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The photophoresis of a coarse solid spherical aerosol particle in a one-component gas of
nonuniform temperature is examined with consideration of the inertial effects in the hydrodynamic
equations and the temperature jump in the Knudsen layer. The problem is solved in the
spherical coordinatesr , Q, andw. The photophoresis of a homogeneous particle is considered
first. Then the results are generalized to an inhomogeneous particle. A particle whose
thermal conductivity̧ i varies as a function ofr is chosen as a model which describes a broad
class of natural and artificially produced aerosol particles. It is shown that the error can
be significant if the variable internal thermal conductivity¸ i5¸ i(r ) of the particle is ignored
and only the value of the thermal conductivity on its surface¸ i(a) is considered, on the
assumption that the particle is homogeneous. It is also shown that a particle with a variable internal
thermal conductivity̧ i5¸ i(r ) and a density of heat sources within itqi(r ,Q) can be
regarded as a homogeneous particle with a thermal conductivityg¸ i(a) and a heat-source density
m(r )qi(r ,Q). Recurrence formulas forg andm(r ) in the general case are presented.
Analytical expressions forg and m(r ) are found for a model particle with pronounced
inhomogeneity. ©1998 American Institute of Physics.@S1063-7842~98!00104-4#
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INTRODUCTION

The idea that a particle can move under the influence
light was suggested long ago by Kepler. Newton’s corpus
lar theory reinforced this idea, and the existence of lig
pressure was demonstrated in Russia by Lebedev. Howe
Ehrenhaft1 discovered an effect in the motion of dust pa
ticles suspended in air in the beam of a high-intensity lam
some particles moved toward the light source. This eff
could not be attributed to the light pressure force. Ehrenh
called the effect which he discovered photophoresis. T
motion of particles in the direction of light propagation w
termed positive photophoresis, and motion in the oppo
direction was termed negative photophoresis. This effect
be explained briefly as follows. The absorption of light by
particle leads to distribution of the electromagnetic energy
the incident optical radiation throughout the volume of t
particle. Sources of thermal energy appear within the part
with a certain volume densityqi(r ,Q) and heat it nonuni-
formly. Gas molecules colliding with the surface of the pa
ticle are reflected with a greater velocity from the heated s
of the particle than from the cold side. As a result, the p
ticle acquires an uncompensated momentum directed f
the warm side of the particle to its cold side. Either t
illuminated or the dark side of the particle can be warm
depending on the dimensions and the optical propertie
the particle material. Therefore, both positive and nega
photophoresis can occur. In addition, if the radiation flux
nonuniform over its cross section, transverse motion of
particle relative to the direction of propagation of the ele
tromagnetic radiation can appear in a gas.2

After Ehrenhaft, the effect was investigated in a numb
of studies, but the motion of particles in an optical radiati
3471063-7842/98/43(4)/6/$15.00
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field was only of scientific interest at first, since few man
festations of this effect of practical importance were no
~for example, the influence of solar radiation on the settl
of aerosol particles in the earth’s atmosphere was consid
in Refs. 3 and 4!. In recent years the situation has chang
dramatically as a result of the use of lasers, and the inte
in photophoresis has increased. There have been a numb
theoretical and theoretical papers on the theory of pho
phoresis~see, for example, Refs. 5–8!. Numerous applica-
tions of the motion of macroparticles in a laser beam ha
been proposed: the separation of particles in a liquid,
optical levitation of particles in air and in a vacuum, th
trapping and retention of particles in a laser beam, etc.
high monochromaticity of laser radiation and the possibil
of tuning the wavelength permit the control of the motion
macroparticles and the selective isolation particles of
signed properties from an aerosol stream by selecting
output wavelength within the absorption band of the parti
material.

The magnitude of the photophoretic force caused by
collisions of gas molecules with a nonuniformly heated p
ticle surface is generally much greater than the light press
force. In rare cases it is necessary to consider the comb
action of the two forces. In addition, the effect of the reacti
of vaporized molecules is significant in some cases.

The theoretical methods used to derive expressions
the photophoretic force and the photophoretic velocity
chosen by comparing the radiusa of the particle with the
mean free pathl of the gas molecules. If the Knudsen num
ber Kn5l/a is large, then, according to the classification
particles in the physics of disperse systems in air, the part
is termed small. The theory of photophoresis for large Knu
sen numbers is devised on the basis of the kinetic theor
© 1998 American Institute of Physics
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gases. The main assumption here is that a particle has
influence on the velocity distribution of the gas surround
it. The most exact results for the photophoretic force and
photophoretic velocity were presented in Ref. 9. In the
pressions for the photophoretic force and the photophor
velocity of small particles the tangential momentum and
ergy accommodation coefficients are significant. The res
of the experiments in Refs. 8 and 10 are in good agreem
with the theory. If the Knudsen number is small, the parti
is termed ‘‘coarse,’’ and in this case the theory of pho
phoresis is devised on the basis of the hydrodyna
method, i.e., the hydrodynamic equations and the h
transfer equations are solved together.11 At small values of
the Reynolds number Re5Ua/n, whereU is the velocity of
the stream of gas flowing past the particle at large distan
from it and n is the kinematic viscosity, the hydrodynam
equations are replaced by linearized equations.12,13The same
approach was used to solve the problem of the photopho
motion of moderately coarse aerosol particles. Detailed
views of the work on the theory of photophoresis can
found in Refs. 14 and 15. However, in the case of coa
aerosol particles there is some disparity between the the
ical values for the photophoretic velocity and the experim
tal data. This fact is stimulating a search for new effec
whose inclusion can improve the known models.

The present work examines the photophoretic motion
a coarse solid spherical aerosol particle of nonuniform th
mal conductivity suspended in a one-component gas at s
Reynolds numbers with consideration of the inertial effe
in the hydrodynamic equations~the Oseen method! and the
temperature jump in the Knudsen layer.

EQUATIONS AND BOUNDARY CONDITIONS

We begin the treatment of the motion in a coordina
system, whose origin coincides with the center of gravity
the gas medium. Electromagnetic radiation impinges on
particle and heats its surface. The gas begins to slip along
surface of the particle in the direction of increasing tempe
ture. The thermal slipping gives rise to a photophoretic for
The particle undergoes accelerated motion under the in
ence of the photophoretic force. When the magnitude of
photophoretic force becomes equal to the magnitude of
force of viscous drag of the medium, the particle begins
move linearly and uniformly with a certain photophore
velocity Uph. Because of the small value of the thermal r
laxation time, we assume that the heat-transfer process in
particle/gas-medium system is quasistationary. We s
work all the time below in a 0xyz coordinate system, whos
origin coincides with the center of the particle and whosex
axis is parallel to the propagation direction of the unifo
radiation flux impinging on the particle. Going over
spherical coordinates, we shall measure the angleQ from the
positive direction of the 0x axis. In the 0xyz coordinate
system the particle is stationary, and the gas flows past
particle. The velocity of the gas at infinityV` is clearly equal
to Uph with the opposite sign:V`52Uph5U i. Considering
the stationary motion of a one-component gas of nonunifo
tle
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temperature relative to the particle in the absence of exte
forces, we arrive at the following equations of motion:13,14

U
]V

]x
52

1

r
¹p1n¹2V, divV50, ~1!

Vxur→`5U, Vyur→`50, Vzur→`50, pur→`5pe` ,

Vr ur 5a50, VQur 5a5KTSl

he

reTe0a S ]Te

]Q D U
r 5a

, ~2!

whereV is the flow velocity,r is the density,p is the pres-
sure in the gas,KTSl is the thermal slipping coefficient,16 he

is the viscosity of the gas medium,Te is the temperature o
the gas~everywhere below the subscripte denotes the gas
medium, andi denotes the particle!, andTe0 is the value of
Te at r 50.

Equations~1! were obtained with consideration of th
leading inertial terms in the Navier–Stokes equation~the
Oseen method13!. We assume thatVr , VQ , p, and Te are
functions of onlyr andQ. In our formulation of the problem
Vw50.

The electromagnetic radiation impinging on the partic
is absorbed by it and distributed throughout its volume. A
result, sources of thermal energy appear within the part
with a certain densityqi , which we also assume to be
function of r andQ. Therefore, the thermal part of the prob
lem has the following form:15

¹2Te50, ~3!

div~¸ i¹Ti !1qi50, ~4!

S ¸ i

]Ti

]r D U
r 5a

5¸e

]Te

]r U
r 5a

,

~Te2Ti !ur 5a5CTl
]Te

]r U
r 5a

, ~5!

Ti ur→0Þ`, Teur→`5Te` . ~6!

HereTi is the temperature within the particle;¸e and¸ i are
the thermal conductivities of the gas and the particle, resp
tively; andCT is the temperature jump coefficient.14 We as-
sume thatTi is a function ofr and Q. We assume that the
convergence under the conditions at infinity is uniform w
respect toQ. The value of̧ e is assumed to be constant, an
¸ i will be discussed below.

PHOTOPHORESIS OF AN AEROSOL PARTICLE OF
UNIFORM THERMAL CONDUCTIVITY

Let us first consider the thermal part of this problem.
this case Eq.~4! of systems~3!–~6! can be written in the
form

¹2Ti52qi /¸ i . ~7!

Using the theory of harmonic functions~including the
theory of functions that are regular at infinity17!, we can
show on the basis of the maximum principle17 and Zarem-
ba’s principle18 that this problem has a unique solution. W
seek the solution of this problem in a class of expansions
the form
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Ti5 (
n50

`

Tin~r !Pn~cosQ!,

Te5 (
n50

`

Ten~r !Pn~cosQ!,

where theTin(r ) andTen(r ) are unknown functions, and th
Pn are Legendre polynomials.

For the existence of a solution we also assume that

qi5 (
n50

`

qin~r !Pn~cosQ!,

where theqin(r ) are certain functions, which can be found
terms ofqi on the basis of the orthogonality of the Legend
polynomials according to the following formula:

qin~r !5
2n11

2 E
0

p

qi~r ,Q!Pn~cosu!sin QdQ.

We proceed to a proof of the existence of a solutio
From Eq.~3! with consideration of~6! we obtain

Te5Te`1 (
n50

`
Aen

r n11 Pn~cosQ!, ~8!

where theAen are undetermined coefficients.
From Eq.~7! we obtain the following differential equa

tion for Tin :

r 2Tin9 12rTin8 2n~n11!Tin52r 2
qin

¸ i
. ~9!

Solving Eq.~9! by standard methods,19 we obtain

Tin5
Ain

r n11 1r nBin1
1

~2n11!¸ i

3F 1

r n11 E
a

r

qinr n12dr2r nE
a

r

qin

dr

r n21G .
Now substituting the expansions found forTi and Te

into the boundary conditions~5! and taking into account con
dition ~6!, we obtain a combined system of linear equatio
for determining the coefficientsAen , Ain , andBin . The ex-
istence of a solution has been proved.

We move on to an analysis of the hydrodynamic p
@Eqs. ~1! and ~2!# of the problem. We are interested in th
expression for the photophoretic velocity, which, in turn,
derived from the expression for the force. If, instead of E
~1!, we consider the equations

052
1

r
¹p1n¹2V, div V50, ~10!

we obtain a generalization of the Stokes method to
nonisothermal case. The boundary condition for thermal s
ping ~2! now breaks up into an infinite number of equation
since the radial componentVr of the mass velocityV is
sought in the form of the expansion

Vr5 (
n51

`

Vrn~r !Pn~cosQ!, ~11!
.

s

t

.

e
-

,

and the tangential componentVQ is sought in the form of the
expansion

VQ52
2

sin Q (
n51

`

VQn~r !Jn11~cosQ!, ~12!

where theVrn andVQn are unknown functions, and theJn11

are Gegenbauer functions.
It is known11 that to determine the magnitude of th

force it is sufficient to determine the first terms~i.e., the
terms corresponding ton51! in expansions~11! and ~12!.
Let Vr

(1) , VQ
(1) , andTe

(1) be the first terms in~11!, ~12!, and
~8!, respectively. Then it follows from condition~2! that

VQ
~1!ur 5a5KTSl

he

reTe0a S ]Te
~1!

]Q
D U

r 5a

. ~13!

If we introduce the notation

«5KTSl

he

reTe0a S ]Te
~1!

]Q
D U

Q5p/2
r 5a

, ~14!

the Stokes formula13 Fc56phUa for the force exerted on a
spherical particle is generalized in the following manner:

Fc56phUaS 11
2

3

«

U D i. ~15!

The following formula for the photophoretic velocit
can easily be derived from Eq.~15!:

Uph5
2

3
« i. ~16!

Thus, from the thermal part of the problem onlyTe
(1)

appears in the expression for the photophoretic velocity. IV
is sought with consideration of the inertial effects in the h
drodynamic equations on the basis of Eqs.~1! and if Te in
condition~2! is replaced byTe

(1) , Eq.~15! can be generalized
in the following manner:20

Fc56phUaS 11
3

8
ReD S 11

2

3

«

U D i. ~17!

It follows from ~17! that the photophoretic velocity is
insensitive to consideration of the inertial effects in the h
drodynamic equations within the approach described her
follows from ~8! that

]Te

]Q U
Q5p/2
r 5a

52
Ae1

a2 . ~18!

It was stated during the proof of the existence of a so
tion that the system of linear equations for determining
coefficientsAen , Ain , andBin is a combined system. From
this system we can find, in particular, that

Ae15
3

4p

~D, i!

2¸e1~112CTl/a!¸ i
, ~19!

where

D5S E
V
~qi ,r ,i!dVD i ~20!
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is the dipole moment of the heat-source density~the integra-
tion is carried out over the entire volume of the particleV!.

On the basis of Eqs.~16!, ~14!, and~18!–~20! we obtain

Uph5
22neKTSl

3Te0~2¸e1¸ ib! S 1

V E
V
~qi ,r ,i!dVD i,

b5112CTl/a. ~21!

VARIABLE THERMAL CONDUCTIVITY

Generally speaking,̧ i is a variable which depends onr
and Q. For most natural and artificially produced aeros
particles the dependence of¸ i on r is significant, and the
dependence onQ is weak, as, for example, when an aeros
particle forms on a condensation nucleus and then solid
while maintaining its inhomogeneous internal structure,
variation of the thermal conductivity being due to the diffe
ent compositions of the core and shell of the particle. T
dependence of̧ i on Q in such particles can be caused by t
known dependence of̧i on Ti , which, in turn, is a function
of r and Q. However, the dependence of¸ i on Ti can be
neglected. In fact, the real temperature dropdTi over the
radius of the particle is of the order ofdTi5au(¹Te)`u.
Taking into account thata;1026 m, we note that fordTi to
be at least of the order of 100 K, the value ofu(¹Te)`u must
be of the order of 108 K/m, which is never encountered i
real aerosol systems on earth. In our opiniondTi;100 K is
the minimum temperature drop over the radius of a parti
at which the influence of the variation of the temperature
the thermal conductivity of known substances begins to
manifested at all. We, therefore, assume that¸ i5¸ i(r ). We
construe¸ i(r ) as a positive function assigned in a certa
half interval @0, b) containing the segment@0, a). We also
assume thaţ i(r ) can be represented in the form

¸ i~r !5(
s50

`

¸ i ,sr
s, r P@0, b!. ~22!

We also assume that the continuation¸ i* (t) of ¸ i(r )
onto the complex planeC on the basis of~22! does not have
zeros within the circleutu,b.

PHOTOPHORESIS OF AN AEROSOL PARTICLE WITH
VARIABLE THERMAL CONDUCTIVITY

We start out from the thermal part@Eqs.~3!–~6!# of the
problem. In this case Eq.~4! takes on the form

¹2Ti52
¸ i8

¸ i

]Ti

]r
2

qi

¸ i
. ~23!

We also seek the solution of this problem in the form
expansions in Legendre polynomials. It is clear thatTe has
form ~8!. To find Tin , instead of Eq.~9! we obtain the fol-
lowing differential equation:

r 2Tin9 1S 21r
¸ i8

¸ i
D rTin8 2n~n11!Tin52r 2

qin

¸ i
. ~24!
l

l
s

e

e

,
n
e

f

It follows from ~22! that one particular solutionM1n of
the homogeneous equation corresponding to the inhom
neous differential equation~24! can be found in a class o
generalized power series.19,21 Let

b052, b15
¸ i ,1

¸ i ,0
, bs5

s¸ i ,s2( j 51
s21¸ i , jbs2 j

¸ i ,0
,

wheres>2.
We use the coefficientsbs to define the coefficients

as
(n) :

a0
~n!51, as

~n!52
( j 51

s ~n1s2 j !as2 j
~n! bj

s~s12n11!
,

wheres>1.
Then it can be shown19 that the power series

M1n5r n(
s50

`

as
~n!r s

converges in (0,b) and satisfies Eq.~24!. The second solu-
tion M2n ~of the corresponding homogeneous equatio!,
which is linearly independent withM1n , can be found using
the formula19

M2n5M1nE
a

r dr

r 2¸ iM1n
2 .

We note thatM1n;r n whenr→0, and if¸ i[const, then
M1n5r n. The functionsM1n and M2n form a fundamental
system of equations of the homogeneous equation co
sponding to Eq.~24!. The general solution of Eq.~24! can be
written in terms of these functions in the form19

Tin5AinM2n1BinM1n2M1n

3E
a

r

M2nqinr 2dr1M2nE
a

r

M1nqinr 2dr.

Now substitutingTe andTi into the boundary conditions
~5! and taking into account the boundary condition forTi

from ~6!, we obtain the combined system of linear equatio
for determining the coefficientsAen , Ain , andBin . Thus, the
existence of a solution has been proved. In particular,

Ae15
3

4p

~D8,i!

Te0@2¸e1g¸ i~a!b#
, ~25!

where

D85S E
V
~m~r !qir ,i!dVD i,

m~r !5
aM11~r !

rM 11~a!
, g5a

M118 ~a!

M11~a!
.

We find the photophoretic velocity on the basis of Eq
~16!, ~14!, ~18!, and~25!

Uph5
22neKTSl

3Te0@2¸e1g¸ i~a!b# S 1

V E
V
~m~r !qi ,r ,i!dVD i.

~26!
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Let a5¸e /¸ i(a). ThenUph can be expressed in term
of Uphu¸ i[¸ i (a) , which is calculated from Eq.~21! with
¸ i[¸ i(a), in the following manner:

Uph5Uphu¸ i[¸ i ~a!H 11
~R21!~b12a!1~12g!b

2a1bg J ,

~27!

where

R5E
V
~m~r !qir ,i!dVY E

V
~qir ,i!dV.

We note that if̧ i[¸ i(a), M11(r )[r ; therefore,g51,
R51, and in this case Eq.~26! coincides with Eq.~21!.

BLACKBODY

When the particle absorbs electromagnetic radiation
blackbody, absorption occurs in a thin layer of thickne
d!a adjacent to the heated part of the surface. IfE is the
intensity of the incident radiation, then

qi~r ,u!55
0, 0<Q,

p

2
, 0<r<a,

0,
p

2
<Q<p, 0<r ,a2d,

2
E

d
cosQ,

p

2
<Q<p, a2d<r<a.

Therefore, in the case of a blackbody, Eq.~26! takes on
the following form:

Uph5KTSl

ne

3Te0@2¸e1g¸ i~a!b#
Ei.

For a blackbody Eq.~27! is simplified to

Uph5Uphu¸ i[¸ i ~a!~11 f ~a,b,g!!,

f ~a,b,g!5
~12g!b

2a1bg
.

Let 1023<a<1, 1<b<1.6, and 0.2<g<8. The con-
dition on a covers a broad spectrum of medium-partic
combinations. The condition onb covers the region of smal
Knudsen numbers. We shall impart a physical meaning
the condition ong in the next section. Investigating the fun
tion f (a,b,g) under the conditions ona, b, andg indicated
above, we find thatf (a,b,g) varies in the range from20.8
to 4. Thus, the variable internal thermal conductiv
¸ i5¸ i(r ) can introduce significant changes into the pho
phoretic velocity calculated foŗ i[¸ i(a).

MODEL PARTICLE WITH PRONOUNCED INHOMOGENEITY

As a model of such a particle we consider the dep
dence

¸ i~r !5¸ i~0!exp~kr !,

wherek is an arbitrary constant.
In this case it can be shown that
a
s

to

-

-

g5S 221x
exp~x!212x

exp~x!212x20.5x2D U
x52ak

,

M11~r !

r
56S exp~x!212x20.5x2

x3 D U
x52kr

.

Thus, hereg andM11(r ) have analytical representation
In the case of a blackbody, whose thermal conductiv
obeys an exponential law, it is easy to show that the ineq
ity 0.2<g<8 is equivalent to the inequality210<ak
<10. However,ak characterizes the relative drop in th
thermal conductivity over a distance equal to one parti
radius. Therefore, we now have a physical interpretation
the condition ong from the preceding section. This conditio
covers a broad spectrum of relative drops in the thermal c
ductivity over a distance equal to one particle radius.

PRINCIPAL CONCLUSIONS

The velocity of the particle remains insensitive to co
sideration of the inertial effects in the hydrodynamic equ
tions. Since the influence of the variable internal therm
conductivity¸ i5¸ i(r ) of a particle on its photophoretic mo
tion can be significant, only homogeneous aerosol partic
obtained by artificial means should be used in experime
Particles of nonuniform thermal conductivity that can be d
scribed by the model that we selected with an internal th
mal conductivity ¸ i5¸ i(r ) and a volume density of hea
sources within the particleqi(r ,Q) can be regarded as ho
mogenous particles with a constant value of the thermal c
ductivity g¸ i(a) and a volume density of heat sources with
the particleqi(r ,Q)aM11(r )/@rM 11(a)#.
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Analogs of the Lagrange equation for particles evolving in a space of fractal dimension are
obtained. Two cases are considered: 1! when the space is formed by a set of material points~a so-
called fractal continuum!, and 2! when the space is a true fractal. In the latter case the
fractional integrodifferential formalism is utilized, and a new principle for devising a fractal
theory, viz., a generalized principle of least action, is proposed and used to obtain the
corresponding Lagrange equation. The Lagrangians for a free particle and a closed system
of interacting particles moving in a fractal continuum are derived. ©1998 American Institute of
Physics.@S1063-7842~98!00204-9#
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INTRODUCTION

Such physical processes as the explosion of wires
the breakdown of insulators belong to a single class of p
nomena, which are known as critical phenomena. Such
cesses are described using the methods of the theory of
cal phenomena, renormalization group analysis, and se
expansions according to approximation theory.1,2 One of the
most important postulates of the theory of critical pheno
ena is scale invariance, which essentially involves the in
duction of a new symmetry, viz., similarity symmetry, into
space. This postulate forms the basis of renormaliza
group analysis. However, it is now more important for
that when similarity~more precisely, self-similarity! proper-
ties are introduced in a space, it can be classified as an o
with a fractal structure. Therefore, the description of the
plosion of wires and the breakdown of insulators within t
concept of fractals would be of interest.

Theoretical investigations of various physical pheno
ena on fractals~more precisely, on systems of the fract
type! and within fractals have been based on the fractio
integrodifferential formalism,3–5 nonstationary analysis,6 etc.
This has been motivated by the following statement:4 the
propagation of particles and waves in true fractal me
should be described by other, more general equations, w
go over to the conventional linear equations for smooth m
dia.

The diverse investigations of fractals~as a conception!
have reached a new level, i.e., the systemization and orde
of the information that has been accumulated. The meth
and possibilities of the new theories are gradually tak
shape.4,5,7 However, the lack of fundamental principles h
delayed the formulation of a general fractal theory. Anoth
delaying factor is the absence of generally accepted m
ematical machinery for treating problems involving fracta
The use of the fractional integrodifferential formalism w
proposed for this purpose in Refs. 4 and 8.

In this paper the equation of motion of a particle in
fractal continuum~the definition is given in Sec. 1! is ob-
3531063-7842/98/43(4)/5/$15.00
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tained on the basis of the principle of least action. If a sp
~or a spatial object! is a true fractal, the equation of motio
can be obtained on the basis of the generalized principle
least action, which is proposed as a fundamental principle
devising a fractal theory. The concept of an inertial frac
reference frame, analogs of Galilean transformations, and
Galilean relativity principle are introduced in a space of fra
tal dimension. The Lagrangian for a free particle and
closed system of interacting particles moving in the frac
continuum is also derived.

1. MODIFIED LAGRANGE FORMALISM

Let there be a set of material points comprising a spa
in which an observable point particle can be detected a
evolves. We impart the property of self-similarity to the s
of points introduced, and we call such a set a fractal c
tinuum.

We now formulate the problem as the description of t
motion of a certain material point in a fractal continuum. T
introduce an analog of action from ordinary mechanics,9 the
following condition for the variablet ~the time! must be
added: it must ‘‘scan’’ all motion phenomena. This requir
fulfillment of the following condition: each generalized co
ordinate must be a continuous function together with the fi
derivative with respect to the scanning variable. Our n
task is to introduce the generalized principle of least acti

2. GENERALIZED PRINCIPLE OF LEAST ACTION

Let there be a set of generalized coordinatesk and a
so-called scanning variablet, with respect to which the set o
coordinatesk and their first derivatives are continuous.
other words, the evolution of the generalized coordinate
observed in terms oft. The rate of variation ofk is deter-
mined by the ordinary derivativedk/dt. We now postulate
that the state of the system is described completely by
signing the entire set of generalized coordinates and the
eralized velocitieskt . Then the generalized principle of lea
action can be formulated by the following statement: ea
© 1998 American Institute of Physics
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mechanical system is characterized by a definite func
L(k,kt ,t), which is continuous, as is the first derivativ
and byt. Motion of the system occurs under the followin
condition.

Let the system occupy positions characterized by the
sets of values of the generalized coordinatesk$1% andk$2% at
the values of the scanning variablet5t1 andt5t2 . Then,
the system moves between these positions in such a ma
that the integral

S5E
t1

t2
L~k,k̇t ,t !dt ~1!

would have the smallest possible value~more precisely, an
extremum value!. The functionL is called a generalized La
grangian, andS is called a generalized action.

3. LAGRANGE EQUATION IN TERMS OF THE FRACTIONAL
INTEGRODIFFERENTIAL FORMALISM

We consider the motion of a certain system as evolut
in terms of the scanning variablet ~when t is the time, we
refer to temporal evolution, but in the general caset is not
identified with the time!. We vary the action according to
standard scheme~see, for example, Ref. 10!:

dS5E
t1

t2
L~k1dk,kt1dkt ,t!dt

2E t2
t1L~k,kt ,t!dt50. ~2!

As a result, we obtain the Lagrange-Euler equation

]L

]k
2

d

dt

]L

]kt
50. ~3!

At this point we note that in the case of a fractal co
tinuum the relationship between the generalized coordin
k l and the coordinates of an ordinary spacexl has a scaling
character and that the scanning variablet is the timet ~in the
simplest case of the typek l;xl

D , wherel labels the coordi-
nates andd is the fractal dimension!. Therefore, when we go
over to the laboratory reference frame of an ordinary spa
we obtain equations of the type~such an equation is an ana
log of the Lagrange equation in a fractal continuum!

]L

]xl
D 2

d

dt S ]L

]xt l

D D 50. ~4!

We perform the limiting transition from a fractal con
tinuum to a true fractal by going from the smooth functi
L(k,kt ,t) to the fractal functionL(x,ẋ,t), which is every-
where nondifferentiable. The transition is accomplished
replacing the ordinary derivatives with Riemann–Liouvi
derivatives of fractional order

D̂x
D@L~x,ẋ,t !#2

d

dt
D̂ẋ

D
@L~x,ẋ,t !#50. ~5!

Expression~5! is an analog of the Lagrange equation
terms of the fractional integrodifferential formalism.
n
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4. PRINCIPLE OF RELATIVITY IN A FRACTAL CONTINUUM

Let us assume that for a fractal continuum to be hom
geneous and isotropic relative to an ‘‘inertial’’ referen
frame, the reference frame itself must be a fractal of the sa
dimension as the fractal continuum. To fix ideas, we c
such a reference frame an inertial fractal reference fra
which is inertial in the sense that the fractal continuum
homogeneous and isotropic relative to it, and the scann
variablet is homogeneous.

The form of the LagrangianL(k,k̇t ,t) of a free material
point in the inertial fractal reference frame is specified by
following arguments: the homogeneity of the fractal co
tinuum and the scanning variable means thatL does not con-
tain explicit dependence onk and t, and the isotropy indi-
cates that there is no dependence on the direction of
generalized velocity vector~in other words,L depends on a
scalar quantity formed by components of the generalized
locity, e.g., S lkt

l kt l
), i.e., L5L(uktu2). In this case the

Lagrange equations take on the form

d

dt

]L

]kt
l 50→

]L

]kt
l 5const, ~6!

where the superscriptl labels the components of the gene
alized coordinates~or velocities!.

It is taken into account here that]L/]k l50 under the
assumption of homogeneity of the fractal continuum. Eq
tion ~6! has the following solution

kt
l 5const. ~7!

Thus, in an inertial fractal reference frame any free m
terial point moves so that the components of the general
velocity are conserved. This result is a generalization of
familiar law of inertia in classical mechanics.

Let us now consider two different initial fractal referenc
frames: K and K8, the latter of which moves with a constan
generalized velocity$Xt

l %. A material point has the sets o
generalized coordinates$k l% and $k l8% in the K and K8 ref-
erence frames. There is a relationship between the set
coordinates~the evolution of the scanning variable is a
sumed to be identical in both inertial fractal referen
frames!:

k l5k8 l1Xt
l t, t5t8. ~8!

The transformations~8! of the generalized coordinate
are analogous to the familiar Galilean transformations. T
requirement that the equations of motion of mechanics i
fractal continuum be invariant with respect to the transf
mations~8! is a generalization of the Galilean relativity prin
ciple.

5. LAGRANGIAN OF A FREE MATERIAL POINT

In developing a mechanics in a space with a noninte
dimension we shall bear in mind that upon asymptotic p
sage to an ordinary~one-, two-, or three-dimensional! space
the form of the functions and the equations describing
motion of a material point must coincide with the classic
expressions.
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We proceed to constructing the Lagrangian of a free m
terial point moving in a fractal continuum. The reasoning
analogous to that in Ref. 8. The functionL of a free material
point does not depend on the scanning variablet, the gener-
alized coordinatesk, or the direction of the generalized ve
locity vector. Thus,L depends on the square of the absol
value of the generalized velocity:

L;uktu2. ~9!

The relationship to the laboratory coordinate frame,
which the position of the point is specified by the coordin
x, is defined by the expression~a is a proportionality factor!

k5axD, kt5axD21xt . ~10!

The Lagrangian of a free material point is systematica
brought into the form

L5
m8kt

2

2
, ~11!

L5
m

2
~xD21xt!5L5

mv2

2
x2D22,

m5m8a2, v5xt , ~12!

wherem andm8 are constants.
Assuming that the fractal dimension differs only slight

from D51, we expand the function into a series in the sm
parameter (D21):

L5L0S 11
]x2D21

]D U
D51

~D21!

1
]2x2D21

]D2 U
D51

~D21!21...D
5L0~112~D21!ln~x!1$2~D21!ln~x!%21...!

5L0S (
n50

`

$2~D21!ln~x!%nD , ~13!

whereL05(mv2)/2.
If u2(D21)ln(x)u,1, the expression takes the followin

form:

L5
L0

122~D21!ln~x!
. ~14!

The result is not, in principle, unexpected, since it
known that a term with ln(x) appears when quasi-two
dimensional ~quasi-one-dimensional! structures are
considered.11

6. LAGRANGIAN OF A SYSTEM OF MATERIAL POINTS

An expression for the Lagrangian of a free particle w
derived above. It can be obtained for a system of nonin
acting particles, if we take into account the additivity ofL:

L5 (
b50

N mb8~kt!b
2

2
. ~15!
-

e

e

y

ll

s
r-

The interaction of the particles can be taken into acco
after Ref. 8 by adding a definite function of the generaliz
coordinates to~15! ~as follows from the instantaneous natu
of interaction transfer!:

L5 (
b50

N mb8~kt!b
2

2
2U~ k̄1 ,k̄2 ,k̄3 ,...!, ~16!

whereN is the number of particles andk̄ l is the radius vector
of a particle in the fractal continuum.

The equations of motion are obtained by plugging~16!
into the generalized Lagrange equations:

d

dt

]L

]kt
l 5

]L

]k l→mb

dkt
l

dt
52

]U

]k l , ~17!

where the superscriptl labels the components of the vecto
The transition to the laboratory reference frame is

complished by transformations of the coordinates:

k l5(
i 50

b l i xi
Dil . ~18!

Then the equations of motion in the laboratory referen
frame can be written in the form

1

( i 50b l i Dil n i
Dil 21wi

5(
i 50

b l i Dil k i
Dil 21 1

Fi
, ~19!

where we have introduced the notation for the generali
velocity, acceleration, and force

n i5
]k i

]t
; wi5

]2k i

]t2 ; Fi5
]U

]k i
, ~20!

i.e., in a fractal continuum the relationship between the fo
acting on a particle and the acceleration is not the dire
proportional relation~19! in the general case.

CONCLUSIONS

A space which is formed by a set of material points a
has a fractal structure cannot be identified with a true frac
therefore, such an object was termed a fractal continu
Such objects are observed in media in which phase tra
tions occur ~for example, the explosion of wires and th
breakdown of insulators!. The equation of motion of par
ticles within such an object has been derived on the basi
a generalized principle of least action. In a theoretical stu
of the motion of particles~quasiparticles! in a true fractal,
devising a Lagrange formalism is complicated by the f
that the function describing such motion belongs to the cl
of fractal functions. As we know, fractal functions are ever
where nondifferentiable; therefore, the usual procedure
finding the action extremum cannot be used. A way out
this situation has been proposed on the basis of a genera
principle of least action, which contemplates the introduct
of a scanning variable, with respect to which the Lagrang
is continuous.12 For example, we offer the following prob
lem. ‘‘A biological object, viz., a cell with a set of chromo
somes, is given. We make a mark on some fragment of
particular chromosome. Two sets of chromosomes form d
ing cell division ~in the first stage!. Let Nth divisions take
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place. Determine the location of the marked fragment.’’ T
set of points~in this case a point is a cell nucleus! is isomor-
phic to a Cantor set. The role of the scanning variable can
played by the number of the act of division.

Generalization of the law of inertia, the Galilean relati
ity principle, and Galilean transformations have been
tained by introducing the concept of an inertial fractal ref
ence frame into a space of fractal dimension.

Expressions for the Lagrangians of a free particle an
system of interacting particles, whose motion takes place
self-similar space of noninteger dimension, have also b
obtained in terms of the laboratory reference frame. In c
trast to an ordinary isotropic space of integer dimension, h
there is a dependence on the radius vector of the labora
reference frame and the dimension of the fractal continu

APPENDIX: FRACTIONAL INTEGRODIFFERENTIAL
FORMALISM

The mathematical machinery of fractional integrati
and differentiation is already sufficiently developed for a
plying it to problems in theoretical physics. However, th
machinery has not yet been widely employed.

A fractional Riemann–Liouville integral is defined b
the following expression

Î x
zF ~ f ~x!#5

1

G~z!
E

b

x f ~ t !

~x2t !12x dt. ~A1!

Definition ~7! is a generalization of the identity

~A2!

A fractional integral satisfies the identity

Î x
z
• Î x

b5 Î x
b
• Î x

z5 Î x
z1b . ~A3!

A fractional Riemann–Liouville derivative is introduce
in analogy to a fractional integral:

D̂x
z@ f ~x!#5

1

G~z!

d

dx E
b

x f ~ t !

~x2t !12z dt. ~A4!

Fractional derivatives obey the following identity:

D̂x
z
•D̂x

b5D̂x
b
•D̂x

z5D̂x
z1b . ~A5!

Fractional integrodifferential operators combine acco
ing to the following rules:
e

e
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-
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n
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-

-

D̂x
z@ Î x

z@ f ~x!##5 f ~x!,

Î x
z@D̂x

z@ f ~x!##5 f ~x!2 (
k51

[z]

D̂x
z2k@ f ~x!#U

x5z

~x2z!z2k

g~z2k11!
.

~A6!

Laplace and fractional integration operators can be co
bined:

L̂@ Î x
z@ f ~x!##5p2zL̂@ f ~x!#. ~A7!

In conclusion, we introduce a generalized Leibnitz ru

D̂x
z@ f ~x!g~x!#5 (

k50

` S z
kD D̂x

z2k@ f ~x!#D̂x
k@g~x!#, ~A8!

D̂x
z@ f ~x!g~x!#5 (

k52`

` S z
k1bD D̂x

z2b2k@ f ~x!#D̂x
b1k@g~x!#,

~A9!

where the generalized binomial coefficient equals

S z
bD5

G~z11!

G~b11!G~z2b11!

sin@p~b2z!#G~z11!G~b2z!

G~b11!
,

~A10!

and a Leibnitz equation with a residual term

D̂x
z@ f ~x!g~x!#5 (

k50

n21 S z
kD D̂x

z2k@ f ~x!#D̂x
k@g~x!#1Rn ,

~A11!

where

Rn5
~21!n

G~2z!~n21!! Ez

x

~x2t !2z21f ~ t !dt

3E
t

x

~x2s!n21D̂s
n@g~s!#ds.
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Processes involving a change in the charge states during interactions of He 21 ions
with fullerenes
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The cross sections for the elementary processes involving a change of the charge states of both
particles during the interaction of He21 ions with fullerene molecules are for the first time
measured over a broad energy range of electron-volt energies. It is found that processes involving
the capture of one or two electrons by the He21 ions are accompanied by additional
ionization of the fullerene and that the collisional contribution of the transfer-ionization processes
increases with increasing velocity. Single-electron capture is rarely accompanied by
fragmentation of the fullerene. Double-electron capture leads, with a higher probability, to
fragmentation with the formation of several light charged fragments and, with a smaller
probability, to fragmentation with the formation of a heavy charged fragment containing
an even number of carbon atoms and light fragments in an uncharged state. ©1998 American
Institute of Physics.@S1063-7842~98!00304-3#
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1. INTRODUCTION

Active research has been carried out on the interactio
fullerenes and their ions with electrons1,2 and ions.3–6 Mass-
spectrometric analyses of the ions formed have revealed
C60

q1 ions with q5125 form in collisions of fullerenes with
both ions and electrons. It was shown in an investigation
the electron-impact ionization of fullerenes1 that fragmenta-
tion is significant only in processes with multiple ionizatio
of the molecule. In collisions with slow~10–100 eV! Na1

and Ne1 ions the role of the processes with fragmentation
the fullerene is relatively minor in comparison with the fo
mation of a singly charged C60

1 ion.4,5

The precision analysis of the energy of the ions detec
after interactions with fullerenes in Ref. 7 showed that
pure excitation and ionization of a fullerene in th
kiloelectron-volt collision-energy range are negligible
comparison with the single- and double-electron-capture p
cesses.

All of these investigations were based on an analysis
the charge state of only one of the collision partners, with
exception of Ref. 3, in which measurements were perform
with the detection of both particles, but only at a single va
of the collision energy. The purpose of the present work w
to directly investigate processes with alteration of the cha
state of both collision partners upon the capture of electr
by ions over a broad range of collision velocities in the ca
of fullerenes. These processes can clearly lead to both a
tional ionization of the target molecule and its fragmentati
In the case of He21 ions the scheme of the processes inv
tigated can be written down as

He211C60→He~22k!11C602x
~q2 l !11Cs

l 11~q2k!e2, ~1!
3581063-7842/98/43(4)/3/$15.00
of

at

f

f

d
e

o-

f
e
d

e
s
e
s
e
di-
.
-

where k51,2 is the number of electrons captured by t
projectile; (q2k) is the number of free electrons formed as
result of electron capture with ionization of the target~trans-
fer ionization!; Cs

l 1 is a fragment containings carbon atoms
that was formed upon fragmentation of the molecule; a
l 50,1,... is the charge of the fragment.

The generally accepted notation containing the init
and final charge states of both collision partners$20(2
2k)q% is used below to denote the elementary proces
without fragmentation.

2. EXPERIMENTAL METHOD

A monokinetic, well collimated beam of3He21 ions
crossed a jet of fullerene molecules emerging from the c
illary of an effusion source heated to 450–480 °C. T
charge state of the ions in the beam after the collisions
analyzed using a 30° cylindrical electrostatic analyzer. T
slow ions were drawn out of the interaction zone by a u
form electric field with an intensity of 50 V/cm and wer
directed into a time-of-flight analyzer. The potentials of t
ion-optical system of the analyzer were adjusted so as
minimize the spread of the times of flight of the ions form
in the interaction zone of the primary beam with th
fullerene jet.

The cross sections for specific elementary processe
type ~1! were determined from the experimentally measu
spectra of the delay time between detection of the projec
and the recoil particle participating in the same collision. T
detection scheme included provisions for the possibility
introducing a regulated time delay between the signals
each of the two particle detection channels. This permit
separation of the processes accompanied by fragmenta
© 1998 American Institute of Physics
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into one charged fragment and one neutral fragment from
processes with fragmentation into two or more charged fr
ments of different mass. All the data presented below on
cross sections are given in the same relative units.

3. EXPERIMENTAL RESULTS

Single-electron capture.Typical mass spectra of the ta
get particles formed upon the capture of one electron
3He21 ions are presented in Fig. 1. The spectrum conta
clearly displayed peaks corresponding to the formation
singly and doubly charged C60 and C70 ions during a colli-
sion. The$2011% single-electron-capture processes and
$2012% transfer-ionization processes do not cause appreci
fragmentation of the fullerene. Only at large collision en
gies does the spectrum contain a series of satellites cause
fragmentation of the target molecule with the ejection
light fragments having a mass that is a multiple of two c
bon atoms near the C60

31 peak, which corresponds to th
$2103% process with electron capture and double ionizat
of the target. However, the fraction of C60

31 ions undergoing
fragmentation during the capture of one electron with dou
ionization amounts to less than 10% of the cross section
this process.

The $2001% process is the main process according to
size of the cross section~Fig. 2! over the entire range o
collision velocities investigated. The relative role of th
$201q% transfer-ionization processes, which lead to the f
mation of multiply charged C60

q1 ions with q52 and 3, in-
creases in the velocity range investigated from 14 to 45%
the collision velocity increases. This is apparently attrib
able to the increase in the probability of the capture of one
the inners electrons of the molecule due to an increase
the velocity of the colliding particles, which, as follows fro
the structure of a fullerene,8 leads to the formation of an
autoionization state. An increase in the contribution of
cross sections for the transfer-ionization processes as a r
of the capture of inner electrons is typical of the interact
of a particles with many-electron targets.9

Double-electron capture.The mass spectrum of the re
coil ions formed as a result of the capture of two electrons
a He21 ion ~Fig. 3! is significantly more complicated than th

FIG. 1. Mass spectrum of the recoil ions formed in single-electron-cap
processes. Energy of the3He21 ions: E568 ~a!, 6 keV ~b!.
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mass spectrum for the capture of one electron. Near e
peak corresponds to the formation of C60

q1 ions with q.1
there is a group of satellites due to fragmentation of
molecule. The most intense group corresponds to the cap
of two electrons with ionization and with the formation of
series of C602s

31 fragments. The probability of the fragmenta
tion of C60

q1 ions increases with the magnitude of the
charge, and the process involves the detachment of an
number of carbon atoms. It was established from an anal
of mass spectra obtained with different delay times in
channel for detecting the projectile that the processes un
consideration are characterized by the formation of a li
fragment in an uncharged state. As follows from our work10

such a fragmentation scheme is energetically more favora
since the polarizability coefficient of the heavy fragment
significantly greater than that of the C2 molecule.

In the left-hand part of the mass spectrum there is
group of peaks with values ofM /q from 4 to 12, which is
associated with the fragmentation of the fullerene. It w
shown experimentally that this part of the spectrum cor
sponds to processes with the fragmentation of the fuller
into two or more charged fragments.

re
FIG. 2. Relative cross sections for elementary$201q% processes due to
single-electron capture:s—$2011%, h—$2012%, ,—$2013%.

FIG. 3. Mass spectrum of the recoil ions formed in double-electron-cap
processes. Energy of the3He21 ions: E56 keV.
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The stability of a multiply charged cluster depends on
size, and it was shown in Ref. 1 that the minimum sizes
the experimentally observable fullerene fragments are as
lows: C12

21 , C20
31 , C27

41 , and C36
51 . Taking into account these

data, we can assume that among the peaks observed i
spectrum only the peaks labeled4 and5 can be identified as
corresponding only to singly charged C4

1 and C5
1 fullerene

fragments. On the other hand, it follows from our experime
tal data that the small peak labeled12 is caused by the for-
mation of a C60

51 ion. Peaks6–11 can also correspond t
multiply charged fullerene fragments.

The cross sections for the elementary processes acc

FIG. 4. Relative cross sections for elementary$200q% processes due to
double-electron capture. Processes without fragmentation:s—$2002%, j—
$2003%, n—$2004%; processes with fragmentation into a heavy charg
C(6022n) fragment withn5126 and light neutral fragments:h—$2002fr%;
,—$2003fr%, d—$2004fr%; *—S~4–11! for processes with fragmentatio
into two or more charged fragments.
s
f
l-

the

-

m-

panied by the capture of two electrons by a He21 ion are
presented in Fig. 4. Here$200q f r% denotes the total cros
sections for the processes with the formation of C58

q1 – C48
q1

fragments, andS~4–11! denotes the total cross section f
the processes with the formation of several light charg
fragments. The contribution of theS~4–11! channel to
double-electron capture is very large over the entire ra
investigated and increases with the velocity of the collidi
particles. Just this finding allows us to assume that the p
cesses with breakup of the fullerene into several fragme
which requires a great expenditure of energy, are cause
the capture of two inner fullerenes electrons by a He21 ion
in the ground state of the helium atom. The formation o
recoil ion with two inner vacancies followed by Auger dec
of the autoionization state, as well as the direct transfer of
projectile momentum to the carbon atoms, are the m
likely reasons for the dominant role of the processes with
formation of several charged fragments.
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Influence of the conduction bandwidth of the substrate on the electronic state of an
adatom

S. Yu. Davydov

A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
~Submitted February 25, 1997!
Zh. Tekh. Fiz.68, 15–19~April 1998!

The positions of the local and quasilocal levels of an adsorption system and their contributions to
the occupation number of an adatom are found within the Anderson Hamiltonian using a
simple model of the density of states. The dependence of the occupancy of an adatom on the
conduction bandwidth of a metallic substrate is analyzed. ©1998 American Institute
of Physics.@S1063-7842~98!00404-8#
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INTRODUCTION

Among the numerous applications of the Anders
Hamiltonian,1,2 which was originally proposed for describin
magnetic impurities in a metal, its use in the problem
adsorption has become very popular since the papers
Grimley3 and Newns.4 In addition, the so-called infinitely-
broad-band approximation has been used in many pub
tions, as well as in Anderson’s original paper.1 It is assumed
that the quasilevel of an impurity~or, in the terminology of
the adsorption problem, the quasilevel of an adatom! is fairly
far from the conduction band edge of the metal, i.e., it is
far that the finite value of the conduction bandwidth can
neglected. Such an approach is justified in many proble
Let us, however, imagine the following situation. Let the
be a ternary system consisting of a solid metallic substrat
submonolayer film~i.e., a film in which the relative concen
tration of adatoms or the coverageu,1!, and an atom ad-
sorbed on the film. We now assume that the coveragu
increases. The surface band formed by the overlapping o
als of the adatoms comprising the film broadens, and its fo
is modified.5–9 A similar problem can arise in a two-laye
system consisting of a substrate and a submonolayer coa
in which the desorption of an atom from the adsorbed film
studied as a function of the concentration of adatoms in it
this case the probability of electron exchange between a
sorbed atom and coating atoms, or charge exchange,
depend significantly on the conduction bandwidth of the
ter. Clearly, it is not possible to describe such a situation
the framework of the broad-band approximation. In additi
as will be shown below, if the conduction bandwidth is
nite, when an atom is adsorbed, even if its energy level
within the band, there is a possibility of the appearance
localized states above and below the band edges, whose
ence is completely ignored in the infinitely-broad-band a
proximation. Thus, the finite value of the conduction ban
width of the metallic substrate must be taken into accoun
numerous adsorption problems. The present work is dev
to an investigation of this question.
3611063-7842/98/43(4)/5/$15.00
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MODEL

Let us consider the ground state of an adsorbed o
electron atom, which is described by an Anderson Ham
tonian of the form

H5(
k

«kck
1ck1«aa1a1V(

k
~ck

1a1h.c.!. ~1!

Here«k is the dispersion law of the metallic electrons of t
substrate;ck

1(c) is the creation~annihilation! operator of
electrons in statek; a1(a) is the creation~annihilation! op-
erator of an electron at the«a level; andV is the matrix
element describing the hybridization of the states of the a
and the metal. For simplicity, we omitted the spin index a
neglected the correlation repulsion of two electrons with o
posite spins, assuming it to be so great that the presenc
two electrons in one orbital is ruled out.

Let us consider a system consisting of an adatom an
metallic substrate. We assign the density of states of
latter r~v! by the expression

r~v!51/D, uvu,D, r~v!50, uvu.D. ~2!

Here the position of the center of the band is taken as z
energy. It is easy to show~see, for example, Refs. 10 and 1!
that the adatom Green’s functionGa corresponding to
Hamiltonian~1! has the form

Ga
215v2«a2L~v!1 iD~v!. ~3!

Herev is the energy, and the broadeningD and shiftL of the
quasilevel are given, respectively, by the expressions

D5pV2/D, uvu,D, L50, uvu.D, ~4!

L5
V2

D
lnUD1v

D2vU. ~5!

The functionsD~v! and L~v! are presented in Fig. 1
Generally speaking, the transition to the infinitely-broa
band model (D→`) is somewhat artificial: it is assume
that the shift of the atomic levelL can be neglected in this
section, while the broadeningD must be taken into accoun

The density of states in the adatomra is
© 1998 American Institute of Physics
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ra~v!5
1

p

D

@v2«a2L~v!#21D2 . ~6!

The position of the local or quasilevels of the adsorpt
system is specified by the equation

v2«a2L~v!50. ~7!

The graphical method for solving Eq.~7! is presented in Fig.
1.

The band contributionnb to the occupation number of a
adatom level is specified by the expression

nb5
V2

D
•E

2D

« f dv

@v2«a2L~v!#21D2 , ~8!

where« f is the Fermi energy.
The contributionnl of a local level lying outside the

band of the continuous spectrum of the substrate to the
cupation number of the adatom is11

nl5U12
]L

]vU
v̂

21

, ~9!

where v̂ is the root of Eq.~7! corresponding to the loca
state.

Substituting the expression in~5! therein, we obtain

ne5F11
2V2

~v̂ !2
2D2G . ~10!

LOCALIZED AND QUASILOCALIZED LEVELS IN AN
ADSORPTION SYSTEM

Let us investigate the solutions of Eq.~7!. An analysis
shows that for

FIG. 1. Broadening function@D~v!# and shift function@L~v!# of an atomic
level. The conduction band of the metal is located in the rangeuvu,D. The
roots of Eq.~7! corresponding to local and quasilocal levels are denoted
arrows; a—2V2/D2.1, b—2V2/D2,1.
c-

2V2

D2 .1 ~11!

there are two solutions corresponding to the local lev
v1,2* , one of which~1! lies below the conduction band of th
substrate, while the other~2! lies above it, and one solution
corresponding to the quasilocal levelv* ~Fig. 1a!. The ful-
fillment of inequality ~11!, which corresponds to the so
called case of a ‘‘surface molecule’’~in which the strength of
the adatom/substrate-atom interaction exceeds the streng
the interaction between substrate atoms!, is simply ruled out
in the infinitely-broad-band model. The following circum
stance should be noted here. The use of expression~2! for the
density of states gives the shift functionL~v!, which has
discontinuities atv56D @see Eq.~5! and Fig. 1#. In this
case Eq.~1! always has the local solutionsv1,2* . If, however,
a more realistic model of the density of states of the s
strate, which does not have a stepwise character, is used
function L~v! has extrema of finite magnitude atv56D,
and, as a result, the solutions likev1,2* can be absent~see, for
example, Refs. 4 and 12!. If «a,0 andu«au@D, then

v1* >
«a1A«a

218V2

2
,

v2* >D$112 exp@2D~D2«a!/V2#%,

v* >D$122 exp@2D~D2«a!/V2#%. ~12!

When«a@D, the solutionv2* has the same form asv1*
from ~12!, but with a plus sign in front of the radical, andv1*
and v* are specified by the second and third formulas
~12!, but with a minus sign in front of the right-hand side an
with the replacement of (D2«a) by (D1«a) in the numera-
tor of the exponential function.

When u«au!D, we have

v1* >2D@112 exp~2D2/V2!#,

v2* >D@112 exp~2D2/V2!#,

v* >2«a /@~2V2/D2!21#. ~13!

The dependence of the roots of Eq.~7! on the energy of
the atomic level«a for ~11! in the general case is shown i
Fig. 2a. If the inequality

y

FIG. 2. Dependence of the position of the local and quasilocal levelsv i* on
the energy of the atomic level«a . v01,2* 57DR; a—2V2/D2.1, b—
2V2/D2,1.
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2V2

D2 ,1 ~14!

is satisfied, i.e., if a ‘‘weak-binding’’ regime exists, Eq.~7!
has only three roots, which are similar to those descri
above, or five roots: two~v1* andv2* ! corresponding to lev-
els localized below and above the conduction band and t
~v01* , v02* , and v0* ! corresponding to quasilocalized leve
located, respectively, in the lower half of the conducti
band (v01* ), in its central region (v0* ), and in its upper half
(v02* ). Five solutions exist when the energy of the atom
level «a satisfies the relation

«al,«a,«a2 , ~15!

where

«a1,257DR6
V2

D
ln

11R

12R
,

R5A12
2V2

D2 . ~16!

The dependence of the roots of Eq.~7! on the energy of
the atomic level«a for case~14! is presented in Fig. 2b. We
note that in the special case in which the energy of
atomic level«a coincides with«a1 or «a2 there are only four
different solutions, since in these cases eitherv01* 5v0*
5v̄01 or v02* 5v0* 5v̄02.

ELECTRON OCCUPANCY OF AN ADATOM

Let us now proceed to an investigation of the occupa
of an adatom. We first consider the contributionnl of the
local states which lie above the band and have the en
v1* . When«a→2`, the local levelv1*→«a , and

nl→~112V2/«a
2!21, ~17!

if the inequality~11! holds, andnl→1 in the case describe
by ~14!. When«a→0, we havev1* defined by~13!; there-
fore,

nl>$11~2V2/D2!@~11exp~2D2/V2!!221#%21. ~18!

When«a→`, we havev1*→2D andnl→0.
Let us now consider the contribution of the band sta

nb to the occupancy of an adatom.
In an approximation we obtain

nb>
1

p Farctan
D~v81D !

pV2 2arctan
D~v82« f !

pV2 G . ~19!

Herev85v* in the case of the fulfillment of condition~11!,
and v85v0* , if condition ~14! is satisfied, but«a lies out-
side the interval («a1 ,«a2) @see~15!#. If the inequality~14!
holds and«a lies in the interval («a1 ,«a2), and if « f<v0* ,
nb can be estimated using the following expression

nb5I 1~« f<v0* !, ~20!

where
d

ee

e

y

gy

s

I 1~« f<v0* !

>
1

4pAF1
Fsin~a/2!ln

z212zAF1 cos~a/2!1F1

z222zAF1 cos~a/2!1F1

12 cos~a/2!arctan
z22F1

2zAF1 sin~a/2!
G

z52`

z5Ef2x01

.

~21!

Here

Ea5D«a /pV2, Ef5D« f /pV2,

d5D2/pV2, x0152dR,

F1
25 f 01

2 11, f 0152dR2Ea1
1

p
ln

11R

12R
,

sin~a/2!5@~11 f 01/F1!/2#1/2. ~22!

In ~21! the lower integration limit is taken equal to2`,
rather than to the exact valuez52d2x01. This was done to
take into account the fact that the integrand in~8!, i.e., the
density of states in the adatom, vanishes asv→2D, be-
cause the shift functionL goes to infinity.

When« f.v0* ,

nb5@ I 1~« f5v0* !1I 2~« f.v0* !#. ~23!

