therefore has the high accuracy
and economy required for optimization calculations of the

TABLE I. Transfer matrix coefficients of a two-stage analyzer. paraxial and aberration properties of polar toroidal charged-
particle beam analyzers.
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Possibility of lowering the effective emittance of neutralized ion beams
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Self-similarity conditions are determined for the steady states of a quasineutral beam plasma
generated during the transport of ion beams in a gaseous medium. The self-consistent radial
distribution of the beam and plasma densities is taken into account. Under the resulting
conditions the radial electric field of the beam—plasma system is linear, and it is possible for
beams to be transported without nonlinear distortion of their phase response
characteristics or an increase in the effective emittance1988 American Institute of Physics.
[S1063-78498)02004-2

INTRODUCTION GoncharoV has demonstrated the possibility of self-
similar spreading of a neutralized beam of positive ions un-
The transport of an ion beam in a gas flowing into ander the influence of linear forces produced by the electric
injector from a plasma source is accompanied by the buildugield of the beam plasma. In this case the radial spreading of
of secondary charged particles formed as neutral atoms atge beam is such that each new state of the beam is a func-
ionized by the beam. The space charge of fast ions is pakon of time only and not of the preceding state, i.e., it is
tially or fully neutralized, depending on the parameters of thesg|f_similar. However, the approximation used in Ref. 7 —a
beam—plasma system that is formed. The resulting beamsg|t.consistent beam density profile and a specified plasma
plasma field can influence the dynamics of precision beamgensity profile — is crude and yields two results that conflict
in injection devices. _ with experimental data. Under conditions such that the den-
The static electric field has been determined for fully gitiesn andn, of the ionic and electronic components of the
charge-neutralized beams in rarefied and dense gaseoHﬁsma greatly exceed the beam densify, a solution is

1-3 .
med{f and ?Isogo:'der;]eut?hzed gggmsj , ho obtained for the potential drop across the beam radius
umerical modeling has been usedto investigate the Ap=(ng/ny)T./e, whereT, is the plasma electron tem-

Lnfllut()a nce of It he evaluat\ted sta?r:: ecliectrlc .f'eldfOf a quasineUya atyre. But the experimental value is close to the positive
ral beam-—piasma system on the dynamics of a precision 10 mbipolar potential drop of a quasineutral plasma~{n;

beam with a small phase volume and small angular dlver-)>dng): Ap<T,/e. It follows from the solution of the equa-

gence. It h‘:as been Sho"!”. that when the beam IS tranqurt%on for a self-consistent potential in Ref. 7 that the potential
through a “plasma lens,” its phase volume acquires nonlin-

ear distortions, and its effective emittance increases consit?—rOp in the volume of a beam of negative ions should be

. : egative. It is a well-known fact that in a dense gas this
erably. A convergent beam can be obtained from a divergen S . .
. . : otential difference is positive and of the same order of mag-
beam, and vice versa, depending on the choice of parameters

of the plasma lens. The results are used to optimize the p —'tu.d.e as the poteptial difference in the case of a bgam of
rameters of precision beams in the interest of matching inPoSItive ions? The incorrectness of the approximation is at-

jectors with an high-frequency accelerator and in connectioﬁ”bUtable to the underlying assumption that the_ Sl(?W second-
with long-range beam transport in a gaseous medium. ary electrons are not perturbed by the electric field of the
The cause of the distortion of the phase volume of thd>eam plasma. It will be shown below that the density profile

beam and the attendant increase in its effective emittance li¢§ te plasma ions significantly influences the choice of self-
in the nonlinearity of the forces produced by the resultants!m'lar solution. Moreover, in 'Fhe cm?d investigation the den-
electric field of the quasineutral or charged beam plasma. I§ity Of secondary electrons is a given parameter, and the
the presence of a plasma medium a self-consistent motion $f@sma generation mechanism is not determined.

the beam particles takes place in the field of the underneu- The objective of the present study is to determine the
tralized space Charge produced by the fast partic|es thenﬁlonditions for ”nearity of the electric f|9|¢9|f-5|mllarlty of
selves and by secondary charged particles. In previoustate$ of a quasineutral beam plasma, when it is then pos-
determinations™ of the electric field of a beam plasma the Sible to lower the effective emittance of ion beams. Here we
motion of the beam particles has been assumed not to ése the approximation of self-consistent density profiles for
self-consistent, because the authors used the approximatidhe beam and the plasma. We consider a broad range of
of a specified beam density profile. This approximation carvariation of the gas pressure, when the beam-generated
become non-self-similar, and the motion of the beam takeplasma can be collisional or collisionless. Together with
place under the influence of nonlinear forces produced by thbeams of positive ions we investigate the self-similar states
electric field. of beams of negative ions.

1063-7842/98/43(4)/3/$15.00 449 © 1998 American Institute of Physics
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SELF-SIMILAR STATE OF A DENSE BEAM PLASMA The condition of equal densities of the components of
i . the unperturbed plasma is attained e 1: n;(1)~ng(1).
We consider the plasma generated by a beam during thgy analogy with Ref. 7 in this case we have=a
ionization of a dense gaseous medium, in which the mea@l_ P&2)/4, wherea andP are constants characterizing the

free path of a slow ion in relation to elastic collisions with |,nneutralized charge. Settimgp<T, in Eq.,(3), we obtain
neutral atoms is shorter than the radial dimension of the iorghe following expressions for the Snknowﬁ C(;nstants:

conductor §;o<R). To determine the spatial structure of the
collisional plasma and its ambipolar field, it is necessary to  a=4aAd2/Pr2, P=(1=C/a)(1-C/4) 1, (4)
use the system of hydrodynamic equations of motion and
continuity of slow charged particles, along with the energywhere the plus and minus signs correspond to beams of posi-
balance equation for the plasma electrons. This closed sy§ve and negative ions, respectivelyo=[To/4me?ne(1)]"?
tem of equations has been investigated previduly the is the Debye screening length of the electroas;1, and
case of a dense plasmag( n;>n;). The electric field does 4d3/rp<1.
not appear explicitly in the ambipolar diffusion equation ob- ~ According to Eq.(4), solutions decaying away from the
tained from the equations of continuity and motion of thebeam axis for a self-consistent potential and density of fast
plasma components. The problem is therefore separable. Tipérticles is obtained for€ C<1, 3/4<P<1. For example,
boundary condition on the potential is not needed for deterin the case of a beam with a uniform particle densi§ (
mining the density profile of the plasma. =0, P=1) the self-similar solution for the potential has the
By analogy with Ref. 7 we assume that a self-similarform
state of a beam of positive and negative ions is satisfied by a
parabolic radial distribution of the density of fast particles: o(£)=
Ny (£)=n, (0)(1—C&?), whereé=r/ry, ry is the radius of
the cylindrical beam, an@ is a constant. We use this beam
density distribution to describe the plasma particle-
generating source in the ambipolar diffusion equation:

1d D N; . - 2 1

Z dg & AGE|” vung (6)rg, )
whereD = 2T./m,vjq, vjo IS the frequency of elastic colli-
sions of slow ions with gas atomsy = oingvy, is the fre-
guency of formation of plasma particlas, is the cross sec-
tion of ionization of a gas atom by a beam ion, ands the
velocity of the beam.

The solution of Eq.(1) has the form

e Ny (0)
e ne(1)

a(1— &%), 5

where, for example, ifng(1)~n;(1)>n,, we can set
an, (0)/ng(1)~1/2In(RIry).

It is evident from Eq.(5) that the approximation
e<T./eis well satisfied near the surface of the beam, where
the field is a maximum and where it was previously observed
to be highly nonlinear. Near the beam axis the field tends to
zero, and the error of determination of the quan#ty0) is
insignificant.

If, following Ref. 7, we setn;(0)~n.(0) and ng(&)
=n.(0)expee/Ty) in (3), wheregp is determined to within a
constant, for the density of a beam of positive ions we obtain
a growing solutionC~1—a, wherea>1. The fact is that

c , Cé? such a crude quasineutrality condition cannot be admitted,
1-7-¢ (1_7”1 because;(0)—ng(0)~n; (0).

It is necessary that the potential distribution in the beam
ni(¢=1)=n,—2an, (0)In(r/R), (2 (5 be matched with the potential distribution of the sur-

where  n(1)=n,+2ang (0)In(Riry), n,=(1-C/2) rounding plasma. The potential in the region of the beam is

><1;Hr§n§(0)/2RvS is the boundary density of a quasineutral Setermmed to \.N'thm an arb|tr§1ry consta@y. It follows
R . d : rom the matching of the solutions at the boundary of the

plasmaa=vyry/4D,, Ris the radius of the sheath at which beamé=1 that to disregar®, for r,>d, is justified’
the plasma recombines, ang=(T./m;)*?is the velocity of garty b>0e 1S '
the ion beam.

In determining the effective boundary condition for a
guasineutral plasma at the boundary of the charged layer fa@ONDITIONS FOR LINEARITY OF THE FIELD IN A RAREFIED
a nonconducting sheath, we have assumed that a diffusiddEAM PLASMA
regime prevails in the volume of the plasma, and the charged
layer is collisionless. An appropriate boundary condition
must be used for a collisional charged layer.

We write the equation for a self-consistent potential o
the electric field of the beam plasma for a Boltzmann distri-
bution of secondary electrons in the form

ni(é<1)=n;i(1)+an; (0)

Here we consider the plasma generated by an ion beam
during the ionization of a rarefied gas, when the reverse con-
fdition Niop>R holds. For a low gas pressure, i,
=pyry/2v,<1, the following quasineutral state is estab-
lished in a beam of positive ionsng +nj~ng; n
<ng, ne. According to Eq.(3), this steady state of the

1d de¢ A beam plasma is self-similar for a Gaussian distribution of the
Zde 3 dE nE(0) beam density:
X[ (&) %05 (6)—ne(LexpeelT)e], (3) b (£)~Ne(£)=ng (0)exp(— £),

whereA=4men, (0)rZ. e(§)=(Tele)(1-&). (6
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However, this approximation fails at a certain distance fromexisting models of the steady state of a beam plasma, where
the beam axis, because the density of fast ions is comparabéeless than fully self-consistent problem is solved and the
with the density of slow ions; . For é&1 the opposite con- potential of the electric field is sought for a specified distri-
dition holds:n;~n>n, . bution of the density of the beam or the plasma.

