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Vector solitons in the dynamics of anharmonic monatomic lattices
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It is shown that three types of solitary acoustic waves can develop in anharmonic crystal lattices
corresponding to the three branches of acoustic phonons. A system of three nonlinear
Schrödinger equations is derived to describe this situation. For greatly different group velocities,
the interaction between solitons reduces collisions between them. When the group velocities
of the different acoustic modes in a lattice are close to one another, bound states of the
corresponding types of solitary waves occur. Bound states of this sort are vector solitons,
whose polarization varies along the pulse. If the transverse acoustic modes are degenerate in
velocity, the situation is extremely similar to the propagation of pulses in optical fibers.
© 1998 American Institute of Physics.@S1063-7842~98!00111-1#
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INTRODUCTION

This paper is devoted to a theoretical study of the
namics of three-dimensional anharmonic crystal lattices
which only acoustic waves propagate in the harmonic in
action limit. The problem of realizing soliton states in anh
monic lattice systems has been studied in many paper1–8

For solitons whose dimensions exceed the lattice cons
this problem reduces to a nonlinear Schro¨dinger equation, so
that this group of papers can be expanded to include stu
of polaron motion in the adiabatic approximation.9–14 In al-
most all of these papers, interest revolves around the m
of a discrete nonlinear Schro¨dinger equation for one
dimensional chains. In the most interesting case of sol
states with large dimensions~compared to the lattice con
stant!, the discreteness of the model should lead only to w
pinning of the solitons~cf. the discrete Frenkel–Kontorov
model or the motion of Josephson vortices15!, but has little
effect on the shape of the solitons.

On the other hand, the problem becomes fundament
different for three-dimensional lattices. In this case, a lon
tudinal and two transverse acoustic modes propagate
monatomic crystal, whereas only longitudinal sound
present in one-dimensional chains. Thus when anharmon
is taken into account in three-dimensional structures,
should expect the appearance of three types of soliton st
described by a system of three coupled nonlinear equati
This situation resembles the development of solitons in
tical fibers. In optics, however, there is no longitudinal co
ponent of the electromagnetic oscillations, so the propa
tion of pulses in a fiber is described by a system of just t
coupled nonlinear equations.16 In the nonlinear optics of a
birefringent fiber, in particular, this leads to the formation
vector soliton states whose polarization varies along
pulse.17–22

In the following, a system of nonlinear equations
derived for acoustic solitons in three-dimensional cryst
and it is shown that under certain conditions the correspo
ing soliton states can have a vector character. As a matte
1261063-7842/98/43(11)/6/$15.00
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fact, the type of solitary waves in three-dimensional cryst
is determined to a great extent by the symmetry of the cry
lattice and the propagation direction relative to the crysta
graphic axes.

NONLINEAR EQUATIONS OF MOTION IN THE CONTINUUM
LIMIT

We limit ourselves below to the case of the continuu
limit and, in order to obtain the equations of motion, we u
the methods of the theory of elasticity.23 To avoid cumber-
some calculations, from the outset we assume that the
placementu of the medium depends only on a single coo
dinatex, so that the strain tensor

uik51/2 ~v i1vk1d ikv l
2!,

wherev i5dui /dx. In this case, for a cubic crystal, if thex
axis ~the direction of motion! coincides with a crystallo-
graphic axis, then the energy of the medium, including
fourth-order anharmonicity, has the form

V5rE dxS 1

2
cl

2vx
21

1

2
ct

2v t
21

1

4
Avx

41
1

2
Bvx

2v t
21

1

4
Cv t

4D ,

~1!

wherer is the density of the medium,v t
25vy

21vz
2 , cl andct

are, respectively, the longitudinal and transverse sound
locities, andA, B, andC are the fourth-order anharmonicit
constants.

The third-order anharmonicity has been neglected
Eq. ~1!, since, as we shall see below, it does not contribute
the soliton states being studied here.

In our case, the equation of motion of the theory
elasticity,rüi5]s ik /]xk , wheres ik5]V/]uik is the stress
tensor, takes the form
9 © 1998 American Institute of Physics
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]2ux

]t2
5

]

]x
~cl

2vx1Avx
31Bvxv t

2!,

]2uy,z

]t2
5

]

]x
~ct

2vy,z1Bvy,zvx
21Cvy,zv t

2!.

On differentiating these equations with respect tox, we
obtain the equation of motion for the quantityv i :

]2vx

]t2
5

]2

]x2
~cl

2vx1Avx
31Bvxv t

2!,

]2vy,z

]t2
5

]2

]x2
~ct

2vy,z1Bvy,zvx
21Cvy,zv t

2!. ~2!

Equations of the form~2! are not sufficient for describ
ing stable soliton states. This is well known in nonline
optics. The anharmonic contribution to the equations of m
tion ~for A,B,C.0! is responsible for pulse compression.
order to maintain stability it is necessary to include a mec
nism for pulse spreading. In nonlinear optics one su
mechanism is frequency dispersion of the dielec
constant.16 In acoustics, an analogous role is played by
spatial dispersion of the sound velocity. In the language
the theory of elasticity, this means including a contributi
to the energy~1! from the spatial derivatives]v i /]x. With
this generalization, the equations of motion~2! take the form

]2vx

]t2
5

]2

]x2S cl
2vx1a l

]2vx

]x2
1Avx

31Bvxv t
2D ,

]2vy,z

]t2
5

]2

]x2S ct
2vy,z1a t

]2vy,z

]x2
1Bvy,zvx

21Cvy,zv t
2D . ~3!

Herea l anda t are constants describing the velocity disp
sion of the longitudinal and transverse sound, respectiv
On going to the model of a one-dimensional chain (vy5vz

50), Eq. ~3! takes the form of a nonlinear modified Bous
inesq equation forvx ~Ref. 1!. This equation has an exac
solution in the form of a soliton propagating at a velocityV
exceeding the longitudinal sound velocity,

vx~x,t !5F2~V22cl
2!

A G1/2

cosh21Fx2Vt1x0

L G ,
where the soliton size isL5Aa l /(V22cl

2).
A search for solutions of the modified Boussinesq eq

tion in the form of a pulse with a high carrier frequency lea
to a nonlinear Schro¨dinger equation for the envelope.1 In
essence, the following calculations are a generalization of
construction of these solutions for solitary waves in t
three-dimensional case.

The form of the equations of motion~3! suggests a close
analogy between the nonlinear acoustics problem being s
ied here and the problem of the propagation of light pulse
optical fibers. In fact, if we interchange the coordinate a
time, i.e.,x↔t, and takev i to be the projection of the elec
tric field E of the wave, then the quantities in parentheses
Eq. ~3! can be identified with the electric displacementD.
Here the sound velocities play the role of the linear perm
r
-

-
h
c
e
f

-
y.

-
s

e

d-
in
d

n

-

tivity, and the spatial dispersion of the sound velocity pla
the role of the frequency dispersion of the permittivity, e
As a result, this equation takes the form of the wave equa
]2E/]x22c22]2D/]t250. There is, however, an importan
difference between the nonlinear acoustics and optics p
lems. It lies in the fact that the electromagnetic wave has
longitudinal component (Ex50), while all three components
of the ‘‘vector’’ v exist in acoustics.

A simplification of the system of Eqs.~3! can be
achieved by assuming that the variablesv i are modulated by
some carrier frequencyv, so that v i5a exp(2ivt)
1a* exp(ivt). We shall leave aside the problems associa
with the generation of overtones at frequenciesnv and only
consider oscillations at the fundamental carrier frequencyv.
In this approximation, on going to the complex represen
tion v i5ai exp(2ivt), we can make the substitutio
v i

3→v i uv i u2, v ivk
2→v i uvku21(1/2)v i* vk

2 in Eq. ~3!. As a re-
sult, Eq.~3! takes the form

]2vx

]t2
5

]2

]x2S cl
2vx1a l

]2vx

]x2
1Avxuvxu2

1BFvxuv tu21
1

2
vx* v t

2G D ,

]2vy,z

]t2
5

]2

]x2 S ct
2vy,z1a t

]2vy,z

]x2
1BFvy,zuvxu21

1

2
vy,z* vx

2G
1CFvy,zuv tu21

1

2
vy,z* v t

2G D . ~4!

In connection with the transition from Eq.~3! to the
complex form~4! and leaving out the overtone contribution
it is clear that the third-order anharmonicity which was om
ted before makes no contribution to the effects being stud
here, since it contains no terms that are modulated at
fundamental carrier frequency.

SYSTEM OF NONLINEAR SCHRö DINGER EQUATIONS

Before proceeding to a transformation of Eqs.~4!, let us
generalize them to the case of a weak anisotropy in they, z
plane. Suppose that the velocitiesci for the polarizations of
transverse sound in they and z directions differ slightly.
Such a difference might arise, for example, in a cubic crys
when a pressure is applied along they axis. By analogy with
light, this corresponds to a birefringent medium. Here, as
problems involving birefringence, we neglect the anisotro
of the anharmonic terms. This generalization reduces to
substitutionct→cy in Eq. ~4! for vy andct→cz in the equa-
tion for vz . We shall assume that the anisotropy is weak,
that ucy2czu!ct , where nowct5(cy1cz)/2 is the average
velocity. After this generalization, we shall seek a solution
Eq. ~4! in the form

vx~x,t !5ax~x,t !exp@ i ~qlx2vt !#,

vy,z~x,t !5ay,z~x,t !exp@ i ~qtx2vt !#. ~5!
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The wave vectorsql ~for the longitudinal component!
andqt ~for the transverse components! are determined by the
value of the carrier frequencyv, according to the dispersio
relations

v25cl
2ql

22a lql
4 ; v25ct

2qt
22a tqt

4 . ~6!

We assume that the amplitudesai(x,t) vary slowly in
space~over distances of orderq21) and time~over intervals
of orderv21). Substituting Eq.~5! in Eq. ~4! and leaving out
the terms proportional to]4ai /]x4 and]3ai /]x3, as well as
all the spatial derivatives in the anharmonic terms, we ob

]2ax

]t2
22iv

]ax

]t
5cl

2S ]2ax

]x2
12iql

]ax

]x D 2a lS 6ql
2 ]2ax

]x2

14iql
3 ]ax

]x D 2Aql
2axuaxu2

2Bql
2ax~ uayu21uazu2!2

B

2
~2qt

2ql !
2ax* ~ay

21az
2!exp@2i ~qt2ql !x#,

]2ay

]t2
22iv

]ay

]t
5cy

2S ]2ay

]x2
12iqt

]ay

]x D 1qt
2~cz

22cy
2!ay

2a tS 6qt
2 ]2ay

]x2
14iqt

3 ]ay

]x D
2Cqt

2Fay~ uayu21uazu2!1
1

2
ay* ~ay

2

1az
2!G2Bqt

2ayuaxu22
B

2
~2ql

2qt!
2ay* ax

2 exp@2i ~ql2qt!x#. ~7!

The equation foraz can be obtained from that foray by
making the substitutiony↔z. The system of three nonlinea
equations~Eq. ~7! plus that foraz) can be simplified. This
simplification is related to the fact that in crystals with cub
symmetry the velocities of the longitudinal and transve
sound waves are substantially different.~Usually cl

2.2ct
2 .!

Therefore pulses polarized along thex axis propagate much
faster than pulses polarized in theyzplane. Thus they canno
create a bound state, since the solitary waves realized in
system are polarized either along thex axis or perpendicular
to it. One can only speak of their interaction in collision
The situation is analogous to solitons in highly birefringe
optical fibers, where solitons polarized along the fast a
slow axes do not form bound states but undergo radia
decay in collisions.24 ~Collisions between acoustic solitons
one-dimensional chains have been studied numerically.1! As
we are not interested in this sort of collisions, which a
described in Eq.~7! by the anharmonic constantB, we can
set ay5az50 in the equation forax ~or, equivalently,B
50). As a result, we obtain a closed equation for the am
tude of a solitary longitudinally polarized wave. We no
transform in this equation to a moving coordinate syst
with ax(x,t)→ax(z,t), where
in

e

is

.
t
d
e

i-

z5x2
dv

dql
t.

The propagation velocity equals the group velocity f
longitudinal sound determined by the dispersion relation~6!.
As a result, after some simple transformations, Eq.~7! yields

i
]ax

]t
5b l

]2ax

]z2
1g laxuaxu2, ~8!

where

b t5
3a lv

2cl
2

, g l5
vA

2cl
2

. ~9!

In deriving Eq.~10!, we have, as usual, left out the sma
contributions proportional to]2ax /]t2 and]2ax /]t]z.

The scalar nonlinear Schro¨dinger equation~8! describes
longitudinally polarized solitary waves and is identical to t
analogous equation for one-dimensional chains.1 It can be
integrated by the techniques used for inverse scattering p
lems and has been studied in many papers. Thus, in the
lowing we shall not dwell on it. We now proceed to tran
versely polarized acoustic solitons. To do this, we
ax50 in the second of Eqs.~7! and again transform to a
coordinate system moving at the group velocity of transve
sound, i.e.,ay,z(x,t)→ay,z(j,t), where j5x2(dv/dqt)t.
Through transformations similar to those used in deriv
Eq. ~8!, we obtain a system of two equations

i
]ay

]t
5kay1 i ~cz2cy!

]ay

]j
1b t

]2ay

]j2

1g tH ayS uayu21
2

3
uazu2D1

1

3
ay* az

2J ,

i
]az

]t
52kay2 i ~cz2cy!

]az

]j
1b t

]2az

]j2

1g tH azS uazu21
2

3
uayu2D1

1

3
az* ay

2J . ~10!

Here

b t5
3a tv

2ct
2

, g t5
3vC

4ct
2

,

k5
v

2

cz
22cy

2

cz
21cy

2
>

v

2

cz2cy

ct
. ~11!

For concreteness, in the following we assume t
cz.cy , i.e., k.0.

After the substitutionj↔t, the system of Eqs.~10! is
outwardly the same as the equations for solitary waves
birefringent optical fibers,16 so the analysis employed belo
is analogous to that proposed elsewhere21 for studying vector
solitons in nonlinear optics.
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VECTOR ACOUSTIC SOLITONS

Equations~10! differ from the standard nonlinear Schro¨-
dinger equations in having terms proportional to]ay,z /]j.
They occur with different signs in the equations foray and
az because the corresponding solitons propagate at diffe
velocities owing to the difference in the group velocities
waves polarized along thex andy axes. Because of the sma
difference in these velocities, however, there is some h
that bound states can be realized. Let us make a transfo
tion which makes it possible to remove these first derivati
with respect to the coordinates from the equations,

ay,z~j,t !5by,z~j,t !expH i
~cz2cy!

4b t
t7 iLjJ , ~12!

where the spatial frequency

L5
cz2cy

2b t
. ~13!

As a result, Eqs.~10! take the form

i
]by

]t
5kby1b t

]2by

]j2
1g tH byS ubyu21

2

3
ubzu2D

1
1

3
by* bz

2 exp~4iLj!J ,

i
]bz

]t
52kbz1b t

]2bz

]j2
1g tH bzS ubzu21

2

3
ubyu2D

1
1

3
bz* by

2 exp~24iLj!J . ~14!

In Eq. ~14!, as opposed to Eq.~10!, the coefficients de-
pend explicitly on the coordinate and are invariant under
substitutionj→j1p/2L. Thus we might expect that th
solution is a set of periodically positioned pulses, separa
by distances that are multiples of the lengthp/2L. If the
lengthl i of a pulse is much shorter than this distance, th
neighboring pulses overlap weakly. Thus, in order to find
approximate equation for a single pulse we can replace
factors exp(64iLj) in Eq. ~14! by exp(64iLj0), wherej0 is
the location of the center of gravity of the pulse, provided,
course, thatl tL!1. After this approximation, we seek
solution of the form

by,z~j,t !5 f y,z~j!exp~2 iQt7 iLj0!, ~15!

where f y,z(j) are real amplitudes.
As a result, Eq.~14! takes the form

b t

d2f y

dj2
5~Q2k! f y2g t f y~ f y

21 f z
2!,

b t

d2f z

dj2
5~Q1k! f z2g t f z~ f y

21 f z
2!. ~16!

Equations~15! are formally the same as Newton’s equ
tions of motion for a particle of massb t in a two-
dimensional spacef y , f z with potential energy
nt
f

e
a-
s

e

d

n
n
e

f

U52 1
2 ~Q2k! f y

22 1
2 ~Q1k! f z

21 1
4 g t~ f y

21 f z
2!2. ~17!

The solution of Eqs.~16! can be sought by separation o
variables in an elliptical coordinate system and using
formalism of the Hamilton–Jacobi method. Here it is nec
sary to find all possible trajectories of the particle moti
corresponding to solitary waves. Such a procedure has b
carried out in Ref. 21, so here we can make direct use of
results from that paper.

Ordinary ‘‘bright’’ solitons correspond to trajectorie
which begin and end at the coordinate originf y5 f x50,
which corresponds to having the pulse amplitude go to z
at j→6`. The amplitude of a bright soliton is given by

f y562Ak

g l

3
h2sinh@h1~j2j0!2d#

h1cosh@h1~j2j0!2d#cosh@h2~j2j0!2d#
2h2sinh@h1~j2j0!2d#sinh@h2~j2j0!2d#

,

f z52Ak

g l

3
h1cosh@h2~j2j0!2d#

h1cosh@h1~j2j0!2d#cosh@h2~j2j0!2d#
2h2sinh@h1~j2j0!2d#sinh@h2~j2j0!2d#

,

~18!

whereh65(Q6k)/b t , d is an arbitrary parameter whic
determines the set of different vector solitons, andj0 is an
arbitrarily chosen coordinate origin.

We shall refer to these as vector solitons because t
polarization vector varies along the pulse. According to E
~18!, the polarization angleQ of a soliton varies with the
coordinate as

tanQ5
f y

f z
56

h2

h1

sinh~h1j2d!

cosh~h2j2d!
. ~19!

Here the coordinate origin isj050. Thus the polarization
vector varies from7p/2 for j→2` to 6p/2 for j→`, pass-
ing through zero at the pointj5d/h1 .

According to Eq.~18!, a vector soliton is a superpositio
of two pulses polarized along they and z axes and whose
centers of gravity are displaced relative to one another b
distance proportional to the parameterd. In the degenerate
limit where the transverse sound velocitycy5cz (k50,
h15h2), this parameter corresponds to a scalar soliton
larized in theyz plane. In the isotropic limit, of course, th
soliton does not have a vector character, since its polar
tion does not change along the pulse and the pulse sha
independent of the polarization angle. In the special cas
k50, we havef y5 f sinQ and f z5 f cosQ, with

f 5A2Q

g t
cosh21S ~j2j0!AQ

b t
D . ~20!
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One interesting feature of the vector soliton states
tained here is that the elastic crystalline energy stored
them is invariant with respect to the parameterd. Using Eq.
~18!, we find that

W5E
2`

`

dj~ f y
21 f z

2!5
A4b tk

g t
HAQ

k
111AQ

k
21 J .

~21!

Thus, as in the case of ordinary solitons described b
scalar Schro¨dinger equation~8!, the parameterQ determines
the power in the pulse. Vector solitons, however, can e
only in regions with sufficiently highQ such thatQ.k.
Thus there is a threshold powerWmin5A8kb t/g t at Q5k
for vector solitons, below which these states are not realiz

For Q,k, soliton states develop which are polariz
strictly along thez axis. In this region,f y50 and

f z5A2~Q1k!

g t
cosh21S ~j2j0!AQ1k

b t
D . ~22!

A potential energy in the form~17! permits the existence
of yet another trajectory corresponding to a solitary wa
This trajectory joins the pointsf y52A(Q2k)/g t, f z50
and f y5A(Q2k)/g t, f z50, and passes through the absolu
equilibrium point f y50, f z56A(Q1k)/g t. The corre-
sponding solution has the character of a mixed soliton:
projection along thef z axis is a ‘‘bright’’ soliton ~with am-
plitude going to zero atj→6`!, while the second compo
nent f y is a ‘‘dark’’ soliton with nonzero amplitude a
j→6`:

f y5AQ2k

g t
tanhS ~j2j0!Ak

b t
D ,

f z5AQ13k

g t
cosh21S ~j2j0!Ak

b t
D . ~23!

Mixed solitons of this type can exist only in the regio
Q.k. The ‘‘dark’’ component of the soliton essentially de
scribes a change byp in the phase of the transverse sou
polarized along they axis. This phase change is accompan
by an acoustic pulse of the orthogonal polarization along
z axis. Note that similar mixed soliton states have been s
ied in nonlinear optics~Ref. 18; see also Ref. 21!.

DISCUSSION OF RESULTS

It has been shown above that three-dimensional crys
support three types of solitary waves, which are described
three coupled nonlinear Schro¨dinger equations~7! in accor-
dance with the three branches of acoustic phonons prese
the harmonic approximation. The specific form of the so
tary waves is determined to a substantial extent by the t
of crystal lattice and the propagation direction. Thus, in
axial crystals, where the group velocities of all three phon
modes differ greatly, vector solitons are unlikely to develo
In these lattices we may expect the appearance of ordi
soliton pulses of three types, each of which is polariz
along one of the principal axes and moves at its own ve
ity, equal to the group velocity of the corresponding acous
mode. In uniaxial crystals for light propagating along thec
-
in

a

st

d.

.

s

d
e
d-

ls
y
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-
e

-
n
.
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d
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axis or in cubic crystals, the velocities of the transve
acoustic modes are degenerate and differ greatly from
velocity of the longitudinal oscillations. Thus these lattic
should support ordinary solitons polarized along the pro
gation direction and vector solitons polarized in the perp
dicular plane. In fact, these solitons will also have a vec
character if the equality of the group velocities for transve
sound is slightly disturbed by some external interaction. B
cause there is no interaction between the longitudinal
transverse solitons, the situation for transverse pulses is
tremely similar to that which exists in studies of optical so
tons propagating in fibers. An exception may be the spe
case of a uniaxial crystal in which the longitudinal and tran
verse sound velocities are close to one another. In this c
three-dimensional vector solitons may develop in which
polarization vector rotates in two directions along a pulse

The formation of a bound state of the vector soliton ty
is based on the idea that a small difference in the gro
velocities of sound for different polarizations is compensa
by the difference in the differenceL in the wave vectors of
the corresponding carrier frequencies~see Eq.~12!!. In what
follows we make the approximate substitution exp(64iLj)
→exp(64iLj0) in the multipliers in Eq.~14!, making use of
the smallness of the pulse lengthl i compared toL21. An
analysis shows that including corrections in the small para
eterl iL leads to the emission of acoustic waves by a m
ing vector soliton~i.e., a pedestal!. This emission causes
gradual decay of the pulse state. Stability of the system
be recovered by ensuring propagation of a periodic seque
of pulses separated by a distancep/2L and modulated by a
synchronized carrier frequency. Then the energy of the
companying acoustic background~pedestal! is exchanged
among neighboring pulses and destruction of the soli
states ceases. In optics, the passive synchronization of a
riodic sequence of pulses in fiber optic lasers may be ba
on this effect.24,25

Numerical studies of the propagation of acoustic pul
in anharmonic lattices are now actively under way.1,4–8 In
particular,1,4,6 acoustic pulses have been observed to pro
gate in one-dimensional chains without significant change
their shapes; this was attributed to the development of sol
states of various types. However, a reliable identification
soliton states requires studies of the long-time evolution
the pulse states. There have been no studies, at all, o
spontaneous formation of solitons from a noise backgrou
Thus, no data are currently available on the characteri
formation length for acoustic solitons. This situation is ma
more complicated by the fact that anharmonic lattices can
principle support solitary waves of different types, with d
ferent propagation velocities. In the present paper, prim
attention has been devoted to solitons which propagate a
group velocity of sound and obey the nonlinear Schro¨dinger
equation. The more general Boussinesq equation~see
Eq. ~3!!, however, admits solutions in the form of soliton
propagating at a supersonic velocityV and having the form
of a pulse without modulation by a carrier frequency. AsV
approaches the sound velocity, the Boussinesq equation
be reduced to the form of the Korteweg–de Vries equati
which has exact solutions in the form of solitons of an osc
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latory type~breathers!. In three-dimensional lattices the situ
ation is still more complicated, and systems of this sort h
not been studied yet, even numerically.