Here I 2(« f.v0* ) is given by ~21! after the replacement o
F1 by F2 , f 01 by f 02, andx01 by x02, where

F2
25 f 02

2 11, f 025dR2Ea2
1

p
ln

11R

12R
, x0252x01,

sin~a/2!5@~12 f 02/F2!#1/2, ~24!

the upper integration limit isz5Ef2x02, and the lower in-
tegration limit is z5v0* 2x02. If Ef→D, the upper limit
should be replaced by infinity. We note that~19!, ~21!, and
~23! give overestimated values ofnb .

DEPENDENCE OF THE OCCUPANCY OF AN ADATOM ON
THE CONDUCTION BANDWIDTH

The results of the calculations of the contribution of t
local statenl and the contribution of the bandnb are pre-
sented in Figs. 3–5, respectively. It follows from Fig.
that nl decreases with increasingD. The slope of thenl(D)
curve is proportional to the proximity of the energy of th
local statev1* to the lower conduction band edge (2D)
@when D51, in Fig. 3a we havev1* 523.16 for curve1,
v1* 521.81 for curve 2, v1* 521.03 for curve 3, and
v1* >2D, while nl vanishes for curves4 and 5; see Eq.
~13!#. Whenv1* is at a distance from the lower conductio
band edge exceedingD, the value ofv1* is specified by~12!
and, therefore, depends very weakly onD ~curve1 in Figs.
3a and 3b!.

Dependences of the band contributionnb to the occu-
pancy of an adatom as a function ofD are presented in Figs
4 and 5 for various values of the occupancy of the band (« f).
We first consider the weak-binding regime~Fig. 4!. When
«a@D, the energy of the quasilevelv* >2D ~Fig. 2!, and
from ~19! we obtain
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nb>
1

p
arctan

D~D1« f !

pV2 . ~25!

As D and« f increase, the value ofnb also increases, a
is observed in Fig. 4a. In the case of«a,0 and u«au@D,
wherev* >D, the descendingnb(D) curve presented in Fig
4c is determined by the expression

n0>
1

p Farctan
2D2

pV2 2arctan
D~D2« f !

pV2 G . ~26!

As D→`, nb→0, and]nb /]« f→V2/@D(D2« f)
2#, i.e.,

the slope of thenb(D) curve increases as« f increases~Fig.
4c!. A change in the character ofnb(D) from an increasing

FIG. 3. Dependence of the contributionnl of a local level lying below the
conduction band to the occupation number on the conduction bandwidD
~solid lines!, as well as variation of the position of the local level~dashed
line! and the position of the lower conduction band edge~dot-dashed line!.
«a523 ~1!, 21.5 ~2!, 0 ~3!, 1.5 ~4!, 3 ~5!; V50.5 ~a! and 2~b!; in case~a!
the values ofnl for «a51.5 and 3 are very small and are not shown in t
figure.

FIG. 4. Dependence of the band contributionnb to the occupation numbe
of an adatom on the conduction bandwidthD (V50.5). «a53 ~a!, 0 ~b!,
23 ~c!; « f50.5D ~1!, 0 ~2!, and20.5D ~3!.
function to a decreasing function as«a varies from2` to
1` occurs when the energy of the atomic term crosses
conduction band of the metallic substrate.

Thenb(D) curve for the surface-molecule regime is pr
sented in Fig. 5. The values ofnb for the three values of the
energy of the atomic level«a53, 0, and23 are indistin-
guishable on the scales of the figure. In fact, whenpV2

@D2, instead of~19! we obtain

nb.
D~D1« f !

p2V2 , ~27!

i.e., the value of the occupancy does not depend on the
sition of the quasilevel.

Thus, the calculations show that a change in the cond
tion bandwidth of the substratedD leads to a significant
change in the occupancy of an adatomdna . Moreover, the
effect of broadening~or narrowing! of the band can excee
the effect of a change in its occupancy (d« f). If we are
referring to a three-layer system consisting of a solid s
strate with a submonolayer (u<1) metal film deposited on it
and an atom adsorbed on the surface of the film, the follo
ing can be noted. First, within both the tight-bindin
model13,14and the free-electron approximation15 the width of
the surface band of the film is proportional toa22, where
a5a(u) is the distance between nearest neighbors, wh
depends on the relative concentration of atoms in the fi
u5Nm /Nm(ML), Nm(ML) being the surface concentratio
of atoms in a monolayer. SinceNm5a22 and Nm(ML)
5d22, whered is the distance between nearest neighbors
a monolayer~ML !, we have

D~u!}D~ML !•u. ~28!

When there is a dipole-dipole interaction between
adatoms, the concentration shift of the Fermi level of t
adsorption systemd« f equals F•u3/2(nm21), where F
52e2l 2A/d3 @l is half of length of the dipole formed by a
adsorbed ion and its image in the metallic substrate,d is the
distance between nearest-neighbor adatoms in a mono

FIG. 5. Same as in Fig. 4, but forV52. The results of the calculation fo
«a53, 0, and23 coincide on the scales of the figure.
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film, nm is the occupancy of an adatom, andA>9 ~Refs. 5
and 16!#. In the case of alkali metal atoms, ifl is assumed to
be equal to half of the sum of their ionic and atomic rad
and the distance between nearest neighbors in a crystal o
alkali metal is taken asd, we obtainF>10 eV. Thus,F and
D are of the same order of magnitude. Therefore, the lin
variation of the conduction bandwidth can play the decis
role, i.e., it can influence charge exchange more stron
than can variation of the occupancy.

We thank N. D. Potekhina for some valuable commen
This work was performed as part of the Surface Atom
Structures Program.
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Dispersion relations are derived for the capillary oscillations of a charged viscous spheroidal
droplet by scalarization within perturbation theory using an expansion in two small parameters,
viz., the magnitude of the perturbation of the spheroidal surface as a result of thermal
fluctuations and the magnitude of the deviation of the equilibrium spheroidal droplet shape from
a spherical shape. It is shown analytically that the motion spectrum of the liquid consists
of two components that interact in the linear theory: toroidal vortex motion and poloidal potential
motions. A numerical analysis reveals that the instability growth rates of the higher modes
of a highly charged droplet increase with enhancement of the degree of spheroidal strain and
decrease rapidly as the viscosity of the liquid increases. ©1998 American Institute of
Physics.@S1063-7842~98!00504-2#
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The investigation of the capillary oscillations of
charged droplet of a viscous liquid and its stability against
self-charge is of interest for geophysics, technical phys
chemical engineering, etc. The experimental and techn
investigation of this object has been the subject of numer
publications.1 Nevertheless, many questions related to t
problem have been studied to only a small extent. This re
primarily to the physical mechanism for the development
the instability of a charged droplet with respect to its se
charge. Rayleigh showed2 that the first of the infinite set o
capillary modes of a highly charged droplet to experien
instability is the fundamental mode, which is proportional
the Legendre polynomialP2(cosb). The development of in-
stability causes the droplet to stretch out into a figure tha
spheroidal in the linear approximation with respect to
square of the eccentricity.3 This naturally raises the questio
of how alteration of the shape of an originally spheric
droplet influences the laws governing the realization of
instability of the higher capillary modes. The correspond
problem was formulated in Ref. 3, but it was solved only
a qualitative level of rigor. Nevertheless, it was ascertain
that the critical conditions for the realization of the instabil
of capillary modes higher than the fundamental mode e
as the eccentricity of a highly charged spheroidal drop
increases. This phenomenon underlies the qualitative ph
cal mechanism for the realization of the instability of
charged droplet proposed in Ref. 3. In Ref. 4 an attempt
made to find the spectrum of capillary oscillations and dam
ing decrements for a charged spheroidal droplet of a visc
liquid in a one-dimensional electrostatic field by writing o
the Lagrangian of the oscillatory system with considerat
of the dissipation. The spectra of the capillary oscillatio
and their damping decrements for a spheroidal viscous d
let were calculated analytically in Refs. 5 and 6.

The investigation of the temporal evolution of the am
plitude of the fundamental mode of a droplet which is u
stable toward its self-charge in Ref. 7 called for a search
a rigorous solution of the problem of the influence of t
3661063-7842/98/43(4)/7/$15.00
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spheroidal shape of a charged droplet on the growth rate
the instability of its various modes toward its self-charge

1. We shall solve the problem of the axisymmetric ca
illary oscillations of a charged prolate spheroidal droplet o
viscous, ideally conducting liquid, assuming that the sphe
dal shape of the droplet is caused either by virtual deform
tion or by the action of some stationary~not dependent on
the time and the droplet shape! extraneous forces of nonelec
trical nature~see the Appendix!. We present the solution in
dimensionless variables, setting the radiusR of the original
spherical droplet, the densityr, and the surface tensions
equal to unity:R51, r51, s51. Then, as units of measur
of the distance, time, charge, pressure, velocity, and visc
ity, we obtain the characteristic valuesr * 5R, t*
5R3/2r1/2s21/2, Q* 5R3/2s1/2, p* 5R21s, u*
5R21/2r21/2s1/2, andn* 5R1/2r21/2s1/2.

The equation of the surface of a prolate spheroid p
turbed by capillary wave motion in spherical coordinates
the linear approximation with respect toe2, i.e., the square
of the eccentricity of the spheroid, has the form

r 5r ~u!1j~u,t !'11e2h~u!1j~u,t !;

r ~u!5
~12e2!1/6

~12e2 cos2 u!1/2; h~u!5
1

6
~3 cos2 u21!,

~1.1!

which describes an equilibrium spheroidal droplet surfa
perturbed by capillary oscillations that occur because of
thermal motion of the molecules and have an amplitu
;AkT/s ~herek is Boltzmann’s constant, andT is the ab-
solute temperature!. We also note that for most liquids th
amplitude of such thermal capillary oscillations is of the o
der of an angstrom unit.

The ensuing analysis is performed within perturbati
theory using an expansion in the small parametersj ande2

~in the order indicated! to terms;j and ;e2j, i.e., in the
linear approximation with respect toj. We note that the
small parameterse2 andj are independent, but it is assume
© 1998 American Institute of Physics
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thate2@j. For this reason, it would appear that, if we reta
the terms;e2j, we should also take into account the term
;e4. However, as will be seen below, only the terms;j
and ;e2j make contributions to the dispersion relatio
sought, while the terms;e2 and ;e4 vanish when the ki-
nematic boundary condition~which contains a partial deriva
tive with respect to time! is taken into account. Therefore
retention of the terms;e4 in the calculations would only
lead to an unjustified increase in the unwieldiness of
mathematical manipulations.

The time dependences of the velocity fieldU(r ,t), the
pressure fieldp(U,t), and the perturbationj(u,t) are as-
sumed to be exponential, i.e.,;exp(st).

We write out the system of hydrodynamic equations
scribing the motion of a viscous liquid in a droplet that
caused by a small perturbationj(u,t) of the shape of its
equilibrium surface and is therefore characterized by a
locity field U(r ,t), which is proportional to the small param
eter j. The system consists of a linearized Navier-Stok
equation and the incompressibility condition

]U

]t
52“~p~U,t !!1n¹2U; ~1.2!

div U50, ~1.3!

wherep(U,t) is an addition to the pressure within the liqui
which is first-order with respect toU ~with respect toj!.

The following boundary conditions should hold on th
droplet surface~1.1!:

]F~r ,t !

]t
1U•“F~r ,t !50;

F~r ,t ![r 2@11e2h~u!1j~u,t !#50; ~1.4!

t•~n•“ !U1n•~t•“ !U50; ~1.5!

2p~U,t !12nn•~n•“ !U2pE~j!1ps~j!50, ~1.6!

wheren andt are the vectors of a normal and a tangent
the surface, andpE(j) and ps(j) are additions to the pres
sure of the electric field and the pressure of the surface
sion forces that result from the perturbation of the equil
rium surface of the spheroid and are first-order with resp
to j.

We also require fulfillment of the condition for con
stancy of the droplet volume

E
0

p

j~u,t !sin u du50 ~1.7!

and the condition for a stationary center of mass

E
0

2pE
0

p

j~u,t !er sin u du dw50, ~1.8!

whereer is the radial unit vector of the spherical coordina
system.

We note that in solving the problem in the first-ord
approximation with respect to the small parametersU andj,
it is sufficient to take the boundary conditions~1.4!–~1.6! on
e

-

-

s

n-
-
ct

the unperturbed surface of the spheroidal dropletr 5r (u)
'11e2h(u), since they consist of terms that are linear inU
andj.

The system of vector equations~1.2! and ~1.3! with the
boundary conditions~1.4!–~1.6! and the additional condi-
tions ~1.7! and ~1.8! comprises the complete mathematic
formulation of the problem posed.

2. We solve the system of equations~1.2! and ~1.3! by
scalarization, which was described in detail in Ref. 8. F
this purpose, we represent the velocity fieldU(r ,t) in the
form of the expansion

U~r ,t !5N̂1F1~r ,t !1N̂2F2~r ,t !1N̂3F3~r ,t !, ~2.1!

where theF i(r ,t) are scalar functions, and theN̂i are differ-
ential vector operators, which have the following forms in
spherical coordinate system:

N̂1[“; N̂2[“3r ; N̂3[“3~“3r !. ~2.2!

Substituting the expansion~2.1! into ~1.2! and ~1.3! and
using the properties of operators~2.2! N̂k¹

25¹2N̂k , N̂j
1

•N̂k50 ~for kÞ j ! and N̂1
152N̂1 , we can easily transform

the system of vector equations~1.2! and~1.3! for U(r ,t) and
p(U,t) into a system of scalar equations for the scalar fu
tions Fk(r ,t):

¹2Fk~r ,t !2
s

n
~12dk1!Fk~r ,t !50 ~k51, 2, 3!;

p~U,t !52sF1~r ,t !. ~2.3!

Here the superscript plus sign denotes a Hermitian conjug
anddk j is the Kronecker delta.

The boundary conditions~1.4!–~1.6! should also be re-
written in terms of the scalar functionsFk(r ,t). Using ~2.1!
and ~2.2! and writing out the representations of the comp
nents of the velocity vectorU(r ,t) in terms of the functions
Fk(r ,t), after some simple, but cumbersome mathemat
transformations6 we can obtain the kinematic boundary co
dition for the axisymmetric case in the linear approximati
with respect toe2

r 51: sj2H F]F1

]r
2¹V

2 S F3

r D G2e2Fh~u!
]

]r

3S ]F1

]r
2¹V

2 S F3

r D D1sin u cosu
]

]u

3S F1

r
1

1

r

]

]r
~rF3! D G J 50; ~2.4!

the dynamic boundary condition for the tangential comp
nents of the stress tensor~1.5! breaks up into two conditions
in accordance with the need to select two mutually perp
dicular vectors as unit vectors that are tangential to the
face
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r 51: H ¹V
2 F]F2

]r
2

F2

r G1e2F ~cos2 u21!

3¹V
2 S F2

r D1h~u!¹V
2 ]

]r S ]F2

]r
2

F2

r D
1sin u cosu

]

]u
~41¹V

2 !S F2

r D G J 50; ~2.5!

H ¹V
2 F2

]

]r S F1

r D1
]2F3

]r 2 2~21¹V
2 !S F3

r 2 D G
22e2F ~3 cos2 u21!F]2F1

]r 2 2
1

r

]F1

]r G
2~2 cos2 u21!¹V

2 S F1

r 2 D2~5 cos2 u22!

3¹V
2 S 1

r

]F3

]r D1~4 cos2 u21!¹V
2 S F3

r 2 D2
1

2
h~u!

3¹V
2 ]

]r F2
]

]r S F1

r D1
]2F3

]r 2 2~21¹V
2 !S F3

r 2
D G

1sin u cosu
]

]u F]2F1

]r 2 2
1

r

]F1

]r
2~21¹V

2 !S F1

r 2 D
22~11¹V

2 !S 1

r

]F3

]r D2~22¹V
2 !S F3

r 2 D G G J 50;

~2.6!

and the dynamic boundary condition for the normal com
nent of the stress tensor is

r 51: H sFF11e2h~u!
]F1

]r G
12nF F]2F1

]r 2 2¹V
2 S ]

]r S F3

r D D G1e2h~u!
]

]r

3F]2F1

]r 2 2¹V
2 S ]

]r S F3

r D D G1sin u cosu
]

]u

3F2

r

]F1

]r
2

F1

r 2 1
]2F3

]r 2 1
]

]r S F3

r D2¹V
2 S F3

r 2 D G G
2pE~j!1ps~j!J 50;

¹V
2 [

1

sin u

]

]u S sin u
]

]u D . ~2.7!

System of equations~2.3! with conditions ~2.4!–~2.7!
comprises the mathematical formulation of the problem
ing solved in a scalarized form. The solutions of Eqs.~2.3! in
the spherical coordinate system which are regular at the p
r 50 have the form

F1~r ,t !5 (
m52

`

Cm
1 r mYm

0 ~u!exp~st!;
-

-

int

F2,3~r ,t !5 (
m52

`

Cm
2,3i mSAs

n
r DYm

0 ~u!exp~st!, ~2.8!

wherei m(x) is a modified spherical Bessel function.
It is also convenient to representj(u,t) in the form of an

expansion in spherical functions

j~u,t !5 (
m52

`

ZmYm
0 ~u!exp~st!, ~2.9!

where theZm are constants.
In expansions~2.8! and ~2.9! the minimum value of the

index m52 because of the additional conditions~1.7! and
~1.8!.

3. The relation between the unknown constantsCm
k (k

51, 2, 3) in expansions~2.8! and the coefficientsZm in the
expansion of the perturbation functionj(u,t), as well as the
expression for the complex frequency of the capillary os
lationss are determined from the boundary conditions~2.4!–
~2.7!.

It is easy to see that in the case of axisymmetric osci
tions the boundary condition~2.5! for F2(r ,t) is completely
autonomous, i.e., it does not contain any other unkno
function. Therefore, we describe its treatment, concentra
our attention on the boundary conditions~2.4!, ~2.6!, and
~2.7! for F1(r ,t), F3(r ,t), andj(u,t).

Substituting solutions~2.8! and ~2.9! into conditions
~2.4!, ~2.6!, and~2.7!, using the recurrence relations for cy
lindrical spherical functions, representing the produ
cos2 u•Ym

0 (u), h(u)•Ym
0 (u), and

sin u•cosu
]Ym

0 ~u!

]u

in the form of expansions in spherical functions,9 and ne-
glecting the interaction between different modes, in the l
ear approximation with respect toe2 from the kinematic
boundary condition we can obtain~2.4!

Cm
1 $m1e2@m~m21!23#¸m%1Dm

3

3H m~m11!1e2¸mFAs

n
f mSAs

n D ~m~m11!23!

1~m11!~m~m21!23!G J 2sZm50, ~3.1!

from the dynamic boundary condition for the tangential co
ponent of the stress tensor~2.6! we can obtain
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Cm
1 H 2~m21!1e2¸m2~m21!F ~m22!2

9

m~m11!G J
1Dm

3 H F s

n
12~m221!22As

n
f mSAs

n D G
1e2¸mF s

n
~m22!12~m221!

3S ~m22!2
9

m~m11! D1As

n
f mSAs

n D
3S s

n
12~m21m12!1

18

m~m11! D G J 50, ~3.2!

and from the dynamic boundary condition for the norm
component of the stress tensor~2.7! we can obtain

Cm
1 H F s

n
12m~m21!G1e2¸mF s

n
m

12~m323m224m13!G J 1Dm
3 H 2m~m11!

3F ~m21!1As

n
f mSAs

n D G1e2¸m2

3F s

n
~m~m11!23!1~m11!~m323m224m13!

2As

n
f mSAs

n D ~4m~m11!23!G J
1ZmH ~m21!~m12!

am

n

1e2¸mF ~m12!~m24!
am

n
23

m2

n G J 50. ~3.3!

In expressions~3.1!–~3.3! we introduced the following
notation:

¸m[
m~m11!

3~2m21!~2m13!
; Dm

3 [Cm
3 i mSAs

n D ;

f mSAs

n D[

i m11SAs

n D
i mSAs

n D ; am[12
W

~m12!
; W[

Q2

4p
.

Equation ~3.3! was written using expressions for th
first-order additions to the pressure of the electric for
pE(j) and the pressure of the surface-tension forcesps(j)
with respect to the small parameterj, which have the follow-
ing forms in the axisymmetric case with neglect of the int
action between different modes7,10
l

s

-

pE~j!'
Q2

4p (
m52

`

$@~m21!1e2

3~m24!¸m#Zm%Ym
0 ~u!exp~st!;

ps~j!' (
m52

`

$@~m21!~m12!2e22

3~m21m14!¸m#Zm%Ym
0 ~u!exp~st!.

The condition that the determinant of the system
equations~3.1!–~3.3! vanish yields the dispersion relation o
the problem being solved in the linear approximation w
respect toe2

s@s21m~m21!~m12!am#12nFs2~m21!~2m11!

2As

n
f mSAs

n D ~s21m~m21!~m12!am!G
24n2m~m21!~m12!sAs

n
f mSAs

n D
1e2¸mH sF ~s21m~m21!~m12!am!

3S 2~m21!1As

n
f mSAs

n D D
23~~2m21!~m12!am1m3!G
12nFs2S 2m328m214m2101

9

mD1As

n
f mSAs

n D
3S s2S 2m22m121

9

m~m11! D13S 2m22m13

2
6

~m11! D ~m12!am13m3D G14n2sAs

n
f mSAs

n D
3F5m315m212m2

18

~m11!G J 50. ~3.4!

The general form of the motions of the liquid realize
~the branches of the dispersion relation! in the form of plots
of Res5Res(W) and Ims5Im s(W) obtained by numerica
calculations using~3.4! for m52, n50.03, ande250.2 is
presented in Fig. 1. Branches1–3 correspond to capillary
motions of the liquid, and branches4, 5, 6, and7 correspond
to aperiodically damped poloidal vortex motions. The ge
eral form of thes5s(W) curves for the higher modes o
capillary oscillations~with m.2! is qualitatively similar.
Thus, the roots of Eq.~3.4! form an infinite set with two
parameters: the first parameter is the mode number of
capillary oscillationsm, and the second parameter is th
number of the root of Eq.~3.4! for a fixed value ofm.

It is seen from Fig. 1 that the poloidal vortex motion
exhibit aperiodically rapidly damped behavior. The calcu
tions show that their damping decrements increase rapidl
the mode numberm increases. As the degree of spheroid
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strain increases~ase2 increases!, the decrements of the po
loidal motions ~as well as the motions corresponding
branches2 and 3! decrease slightly~by hundredths of their
relative magnitude!.

As for the laws governing the realization of the instab
ity of different modes of a highly charged droplet as t
degree of spheroidal strain increases, Figs. 2a–c pre
plots of the dependence of the instability growth rates for
fundamental (m52), sixth (m56), and tenth (m510)
modes on the square of the eccentricitye2: Res5Res(e2).
The plots presented in Fig. 2 were calculated numeric
using ~3.4! for W516 @the critical value of the Rayleigh
parameter for the realization of droplet instability, i.e., f
loss of stability of the fundamental mode, isW54 ~Ref. 2!#

FIG. 1. Dependence of the real and imaginary components of the frequ
on the value of the Rayleigh parameterW, which characterizes the stabilit
of a droplet against its self-charge.
ent
e

ly

and for various values of the viscosity of the liquid~curve1
corresponds ton50.03, curve 2 to n50.1, curve 3 to
n50.36, curve4 to n50.8, and curve5 to n51.2!.

It is not difficult to see from Fig. 1 that the growth rat
of the fundamental mode decreases ase2 increases~generally
speaking, this is consistent with Le Chatelier’s principl!.
The growth rates of the higher modes behave differently
e2 increases, depending on the value of the viscosityn : at
smalln they decrease with increasinge2, and beginning at a
certain value ofn, which differs for different modes, they
begin to increase with increasinge2. The same behavior is
associated with the effect of two different responses
physical parameters of an oscillatory system~which a droplet
is! to an increase ine2: on the one hand, an increase ine2

should lead to an increase in the growth rates of the hig
modes because of the increase in the surface charge de
on the apices of the spheroid,3 and, on the other hand, th
suppressing influence of the viscosity should have the st
gest effect on the fast motions of the liquid~caused by the
large growth rates of the higher modes!. Since the damping
decrements of the capillary oscillations decrease with
creasinge2, while the growth rates increase, at a certa
viscosity these two tendencies should neutralize one ano
as was found in the numerical calculations. This effect
gins to be manifested for different modes at different valu
of the viscosity~which we shall mark with an asterisk!: for
the mode withm54 at n[n4* '0.58, for m56 at n6*
'0.165, and form510 at n10* '0.068. The plots of Res
5Res(e2) calculated for such values of the parameters
straight lines parallel to thee2 axis, i.e., they do not depen
on e2. Whenn.nm* , the instability growth rate of themth
mode increases ase2 increases.

The foregoing statements can be illustrated by an an
sis of Eq.~3.4! asn→0. The dispersion relation~3.4! for an
ideal liquid (n50) takes the form

s0
2'2H m~m21!~m12!am2e2@m32~2m21!

3~m12!uamu#
m~m11!

~2m21!~2m13! J . ~3.5!

It is easily seen from~3.5! that the sign of the addition to

cy
FIG. 2. Dependence of the instability growth rates on the square of the eccentricity.
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the instability growth rate associated with the spheroi
shape of the droplet is determined by the sign of the exp
sion in the square brackets. Whenm3.(2m21)
3(m12)uamu, as in the case ofW516 for m,4, the sign of
the addition is negative~under this condition the multiplie
uamu determines the degree of supercriticality of the drop
charge for each of the modes!. When the opposite relation
holds, i.e., when the mode number is high, the sign of
addition is positive. Similar dependences are also discove
in a numerical analysis of the dispersion relation~3.4! when
the viscosity is taken into account~Fig. 2!.

It should be noted that the range of variation ofe2 from
0 to 0.5, which was used to construct the plots in Fig. 2, w
taken only for clarity and for the possibility of qualitativel
predicting the possible behavior of the growth rates as
degree of spheroidal strain increases, since Eq.~3.4! was
derived for the rangee2!1.

The dispersion relation for the oscillatory frequencies
a charged spherical droplet of a viscous liquid8,11 can
be obtained in a relatively simple manner from~3.4! when
e250.

4. Returning now to consideration of the boundary-va
problem defined by~2.3! and ~2.5! for the scalar function
F2(r ,t) and substituting solution~2.8! into condition~2.5!,
we can easily write an equation of the form

Dm
2 HAs

n
f mSAs

n D 1~m21!1e2F23As

n
f mSAs

n D ¸m

1S s

n
1~m21!2211

12

m~m11! D¸m2
2

3G J 50;

Dm
2 [Cm

2 i mSAs

n D . ~4.1!

Condition ~4.1! can be satisfied in two ways.
1! By setting all the coefficientsDm

2 equal to zero. This
corresponds to setting the entire scalar functionF2(r ,t)
equal to zero. Essentially just this case was considered a
whenF2 was disregarded. The motions of the liquid appe
ing in a droplet are then characterized by the dispersion
lation ~3.4! and do not have a toroidal component, sin
Uw50.

2! By equating the expression in the curly brackets
zero. If the relation obtained in the latter case is solved
f m(As/n) in the linear approximation with respect toe2, it
takes the form

As

n
f mSAs

n D 1~m21!1e2H F s

n

1S ~m21m23!1
12

m~m11! D G¸m2
2

3 J 50. ~4.2!

Expression~4.2! is the dispersion relation characterizin
the spectrum of toroidal vortex motions of the liquid d
scribed byF2(r ,t), as well the poloidal motions describe
by F3(r ,t), due to thermal fluctuations. Figure 3 prese
l
s-

t

e
ed

s

e

f

ve
-
e-

r

s

the results of a numerical calculation of the spectrum of
roidal motions withe250.2 for the first 22 modes in the
form of plots of

s

n
5

s

n
~m!,

where m is assumed by convention to vary continuous
rather than discretely, for the first several roots. It is seen
liquid motions of this type are aperiodically strong
damped. The dependence of the damping decrements o
toroidal vortex motions one2 is very weak and does no
exceed hundredths of their relative magnitude in the rang
variation of e2 from 0 to 0.5. The set of solutions of th
dispersion relation~4.2! has two parameters: the first param
eter is the mode number of the capillary oscillationsm, and
the second parameter is the number of the root of Eq.~4.2!
for a fixed value ofm.

It is noteworthy that the boundary-value problem for d
termining F2(r ,t) is completely autonomous and is not r
lated in any way to the perturbation of the surfacej(u,t) or
to F1(r ,t) andF3(r ,t). It follows from this that in the linear
formulation of the problem solved here a toroidal moti
does not have any influence on the capillary oscillations
the droplet as a whole~i.e., does not have an influence o
shaping the surface relief of the droplet! and does not interac
with the poloidal motions of the liquid. An interaction be
tween these two types of motions with the formation of
single toroidal-poloidal vortex is realized only in the nonli
ear stage.

5. According to the results obtained above, the values
the growth rates of the unstable modes withm.3 decrease
with increasing viscosity and increase as the degree of s
roidal strain increases. This finding points out the possibi
of a path for the development of the Rayleigh instability o
highly viscous droplet other than the one described in R
12 for low-viscosity liquids. In the case of low-viscosity liq
uids, when the stability criterion for the fundamental mo
of capillary oscillations is satisfied, the droplet begins
stretch into a spheroid, thereby generating~because of the
increase in the local charge density on the apices of
spheroid! the instability of the higher modes of capillar
waves. The superposition of the unstable higher modes le
to the formation of emitting tips on the apices of the drop

FIG. 3. Dependence of the first several roots of the dispersion relation~4.2!
for aperiodically damped toroidal vortex motions of a liquid on the mo
numberm. The numbers of the curves correspond to the roots of the
persion relation for toroidal vortex motions.
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~Taylor cones13,14!, from which the emission of highly dis
perse, highly charged smaller droplets that carry off cha
and mass from the unstable droplet begins. The growth
formation of such emitting tips takes place on a backgrou
of the continued~because of the increase in the amplitude
the very unstable fundamental mode! stretching of the drop-
let into a spheroid, which stops only after the emission
charge and mass begins. In the case of highly viscous
uids, it should be taken into account that, according to
data presented above, the degree of suppression of the i
bility growth rates of the various modes by the viscos
increases as the mode number increases. Thus, the situ
in which the instability growth rates of the higher mod
~with m>10! are smaller than the instability growth rate
the fundamental mode for a highly viscous droplet is real
this case, before the emitting tips are formed and the em
sion of charge and mass begins, the droplet is so stretc
out that the criterion for its instability toward dividing int
halves at high degrees of strain is satisfied.15,16 As a result,
the droplet breaks into two parts of comparable size, eac
which is then stable toward its self-charge.

Thus, for highly viscous liquids, in which the dimensio
less parametern@r/(Rs)#1/2 is greater than unity, a qualita
tively different ~in comparison to the case of low-viscosi
liquids12! path for the realization of the instability of a drop
let toward its self-charge is division into two parts of com
parable size. It is clear that the fulfillment of the criterio
n@r/(Rs)#1/2@1 is also possible in the case of low-viscos
liquids for very small droplets. It is not difficult to see th
this condition will be satisfied for water droplets whenR
<0.02mm. This phenomenon can occur in, for examp
mass-spectrometric experiments on thermally unstable
nonvolatile substances, where highly charged droplets
submicron dimensions that satisfy the conditi
n@r/(Rs)#1/2@1 are emitted from the end of the capilla
through which the working liquid is supplied. Considerati
of the relaxation of the viscosity17 enhances the role of th
channel for the breakup of a highly charged droplet un
discussion,

APPENDIX

The equilibrium shape of a droplet is determined by
condition of balance between the time-independent press
acting on the surface, which is obtained from the bound
condition for the normal component of the stress tenso
the absence of motion of the liquid

2~p02pex!2pE
01ps

050.

Herep0 is the pressure within the liquid,pex is the external
pressure,pE

0 is the pressure of the electric forces, andps
0 is
e
nd
d
f

f
q-
e
ta-

tion

n
s-
ed

of

,
nd
of

r

e
res
y
n

the pressure of the surface-tension forces on the equilibr
droplet surface. It follows from the Navier-Stokes equati
that p05const. For an extended spheroid in the linear a
proximation with respect to the square of the eccentricity
the spheroide2 it is not difficult to obtain3

pE
05

Q2

8p F11
1

3
e2~3 cos2 u21!G ;

ps
052F11

1

3
e2~3 cos2 u21!G .

To maintain the equilibrium spheroidal shape of a dro
let, an external pressurepex which does not depend on th
time or the shape of the droplet surface must be created.
pressure is specified by the pressure balance condition

pex5p022S 12
Q2

16p D F11
1

3
e2~3 cos2 u21!G .

This pressure can be, for example, an ultrasonic p
sure.
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The dependence of the ion current density in an expanding laser plasma on the parameters of the
laser radiation, the target material, and the distance from the target is investigated
theoretically. Calculations needed to design laser ion sources for accelerator technology are
performed. An explanation for the two-peaked shape of the collector signals observed in some
experiments with a laser plasma is given. Additional possibilities for obtaining information
on the experimental conditions from collector signals are considered. ©1998 American Institute
of Physics.@S1063-7842~98!00604-7#
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In this paper we calculate the ion current dens
j 5Zn1u in a laser plasma expanding along a normal to
target surface and investigate the dependence of this qua
on the parameters of the laser radiation, the target mate
and the distance from the target~Z is the mean charge of th
ions,n1 is the ion density, andu is the expansion velocity o
the ions along the normal!.

There have been only a few calculations modeling
collector signals in experiments with a laser plasma,1,2 and
they did not address the problem of elucidating the dep
dence of the ion currents on the parameters of the exp
ment. This topic is important both for designing laser i
sources for accelerator technology and for interpreting
results of collector diagnostics of expanding laser plasm

QUASI-TWO-DIMENSIONAL MODEL OF A LASER PLASMA

All the calculations in the present work were perform
using the quasi-two-dimensional two-temperature hydro
namic model of a laser plasma proposed in Ref. 3. T
model was previously used with success to calculate
charge composition of ions in an expanding laser plasm4

the temperature of the laser plasma,5 and several recombina
tion effects.6,7 According to this model, a laser plasma
simulated by ‘‘large particles’’ of equal mass in the form
thin disks. Under the action of the forces of the gas-kine
pressure, the disks can move along a normal to the ta
and their radius can vary. The transverse expansion of
disks is considered in the self-similar approximation, i.e.,
radial expansion velocities of inner points on a disk are
lated to the radial velocity of the disk boundary by the la
v r(j)5urj/r , wherej is the radial coordinate of the inne
point on the disk, andr and ur are the radius and radia
velocity of the disk boundary. Thus, the quasi-tw
dimensional model is something midway between the p
one-dimensional model of a plasma and the cylindrica
symmetric two-dimensional model.

The model incorporates the following physical pr
cesses: the absorption of laser radiation by an inverse bre
strahlung mechanism and reflection from a plasma layer w
the critical density;8 electronic heat conduction with consid
3731063-7842/98/43(4)/5/$15.00
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eration of the classical restriction of the heat flux;9 heat ex-
change between electrons and ions in elastic collision10

ionization processes in the mean-charge approximation w
consideration of electron-impact ionization, three-body
combination, dielectronic recombination, an
photorecombination;11 and the energy balance for the inela
tic processes. In the energy balance for the inelastic p
cesses the energy returned to plasma electrons upon
three-body recombination of ions through highly excit
states is taken into account using the formula proposed
Ref. 12,

Et57310222~ne /Z!2/3/Qe@erg#,

whereQe is the electron temperature in electron-volts.
This is the essential difference between the pres

model and the models of other authors.

DEPENDENCE OF THE ION CURRENT DENSITY ON THE
PARAMETERS OF THE LASER RADIATION, THE
TARGET MATERIAL, AND THE DISTANCE FROM THE
TARGET

The simplest functional dependence of the ion curr
density j 5eZn1u on the parameters of the experime
can be obtained by assuming thatn1;Wlas/(ZTeL

3) and
u;(ZTe /mi)

1/2, whereWlas/ZTe is an estimate of the num
ber of ions generated by the laser pulse,L the distance from
the target, and the expansion velocity of the ions is estima
from the velocity of soundus in the heating phase. Hence w
obtain

j ;eWlasL
23mi

21/2~Z/Te!
1/2. ~1!

It is seen from formula~1! that the ion current density is
proportional to the laser pulse energyWlas, is inversely pro-
portional tomi

1/2, and depends most strongly (;L23) on the
distance to the target. All the remaining dependences are
significant.

Let us consider the main dependences of the ion cur
density on the parameters of the heating radiation in the
ample of an expanding gold plasma heated by a rectang
pulse from a CO2 laser. All the calculations of the ion curren
© 1998 American Institute of Physics
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densities presented in this section correspond to a dist
from the target equal to 1 m, unless stated otherwise
addition, for brevity, the time dependence of the ion curr
density will be called the ion pulse below.

Figure 1 presents the ion pulses for various laser pow
P in the range 108– 109 W. The laser pulse duration and th
focal spot diameter weret5100 ns andd51 mm. The cal-
culations presented in Fig. 1 attest to an increase in the
plitude of the ion pulse in accordance with estimate~1! and
to a decrease in the delay time of the beginning of the
pulse as the power of the laser radiation increases~the delay
time is measured from the beginning of the laser pulse!. Such
dependences are attributed to increases in the laser puls
ergy and, consequently, in the number of ions generated
the laser radiation, as well as to increases in the plasma
perature and, consequently, in the expansion velocity of
ions.

Figure 2 presents the ion pulses for various diameter
the focal spot of the laser radiation and equal values of
other parameters. The results presented in Fig. 2 attest
decrease in the amplitude of the ion pulse and the delay
of the ion pulse as the focal spot diameter decreases. The
also a fairly simple explanation for these dependences.
the focal spot diameter decreases, the plasma temper
and, consequently, the expansion velocity of the ions
crease, causing a decrease in the delay time of the ion p
On the other hand, when the focusing is sharper and
energy of the laser radiation is fixed, the amount of plas
produced in the heating phase decreases, and, more im
tantly, the lateral expansion of the plasma increases.
latter leads to a considerable decrease in the number of
traveling along a normal to the target in the far zone, wh
is the decisive factor causing a decrease in the amplitud

FIG. 1. Dependence of the ion pulse on the power of the laser radiation
d51 mm, t5100 ns, l510.6mm, L51 m; P, W/cm2: 1—109, 2—3
3108, 3—108.
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the ion pulse as opposed to the increase in it due to
increase in the expansion velocity.

The dependence of the ion pulse on the atomic weigh
the target is presented in Fig. 3. As the atomic weight of
target increases, the amplitude of the ion pulse decrease
accordance with estimate~1!, and the delay time of the ion
pulse increases. These dependences are attributed to th
creases in the expansion velocity and the number of ion
the atomic weight of the target increases.

The dependence of the ion pulse on the wavelength
the laser radiation is presented in Fig. 4. It is the weakes
all the dependences considered. The relatively small incre
in the amplitude and delay time of the ion pulse with d
creasing wavelength is attributed to some decrease in
temperature and lateral expansion of the plasma as the w
length of the laser radiation is diminished. When the foc
ing is sharper, the decrease in the quantity of material vap
ized due to the decrease in the absorption of long-wavelen
laser radiation in comparison to short-wavelength radiat
will act in the same direction.

u,

FIG. 2. Dependence of the ion pulse on the diameter of the focal spot o
laser radiation. Au,P5108 W/cm2, t5100 ns,l510.6mm, L51 m; d,
mm: 1—1.0, 2—0.6, 3—0.2.

FIG. 3. Dependence of the ion pulse on the target material.P
5108 W/cm2, d51 mm, t5100 ns,l510.6mm, L51 m; 1—C, 2—Fe,
3—Au.
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The dependence of the ion pulse on the laser pulse
ration turned out to be highly significant. The results of t
calculation of the ion pulses for laser pulse durations fr
100 to 1000 ns in Fig. 5 show that in the general case the
pulse consists of two peaks: a fast peak and a slow peak
small laser pulse durations the ion pulse consists of one
peak. As the laser pulse duration increases, a second
appears at slow velocities. When the pulse duration is su
ciently long, the slow peak begins to strongly predomin
over the fast peak. The fast peak is caused by ions wh

FIG. 4. Dependence of the ion pulse on the wavelength of the laser ra
tion. Au, P5108 W/cm2, t5100 ns,L51 m; l, mm: 1—1.06,2—3.0,3—
10.6.

FIG. 5. Dependence of the ion pulse on the duration of the laser radia
P5108 W/cm2, d51 mm, l510.6mm, L51 m; t, ns: 1—1000,2—600,
3—300,4—100.
u-

n
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st
ak
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origin is associated with the initial nonstationary heating
gime of the laser plasma, and the slow peak is associ
with ions which appear already in the steady stationary h
ing regime. The appearance of the slow peak requires
laser pulse duration to be much greater than the characte
hydrodynamic time, i.e.,t las.325d/us .

Single-peaked and two-peaked collector signals h
been recorded in different laser plasma experiments emp
ing collector diagnostics.13,14 In addition, multiple-peaked
collector signals have been observed in several experime
apparently due to the complex form of the laser pulse and
the electrostatic mechanism of ion acceleration at high la
radiation flux densities.15

The ion pulse depends most strongly on the distance
the target. The corresponding calculations presented in F
show that as the distance to the target increases, t
are sharp decreases in the amplitudes of both the fast
slow peaks in the ion pulse approximately according to
j ;L23 law, as well as a linear increase in the delay time
the ion pulse.

INTERPRETATION OF THE COLLECTOR DIAGNOSTICS OF
THE LASER PLASMA

One clear and very important conclusion that can
drawn from the results considered in the preceding sectio
that the ion current density is very sensitive to most of
parameters of the experiment, such as the distance from
target, the power and duration of the laser radiation, the
get material, etc. This suggests that additional informat
regarding the experimental conditions can be obtained
achieving the closest possible fit between the calculated
and the experiment. However, any experiment whose co
tions are known inexactly can be ‘‘reconciled’’ fairly easi

ia-

n.

FIG. 6. Dependence of the ion pulse on the distance from the target.
P5108 W/cm2, d51 mm, t51000 ns;L, m: 1—1, 2—2, 3—3.
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with calculated results by correcting the calculated para
eters in a particular direction. We shall demonstrate this s
ation in the case of two experiments.13,14

In Ref. 13 a neodymium laser with a maximum pul
energyW;30 J, a laser pulse duration at half maximumt
;25 ns, and a focal spot diameterd;300 mm was used.
The most abundant information is available for the collec
signals of carbon ions at a distance of 2 m from the target,
which were obtained in experiments in which the energy
the laser radiation was reduced by a factor of 5 using a c
brated absorber. In addition, according to the authors’ e
mates, an additional twofold decrease in the laser pulse
ergy occurred in the optical system due to the geome
divergence of the radiation. The radiation was reduced
about two more fold as a result of reflection of the las
radiation from the numerous elements of the optical syst
Thus, the energy of the radiation observed by the target
apparently equal to 1–2 J. A set of calculations showed
the calculation in which the laser pulse energy was 1.1 J,
focal spot diameter was 300mm, and the laser pulse wa
modeled by a half sinusoid with a duration along the base
35 ns agrees most closely with the experiment. This calc
tion of the collector signal and the corresponding experim
tal signal are presented in Fig. 7.

A CO2 laser, whose pulse consisted of a peak of durat
200–300 ns with an energy of about 10 J and a tail of du
tion 2 ms with an energy up to 20 J, was used in Ref. 14. T
collector signal for zirconium ions at a distance of 2 m from
the target had a two-peaked structure. The correspondin
of calculations shows that the theoretical collector sig
most closely approximates the experimental signal when
calculation parameters have the following values: a la
pulse peak approximated by a half sinusoid with a durat
along the base equal to 250 ns and an energy of 6.4 J, a
approximated by a straight line descending from the h
height of the peak to zero with a duration of 1.75ms and an

FIG. 7. Comparison of experimental and theoretical current density pu
of carbon ions.P553107 W/cm2, t535 ns, d50.3 mm, l51.06mm,
andL52. Solid curve—theory, dashed line—experiment.
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energy of 18 J, and a focal spot diameter equal to 400mm.
The corresponding experimental and calculated collector
nals are presented in Fig. 8. The calculations showed tha
fast peak of the collector signal is caused by ions wh
formed under the action of the laser radiation peak and
the slow peak of the collector signal is caused by ions fr
the tail of the laser pulse.

Calculations of both experiments showed that the exp
mental and calculated collector signals can be closely rec
ciled without departing from the reasonable ranges of
calculated parameters. The set of optimal parameters
quite rigidly specified in both cases. For example, twofo
variation of any of the parameters of the laser radiation, s
as the energy, the duration, and the focal spot diameter le
a failure to observe satisfactory agreement between the
and experiment for any variations of the other parameter

CONCLUSIONS

The quasi-two-dimensional hydrodynamic model of a
ser plasma has been found to be suitable for calculating
ion current density in an expanding laser plasma despite
very rough simulation of the lateral spreading of the plasm

The dependence of the ion current density in an expa
ing laser plasma on the parameters of the laser radiation
target material, and the distance from the target has b
investigated theoretically. Calculations needed to design
ser ion sources for accelerator technology have been
formed. An explanation for the two-peaked shape of the c
lector signals observed in some experiments with a la
plasma has been given.

The possibility of extracting additional information o
the experimental conditions from collector signals using
series of approximation calculations has been demonstra

es

FIG. 8. Comparison of experimental and theoretical current density pu
of zirconium ions. P543107 W/cm2, t52000 ns, d50.4 mm, l
510.6mm, andL52 m. Solid curve—theory, dashed line—experiment.
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Features of the development of pulsed microwave discharges in various gases in a
quasioptical beam
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Photographs of pulsed microwave discharges initiated by a metallic sphere placed at the focus of
a quasioptical electromagnetic beam with linear polarization of the field in air, sulfur
hexafluoride, hydrogen, and helium under a pressure of several hundred Torr are presented. The
common and distinctive features of the discharges in these gases are noted. ©1998
American Institute of Physics.@S1063-7842~98!00704-1#
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INTRODUCTION

As a pulsed gas microwave discharge in a focused
crowave TEM wave develops, it can pass through such s
cessive stages: as the diffuse, ionization-overheat
streamer, resonant, and cumulative stages.1 At a fixed dis-
charge durationtd , their sequence remains unchanged,
the number of stages realized increases as the gas pressp
and the amplitude of the electric component of the init
microwave fieldE0 are increased. The last of the stages
alized at the time of completion of the microwave pul
largely determines the outward appearance of the plasm
that develops. In this sense the terms diffuse, ionizati
overheating, streamer, etc. can be used to describe the
of the discharge.2

The main physical factors which determine the prop
ties of a discharge in each of the stages just enumerate
not depend on the kind of gas. However, while the gene
picture of the development of discharges in different gase
qualitatively consistent, its specific details may differ.3,4 The
distinctive features derive, for example, from quantitat
differences in the level of the breakdown fieldEbd, in the
values of the kinetic coefficients, in the presence or abse
of ionizing ultraviolet radiation from the discharge regio
etc.

The experiments in Ref. 1 and 5 showed that, in pr
ciple, there are no significant differences between electro
less and initiated discharges. At the same time, the emp
ment of an initiator, especially at highp, permits significant
expansion of the range of variation ofE0 . Moreover, the use
of an initiator in the form of a metallic sphere, for examp
permits effective calibration of the absolute level of the fie
according to the method described in Ref. 6.

To supplement the data on microwave discharges
various gases, in this paper we present photographs of
crowave discharges initiated by a sphere in a focused tra
ing electromagnetic wave in air, sulfur hexafluoride (SF6),
hydrogen (H2), and helium~He! at values ofp equal to
hundreds of Torr. Their common features and differences
noted. Among the gases just listed, air and SF6 are electrone-
gative, and the electron attachment coefficient is significa
greater in SF6 than in air. The composition of the molecule
3781063-7842/98/43(4)/4/$15.00
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in air and SF6 is more complicated than in H2, and He is an
atomic gas. Thus, the spectrum of differences between
gases investigated is fairly broad.

EXPERIMENTAL CONDITIONS

Pulsed TEM radiation having a rectangular envelo
with linear polarization and a wavelength of 8.5 cm was us
in the experiments.5 In the focal region the field had an ap
proximately Gaussian distribution with a characteristic sc
equal to several centimeters in the plane perpendicular to
Poynting vectorP. Along P it was uniform and also had a
scale of several centimeters. The maximum value ofE0 was
about 6.5 kV/cm. The microwave pulse had a duration of
ms. The pauses between pulses lasted at least a minute

A hermetically sealed quartz tube with flat endcaps ma
from optically transparent glass was positioned symme
cally to the axis of the beam at its focus. The tube had
inner diameter of 8 cm, a wall thickness of 0.4 cm, and
length of 50 cm. Its axis was perpendicular toP andE0 . The
tube, which was preliminarily evacuated to 1021 Torr, was
filled with the gas under investigation, whose pressurep was
fixed to within 60.75 Torr. The tube was surrounded by a
at atmospheric pressure.

A lead sphere with a diameter of 0.25 cm on a thre
with a thickness of 1022 cm was placed in the tube at th
focus of the electromagnetic beam. The thread exten
along a diagonal of the central cross section of the tube
pendicular toE0 . The surface of the sphere was the source
initiating electrons. For this purpose it was illuminated
ultraviolet ~UV! radiation with a duration of 10ms. In the
experiments the time of breakdown of the gases investiga
coincided with the beginning of the UV pulse. By shifting
we could vary the discharge timetd , which extends from the
onset of the pulse of UV illumination to the end of the m
crowave pulse.

The values ofE0 and td were adjusted so that the dis
charge, which began on the sphere, would not reach the i
surface of the tube.

The discharge was photographed through the endcap
the tube. The exposure time exceededtd . In the photographs
© 1998 American Institute of Physics
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presented belowE0 is vertical, andP is directed from right
to left. The diameter of the sphere serves as a geometric s
on them. On all the imagestp510 ms.

OBSERVATION RESULTS

Figure 1 presents a discharge in air at 300 Torr w
E056.5 kV/cm. It is seen that it is a typical streamer bur
ing in the microwave range.5 The individual portions of the
main streamers and their ends are ‘‘feathered’’ by thin sh
plasma channels with a weak diffuse corona.

At this pressure air did not undergo breakdown atE0

,5.7 kV/cm ~the discharge for 300 Torr andE0

55.7 kV/cm.Ebd is presented in Fig. 2!. Therefore, in the
experimentEbd.1/3Ek , where Ek540p is the so-called
critical breakdown field~here and in the analogous formula
below, p is expressed in Torr andEk in V/cm!. We recall
that at the poles of the sphere, whereE0 is perpendicular to
its surface, the field equals 3E0 . The measured value ofEbd

is only 17% higher than the value following from th

FIG. 1. Microwave discharge in air atp5300 Torr withE056.5 kV/cm.

FIG. 2. Microwave discharge in air atp5300 Torr withE055.7 kV/cm.
ale

-

rt

theory.6 Thus, the presence of the tube at the focus of
electromagnetic beam scarcely distorted its structure or
strength of the original field.

Figure 3 shows a discharge in SF6 at 90 Torr withE0

55 kV/cm. It is seen that it is also a streamer discharge. T
feathering channels are longer than those in the air
charges. This creates the impression of a greater volume
sity of discharge channels. Their diffuse ‘‘fur’’ is less pro
nounced than in air. The presence of a large number
comparatively long feathering channels is the main dis
guishing feature of the SF6 discharges.

When E055 kV/cm, SF6 undergoes breakdown only a
p<105 Torr. This corresponds toEk5150p. This value is
approximately 30% greater than the values ofEk for sulfur
hexafluoride usually presented in handbooks. For exam
Ref. 7 gives a valueEk5100p, and Ref. 8 gives 117p.

Figure 4 presents a discharge in H2 at 300 Torr with
E055 kV/cm. Under these conditions the hydrogen d
charge is also of the streamer type. The discharge chan
exhibit practically no streamer feathering or diffuse fur, cr
ating the impression that they are rarefied. The absenc
the fine details in the H2 discharge is its principal outward
distinction.

When p5300 Torr, H2 undergoes breakdown only a
E0>4.4 kV/cm, i.e., (E0 /p)bd.15p, and atp5660 Torr, it
undergoes breakdown only at 6.5 kV/cm, which giv
(E0 /p)bd.10p. The latter value coincides with the value o
(E0 /p)bd in a uniform field presented, for example, in Ref
8 and 9. It can be assumed that in the experimental se
under consideration the function of the sphere is confin
only to ensuring the presence of breakdown-initiating el
trons and that the region of the tripled field on its poles
simply not ‘‘noticed’’ by electrons, which readily diffuse in
H2. In addition, in hydrogen, even at a value ofp amounting
to hundreds of Torr, inhomogeneity of the microwave be
with a characteristic scale equal to several centimeters m
be taken into account in the calculation of the breakdo

FIG. 3. Microwave discharge in sulfur hexafluoride atp590 Torr with
E055 kV/cm.
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fields. The experimentally detected increase in (E0 /p)bd

with decreasingp is attributed to just such inhomogeneity
Finally, Fig. 5 presents a discharge in He at 300 T

with E054.4 kV/cm. It is seen that under these conditio
the He discharge is realized practically in the diffuse for
When E0 is increased toEmax at this value ofp, the dis-
charge takes the ionization-overheated form and still d
not become a streamer discharge. This finding supports
conclusions of Ref. 4, in which the realization of a stream
discharge in He was indicated only atp>500 Torr. In fact,
Fig. 6 shows a discharge in He at 760 Torr withE0

55.5 kV/cm. The figure reveals that it is already a stream
discharge, although it has a significant diffuse backgrou
on which there are only outlines of feathering channels.

Under the conditions of the experiment atp
5300 Torr, He undergoes breakdown atE0>4.4 V/cm, i.e.,

FIG. 4. Microwave discharge in hydrogen atp5300 Torr with E0

55 kV/cm.

FIG. 5. Microwave discharge in helium atp5300 Torr with E0

54.4 kV/cm.
r

.

s
he
r
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d,

(E0 /p)bd515, and in the experiment at 760 Torr it unde
goes breakdown at 5.5 kV/cm, i.e., (E0 /p)bd57. According
to various published sources, (E0 /p)bd53 ~Ref. 8!, 4.7~Ref.
4!, and 1–3~Ref. 9!. Therefore, in He, just as in H2, electron
diffusion plays a significant role in the evaluation of th
breakdown fields under spatially inhomogeneous conditio

CONCLUSIONS

Thus, the main features microwave discharges in
SF6, H2, and He at pressures equal to hundreds of Torr i
focused TEM beam are similar. At the same time, the d
charges in the electronegative gases~air and SF6! take the
streamer form already at relatively low values ofp ~less than
100 Torr!, but a discharge in He, for example, takes th
form only at p.500 Torr. A significant difference betwee
the streamer forms of discharges in different gases is
presence or absence in them of a comparatively small-s
streamer structure, which is manifested as feathering of
main discharge channels. For example, while it is practica
absent in H2, the rudiments of it can already be seen in H
The small-scale streamer structure is more pronounced in
and in SF6 it largely determines the entire outward appe
ance of the discharge. In He at values ofp close to atmo-
spheric pressure, the diffuse background and the diffuse
rona around the streamer channels are still significant, w
in H2, for example, they are already absent atp.300 Torr.

The experiment showed thatEk5150p@Torr# V/cm in
SF6. This value is higher than the value given in handboo

The values of (E0 /p)bd in H2 and He obtained in the
experiments can serve as reference points in devisin
theory for the microwave breakdown of these gases w
consideration of the diffusive phenomena in spatially inh
mogeneous Gaussian beams.