We now determine the region of the beam in which the  Conditions have been determined for self-similarity of
approximation(6) is valid and in which the electric field is a the steady states of neutralized beams of positive and nega-
linear function of the coordinate. We find the radial distribu-tive ions, when the plasma produced by them can be colli-
tion of the density of slow ions by means of the equation ofsional or collisionless with respect to the ionic component.
motior?® and the expression for the plasma flux, which fol- Under these conditions the radial electric field of the beam—

lows from the equation of continuity: plasma system is a linear function of the transverse coordi-
nate, i.e., it is possible for beams to be transported without
dUi d Surb . . . . L.
U= = —vé—ln(ne)— -2 7) nonlinear distortion of the phase response characteristics and
d¢ d¢ ni an increase in the effective emittance.
niti=Aon; (0)vst H(1—f(£)), (8) Collective processes associated with the excitation of the

L S spectra of eigenmodes of the plasma have been disregarded
whereS=vyn, is the source of enhanced ionization of thejn the search for self-similar states of neutralized beams. In

plasma, and (&) =exp(-£). an unstable beam fully developed plasma oscillations lead to
The solution has the form collective heating of the beam particles, an increase in the
n(&) A effective emittance, and dynamic decompensation of the
= 0 (1-f(&))2—2(1-F(&)) space charge of the beam. The possibility of diminishing

N, (0) 2% collective heating and thereby lowering the effective emit-

+2 Y1 f3(g)] 2 ) tancg_of the beam has been investigated previo‘iﬁlye_
conditions under which steady states of unstable, partially
An analysis of Eq.(9) shows that forA,=10"* the ratio  neutralized beams of positive and negative ions are possible
n;/ny has the value 2 10~ at the pointt=1 and the value have also been determinéd.
5x10 ! at the point¢é=1.5. The coordinatg=1 is the The electron temperature in Eq&), (6), and (10) is
dimensionless effective radius of a beam with a Gaussiatletermined on the basis of the solution of the energy balance
particle density profile, which takes in 63% of the particles.equation derived in Ref. 1. Together with collisionlésel-
The percentage of particles taken inat 1.5 is 90%. Con- lective) and collisional heating of electrons in the field of
sequently, when the gas pressure is loweredh=2 plasma oscillations, other heating sources and cooling
X 1072), 90% of the beam particles can be transported undemechanisms over a wide range of gas and beam densities are
conditions of a plasma electric field that is linear in the trans-also taken into account in this equation.
verse coordinaten(n, =101 at ¢=1.5). Experimental dathhave shown that for a low gas pres-
The following quasineutrality condition holds in the case sure in an unstable neutralized beam of negative ions in the
of a beam of negative ions at a low gas presssg{1):  presence of fully developed plasma oscillations the potential
N, +Ne=N;; Neg<ng , n;. There are few electrons in the drop across the radius of the beam is much higher than the
volume of a neutralized ion beam, but the electric field de-potential drop determined from E@10) and is of the same
pends specifically on this highest-mobility component of themagnitude as the potential drop in a neutralized beam of
plasma. It follows from Eq.7) with S set equal tovyn, positive ions.
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linear function of the transverse coordinate. According to the'V. Yu. Udovichenko, Fiz. Plazmg2, 149(1996 [Plasma Phys. Rej22,
equation of continuity, for the ionic plasma component this ,137 (19961 .
. . . . . E. B. Hooper, O. A. Andersen, and P. A. Willmann, Phys. FIZ@s2334
condition is met for a uniform beam density profile and ;979

uj(§)=Apvsé. The corresponding self-similar solution for 3p. N. Afanas’ev, Yu. A. Svistunov, V. P. Sidorov, and S. Yu. Udov-

the potential of a stable neutralized beam of negative ions, ichenko, NIIEFA Preprint No. P-V-075din Russia, (D. V. Efremov
Scientific-Research Institute of Electrophysical Apparatus, Moscow,
3T

T 1987.
¢(£)=—1In(n,) 5 SAZ(1- £, (10 43, Yu. Udovichenko, Zh. Tekh. Fiz4(8), 104 (1994 [Tech. Phys39,

€ € 802 (1994)].
agrees with the field determined in a numerical calculation. °V- P- Sidorov, S. Yu. Udovichenko, A. M. Astapkoviet al, in Proceed-

ings of the Symposium on the Production and Neutralization of Negative

lons and Beam¢Brookhaven, USA, 1989 pp. 614—628.
6P. N. Afanas’ev, Yu. A. Svistunov, V. P. Sidorov, and S. Yu. Udovi-
7chenko, Vopr. At. Nauki Tekh. Ser. Termoyad. Sintez, No. 1(2#39.
_— . A. A. Goncharov, Ukr. Fiz. Zh33, 371(1988.
Self-_SIm”ar states of a quasmeut_ral beam p_Iasma genergJ. Sherman, E. Pitcher, R. Stevens, and P. AllisorRrioceedings of the
ated during the transport of stable ion beam in a gaseoussymposium on the Production and Neutralization of Negative lons and
medium have been found by solving the equations of conti- Beams(Brookhaven, USA, 1992 pp. 686-694.

nuity and motion for secondary charged particles and the'V: P Sidorov and % aioag eno: Vopr: At Nauki Tei. Ser. Ter
Poisson equation for a self-consistent potential of the electric M°Y2% >'"€z N0 % '
field. The proposed approach eliminates the shortcomings afranslated by James S. Wood

CONCLUSION



TECHNICAL PHYSICS VOLUME 43, NUMBER 4 APRIL 1998

Formation of relativistic positron systems by the axial channeling of positrons in ionic
crystals

A. S. Gevorkyan and A. G. Grigoryan

Institute of High-Speed Computations and Data Bases of the State Committee of the Russian Federation
on Science and Technologies, 194291 St. Petersburg, Russia

A. R. Mkrtchyan and A. G. Toneyan

Institute of Applied Problems in Physics, Academy of Sciences of Armenia, 375014 Erevan, Armenia
(Submitted December 26, 1996
Zh. Tekh. Fiz68, 116—120(April 1998)

An analytical expression is written for the effective interaction potential of a fast charged particle
with ionic crystals of the CsCl type as a function of the temperature of the medium, taking
long-range order into account. A numerical analysis shows that there is a real possibility of axial
superchanneling of positrons along %00 axis of negatively charged ions in crystals

with this structure. The wave function and energy spectrum of the localized state are investigated,
and the possibility of the formation of metastable, two-dimensional, relativistic positron

systems is analyzed. @998 American Institute of Physid$$1063-78428)02104-7

INTRODUCTION In earlier studie¥**we have focused attention on the
capabilities of ionic crystals of the CsCl type with a view
The phenomenon of anomalous transmission of ionsoward uncovering new possibilities for the channeling of
along definite crystallographic axes and planes was discovight charged particles. In particular, we have studied in de-
ered experimentally in 1960In 1963 it was confirmed by tail the effective interaction potential of a charged particle
numerical simulatiohand became known as the channelingwith a crystal under conditions of planar channeling along
effect. In 1965 Lindhard published a theoretical explanatiorthe principal(100) planes of cesium Csand chlorine CI
of the phenomenon in the framework of -classicalions.
mechanics. The quantum mechanical theory of electron and  In the present article we construct the effective interac-
positron channeling has been elaborated by many authbrs. tion potential of a charged relativistic particle with a crystal
The years following the publication of Lindhard’s theory near the axial directiog100). We investigate in detail the
saw the burgeoning of theoretical and experimental work oreffective positron channeling potential near {10 axis of
the problems of channeling of light particles — electrons andCl~ ions by numerical simulation. We solve the Satirger
positrons. equation in a two-dimensional effective potential; we also
It is important to note that an electron in a crystal candetermine the wave function and the energy spectrum. We
undergo both planar and axial channeling. So far only on@nalyze the role of dissipative processes in the broadening of
type of pure channeling is known for positrons: the regimethe spectral lines of two-dimensional relativistic positron
where a particle is localized between two adjacent planes. systems.
The feasibility of axial channeling of positive particles
has not been give serious consideration to date, because the
crystallographic axes themselves are positively charged, re20SITRON CHANNELING NEAR THE (100) AXIS OF CI~
gardless of the species. At the same time, to explore thedNS IN A CsClI CRYSTAL
possibilities of axial channeling of positrons and, hence, the , i i . i
formation of metastable relativistic positron systems pose a " Cartesian coordinates with the origin at a designated
problem of utmost urgency in radiation physics. Suffice it toC! Crystal the potential generated by a three-dimensional,
say that currently one of the possible approaches to the gefnPounded crystals of the CsCl type in the Jensen—Mayer—
eration of cohereny rays is seen in the method of stimula- Gos'ler—Rode approximation with allowance for thermal vi-
tion of decay of positronse("e~)— 2y formed by the dis- Prations has the fortf
placement of relativistic electron and position beams in 1 1
JdR_ E Z gik(r=R)

vacuum’® However, this approach is extremely tenuous ate(r;T)=47 e 2
K#0

best, specifically in light of the low probability of generation

of the (e"e™) pairs themselves under the stated conditions. K22, K22

A different method for the generation of coherentays has x[(— 1) " Me=——2—W*(R)+e "2 W (R)/,
been proposed recently, based on the stimulation of annihi-

lation of positrons channeled in a crystal with hostk: 2_77(;“ +yn+2m) 1)
electrons’ We believe this to be a preferable approach. d y '

1063-7842/98/43(4)/5/$15.00 452 © 1998 American Institute of Physics
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cs' a cs* moves outside the ion, and in the second part it moves inside
the ion. Note that the length of the path traversed by the
/ &=,y) \- particle inside the ion is
o R(x,y)=2ReyRg—[ 7°(x)+ n*(y)]d?,

1 X 1 2X
u B wo=g+o7([ 53 »eF)
1 y 1 2y
U(Y):§+(—1)Py<(a}—§ : Py:{g, 3

where the brackets. . .] and braceq ...} denote the the
integer part and fractional part of a function, respectively.
When the particle intercepts a €son, the path is given by
the formula

¢ 1 1
_ 2 | 2[y_ = 2l y— =) g2
_R(a:,y)_ R(@y) R+(x,y)—2Re\/RO+ 7 (x 5 +7 (y ZHd .

2 2 @

a;—;'""""""‘;'—d‘ We recall that in Egs(3) and(4) the symbolsR,, andR,_

- = denote the radii of the corresponding ions. We can now write
2 the potential averaged along the coordinate

FIG. 1. 3 Two-dimensional cross sectigx,y} of the three-dimensional Per(X y.T):f
unit cell of a CsCl crystal at depthalong the(100) axis. The radii of the AU
cross section of the ion spheres are given by the expresstor(g)

R_/2 R_/2
¢nst(r;T)dz+f o(r;T)dz
/2 —R_/2

=Re\RZ, — (3d—2)? andR_(z)=ReyRZ— 72, b) Intersection of the par- n a2 (r:Tydz— ~Ryl2 (r:T)dz
ticle path with the sphere of a lattice ion at points A and Bthe hatched _R /2¢”5 ’ —d2 @nstl
part indicates the path segment of lendgfx,y) traversed by the particle B
inside the ion. R./2 dr2
—f /ch(r;T)dz—f /;pnst(r;T)dz. (5)

+

whered is the period of the real latticé is the reciprocal The substitution of Eqg1) and(2) into (5) and elementary
lattice vector, [,n,m)e(—o,%) are integers, uUg, integration yield
=Ugy.(T) anduy_=uq_(T) characterize the amplitudes of

+

. . L . . - *)\ZMZ
thermal vibrations of positive Csand negative Cl ions at T — 81 e {2_77 )
the temperatur@, andW* (R) andW~(R) denote the den- @etf(XYiT) 72d m%:o &i8nlm mpu? €3 7d Ix
sity of charges in ions of the corresponding signs at the tem- I+nt+m=>0
peratureT =0. 2m | ns —
The electrostatic fielél) is greatly simplified outside the Xco§ 5Ny (=D "sif7mR, (x,y)]
ionic lattice, assuming the form .
_ XW7(I,n,m)+siM7mR_(x,y)]
47e
Pnsd 13 T) = FE 4le”| e,)\zvz
XWo(Lnm}+—— > aa,
2 2 7d n,l=0 1/2
1 —KPug,  —KPug_ n+1>0
< 2 Zelkr (_1)I+n+meT_eT
KZ0 k2 27 27 .
xcog —Ix |cog ——ny|{(—1)"""—-1},
2 d d
(
We now investigate the structure of the effective potenR, (x,y)=R, (x,y)/d, R_(x,y)=R_(x,y)/d, (6)

tial. Let a fast, positively charged particle be scattered at a

small angle 9<9 ~+DyE (where ¥, is the Lindhard where

angle,E is the total energy of the particle, aridl, is the w?=1%2+n?+m?, v?=1%2+n?

depth of the we)lon the(100) axis of CI” ion. The potential

(1) can then be averaged along the direction of fast motion, A=Uo+/d=Uo_/d, a,=1/2, a=1(i#0),

i.e., along th€ 100 axis of CI" ions, which is equivalent to

integration of the potential along the coordinateithin the W (I ,n,m):J W*(R)e *RdR. (6)
limits of one periodd (Fig. 1). If the particle intercepts a CI

~ ion at a distance = \/x?>+y?, the segmend is divided into ~ We note that the parametgris obtained on the assumption
three parts(Fig. 1). In the first and third parts the particle that the thermal vibration amplitudes are equal ug,
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CI™ ions is channeled in an axial channeling regime. Based
on the symmetry of the resulting effective potentikigs.
2a-2d, it is conveniently approximated by a function of the

type
U(p)=Dy(e 20 —2e ),

p=" ppo, p=\x*+y?, 9)
where the parameters of the potenti@l have the following
d values in the CsCI crystalDy=9.8 eV, «=0.838, and
po=0.46 A.