This work was supported by the Russian Fund for F
damental Research, Grant No. 96-02 16848-a.
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of a convection cell
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A theory is developed for a new type of transition — a change in the ratio of the longitudinal
and transverse dimensions of a convection cell as the thickness of a liquid layer is varied.
A sudden change in the ratio of the cell dimensions takes place because of a change in the
predominant mechanism for excitation of convection. The governing influence of
buoyancy forces gives way to one of thermocapillary forces, and they in turn give way to the
influence of thermoelectric forces for yet thinner layers. As the layer thickness is reduced
gradually at a fixed external heating, the ratio of the dimensions will take on the values 0.7, 0.65,
and 1, respectively. ©1998 American Institute of Physics.@S1063-7842~98!00211-6#
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INTRODUCTION

Three mechanisms for the excitation of thermal conv
tion with heating from below are presently known. Fir
there is the Rayleigh mechanism. This mechanism is co
into being through the buoyancy force, i.e., the differen
between the Archimedean force and the force of gravi1

Second, there is the mechanism discovered by Pearson.2 This
mechanism due to the difference in the surface tension fo
arising from the temperature dependence of the surface
sion forces, i.e., the thermocapillary effect.3 Finally, the third
mechanism4 is associated with the excitation of motion by a
electric force. This mechanism predominates in thin layer
liquid semiconductors~semimetals!, electrolytes, and som
other media. Heating of these media creates a thermoele
field. This field acts on the charge fluctuations which ar
for the same reason, and the result is a Coulomb force w
sets the liquid into motion.5

All three of these excitation mechanisms have been w
studied, both separately~i.e., Rayleigh,1 thermocapillary,6,
and thermoelectric7! and in pairs~i.e., the combined effects
of buoyancy and thermocapillary forces,8 buoyancy and ther-
moelectric forces,9 and the combined action of forces owin
to thermocapillarity and thermoelectricity10!, and even when
all three mechanisms act together.9 It turns out that each o
these excitation mechanisms has a predominant effect on
liquid within some range of parameters. It is important th
in a given liquid and for sufficient external heating, the so
parameter determining which excitation mechanism w
make the dominant contribution to the motion of the liquid
the thickness of the liquid layer.

In this paper we concentrate on the features of the tr
sition from one excitation mechanism to another, wherea
the past the problems have been solved under condit
such that one of the mechanisms predominates, while
other ~others! only cause small changes in its effect.
1271063-7842/98/43(11)/5/$15.00
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1. CONDITIONS FOR MAINTAINING THE RATIO OF THE
DIMENSIONS OF A CONVECTION CELL

Each of the excitation mechanisms mentioned above
actually set a liquid medium into motion if only the drivin
force exceeds the dissipative forcern¸, wherer is the liquid
density, whilen and¸ are, respectively, the dissipative coe
ficients of kinematic viscosity and thermal diffusivity.

Under a heatingA5(Th2Tc)/h, which is the difference
between the temperaturesTh of the hot~lower! andTc of the
cold ~upper! surfaces of the layer divided by the layer thic
nessh, the following forces act on the liquid:

1. Buoyancy forcerbgAh4 ~Ref. 1!. This force is cre-
ated by the volume expansion of the liquid owing to heat
~b is the coefficient of thermal expansion andg is the accel-
eration of gravity!.

2. Thermocapillary forcesAh2 ~Ref. 3!. This force is
created by the thermocapillarity effect~s is the coefficient of
thermocapillarity!.

3. Thermoelectric force«g2A2h2 ~Ref. 5!. This force is
created by the thermoelectric effect~g is the thermopower
~Siebeck coefficient! in a liquid with a dielectric permittivity
« high enough to keep the space charge which develop
the liquid from dissipating.

The action of each mechanism is characterized by a
mensionless number. These numbers are, respectively
Rayleigh numberR, the Marangoni numberM, and the
‘‘thermoelectric number’’E5I 2. We have

R5
bgAh4

n¸
, M5

sAh2

rn¸
, E5I 25

«g2A2h2

rn¸
. ~1!

These numbers represent the factor by which the fo
exciting the motion exceeds the dissipative force. When
least one of the dimensionless numbers reaches a cri
value (R* .660,M * .80, I * .6.3), motion develops in
the liquid, even if the other exciting forces do not act. T
5 © 1998 American Institute of Physics
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specific values ofR* ,M* , or I * required for an instability
to set in depend on the boundary conditions, e.g., on the
transfer conditions. The minimum values of 660, 80, and 6
respectively, are sufficient for excitation when the boun
aries are held at strictly constant temperatures.

Motion develops at the minimum possible values
these dimensionless numbers for the given boundary co
tions. The minimum condition determines the ratio of t
dimensions of the convection cell that develops at the m
ment of excitation. Denoting the dimension of the cell alo
the layer byl ~the perpendicular dimension is always equ
to the layer thicknessh!, we find that for excitation by the
buoyancy force, thermocapillarity, or thermoelectricity, t
ratio l 2/h2 will be equal to 0.5, 0.45, or 1, respectively.
turns out that the ratiol /h1,3,9 for a given excitation mecha
nism is independent of the boundary conditions. Thus
ratio of the dimensions of a convection cell along and p
pendicular to the layer can serve as an indicator of the e
tation mechanism.

It is known1 that the ratio of the dimensions of an emer
ing cell is retained in developed convection. At least, this
true as long as the amplitudes of the velocity and other c
vective quantities are proportional to the square root of
supercriticality, (Th2Th* )1/2 ~Ref. 11;Th is the actual tem-
perature of the heated lower surface andTh* is the tempera-
ture of that surface which is sufficient to excite the instab
ity, with Th.Th* ).

For the different excitation mechanisms the amplitud
are proportional to (R2R* )1/2, (M2M* )1/2, and (I
2I * )1/2, respectively.

2. QUALITATIVE STUDY OF THE CONDITIONS
FOR A CHANGE IN THE RATIO OF THE DIMENSIONS
OF A CONVECTION CELL

The range of variation in the layer thickness over wh
one or another excitation mechanism predominates can
obtained by analyzing the dependence of the dimension
numbersR, M, and E on h. It is evident thatR}h3 and
M}h, while E ~andI! is independent ofh. It follows imme-
diately that the Rayleigh excitation mechanism should
predominant in the thickest films, the thermocapillarity effe
should exert the main influence in films of intermedia
thickness, and in the thinnest films the excitation occurs
der the influence of the thermoelectric field. More-exact
timates can be made by comparing the numbersR,M, and
I.

A comparison of excitation by the buoyancy and th
mocapillarity forces shows that the thermocapillarity mec
nism predominates in thin layers with thicknesses

h,hRM.S s

rgb D 1/2

. ~2!

On comparing the conditions for excitation by the buo
ancy and thermoelectric forces, we see that the thermoe
tric mechanism predominates in thin layers with thicknes

h,hRI.S ¸n«g2

rb2g2 D 1/6

. ~3!
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Finally, comparing the conditions for excitation by th
thermocapillarity and thermoelectric mechanisms, we fi
that the thermoelectric mechanism predominates in thin
ers with thicknesses

h,hMI.hc.S r¸n«g2

s2 D 1/2

. ~4!

All three effects occur in liquid semiconductors~semi-
metals!. Typical values of the parameters of liquids12,13 can
be taken for them:r51 – 10 g/cm3, b59 – 631024 K21,
n.¸.531022– 1 mm2/s, ands51 – 331025 N/mK. For
estimates we can take the temperature differenceTh2Tc

.Ah.103–104 K. In order to make an estimate, the the
mopowerg must be known. It was not possible to find valu
of g at the melting temperature and above in the literature
is known,14 however, that the electrical conductivity an
thermoelectric coefficients do not change significantly at
melting point. In solid semiconductors above the Debye te
peratureTD , the thermopower is governed by an entra
ment effect and is given by

g. f
kB

e

TD

T
, ~5!

wherekB is Boltzmann’s constant ande is the carrier charge
The constantf is such thatg is '100 mV/K.15

Substituting the numerical values in Eqs.~2!–~4!, we
find that

10,hc,100 mm, 1,hRM,10 mm. ~6!

Thus, in layers up to 10mm thick ~and possibly up to
100 mm!, excitation by the thermoelectric force predom
nates and a cell withl .h develops. In layers with thicknes
from 10 mm ~possibly 100mm! to 1 mm ~perhaps 10 mm!,
the main mechanism for excitation is through the thermoc
illary force. Then a cell withl .0.65h develops. Finally, in
still thicker layers, a cellular motion with a size rati
l;0.7h develops under the influence of buoyancy forces

3. STATEMENT OF THE PROBLEM OF CALCULATING
THE RATIO OF THE DIMENSIONS OF CONVECTION
CELLS. NUMERICAL SOLUTIONS

The simplest approach for finding sufficient conditio
for the instability owing to the growth of the small perturb
tions is to search for nontrivial solutions of systems of h
mogeneous differential equations, linearized with respec
the small perturbations, subject to homogeneous bound
conditions. The existence of a range of the parameters
which these solutions exist indicates the possibility of
spontaneous transition of the medium into a new state
these values of the parameters are physically possible,
an instability develops. This approach has been extrem
successful for analyzing the buoyancy force.1

In general, one poses the problem of finding conditio
for the existence of nontrivial solutions of the linearized sy
tem formed from the equations of motion, continuity, a
heat transport of an incompressible liquid, together with
continuity equation for the current and the equations of el
trostatics,
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2nDv1
1

r
¹p11bT1g1

eg

r
n1¹T050, ~7!

div v50, ~8!

2¸DT11~v•¹!T050, ~9!

div ~E12g¹T1!50, ~10!

div E15
e

«
n1 , ~11!

whereD denotes the Laplacian operator,v is the velocity of
the liquid, which is at rest in the equilibrium state,p15p
2p0 and T15T2T0 are the deviations of the pressure a
temperature from their equilibrium values, the characteri
value of the electric field isE15E2g¹T0, and n1 is the
concentration of carriers with chargee.

In writing down these equations, we have used the f
that convection develops aperiodically, so the frequency
the resulting motions isv50. In fact, the excitation condi
tion is written mathematically as the condition that there
no imaginary part of the frequency, i.e., Im~v!50, while the
aperiodicity of the excitation means that there is no real p
of the frequency, i.e., Re~v!50.

In the customary Boussinesq approxmiation1,3,6,11 the
system of Eqs.~7!–~11! forms a system of linear differentia
equations with constant coefficients. This system can
transformed into a system of algebraic equations if a solu
is sought in the form of a Fourier expansion with harmon
proportional to

expS ikx

x

h
1 iky

y

h
1 ikz

z

hD . ~12!

The solution also determines the dependence of the
ternal parameters~such as the heatingA! on the wave vector
k (kx ,ky ,kz). The longitudinal part of the wave vectork'

(kx ,ky) is real because of the translational symmetry intr
sic to a layer geometry, if we assume that thex andy axes lie
in the plane of the layer. Evidently,k'}h/ l is determined by
the dimensionl of the cell along the layer, whilekz is deter-
mined by the homogeneous boundary conditions at
z50 ~‘‘bottom’’ ! andz5h ~‘‘surface’’! planes.

In this paper, we consider a layer of constant thickn
and neglect any surface waves which may develop on
layer surface. Changes in the thickness, as well as the e
tation of surface waves,16,17 can be accounted for, but this
unimportant for the present problem of analyzing change
the dimensional ratio of convection cells.

In this section we formulate boundary conditions clos
to those which can be realized in an experiment.~See the
experiments described in Refs. 1, 3, and 6, for example.! The
bottom is the plane where the liquid comes into contact w
a solid mass, so that

vz5vx5vy5T150. ~13!

The conditionvz50 is a ‘‘nonpenetration’’ condition,
i.e., the liquid does not permeate into the substrate. The
ditions vz5vy50 correspond to the ‘‘attachment’’ of a vis
cous liquid to the solid plane of the substrate. The condit
ic

ct
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T150 means that the bottom of the liquid is at a const
temperature. This condition corresponds to the condition
‘‘absolutely easy’’ heat transfer through this plane. The B
number B, which characterizes heat transfer from the bot
of the liquid, is very large here (B→`).

The surface is the plane where the liquid comes i
contact with a gas~air!. Since the layer thickness is constan
a nonpenetration condition hold here, i.e.,

vz50. ~14!

At the surface, surface tension forces act, specifica
the thermocapillary forces create forces along the surfa
i.e., they are balanced by the tangential components of
stress tensor,

rnS ]vz

]x
1

]vx

]z D52s
]T1

]x
;

rnS ]vz

]y
1

]vy

]z D52s
]T1

]y
. ~15!

Note that if the upper surface were also held at a c
stant temperature, there would be no thermocapillary for
on this surface.

One can imagine various conditions for heat trans
from the surface,3,6 but the closest to experiment would b
thermal isolation, i.e., the absence of heat transfer from
surface, with B50 and

]T1

]z
50. ~16!

Numerical studies have also been made for Re~v!Þ0,
with different values of B, and with many other complic
tions in the problem. The possible cases are reviewed
Ref. 5.

The system of Eqs.~7!–~11! or the corresponding sys
tem of algebraic equations can be used to express the
ables in terms of one another and, subsequently, the co
tion for the existence of a nontrivial solution satisfyin
homogeneous boundary conditions makes it possible to
terminekz as a function ofk' andM. Knowledge of these
values makes it possible to examine the condition for ex
tence of a nontrivial solution of Eqs.~7!–~11! ~this condition
is Im~v!50! as an~instability! excitation condition, i.e., a
condition expressing the value of an ‘‘external’’ paramet
the heatingA ~and, therefore,R,M, andE for a given layer
of a given liquid!, as a function ofl /h. Subsequently, mini-
mization of]A/]k'50 givesl /h for the cell which arises a
the moment of excitation.

The dependence ofw5k'
2 /kz

2 on the layer thicknessh
enters the calculations through the relations

R5S h

hRI
D 3

I ; R5S h

hRM
D 2

M; M5
h

hc
I . ~17!

Some typical results from a numerical solution a
shown in Fig. 1. At the time of excitation one hasw5w* . In
the regionsh.hc andh.hRM , the variation in the dimen-
sional ratio of a cell which has formed at the time of exci
tion has the form typical of second-order phase transition18
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The rearrangement of the entire convection zone when
layer thickness is changed is similar to an allotropic cha
in a crystal lattice.

4. EXACT SOLUTION OF THE PROBLEM FOR THE CASE
OF TWO FREE BOUNDARIES HELD AT A CONSTANT
TEMPERATURE

It has been shown for the mechanism induced by
buoyancy force1 and for that induced by a thermoelectr
field9 that when the layer has two free boundary surfa
held at a constant temperature, one can avoid solving
double eigenvalue problem, and it is found thatkz5p is the
only possible value forkz at the time of excitation.

Then the condition for existence of a nontrivial solutio
of Eqs. ~7!–~11! is converted into the apprehensible exci
tion condition

2~11w!31S h

phRI
D 3 I

p
w1

I 2

p2
~11w!w50 ~18!

or, equivalently, to

2~11w!31
R
p4

w1S phRI

h D 6R 2

p8
~11w!w50. ~19!

Evidently, Eq.~18! is convenient for studying excitatio
in layers with thicknessesh!hRI , while Eq. ~19! is conve-
nient for studying the conditions for excitation of motion
layers withh@hRI . Recall that, since the boundary surfac
of the layer are kept at constant temperaturesT150 for
z50,h, the surface tension~thermocapillarity! has no effect
on the excitation conditions~see condition~15!!.

Minimizing the dimensionless numberI ~or R, respec-
tively!, we find

23~11w!21S h

phRI
D 3 I

p
1

I 2

p2
~112w!50 ~20!

or

FIG. 1. The variation ofw* , the ratio of the square of the dimensions of
convection cell along and perpendicular to the layer, with the thicknessh of
the liquid layer.
e
e

e
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23~11w!21
R
p4

1S phRI

h D 6R 6

p8
~112w!50. ~21!

Eliminating I from Eqs.~18! and ~20! ~or R from Eqs.
~19! and ~21!!, we find thatw* is the root of the equation

~11w!4~12w!22S h

phRI
D 6

w2~2w21!50. ~22!

Whenh/hRI is varied from 0 tò , w* varies from 1 to
1/2. For hRI /h51, we find w* 50.81 with I * .1.6p. The
exact solution for other values ofh/hRI shows that the de-
pendence ofw* on h actually does reproduce the numeric
solution~see Fig. 1! with, of course,hc replaced byhRI and
without the segment fromhc to hRM . These results also con
firm that for heating from below, the excitation condition
are eased as a result of the joint action of the excitat
mechanisms.9

5. ANALYSIS OF EXPERIMENTAL DATA

The only experiments known up to now with a suf
ciently thin layer of liquid heated from below are the clas
cal experiments of Be´nard19 ~see also the detailed discussio
in Ref. 1!. Bénard did his experiments with a layer of spe
maceti wax. A 1-mm-thick layer of wax was placed on a fl
metal tray and heated by steam from below. An infinite pla
layer heated from below was modeled in this way. The low
boundary was solid and isothermal. The upper boundary
the interface with air, i.e., free and thermally insluated. T
calculations of Sec. 3 were done under precisely these c
ditions.

Data on spermaceti can be found elsewhere.20–22 Esti-
mates show that the thicknessh of the layer in the experi-
ment lies within the intervalhc,h,hRM , with hc.10 mm
~see Eq.~4!! andhRM.2 mm ~see Eq.~2!!. This implies that
the main mechanism leading to the formation of Be´nard cells
is thermocapillarity.2

The quantities most conveniently measured in such
periments are the size of the cell along~l! and perpendicular
to ~h! the layer. The success of Rayleigh’s theory was
plained by the fact that thel /h ratios for cells excited by the
buoyancy force and thermocapillarity are similar~.0.7 and
0.65, respectively!. It was possible to identify the predom
nant mechanism only by analyzing the temperature diff
enceTh2Tc ~see Ref. 1 about the history of this question!.

The effect of the thermoelectric mechanism in the th
nest experimentally observable layers with thicknes
h.10hc.0.1 mm can be taken into account based on
problem posed in Section 3. Under these experimental c
ditions, we findM.M(120.4I 2), while I .0.33. The
change in the ratiol /h of the cell at the time of excitation is
also small. However, the direction of the changes in the te
perature difference and, especially, of the change in the
ratio of the cell induced by the thermoelectric mechanism
correct. In the thinnest layers, cells with largerl /h and
smallerTh2Tc were observed than predicted by the theo
of the thermocapillary mechanism.

It is possible that the thermoelectric mechanism expla
the phenomena responsible for ‘‘aging’’ of liquid cryst
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displays.23 A detailed analysis of the aging, however, r
quires that the special properties of the liquid crystal sta24

and the design features of the device be taken into acco
All of the many remaining experiments on heating from b
low have been done with layers whose thicknesses are
that neither thermocapillarity nor thermoelectric phenome
are of any significance.

CONCLUSION

Convection cells, their excitation, and the transition fro
an isotropic medium to a medium with a spatial–tempo
structure constitute a classic example of a synerg
phenomenon.25 The realignment of the spatial–tempor
structure studied in this paper is yet another detail of t
phenomenon. The onset of motion leads to a sudden incr
in heat transfer, so that the liquid is always under conditio
close to the excitation conditions at low supercriticalities.11

The interaction of the various excitation mechanisms
in the language of synergetics, of the different subsyste
leads to a rearrangement of the entire convection zone ow
to a change in the ratio of the dimensions of an individ
cell when the layer thickness is changed. If the thickness
the heated layer is close to critical, then even a slight cha
in its thickness, for example, by evaporation, may caus
substantial rearrangement of the convection zone at a
stant external heating.
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A complete solution is given to the problem of the decay of an arbitrary discontinuity in a one-
velocity model for a bubbly liquid and is used to analyze the propagation and interaction
of shock waves in liquids with gas bubbles. ©1998 American Institute of Physics.
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INTRODUCTION

The propagation of waves in two-phase gas–liquid m
dia with a bubbly structure is the subject of an extens
literature.1–3 In this paper a study is made of wave pheno
ena in bubbly liquids using a gas dynamic approach wh
neglects the small scale fluctuations of the bubbles
which is justified if gas–liquid suspensions with a sm
amount of gas in the mixture are under consideration. U
ally it is assumed that gas bubbles in a shock wave are c
pressed isothermally, so the Campbell–Pitcher model4 of an
equilibrium dispersion medium is customarily employed
the calculations. There are, however, some experiments
which this model yields unsatisfactory results. These exp
ments include those in which an ‘‘anomalously’’ low pre
sure level has been noticed in the shock wave reflected f
a barrier when a small amount of surfactant is added to
water–bubble mixture.5 Similar results occur when the initia
mixture is diluted with glycerine, as well as with enhanc
initial pressures.6 As will be shown below, the Rakhmatuli
adiabatic model7 for a bubbly fluid is to be preferred fo
these experiments. A complete solution of the problem of
decay of an arbitrary discontinuity is given here for th
model and the results are used to analyze a number of
similar problems of practical importance. An analysis of t
results given here can be used to demonstrate the condi
for the validity of one or the other model of a bubbly liqui

MODEL OF A BUBBLY LIQUID

Let us consider a one-velocity, single-pressure mode
a continuous medium for a binary heterogeneous mixt
consisting of compressible gaseous and liquid fractions.
one dimensional flow of each of the constituents of the m
ture of components obeys the equations

]agrg
0

]t
1

]agrg
0u

]x
50,

]agrg
0u

]t
1

]~agp1agrg
0u2!

]x
50,

]agrg
0~«g10.5u2!

]t
1

]@agrg
0u~«g10.5u2!1agpu#

]x
50;

~1!
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]a lr l
0~« l10.5u2!

]t
1

]@a lr l
0u~« l10.5u2!1a l pu#

]x
50, ~2!

which express the conservation of mass, momentum,
energy. Here we have used the following notation:rg andr l

are the reduced densities,ag5rg /rg
0 anda l5r l /r l

0 are the
volume fractions,rg

0 andr l
0 are the true densities,«g and« l

are the specific internal energies~the subscriptsg and l cor-
respond to the gaseous and liquid components!, andp andu
are the pressure and velocity, which are common to all co
ponents of the mixture. Adding the corresponding equati
of the systems~1! and ~2!, and noting thatag1a l51, we
obtain the system

]r

]t
1

]ru

]x
50,

]ru

]t
1

]~p1ru2!