FIG. 6. Microwave discharge in helium atp5760 Torr with E0

55.5 kV/cm.
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The influence of electron emission from the collector on the potential distribution within
a Knudsen diode with surface ionization in the underneutralized regime

V. I. Sitnov and A. Ya. Énder
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This paper gives a theoretical treatment of the distribution of potentials within a Knudsen diode
with surface ionization in the underneutralized regime in the presence of electron emission
from the collector surface. A method is derived to calculate the potential distribution. It is shown
that if the emission from the collector is sufficiently strong, spatially oscillatory~‘‘wavelike’’ !
potential distributions do not form; instead, a continuous transition occurs from a distribution with
a virtual anode to one with a virtual cathode. Particular attention is focused on the
neighborhood of the transition point from one of these distributions to the other. ©1998
American Institute of Physics.@S1063-7842~98!00804-6#
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Thermionic converters of thermal to electrical ener
have their highest efficiency in the Knudsen regime, wh
the mean free path of electrons is larger than the intere
trode gap. In this regime, the emitter is simultaneously
source of electrons and ions~the electrons are generated b
thermionic emission, while the ions arise from surface io
ization!, and the thermionic converter is a Knudsen dio
with surface ionization. When there is no electron emiss
from the collector surface, the ideal current–voltage~I–V!
characteristic of a Knudsen diode with surface ionizat
consists of two segments: a retarding segment, over w
the current increases exponentially with increasing collec
potential, and a saturation segment, over which the curre
independent of the collector potential. At the boundary
tween these two segments, the external voltageU equals the
difference between the emitter work functionwE and the
collector work functionwC , i.e., U5wE2wC .

In Ref. 1, Dobretsov optimized a thermionic converter
the Knudsen regime without taking into account the spe
features of the potential distribution in the interelectrode g
In Ref. 2, Babaninet al., calculated the optimal paramete
of a Knudsen diode with surface ionization using calcu
tions of the potential distribution in which the collector cu
rent was neglected. As in Ref. 1, they took into account
collector current by adding it to the forward current obtain
from a self-consistent calculation. They showed that a th
mionic converter reaches its highest efficiency when
emission currents from the emitter and collector surfaces
comparable.

In a thermionic converter using Cs as a filler, the cesi
vapor acts both to neutralize the electron space charge a
lower the electrode work functions. Because the optim
emitter work function is achieved only at rather high cesiu
vapor pressures, the Knudsen regime can be reached on
small interelectrode gaps (d'10 mm!. For wider gaps
(d'1 mm!, the Knudsen regime can be reached in ther
onic converters that use Cs–Ba as a filler. In these devi
barium vapor is used as an independent regulator of the e
3821063-7842/98/43(4)/10/$15.00
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ter work function. It is worth noting that optimal values o
the barium vapor pressure can only be reached when
barium heat source temperature is 1000 K or higher, and
collector temperature should be even higher than this. A
collector coated with barium adsorbed on the surface p
sesses a rather high emissivity, comparable to that of
emitter, and the emission from the collector can have a s
stantial effect on the potential distribution. Thus, the inve
tigation of self-consistent potential distributions that inclu
the reverse current from the collector is an important pr
lem.

In a Knudsen diode with surface ionization, ions flowin
in from the emitter neutralize the electron space charge e
ted by both the emitter and collector. The calculation of se
consistent solutions for the potential distribution in the pr
ence of three groups of particles is complicated by the f
that these solution depend on a large number of parame
This problem was first solved by McIntyre in Ref. 3; how
ever, he did not attempt any systematic calculations. In
paper we propose a method for calculating and analyzing
potential distribution for a Knudsen diode with surface io
ization in the underneutralized regime, assuming that the
lector emission is unbounded. We briefly described so
results of these calculations previously in Ref. 4.

1. One of the important parameters used to characteri
Knudsen diode with surface ionization is the degree of n
tralization:

g5
ni

1~0!

ne
1~0!

, ~1!

whereni
1(0) andne

1(0) are the densities of ions and ele
trons emitted from the emitter surface. Decreasing the em
ter work function while keeping all the other parameters u
changed~for a Cs–Ba thermionic converter this can be do
experimentally by increasing the barium vapor pressure! will
decreaseg. As long asg.1 ~the overneutralized regime!,
the saturation current increases with decreasingg.
© 1998 American Institute of Physics
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The transition to the underneutralized regime (g,1) is
marked by the appearance of a retarding barrier for elect
near the emitter, which limits the growth in the electron c
rent. A characteristic of this regime is the existence o
potential well for ions. Depending on how efficiently th
well is populated by ions in the underneutralized regime,
g decreases the saturation current is either unchanged~com-
plete occupation! or decreases. In Ref. 5 the authors adva
the point of view that the potential well is fully occupied
However, in their paper they did not include boundary
fects, which lead to expulsion of ions from the well. Mor
over, nonuniformity of the surface of a real emitter can le
to the removal of ions, since spots with large work functio
will be effective ion absorbers. This effect is especially im
portant in the neighborhood ofg51, where the well depth is
comparable to the scatter in the values of the work functi
of different spots.

In the calculations described in Refs. 6–9 it was
sumed that the potential wells were not populated by ions
this case it was found that a virtual cathode appears nea
emitter, consisting of a barrier that retards electrons follow
by an accelerating potential fall. Calculations of the struct
of this virtual cathode showed that its height increases w
decreasingg, and consequently the directed electron veloc
increases. In Refs. 10 and 11 a method was developed
diagnostics of the plasma in a Knudsen diode with surf
ionization using a transverse magnetic field; in Ref. 12 it w
shown experimentally that in the underneutralized regi
there is in fact a high virtual cathode, and that the degre
occupation of the potential well with ions is close to ze
Therefore, in calculating the potential distribution in a Knu
sen diode with surface ionization and an emitting collec
one can neglect the trapping of ions in the potential well

2. Let us first pause to discuss the basic methods
calculating potential distributions within a Knudsen dio
with surface ionization without including electron emissi
from the collector, and the results that follow. Calculatio
of this kind have been described in a number
papers.6,8,13–15It is known that for sufficiently large values o
the interelectrode gap, the potential distribution in a Knud
diode with surface ionization is determined by two exter
parameters: the degree of neutralization and the dimens
less collector potential, and that monotonic potential dis
butions, spatially oscillating~‘‘wavelike’’ ! potential distribu-
tions, or distributions with a virtual cathode can occur in t
gap. In the underneutralized regime, the minimum value
the potential for a nonmonotonic potential distribution
reached at a point close to the emitter, where the electric fi
is zero. The most detailed discussion of the structure of
virtual cathode and wavelike potential distributions, and th
effect on the I–V characteristics, is given in Ref. 6. As
example, Fig. 1a shows several I–V characteristics fog
50.01, while in Fig. 1b potential distributions are plotted f
a number of points on these I–V characteristics. In Fig.
the current is plotted in units of the emission current from
emitter:

j e
1~0!5eni

1~0!~2kTE /pm!1/2, ~2!

and in Fig. 1b the distancez from the emitter is measured i
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units of the Debye radiuslD and the potentialF relative to
the emitter potential is plotted in units ofkTE /e. Here and in
what follows, we will use the following dimensionless coo
dinate and potentials:

z5z/lD , h5eF/kTE , u5eU/kTE , ~3!

wherem is the electron mass,k is Boltzmann’s constant,e is
the electron charge,TE is the emitter temperature, andU is
the external voltage.

The Debye radius is defined in terms of the emitter te
perature and characteristic current densityj from the relation

lD5~kTE/2p!3/4~e j!21/2m21/4. ~4!

At a temperatureTE52000 K andj 51 A/cm2 the De-
bye radiuslD54.6 mm. In Fig. 1 the quantityj B , i.e., the
conduction current density corresponding to the boundary
a virtual cathode or a wavelike potential distribution~point B
in Fig. 1a!, was used as the characteristic current for a giv
lD . The dimensionless potentials of the collector, plasm
and point of minimum potential are denoted byhC , hp , and
hm , respectively. In Fig. 1b,hm corresponds to the peak o
the virtual cathode, or the minimum closest to the emitter
a wavelike potential distribution. In the underneutralized
gime, the electron conduction current is determined by
value of hC only for large negative values of the collecto

FIG. 1. Example of a current–voltage~I–V! characteristic~a! and potential
distributions~b! at certain points on this I–V characteristic in the underne
tralized regime of a Knudsen diode with surface ionization and a none
ting collector. The value of the interelectrode gap isd5100lD .
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potential, while in the rest of the potential range it is det
mined by the minimum value of the potential in the inte
electrode gap. At large negative collector potentials the
tential distribution is monotonic~curveI in Fig. 1b!. PointA
marks the transition to a wavelike potential distributio
while at pointB this wavelike potential distribution becoms
a distribution with a virtual cathode.

An important feature of the Knudsen regime is the fa
that the potentials at characteristic points of the poten
distribution can be found without completely solving th
self-consistent system of Vlasov equations. Thus, whe
virtual cathode is present two conditions hold that allow
to determinehp andhm : quasineutrality in the neighborhoo
of the central plateau:

ni uh5hp
5neuh5hp

~5!

and average neutrality over the external part of the virt
cathode. This follows from Gauss’s theorem and the van
ing of the field at the peak of the virtual cathode and in
plateau region:

E
hm

hp
~ni~h!2ne~h!!dh50. ~6!

In Eq. ~6!, the integration over coordinates has been
placed by an integration overh. In fact, from the Poisson
equationdE/dz54pe(ni2ne) it follows that

1

2

d~E2!

dz
54pEe~ni2ne!.

By integrating this equation between the peak of the v
tual cathode and the plasma plateau, and taking into acc
thatE52dF/dz andE2uh5hm

5E2uh5hp
50, we obtain Eq.

~6!.
The functionsni and ne are proportional toni

1(0) and
ne

1(0), anddepend not only on the local potential, but al
on values of the potential at several characteristic points
the potential distribution to be found. When the velocity d
tribution of emitted particles is semi-Maxwellian, the fun
tions ni and ne can be calculated analytically~the corre-
sponding expressions for the more general case of a Knu
diode with surface ionization and an emitting collector w
be given below!. In this case, the integral in Eq.~6! can be
done analytically as well. This system of transcenden
equations~5! and~6! can be used to find values ofhm andhp

for given g andhC .
For a wavelike potential distribution, it is necessary

fix hm as a parameter, i.e., the value of the conduction c
rent (j 5exp(hm)). Thenh2 can be found from an equatio
analogous to Eq.~6! ~Fig. 1b!, andh3 from the condition that
the charge equals zero in the strip (h2 ,h3). It is easy to find
the boundaries of the region where wavelike potential dis
butions occur by settinghC5hp for a monotonic potentia
difference or a virtual cathode. In Fig. 2 these boundaries
plotted as functions ofg: hA(g) is the boundary betwee
monotonic potential distributions and wavelike potential d
tributions, andhB(g) is the boundary between wavelike p
tential distributions and a virtual-cathode distributions.
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It can in fact be shown analytically that a cold collect
cannot support a state with a quasineutral plasma whenhC

lies betweenhA andhB . To show this, let us consider, e.g
a monotonic potential distribution withhC5hp , and then
increase the value ofhC somewhat. The potential plateau,
one exists, should be smaller thanhC . Then the condition of
quasineutralityni5ne must hold at the boundary betwee
the plasma and the cathode fall, and

d~ni2ne!

dh U
h5hp10

,0. ~7!

This relation follows from Gauss’s theorem, taking in
account the sign of the electric field in the cathode she
region. The densities of ions and electrons for these spe
assumptions are determined in the following way:

ni5ni
1~0!exers~2h!, ~8!

ne5ne
1~0!ehp exers~h2hp!. ~9!

Here exers(x)5ex(12erfAx), and

erf~x!5
2

Ap
E

0

x

e2t2dt.

In taking the derivatives in Eq.~7! it is seen that a term
ne

1(0)exp(hp)/(p(h2hp))
1/2 appears indne /dh, which goes

to 1` as h→hp10, while the remaining terms are finite
Consequently, condition~7! is not satisfied, and solution
with a quasineutral plasma cannot exist forhp.hA . It can
be shown analogously that no stationary regime can coe
with a quasineutral plasma fordhp,hB as well. Conse-
quently, in the interval (A,B) only wavelike potential distri-
butions can occur.

The authors of Refs. 6 and 7 made detailed calculati
of wavelike potential distributions in a Knudsen diode wi
surface ionization and used them to construct the portion
the I–V characteristics in the rangehA,hC,hB . They

FIG. 2. Region of existence of various types of potential distributions i
Knudsen diode with surface ionization and a nonemitting collector:1 —
monotonic potential distribution,2 — wavelike potential distribution,3 —
virtual cathode.
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showed that in this range there are many regions on the
characteristic with negative internal resistance. The I
characteristic shown in Figure 1a, which corresponds t
wavelike distribution, is bounded by the curvesR, D, L, U.
Changing the magnitude of the interelectrode gap chan
the I–V characteristics; specifically, increasing the gap
creases the number of segments with negative resista
However, for values of the gap larger than a certain m
mum value (;10lD) the I–V characteristics are confine
within the region bounded by the curvesR, D, L, U. Thus,
the appearance of wavelike potential distributions for a c
tain set of values of the collector potential is a characteri
property of a Knudsen diode with surface ionization and
nonemitting collector.

In Ref. 3 McIntyre investigated the effect of electro
emission from the collector theoretically for the first tim
and showed that the solution to this problem depended
many parameters. In addition to the degree of neutraliza
g and the dimensionless collector potentialhC , he intro-
duced two more dimensionless parameters:bC

5ne
2(hC)/ne

1(0) ~wherene
2(hC) is the density of electrons

near the collector that leave its surface and move toward
emitter! andQ* 5TC /TE . It was noted that the ion and elec
tron densities depend on both the local value of the poten
h and on the shape of the potential distribution. An analy
cal expression was obtained for the square of the elec
field in the form of a certain functiong(h;g,hC ,bC ,Q* ),
where

dg~h!/dh5ne
1~h!1bCne

2~Q* ,h!2gni~h!.

The terms on the right-hand side of the equation are
densities of electrons emitted by the emitter and collec
and the density of ions at a point with potentialh. McIntyre
developed two procedures to find the potential: in one,
directly integrated the Poisson equation, while in the othe
integrated a first-order equation in which the derivative
the potential is written in terms of the functiong. The results
of these calculations are shown in Fig. 3. It is worth noti
that these calculations were done for various collector po
tials belonging to the same I–V characteristic, and forg
close to the region of transition from overneutralized to u
derneutralized. Specifically, the external parameters w
g50.9,bC50.5, andQ* 50.5. A comparatively small value
of the emission current from the collector was chosen@about
0.35j e

1(0)].
McIntyre’s calculations covered only a few exampl

and in fact serve only as rough estimates of the effec
emission from the collector. In discussing his results,
mentions3 that the region of wavelike potential distribution
turns out to be quite sensitive to changes inbC . However, he
obtained no systematic data on account of the large num
of parameters and the complexity of the calculations. S
data are clearly necessary if the role of collector emissio
to be understood, with particular attention paid to the cas
strong emission.

3. Let us now consider a Knudsen diode with surfa
ionization in the underneutralized regime with an emitti
collector. We will assume that emission from the collector
unbounded. This implies that emission from the collecto
V
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so large that the flux of electrons entering the plasma is l
ited only by the potential barrier near the collector, and n
the collector emissivity. Discussion of this limiting case r
veals how strongly emission from the collector can affect
potential distribution.

At rather large negative voltages, emission from the c
lector leads to the appearance of a negative current in
circuit — that is, a region of reverse currents appears on
I–V characteristics. An example of the potential diagra
from this region is shown in Fig. 4. When there is no em

FIG. 3. Computed potential distributions ashC changes, based on Ref. 3.
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sion from the collector, a large negative voltage will alwa
correspond to a monotonic potential difference~Fig. 1b!.
Now, however, this is not so: near the collector, a virtu
anode forms, and the minimum potentialhm is now located
near the anode at the virtual anode peak. In this poten
diagram the following notation is used:xE5ewE /kTE and
xC5ewC /kTE , i.e., these quantities are dimensionless w
functions of the emitter and collector respectively. It is cle
from the figure that the effective work function of the co
lector xC* equals

xC* 5xC1D. ~10!

Here D is the height of the potential barrier for electro
emitted by the collector. The density of charged particles
an arbitrary point between the emitter and the virtual an
is determined as follows:

ni~h!5ni
1~0!•Fi~h!; neE5ne

1~0!•FeE~h,hm!;

neC5ne
2~hm!•FeC~h,hm!. ~11!

Herene
2(hm) is the density of electrons expelled by the co

lector and arriving at the virtual anode, evaluated at the p
of the latter~at the pointhm). As a unit for measuring the
density of electrons emitted by the collector, we choose
quantityne

2(hm) rather thanne
2(hC) ~see Ref. 3!, which is

natural when the emission from the collector is unbound
The functionsF are labeled so as to indicate the origin of t
corresponding particles. Since all the potentials are meas
in units of kTE /e, the functionFeC(h,hm) depends on the
ratio of the emitter and collector temperatures. For a fix
value of this ratio the quantityne

2(hm) is determined by the
minimum potential in the interelectrode gap and does
depend on the collector work function. AsxC varies, redis-
tribution of the potential takes place only within a narro
layer between the top of the virtual anode and the collec

Let us assume that the emitted particles have a se
Maxwellian distribution with respect to velocity and tem
perature of the corresponding electrode. Then the funct
Fi ,FeE , andFeC take the following form:6

FIG. 4. Potential diagram for a Knudsen diode with surface ionization an
virtual anode:1 — boundary of the cathode sheath,2 — boundary of the
virtual anode,3 — top of the virtual anode;h15h25hp , h35hm .
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Fi~h!5exers~2h!;

FeE~h,hm!52eh2ehmexers~h2hm!;

FeC~h,hm ,Q!5exers~~h2hm!Q!. ~12!

Here Q5TE /TC . The condition for quasineutrality of the
plasma can be written as follows:

F~hp ,hm!50, ~13!

where

F~hp ,hm!5gFi~hp!2FeE~hp ,hm!

2bFeC~hp ,hm ,Q!. ~14!

Here the functionsFi , FeE , and FeC are determined from
Eq. ~12! for h5hp , g is given by Eq.~1!, and

b5
ne

2~hm!

ne
1~0!

. ~15!

It should be noted that the parameterb depends onhm ,
and consequently on the potential distribution to be fou
Equation ~13! relates the potentials at pointshp and hm

~points3 and2 in Fig. 4!. A second equation that relates th
potentials at these points can be derived from the condi
that the total charge equal zero in a layer between th
points, analogous to the derivation of Eq.~6!. These contri-
butions to the charge we denote byni

1(0)Gi(hp ,hm),
ne

1(0)GeE(hp ,hm), andne
2(hm)GeC(hp ,hm ,Q); the func-

tion Gs(hp ,hm) is calculated by integrating the correspon
ing function Fs between the limitshm to hp . For an arbi-
trary interval (A,B) we have

Gs~A,B!5E
A

B

Fs~h!dh. ~16!

The condition that the total charge equal zero in the la
(hp ,hm) has the form

G~hp ,hm!50, ~17!

where

G~hp ,hm!5gGi~hp ,hm!2GeE~hp ,hm!

2bGeC~hp ,hm!. ~18!

It is easy to show that

E
A

B

exers~h!dh5Ir ~B!2Ir ~A!, ~19!

whereIr (h)5exers(h)12(h/p)1/2.
It is clear from Eq.~12! that calculating the functionG

reduces to calculating integrals like Eq.~19! between the
pointshp andhm . In this case

Gi52Ir ~2h!uhm

hp ; GeE5~2eh2ehmIr ~h2hm!uhm

hp ;

GeC5
1

Q
Ir ~h!u0

~hp2hm!Q . ~20!

In order to findhp and hm it is necessary to solve th
system of transcendental equations~13! and~17!. In this sys-
temb cannot be treated as an independent parameter. Le

a
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show that it can be expressed in terms ofhm and the param-
eters xE , Q and u. To do so, we use several addition
relations. From Eq.~10! and the potential diagram~Fig. 4! it
follows that

xC* 5xE1u2hm . ~21!

For electrons that enter the interval between emitter
the pointhm ~points0 and3 in Fig. 4!, we have the follow-
ing absolute values of the currents:

j e
1~0!5ATE

2
•e2xE, j e

2~hm!5ATc
2
•e2Qxc

* . ~22!

From this

j e
2~hm!

j e
1~0!

5Q22exp~xE2QxC* !. ~23!

If we take into account that electrons at the top of t
virtual anode moving toward the emitter have a sem
Maxwellian velocity distribution with a temperatureTC , and
that j e5ene•vT for the semi-Maxwellian distribution, wher
the thermal speed of the electronsvT;T1/2 @see Eq.~2!#,
then using Eq.~15! we obtain for the left-hand side of Eq
~23!

j e
2~hm!

j e
1~0!

5
b

AQ
. ~24!

Finally, taking Eq.~21! into account, we have

b5Q23/2
•exp~~hm2u!Q2xE~Q21!!. ~25!

Note thatb depends onu in addition to the externa
parametersQ and xE . Now the system~13!, ~17! can be
solved and the quantitieshp , hm found, and theb can be
found from Eq.~25!. Knowing hm andb, it is easy to com-
pute the current in the external circuit~without including the
ion current!

j

j e
1~0!

5
j e

1~hm!2 j 2~hm!

j e
1~0!

.

Here j e
1(hm) is the fraction of electron current from th

emitter that overcomes the virtual anode and reaches the
lector. It is obvious thatj e

1(hm)5 j e
1(0)exp(hm). Taking Eq.

~24! into account, we have

j

j e
1~0!

5ehm2
b

AQ
. ~26!

Thus, for a givenu the current is determined, i.e., w
have found a point on the I–V characteristic.

The external parameters that determine the form of
I–V characteristic areg, xE , andQ. If for fixed values of
these parameters we increase the voltageu beginning with
large negative values, the height of the virtual anode (hp

2hm) will decrease and eventually will go to zero. The p
tential of the plasma at which this takes place we denote
ha ; for the case of a nonemitting collector it corresponds
the transition from a monotonic potential distribution to
wavelike potential distribution~point A on Fig. 1!.
d
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4. The parameters that characterize the pointa can be
found analytically. In the region between the pointsh2

5hp and h35hm ~Fig. 4! the charge density, i.e.,ni2ne ,
should change sign, otherwise, its integral over this la
cannot equal zero. Therefore, the functionni2ne goes to
zero at least twice: at the pointh2 ~according to the condi-
tion of quasineutrality! and at some other point on the exte
nal portion of the virtual anode. As an illustration of this,
Fig. 5 the dependence ofni2ne on h is plotted on the inter-
val (h2 ,h3). Note that at the pointh2 we must haved(ni

2ne)/dh,0 in order for the quasineutral plasma potent
to match the potential fall. Between the two points at whi
the function (ni2ne) goes to zero there is a point where
reaches a maximum. Consequently, in the interval (h2 ,h3)
there necessarily exists a point~which we denote byh* ) at
which the derivatived(ni2ne)/dh vanishes. As the heigh
of the virtual anode decreases we havehm→hp , and all
three pointsh3, h2, andh* approach infinitesimally close to
one another as well as toha .

Using the expressions forFs from Eq. ~12!, we obtain
after differentiation

d~ni2ne!

dh U
h5h*

52gFi~h* !2FeE~h* ,hm!

2QbFeC~h* ,hm ,Q!1g/A2ph*

2eh* /Ap~h* 2hm!

1b/AQAp~h* 2hm!. ~27!

As hm→hp , the last two terms in Eq.~27! become the
main ones, each going to infinity ash*→hp . In order for
the derivative~27! to go to zero in this limit it is necessar
that

FIG. 5. h-dependence of the charged particle density over the exte
portion of the virtual anode (h2 ,h3). xE515, Q52, u5225; 1 — gEi ,
2 — FeF , 3 — bFeC , 4 — (ni2ne)/me

1(0).
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buhm→hp
→eha/AQ. ~28!

The condition of quasineutrality~14! for hm5hp then
simplifies to

gFi~ha!2eha2b50. ~29!

Using Eq.~28! we obtain a relation between the potent
at the pointa and the parametersg andQ:

g5
eha

Fi~ha!
~111/AQ!. ~30!

From this it is easy to find the quantityha given g and
Q. From Eqs.~25!, ~26!, and~28! we have at the pointa

j a

j e
1~0!

5eha~121/Q!,

ua5~ha2xE!~121/Q!2 ln Q/Q,

ba5eha/AQ. ~31!

Note thatha , j a , andba depend only ong andQ, and
that the only quantity that also depends on the emitter w
function xE is the potentialua of the external circuit at the
point a. The quantityua is conveniently written in the form
of a sum of two termsua

(1)(g,Q)1ua
(2)(xE ,Q). Here

ua
~1!~g,Q!5ha~g,Q!~121/Q!2 ln Q/Q,

Ua
~2!~xE ,Q!52xE~121/Q!.

In the limit Q→` Eq. ~30! goes over to the function
hA(g) for a nonemitting collector~Fig. 2!. Figure 6 shows
curvesha(g) for variousQ. Table I lists values of the re
maining quantities at the pointa for xE515, g50.2, 0.1,
and 0.01, and a number of values ofQ. In Fig. 7 the func-
tions ua

(2)(xE) are plotted for several values ofQ.
5. In order to investigate the regionu,ua it is necessary

to solve the system of two transcendental Eqs.~13! and~17!
using Eq.~25!. Let us denote the left-hand side of Eq.~14!
by f 1(hp ,hm) and that of Eq.~18! by f 2(hp ,hm). To solve
this system numerically we used the generalized ch

FIG. 6. The functionha(g) for various values ofQ. Q: 1 — 2, 2 — 3, 3 —
10, 4 — 100,5 — `.
l

rk

d

method for two dimensions. In the planehp ,hm we choose
three points that do not lie on a line, and at these points
calculate the quantitiesf 1. We then pass a plane through th
corresponding three points in the spacef 1, hp , hm , and find
its line of intersection with the planef 150. An analogous
line is found forf 2 as well. Then the point of intersection o
these lines is chosen as a new point on the planehp , hm ,
and the procedure is repeated. This iterative process is
tinued until f 1 and f 2 become smaller than some given val
~in these calculations, usually 1026). This process converge
quite rapidly, but in the neighborhood ofha complications
sometimes arise due to the closeness ofhp andhm .

TABLE I.

g Q ua j a / j e
1(0) ha ba

0.2 1.6 27.23192 0.0133037 23.50178 0.0238305
1.8 28.53668 0.0137910 23.47281 0.023128
2.0 29.57041 0.0159099 23.44767 0.022500
2.2 210.4809 0.0177439 23.42558 0.021932
2.4 211.1016 0.0193525 23.40593 0.021415
2.6 211.6834 0.0207790 23.38830 0.020941
2.8 212.1785 0.0220556 23.37236 0.020503
3.0 212.6048 0.0232071 23.35783 0.020098

0.1 1.6 27.52310 0.00519999 24.27827 0.010963
1.8 28.88207 0.00634015 24.24990 0.010633
2.0 29.95982 0.00731058 24.22529 0.010339
2.2 210.83312 0.00814945 24.20366 0.010073
2.4 211.55570 0.00888458 24.18444 0.0098314
2.6 212.16270 0.00953578 24.16720 0.0096100
2.8 212.67946 0.0101181 24.15160 0.0094060
3.0 213.12447 0.0106492 24.13739 0.0092171

0.01 1.6 28.46136 0.000425978 26.78029 0.00089804
1.8 29.99439 0.000519007 26.75286 0.00087023
2.0 211.21116 0.000597756 26.72920 0.00084534
2.2 212.19936 0.000665757 26.70840 0.00082294
2.4 213.01724 0.000725295 26.68988 0.00080263
2.6 213.70488 0.000778027 26.67324 0.00078408
2.8 214.29088 0.000825034 26.65824 0.00076698
3.0 214.79591 0.000867390 26.64455 0.00075119

FIG. 7. The functionsua
(2)(xE) for various values ofQ. Q: 1 — 1.2, 2 —

1.4, 3 — 1.6, 4 — 1.8, 5 — 2.0, 6 — 2.6, 7 — 3.0, 8 — 5.0, 9 — 10.0,
10 — `.
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In order to study this region we can linearize the syst
of Eqs. ~13!, ~17! in the neighborhood of a known solutio
(ha ,ua). Let us set u5ua1ũ. Using the notationh̃m

5hm(u)2ha , h̃p5hp(u)2ha , b̃5b(u)2ba , and
s5hp2hm5h̃p2h̃m , we obtain after linearization

b̃5ba~h̃m2ũ!Q;

Fi5Fi~ha!1
]Fi

]h U
h5ha

h̃p ;

FeE5FeE~ha!1
]FeE

]h U
h5ha

h̃p1
]FeE

]s
s;

FeC5FeC~ha!1
]FeC

]s
s. ~32!

We then substitute Eq.~32! into Eq. ~14! and group all
the coefficients ofs:

]FeE

]s
1ba

]FeC

]s
5

eha

Aps
2

Qba

ApQs
2Qba52ehaAQ.

~33!

Here we have used the definition ofba given in Eq.~31!.
Substituting Eq.~32! into the quasineutrality condition~13!
and using Eq.~33! and the definitions ofs and ba , we
obtain

g
]Fi

]h U
h5ha

h̃p2ehah̃p2ehaAQ~h̃p2ũ!50.

Here]Fi /]huh5ha
51/A2pha2Fi(ha). From this we find

h̃p5kpũ; Kp5
AQeha

~11AQ!e2ha2g]Fi /]huh5ha

.

The coefficientKm as a function ofh̃m(ũ) in the neigh-
borhood of the pointa is determined from the condition tha
the charge within the exterior part of the virtual anode~17!
equal zero. For this, the functionsFs in integrals like Eq.
~16! are expanded out to terms of first order of smallness,
integration is performed, and values ofFs are substituted
along with their derivatives at the pointa. It turns out that
Km5Kp .

We can continue the expansion of the functionshp and
hm in powers ofũ. Let us consider the solution in the form

hm5ha1Kmũ1Bmũ 2; hp5ha1Kpũ1Bpũ2. ~34!

After some straightforward but tedious calculations
obtain

Km5Kp5K52AQeha/A;

Bm5C/~2A!1
2

9
~B/A!2;

Bp5C/~2A!1
2

3
~B/A!2. ~35!

Here
e

A5g]Fi /]huh5ha
2~11AQ!eha,

B52/Ap~K~12Q!1Q!eha,

C5Q3/2~K21!2eha1K2eha2
1

2
gK2]Fi

2/]h2uh5ha
.

~36!

Thus, when the virtual anode disappears, the functi
hm(u) and hp(u) have a common point and the same d
rivative at that point. As we move in the negative directi
with respect toua , these curves at first almost coincide, a
then they diverge; the absolute value ofhm increases some
what more rapidly thanhp , i.e., a virtual anode of consider
able height appears.

In order to investigate the evolution of the potential d
tribution asu changes, we developed a special program. T
primary task of this program is to calculate the quantities t
are characteristic of the statea. In the neighborhood of this
point the values ofhp andhm are found approximately using
Eqs.~34!–~36!. Then these values are refined using the p
cedure described above, which generalizes the chord met
Each time a new value ofu is chosen, approximate values o
hp andhm are found by extrapolating the corresponding d
pendences at the previous points.

6. Let us now discuss how the potential distributio
changes foru.ua . As we have said, when the collector
nonemitting the transition to this new potential arrangem
eliminates distributions with a quasineutral plasma. The
possibility of matching the potential of the quasineut
plasma with that of the anode sheath stems from the confl
ing requirements imposed on the behavior of charge in
sheath by the charged-particle equations of motion and
the the Poisson equation. This conflict strongly perturbs
potential distribution over the entire gap, leading to a tran
tion to the wavy potential distribution~Fig. 1b, curvesIII ,
IV!. This nonlocal effect of a change in the external volta
is characteristic of the Knudsen regime.

The presence of emission from the collector chan
things considerably. As we already noted in deriving E
~27!, ~28!, in the neighborhood of the pointa the reverse
current from the collector is redistributed so as to comp
sate the infinite contribution to]FeE /]h as h→hp . As a
result, the height of the virtual anode can go smoothly
zero. Foru.ua emission from the collector compensates t
infinite derivative FeE /]h. As a result, the conditions~7! for
matching of the potential of the quasineutral plasma and
potential of the anode sheath can be satisfied, and it beco
possible for a virtual cathode to appear in the neighborh
of the pointa.

The potential diagram for this proposed potential dis
bution with a virtual cathode is shown in Fig. 8. Now th
fundamental characteristic points of the distribution of pote
tial turn out to be point1 with potentialhm and point2 with
potentialhp . The passage from virtual anode to virtual cat
ode leads to a change in the functionFs . On curve1 the
collector potentialhC,0, and forhm,h,hp we have6



l
qs

o
a
te

a

e
e

, a

e

m
ua

y
y
iv

th
t

ec

an
he
e

.
n
n

on

d

ce

390 Tech. Phys. 43 (4), April 1998 V. I. Sitnov and A. Ya. Énder
Fi~h!5exers~2h!; FeE~h!5ehmexers~h2hm!;

FeC~h!52eQ~h2hm!2exers~Q~h2hm!!. ~37!

Note thatFi(h) changes whenhC.0, and the ion den-
sity increases due to reflection from the anode sheath.

Let us continue this discussion forhC,0. We now must
satisfy Eqs.~13! and~17! using the functionsFs of Eq. ~37!
and the functionsGs calculated from them. For a virtua
cathode, all the considerations invoked in deriving E
~21!–~26! remain in force. In particular, Eq.~25! and the
equation for the current~26!, which relateb to hm and the
external parameters, are still valid. All the conclusions
Sec. 4 still hold, and in the limit as the height of the virtu
cathode goes to zero a transition occurs to the same staa
as the one in which there is no virtual anode.

Proceeding by analogy with our discussion of the virtu
cathode region in Sec. 5, we investigated the curveshp(u)
and hm(u) in the vicinity of the pointa. We showed that
here Km5Kp5K as well. Furthermore, the values of th
coefficientsK, Bm , andBp do not change as we go from th
virtual anode region to the virtual cathode region. Thus
the pointa the curveshm(u) andhp(u) are tangent to one
another, and the point of tangency is approached v
smoothly~Fig. 9!. The quantitieshp andhm were calculated
in the neighborhood of the virtual cathode using the sa
scheme that we used in the neighborhood of the virt
anode. Figure 9 shows the functionshm(u) and hp(u) for
g50.01, xE515, xC57.5, andQ52.0. It is clear that for
large negativeu the potentialhm decreases almost linearl
with decreasingu, while the plasma potential is practicall
unchanged. Because of the continuity of the derivat
dhm /dh at the pointa, no kinks are observed in the I–V
characteristics as we go from the virtual anode region to
virtual cathode region~Fig. 10!. It is seen from the figure tha
a kink occurs atu5xE2xC57.5, marking the point where
reflection of ions from the anode potential fall begins.

7. Once the potentials at the characteristic pointshp and
hm for fixed external parameters and a givenu are found, it
is easy to calculate the potential distribution in the interel

FIG. 8. Potential diagram for a Knudsen diode with surface ionization an
virtual cathode:1 — top of the virtual cathode,2 — boundary of the cathode
sheath;h15hm , h25hp ; «E — Fermi level of the emitter,EC — Fermi
level of the collector.
.
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trode gap. For example, we can find the electric field at
arbitrary point h on the segment between the top of t
virtual anode~or virtual cathode! and the plasma plateau. W
denote the dimensionless electric field at the pointh by
«(h). If we choose the Debye radius Eq.~4! with character-
istic currentj 5 j e

1(0) as the unit of length, convert Eq.~7! to
dimensionless variables, and integrate fromhm to h, we ob-
tain

2
1

2
«2~h!5E

hm

h

~ni~h!2ne~h!!dh

or

2
1

2
«2~h!5G~h,hm!5gGi~h,hm!2GeE~h,hm!

2bGeC~h,hm!. ~38!

The functionGs can be calculated analytically from Eq
~20! with hp replaced byh, and consequently the functio
«(h) can be found analytically. Using the known functio
«(h) and the relation«52dh/dz it is easy to find the po-
tential distributionh(z) on the segment (hm ,hp) as well.
Analogously we can construct the potential distribution

a

FIG. 9. The functionshm(u) ~curve I ! andhp(u) ~curve II !.

FIG. 10. Computed I–V characteristic of a Knudsen diode with surfa
ionization and an emitting collector.
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the other segments, changing only the expressions for
densities of charged particles. In the strongly underneut
ized regime it is more convenient to choose the length uni
the Debye radius determined using the value of the satura
current j sat on the I–V characteristic as the characteris
current. Converting to this unit of length changes all t
coordinatesz by a factor of (j sat/ j e

1(0))1/2.
Figure 10 shows an example of an I–V characteris

computed for unbounded emission from the collector and
same external parameters used in Fig. 9, and Fig. 11 sh
the potential distribution at several points of the I–V char
teristic. Large negative external voltages (u,ua) always
lead to a potential distribution with a virtual anode~Fig. 11,
curve I!. As u increases, the height of this virtual anod
decreases, and atu5ua it disappears~curvea). Foru.ua a
virtual cathode appears near the emitter~curve II !, whose
height increases with increasingu. As hC goes through zero
~curveIII !, reflection of ions from the anode fall begins, a
a kink appears on the I–V characteristic at the transit
point ~Fig. 10, curve1!. Still another kink appears on th
I–V characteristic at point2 of Fig. 10, related to the transi
tion of hp through zero~Fig. 11, curveIV! .

8. When there is no electron emission from the collec
into the interelectrode gap, a quasineutral plasma canno
ist for potentials in the rangehA,hp,hB . The pointa is
analogous to pointA in a diode with an emitting collector. I
is possible for a virtual cathode to coexist with a quasineu
plasma in the vicinity ofha whenhp.ha precisely because
of emission from the collector. The corresponding term
the electron density (ne

2) ensures thatd(ni2ne)/dh can be-
come negative ash goes tohp , making it possible to match
the quasineutral plasma potential with that of the anode
Without a doubt, the disappearance of the region of wave
potential distributions is the most interesting qualitative
fect of emission from the collector.

A case of unbounded emission from the collector is
countered in thermionic converters with Cs–Ba fillers op
ated in the Knudsen regime. It was shown in Refs. 16 and
that such converters achieve their the highest power and
ficiency at high emitter temperatures (;2500 K!. Under
these conditions, the collector is heated to high temperatu

FIG. 11. Potential distribution at points labeled on the I–V characteristic
Fig. 10.
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and possesses a high emissivity due to barium adsorbe
the surface. We can decide whether or not a collector pos
‘‘unbounded’’ emission by measuring the collector curre
as the emitter temperature changes. IncreasingTE for fixed g
and TC leads to an increase in the flux of ions and to
decrease in the height of the virtual anode. As a result, w
the emissivity of the collector is high, increasingTE must
increase the collector current. If, however, the current is li
ited by the emissivity of the collector, its value will no
change. Experimental studies over a wide range of em
temperatures show that the collector in a thermionic c
verter with Cs–Ba filler satisfies the criterion of unbound
emission. Thus, the assumption made in these calculat
that the collector emission is unbounded turn out to be cl
to the real situation in thermionic converters with a Cs–
filler.

The authors are grateful to V. M. Babanin and V.
Kuznetsov for helpful discussions, and to E. V. Yakovlev f
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Minimum-wear characteristics for boundary friction between solids
Yu. P. Kozyrev and B. M. Ginzburg

Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, 119178 St. Petersburg,
Russia
~Submitted April 25, 1996; resubmitted April 15, 1997!
Zh. Tekh. Fiz.68, 48–52~April 1998!

A new parameter is proposed for characterizing boundary friction between solids—the
probability Q that some contact spot will be converted to a wear particle as the real contact area
shifts by one mean contact-spot diameter. A method is proposed for the phenomenological
detection of optimum regimes of boundary friction, which are characterized by the minimum wear
intensity of the sample material, and for measuring the corresponding quantityQ5Qopt. For
babbitt, one of the most frictionless materials, the value ofQopt is found to be'2310210. When
data on the linear wear intensityI h , the contact pressurepn , and the hardnessH are
available,Q can be calculated for the given test conditions. Deviations ofQ from the valueQopt

~for a given material! can serve as a criterion for how closely a prepared surface structure
approaches the optimal. ©1998 American Institute of Physics.@S1063-7842~98!00904-0#
s
dr
n
ry
c-
n
t
a
n

nd
io
e
cr
it

s
ta
f t

e
o
te

c-
ce
pl

ra
n
in

n
a

in

s
is

e of
ful

-
e it
di-
r, it

s of
ples
nce
eir
ar
-

n

that
the

ism
s by
-
of
-

m-
he
di-
n

It is customary to sort the various friction mechanism
into three basic categories: dry, boundary, and liquid. In
friction, the interaction of the bodies in contact is so stro
that it often leads to scoring, which limits the use of d
friction in practical applications. Dry friction is also chara
terized by intense wear. In liquid friction, the bodies in co
tact are separated by a layer of liquid lubricant and are no
contact with one another, which leads to almost no we
Only in boundary friction, which is intermediate betwee
liquid and dry friction, can we conveniently observe a
study the run-in processes that are characteristic for var
materials in contact.1–3 These processes give rise to chang
in the surface structure of the contacting bodies at the ma
and microscopic levels that lead to minimum wear intens
for a given set of friction conditions.

In determining the wear intensity of materials, the te
conditions and materials that make up the bodies in con
are usually chosen in such a way that the wear on one o
bodies can be neglected, while the second body whose w
is being measured is used as a test sample. This leads t
following question: does there exist some material charac
istic that will indicate an optimum regime of boundary fri
tion ~and probably an optimum structure of a sample surfa!
and accordingly the minimum wear intensity of the sam
material under various test conditions~pressure, type of lu-
bricant, etc.!? A second question also arises: can we cha
terize wear for a set of materials with the help of this qua
tity and rank these materials based on its correspond
values?

In this paper we will attempt to answer these questio
by evaluating those properties of materials that are relev
to the problem of optimizing surface structures so as to m
mize wear intensity during boundary sliding friction.

The magnitude of the linear wear intensityI h is often
cited as a characteristic of wear resistance.4 However, this
quantity depends on the test conditions, and tends to mea
the wear resistance of machine components and mechan
3921063-7842/98/43(4)/4/$15.00
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made of a given material rather than the wear resistanc
the material itself. A quantity that is somewhat more use
in this regard is the so-called wear factor5 F, defined by the
relation F5I h /pn , where pn is the nominal contact pres
sure. However, this quantity is also unsatisfactory, sinc
can be completely different under different external con
tions and at different stages of the wear process. Moreove
does not take into account the differing wear resistance
materials with different strengths or hardnesses. Sam
made of harder materials may have better wear resista
than softer materials, but this tells us nothing about th
performance under optimal conditions, for which their we
resistance could be even higher~the wear resistance is in
versely proportional the wear intensity or the wear factor!.

In Ref. 6, Archard established that the following relatio
holds for dry sliding friction:

I h5kpn , ~1!

wherek is a constant coefficient.
In the literature it has been reported more than once

a certain range of contact pressures exists for which
quantity I h is a linear function ofpn , not only for dry fric-
tion but also for other kinds of friction. Constancy ofk
within this pressure range implies that the wear mechan
is not changing. On the other hand, the pioneering studie
Khrushchov7 of sliding friction between nonconforming bod
ies in lubricated contact revealed that over a wider range
pn friction with lubrication is characterized by a more com
plicated functionI h5 f (pn) ~Fig. 1!, with intense wear ob-
served on segmentI (pb,pn,pa), followed by a sharp fall-
off in the wear on segmentII (p0,pn,pb) and practically
no wear at all on segmentIII (pn,p0).

Unfortunately, the literature contains very few syste
atic studies of boundary friction between two bodies of t
same kind in contact over a wide range of external con
tions. In Ref. 8, Markov showed, in agreement with our ow
processing of Khrushchov’s data7 ~see below!, that wear is
© 1998 American Institute of Physics
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observed on segmentIII ~although it is small!. To illustrate
this, let us use the results of Ref. 7 mentioned above, wh
are unusual in that their experimental conditions involve
same two materials. In these experiments, a rotating cy
drical ingot of St-45 steel was placed in contact along
generator of the cylinder with a stationary flat sample ma
of babbitt B83~83% Sn, 11% Sb, 6% Cu!. The lack of mat-
ing of the contact surfaces led to a constantly changing c
tact area, allowing us to obtain values ofI h for babbitt over
a wide range of pressures.

Using the tabulated data given in Ref. 7, we were able
construct the functionI h(pn). For two such functionsI h(pn)
~Fig. 2, curves1, 2! we observed a bend at the lowest inve
tigated values ofpn , corresponding to a transition to a we

FIG. 1. A plot of linear wear intensity versus pressure under condition
lubrication according to Ref. 7.

FIG. 2. Plots of linear wear intensity versus pressure constructed from
presented in Ref. 7. Material — babbitt B83, rotating ingot — St-45 st
The rate of sliding was 3 m/s. Loads inN: 1,3— 100,2 — 300. Lubricants:
1,2—Avtol, 3—kerosene;4—the functionI h5kpn .
h
e
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e
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regime in which the curve is directed toward the coordin
origin. Note that the functionsI h(pn) shown in Fig. 2 are
plotted in logarithmic coordinates in order to include all t
experimental data. In ordinary coordinates, straight-line s
ments like III that point to the coordinate origin becom
more extended. We will assume that it is these segment
type III that characterize the approach of the surface str
ture to optimal under the conditions of our tests. This
sumption is confirmed by the fact that these type-III seg-
ments lie on the same straight line for both experimen
curves~line 4 in Fig. 2! and are in fact continuations of eac
other.

Processing of the results of another series of tests of
same materials gives curve3 in Fig. 2. This curve exhibits no
type-III segment, probably because we did not obtain a
lower values of the pressure~and in this case the test laste
12 days!!. However the lowest point on curve3, correspond-
ing to the smallest value ofI h obtained, falls right on the
same straight line4 ~Fig. 2!. Thus, the straight line4 in Fig.
2 describes a function of type~1!:

I h
opt5Koptpn . ~2!

The same coefficient of proportionalityKopt character-
izes the minimum observed wear intensities for all three
perimental curves shown in Fig. 2 obtained under vario
initial loads and various types of lubrication. As we me
tioned above, constancy of this proportionality coefficient
situations described by functions like~1! implies that the
wear mechanism does not change. Consequently, we
assume that when we fix all the friction conditions except
dependence on load and type of lubricant, the wear mec
nism is the same for the wear curves shown in Fig. 2~at least
for curves1 and 2! at the minimum values of the externa
pressure. Since in this case the wear is minimal, we w
assume that the corresponding surface structure of ba
under friction is optimal for the conditions of boundary fric
tion. This optimal structure does not depend either on
applied load or the type of lubricant. Its wear is described
the function~2! and is characterized by a linear wear inte
sity for optimal boundary frictionI h

opt.
Let us attempt to understand the physical meaning of

coefficientKopt in expression~2!. For further mathematica
calculations we will follow Ref. 6 and assume that the we
particle volumeVd is proportional to the area of the conta
spot. Then we have

Vd'Dhd2, ~3!

whered is the diameter of the contact spot andDh is the
height of the wear particle.

Let us denote bya the number of contact spots con
verted into wear particles and detached as the surface is w
down when the real contact area shifts by the average di
eter of a contact spot. Then the probability that any giv
contact spot is converted into a wear particle~in principle,
several wear particles can be formed out of one contact s!
equals

Q5a/n, ~4!

f

ta
l.



at

:

ar

a

f

th
o
a

i-
a
f

of
le
by

of

l to
ter to
on

Eq.

ar

,
nd
le I.

394 Tech. Phys. 43 (4), April 1998 Yu. P. Kozyrev and B. M. Ginzburg
wheren5Ar /d2 is the overall number of contact spots th
make up the real contact areaAr .

Combining expressions~3! and ~4!, we find the specific
volume wear during a shift by one contact spot diameter

Ve5QnDhd2. ~5!

It is well known that the magnitude of the specific we
intensity is determined by relation4

i h5Ve /Ard. ~6!

Substituting Eq.~5! into Eq. ~6!, we obtain

i h5Q
Dh

d
. ~7!

On the other hand, in steady-state wear regimes the m
nitude of the intensity of linear wearI h is connected with the
specific wear intensityi h by the following relation4

I h5 i h

Ar

An
, ~8!

whereAn is the nominal contact area.
If, as in Ref. 9, we assume that

Ar'
3Fn

H
, ~9!

whereFn is the normal load andH is the Brinell hardness o
the material, then taking Eqs.~6! and ~8! into account, we
obtain

I h'
3DhQ

dH
pn . ~10!

In Eq. ~10! we have the relationDh/d<1; equality to
unity corresponds to the case of a wear particle with in
form of a lump, which is observed quite often in the wear
metals. During the wear of polymer materials the wear p
ticles can have platelet shapes, and then the ratioDh/d is
considerably less than 1.

Thus, comparing Eqs.~2! and ~10! allows us to express
the coefficientKopt in terms of a number of physical quant
ties with well-defined meanings, i.e., the macroscopic ch
acteristics of the wear processI h , the microcharacteristics o
g-

e
f
r-

r-

the wear particlesDh andd, and the coefficientQ that char-
acterizes the stochastic character of the process.

It is natural to assume that for the optimum regime
boundary friction the probability of forming a wear partic
from a given contact spot is a minimum. Let us denote it
Qopt. In order to determine the value ofQopt for babbitts we
used the plots given in Fig. 2. Using curve4 ~Fig. 2!, we can
compute the coefficientKopt, and use it in Eq.~10!. Then if
we setDh5d and use well-known data on the hardness
babbitt, we can compute the quantityQopt5KoptH/3. This
value, which appears in Fig. 3 as a horizontal line paralle
the abscissa, can serve as a single reference parame
characterize the minimum wear for well tested antifricti
materials such as babbitts.

Let us compare our value ofQ with values computed
from literature data on other materials. To do so, we use
~10! in those cases where values ofI h , pn , and the hardness
are given in the literature for tested materials with high we

FIG. 3. Dependences of the probabilities of formation of a wear particleQ,
on the pressurepn for wear-resistant antifriction materials. The curves a
experimental points are labeled with the number of the material in Tab
4

TABLE I. Characteristic values of the probabilityQ for wear-resistant antifriction materials.

No. of
curve Friction pair

Brinell Hard-
ness, MPa

Pressure,
MPa Lubricant

Probability
Q, 10210 Ref.

1 Babbitt B-83 — St-45 steel 300 2230 Avtol-10, kerosene 2 7
2 FGM

~Teflon-41 graphite1 MoS2) — 3X13 steel 60 1210 Without lubric. 20 10
3 BrOTsS5-5-5 bronze — St-45 steel 600 2.5 Industrial oil 250
4 St-45 steel — BrOTsS5-5-5 bronze 2300 2.5 9 9 950 4
5 BrOF-10-1 bronze — 20X steel 900 2 I-30 99 11
6 BrOTsS5-5-5 bronze — ShKh-15 steel 600 2 I-30 100 11
7 Titanium carbide coating

on St-20 steel — St-45 steel 33104* 43 I-40A 185 12
8 Pig iron — tin-coated ring 3000 6 Motor oil 3 4
9 Pig iron — chrome-coated ring 3000 6 9 9 4.2 4

* Value of the microhardness. The values ofQ are determined for the first-named material in each of the friction pairs listed in the first column.
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resistance. Data for such materials used in machine com
nents are listed in Table I, and the results of calculatio
plotted on the same Fig. 3. In all cases the computed va
of Q are at least no smaller than the value ofQopt for bab-
bitts, and for the cast-iron bushings of motors with high we
resistance they are close toQopt for babbitts.

This last fact suggests that the minimum wear is char
terized by roughly the same values ofQopt for other materials
as well.

We can regard the value ofQopt for babbitts as a refer
ence characteristic relative to which we can rank other m
terials. Conversely, if we determine values ofQopt for other
materials, then if the values ofQ calculated under given tes
conditions always deviate from the valueQopt for a given
material, the deviation can serve as an estimate of the ex
to which the prepared surface structure departs from optim

Thus, in this paper we have proposed to use the valu
the probability of forming a wear particleQopt under condi-
tions of boundary friction in an optimum steady-state regi
as a reference parameter to characterize the minimum w
of materials.

It is assumed that this quantity depends only slightly
the nature of the bodies in contact when these bodies com
contact under conditions of sliding friction, and that it has
value of the order of;10210.

CONCLUSIONS

1. Analysis of the literature shows that by measuring
linear wear intensityI h over a wide range of variation of th
contact pressurepn ~for example, by using nonconformin
bodies in contact!, and by varying the initial loads and type
of lubricants, we can reach regimes of friction characteriz
by minimum wear under given experimental conditions. R
lations of typeI h

opt5Koptpn are valid ways to characteriz
these regimes, regardless of the dependence on initial l
ing or type of lubricant. We have used the quantityKopt to
compute the probabilityQopt of forming a wear particle from
a contact spot in this regime~when the real contact are
shifts by the average diameter of the contact spot!, and we
propose to use this quantity as a reference parameter to
acterize the minimum wear of a given material and the o
mum structure of its surface.
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2. The quantityQopt for babbitt, one of the most friction-
less materials, was found to be 2310210. We assert that this
value depends only slightly on the nature of the bodies
contact for the case of sliding friction, and it has a value
the order of;10210.

3. In any frictional regime for which data on the linea
wear intensityI h , the contact pressurepn , and the hardness
H are available, we can compute the probabiltiyQ for form-
ing a wear particle from a contact spot. The deviation
values ofQ calculated under these experimental conditio
from the value ofQopt for this material can serve to estima
how much the prepared surface structure departs from
optimum.

4. At this time the value ofQopt52310210 obtained for
babbitt is the smallest value ofQ computed for any materia
according to published data.

This work was carried out within the framework of th
Russian Science and Technology Program ‘‘Fullerenes
Atomic Clusters’’ ~Project ‘‘Tribol’’ !.
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Nonuniform distribution of absorbed energy in high-resistance materials excited by an
electron beam

V. F. Shtan’ko, V. G. Glybin, and V. M. Tolmachev

Tomsk Polytechnical University, 634004 Tomsk, Russia
~Submitted November 28, 1996!
Zh. Tekh. Fiz.68, 53–59~April 1998!

Experimental results are presented on the changes in the optical characteristics of lithium fluoride
induced by an electron beam with time-varying density and pulse energies close to the
threshold for destruction of the material. The spatial distribution of color centers is investigated,
especially near breakdown channels. Mechanisms for nonuniform accumulation of defects
are discussed, along with the fundamental causes of the inhomogeneous energy distributions
induced by the high-current electron beam. Concrete results of calculations of the field
intensity distribution in LiF crystals during irradiation are presented, based on models of
‘‘uniform’’ and nonuniform charging of the sample. An abrupt increase in the electric field
intensity is predicted near the breakdown channel. ©1998 American Institute of Physics.
@S1063-7842~98!01004-6#
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INTRODUCTION

Subjecting materials to pulsed high-current electr
beams can produce levels of excitation high enough to ca
damage,1,2 making it possible to obtain concentrations
short-lived products sufficient for the detection and inve
gation of the mechanisms of defect formation in solids.3,4 In
addition to generating electrons and holes, high-current e
tron beams also create strong electric fields in the irradia
sample, and dynamic mechanical stresses that can influ
both the efficiency of creation and decay of primary radio
sis products and post-irradiation processes. Because th
gree to which these factors affect a material has been in
equately studied, it is difficult to include them correctly
analyzing experimental results.

When alkali halide crystals are irradiated by high-curre
electron beams with energy densities above their dam
thresholds~0.1 J/cm2; see Refs. 5 and 6! the electric field of
the injected charge initiates multichannel electrical bre
down. This in turn leads to deviations in the spatial distrib
tion of radiation defects and luminescence,7 gives rise to fine
structure on the acoustic pulse, and is one of the mechan
for brittle fracture in insulators.8 How effectively the
electric-discharge channel dissipates energy depends o
density of the high-current electron beam, the properties
the material, and the irradiation geometry.

In this paper we analyze theoretically the phenome
that occur in the high-resistance material LiF excited by
high-current electron beam, either in the absence of or in
course of multichannel electric breakdown. Our primary
cus is on the space–time distribution of the space charge
profile of energy release, and the electric field intensity
this material. We also investigate experimentally the eff
of breakdown on the spatial distribution and structure of
fects in LiF.

SPATIAL DISTRIBUTION OF ABSORBED ELECTRONS

In calculating the distribution of absorbed electrons in
crystal, we make use of one of several ‘‘coarsened’’ collis
3961063-7842/98/43(4)/6/$15.00
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schemes9 based on the Moller–Bethe angular distributio
The energy loss due to ionization is determined from
Bethe–Bloch formula, while the average ionization poten
for the constituent elements is based on the Sternhei
formula.10 The shape of the accelerating voltage pulse a
current densityJ(t) for a GIN-400 based accelerator we
given in Ref. 11. The current densityJmax at the maximum of
the excitation pulse varied from 1 to 100 A/cm2. At the pulse
maximum, the accelerating voltage was 260 kV. In the
calculations, a variable-density excitation pulse of durat
23 ns was divided up inton monoenergetic pulses~in our
case n523 with a duration ofDt51 ns or n5230 for
Dt50.1 ns! with electron energyEi and current density
Ji5GiJmax in the i th pulse, whereGi is the current pulse
shape normalized to have a maximum of unity.