It is important to note that this approximation, as shown
by comparison with direct numerical computations, is accu-
rate to 1% or better for values of the potential-4 eV. We
also observe that values of the parameters of &d Cs
close to those of the parameters of these ions in the free state
were used in the numerical calculations of expres$®rin
Lenz-Jensen distribution functions. For this reason the char-
N, B8 acteristics of the field of axial channeling of positrons should

! B e UER
LN B B 3

Clsl 1 ;\‘-/l/l IC1S| T Y T )
0.2 0% 06 08 14 02 04 06 0.8 10 be expected to improve when more precise values of the

z/d ) . )
/ crystal ion parameters are used in the calculations.

-70 -8 -8 ~7 -6 -5 -4 -3 -2 —1 0ov TWO-DIMENSIONAL RELATIVISTIC POSITRON SYSTEM

FIG. 2. Profile of the effective potential of axial channeling of a positron The positron wave function in the axial channeling re-

along the(100 axis of CI ions at various temperatures. x=0.001; b gime can be written in the form
0.01; 9 0.05; 9 0.1.

1 .
l/’(r)zzexl{;i_pzz (D(Pa‘P)1 r=(Z,p,<p) (10)

=Uy_, which is well within reason for acoustic vibrations. subject to the normalization condition
The form of the structure functiondV*(l,n,m) and

W~ (I,n,m) need to be refined for the numerical analysis of f * (VA= 8(0.— D) S S
Eq. (6). We write the charge density inside the ion in the Y (nD¢Lr) (P2 P2) dnnr O,

form <0, n,m=0,12..., (10)

W (R)=VZ(R)+274(R), @) where §(P,—P,) is the Dirac delta functiong,, is the
whereV=(R) is the distribution of electrons inside ions of Kronecker deltag is the energy, and(p,¢) is the bound
the crystal, andZ™ is the number of protons in the point state wave function.
nucleus. Substituting Eq.(10) into the three-dimensional Schro

Substituting Eq(7) into (6’) and assuming that the dis- dinger equation written in cylindrical coordinates, §,¢),
tribution of the electron charge inside the ion has sphericalve find

symmetry, we obtain the following expression for the struc-, )

ture factor: J 29 14
' Sttt = —|P(p.e)

J

WE(Lnm)=Z=+X*(I,n,m) % 1, dpc PP pT e

+ 477 * + . 21“’ _
X*(I,n,m):TI V*(R)RsinkR)dR, k=|k|. (8) +?[8—U(p)]<l>(p,<p)—0, (11)
0

Next, adopting the Lenz—Jensen md@ét with the pa- where u is the relativistic mass of the positron.
rameters of the CsCl crystal in the role of the functig(R), Now, proceeding from the symmetry of the potentt|
we calculate Eq.(6) for four different values of We write the solution of Eg(11) in the form
A={0.001,0.01,0.05,0}11t is evident from Figs. 2a—2d that 1
a rather broadof width Ad~0.25) potential well exists for D(p,p)= ﬁe'm‘ﬁx(p). (12
fast, positively charged particles around #00 axis of P
ClI™ ions; the depth of the well iB,=9.8 eV, which remains  Substituting Eq(12) into (11), we obtain the following equa-
constant over a broad range of thermal vibrations 0001 tion for the radial wave function:
=<0.1, i.e., over a broad range of temperatures. In other 42 2 22
words, under the appropriate scattering conditions a fast, _X+_'“ m
positively charged particle in the vicinity of t{&00) axis of dp? #? 2up?

e—

—U(p))x=0- (13
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TABLE I. TABLE Il

E=5 MeV E=20 MeV
n,m 0 1 2 3 n,m 0 1 2 3
0 €0o=—7.986 £01= —5.893 0 €00=—8.368  £¢;=—7.873 £0,=—6.388 gp3=—3.918
1 e1,=—5.611 1 £10=—8535 £;,=—-7.980 £,,=—6.318 &£,3=—3.552
2 2 £93=—6.915
3 3

Note: Energy values are given in eV; places in the tables with no entriesNote: Energy values are given in eV; places in the tables with no entries

indicate that states with such quantum numbers do not exist.

The subsequent analysis of E4.3) is analogous to that in
Ref. 14. Since within the channel the coordinatedoes not

differ much fromp, for small quantum numbers, it is useful

to expand the centrifugal term if13) in powers of the pa-
rameterp:

A2m?2  m2 N - .
5=—Do(Cotcie”P+ce ?*)+0(p%), (14
2up” Yo

where we have introduced the notation

3 3 4 6
CO_l__+ 21 Cl Z_ 21
DOPS
2 o2 Yo M 52 (15

Substituting Eq(14) into (13), we arrive at an exactly solv-
able quantum mechanical mod&for which the radial wave
function has the form

2Y0 _ .o B
y=——e *, s=-—,

_ 1
X(p):ysel zyFl(aaC:Y)a a @
(16)

where
1 1
2 2
BP=Bi+m’co, Yi=¥—5MA.  ¥i=vet M,

2
2 2puepy
h2

1

2
_B_|_
o

2
Q—l%. 17

The eigenvalues obey the equatibn

indicate that states with such quantum numbers do not exist.

" { 3+ . 22 . 2
Enm= Yot ayol N+ 5| — n+z
2up} 2 2
3(a—1 1 9(a—1)?
ayo 2 4a’y,

wheren is the vibrational quantum number, ands a quan-
tum number characterizing the rotational motion. Tables
I-1V give several values of the energy spectrum of trans-
verse positron motion as a function of the quantum numbers
n (down the columnsand m (along the rows for various
total positron energiek.

CONCLUSION

We have shown that positively charged relativistic par-
ticles in ionic crystals of the CsCI type in the vicinity of the
(100 axis of CI” ions can be channeled in an axial channel-
ing regime. We have shown by numerical analysis that the
channeling potential has annular symmetry in this case, is
situated in regions far from the crystal axes, and is essen-
tially independent of the temperature of the medium. The
latter property possibly means that the contribution of elastic
scattering processéboth coherent and incoheremo broad-
ening of the energy levels of transverse motion must be in-
significant. In other words, other mechanisms such as: a
inelastic processes with the excitation of electrons inside the
crystal ions; b radiative transitions between levels of trans-
verse motion; gband broadening, are responsible for broad-
ening of the spectrum in this case. It is well known from the
literature that these mechanisms operate independently of
one another.

It is essential to note that radiative transitions are impor-
tant for particles having higher energie&s=10 GeV (Ref.

15). As to the band broadening of levels due to the period-
icity of the effective potential, Bazylev and Golovizfrhave
shown that it does not directly shorten the particle lifetime at

TABLE II. TABLE IV.

E=10 MeV E=30 MeV
n,m 0 1 2 3 n,m 0 1 2 3
0 goo=—8.097 e=—7.082 gg=—4.050 0 goo=—8540 £=—8.213 ep=—7.233 ggu=—5.602
1 £1,=—9.330  &;,=—5.800 1 £10=—8.117 £;,=—7.758 £,=—6.682 &,,=—4.889
2 £=—8322 2 £n=—9.789 £,=—8.616 &y=—6.662
3 3

Note: Energy values are given in eV; places in the tables with no entriesNote: Energy values are given in eV; places in the tables with no entries

indicate that states with such quantum numbers do not exist.

indicate that states with such quantum numbers do not exist.
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Scanning of a laser beam and purification of materials through the use of light-induced
particle drift in semiconductors
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The light-induced drift of electrons, light-absorbing impurities, and defects in 11-VI
semiconductors is investigated experimentally, along with some potential practical applications of
the phenomenon. It is shown that the light-induced drift of electrons induces a very

pronounced change in the refractive indekn|~0.01, and can be used to implement effective
scanning of nanosecond and picosecond laser pulses through frustration of total internal
reflection. The light-induced drift of absorbing particles increases their density in the surface
layer of the crystals, and this effect can be exploited in semiconductor technology.99®
American Institute of Physic§S1063-7848)02204-]

INTRODUCTION can also apply to light-induced particle drift. The entrain-
ment of electrons should raise their concentration in the re-
The idea of making practical use of the phenomenon ofjion where the laser beams exit from the samples. Also,
variation of the refractive index of transparent media in thesince the production of a high density of nonequilibrium
field of a laser beam was first propounded some time* agaelectronsN is the basic mechanism of negative variation of
and has been tested repeatedly since then in various enghe refractive index of semiconductors under the influence of
neering techniques to control the space—time characteristi¢igh-power laser puls€s,
of high-power light beams. 9
The most promising materials for the construction of An——ﬂ (1)

. . . X 29
high-speed nonlinear elements are semiconductors, because NoMew

they are characterized by strong electron—phonon interactiofe |ight-induced drift of electrons should produce a signifi-
with short relaxation times. The absolute value of the nonygnt drop in the refractive index and influence the total in-

linear variation of the refractive indexshould exhibit reso- g reflection of laser beams in semiconductors. Hefe
nance growth in the vicinity of such electron transitions. Theig the effective mass of the electrons.
formation of a transverse gradient of the nonlinear variation
of nin semiconductors in the active zone of high-power laser
beams has provided the means to achieve scafnimagifi- EXPERIMENTAL PROCEDURE AND RESULTS
cation of beam divergence by nonlinear lenses having a vari- Scanning of laser radiation by deflectors utilizing frus-
able focal lengtlf,and reduction of the durati6mof nanosec- tration of total internal reflectionNanosecond and picosec-
ond and picosecond laser beams when part of the beam is coimd pulses emitted by a ruby laser and a neodymium laser
off by a diaphragm. were used to investigate the total internal reflection phenom-
However, the practical application of developments ofenon in CdSSe, ZnSe, and SiC crystals. The samples were
this kind is hindered by the fact that self-defocusing limitscut in the form of triangular prisms in such a way that a laser
the magnitude of the effect for a negative variationmpf beam normally incident on the input face would undergo
while self-focusing leads to damage of the material for atotal internal reflection at the opposite face and exit from the
positive An. crystal (Fig. 19. Measurements have shown that in samples
Our aim in the present article is to propose for engineercharacterized by two-photon absorptiofy&2hw) and in
ing application high-speed deflectors operating on the basisamples exhibiting fairly high impurity absorption or free-
of frustration of total internal reflectiohalong with a tech-  carrier absorption ¢>10 cn ') high-intensity radiation
nological scheme for the purification of optical materfals. 1>10MW/cn¥, begins to propagate along the total-internal-
These developments have the distinguishing feature that theflecting face. Frustration of total internal reflection is ob-
are based on the phenomenon of light-induced drift of nonserved not only in 11-VI semiconductors, where the bulk
equilibrium electrons and absorbing impurities in semicon-excitation of nonequilibrium conduction electrons produces a
ductors. The light-induced drift of particles in the field of a decrease in the refractive ind&xput also in SiC crystals,
high-power laser beam, which was predicted theoretically irvhere nanosecond and picosecond laser beams are usually
Refs. 7 and 8, has been investigated experimentally for theelf-focused in the bufi¢ as a result of the nonlinearity po-
most part in gaseous mixtures of atoms and molecules. larizability of the conduction electrons.
In addition, a well-known phenomenon in semiconduc-  These results indicate that the entrainment, or what
tors is the entrainment of carriers by laser bedfsyhich  might be called light-induced drift, of electrons in semicon-

1063-7842/98/43(4)/4/$15.00 457 © 1998 American Institute of Physics
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¢m=arcsifn,sin arcco$l—|An|n,/n,)]}, (3)

wheren; andn, are the refractive indices of the first and
second prisms.