]x
50,

]rE

]t
1

]~rE1p!u

]x
50, ~3!

whereE5«10.5u2 is the total specific energy of the mix
ture,r«5rg«g1r l« l is the internal energy per unit volum
of the mixture, andr5rg1r l5agrg

01a lr l
0 is the density of

the mixture.
We shall assume that the thermodynamic parameter

the liquid obey the binomial equation of state

« l5
p2cl*

2 ~r l
02r l* !

~g l21!r l
0

, ~4!

whereg l , r l* , and cl* are constants which determine i
properties.

In particular, for water and glycerine, they have the fo
lowing values:g l55.59, r l* 51000 kg/m3, cl* 51515 m/s
and g l57.85, r l* 51260 kg/m3, cl* 51923 m/s, respec-
tively. We shall assume that the gas is ideal with an adiab
index gg for which the equation of state has the form

«g5
p

~gg21!rg
0

.

Thus, the equation of state of the medium takes the fo

«5
agp

~gg21!r
1

a l@p2cl*
2 ~r l

02r l* !#

~g l21!r
. ~5!
0 © 1998 American Institute of Physics
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We shall assume that the functionsrg
05fg(p) and r l

0

5f l(p) are known. In particular, for the equation of sta
studied here, in the case of isentropic processes, the de
of the liquid component is related to the pressure by
equation

r l
05f l~p!5r l0

0 S p1p*
p01p*

D
1
g l

, p* 5r l* cl*
2 /g l . ~6!

For the gaseous component we have an analogous
pendence,

rg
05fg~p!5rg0

0 S p

p0
D

1
gg

. ~7!

The subscript 0 denotes values of the parameters
some initial state. The conservation of mass implies that

r0

r
5

ag0rg0
0

fg~p!
1

a l0r l0
0

f l~p!
. ~8!

Let us calculate the speed of sound in the mixture. Af
substituting Eqs.~6! and ~7! in Eq. ~8!, we obtain the equa
tion of state of the medium,

r0

r
5a l0S p01p*

p1p*
D

1
g l

1ag0S p0

p D
1
gg

. ~9!

Differentiating Eq.~9! with respect to the densityr and
noting thatc25dp/dr, we find the square of the speed
sound in the medium to be

c25S r

r2D F a l0

g l~p1p* !S p01p*
p1p*

D
1
g l

1
ag0

ggpS p0

p D
1
ggG . ~10!

The corresponding Riemann invariants have the form

s5u2s~p!; r 5u1s~p!,

s~p!5E
p1

p dp

rc

5E
p1

p 1

Ap0

F a l0

g l~p1p* !
S p01p*

p1p*
D

1

g l

1
ag0

ggp
S p0

p
D

1

ggG 1/2

dp. ~11!

We shall assume that during shock compression e
component of the mixture is compressed in accordance
its own shock adiabat. For the binomial equation of state~4!,
the corresponding shock adiabat has the form

r l
05r l0

0 x l~p1p* !1p01p*
x l~p01p* !1p1p*

, x l5
g l11

g l21
. ~12!

For the gaseous component, we have an analogous
mula,

rg
05rg0

0 xgp1p0

xgp01p
, xg5

gg11

gg21
. ~13!

Thus, with Eqs.~12! and ~13! the equation of the shoc
adiabat for the mixture takes the form
ity
e

e-

or

r

ch
th

or-

r0

r
5a l0

x l~p01p* !1p1p*
x l~p1p* !1p01p*

1ag0

xgp01p

xgp1p0
. ~14!

When an isothermal variant of the Rakhmatulin mode
used, where the compression of the gas in the bubble
they cross the shock front is assumed to be isothermal,
corresponding equation of state of the mixture has the fo

r0

r
5a l0

x l~p01p* !1p1p*
x l~p1p* !1p01p*

1ag0

p0

p
. ~15!

Note that, as opposed to the Campbell–Pitch
approach,4 the model used here includes the compressibi
of the liquid.

In its external form Eq.~3! is the same as the corre
sponding gas dynamic equations for a single phase med
thus, the methods developed for gas dynamics can be
for one-velocity gas–liquid flows. The arbitrary discontinui
decay problem or the Riemann problem play an import
role here. It can be shown that a bubbly liquid with th
equation of state~5! belongs to the class of normal ‘‘gases
which satisfy the Bethe-Bailey inequalities,8 «VS,0 and
«VV,0, whereS is the entropy andV51/r is the specific
volume. Thus, in this medium the shock waves are sta
and, furthermore, the solution to the arbitrary discontinu
decay problem is unique.9 We note also that the arbitrar
discontinuity decay problem serves as a fundamental elem
of Godunov computational schemes.8 Inserting the arbitrary
discontinuity decay problem algorithm given in this paper
schemes of this type makes it possible to greatly extend
range of problems that can be studied and, in particular
proceed to the study of multidimensional problems, which
problematic when other models for bubbly liquids are us
A complete solution of the arbitrary discontinuity deca
problem for a bubbly liquid is given in the Appendix.

INTERACTION OF A SHOCK WAVE WITH A SOLID WALL

Let a shock wave with known pressureps behind its
front propagate through a stationary, homogeneous g
liquid mixture with a volume gas concentrationag0 and
pressurep0. The remaining parameters of the shock wa
denoted by the subscripts, are calculated from the Rankine
Hugoniot relations using the equation of state~14!:

rs5
r0

a l0l l1ag0lg
, us5A~ps2p0!~ps2p0!

psp0
,

Ds5
rsus

rs2r0
, a ls5

a l0l l

ag0lg1a l0l l
,

l l5
x l~p01p* !1ps1p*
x l~ps1p* !1p01p*

, lg5
xgp01ps

xgps1p0
. ~16!

Here Ds is the shock velocity andus is the velocity of the
mixture behind the shock front. If a solid wall is placed
the path of the shock, then after it is reflected, the parame
of the mixture at the barrier, denoted by subscriptr , can also
be calculated using the Rankine–Hugoniot relations:



-

ur
f
ir
e

. I
r

o
(
y
e
d

se
od

-
ted

air

. 6
ntal

tial
-
he
is

al-

1282 Tech. Phys. 43 (11), November 1998 V. S. Surov
~rs2r r !Dr5rsus , rsusDr5ps1psus
22pr ,

rs

r r
5

ags~xgps1pr !

xgpr1ps
1

a ls~x l~ps1p* !1pr1p* !

x l~pr1p* !1ps1p*
. ~17!

After Dr andr r are eliminated, the system of Eqs.~17!
reduces to a cubic equation inpr , which was solved numeri
cally.

Let us compare the calculations with experiment. Fig
1 shows the calculated and experimental10 dependences o
the shock velocity in a water–glycerine solution with a
bubbles on the pressure behind the shock front for differ
gas concentrations in the mixture (p050.1 MPa!. The sus-
pension was assumed to have three components, so the
culations were done by modifying Eq.~16! to account for the
presence of a third component, glycerine, in the mixture
particular, for the adiabatic model the density of the mixtu
behind the shock front was calculated using the formulas

rs5
r0

a l0l l1a l08 l l81ag0lg

,

l l85
x l8~p01p

*
8 !1ps1p

*
8

x l8~ps1p
*
8 !1p01p

*
8

,

where the primes denote the parameters of glycerine.
Figure 2 compares the pressure jump during reflection

a shock from the wall in a water–nitrogen suspensiongg

51.4; rg0
0 51.15 kg/m3) as a function of the shock intensit

for volume concentrationsag050.005 and 0.03 of gas in th
mixture (p050.1 MPa!, calculated using the adiabatic an
isothermal models and obtained by experiment.6 For ag0

50.005 the curves calculated using these models are clo
one another and agree with experiment. The adiabatic m

FIG. 1. D(ps) curves for a water–glycerine solution with air bubbles, c
culated according to the adiabatic~smooth curves! and isothermal~dashed
curves! models:ag050.01, agl50.85 (I ); ag050.02, agl50.85 (II ); ag0

50.05,agl50.5 (III ); symbols correspond to experiment.10
e

nt

cal-

n
e

f

to
el

calculations withag050.03 give lower values of the reflec
tion coefficient than observed experimentally or calcula
with the isothermal model.

Figure 3 shows plots of the reflection coefficientspr /ps

as functions of the incident shock intensityps /p0 calculated
using the adiabatic and isothermal models for a water–
suspension with a gas concentrationag050.05 in the mix-
ture forp050.1 and 1.0 MPa. Experimental data from Ref
are also shown there. Note the closeness of the experime
data to the adiabatic model calculations for the higher ini
pressurep051.0 MPa. Forp050.1 MPa the reflection coef
ficient for ps /p0,10 is the same as that calculated by t
isothermal model, but when the incident shock intensity

FIG. 2. pr /p0 as a function ofps /p0 from experiment6 ~3,4! and as calcu-
lated using the adiabatic~1,2! and isothermal~1 8,2 8! models for ag0

50.005~1,18,3! and 0.03~2,28,4!.

FIG. 3. pr /ps as a function ofps /p0 from experiment6 ~3,4! and as calcu-
lated forag050.05 using the adiabatic~1,2! and isothermal~1 8,2 8! models
for initial pressuresp050.1 ~1,18,3! and 1.0 MPa~2,28,4!.
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increased further, the adiabatic model gives better res
~Fig. 3!.

These data can be explained as follows: in
experiments,6 two-phase mixtures with rather large a
bubbles having diameters of 3-4 mm were used. It
known11 that air bubbles larger than 2 mm are destroyed
shocks with intensitiesps /p0.5. Breakup of the bubbles i
accompanied by faster heat transfer between the gas an
uid owing both to an increase in the contact surface area
to more intense mixing of the gas within the bubbles that
breaking up. For this case, the isothermal model gives res
that are close to experiment. If we exclude the possibility
bubble breakup, then heat transfer is more difficult and
pressure level observed in the experiments ends up clos
that calculated using the adiabatic model of a dispersion
dium. It is known that when the initial pressure is increas
the resistance to breakup on the part of the bubbles is gre
even for the quite large bubbles;6 thus, asp0 is raised, the
pressure level in the shock wave should approach that of
adiabatic model calculations. This tendency is confirmed
the data of Fig. 3. An analogous effect can be obtained
adding a surfactant to the initial gas–liquid mixture5 or di-
luting a water–air suspension with glycerine.6 Another sta-
bilizing factor which impedes breakup of the bubbles is
placing the air in the bubbles with a lighter gas~such as
hydrogen!.12 In all these cases it is recommended that
adiabatic model be used instead of the isothermal model
for the data of Fig. 3 at an initial pressurep050.1 MPa, the
results of this type evidently depend on the experimen
conditions. In fact, the experiments in Ref. 6 were conduc
on a shock tube with a short measurement length. Hi
amplitude incident shocks have a high velocity, so the ti
the sensor lies within the region behind the shock fron
short. Because of the finite rate of interphase heat excha
the gas cannot reach the temperature of the liquid, so
reflection coefficient is lower than that obtained by the is
thermal model. For this reason, as the amplitude of the i
dent shock is increased, the reflection coefficient approac
the value calculated with the adiabatic theory. Similar res
apply to oblique, as well as normal, reflection of shocks fr
a boundary.13

INTERACTION OF A SHOCK WAVE WITH A BUBBLE
SCREEN LOCATED NEAR A BARRIER

The effect of a short shock wave incident from a pu
~without bubbles! liquid on a bubble screen, used, for e
ample, as protection against explosive loading, has been
cussed elsewhere.12 We shall examine the problem of a lon
shock wave having a profile in the form of a semi-infin
step and propagating through a gas–liquid mixture with a
contentag0 and incident on a screen of thicknessL0 sited at
a barrier. We shall assume that the volume concentrationag0

sc

of the gas in the screen obeysag0
sc .ag0.

Figure 4 is a schematic illustration of the shock-wa
picture resulting from this interaction. At timet50 the inci-
dent shock reaches the screen, causing formation of a
efaction wave~RW! which is reflected from the layer and
shock SW1 which moves along the screen at velocityD1.
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The parameters of these waves were calculated by sol
the problem of the decay of an arbitrary discontinuity. At t
time t15L0 /D1, SW1 reaches the barrier surface and is r
flected from it, forming a shock SW2, which, at the time

t25
L01t1uD2u
u11uD2u

is, in turn, reflected from the contact boundary of the bub
screen. Subsequent reflections, also calculated using the
responding problem of the decay of an arbitrary disconti
ity, occur at times

t35
L01t2~D32u1!

D3
, t45

L02t2u11t3uD4u
uD4u

,

t55
L02t2u11t4D5

D5
, t65

L02t2u11t4u31t5uD6u
u31uD6u

,

t75
L02t2u11t4u31t6~D72u3!

D7
, . . . .

HereDk anduk are the velocities of thekth reflected shock
and contact discontinuity~CD! after reflection of SWk21

from the free surface of the bubbly layer.
Figure 5 shows the pressure at the barrier as a func

of time for an incident shock withps51.0 MPa (p050.1
MPa!, calculated with the models used in this paper for d
ferent gas concentrations in the screen (L051 mm! and out-
side it. Figure 6 shows the time variations in the volum
fraction of gas at the wall, as well as the relative thickness
the screen for one version of the calculations.

An analysis of the data in Figs. 5 and 6 shows that
screen is compressed over time and the volume fraction
gas in it decreases. Here the degree of compression o
screen is higher according to the isothermal model. The p
sure at the barrier calculated by the adiabatic Rakhmat
model, as in Ref. 2, approaches the value in the reflec
shock without a screen. According to the isothermal mod
the maximum pressure is higher than that calculated in
adiabatic model. With increasingps the delay time provided
by the bubble screen is reduced. Thus, for a shock wit
post-shock pressureps55 MPa propagating through a liqui

FIG. 4. x2t diagram for the interaction of a shock wave with a bubb
screen:~a! shock wave SW,~b! SW1, ~b8) rarefaction wave RW,~c! SW2,
~d! SW3, ~d8) SW3* , ~e! SW4, ~f! SW5* , ~h! SW6.
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without bubbles (ag050, p050.1 MPa!, and interacting
with a bubble screen having a thickness of 1 m and volume
gas contentsag0

sc 50.01 and 0.1, the time delays~until the
pressure reaches its maximum value! are 3 and 18 ms. The
computational results depend only weakly on the type of
used to form the bubbles in the screen. This can be see
Fig. 5, which shows adiabatic model calculations of the pr
sure at the barrier in a mixture of a liquid with hydroge
bubbles. For hydrogen the adiabatic index and initial den
were taken to begg51.33 andrg0

0 50.0148 kg/m3. Note
that, depending on the heat transfer conditions between

FIG. 5. p(t) at the barrier according to the adiabatic~2–4! and isothermal
~2 8–4 8! models for ~a! ag050, ag0

sc 50.01 ~2,28!; ~b! ag050.01, ag0
sc

50.1 ~3,38!; ~c! ag050, ag0
sc 50.1 ~4,48!; (1) p(t) without a screen;~5!

p(t) for a hydrogen screen (ag050, ag0
sc 50.1).

FIG. 6. ag0
sc (t) ~1,18! at a wall andL/L0(t) ~2,28! calculated using the

adiabatic~1,2! and isothermal~1 8,2 8! models.
s
in
-

ty

he

gas and liquid, it will be necessary to use one or the ot
model for the bubbly liquid.

INTERACTION OF AN AIR SHOCK WAVE WITH A LAYER
OF BUBBLY LIQUID

Let a plane air shock wave with a semi-infinite step p
file be incident normally on a layer of uniform bubbly liqui
with gas contentag0

sc located at a solid wall. Nitrogen, hy
drogen, and helium were considered as gases filling
bubbles. For the latter,gg51.67 andrg0

0 50.164 kg/m3. It is
necessary to calculate the flow resulting from the interacti

The parameters of the air behind the incident sho
front, denoted by subscripts, are related to the initial param
eters before the jump~subscript 0! by the Rankine–Hugonio
relations:

ps5p0S 11
2g~Ms

221!

~g11!
D , us5

2cg0~Ms
221!

~g11!Ms
,

rs5rg0S ~g11!Ms
2

21~g21!Ms
2D ,

where cg0, g and Ms5D/cg0 are, respectively, the soun
speed and adiabatic index of air and the Mach number (D is
the speed of the shock front!.

When the air shock reaches the contact boundary of
layer, a reflected shock SW1* develops and propagate
through the gas away from the layer, as does a penetra
shock SW1, which moves at speedD1 through the bubbly
liquid. The parameters of these shocks were calculated
solving the problem of the decay of an arbitrary discontin
ity.

Figure 7 shows adiabatic and isothermal model calcu
tions of the pressure jumpp1 /p0 behind the front of a shock
SW1 penetrating into a liquid with nitrogen bubbles as
function of the Mach number of the incident shock for d

FIG. 7. p1 /p0 ~1,6! and D1 ~2–5! as functions ofMs for ag050.01 for
water with nitrogen~1,2!, helium ~4!, and hydrogen~5! bubbles, calculated
using the adiabatic model;~2,6! using the isothermal model;~1 8–6 8! same
curves, but forag050.1.
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ferent gas concentrations in the mixture (p050.1 MPa!. For
a liquid with hydrogen and helium bubbles, the correspo
ing pressure curves coincided with those for nitrog
bubbles to within the accuracy of the graph. Also shown
this figure are the variations in the propagation speed
SW1. Note that the curves calculated using the isotherm
model are independent of the type of gas in the bubbles

When SW1 reaches the barrier, a reflected shock SW2 is
formed. Figure 8 shows the reflection coefficientp2 /p1 as a
function of the intensityp1 /p0 of the penetrating shock
SW1, calculated using the adiabatic and isothermal model
Rakhmatulin for water with bubbles of nitrogen, helium, a
hydrogen with different volume concentrations of the gas
the mixture. As can be seen from Fig. 8, the pressure in
shock reflected from the barrier according to the adiab
model depends substantially on the type of gas filling
bubbles, while the pressure difference behind the reflec
shock is greater for higher gas concentrations in the liqu
By contrast, the shape of the curves calculated using
isothermal model does not depend on the type of gas in
bubbles.

CONCLUSION

In this paper it has been shown that when model
shock wave phenomena in bubbly liquids under conditio
of developed heat transfer between the gaseous and li
fractions, which favors the breakup of bubbles in the sho
it is necessary to use an isothermal model for the disper
medium. In the case of inhibited heat transfer between
fractions, however, better results are obtained with an a
batic model. The latter is also appropriate for modeling
action of short, high-power pressure pulses on bubbly
uids. For very low gas concentrations in the liquid, he
transfer processes have little effect on the shock parame
so the results of calculations employing both models
similar.

FIG. 8. p2 /p1 as a function ofp1 /p0 for water with bubbles of nitrogen
helium and hydrogen according to the adiabatic~1–3! and isothermal~4!
models forag050.01; ~1 8–4 8! for ag050.1.
-
n
n
f

al

of

n
e

ic
e
d
.
e
e

g
s
id

k,
n
e

a-
e
-
t
rs,
e

APPENDIX A:

Let two infinite masses of bubbly liquids with volum
gas concentrationsa (1)g0 and a (2)g0, respectively, meet a
the x50 plane at the initial time (t50). The pressure, ve
locity, and density in these media are constant and equa
p(1)0, u(1)0, r (1)0 andp(2)0, u(2)0, r (2)0, respectively. With-
out loss of generality, we shall assume thatp(1)0>p(2)0. It is
necessary to calculate the flow which develops fort.0.

It is known that if an arbitrary discontinuity is not
contact discontinuity or a shock wave, then it decays, for
ing either two shock waves, or a rarefaction wave and
shock wave, or two rarefaction waves.8 Let us look at these
cases in more detail.

Two shock waves.The system of equations for the shoc
wave on the right, which express the conservation of m
and momentum on passing through the shock front, toge
with the equation of state~14!, has the form

~r~2!12r~2!0!D ~2!15r~2!1u~2!12r~2!0u~2!0 ,

~r~2!1u~2!12 r~2!0u~2!0!D ~2!1

5p~2!11r~2!1u~2!1
2 2p~2!02r~2!0u~2!0

2 ,

r~2!0

r~2!1
5a~2!g0

x~2!gp~2!01p~2!1

x~2!gp~2!11p~2!0

1a~2!l0

x~2!l~p~2!01p* ~2!!1p~2!11p* ~2!

x~2!l~p~2!11p* ~2!!1p~2!01p* ~2!
.

~A1!

For the shock on the left we have an analogous sys
of equations,

~r~1!22r~1!0!D ~1!25r~1!2u~1!22r~1!0u~1!0 ,

~r~1!2u~1!22r~1!0u~1!0!D ~1!2

5p~1!21r~1!2u~1!2
2 2p~1!02r~1!0u~1!0

2 ,

r~1!0

r~1!2
5a~1!g0

x~1!gp~1!01p~1!2

x~1!gp~1!21p~1!0

1a~1!l0

x~1!l~p~1!02p* ~1!!1p~1!21p* ~1!

x~1!l~p~1!21p* ~1!!1p~1!01p* ~1!
.

~A2!

In Eqs. ~A1! and ~A2! the subscripts ‘‘1 ’’ and ‘‘ 2 ’’
denote values of the parameters of the mixture in the reg
of the contact discontinuity at its right and left, respective
At the contact surface the pressure and velocity do
change, so that the following matching conditions hold:

u~2!15u~1!25U, p~2!15p~1!25P. ~A3!

After transformation of Eqs.~A1!–~A3!, we obtain an
equation for calculatingP,

u~1!02u~2!05 f ~1!1~P!1 f ~2!1~P!, ~A4!

where
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f ~1!1~P!5F ~P2p~1!0!

r~1!0
S 12

a~1!g0~x~1!gp~1!01P!

x~1!gP1p~1!0

a~1!l0~x~1!l~p~1!01p* ~1!!1P1p* ~1!

x~1!l~P1p* ~1!!1p~1!01p* ~1!
D G1/2

,

f ~2!1~P!5F ~P2p~2!0!

r~2!0
S 12

a~2!g0~x~2!gp~2!01P!

x~2!gP1p~2!0

2
a~2!l0~x~2!l~p~2!01p* ~2!!1P1p* ~2!!

x~2!l~P1p* ~2!!1p~2!01p* ~2!
D G1/2

.

~A5!

The desired root of Eq.~A4! was calculated numerically
using a standard procedure for solving nonlinear equatio
A configuration with two shock waves occurs ifu(1)0

2u(2)0>U* , whereU* 5 f (2)1(p(1)0).
For the isothermal model, in place of Eq.~A5! one must

use the equations

f ~1!1~P!5F ~P2p~1!0!

r~1!0
S 12

a~1!g0p~1!0

P

2
a~1!l0~x~1!l~p~1!01p* ~1!!1P1p* ~1!!

x~1!l~P1p* ~ l !!1p~1!01p* ~1!
D G1/2

,

f ~2!1~P!5F ~P2p~2!0!

r~2!0
S 12

a~2!g0p~2!0

P

2
a~2!l0~x~2!l~p~2!01p* ~2!!1P1p* ~2!!

x~2!l~P1p* ~2!!1p~2!01p* ~2!
D G1/2

.

~A6!