In the range of electron energies of interest to us~40–
260 keV! the distribution of absorbed electrons with respe
to distance into the crystal is independent of the initial e
ergy of the incident electrons within error limits (,5%).
When plotted in reduced coordinates, this distribution f
lows a universal curveF(U j ,i) normalized to have a uni
maximum (Fmax51). Here U j ,i5Zj /R(Ei) is the reduced
j th plot coordinate for thei th pulse, andR(Ei) is the total
range of an electron with energyEi calculated by integrating
the Bethe–Bloch function.9 In Ref. 11, we published detaile
tables ofF(Ui , j ), R(Ei), and the fraction of reflected elec
trons Pr5Nref /Nin , which is a weak function ofEi in the
energy range 40–300 keV, for ten materials~KBr, KJ, KCl,
KF, NaCl, NaI, LiF, CaF2, CdS, and polymethylmethacrylat
@PMMA#!. Then the distribution of the volume charge de
sity r(Zi ,tm) at the time of the excitation pulse has the fo
lowing form in absolute coordinates for various densities a
arbitrary pulse shape (m,n):

r~Zi ,tm!5FJmax~12Pr !Dt(
j 51

m

GiF~Ui , j !/R~Ei !G Y
F E

0

1

F~U !dUG . ~1!
© 1998 American Institute of Physics
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Equation~1! allows us to solve the self-consistent problem
including the retarding effect of the space charge in the c
tal on the incident high-current electron beam by replac
R(Ei) in Eq. ~1! by R(Ei2F i 21), whereF i 21 is the poten-
tial at the surface of the sample afteri 21 single pulses.
Including the retarding effect of the field leads to a shift
the maximum of the volume charge density toward the ir
diated sample surface with increasing beam current den
and the beam electrons can be completely reflected from
sample at the end of the excitation pulse. In all the calcu
tions that follow,r(Z,t) incorporates the retarding effect o
the field of the injected charge.

CALCULATION OF THE ENERGY-RELEASE PROFILE FIELD
IN A UNIFORM SAMPLE EXCITED BY A HIGH-
CURRENT ELECTRON BEAM

For a uniform planar sample with knownr(z), in order
to find the potential distributionF(z) and field intensity
E(z) in quasi-steady-state it is sufficient to solve the tri
agonal matrix Poisson equation by the method of dou
cyclic reduction12 in the form

F j 2122F j1F j 115D2Wj
05Wj ~2!

with boundary conditionF05F j50, where 0, j ,J; D is
the mesh step~in our case,D<10 mm!; Wj

05r j /(«0«);
J5L/D; L is the distance between surfaces with zero pot
tial; and « and «0 are the dielectric constant of the samp
and the permittivity of free space, respectively.1!

Calculations show~Fig. 1! that forL5Rmax ~whereRmax

is the maximum range of the electrons! the maximum field
intensity is reached at the surface being irradiated.

An important feature of the interaction between the hig
current electron beam and the sample is the complica
space–time variation of absorbed energy in the latter. Fig
2 shows the time dependence of the volume density of
ergy released in LiF at various distancesz from the irradiated

FIG. 1. Distribution of injected charge densityr(z) ~1!, absorbed energy
density W(z) ~2!, and electric fieldE(z) ~3! after irradiation by a high-
current electron beam.
f
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surface~the integrated energy release profile at the end of
pulse of irradiating electrons is shown in Fig. 1!.

These results show that the irradiation time of a layer
crystal decreases as its distance from the irradiated sur
increases. The volume energy density, and accordingly
rate of generation of nonequilibrium carriers, is maximu
for a layer located at a depth of 150–200mm. Thus the stop-
ping of a high-current beam leads to space–time nonuni
mity of the energy release and at the same time to the o
of an electric field.

The distributionE(z) depends on the sample thicknes
As this thickness increases, the field intensity at the irra
ated surfaceE(0) increases, reaching a limiting value o
Es5Qinj(12Pr)/(««0), whereQinj is the surface density o
injected charge, while at the unirradiated surface the fi
E(L) decreases. We have proposed empirical expression
determineE(0), E(L) and Ve5dEsef/dt ~with an error of
,10%) at any time during the excitation pulse wh
L.Rmax in a sample with both surfaces grounded, or wh
the distance between the surface of the sample and a su
with F50 is much smaller than the sample thickness~a plus
corresponds toE(0), a minus toE(L), andZeff is the effec-
tive charge of atomic nuclei in the crystal!,

Esef5~12Pr !Qinj@~L22Rmax/Ln~2Zeff!!/L61#/~2««0!,
~3!

Ve~ t !5~12Pr !@~L22Rmax/Ln~2Zeff!!/L61#J~ t !/~2««0!,
~4!

The numerical values ofEsef andVe computed from Eqs.~3!
and ~4! for Jmax520 A/cm2 (Qinj52.431021 C/cm2) are
more than an order of magnitude lower than the criterion
streamer breakdown.13 In contrast to this prediction, break
down is observed experimentally6,8 when Jmax,20 A/cm2.
The disagreement arises from the lack of criteria for init
tion of breakdown in this model, the fact that the change
the charge distribution due to the nonuniformity of the ele
tron emission from the surface was not included, etc.

FIELD CALCULATIONS UNDER CONDITIONS OF
NONUNIFORM CHARGING OF THE SAMPLE

According to Ref. 14, the emission current from o
channel is large enough to completely neutralize the cha
injected into the volume from an irradiated surface reg
with a radius of up to 150mm. Therefore, our calculation
were done for a cylindrical sample with radiusRk5150 mm,

FIG. 2. Time dependence of energy density absorbed in LiF.z, mm: 1 —
10, 2 — 50, 3 — 150,4 — 200,5 — 250.
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in which a single breakdown channel develops perpendic
to the surface and the degree of neutralizationGk can reach
1.

For a system with radial symmetry, the Poisson equa
in cylindrical coordinates has the form

d2F/dz21d2F/dr21~1/r !dF/dr52r~r ,z!/~««0!,

d2F/dw250; 0,r ,Rk ;

0,z,Zk ; dF/drur 5050. ~5!

Approximating the operatorsd2/dz2, d2/dr2, d/dr by
difference operators on a meshI ,J with stepsD j5Zk /J and
D i5Rk /I ~we will treat the general case whereD iÞD j and
D j5H•D i , whereH is a scale factor!, and assuming that th
function r i , j is determined at each mesh point (i , j ), we find
that Eq.~5! can be transformed into a five-point matrix equ
tion

F i , j 1122F i , j1F i , j 211H2@~111/2i !F i 11,j22F i , j

1~12 i !F i 21,j #52D j
2r i , j /~««0!, ~6!

with boundary conditionsF i ,05F i , j50; F i 21,j5F i 11,j .
For the boundary conditions chosen, the potentialsF i , j

and r i , j can be expanded in Fourier sine series along
columns of the mesh (0, j ,J):

F i , j5 (
k51

J21

F̂ i~k!sin~pk j /J!;

r i , j5 (
k51

J21

r̂ i~k!sin~pk j /J!, ~7!

whereF̂ i(k) and r̂ i(k) are coefficients of the Fourier serie
Substituting Eq.~7! into the five-point equation~6!, we

obtain

(
k51

J

$H2@~111/2i !F̂ i 11~k!22F̂ i~k!1~121/2i !

3F̂ i 21~k!#1@2cos~pk j /J!22#F̂ i~k!

1~D j
2/~««0!!r̂ i~k!%sin~pk j /J!50. ~8!

Because Eq.~8! holds at every pointj , we can individually
set the amplitude of each Fourier harmonic equal to ze
Then for eachk we have a tridiagonal matrix equation

AiF̂ i 11~k!1B~k!F̂ i~k!1CiF̂ i 21~k!5Ŵi~k!, ~9!

where Ai5H2(111/2i ), Ci5H2(121/2i ), B(k)
52(cos(pkj/J)212H2), Ŵ(k)52@D j

2/(««0)#r̂ i(k), and
r̂ i(k)5(2/J)( j 51

J r isin(pkj/J). This equation is solved fo

$F̂ i(k)% by the method of double cyclic reduction.12 In ad-
dition, the potential and electric field are determined acco
ing to Eq. ~7! at every mesh point (i , j ) at any time within
the excitation pulse.

Figure 3 shows the calculated distributions of the sp
charger(z) and electric fieldE(z) in the direction of inci-
dence of electrons in the pulsed irradiation of a LiF crys
plotted at a distancer 51 mm from the breakdown channe
when Gk50.5. The radius of the breakdown channel
ar

n

-

e

o.

-

e

l,

r 851 mm, and the radius of the neutralized volum
Rk5150 mm. As the degree of neutralization increases to
the magnitude ofE(z) at the leading edge of the breakdow
channel already exceeds the dynamic electrical breakd
strength of LiF, which is 3.2 MV/cm, during the first nano
seconds of irradiation.15,16 An increase inE(z) is also ob-
served as the radius of the breakdown channel decrea
Thus, for r 850.5 mm andGk51, the field intensity at the
leading edge of the breakdown increases to 180 MV/cm,
much higher than the electrical breakdown strength of L
and approaching the value of the intrinsic crystalline field

With distance from the breakdown channel in the rad
direction the field intensityE(r ) first decreases rapidly nea
the channel and then more slowly at distancesr .(324)r 8.
When Gk51 a high value ofE(r ).106 V/cm is observed
for r .100 mm from the breakdown channel.

These calculations indicate that for large values ofGk

and small breakdown channel radiir 8 conditions for the ini-
tiation of electrical breakdown are satisfied even in the fi
nanoseconds of irradiation whenJmax5100 A/cm2, in agree-
ment with experimental results.

SPATIAL DISTRIBUTION OF DEFECTS IN LIF

The results given above imply that when an ionic crys
is irradiated by a high-current electron beam, the proces
of thermalization of nonequilibrium electrons and holes, p
duction and decay of excitons, and secondary conversio
primary structural defects all take place under the influe
of a number of factors: the rate of generation of electrons
holes is nonuniform in time on account of the differing tim
dependences of the specific volume density of the ene
released at different depths~Fig. 2!, there is an electric field
produced by the space charge, and there are mecha
stresses induced by pulsed heating of the region where
electron beam is stopped. In addition, irradiation by a hig
current electron beam with an above-threshold current d
sity leads to multichannel electric breakdown, which gen
ates local dynamic stresses, a high electric field with spa

FIG. 3. Distribution of injected charge density~18–48! and electric field
~1–4! at various times during a high-current electron beam pulse~in ns!.
1,18 — 5; 2,28 — 10; 3,38 — 15; 4,48 — 23.
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time nonuniformities ~Fig. 3!, a thermal field, and
electromagnetic radiation emitted by the plasma in the bre
down channel.

In order to estimate the effect of these factors on
high-current electron beam, we studied the post-radia
spatial distribution of electronic color centers in LiF crysta
The choice of LiF as a system to study was dictated by
high mechanical strength, which allows multichannel bre
down to create visually observable tracks without brit
fracture, thereby ensuring that the coordinates of the reg
being probed can be determined. Moreover, the optical c
acteristics of the electron color centers created in LiF
irradiation are quite well-studied.17 Whereas irradiation of
LiF crystals at 295 K by a pulsed electron beam leads
marily to the generation ofF centers18, more complicated
F-aggregate centers are created by post-irradiation proce
For example, according to the mechanism proposed in
19, the formation of anF2 center takes place in two stage
first anF2

1 center forms when anF center interacts with an
anion vacancy, and then the new center captures an elec
This mechanism, whose existence in LiF was verified in R
20, was also found to generate more complica
F-aggregate defects.20 When crystals with a prior populatio
of electron color centers are irradiated, the nature of
original centers can change as they interact with nonequ
rium electrons and holes.21,22 In Ref. 17, Nahum proposed
mechanism in whichF3

1 and F3 centers are generated v
migration of aF2

1 center and its interaction withF centers.
Hence, when LiF is irradiated at 295 K by a series of hig
current electron beam pulses, several mechanisms partic
in the generation ofF-aggregate centers, the most effecti
of which are vacancy-related.

The optical absorption spectra and optical dens
D(l,x,z) were measured as a function of the coordinatesx,z
of the region being explored using light at fixed waveleng
l incident either normal to the irradiated surface, yieldi
D(l,x), or parallel to it, yieldingD(l,z). Prior to these
measurements, the LiF samples were irradiated by a trai
electron pulses until multichannel breakdown tracks
peared, which were observed using a D11U11 microsco
and the samples were kept at 295 K until the color cen
stabilized. The time evolution of a multichannel breakdo
track in LiF was described in detail in Ref. 23.

The distributionD(l,z) was measured for two samp
regions, the first containing a channel breakdown track~i.e.,
the probe beam intersects the channel! and the second with
out one~Fig. 4!. Figure 5 shows portions of the optical a
sorption spectrum in the energy range 2.0–3.3 eV for cry
layers located at various distancesz from the irradiated sur-
face. In layers far from the surface the spectrum is domina
by an absorption band with a maximum of 2.8 eV, whi
roughly coincides with theF2 band. However, atz5160 mm
this 2.8 eV band is broadened~its half-width is 0.24 eV as
opposed to 0.176 eV for theF2 band! due to overlap with
F3

1 center bands at 2.93 and 2.65 eV. The absorption s
trum is observed to become quite complex as the layer un
study approaches the irradiated surface.

In order to analyze the spectral content of the 2.8
band, we used the Alentsev–Fok method.24 We found that as
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z decreases, the optical density in the bands at 3.3 eV~theF3

band! and 2.26 eV~the F4 band! increases. Moreover, we
identified bands in the absorption spectra at 2.43, 2.5,
3.02 eV for z,70 mm. According to Ref. 25, the band a
2.43 eV is due toF5 centers. Based on our analysis of th
spectral content of the absorption, we obtained spatial dis
butions of the real optical density with respect toz for bands
associated withF2, F3

1 , andF4 centers~Fig. 4!. From this
analysis we concluded that the closer the maximum
D(l,z) is to the irradiated surface, the more complicated
structure of the center is. When the probe beam intersect
breakdown track, we observed some decrease in the ov
absorption over the spectral range of our measurements
the immediate vicinity of a channel breakdown track we o
served a relative increase in the absorption for optical ba
caused by complexF3, F3

1 , F4, andF5 centers, which are
close to one another in energy.

The changes in the optical density at 2.8 eV revealed
measurements in thex direction were considerably mor
complicated when the probe beam intersected diverg
channel breakdown tracks~Fig. 6! located in a plane paralle
to the irradiated surface. In this case, the value of the opt
density exhibits well-defined modulations with alternati
maxima between 35 and 40mm. Furthermore, a compariso
of the absorption spectra of regions near breakdown chan
and at distances 50, 100, and 150mm from them shows tha

FIG. 4. Distribution of optical density in LiF in the direction along th
normal to the irradiated surface. Probe beams do not~1–4! or do ~5–7!
intersect a breakdown track:1,5 — for l5445 nm; 2 — F2; 3 — F3

1 ;
2,7 — F4 bands;6 — for l5480 nm.

FIG. 5. Fragments of optical absorption spectra. Distancez from the irradi-
ated surface,mm: 1 — 30, 2 — 70, 3 — 100,4 — 130,5 — 160. Spectra
6 and7 show the composition of spectral band3.
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as we approach the channel the relative contribution to
absorption from 2.8 eVF2 centers decreases, while that fro
F3

1 centers increases. In this case we also observe an
crease in the optical density at the maxima of theF3 andF4

bands. It should be noted that this spatial modulation of
absorption for 2.8 eV is typical of a thin crystal layer paral
to the irradiated surface when the former contains a bre
down channel track.

These results indicate that high-current electron bea
with energy densities above threshold create distribution
F-aggregate centers over the irradiated volume that are
nificantly nonuniform, and that each type of center has
own characteristic dependenceD(l,x,z). There are at leas
two fundamental reasons for this spatial nonuniformity. T
first is the fact that the specific volume density of absorb
energy at a fixed coordinatez is a function of time~Fig. 2!,
which accordingly leads to differing space–time rates
generation of electrons and holes in the sample. Con
quently, the efficiency of the reaction that creates anF2

1

center via capture of a hole by aF2 center, like the reaction
that creates an anion vacancy via the interaction of aF center
with a hole, will depend on the coordinatez and the number
of prior irradiation pulses for a crystal irradiated more th
once, or, more precisely, on the concentrations ofF andF2

centers created. The efficiency of the reaction that conv
an F2 center into anF2

1 center via capture of a self-trappe
hole ~a Yk center! at temperatures above the detrapping te
perature of the latter is also a function of coordinates, si
the relative fraction of self-trapped holes present after
excitation pulse depends on the fraction of band holes
have reacted withF and F2 centers, or, more precisely, o
the space- and time-dependent rate of generation of h
and the spatial distribution of electronic defects created p
viously. Qualitatively similar processes can probably be
pected when more complex electronic centers are crea
e.g.,F3

1 , F3, F4 centers, etc.
A second structural element that participates in the c

version of electron centers is the anion vacancy. Therefor
is important to understand the processes that generate va
cies and their spatial distribution. Anion vacancies are c

FIG. 6. Distribution of optical density (l5 445 nm! in LiF irradiated by a
high-current electron beam with surface energy density of 0.16 J/2

(Jmax5 40 A/cm2) measured in thex direction ~see the diagram of the
measurement in the inset!.
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ated in the stopping region of the beam electrons whenF
centers capture holes, a process similar to that observe
KBr.26 An additional channel that leads to generation of a
ion vacancies is the creation of these vacancies by dyna
stresses caused by the pulsed heating of the stopping zon
the electrons. These stresses can reach values of 107 N/m2

~Ref. 27!. According to the data of Ref. 28, deformin
stresses of this magnitude can lead to anion vacancy con
trations as large as 1018 cm23, and the defect density in
creases with increasing loading rate. It is logical to assu
that the high concentration of anion vacancies created
dynamic loading should also participate in the conversion
electronic centers.

The second reason for spatial nonuniformity of the c
mulative effects of irradiation is the development of mul
channel electric breakdown, or, more precisely, of the f
lowing associated factors: a spatially nonuniform elect
field, dynamic stresses, a thermal field caused by the d
pation of energy released in the breakdown channel,
electromagnetic radiation in the visible and IR regions. It
worth noting that each of these factors has its own intrin
time dependence, so that it is difficult to determine the e
ciency with which each of the factors affects the convers
of electronic centers. However, it is only the near-chan
volume that is subjected to these dynamic stresses and
peratures, which lead to both increased concentrations of
ion vacancies and increased rates of diffusion processe
that this complexification of the structure of the electron
centers evolves in a well-defined way as the probe be
approaches the breakdown channel. Another factor to t
into account is the increasingly complicated motion of an
vacancies due to the electric field, whose intensity in t
region is a maximum~Fig. 3!.

The processes that spatially modulate the concentrat
of complex electronic defects as a breakdown channel is
versed~Fig. 6! are considerably more complex. The autho
of Ref. 29 established that periodic damage structures~PDS!
form in irradiated ionic crystals when the energy density
the high-current electron beam reaches a certain thres
value. In Ref. 30 it was shown that the generation of a P
takes place synchronously with the time at which the hig
current electron beam acts and is probably due to excita
of damaging stresses as the electromagnetic radiation ge
ated by self-oscillating plasmas in the breakdown channe
absorbed. The agreement between the maxima in the m
lated distribution ofF-aggregate defects and the periodic
of alternating zones of damage in the PDS allows us to c
clude that the modulated release of energy is due to the s
mechanism in the two cases. This conclusion is verified
the fact that as the energy density of the high-current elec
beam increases, the degree of modulation of the optical
sorption increases too.

Finally, we must point out that the development of
breakdown channel in LiF in a plane parallel to the irradia
surface, due to the action of the strong electric field, m
alter the conditions for stopping of the electron beam a
consequently must change the energy release profile.
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CONCLUSION

Our experimental data and calculations allow us
clarify the primary reasons for nonuniform release of ene
when a high-current electron beam acts on a high-resista
material.

When the energy density of the high-current electr
beam is below the threshold for initiating multichann
breakdown, the primary cause of the nonuniform release
energy is the time dependence of the current and spectru
the electron beam. U nder multiple irradiations this leads
spatial nonuniformity of the efficiency of the secondary
actions that convert electronic centers into complexes,
consequently to a complicated dependence ofD(l,z).

At energy ~current! densities of the electron beam th
exceed the threshold for multichannel breakdown, the bre
down factors act to further distortD(l,x,z) by causing more
complicatedF-aggregate defects to accumulate as the d
age channel is approached. In our view, the observed p
odic modulation ofD(l,z) comes about through excitatio
of characteristic lattice vibrations due to absorption of
electromagnetic radiation, one source of which is the s
oscillations of the electron–hole plasma in the breakdo
channel. A more thorough analysis of this mechanism
energy release will be published as a separate article. H
we note only that as the energy density~current! of a high-
current electron beam increases, the modulated releas
energy leads to formation of periodic damage structure
LiF, KI, NaCl, and KCl,29,30 implying that this mechanism
for energy release is common to a number of alkali-hal
crystals and is connected with microchannel breakdown.
low threshold for multichannel breakdown in ionic crystals
due to the favorable conditions for initiating thermionic a
field emission: a high concentration of nonequilibrium ele
trons in the near-surface region of the crystal and the
surface potential barrier for ejection of nonequilibriu
electrons.18

1!The results shown in Figs. 1, 2, and 3 were calculated usingJmax5100
A/cm2 (Qinj51.231026 C/cm2).

1R. B. Oswald, IEEE Trans. Nucl. Sci.NS-13~6!, 63 ~1966!.
2D. I. Va�sburd ~Ed.!, High-Energy Solid-State Electronics@in Russian#,
Nauka, Novosibirsk~1982!, 227 pp.

3A. K. Pikoev, A. S. Kabakichi, I. E. Makarovet al., Pulsed Radiolysis and
its Applications@in Russian#, Atomizdat, Moscow~1980!, 279 pp.
y
ce

n
l
of
of
o
-
d

k-

-
ri-

e
f-
n
r
re

of
in

e
e

-
w

4E. D. Aluker, V. V. Gavrilov, R. G. Da�ch et al., Fast Radiation-
Stimulated Processes in Alkali Halide Crystals@in Russian#, Zinatne, Riga
~1987!, 183 pp.

5V. I. Oleshko and V. F. Shtan’ko, Zh. Tekh. Fiz.57~9!, 1857~1987! @Sov.
Phys. Tech. Phys.32, 1114~1987!#.

6V. F. Shtan’ko, V. I. Oleshko, and V. N. Inyakin, Fiz. Khim. Obrab
Mater. No.6, pp. 11–13~1988!.

7V. F. Shtan’ko and V. I. Oleshko, Zh. Tekh. Fiz.59, 99 ~1989! @Sov. Phys.
Tech. Phys.34, 312 ~1989!#.

8V. I. Oleshko and V. F. Shtan’ko, Fiz. Tverd. Tela~Leningrad! 29, 320
~1987! @Sov. Phys. Solid State29, 182 ~1987!#.

9A. F. Akkerman, Yu. M. Nikitushev,and V. A. Botvin,Solving Problems
of Fast Electron Transport in Matter by the Monte Carlo Method@in
Russian#, Nauka, Alma-Ata~1972!, 163 pp.

10R. M. Sternheimer, Phys. Rev.145, 247 ~1966!.
11V. F. Shtan’ko, V. M. Tolmachev, and V. G. Glybin, Dep. in VINIT

3452-B95 at All-Union Institute of Scientific and Technical Informatio
Moscow ~1995!, 35 pp.

12D. E. Potter,Computational Physics@Wiley, New York ~1973!; Mir, Mos-
cow ~1975!, 392 pp.#.

13A. L. Gurski�, E. V. Lutsenko, and G. P. Yablonski�, IF AN BSSR Pre-
print No. 607@in Russian# ~Institute of Physics, Academy of Sciences
the BSSR, Minsk, 1990!, 47 pp.

14V. I. Oleshko and V. F. Shtan’ko, Zh. Tekh. Fiz.60~2!, 185 ~1990! @Sov.
Phys. Tech. Phys. Sov. Phys. Tech. Phys.35, 248 ~1990!#.

15A. A. Vorob’ev, Physical Properties of Ionic Crystalline Insulator
~Tomsk State Univ., Tomsk, 1960! @in Russian#, 232 pp.

16A. A. Vorob’ev and G. A. Vorob’ev,Electric Breakdown and Destruction
of Solid Insulators@in Russian#, Vyssh. Shkola, Moscow~1966!, 224 pp.

17J. Nahum, Phys. Rev.158, 814 ~1967!.
18E. D. Akuler, D. Yu. Lusis, and S. A. Chernov,Electronic Excitation and

Radioluminescence of Akali-Halide Crystals~Zinatne, Riga, 1979! @in
Russian#, 252 pp.

19C. J. Delbecq, Z. Phys.171, 560 ~1963!.
20Y. Farge, M. Lambert, and R. Smoluchowski, Solid State Commun.4, 333

~1966!.
21B. P. Aduyev and D. I. Va�sburd, Fiz. Tverd. Tela~Leningrad! 20, 3739

~1978! @Sov. Phys. Solid State20, 2165~1978!#.
22B. P. Aduyev and D. I. Va�sburd, Fiz. Tverd. Tela~Leningrad! 23, 1869

~1981! @Sov. Phys. Solid State23, 1093~1981!#.
23V. I. Oleshko and V. F. Shtan’ko, Zh. Tekh. Fiz.56, 1235 ~1986! @Sov.

Phys. Tech. Phys.31, 727 ~1986!#.
24M. B. Fok, Proc. Fiz. Inst. Akad. Nauk SSSR59, 3 ~1972!.
25M. Okada, K. Atobe, and M. Nakogawa,International Conference on

Defects in Insulating Crystals, Gatlinburg, Tenn.~1977!, p. 321.
26Y. Kondo, M. Hivai, and M. Ueta, J. Phys. Soc. Jpn.151, 33 ~1972!.
27V. F. Shtan’ko, V. I. Oleshko, and V. M. Tolmachev, Fiz. Khim. Obra

Mater.2, 53 ~1991!.
28B. I. Smirnov, Fiz. Tverd. Tela~Leningrad! 33, 2513~1991! @Sov. Phys.

Solid State33, 1419~1991!#.
29V. M. Lisitsyn, V. I. Oleshko, and V. F. Shtan’ko, Pis’ma Zh. Tekh. Fi

181~24!, 1478~1985! @Sov. Tech. Phys. Lett.11, 609 ~1985!#.
30V. I. Oleshko, and V. F. Shtan’ko, Zh. Tekh. Fiz.57, 2401~1987! @Sov.

Phys. Tech. Phys.32, 1457~1987!#.

Translated by Frank J. Crowne



TECHNICAL PHYSICS VOLUME 43, NUMBER 4 APRIL 1998
Depth distribution of vacancies generated by irradiating a solid surface with a flux
of accelerated ions

Yu. D. Kornyushkin
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197101 St. Petersburg, Russia
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Kinetic transport theory is used to find analytical expressions for the absorbed doses of the
primary-particle flux and primary-particle energy as functions of distance into a solid with finite
or semi-infinite thickness when the surface of the latter is irradiated by a flux of accelerated
ions ~atoms! in the direction normal to the surface. The theory was compared with experiments in
which solid silicon films with thicknesses 50, 100, and 400 nm were irradiated by a flux of
accelerated boron atoms with energies from 10 to 20 keV. These expressions were used to
calculate the depth distribution of vacancies generated in a solid whose surface is irradiated
by a flux of accelerated ions. The method developed can be used to determine the depth
distribution of vacancies created by fluxes of accelerated electrons, neutrons, or photons.
© 1998 American Institute of Physics.@S1063-7842~98!01104-0#
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INTRODUCTION

The study of changes in the physical properties of a s
induced by irradiation of its surface with a flux of accelerat
ions is valuable for both scientific and applications-rela
reasons. For instance, ion implantation of alkali and alkali
earth elements can strongly modify the emission proper
of materials.1 Reproducible physical changes in the prop
ties of materials find widespread application in ion-be
lithography.2 The problem of the first wall of a thermo
nuclear reactor can be addressed to some extent by stud
the changes that occur in a solid within the active zone of
reactor.3,4 The last decade has seen the beginning of inte
study of implantation in polyatomic targets, at present c
sisting of the constituent basis of semiconductors a
insulators.5 Note that ion implantation can be used to cre
high-temperature superconductors,6 and that irradiation of a
film by accelerated ions can cause it to have magn
properties.7 All these effects serve to motivate the study
interactions between currents of accelerated ions and ma

In this paper, fluxes of primary atoms in a solid a
modeled by transport theory in order to determine the ene
they transport in the forward and reverse directions. Te
niques are developed for computing the absorbed dose
atoms and energy at various depths and for calculating
depth distribution of vacancies.

THEORY

When the surface of a solid target is irradiated by a fl
of accelerated ions in the 1–100 keV energy range, ela
and inelastic collisions take place between primary partic
and atoms of the target material. Because the energy lo
due to elastic processes greatly exceed losses due to ine
processes, the classical approximation can be used to
scribe the scattering of primary particles in the target. In t
range of energies, the binding energy of a target atom
4021063-7842/98/43(4)/5/$15.00
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neighboring atoms of the solid target is much smaller th
the energy of the primary particles. Therefore, the collis
of a primary particle with a target atom can be treated a
pairwise interaction.

Assume that a flux of accelerated atoms~ions! is inci-
dent on the surface of a free solid film in the direction no
mal to the surface. Let us focus on an infinitesimally sm
volume dV with thicknessdx at a depth ofx. Fluxes of
primary particles will propagate within the volumedV in the
forward and backward directions, and will also be absorb
In order to describe the propagation of these fluxes in
material, we use the following kinetic transport equatio
which holds within the microvolume of matterdV at a depth
x and contains only average values of physical quantities8,9

2w f~x,m!1wsE
21

1

Ws~x,m8→m! f ~x,m8,m!dm8

5m
] f ~x,m!

]x
, ~1!

where x is the coordinate of the microvolumedV in the
direction normal to the surface. Herem85cosu8, m5cosQ,
whereQ8 andQ are, respectively, the angle of incidence
the primary-particle flux on the elementary volumedV at a
depthx and the scattering angle;f (x,m) is the distribution
function of primary particles in the material;w5ws1wg, w
is the total macroscopic interaction cross section;ws andwg

are the macroscopic scattering and absorption cross sect
which we write asw5l21, ws5ls

21 , wg5lg
21 , wherel,

ls , andlg are average mean free paths for total scatteri
elastic scattering, and absorption; andWs(x,m8→m) is the
scattering indicatrix, which is used to include anisotropy
the scattering of the primary particle flux within the solid:

Ws5
dPs~x,Q8,Q!

vdQ
, ~2!
© 1998 American Institute of Physics
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wheredps(x,Q8,Q) is the probability of a primary particle
undergoing elastic scattering from the angular intervaldQ8
to the intervaldQ, andv is the average velocity of the pri
mary particle at a depthx.

Since the energy loss during atomic collisions is d
primarily to elastic rather than inelastic processes in the
ergy range of interest,10,11 we havels!lg . Consequently,
w'ws . Moreover, it is clear from general consideratio
that the average mean free path will be different at differ
depthsx in the target material. Therefore, to first approxim
tion we can write

w5w0x, ~3!

where

w02nas,

na is the concentration of target atoms, ands is the total
microscopic cross section for the interaction of a prima
particle with an atom of the target material. The method
computing this quantity is described in Ref. 12.

If we assume that the isotropic properties of the mate
do not depend on depth~i.e., Ws(x,m8→m) is a constant!,
then the following distribution function satisfies the kine
transport equation plus its boundary conditions11:

f ~x,m!5
~12r 0!d0

2v2B1cosh~c0!
S exp~c0~12x2/h2!!

wa2m

2
exp~2c0~12x2/h2!!

va1m DF,

wherec05a0h2/2, wa5w0 /a0, and

B15waln
wa11

wa21
22;

F5A0Ws1A1; a0, A0, A1 are constants;r 0 is the integrated
backscattering coefficient of the flux of primary particl
from a free layer of thicknessh; g0 is the flux density of
primary atoms at the surface of the solid in the normal
rection; andh is the thickness of the solid layer.

The constanta0 can be written in terms of the maximum
longitudinal range of primary particles in the target mater
l p , whose value we define as the thickness of a layer thro
which 0.01 of the initial primary particle flux passes. The
starting from this definition, one can evaluate the maxim
longitudinal range from the expression

l p5 lim
x→ l p

~J1~x!/J0~x!!, ~4!

where

J0~x!5E
0

xdn

dx
dx, J1~x!5E

0

x

x
dn

dx
dx,

n is the number of accelerated primary particles per u
volume of material at a depthx.

According to the physical meaning of the distributio
function, one can write

f ~x,m!5
dn

vdm
.

e
n-

t
-

y
r

l

-

l
h

,

it

Consequently,dn5v f (x,m)dm. Substituting the distribution
function into Eq.~4! givesa0'3l p

22 . It follows from experi-
ment that

a0'1.455Rp
22 , ~5!

and thereforel p51.436Rp . The value ofRp can be com-
puted from the expression given in Ref. 13:

Rp5c1

A2~Z1
2/31Z2

2/3!1/2

Z1Z2r2
Ep , ~6!

whereEp>10 keV; c15137.4(a21b2ln(A2 /A1)); A2.2A1;
a25 0.6366;b25 0.0611;Z1 andZ2 are the atomic number
of the elements of the primary atoms and the target;A1 and
A2 are the atomic weights of the primary atoms and tar
atoms;r2 is the density of the target material; andEp is the
kinetic energy of the primary particles.

Let the elementary volumedV for which the kinetic
transport Eq.~1! was written be at a depthx. Then the total
volume V can be divided up into two auxiliary volume
V1(x) andV2(h2x) ~Fig. 1!. Irradiation of the surface by a
particle flux j 0 gives rise to forwardf h(x) and backward
j r(h2x) fluxes in each of these auxiliary volumes and a
to absorption of the primary particles as a result of multip
collisions with target atoms.

Writing a balance equation for the fluxes of primary pa
ticles in the volumeV2(h2x) gives

j h~x!5 j r~h2x!1hg~h2x!1hh~h!, ~7!

where j r(h2x) is the flux density of backscattered prima
particles from a layer of thicknessh2x at a depthx; j h(x) is
the flux density of primary particles that have passed thro
a layer of thicknessx and have therefore penetrated into t
volume V2(h2x); j g(h2x) is the flux density of primary
particles absorbed in the volumeV2(h2x); and j h(h) is the
flux density of primary particles leaving the free film o
thicknessh.

When no sources of primary particles are present in
elementary volumedV there exist two physically indistin-

FIG. 1. Nominal sketch of primary particle fluxes within a free layer a
outside it.
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guishable fluxes of primary particles propagating in oppo
directions:j h(x) and j r(h2x). Therefore, the resulting flux
of primary particles in the volumedV will be

j ~x!5 j h~x!2 j r~h2x!. ~8!

Then after substitutingj h(x) from Eq. ~7! into Eq. ~8!,
we obtain~Fig. 1!

j ~x!5 j g~h2x!1 j h~h!. ~9!

Equation~9! can be written in terms of transmission an
absorption coefficients:

h~x!5g~h2x!1h~h!, ~10!

where h(x)5 j (x)/ j 0, g(h2x)5 j g(h2x)/ j 0, and h(h)
5gh(h)/ j 0.

As follows from Ref. 11,

h~x!5
12r 0

cosh~c0!
cosh~c0~12x2/h2!!, ~11!

wherer 0 is the integrated backscattering coefficient from
free layer of thicknessh.

The integrated backscattering coefficient from a layer
thicknessh2x can be computed from the expression

r ~h2x!5
12r 0

cosh~c0!

B2

B1
sinh ~c0~12x2/h2!!,

r 05S 12
B1

B2
coth ~c0! D 21

. ~12!

In general the coefficientsB1 and B2 can be computed
from the expressions given in Ref. 11:

B15E
0

2p

dwE
0

pF~m8!sin2Q8dQ8

wa2m
,

B25E
0

2p

dwE
p/2

p F~m8!sin2Q8dQ8

wa2m
.

If Ws(x,m8→m) in Eq. ~2! is independent of the angle
Q8 andQ, then calculations show that

B15waln
wa11

wa21
22, B25waln

wa

wa21
21.

We now can use Eqs.~8! and~12!, according to Eq.~7!,
to calculate the flux of primary particles at an arbitrary de
x that propagate only in the forward direction:

h1~x!5
12r 0

cosh~c0!
~cosh~12x2/h2!!

1
B2

B1
sinh~C0~12x2/h2!!. ~13!

After substituting Eq.~11! into Eq. ~10!, we find that the
absorption coefficient for the flux of primary particles in
layer of thicknessh2x is

g2~h2x!5
12r 0

cosh~c0!
~cosh~c0~12x2/h2!!21!, ~14!

while the absorption coefficient in a layer of thicknessx is
e

f

h

g1~x!5g2~h!2g2~h2x!,

whereg2(h)5g2(h2x)ux50.
Consequently,

D~x!5g1~x!5
12r 0

cosh~c0!

3~cosh~c0!2cosh~c0~12x2/h2!!. ~15!

Equation~15! allows us to compute the magnitude of th
absorbed flux of primary particles in a layer of thicknessx,
i.e., to calculate the absorbed primary particle dose. If, ho
ever, the average energy of the primary particles in a laye
thicknessx is known, then the absorbed energy dose will

D~x,E!5g1~x!DE, ~16!

whereDE is the average energy loss from the primary p
ticles at a depthx.

The average energy loss from the primary particles
be computed using the expressions given in Ref. 2, accor
to which the average relative energy losses for elasticbe and
inelasticbi scattering at a depthx are

be5b1x, bi5b2x,

where

b15
D1Z1Z2A1r2Ep

21

~Z1
2/31Z2

2/3!~11A2
21!

,

b25
D2~Z11Z2!r2

A1
1/2A2Ep

1/2
, ~17!

andD15167.36,D256240.
Then the total relative energy loss will be

b5be1bi , ~18!

and the average energy loss from the primary particles
depthx is

DE5bEp . ~19!

Expressions~13! and ~19! allow us to calculate the av
erage relative energy transported by the flux of primary p
ticles through an elementary volumedV at a depthx in only
the forward and only the reverse direction:

h1~x,E!5~12bx!h1~x!,

r ~x,E!5~12bx!r ~x!, x<h< l p . ~20!

Equation ~16! can be quite valuable in application
since it simplifies the calculation of absorbed doses of ion
ing radiation in humans and animals, which is extrem
complicated to do under experimental conditions.

From Eq. ~15! it follows that the depth profile of the
absorbed radiation, when Eq.~5! is taken into account,
should have the form

G~x!5
dg1~x!

dx
5

~12r 0!a0x

cosh~c0!
sinh~C0~12x2/h2!!. ~21!
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The depth profile of the absorbed primary-particle e
ergy ~the absorbed energy dose! according to Eqs.~16!–~21!
can be written in the form

G~x,E!5
dD~x,E!

dx
5~b11b2!g1~x!1b

dg1~x!

dx
. ~22!

RESULTS AND DISCUSSION

In Ref. 12 a method was proposed to calculate the t
microscopic cross section for interaction of atoms in a flux
primary particles with atoms of a target material. The resu
of these calculations for the interaction of boron atoms w
silicon atoms in the energy range under discussion are fo
to be in good agreement with the results of Kumakh
et al.,14 which in turn confirms the correctness of the a
proach used to estimate the magnitude of the effective
croscopic inteaction cross section.

Equations~15!, ~16!, ~21!, and~22! allow us to calculate
doses of absorbed primary particle flux and the energy tra
ferred by the primary particles, and also the distribution
these doses with respect to depth for various thicknesse
the solid film. These calculations were done for Si lay
irradiated by a flux of accelerated boron ions. To make th
results easier to visualize, we used layers with thicknes
50, 100, and 400 nm and accelerated the ions to energie
10 and 20 keV. We found that this choice of initial values
the layer thickness and primary particle energies enable
to arrive at several important qualitative conclusions.

Figure 2 shows the dose functionsD(x), D(x,E) and
their depth distributionsG(x), G(x,E) in a layer of thick-
ness 50 nm for boron ion energies of 10 and 20 keV. B
cause in this case the maximum longitudinal rangel p. 50
nm, we can assume that a significant number of prim
particles leave the free layer. From Fig. 2 it is clear that
depth profiles of the particle and energy doses do not h
their maxima at the same position: the maximum of the
sorbed energy dose profile is shifted farther into the bu
Moreover, the absorbed dose decreases strongly as th
ergy increases. Figure 3 shows the same dependences a
2, but for a thickness of 100 nm, while Fig. 4 shows them

FIG. 2. h5 50 nm, Ep5 10 keV: 1 — dose of absorbed particles 2
•D(x); 18 — distribution of absorbed particles with respect to depthx,
104

•G(x); 2 — dose of absorbed energy, 20•D(x,E); 28 — depth distribu-
tion of dose of absorbed energy, 104

•G(x,E); Ep5 20 keV: 3 — dose of
absorbed particles 20•D(x); 3’ — depth distribution of dose of absorbe
particles, 104•G(x).
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a thickness of 400 nm.
Figure 4 shows the functionsD(x), D(x,E), G(x), and

G(x,E) for a free film of thickness 400 nm. For primar
particle energiesEp< 20 keV the thickness of such a laye
may be treated as infinitely large, since no flux of prima
particles passes through it in the forward direction. Comp
ing the functionsG(x) andG(x,E) in Fig. 4 with the corre-
sponding functions in Figs. 2 and 3, we note that in Fig
they monotonically approach the abscissa. This differenc
the shapes of the curves allows us to establish qualitativ
when the thickness of a film exceeds the average maxim
mean free path of a primary particle, and when it is smal
From Fig. 4 it is also clear that the position of the distrib
tion maxima with respect to depth for the absorbed dose
primary particles G(x) and the absorbed energy do
G(x,E) do not coincide. Therefore, e.g., in the implantati
of boron ions in silicon one should use the functionG(x),
and to obtain the depth profile of the energy absorbed by
material one should use the functionG(x,E). This approach
must be used in estimating radiation damage to a huma
animal.

Thus, when estimating the absorbed dose using eq
tions ~15!, ~16!, ~21!, ~22!, we must take into account th

FIG. 3. h5 100 nm;1, 18, 2, 28 — the same as in Fig. 2, withEp5 10 keV;
Ep5 20 keV: 3 — dose of absorbed energy, 20•D(x,E); 38 — depth
distribution of dose of absorbed energy, 104

•G(x,E); 4 — dose of absorbed
energy, 20•D(x,E); 48 — depth distribution of dose of absorbed energ
104

•G(x,E).

FIG. 4. h5 400 nm:Ep5 10 keV: 1, 18, 2, 28 — the same as in Fig. 2;
Ep5 20 keV;3 — dose of absorbed particles, 20•D(x); 38 — depth distri-
bution of dose of absorbed particles, 104

•D(x); 4 — dose of absorbed
energy, 20•D(x,E); 48 — depth distribution of dose of absorbed energ
104

•G(x,E).
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physical and chemical features of the primary particles. If
primary particles are chemically active in an organism, th
the primary effect of these particles on that organism will
determined by values ofD(x), G(x). If, however, the energy
of the primary particles is high enough that their absorpt
leads to considerable change in the tissue, then the m
important thing to do is to determine the values ofD(x,E)
andG(x,E). By using the expressions derived in this pap
such an estimate can be made rather simply.

Thus, the method developed here allows us to calcu
with reasonable accuracy both the absorbed dose and
distribution of absorbed primary particles within a layer
thicknessx. The distribution that results when a flux of boro
ions at energies of 10, 15, and 20 keV irradiates the sur
of a free silicon film with a thickness of 100 nm in th
direction normal to the surface was calculated in Ref.
The results given there are in good agreement with the
periments of Ref. 15 and completely correspond with
results of the present paper.

In general, the primary particles lose energy in elas
and inelastic collisions, and also by creating vacancies.
process of implantation is accompanied both by amorph
tion of the target crystal lattice and by the production
vacancies in it.16 For primary particle atoms with energie
above 10 keV, the region where the largest absorption
primary particle flux takes place is probably the region wh
vacancies are generated. The region of intense generatio
vacancies is at a depth where the most intense collision
primary particles with atoms of the material takes pla
Therefore, the distribution of vacancies in matter, and c
sequently the distribution with respect to depth of the am
phized layer, should coincide with the depth distribution
primary atomic particles absorbed in the material. In Fig
we show the depth distributions of the absorbed primary p
ticles and the absorbed energy dose at normal incidenc
Ref. 16 Motooka and Holland studied the effect of impla
tation of ^110& 100 keV single-crystal silicon with 100 keV
Si ions and 175 keV Ge, As ions. It was established exp
mentally that an amorphous layer and vacancies appea
the sample.

For a more detailed theoretical analysis, the implantat
process was simulated by the Monte Carlo method,
which the TRIM code was used.17 The trajectories of ten
thousand ions were followed. The threshold energy cha
corresponding to the appearance of a vacancy in a cas
was chosen to equal 13 eV, for a binding energy betw
lattice atoms of 4.5 eV. Figure 5 shows the depth distribut
of vacancies in a silicon layer whose surface is irradiated
a flux of accelerated arsenic ions calculated in Ref. 16, al
with the depth distribution of boron atoms obtained in t
present paper. A comparison of these profiles shows
they are in rather good agreement. In this way we confi
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the correlation between the depth distributions of absor
atoms in a material and the depth distribution of vacanc
created by collisions.

Thus, the distribution of absorbed flux of primary atom
particles in a single-crystal material can be used to determ
the depth distribution of the amorphized layer, its half-wid
and the deposition depth. Conversely, the depth distribu
of the amorphized layer can be used to determine the d
distribution of energy flux absorbed from the primary atom
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FIG. 5. ~1! Depth distribution of doseD(x) of absorbed 20 keV boron
atoms in a free silicon layer with thickness 400 nm and~2! depth distribu-
tion of vacanciesV(x) arising in silicon when the surface is irradiated wit
175 keV arsenic atoms~Ref. 16!. D(x) is in relative units, andV(x) is
vacancies/ion in relative units.
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The results of studies of the effect of thermal annealing on the magnetic properties of thin films
of Co–Pd alloys are described, along with a method for obtaining easy-axis perpendicular
anisotropy in these materials. The method consists of depositing layers of the alloy on a substrate
whose thermal expansion coefficient is considerably smaller than that of the film, and then
annealing it in a vacuum. This method is used to prepare samples with rectangular hysteresis loops
for magnetization perpendicular to the plane of the film, coercive forces of 750 Oe, and
Kerr rotation angles of 0.21°. Also presented are the results of experiments on thermomagnetic
recording on the samples. ©1998 American Institute of Physics.@S1063-7842~98!01204-5#
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In recent years the multilayer Co/Pd and Co/Pt structu
have been studied intensely. Their large easy-axis per
dicular anisotropy, large Kerr rotation angle in the spec
region around 400 nm, and high corrosion resistance m
them promising media for the magnetooptic devices to
used in the next generation of information storage syste
The perpendicular anisotropy of these multilayer structure
due to properties of the boundaries between the Co and n
metal layers, i.e., it is a surface effect. A number of theor
ical and experimental papers~see, e.g., Refs. 1 and 2! have
shown conclusively that the value of the perpendicular
isotropy depends strongly on the sharpness of the boun
between the layers, and decreases as the boundaries be
smeared out. This fact makes the technology of fabriac
multilayer Co/Pd and Co/Pt structures with the desired pr
erties rather complicated. However, a number of paper
which the magnetic and magnetooptic properties of t
films of Co–Pd and Co–Pt alloys prepared by various me
ods were investigated have reported that easy-axis per
dicular magnetic anisotropy can be obtained in these allo
In particular, films of Co–Pd alloy with perpendicular aniso
ropy were obtained by the authors of Refs. 3–5 using m
netron sputtering and electrolytic deposition, and by the
thors of Ref. 6 using molecular-beam epitaxy.

In this paper we investigate the effect of thermal anne
ing on the magnetic properties of Co–Pd alloy films, a
develop a method for preparing films with perpendicu
magnetic anisotropy that are suitable as magnetooptic
cording media.

THE POSSIBILITY OF OBTAINING EASY-AXIS
PERPENDICULAR ANISOTROPY BY THERMAL ANNEALING

The magnetic anisotropy constant of a thin film can
expressed as a sum

Keff5Kmc1Ks22pMs
2 ,

whereKmc is the contribution due to magnetocrystalline a
isotropy, Ks is the contribution due to elastic stress in t
film, and the third term describes shape anisotropy;Ms is the
4071063-7842/98/43(4)/5/$15.00
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saturation magnetization, andKs5(3/2)ls, wherel is the
magnetostriction constant of the film material ands is the
value of the elastic stress.

In keeping with the customary conventions, a positi
sign for Keff corresponds to easy-axis perpendicular anis
ropy. The disordered Co–Pd alloys have a face-centered
bic lattice, and the magnetocrystalline anisotropy in them
quite small. However, Co–Pd alloys also exhibit consid
able magnetostriction. In alloys with Co concentrations
around 25 at. % the magnetostriction constant is nega
and can be as large asl521.531024 ~Ref. 7!. Therefore,
elastic stresses can have a large effect on the magnitud
the anisotropy in this alloy. In Ref. 3 Hashimotoet al.
showed that in multilayer Co/Pd structures magnetostrict
can make a large contribution to the perpendicular anis
ropy. In Ref. 8 by the same authors, perpendicular magn
anisotropy was observed in films of the alloy Co–Pd p
pared by magnetron sputtering. Perpendicular anisotrop
these films occurs only for certain sputtering regimes, a
was associated by Hashimotoet al. with tensile elastic
stresses caused by peculiarities in the process of film gro
Essentially the same phenomena was noted by Tsunas
et al. in Ref. 9. According to estimates by the authors of t
aforementioned papers, the elastic stresses in alloy films
perpendicular anisotropy are in order of magnitude equa
109 dyn/cm2.

The same magnitude of tensile elastic stress can be
tained by annealing films deposited on a substrate wit
thermal expansion coefficient considerably smaller than
of the film. In fact, keeping the film at a high temperatu
during the anneal leads to relaxation of the elastic stresse
it. However, if the cooling is not too slow, tensile elast
stresses will be stored in a film grown on a substrate wit
smaller thermal expansion coefficient. Let us assume that
thermal expansion coefficient of the film equals the therm
expansion coefficient of pure Pd (;13031027 1/K!. Then
when such a film is grown on a substrate made of qua
glass ~whose thermal expansion coefficient
;531027 1/K! and annealed at a temperature of 500°,
strain relative to the free state is 0.5% and the elastic st
© 1998 American Institute of Physics



tio
t,

of

b
ffi
x

it
er
st
u

po
In
iu

o
es

fte
e

ns
le

o
in
e
a

es
es
ye
re

rri
th

x-
lm
-

se
s
er

the

ith a

a
tes
-

han
an-

re of
nge
t a
our,
and
bil-
es-
ith
-
tly.
the

tex-
e

of
s.

s as
o

e of
tion
en-

ely,

same
in-
as
ads

ets

408 Tech. Phys. 43 (4), April 1998 Gusev et al.
can reach values of 1010 dyn/cm2 ~if we ignore the fact that
elastic stresses are partially lowered by plastic deforma
in the calculation!, while the magnetic anisotropy constan
for example in an alloy film with a Co concentration
30 at. %, is 2.23106 erg/cm2.

Thus, annealing of Co–Pd alloy films grown on su
strates with considerably smaller thermal expansion coe
cients can be a method for obtaining media with easy-a
perpendicular anisotropy. In this paper we establish that
indeed possible to obtain films of the alloy Co–Pd with p
pendicular magnetic anisotropy by this method, and inve
gate several magnetic and magnetooptic properties of s
structures.

SAMPLE PREPARATION

Co–Pd alloy films were prepared by pulsed laser de
sition. A sketch of the deposition setup is shown in Fig. 1.
this apparatus we use a neodymium laser made of a yttr
orthoaluminate crystal with a wavelength of 1.06mm ~ILTI-
207!. For energies of 0.7 J per pulse, a power flux density
;23109 W/cm2 is created at the target. Deposition tak
place in vacuum at a pressure of 231026 Torr from two
different targets made of Co and Pd illuminated one a
another onto a substrate at room temperature. It is w
known that the cloud of plasma evaporated by an inte
laser beam in vacuum contains a certain fraction of partic
with energies above 500 eV.10 When such particles collide
with the surface of a growing film, they are capable
strongly disrupting its top layer and burying themselves
the thickness of its bulk to a certain depth. Specially d
signed deposition experiments and investigations of sm
angle diffraction by multilayer periodic Co/Pd structur
with a period of around 100 Å have shown that the thickn
of the mixed layer at the boundary between Co and Pd la
is roughly 10 Å. This fact dictates that as the alloy films a
deposited, the number of pulses of the sputtering laser a
ing at a target during one period be chosen such that
period of modulation of the film composition should not e
ceed 10 Å. Using this approach, it is expected that the fi
will consist of a practically uniform mixture of the two ma
terials. The average composition of the film~concentration!
is controlled by varying the relative numbers of laser pul
arriving at the Co and Pd targets. The magnetic propertie
the film were studied using the polar and meridional K

FIG. 1. Sketch of the laser deposition setup.1 — Nd:YAG laser, 2 —
focusing lens;3 — substrate,4 — stepper motor used to exchange targ
and scan targets under the laser beam; the targets are Co and Pd.
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effects at a wavelength of 630 nm. The composition of
films was determined by x-ray microanalysis.

The samples were annealed in a vacuum chamber w
residual gas pressure of no more than 531026 Torr, and
cooled naturally in the vacuum. The time for heating to
temperature of 300 °C was 4 minutes, and was 2 minu
from 300 500 °C. Cooling from 500 to 300 °C took 5 min
utes. The anneal time obviously should be no smaller t
the time required for relaxation of elastic stresses at the
neal temperature. Experiments show that at a temperatu
200 °C the magnetic properties of the film cease to cha
noticeably for anneal times of more than two hours; a
temperature of 300 °C this happens after more than 1 h
at a temperature of 400 °C it happens after 15 minutes,
at a temperature of 500 °C 4 minutes is sufficient for sta
ity. The x-ray diffraction and electron-microscope studies
tablished that as-deposited films consist of polycrystals w
grain sizes of 1002150 Å without any texture. Anneal tem
peratures up to 400 °C change the film structure sligh
Annealing at temperatures higher than 500 °C causes
grain size to increases to 450 Å and the film acquires a
ture with the ~111! axis perpendicular to the plane of th
film. Rocking curves around the~111! peak of the large-
angle x-ray diffraction pattern have a width at half-height
429°, indicating a high degree of texturization of the film

RESULTS OF EXPERIMENTS

Figure 2 shows how the magnetic anisotropy change
a result of annealing for a film with thickness 150 Å and C
concentration of 25 at. % deposited on a substrate mad
quartz glass. In Figs. 2a and 2b, curves for the magnetiza
are shown for as-deposited films and fields applied perp
dicular and parallel to the plane of the sample respectiv
obtained from the polar~a! and meridional~b! Kerr effect.
Figures 2c and 2d show the same dependences for the
sample after annealing at a temperature of 500 °C for 5 m
utes. It is clear that immediately after deposition the film h
a strong anisotropy of the easy-plane type. Annealing le

FIG. 2. Magnetization curves for one of the films.



es
e
e
p

ro
ffi
rif
o
in
r

en
e

la

ie

ook
the
arc
nd-
b-
s. 4,
loop
lane
the
. In
ops

lds

isot-
-

ese
ot-
e 5
e
eal
ame

of

he
and
the
ller

film
-
eas

the
ex-
he

409Tech. Phys. 43 (4), April 1998 Gusev et al.
to a change in the sign of the anisotropy, while the hyster
loop, which is taken in a field perpendicular to the film plan
becomes almost completely rectangular in form with a co
cive force of 750 Oe. This type of change in the anisotro
is typical for samples deposited on quartz glass.