Using cubic ZnSe and ZnC crystals, we have achieved
almost 30° scanning of a ruby laser beam for nanosecond
pulses and up to 20° for picosecond pulses.

It should be noted that in fabricating a scanning prism
from a uniaxial, birefringent material, the laser beam must be
directed into the prism along the optic axis, or at least lin-
early polarized lighte L C must be used.

The advantage of deflectors operating on the principle of
frustration of total internal reflection, apart from their capa-
bility of achieving substantial scanning angles for nanosec-
ond and picosecond laser pulses, is their superior operation
with high-power, multimode laser beams. For sufficiently
large unidirectional deflection angles there is essentially no
significant spreading of the beam in the perpendicular direc-

ol

A

FIG. 1. Optical diagram of laser-beam deflectors operating on the principl
of frustration of total internal reflection. tion.
Light-induced drift of absorbing impurities and purifica-

tion of semiconductorsifter type 11-VI crystals had been

ductors produces a significant drop in the refractive index orirradiated with high-power nanosecond ruby and neodymium
the total-internal-reflecting surface. The magnitude of thidaser pulses, we observed a difference in the low-temperature
decrement of the index, calculated from the angle througthuminescence spectra from the input and output surfaces of
which the sample must be rotated to achieve total internahe irradiated samples. A similar difference in the rate of
reflection in high-power laser beams, becomes very larggormation of luminescence centers on the input and output
An=0.01-0.1. surfaces under the influence of two-photon absorbed laser

After laser beams have crossed the total-internalpulses on 11-VI semiconductors has been encountered in
reflecting face of the two-photon absorbing CdSSe and ZnSether papers?*3but the authors, as a rule, dismiss the effect
crystals, they undergo continuous angular deflection. Ther mention the influence of the difference in the interference
maximum scanning angle, which can be estimated for Fig. 1gonditions on these surfackswhich raises the intensity of
from the expression the Izaser radiation on the exit surface by a facto/4n

+1)-

gm=arcco$l—|An|/n), @ To eliminate this influence, we have carried out investi-
has attained 1517° for nanosecond pulses from ruby and gations with a 100-W cw C®laser. The low laser photon
neodymium lasers and 10° for picosecond pulses. energy fw,<E,) lowers the probability of the direct for-

The scanning of laser beams after exiting from the totalimation of defects in the crystal lattice at low radiation inten-
internal-reflecting face is not observed in doped SiC semisities | <1000W/cnf. Nonetheless, after weakly absorbing
conductors, where the frustration of total internal reflection isCdSSe and ZnSea(<0.5 crmi 1) crystals have been irradi-
attributable to the light-induced drift of equilibrium conduc- ated by a C@ laser for about 10 min, differences are ob-
tion electrons. Self-focusing of the beam takes place, but theerved in the recombination luminescence spectra from the
position of the axis of the radiation pattern remains esseninput and output surface§ig. 2).
tially fixed within the duration of the pulse. Similar results At the input surface the half-width of the emission bands
have been obtained for highly doped I1-VI crystals. of the first phonon replica of a free excitorh;} and an

To increase the scanning angle, we have proposed @xciton bound at a donor centek,] decreases somewhat,
dual-prism deflector configuratidfior nanosecond and pico- the structure of the luminescence of donor—acceptor pairs is
second laser pulses, operating on the principle of frustratiomore conspicuous, and a new ba@Qdappears, which, ac-
of total internal reflection by the light-induced drift of non- cording to published data, corresponds to transitions in com-
equilibrium electrons in semiconductoBig. 1b. The first  plexes with intrinsic defects or various impurity centéts.
prism ABC is fabricated from a two-photon absorbirig,( At the output surface the luminescence of the first pho-
<2hw), high-resistance crystdiCdS or ZnSe for a ruby non replica of a free excitonl{) decreases, and the band
laser, CdSe for a neodymium lageThe face AC of this itself, like the bound-exciton band, broadens considerably.
prism (the total-internal-reflecting face, sin;/n,) is  Moreover, a new luminescence bard)(appears, which is
coupled through close optical contact to the face of the seadsually attributed to in-center transitions in a quasi-isolated
ond prism ACD, which is made of a nonabsorbing materialCd atom(in CdS or Zn atom(in ZnSe.®
having a high refractive indefheavy grades of glass or, say, The above-described asymmetry of the variation of the
cubic zinc selenide The angle ACD of this prism is close to luminescence spectra of semiconductors after being irradi-
90°. In this deflector configuration the scanning angle isated by a high-power cw CQaser indicates that under the
given by the expression influence of laser radiation the density of acceptor ceritdrs
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FIG. 3. Temperature increment in heating of a ZnSe crystal by al@ger
I, beam(100 W) versus timel) Before treatment of the crysta?) after two
purification operations.
¥/ I, 4
] 1, ' " [ the ground and excited states and can occur when the fre-
6000 5500 5300 5100 4900 4620 quency of the laser beam does not coincide exactly with the
ALA frequency of transition of the defect from the ground state to

. the excited state or when the transition band is highly asym-
FIG. 2. Emission spectra of a CdS crystal at a temperature of 4.2) K. . L - .. .
Before irradiation by a C®laser;2) luminescence from the input surface metric within the_ limits of the laser em'sls_'on,“ne' .
after irradiation of the crystal by a GQaser;3) from the exit surface after A technological scheme for the purification of zinc se-
irradiation by a CQ laser;D denotes donor—acceptor pairs. lenide has been proposed on the basis of the above-described
effect and is widely used in the fabrication of optical ele-
ments for high-power infrared lasers. The scheme essentially
the interstitial sulfur or selenium typéncreases on the input entails the following. Zinc selenide crystals are polished me-
surface of the sample, and the density of donor ceriters  chanically and chemically, and the light zone is irradiated
terstitial cadmium, zinc, or sodium-type impubitincreases  with a high-power cw laser for several tens of minutes. The
on the output surface. input and output surfaces of the sample are then polished
In addition to the changes in the luminescence spectra, again both mechanically and chemically. The absorption co-
dark spot appears on the output surface in a large group @fficient of the treated crystal can be lowered by repeating
zinc selenide samples having a light-brown color and absorbhijs entire operation several times. During laser irradiation
ing at wavelengths of 106m and 0.1 cm after irradiation by  the sample can be placed in an inert gas atmosphere, permit-
a CQ, laser. The outward appearance of the spot suggestig the laser power to be increased and thereby enhancing
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A procedure is developed for the tomographic reconstruction of the distribution of the gas
density from measurements data on the attenuation of a sensing beam of fast electrons. The
measurements and reconstruction are carried out for symmetrical and asymmetrical conical
objects in a low-density hypersonic flomM(=21). © 1998 American Institute of Physics.
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INTRODUCTION tendency of the gas density information to be integrated
along the length of the diagnostic beam. The latter problem
Hypersonic flow around objects at moderate Reynoldss solved by applying the tomographic approach to the prob-
number in the presence of strong viscid-inviscid interactionem of reconstructing local density. For example, Ivahov
has important bearing on the development of heat-shieldinpas used the Abel transform to reconstruct the density field
systems for returnable space vehicles and multimission spaef a gas in the vicinity of a sphere. Multiaspect transmission
systems. Of special interest are flows involving the interactomography methods have now been fairly well developed;
tion of two or more objects. An important parameter is thethey are used extensively in gas and plasma diagndstizh
gas density, whose measurement in rarefied hypersonic flogan be adapted to the conditions of electron-beam probing of
poses a complex methodological problem. On the othea gas flowing around an object. Problems arise from the
hand, experimental data on the spatial distribution of themethodological viewpoint in connection with the presence of
density provide a foundation for improving numerical meth-zones shadowed by the model and the finite dimensions of
ods in hypersonic aerodynamics. These considerations calthe beam and the electron detector.
for the development of procedures by which to measure gas In this paper we describe an experimental procedure for
density near objects in complex three-dimensional flow enthe multiaspect probing of a rarefied hypersonic flow and
vironments. give a tomographic reconstruction algorithm, along with the
The probing of gas flows by beams of charged particlesesults of reconstructing a two-dimensional gas-density field.
one method of direct, nondisruptive density measurement.
The application of electron-beam fluorescehoshich is
widely known in rarefied gas dynamics, is justified only at

low densitiesn<10?* m~3. Far higher flow densities are The measurements were carried out in the 1-327 hyper-
achieved in existing hypersonic wind tunnels, where the insonic wind tunnel at the Institute of Theoretical and Applied
fluence of secondary electrons and intermolecular collisiongjechanics, Siberian Branch of the Russian Academy of Sci-
is strong. This consideration limits the method to two-ences(ITPM SO RAN)_lO The flow parameters were as fol-
dimensional flows and offsets the localized character of thgows: stagnation temperatuf®,=1100 K, stagnation pres-
measurementsThe density measurement problem is solvedsyre Po=8 MPa, freestream Mach numbéi=21, unit
in part by using x-ray bremsstrahlung from electrons instea®keynolds number Re=6x 10° m~*. Two models were used
of optical radiatior?, but the measurement time is prolonged in the measurement: a blunted cone and a blunted semiellip-
considerably by the low intensity of the recorded radiation.tical cone, both made of aluminum. The blunting radius of
In addition, difficulties persist in plotting a calibration curve the cones was 1.5 mm, and the models had a length of 0.1 m.
for three-dimensional gaseous object in dense wind tunnefhe radius of the base of the regular cone was 13.4 mm, and
flow. the vertex angle was 7°. The base of the semielliptical cone
An alternative method is electron-beam densitometrywas a semicircle of radius 1.34 mm joined to a semiellipse
which is based on the attenuation of a slender beam of fastith principal axes of length 13.4 mm and 6.7 mm.
electrons in a gas during elastic and inelastic scattering b¥he measurements were performed in the plane situated at
molecules. The method is not very sensitive to the composif.065 m from the nose of each model.
tion of the gas, it does not require complex recording instru-  The measurement arrangement is shown in Fig. 1. An
ments, and the measurements can be performed at higilectron beam of energy 20 keV and current intensity 0.1 mA
speed. It has been employed in physical measurements sinie split in two (object beaml and reference bear) by
the end of the fiftie4. It has been used to investigate feeding an alternating square-wave voltage of the meander
one-dimensiondl, two-dimensionaf, and axisymmetricd®  type with a frequency of 215 Hz to the magnetic system used
low-density flows. The main drawback of the method is theto control the position of the beam. During the measurements

1. SETUP OF THE TOMOGRAPHIC EXPERIMENT

1063-7842/98/43(4)/8/$15.00 461 © 1998 American Institute of Physics



462 Tech. Phys. 43 (4), April 1998 Likhachev et al.

the working chamber to the electron collector and during
variation of the nitrogen density in the working chamber of

the apparatus. The measurements were carried out in the
range of the parameterl = (3.6— 12)x 10°° m~2, spanning

all the freestream values of this parameter. The measure-
ments showed that the dependence of the electron current on
n and| for the chosen diameter of the entrance to the col-
lector is well characterized by the exponential law