Rarefaction wave and shock wave.If u(1)02u(2)0

,U* , then the flow consists of a rarefaction wave prop
gating leftward from the contact surface and a shock w
moving to the right. Equations~A1! hold for the latter. Given
that the Riemannr-invariant is constant in a rarefactio
wave, we have

u~1!02u~1!25E
p~1!0

p~1!2

f ~1!2~p!dp, ~A7!

where

f ~1!2~p!5
1

Ar~1!0

F a~1!l0

g~1!l~p1p* ~1!!
S p~1!01p* ~1!

p1p* ~1!
D

1

g~1!l

1
a~1!g0

g~1!gp
S p~1!0

p
D

1

g~1!gG 1/2

.

After a number of transformations, Eqs.~A1!, ~A3!, and
~A7! yield an equation for calculating the pressureP at the
contact surface,

u~1!02u~2!05E
p~1!0

p

f ~1!2~p!dp1 f ~2!1~P!, ~A8!
s.

-
e

which, as in the case of a flow with two shock waves,
solved numerically. This configuration occurs in the ca
where

U** <u~1!02u~2!0,U* ,

where

U** 5E
p~1!0

p~2!0
f ~1!2~p!dp.

Two rarefaction waves.If u(1)02u(2)0,U** , then a
flow with two rarefaction waves develops. Equation~A7! is
valid for the rarefaction wave on the left. For the rarefacti
wave on the right, it is necessary to use the conserva
condition for the Riemanns-invariant,

u~2!02u~2!15E
p~2!1

p~2!0
f ~2!2~p!dp, ~A9!

where

f ~2!2~p!5
1

Ar~2!0

F a~2!l0

g~2!l~p1p* ~2!!
S p~2!01p* ~2!

p1p* ~2!
D

1

g~2!l

1
a~2!g0

g~2!gp
S p~2!0

p
D

1

g~2!gG 1/2

.

After transforming Eqs.~A7! and ~A9!, and using Eq.
~A3!, the equation for calculatingP takes the form

u~1!02E
p~1!0

P

f ~1!2~p!dp5u~2!01E
p~2!0

P

f ~2!2~p!dp.

If we set a (1)l05a (2)l050 in the above formulas, then
we obtain the classical problem of the decay of an arbitr
discontinuity in an ideal gas. Then the integrals in the go
erning equations redue to quadratures, and the resulting
pressions are exactly the same as in Ref. 9. There is
another class of problems in which the integrals can be
duced to quadratures, and this is the problem of the deca
an arbitrary discontinuity in a gas–liquid medium consisti
of a binary mixture of an ideal gas and an incompressi
liquid. This variant has been studied in detail elsewhere.14 In
other cases, the integrals are calculated numerically.
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~1990!, 248 pp.

4I. J. Campbell and A. S. Pitcher, Proc. R. Soc. London Ser. A243, 534
~1958!.

5B. E. Gel’fand, S. A. Gubin, S. M. Kogarkoet al., Inzh.-Fiz. Zh.31, 1080
~1976!.

6B. E. Gel’fand, S. A. Gubin, and E. I. Timofeev, Izv. Akad. Nauk SSS



s

-

1287Tech. Phys. 43 (11), November 1998 V. S. Surov
Mekh. Zhidk. Gaza No. 2, 174~1978!.
7Kh. A. Rakhmatulin, Prikl. Mat. Mekh.33, 598 ~1969!.
8S. K. Godunov~Ed.!, Numerical Solution of Multidimensional Problem
in Gas Dynamics@in Russian#, Nauka, Moscow~1976!, 400 pp.

9B. L. Rozhdestvenski� and N. N. Yanenko,Systems of Quasilinear Equa
tions @in Russian#, Nauka, Moscow~1978!, 688 pp.

10V. E. Nakoryakov, B. G. Pokusaev, I. R. Shre�ber et al., in Wave
Processes in Two-Phase Systems@in Russian#, Novosibirsk ~1975!,
pp. 54–97.
11B. E. Gel’fand, S. A. Gubin, S. M. Kogarkoet al., Izv. Akad. Nauk SSSR,
Mekh. Zhidk. Gaza No. 4, 53~1975!.

12B. E. Gel’fand, S. A. Gubin, R. I. Nigmatulinet al., Dokl. Akad. Nauk
SSSR235, 292 ~1977! @Sov. Phys. Dokl.22, 357 ~1977!#.

13R. B. Eddington, AIAA J.8, 65 ~1970!.
14V. S. Surov, Teplofiz. Vys. Temp.34, 285 ~1996!.

Translated by D. H. McNeill



TECHNICAL PHYSICS VOLUME 43, NUMBER 11 NOVEMBER 1998
Ozone production in supersonic nozzles
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Ozone production during the efflux of oxygen from a supersonic nozzle is studied theoretically
and experimentally. The formation kinetics of atomic oxygen in an electrical discharge in
the nozzle is analyzed. An experiment is set up using an optimized nozzle with an electrical
discharge in its supersonic section. It is shown that the highest ozone content at the
nozzle output is attained when the excess concentration of oxygen atoms is produced in the
supersonic section of the nozzle. ©1998 American Institute of Physics.
@S1063-7842~98!00411-5#
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INTRODUCTION

The standard method for generating ozone consist
using continuous-flow discharge systems~ozonators! in
which ozone is produced by the recombination of oxyg
that has been partially dissociated in the discharge.1 Despite
the advantages of this method~simplicity, economy!, ques-
tions still remain about increasing the yield of O3 molecules
per unit mass of feed gas~oxygen, air, mixtures of oxygen
and inert additives! and raising the productivity of the ozo
nator. Appropriate gas dynamic control of the flow para
eters using profiled nozzles opens up additional possibilit
In particular,2 it has been shown that in the cooling of pa
tially dissociated oxygen at temperatures of the order of 1
K in a supersonic nozzle, ozone is produced at concen
tions many orders of magnitude greater than the equilibr
value. The values estimated2 for the absolute concentratio
of ozone, however, were below 1013 cm23, or much lower
than those obtained under ordinary conditions. The prob
of optimizing the supersonic part of the nozzle and the
rameters of the gas in front of it so as to obtain maxim
ozone yield in the equilibrium heating of oxygen mixed wi
an inert additive before entering the nozzle has been po
and solved previously.3 Although the ozone concentration
were estimated to be as high as 1015–1016 cm23, it became
clear at the same time that it would be difficult to obtain
sufficiently high ozone yield with this scheme.3 At low initial
temperatures of the gas mixture the initial equilibrium co
centration of O atoms and, hence, the relative concentra
of the O3 product molecules are low, while at high temper
tures it is difficult to generate ozone.

A situation in which an excess concentration of atom
oxygen is created at the nozzle inlet or in its superso
section ~for example, by an electrical discharge! has been
examined.4,5 It was shown that the greatest effect is achiev
when the excess oxygen concentration is created in the
personic section of the nozzle.
1281063-7842/98/43(11)/6/$15.00
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In this paper, this approach is developed further
analyzing a wider range of initial temperatures in front of t
nozzle inlet ~lowering the gas temperature in front of th
nozzle to room temperature! and examining the kinetics o
atomic oxygen production in an electrical discharge in
nozzle, as well as by setting up an experiment using an
timum nozzle profile and creating an electrical discharge
its supersonic section. The task of this paper is to search
the optimum nozzle characteristics, gas parameters, an
particular, the optimum O atom concentrations which w
ensure the highest yield of ozone, and to create an exp
mental model of such an ozonator based on this search.

OPTIMIZING THE PARAMETERS OF A GAS DYNAMIC
OZONATOR

The chemical reaction model used in this work has be
described in detail elsewhere.4 Also shown there is a com
plete set of reaction rate constants with a justification
choosing these reactions.

In solving the optimization problem, we examined
class of plane, wedge-shaped nozzles with~different! open-
ing half anglesQ, throat heigtsh* , and lengthsL. It was
assumed that after expansion in such a nozzle, the gas
enters a plane-parallel channel of lengthL1 and that at the
junction of the nozzle with the plane channel the profile w
rounded off to avoid shock wave formation in the pla
channel. We optimized the system to obtain a maximum m
lar concentration of ozone,j3. If a fixed set of values of the
initial pressurep0 is used, then the optimization paramete
will be j1, j18 , j2, T0, a, L, L1, andl 8, wherej1 andj18 are
the molar fractions of O atoms in front of the nozzle inl
and immediately after the concentration jump at the sup
sonic section of the nozzle,j2 is the concentration of O2
molecules in front of the nozzle inlet,T0 is the initial gas
temperature,a52tanQ/h* , and l 8 is the distance from the
geometrical throat to the jump in the concentrations of O a
O2. At the jump the conditionsg11g25g181g28 are satis-
8 © 1998 American Institute of Physics



ofi

c-
he

f

nd
nt
ha
rc
th
o
io
-
rs

e
(

ile
e

n
re
re
o

n

ab
ni
s
a
i

e

ge

re

f

e
or

in
%)

for
are

to
of

re
ch

of

nd

1289Tech. Phys. 43 (11), November 1998 Gordeev et al.
fied, whereg18.g1. Hereg1, g2, g18 , andg28 are the mass
fractions of oxygen atoms and molecules in front of~without
a prime! and after~with a prime! the jump. The subsonic
section was not optimized and was treated as a fixed pr
with a radius of curvatureR52h* . The optimum was
sought using the method of configurations.6

It has been shown4 that the main effect on ozone produ
tion is from the jump in the concentration of O atoms in t
supersonic section of the nozzle. Forp0510 atm and
T05827 K, and with a nozzle profile havinga54.64 cm21,
l 850.97 cm, andj1857.86%, the optimum molar fraction o
ozone wasj351.905%.

Note that the optimum conditions of Ref. 4 correspo
to injecting a rather hot gas at a temperature of 827 K i
the nozzle. However, by using an optimization technique t
offers a combination of random and deterministic sea
variants we were able to observe a second maximum in
gas dynamic ozone generator. The existence of a sec
maximum is evident in Fig. 1. Here the ozone concentrat
~relative units! is plotted as a function of the initial tempera
tureT0 from 300 to 1300 K, while the remaining paramete
correspond to the above conditions withp0510 atm and
T05827 K. In Fig. 1 a concentration of unity is taken to b
the ozone concentration under these conditionsj3

51.905%). AsT0 is reduced from the optimum (T05827
K!, the ozone concentration falls off substantially because
heating of the flow owing to recombination reactions, wh
the lengthL1 of the plane-parallel segment and the oth
parameters will no longer be optimal forT0,827 K. At tem-
peraturesT0,500 K, however, the ozone concentratio
again begins to rise and this continues until temperatu
T0>300 K. Thus, the nonmonotonicity of the temperatu
dependence in the presence of a jump in the atomic O c
centration leads to an additional peak in the concentratio
ozone molecules for low initial temperaturesT0. In this re-
gard, a search was undertaken to find the most favor
conditions for ozone molecule formation in a superso
nozzle at low initial temperaturesT05300 K and pressure
p052 atm. In addition, the statement of the problem w
simplified through the assumption that there is one jump
the atomic O concentration, which occurs only in the sup
sonic section of the nozzle (j150), and that there is no
plane-parallel section of the nozzle~i.e., L150). Therefore,
the search for an optimum was carried out for a wed
shaped nozzle with parametersa, L, l 8, andj18 . The results

FIG. 1. Ozone concentration as a function of initial gas pressure.
le

o
t

h
e

nd
n

of

r

s

n-
of

le
c

s
n
r-

-

of solving this problem are shown in Table I. Shown the
are the optimum values of the parametersa, L, l 8, andj3 for
five fixed values ofj18 ~variantsn51, . . . ,5). It turned out
that forL.5 cm, in all casesj38 is essentially independent o
L, so the data in the table are given forL55 cm. It is clear
from Table I that the best values ofa and l 8 also change
slowly asj18 is raised. The optimum condition for the entir
set of parameters corresponds to the tabulated data fn
55. These data and, in particular,j353.39% are consider-
ably better than the characteristics of the first maximum
the distribution of the product ozone concentration (1.905
observed when hot oxygen is injected into the nozzle.

Note that the main chemical processes responsible
the kinetics of ozone production under these conditions
the reactions

mj50.5 mj52.0

O1O1M→O21M ~M5O2!11.9%23.7%, ~1!

O1O21M→O31M ~M5O2!26.2%12.1%, ~2!

O1O21M→O31M ~M5O!20.2%10.3%. ~3!

Here we have indicated the deviations inj3 as a reaction
rate constant of the formK j5mjK j

0 is varied to the right of
the reactions. The first column of numbers corresponds
mj50.5 ~i.e., to a reduction in the rate constant by a factor
two! and the second, tomj52. When the other constants a
varied, the deviation in the ozone concentration is mu
smaller.

Figure 2 shows the distribution of the concentration

TABLE I. Optimizing the parameters of a nozzle ozonator.

n j18 , % a, cm21 l 8, cm L, cm j3, %

1 0.50 0.63 0.64 5.0 0.49
2 1.00 0.64 0.64 5.0 0.96
3 2.00 0.65 0.71 5.0 1.85
4 4.00 0.67 0.73 5.0 3.18
5 4.92 0.70 0.95 5.0 3.39

FIG. 2. Distributions of~a! the concentrations of the main components a
~b! the gas temperature along the nozzle.
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the major components and temperatureT along the nozzleS
~dashed curve! for the casen52 (j1851%) from Table I.
The vertical line in Fig. 2 corresponds to the plane of t
jump in the atomic O concentration. Under these conditio
essentially all the excess concentration of O atoms goes
the formation of ozone molecules through recombinat
O1O21M→O31M and only a small fraction goes into th
formation of O2 molecules. It is clear that recombination, o
the whole, leads to a small increase of 30–40 K in the te
perature behind the jump, so that the ozone product m
ecules are not broken up.

The reasons for this behavior of the system are hidde
the way the rate constants for these reactions depend o
temperature~Fig. 3!. It is clear from Fig. 3~curve4! that the
rate constant for loss of O3 molecules in the exchange rea
tion

O1O3→O21O2 ~4!

is small, while the rate constants for reactions~1! and ~2!,
which remove O atoms as O2 and O3 molecules, are such
that at low concentrations of atomic O, the main loss chan
is reaction~2!. Thus, forT'200 K ~the characteristic tem
perature of the gas in the nozzle forT05300 K!, K151.72
31015 cm6/mol2s andK254.131014 cm6/mol2s. The rates
of the corresponding reactions areW1'K1j1j1 and W2

'K2j1j2, so

W2 /W15K2j1j2 /K1j1j15K2 /K1j1>0.24/j1 ~5!

~for T5200 K andj251).
Therefore, for low atomic O concentrations, for e

ample, whenj1,0.024, the ratio of the reaction rate
W2 /W1>10, i.e., under these conditions almost all the
atoms are expended in ozone production.

PRODUCTION OF ATOMIC OXYGEN IN A NOZZLE
OZONATOR WITH AN ELECTRICAL DISCHARGE

As shown in Ref. 4, the optimum from the standpoint
a maximum ozone yield in a nozzle ozonator with an el
trical discharge is to generate the atomic oxygen in the

FIG. 3. The rate constants for reactions~1!–~4! as functions of gas tempera
ture (K1, K2, andK3 in cm6/mol2s, K4 in cm3/mol2s!.
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personic section of the nozzle. Then, as the above ana
@see Eq.~5!# shows, in order for almost all the oxygen atom
formed in the discharge to be consumed in ozone produc
~the optimum regime!, their concentration should not excee
j1'0.024. On the other hand, a large~by more than an orde
of magnitude! reduction in their concentration degrades t
nozzle ozonator’s productivity. We have, therefore, eva
ated the feasibility of attaining these concentrations of
atoms in a discharge in the supersonic section of the noz

The concentration~molar fraction! of atomic oxygen
formed in a discharge in the region between the electro
was estimated in the following way. In a gaseous discha
oxygen molecules are dissociated primarily by electron
pact in the following reactions: direct electron impact diss
ciation of the molecule:

e1O2→e1O1O, ~6!

dissociation through excitation of electronic levels of t
molecules lying above the dissociation threshold, with a s
sequent transition to dissociating terms:

e1O2→e1O2*→e1O1O, ~7!

where O2* is a molecule excited into a suitable electron
state, and dissociative attachment of electrons to oxy
molecules:

e1O2→O1O2. ~8!

In order to find the rate constants for these reactions
the reduced-fiel d approximation, the electron energy dis
bution function f («) was calculated from the Boltzman
equation7

E2

3

«

(1N1sml~«!

d f~«!

dt
1(

1

2m

M1
N1«2sml~«!•F f ~«!

1
kBT

e

d f~«!

d« G1(
1

N1B«s rot~«!•F f ~«!1
kBT

e

d f~«!

d« G
52(

1
N1(

i j
E

«

«1« i j
s l i j ~«8!«8 f ~«8!d«8. ~9!

HereE is the electric field strength,« is the electron energy
sml is the transport scattering cross section for electrons
oxygen atoms and molecules,N1 is the concentration of mol-
ecules~atoms!, m1 andM1 are the masses of an electron a
of a molecule~atom!, respectively,kB is Boltzmann’s con-
stant,e is the electronic charge,B is the rotational constant
s rot are the cross sections for rotational excitation of t
molecule,s l i j are the cross sections for vibrational excitati
of the molecules and electronic excitation of the atoms a
molecules by electron impact, and« i j is the threshold for the
corresponding excitation reaction. The cross sections w
taken from the literature.8–11 The correctness of the calcu
lated f («) was verified by the usual method12 of comparing
the variation in the drift velocityvdr(E/N) and characteristic
electron temperatureTch(E/N) within the range ofE/N con-
sidered here with published data.13

The rate constants for the reactions were found using
formula
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ki j ~E/N!5A2/mE
0

`

s i j ~«!« f ~«!d«. ~10!

Since the electric field in the region between the el
trodes in the supersonic section of the nozzle is nonunifo
calculations were done over a wide range ofE/N, from
5310216 to 1.5310215 Vcm2. The rate constants of reac
tions ~6!–~8! for these measurement conditions are plotted
Fig. 4. The excited states corresponding to the different
sociation channels in reaction~7! are also indicated there.

The electron densityne in the discharge region was e
timated for typical values of the discharge curre
I 525–150 mA using Ohm’s law

j 5enevdr , ~11!

wherej is the current density.
For an electrode area of the order of, say, 2 cm2, the

range of variation in the electron density for the given ran
of E/N is roughlyne53.43109–4.031010 cm23 according
to these estimates.

The products of the reactions within the discharge
removed by the gas flow in the nozzle over short tim
t5d/V<20 ms (d is the size of the electrode along the flo
andV;500 m/s is the flow velocity in the gap between t
electrodes!, so that the reverse reactions and the effect
vibrationally excited molecules were neglected in the cal
lations. Then the molecular fraction of atomic oxygen ge
erated in the discharge can be estimated from the follow
expression:

FIG. 4. Rate constants of the reactions leading to formation of atomic o
gen by electron impact as functions ofE/N: curve1, reaction~6!; curve2,
reaction~7!, A3Su

1 state; curve3, reaction~7!, B1Sg
2 state; curve4, reaction

~7!, the group of levels with a threshold of 9.9 eV; curve5, reaction~8!.
-
,

n
s-

t

e

e
s

f
-
-
g

j152E
0

t

(
r

krnej2dt1E
0

t

k8nej2dt, ~12!

where the sum overr refers to reactions~6! and~7!, in which
two oxygen atoms are formed, andk8 is the rate constant fo
reaction~8!.

The negative ion O2 formed in reaction~8! does not
directly lead to formation of an oxygen atom. Estimates
ing Eq. ~12! give an atom concentration@O]55.331014

–1.231016 cm23 (j150.012–0.262%!. It should be noted
that for specific calculations the Boltzmann equation~9!
must be solved simultaneously with the balance equati
for charged and excited particles, as has been done p
ously for nitrogen14 and oxygen.15 Nevertheless, these est
mates showed that the molar fractions of atomic oxyg
which can be obtained in a discharge in the supersonic
tion of the nozzle are close to the optimum values obtain
above for a nozzle ozonator.

The presence of a second maximum in the ozone p
duction curve corresponding to injecting a gas at tempera
T05300 K into the nozzle, together with the above estima
of the concentration of O atoms in a discharge, has led to
initiation of a series of experiments in which molecular ox
gen at room temperature is fed in from a nozzle in a g
dynamic generator, while the atoms required to produ
ozone are created with the aid of an electrical discharge
the supersonic section of the flow, as proposed before
Refs. 4 and 5.

EXPERIMENT. TECHNIQUE AND RESULTS

The experiments were done on the apparatus illustra
schematically in Fig. 5. Molecular oxygen at a pressure
1–10 atm was supplied from a cylinder to the inlet of
plane, wedge-shaped supersonic nozzle with a wedge a
of 10° and a throat height of 0.4 mm. The length and wid
of the nozzle were 100 and 15 mm, respectively. The ou
section of the nozzle was pumped constantly by a rough
pump with a speed of 20 liter/s.

A steady-state, transverse dc discharge was ignited a
tance of 10 mm from the throat in the supersonic section
the nozzle. The upper and side walls of the nozzle were m
of quartz glass and the lower wall, of steel. In the upp
plane, 9 tungsten electrodes were mounted in staggered
der, with each supplied by a separate ballast resistance
nected to the power supply.

The discharge current was varied overI 524–150 mA,
and the voltage to the electrodes was 0.8–1 kV. The mole
lar oxygen concentration in the supersonic section of
nozzle in the region between the electrodes ranged f
5.631018 to 4.431018 cm23 along the gas flow.

The amount of ozone in the flow from the nozzle w
determined by iodometric titration. Table II lists the me
sured ozone concentration for different discharge curre
One can see a linear dependence of the ozone yield on
energy input for moderate currents~70–80 mA!, but a the
discharge current is raised further, the ozone concentra
saturates. The maximum ozone content in the flow un
these conditions was 0.3%. The above estimates of the m

y-
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FIG. 5. Conceptual diagram of a nozzle ozonator employing an electrical discharge:1 — cylinder of oxygen,2 — nozzle ozonator,3 — electrodes,4 —
ballast resistors,5 — potassium iodide cell.
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fraction of atomic oxygenj1 formed in the discharge are als
shown in Table II. Evidently, for high discharge curren
condition ~5! is satisfied, when essentially all of the oxyge
atoms are expended in ozone formation. In this case,
measured and calculated molar fractions of ozone are
good agreement.

When the inlet pressure was changed from 1 to 10 a
the relative concentration of ozone hardly changed. The o
gen feed rate for this nozzle is of order 1.57p0~atm! g/s. For
an inlet gas pressure ofp0510 atm, the feed rate is 15.7 g/
so the ozone concentration is 6.4 g/m3 , and the measured
and calculated molar fractions of ozone are in good ag
ment with each other.

It is clear that the productivity of the ozonator can
increased substantially by raising the initial gas pressurep0.
It should be noted that the reduced electric field between
electrodes corresponds roughly to the value where a la
fraction of the energy of the discharge electrons is expen
in reactions~7!.8

CONCLUSION

In order to estimate the efficiency of the device d
scribed here, we have made a comparative analysis of in
trial and semi-industrial equipment for ozone productio
The generally accepted parameters characterizing the

TABLE II. Volume concentration of product ozone as a function of d
charge power.

Run j3, % j1, %
No. I , mA P, W ~experiment! ~calculation!