As we assumed, thes changes in the magnetic anisot
of the film are due to the different thermal expansion coe
cients of the film and substrate materials. In order to ve
that it is the difference in thermal expansion coefficients
the film and substrate that is the decisive factor in chang
the anisotropy of the film, we performed a number of expe
ments on the deposition and annealing of films on differ
substrates. Films with the same composition and thickn
were deposited on substrates made of KB-type quartz g
silicon, sapphire, and BF12-type optical glass. Figure
shows the dependence of the thermal expansion coeffic

FIG. 3. Temperature dependence of the thermal expansion coefficient~K! of
Pd and the substrate materials used in this paper.1 — Pd, 2 — BF12-type
optical glass;3 — sapphire Al2O3, 4 — Si, 5 — KB-type quartz glass.
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on temperature for these materials according to handb
data.11 In order to prevent a chemical reaction between
silicon and the alloy, we used the method of vacuum-
sputtering to deposit a buffer layer of amorphous diamo
like carbon with a thickness of 200 Å onto the silicon su
strate. The results of these experiments are shown in Fig
5, and 6. Figure 4 shows how the shape of the hysteresis
changes in applied magnetic fields perpendicular to the p
of the film, and the increase in anneal temperature for
example of a film on a substrate made of quartz glass
order to measure the characteristics of the hysteresis lo
perpendicular to the film plane, we chose the following fie
~Fig. 4!: Hc is the coercive force,Hn is the field at which
domains nucleate in films that possess perpendicular an
ropy; andHs is the field at which films with easy-plane an
isotropy saturate. It is obvious that the magnitudes of th
fields are directly related to the value of the magnetic anis
ropy for films prepared using the same technology. Figur
shows the functionsHc and Hn plotted versus the averag
thermal expansion coefficient of the substrate at two ann
temperatures; in Fig. 6 we show the dependence of the s
quantities on anneal temperature for substrates made
quartz and optical glass.

From these plots it is clear that the magnitude of t
change in anisotropy is uniquely determined on the one h
by the anneal temperature, and on the other hand by
thermal expansion coefficient of the substrate. The sma
the thermal expansion coefficient is~i.e., the larger the dif-
ference between the thermal expansion coefficient of the
and that of the substrate!, the smaller is the temperature re
quired to obtain the same change in anisotropy. Wher
starting from a certain anneal temperature~which depends on
the thermal expansion coefficient of the substrate! further
increases in the temperature do not lead to a change in
anisotropy. Such behavior of the anisotropy is probably
plained by the fact that starting with a certain value of t
-
re
FIG. 4. Changes in the shape of hys
teresis loops as the anneal temperatu
is increased.
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strain ~if we measure strain from the state of a free film!,
which depends only on the film material, elastic stress in
film ceases to be stored and the strain becomes almost
pletely plastic, and plastic deformation for such values d
not change the magnetic anisotropy.

EXPERIMENTS ON THERMOMAGNETIC RECORDING

The angle of Kerr rotation in samples grown on qua
and optical glass at a wavelength of 630 nm is about 0
which is comparable to the same characteristics
multilayer Co/Pd structures that are analogous with resp
to thickness and average composition. In order to reveal
potential of these films as magnetooptic recording media,
carried out experiments on thermomagnetic recording.
write information we used a laser with a wavelength
1.06 mm. We used a beam splitter to split the laser be
into two roughly equal-intensity beams and directed e

FIG. 5. Coercive forceHc ~1,2! and domain nucleation fieldHn ~3,4! of
films of Co–Pd alloy as functions of the thermal expansion coefficient of
substrate. All the films had a thickness of 180 Å and Co concentratio
24 at.%. Anneal temperature, °C:1,3 — 590,2,4 — 450.

FIG. 6. Dependence of the parametersHc , Hn andHs on anneal tempera
ture for two films on substrates made of quartz glass and optical glass.
films had a thickness of 180 Å and Co concentration of 25 at.%.1,2,6—
Hc , Hn , Hs for a substrate made of quartz glass,3–5 — Hc , Hn , Hs ,
respectively, for a substrate made of optical glass.
e
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one onto the surface of a magnetic film in order to obtain
interference pattern. Then, after we first magnetized the
to saturation, and illuminated it with laser pulses whose
ration was 100 ns and average intensity was 73104 W/cm2.
In this case the sample was not placed in an external m
netic field. After illumination by laser pulses, the sample w
investigated using a polarizing microscope in transillumin
tion. Figure 7 shows the pattern observed in the illumina
region of the film for almost-crossed polarizer and analyz
The magnetization is in bands that are visible in Fig. 7, a
is directed perpendicular to the plane of the figure away fr
and toward the reader, alternating in direction from the lig
band to the dark band and conversely. The period of
magnetic structure obtained was 5.7mm. It is clear from the
fine details that the size of a recording domain can be m
considerably smaller than this value. No sign of structu
degradation was observed after several cycles of rewritin

These results show that under the most favorable co
tions ~sufficiently small thermal expansion coefficient of th
substrate, and a concentration of Co in the film correspo
ing to the highest value of the sumK85(3/2)ls22pMs

2 for
a given value of elastic stresses! it is possible using the
method described in this paper to obtain media with perp
dicular magnetic anisotropy that are suitable for magneto
tic recording. The method proposed is distinguished by
simplicity. The magnetic properties of the final structure a
insensitive to the method used to deposit the alloy films, d
to the last high-temperature anneal. Another advantage
this medium over multilayer structures is its high therm
stability.

Moreover, the results of this work lead us to conclu
that a difference in thermal expansion coefficient of the fi
and substrate can give an additional contribution to the
isotropy connected with elastic stresses. When thermal m
ods are used to measure the magnetic properties
multilayer Co–Pd structures, the neglect of this contribut
can also lead to errors and incorrect interpretations of
measured results.

The authors are deeply grateful to Yu. N. Drozdov f
performing the x-ray structural analysis of the films, and a
to A. A. Fraerman without whose attention this work wou
never have been done.
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FIG. 7. Pattern of bands with oppositely directed magnetizations obta
for one of the samples by thermomagnetic recording (31000).
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The problem of finding the potential function in a weakly conductive anisotropic medium for an
assigned distribution of the potential on the boundary and sinusoidal variation with time is
solved. It is shown that for each phase of the supply voltage the distribution of the potential is the
same as it would be for a static field in an insulating crystal with a nonuniform anisotropy
that varies with the phase according to a definite law. ©1998 American Institute of Physics.
@S1063-7842~98!01304-X#
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Static and quasistatic electric fields in anisotropic med
including both insulators and conductors, have been th
oughly studied. However, there is an extensive class of
terials with low electrical conductivities which behave
conductors with a conductivitys in a low-frequency electric
field and as insulators with a dielectric constant« in a high-
frequency field.1 Hence it follows that there is an intermed
ate frequency range, in which both« and s influence the
distribution of the field in the medium. This regime was e
perimentally investigated in Ref. 2 in the example of an el
trooptic gradient deflector made from a KDP crystal.
room temperature this crystal behaves as a conductor wit
anisotropysmin /smax50.86 in a static field and as an insul
tor with «min /«max50.5 at a frequency of 50 Hz. When it i
heated to 40–50 °C, it belongs to the intermediate region
to an increase in the 50-Hz conductivity. As a result, a p
nomenon is observed wherein the field configuration in
crystal varies as a function of the phase of the applied v
age.

We shall examine the electric fields in crystals spec
cally for the intermediate frequency range, bearing in m
that a pure insulator (v→`) and a pure conductor (v→0)
must be obtained as special cases.

To describe a quasistatic electric field in a weakly co
ductive medium characterized by the parameters« ands, we
must consider the system of equations

dr

dt
52div s gradw, ~1!

r5div « gradw, ~2!

wherew is the electric field potential andr is the bulk charge
density.

Homogeneous crystals characterized by« ands tensors
that do not depend on the coordinates are considered in
paper.

It is also assumed that the boundary conditions forw on
the closed boundaryS are assigned:

wus5w~S!•cosvt. ~3!

When« ik ands ik are constant, Eqs.~1! and~2! take the
forms
4121063-7842/98/43(4)/4/$15.00
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]r

]t
52¹s

2w, ¹s
25s ik

]2

]Xi]Xk
, ~4!

r5¹«
2w, ¹«

25« ik

]2

]Xi]Xk
. ~5!

After eliminating the unknownr therefrom, we obtain

¹«
2 ]w

]t
1¹s

2w50. ~6!

Utilizing the fact that~6! is linear and that an harmoni
time dependence is assumed in the boundary conditions
seek a solution in the form

w5f exp~ ivt !. ~7!

It is convenient to solve the problem in complex va
ables, bearing in mind that the physically meaningful pote
tial will be the real or imaginary part of~7!. Substituting~7!
into ~6!, we obtain the equation forf, which is a complex
function of the coordinates:

~¹s
21 iv¹«

2!f50. ~8!

Let us mention some special cases. In a static fieldv
50) Eq. ~8! transforms into¹s

2f50, i.e., into the equation
for an electrically conductive crystal, as was pointed out
Ref. 1. At large values ofv or in the case where the condu
tivity of the crystal is negligibly small (s50), Eq.~8! gives
the usual equation for the electrostatics of an insulating c
tal ¹«

2f50. In both cases the equation becomes purely r
and its solutionf is real-valued.

Below we shall consider the planar problem in thex,y
coordinate plane, whose axes correspond to theX8 and Z
crystallographic axes of the KDP crystal, since we intend
use the approach developed to describe the operation of
trooptic devices~deflectors and lenses! in which the nonuni-
form fields are usually cylindrical fields, which do not d
pend on one of the coordinates.

Going over to a coordinate system in which the tens
s ik and « ik simultaneously have a diagonal form~this is
possible for many crystals!, we obtain
© 1998 American Institute of Physics
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~s11 iv«1!
]2f

]x2 1~s21 iv«2!
]2f

]y2 50. ~9!

This equation was also considered in Ref. 4.
As we have said, the character of a quasistatic elec

field varies with time and depends on the phase of the su
voltage at which it is observed.2 Let us find the law of this
variation. We assume that the solution of Eq.~9! under the
assigned boundary conditions~3! has been found and that th
physical field of potential~7! has been constructed. Its di
tribution depends on time. We consider it at the timet. We
ascertain whether this instantaneous field distribution is s
lar to any static field distribution that would exist if the r
gion contained a crystal with a suitably chosen anisotropj,
which is construed as the ratio of the principal values of
dielectric tensor of a nonconducting crystal, or, more p
cisely, whether there is a real equation

]2w

]x2 1j
]2w

]y2 50 ~10!

which would be satisfied by the field~7!. If such an equation
exists, what does the effective anisotropyj equal at each
moment in time?

We substitute~7! into ~10! and take the real part

ReF S ]2f

]x2 1j
]2f

]y2 Dexp~ ivt !G50. ~11!

SinceF satisfies Eq.~9!, we have

]2f

]x2 52
s21 iv«2

s11 iv«2

]2f

]y2 52a
]2f

]y2 , ~12!

where

a5
s21 iv«2

s11 iv«1
5a11 ia2 . ~13!

Substituting~12! into ~11!, we obtain

ReF ~j2a!
]2f

]y2 exp~ ivt !G50. ~14!

Assuming thatu]2f/]y2uÞ0 and introducing the nota
tion

q5arg~]2f/]y2!, ~15!

we have

Re@~j2a!exp i ~vt1q!#50, ~16!

whence

j5a12a2 tan~vt1q!. ~17!

We point out some consequences of~17!.
1. For each phase of the supply voltage, the field in

assigned region coincides with the electrostatic field wh
would be induced there if the region were filled by an inh
mogeneous medium~in which q depends on the coordinate!
with anisotropy specified by a tensor having the princi
values 1 andj under the existing boundary conditions.

2. The effective anisotropyj varies as a function of the
phase of the supply voltage according to~17!, i.e., it runs,
ic
ly

i-

e
-

n
h
-

l

along with tan(vt1q), through all values from2` to 1`.
A similar dependence was discussed in Ref. 4 in the cas
a solution of Eq.~9! that was obtained without considerin
the stationary~in time! boundary conditions.

3. Generally speaking, the effective anisotropy depe
on the coordinates, sinceq depends on the coordinates.

In the investigation of the electrooptic deflectors d
scribed in Ref. 2, an increase in the conductivity of the cr
tals was achieved by heating. It was found that the ratios
the principal values of the« and s tensors varied insignifi-
cantly and that only the value of the conductivity change
Therefore, it would be useful to ascertain how the effect
anisotropyj varies under the following conditions:

«1

«2
5«5const,

s1

s2
5s5const,

v«1

s1
5r P~0,̀ !.

We represent~13! in the form

a11 ia25
s22 iv«2

s12 iv«1
5

s1«

2
2

s2«

2

12 ir

11 ir
.

Since u(12 ir )/(11 ir )u51, in the range 0<r ,` the
complex numbera11 ia2 runs along a semicircle centered
the point (s1«)/2 and having a radius (s2«)/2. The maxi-
mum value ofa2 is achieved atr 51, and the dependence o
j on the phase of the supply voltage according to Eq.~17! is
then most clearly manifested.

Figure 1 presents the variation ofj as a function of the
phase of the supply voltage. The region between curve2
(q5213.1°) and3 (q510.5°) contains the possible value
of j at different points of the aperture~the dependence ofq
on x and y! for r 51.13. In addition, curves close to th
limiting values r→0 ~f 50.5 Hz, curve 1! and r→`
~f 5500 Hz, curve4! are presented to show what happe
when one goes over from medium that is described simu
neously by the two tensors« ik ands ik to the limiting cases
of a pure insulator and a pure conductor.

The pattern of field variations observed in Refs. 2 an
in a heated electrooptic deflector can be explained on
basis of the foregoing presentation. Let the deflector e
trodes, i.e., conjugate hyperbolas, be designed for a ce
anisotropy of the medium. It is seen from Fig. 1 that there
always a phase of the supply voltage in whichj is close to
the anisotropy inherent in the design of the electrodes
that it has a larger or smaller value in other phases. Howe
all these relations are approximate, sincej depends on the
coordinates~the vertical section of the region between curv
2 and3!; therefore, the field corresponds only approximate
to the field which would induced in the device if a homog
neous electrooptic crystal were placed within the electro
system.

Let us consider the dependence of the effective ani
ropy on the coordinates. As follows from~17!, j depends on
the coordinates only ifq depends on them. We ascerta
whether there are solutions of Eq.~9! for which q5const
and, if they exist, what are the boundary conditions fo
potential which varies harmonically with time. We note th
if this is true for some solutionF, then q50 for F exp
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(2iq), which differs by a constant factor and is therefo
also a solution of Eq.~9!. We seek such solutions.

We take Eq.~9! in form ~12!

]2F

]x2 1a
]2F

]y2 50,

a5a11 ia2 , F5F11 iF2 . ~18!

From

q5arg
]2F

]y2 5arctanS ]2F2

]y2

]2F1

]y2 D50

we obtain

]2F2

]y2 50, ~19!

whence

F25F1~x!y1F2~x!, ~20!

whereF1 andF2 are arbitrary functions at this point.
We separate the real and imaginary parts of Eq.~18!.

Taking into account~19! and ~20!, we have

]2F1

]x2 52a1

]2F1

]y2 5
a1

a2

]2F2

]x2 5
a1

a2
@F19~x!y1F29~x!#,

~21!

i.e.,

F15
a1

a2
@F1~x!y1F2~x!#1 f 1~y!x1 f 2~y!, ~22!

and, finally, from~21! and ~22! we have

@F19~x!y1F29~x!#52a2@ f 19~y!x1 f 29~y!#. ~23!

Since there is a function linear iny on the left-hand side
of the equality and a function linear inx on the right-hand
side, the functionsF19 , F29 , f 19 , and f 29 should be linear.
After a comparison of the coefficients in front of simila
terms and integration, we obtain~ai , bj , ck , and dl are
arbitrary physical constants!

FIG. 1. Dependence of the effective anisotropyj on the phase of the supply
voltage.
f 1~y!5a1y31b1y21c1y1d1 ,

f 2~y!5a2y31b2y21c2y1d2 ,

F1~x!522a2@a1x31a2x21a3x1a4#,

F2~x!522a2@b1x31b2x21b3x1b4#. ~24!

Classes of solutions of Eq.~18! for which condition~19!
is satisfied are demarcated by selecting the arbitrary c
stants in~24!.

In the case of boundary conditions that are symme
both with respect tox and with respect toy ~an electrooptic
quadrupole deflector! only even powers of the coordinate
can appear in the solution. We then obtain

F5b2~ax22y2!12a2b42d5A~ax22y2!1B. ~25!

A similar solution of the equation was considered in R
4, where it was shown that in the case of harmonic variat
of the potential with time the shape of the deflector ele
trodes must vary continually, in contradiction to the boun
ary conditions of a real device, which are stationary w
time. Therefore, it can be stated that condition~19! will not
hold for the field existing in a deflector, i.e.,q will depend
on the coordinates.

To ascertain the dependence ofq on the coordinates, we
must completely solve the problem of finding the elect
field potential which satisfies the concrete boundary con
tions and Eq.~9!. As an example, the field was calculated
the method described in Ref. 6 for a quadrupole deflec
with the following initial data: anisotropy inherent in th
geometry of the electrodes, 0.79; radius of the circle tha
tangent to the electrodes tips, 1.75 mm; temperatu
51.8 °C; control voltage, 2000 V; parameters of the crys
«x542, «z521, «058.85310215 F/mm, «z /«x50.5, sx

50.6310210 S/mm, sz50.51310210 S/mm, sz /sx

50.86, v«x /sx51.13.
The results of the calculation were used to construc

map ~Fig. 2! of lines of equal phaseq(x,y) ~the numerical
values of the phase of each line are given in degrees! for a
phase of the supply voltage equal to zero~the voltage maxi-
mum!. It is seen from Fig. 2 that the largest phase differen

FIG. 2. Lines of equal phaseq(x,y).
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(;24°) is observed for points in the region near the el
trodes. We note that in Fig. 1 the dependence of the an
ropy on the phase is presented for just this case. As follo
from Fig. 1, the magnitude of the nonuniformity of the a
isotropy ~the vertical cross sections of the region betwe
curves2 and3! depends on the phase of the control volta
The minimum value of the nonuniformity of the anisotrop
for devices with the data presented amounts to;0.06.

This research was financed by the Belarus Founda
for Basic Research.
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In this paper two problems are formulated and solved: the problem of diffusion in a two-phase
system with a moving boundary, and the problem of taking into account the finite reaction
rate for formation of the new phase. A numerical solution is found by a variational method, which
has a number of practical advantages. ©1998 American Institute of Physics.
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INTRODUCTION

The evolution of microelectronics has long requir
mathematical models of the technological processes use
fabricating semiconductor devices. Although this need
models has been the subject of an extensive literature~see,
e.g., Refs. 1–7!, there are still a large number of problem
that remain unsolved even today. In this paper, two of th
problems will be formulated and solved: 1! the diffusion of
impurities in a semiconductor under conditions such that
mation of a new phase takes place~oxidation, silicide forma-
tion, etc.!, and 2! formation of a new semiconductor pha
by a heterogeneous reaction with a finite rate. Both of th
problems are of the Stefanovski� type, although the first of
them is linear and the second nonlinear. Both were sol
numerically by a variational method, which has a number
advantages in practical problems, notably the fact that
results can be interpreted and described by a relatively s
number of plots or tables.

1. DIFFUSION OF IMPURITIES DURING A HETEROGENEOUS
REACTION

a) Basic equations.Let a ‘‘pure’’ semiconductor~phase
a) occupy the half spacex.0. The initial distribution of
impurities is described by a functionF(x). At time t50 the
temperature of the sample is raised. For simplicity we w
assume that the temperature rise occurs instantaneo
Then a layer of phaseb begins to form at the surface of th
semiconductor, with a whose thickness that varies accord
to some functionl (t), wherel (0)50.

At low temperatures, the diffusion of impurities can b
neglected. At high temperatures, impurities begin to diffu
and it is necessary to determine the distribution of impurit
in phasesa andb at an arbitrary time. The problem as pos
is described by the diffusion equation

]C~x,t !

]t
5

]

]xS D~x,t !
]C~x,t !

]x D . ~1!

HereC(•) is the impurity concentration, which satisfies th
initial condition

C~x,0!5F~x!, ~2!
4161063-7842/98/43(4)/7/$15.00
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and D(•) is the diffusion coefficient of impurities, whos
dependence on coordinates and time is connected with
process of formation of phaseb.

The boundary condition for Eq.~1!

]C~x,t !

]x U
x50

50 ~3!

implies that the surface of the solid is impermeable to imp
rities. The diffusion coefficient in this model can be writte
in the form of two equivalent expressions:

D~x,t !5Db1~Da2Db!Q~x2 l ~ t !!, ~4!

D~x,t !5Da2~Da2Db!Q~ l ~ t !2x!. ~5!

Here Q(•) is the Heaviside unit step function, andDa and
Db , which are constant quantities, are diffusion coefficie
for impurities in phasesa andb. In order to solve this prob-
lem we could use the method described in Ref. 8. Howev
it is simpler to use the method described below. After su
stituting Eq.~4! into Eq. ~1! we obtain

]C

]t
2Db

]2C

]x2
5~Da2Db!

3FQ~x2 l ~ t !!
]2C

]x2
1d~x2 l ~ t !!

]C

]x G ,

~6!

whered(•) is the Dirac delta function.
Treating the right side of the equation as an inhomo

neous term, let us rewrite this equation in the form of
integrodifferential equation:

C~x,t !5E
0

`

dyGb~x,y;t !F~y!1~Da2Db!

3E
0

t

dt8FGb~x,l ~ t8!;t2t8!
]C~y,t8!

]y Uy5 l ~ t8!

1E
l ~ t8!

`

dyGb~x,y;t2t8!
]2C~y,t8!

]y2 G . ~7!

HereGb(•) is the Green’s function for the parabolic operat
© 1998 American Institute of Physics
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]

]t
2

]

]tS Db

]

]xD
with boundary condition~3!. The explicit form of this func-
tion is well known:9

Gb~x,y;t !5~4pDbt !21/2H expF2
~x2y!2

4Dbt G
1expF2

~x1y!2

4Dbt G J . ~8!

In order to transform Eq.~7! we take into account that fo
x. l (t) the functionC(•) satisfies the equation

]C

]t
2Da

]2C

]x2
50,

from which it is easy to obtain the relation

]C

]x U
x5 l ~ t !

52E
l ~ t !

` ]2C

]x2
dx52

1

Da
E

l ~ t !

` ]C

]t
dx.

Using these relations, let us rewrite Eq.~7! in the fol-
lowing form:

C~x,t !5E
0

`

dyGb~x,y;t !F~y!

1
Da2Db

Da
E

0

t

dt8E
l ~ t8!

`

dy@Gb~x,y;t2t8!

2Gb~x,l ~ t !;t2t8!#
]C~y,t8!

]t8
. ~9!

If we use Eq.~5! in the derivation instead of Eq.~4!, then Eq.
~9! is replaced by

C~x,t !5E
0

`

dyGa~x,y;t !F~y!

1
Db2Da

Db
E

0

t

dt8E
0

l ~ t8!
dy@Ga~x,y;t2t8!

2Ga~x,l ~ t8!;t2t8!#
]C~y,t8!

]t8
, ~10!

whereGa(•) differs from Gb(•) by the replacement ofDb

by Da .
Equations~9! and ~10! can be reduced to integral equ

tions by the substitution

P~x,t !5
]C~x,t !

]t
.

After differentiating Eqs.~9! and ~10! with respect tot
we obtain

P~x,t !5E
0

`

dyGb8~x,y;t !F~y!

1
Da2Db

Da
E

0

t

dt8E
l ~ t8!

`

dy@Gb8~x,y;t2t8!
2Gb8~x,l ~ t8!;t2t8!#P~y,t8!, ~11!

P~x,t !5E
0

`

dyGa8~x,y;t !F~y!1
Db2Da

Db

3E
0

t

dt8E
0

l ~ t8!
dy@Ga8~x,y;t2t8!

2Ga8~x,l ~ t8!;t2t8!#P~y,t8!. ~12!

Here

G8~• !5
]G~• !

]t
.

Equations~11! and~12! are the fundamental equations
this section. In deriving them we have not needed to use
matching conditions at the boundary between phasesa and
b. In solving them by the variational method, these con
tions will be taken into account in choosing a trial functio
Thus these quantitites are of a quite general character.
fact that Eqs.~11! and ~12! are mathematically differen
ways of writing the same equation allows us to monitor t
accuracy of our numerical computations by comparing
results obtained for each version of the equation.

Note also that the treatment given here does not incl
the possibility of a difference in the molar volumes of phas
a and b. Inclusion of this difference does not change t
essence of the method illustrated and it is quite easy to
This remark also applies to Sec. 2.

b) Method of numerical calculation.Equations~11! and
~12! were solved numerically by a variational method. In th
case, different approximations were used in the differ
phases, and at the boundary of the phases the follow
matching conditions were included:

C~ l ~ t !20,t !5C~ l ~ t !10,t !,

Db

]C

]xU
x5 l ~ t !20

5Da

]C

]xU
x5 l ~ t !10

. ~13!

The matching conditions given here are for a complet
permeable phase boundary. Assuming that at the initial t
the impurities are distributed according to a Gaussian,

F~x!5expS 2S x2x0

s D 2D ,

we approximateC(•) by the following trial function:

C~x,t !5N~ t !5 expS 2S x2x0~ t !

s~ t ! D 2D , x> l ~ t !,

x0~ t !expS x

s̃~ t !
D 2

, x, l ~ t !.

~14!

This function depends on five functions of time:N(t),
x0(t), s(t), x̃0(t), ands̃(t), from whichx0(t) ands(t) will
be treated as independent andN(t), x̃0(t), ands̃(t) will be
determined numerically from the matching condition~13!
and the condition of conservation of the number of impu
ties:
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E
0

`

C~x,t !dx5E
0

`

F~x!dx5const.

The form of the trial functionP(•) is obtained from the
relations

P~x,t !5Da

]2C~x,t !

]x2
, x> l ~ t !, ~15!

P~x,t !5Db

]2C~x,t !

]x2
, x, l ~ t !, ~16!

which follow directly from Eq.~1! and Eqs.~4! or ~5!. Sub-
stituting Eq.~14! into Eq. ~15! and~16!, we find the follow-
ing form of P(•):

P~x,t !5N~ t !

¦

2Da

s2~ t !
expS 2S x2x0~ t !

s~ t ! D 2D
3F2~x2x0~ t !!2

s2~ t !
21G , x> l ~ t !,

2Db

s̃2~ t !
x0~ t !expS x

s̃~ t !
D 2

3F 2x2

s̃2~ t !
11G , x, l ~ t !.

The calculation was optimized by the method of t
golden section from the condition of minimization of th
norm of Eq.~11!,

Ra~ t !5E
0

`

Qa
2~x,t !dx,

where

Qa~x,t !5E
0

`

dyGb8~x,y;t !F~y!1
Da2Db

Da

3E
0

t

dt8E
l ~ t8!

`

@Gb8~x,y;t2t8!

2Gb8~x,l ~ t8!;t2t8!#P~y,t8!dy2P~x,t !.

In order to monitor the accuracy of the calculations
also minimized the norm of Eq.~12!,

Rb~ t !5E
0

`

Qb
2~x,t !dx,

where

Qb~x,t !5E
0

`

dyGa8~x,y;t !F~y!

1
Db2Da

Db
E

0

t

dt8E
0

l ~ t8!
@Ga8~x,y;t2t8!

2Ga8~x,l ~ t8!;t2t8!#P~y,t8!dy2P~x,t !.

The results of the calculation, which depend on the re
tion between the diffusion coefficients of phasesa andb, are
given in the next section.
-

c) Numerical results and discussion.
1! Da!Db . A typical example of this case is provide

by diffusion of phosphorous during the formation of titaniu
silicide TiSi. For T5600 °C the diffusion coefficients o
phosphorous areDa5DSi50.26310220 cm2/s, Db5DTiSi

58310217 cm2/s .1,10 The results of the calculations ar
shown in Fig. 1, wheret0 is the time it takes the impurity
concentration to decrease from its maximum by a factor o
and h5x/A4pDat0 is a dimensionless variable having th
meaning of a length. The vertical dotted lines indicate
position of the boundary between phases. In the calculat
it was assumed that the time dependence of the bounda
a parabolic function. In units ofh,

l ~ t !5Apt

t0
.

The smooth profile for the distribution and accumulati
of impurities in phaseb is the result of the large ratio o
diffusion coefficientsDb /Da533104. Similar behavior of
impurities is observed experimentally in Refs. 11–13.

2! Da@Db . This situation arises during the formation o
silicides of the platinum metal group~Pd and Pt! for a wide
class of impurities~P, As, Sb, etc.!.11,13–15 As a computa-
tional example the following values of diffusion coefficien
are considered: Da50.26310220 cm2/s, Db50.8
310224 cm2/s. The results of the calculations are shown
Fig. 2. It is clear that this case corresponds to outflow
impurities from phaseb.

FIG. 1. Depth profile of impurity concentration at various times measu
from the start of silicide formation forDa!Db .

FIG. 2. The same as in Fig. 1 forDa@Db .
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3! Da;Db . This case is rarely encountered in the theo
of impurity diffusion in semiconductors; however, it
treated here because the results obtained could be use
solving other problems, for example in the theory of therm
conductivity. The results of these calculations are shown
Fig. 3. The following case is considered:Da50.26
310220 cm2/s, Db50.5310220 cm2/s.

In the special case where the diffusion constants are
very different (uDa2Dbu!Da ,Db), a small parameter ap
pears in the theory. In this case Eqs.~9! and ~10! can be
solved by the method of successive approximations. We
not pause to discuss this question.

2. EFFECT OF FINITE RATE OF CHEMICAL REACTION ON
THE STRUCTURE OF THE PHASE BOUNDARY

a) Mathematical simulation of the process.For definite-
ness let us discuss a reaction that forms a silicide; we
assume that the silicide forms as a result of diffusion of
metal into silicon. Let us assume that at the beginning of
process the metal occupies the spacex,0, and silicon occu-
pies the spacex.0. Let us write the equation that describ
the process in the following form:

]M

]t
5

]

]xS DM

]M

]x D1S, ~17!

whereM is the concentration of free metal atoms,DM is the
diffusion coefficient fo the metal, which in general depen
on coordinate and time, andS is the density of the ‘‘sink’’ of
metal atoms associated with the possibility of silicide form
tion.

The boundary and initial conditions for Eq.~17! have the
general form

M ~0,t !5n0 , M ~x,0!50, x.0, ~18!

wheren0 is the density of atoms in the pure metal.
In order to calculate the quantityS let us consider the

rate of formation of the silicide. Letna be the concentration
of free silicon atoms,nb the silicide concentration. Then

]nb

]t
5knaM , ~19!

wherek is the rate constant of the reaction.
Here we will treat the simplest case, where the sta

silicide has the chemical formula MeSi. Note that the we

FIG. 3. The same as in Fig. 1 forDa;Db .
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known parabolic regime of kinetics5 arises in the limit of an
infinitely rapid rate of the chemical reactionk→`. The goal
of this section is to take into account the finiteness of
value of k. Neglecting the possibility of the release or a
sorption of heat during the reaction, we assume that the
action rate constantk, like the diffusion coefficientDM ,
does not depend explicitly on time. It is easy to see that

S5S ]M

]t D
R

52
]nb

]t
, ~20!

where (]M /]t)R denotes the change in the number of me
atoms in a certain small region of space due to the react

Assuming that there is no change in the volume of
solid during the reaction, along with Eq.~19! we can write
the following relation

na1nb5na0 , ~21!

where na0 is the concentration of silicon atoms in th
‘‘pure’’ silicon.

Equation~21! expresses the law of conservation of si
con atom density, which holds in the absence of silicon d
fusion. Substituting Eq.~21! into Eq. ~19!, we obtain

]nb

]t
5k~na02nb!M . ~22!

The solution to this equation with the conditio
nb(x,0)50 has the form

nb~x,t !5na0H 12expF2kE
0

t

M ~x,t8!dt8G J . ~23!

Substituting this expression into Eqs.~20! and ~17!, we
find an equation for the distribution of free metal in the r
gion x.0:

]M ~x,t !

]t
5

]

]x S DM

]M ~x,t !

]x D 2kna0M ~x,t !

3H expF2kE
0

t

M ~x,t8!dt8G J . ~24!

Equation ~24! is a nonlinear integrodifferential equation
therefore, its analytical investigation is quite difficult. A sig
nificant simplification of the equation is obtained if we a
sume that the diffusion coefficients of the metal in pure s
con and in the silicide are the same. It is this case that
now discuss.

b) Analytical treatment of the case DM5const. We in-
troduce the dimensionless variables

r25
na0

n0
, t5kn0t, j5S kn0

DM
D

1
2
x,

g~j,t!5
M ~j,t!

n0
, ~25!

and rewrite Eq.~24! and the subsidiary condition~18! as

]g~j,t!

]t
5

]2g~j,t!

]j2
2r2g~j,t!expF2E

0

t

g~j,t8!dt8G ,
~26!
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g~0,t!51, g~j,0!50.

We can transform the integrodifferential equation~26!
into a differential equation by introducing a new depend
variable

f ~j,t!5E
0

t

g~j,t8!dt8.

The equation for f (j,t) has the form of the
Kolmogorov–Petrovski�–Piskunov equation

] f

]t
5

]2f

]j2
1r2~exp~2 f !21!, ~27!

f ~0,t!5t, f ~j,0!50. ~28!

In this case the additional condition

g~j,0!5
] f

]t
ut→0

is satisfied automatically. An analytical solution to th
boundary value problem~27! and ~28! can be found in two
limiting cases.

1! The regionf <1. The conditions for physical realiza
tion of this region will be clarified below. Expandin
exp(2f) in Eq. ~27! in a series and retaining the first tw
terms, we obtain a linear equation

] f

]t
5

]2f

]j2
2r2f . ~29!

The solution to this equation with the subsidiary con
tion ~28! has the following form:

f ~j,t!5
1

2 H S t2
j

2r D exp~2rj!F11FS rAt2
j

2At
D G

1S t1
j

2r D exp~rj!F12FS rAt1
j

2At
D G J .

~30!

HereF(•) is the probability integral.9 Equation~30! simpli-
fies when

j!At !1. ~31!

In this case

f ~j,t!.S 12
j

Apt
D t. ~32!

It is not difficult to see that condition~31! applies during
the initial stage of the reaction near the metal–silicon bou
ary. In this region the density of metal atoms changes
cording to a linear law:

g~j,t!.12
j

Apt
. ~33!

As is well known, the probability integral very rapidl
reaches its asymptotic value. Therefore, when the condi

j@At, j.2rt ~34!
t

-

-
c-

n

holds, expression~30! also simplifies:

f ~j,t!.
8t

5
2

Apj3S 12
4r2t2

j2 D 22

expS 2r2t2
j2

4t D ,

g~j,t!.
2At

Apj
S 12

4r2t2

j2 D 21

expS 2r2t22
j2

4t D . ~35!

Condition ~34!, and consequently Eq.~35!, are valid far
from the phase boundary beween silicide and silicon, wh
the metal atom density is small. Finally, in the region

j@
1

r
, j@At, j,2rt ~36!

we have

f ~j,t!.S t2
j

2r Dexp~2rj!, g~j,t!.exp~2rj!.

~37!

The region~36! is found to be close to the silicide–silico
boundary; therefore the density of metal atoms falls off h
according to an exponential law, whereas in region~34! it
falls off like a Gaussian.

Expressions~35! and ~37! become meaningless fo
j52rt. In this case,

f S j,t5
j

2r D.5
j

2r
2S 2j

pr D
1
2
, j!1,

S j

r
~2r!3D 2

1
2
exp~2rj!, j@1,

gS j,t5
j

2r D.5
1

2
2S 2rj

p D
1
2
, j!1,

S 1

2
1~8prj!2

1
2D

3exp~2rj!, j@1.

~38!

2! The regionf @1. Here we can neglect the exponent
in Eq. ~27! and write the solution to the boundary valu
problem in the following form:

f ~j,t!.S t1
j2

2 D F12FS j

2At
D G2

jAt

Ap
expS 2

j2

4t D
2r2E

0

t

dt8FS j

2At2t8
D . ~39!

In the steady-state regime near the metal–silicide bound
for

t@1, j2!t ~40!

we can obtain the following expressions:

f ~j,t!.tS 12
2j

Apt
D , g~j,t!.12

j

Apt
. ~41!
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In obtaining the latter expressions, we estimated the
term in Eq.~39! in the following way. After the change o
variablej/(2At2t8)5s, the functionF(•) is expanded in
a series:

F~s!5
2

Ap
exp~2s2!(

i 50

`
2is2i 11

~2i 11!!!
~42!

and is integrated term by term. As in case~33!, the metal-
atom density in this limit follows a linear law. In order t
find the dimensionless concentration of silicidegb5nb /n0 in
each of the cases discussed here, it is sufficient to subst
f (•) from Eqs.~30!, ~32!, ~35!, ~37!–~39!, or ~41! into the
expression

gb~j,t!512exp~2 f ~j,t!!. ~43!

Thus, our investigation of the linearized equation~27!
allows us to findg(j,t) andgb(j,t) near the metal–silicide
boundary and far from the silicide–silicon boundary. In o
der to find the distribution of metal and silicide concent
tions near the silicide–silicon boundary, it is necessary
resort to numerical methods even forDM5 const.

c) Method of numerical calculations.For f (•) we chose
the expression

f ~j,t!5t exp~2a~t!jb~t!! ~44!

which, starting from the boundary and initial conditions a
the analytical approximations, was used for numerical so
tion of Eq. ~27!.

The numerical dependences ofa(t) and b(t) were
found by the method of optimization. For this, the ent
range of times of interest to us from the beginning of t
process was divided up into small intervalsut i ,t i 11u, within
each of whicha and b may be treated as constants. T
quantity

FIG. 4. Distribution of silicide concentration with respect to depth at vario
times measured from the beginning of the process.
st

te

-
-
o

-

dif~j,t i ,t i 11![E
t i

t i 11]2f

]j2
dt2 f ~t i 11!1 f ~t i !1r2

3S E
t i

t i 11
exp~2 f ~t!!dt2~t i2t i 11! D

after substitution off (j,t) from Eq. ~44! and replacing the
integral by its approximate value based on the trapezoid
mula, can be written in the form

dif~j,t i ,t i 11!>
t i 112t i

2
$exp~2ajb!@abjb22

3~abj2b21!~t i1t i 11!22#

2r2@exp~2t i 11exp~2ajb!!

1exp~2t iexp~2ajb!!22#%.

On each interval @t i ,t i 11# the values of a((t i

1t i 11)/2) and b((t i1t i 11)/2) were determined by the
method of the ‘‘golden section’’ by minimizing the quantit

Si ,i 11[E
0

`

dif 2~j,t i ,t i 11!dj. ~45!

Oncea andb were found, the values off andgb were
computed from Eqs.~44! and ~43! and the concentration o
metal was computed from the expression

g~j,t!5
] f

]t
. ~46!

d) Results of calculations and discussion.In this section
we present the results of numerical solution to Eq.~27! using
the method described above, fort i ranging from 0 to 16 and
for r51. From these calculations it follows thatb'1 under
these conditions, which allows us in principle to limit co
sideration to just one function to be optimized,a(t). How-
ever, it was not possible to confirm this ahead of time; the
fore, for generality in the calculations we optimized bo
a(t) and b(t). Figure 4 shows the silicide concentratio
profiles at different times measured from the beginning
the reaction. It is clear that for small times the silicide co
centration is smaller than the concentration of atoms of
original material even at the surface, and it falls off mon
tonically with depth in the crystal. This is a consequence
including the finite rate of reaction. As the reaction goes

sFIG. 5. Time dependence of the silicide thickness~1! and transition layer
thickness~2!.
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a silicide layer is formed in the subsurface region, with
constant concentration equal to the concentration of
original material. Behind it follows a transition layer of var
able composition and then the original material. At still la
times in the process both the thickness of the silicide la
and the thickness of the transition layer increase~we take the
thickness of the silicide layer to be the distance from
surface to a plane with a silicide concentration of 0.9 of
maximum and the thickness of the transition layer to be
distance between planes with concentrations of 0.9 and
of the maximum!. In this case, the time dependence of t
silicide layer thicknessl ~Fig. 5, curve1! is closer to linear
than to l;At, the dependence that is characteristic o
model of the process that does not take the finite reaction
for silicide formation into account. The time dependence
the transition layer thicknessD l ~Fig. 5, curve2! consists of
two segments, both of which are close to linear. The fi
segment of more rapid growth corresponds to the stag
which the concentration of silicide at the surface has not
saturated. This stage is characterized by the induction tim
the reaction. After the surface concentration saturates, a l
of silicide begins to form on the surface side of the transit
region, resulting in a significant slowing of the increase
the transition layer thickness. To summarize, the model
scribed in this paper not only leads to a more correct de
mination of the rate of silicide formation but also allows o
e
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e
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to take into account the presence of a transition layer an
compute its parameters as functions of the reaction co
tions.
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Time-resolved photoluminescence from porous silicon coated with a diamondlike carbon film is
investigated. The intensity of the photoluminescence from the carbon film is obserd to
increase after deposition, and there is an accompanying change in the intensity and a short-
wavelength shift of the photoluminescence band of porous silicon that depends on the porosity of
its original layers. These changes are explained by the formation of carbon nanoclusters on
the surface of the silicon filaments. ©1998 American Institute of Physics.
@S1063-7842~98!01504-9#
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INTRODUCTION

The prospect of creating light-emitting elements bas
on porous silicon for silicon-based optoelectronics1,2 has at-
tracted considerable research interest in studying the pro
ties of this material. The ease of obtaining porous silicon a
its intense photoluminescence~PL! in the visible region of
the spectrum has led to the publication of a large numbe
papers on this subject.1–4 In the course of this activity, a
number of hypotheses have been put forward in orde
explain the PL of porous silicon, involving assumptio
about size quantization of charge carriers localized in t
silicon filaments,1,2 chemabsorption of molecules at the p
rous silicon surface and the formation of siloxane, silic
hydrides, etc.,5,6 and finally radiation at the silicon–
adsorbate boundary.7 Unfortunately, the low degradation re
sistance of porous silicon5 significantly restricts its potentia
usefulness in applications. For this reason, there is m
current interest in work directed, on the one hand, towa
finding ways to increase the ruggedness of porous sili
and, on the other hand, to provide additional information t
would aid in understanding the mechanism responsible
the visible PL of porous silicon. As was mentioned in Ref.
one way to obtain such information is the controlled remo
~or deposition! of an adsorbate from~or onto! the surface of
the silicon filaments. Such an adsorbate could be a gas,
as molecular chlorine,8 carbon in the form of fullerene mol
ecules implanted in the porous silicon,9 or some other mate
rial.

In light of the results reported in Refs. 8 and 9, there
special interest in studying the effect of carbon on the p
toluminescence of porous silicon. Thus, in Ref. 8 it was
tablished that increasing the carbon content of porous sili
can lead under annealing to agglomeration of the carbon
4231063-7842/98/43(4)/4/$15.00
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the formation of graphite nanoclusters, which significan
modify the PL spectrum of porous silicon. On the oth
hand, it was shown in Ref. 9 that under ordinary conditio
the weak luminescence of the C60 molecule is strongly en-
hanced when it is embedded in porous silicon, due to tran
of charge carriers from the silicon nanocrystallites to the C60

molecules adsorbed on their surfaces. At the same time
effect of carbon in other forms, for instance in its diamon
like modification, on the properties of porous silicon rema
unstudied. It should also be noted that in the majority
studies of the luminescence properties of porous silicon1–9

traditional methods are used to measure the stationary s
trum of the photoluminescence. It is obvious that by us
time-resolved methods of measurement of the PL spect10

especially in studying the porous silicon-adsorbate syste
one should be able in a number of cases to discrimin
between contributions to the resultant PL spectra from v
ous sources of radiation, and consequently obtain additio
information about the PL mechanisms for these systems

The goal of this paper is to investigate the distincti
features of time-resolved PL from porous silicon coated w
a layer of diamondlike carbon.

EXPERIMENTAL METHOD

Samples of porous silicon were obtained by the stand
method of electrochemical etching of silicon. Wafers ofp-Si
with a resistivity of 10V•cm ~KDB-10! and with the~100!
orientation were used. Prior to preparation of the porous s
con, aluminum Ohmic contacts were deposited on the b
of these wafers, and then a layer of porous silicon w
formed in a Teflon cell with a platinum electrode. The etc
ing took place in darkness in a solution of 48%HF : C2H5OH
© 1998 American Institute of Physics
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with in a 1:1 ratio. The samples of porous silicon were p
pared using current densities of 10–75 mA/cm2 and etch
times of 1.5–10 minutes.

The films of diamondlike carbon were deposited usin
capacitive rf discharge plasma~13.56 MHz! at low pressures
~0.8 Torr! and a room-temperature substrate~300 K!. A gas-
eous mixture of CH4 : H2 : N2 was used. During the depos
tion the substrate was subjected to an rf potential equa
1900 V.11 The thickness of the diamondlike film was me
sured using an LE´ F-3M laser ellipsometer at a wavelength
632.8 nm, and ranged from 50 to 100 nm.

Time-resolved PL spectra of porous silicon, the d
mondlike film, and the combined system were measured
ing the method described in Ref. 10. A nitrogen laser (l5
337.1 nm! was used for excitation, with an excitation pul
duration of 10 ns and an in-pulse power of 3 kW. A strob
scopic system was used for recording, allowing us to m
sure the PL spectrum and investigate the kinetics of
changes. PL spectra were recorded with nanosecond and
crosecond time delays (td) relative to the maximum of the
laser pulse at room temperature.

RESULTS AND DISCUSSION

Figure 1 shows the nanosecond PL spectrum of a
mondlike carbon film deposited on a quartz substrate~curve
2, d570 nm! and on an unetched Si surface~curve 1,
d570 nm!. Here we also plot the nanosecond PL spectra
porous silicon~curve 3, j 575 mA/cm2, t55 min! and the
combined system (d570 nm, curve4!. It is seen from Fig. 1
~curve 2! that the PL spectrum of the diamondlike film d
posited on a quartz substrate has a band with a maximu
600 nm and with shoulders on its short-wavelength side
500 and 440 nm. However, the intensityJ of PL from a thin
diamondlike layer (d570 nm! deposited on the unetche
surface of Si~Fig. 1, curve1! is considerably smaller tha
for the diamondlike film deposited on a quartz substrate,
its spectrum has no structure. These spectral character
of diamondlike films on the surface of silicon could be due

FIG. 1. Photoluminescence spectrum of diamondlike film, porous silic
and porous silicon plus diamondlike film with nanosecond resolution
Fig. 1, just as in Figs. 2, 3, and 4 the scale along the ordinate is linear,
l is the wavelength.
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the presence of nonradiative recombination centers at
boundary between the silicon and the diamondlike film.
should also be noted that the PL of diamondlike films
short-lived and appears only in spectra measured with na
second resolution. One of the reasons for this could be
formation of tightly bound electron–hole pairs of small r
dius, which occurs on account of the low dielectric const
of the diamondlike carbon film.12,13 In measuring the PL
spectrum of porous silicon with nanosecond resolution
observe weak emission at wavelengths shorter than 590
During the PL measurements whentd50, i.e., at the maxi-
mum of the laser pulse, the PL maximum is located arou
440 nm~Fig. 1, curve3!. The intensity of this PL maximum
depends on the conditions under which the porous sili
was obtained, and is usually observed after long etch
Moreover, a band at 600 nm also appears in the spectr
whereas in integrated PL spectra for porous silicon emiss
in the rangel. 600 nm usually predominates.8,9

Deposition of a thin (d570 ns! diamondlike film on the
porous silicon surface leads to a shift in the band from 600
540 nm and a sharp increase in its intensity~Fig. 1, curve4!.
In this case the band at 440 nm observed in the PL spect
of porous silicon disappears.

In our opinion, the observed changes are due to pene
tion of carbon into the pores of the porous silicon during t
deposition of the diamondlike film and formation of carbo
nanoclusters at the surface of the silicon filaments.8 The con-
siderable increase in intensity of the PL band that is cha
teristic of diamondlike films~at 600 nm! is probably due to
transfer of charge carriers from the silicon filaments to
carbon clusters adsorbed on their surfaces. In this case
porous silicon plays the role of a generator of charge carri
and the carbon clusters act as centers of radiative reco
nation analogous to surface states in the model propose
Koch and co-authors7 and used by the authors of Ref. 9
explain the anomalous increase in PL intensity fro
fullerene molecules adsorbed in porous silicon layers. T
short-wavelength shift we observe in the PL bands from 6
to 540 nm is probably a manifestation of quantum size
fects, and its value can depend on the dimensions of
carbon clusters.

A somewhat different character appears when the
spectrum of porous silicon coated with a diamondlike film
thicknessd5 70 nm is measured with microsecond tim
delays~Fig. 2!. We emphasize that for the reasons describ
above, the diamondlike carbon films do not luminesce in
microsecond range, i.e., the spectra shown in Fig. 2
caused by luminescence of the porous silicon layer itself
the material characterized as porous silicon plus diamond
film. It is clear from Fig. 2 that an intense band is present
the microsecond spectra for PL of porous silicon at 680 n
As the delay time is increased from 0 to 30ms, the maximum
of this band shifts towards the long-wavelength region of
spectrum out to 720 nm~Fig. 2, curves1–6!. This could be
related to a scatter in the size of the silicon filaments.1 On
this figure we show PL spectra of porous silicon after de
sition of a diamondlike carbon film~Fig. 2; curves18–68!
were measured with the same time delays 0–30ms. It is
clear that after deposition of the diamondlike film the spe
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trum of long-lived PL is shifted towards the shor
wavelength region of the spectrum by roughly 50 nm.

The observed changes in the spectra of long-lived
from porous silicon when a diamondlike film is deposited a
also probably connected with the formation of carbon na
clusters on the surface of the silicon filaments. This conc
sion is confirmed by measurements of the PL made for
rous silicon layers obtained at different current densities
consequently having differing porosities.4 Since a smaller
number of carbon atoms will penetrate into the pores dur
the process of diamondlike film deposition when the poros
decreases, it is logical to assume that in this case the num
and possibly the size of the carbon clusters adsorbed a
surface of the silicon filaments will also become smaller.

FIG. 2. Photoluminescence spectra~1–6! of porous silicon plus diamond-
like film ~18–68! with microsecond resolution. The prorous silicon was o
tained using a currentJ5 70 mA/cm2 and an etch time of 5 minutes. Th
sensitivity of curves18,28,38,48,58,68 is increased by a factor of 2. Dela
times,ms: 1 — 0, 2 — 5, 3 — 10, 4 — 15, 5 — 20, 6 — 30.
L
e
-
-
-
d

g
y
er

he

fact, it follows from Figs. 3 and 4, which show PL spect
~taken with microsecond resolution! of porous silicon ob-
tained forJ535 and 50 mA/cm2 respectively, that there is
no significant shift in the 660 nm band when the diamondl
film is deposited, in contrast to porous silicon samples w
higher porosity~Fig. 2, J5 75 mA/cm2). In this case the
intensity of the corresponding bands is somewhat lower t
that of the original porous silicon. It should be noted that t
observed changes in the PL spectrum of porous silicon p
diamondlike film also can be related to the formation of c
bon cluster–silicon chemical bonds in the process of car
adsorption at the boundaries, and consequently to the app
ance of new centers for radiative recombination. The la
can have a particularly strong effect on the PL intensity
the porous silicon-plus-diamondlike film system, depend
on the porosity of the original porous silicon, which is al
observed in experiment~Figs. 3 and 4!. On the other hand
the changes in the PL spectrum described here when
mondlike films are deposited cannot be explained by abs
tion of light in the diamondlike film, nor as manifestations
features in the absorption spectrum of the diamondlike fi
The spectral dependence shown in Fig. 5 for the absorp
coefficient of a diamondlike film shows that it is highl
transprent in the spectral region under study~out to 300 nm!
and that its spectrum is featureless. Note also that the op
width of the band gap of the diamondlike films used w
about 4 eV.

Because of the low deposition temperatures and h
growth rates of the diamondlike films11 used in our experi-
ments, the observed changes in the luminescence prope
of the porous silicon cannot be explained by removal of
sorbates from the surface of the silicon wires either,8 nor by
surface modification in the rf discharge plasma, not to m
tion changes in the structure of the silicon nanocrystallit
The effects described above are in our view caused by
mation of carbon clusters at the surface of the silicon fi
s

.

f
.

FIG. 3. The same as in Fig. 2 but for porou
silicon obtained using a currentJ5 35
mA/cm2 and an etch time of 10 minutes
1–3 — porous silicon,18–38 — porous sili-
con plus diamondlike film. The sensitiity o
curves18–38 is increased by a factor of 5
Delay time,ms: 1 — 0, 2 — 5, 3 — 15.
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FIG. 4. The same as in Fig. 2, but with
porous silicon obtained using a curren
J5 50 mA/cm2 and an etch time of 5
min. Delay times the same as in Fig. 3
s
ct
a
ne

ec-
y of

.

ments in the process of deposition of the diamondlike film
The presence of clusters, and also the fact that they can a
effective centers for radiative recombination can also le
on the one hand, to spectral changes in the photolumi

FIG. 5. Spectral dependence of the absorption coefficientK of a diamond-
like film (d570 nm! (« is the photon energy!.
.
as

d,
s-

cence, particularly in the long-wavelength region of the sp
trum, and, on the other hand, to an increase in the intensit
the short-wavelength~nanosecond! photoluminescence.
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Solution of dispersion relations for planar waveguides in the case of complex roots
A. A. Romanenko and A. B. Sotski 
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A method for calculating the complex roots of a nonlinear equation is described whereby the
solution of the problem is reduced to quadratures. Applications of the method to the
investigation of dispersion relations for various open waveguide structures with a complex
dielectric permittivity are discussed. The possibilities of the prismatic excitation of modes
corresponding to the roots of the dispersion relations on different Riemann sheets are
analyzed. Solutions are obtained for the inverse problems of reconstructing complex mode
propagation constants and determining the parameters of films that guide waveguide and leaky
modes. The solution is based on processing of the angular dependence of the reflection
coefficient in a prismatic excitation scheme. ©1998 American Institute of Physics.
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INTRODUCTION

The rigorous determination of complex roots of disp
sion relations is of fundamental importance in the electro
namic theory of open-ended waveguides. Despite the l
history of this problem, a satisfactory solution has yet to
found for it. This dilemma accounts for the several altern
tive computational approaches in use, including vario
interpolation1–4 and gradient5,6 methods. Their common
shortcoming is the need to specify a sufficiently accur
zeroth approximation for the root and to calculate the deri
tives of the dispersion relations, which poses a rather c
plex problem. Moreover, smoothness of the functions
volved in the equations is essential for convergence,
unfortunately they suffer discontinuities at branch cuts. A
other fundamental requirement is nondegeneracy of
roots.

Here we propose a method, free of these limitations,
rigorously calculating the complex roots of dispersion re
tions for planar waveguides having an arbitrary distribut
of the complex dielectric permittivity. The method is a
elaboration of previously published results.7 It is based on a
contour integration technique and can be used to find all
roots of a nonlinear equationf (u)50 in the domain of ana-
lyticity of the function f (u).

1. METHOD FOR CALCULATING THE COMPLEX ROOTS OF
NONLINEAR EQUATIONS

Let us suppose that it is required to find the roots of
equationf (u)50 in a simply connected, closed domainG of
the complex variableu bounded by the contourC. We also
assume that the functionf (u) is analytic in this domain. The
total number of rootsm ~taking their multiplicity into ac-
count! can be determined on the basis of the argum
principle,8 wherebym is equal to 1/2p times the total varia-
tion of the argument of the quantityW5 f (u) in traversing
4271063-7842/98/43(4)/7/$15.00
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the contourC. We assume initially that all the roots ar
nondegenerate. Ifm51, then by calculating the integralsI c

(0)

and I c
(1) numerically, where

I c
~k!5

1

2p i R
c

ukdu

f ~u!
,

and invoking the residue theorem, we find the value of
root u15I c

(1)/I c
(0) . If m.1, then by successively shrinkin

the domain and calculating the variations of the argumen
W, we obtain a domainG1 that is bounded by a contourC1

and containsm21 roots. For the excluded root we obtain

u15
I c1

~1!2I c
~1!