I =lgexp(—onl). D

The effective scattering cross sectierdetermined from the
measurement data is=(1.9=0.05)x 10" 2t m? for 20-keV
electrons. The freestream gas density is estimated from the
scattering cross section and the diameter of the flow. It is
equal to 5.6 10°* m~3, which is 18% lower than the value
determined from the isentropic relation for the given Mach
number. The discrepancy can be attributed to the somewhat
higher static temperature established in the undisturbed flow.
The sensitivity and resolving power of the method de-
pend on the choice of diametdrof the collector diaphragm.
I, I, For a beam with a Gaussian radial current distribution the
maximum sensitivity to beam broadening is attained when
the relationd= /2y holds. Herey is a characteristic radius
of the beam at the entrance to the collector; it depends on the
electron energy, the gas flow density, and the length of the

beam 1 passes through the flow region near the n®ychatd scattering zoné! The value ofy has been determined by
beam2 interacts only with the undisturbed flow in front of Measuring the attenuation of the beam current in the
the model. The formation of two beams from a single beanfreestream flow as the diameter of the collector diaphragm
prevents the measurement accuracy from being influenced Byas varied from 1 mm to 10 mm. The diaphragm was then
beam-current and flow-density fluctuations and permits th&et for the sensitivity-optimum aperture diameter, which was
scattering of the beam in the incident flow to be taken into?-5 mm in the given experiments.

account. The electron current of each beam is recorded by The measurements on the circular cone served as a test
the collectorst and5, which are set up outside the flow and Problem for fine-tuning the algorithm for reconstruction of
have a circular diaphragm of diameter 4.5 mm. Each collecthe density field. The data from measurements of the beam
tor has a grid carrying a voltage 6f20 V to delay second- current attenuation in transition from the model shadow zone
ary electrons. Scanning of the flow field by beam 1 is imple-into the penumbra were used to determine the radial profile
mented by slewing the model across the beam between t#d the sensing beam in the vicinity of the model. The results
limits of —15 mm and+ 15 mm relative to the flow axis. ©Of reconstructing the beam profile are shown in Fig. 2b
Scanning of the flow field with respect to angle of observa-(curvel). It is evident from the figure that the beam is nar-
tion (aspeckis achieved by rotating the model about its own oW, and its width at half-maximum does not exceed 0.5 mm.
axis at a rate of 1 turn/s. The data on the displacement of thEhe slight asymmetry of the distribution is possibly associ-
model across the flow and the angular position of the modeted with the presence of fast electrons in the beam, some of
are recorded from the linear and circular rheochords and ar¢hich enter into tangential interaction with the surface of the
recorded simultaneously with the collector currents on arinetal model.

NOG67 multichannel magnetograph.

_ The primary processing of the_ mea_suremer_n data ens peERVATION OF AN EQUATION RELATING THE
tailed the formation of data arrays, including the impact pa~aAR|ATION OF THE GAS DENSITY TO THE MEASURED
rameterp, the angle of rotation of the modeb, and the  CURRENTS, ASSUMING A FINITE COLLECTOR APERTURE
object-beam and reference-beam collector currenend| , . .
with uniform time division of the readings. The rms currents  If we adopted the same mathematical model as in Ref. 7
at the modulation frequency were determined accordinglyl© refate the density of the gas along the axis of the electron
This approach was used to avoid stray currents and bacieam to the recorded current, the experimental data would be

ground biasing of the amplifier and magnetograph outpuf€lated by the equation

FIG. 1. Experimental arrangement for the tomographic investigation of hy
personic flow around a model.

voltages. I =
The dependence of the attenuation of the electron-beam |—=exl{ —Uf An(s)ds). 2
current on the density of the gas and the scattering path 2 o

length was determined experimentally with the gas at restin Eq. (2) o is the electron scattering cross section, and
For this purpose the beam current was measured duringn(s) is the change in the gas density along the axis of the
variation of the distancé from the beam-entry aperture of electron beam due to the intrusion of the aerodynamic
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Jsot Gaussian distribution by(s) (bearing in mind thaty varies
ok along the beam axisand normalizing the beam current to the
current at the sourde, we write the distribution of the beam
20k current density in the form
5 200+ i | 0 r2
S jre)=—7j eXp(— | 4
= 750} Ty (S) y(s)
ok After the beam profile4) is substituted into Eq(3), the
integration over is elementary and gives
50 + d2
g ! ol |:|o 1_eX[{_ ) . (5)
Y%(s)
600} b The current density on the beam axis at the entrance to the
sk collector diaphragm(0,¢) and at the exit from the sourgg
are related by Eq2) with the appropriate replacement of the
400k currents by their densities on the axis. We therefore have
&\. R . lo . *
& j(0p)=——=]o exp(—af n(s)dS). (6)
~ Ty (S) -
a0 Determiningy?(s) from Eq.(6) and substituting intd5), we
00+ have
0 g 1 [/1,=1—ex 7szjoex f n(s)ds (7)
-1.5 10 15 0

p,mm
’ The two currents$, andl; corresponding to the beams trans-

FIG. 2. a: Projection of the current density distribution in the bedin: mitted through the undisturbed and disturbed flows were re-
initial curve; 2) spline-smoothed curve, assuming type 2 noise at the 3%

level. b:1) Cross section of the reconstructed current density distribution at corded in the experiment. The currefjsandl, obey Eq.(7)

they axis; 2) Gaussian function approximating the distribution. with the correspondingto each value of the density. We
transform the two resulting equations and, dividing the first

by the second, we obtain

model; the current$; andl, are shown in Fig. 1. Equation In( ~13/lg)
(2) has been derived in the approximation of an infinitely In(1=1, =1,/ [{ f An(s)ds)
small detector aperture. However, the relatively large size of 0
the collector diaphragm casts doubt on such an approximaf the numerator and denominator on the left side of @).

tion. We have investigated another mathematical model thaire expanded in series In/l, andl,/1,, respectively, and
conforms more closely to the experimental conditions. Sincenly first-order terms are retained, we obtain E2). The
electrons are scattered mainly at small angles in the givefegitimacy of discarding all other terms of the expansion for
situation, undergoing approximately one collision in transitmeasurements performed in our experiment is confirmed by
from the source to the collector, we disregard the variation otlirect comparison of the left sides of Eq&) and(8) for alll

the projection of the electron velocity onto the beam axisthe recorded currents andl,. The current is taken as the
thereby assuming, in effect, that its current through crosswerage over several control measurements. The results of
sections perpendicular to the axis remains constant. We dealculations show that the left sides of E¢®.and(8) differ

note the distribution of the component of the beam currenkat most by 15% and, in the average over all measurements,
density parallel to the beam axis pfr,») and, for brevity, by 6—7%. This accuracy is roughly consistent with the accu-
refer to it below as the current density distribution in theracy of the measurements themselves. In the given situation,
beam or simply the beam current density. If the collectortherefore, the approximate equati@ can be used to deter-
detects all electrons incident on a circular diaphragm of ramine the gas density, and in fact we have done so in the
diusd situated in the plane perpendicular to the beam axispresent study.

the current on it is

27 (d
=f0 foj(r,qo)rdrdqo- ()

An idea set forth in Ref. 12 has been elaborated to re-
We have assumed that the scattering of electrons is a steonstruct the profile of the electron beam. Experimental data
chastic process and, accordingly, that the beam current deobtained for the symmetrical model in a region where it par-
sity has a gaussian profile. The results of our experimentaially overlaps the beam are used h&r&Ve disregard the
determination of the beam profile in the next section cor-sloping of the generator of the cone, i.e., in the region of the
roborate this assumption. Denoting the half-width of thebeam we replace the cone by a cylinder. We let the beam

)

3. RECONSTRUCTION OF THE ELECTRON BEAM PROFILE
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z The current distribution density in the beam is used be-
low to refine the reconstruction of the field of the density
variation in a shock wavéSec. 6.
?1
cross-sectional plane. Tomographic methods can be used to
reconstruct a two-dimensional scalar density-variation field
FIG. 3. Diagram illustrating the method of determination of the currentfrom the experimental data; this field is naturally ascribed to
density distribution in the cross section of the beam. The cross section of thghe cross-sectional plane_ However, the values so obtained
beam is shown in the form of a circle. will be averaged along the coordinate perpendicular to the

cross-sectional plane over a scale of the order of the effective
beam diameter. In discussing the density variation in the

move perpendicularly to the generator of the cone, along theross-sectional plane below, we have these averaged values
y axis, as shown in Fig. 3. In the figure the beam propagategPecifically in mind.

from left to right, the part of the beam shadowed by the From the mathematical standpoint the problem reduces
model is to the left, and the tomographic data are recordet the reconstruction of a function of two variables from the
perpendicularly to the plane of the figure, along thexis.  Set of its integrals along certain straight lines. A distinctive
We wish to relate the variation of the collector current for an@ttribute of the stated problem associated with processing of
infinitely small displacement of the beam to the variation ofth® experimental data is the presence of an opaque model in

its cross section perpendicular to the model. In this case wie flow. The electron beam is absorbed when it enters the
model, and the recorded current becomes equal to zero,

4. TOMOGRAM RECONSTRUCTION ALGORITHM

In the experiments we have measured the currents of
beams having various orientations relative to the model, and
the axes of all the beam were in the same pane perpendicular
to the axis of the model. We refer to this plane below as the

NP

can write
whereas the integral of the density variation along the corre-
y+dy [ y [ sponding straight line has a nonzero value in general. To-
d':ﬁm fﬁxj(y,z)dydz— fﬁwfixj(y,z)dydz mographic problems of this kind have been investigated
previously®
y+dy (e We introduce a coordinate frame rigidly attached to the
- J; fﬁxj(y,z)dydz ©) model. The origin is located in the cross-sectional plane at

the point where the axis of the model passes through it. We
Dividing Eg. (9) by dy, we obtain orient the system in such a way that tkeandY axes lie in
the cross-sectional plane. We introduce the notation

| ©
&y~ v B0 Any) =m0 -mxy0, f= 2, @
2i

i.e., the derivative of the object-beam current in the zone ofvherel ; andl,; are the measurements corresponding to the
partial overlap with the model is the projectidsee, e.g., ith beam.
Ref. 9 of the current density distribution in the beam. This ~ We partition the zone of reconstruction of the function
derivative is shown in Fig. 2a, cunde The resulting projec- An(x,y) into square cells, or pixels. The functidm(x,y)
tion of the current density distribution in the beam isis assumed to have a constant value in each pixel. In this case
smoothed by a cubic splifton the assumption that it is the integral in(2) is replaced by a finite sum over the pixels
distorted by random noise with a variance equal to 3% of thehrough which the axis of the beam passes. This formulation
maximum (Fig. 2a, curve2). For the tomographic recon- reduces the tomographic reconstruction of the function
struction of the current density distribution in the beam cross\n(x,y) to the inversion of the system of linear algebraic
section near the model we assume that the distribution hasguations
circular symmetry. Reconstruction is executed separately for AAn=f (12)
the left and right sides of curv2 by means of the ART1 '
algorithm (see below. The results are then averaged. Here A is an | XxJ matrix, Ane R’ and f e R'are vectors