1 24 19 0.12 0.042
2 50 40 0.17 0.090
3 75 60 0.24 0.134
4 150 120 0.3 0.262
e
in

,
y-

e-

e
ge
d

-
s-
.
ffi-

ciency of ozonators are: the specific output per unit discha
area~g/h•dm2), the specific energy expenditure for electric
synthesis~kW/h•kg!, and the ozone yield per unit mass
the ozonator~g/kg!. However, given the fundamental desig
differences between conventional ozonators, which cust
arily use a cylindrical discharge geometry, and the dev
described here, it is reasonable to introduce the spe
ozone output per unit volume of the reactor, relative to
gas feed rate. Table III lists the comparative characteris
of several industrial and semi-industrial devices for ozo
production. The best parameters at present are those of
ozonator under development at Moscow State University
is evident from Table III that that ozonator is inferior to th
one described here. The studies done in this paper show
it is possible to obtain a specific output per unit reactor v
ume exceeding that of the ozonator of Ref. 1 by a factor o
The specific output relative to the oxygen feed rate exce
that of the ozonator of Ref. 1 by a factor of 20. The very hi
ozone yield per unit mass of the reactor is noteworthy.

In the nozzle ozonator described here the calculated t
perature in the reaction zone is270 °C. It should be noted
that in a nozzle, low temperatures are automatically ma
tained because of the flow is expanding. This makes it p
sible to avoid forced cooling, so the design of the ozonato
simpler and it is smaller. Furthermore, further expansion
the flow along the nozzle reduces the collision frequency
the molecules and, thereby, reduces the probability of dis
ciation of the ozone formed in the discharge. It should
noted, however, that there are at least two problems rel
to delivering the product ozone to the site where it will
used. First, there are reactions in the discharge afterg
which can reduce its concentration. Second, as the flow
slowed down, the gas is heated and this leads to a drop in
ozone concentration.

Further improvement of the ozonator described here w
involve optimizing the gas composition and the nozzle p
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TABLE III. Comparative characteristics of some types of ozonators.

Specific Ozone Frequency
Gas Ozone Specific yield rela- yield per of dis-

Ozonator feed concen- Ozone Energy yield per tive to gas unit mass cha
Type of mass, Volume, rate, tration, yield, cost, unit vol, flow rate, of ozona- curre
resonator kg m3 m3/h g/m3 g/h kWh/kg g3/h•m3 g/h•m6 tor, g/kg Hz

OPCh-61, 1876 — 100 12.5 10 000 13 — — 5.4 2400
USSR

OP 121, 170 — — 20 1600 22 — — 0.95 50
USSR

USA Patent — — — 14 450 2.2 — — — 10 000
No. 4016060

‘‘Treilingas’’ 3000 — — 18 2016 12 — — 0.67 1000
Unit-76,
France

Single-tube 25 1.431023 16.3 30 490 5.3 3.43105 2.13104 19.6 3000
rf ozonator,
Moscow State
Univ., Russia

Nozzle ozona- 0.2 1.531025 40 6.4 25 5.3 1.73106 4.23105 1700 dc dis-
tor, Inst. of charge
Mechanics,
Moscow State
Univ., Russia
th

re
so

.
nd

1-

-

88

k.

a
n

69
file, as well as the type and energy characteristics of
electrical discharge.

The experimental results and numerical calculations p
sented here demonstrate the prospects for using super
nozzles in ozone production.
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Poiseuille problem for an ellipsoidal-statistical equation and nearly specular boundary
conditions
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An analytical solution of the Poiseuille problem is obtained over a wide range of Knudsen
numbers for the case when the tangential momentum accommodation coefficients of the channel
walls are much less than unity. An expression for the mass flux is derived that is valid for
Knudsen numbers much smaller than the reciprocal of the accommodation coefficients. A new
intermediate flow regime, for which the mass flux is given by an expression that differs
from the classical~macroscopic! form, is found to exist. ©1998 American Institute of Physics.
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For the case when the tangential momentum accom
dation coefficients of the channel walls are much sma
than unity, we have obtained an analytical solution ove
wide range of Knudsen numbers. We have derived an
pression for the mass flux in the channel as a function of
pressure gradient and the channel dimensions. This exp
sion is valid for Knudsen numbers much smaller than
reciprocal of the accommodation coefficients. Thus, the s
dard macroscopic theory of gas flows in channels, valid
Kn!1, has been generalized to the case 1!Kn!q, where
q5max(q1 ,q2). We show that there exists a new interm
diate flow regime forq!Kn!1 in which the expression fo
the mass flux differs from the classical~macroscopic! form.

1. In recent years there has been heightened intere
problems regarding the motion of gases in channels.1–4 As a
rule, purely diffuse boundary conditions are considered. O
exception is the case of the analytical solution to the prob
of electron behavior in a metal layer for specular bound
conditions.3,4 Purely specular boundary conditions, howev
usually lead to a trivial result in the kinetic theory of gase
At the same time, interest in problems with a restricted
ometry is currently increasing. Thus, the plane Poiseu
problem has been examined5 in an almost continuous regim
with first- and second-order slip. The Poiseuille problem
a cylindrical pipe has been solved numerically.6 Gas flows in
a layer have been examined7, as in Ref. 6, by expanding in
Neumann series. In all these papers, purely diffuse boun
conditions were used. The opposite case of nearly spec
boundary conditions has not been studied. The purpos
the present paper is to fill this gap.

Two methods, the Wiener–Hopf and Case methods,8 are
customarily used for solving boundary value problems a
lytically. The latter has the advantage of providing a dis
bution function, as well as the values of the macrosco
parameters. In this paper we use Case’s method. In Re
and 4, the Case approach was used to develop a metho
solving kinetic problems for layers with specular bounda
conditions. In this paper, this method is generalized to
case of nearly specular boundary conditions. We conside
1291063-7842/98/43(11)/5/$15.00
o-
r
a
x-
e

es-
e
n-
r

-

in

e
m
y
,
.
-
e

r

ry
lar
of

-
-
ic
. 3
for

e
he

classical Poiseuille problem of a gas flow in a plane chan
driven by a pressure gradient. An analytical solution of t
problem is obtained over a wide range of Knudsen numb
for tangential momentum accommodation coefficients mu
smaller than unity. An ellipsoidal-statistical model for th
kinetic equation is used which yields the correct Pran
number.

2. Let us consider a plane channel of widthL52d, in
which a longitudinal pressure gradient is maintained. W
shall assume that the gas flow in the channel is station
We shall describe the kinetics of the process using a Bo
mann equation with an ellipsoidal model for the collisio
integral.9 Let us introduce a system of coordinates cente
on the middle of the channel with thex axis perpendicular to
the wall. Let thez axis be directed along the pressure gra
ent. We assume that the process is isothermal. We shal
sume that the relative pressure drop over the mean free
is small. In this case, the problem can be linearized an
distribution function of the formf 5 f 0(11h) can be sought.
Here

f 05n~z!~m/2kT!3/2exp@2mv2/2kT#,

wheren is the concentration of gas molecules,m is the mo-
lecular mass,T is the temperature,v is the molecular veloc-
ity, k is the Boltzmann constant, and the functionh is a linear
correction to the local equilibrium functionf 0 .

For this problem, the ellipsoidal-statistical equation c
be written in the form

vx

]h

]x
1vz

] lnn

]z
5nF m

kT
vzU22S m

2kTD 2

vxvzPxz2hG . ~1!

Here

U5S m

2p kTD 3/2E expF2
mv2

2kTGvzhd3v,

Pxz5S m

2p kTD 3/2E expF2
mv2

2kTGvxvzhd3v,
4 © 1998 American Institute of Physics
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and n is a constant having the physical significance o
collision frequency.

We introduce the dimensionless variablesC5Abv,
U85AbU, x85Abnx, d85Abdn, and b5m/2kT. In the
following we shall omit the primes onU8, x8, andd8. Then
Eq. ~1! can be rewritten in the form

Cx

]h

]x
1h1CzK52p23/2E e2C82

CzCz8~12CxCx8!hd3C8,

~2!

where

K5
] lnn

]z
.

The diffuse–specular boundary conditions on the fu
tion h have the following form:

h~2d,C!5~12q1!h~2d,C22n1 ,C!, Cx.0,

h~d,C!5~12q2!h~d,C22n2C!, Cx,0. ~3!

Here q1 and q2 are the tangential momentum accommod
tion coefficients~the specular coefficients! for the lower and
upper surfaces, respectively, andn1 andn2 are the unit vec-
tors normal to the lower and upper surfaces, directed tow
the interior of the channel. It is clear from the form of Eq.~2!
and the boundary conditions~3! that h can be sought in the
form h5vzc(x,m), where m5vx . Then Eq. ~3! can be
transformed to the equation

m
]c

]x
1c~x,m!1K5

1

Ap
E

2`

`

e2m82
~12mm8!c~x,m8!dm8.

~4!

The boundary conditions~3! for the functionc can be
rewritten as

c~2d,m!5~12q1!c~2d,2m!, m.0,

c~d,m!5~12q2!c~d,2m!, m,0. ~5!

It is easy to verify that the particular solution of Eq.~4!
is the function

c0~x,m!5KF3

2
x222xm12m21a01a1S x2

2

3
m D G ,

wherea0 anda1 are arbitrary constants.
3. We shall seek a solution of the homogeneous equa

corresponding to Eq.~4! in the form

ch~x,m!5expS 2
x

h DF~h,m!

with the condition

E
2`

`

e2m82
F~h,m8!dm8[1. ~6!

We obtain the characteristic equation

~h2m!F~h,m!5
1

Ap
h. ~7!
-

-

rd

n

For 2`,h,1`, we take a solution of Eqs.~6! and
~7! in the space of generalized functions10

F~h,m!5
1

Ap
h P

1

h2m
1eh2

l~h!d~h2m!.

Here the symbolPx21 denotes the distribution — the prin
cipal value of the integral ofx21, d(x) is the Dirac delta
function, andl(z) is the dispersion function given by

l~z!511
1

Ap
zE

2`

`

e2t2 dt

t2z
.

We construct the general solution of the homogene
equation corresponding to Eq.~4!, in the form of an expan-
sion in the eigenfunctionsF(h,m), of the characteristic
equation~7!,

cc~x,m!5E
2`

`

e2x/hF~h,m!a~h!dh, ~8!

where the functiona(h) is referred to as the continuum
spectrum coefficient.

Let us substitute the general solution of Eq.~4!
C(x,m)5c0(x,m)1cc(x,m) in the boundary conditions
~5!. We then obtain

@cc~2d,m!2cc~2d,2m!#1q1cc~2d,2m!

52@c0~2d,m!2c0~2d,2m!#

2q1c0~2d,2m!, m.0, ~9!

@cc~d,m!2cc~d,2m!#1q2cc~d,2m!

52@c0~d,m!2c0~d,2m!#2q2c0~d,2m!,

m,0. ~10!

Note that

c0~d,m!2c0~d,2m!52KS 22dm2
2

3
a1m D ,

cc~x,m!2cc~x,2m!5E
2`

`

F~h,m!@e2x/ha~h!

2ex/ha~2h!#dh.

From the conditions~9! and~10!, we obtain the integral
equations

E
2`

`

F~h,m!@ed/ha~h!2e2d/ha~2h!#dh

1q1E
2`

`

e2d/hF~h,m!a~2h!dh

5mw1~d,q1!2q1w2~m,d!, m.0, ~11!
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E
2`

`

F~h,m!@e2d/ha~h!2ed/ha~2h!#dh

1q2E
2`

`

ed/hF~h,m!a~2h!dh

5mw1~2d,q2!2q2w2~m,2d!, m,0. ~12!

Here

w1~d,qi !52KS 2d1
2

3
a11qid2

1

3
qia1D ,

w2~m,d!5KS 3

2
d21a02a1d12m2D .

The first integrals on the left-hand sides of Eqs.~11! and
~12! are odd functions ofm. Let us assume thatq1 andq2 are
small, i.e.,qi!1, wherei 51,2. For a wide channel, wher
Kn5 l /2d!1 (l is the mean free path of the molecules!, the
second integrals on the left of Eqs.~11! and ~12! can be
neglected. In fact, the two integrals are related through
collision integral of Eq.~4!, from which it is clear that their
ratio is of order Kn. Thus, the second integrals in Eqs.~11!
and ~12! are of orderqiKn relative to the first integrals. We
shall assume that the conditionqiKn!1, with i 51,2, is sat-
isfied. In this case, the second integrals on the left of E
~11! and~12! can, as we have said, be neglected. Thus, in
following we shall consider the equations

E
2`

`

F~h,m!@ed/ha~h!2e2d/ha~2h!#dh

5mw1~d,q1!2q1w2~m,d!, m.0,

E
2`

`

F~h,m!@e2d/ha~h!2ed/ha~2h!#dh

5mw1~2d,q2!2q2w2~m,2d!, m,0.

The left-hand sides of these equations are odd functio
Let us extend both equations over the entire axis, continu
their right-hand sides as odd functions. We obtain the eq
tions

E
2`

`

F~h,m!@ed/ha~h!2e2d/ha~2h!#dh

5mw1~d,q1!2q1w2~m,d! signm, 2`,m,1`,

E
2`

`

F~h,m!@e2d/ha~h!2ed/ha~2h!#dh5mw1~2d,q2!

1q2w2~m,2d! signm, 2`,m,1`.

4. Substituting the eigenfunctionsF(h,m) in these
equations and introducing the two auxiliary functions

N~z!5E
2`

`

h@ed/ha~h!2e2d/ha~2h!#
dh

h2z
, ~13!
e

s.
e

s.
g

a-

M ~z!5E
2`

`

h@e2d/ha~h!2ed/ha~2h!#
dh

h2z
, ~14!

we arrive at two Riemann boundary value problems

l1~m!@N1~m!2Apw1~d,q1!m#2l2~m!@N2~m!

2Apw1~d,q1!m#52q1w2~m,d! signm,

2`,m,1`, ~15!

l1~m!@M 1~m!2Apw1~2d,q2!m#2l2~m!@M 2~m!

2Apw1~2d,q2!m#5q2w2~m,2d! signm,

2`,m,1`. ~16!

Given the behavior of the functions in Eqs.~15! and
~16!, we obtain the general solutions of these problems,

N~z!52ApKF22d1
2

3
a11q1S d2

1

3
a1D Gz

2q1KS 3

2
d21a02a1dDc~z!

l~z!
22q1K

z1z2c~z!

l~z!
,

~17!

M ~z!52ApKF2d1
2

3
a12q2S d1

1

3
a1D Gz

1q2KS 3

2
d21a02a1dDc~z!

l~z!
12q2K

z1z2c~z!

l~z!
.

~18!

Here

c~z!5E
2`

`

~signm!me2m2 dm

m2z
.

Note thatN, M , andc are odd functions. In order fo
the solutions~17! and~18! to serve as the auxiliary function
N andM introduced in Eqs.~13! and ~14!, we eliminate the
simple pole at the pointz5` in the solutions~17! and~18!.
This is done by choosinga0 anda1 from the equations

ApF2d~22q1!1
a1

3
~22q1!G

2q1S 3

2
d21a02a1d12D50,

ApFd~22q2!1
a1

3
~22q2!G

1q2S 3

2
d21a01a1d12D50.

From these equations we find
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a052

4Apd1~q11q2!S 21
9

2
d222ApdD1q1q2S 3

Ap
d21D S 21

3

2
d22ApdD

S 3

Ap
d21D q1q21q11q2

,

a152
3d~q12q2!

S 3

Ap
d21D q1q21q11q2

.

d

at
5. We now calculate the mass flux in the channel,

J52dE
2d

d

j ~x!dx,

where

j ~x!5E mw f 0vy
2d3v

5r
1

Apb

1

2E2`

`

e2m2
c~x,m!dm5

r

Ab
J1

is the mass flux density and

J15
1

2Ap
E

2`

`

e2m2
c~x,m!dm

is the dimensionless mass flux density of the gas.
We have

E
2`

`

e2m2
c~x,m!dm5E

2`

`

e2m2
c0~x,m!dm

1E
2`

`

e2m2
dmE

2`

`

e2x/hF~h,m!dh

5ApKS 3

2
x2111a01a1xD

1E
2`

`

e2x/ha~h!dh.

Therefore, the mass flux of the gas is

J5
2dr

Ap
KF1

2
d31~11a0!dG1

2dr

Apb
E

2`

`

hsinh
d

h
a~h!d~h!.

From Eqs.~13!, ~17!, and ~14!, ~18!, respectively, we
have

2p ih~ed/ha~h!2e2d/ha~2h!!

52q1KS 3

2
d21a02a1d12h2D S c1~h!

l1~h!

2
c2~h!

l2~h!
D 22q1KhS 1

l1~h!
2

1

l2~h!
D ,
2p ih~e2d/ha~h!2ed/ha~2h!!

52q2KS 3

2
d21a01a1d12h2D S c1~h!

l1~h!
2

c2~h!

l2~h!
D

22q2KhS 1

l1~h!
2

1

l2~h!
D .

Subtracting the second equation from the first, we fin

4p ih@a~h!1a~2h!#sinh
d

h
522KhS 1

l1~h!
2

1

l2~h!
D

3~q11q2!1KS c1~h!

l1~h!
2

c2~h!

l2~h!
D

3Fa1d~q12q2!2S 3

2
d21a012h2D ~q11q2!G . ~19!

Note that

c1~h!

l1~h!
2

c2~h!

l2~h!
52Ap i

uhue2h2
t~2uhu!

l1~h!l2~h!
,

1

l1~h!
2

1

l2~h!
52

2Ap ihe2h2

l1~h!•l2~h!
,

where

t~h!5E
2`

`

e2t2 dt

t2h
. ~20!

Here we use the notation

gk5
1

pE2`

` uhuke2h2
t~2uhu!dh

ul1~h!u2
~k51,3!,

d5
1

pE2`

` h2e2h2
dh

ul1~h!u2
. ~21!

Numerical estimates show thatg1'1/Ap and g3

'3/(2Ap), and from the contour integration we find th
d'3/Ap. Using Eq~20! with the notation~21!, after inte-
grating Eq.~19! from 2` to 1`, we obtain
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E
2`

`

ha~h!sinh
d

h
dh5ApKH qd2

1

2F S 3

2
d21a0D

3g112g3Gq1
1

2
a1dpg1J ,

whereq5(q11q2)/2 andp5(q12q2)/2.
Therefore, the mass flux is given by

J5
2dr

Ap
KF1

2
d31~11a0!d1q~d2g3!

2q
1

2S 3

2
d21a0Dg11

1

2
pa1dg1G

or, in dimensional form,

J53
h

PF1

2S d

l D
3

1~11a0!
d

l
1q~d2g3!

2
1

2
qS 3

2S d

l D
2

1a0Dg11
1

2
pa1

d

l
g1G u¹Pu, ~22!

whereP is the gas pressure.
Let us consider the case of a wide channel, with a Kn

sen number Kn5 l /2d!1. We shall assume that the accom
modation coefficientsq1 and q2 are of the same order o
magnitude and, as before, writeq5(q11q2)/2. Two flow
regimes are possible in a wide channel. The first correspo
to the case Kn!q. Then the expression for the mass flu
takes the form~in dimensional variables!

J52
2r

3h
d3L

dP

dz
,

whereL is the transverse dimension of the channel.
-

ds

This formula is the same as the standard formula for
mass flux in a channel in the hydrodynamic limit.11

There is another gas flow regime, whenq!Kn!1. In
this case, the expression for the mass flux of gas takes
form

J52
8

q11q2

r

h
Ld2l

dP

dz
.

Therefore, for nearly specular boundary conditions, th
is a regime in which, despite the smallness of the Knud
number, the expression for the mass flux of gas in a chan
differs from the hydrodynamic formula. The transition to th
purely hydrodynamic regime occurs under the stronger c
dition Kn!q.
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Nonstationary interaction of a supersonic flying object with extended low-density
regions in the atmosphere
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Russian Federal Nuclear Center, 607190 Saratov, Nizhni� Novgorod Region, Russia
~Submitted June 26, 1997!
Zh. Tekh. Fiz.68, 32–37~November 1998!

A three-dimensional numerical model is developed and the aerodynamic loads are determined for
the three-dimensional flow acting on a blunt cone flying in the atmosphere along the
boundary of a rarefied region, as functions of the degree of immersion of the surface of the body
in low-density air. The nonstationary gas- and aerodynamic processes accompanying the
entry and exit of the body from the rarefied region are studied. The aerodynamic coefficients
obtained with an approximate model are compared with the three-dimensional
calculations and found to be in satisfactory agreement with them. ©1998 American Institute of
Physics.@S1063-7842~98!00611-4#
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INTRODUCTION

The motion of bodies through density inhomogeneit
in the atmosphere has been studied in various gasdyn
formulations.1–7 The interest in this problem is explained b
the fact that when bodies interact with atmospheric inhom
geneities, aerodynamic loads develop which can have a
nificant effect on the motion of these bodies, by changing
drag coefficient or by creating an additional lift force a
rotational moment. During supersonic motion of bodies
inhomogeneous media, substantial changes can also occ
the bow shock and in the structure of the shock layer, wh
are of independent interest. Most papers devoted to the
teraction with inhomogeneities consider inhomogeneities
the form of rarefied regions created by the delivery of th
mal energy to the gas. In most cases it is assumed tha
interaction of the body with a rarefied region does n
change the axial symmetry of the flow around the body.1–3,5,6

References 4 and 7, however, began the study of this so
interaction between a conical shock wave and a rarefied
gion in which the initial axial symmetry of the flow around
blunt cone is broken. In Ref. 7 it was assumed that the
efied region which comes into contact with the shock has
shape of a channel whose axis is orthogonal to that of
cone. In this paper we examine another variant of this in
action, of which a particular example was first studied
Ref. 4. We study the case in which the rarefied volume
extended in the direction of motion of the body and the co
moves along the boundary separating the regions of diffe
density. Here part of the surface of the body and the b
shock are immersed in low-density air and move in it. T
aerodynamic loads experienced by the body during this
of motion can be substantial. This is suggested in our ea
work,4 in which we have examined the case where a h
cone is immersed in rarefied air. In this regard, it is intere
ing to track how the character of the flow and aerodynam
forces change with different degrees of immersion of a c
in a rarefied volume. In this paper, numerical simulation o
three-dimensional flow is used to study the nonstation
1291063-7842/98/43(11)/5/$15.00
s
ic

-
ig-
e

r in
h
n-
n
-
an
t

of
e-

r-
e
e

r-

s
e
nt
w
e
rt

er
lf
t-
c
e
a
y

interaction of a conical body with a rarefied volume for d
ferent orientations of the body and volume. Because the
efied region is not positioned symmetrically with respect
the axis of the wave in this statement of the problem,
resulting flow has a pronounced three-dimensional, non
tionary character. The most natural method of studying t
kind of flow is three-dimensional numerical modeling. He
we also present some calculations of the aerodynamic c
acteristics of a blunt cone moving along the boundary
tween regions with different densities.