I c1

~0!2I c
~0! .

Repeating the process, we find all the roots in succ
sion. We note that the calculation of the variation of t
argument ofW reduces to the calculation of the number
crossings of the boundaries of the coordinate quadrants.
operation can be executed in parallel with the accumula
of integral sums, enhancing the computational efficiency
the method.

We now generalize the computational scheme to the c
involving a double rootu0 . We treat this situation as th
limiting case whenu1→u2→u0 , whereu1 andu2 are simple
roots. We assume that two roots are present in the domainG.
We introduce integralsI c

(2) and I c
(3) in addition to I c

(0) and
I c

(1) . Using the residue theorem, we arrive at the system
four equations

I c
~k!5u1

k@ f 8~u1!#211u2
k@ f 8~u2!#21 ~k50,1,2,3! ~1!

in the four unknownsu1 , u2 , f 8(u1), and f 8(u2). Its solu-
tion has the form

u1,25a/26A~a/2!22b, ~2!

a5
I c

~1!I c
~2!2I c

~0!I c
~3!

@ I c
~1!#22I c

~0!I c
~2! , ~3!
© 1998 American Institute of Physics
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b5
@ I c

~2!#22I c
~3!I c

~1!

@ I c
~1!#22I c

~0!I c
~2! . ~4!

Forming Taylor expansions of the functionf (u) and its
derivatives, we obtain

f 8~u1!52
1

2
f 9~u1!Du2

1

6
f-~u1!~Du!21O@~Du!3#,

~5!

f 8~u2!5
1

2
f 9~u1!Du1

1

6
f-~u1!~Du!21O@~Du!3#, ~6!

f 9~u2!5 f 9~u1!1 f-~u1!Du1O@~Du!2#, ~7!

whereDu5u22u1 . The application of Eqs.~5!–~7! reduces
Eqs.~1! to the form

I c
~0!52

2

3

f-~u1!

f 9~u1!
1O~Du!,

I c
~1!5

2

f 9~u1!
1u1I c

~0!1O~Du!,

I c
~2!5

4u1

f 9~u1!
1u1

2I c
~0!1O~Du!,

I c
~3!5

6u1
2

f 9~u1!
1u1

3I c
~0!1O~Du!.

It follows from these expressions thata2/4→b and
u1→u2→u05a/2 in the limit Du→0. Form.2 it is neces-
sary once again to shrink the domain. Ifm22 roots are
contained in the domainG1 , the values of the two exclude
roots can be calculated from Eqs.~2!–~4! after the substitu-
tion I c

(k)→I c
(k)2I c1

(k) . For the double root we again obta

u05a/2.
All not more than twofold-degenerate roots of the equ

tion f (u)50 can be found by combining the abov
described computational schemes. The case ofl -fold degen-
eracy (l .2) can be treated analogously by computing
integrals I c

(k) , where k50,1,..., 2l 21. The corresponding
expressions are rather cumbersome and will not be wri
out here, particularly in view of the fact that the roots of t
dispersion relations for planar waveguides are not degene
as a rule, and only in rare situations encountered in the
vestigation of anisotropic waveguides and systems
coupled waveguides are they twofold degenerate.

2. SOLUTION OF THE DISPERSION RELATIONS

We consider a waveguide formed by a layered mediu
which has a complex dielectric permittivity, is contained
the domain2d<y<0, and is surrounded by homogeneo
media with dielectric constants«g(y.0) and «s(y,2d).
The dispersion relation for modes whose fields are expon
tial functions of the time and the coordinatez,
exp(ivt2ihz) has the form7,9

Fn5 ic~0!n1c8~10!50, ~8!
-

e

n

ate
n-
f

,

n-

wherec(y) has the meaning of the componentEx for the TE
modes andHx for the TM modes,n5Ak0

2«g2h2, and k0

52p/l0 is the wave number in vacuum.
In the derivation of Eq.~8! we have chosen the func

tional dependencec(y)5c(0)exp(2iny), y>0. We use a
stratification method to specify the quantities appearing
Eq. ~8!, representing the waveguide by a set ofn homoge-
neous layers.10 In this case the quantitiesc8(10) andc~0!
can be calculated from the recursion relations7

c j 115c jK1c j8S, ~9!

c j 118 5~« j 11 /« j !
T~c j8K2c jn j

2S!, ~10!

c151, ~11!

c185 in1~«2 /«1!T, ~12!

where S5sin(njDyj)/nj , K5cos(njDyj), n j5Ak2« j2h2, «1

5«s , «n125«g , cn125c(0), cn128 5c8(10), « j andDyj

are the permittivity and thickness of thej th layer,T50 for
TE modes, andT51 for TM modes; the field in the domain
y,2d is represented asc(y)5exp@ini(y1d)#.

In the special case of a homogeneous thin-film wa
guide (n51), Eq. ~8! with allowance for Eqs.~9!–~12! re-
duces to the form

Fn5Fn1S «2

«s
D T

1nS «2

«g
D TGcos~n2d!

1 i Fn21
n1n

n2
S «2

2

«s«g
D TGsin~n2d!50. ~13!

It is convenient to chooseu5n1 as the unknown in Eqs
~8! and ~13!. Then n j5Ak0

2(« j2«s)1u2 ~j 52,...,n12;
nn125n!. According to Eqs.~8!–~13!, the functionFn(u) is
bounded~in a finite part of the complex plane! and invariant
with respect to the choice of signs ofn j ( j ,n12); the only
source of nonanalyticity of the function is the presence
branch points and branch cuts of the functionn(u). The
nonanalyticity is eliminated by working with the product

f ~u!5Fn~u!F2n~u!, ~14!

which is an entire function of the variableu ~Ref. 9!. The
roots of Eq.~14! coincide with those of Eqs.~8! and ~13!
corresponding to two branches of the functionn(u) ~e.g., the
branches Imn<0 and Imn>0!. We note that fornÞ0 Eq.
~14! and the equationF6n(u)50 have roots of identica
multiplicity. Indeed, the multiplicity of the roots increases
the system of equationsFn(u)50, F2n(u)50 holds, from
which, according to~8!, it follows that c(0)50 and c8
(10)50 (nÞ0). In this case the solution of the Cauch
problem for the differential equation describing the mo
field givesc(y)[0 andc8(y)[0, contradicting conditions
~11! and ~12!. The casenÞ0, on the other hand, can b
analyzed separately. We also note the implication of E
~8!–~12!, that if dÞ0, then the quantityuWu grows exponen-
tially as uuu→`. In this case the number of roots of Eq.~14!
is m5O(r ) in the limit r→`, wherer is the radius of the
circle C ~Ref. 9!, i.e., whenG is interpreted as the entir
complex plane, the numberm is inboundedly large. But if
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d50, we infer from ~13! that m52 for T51, m50 for
T50 and«gÞ«s , andm51 for T50 and«g5«s .

Using the method described in Sec. I, we have obtai
solutions of Eq.~14! for several waveguide structures. Typ
cal plots ofh5Ak0

2«s2n1
2 (Reh>0) as a function ofd/l0

are shown in Figs. 1a and 1b. They have been obtained
TE-polarized modes of a homogeneous waveguide w
«s52.252 i331026, «252.2952252 i3.0331026, and
«g51. The ‘‘1’’ and ‘‘ 2’’ signs in the figures identify
curves pertaining to Imn>0 and Imn<0, respectively.
Curves16 and36 correspond to Imn1.0, Ren1.0. Curves
11 and 31, for which Ren.0, correspond to leaky wave
exiting from the waveguide into the two open domainsy
.0 andy,2d, while curves12 and32 (Ren,0) corre-
spond to waves which are leaky only in the domainy,
2d. The inequality Ren1,0 holds for curves06, 26, and
46. The indicated curves in Fig. 1a have points of tange
with the line Reh/k051.5. These points correspond to cri
cal thicknessesd5dk ~k denotes the symbol enumerating t
curves!. For d.dk we have Ren,0 and Imn1.0
(k502, 22, 42) or Ren.0 and Imp1,0 (k501, 21,
41!. In this case curves02, 22, and42 describe the usua
dispersion curves for waveguide modes, whereas cu
01, 21, and 41 correspond to waves leaking from th
waveguide into the domainy.0. For d,dk we have
Ren.0 and Imn1.0 (k502, 22, 42) or Ren,0 and
Ren.0 (k501, 21, 41). In this case curves02, 22,

FIG. 1. Dispersion curves for the modes of a homogeneous waveguide
an inhomogeneous waveguide. a! Reh/k0; b! Im h/k0.
d

or
h

y

es

and 42 correspond to waves entering the waveguide fr
the domainy,2d ~they grow asy→2`!, then leaking
from the waveguide into the domainy.0 and decaying as
y→`, whereas curves01, 21, and 41 correspond to
waves entering the waveguide from both open domains
growing asuyu→`. A distinctive feature of all these wave
is the growth of the field asz→` ~Im h.0, Fig. 1b!. It
follows from the above discussion that the sets of cur
(16, 26) and (36, 46) correspond to modes having sim
lar properties. The solution of Eq.~14! has shown that in-
creasing d generates new sets (56, 66),(76, 86),...,
analogous to those already mentioned. The indicated pro
nent characteristics of the behavior of the dispersion relati
and the mode fields remain in effect for TM-polarize
modes. And they are similar in regard to inhomogeneo
waveguides. This statement is illustrated by curvesG1 and
G2 in Figs. 1a and 1b, which are calculated for TE mod
of a waveguide having the index profile«(y)52.252 i3
310261(0.0452252 i2.7331025)exp@2(y/d)2#, y<0;«(y)
5«g51, y.0. These curves are analogous to curves01 and
02 discussed above. We note, however, that the results
are characteristic of waveguides having a higher permittiv
than the surrounding media. The dispersion relations
waveguide media having a lower permittivity~e.g., metal
films on dielectric substrates and low-refraction films
high-refraction substrates! exhibit distinct differences. We
shall examine them briefly below. We also note that t
above-discussed inequalities Imn1.0 and Imn.0 corre-
spond to modes whose fields grow exponentially with
creasing distance from the waveguide. Such modes do
occur in the complete sets of modes,9 making it necessary to
ascertain the possibilities of their excitation and practical u
lization.

We consider the excitation of modes by means of a p
matic coupler.11,12 A schematic diagram of the coupler
shown in Fig. 2. The prism P~which we consider to be
unbounded for simplicity! is separated from the waveguid
by a buffer layer of thicknessg. The prism and the buffer

nd

FIG. 2. Schematic diagram of the prismatic excitation device and grap
the reflection coefficient of the exciting wave versus thez-component of its
wave vector for«p53.811.
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layer have real permittivities«p and«g , where«g,«p . The
structure is excited by a plane wave whose wave ve
forms an anglea with the base of the prism. Examining th
recursion relations~9! and~10! in the buffer layer, we obtain
the following expression for the reflection coefficient of t
exciting wave:

R5
~12d!Fn2exp~22ing!~11d!F2n

~11d!Fn2exp~22ing!~12d!F2n
,

d5~n/np!~«p /«g!T, n5Ak0
2«g2kz

2, Im n<0,

np5Ak0
2«p2kz

2, Renp>0, kz5k0A«p cosa. ~15!

The quantitiesFn andF2n can be calculated from Eqs.~8!–
~13!, wheren j5Ak0

2« j2kz
2 and in accordance with the ra

diation condition Ren1>0.
We know that the efficient excitation of waveguid

modes characterized by the occurrence of resonance tro
in the R2(kz) curve (R25uRu2) takes place under the cond
tions of weak prism–waveguide coupling:11,12

kz
2.k0

2«g , ~16!

exp~2 ing!!1. ~17!

According to Eqs.~8!–~13! and~15!–~17!, R2 can differ
significantly from unity only ifFn5O@exp(22ing)#. Making
use of the fact that the variablekz in Eq. ~15! belongs to the
real axis of the Riemann sheet Ren1.0, we infer that the
stated condition can be satisfied if there is a domainH, de-
fined by the inequalityukz2hu,r ~h is the propagation con
stant of the excited mode, andr5O@exp(22ing)#!, which
contains a segment of the real axis of the sheet Ren1.0 and
in which the functionFn(kz) is analytic. These consider
ations are consistent with the obvious fact that resona
excitation is admissible only for modes whose fields de
with increasing distance from the waveguide in the buf
layer and whose propagation constants satisfy the equa
Fn(h)50.

The analyticity properties of the functionFn(kz) in the
vicinity of the roots can be assessed from Figs. 3a and
The solid curves represent the function Imkz(Rekz) @equiva-
lent to Imh(Reh)# for the roots of the equationFn(kz)50.
The dashed lines indicate the cuts for the functionn1(kz) as
defined by the conditions Imkz5k0

2 Im «s/(2 Rekz) and
k0

2 Re«s2(Rekz)
21(Im kz)

2,0. The cuts pass below the re
axes Imkz50. Curves02 through42 correspond to their
counterparts in Figs. 1a and 1b. It follows from Fig. 3a th
only the segments of curves12 and 32 to the left of the
branch point of the functionn1(kz) can exist in the domain
H. An analogous situation is met for the segments of cur
02, 22, and42 below the cut. In this case the domainH
belongs to a two-sheeted Riemann surface ‘‘glued’’ alo
the edges of the cut. Now, looking at Figs. 1a and 1b,
infer that the efficient excitation of waveguide modes is p
sible only for waveguide films whose thicknesses exc
critical values (d.dk). On the other hand, resonanc
troughs corresponding to the excitation of leaky modes a
ciated with curves12, 32 and their analogs52, 72,... can
be observed ford,dk . These conclusions are illustrated
r

hs

ce
y
r
on

b.

t

s

g
e
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d
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Fig. 2, curve1, which is calculated on the basis of Eq
~9!–~12! and ~15! for d/l053 and g/l050.16. Its right
minimum corresponds to a waveguide (02) mode, and its
left minimum corresponds to a leaky (12) mode.

We now discuss the prismatic mode excitation of th
films having a lower real part of the permittivity than th
surrounding media. Curves1–3 in Fig. 3a and 3b represen
solutions of the equationFn(kz)50 for optical-range TM
modes guided by a silver film («252182 i0.47) surrounded
by dielectric media («g51«s52.252 i331026). On curve
1 we have Ren1.0 and Imn1.0, i.e., it refers to waves
leaking into the domainy,2d. The start of the curve
(d→`) corresponds to a plasmon mode of the interfa
y50, and the end (d→0) corresponds to a surface-wav
mode of the interface between two dielectrics. Curve2,
along which Ren1,0 and Imn1,0, begins at the point cor
responding to a plasmon mode of the interfacey52d and
goes to infinity@Re(kz/k0)→`, Im(kz/k0)→2`# asd→0. On
curve 1 we have Ren1,0 and Imn1.0. It refers to waves
entering the waveguide from the domainy,2d, their fields
growing asy→2` and z→`. According to the preceding
discussion, modes corresponding to curves1 and 2 admit

FIG. 3. Positions of the roots of the equationFn(kz)50 on the Riemann
sheets Ren1.0 ~a! and Ren1,0 ~b!. Xa,b5Aa,b1Ba,b Rekz /k0, Ya,b

5Ca,b1Da,b Im kz /k0; for curves02 to 42: Aa,b50, Ba,b51, Ca,b50,
Da5103, Db5105; 1! Aa51.494, Ba55.4531023, Ca520.44, Da530;
2! Ab51.498, Bb51.4731023, Cb520.72, Db519.7; 3! Ab51.497,
Bb52.6531023, Cb529.7731022, Db514.8; 4–6! Aa54.3531022,
Ba51, Ca50, Da543104. The arrows indicate directions of decreasingd.
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resonance excitation. An additional restriction for such ex
tation is given by condition~16!, which, in particular, rules
out the possibility of the excitation of a dielectric-dielectr
interface~surface-wave! mode. Curves4–6 in Fig. 3a repre-
sent solutions of the equationFn(kz)50 for the three lowest
optical-range TE modes guided by a silicon dioxide fi
(«252.1219752 i2.913431026) terminated in air («g51)
and in a silicon substrate («s515.212 i0.39). For all these
curves we have Ren1.0 and Imn1.0, i.e., they refer to
modes leaking into the substrate. Curves4–6 begin at the
point kz /k05A«2 (d→0), which is far from the cut of the
function n1(kz) ~outside the field of view of the figure!. Ac-
cordingly, all the investigated modes admit resonance e
tation. We have confirmed these conclusions by calculati
of the R2(kz) curves, which are characterized by resonan
troughs~similar to those in Fig. 2! corresponding to excita
tion of the indicated modes.

3. INVERSE PROBLEMS OF RECONSTRUCTING COMPLEX
MODE PROPAGATION CONSTANTS AND THE
PARAMETERS OF WAVEGUIDE FILMS

The measurement of the complex mode propaga
constantsh plays an important role in the investigation of th
properties of waveguides and surface layers. An appro
based on experimental recording of the resonance trough
the R2(kz) curves13–16 is widely used at the present time
determineh. In this approach, however, rather limited info
mation about the indicated curves is taken into account; o
the coordinates of the minima of the functionsR2(kz) are
measured, and they are identified with the real parts of
propagation constants Reh. The imaginary parts Imh are
determined in additional measurements, where attenuatio
the modes is observed along the direction of th
propagation,14 This procedure for the determination ofh is
time-consuming in the experimental realm and has a fun
mental shortcoming in that the perturbing influence of
prism on the investigated structure is ignored.

One of the important applications of waveguide metho
is to reconstruct the parameters of waveguide films In
case the values ofh for two modes of known order can b
used to write a system of two dispersion relations contain
inverse trigonometric functions; the numerical solution
these equations gives the quantities«2 andd ~Refs. 13 and
14!. However, difficulties are encountered in connection w
the rigorous solution of the system, owing to the presenc
branch points and cuts for the inverse trigonometric fu
tions. This problem is particularly significant when mod
existing under near-critical conditions are used.

More efficient approaches to the solution of the indica
inverse problems are described below. The real and im
nary parts of a mode propagation constant of a planar wa
guide structure~inhomogeneous in the general case! are de-
termined simultaneously with allowance for the perturbi
influence of the prism by integrating the functionR2(kz) in
the vicinity of the resonance troughs. The quantities«2 andd
are determined by the system of equations~13! for two val-
ues ofh. The solution of the system reduces to the deter
i-
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s
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nation of the roots of entire functions by the method d
cussed above.

Expanding the functionFn(kz) in a Taylor series in the
domain H, we obtain the following approximation for th
function R(kz) in the vicinity of resonances7:

R5
12d

11d
2

4d

12d2

Dh

kz2h̄
10~ uDhu!. ~18!

Hered is calculated forkz5Reh, h̄ is the mode propagation
constant of the waveguide–prism system, andDh5h̄2h.
Equation~18! is defined in the case of the excitation of a
arbitrary plane-layered waveguide structure, for which

Dh52
in~12d!exp~22ing!

~«g!T~11d!I Re h
, ~19!

I 5E
2d

` c2~y!

@«~y!#T dy1
c2~2d!

2in1~«s!
T , ~20!

where the functionc(y) with the normalizationc(0)51
describes the distribution of the field of the excited mod
and

n15Ak0
2«s2h2, n52 iA~Re h!22k0

2«g.

To solve the inverse problem forh, it is convenient to
introduce the parameters17

p15
Im h̄

k0
, ~21!

p252
2dnexp~22ing!

~«g!T~12d!Ik0 Re h
, ~22!

p45
Re h̄2kz

k0
, ~23!

which characterize the mode attenuation of the external p
matic structure, the coupling of the prism with the wav
guide, and the deviation of thez-component of the exciting
wave vector from the resonance value of Reh̄. The param-
eter p2 is complex-valued in general, i.e.,p25up2uexp(is).
However, in the case of primary practical interest—wea
damped modes—the inequalitiesuReIu@uIm Iu and s!1
hold. They permit small quantitiesO(s2) to be omitted in
the subsequent calculations. Taking Eqs.~18!–~23! into ac-
count, we obtain

R25uRu2511@4up2u~p11up2u2p4s!#/~p1
21p4

2!. ~24!

It follows from Eq. ~24! that the presence of mode a
tenuation (sÞ0) parts asymmetry to the functionR2(p4),
the degree of asymmetry increasing as the losses incr
~Fig. 2!. We now determine the coordinate of the minimu
of R2(p4), denoting it byp4

(0) . Differentiating Eq.~24!, we
obtain

p4
~0!52

p1
2s

2~ up2u1p1!
, ~25!
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TABLE I.

Mode
order

Polari-
zation

h/k0

~exact! g/l0

h/k0

~reconstructed!
Mode
order

«2

~reconstructed! d/l0

Waveguide film,«252.2952252 i3.0331025, d/l055

1 TEW 1.5126362 i9.81931026 0.28 1.5126362 i9.81931026 1–2 2.2952252 i3.03031025 4.99998
2 TEW 1.5058062 i8.99931026 - 1.5058052 i8.99931026 1–3 2.2952222 i3.03031025 5.00089
3 TMW 1.5125602 i9.80531026 - 1.5125602 i9.80631026 2–3 2.2952252 i3.03031025 4.99999

Waveguide film,«252.2952252 i3.0331025, d/l053

1 TEW 1.5096812 i9.29531026 0.16 1.5096742 i9.29631026 1–2 2.2952512 i3.03131025 2.9943
2 TEL 1.4980702 i3.36331023 - 1.4981772 i3.58531023 1–3 2.2950902 i3.02931025 3.0131
3 TMW 1.5094362 i9.22331026 - 1.5094322 i9.22231026 2–3 2.2952692 i3.03131025 2.9937

Silver film, «252182 i0.47,d/l050.06

1 TML 1.0311242 i4.59531023 1.6 1.0311982 i4.66831023 1–2 218.00392 i0.4694 0.06014
2 TMW 1.6251442 i4.61731023 0.16 1.6249162 i4.59531023

Silicon dioxide,«252.1218752 i2.91331025, d/l053

1 TEL 1.4480392 i2.52431024 0.32 1.4480392 i2.52631024 1–2 2.1219772 i2.96631025 2.99981
2 TEL 1.4217812 i9.93731024 - 1.4217792 i9.96031024 1–3 2.1219772 i2.96731025 2.99983
3 TEL 1.3770552 i2.27931023 - 1.3770522 i2.29031023 2–3 2.1219812 i3.51731025 2.99984
l
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R2
~0!511

4up2u~p11up2u!
p1

2 , ~26!

whereR2
(0)5R2(p4

(0)).
It follows from Eq. ~26! that

up2u50.5p1@sgn~g/g021!AR2
~0!21#. ~27!

Here g0 is the thickness of the buffer layer, for whichR2
(0)

50. To find the parametersp1 ands, we isolate the interva
(p4

(0)2Dkz /k0 ,p4
(0)1Dkz /k0) of variation of p4 and form

the integrals

I 15E
2Dkz /k0

0

R2~p4
~0!1x!dx,

I 25E
0

Dkz /k0
R2~p4

~0!1x!dx,

whereR2(p4) is a function of the form~24!.
Calculating the quantities (I 11I 2)/2 and (I 12I 2)/2, we

obtain

F12
1

2Dkz
E

2Dkz

Dkz
R2~kz

~0!1x!dxG @12R2
~0!#21

5
p1k0

Dkz
arctanS Dkz

p1k0
D , ~28!

s5F E
2Dkz

0

R2~kz
~0!1x!dx2E

0

Dkz
R2~kz

~0!1x!dx

$4k0up2u@~11~k0p1 /Dkz!
2!21

2 ln~11~Dkz /~k0p1!!2!#%21, ~29!

whereR2(kz) is the experimentally recorded function on th
interval (kz

(0)2Dkz ,kz
(0)1Dkz), andkz

(0) is the coordinate of
the minimum of this function.
Consequently, identifyingR2
(0) with the minimum value

of the functionR2(kz), we can determine the values of th
parametersp1 , p2 , andp4

(0) . We first solve Eq.~29! for p1 ;
this equation has a single root by virtue of the monotonic
of the functionf (x)5x arctan(x21) in the domainx<0. The
quantitiesp2 and p4

(0) are then determined from Eqs.~25!,
~27!, and~29! by direct calculation. According to Eqs.~21!–
~23!, the required mode propagation constant is

h5kz
~0!1p4

~0!1 i @p12p2~12d!2~2d!21#. ~30!

We note that the quantityd in ~30! depends on Reh.
However, sinceup4

(0)u, up1u, and up2u are small, it can be
evaluated forh5kz

(0) and, if necessary, refined by an iter
tive procedure. We also note that the integration operati
in Eqs. ~28! and ~29! ensure stability of the reconstructe
value ofh against noise of the functionR2(kz).

We now address the problem of reconstructing the
rameters of a waveguide film«2 and d. We assume tha
values ofh have been found for two modes, the values of«g

and «s are given,«2 is situated in the domainG of the
complex plane, andd lies in the interval (d1 ,d2). We fix a
certaind in this interval and substitute the first value ofh
into Eq. ~13!. We see at once thatFn(«2) is an entire func-
tion, so that its roots in the domainG can be found by the
scheme of Sec. I. We note that, in general, there can
several roots of this kind@if G is interpreted as the entir
complex plane, the number of such roots can be unboun
by virtue of the exponential asymptotic behavior ofFn(«2)
in the limit u«2u→`; Ref. 9#. We denote the roots so ob
tained by«2 j

(1) ( j 51,2,...). Solving Eq.~13! analogously, for
the second value ofh we have a different set of root
«2k

(2) (k51,2,...). Thequantity D5minj,k(Djk) can be found
by direct sequential inspection of the differencesD jk5u«2 j

(1)

2«2k
(2)u. Now, plotting the functionD(d), dP(d1 ,d2), and
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determining its minimum, we arrive at the required values
«2 andd.

Table I gives examples of how the above-described co
putational scheme can be implemented for the thin-fi
waveguide structures discussed in the article. The data h
been obtained with the rigorously calculatedR2(kz) curves
~the one in Fig. 2 and others similar to it! used as ‘‘experi-
mental’’ curves. The quantityDkz is chosen on the basis o
the conditionR2(kz

(0)1Dkz)5(11R2
(0))/2. The first column

of the table lists the conditional mode orders. The polari
tion of the modes is denoted by the symbols TEp and TMp ,
where p5W for waveguide modes andp5L for leaky
modes. We note that the quantityuDhu increases asuIm hu
increases, lowering the accuracy of approximation of
~18!. The growth ofuDhu follows from Eqs.~19!–~22! with
allowance for the fact that high-contrast resonance trough
the R2(kz) curve can be obtained ifup2u;uIm hu/k0. The lat-
ter estimate is readily obtained by comparing relations~19!,
~22!, and ~26! and taking the inequalitys!1 into account.
On the other hand, all the data in the table have been
tained for values ofg such thatR2

(0),0.75. This remark
accounts for the noticeable increase in the error of solutio
the inverse problems as the losses of the selected m
increase. We also call attention to the possibility of reco
structing the parameters of single-mode~for a fixed polariza-
tion! waveguide films from the values ofh for waveguide
and leaky modes~rows 4–6 in Table I!. The accuracy of
reconstruction in this case is higher than whenh is used for
orthogonally polarized waveguide modes, because the
f

-

ve

-

.
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tem of dispersion relations is poorly conditioned in the lat
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Method of eigenfunctions of singular operators in the theory of diffraction by a thick
vibrator

A. V. Sochilin and S. I. Éminov
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A rigorous electrodynamic solution of the problem of the diffraction of electromagnetic waves
by the surface of a vibrator is described by a system of integrodifferential equations. The
method of eigenfunctions of singular operators is used to reduce the basic system to an infinite
algebraic Fredholm system of the second kind. The high efficiency of the proposed
method is demonstrated on concrete examples. ©1998 American Institute of Physics.
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INTRODUCTION

The solution of problems in the diffraction of electro
magnetic waves by a thick vibrator and other arbitrary op
surfaces reduces to the solution of systems of integrodif
ential equations in the two tangential components of the d
sity of surface currents. The solution of diffraction problem
in this general setting is a difficult undertaking. So far n
merical methods have been formulated, but there are no
vergence theorems for them.

In the class of all arbitrary surfaces we distinguish s
faces formed by the rotation of a piecewise-smooth li
open surfaces of revolution. The most commonly enco
tered geometries in the theory of antennas are cylindri
spherical, and conical surfaces of revolution.

It will be shown below that the problem for the indicate
class of antennas can be reduced to a system of two
dimensional integrodifferential equations, which admits
mathematically rigorous solution. The objective of t
present study is to analyze the systems of integrodifferen
equations.1,2

For brevity we confine the discussion to a cylindric
surface, but the results can be extended to any surfac
revolution.

1. SINGULAR INTEGRAL AND INTEGRODIFFERENTIAL
OPERATORS

We introduce the four singular operators

~Lu!~t!5
1

p E
21

1 u~ t !

A12t2
ln

1

ut2tu
dt, ~1!

~SLu!~t!5
1

p

]

]t E
21

1 u~ t !

A12t2
ln

1

ut2tu
dt, ~2!

~SAu!~t!5
1

p E
21

1

u~ t !A12t2
]

]t
ln

1

ut2tu
dt, ~3!

~Au!~t!5
1

p

]

]t E
21

1

u~ t !A12t2
]

]t
ln

1

ut2tu
dt. ~4!
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The operators L and A have been investigate
previously.1,3 For the discussion that follows we need to s
lect the spaces in which all four operators will act. We intr
duce a Hilbert weight spaceL2,r1

@21,1# with the weighting
function r1(t)5(12t2)21/2 and the orthonormal basis

wn~t!5HA1/p, n51,

A2/p cos@~n21!arccos~t!#, n52, 3, . . . .
~5!

The operatorL acts in L2,r1
@21,1#, where the following

relation holds:

~Lwn
!~t!5lnwn~t!, l15 ln 2,

ln5
1

n21
, n52, 3 . . . . ~6!

Together withL2,r1
@21,1# we also introduce the weigh

space L2,r2
@21,1# with the weighting function r2(t)

5(12t2)1/2 and the orthonormal basis

cn~t!5
1

r2~t!
A2

p
sin@n arccos~t!#, n51, 2, . . . .

~7!

The operatorA acts in L2,r2
@21,1# and, as shown in

Ref. 1,

~Acn!~t!5ncn~t!, n51, 2, 3, . . . . ~8!

Next we consider the operatorSL: L2,r1
→L2,r2

. From
the definition of this operator and relation~6! we have

~SLw1!~t!50, ~SLwn!~t!5cn21~t!,

n52, 3,... . ~9!

Analogously, for the operatorSA: L2,r2
→L2,r1

we ob-
tain the following relation by first integrating by parts an
then applying Eq.~6!:

~SAcn!~t!5wn11~t!, t51, 2, . . . . ~10!

We have thus completely described the eigenfunctions of
operators introduced above. We note incidentally that
© 1998 American Institute of Physics
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operatorL is completely continuous, the operatorsSL and
SA are bounded, and finally the operatorA is symmetric,
positive definite, and has a dense domain of definition. T
operator L arises in the problem of the diffraction o
E-polarized waves by a perfectly conducting strip. The el
tric currents induced by a wave on both sides of the strip
parallel to the edge of the strip and increase without boun
the edge is approached. The functionr1(t) describes this
behavior.

The operatorA is encountered in the diffraction problem
for H-polarized waves. In this case the currents run perp
dicular to the edge and vanish as the edge is approach
does the functionr2(t). In the problem of diffraction by a
cylindrical tubular vibrator the currents flow both parall
and perpendicular to the edge. And it will be evident bel
that all four singular operators arise.

2. REDUCTION OF A SYSTEM OF TWO-DIMENSIONAL
INTEGRODIFFERENTIAL EQUATIONS TO ONE-
DIMENSIONAL SYSTEMS

Under the influence of the primary field (E0,H0) cur-
rents are induced on the surface of a tubular vibrator with
current densityj (z,w)5tzj z(z,w)1tw j w(z,w), wheretz and
tw are unit vectors along thez andw axes.

These currents generate a secondary field. The tange
component of the total electric field must vanish on the p
fectly conducting surface of the vibrator. From this conditi
we deduce the system of integrodifferential equations

E
S
F j zS ]2G

]z]z8
2k2GD1 j w

]2G

a]z]w8GdS85 iA«

m
Ez

0 ,

E
S
F j zS ]2G

a]z8]w D1 j wS ]2G

a2]w]w8
2k2 cos~w2w8!GGdS8

5 iA«

m
Ew

0 , ~11!

where

G5
exp~2 ikR!

4pkR
5 (

m52`

1`

exp~2 im~w2w8!!Sm~z,z8!,

Sm5
1

2p2 E
0

1`

cos@kx~z2z8!#

3I m~Ax221ka!km~Ax221ka!dx,

and I m andKm are the modified Bessel functions.
We now form Fourier-type expansions of the functio

j z , j w , Ez
0 , andEw

0 :

j z5
1

2pa (
m52`

1`

I z
m~z!exp~2 imw!,

E
0

2p

j z exp~ imw8!adw85I z
m~z8!, ~12!

j w5
1

2pa (
m52`

1`

I w
m~z!exp~2 imw!,
e

-
n
as

n-
as

e

tial
r-

E
0

2p

j w exp~ imw8!adw85I w
m~z8!, ~13!

Ez
05 (

m52`

1`

Ez
m~z!exp~2 imw!,

Ew
05 (

m52`

1`

Ew
m~z!exp~2 imw!. ~14!

We also take into account the relations

cos~w2w8!5
exp~2 i ~w2w8!!1exp~ i ~w2w8!!

2
, ~15!

cos~w2w8! (
m52`

1`

Sm exp~2 im~w2w8!!

5
1

2 (
m52`

1`

~Sm211Sm11!exp~2 im~w2w8!!. ~16!

We use the expansions in Fourier series to reduce
system of two-dimensional integrodifferential equations~11!
to one-dimensional systems. At the same time we transf
to dimensionless variables. To simplify the writing, we a
sume thatl denotes the electrical length of the armkl, anda
denotes the electrical radius ofka. As a result, we obtain the
system

E
21

1 F I z
mS 1

l

]2Sm

]t]t
2 lSmD1I w

m im

a

]Sm

]t Gdt5
i

k
A«

m
Ez

m ,

E
21

1 F I z
m 2 im

a

]Sm

]t
1I w

mS m2l

a2 Sm2 l
Sm211Sm11

2 D Gdt

5
i

k
A«

m
Ew

m . ~17!

The system of one-dimensional integrodifferential equatio
~17! must be solved for values ofm for which at least one of
the functionsEz

m ,Ew
m is nonvanishing.

3. PARTITIONING THE PROBLEM INTO EVEN AND ODD
PARTS; SEPARATION OF SINGULAR OPERATORS

In the representation of the functionSm by the Fourier
integral

Sm~t,t !5
1

2p2 E
0

1`

cos@ lx~t2t !#

3I m~Ax221a!Km~Ax221a!dx ~18!

the spectral densityI mKm is an even function inx. Making
use of this fact along with the form of the system~17!, we
partition the latter into two systems. We write the functio
Ez

m andEw
m in the form

Ez
m~z!5Ez

m1~z!1Ez
m2~z!, Ez

m6~6z!56Ez
m6~z!,

Ew
m~z!5Ew

m1~z!1Ew
m2~z!, Ew

m6~6z!56Ew
m6~z!.
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On the basis of this representation we expand the
umn formed by the right-hand sides of the system~17! into
two columns:

S Ez
m

Ew
mD 5S Ez

m1

Ew
m2D 1S Ez

m2

Ew
m1D . ~19!

We use the representation~19! and the even property o
the kernels to reduce the system~17! to two independent
systems. In the first of these systems, which we call the e
problem, the functionI z

m is even, and the functionI w
m is odd.

In the second system the situation is reversed. We cons
the even problem below. The investigation of the odd pr
lem is analogous.

Invoking the asymptotic forms of the modified Bess
functions

I m~x!Km~x!5
1

2x
1

1

16x3 1 . . . , x→1` ~20!

we separate the logarithmic singularity of the functionSm :

Sm~t,t !5
1

4p2a
ln

1

ut2tu
1Nm~t,t !. ~21!

The properties of the functionNm(t,t) follow from the
representation~20!. The first partial derivatives]Nm /]t and
]Nm /]t are continuous functions. The second partial deri
tive ]2Nm /]t]t has a logarithmic singularity. Moreover, th
expansion~20! contains only terms in odd powers of (1/x).
We transform from the functionsI z

m1 and I w
m2 to the new

functions

I z
m1~t!5r2~t!u1~t!, I w

m2~t!5r1~t!n2~t!. ~22!

We omit the indexm below, because we are concern
with the system for fixedm. The functionsr1(t) andr2(t)
describe the behavior of the currents near the edge accor
to the Meixner condition. On the other hand, these functi
guarantee orthogonality, as shown in Sec. 1.

FIG. 1. ka5p/20, 2l 5l/2.
l-

n

er
-

l

-

ing
s

We therefore trace the intimate relationship between
Meixner conditions at the edge and the eigenfunctions of
singular operators of problems in diffraction by thin scree
But now on the basis of the representation~21! we distin-
guish singular operators having a simple form for the fo
singular integrodifferential operators describing the syst
~17!. We also write the system in the operator form

1

l
Au11N11u11

im

a
SLn21N12n25e1,

2 im

a
SAu11N21u11S m2l

a2 2 l DLn21N22n25h2.

~23!

The operatorsA, SL, SA, andL are defined in Sec. 1
The operatorsNpq (p,q51,2) are integral operators of th
form

~Np1u1!~t!5E
21

1

u1~ t !r2~ t !Np1~t,t !dt, p51,2,

~24!

~Np2n2!~t!5E
21

1

n2~ t !r1~ t !Np2~t,t !dt, p51,2.

~25!

The properties of the functionNpq(t,t) depend on the
properties of the functionNm(t,t). For example, the func-
tion N11(t,t) has a logarithmic singularity,N12(t,t) and
N21(t,t) are continuous, and their partial derivatives have
logarithmic singularity. The properties of the functio
N22(t,t) are the same as those ofNm(t,t).

We investigate the system~23! in the spaceL2,r2

% L2,r1
, which is the direct sum of the Hilbert spacesL2,r2

andL2,r1
.

We have thus obtained a system of one-dimensional
tegrodifferential equations and analyzed the structure of e
singular operator separately.

FIG. 2. ka5p/2, 2l 5l.
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TABLE I.

ka5p/2, 2l 5l/2

I z
11(t),A Iw

12(t),A

N ReIz
11(t50) Im Iz

11(t50) ReIw
12(t50.5) Im Iw

12(t50.5)

1 20.566748e202 0.175142e201 0.522298e202 20.602222e202
2 20.535253e202 0.184216e201 0.579558e202 20.722241e202
3 20.535591e202 0.184216e201 0.578001e202 20.722189e202
4 20.535609e202 0.184550e201 0.578012e202 20.722199e202
5 20.535609e202 0.184550e201 0.578013e202 20.722204e202
6 20.535609e202 0.184550e201 0.578011e202 20.722196e202
7 20.535609e202 0.184550e201 0.578011e202 20.722198e202
8 20.535609e202 0.184550e201 0.578012e202 20.722200e202
9 20.535609e202 0.184550e201 0.578012e202 20.722200e202

10 20.535609e202 0.184550e201 0.578012e202 20.722200e202

ka5p/20, 2l 5l/2

I z
11(t),A Iw

12(t),A

N ReIz
11(t50) Im Iz

11(t50) ReIw
12(t50.5) Im Iw

12(t50.5)

1 0.144909e202 0.268091e204 0.766654e204 20.824154e206
2 0.118926e202 0.256874e204 20.267393e204 20.613851e206
3 0.126772e202 0.265931e204 0.472215e205 20.234514e206
4 0.124767e202 0.263769e204 0.839380e205 20.193556e206
5 0.125030e202 0.264077e204 0.575925e205 20.224640e206
6 0.125100e202 0.264145e204 0.501021e205 20.232928e206
7 0.125043e202 0.264086e204 0.514708e205 20.231323e206
8 0.125061e202 0.264105e204 0.535972e205 20.228936e206
9 0.125059e202 0.264103e204 0.531475e205 20.229437e206

10 0.125058e202 0.264102e204 0.530634e205 20.229540e206
11 0.125059e202 0.264103e204 0.530094e205 20.229606e206
ys

n
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4. REDUCTION TO A FREDHOLM MATRIX SYSTEM OF THE
SECOND KIND

To analyze the structure of the system~23!, we trans-
form from the operator system to an equivalent matrix s
tem. We expand the unknown functionsu1(t) andn2(t) in
basis functions:

u1~t!5 (
n51

1`

cn

1

A2n21
c2n21~t!, ~26!

n2~t!5 (
n51

1`

dnA2n21w2n~t!. ~27!

Substituting Eqs.~26! and~27! into ~23!, we multiply the
first equation of the system by the functio
c2n21(t)/A2n21 in spaceL2,r2

and multiply the second

equation by the functionA2n21w2n(t) in spaceL2,r1
. As a

result, we obtain a matrix system to be analyzed in sp
l 2% l 2 ~l 2 is the Hilbert space of sequences!:

a11cn1 (
m51

1`

cmNmn
11 1a12dn1 (

m51

1`

dmNmn
12 5en ,

a21cn1 (
m51

1`

cmNmn
21 1a22dn1 (

m51

1`

dmNmn
22 5hn ,

1<n,1`, ~28!

where
-

e

a115
1

l
, a125

im

a
, a2152

im

a
, a225

m2l

a2 2 l .

The basis functions are chosen in such a way as to m
ai j independent ofn. The numbersNpq (p,q51,2) are the
matrix elements of the operatorsNpq in the corresponding
Hilbert spaces, and the numbersen andhn represent the co-
efficients of the expansion of the right-hand sides in the ba
functions.

We note that form50, which corresponds to an axisym
metrically driven vibrator, the system~28! is separated into
two independent matrix equations. For all otherm we trans-
form the system~28!. To do so, we solve the system forcn

anddn and reduce it to the canonical form

cn1 (
m51

1`

cmN̂mn
11 1 (

m51

1`

dmN̂mn
12 5ên ,

dn1 (
m51

1`

cmN̂mn
21 1 (

m51

1`

dmN̂mn
22 5ĥn . ~29!

It is noted at once that the matrix elementsN̂mn
pq are formed

by linear combinations of the matrix elementsNmn
pq and pre-

serve the properties of these elements. The following th
rem has been proved: The system of two matrix equati
~29! is a Fredholm system of the second kind.
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We conclude this section with the observation that
approach developed here is applicable to problems of diff
tion by an arbitrary open surface of revolution.

5. RESULTS OF NUMERICAL CALCULATIONS

We consider the diffraction of a plane wave by a vibr
tor. The source of the primary field is a filament that carr
an electric current of unit amplitude and is situated para
to the axis of the vibrator at a large distance from it in co
parison with the wavelength.

The efficiency of the method proposed in the article
demonstrated in Table I, which shows the results of calcu
tions of the first-harmonic (m51) current. An analysis of
the results shows that forka5p/2 and 2l 5l/2 ~l is the
wavelength! the value ofl z

11(t) converges with three-plac
accuracy forN52 and with six-place accuracy forN54 ~N
is the number of basis functions!. The value ofI w

12(t) con-
verges more slowly: to three and six significant figures
three and eight basis functions, respectively. An analysi
the convergence of the currents of other harmonics has
disclosed a high rate of convergence of the cutoff metho

Next, calculations have shown that only axial curre
are induced on the surface of thin vibrators, and they
determined by the zeroth harmonic. Even for a vibrator
radiusa5l/40 azimuthal currents are faintly generated e
erywhere except at the ends of the vibrator and at the ed
e
c-

-
s
l

-

-

r
of
so
.
s
re
f
-
es,

where the currents become infinite in accordance with
Meixner condition~Fig. 1!. A further increase in the vibrato
produces the patterns shown in Fig. 2.

The following notation is used in the figures:

I z~t!5 (
m50

`

«mI z
m1~t!, «m5H 1, m50,

2, m.0,

I w~t!5 (
m51

`

2I w
m2~t!.

The zeroth harmonic is no longer sufficient for determ
ing the axial currents. The strongest excitation of axial c
rents takes place on the side where the primary wave is
cident. The azimuthal current function increas
simultaneously. The vibrator begins to radiate along its o
axis, and this is the fundamental difference of nonaxisy
metric excitation of an electrically thick vibrator from ax
symmetric excitation.

1V. N. Plotnikov, Yu. Yu. Radtsig, and S. I. E´ minov, Zh. Vychisl. Mat.
Mat. Fiz. 34, 68 ~1994!.

2A. V. Sochilin and S. I. Eminov, inMathematical Methods in Electromag
netic Theory (MMET-94)~Kharkov, 1994!, pp. 426–429.

3Yu. Yu. Radtsig, A. V. Sochilin, and S. I. E´ minov, Deposited at the
All-Union Institute of Scientific and Technical Information, VINITI@in
Russian#, Deposit No. 2640-V93~Moscow, 1993!, 78 pp.

Translated by James S. Wood
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Influence of the beam-forming conditions on the development of space-charge
oscillations in a long-pulse relativistic electron beam

L. Yu. Bogdanov, G. G. Sominski , and A. Ya. Fabirovski 

St. Petersburg State Technical University, 195251 St. Petersburg, Russia
~Submitted October 21, 1996; resubmitted March 31, 1997!
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The characteristics of the space-charge oscillations of a long-pulse relativistic electron beam in
magnetically insulated diodes are determined for different geometries of the electron
acceleration section and for explosive-emission cathodes of different materials. The important
role of the stream of electrons having high transverse velocities in the evolution of the
oscillations is demonstrated, and the laws governing the generation of this stream are determined.
Possible mechanisms of the space-charge oscillations are described, taking into account the
interaction of the electron stream in the beam halo with the main electron stream, the development
of diocotron instability in the stream of electrons emitted by the outer lateral surface of the
plasma emitter, and the instability of the space charge of ‘‘long-lived’’ electrons in the beam
transport channel. ©1998 American Institute of Physics.@S1063-7842~98!01804-2#
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INTRODUCTION

The vast and by no means exhausted potential app
tions of relativistic electron beams~REBs! in high-current
electronics and power engineering, along with the search
effective techniques to control their characteristics, acco
for the ongoing fascination with this multifaceted resea
object. So far, unfortunately, it is often impossible to gen
ate REBs of sufficiently high quality. One obstacle, in p
ticular, is the shortage of information on the functional re
tions of the collective processes involved in such beams

The laws of the formation and transport of REBS a
their stability have been analyzed in a great many publ
tions ~see, e.g., Refs. 1–7!. The main causes of the develo
ment of instabilities, primarily those associated with the e
istence of gradients of the velocities and density of electr
in the beams, have been discerned in theoretical studies.
mechanism underlying the onset of instability under the
fluence of these factors is fairly general, manifesting itsel
phenomena other than REBs~see, e.g., Refs. 8 and 9!. The
published theoretical studies have been carried out for hig
idealized beam models and largely in the linear approxim
tion. They are successful in explaining the disintegration
REBs but are generally inapplicable for determining t
amplitude-frequency and space-time response character
of the collective processes occurring in them.

In experimental work, owing to the difficulties of th
diagnostics of high-current electron beams, the proce
analyzed have been predominantly either very low-freque
~<100 MHz! or substantially higher-frequency~>3000
MHz! ~see, e.g., Refs. 2, 10–13!. Only recently through the
application of a relatively sophisticated, relatively nondisru
tive investigative technique has information been obtain
on the characteristics of the collective processes over a b
frequency band.14–18 The amplitude-frequency and spac
time responses of oscillations have been measured in l
pulse REBs, which previously have been the least inve
4391063-7842/98/43(4)/5/$15.00
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gated kind. However, the data have not been adequate
unambiguously determining the nature of the beams. H
we report new results that lend better insight into the mec
nisms of the collective processes and their relationship to
specific characteristics of the formation and transport
REBs in magnetically insulated diodes, which are wide
used in practice.

RESULTS OF MEASUREMENTS AND DISCUSSION

Measurements have been carried out using the SE´ R-1
apparatus15,19 in the experimental instrument shown in cro
section in Fig. 1. Electrons emitted by the edge explosi
emission cathode1 of diameterDc were accelerated in the
gapLca between the cathode and the anode2 to an energy of
approximately 200 keV, whereupon they drifted into t
beam transport channel3 ~of diameter Dt532 mm and
lengthLt51.2 m! and were deposited on the surface of t
collector4 in the decaying edge magnetic field of the syste
of solenoids5. An approximately uniform magnetic field
B0.1 T was created in the entire beam-transport space
cept in the edge zone. The deviations fromB0 at the solenoid
junctions were less than 10%. The duration of the curr
pulses on the collector and the current intensityI were varied
in the ranges;1.023.0 ms and 0.721.1 kA, respectively.

Our primary concern in the study has been to ascer
the influence of the beam-forming conditions on the char
teristics of the space-charge oscillations generated in
beam. Different cathode materials were used~stainless stee
and carbon!, along with different cathode diameters~12 mm
and 20 mm!, and the distanceLca between the cathode an
the anode was varied from 12 mm to 27 mm. Moreover,
influence of local magnetic-field nonuniformities created
the auxiliary coils6 and7 situated at distances;20 cm and
;60 cm from the cathode was tested in all the investiga
systems. The coils produced magnetic-field nonuniformit
having a corkscrew configuration with a half-width along t
© 1998 American Institute of Physics



t
m

e
th
e
s

nd
n
e

ely
th
e
e
n

led
de
o

f t

b
n
e
o

ac
th

e
s
s
th

he
la
if

li-
to

ter-
in
nal

des
t

the
e is

en

eld
ld

440 Tech. Phys. 43 (4), April 1998 Bogdanov et al.
axis of the system;10 cm, and their amplitude in differen
experiments was equal to 30% or 60% of the main bea
confining fieldB0.

The characteristics of the oscillations were determin
by the procedure developed in Ref. 15 with the use of
probes8 and 9, which were set up at distances from th
cathode of;40 cm and;80 cm, respectively. The probe
‘‘communicated’’ with the beam through small~diameter
;3 mm! openings in the wall of the transport channel a
detected the induced signals associated with the motio
the space-charge packets in the beam. The magnetic sp
of the oscillations in a period;6215 ns and the pulsed
variations of the detected probe pulses were recorded.

The characteristics of the oscillations are qualitativ
similar in all the investigated systems. The variations of
oscillation amplitudeA with the time t and in space can b
traced by observing the detected probe signals. Figur
shows typicalA(t) curves of the probes 8 and 9. Also show
are the time variations of the collector currentI. Our previ-
ous investigations15 have shown that the probes are coup
with the near field of the transport channel and reliably
tect REB space-charge oscillations until the dense cath
plasma, undergoing axial expansion, reaches the level o
entrance openings into the probe section.

The plasma oscillations are scarcely detected at all
the probe9 during the entire duration of the beam curre
pulse, but they are what determine the signal of the prob8
in time intervals corresponding to the decay of the current
the collector. At the leading edge of the currentI pulse we
discern time segments characterized by buildup of the sp
charge oscillations with increasing distance from the ca
ode. Their amplitude at the probe9 attains values;106 V/m
in all the investigated systems~i.e., ;10% of the static field
between the beam and the wall of the transport chann!.
These data indicate amplification of the wave processe
the interval between the probes and also that the output
nals of the probe far from the cathode are determined, in
given time interval at any rate, by growing waves in t
beam. A lack of data on the spatial variation of the oscil
tion amplitude in the near field of the cathode makes it d
ficult to assess the nature of the oscillations of the probe8. In

FIG. 1. Schematic view of the cross section of the experimental instrum
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principle, its signals can be attributed not only to the amp
fication of waves propagating along the beam, but also
oscillatory processes of another kind. Consequently, to de
mine the relations characterizing the growth of the waves
the beam, we analyze the prominent features of the sig
characteristics of the probe far from the cathode.

As the beam current is increased, the signal amplitu
of the probe9 increase with time, initially at a slow rate, bu
then after a certain time intervalt5t* specific to the given
system the rate of the process increases abruptly~Fig. 2!. The
quantity t* changes considerably when the geometry of
electron acceleration section or the material of the cathod
altered. Table I shows typical values oft* for the relativistic
electron beam-forming systems investigated here.

t.

FIG. 2. Time variations of:1! the collector currentI; 2,3! the amplitudeA of
the detected signals from the probes8 and 9, respectively, in a relativistic
electron beam-forming system with a graphite cathode; a,b! characteristic
curves obtained with confinement of the REB in a uniform magnetic fi
B0>1 T; c,d! data obtained with the introduction of local magnetic-fie
nonuniformities of amplitude 0.3B0 by means of the coils6 and7, respec-
tively; a! Dc520 mm,Lca512 mm; b,c,d(Dc520 mm,Lca527 mm.

TABLE I.

Cathode material

Stainless
Characteristic steel Carbon

Dc , mm 20 12 20
Lca , mm 27 12 27 12 27
t* , ms 0.520.6 0.2 0.420.5 020.1 0.320.4
td , ms 0.6 0.15 0.4 0.1 0.35
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The spectrum of the oscillations of the probe9 also
changes with time. At the initial timest,t* , when the signal
amplitudes are small, comparatively low-frequency osci
tions in the frequency band 100 MHz< f <300 MHz are
prevalent. But then in the presence of larger amplitudes~at
t.t* ) discrete peaks are discernible in the spectrum in
range of higher frequencies approximately from 500 MHz
1500 MHz. Typical spectra of the oscillations of the probe9
are shown in Fig. 3.

The influence of local magnetic-field nonuniformitie
having a corkscrew configuration on the REB space-cha
oscillations has been observed previously.16–18The measure-
ments were performed in a relativistic electron bea
forming system with a stainless steel cathode of diam
Dc520 mm mounted at a distanceLca527 mm from the
entrance to the transport channel. The data obtained in
present study can be used to generalize the conclusion
the first measurements to different geometries of the elec
acceleration section and to different cathode materials.
effect depends not only on the magnitude of the nonuni
mity, but also on its position in the transport channel. A 30
increase in the magnetic field near the cathode~by means of
the coil6! suppresses the signals of both probes. The sig
of the probe8 decrease considerably in time intervals wh
they are capable of coupling with the cathode plasma. In

FIG. 3. Typical spectra of signals from the probe9, obtained in a uniform
magnetic fieldB0>1 T in a relativistic electron beam-forming system wi
a graphite cathode,Dc520 mm, Lca527 mm. a! t50.3 ms (t,t* ); b! t
50.6 ms (t.t* ); Am1 andAm2 are the maximum values of the amplitudeA
of the recorded spectra,Am2 /Am1>15.
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vicinity of the probe9, on the other hand, there is a notic
able drop in the intensity of the REB space-charge osci
tions. Here the oscillation amplitude decreases by as muc
1.5–4 times~Fig. 2c!. Increasing this nonuniformity of the
magnetic field to 60% ofB0 produces an additional two- to
fourfold reduction of the oscillation amplitude of the prob
9. The introduction of such nonuniformities by means of t
coil 7 at a large distance from the cathode, in contrast w
the above-described influence of the coil6, essentially does
nothing more than accelerate the development of the osc
tions, not only in the beam propagating past it, but also at
probe8 ~Fig. 2d!.

The observed influence of magnetic-field nonuniform
ties can be explained if we assume that their genera
causes some of the electrons in the beam to be reflec
which has a strong influence on the characteristics of
recorded oscillations. Taking into account the adiaba
variation of the magnetic field near the auxiliary coils6 and
7, we can use the expression for the adiabatic invarian
determine the reflection conditions, writing

V'0 /Vi0>~B0 /DB!1/2, ~1!

whereV'0 andVi0 are the transverse and longitudinal com
ponents of the velocity of electrons striking the magne
mirror, andDB is the amplitude of the magnetic field.

Since the influence of the magnetic-field nonuniformiti
begins to be felt atB0 /DB53, it follows from Eq.~1! that
electrons having transverse velocitiesV'0>1.7Vi0 must be
reflected. Such velocities can be acquired by electrons e
ing from the cathode plasma during motion in an elect
field transverse to the magnetic fieldE';108 V/m. To de-
termine the conditions for the generation of electrons w
such high transverse velocities, we have estimated the fi
at the surface of a plasma emitter having various dimens
and axial positions, taking into account the irregularities
its surface.1! The estimates show that fieldsE' of the neces-
sary strength can occur at irregularities of the outer late
boundary of the plasma near the entrance to the trans
channel, i.e., with a delay relative to the beginning of t
current pulse, the length of the delay depending on the
tance from this zone and the rate of expansion of the cath
plasma. The resulting data have enabled us to calculate
delay timetd for the investigated systems~Table I!. It has
been assumed in the calculations that the gain of the fi
amplified at irregularities of the plasma emitter is identic
and equal to 5 for all the systems. The values used for
transverse (Vp') and longitudinal (Vpi) plasma velocities
for stainless steel and carbon cathodes are given in Tabl

They have been selected in accordance with publis
data on the motion of a cathode plasma in the vicinity of
cathode.7

TABLE II.