The cross section of the reconstructedsuming circular corresponding to the reconstructed function and the experi-
symmetry current density distribution in the beam at te mental data, respectively,is the number of pixels, andis
axis is shown in Fig. 2lécurve 1). Curve2 in this figure is a  the number of sensing beams. The elema&nof the matrix
Gaussian function approximating the distribution. The pa-A is defined as the length of the intersection of the axis of the
rameters of the Gaussian curve are determined by the leasth beam with thejth pixel? We have chosen the iterative
squares method; in particular, its half-width is approximatelyalgorithm ART1 (Algebraic Reconstruction Techniquéo
equal to 0.275. The normalized standard deviation betweemvert the system{12), because, first, it has proved itself in
curvesl and?2 in Fig. 2b is 4.7%. reconstruction from insufficient data and, second, it can be
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F50 a shows the data from the first series of measurements. Curves
! ] 1 and 2 refer to points of the object and reference beams,
00 - respectively. The coordinafeis plotted along the horizontal
250k axis, and the measured current is plotted along the vertical
o axis. The angle varies periodically as a functionpoifh this
8“ 200 case; it can be estimated by comparing Figs. 4a and 4b.
*750 5 In Fig. 4b the intervap~4—9 mm corresponds to par-
tial absorption of the object beam by the model. The peaks
M p—————== 1T B I e Y correspond to beams transmitted from the elliptical part of
sok the model. The intervap~9—13 corresponds to object
beams cutting across the shock-wave regionpAtl3.5 the
n L L . L - currents for the reference and object beams essentially coin-

cide; this means that the disturbances generated by the model
250 | b become insignificant in this range.
In numerous computer experimehtsit has been shown

ok 2 that the ART1 algorithm yields a better quality of reconstruc-
f tion when the latter is based on a set of projections with a
uniform angular distribution, each projection being deter-
10y mined on a uniform grid.
~ It is evident from Fig. 4a that the data ip,(¢) space fit
100 1 definite straight lines to within small discrepancies due to
\‘ random errors. The slopes of these lines are determined from
50k the coordinates of their corresponding points by the least-
L U squares method. The experimental points are then projected
0 ) 1 : . onto the resulting lines. Inp, ¢) space a projection corre-
4 g 8 10 12 14 sponds to a linep=const. The points of intersection of the
p,mm line ¢=const with the best-fit lines of the experimental data

FIG. 4. a: Set of data in coordinates¢, wherep is the impact parameter are QSSIQHQd Values_ determined by Imea_r |nterpolat|on a_long

along the beam axis, anglis the angle of rotation of the model; b: recorded the lines(Fig. 43. This procedure results in the construction

currents versus impact parameter. of a projection at the angléb= const specified on a nonuni-
form grid. The transition to a uniform grid on the projection

used without major revision in the presence of an opaquleS also made t.)y linear mter.polat!on. ,

object (mode). Following Ref. 14, we write the k+1)st b) Correction qf projections in the penumbraquation '

terative soluti.on for ARTL in .the form (2) needs to be refined near the boundary of a mode_l _that is
opaque to the electron beam. Indeed, owing to the finite di-

fo.—(a®  Ap® mensions of the beam, part of it absorbed by the model, and

(kD) _ gpo 4y (o i@ AT g S Of

An =An"+\ o2 a‘, part of it is incident on the collector. The recorded current
1l decreases considerably in this case. Consequently, a penum-

[[a®][#0, An®*D=An® |ai®||=0, (13)  bra zone is formed around the model, corresponding to the

i) . , ) interval 4—9 mm in Fig. 4b. In the penumbra the drop in the
Herea™ is thei(k)th row of the matrixA, \™ is a relax-  ¢\rrentl, is caused mainly by model absorption, which is
ation parameter, ani(k) =[k(mod1)+1], i.e., the rows of = yanerally a much stronger effect than scattering by shock
the matrixA are cyclically permuted. The scalar product and,,4yes. As a result, the projection increases abruptly near the
the norm inR™ are defined in the usual way. It is stated in o ngaries of the model. Tomographic reconstruction from
Ref. 14 that the iterative proces8) converges if &<A<2  g,ch projections is found to be unsatisfactory. However, the

N . . (0) J . .

for any initial approximatiorAn™e R". large values on the projections in the penumbra cannot be
discarded(e.g., by setting them equal to z¢rdecause the

5. PRELIMINARY DATA PROCESSING shock waves come so close to the model that the majority of

a) Interpolation of the measurement data and construcihe electron beams partially absorbed by the model also pass
tion of projections.The results in this section pertain to the through the shock waves.
processing of data obtained for the semielliptical model. For ~ The problem of isolating the effect associated with
the symmetrical model the measurements formed a singlodel absorption has been solved as follows in our study.
projection at once and did not need additional interpolationThe projections are modified by introducing the compensat-
To describe the data set, we introduce a plane with colng increment

ordinates, ¢ (recall thatp is the impact parameter along the " _
beam axis, and is the angle of rotation of the modeEach f(o)= f(p)+(p.py)  |P=Pul=ro, (14
measurement in this plane is represented by a single point. (p)= f(p) [p—pp|>To-

Figure 4a shows the set of points corresponding to the first
series of measurements is shown in theé plane. Figure 4b  In Eq. (14) p, is the coordinate of the boundary of the model
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on the projection closest to the point with coordinpteand
rq is the effective beam radius near the model. The function

#(p,pPp) is given by the equation ar-
' 3

Jsi(r.¢)ds s
(P, Pp) In(fslj(r,qﬁ)ds)' (15) S

The distribution of the current density in the begfm, ¢)

has been reconstructed from the experimental B¢z, 3.
From this result we estimate its effective radius to be
ro~0.5 mm. In Eq.(15 S, is the area of the disk of radius
ro, ands, is the area of the segment of this disk bounded by
the generator of the cone corresponding to the model. Physi-
cally the functiony(p,p,) can be interpreted as the loga-
rithm of the ratio of the energy of the transmitted part of the
beam to its initial energy.

FIG. 5. Reconstruction of the variation of the density field in the plane of
the cross section in hypersonic flow around an asymmetrical nfitsleross
section appears as a “step” in axonometric projection and is represented by

A square centered at the origin with a side of 30 mm isthe darkened region in isolinésqual-density contours

chosen as the reconstruction zone. The reconstruction zone is
partitioned into 65X 65 square pixels. Each pixel therefore
has a side~0.46 mm, which is of the order of the experi- model, whose existence is inferred from theory and the re-
mentally determined beam half-widtfSec. 3. For the sults of measurements on similar obje(dse, e.g., Ref. 15
semielliptical model the two-dimensional distribution of is not reconstructed. These distortions are attributable prima-
An(x,y) is reconstructed separately from data obtained irrily to shortcomings of the projection data. It is evident from
three series of measurements and also from the data averadgéid. 4a that in reality data have been recorded on the average
over all three series. For each series of experimental data 28ith a step of 1.5—2 mm for each projection. Consequently,
projections distributed uniformlyevery 10°) in the interval only one or two readings are associated with each projection
from 0° to 180°(it is obvious that projections at anglés  onto the shock wave region, and such a figure is inadequate
and® +180° are equivalentare generated for each series of for good tomographic reconstruction. Another factor is the
experimental data by the interpolation described in Sec. 5deam width, which is large relative to the width of the shock
Each projection is determined on a uniform 33-node compuprofile. The influence of the beam width is discussed below
tational grid by interpolation; the spacing of the nodes isin describing the reconstruction results for the circular cone.
~0.92 mm. The projection is then compensated by the prok also acquires errors from interpolation and insufficient ac-
cedure described in Sec. 5b. After each iteration the resultinguracy of compensation.
distribution is smoothed in a sliding>33 window. The it- For the symmetrical model the reconstruction of the dis-
erative process is terminated when the residual between thigbution of the variation of the gas density in the flow gives
projections and the pseudoprojection no longer decreases. much better results. A single projection with a 0.1-mm step
Reconstruction based on different series of experimentahas been recorded in this case. All the other projections nec-
data produces similar shock wave distribution patterns in thessary for reconstruction by the ART1 algorithm are ob-
vicinity of the model. However, the tomograms exhibit am- tained by multiplication of the existing one. Thus, 18 projec-
plitude peaks and troughs of a random nature, most likelgions are obtained with 301 readings each. The
associated with an insufficiency of data and errors in comyeconstruction zone is also partitioned into 301 pixels.
pensation of the magnitude of the projection. Averaging ofThe projections are presmoothed by splifies the assump-
the projections over all three series helps to eliminate artition that they are distorted by random noise with a variance
facts of this kind. Figure 5 shows in axonometric projectionequal to 3% of the maximum.
the reconstructed variation of the density field in the cross- The cross section of the reconstructed symmetrical dis-
sectional plane in the averaged projections. These results atidbution of the density variation at the axis is shown in
those that follow are given in the form of the ratiar Fig. 6 (curvel). Curve3in this figure has been plotted from
+n.)/n,, wheren,, is the freestream densityt is defined the measurement data by electron-beam fluorescence of a
in Sec. J. rarefied nitrogen flow around a sharp-nosed cone with close
It is evident from Fig. 5 that the density distribution values ofM and Re (Ref. 15. The measurement data are
matches the physical picture of the phenomenon. Clearly vissorrected for the difference in the angles of the model cones.
ible is the asymmetry of the density distribution due to thelt is evident from Fig. 6 that the reconstructed density profile
elliptical part of the model, in whose vicinity we observe ais shifted toward greater distances from the surface and be-
reduction of the compression shock and the formation of dow profile 3. The first deviation can be attributed to the
smoother density profile along the normal to the surface. Foinfluence of blunting of the cone and inaccuracy of the com-
all practical purposes, the region of rarefaction near thepensating incremeril5). The second deviation is associated

6. RESULTS OF TOMOGRAPHIC RECONSTRUCTION AND
DISCUSSION
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FIG. 6. Cross section, through th¢
axis, of the reconstructed symmetrical
distribution of the density variation in
flow around a circular cone.
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with greater width of the beam relative to the narrow uppera=0.1 is selected on the basis of a series of calculations.
part of the profile. Actually the reconstructed function is av-The result of reconstruction after deconvolution is illustrated
eraged over the scales of the beam width, so that a “sharpby curve2 in Fig. 6, which shows the cross section of the
peak is reconstructed with a lower amplitude. It is importantreconstructed distribution of the density variation at the

to mention that a reliable procedure for measuring the denaxis. It is evident that, as expected, cuB/agrees better with
sity of three-dimensional gaseous objects by electron-beamrurve 3 than does curvé.

fluorescence under the conditions of Ref. 15 does not exist at

the present time, and these data can contain an error that @NCLUSION

difficult to estimate.

Obviously, if the tomographic data are collected within
the limits of a band having the profilgp), the resulting
parallel projection is the convolution of the projectit®{(p)
obtained in infinitely thin rays with the band profile

The new measurement procedure and tomographic re-
construction algorithm described in the article have been
used to obtain the density distribution in rarefied hypersonic
flow around an axisymmetrical object and around an asym-
metrical object. In the experimental data preprocessing stage

P O N we have solved the problems of interpolating onto a uniform
f(p)_J%f (pi(p—p"dp". (16 grid and correcting for partial absorption of the electron
beam by the model. From data recorded in the region of

On the other hand, the shape of the outer boundary of agartial overlap of the beam with the model we have recon-
electron beam has been determined experimenfaliyder  strycted for the first time the distribution of the current den-
conditions similar to those of the experiment reported here. |§ity in the beam on the assumption of axial symmetry. We
was found that the beam could be accurately regarded afave performed deconvolution of the projections with the
cylindrical in the region of interest to us. In the cross-peam profile determined in the study. We have found that
sectional plane, therefore, the beam represents a band withy@mographic reconstruction from such data is more accurate.
known profile. Consequently, the recorded projection is therhe accuracy of reconstruction can be improved in the future
convolution (16), and the transition to the functioff(p) by decreasing the width of the diagnostic beam and increas-
corresponds more nearly to the ray tomography approximang the number of sensing aspects for each impact parameter.

tion. ) The authors are grateful for partial financial support of
_ We have _deconvoluted th_e convoluti¢hb) by a regu-  this study from the Russian Fund for Fundamental Research,
larizing technique developed in Ref. 17: Grants No. 95-02-03615 and No. 96-01-01640.
f o (—
fg (v)= M a7 YGenerally speaking, the discussion in this section is strictly valid as long as

|j* ( V)|2+ av? . scattering does not occur in the flow. However, the influence of this effect
. . . o is insignificant in the given situation.
The asterisk subscript in Eq17) signifies the corre-  2jn this definition of the elements of the matrxthe reconstructed values

sponding Fourier transforms. The regularization parameterof An are expressed in units of the quantify but the units are of no
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An equation is derived for determining the temperature of a thermally insulated surface in a gas
flow. The equation does not contain any empirical coefficients. The derivation is based on
allowance for the work done by a jet arrested at an obstructing surface on the surrounding flow
layers. The application of the equation to subsonic and supersonic flows is

discussed. ©1998 American Institute of Physids$$1063-784£98)02404-(

The determination of the temperature of a thermally in-constant pressure equal to the freestream pre$3uve can
sulated surface in a high-velocity gas flow is an importantwrite the Bernoulli equation for one mole of an ideal gas in
problem, one that arises in almost every investigation of thehe form
behavior of bodies moving at high velocity relative to the 5 5
surrounding gas. Plp,—Plpi+1,—1,+0.5v5-v7)=0. 4