STATEMENT OF THE PROBLEM

We consider a conical shock wave created by a bl
cone flying with velocityU` in a homogeneous atmosphe
at zero angle of attack. At timet50, a portion of the surface
of the bow shock comes into contact with a rarefied region
the atmosphere. The low-density region is isolated in sp
by two plane contact boundaries. The axis of the cone
parallel to one of the contact boundaries and perpendicula
the other. The characteristic sizeD of the rarefied region in
the direction of motion of the body is several times grea
than the lengthL of the cone. The pressureP0 in the rarefied
region equals the pressureP` in the unperturbed atmospher
while its densityr0 is lower than the unperturbed densi
r` . Figure 1 shows the locations of the conical shock,
cone, and the rarefied region relative to one another, as
as the coordinate system used in the calculations. The c
dinate of the contact surface parallel to the axis of the c
and theYOZ plane equalsX, so that the distance from th
axis of the cone to the boundary of the rarefied region isuXu.
We introduce the dimensionless impact parameter«5X/Rm

which is convenient for determining the position of the bo
relative to the rarefied volume (RM is the radius of the cen
tral cross section of the cone!. When «521 the cone is
entirely in dense air, while when«51 it is entirely in rar-
efied air. If «50, then half the body will be in rarefied ai
and the other half in dense air. In the calculations«
was varied over the limits21<«<1. The purpose of the
9 © 1998 American Institute of Physics
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calculations was to establish how the aerodynamic for
acting on the body depend on the degree of immersion of
cone in the rarefied volume or, in other words, to determ
the dependence of the aerodynamic coefficients on the ‘
pact parameter’’«, i.e., the distance between the axis of t
body and the boundary of the rarefied region.

COMPUTATIONAL TECHNIQUE

The problem of the interaction of a rarefied volume w
a conical bow shock was solved by a method described in
literature.7,9,10 The gas flowing past the object is assumed
be inviscid and thermally nonconducting, and its motion
described by a three-dimensional, nonstationary system
Euler equations. The form of the equations used in
present calculations is given in Ref. 7.1 The equation of state
of an ideal gas with a constant adiabatic index ofg51.4 was
used in the calculations. The numerical solution of the pr
lem is carried out in a cylindrical coordinate system rigid
attached to the body~Fig. 1!. The Z axis coincides with the
axis of the cone. The flow is symmetric with respect to t
XOZ plane. The anglew is reckoned from the upper half o
the XOZ plane, viewing from the direction of the nose. Th
rarefied region is modeled by specifying time depend
boundary conditions at the surface of the bow shock. T
coordinates of the segment of the outer surface of the sh
which is in contact with the rarefied region at timet are
given by

Z0<Z<Z01U`t, r W~Z,w!cosw<X. ~1!

In this segment the parameters of the air are

U05U` , P05P` , r0,r` . ~2!

In Eqs.~1! and~2! Z0 is the coordinate of the boundar
of the volume perpendicular to the axis of the cone at ti
t50, X is the coordinate of the contact boundary parallel
the axis of the cone,r W(Z,w) is the radius of the bow shoc
at the cross section with coordinateZ and direction specified

FIG. 1. A sketch of the interaction of a body and a conical shock wave w
a rarefied region:~1! blunt cone,~2! bow shock wave,~3! low-pressure
region.
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by the anglew, the subscript 0 denotes parameters of the
on the segment of the bow shock lying within the rarefi
region, and the parameters of the air on the rest of the sh
surface are equal to the unperturbedP` , r` , andU` .

The three-dimensional nonstationary Euler equations
integrated using a Godunov explicit difference scheme w
first-order accuracy.8 The calculations were done with ex
plicit capturing of the bow shock. Along theZ axis the com-
putational region contains 120 mesh points, which beco
denser near the blunted part. The computational regio
divided uniformly in the angular coordinate. The total num
ber of mesh points in the computational region for the an
w over 0 to 180° is 31. Between the surfaces of the body
the bow shock, the coordinate is uniformly divided into 2
mesh points. Thus, the total number of mesh points in
computational region is 120331320574 400. The finite
difference method for calculating shock wave flows
meshes of this type using a Godunov scheme has been
scribed elsewhere.7,9,10

COMPUTATIONAL RESULTS

Dimensionless variables are used to represent the c
putational results. The coordinates are in units of the lengL
of the cone, the pressure in units ofP` , the density in units
of r` , the velocity in units ofU` , and the time in units of
L/U` . In all versions of the three-dimensional calculatio
the velocity U` of the cone remained constant and cor
sponded to a Mach number Ma`515.6. The inclination of
the side surface of the cone to the axis was 7°. The par
eter« was varied and took the values20.85, 20.54, 0, and
10.54. The density of the air in the rarefied volume was
times smaller than the unperturbed densityr050.1. The dis-
tanceZ0 in a specific calculation depended on the magnitu
of « and was determined from the coordinates of the unp
turbed shape of the bow shock. The calculations were be
at timet50, which corresponded to the beginning of conta
between the rarefied region and the bow shock and w
ended when the body had penetrated the rarefied region
distance of 1–2 times its own length, i.e., whent
;(1 – 2)L/U` . In the calculations with«520.54, after the
flow was established, the calculation was continued with n
boundary conditions which signified the departure of t
body from the rarefied region and its return to air at norm
density. This setup of the problem simulates the interact
of the body with a rarefied volume of finite length, wit
linear dimensions of the order of the lengthL of the cone.

The calculations yielded a detailed spatial–temporal p
ture of the flow as the body enters and leaves the rare
region. We present some figures illustrating these resu
Figure 2 gives an idea of the density distribution in the sho
layer during the interaction of a cone and a rarefied volu
with «510.54. The distribution corresponds to the tim
t50.56, when the cone has entered the rarefied region
depth of;1/2 its length. The figure shows the meridion
cross section of the plane passing through the direc
w50 – 180°. The magnitude of the density is proportional
the intensity of the shading. The dashed curve, as in Fig
and 5, indicates the boundary of the rarefied region. It
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quite clear how the shock surface is distorted in the lo
density region. As the body enters the rarefied volume,
part of the shock layer moving through the rarefied area
‘‘puffed up.’’ According to the initial conditions for the
problem, the speed of sound in the rarefied air is a facto
three higher than in the dense air, while the density is
order of magnitude lower. This leads to a reduction in
intensityPW /P` of the bow shock in the rarefied air and
expansion of the shock layer (PW is the pressure in the bow
shock!. To complete the picture, Fig. 3 shows the thre
dimensional shape of the surface of the bow shock for
same interaction conditions«510.54 and at the same tim
t50.56 as in Fig. 2. The spatial deformation of the initia
conical shape of the bow shock as the body enters the
efied volume is quite evident in Fig. 3.

We now give some examples of the distributions of t
gasdynamic parameters over the angular and radial coo
nates. To do this, we examine the flow parameters in pla
perpendicular to the axis of the cone. According to the law
‘‘plane cross sections,’’11 during the hypersonic flight at ve
locity U` of a thin circular cone with a half angleb, the
distribution of the gas parameters in planes perpendicula
the direction of motion of the cone is equivalent to the on

FIG. 2. Density of air in the shock layer in the meridional cross sect
w50 – 180°.

FIG. 3. The shape of the bow shock wave of a blunt cone as it interacts
a rarefied volume.
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dimensional flow which arises during expansion of a circu
cylinder into a gas at rest with its radius increasing
R5U`tanbt. For the motion of a blunt cone, the analogy
retained with a correction for the initial momentum and e
ergy imparted by the blunt end to the motionless gas. Fig
4 gives an idea of the pressure distribution in theZ50.55
cross section at timet50.88 as the cone moves in a rarefie
volume with an impact parameter«510.54. This distribu-
tion can be regarded as the result of the expansion of a
lindrical piston in a motionless gas with a nonuniform de
sity. Recall that, according to the statement of the proble
the densityr0 of the air in the rarefied region is an order
magnitude lower than the initial densityr` . This means that
the pressure at that part of the cone which moves in the de
gas is higher than the pressure on the surface immerse
the rarefied air. At the same time, the radial propagat
velocity of the shock in the dense air is lower than in t
rarefied air. At the boundary of the regions of different de
sity, where shock waves with different intensities and diffe
ent velocities are joined, a three-wave configuration dev
ops. This figure also illustrates the shape of the surface of
shock wave at this cross section, which is characterized
substantial ‘‘puffing out’’ of the shock layer moving throug
the rarefied air. The excess pressureDP5PT2P` on the
conical surface in the rarefied region is roughly a factor o
smaller thanDP in the dense region of the flow, which i
close to the expected value,;10, given by the formula
DP;r`U`

2 sin2b.
In Fig. 5 we show a fragment of the velocity distributio

at the same cross sectionZ50.55 and the same time
t50.88. The circular motion of the gas in the region whe
air with different densities comes into contact is also evid

FIG. 4. Constant-pressure contours in the shock layer in the cross se
Z50.55.
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there. The pressure in the rarefied region is greater after
sage of the shock than the pressure in the unperturbed
Air from the rarefied region expands laterally into the s
rounding unperturbed gas, forming a transition region wh
shocks with different propagation velocities meet. In end
this discussion of the three-dimensional flow, we sho
mention that a series of three-dimensional calculations of
movement of a cone along the boundary of two regions w
densities differing by 10 or more times showed that the tr
sition from the dense to the rarefied flow at the surface of
cone takes place within a narrow region near the con
boundary and is not accompanied by significant mass tr
fer between the dense and less dense regions of the flo

AERODYNAMIC CHARACTERISTICS

As we have said, the change in the aerodynamic cha
teristics of the body as it interacts with the rarefied region
of considerable interest for applications. In our thre
dimensional calculations, we evaluated the aerodynamic
efficients of normal forceCn , drag forceCt , and pitching
momentCm of the cone. These coefficients provide a mo
complete characterization of the aerodynamic loads exp
enced by the body as it enters and moves in the rare
region. In our case,Cn is defined as the ratio of the projec
tion of the aerodynamic forceFX along theX axis to the
quantity 0.5r`U`

2 S, Ct equals the ratio ofFZ to the same
quantity, andCm is the ratio of the pitching momentM ,
calculated with respect to the center of mass of the body
0.5r`U`

2 SL, whereS is the area of the midsection of th
body.

Figure 6 shows the time variation in the coefficients
normal force and pitching moment for the same set of ca
lations in which we examined the entry and exit of the bo
from the rarefied region. Essentially, this calculation mod
the interaction of the cone with a rarefied volume of leng
D'2L. An impact parameter of«520.54 means that dur
ing stationary motion of the body along the boundary of
regions of different density,;20% of the surface area of th
body is immersed in the rarefied air. We now explain t
time dependencesCn(t) and Cm(t). For uniform flow
around the cone,Cn andCm are zero. At timet50 the bow
shock comes into contact with the rarefied channel. As
cone enters the rarefied volume, the area of the rarefied
gion on the surface of the cone grows, so that the lat

FIG. 5. The velocity field in the shock layer at the cross sectionZ50.55 for
angles 0,w,90° ~view from the side of the nose!.
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force Fn and pitching momentM increase. These quantitie
reach their stationary values over a timet;L/U` , which
corresponds to the body’s entering the rarefied air along
entire length. Att;1.5, the cone begins to return to th
normal atmosphere. The coefficientsCm and Cn then de-
crease, since there is a return to a symmetric flow around
body, go to zero when the body is again moving in homo
neous air. Note the nonmonotonic character ofCm(t) owing
to the sensitivity of the magnitude and sign of the pitchi
moment to the size of the rarefied region and its position
the surface of the cone.. Evidently, the cause of the lat
force and rotational moment is the rarefied region which
velops at the surface of the body as it moves through
low-density air. How long this aerodynamic load acts is d
termined by the existence time of the rarefied region.

Let us compare the computational results obtained w
the same formulation of the problem, but with different d
grees« of immersion of the body in the rarefied air. Figure
7 and 8 show how the normal forceCn , dragCt , and pitch-
ing momentCm coefficients of the cone depend on the d
gree of immersion of the body in rarefied air in the case
stationary motion. Besides the three-dimensional calcu
tions, which are indicated by the data points, the smo

FIG. 6. The aerodynamic coefficientsCn ~1! andCm ~2! as functions of time
during the interaction of a cone with a rarefied region.

FIG. 7. The drag~1! and lateral force~2! coefficients as functions of the
degree of immersion of the body in a rarefied volume.
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curves in Figs. 7 and 8 show the dependences obtained
two-dimensional calculations of a uniform flow around t
body. These coefficientsCt2 , Cn2 , andCm2 were calculated
using an approximation for the motion of a body along t
interface between two regions with different densities. In t
approach, immersion in rarefied air was modeled by spec
ing zero pressure on that part of the body’s surface lying
the rarefied volume while keeping the pressure on the res
the body unchanged. Here and in the following, the subsc
2 denotes coefficients obtained in this approximation for t
dimensions. The observed agreement between the app
mate and exact calculations of the interaction shows that
aerodynamic coefficients can be calculated in terms of
two-dimensional approximation with an accuracy that is
ceptable for practical purposes. The physical reason for
good agreement between the three-dimensional calcula
and the approximate calculations is that, as stated abov
high-speed supersonic flows with a tangential shock,
low-pressure region at the surface of the body remains lo
ized, despite the three-dimensional character of the flow

We now comment briefly on the variation of the aerod
namic coefficients with«, using Figs. 7 and 8.Cn and Ct

behave in fairly obvious fashion with increasing« or,
equivalently, with increasing surface area immersed in
low-density air. The lateral forceFn initially rises monotoni-
cally, reaches a maximumFnmax when half of the body’s
surface and of the bow shock are in the rarefied air, and t
begins to decrease. The drag forceFt decreases monoton
cally as the degree of immersion increases. Note that
maximum drag forceFtmax is less than the maximum latera
force Fnmax.

The behavior of the pitching momentM relative to the
center of mass of the body and the change in its sign, wh
determines the direction of rotation of the cone, are of int
est. First, Fig. 8 shows that the pitching moment is ve
sensitive to the magnitude of«, i.e., to the degree of immer
sion in the rarefied air. It is clear thatCm2(«) varies rapidly
over the interval21<«<1, changing sign twice. Second
the Cm2(«) curve has two minima, which are confirmed b
the three-dimensional calculations. They occur at«;60.5,
i.e., when roughly 1/5 or 4/5 of the body’s surface area

FIG. 8. The pitch coefficients as functions of the degree of immersion of
body in a rarefied volume.
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immersed in the rarefied air. Here the moment is directed
that the bottom part of the body will be immersed in t
rarefied air. When«50 and, in general, foru«u<0.16, the
nose of the cone is immersed in rarefied air. The high se
tivity of the magnitude and sign of the moment to the po
tion of the contact boundary makes it difficult to predict t
possible motion of the cone when« is close to zero. How-
ever, for u«u.0.5, i.e., for almost complete or, in the opp
site case, for negligible immersion of the object in the r
efied volume, the results of the interaction are entir
predictable.

CONCLUSION

The cycle of two and three-dimensional calculations p
formed here has revealed a mutual position of an exten
rarefied region and a blunt cone for which the aerodyna
coefficients of a cone flying along a boundary with a rarefi
region are maximal. Thus, the maximum pitching mome
Mmax occurs when either;20% or ;80% of the lateral
surface area of the cone is immersed in the rarefied volu
The cone experiences a maximum lateral forceFnmax when
roughly half the body’s surface is immersed in the rarefi
air. Finally, when.60% of the body’s area is immersed
the rarefied region, the drag forceFt becomes negligible.

1!Here we note some errors in Ref. 7. In the last term of the last equatio
the system of Eqs.~1! of that paper, ther should be deleted. The tota
energy per unit volume isE5r(«1(U21V21W2)/2).
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The nonlinear inverse problem of determining the permeability parameters of metals for
hydrogen from experimental data is examined. The model includes adsorption–desorption
processes as well as diffusion. An algorithm is proposed for determining the model
parameters from a known desorption flux without the need for writing specialized computer
programs. ©1998 American Institute of Physics.@S1063-7842~98!00711-9#
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INTRODUCTION

Interest in the interaction of hydrogen and its isotop
with metals exists on many levels.1–6 It is sufficient to men-
tion problems in power production, protection of constru
tion materials from hydrogen corrosion, chemical reactor
sign, the building of rockets, and vacuum technolog
Physical and chemical phenomena on the surface, as we
diffusion processes inside metals, play an important r
~Ref. 3, pp. 177–206!. The transport parameters for hydr
gen also depend on the technical peculiarities of the pro
by which a specific batch of metal has been obtained, as
as on the surface treatment. This limits the use of vari
tabulated data. Crude estimates of the parameters~with er-
rors within a few orders of magnitude! are usually available
There is a need for an algorithm which can be used to re
these values on the basis of experimental data from spe
materials.

An iterative numerical algorithm has been proposed
determining hydrogen transport models.7 In this paper it is
shown that if the interaction with traps is assumed to b
small perturbation and the aim is only to determine the m
parameters~in the framework of the chosen model!, then the
problem can be solved without the experimenter’s having
write a specialized computer program.

MATHEMATICAL MODEL

The experimental technique for studying permeation
volves creating a rather high constant pressurep0(t)5 p̄0 of
gaseous hydrogen as a discontinuity on the inlet side o
initially dehydrogenated membrane~vacuum vessel barrier!

that has been heated to a fixed temperatureT(t)5T̄. On the
outlet side, the gas is continuously removed by a vacu
system. We treat the exiting desorption flux of hydrogen
the experimental data. For concreteness, the author take
experimental apparatus of Gabiset al.8 as an example.

We take the following mathematical model~Ref. 3, pp.
177–206!:

]c

]t
5D~T!

]2c

]x2
, ~ t,x!PQt15~0,t1!3~0,l !, ~1!

c~0,x!5w~x!, xP@0,l #, ~2!
1301063-7842/98/43(11)/5/$15.00
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c0~ t !5c~ t,0!5g~T!q0~ t !,

cl~ t !5c~ t,l !5g~T!ql~ t !, ~3!

d

dt
q0~ t !5ms~T!p0~ t !2b~T!q0

2~ t !1D~T!
]c

]x
~ t,0!, ~4!

d

dt
ql~ t !52b~T!ql

2~ t !2D~T!
]c

]x
~ t,l !, tP@0,t1#, ~5!

g~T~0!!q0~0!5c0~0!5w~0!,

g~T~0!!ql~0!5cl~0!5w~ l !. ~6!

Herec(t,x) is the concentration of diffusing~atomic! hydro-
gen, q0(t) and ql(t) are the surface concentrations (x
50,l ), D(T) is the diffusion coefficient,g(T) is the match-
ing coefficient between the concentrations on the surface
in the volume near the surface of the membrane,m is a
kinetic constant,s(T) is the sticking coefficient of the sur
face for hydrogen in the gaseous phase, andb(T) is the
desorption coefficient. If the membrane is dehydrogenate
the initial timet50, thenw(x)50. Equations~4! and~5! are
the flux balance equations. The desorption flux is mode
by a quadratic variation. For other gases a different fu
tional dependence can be used; this is not of fundame
importance below. The last terms on the right-hand sides
Eqs.~4! and~5! correspond to an efflux or influx of hydroge
atoms to the surface owing to diffusion within the membra
volume. In Eq.~5! there is no termms(T)pl(t), since for a
sufficiently fast vacuum system the pressurepl(t) at the out-
let is very low and there is negligible return of hydroge
desorbed from the outlet surface back to the surface.
initial and boundary conditions are matched in the sense
Eq. ~6!.

It is required to determineD(T), g(T), s(T) andb(T)
for a specific material from the outlet desorption flux

J~ t !5b~T!ql
2~ t !5b~T!g22~T!cl

2~ t !,

T5T~ t !, tP@0,t* #. ~7!

We shall omit the word ‘‘flux,’’ assuming that the surfac
has unit area. The timet* at which the experiment ends i
4 © 1998 American Institute of Physics
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1305Tech. Phys. 43 (11), November 1998 Yu. V. Zaika
determined by the approach to a stationary fluxJ(t)' J̄
5const, t>t* (t* ,t1).

The Arrhenius law

D5D0 exp~2ED /@RT~ t !# !, . . . ,

b5b0 exp~2Eb /@RT~ t !# !

is usually applied to hydrogen.
Other models for the temperature dependence are

sible. In the following we discuss an algorithm for determ
ing D, g, s, and b for T(t)5T̄5const. This is the basic
problem, a nonlinear inverse problem of mathematical ph
ics. Information on the values ofD, g, s, andb at different
temperatures makes it possible to determine the param
in D(T), . . . ,b(T), as well ~in the Arrhenius case,D0 ,
ED , . . . ,b0 , and Eb). The real noisiness of the measur
ments is taken into account in constructing the algorithms
the final formulas the experimental data enter in the form
an integral over@0,t* #, which ensures a noise-free determ
nation. The model~1!–~6! has its limits of applicability.
Thus, the idea of the algorithm is laid out in some detail a
permits some variation in the equations.

The boundary conditions~3!–~6! are nonstandard, so
few words are necessary on the mathematical justificatio
the model. IfwPH1(0,l ) and TPC1@0,t1#, then, with the
coefficients restricted in accordance with their physi
meaning, there is a unique solutionc(t,x)PH1,2(Qt1). The
functionc(t,x) in Qt1 satisfies Eq.~1!, is uniformly continu-
ous in the rectangular regionQt1, and is continued continu
ously to the closureQ̄t15@0,t1#3@0,l #. Equation~2! is sat-
isfied for xP@0,l #. The gradientscx(t,0) and cx(t,l ) are
defined overcPH1,2 as elements ofL2(0,t1). After substi-
tuting them in Eqs.~4! and~5!, we have ordinary differentia
equations with the initial data~6!. Their solutionsq0 ,ql

PH1(0,t1) satisfy Eqs.~4! and~5! in the sense of hydroge
permeation parameters over@0,t1#. Finally, after substitut-
ing q0(t) andql(t) in Eq. ~3!, we obtain an identity overt
P@0,t1#. If we take c(t,•)PH1(0,l ), t>0 for the phase
state, then the model~1!–~6! is a nontrivial example of a
nonlinear semidynamical system in the Hilbert spa
H1(0,l ). The study of this system is also of mathematic
interest.9 As the smoothness of the initial data for the boun
ary value problem~1!–~6! increases, the smoothness of t
solutionc(t,x) will also increase.

THE DETERMINATION ALGORITHM

Let T(t)5T̄, p0(t)5 p̄0 , and w(x) be fixed. Measure-
ments ofJ(t)5bql

2(t) are directly related to surface pro
cesses. Thus, it is appropriate to ‘‘exclude’’ the diffusi
equation in the membrane volume. Here the appropr
mathematical apparatus is integration by parts. This te
nique leads to so-called conjugate equations.10

For an arbitrary functionc(t,x) that is sufficiently
smooth inQ̄t* , in view of Eq. ~1! we have
s-
-

s-

ers

n
f

d

of

l

e
l
-

te
h-

05E
0

t
* E

0

l

c~ t,x!~ct2Dcxx!dxdt

5E
0

l

$c~ t* ,x!c~ t* ,x!2c~0,x!c~0,x!%dx

2DE
0

t
* $c~ t,l !cx~ t,l !2c~ t,0!cx~ t,0!%dt

1DE
0

t
* $cx~ t,l !c~ t,l !2cx~ t,0!c~ t,0!%dt

2E
0

t
* E

0

l

c~ t,x!~c t1Dcxx!dx/,dt. ~8!

It is easy to make the last, ‘‘volume’’ term go to zero b
the choice ofc(t,x). The remaining terms are related to th
boundary conditions. We shall analyze~to within the values
of the a priori unknown model parameters! the information
content of the pairp0(t),J(t). The functionscl(t) and
cx(t,l ) can be expressed in terms ofJ(t) by virtue of Eqs.
~3!, ~5!, and ~7!. But knowledge of onlyp0(t)5 p̄0 at the
inlet is not very informative: only the term on the right-han
side is known in the differential equation~4!. This is not a
mathematical deficiency: in order to correctly identify
‘‘black box’’ it is necessary to know the input and output.
might be possible to determine the fluxDcx(t,0) from the
hydrogen feed rate, but the high backgroundp̄0 interferes.
Measuring the concentrationc0(t)(q0(t)) is also problemati-
cal. It is an entirely different matter to measureJ(t) under
vacuum pumping conditions.