Cathode material Vp' , cm/s Vpi , cm/s

Stainless steel 33105 33106

Carbon 53105 53106
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A comparison of the calculated values oftd with the
experimentally measured delay timet* to abrupt growth of
the probe9 signals shows that these times are close for
the investigated systems. It seems clear to us that this ag
ment confirms the important role of electrons with hi
transverse velocities in the development of convective in
bility, which, as mentioned, determines the characteris
A(t) in the region of the transport channel far from the ca
ode. Such electrons, judging from the above estimates, e
only in the halo of the REB. Za�tsevet al.20 have previously
observed the influence of the electron stream in the R
halo on the expansion of the wall of an annular beam i
magnetic field. The authors of the paper postulated that
observed phenomenon is associated with the developme
instability, but did not specify its mechanism. Our data c
be used to determine the most probable attributes of
mechanism.

The current of electrons with high transverse velocit
is weak in comparison with the beam current. It would
difficult in this light to assume that the experimentally o
served strong observations are associated with proce
strictly in the periphery of the beam. A possible cause of
generation of oscillations, it seems to us, is the developm
of a two-stream instability8,9 associated with the interactio
of electrons in the periphery of the beam having the high
transverse velocities~and, accordingly the lowest longitud
nal velocitiesVimin) with electrons coming from the end o
the plasma emitter and having the maximum longitudi
velocities Vimax. This kind of interaction should be mos
efficient when a fast space-charge wave in the first strea
in synchronism with a slow space-charge wave in the sec
stream. In this case, equating the phase velocities of
waves, we readily obtain an expression for the frequencyf of
the resulting development of instability of the oscillations

f 5
1

2p
3

Viminvp max1Vimaxvp min

Vimax2Vimin
, ~2!

wherevp max andvp min are the reduced plasma frequenc
of the streams with velocitiesVimax) andVimin , respectively.

Calculations using our previous data on the characte
tics of the space-charge distribution in REBs16–18 to deter-
mine the reduced plasma frequencies give valuesf ;500
2700 MHz, which roughly correspond to the strongest
cillations observed in the experiments.

The investigated two-stream model explains not only
range of frequencies of the observed oscillations, but also
significant difference in how their characteristics are affec
by magnetic-field nonuniformities generated in differe
parts of the transport channel. The amplification of the os
lations upon activation of the distant~from the cathode! coil
7 can be attributed, for example, to the fact that the inter
tion of the stream of electrons emanating from the cath
with electrons reflected by the magnetic mirror begins
exert an appreciable influence in this case. Similarly, the
teraction associated with activation of the coil6 can be ren-
dered ineffective by the substantially shorter length of
section between the cathode and the near coil.

The explanation of the space-charge oscillations
served in our work as the result of the above-described t
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stream interaction mechanism is not the only one possi
Of the alternatives, we lean toward a mechanism associ
with the development of diocotron instability in the stream
electrons emitted from the side of the plasma emitter. In t
case the REB halo must acquire space-charge inhomog
ities rotating in the azimuth direction. The frequenciesf m of
these magnetron-type oscillations should increase when
electron drift velocityVd5E' /B0 above the surface of the
plasma emitter and the mode order of the oscillationsnm

51, 2, 3, . . . (f m;nm3Vd) increase. In the transport chan
nel with a potential differenceDU5200 kV, B051 T, and
nm51 these waves are characterized by a frequencyf m

;600 MHz.
Azimuthal oscillations are also possible in the spa

charge of electrons arrested in the special kind of trap form
between the cathode and the magnetic mirror. In view of
potential dropDU;50 kV between the beam and the wall
the transport channel, the frequencies of the azimuthal sp
charge oscillations in this case should have a valuef t;nt

•150 MHz, wherent51, 2, 3, . . . is the mode order of th
oscillations in the trap. Oscillations of this kind can evolv
in principle, when the magnetic field is devoid of nonunifo
mities responsible for electron reflections. As mentioned p
viously, for example, in Ref. 21, it is also possible for spa
charge to build up and be trapped for a long time in the R
transport channel as a result of some of the electrons b
reflected first from the collector and then again by the el
tric field at the cathode.

The relative role of the modes of oscillation discuss
above is difficult to assess on the basis of existing exp
mental data and estimates. A realistic scenario appears t
one in which the collective processes in REBs are thr
dimensional in character, different modes of oscillatory m
tion coexist, and a small change in the characteristics of
beam or the beam transport channel is accompanied by
ergy transfer from one degree of freedom of oscillatory m
tion to another in a process similar to that observed pre
ously in magnetron-type systems with the axial motion
electrons taken into account.22–24

CONCLUSION

Following is a summary of the most important results
the study.

We have determined the amplitude-frequency respo
characteristics of the space-charge oscillations of relativi
electron beams in magnetically insulated diodes for differ
geometries of the electron acceleration section and
explosive-emission cathodes of different materials.

We have demonstrated the important role of the stre
of electrons having high transverse velocities in the evo
tion of oscillations. We have also determined the functio
relations involved in the formation of this stream.

We have described possible mechanisms of the sp
charge oscillations, taking into account the interaction of
electron stream in the halo of the beam with the main el
tron stream, the development of diocotron instability in t
stream of electrons emitted by the outer lateral surface of
plasma emitter, and the instability of the space charge
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‘‘long-lived’’ electrons in the REB transport channel.
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A method is proposed for investigating the spatial and time-of-flight properties of polar toroidal
charged-particle analyzers on the basis of calculations of the aberration integrals. The
efficiency of the method is illustrated by comparing the results of calculations based on it with
the results of numerical simulation and experimental measurements. ©1998 American
Institute of Physics.@S1063-7842~98!01904-7#
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Polar toroidal electrostatic charged-particle analyz
~toroidal capacitors in which the particle beam moves in
meridional direction! are widely used in systems for th
static and time-of-flight analysis of electron or ion bea
with respect to angle and energy simultaneously1–3 or with
respect to mass.4,5 In the past, new charged-particle bea
analyzers containing polar toroidal capacitors either exc
sively or in combination with other elements6,7 have been
designed by the time-consuming numerical simulation
charged-particle paths8–10or by means of crude, semianalyt
cal approximations,4,11 making it difficult to obtain optimal
solutions requiring the simultaneous satisfaction of many
cusing conditions in the presence of stringent geometr
constraints. The analytical method developed in Ref. 12
calculating the electrostatic field in a polar toroidal capac
suggests an effective approach to the investigation of
spatial and time-of-flight properties of such a capacit
based on the computation of aberration integrals.

In this paper we investigate particle motion in the fie
of a capacitor without regard for edge effects at its input a
output. These effects can be calculated on the basis
method proposed earlier.13

We introduce toroidal coordinates@r ,F,Q# ~Fig. 1!,
whereQ is the angle of rotation about the symmetry axis~Z
axis! of the system, andr andF are polar coordinates in th
meridian plane relative to a point situated at a distanca
from the Z axis ~this point is assumed to be the center
curvature of the electrodes of the polar toroidal capacito
the meridian plane!. The surfaces of the electrodes of th
polar toroidal capacitor are described by the equationsr 1,2

5r 07b, where 2b is the interelectrode gap. An analytic
expression for the electrostatic potentialC(r ,F) between
the capacitor electrodes, across which potentials of eq
value and opposite sign toV are specified, has bee
obtained12 in the form of the expansion

C~u,F!5V(
j 51

`

C j~u,F!« j ~1!

in powers of the parameter«5b/r 0. For real analyzer con
figurations this parameters is small, so that the potentia
4441063-7842/98/43(4)/5/$15.00
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the field is very accurately described by the first few terms
the expansion~1!, whose coefficients are equal to

C0~u,F!5u, C1~u,F!52
1

2
~11C!~u221!,

C2~u,F!5
1

3
~11C1C2!~u32u!,

C3~u,F!5F2
1

4
~11C!~11C2!2

1

24
~12C!~C1S2!G

3~u421!1
1

2 F1

3
~11C!~11C1C2!

1
1

2
~12C!~C1S2!G~u221!,

C4~u,F!5
1

60F121
33

2
C19C21

19

2
C3112C414S2

23C2S21CS2G~u52u!1
1

18F222
19

2
C

23C22
1

2
C322C425S214S2C21CS2G

3~u32u!.

Here we have introduced the notationC5cosF/F,
S5sinF/F, F5d1cosF, d5a/r 0. We write the equations
for the charged-particle paths in the polar toroidal capac
in cylindrical coordinates, because the initial conditions
these paths are easier to determine in linear rather than
gular variables. We introduce cylindrical coordinat

@r,w,ȳ# with the axis of the coordinate system oriented p
pendicular to the meridian planeQ50 and passing through
the center of polar curvature of the electrode surfaces in
plane~i.e., situated at a distancea from the symmetry axis of
the system!. In the indicated meridian plane we haveȳ50,
r5r , and w5F, and the relations between the cylindric
and toroidal coordinates are described by the equations

r 5Ar2sin2w1@Aȳ21~a1rcosw!22a#2,
© 1998 American Institute of Physics
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tanF5
rsinw

Aȳ21~a1rcosw!22a
,

tanQ5
ȳ

a1rcosw
.

We denotex5(r2r 0)/r 0, y5 ȳ/r 0 and expand the ex
pressions for the toroidal coordinatesu andF in powers ofx
andy. To within third-order terms these expansions have
form

«u5x1
1

2
uyyy

21
1

2
uxyyxy2,

F5w1
1

2
Fyyy

21
1

2
Fxyyxy2, ~2!

where uyy5cosw/f, uxyy52cos2w/f2, Fyy52sinw/f, Fxyy

5sinw(d12cosw)/f2, and f 5d1cosw.
We now introduce the concept of a ‘‘main’’ particle a

one that moves around a circular path of radiusr 0 in the
capacitor in the limit«→0. Let K0 be the kinetic energy o
this particle~which is related to the potentialV by the equa-
tion V52«K0 /q), let m0 be its mass, and letq be the
charge; we refer to these quantities as the nominal value
the corresponding quantities. The exact equations for
charged-particle paths in the polar toroidal capacitor are t
written in the form

x92
2x82

11x
212x5F2

]C

]x
1

x8

~11x!2

]C

]w G
3

~11x!21x821y82

11d22C
, ~3!

y92
2x8y8

11x
5F2

]C

]y
1

y8

~11x!2

]C

]w G ~11x!21x821y82

11d22C
,

~4!

whered is the deviation of the energy of an arbitrary partic
from its nominal value, and the prime signifies different
tion with respect to the anglew.

FIG. 1. Cross section of the electrodes of a polar toroidal capacitor in
meridian plane. Only the upper part of the cross section is shown, as
symmetrical about theZ axis.
e
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The equation for the normalized time of fligh
t5A2K0 /(m0r 0

2) (r 2t0), where t is the time for an arbi-
trary particle to traverse the sector described by the angl
rotation w, and t05wAm0r 0

2/2K0 is the nominal time of
flight of a main particle over an arc of radiusr 0 of the same
sector, has the form

t8115A~11x!21x821y82

11d22C
~11g!, ~5!

whereg is the relative deviation of the mass of an arbitra
particle from its nominal value.

Substituting the equation~1! for the potential distribu-
tion, rewritten in the cylindrical coordinates~2!, into the path
and time-of-flight equations~3!–~5!, we arrive at the follow-
ing equations for the terms of the first@x1 ,y1 ,t1# and second
@x2 ,y2 ,t2# aberration orders describing the coordinates
the charged-particle paths and the time of flight in the po
toroidal capacitor:

x192ax8x182axx15add1a0 , ~6!

y192ay8y182ayy150, ~7!

t185cxx11cdd1cgg1c0 , ~8!

x292ax8x282axx25ax8x8x18
21axxx1

21ax8xx1x18

1axdx1d1ax8dx18d1ay8y8y18
2

1ayyy1
21addd2, ~9!

y292ay8y282ayy25axyx1y11ay8xy18x11aydy1d12x18y18

1ay8dy18d, ~10!

t285cx8x8x1

82
1cxxx1

21cxdx1d1cxgx1g1cy8y8y18
21cyyy1

2

1cxx21cddd21cdgdg1cggg2. ~11!

Here the coefficients are given by the expressions

ax85ay852ax8d52ay8d52«2
sd

2 f
,

ax5c221«2S 2
5

6
c31

10

3
c22

19

6
c1

c

2 f 2
2

1

2 f 2
2

10

3 D ,

ad511«2S 2
1

3
c21

5

3
c1

5

3D ,

a05«2S 1

3
c22

2

3
c2

2

3D 1«4S 2
1

12
c41

27

40
c32

29

36
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1
31

180
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f 2
2
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360
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37
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1

f 2
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67
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ay52c1«2S 2
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6
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1

6
c22
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cd52
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2
2

3

4
«2~c11!, cg5
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1
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«2~c11!,

c05
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wherec5cosw/f ands5sinw/f.
More cumbersome equations for higher-order abe

tions can be obtained analogously. In the limit of a capac
having an indefinitely narrow interelectrode gap«→0 Eqs.
~6! and~7! coincide with the paraxial path equations deriv
in Ref. 14 on the assumption of a constant potential an
constant field on the axial path of the particle beam.

Linearly independent solutions of the homogeneous
ear equations whose left sides coincide with the left sides
Eqs.~6! and~7! can be calculated only by numerical integr
tion. Once this has been done, however, solutions of
inhomogeneous equations~6! and ~8!–~11! with zero initial
conditions are readily found by the method of variation
arbitrary constants in the form of integrals; these aberra
integrals are too cumbersome to write out in explicit form

We have thus reduced the general solution of the pr
lem of calculating the paths and time of flight to the sum
a combination of solutions of homogeneous linear equati
corresponding to the specified initial conditions and of t
indicated aberration integrals. Numerical experiments h
shown that even when third-order aberrations are taken
account, the time to calculate the properties of the polar
roidal capacitor on the basis of the proposed approach
fraction of a second on a late-model personal compu
bringing into reality the efficient optimization of device
containing such capacitors, which requires the scanning
large number of alternative configurations.

We note that Eq.~6! is inhomogeneous even for a ma
particle with the nominal energy (d50) owing to the pres-
ence of the coefficienta0. This means that the main particl
deviates somewhat from the circular optical axis in the
pacitor. For this reason the exact values of the aberra
coefficients of a fixed order depend not only on the solutio
of the equations corresponding to this order, but also on
higher-order aberration integrals. In particular, the parax
properties of the capacitor, determined as the solutions
Eqs.~6!–~8!, are inaccurately described unless the contrib
tions of the second-order aberration integrals are taken
account.

To estimate these errors and to compare the accurac
the proposed computational approach with that of numer
simulation methods and previously proposed approxim
approaches, we calculate the ion-optical properties of a t
stage analyzer for investigations of the astrophysi
plasma;4 the analyzer geometry is shown in Fig. 2. It consi
of two polar toroidal capacitors in series. The radii of t
optical axes arer 1543 mm in the first capacitor and
r 2560 mm in the second capacitor, corresponding to ang
of rotation w15127.6° andw2585°, respectively, and the
distances of the centers of meridional curvature of the e
trodes from the symmetry axis area15119 mm anda2

5100.2 mm. Theangle of entry of the particle beam int
the system relative to the direction of the axis of rotation
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w0573°, the distance from the input slit to the first stage
l 153 mm, the spacing of the capacitors isl 2511 mm, and
the distance from the second stage to the plane of the de
tor is l 3537.5 mm. We calculate the transfer matrix coef
cients of the system from the input slit to the detector pla
~standard notation such as that used in Ref. 15 are use
represent the transfer matrix coefficients!. We note that the
investigated configuration is characterized by angular foc
ing in the radial direction@i.e., the transfer matrix coefficien
(xua)50, wherea is the angle of the path relative to th
optical axis in the radial direction! and by zero spatial dis
persion with respect to energy, (xud)50.

We have checked the accuracy of the proposed a
rithm by comparing the first-, second-, and third-order tra
fer matrix coefficients of the analyzer as determined fr
calculations of the aberration integrals, and also by hig
accurate numerical integration of the paths using method
differential algebra.16 Our test shows that when the contrib
tions of aberration integrals up to and including third-ord
are taken into account, the first- and second-order aberra
coefficients are calculated within 0.1% error limits, and t
third-order aberration coefficients are calculated within 1
error limits. The large error of the third-order aberrations
attributable to the rejection of higher-order aberration in
grals, which, as explained above, are required in orde
attain higher accuracy.

Table I shows a comparison of the first-order trans
matrix coefficients, calculated by the method proposed in
article with the contributions of aberration integrals up to a
including third-order taken into account~column AI!, by the
approximate method proposed in Ref. 4~column AM!, and
by numerical calculations of the paths~column NC!. The
results in the last two columns are taken from Ref. 4;
values of the coefficients are given in the dimensionl
quantities used in the present study, where the initial coo

FIG. 2. Relative position of polar toroidal capacitors in a two-stage a
lyzer. 1! First stage;2! second stage.

TABLE I. Transfer matrix coefficients of a two-stage analyzer.

AI AM NC

(xux) 0.875 0.867 0.870
(aux) 1.124 1.047 1.110
(aua) 0.819 0.827 0.821
(aud) 20.690 20.656 20.680
(tux) 21.246 21.138 21.234
(tud) 2.000 1.880 1.991
(tug) 1.966 1.954 1.967
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nate is expressed in units of the radius of the axis of the
stage, and the final coordinate is expressed in units of
radius of the second stage@so that, in particular, the produc
of linear (xux) and angular (aua) magnifications in the table
are not equal to unity#; angular variables are expressed in t
tangents of angles, energy and mass deviations are expre
in units of their nominal values, and the time variable
expressed in the product of the relative deviation of the ti
of flight from its nominal value and the total length of th
optical axis divided by the radius of the second stage. I
evident from Table I that our results agree significantly be
with the results of the numerical calculations than do
results obtained by the approximate method in Ref. 4 w
the one exception of the coefficient (xux), where the discrep-
ancies are of the same order of magnitude. We note tha
discrepancy between our results and the numerical sim
tion results are of the order of one percent, which is not
good as the above estimate of the error of the method
aberration integrals. The reason is that our calculations h
ignored edge effects at the boundaries of the capacitors.

Table II compares experimentally measured first-or
transfer matrix coefficients with those calculated by t
method of aberration integrals for a two-stage system wh
geometry is given in Ref. 7. The relative position of th
stages in this system is the same as in Fig. 2, but the g
metrical parameters differ somewhat from those describe
Ref. 4. For the given systeml 156 mm, r 1544 mm,
a15104 mm, w0576°, w15122.5°, l 2519 mm, r 2551
mm,a2585.4 mm, andw2586.3°. The measurement resul
are taken from Table 2 in Ref. 7. In our Table II column
gives the coefficients measured at a distance of 40 mm a
the first capacitor~without the second one!, column II gives
the coefficients measured at a distance of 24 mm after
second capacitor, and column III gives the coefficients a
distance of 42 mm after the second capacitor. A compari
of the computational and measurement results indicates g
agreement between them.

The proposed method therefore has the high accur
and economy required for optimization calculations of t
paraxial and aberration properties of polar toroidal charg
particle beam analyzers.

This work has received partial support from Intern
tional Science Foundation Grant No. R6F300.
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cients for various positions of the plane of observation.

Calculated Measured
I II III I II III

(xux) 21.31 0.89 1.38 21.30 0.90 1.40
(xua) 20.78 0.00 0.34 20.86 20.08 0.38
(xud) 1.35 20.04 20.38 1.33 20.17 20.37
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Possibility of lowering the effective emittance of neutralized ion beams
S. Yu. Udovichenko
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Self-similarity conditions are determined for the steady states of a quasineutral beam plasma
generated during the transport of ion beams in a gaseous medium. The self-consistent radial
distribution of the beam and plasma densities is taken into account. Under the resulting
conditions the radial electric field of the beam–plasma system is linear, and it is possible for
beams to be transported without nonlinear distortion of their phase response
characteristics or an increase in the effective emittance. ©1998 American Institute of Physics.
@S1063-7842~98!02004-2#
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INTRODUCTION

The transport of an ion beam in a gas flowing into
injector from a plasma source is accompanied by the buil
of secondary charged particles formed as neutral atoms
ionized by the beam. The space charge of fast ions is
tially or fully neutralized, depending on the parameters of
beam–plasma system that is formed. The resulting bea
plasma field can influence the dynamics of precision bea
in injection devices.

The static electric field has been determined for fu
charge-neutralized beams in rarefied and dense gas
media1–3 and also for deneutralized beams.4

Numerical modeling has been used3,5,6 to investigate the
influence of the evaluated static electric field of a quasin
tral beam–plasma system on the dynamics of a precision
beam with a small phase volume and small angular div
gence. It has been shown that when the beam is transpo
through a ‘‘plasma lens,’’ its phase volume acquires non
ear distortions, and its effective emittance increases con
erably. A convergent beam can be obtained from a diverg
beam, and vice versa, depending on the choice of param
of the plasma lens. The results are used to optimize the
rameters of precision beams in the interest of matching
jectors with an high-frequency accelerator and in connec
with long-range beam transport in a gaseous medium.

The cause of the distortion of the phase volume of
beam and the attendant increase in its effective emittance
in the nonlinearity of the forces produced by the result
electric field of the quasineutral or charged beam plasma
the presence of a plasma medium a self-consistent motio
the beam particles takes place in the field of the undern
tralized space charge produced by the fast particles th
selves and by secondary charged particles. In prev
determinations1–3 of the electric field of a beam plasma th
motion of the beam particles has been assumed not to
self-consistent, because the authors used the approxim
of a specified beam density profile. This approximation c
become non-self-similar, and the motion of the beam ta
place under the influence of nonlinear forces produced by
electric field.
4491063-7842/98/43(4)/3/$15.00
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Goncharov7 has demonstrated the possibility of se
similar spreading of a neutralized beam of positive ions
der the influence of linear forces produced by the elec
field of the beam plasma. In this case the radial spreadin
the beam is such that each new state of the beam is a f
tion of time only and not of the preceding state, i.e., it
self-similar. However, the approximation used in Ref. 7 —
self-consistent beam density profile and a specified pla
density profile — is crude and yields two results that confl
with experimental data. Under conditions such that the d
sitiesni andne of the ionic and electronic components of th
plasma greatly exceed the beam densitynb

1 , a solution is
obtained for the potential drop across the beam rad
Dw5(nb

1/ne)Te /e, where Te is the plasma electron tem
perature. But the experimental value is close to the posi
ambipolar potential drop of a quasineutral plasma (ne'ni

@nb
1): Dw<Te /e. It follows from the solution of the equa

tion for a self-consistent potential in Ref. 7 that the poten
drop in the volume of a beam of negative ions should
negative. It is a well-known fact that in a dense gas t
potential difference is positive and of the same order of m
nitude as the potential difference in the case of a beam
positive ions.8 The incorrectness of the approximation is a
tributable to the underlying assumption that the slow seco
ary electrons are not perturbed by the electric field of
beam plasma. It will be shown below that the density pro
of the plasma ions significantly influences the choice of s
similar solution. Moreover, in the cited investigation the de
sity of secondary electrons is a given parameter, and
plasma generation mechanism is not determined.

The objective of the present study is to determine
conditions for linearity of the electric field~self-similarity of
states! of a quasineutral beam plasma, when it is then p
sible to lower the effective emittance of ion beams. Here
use the approximation of self-consistent density profiles
the beam and the plasma. We consider a broad rang
variation of the gas pressure, when the beam-gener
plasma can be collisional or collisionless. Together w
beams of positive ions we investigate the self-similar sta
of beams of negative ions.
© 1998 American Institute of Physics
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SELF-SIMILAR STATE OF A DENSE BEAM PLASMA

We consider the plasma generated by a beam during
ionization of a dense gaseous medium, in which the m
free path of a slow ion in relation to elastic collisions wi
neutral atoms is shorter than the radial dimension of the
conductor (l i0,R). To determine the spatial structure of th
collisional plasma and its ambipolar field, it is necessary
use the system of hydrodynamic equations of motion
continuity of slow charged particles, along with the ener
balance equation for the plasma electrons. This closed
tem of equations has been investigated previously1 for the
case of a dense plasma (ne , ni@nb

6). The electric field does
not appear explicitly in the ambipolar diffusion equation o
tained from the equations of continuity and motion of t
plasma components. The problem is therefore separable.
boundary condition on the potential is not needed for de
mining the density profile of the plasma.

By analogy with Ref. 7 we assume that a self-simi
state of a beam of positive and negative ions is satisfied
parabolic radial distribution of the density of fast particle
nb

6(j)5nb
6(0)(12Cj2), wherej5r /r b , r b is the radius of

the cylindrical beam, andC is a constant. We use this bea
density distribution to describe the plasma partic
generating source in the ambipolar diffusion equation:1

1

j

d

dj FjDA

dni

dj G52nHnb
6~j!r b

2 , ~1!

whereDA52Te /min i0, n i0 is the frequency of elastic colli
sions of slow ions with gas atoms,nH5s ingvb is the fre-
quency of formation of plasma particles,s i is the cross sec
tion of ionization of a gas atom by a beam ion, andvb is the
velocity of the beam.

The solution of Eq.,~1! has the form

ni~j<1!5ni~1!1anb
6~0!F12

C

4
2j2S 12

Cj2

4 D G ,
ni~j>1!5nw22anb

6~0!ln~r /R!, ~2!

where ni(1)5nw12anb
6(0)ln(R/rb), nw5(12C/2)

3nHr b
2nb

6(0)/2Rvs is the boundary density of a quasineutr
plasma,a5nHr b

2/4DA , R is the radius of the sheath at whic
the plasma recombines, andvs5(Te /mi)

1/2 is the velocity of
the ion beam.

In determining the effective boundary condition for
quasineutral plasma at the boundary of the charged laye
a nonconducting sheath, we have assumed that a diffu
regime prevails in the volume of the plasma, and the char
layer is collisionless. An appropriate boundary conditi
must be used for a collisional charged layer.1

We write the equation for a self-consistent potential
the electric field of the beam plasma for a Boltzmann dis
bution of secondary electrons in the form

1

j

d

dj
j

dw

dj
52

A

nb
6~0!

3@ni~j!6nb
6~j!2ne~1!exp~ew/T!e#, ~3!

whereA54penb
6(0)r b

2 .
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The condition of equal densities of the components
the unperturbed plasma is attained forj>1: ni(1)'ne(1).
By analogy with Ref. 7 in this case we havew5a
(12Pj2)/4, wherea andP are constants characterizing th
unneutralized charge. Settingew!Te in Eq.,~3!, we obtain
the following expressions for the unknown constants:

a54aAde
2/Prb

2 , P5~16C/a!~12C/4!21, ~4!

where the plus and minus signs correspond to beams of p
tive and negative ions, respectively,de5@Te/4pe2ne(1)#1/2

is the Debye screening length of the electrons,a@1, and
4de

2/r b
2!1.

According to Eq.,~4!, solutions decaying away from th
beam axis for a self-consistent potential and density of
particles is obtained for 0<C<1, 3/4<P<1. For example,
in the case of a beam with a uniform particle densityC
50, P51) the self-similar solution for the potential has th
form

w~j!5
Te

e

nb
6~0!

ne~1!
a~12j2!, ~5!

where, for example, ifne(1)'ni(1)@nw , we can set
anb

6(0)/ne(1)'1/2ln(R/rb).
It is evident from Eq.,~5! that the approximation

w!Te /e is well satisfied near the surface of the beam, wh
the field is a maximum and where it was previously observ
to be highly nonlinear. Near the beam axis the field tends
zero, and the error of determination of the quantityw(0) is
insignificant.

If, following Ref. 7, we setni(0)'ne(0) and ne(j)
5ne(0)exp(ew/Te) in ~3!, wherew is determined to within a
constant, for the density of a beam of positive ions we obt
a growing solutionC'12a, wherea@1. The fact is that
such a crude quasineutrality condition cannot be admit
becauseni(0)2ne(0)'nb

1(0).
It is necessary that the potential distribution in the be

~5! be matched with the potential distribution of the su
rounding plasma. The potential in the region of the beam
determined to within an arbitrary constantC1. It follows
from the matching of the solutions at the boundary of t
beamj51 that to disregardC1 for r b@de is justified.7

CONDITIONS FOR LINEARITY OF THE FIELD IN A RAREFIED
BEAM PLASMA

Here we consider the plasma generated by an ion b
during the ionization of a rarefied gas, when the reverse c
dition l i0.R holds. For a low gas pressure, ifA0

5nHr b/2vs!1, the following quasineutral state is esta
lished in a beam of positive ions:nb

11ni'ne ; ni

!nb
1 , ne . According to Eq.,~3!, this steady state of the

beam plasma is self-similar for a Gaussian distribution of
beam density:

nb
1~j!'ne~j!5nb

1~0!exp~2j2!,

w~j!'~Te /e!~12j2!. ~6!
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However, this approximation fails at a certain distance fr
the beam axis, because the density of fast ions is compar
with the density of slow ionsni . For j@1 the opposite con-
dition holds:ni'ne@nb

1 .
We now determine the region of the beam in which t

approximation~6! is valid and in which the electric field is
linear function of the coordinate. We find the radial distrib
tion of the density of slow ions by means of the equation
motion2,3 and the expression for the plasma flux, which fo
lows from the equation of continuity:

ui

dui

dj
52vS

2 d

dj
ln~ne!2

Suir b

ni
, ~7!

niui5A0nb
1~0!vSj21~12 f ~j!!, ~8!

whereS5nHnb
1 is the source of enhanced ionization of t

plasma, andf (j)5exp(2j2).
The solution has the form

ni~j!

nb
1~0!

5
A0

21/2j
~12 f ~j!!2@j222~12 f ~j!!

1221~12 f 2~j!!#21/2. ~9!

An analysis of Eq.,~9! shows that forA051021 the ratio
ni /nb

1 has the value 231021 at the pointj51 and the value
531021 at the pointj51.5. The coordinatej51 is the
dimensionless effective radius of a beam with a Gauss
particle density profile, which takes in 63% of the particle
The percentage of particles taken in atj51.5 is 90%. Con-
sequently, when the gas pressure is lowered (A052
31022), 90% of the beam particles can be transported un
conditions of a plasma electric field that is linear in the tra
verse coordinate (ninb

151021 at j51.5).
The following quasineutrality condition holds in the ca

of a beam of negative ions at a low gas pressure (A0!1):
nb

21ne'ni ; ne!nb
2 , ni . There are few electrons in th

volume of a neutralized ion beam, but the electric field d
pends specifically on this highest-mobility component of
plasma. It follows from Eq.,~7! with S set equal tonHnb

2

that for a Boltzmann distribution of electrons and a line
electric field the directional velocity of slow ions is also
linear function of the transverse coordinate. According to
equation of continuity, for the ionic plasma component t
condition is met for a uniform beam density profile a
ui(j)'A0vSj. The corresponding self-similar solution fo
the potential of a stable neutralized beam of negative ion

w~j!5
Te

e
ln~ne!'

3

2

Te

e
A0

2~12j2!, ~10!

agrees with the field determined in a numerical calculatio2

CONCLUSION

Self-similar states of a quasineutral beam plasma ge
ated during the transport of stable ion beam in a gase
medium have been found by solving the equations of co
nuity and motion for secondary charged particles and
Poisson equation for a self-consistent potential of the elec
field. The proposed approach eliminates the shortcoming
ble

-
f

n
.

er
-

-
e

r

e
s

,

.

r-
us
i-
e
ic
of

existing models of the steady state of a beam plasma, w
a less than fully self-consistent problem is solved and
potential of the electric field is sought for a specified dist
bution of the density of the beam or the plasma.

Conditions have been determined for self-similarity
the steady states of neutralized beams of positive and n
tive ions, when the plasma produced by them can be co
sional or collisionless with respect to the ionic compone
Under these conditions the radial electric field of the bea
plasma system is a linear function of the transverse coo
nate, i.e., it is possible for beams to be transported with
nonlinear distortion of the phase response characteristics
an increase in the effective emittance.

Collective processes associated with the excitation of
spectra of eigenmodes of the plasma have been disrega
in the search for self-similar states of neutralized beams
an unstable beam fully developed plasma oscillations lea
collective heating of the beam particles, an increase in
effective emittance, and dynamic decompensation of
space charge of the beam. The possibility of diminish
collective heating and thereby lowering the effective em
tance of the beam has been investigated previously.9 The
conditions under which steady states of unstable, parti
neutralized beams of positive and negative ions are poss
have also been determined.4

The electron temperature in Eqs.~5!, ~6!, and ~10! is
determined on the basis of the solution of the energy bala
equation derived in Ref. 1. Together with collisionless~col-
lective! and collisional heating of electrons in the field
plasma oscillations, other heating sources and coo
mechanisms over a wide range of gas and beam densitie
also taken into account in this equation.

Experimental data8 have shown that for a low gas pre
sure in an unstable neutralized beam of negative ions in
presence of fully developed plasma oscillations the poten
drop across the radius of the beam is much higher than
potential drop determined from Eq.,~10! and is of the same
magnitude as the potential drop in a neutralized beam
positive ions.
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Formation of relativistic positron systems by the axial channeling of positrons in ionic
crystals
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An analytical expression is written for the effective interaction potential of a fast charged particle
with ionic crystals of the CsCl type as a function of the temperature of the medium, taking
long-range order into account. A numerical analysis shows that there is a real possibility of axial
superchanneling of positrons along the^100& axis of negatively charged ions in crystals
with this structure. The wave function and energy spectrum of the localized state are investigated,
and the possibility of the formation of metastable, two-dimensional, relativistic positron
systems is analyzed. ©1998 American Institute of Physics.@S1063-7842~98!02104-7#
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INTRODUCTION

The phenomenon of anomalous transmission of i
along definite crystallographic axes and planes was disc
ered experimentally in 1960.1 In 1963 it was confirmed by
numerical simulation2 and became known as the channeli
effect. In 1965 Lindhard published a theoretical explanat
of the phenomenon in the framework of classic
mechanics.3 The quantum mechanical theory of electron a
positron channeling has been elaborated by many author4–6

The years following the publication of Lindhard’s theo
saw the burgeoning of theoretical and experimental work
the problems of channeling of light particles — electrons a
positrons.

It is important to note that an electron in a crystal c
undergo both planar and axial channeling. So far only o
type of pure channeling is known for positrons: the regi
where a particle is localized between two adjacent plane5

The feasibility of axial channeling of positive particle
has not been give serious consideration to date, becaus
crystallographic axes themselves are positively charged
gardless of the species. At the same time, to explore
possibilities of axial channeling of positrons and, hence,
formation of metastable relativistic positron systems pos
problem of utmost urgency in radiation physics. Suffice it
say that currently one of the possible approaches to the
eration of coherentg rays is seen in the method of stimul
tion of decay of positrons (e1e2)→2g formed by the dis-
placement of relativistic electron and position beams
vacuum.7,8 However, this approach is extremely tenuous
best, specifically in light of the low probability of generatio
of the (e1e2) pairs themselves under the stated conditio
A different method for the generation of coherentg rays has
been proposed recently, based on the stimulation of ann
lation of positrons channeled in a crystal with ho
electrons.9 We believe this to be a preferable approach.
4521063-7842/98/43(4)/5/$15.00
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In earlier studies10–13 we have focused attention on th
capabilities of ionic crystals of the CsCl type with a vie
toward uncovering new possibilities for the channeling
light charged particles. In particular, we have studied in
tail the effective interaction potential of a charged partic
with a crystal under conditions of planar channeling alo
the principal^100& planes of cesium Cs1 and chlorine Cl2

ions.
In the present article we construct the effective inter

tion potential of a charged relativistic particle with a crys
near the axial direction̂100&. We investigate in detail the
effective positron channeling potential near the^100& axis of
Cl2 ions by numerical simulation. We solve the Schro¨dinger
equation in a two-dimensional effective potential; we a
determine the wave function and the energy spectrum.
analyze the role of dissipative processes in the broadenin
the spectral lines of two-dimensional relativistic positr
systems.

POSITRON CHANNELING NEAR THE Š100‹ AXIS OF Cl2

IONS IN A CsCl CRYSTAL

In Cartesian coordinates with the origin at a designa
Cl2 crystal the potential generated by a three-dimensio
unbounded crystals of the CsCl type in the Jensen–May
Gosler–Rode approximation with allowance for thermal
brations has the form10

w~r ;T!54pE dR
1

d3 (
kÞ0

1

k2
eik~r2R!

3 H ~21! l 1n1me2
k2u01

2

2 W1~R!1e2
k2u02

2

2 W2~R!J ,

k5
2p

d
~ x̂l 1 ŷn1 ẑm!, ~1!
© 1998 American Institute of Physics
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whered is the period of the real lattice,k is the reciprocal
lattice vector, (l ,n,m)P(2`,`) are integers, u01

[u01(T) and u02[u02(T) characterize the amplitudes o
thermal vibrations of positive Cs1 and negative Cl2 ions at
the temperatureT, andW1(R) andW2(R) denote the den-
sity of charges in ions of the corresponding signs at the t
peratureT50.

The electrostatic field~1! is greatly simplified outside the
ionic lattice, assuming the form

wnst~r ;T!5
4pe2

d3

3 (
kÞ0

1

k2
eik•rF ~21! l 1n1me

2k2u01
2

2 2e
2k2u02

2

2 G .
~2!

We now investigate the structure of the effective pote
tial. Let a fast, positively charged particle be scattered a
small angle q<qL;AD0/E ~where qL is the Lindhard
angle,E is the total energy of the particle, andD0 is the
depth of the well! on the^100& axis of Cl2 ion. The potential
~1! can then be averaged along the direction of fast mot
i.e., along thê 100& axis of Cl2 ions, which is equivalent to
integration of the potential along the coordinatez within the
limits of one periodd ~Fig. 1!. If the particle intercepts a C
2 ion at a distancer5Ax21y2, the segmentd is divided into
three parts~Fig. 1!. In the first and third parts the particl

FIG. 1. a! Two-dimensional cross section$x,y% of the three-dimensiona
unit cell of a CsCl crystal at depthz along the^100& axis. The radii of the
cross section of the ion spheres are given by the expressionsR1(z)

5ReAR01
2 2(

1
2d2z)2 andR2(z)5ReAR0

22z2; b! Intersection of the par-
ticle path with the sphere of a lattice ion at points A and B; c! the hatched
part indicates the path segment of lengthR(x,y) traversed by the particle
inside the ion.
-

-
a

n,

moves outside the ion, and in the second part it moves in
the ion. Note that the length of the path traversed by
particle inside the ion is

R~x,y!52ReAR0
22@h2~x!1h2~y!#d2,

h~x!5
1

2
1~21!PS H x

d J 2
1

2D , Px5F2x

d G ,
h~y!5

1

2
1~21!PyS H y

d J 2
1

2D , Py5F2y

d G , ~3!

where the brackets@ . . . # and braces$ . . . % denote the the
integer part and fractional part of a function, respective
When the particle intercepts a Cs1 ion, the path is given by
the formula

R1~x,y!52ReAR01
2 2Fh2S x2

1

2D1h2S y2
1

2D Gd2.

~4!

We recall that in Eqs.~3! and~4! the symbolsR01 andR02

denote the radii of the corresponding ions. We can now w
the potential averaged along the coordinatez:

weff~x,y;T!5E
2d/2

2R2/2

wnst~r ;T!dz1E
2R2/2

R2/2

w~r ;T!dz

1E
2R2/2

d/2

wnst~r ;T!dz2E
2d/2

2R1/2

wnst~r ;T!dz

2E
2R1/2

R1/2

w~r ;T!dz2E
2R1/2

d/2

wnst~r ;T!dz. ~5!

The substitution of Eqs.~1! and ~2! into ~5! and elementary
integration yield

weff~x,y;T!5
8e2

p2d
(

l ,n,m50
l 1n1m.0

alanam

e2l2m2

mm2
cosS 2p

d
lx D

3cosS 2p

d
nyD $~21! l 1nsin@pmR̄1~x,y!#

3W1~ l ,n,m!1sin@pmR̄2~x,y!#

3W2~ l ,n,m!%1
4ue2u
pd (

n,l 50
n1 l .0

alan

e2l2n2

n2

3cosS 2p

d
lx D cosS 2p

d
nyD $~21! l 1n21%,

R̄1~x,y!5R1~x,y!/d, R̄2~x,y!5R2~x,y!/d, ~6!

where

m25 l 21n21m2, n25 l 21n2,

l[u01 /d5u02 /d, a051/2, ai51~ iÞ0!,

W6~ I ,n,m!5E W6~R!e2 ik•RdR. ~68!

We note that the parameterl is obtained on the assumptio
that the thermal vibration amplitudes are equal tou01
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5u02 , which is well within reason for acoustic vibration
The form of the structure functionsW1( l ,n,m) and
W2( l ,n,m) need to be refined for the numerical analysis
Eq. ~6!. We write the charge density inside the ion in t
form

W6~R!5V6~R!1Z6d~R!, ~7!

whereV6(R) is the distribution of electrons inside ions o
the crystal, andZ6 is the number of protons in the poin
nucleus.

Substituting Eq.~7! into ~68! and assuming that the dis
tribution of the electron charge inside the ion has spher
symmetry, we obtain the following expression for the stru
ture factor:

W6~ l ,n,m!5Z61X6~ l ,n,m!61,

X6~ l ,n,m!5
4p

k E
0

`

V6~R!Rsin~kR!dR, k5uku. ~8!

Next, adopting the Lenz–Jensen model10,11 with the pa-
rameters of the CsCl crystal in the role of the functionV(R),
we calculate Eq. ~6! for four different values of
l5$0.001,0.01,0.05,0.1%. It is evident from Figs. 2a–2d tha
a rather broad~of width Dd;0.25d) potential well exists for
fast, positively charged particles around the^100& axis of
Cl2 ions; the depth of the well isD059.8 eV, which remains
constant over a broad range of thermal vibrations 0.001<l
<0.1, i.e., over a broad range of temperatures. In ot
words, under the appropriate scattering conditions a f
positively charged particle in the vicinity of the^100& axis of

FIG. 2. Profile of the effective potential of axial channeling of a positr
along the^100& axis of Cl2 ions at various temperatures. a! l50.001; b!
0.01; c! 0.05; d! 0.1.
f

al
-

r
t,

Cl2 ions is channeled in an axial channeling regime. Ba
on the symmetry of the resulting effective potential~Figs.
2a–2d!, it is conveniently approximated by a function of th
type

U~r!5D0~e22ar̄22e2ar̄!,

r̄5
r2r0

r
, r5Ax21y2, ~9!

where the parameters of the potential~9! have the following
values in the CsCl crystal:D059.8 eV, a50.838, and
r050.46 Å.

It is important to note that this approximation, as show
by comparison with direct numerical computations, is ac
rate to 1% or better for values of the potential,24 eV. We
also observe that values of the parameters of Cl2 and Cs1

close to those of the parameters of these ions in the free
were used in the numerical calculations of expression~5! in
Lenz–Jensen distribution functions. For this reason the c
acteristics of the field of axial channeling of positrons sho
be expected to improve when more precise values of
crystal ion parameters are used in the calculations.

TWO-DIMENSIONAL RELATIVISTIC POSITRON SYSTEM

The positron wave function in the axial channeling r
gime can be written in the form

c~r !5
1

2p
expS i

\
pzzDF~r,w!, r5~z,r,w! ~10!

subject to the normalization condition

E c* ~r !c~r !dr5d~pz2pz8!dnn8dmm8,

«,0, n,m50,1,2, . . . , ~108!

where d(Pz2Pz8) is the Dirac delta function,dnn8 is the
Kronecker delta,« is the energy, andF(r,w) is the bound
state wave function.

Substituting Eq.~10! into the three-dimensional Schro¨-
dinger equation written in cylindrical coordinates (x,r,w),
we find

S ]2

]r2
1

2

r

]

]r
1

1

r2

]2

]w2D F~r,w!

1
2m

\2
@«2U~r!#F~r,w!50, ~11!

wherem is the relativistic mass of the positron.
Now, proceeding from the symmetry of the potential~9!,

we write the solution of Eq.~11! in the form

F~r,w!5
1

2pr
eimwx~r!. ~12!

Substituting Eq.~12! into ~11!, we obtain the following equa-
tion for the radial wave function:

d2x

dr2
1

2m

\2 S «2
\2m2

2mr2
2U~r!D x50. ~13!
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The subsequent analysis of Eq.~13! is analogous to that in
Ref. 14. Since within the channel the coordinater does not
differ much fromr0 for small quantum numbers, it is usefu
to expand the centrifugal term in~13! in powers of the pa-
rameterr̄:

\2m2

2mr2
5

m2

g0
2

D0~c01c1e2ar̄1c2e22ar̄!1O~ r̄3!, ~14!

where we have introduced the notation

c0512
3

a
1

3

a2
, c15

4

a
2

6

a2
,

c252
1

a
1

3

a2
, g0

252m
D0r0

2

\2
. ~15!

Substituting Eq.~14! into ~13!, we arrive at an exactly solv
able quantum mechanical model,14 for which the radial wave
function has the form

x~r̄ !5yse1
2

1
2 yF1~a,c,y!, y5

2g0

a
e2ar̄, s5

b

a
,

~16!

where

b25b0
21m2c0 , g1

25g0
22

1

2
mc1

2 , g2
25g0

21
1

2
m2c2 ,

b0
252

2m«r0
2

\2
.0, a5

1

2 S 2b

a
11D2

g1
2

ag2
2

. ~17!

The eigenvalues obey the equation14

TABLE I.

E55 MeV
n,m 0 1 2 3

0 «00527.986 «01525.893
1 «12525.611
2
3

Note: Energy values are given in eV; places in the tables with no ent
indicate that states with such quantum numbers do not exist.

TABLE II.

E510 MeV
n,m 0 1 2 3

0 «00528.097 «01527.082 «02524.050
1 «11529.330 «12525.800
2 «23528.322
3

Note: Energy values are given in eV; places in the tables with no ent
indicate that states with such quantum numbers do not exist.
«nm5
\2

2mr0
2 H g0

21ag0S n1
1

2D 222S n1
1

2D 2

1m22
3~a21!

ag0
S n1

1

2D m2
9~a21!2

4a4g0
4

m4J , ~18!

wheren is the vibrational quantum number, andm is a quan-
tum number characterizing the rotational motion. Tab
I–IV give several values of the energy spectrum of tra
verse positron motion as a function of the quantum numb
n ~down the columns! and m ~along the rows! for various
total positron energiesE.

CONCLUSION

We have shown that positively charged relativistic p
ticles in ionic crystals of the CsCl type in the vicinity of th
^100& axis of Cl2 ions can be channeled in an axial chann
ing regime. We have shown by numerical analysis that
channeling potential has annular symmetry in this case
situated in regions far from the crystal axes, and is ess
tially independent of the temperature of the medium. T
latter property possibly means that the contribution of ela
scattering processes~both coherent and incoherent! to broad-
ening of the energy levels of transverse motion must be
significant. In other words, other mechanisms such as!
inelastic processes with the excitation of electrons inside
crystal ions; b! radiative transitions between levels of tran
verse motion; c! band broadening, are responsible for broa
ening of the spectrum in this case. It is well known from t
literature that these mechanisms operate independentl
one another.

It is essential to note that radiative transitions are imp
tant for particles having higher energiesE>10 GeV ~Ref.
15!. As to the band broadening of levels due to the perio
icity of the effective potential, Bazylev and Golovizin16 have
shown that it does not directly shorten the particle lifetime

s

s

TABLE III.

E520 MeV
n,m 0 1 2 3

0 «00528.368 «01527.873 «02526.388 «03523.918
1 «10528.535 «11527.980 «12526.318 «13523.552
2 «23526.915
3

Note: Energy values are given in eV; places in the tables with no ent
indicate that states with such quantum numbers do not exist.

TABLE IV.

E530 MeV
n,m 0 1 2 3

0 «00528.540 «01528.213 «02527.233 «03525.602
1 «10528.117 «11527.758 «12526.682 «13524.889
2 «21529.789 «22528.616 «23526.662
3

Note: Energy values are given in eV; places in the tables with no ent
indicate that states with such quantum numbers do not exist.
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a given level, and this phenomenon generally occurs for
els having high quantum numbersn andm. It follows from
these considerations that the most important mechanism
broadening of the spectral levels in the given problem, or
strongest dechanneling factor, is inelastic scattering invo
ing excitation and ionization of ions of the strings..

It is reasonable to expect, therefore, that a! relatively
low-energy (E55 –30 MeV! positrons under the above
stated conditions will be superchanneled, thus forming sta
two-dimensional relativistic positron systems; b! the pro-
posed method can be used to generate positron systems
virtually all beam positrons in a crystal, a feat that is fund
mentally impossible by the mixing of electron and positr
beams in vacuum7,8; c! under the conditions of the give
problem the parameters of the positron system can be va
considerably, including the creation of conditions for t
resonance annihilation of a positron with an environmen
electron, by means of external influences; d! the investiga-
tion of axial channeling of heavy positive ions can also
viewed as a promising undertaking.

The authors are grateful to members of the theoret
seminar at the Institute of Applied Problems in Physics
the National Academy of Sciences of Armenia for a fruitf
discussion.
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Scanning of a laser beam and purification of materials through the use of light-induced
particle drift in semiconductors

N. N. Krupa and A. N. Pogorely 

Institute of Magnetism, Academy of Sciences of Ukraine, 252680 Kiev, Ukraine
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The light-induced drift of electrons, light-absorbing impurities, and defects in II–VI
semiconductors is investigated experimentally, along with some potential practical applications of
the phenomenon. It is shown that the light-induced drift of electrons induces a very
pronounced change in the refractive index,uDnu;0.01, and can be used to implement effective
scanning of nanosecond and picosecond laser pulses through frustration of total internal
reflection. The light-induced drift of absorbing particles increases their density in the surface
layer of the crystals, and this effect can be exploited in semiconductor technology. ©1998
American Institute of Physics.@S1063-7842~98!02204-1#
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INTRODUCTION

The idea of making practical use of the phenomenon
variation of the refractive index of transparent media in
field of a laser beam was first propounded some time a1

and has been tested repeatedly since then in various e
neering techniques to control the space–time characteri
of high-power light beams.

The most promising materials for the construction
high-speed nonlinear elements are semiconductors, bec
they are characterized by strong electron–phonon interac
with short relaxation times. The absolute value of the n
linear variation of the refractive indexn should exhibit reso-
nance growth in the vicinity of such electron transitions. T
formation of a transverse gradient of the nonlinear variat
of n in semiconductors in the active zone of high-power la
beams has provided the means to achieve scanning,2 modifi-
cation of beam divergence by nonlinear lenses having a v
able focal length,3 and reduction of the duration4 of nanosec-
ond and picosecond laser beams when part of the beam i
off by a diaphragm.

However, the practical application of developments
this kind is hindered by the fact that self-defocusing lim
the magnitude of the effect for a negative variation ofn,
while self-focusing leads to damage of the material fo
positiveDn.

Our aim in the present article is to propose for engine
ing application high-speed deflectors operating on the b
of frustration of total internal reflection,5 along with a tech-
nological scheme for the purification of optical material6

These developments have the distinguishing feature that
are based on the phenomenon of light-induced drift of n
equilibrium electrons and absorbing impurities in semico
ductors. The light-induced drift of particles in the field of
high-power laser beam, which was predicted theoretically
Refs. 7 and 8, has been investigated experimentally for
most part in gaseous mixtures of atoms and molecules.

In addition, a well-known phenomenon in semicondu
tors is the entrainment of carriers by laser beams,9,10 which
4571063-7842/98/43(4)/4/$15.00
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can also apply to light-induced particle drift. The entrai
ment of electrons should raise their concentration in the
gion where the laser beams exit from the samples. A
since the production of a high density of nonequilibriu
electronsN is the basic mechanism of negative variation
the refractive index of semiconductors under the influence
high-power laser pulses,11

Dn52
4pe2N

n0me
xv2 , ~1!

the light-induced drift of electrons should produce a sign
cant drop in the refractive index and influence the total
ternal reflection of laser beams in semiconductors. Hereme

x

is the effective mass of the electrons.

EXPERIMENTAL PROCEDURE AND RESULTS

Scanning of laser radiation by deflectors utilizing fru
tration of total internal reflection.Nanosecond and picosec
ond pulses emitted by a ruby laser and a neodymium la
were used to investigate the total internal reflection pheno
enon in CdSSe, ZnSe, and SiC crystals. The samples w
cut in the form of triangular prisms in such a way that a la
beam normally incident on the input face would under
total internal reflection at the opposite face and exit from
crystal ~Fig. 1a!. Measurements have shown that in samp
characterized by two-photon absorption (Eg,2hv) and in
samples exhibiting fairly high impurity absorption or fre
carrier absorption (a.10 cm21) high-intensity radiation
I .10MW/cm2, begins to propagate along the total-intern
reflecting face. Frustration of total internal reflection is o
served not only in II–VI semiconductors, where the bu
excitation of nonequilibrium conduction electrons produce
decrease in the refractive index,11 but also in SiC crystals,
where nanosecond and picosecond laser beams are us
self-focused in the bulk12 as a result of the nonlinearity po
larizability of the conduction electrons.

These results indicate that the entrainment, or w
might be called light-induced drift, of electrons in semico
© 1998 American Institute of Physics
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ductors produces a significant drop in the refractive index
the total-internal-reflecting surface. The magnitude of t
decrement of the index, calculated from the angle throu
which the sample must be rotated to achieve total inte
reflection in high-power laser beams, becomes very la
Dn50.0120.1.

After laser beams have crossed the total-intern
reflecting face of the two-photon absorbing CdSSe and Z
crystals, they undergo continuous angular deflection.
maximum scanning angle, which can be estimated for Fig
from the expression

wm5arccos~12uDnu/n!, ~2!

has attained 15217° for nanosecond pulses from ruby a
neodymium lasers and 10° for picosecond pulses.

The scanning of laser beams after exiting from the to
internal-reflecting face is not observed in doped SiC se
conductors, where the frustration of total internal reflection
attributable to the light-induced drift of equilibrium condu
tion electrons. Self-focusing of the beam takes place, but
position of the axis of the radiation pattern remains ess
tially fixed within the duration of the pulse. Similar resul
have been obtained for highly doped II–VI crystals.

To increase the scanning angle, we have propose
dual-prism deflector configuration5 for nanosecond and pico
second laser pulses, operating on the principle of frustra
of total internal reflection by the light-induced drift of non
equilibrium electrons in semiconductors~Fig. 1b!. The first
prism ABC is fabricated from a two-photon absorbing (Eg

,2hv), high-resistance crystal~CdS or ZnSe for a ruby
laser, CdSe for a neodymium laser!. The face AC of this
prism ~the total-internal-reflecting face, sina5n1 /n2) is
coupled through close optical contact to the face of the s
ond prism ACD, which is made of a nonabsorbing mate
having a high refractive index~heavy grades of glass or, sa
cubic zinc selenide!. The angle ACD of this prism is close t
90°. In this deflector configuration the scanning angle
given by the expression

FIG. 1. Optical diagram of laser-beam deflectors operating on the princ
of frustration of total internal reflection.
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wheren1 and n2 are the refractive indices of the first an
second prisms.

Using cubic ZnSe and ZnC crystals, we have achiev
almost 30° scanning of a ruby laser beam for nanosec
pulses and up to 20° for picosecond pulses.

It should be noted that in fabricating a scanning pris
from a uniaxial, birefringent material, the laser beam must
directed into the prism along the optic axis, or at least l
early polarized lightE'C must be used.

The advantage of deflectors operating on the principle
frustration of total internal reflection, apart from their cap
bility of achieving substantial scanning angles for nanos
ond and picosecond laser pulses, is their superior opera
with high-power, multimode laser beams. For sufficien
large unidirectional deflection angles there is essentially
significant spreading of the beam in the perpendicular dir
tion.