The calculation of the surface temperatdrgof a body
in a high-velocity gas flow is based on the determination o
the flow stagnation temperatullé :

THerep is the density of the gas=c,T is the enthalpy, and
the subscripts 1 and 2 refer to the initial and final states,
respectively. Now, making use of the equation of state of the
T*=To+0.508/c,. (1) gas

HereT, is the temperature of the gas, is its specific heat at Plp=RyT, 5)
constant pressure, ang is the flow velocity. A correction . o
factor f is sometimes introduced to improve the accuracy oftlong with the full stop of the jet incident on the surface

the results, whereupon the surface temperature is written (condition of adherence of the gas to the surfaued the fact
that the temperature of the thermally insulated surface is

Te=To+0.5(vg/c,. (20 equal to the temperature of the boundary layer formed from

The factorf is determined mainly by experimental medits the incident gas, we obtain

has an approximate value of 0.8 for subsonic airfflow T -1 4+0.52%/(c,+Ry)

velocities’ or theoretically with allowance for the properties P

of the boundary layet This theoretical approach is far from =To[1+0.5M?k(k—1)/(2k—1)]. (6)
simple, and in the majority of cases it is customary to seﬁ
f=1 in calculations, even in Litsyanski's fundamental
monograplt, and also to write

n this case the correction factdr=c,/(c,+ Rg) =k/(2k
—1)=17/9 for air (k=1.4) is very close to the experimental
value:

T=T*=T[1+0.5k—1)M?]. ©)] In the case of a supersonic gas flow the latter is partially
braked in the compression shock at the leading edge of the
body, and only after that does the gas finally come to rest
against the surface of the body. Allowing for the fact that in
a normal shock the velocity drops from, to v4, the tem-
perature increases froify to T,, the density increases from

po to p;, and the pressure increases fréfpto P,, wheré

HereM is the freestream Mach number, akec,/c, is the
specific-heat ratiqa constantof the adiabatic process. We
note that Eq.(3) is simply an alternative representation of
Eq. (1), which, in turn, is a special case of the Bernoulli
equation. The model of fluid jets with a slowly changing
cross-sectional area is used to derive the Bernoulli equatio
(see, e.g., Ref.)1 However, the impinging jet is abruptly polp1=vilve=(k—1)/(k+1)+2M~?/(k+1), (7
halted when it comes into contact with a surface, inevitably

causing it to suddenly spread out. The broadening of the P,;/Py=2kM?/(k+1)—(k—1)/(k+1), )]
arrested jet induces compression and acceleration of the ad- ]

jacent unobstructed layers, i.e., the gas of the arrested j¥€ can find the postshock flow temperature:

does_ work, yvhigh mu;t be taken inFo account V\{he_n the B_er- T =To[2kM2/(k+1)— (k—1)/(k+1)]

noulli equation is applied to a gas jet arrested in interaction

with a surface. By taking into account this work done at a X[(k—1)/(k+1)+2M?/(k+1)] 9

1063-7842/98/43(4)/2/$15.00 469 © 1998 American Institute of Physics
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and, with the use of Eq6), the surface temperatuiie, s at The proposed method thus affords a relatively simple
the leading edge of a body in supersonic flow. The expresmeans for analytically determining the temperature of a ther-
sion for T4s is too cumbersome to write out here. We merelymally insulated surface in a high-velocity gas flow.
note that the correction factdrin Eq. (2) increases as the
Mach numbeM >1 increases, and for air, in particular, it is
approximately equal to 0.95 foM?=5 and 0.97 forM?
=10. If the body in the flow is sufficiently long, the surface
temperature decreases in the sternward directiofstobe- G, N. AbramovichApplied Gas Dynamickin Russiaf, Nauka, Moscow
cause in interaction with the surface the flow acquires seg- (1976, 888 pp.
ments that have passed through oblique shocks and Macﬂ- G. Loitsyanski, Mechanics of Liquids and Gasgis Russian, Nauka,
. . Moscow (1987, 840 pp.
waves, in other words, that have not undergone as intense

prebraking. Translated by James S. Wood
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The quality of suppression of neutrons by lithium hydrfiéH filters for narrow and wide

beams from a neutron generator incorporating deuterium and tritium targets is investigated. The
experimental data can be used for the design of measurement apparatus operating in high
neutron fields. ©1998 American Institute of Physids$S1063-784£98)02504-5

The issue of how to detect gamma rays against backeylinders of diameter 30 mm and length 300 mm filled with
ground neutron radiation arises in the solution of a numbefine-crystalline lithium hydride. The neutron source in the
of problems in experimental physics. As a rule, the gammaexperiment was an NG-150M generator with tritium and
ray detection efficiency of the detectors used in this case ideuterium targets, for which the neutron energies were 14.8
much higher than their neutron detection efficiency, and aMeV and 2.8 MeV, respectively. The absolute neutron yield
the same time filters that effectively suppress neutron radiaef the generator was determined by means of an internal
tion are used. monitor, which detected eithex particles or protons, de-

Our goal in the present study is to investigate the qualitypending on the type of target used. To adjust for the effect of
of suppression of neutrons by lithium hydrifeiH filters migration of the deuteron beam over the target, the neutron
and to determine their efficiency in experiments on a therintensity was monitored directly at the input to the measure-
monuclear reactor of the tokamak type. The investigatednent system by means of a special detector. A diagram of
neutron filters(F1, F2, and FBwere thin-walled aluminum the experimental arrangement is shown in Fig. 1.

790

FIG. 1. Geometry of the experiments withiH filters on an NG-150M neutron generator.

1063-7842/98/43(4)/2/$15.00 471 © 1998 American Institute of Physics
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TABLE |. Attenuation coefficients of 14.8-MeYDT neutrons. TABLE Il. Attenuation coefficients of 2.8-Me\DD neutrons.
Threshold for Narrow beartdiam. 12 mm | Wide beam(diam. 30 mm Threshold for protons, MeV F1, wide beafiam. 30 mmy
neutrons, MeV  F1 F2 F3 F+xF2| F1 F2 F3 Fl+F2 300

10 30.6 30.6 29.6 820 28.4 29.2 28.7 580 2.4 820

12 29.7 28.9 29.9 810 27.0 27.8 27.4 660

13.5 28.6 26.2 325 790 229 24.6 24.1 1200

The neutron detector, surrounded by a lead shield, wagontrol regime we determined the number of pulses recorded
placed at a distance of 2.67 m from the target of the generddy the pulse analyzer above a certain threshold, which cor-
tor inside a concrete wall of thickness 3 m. To reduce thgesponded to 10 MeV, 12 MeV, and 13.5 MeV il neu-
neutron flux onto the wall, a protective iron cylinder of di- trons and to 2.0 MeV and 2.4 MeV f@D neutrons.
ameter 210 mm and thickness 600 mm was placed between The attenuation coefficier was determined from the
the wall and the target of the generator. The filisjput)  relation
collimator, whose diameter could be set either at 12 mm or at
30 mm, was situated in the middle of the cylinder. The filter
irradiation conditions could be simulated by changing the
diameter of this collimator, in effect generating either ay _ No &
“narrow” or a “wide” beam of neutrons. A second iron [Nf—Ng(t;/tg)] = [Npe— Np(tre/ts) (M /Mg Mg
collimator of thickness 480 mm with a diameter of 30 mm
was installed in the concrete wall, and the investigated filters
were inserted into it. A monitor was placed between the first, oo No,

and SI:)CC;'Td °°”'mat°fs- ffici is th 0 of th counting rates in experiments without a filter, witPlaH

b The filter attenugnon coefficient is the ra_\tlo of the num'{ilter, and with an Fe filterNg is the background counting
er of neutrons registered by the detector in measurements ; :

without a filter to the number of neutrons registered by the_rate’MO’ My, andMg, are the correspondl_ng monitor read-

detector with the neutron flow intercepted by a neutron filter"9S: andty, tee, andFB are the exposure times.

for the same fluence of neutrons at the entrance to the mea- 12pPles Iand Il give the results of measurements of the

surement apparatus. The counting rate of the neutron dete@{ténuation coefficients in experiments withDT neutrons
tor has several components: and DD neutrons. The error of determination f in the

DT-neutron experiments does not exceed 5% for a single
filter and 10—15% for two filters at detection thresholds of 10
lo=Intlhetlhetlhe, MeV and 12 MeV. The error in thBD-neutron experiments
wherel,, 1,6, I,c, andl g are the intensities due to the does not exceed 10% for a 2-MeV threshold and 15% for a
detection of neutrons, gamma rays from the generator targe.4-MeV threshold. The values of the attenuation coefficients
gamma rays from slow-neutron capture reactions, and ambpf filters F1, F2, and F3 agree within the measurements error

ent background gamma rays. o ~ limits, indicating their uniform filling with the neutron ab-
The contributions are separated by circuits for the disqrper.

crimination of gamma-rays and neutrons according t0 the ¢ shecial interest in tokamak experiments is the estima-

shape of the light pulse generated in the scintillator. In OULion of the contribution of capture gamma rays. from
work we used a stilbene scintillation neutron spectrometer . . h ' g
. . T measurements using an iron filter. We find that in the energy
incorporating a pulse shape discriminatiodRSD system

with an adjustable threshold to control the pulse amplituderange> 10 MeV the contribution of gamma rays to the am-

analysis unit of the spectrometer. The thresholds for the de_r-)"tUde distriputiqn is 85-30%. One techniqug for dimi.nish-
tection of recoil protons were set equal s MeV for DT N9 the contribution of capture gamma rays is to equip the
neutrons and-1 MeV for DD neutrons. detector with an additional lead shield. To test the effective-
The results of neutron measurements are known to dgess of this method, we have performed an experiments us-
pend on the geometry of the experiment, in particular, on théng two filters(F1 + F2) in a DT-neutron wide-beam geom-
diameter of the neutron beam incident on the sample. In ou@try, in which an additional lead shield of thickness 100 mm
experiments, therefore, provision was made for testing thisvas used with the detector, as represented by the dashed line
effect when working with narrow and wide beams. In thein Fig. 1. The amplitude spectra obtained in this experiment
experiments with a narrol2 mm beam and a wid¢30  show that the contribution of capture gamma rays in the
mm) beam of 14.8-MeV neutrons we measured the absorpenergy range>10 MeV amounts to 30—10%. Consequently,
tion coefficients of single and doublEl + F2) filters. Only  additional shielding of the detector is effective and highly
filter F1 was used for the measurements with a wide beam decommended in tokamak measurement apparatus, where the

2.8-MeV neutrons. ~neutron fluxes exceed the gamma-ray fluxes.
The processing of the measurement results was identical

for both cases: For each series of measurements in the PSianslated by James S. Wood

N;, and N, are the above-threshold detector
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Multidetector device for the detection of coincidences of charged particles and v rays
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A. F. loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

S. I. Lashaev

V. G. Khlopin Radium Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
(Submitted September 10, 1995; resubmitted October 21,)1997