There is, nevertheless, a way out of this situation; it
only necessary to take into account the difference in the r
of surface processes (x50, x5 l ) across the enormous pre
sure drop~7–9 orders of magnitude!.

Let c(t,x) satisfy the equation conjugate to Eq.~1! with
only one boundary condition,

]c

]t
52D

]2c

]x2
, ~ t,x!PQt

*
, ~9!

c~ t,0!50, tP@0,t* #. ~10!

Under condition~9! the last term in Eq.~8! will vanish,
and by virtue of Eq.~10!, the flux Dcx(t,0), whose values
are not known from the experimental setup, does not app
in Eq. ~8!. The solution of Eqs.~9! and ~10! is easily found
by separation of variables:c(t,x)5b(t)g(x), with g(0)
50. There are infinitely many such solutions, a fact which
important in the subsequent discussion. Equation~8! now
takes the form

E
0

l

ccU
t50

t
*

dx2DE
0

t
* ccxU

x5 l

dt1DE
0

t
* cxcU

x50

l

dt50.

~11!

The further strategy in using Eq.~11! is as follows: we
choose any solutionc5c i(t,x) of Eqs. ~9! and ~10! and
substitute in Eq.~11! the expressions forc(0,x), c(t* ,x),
cx(t,l ), and c0,l(t) in terms of the known information and
the parametersD, g, s, and b. As a result, we obtain an
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equationf i(D,G,s,b)50. One must take a number of suc
equations sufficient for determiningD, g, s, andb.

The function c(0,x)5w(x) is specified by the initial
conditions (w(x)50). Since p̄05const, after some time a
stationary output fluxJ(t)5 J̄5const, t>t* , is established.
For t>t* all the time derivatives in Eqs.~1!–~6! can be
assumed to be zero, so we obtain a linear stationary con
tration distributionc(t,x)5c(t* ,x), t>t* , with c(t* ,x)
5j1•(x2 l )1j2 . The model of Eqs.~1!–~6! reflects these
simple experimental facts~verified numerically!. Let us cal-
culatej1 andj2 . From Eq.~7!, we have

j25c~ t* ,l !5gql~ t* !5gb21/2J̄1/2.

We find the slopej1 of the straight linec(t* ,x) from
Eq. ~5!:

j15cx~ t,l !52D21J̄ ~ q̇l50, t>t* !.

Finally, for t>t* , we obtain

c~ t,x!5c~ t* ,x!5D21J̄•~ l 2x!1gb21/2J̄1/2. ~12!

Thus, with time, at the outlet (x5 l ) a concentrationc̄l

proportional to J̄1/2 develops, while the diffusion flux
Dcx(t,x) does not vary over the thickness of the membra
and has an absolute value equal to the desorption fluxJ̄.

Now, using Eq.~5!, we transform the second integral
Eq. ~11!,

2E
0

t
* c~ t,l !Dcx~ t,l !dt

5E
0

t
* c~ t,l !~ q̇l~ t !1J~ t !!dt5c~ t,l !ql~ t !u0

t
*

2E
0

t
* ċ~ t,l !ql~ t !dt1E

0

t
* c~ t,l !J~ t !dt

5c~ t* ,l !b21/2J̄1/21E
0

t
* $c~ t,l !J~ t !

2ċ~ t,l !b21/2J1/2~ t !%dt,

~ql~0!50, ql~ t !5b21/2J1/2~ t !,

ql~ t* !5b21/2J̄1/2). ~13!

The last expression in Eq.~13! already contains known
quantities and the parameterb.

The last integral in Eq.~11! still has to be specified. The
concentrationcl(t) is expressed in terms ofJ(t) and the
parameters through Eq.~7!: cl(t)5gb21/2J1/2(t). How do
we calculate the integral ofcx(t,0)c0(t) with sufficient ac-
curacy, given thatc0(t) is not accessible to measurement?
the outlet, because of the vacuum pumping, the surfac
depleted of hydrogen, and its buildup is a limiting fact
~Eq. ~5!!. At the input, with p0@pl , the surface is rapidly
saturated to a levelq̄0 corresponding top̄0 , with a subse-
quent relatively slow leak-off of the diffusant into the bul
The duration of the transient process is very short compa
to the timet* for approach to the stationary level ofJ̄. In an
n-

e

t
is

d

experiment, this condition for the concentration jump at t
inlet can be realized to good accuracy: one increasesp̄0 and
the thicknessl as necessary. Then, in calculating the integ
of cx(t,0)c0(t) over the segment@0,t* # we can setc0(t)
' c̄05gq̄0 . The concentrationc̄0 is determined by Eq.~12!
(x50). For the model~1!–~6! these qualitative consider
ations are confirmed by numerical simulations.

We now have everything necessary to set up the spe
equationsf (D,g,s,b)50. First, let us extract the maximum
possible from the mappingp̄0→ J̄. If the inlet concentration
is steady, then Eq.~4! implies that

q̇050→ c̄05gb21/2~msp̄01Dcx~ t,0!!1/2

~ t>«, «!t* !.

The flux Dcx(t,0) does not vary (t>«), and it has al-
ready been calculated fort>t* : Dcx(t,0)5Dcx(t,l )52 J̄,
t>t* . Thus,

c̄05gb21/2Amsp̄02 J̄. ~14!

The quantity under the radical is positive. The mean
of Eq. ~14! ( J̄5msp̄02bg22c0

22) is the following: after
saturation at the inlet to a valuec̄0 corresponding top̄0 , a
dynamic equilibrium is established. The permeating fl
equals the difference between the fluxmsp̄0 incident on the
surface and the desorption flux back into the chamber v
ume. At the outlet, on the other hand, the levelJ̄ is reached
only at the timet* . Comparing Eqs.~14! and ~12! (x50),
we obtain the first equationf 150,

gb21/2~msp̄02 J̄!1/22gb21/2J̄1/22 lD 21J̄50. ~15!

Equation~15! can be used to finds and the combination
X5Dgb21/2/ l . To do this, we modify the permeation exper
ment. Initially, as described above, with an injection press
p̄01 and w(x)50, we wait until the timet* when J5 J̄1 is
established. Then, we raise the pressure suddenly top̄02

. p̄01 and wait a further timeDt* until J̄2 is established. We
substitute the two pairsp̄0i , J̄i in Eq. ~15! and shift the last
term to the right. Then

J̄1 / J̄25@~msp̄012 J̄1!1/22 J̄1
1/2#@~msp̄022 J̄2!1/22 J̄2

1/2#21.

Writing

y5~msp̄012 J̄1!1/2, d15 J̄1
1/2~12 J̄1

1/2/ J̄2
1/2!,

d25 p̄02J̄1
2/~ p̄01J̄2

2!,

we obtainmsp̄025(y21 J̄1) p̄02/ p̄01 and

y2d15$~y21 J̄1!d22 J̄1
2/ J̄2%

1/2. ~16!

Squaring Eq.~16! gives

~12d2!y222d1y1d1
21d350, d35 J̄1~ J̄1 / J̄22d2!.

~17!
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By virtue of the fact thatp̄02. p̄01⇒ J̄2. J̄1 and Eq.~15!,
we haved1.0, d2,1, andd3,0, and the quadratic equatio
~17! has two real roots, withy1.y2 . The larger rooty1 has
physical significance. It is greater thand1 and is consisten
with Eq. ~16!. The second root,y2,d1 is inconsistent with
Eq. ~16! and appears because the square was taken. From
value y5y1 we find s and, with Eq.~15!, the combination
X5Dgb21/2/ l .

As we see, an analysis of just the stationary values c
not be used to determineD, g, and b, but only gives the
combination X. We determine some additional equatio
from the transient process, using Eqs.~11!–~14!.We take the
simplest solution of Eqs.~9! and~10!, viz., c(t,x)5x/ l . For
c5x/ l , Eq. ~11! with Eq. ~13! simplifies to

l 21E
0

l

xc~ t* ,x!dx1b21/2J̄1/21E
0

t
* J~ t !dt

1Dl 21E
0

t
* cU

x50

l

dt50.

For computational reasons it is convenient to change
the variablesx15 l 2/D, x25 lg, andx35b21/2. After substi-
tuting c(t* ,c) from Eq. ~12!, cl(t)5gb21/2J1/2(t) and
c0(t)' c̄0 , from Eq. ~12! for x50 ~or from Eq. ~14!!, we
obtain

f 25x1J̄1/61x1XJ̄1
1/2/21x3J̄1

1/21A150, ~18!

where

A15S11XS1/22 J̄1t* 2XJ̄1
1/2t* , Ss5E

0

t
* Js~ t !dt

~X5Dgb21/2/ l 5x1
21x2x3→x2x35x1X!.

We use the samec(t,x)5x/ l in the time interval@ t* ,t*
1Dt* #. The calculations are the same. It should only
noted that when the time origin is shifted tot* in Eq. ~11!,
we havec(x)Þ0 (w(x)5c(t* ,x)) and in Eq.~13!, ql(0)
Þ0 (ql(0)5b21/2J̄1

1/2), and we get

f 352x1J̄1/62x1XJ̄1
1/2/22x3J̄1

1/21x1J̄2/6

1x1XJ̄2
1/2/21x3J̄2

1/21DA150,

DA15DS11XDS1/22 J̄2Dt* 2XJ̄2
1/2Dt* ,

DSs5E
t
*

t0
Js~ t !dt, t05t* 1Dt* . ~19!

Equations~18! and~19! are a system of two linear alge
braic equations inx1 andx3 . Eliminating the variablex3 , we
obtain

f 22j f 350,

j5 J̄1
1/2/~ J̄2

1/22 J̄2
1/2!→x156~A12jDA1!/~ J̄1J̄2!1/2.

~20!

After substitutingx1 in Eq. ~18! ~or ~19!!, we findx3 and
thenx25Xx1 /x3 .

For convenience of application, we give the sequence
solving the problem of model determination:
the

n-

to

e

of

1. Provisional experimental scheme:T5T̄, t50
→(w(x)50,p5 p̄01), t5t*→(J5 J̄1 ,w(x)5c(t* ,x),p
5 p̄02. p̄01), t5t* 1Dt*→J5 J̄2 .

2. From p̄0i and J̄i we calculated1 , d2 , d3 and the
larger rooty1 of the quadratic equation~17!, we determine

s5~y1
21 J̄1!/~m p̄01!,

and we write Eq.~15! in the form

Xi5 J̄1 /@~msp̄0i2 J̄i !
1/22 J̄i

1/2#, X5~X11X2!/2.

3. Using the quadrature formula, we calculate the in
gralsS1 , S1/2, DS1 , andDS1/2, and then the quantitiesA1

andDA1 ~see Eqs.~18! and ~19!!.
4. With Eq. ~20! we find x1 (D5 l 2/x1), then x35x31

and x35x32 from Eqs.~18! and ~19! and, finally,x35(x31

1x32)/2 (b5x3
22), x25Xx1 /x3 (g5x2 / l ).

In the numerical experiments confirming the efficien
of the algorithm, it was assumed thatl 50.02 cm andm
51.4631021 mol/cm2

•s•Torr, and the following reference
values were varied:D51026 cm2/s, g510 cm21, b

510217 cm2/s, s51024, and p̄050.1 Torr.
We briefly examine the possibility of using otherc. If c

is restricted only by Eq.~9!, then in Eq.~8! we can takec
5(x2 l )/ l . This eliminates the last term and the flu
Dcx(t,l ) from the formula. The term containingDcx(t,0)
has to be transformed using Eq.~4!, as was Eq.~13!, and the
substitutionc0(t)' c̄0 then made. But it is more correct t
chosec(t,x) so as to eliminatec0(t) or Dcx(t,0) (cx(t,0)
50, c(t,0)50), since the information deficit occurs at th
inlet.

When c5b(t)cosvx, c5b(t)sinvx, or c5z(t)
3expvx are used (b(t)5s exp(Dv2t), z(t)5s exp
(2Dv2t), s5const), the final formulas contain integrals
b(t)J(t) andb(t)J1/2(t) (z(t)J(t), z(t)J1/2(t)). Thus, there
is a possibility of giving preference to measurements in
second half of@0,t* # ~greater weight tob(t)) or in the initial
stage of the measurements (z(t)). The normalization factor
s is determined, for example, fromb(t* /2)51, z(t* /2)
51. The choice of the parameterv is also important.Dv2

should not be very large, otherwise a portion of the measu
ments will be essentially immaterial. The conditions~9! and
~10!, together withc5x/ l , are satisfied byc5b(t)sinvx.
For v5np/ l , both Dcx(t,0) and Dcx(t,l ) are eliminated
from Eq. ~8!. The equation couples only the concentratio
For v5np/(2l ) (n odd!, the pairDcx(t,0), cl(t) is elimi-
nated. Forg(x)5cosvx, v5np/ l we obtain only a relation
between the fluxes, while forv5np/(2l ) (n odd! we obtain
a relation betweencl(t) and Dcx(t,0). If the equation con-
tains Dcx(t,0) and that quantity is not measured, then
proceed as with Eq.~13!. Information onDcx(t,0) ~or q0(t),
c0(t)), however, greatly increases the reliability of the d
termination.

We conclude by considering the following possib
modification of the experiment. The pressurep̄0 is estab-
lished by an atomizer~incandescent tungsten filament!. We
eliminate Eq. ~4! from the model, since it presuppose
the injection of molecular hydrogen into the vessel. T
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conditionc0(t)' c̄0 (t>«, «!t* ) is realized even faster. In
the calculations, as before, we replace the unknown valu
c̄0 by Eq. ~12! (x50). Of course, the levels ofq̄0 corre-
sponding top̄0 should be lower than the theoretical maxim
We do not use Eqs.~15!–~17!. Equations of the form~18!
and~19!, which still contain three unknownsx1 , x3 , andX,
remain for determiningD, g, andb. In order to remain in
the class of linear algebraic equations, it is better to treatx1 ,
x3 , x1X, andX as the unknowns. Additional equations c
be obtained either by a regular increase inp̄0 (t5t* 1Dt*
→p5 p̄03. p̄02,J̄→ J̄3 , . . . ), or byrepeating steps 1–4 with
other p̄01 and p̄02. Analytical problems do not arise: w
write x1X5x2x3 from one equation and then solve three li
ear equations forx1 , x3 , andX.

Actually implementing this technique appears to requ
a substantial amount of experimental effort. The justificat
is the~at least, mathematical! nontriviality of the model~1!–
~6!, which couples the surface and volume processes. Ph
cally, the model is crude; it can be refined. But then
problem of multiparameter determination will be difficult
grasp. The situation becomes simpler if there is alread
sufficient number of permeation curves over@0,t* # for
w(x)50 and variousp̄0i . Then it is possible to get by with
just equations of the formf 250.

COMMENTS

1. If the vacuum system is not powerful enough, t
measurements can be modeled by

pl~ t !5u1E
0

t

exp~~t2t !/u0!J~t!dt.

The flux J(t) is determined uniquely from the pressu
pl(t). A term ms(T)pl(t) is added to the right-hand side o
Eq. ~5!. This leads to no significant changes; the final form
las will contain integrals ofpl(t) as well as ofJ(t) and
J1/2(t).

2. J̄ is determined reliably by sufficiently long observ
tion of J(t). But then, a not too large allowed value oft*
should be used in Eq.~11!. Otherwise, the informative tran
sient process (0→ J̄1 , J̄1→ J̄2) will be insignificant in the
integrals.

3. For large experimental errors it is better to solve n
merically the scalar equation~16! rather than Eq.~17! ~in
particular, by the method of least squares in the real ra
of

.

e
n

si-
e

a

-

-

e

sP@s2,s1#). This can also apply to the linear system
Eqs. ~18! and ~19!, which may be poorly conditioned. Fo
example, with comparatively smallD(T) and largeb(T) the
terms withx35b21/2, X in Eq. ~18! are relatively small, and
Eq. ~18! degenerates tox1J̄1/62 J̄1t* ;0, i.e., l 2/(6D)
;t* . The value ofx1 (D5 l 2/x1) is determined reliably
according to Eq.~20!. But the result of trying to determinex3

is unpredictable if the termx3J̄1
1/2 in Eq. ~18! is comparable

to the error in determiningS1 and S1/2. Besides, the infor-
mation contained ins, D, andgb21/25 lX/D is also of prac-
tical significance. Asx3→0 one hasc(t* ,x)'0 in view of
Eq. ~12!, and the desorption permeation flux degenerates
the diffusion flux; then it is more reasonable to turn to a
other model. Thus, the problem will be not be well-pos
mathematically for all metals: the terms withx1 and x3 in
Eqs.~18! and~19! must be comparable in order of magnitud
~the processes included in the model of Eqs.~1!–~6! must be
‘‘equally important’’!.

4. In the measurement units taken here the parame
have a large spread in orders of magnitude. Thus, it is
propriate to multiply the equationf i50 by a scaling factor,
say 10212, and use the new variablesJ̃5J•10212, X̃5X

31026, x̃35x3•1026, and x̃45ms•10212.
Thus the method presented here can be used to re

the nonlinear inverse problem of determining the model
rameters of Eqs.~1!–~6! to an analysis of algebraic equa
tions.
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Use of MHD systems in hypersonic aircraft
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The possibilities of using magnetohydrodynamic~MHD! systems on hypersonic aircraft are
discussed. The distinctive features of using MHD systems in the flow path of ramjet engines are
examined. A quasi-one-dimensional mathematical model for the engine is presented which
includes the MHD interaction with the flow. It is shown that the specific impulse of an engine
system can be raised by using MHD systems. ©1998 American Institute of Physics.
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Hypersonic flight in the atmosphere involves extrem
force and thermal effects on the structure of an aircraft. U
der certain flight conditions, a plasma ‘‘shell’’ can develo
around an aircraft, leading to interactions of the aircraft w
the surrounding medium which are fundamentally new co
pared to conventional aerodynamics. Under these conditi
a magneto-gasdynamic volume interaction with the h
speed, ionizing flux can be effective for creating cont
torques, reducing thermal fluxes to the surface of the airc
and controlling the structure of the flow.1 In this paper we
examine some distinctive features of using MHD systems
the flow path of a scramjet engine2 with a magneto-plasma
chemical~MPC! engine developed in the framework of th
AJAX concept3 as an example. The traditional scheme fo
scramjet engine has a number of fundamental disadvant
which substantially limit its range of applicability. The com
plex flow structure in the flow path of a scramjet engi
increases the probability of flow separation, which leads
blocking of the channel and makes it more difficult to ign
the fuel in the combustion chamber efficiently.4 At flight
speeds below the design speed, the air intake of a scra
engine typically has a lower air feed efficiency and a low
degree of compression of the stream. When the speed
hypersonic aircraft changes, there is a significant realignm
of the flow structure in the flow path of the scramjet engin
Altogether, these problems mean that scramjet engines
efficient only within a small range of flight speeds.

In order to extend the domain of operation of scram
engines, it is necessary to introduce an additional mechan
for acting on the stream which makes it possible to furt
compress the stream in the air intake, regulate the flow st
ture, and inhibit the development of separated flows. One
the most promising ways of acting additionally on super- a
hypersonic flows in the flow path of ramjets is through
volume interaction using MHD systems. Figure 1 show
simplified diagram of an MPC engine which implemen
these principles; it is essentially a scramjet engine with MH
systems inserted in its flow path. Let us examine briefly
functional purpose of the main subsystems of the MPC
gine which distinguish it from a scramjet engine. An extern
MHD generator is used to control the flow profile, regula
the air feed rate in the flow path of the MPC engine, a
1301063-7842/98/43(11)/5/$15.00
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increase the pressure. An internal MHD generator is use
raise the pressure and prevent the development of sepa
flows. An ionizer is used to create the required conductiv
in the flow when the natural conductivity of the flow doe
not provide the required degree of MHD interaction. T
electrical energy generated by the MHD generators is use
power the ionizer and on-board equipment and to prov
further acceleration of the combustion products in the MH
accelerator.

Let us analyze an MPC engine scheme with an inter
MHD generator and an MHD accelerator. For clarity w
shall do this study with the simplest of assumptions. A qua
one-dimensional approximation is used in a model of an
viscid, thermally nonconducting ideal gas with a consta
specific heat. The MHD flows are described using an
proach developed5,6 for analyzing complex systems, includ
ing MHD systems. Let us examine the features of this
proach briefly. Formally assuming that the pressure grad
in the MHD channel is proportional to the force exerted
the flow by the magnetic field, we introduce a proportional
coefficientj. For an ideally sectored Faraday MHD chann
we assume that

dp

dx
5j~x!~12k!2sB2v, ~1!

wherep is the static pressure in the flow,v is the flow ve-
locity, x is the longitudinal spatial coordinate,k is the load
coefficient,s is the conductivity of the flow, andB is the
magnetic induction.

If we limit ourselves to the class of solutions for whichj
is constant, then, using Eq.~1!, we can obtain simple ana
lytical expressions for the parameters at the outlet of
MHD channel. The corresponding flow regime will be calle
the j5const flow regime. The changes in the flow para
eters in the MHD channel are given by

T2

T1
511

12k

k S 11
g21

2
M1

2D ~11j!h,

v2

v1
5A12

11j~12k!

k
Gh,
9 © 1998 American Institute of Physics
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FIG. 1. Simplified sketch of a magneto
plasma-chemical engine:~0–1! air intake,~1–
2,c! internal MHD generator,~2–3! combus-
tion chamber,~3–4, d! MHD accelerator,~a!
ionizer, ~b! external MHD generator,~e! on-
board systems.
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p1
5S T2

T1
D

g
g21

j
j11

, G5
21~g21!M1

2

~g21!M1
2

. ~2!

HereT is the temperature,M is the Mach number,g is the
adiabatic index,h is the coefficient of conversion of th
enthalpy of the flow into electrical energy, and the subscr
1 and 2 label the parameters at the inlet and outlet of
MHD channel, respectively. Thej5const flow regime in-
cludes, as a special case, the often examined flow reg
that are characterized by conservation of one of the fl
parameters. The values ofj corresponding to these regime
are listed in Table I.

In analyzing an MPC engine with an internal MHD ge
erator, we shall use the following subscripts to denote
parameters at various locations: 0 in the incident flow, 1
the entrance to the MHD generator, 2 at the entrance to
combustion chamber, 3 at the entrance to the MHD accel
tor, 4 at the entrance to the jet nozzle, and 5 at the outle
the nozzle.~Naturally, the outlet parameters of a subsyst
are the inlet parameters of the subsystem located after i!

In this paper we limit ourselves to examining the case
which conductivity of the flow is achieved without the use
an ionizer. We examine the subsystems of an MPC eng
and determine the relationships among the parameters a
inlet and outlet of the system.

The air intake includes an external part, which co
presses the entering flow in a system of oblique shocks,
an internal part~isolator!, which provides for a return and
further compression of the flow. The following character

TABLE I.