Light-induced drift of absorbing impurities and purifica
tion of semiconductors.After type II–VI crystals had been
irradiated with high-power nanosecond ruby and neodymi
laser pulses, we observed a difference in the low-tempera
luminescence spectra from the input and output surface
the irradiated samples. A similar difference in the rate
formation of luminescence centers on the input and out
surfaces under the influence of two-photon absorbed la
pulses on II–VI semiconductors has been encountered
other papers,12,13but the authors, as a rule, dismiss the effe
or mention the influence of the difference in the interferen
conditions on these surfaces,14 which raises the intensity o
the laser radiation on the exit surface by a factor 4n2/(n
11)2.

To eliminate this influence, we have carried out inves
gations with a 100-W cw CO2 laser. The low laser photon
energy (hvp!Eg) lowers the probability of the direct for
mation of defects in the crystal lattice at low radiation inte
sities I ,1000W/cm2. Nonetheless, after weakly absorbin
CdSSe and ZnSe (a,0.5 cm21) crystals have been irradi
ated by a CO2 laser for about 10 min, differences are o
served in the recombination luminescence spectra from
input and output surfaces~Fig. 2!.

At the input surface the half-width of the emission ban
of the first phonon replica of a free exciton (I 1) and an
exciton bound at a donor center (I 2) decreases somewha
the structure of the luminescence of donor–acceptor pair
more conspicuous, and a new bandQ appears, which, ac
cording to published data, corresponds to transitions in co
plexes with intrinsic defects or various impurity centers.15

At the output surface the luminescence of the first ph
non replica of a free exciton (I 1) decreases, and the ban
itself, like the bound-exciton band, broadens considera
Moreover, a new luminescence band (I 7) appears, which is
usually attributed to in-center transitions in a quasi-isola
Cd atom~in CdS! or Zn atom~in ZnSe!.16

The above-described asymmetry of the variation of
luminescence spectra of semiconductors after being irr
ated by a high-power cw CO2 laser indicates that under th
influence of laser radiation the density of acceptor centers~of
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the interstitial sulfur or selenium type! increases on the inpu
surface of the sample, and the density of donor centers~in-
terstitial cadmium, zinc, or sodium-type impurity! increases
on the output surface.

In addition to the changes in the luminescence spectr
dark spot appears on the output surface in a large grou
zinc selenide samples having a light-brown color and abs
ing at wavelengths of 10.6mm and 0.1 cm after irradiation by
a CO2 laser. The outward appearance of the spot sugg
that it is made up of crowded dark specks, whose size
density decrease from the center toward the periphery
first the specks appear at the center of the exiting laser be
and then with continued irradiation the area of the spot
creases until it reaches the outer edge of the beam. The
appears only on the output surface and, irrespective of
shape or finish of the surface~as-cleaved or polished!, mim-
ics the shape of the beam cross section. Mass-spectrom
measurements show that the carbon concentration on the
faces of these samples in the exit zone of the laser b
increases at least by an order of magnitude after laser
diation. The measured temperature difference between
input and output surfaces of the crystals never exceeds a
a degree during irradiation.

These results show that high-intensity radiation from
CO2 laser imparts a directional motion to the light-induc
drift of absorbing impurities and intrinsic defects in II–V
semiconductors. Drift can be imparted to charged defects
the tractor field of an electron swarm displaced along
laser beam by the entrainment effect. Drift is imparted
neutral particles by the difference in the cross section
interaction of such a defect with the semiconductor lattice

FIG. 2. Emission spectra of a CdS crystal at a temperature of 4.2 K1!
Before irradiation by a CO2 laser;2! luminescence from the input surfac
after irradiation of the crystal by a CO2 laser;3! from the exit surface after
irradiation by a CO2 laser;D denotes donor–acceptor pairs.
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the ground and excited states and can occur when the
quency of the laser beam does not coincide exactly with
frequency of transition of the defect from the ground state
the excited state or when the transition band is highly asy
metric within the limits of the laser emission line.

A technological scheme for the purification of zinc s
lenide has been proposed on the basis of the above-desc
effect and is widely used in the fabrication of optical el
ments for high-power infrared lasers. The scheme essent
entails the following. Zinc selenide crystals are polished m
chanically and chemically, and the light zone is irradiat
with a high-power cw laser for several tens of minutes. T
input and output surfaces of the sample are then polis
again both mechanically and chemically. The absorption
efficient of the treated crystal can be lowered by repeat
this entire operation several times. During laser irradiat
the sample can be placed in an inert gas atmosphere, pe
ting the laser power to be increased and thereby enhan
the purification efficiency. The distinguishing feature of th
purification technique is that it provides the best means
eliminating absorbing impurities and defects from the in
rior volume.

Figure 3 shows the decrease in the heating rate of a Z
sample in the calorimetric chamber after two purificati
runs, graphically illustrating the reduction in the absorpti
coefficient of the sample.
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Electron-beam tomography of the density of a gas in hypersonic flow around objects
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A procedure is developed for the tomographic reconstruction of the distribution of the gas
density from measurements data on the attenuation of a sensing beam of fast electrons. The
measurements and reconstruction are carried out for symmetrical and asymmetrical conical
objects in a low-density hypersonic flow (M521). © 1998 American Institute of Physics.
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INTRODUCTION

Hypersonic flow around objects at moderate Reyno
number in the presence of strong viscid-inviscid interact
has important bearing on the development of heat-shield
systems for returnable space vehicles and multimission s
systems. Of special interest are flows involving the inter
tion of two or more objects. An important parameter is t
gas density, whose measurement in rarefied hypersonic
poses a complex methodological problem. On the ot
hand, experimental data on the spatial distribution of
density provide a foundation for improving numerical me
ods in hypersonic aerodynamics. These considerations
for the development of procedures by which to measure
density near objects in complex three-dimensional flow
vironments.

The probing of gas flows by beams of charged partic
one method of direct, nondisruptive density measurem
The application of electron-beam fluorescence,1 which is
widely known in rarefied gas dynamics, is justified only
low densitiesn,1021 m23. Far higher flow densities ar
achieved in existing hypersonic wind tunnels, where the
fluence of secondary electrons and intermolecular collisi
is strong. This consideration limits the method to tw
dimensional flows and offsets the localized character of
measurements.2 The density measurement problem is solv
in part by using x-ray bremsstrahlung from electrons inst
of optical radiation,3 but the measurement time is prolong
considerably by the low intensity of the recorded radiatio
In addition, difficulties persist in plotting a calibration curv
for three-dimensional gaseous object in dense wind tun
flow.

An alternative method is electron-beam densitome
which is based on the attenuation of a slender beam of
electrons in a gas during elastic and inelastic scattering
molecules. The method is not very sensitive to the comp
tion of the gas, it does not require complex recording inst
ments, and the measurements can be performed at
speed. It has been employed in physical measurements
the end of the fifties.4 It has been used to investiga
one-dimensional,5 two-dimensional,6 and axisymmetrical7,8

low-density flows. The main drawback of the method is t
4611063-7842/98/43(4)/8/$15.00
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tendency of the gas density information to be integra
along the length of the diagnostic beam. The latter probl
is solved by applying the tomographic approach to the pr
lem of reconstructing local density. For example, Ivano7

has used the Abel transform to reconstruct the density fi
of a gas in the vicinity of a sphere. Multiaspect transmiss
tomography methods have now been fairly well develop
they are used extensively in gas and plasma diagnostics9 and
can be adapted to the conditions of electron-beam probin
a gas flowing around an object. Problems arise from
methodological viewpoint in connection with the presence
zones shadowed by the model and the finite dimension
the beam and the electron detector.

In this paper we describe an experimental procedure
the multiaspect probing of a rarefied hypersonic flow a
give a tomographic reconstruction algorithm, along with t
results of reconstructing a two-dimensional gas-density fie

1. SETUP OF THE TOMOGRAPHIC EXPERIMENT

The measurements were carried out in the I-327 hyp
sonic wind tunnel at the Institute of Theoretical and Appli
Mechanics, Siberian Branch of the Russian Academy of S
ences~ITPM SO RAN!.10 The flow parameters were as fo
lows: stagnation temperatureT051100 K, stagnation pres
sure P058 MPa, freestream Mach numberM521, unit
Reynolds number Re1563105 m21. Two models were used
in the measurement: a blunted cone and a blunted semie
tical cone, both made of aluminum. The blunting radius
the cones was 1.5 mm, and the models had a length of 0.
The radius of the base of the regular cone was 13.4 mm,
the vertex angle was 7°. The base of the semielliptical c
was a semicircle of radius 1.34 mm joined to a semiellip
with principal axes of length 13.4 mm and 6.7 mm
The measurements were performed in the plane situate
0.065 m from the nose of each model.

The measurement arrangement is shown in Fig. 1.
electron beam of energy 20 keV and current intensity 0.1 m
is split in two ~object beam1 and reference beam2! by
feeding an alternating square-wave voltage of the mean
type with a frequency of 215 Hz to the magnetic system u
to control the position of the beam. During the measureme
© 1998 American Institute of Physics
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beam 1 passes through the flow region near the model3, and
beam2 interacts only with the undisturbed flow in front o
the model. The formation of two beams from a single be
prevents the measurement accuracy from being influence
beam-current and flow-density fluctuations and permits
scattering of the beam in the incident flow to be taken i
account. The electron current of each beam is recorded
the collectors4 and5, which are set up outside the flow an
have a circular diaphragm of diameter 4.5 mm. Each col
tor has a grid carrying a voltage of220 V to delay second-
ary electrons. Scanning of the flow field by beam 1 is imp
mented by slewing the model across the beam between
limits of 215 mm and115 mm relative to the flow axis
Scanning of the flow field with respect to angle of obser
tion ~aspect! is achieved by rotating the model about its ow
axis at a rate of 1 turn/s. The data on the displacement of
model across the flow and the angular position of the mo
are recorded from the linear and circular rheochords and
recorded simultaneously with the collector currents on
NO67 multichannel magnetograph.

The primary processing of the measurement data
tailed the formation of data arrays, including the impact p
rameterp, the angle of rotation of the modelf, and the
object-beam and reference-beam collector currentsI 1 and I 2

with uniform time division of the readings. The rms curren
at the modulation frequency were determined accordin
This approach was used to avoid stray currents and b
ground biasing of the amplifier and magnetograph out
voltages.

The dependence of the attenuation of the electron-b
current on the density of the gas and the scattering p
length was determined experimentally with the gas at r
For this purpose the beam current was measured du
variation of the distancel from the beam-entry aperture o

FIG. 1. Experimental arrangement for the tomographic investigation of
personic flow around a model.
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the working chamber to the electron collector and dur
variation of the nitrogen densityn in the working chamber of
the apparatus. The measurements were carried out in
range of the parameternl5(3.6212)31020 m22, spanning
all the freestream values of this parameter. The meas
ments showed that the dependence of the electron curren
n and l for the chosen diameter of the entrance to the c
lector is well characterized by the exponential law

I 5I 0exp~2snl !. ~1!

The effective scattering cross sections determined from the
measurement data iss5(1.960.05)310221 m2 for 20-keV
electrons. The freestream gas density is estimated from
scattering cross section and the diameter of the flow. I
equal to 5.631021 m23, which is 18% lower than the value
determined from the isentropic relation for the given Ma
number. The discrepancy can be attributed to the somew
higher static temperature established in the undisturbed fl

The sensitivity and resolving power of the method d
pend on the choice of diameterd of the collector diaphragm
For a beam with a Gaussian radial current distribution
maximum sensitivity to beam broadening is attained wh
the relationd.A2g holds. Hereg is a characteristic radius
of the beam at the entrance to the collector; it depends on
electron energy, the gas flow density, and the length of
scattering zone.11 The value ofg has been determined b
measuring the attenuation of the beam current in
freestream flow as the diameter of the collector diaphra
was varied from 1 mm to 10 mm. The diaphragm was th
set for the sensitivity-optimum aperture diameter, which w
4.5 mm in the given experiments.

The measurements on the circular cone served as a
problem for fine-tuning the algorithm for reconstruction
the density field. The data from measurements of the be
current attenuation in transition from the model shadow zo
into the penumbra were used to determine the radial pro
of the sensing beam in the vicinity of the model. The resu
of reconstructing the beam profile are shown in Fig.
~curve1!. It is evident from the figure that the beam is na
row, and its width at half-maximum does not exceed 0.5 m
The slight asymmetry of the distribution is possibly asso
ated with the presence of fast electrons in the beam, som
which enter into tangential interaction with the surface of t
metal model.

2. DERIVATION OF AN EQUATION RELATING THE
VARIATION OF THE GAS DENSITY TO THE MEASURED
CURRENTS, ASSUMING A FINITE COLLECTOR APERTURE

If we adopted the same mathematical model as in Re
to relate the density of the gas along the axis of the elec
beam to the recorded current, the experimental data woul
related by the equation

I 1

I 2
5expS 2sE

2`

`

Dn~s!dsD . ~2!

In Eq. ~2! s is the electron scattering cross section, a
Dn(s) is the change in the gas density along the axis of
electron beam due to the intrusion of the aerodynam

-
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model; the currentsI 1 and I 2 are shown in Fig. 1. Equation
~2! has been derived in the approximation of an infinite
small detector aperture. However, the relatively large size
the collector diaphragm casts doubt on such an approxi
tion. We have investigated another mathematical model
conforms more closely to the experimental conditions. Si
electrons are scattered mainly at small angles in the g
situation, undergoing approximately one collision in tran
from the source to the collector, we disregard the variation
the projection of the electron velocity onto the beam ax
thereby assuming, in effect, that its current through cr
sections perpendicular to the axis remains constant. We
note the distribution of the component of the beam curr
density parallel to the beam axis byj (r ,w) and, for brevity,
refer to it below as the current density distribution in t
beam or simply the beam current density. If the collec
detects all electrons incident on a circular diaphragm of
dius d situated in the plane perpendicular to the beam a
the current on it is

I 5E
0

2pE
0

d

j ~r ,w!rdrdw. ~3!

We have assumed that the scattering of electrons is a
chastic process and, accordingly, that the beam current
sity has a gaussian profile. The results of our experime
determination of the beam profile in the next section c
roborate this assumption. Denoting the half-width of t

FIG. 2. a: Projection of the current density distribution in the beam:1!
initial curve; 2! spline-smoothed curve, assuming type 2 noise at the
level. b:1! Cross section of the reconstructed current density distributio
the y axis; 2! Gaussian function approximating the distribution.
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Gaussian distribution byg(s) ~bearing in mind thatg varies
along the beam axis! and normalizing the beam current to th
current at the sourceI 0, we write the distribution of the beam
current density in the form

j ~r ,w!5
I 0

pg2~s!
expS 2

r 2

g2~s!
D . ~4!

After the beam profile~4! is substituted into Eq.~3!, the
integration overr is elementary and gives

I 5I 0F12expS 2
d2

g2~s!
D G . ~5!

The current density on the beam axis at the entrance to
collector diaphragmj (0,w) and at the exit from the sourcej 0

are related by Eq.~2! with the appropriate replacement of th
currents by their densities on the axis. We therefore hav

j ~0,w!5
I 0

pg2~s!
5 j 0 expS 2sE

2`

`

n~s!dsD . ~6!

Determiningg2(s) from Eq.~6! and substituting into~5!, we
have

I /I 0512expF2
pd2 j 0

I 0
expS 2sE

2`

`

n~s!dsD G . ~7!

The two currentsI 2 andI 1 corresponding to the beams tran
mitted through the undisturbed and disturbed flows were
corded in the experiment. The currentsI 2 andI 1 obey Eq.~7!
with the corresponding~to each! value of the density. We
transform the two resulting equations and, dividing the fi
by the second, we obtain

ln~12I 1 /I 0!

ln~12I 2 /I 0!
5expS 2sE

2`

`

Dn~s!dsD . ~8!

If the numerator and denominator on the left side of Eq.~8!
are expanded in series inI 1 /I 0 and I 2 /I 0, respectively, and
only first-order terms are retained, we obtain Eq.~2!. The
legitimacy of discarding all other terms of the expansion
measurements performed in our experiment is confirmed
direct comparison of the left sides of Eqs.~2! and~8! for all
the recorded currentsI 1 andI 2. The currentI 0 is taken as the
average over several control measurements. The resul
calculations show that the left sides of Eqs.~2! and~8! differ
at most by 15% and, in the average over all measureme
by 6–7%. This accuracy is roughly consistent with the ac
racy of the measurements themselves. In the given situa
therefore, the approximate equation~2! can be used to deter
mine the gas density, and in fact we have done so in
present study.

3. RECONSTRUCTION OF THE ELECTRON BEAM PROFILE

An idea set forth in Ref. 12 has been elaborated to
construct the profile of the electron beam. Experimental d
obtained for the symmetrical model in a region where it p
tially overlaps the beam are used here.1! We disregard the
sloping of the generator of the cone, i.e., in the region of
beam we replace the cone by a cylinder. We let the be

t
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move perpendicularly to the generator of the cone, along
y axis, as shown in Fig. 3. In the figure the beam propaga
from left to right, the part of the beam shadowed by t
model is to the left, and the tomographic data are recor
perpendicularly to the plane of the figure, along thex axis.
We wish to relate the variation of the collector current for
infinitely small displacement of the beam to the variation
its cross section perpendicular to the model. In this case
can write

dI5E
2`

y1dyE
2`

`

j ~y,z!dydz2E
2`

y E
2`

`

j ~y,z!dydz

5E
y

y1dyE
2`

`

j ~y,z!dydz. ~9!

Dividing Eq. ~9! by dy, we obtain

dI

dy
5E

2`

`

j ~y,z!dz, ~10!

i.e., the derivative of the object-beam current in the zone
partial overlap with the model is the projection~see, e.g.,
Ref. 9! of the current density distribution in the beam. Th
derivative is shown in Fig. 2a, curve1. The resulting projec-
tion of the current density distribution in the beam
smoothed by a cubic spline13 on the assumption that it i
distorted by random noise with a variance equal to 3% of
maximum ~Fig. 2a, curve2!. For the tomographic recon
struction of the current density distribution in the beam cr
section near the model we assume that the distribution
circular symmetry. Reconstruction is executed separately
the left and right sides of curve2 by means of the ART1
algorithm ~see below!. The results are then averaged.

The cross section of the reconstructed~assuming circular
symmetry! current density distribution in the beam at theY
axis is shown in Fig. 2b~curve1!. Curve2 in this figure is a
Gaussian function approximating the distribution. The p
rameters of the Gaussian curve are determined by the le
squares method; in particular, its half-width is approximat
equal to 0.275. The normalized standard deviation betw
curves1 and2 in Fig. 2b is 4.7%.

FIG. 3. Diagram illustrating the method of determination of the curr
density distribution in the cross section of the beam. The cross section o
beam is shown in the form of a circle.
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The current distribution density in the beam is used
low to refine the reconstruction of the field of the dens
variation in a shock wave~Sec. 6!.

4. TOMOGRAM RECONSTRUCTION ALGORITHM

In the experiments we have measured the currents
beams having various orientations relative to the model,
the axes of all the beam were in the same pane perpendic
to the axis of the model. We refer to this plane below as
cross-sectional plane. Tomographic methods can be use
reconstruct a two-dimensional scalar density-variation fi
from the experimental data; this field is naturally ascribed
the cross-sectional plane. However, the values so obta
will be averaged along the coordinate perpendicular to
cross-sectional plane over a scale of the order of the effec
beam diameter. In discussing the density variation in
cross-sectional plane below, we have these averaged va
specifically in mind.

From the mathematical standpoint the problem redu
to the reconstruction of a function of two variables from t
set of its integrals along certain straight lines. A distincti
attribute of the stated problem associated with processin
the experimental data is the presence of an opaque mod
the flow. The electron beam is absorbed when it enters
model, and the recorded current becomes equal to z
whereas the integral of the density variation along the co
sponding straight line has a nonzero value in general.
mographic problems of this kind have been investiga
previously.9

We introduce a coordinate frame rigidly attached to t
model. The origin is located in the cross-sectional plane
the point where the axis of the model passes through it.
orient the system in such a way that theX andY axes lie in
the cross-sectional plane. We introduce the notation

Dn~x,y!5n2~x,y,0!2n1~x,y,0!, f i5 ln
I 1i

I 2i
, ~11!

whereI 1i andI 2i are the measurements corresponding to
i th beam.

We partition the zone of reconstruction of the functio
Dn(x,y) into square cells, or pixels. The functionDn(x,y)
is assumed to have a constant value in each pixel. In this
the integral in~2! is replaced by a finite sum over the pixe
through which the axis of the beam passes. This formula
reduces the tomographic reconstruction of the funct
Dn(x,y) to the inversion of the system of linear algebra
equations

ADn5 f . ~12!

Here A is an I 3J matrix, DnPRJ and f PRIare vectors
corresponding to the reconstructed function and the exp
mental data, respectively,J is the number of pixels, andI is
the number of sensing beams. The elementai

j of the matrix
A is defined as the length of the intersection of the axis of
i th beam with thej th pixel.2! We have chosen the iterativ
algorithm ART1 ~Algebraic Reconstruction Technique! to
invert the system~12!, because, first, it has proved itself i
reconstruction from insufficient data and, second, it can

t
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used without major revision in the presence of an opa
object ~model!. Following Ref. 14, we write the (k11)st
iterative solution for ART1 in the form

Dn~k11!5Dn~k!1l~k!
f i ~k!2~ai ~k!, Dn~k!!

uuai ~k!uu2
ai ~k!,

uuai ~k!uuÞ0, Dn~k11!5Dn~k!, uuai ~k!uu50, ~13!

Hereai (k) is the i (k)th row of the matrixA, l (k) is a relax-
ation parameter, andi (k)5@k(mod I )11#, i.e., the rows of
the matrixA are cyclically permuted. The scalar product a
the norm inRJ are defined in the usual way. It is stated
Ref. 14 that the iterative process~3! converges if 0,l<2
for any initial approximationDn(0)PRJ.

5. PRELIMINARY DATA PROCESSING

a) Interpolation of the measurement data and constr
tion of projections.The results in this section pertain to th
processing of data obtained for the semielliptical model.
the symmetrical model the measurements formed a si
projection at once and did not need additional interpolati

To describe the data set, we introduce a plane with
ordinatesp,f ~recall thatp is the impact parameter along th
beam axis, andf is the angle of rotation of the model!. Each
measurement in this plane is represented by a single p
Figure 4a shows the set of points corresponding to the
series of measurements is shown in thep,f plane. Figure 4b

FIG. 4. a: Set of data in coordinatesp,f, wherep is the impact paramete
along the beam axis, andf is the angle of rotation of the model; b: recorde
currents versus impact parameter.
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shows the data from the first series of measurements. Cu
1 and 2 refer to points of the object and reference beam
respectively. The coordinatep is plotted along the horizonta
axis, and the measured current is plotted along the vert
axis. The angle varies periodically as a function ofp in this
case; it can be estimated by comparing Figs. 4a and 4b.

In Fig. 4b the intervalp'429 mm corresponds to par
tial absorption of the object beam by the model. The pe
correspond to beams transmitted from the elliptical part
the model. The intervalp'9213 corresponds to objec
beams cutting across the shock-wave region. Atp>13.5 the
currents for the reference and object beams essentially c
cide; this means that the disturbances generated by the m
become insignificant in this range.

In numerous computer experiments9,14 it has been shown
that the ART1 algorithm yields a better quality of reconstru
tion when the latter is based on a set of projections wit
uniform angular distribution, each projection being det
mined on a uniform grid.

It is evident from Fig. 4a that the data in (p,f) space fit
definite straight lines to within small discrepancies due
random errors. The slopes of these lines are determined f
the coordinates of their corresponding points by the lea
squares method. The experimental points are then proje
onto the resulting lines. In (p,f) space a projection corre
sponds to a linef5const. The points of intersection of th
line f5const with the best-fit lines of the experimental da
are assigned values determined by linear interpolation al
the lines~Fig. 4a!. This procedure results in the constructio
of a projection at the anglef5const specified on a nonun
form grid. The transition to a uniform grid on the projectio
is also made by linear interpolation.

b) Correction of projections in the penumbra.Equation
~2! needs to be refined near the boundary of a model tha
opaque to the electron beam. Indeed, owing to the finite
mensions of the beam, part of it absorbed by the model,
part of it is incident on the collector. The recorded curre
decreases considerably in this case. Consequently, a pe
bra zone is formed around the model, corresponding to
interval 4–9 mm in Fig. 4b. In the penumbra the drop in t
current I 1 is caused mainly by model absorption, which
generally a much stronger effect than scattering by sh
waves. As a result, the projection increases abruptly near
boundaries of the model. Tomographic reconstruction fr
such projections is found to be unsatisfactory. However,
large values on the projections in the penumbra canno
discarded~e.g., by setting them equal to zero!, because the
shock waves come so close to the model that the majorit
the electron beams partially absorbed by the model also
through the shock waves.

The problem of isolating the effect associated w
model absorption has been solved as follows in our stu
The projections are modified by introducing the compens
ing increment

f ~p!5H f ~p!1c~p,pb! up2pbu<r 0 ,

f ~p! up2pbu.r 0 . ~14!

In Eq. ~14! pb is the coordinate of the boundary of the mod
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on the projection closest to the point with coordinatep, and
r 0 is the effective beam radius near the model. The funct
c(p,pb) is given by the equation

c~p,pb!5 lnS *S2
j ~r ,f!ds

*S1
j ~r ,f!dsD . ~15!

The distribution of the current density in the beamj (r ,w)
has been reconstructed from the experimental data~Sec. 3!.
From this result we estimate its effective radius to
r 0'0.5 mm. In Eq.~15! S1 is the area of the disk of radiu
r 0, andS2 is the area of the segment of this disk bounded
the generator of the cone corresponding to the model. Ph
cally the functionc(p,pb) can be interpreted as the log
rithm of the ratio of the energy of the transmitted part of t
beam to its initial energy.

6. RESULTS OF TOMOGRAPHIC RECONSTRUCTION AND
DISCUSSION

A square centered at the origin with a side of 30 mm
chosen as the reconstruction zone. The reconstruction zo
partitioned into 65365 square pixels. Each pixel therefo
has a side'0.46 mm, which is of the order of the exper
mentally determined beam half-width~Sec. 3!. For the
semielliptical model the two-dimensional distribution
Dn(x,y) is reconstructed separately from data obtained
three series of measurements and also from the data ave
over all three series. For each series of experimental dat
projections distributed uniformly~every 10°) in the interval
from 0° to 180° ~it is obvious that projections at anglesQ
andQ1180° are equivalent! are generated for each series
experimental data by the interpolation described in Sec.
Each projection is determined on a uniform 33-node com
tational grid by interpolation; the spacing of the nodes
'0.92 mm. The projection is then compensated by the p
cedure described in Sec. 5b. After each iteration the resu
distribution is smoothed in a sliding 333 window. The it-
erative process is terminated when the residual between
projections and the pseudoprojection no longer decrease

Reconstruction based on different series of experime
data produces similar shock wave distribution patterns in
vicinity of the model. However, the tomograms exhibit am
plitude peaks and troughs of a random nature, most lik
associated with an insufficiency of data and errors in co
pensation of the magnitude of the projection. Averaging
the projections over all three series helps to eliminate a
facts of this kind. Figure 5 shows in axonometric projecti
the reconstructed variation of the density field in the cro
sectional plane in the averaged projections. These results
those that follow are given in the form of the ratio (Dn
1n`)/n` , wheren` is the freestream density~it is defined
in Sec. 1!.

It is evident from Fig. 5 that the density distributio
matches the physical picture of the phenomenon. Clearly
ible is the asymmetry of the density distribution due to t
elliptical part of the model, in whose vicinity we observe
reduction of the compression shock and the formation o
smoother density profile along the normal to the surface.
all practical purposes, the region of rarefaction near
n
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model, whose existence is inferred from theory and the
sults of measurements on similar objects~see, e.g., Ref. 15!,
is not reconstructed. These distortions are attributable pri
rily to shortcomings of the projection data. It is evident fro
Fig. 4a that in reality data have been recorded on the ave
with a step of 1.5–2 mm for each projection. Consequen
only one or two readings are associated with each projec
onto the shock wave region, and such a figure is inadeq
for good tomographic reconstruction. Another factor is t
beam width, which is large relative to the width of the sho
profile. The influence of the beam width is discussed bel
in describing the reconstruction results for the circular co
It also acquires errors from interpolation and insufficient a
curacy of compensation.

For the symmetrical model the reconstruction of the d
tribution of the variation of the gas density in the flow giv
much better results. A single projection with a 0.1-mm s
has been recorded in this case. All the other projections n
essary for reconstruction by the ART1 algorithm are o
tained by multiplication of the existing one. Thus, 18 proje
tions are obtained with 301 readings each. T
reconstruction zone is also partitioned into 3013301 pixels.
The projections are presmoothed by splines13 on the assump-
tion that they are distorted by random noise with a varian
equal to 3% of the maximum.

The cross section of the reconstructed symmetrical
tribution of the density variation at thex axis is shown in
Fig. 6 ~curve1!. Curve3 in this figure has been plotted from
the measurement data by electron-beam fluorescence
rarefied nitrogen flow around a sharp-nosed cone with cl
values ofM and Re1 ~Ref. 15!. The measurement data a
corrected for the difference in the angles of the model con
It is evident from Fig. 6 that the reconstructed density pro
is shifted toward greater distances from the surface and
low profile 3. The first deviation can be attributed to th
influence of blunting of the cone and inaccuracy of the co
pensating increment~15!. The second deviation is associate

FIG. 5. Reconstruction of the variation of the density field in the plane
the cross section in hypersonic flow around an asymmetrical model~its cross
section appears as a ‘‘step’’ in axonometric projection and is represente
the darkened region in isolines~equal-density contours!.
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FIG. 6. Cross section, through theX
axis, of the reconstructed symmetrica
distribution of the density variation in
flow around a circular cone.
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with greater width of the beam relative to the narrow upp
part of the profile. Actually the reconstructed function is a
eraged over the scales of the beam width, so that a ‘‘sha
peak is reconstructed with a lower amplitude. It is importa
to mention that a reliable procedure for measuring the d
sity of three-dimensional gaseous objects by electron-b
fluorescence under the conditions of Ref. 15 does not exi
the present time, and these data can contain an error th
difficult to estimate.

Obviously, if the tomographic data are collected with
the limits of a band having the profilej (p), the resulting
parallel projection is the convolution of the projectionf 0(p)
obtained in infinitely thin rays with the band profile

f ~p!5E
2`

`

f 0~p8! j ~p2p8!dp8. ~16!

On the other hand, the shape of the outer boundary o
electron beam has been determined experimentally16 under
conditions similar to those of the experiment reported here
was found that the beam could be accurately regarde
cylindrical in the region of interest to us. In the cros
sectional plane, therefore, the beam represents a band w
known profile. Consequently, the recorded projection is
convolution ~16!, and the transition to the functionf 0(p)
corresponds more nearly to the ray tomography approxi
tion.

We have deconvoluted the convolution~16! by a regu-
larizing technique developed in Ref. 17:

f
*
0 ~n!5

f * ~n! j * ~2n!

u j * ~n!u21an2
. ~17!

The asterisk subscript in Eq.~17! signifies the corre-
sponding Fourier transforms. The regularization param
r
-
’’
t
n-
m
at
t is

n

It
as
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a50.1 is selected on the basis of a series of calculatio
The result of reconstruction after deconvolution is illustrat
by curve2 in Fig. 6, which shows the cross section of th
reconstructed distribution of the density variation at thex
axis. It is evident that, as expected, curve2 agrees better with
curve3 than does curve1.

CONCLUSION

The new measurement procedure and tomographic
construction algorithm described in the article have be
used to obtain the density distribution in rarefied hyperso
flow around an axisymmetrical object and around an asy
metrical object. In the experimental data preprocessing s
we have solved the problems of interpolating onto a unifo
grid and correcting for partial absorption of the electr
beam by the model. From data recorded in the region
partial overlap of the beam with the model we have rec
structed for the first time the distribution of the current de
sity in the beam on the assumption of axial symmetry. W
have performed deconvolution of the projections with t
beam profile determined in the study. We have found t
tomographic reconstruction from such data is more accur
The accuracy of reconstruction can be improved in the fut
by decreasing the width of the diagnostic beam and incre
ing the number of sensing aspects for each impact param

The authors are grateful for partial financial support
this study from the Russian Fund for Fundamental Resea
Grants No. 95-02-03615 and No. 96-01-01640.

1!Generally speaking, the discussion in this section is strictly valid as lon
scattering does not occur in the flow. However, the influence of this ef
is insignificant in the given situation.

2!In this definition of the elements of the matrixA the reconstructed values
of Dn are expressed in units of the quantitys, but the units are of no
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consequence, because the results are normalized to the freestream d
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Temperature of a thermally insulated surface in a gas flow
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An equation is derived for determining the temperature of a thermally insulated surface in a gas
flow. The equation does not contain any empirical coefficients. The derivation is based on
allowance for the work done by a jet arrested at an obstructing surface on the surrounding flow
layers. The application of the equation to subsonic and supersonic flows is
discussed. ©1998 American Institute of Physics.@S1063-7842~98!02404-0#
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The determination of the temperature of a thermally
sulated surface in a high-velocity gas flow is an import
problem, one that arises in almost every investigation of
behavior of bodies moving at high velocity relative to t
surrounding gas.

The calculation of the surface temperatureTs of a body
in a high-velocity gas flow is based on the determination
the flow stagnation temperatureT* :

T* 5T010.5v0
2/cp . ~1!

HereT0 is the temperature of the gas,cp is its specific heat a
constant pressure, andv0 is the flow velocity. A correction
factor f is sometimes introduced to improve the accuracy
the results,1 whereupon the surface temperature is written

Ts5T010.5f v0
2/cp . ~2!

The factorf is determined mainly by experimental means~it
has an approximate value of 0.8 for subsonic airfl
velocities1! or theoretically with allowance for the propertie
of the boundary layer.2 This theoretical approach is far from
simple, and in the majority of cases it is customary to
f 51 in calculations, even in Lo�tsyanski�’s fundamental
monograph,2 and also to write

Ts5T* 5T0@110.5~k21!M2#. ~3!

HereM is the freestream Mach number, andk5cp /cv is the
specific-heat ratio~a constant! of the adiabatic process. W
note that Eq.~3! is simply an alternative representation
Eq. ~1!, which, in turn, is a special case of the Bernou
equation. The model of fluid jets with a slowly changin
cross-sectional area is used to derive the Bernoulli equa
~see, e.g., Ref. 1!. However, the impinging jet is abruptl
halted when it comes into contact with a surface, inevita
causing it to suddenly spread out. The broadening of
arrested jet induces compression and acceleration of the
jacent unobstructed layers, i.e., the gas of the arrested
does work, which must be taken into account when the B
noulli equation is applied to a gas jet arrested in interact
with a surface. By taking into account this work done a
4691063-7842/98/43(4)/2/$15.00
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constant pressure equal to the freestream pressureP we can
write the Bernoulli equation for one mole of an ideal gas
the form

P/r22P/r11I 22I 110.5~v2
22v1

2!50. ~4!

Herer is the density of the gas,I 5cpT is the enthalpy, and
the subscripts 1 and 2 refer to the initial and final stat
respectively. Now, making use of the equation of state of
gas

P/r5R0T, ~5!

along with the full stop of the jet incident on the surfa
~condition of adherence of the gas to the surface! and the fact
that the temperature of the thermally insulated surface
equal to the temperature of the boundary layer formed fr
the incident gas, we obtain

Ts5T010.5v0
2/~cp1R0!

5T0@110.5M2k~k21!/~2k21!#. ~6!

In this case the correction factorf 5cp /(cp1R0)5k/(2k
21)57/9 for air (k51.4) is very close to the experimenta
value.1

In the case of a supersonic gas flow the latter is partia
braked in the compression shock at the leading edge of
body, and only after that does the gas finally come to r
against the surface of the body. Allowing for the fact that
a normal shock the velocity drops fromv0 to v1, the tem-
perature increases fromT0 to T1, the density increases from
r0 to r1, and the pressure increases fromP0 to P1, where1

r0 /r15v1 /v05~k21!/~k11!12M 22/~k11!, ~7!

P1 /P052kM2/~k11!2~k21!/~k11!, ~8!

we can find the postshock flow temperature:

T15T0@2kM2/~k11!2~k21!/~k11!#

3@~k21!/~k11!12M 22/~k11!# ~9!
© 1998 American Institute of Physics
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and, with the use of Eq.~6!, the surface temperatureTss at
the leading edge of a body in supersonic flow. The expr
sion forTss is too cumbersome to write out here. We mere
note that the correction factorf in Eq. ~2! increases as the
Mach numberM.1 increases, and for air, in particular, it
approximately equal to 0.95 forM255 and 0.97 forM2

510. If the body in the flow is sufficiently long, the surfac
temperature decreases in the sternward direction toTs , be-
cause in interaction with the surface the flow acquires s
ments that have passed through oblique shocks and M
waves, in other words, that have not undergone as inte
prebraking.
s-

g-
ch
se

The proposed method thus affords a relatively sim
means for analytically determining the temperature of a th
mally insulated surface in a high-velocity gas flow.

1G. N. Abramovich,Applied Gas Dynamics@in Russian#, Nauka, Moscow
~1976!, 888 pp.

2L. G. Lo�tsyanski�, Mechanics of Liquids and Gases@in Russian#, Nauka,
Moscow ~1987!, 840 pp.

Translated by James S. Wood
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The quality of suppression of neutrons by lithium hydride6LiH filters for narrow and wide
beams from a neutron generator incorporating deuterium and tritium targets is investigated. The
experimental data can be used for the design of measurement apparatus operating in high
neutron fields. ©1998 American Institute of Physics.@S1063-7842~98!02504-5#
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The issue of how to detect gamma rays against ba
ground neutron radiation arises in the solution of a num
of problems in experimental physics. As a rule, the gamm
ray detection efficiency of the detectors used in this cas
much higher than their neutron detection efficiency, and
the same time filters that effectively suppress neutron ra
tion are used.

Our goal in the present study is to investigate the qua
of suppression of neutrons by lithium hydride6LiH filters
and to determine their efficiency in experiments on a th
monuclear reactor of the tokamak type. The investiga
neutron filters~F1, F2, and F3! were thin-walled aluminum
4711063-7842/98/43(4)/2/$15.00
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cylinders of diameter 30 mm and length 300 mm filled w
fine-crystalline lithium hydride. The neutron source in t
experiment was an NG-150M generator with tritium a
deuterium targets, for which the neutron energies were 1
MeV and 2.8 MeV, respectively. The absolute neutron yie
of the generator was determined by means of an inte
monitor, which detected eithera particles or protons, de
pending on the type of target used. To adjust for the effec
migration of the deuteron beam over the target, the neu
intensity was monitored directly at the input to the measu
ment system by means of a special detector. A diagram
the experimental arrangement is shown in Fig. 1.
FIG. 1. Geometry of the experiments with6LiH filters on an NG-150M neutron generator.
© 1998 American Institute of Physics
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The neutron detector, surrounded by a lead shield,
placed at a distance of 2.67 m from the target of the gen
tor inside a concrete wall of thickness 3 m. To reduce
neutron flux onto the wall, a protective iron cylinder of d
ameter 210 mm and thickness 600 mm was placed betw
the wall and the target of the generator. The first~input!
collimator, whose diameter could be set either at 12 mm o
30 mm, was situated in the middle of the cylinder. The fil
irradiation conditions could be simulated by changing
diameter of this collimator, in effect generating either
‘‘narrow’’ or a ‘‘wide’’ beam of neutrons. A second iron
collimator of thickness 480 mm with a diameter of 30 m
was installed in the concrete wall, and the investigated filt
were inserted into it. A monitor was placed between the fi
and second collimators.

The filter attenuation coefficient is the ratio of the num
ber of neutrons registered by the detector in measurem
without a filter to the number of neutrons registered by
detector with the neutron flow intercepted by a neutron fi
for the same fluence of neutrons at the entrance to the m
surement apparatus. The counting rate of the neutron de
tor has several components:

I tot5I n1I gG1I gC1I gB ,

where I n , I gG , I gC , and I gB are the intensities due to th
detection of neutrons, gamma rays from the generator ta
gamma rays from slow-neutron capture reactions, and am
ent background gamma rays.

The contributions are separated by circuits for the d
crimination of gamma-rays and neutrons according to
shape of the light pulse generated in the scintillator. In
work we used a stilbene scintillation neutron spectrome
incorporating a pulse shape discrimination~PSD! system
with an adjustable threshold to control the pulse amplitu
analysis unit of the spectrometer. The thresholds for the
tection of recoil protons were set equal to;5 MeV for DT
neutrons and;1 MeV for DD neutrons.

The results of neutron measurements are known to
pend on the geometry of the experiment, in particular, on
diameter of the neutron beam incident on the sample. In
experiments, therefore, provision was made for testing
effect when working with narrow and wide beams. In t
experiments with a narrow~12 mm! beam and a wide~30
mm! beam of 14.8-MeV neutrons we measured the abso
tion coefficients of single and double~F1 1 F2! filters. Only
filter F1 was used for the measurements with a wide beam
2.8-MeV neutrons.

The processing of the measurement results was iden
for both cases: For each series of measurements in the

TABLE I. Attenuation coefficients of 14.8-MeVDT neutrons.

Threshold for Narrow beam~diam. 12 mm! Wide beam~diam. 30 mm!
neutrons, MeV F1 F2 F3 F11 F2 F1 F2 F3 F11 F2

10 30.6 30.6 29.6 820 28.4 29.2 28.7 580
12 29.7 28.9 29.9 810 27.0 27.8 27.4 660
13.5 28.6 26.2 32.5 790 22.9 24.6 24.1 1200
s
a-
e

en

at
r
e

rs
t

ts
e
r
a-
c-

et,
i-

-
e
r
r

e
e-

e-
e
ur
is

p-

of

al
SD

control regime we determined the number of pulses recor
by the pulse analyzer above a certain threshold, which c
responded to 10 MeV, 12 MeV, and 13.5 MeV forDT neu-
trons and to 2.0 MeV and 2.4 MeV forDD neutrons.

The attenuation coefficientK was determined from the
relation

K5
N0

@Nf2NB~ t f /tB!#2@NFe2NB~ tFe/tB!#~M f /MFe!

M f

M0
,

where N0, Nf , and NFe are the above-threshold detect
counting rates in experiments without a filter, with a6LiH
filter, and with an Fe filter,NB is the background counting
rate,M0, M f , andMFe are the corresponding monitor rea
ings, andt f , tFe, andtB are the exposure times.

Tables I and II give the results of measurements of
attenuation coefficientsK in experiments withDT neutrons
and DD neutrons. The error of determination ofK in the
DT-neutron experiments does not exceed 5% for a sin
filter and 10–15% for two filters at detection thresholds of
MeV and 12 MeV. The error in theDD-neutron experiments
does not exceed 10% for a 2-MeV threshold and 15% fo
2.4-MeV threshold. The values of the attenuation coefficie
of filters F1, F2, and F3 agree within the measurements e
limits, indicating their uniform filling with the neutron ab
sorber.

Of special interest in tokamak experiments is the estim
tion of the contribution of capture gamma raysI gC from
measurements using an iron filter. We find that in the ene
range.10 MeV the contribution of gamma rays to the am
plitude distribution is 85–30%. One technique for diminis
ing the contribution of capture gamma rays is to equip
detector with an additional lead shield. To test the effecti
ness of this method, we have performed an experiments
ing two filters~F1 1 F2! in a DT-neutron wide-beam geom
etry, in which an additional lead shield of thickness 100 m
was used with the detector, as represented by the dashed
in Fig. 1. The amplitude spectra obtained in this experim
show that the contribution of capture gamma rays in
energy range.10 MeV amounts to 30–10%. Consequent
additional shielding of the detector is effective and high
recommended in tokamak measurement apparatus, wher
neutron fluxes exceed the gamma-ray fluxes.

Translated by James S. Wood

TABLE II. Attenuation coefficients of 2.8-MeVDD neutrons.

Threshold for protons, MeV F1, wide beam~diam. 30 mm!

2 900
2.4 820
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Multidetector device for the detection of coincidences of charged particles and g rays
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A 4p position-sensitive, axisymmetrical assembly of Si–Au charged-particle detectors is
proposed, implemented, and tested on a beam of heavy ions; the dimensions and structure of the
device are conducive to the organization of coincidences of charged reaction products with
discreteg rays emitted by the daughter nucleus and registered by a system of ultrapure Ge
detectors. First results are obtained from an investigation of the reaction58Ni( 16O,a2pg)68Ge
at E0574.5 MeV. © 1998 American Institute of Physics.@S1063-7842~98!02604-X#
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INTRODUCTION

The acquisition of new information in low-energ
nuclear physics largely entails the development of phys
apparatus, especially detection systems for such apparatu
the last decade, thanks to the efforts of several internatio
groups, a number of large-scale devices have been buil
the detection of products of nuclear reactions involving lo
energy and medium-energy heavy ions, specificallyg rays
and charged particles. Present-day multicrystalg-ray spec-
trometers of the ‘‘crystal ball’’ type, consisting of 4p assem-
blies of decades of ultrapure Ge single crystals partially a
mented with 4p BGO g-ray multiplicity filters, are designed
primarily for studies of the physics of high-spin states
atomic nuclei.1–6 The mechanisms of nuclear reactions w
heavy ions are investigated mainly by multidetector positi
sensitive devices consisting of decades and even hundre
charged-particle detectors employing diverse operating p
ciples. Some are devices of the FOBOS type,7 designed for
the detection of light charged reaction products and fiss
fragments, or mass separators of recoil nuclei. However,
large overall dimensions of these devices~measuring in
meters! make it impossible to organize the coincidences og
rays with particles and, hence, to investigate a major
egory of problems that have important bearing both on
physics of high-spin states and on our understanding of
mechanisms underlying nuclear reactions.

The only real potential lies in the design of small-sca
(<0.1 m! charged-particle detection systems that can
housed ing-ray spectrometers. In principle, it should be po
sible to build a semiconductor detector in the form of a s
ment of a sphere and to configure a 4p geometry from such
parts, but the requirement of coordinate resolution, no ma
how coarse, together with the specific form of the detec
itself poses an exceedingly complex technological proble
Well-known attempts have been made to construct ass
blies of planar semiconductor detectors in the shape o
hollow cube~the OSIRIS Cube9! and to use them ing-ray
spectrometers for the identification of reaction channels
4731063-7842/98/43(4)/4/$15.00
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which protons ora particles are emitted.10 The drawbacks of
such a system include: 1! sizable dead zones at the detec
junctions; 2! a disparity of conditions for the detection o
particles emanating from a target at an identical angle r
tive to the beam axis but impinging on the detector plane
different angles, thereby degrading energy resolution; 3! lim-
ited coordinate-resolution capabilities, particularly in t
range of small forward angles; any such capabilities
achievable only by stacking a number of planar eleme
~DIAMAND ! and, accordingly, increasing the number
electron channels.

STRUCTURE OF THE DEVICE

We have proposed and implemented an axisymmetri
multidetector device of a different type, which provides n
only a 4p charged-particle detection geometry, but also
possibility of polar-angle coordinate resolution. The adva
tages of such an assembly, which consists of cylindrical
disk elements, are: 1! a simpler element fabrication techno
ogy ~in contrast with spherical geometry!; 2! identical par-
ticle detection conditions with respect to azimuth angle
feature not found in hollow-cube assemblies; 3! the possibil-
ity of producing several independent detecting rings on
single crystal, providing the means for pinpointing the p
ticle exit angle from a target within a narrow angular inte
val; 4! reduction of the number of electron spectrome
channels for cylindrical elements by one fourth compa
with the number required to cover the corresponding geo
etry in a system of the ‘‘box’’ type; 5! the possibility of
reducing the width of the dead zones between adjacent
tectors to 1 mm or less.

We have developed and run certification tests on a te
nology for the fabrication of Si–Au detectors, each in t
form of a thin-walled ('1 mm! cylinder with the sensitive
layer lining its inner surface. We have also worked out t
technology for constructing several independent detector
one silicon crystal without any mutual influence between
tectors. The dead zones between them do not exceed 1
© 1998 American Institute of Physics
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The cylinder is made from a high-resistancen-Si single crys-
tal by coring out its interior. The subsequent processing
the surface and the formation of a working zone are sim
in technology to standard methods used in the fabrication
conventional Si–Au detectors. Figure 1 shows a fragmen
the device in cross section, including the semiconductor
tectors.

The beam enters through an aperture in the rear ann
detector of diameter 8 mm. The target is placed on an
tonomous holder between two identical cylinders in suc
way as to minimize the gap between the ends of the cy
ders. The target holder is designed so that a heavy meta
~tantalum in our case! if placed directly behind the target~in
the direction of the beam! to shield the detector against th
direct incidence of beam particles that pass through the ta
without interaction. The cylinder ends far from the target a
capped with interchangeable annular Si–Au detectors wi
thick ~up to 500mm! working zone, which ensures the tot
absorption ofa particles with energies'40 MeV. Various
types of annular detectors, in particular a detector consis
of three axisymmetrical rings formed on one crystal, are u
in our experiments. This arrangement makes it possible
segregate reaction products emanating from the targe
well-defined intervals of the exit angle and, combined w
energy measurement, to determine the reaction products
the required accuracy and, hence to distinguish the chan
necessary for further processing. The area of the work
surface of the cylindrical detector is 20 cm2, and its capaci-
tance is '1000 pF, requiring the use of speci
preamplifiers.11

As an illustration, Fig. 2 shows the spectrum of226Ra
a particles obtained using a cylindrical detector. The sou
is placed at the target site, i.e., the incidence ofa particles on
the detector is ‘‘oblique,’’ further degrading the energy res
lution by stretching out the left edge of the peak. All th
same,'70-keV resolution is obtained in the given situatio
which is fully acceptable for practical applications.

In our first experiments, primarily of a methodologic
and demonstrative orientation, two Canberrag-ray detectors

FIG. 1. Fragment~forward part! of the reaction chamber in cross section.!
Blowup of the target device:1! contact lead;2! target;3! dielectric ring;4!
metal ring;5! Ta foil (338524 mm!. b! chamber proper:1! target holder;
2! contact lead;3! Si ring ~sensitive layer'500 mm!; 4! Al jacket; 5! Si
cylinder~sensitive layer'300 mm!; 6! insulator;7! beam;8! target unit;9!
Ni layer; 10! Au layer.
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already at our disposal, made from germanium of extre
purity with a volume of 90 cm3 each, were used instead of
‘‘crystal ball’’ for g-ray detection. A block diagram of the
device is shown in Fig. 3. The detector output signals bra
out after preamplification: The fast signal~with a 10-ns lead-
ing edge! is sent from a specialT-output to a fast standard
pulse shaper and then to a coincidence circuit; the spec
metric signal, amplified and shaped by a linear amplifier
sent to an analog-to-digital converter~ADC!. The multiple-
input coincidence circuit can be used to organize coin
dences of the signals in essentially any combination. T
coincidence circuit signal, broadened to 5mm by a univibra-
tor, opens the ADC gates.

This arrangement ensures that spectrometric informa
is recorded only when the detectors are triggered simu
neously in a combination predetermined by the coincide
circuit, making it possible to effectively identify the reactio
channels of interest and, by adjustment of the lower a
upper thresholds of the amplifiers, to separate out the ne
sary energy intervals.

The electron channels of the Ge and Si–Au detectors
unified, the only difference being in the type of converte
used. For the Ge detectors, 4096-channel converters with
hanced linearity and stability are used, so that an ene
resolution of 2.0–2.1 keV can be maintained for the durat
of the experiment~several days! by using Canberra spectro
metric amplifiers.

FIG. 2. Spectrum of226Ra a particles, obtained from a cylindrical Si–Au
detector.

FIG. 3. Block diagram of coincidence detection.1! Preamplifier;2! shaping
circuit; 3! linear amplifier;4! ADC; 5! logic-pulse mixer;6! coincidence
circuit; T(0),P) univibrator;7! CAMAC crate controller.
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FIRST EXPERIMENTAL RESULTS

In our first experiments using a heavy-ion beam from
cyclotron at the A. F. Ioffe Physicotechnical Institute of t
Russian Academy of Sciences~FTI! we investigated the
spectra of coincidences ofg rays with a particles and pro-
tons in the reaction58Ni( 16O,a2pg)68Ge atE0574.5 MeV
~the choice of this reaction was dictated by the fact that in
FTI cyclotron laboratory the technique of coincidences og
rays with a particles registered by a conventional Si–A
detector had already disclosed the nonequilibrium chara
of thea-particle emission,12 and these experiments were th
stimulus for development of the device described in
present article!. The bombarding particles were stopped by
Ta foil of thickness'40 mg/cm2, which permitted the pas
sage through it ofa and p emitted in the forward angles
Under our experimental conditionsa andp are separated by
virtue of the difference in the detected energy spectra
angular distributions. Consequently, by sorting out eve
associated with the incidence ofa particles in the forward
disk detector andp in the two cylindrical detectors, it is
possible to identify the channel of the reaction (a, 2p) and,
by coincidences withg rays of the final nucleus, to estima
the fraction of the cross section and the profile of the part
spectrum corresponding to the formation of the dou
nuclear system. A total of'2.53106 events were stored in
the experiment.

Omitting the physical interpretation of the results with
the space limitations of the article, we can still draw tw
basic conclusions.

1. It is evident from Fig. 4 that the spectra ofa particles
detected in coincidence withg rays differ sharply both from
the direct spectrum containing the high-energy contribut
of 16O decay and from the quasievaporative spectrum~in the
form of a Maxwell distribution with maximum in the vicinity
of 12–15 MeV!, as is typical of the incomplete fusio
mechanism.

2. As illustrated qualitatively in Fig. 5, there is a signifi

FIG. 4. a! Direct spectrum of charged particles from the forward Si–
detector; b! spectrum of ternaryg-Si–Au forward–Si–Au cylinder coinci-
dences; c! spectrum in the center-of-mass system; d! calculated spectrum of
evaporativea particles.
e
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cant change~relative to the direct spectrum! in the nature of
the population of high-spin states of68Ge in the selection of
events corresponding to coincidence with nonequilibriuma
particles emitted in the forward angles as a result of
incomplete fusion mechanism.

PROSPECTS FOR APPLICATIONS OF THE SYSTEM IN THE
CONFIGURATION OF MULTIDETECTOR g-RAY
SPECTROMETERS

It is evident from the brief description of the structure
the device and the results of first experiments that we
now in a position to plan a set of problems for applications
devices of the ball type. The investigation of the mechani
of incomplete fusion of nuclei accompanied by the forwa
ejection of a fasta particle and the formation of a rapidl
spinning, quasinonequilibrium residual nucleus emitti
light particles, and theng rays, is a timely subject for future
research from the standpoint of the physics of nuclear re
tions. The selection of events associated with discreteg-ray
transitions of the final nucleus in a narrow range of sp
affords the possibility of uniquely determining not only th
final reaction channel, but also the transferred angular m
mentum associated with the impact parameter of periph
collisions. This capability will help to shed light on man
obscure problems in the physical of mass transfers in
interaction of heavy ions. On the other hand, individu
bands of high-spin states of the daughter nuclei can be id
tified by sorting outg rays corresponding to charged-partic
detection events associated with the incomplete fus
mechanism in peripheral collisions, thereby gaining add
possibilities for investigating them byg-ray spectroscopy
methods. In particular, an additional tool is found for seek
out new regions of superdeformation and hyperdeforma
in light nuclei, for which the cross sections of formation
reactions with heavy ions accompanied by charged-part
emission are fairly large in comparison with the neutr
channels.

FIG. 5. a! g-Ray spectrum in coincidence with the forward Si–Au detect
b! direct g-ray spectrum.
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The range of prospective problems for the newly d
signed device is not exhausted by the study of the coi
dence spectra of charged particles with discreteg rays. In
particular, in our first collaborative experiment with colleg
of the Joint Institute for Nuclear Research we have recor
the spectrum of high-energyg rays detected by a BGO crys
tal in coincidence with g particles in the reaction
58Ni( 16O,a2pg)68Ge atE0574.5 MeV ~Ref. 13!. The first
results indicate an encouraging outlook for the application
our device in studies of giant resonances using BGO ass
blies ~of the ball type in particular!.

The authors are grateful to the Russian Fund for Fun
mental Research for financial support of our work.
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