Zh. Tekh. Fiz.68, 139—142(April 19998

A 4 position-sensitive, axisymmetrical assembly of Si—Au charged-patrticle detectors is
proposed, implemented, and tested on a beam of heavy ions; the dimensions and structure of the
device are conducive to the organization of coincidences of charged reaction products with
discretey rays emitted by the daughter nucleus and registered by a system of ultrapure Ge
detectors. First results are obtained from an investigation of the rea8Nit°0,«2py)®Ge

atEq=74.5 MeV. © 1998 American Institute of Physid$S1063-784£98)02604-X

INTRODUCTION which protons o particles are emittetf. The drawbacks of
such a system include) kizable dead zones at the detector
The acquisition of new information in low-energy junctions; 2 a disparity of conditions for the detection of
nuclear physics largely entails the development of physicaparticles emanating from a target at an identical angle rela-
apparatus, especially detection systems for such apparatus.tine to the beam axis but impinging on the detector plane at
the last decade, thanks to the efforts of several internationalifferent angles, thereby degrading energy resolutiphin®
groups, a number of large-scale devices have been built fated coordinate-resolution capabilities, particularly in the
the detection of products of nuclear reactions involving low-range of small forward angles; any such capabilities are
energy and medium-energy heavy ions, specificallyays  achievable only by stacking a number of planar elements
and charged particles. Present-day multicrystahy spec- (DIAMAND ) and, accordingly, increasing the number of
trometers of the “crystal ball” type, consisting ofdassem-  electron channels.
blies of decades of ultrapure Ge single crystals partially aug-
mented with 4r BGO y-ray multiplicity filters, are designed
primarily for studies of the physics of high-spin states of
atomic nuclett=® The mechanisms of nuclear reactions with We have proposed and implemented an axisymmetrical,
heavy ions are investigated mainly by multidetector position-multidetector device of a different type, which provides not
sensitive devices consisting of decades and even hundreds afly a 47 charged-particle detection geometry, but also the
charged-particle detectors employing diverse operating prinpossibility of polar-angle coordinate resolution. The advan-
ciples. Some are devices of the FOBOS typiesigned for tages of such an assembly, which consists of cylindrical and
the detection of light charged reaction products and fissiomlisk elements, are:)Ja simpler element fabrication technol-
fragments, or mass separators of recoil nuclei. However, thegy (in contrast with spherical geomejry2) identical par-
large overall dimensions of these devic@seasuring in ticle detection conditions with respect to azimuth angle, a
meterg make it impossible to organize the coincidenceyof feature not found in hollow-cube assembliesit8 possibil-
rays with particles and, hence, to investigate a major catity of producing several independent detecting rings on a
egory of problems that have important bearing both on theingle crystal, providing the means for pinpointing the par-
physics of high-spin states and on our understanding of thécle exit angle from a target within a narrow angular inter-
mechanisms underlying nuclear reactions. val; 4) reduction of the number of electron spectrometer
The only real potential lies in the design of small-scalechannels for cylindrical elements by one fourth compared
(=<0.1 m charged-particle detection systems that can beavith the number required to cover the corresponding geom-
housed iny-ray spectrometers. In principle, it should be pos-etry in a system of the “box” type; bthe possibility of
sible to build a semiconductor detector in the form of a segreducing the width of the dead zones between adjacent de-
ment of a sphere and to configure a geometry from such tectors to 1 mm or less.
parts, but the requirement of coordinate resolution, no matter We have developed and run certification tests on a tech-
how coarse, together with the specific form of the detectonology for the fabrication of Si—Au detectors, each in the
itself poses an exceedingly complex technological problemform of a thin-walled &1 mm) cylinder with the sensitive
Well-known attempts have been made to construct assentayer lining its inner surface. We have also worked out the
blies of planar semiconductor detectors in the shape of sechnology for constructing several independent detectors on
hollow cube(the OSIRIS Cub® and to use them in-ray  one silicon crystal without any mutual influence between de-
spectrometers for the identification of reaction channels inectors. The dead zones between them do not exceed 1 mm.

STRUCTURE OF THE DEVICE

1063-7842/98/43(4)/4/$15.00 473 © 1998 American Institute of Physics
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FIG. 2. Spectrum of?’Ra a particles, obtained from a cylindrical Si—Au

FIG. 1. Fragmentforward parj of the reaction chamber in cross section. a aIready at our disposal made from germanium of extreme

Blowup of the target devicet) contact lead?) target;3) dielectric ring;4) . . .
metal ring;5) Ta foil (3X8=24 um). b) chamber properl) target holder; purity with a volume of 90 Cr:heaCh' were used instead of a

2) contact leadd) Si ring (sensitive layer~500 wm); 4) Al jacket; 5) Si “crystal ball” for y-ray detection. A block diagram of the
cylinder (sensitive layer=300 um); 6) insulator;7) beam:8) target unit;9) device is shown in Fig. 3. The detector output signals branch
Ni layer; 10) Au layer. out after preamplification: The fast sign@ith a 10-ns lead-

ing edge is sent from a special-output to a fast standard-
pulse shaper and then to a coincidence circuit; the spectro-

The cylinder i def high-resistane8&i sing| -
© cylincer 1S made from a nigh-resiStanes! sing'e crys ]metric signal, amplified and shaped by a linear amplifier, is

tal by coring out its interior. The subsequent processing o . X
the surface and the formation of a working zone are similal.senttto an %nalog—tq—dlglttal cor;)verteml?jct). The m.ultlple-_ .

in technology to standard methods used in the fabrication oftPut coincidence circuit can be used 1o organize coinci-
conventional Si—Au detectors. Figure 1 shows a fragment o ences of the signals in essentially any combination. The

the device in cross section, including the semiconductor degommdence circuit signal, broadened tgu by a univibra-

tectors. tor, opens the ADC gates.

The beam enters through an aperture in the rear annular This arrangement ensures that spectrometric information

detector of diameter 8 mm. The target is placed on an aus recorded only when the detectors are triggered simulta-

tonomous holder between two identical cylinders in such ap_eou_sly in a co_mbinaf[ion predete_rmine_d by_the coincid_ence
way as to minimize the gap between the ends of the cylin-c'rcu't' making it possible to effectively identify the reaction

ders. The target holder is designed so that a heavy metal foﬁ:lh"’mne'S of interest and, by.adjustment of the lower and
(tantalum in our caseif placed directly behind the targén upper threshplds of the amplifiers, to separate out the neces-
the direction of the beajrto shield the detector against the sary energy intervals. .
direct incidence of beam patrticles that pass through the target . _The electron channels of th_e G_e and Si—Au detectors are
without interaction. The cylinder ends far from the target areun'f'ed’ the only difference being in the type of converters
capped with interchangeable annular Si—Au detectors with
thick (up to 500um) working zone, which ensures the total
absorption ofa particles with energies=40 MeV. Various
types of annular detectors, in particular a detector consistin
of three axisymmetrical rings formed on one crystal, are use
in our experiments. This arrangement makes it possible to
segregate reaction products emanating from the target in
well-defined intervals of the exit angle and, combined with
energy measurement, to determine the reaction products witl
the required accuracy and, hence to distinguish the channel
necessary for further processing. The area of the working
surface of the cylindrical detector is 20 énand its capaci- 7
tance is ~1000 pF, requiring the wuse of special [2
preamplifierst

As an illustration, Fig. 2 shows the spectrum %fRa
a particles obtained using a cylindrical detector. The source
is placed at the target site, i.e., the incidence gfarticles on
the detector is “oblique,” further degrading the energy reso-
lution by stretching out the left edge of the peak. All the
same,~70-keV resolution is obtained in the given situation,
which is fully acceptable for practical applications. FIG. 3. Block diagram of coincidence detectidn.Preamplifier;2) shaping

In our first ?Xperi_ments_' primarily of a methodological circyit; 3) linear amplifier;4) ADC; 5) logic-pulse mixer:6) coincidence
and demonstrative orientation, two Canbeyraay detectors circuit; T(0),P) univibrator;7) CAMAC crate controller.

sed. For the Ge detectors, 4096-channel converters with en-

anced linearity and stability are used, so that an energy
resolution of 2.0-2.1 keV can be maintained for the duration

f the experimentseveral daysby using Canberra spectro-
gwetric amplifiers.
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FIG. 4. g Direct spectrum of charged particles from the forward Si—Au

detector; b spectrum of ternaryy-Si—Au forward—Si—Au cylinder coinci- &
dences; pspectrum in the center-of-mass systemcalculated spectrum of o ) ]
evaporativea particles. FIG. 5. @ y-Ray spectrum in coincidence with the forward Si—Au detector;

b) direct y-ray spectrum.

FIRST EXPERIMENTAL RESULTS cant changérelative to the direct spectrunin the nature of

In our first experiments using a heavy-ion beam from thethe population of high-spin states 8fGe in the selection of

cyclotron at the A. F. loffe Physicotechnical Institute of the e"ef‘ts correg.pondmg to coincidence with nonequilibrium
Russian Academy of Sciencd&Tl) we investigated the _partcheS emltt_ed in the fo_rward angles as a result of the
spectra of coincidences of rays with « particles and pro- incomplete fusion mechanism.
tons in the reaction®Ni(*%0,a2py)%Ge atEy,=74.5 MeV
(the choice of this reaction was dictated by the fact that in th& ROSPECTS FOR APPLICATIONS OF THE SYSTEM IN THE
FTI cyclotron laboratory the technique of coincidencesyof CONFIGURATION OF MULTIDETECTOR y-RAY
. . . : k SPECTROMETERS

rays with o particles registered by a conventional Si—Au
detector had already disclosed the nonequilibrium character It is evident from the brief description of the structure of
of the a-particle emissiort? and these experiments were the the device and the results of first experiments that we are
stimulus for development of the device described in thenow in a position to plan a set of problems for applications in
present article The bombarding particles were stopped by adevices of the ball type. The investigation of the mechanism
Ta foil of thickness~40 mg/cnf, which permitted the pas- of incomplete fusion of nuclei accompanied by the forward
sage through it ofx and p emitted in the forward angles. ejection of a fastw particle and the formation of a rapidly
Under our experimental conditions andp are separated by spinning, quasinonequilibrium residual nucleus emitting
virtue of the difference in the detected energy spectra antight particles, and ther rays, is a timely subject for future
angular distributions. Consequently, by sorting out eventsesearch from the standpoint of the physics of nuclear reac-
associated with the incidence af particles in the forward tions. The selection of events associated with discyetay
disk detector andp in the two cylindrical detectors, it is transitions of the final nucleus in a narrow range of spins
possible to identify the channel of the reactian, @p) and, affords the possibility of uniquely determining not only the
by coincidences withy rays of the final nucleus, to estimate final reaction channel, but also the transferred angular mo-
the fraction of the cross section and the profile of the particlanentum associated with the impact parameter of peripheral
spectrum corresponding to the formation of the doublecollisions. This capability will help to shed light on many
nuclear system. A total of2.5x 10° events were stored in obscure problems in the physical of mass transfers in the
the experiment. interaction of heavy ions. On the other hand, individual

Omitting the physical interpretation of the results within bands of high-spin states of the daughter nuclei can be iden-
the space limitations of the article, we can still draw twotified by sorting outy rays corresponding to charged-particle
basic conclusions. detection events associated with the incomplete fusion

1. Itis evident from Fig. 4 that the spectra®fparticles mechanism in peripheral collisions, thereby gaining added
detected in coincidence with rays differ sharply both from possibilities for investigating them by-ray spectroscopy
the direct spectrum containing the high-energy contributiormethods. In particular, an additional tool is found for seeking
of 1%0 decay and from the quasievaporative spectfimthe  out new regions of superdeformation and hyperdeformation
form of a Maxwell distribution with maximum in the vicinity in light nuclei, for which the cross sections of formation in
of 12-15 MeV}, as is typical of the incomplete fusion reactions with heavy ions accompanied by charged-particle
mechanism. emission are fairly large in comparison with the neutron

2. As illustrated qualitatively in Fig. 5, there is a signifi- channels.
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