Value of j corresponding
Flow regime to the given flow regime

r5const j5g21
p5const j50
T5const j521
M5const

j52F11
2

~12k!~g21!M1
2G1

G

v5const j521/(12k)
ts
e

es
w

e
t

he
a-
of

n

e
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-
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-

tics are used:N, the number of shocks in the external pa
QN , the net return flux in the air intake, ands in , the coef-
ficient of restitution of the total pressure in the air intake.
the temperature at the outlet of the air intake~the inlet of the
MHD generator! is T1 , then the changes in the pressure a
velocity in this subsystem are determined by the followi
equations:

p1

p0
5s inS T1

T0
D

g
g21

,
v0

2

2
1cpT05

v1
2

2
1cpT1 , ~3!

wherecp is the specific heat of air.
The MHD generator is characterized by the parame

j1 and k1 and the enthalpy conversion coefficienth. The
changes in the flow parameters in the channel of the M
generator are determined by

T2

T1
511

12k1

k1
S 11

g21

2
M1

2D ~11j1!h,

p2

p1
5S T2

T1
D

g
g21

j1

j111
. ~4!

We consider a combustion chamber operating at c
stant pressure. Since the mass feed rate of fuel is usu
much lower than that of air, we shall treat the delivery of fu
to the combustion chamber as heat release without mas
put. Then the changes in the flow parameters in the comb
tion chamber have the simpler form2

T35T21DT, p35p2 ,

DT5
Hu

cp~aL011!
, ~5!

whereHu is the calorific value of the fuel,L0 is the stoichio-
metric coefficient, anda is the excess air factor.

The MHD accelerator is characterized by the parame
j3 andk3 . It is assumed that all the energy produced by
MHD generator is transferred to the MHD accelerator. T
changes in the flow parameters in the MHD accelerator ch
nel are determined by



e
el

qs
t

i.e

-

r-

ci
ed

is

e
o

e
am

e
m
te
ub
D

e
io

-

0

for

ong
of

nc-
e
h

. A
se
jet

in
the

ect
m-
nt

co-
o-

ction

1311Tech. Phys. 43 (11), November 1998 Fra shtadt et al.
T4

T3
511

k321

k3
S 11

g21

2
M1

2DT1

T3
~11j3!h,

p4

p3
5S T4

T3
D

g
g21

j3

j311
. ~6!

We assume that the flow in the nozzle is isentropic. Th
the relative change in the flow pressure is related to the r
tive temperature change by

p5

p4
5S T5

T4
D

g
g21

. ~7!

At the design efflux from the nozzle, the system of E
~3!–~7! can be closed by assuming that the pressure at
nozzle exit is the same as in the surrounding medium,
p55p0 . Given this relationship, the system of Eqs.~3!–~7!
yields the following formula for calculating the flow tem
perature at the nozzle exit:

T55
T4

s in
~121/g!FT1

T0
S T2

T1
D

j1

j111S T4

T3
D

j3

j311G . ~8!

The efflux velocity of the gas from the nozzle is dete
mined in terms of the temperatureT5 using the conservation
of energy,

v55Av0
212cp~T01DT2T5!. ~9!

These formulas can be used to determine the spe
impulse I sp of the MPC engine. Neglecting the mass fe
rate of fuel compared to that of air, we obtain7

I sp5
aL0

g
~wv52v0!, ~10!

whereg is the acceleration of gravity andw is a coefficient
which takes the nonideality of the nozzle into account.

In those cases where it is not specially noted otherw
we shall setw51.

The set of Eqs.~3!–~10! can be used to calculate th
specific impulse of the MPC engine for given parameters
the air intake, MHD system, and combustion chamber. H
the specific impulse depends on a large number of par
eters:a, L0 , M0 , T1 , s in , k1 , j1 , h, k3 , andj3 . T1 and
s in are defined in terms of the air intake parametersN and
QN and a computational technique similar to that describ
in Ref. 8 was used, with posterior averaging of the para
eters in the outlet section of the air intake. We have de
mined the range of variation of the parameters of the s
systems of an MPC engine within which the use of an MH
system makes it possible to increase the specific impuls
the engine system. We use the obvious functional relat
ship

]I sp

]h U
→
h

0

.0.

Equations ~9! and ~10! imply that this condition is
equivalent to the condition
n
a-

.
he
.,

fic

e,

f
re

-

d
-
r-
-

of
n-

]T5

]h U
→
h

0

,0.

After the required transformations, we obtain the follow
ing inequality:

j1.
T1

DT

12k1 /k3

12k1
. ~11!

Since the load coefficient for the MHD generator is
,k1,1 and for the MHD acceleratork3.1, the specific
impulse of an MPC engine in this configuration increases
positive j1 , which, according to Eq.~1!, corresponds to an
MHD generator operating with an elevated pressure al
the channel length. The requirements on the magnitude
the pressure drop are less at higherDT and lowerT1 . Figure
2 shows the specific impulse of the MPC engine as a fu
tion of the coefficient of conversion of the enthalpy of th
flow to electrical energy for different values of the Mac
number of the incident flow for ideal and nonideal nozzles
value h50 corresponds to a scramjet engine. All the
curves are normalized to the specific impulse of a scram
engine.~The curves of Figs. 2–5 are forj15j35a51 and
N52.)

In all the calculated variants, MHD energy conversion
the flow path of the engine system leads to an increase in
specific impulse, and for a nonideal nozzle the positive eff
is more significant. The relative increase in the specific i
pulse of the MPC engine in this variant is more significa
for lower Mach numbers.

The dependence of the specific impulse on the load
efficient of the MHD generator shown in Fig. 3 is nonmon

FIG. 2. Specific impulse of a magneto-plasma-chemical engine as a fun
of the conversion efficiency of flow enthalpy into electrical energy:QN

50.2 rad,k150.5, k352; M 056 ~1!, 8 ~2!; smooth curvesw50.95, dotted
curvew51.
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FIG. 3. Specific impulse of a magneto-plasma-chemical engine as a fun
of the load coefficient of the MHD generator:M 056, QN50.2 rad, k3

52; h50.05 ~1!, 0.1 ~2!, 0.15 ~3!.

FIG. 4. Specific impulse of a magneto-plasma-chemical engine as a fun
of the coefficientk3 : M 056, QN50.2 rad,k150.25, a51, h50.05 ~1!,
0.1 ~2!, 0.15 ~3!.
tonic, with a distinct extremum. The magnitude and locat
of the extremum depend on the conversion coefficient
flow enthalpy into electrical energy. With increasingh the
extremum shifts toward largerk1 , while its magnitude de-
creases. Figure 4 shows that the specific impulse of an M
engine falls off monotonically with risingk3 . With increas-
ing h the dependence of the specific impulse on the lo
coefficientk3 becomes more pronounced. The results sho
in Fig. 5 imply that the relative increase in the specific im
pulse is maximum for an MPC engine with an air inta
characterized by a minimum turn angle for the flow.

These calculations show that using MHD systems in
flow path of a scramjet engine with a suitable choice of p
rameters makes it possible to increase the specific impuls
the engine system. We have found the limits on the rang
variation in the parameters of the MPC engine subsyste
that will ensure enhanced specific impulse for the system
later papers we shall examine the possibility of using MH
interactions for controlling the flow structure and study t
characteristics of MPC engines in a two-dimensional Eu
approximation.

1V. A. Bityurin, J. T. Lineberyet al., ‘‘Assessment of hypersonic MHD
concepts,’’ AIAA paper 97-2393.

2R. I. Kurziner, Jet Engines for High Supersonic Flight Speeds@in Rus-
sian#, Mashinostroenie, Moscow~1989!, 264 pp.
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Technology, AIAA paper 96-4609.
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Stability of a charged drop having the form of a triaxial ellipsoid
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The stability of a highly charged, isolated conductive drop is analyzed within the principle of
minimum potential energy of a closed system. A treatment of the stability of drops of
ellipsoidal shape shows that both spherical drops and drops having an oblate spheroidal shape
experience instability at sufficiently large charges according to a single scheme, i.e., they
deform to a prolate spheroid. ©1998 American Institute of Physics.@S1063-7842~98!00911-8#
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The investigation of the stability of charged drops is
interest for many areas of physics and technology: from
liquid drop model of the nucleus and explanations for
shape of planets to the development of technologies for
electrospraying of liquids and determination of the heat- a
mass-transfer coefficients in heterogeneous media.1–3 The
history of the research pertaining to this subject dates bac
the end of the last century, when Rayleigh published a pa4

in which he showed that a spherical drop becomes unst
at a certain relationship between surface-tension and ele
static forces. It was also shown in Ref. 4 that for small p
turbations of the shape of a spherical drop, the fundame
axisymmetric mode, which is proportional to the seco
Legendre polynomial, i.e.,}P2(cosQ), has the lowest exci-
tation energy. For this reason, only axisymmetric sha
have been considered in more recent studies devoted to
stability of charged drops.1 In particular, the investigations o
different authors employing diverse approaches to find
the stable shapes of a charged drop5–7 have led to the con-
clusion that a highly charged drop in the form of an axisy
metric oblate spheroid of revolution is stable, a conclus
which is not entirely clear from general physical argumen

The purpose of the present work is to investigate
stability of charged ellipsoidal drops and the laws govern
the onset of their instability against a self-charge. We w
the equation of the free surface of an ellipsoidal drop in
form

x2

a2
1

y2

b2
1

z2

c2
51,

wherea.b.c are the semiaxes.
In the limit a5b.c we have an oblate axisymmetr

ellipsoid, and fora.b5c we have a prolate axisymmetri
ellipsoid.

The total potential energy of a conductive charged el
soidal drop is determined by the sum of the energy of
forces of surface tension and the electrostatic energy of
chargeQ on the drop,5,6

UE5Ss1
Q2

2C
,

whereC is the capacitance ands is the surface tension.
1311063-7842/98/43(11)/4/$15.00
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We write the surface areaS of an ellipsoid in the form

S52pc21
2pb

Aa22c2
$c2F~m,k!1~a22c2!E~m,k!%,

where

m5
Aa22c2

a
, k5

a

b
Ab22c2

a22c2
,

F is an elliptic integral of the first kind, andE is an elliptic
integral of the second kind.8

The capacitance of an ellipsoid is given by the know
relation9

1

C
5E

0

` 1

A~a21x!~b21x!~c21x!
dx,

and it can also be expressed in terms of elliptic integrals9

1

C
5

K SAa22b2

a22c2D 2FS c

b
,Aa22b2

a22c2D
Aa22c2

.

If we introduce two parameters~x and y!, which
uniquely characterize the shape of an ellipsoid,

x5
a

b
, y5

b

c
,

and write the equation relating the values of the semiaxe
the ellipsoids to the radius of an equivalent sphe
R35abc, then expressinga, b, andc in terms ofx, y, andR

a5R~x2y!
1
3, b5RS y

xD
1
3
, c5

R

~xy2!
1
3

,

we can write the total potential energy of a charged ellips
dal drop in the form
4 © 1998 American Institute of Physics
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FIG. 1. a — Dependence of the dimensionless energy of a charged ellipsoidal drop on the ratio between the semiaxesx andy, which characterize the geometr
of a spheroid, forW53.5; b — same dependence, but on a magnified scale in the vicinity of the pointx51, y51, i.e., for very small ellipsoidal deformation
of the sphere.
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UE52psR2HAx2y2211y@F~m,k!

1~x2y221!E~m,k!#1Wxy2

3FK ~p!2FS 1

y
,pD G J •@x2/3y4/3Ax2y221#21;

W5
Q2

4pR3s
; m5A12

1

x2y2
;

k5
xAy221

Ax2y221
; p5

yAx221

Ax2y221
.

We render this expression dimensionless by dividing
by the potential energy of a charged conductive spher
drop of equivalent volume

US54pR2sS 11
1

2
WD

and obtain

U5H Ax2y2211yFFSA12
1

x2y2
,

xAy221

Ax2y221
D

1~x2y221!ESA12
1

x2y2
,

xAy221

Ax2y221
D G

1Wxy2FK S yAx221

Ax2y221
D 2FS 1

y
,

yAx221

Ax2y221
D G J

3@x2/3y4/3Ax2y221~W12!#21; U5
UE

US
.

it
al

Plots of the dependence of the dimensionless poten
energy of an ellipsoidal dropU5U(x,y) on the ratio be-
tween the semiaxes for various values of the drop charge~the
Rayleigh parameterW! are shown in Figs. 1, 2, 3, and 4. Th
x51 plane corresponds to an oblate ellipsoid of revolutio
and they51 plane corresponds to a prolate ellipsoid of rev
lution. The pointx51, y51 corresponds to a spherical dro
whose energy, as follows from the normalization conditio
equals unity.

The plot of U5U(x,y) for W53.5 ~Figs. 1a and 1b!
shows that the energy of an ellipsoidal drop is grea
than the energy of a spherical drop whenW53.5 and
that the energy of the drop increases with increas
degree of deformation. Such a tendency is manifes
both at large deformations~Fig. 1a! and at small deforma-
tions ~Fig. 1b!. Thus, whenW<3.5, the spherical shape i
stable.

When W53.9 ~Figs. 2a and 2b!, the dependence o
U5U(x,y) has a somewhat different character: in t
vicinity of the point x51, y51 weak deformation of the
drop leads to an increase in its energy~Fig. 2b!, while at
considerable degrees of deformation theU5U(x) curve dis-
plays an energy minimum for a prolate spheroid atx54.9
~Fig. 2a!. A more detailed investigation reveals that th
minimum on the plot ofU5U(x), i.e., the energy of
a drop deformed to a prolate spheroid, appears w
W.3.546.

When W>4, the plot ofU5U(x,y) ~Figs. 3a and 3b,
which were calculated forW54.1! not only has the
minimum at large deformations that was observed
W53.9 ~Fig. 2a!, but, as expected, has a decreasing cours
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FIG. 2. a — Dependence of the dimensionless energy of a charged ellipsoidal drop on the ratio between the semiaxesx andy, which characterize the geometr
of a spheroid, forW53.9; b — same dependence, but on a magnified scale in the vicinity of the pointx51, y51, i.e., for very small ellipsoidal deformation
of the sphere.
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small deformations, and the drop becomes unstable ag
infinitesimal virtual changes in energy~Fig. 3b!.

A comparison of Figs. 2a and 3a reveals that the posi
for the minimum on theU5U(x) curve shifts toward in-
creasing values ofx asW is increased.

An investigation ofU5U(x,y) in the region of the en-
ergy minimum for an oblate spheroid shows that this shap
unstable, as follows from Fig. 4a, which was calculated
nst

n

is
r

W54.3. It is seen that the transition from the oblate spher
with minimum energy to a triaxial ellipsoid is energetical
favorable, because it leads to a further decrease in the en
of the drop. A highly charged drop having the form of
triaxial ellipsoid is also unstable, and its shape evolves i
the prolate spheroid having the minimum energy. A prol
spheroidal shape is energetically most favorable for a hig
charged drop, as can be seen from Fig. 4b. WhenW.4 the
y
s

FIG. 3. a — Dependence of the dimensionless energy of a charged ellipsoidal drop on the ratio between the semiaxesx andy, which characterize the geometr
of a spheroid, forW54.1; b — same dependence, but on a magnified scale in the vicinity of the pointx51, y51, i.e., for very small ellipsoidal deformation
of the sphere.
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FIG. 4. Variation of the energy of a drop having the shape of an oblate~a!
and a prolate~b! spheroid for deformation along a direction perpendicular
the symmetry axis forW54.3.
minimum of the functionU(x,1) is the global minimum of
the function U(x,y), i.e., deformation of the minimum
energy prolate spheroid along the direction perpendicula
the symmetry axis leads to an increase in the energy of
drop.

A charged spherical drop is stable against infinitesim
perturbations of its shape whenW,4. In the range of values
of the Rayleigh parameter 3.546,W,4 the plots of
U5U(x) display not only the minimum atx51, but also
another minimum atx>3; therefore, sufficiently energeti
external disturbances can lead to bifurcation of the d
shape. A spherical drop is unstable at values of the Rayle
parameterW.4. The state of a drop in the form of an obla
spheroid is unstable at any value of the Rayleigh parame
whenW,4, the energy of such a drop is greater than tha
a spherical drop, and whenW.4, a drop having the shape o
an oblate spheroid stretches along one of the directions
pendicular to the symmetry axis, thereby transforming int
triaxial ellipsoid and then into a prolate spheroid, for whi
the energy is minimum.
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The excitation of a Langmuir plasma wave by a monoenergetic electron beam for which resonant
interaction conditions hold is investigated within a hydrodynamic description of the plasma.
It is shown that parametric and modulation effects lead to the formation of nonlinear stationary
waves with a low-frequency soliton-like envelope in the plasma. The behavior of electrons
in the field of the wave packet formed by Langmuir waves with different phase velocities is
investigated. The level of stochasticity in the system and the relative level of plasma
fluctuations are determined. ©1998 American Institute of Physics.@S1063-7842~98!01011-3#
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INTRODUCTION

The results of experiments devised to investigate
evolution of the parameters of a plasma–beam system w
described in Refs. 1–3. It was discovered that short flas
of electromagnetic radiation are generated in the plasma
frequency near the electron plasma frequencyVe . It was
shown that the radiation sources are localized in space,
their characteristic dimension was determined. The form
tion of the electron distribution function was recorded e
perimentally in Ref. 2, where measurements of the emiss
spectra in the low-frequency region were performed and
fluctuation spectrum was investigated by a probe method

The experimental data obtained by Karfidovet al.2 were
interpreted as being a result of the formation of strong La
muir turbulence in the plasma–beam system, whose pa
can be described by the phenomenological theory for an
semble of collapsing Langmuir cavitons.

In this paper it is shown that some basic features of
evolution of a plasma–beam system can be described a
ing aresult of the generation of nonlinear Langmuir wav
during the induced scattering of beam electrons. The at
dant beam instability, which is accompanied by se
modulation and bunching of the electron beam, is stabili
by the trapping of beam particles by the waves with
resultant formation of stationary nonlinear waves.4 The dy-
namics of electrons in such a wave field become com
cated, and dynamical chaos arises in the system for ce
values of the parameters.

DYNAMICS OF PLASMA WAVES

Let a fairly intense, nonrelativistic electron beam prop
gate in an isotropic plasma. In the equilibrium state the ra
nb /n0!1, wheren0 is the plasma density andnb is the beam
density, and the beam velocityV0@VT , where VT is the
thermal velocity of the electrons. Because the charge-den
waves existing in the plasma at the thermal level lead
modulation of the beam and thereby intensify the modulat
wave, the beam and plasma parameters fluctuate abou
equilibrium values. The plasma parameters are denoted bnj
1311063-7842/98/43(11)/5/$15.00
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and v j ( j 51,2; the subscripts 1 and 2 refer to plasma a
beam parameters;n1 /n0, n2 /nb , v2 /V0!1).

The evolution ofnj and v j for a plasma–beam system
will be described by hydrodynamic equations and Poisso
equation for the electric fieldE:

]nj

]t
1

]

]x
~njv j !50,

]v j

]t
1v j

]v j

]x
52

eE

me
,

]E

]x
524pe(

j
nj . ~1!

From ~1! we can obtain equations which describe t
dynamics of nonlinear density waves:

S ]2

]t2
1Ve

2D n11
]2n1v1

]x]t
2

n0

2

]2v1
2

]x2
1Ve

2n250,

S ]2

]t2
12V0

]2

]x]t
1V0

2 ]2

]x2
2Vb

2D n21V0

]2n2v2

]x2

1
]2n2v2

]x]t
2

nb

2

]2v2
2

]x2
1Vb

2n150. ~2!

The system of equations~2! corresponds to the ordinar
dispersion relation

15
Ve

2

v2
1

Vb
2

~v2kV0!2
, Vb

25
4pe2nb

me
.

It follows from an analysis of this equation that wav
which are unstable when an electron beam interacts wi
plasma satisfy the conditions

v<kV0 , v5Ve . ~3!

Assuming that high harmonics are generated durin
nonlinear interaction, we substitute the expansions ofnj and
8 © 1998 American Institute of Physics
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v j in the form of series into~2!. Using the conditions~3! and
carrying out the averaging over the high-frequency mod
we find equations which describe the slow evolution of
complex amplitudesaj @nj5ajexp(ikx2ivt)# of charge-
density waves:

i ȧ15a1ua1u2a11b1ua2u2a11l1a2 ,
~4!

2 i ȧ25a2ua2u2a21b2ua1u2a21l2a1 .

Here the dot denotes differentiation with respect to
‘‘new’’ time t85t2x/V0. Going over to the new variablet8
essentially means that from the entire set of solutions foraj ,
we are selecting solutions in the form of stationary wav
moving with a velocityV0. Such waves have been detect
repeatedly in experiments~see, for example, Refs. 1 and 3!.
The coefficientsa1 andb2 reflect the character of the non
linear interaction, and (l1l2)1/25g is the linear beam insta
bility growth rate @in deriving ~4! it was assumed tha
g!Ve#. In ~4! these coefficients have the following form:

a152
Ve

n0
2

, b15
3

4

Ve

n0
2 S Ve

Vb
D 2

,

a253
Ve

n0
2 S Ve

Vb
D 2

, b252
3

8

Ve

n0
2

,

l15
1

2
Ve , l25

1

2

Vb
2

Ve
, g5

Ve

2 S nb

n0
D 1/2

. ~5!

The maximum instability growth rate for a monoene
getic beamgmax'Ve(nb /n0)

1/3. In the general case the cond
tions (p/2)1/2(nb /n0)Ve(Ve /kVTb)

2,g,gmax, whereVTb

is the thermal spread in the beam, are imposed on the in
bility growth rate.5 Even for a monoenergetic beam it turn
out thatg,gmax, since the fluctuations of the beam veloci
can be significant in a stationary nonlinear wave. Within
order of magnitudeg;Ve(nb /n0)(V0 /(DV))2 ~Ref. 4!.
When (V0 /(DV))2;(n0 /nb)1/2, we find g;Ve(nb /n0)1/2

@see Eq.~15!#. This value corresponds to the minimum inst
bility growth rate excited by a monoenergetic beam.

For a further analysis of the evolution of the system,
~4! we go over to new variables, i.e., amplitude-phase v
ables, by settingaj5Ajexp(iwj). In the new variables the
system~4! acquires the following form:

Ȧ151l1A2sinDw, Dw5w22w1 ,

Ȧ251l2A1sinDw,

Dẇ52~~a11b2!A1
21~a21b1!A2

2!

1~l1A2 /A11l2A1 /A2!cosDw. ~6!

From the first two equations in~6! we find the integral of
motion

l1A2
22l2A1

25C. ~7!

We henceforth assume that the integration constan
equal to zero. Using~7!, we obtain from~6! an equation
which describes the variation of the phase difference
tween the waves,
s,
e

e

s

ta-

n

-

i-

is

e-

c̈1v0
2sinc50, c52Dw, v0

254l1l2 , ~8!

and an equation which describes the dynamics of the w
energy,

ċ52aA1
21v0sin~c/2!,

a5~a11b2!1l2l1
21~a21b1!. ~9!

The coefficients appearing in Eqs.~8! and ~9! were pre-
viously defined in~5!.

Equation~8! has the form of the stationary sine-Gordo
equation. Its solutions are known and are expressed in te
of the elliptic functions

ċ~ t8!52¸v0H cn~ t8,¸!, ¸<1,

dn~ t8,1/̧ !, ¸>1, ~10!

where we have introduced the notation

H5
1

2
ċ22v0

2cosc, Hs5v0
2 ,

¸25
1

2S 11
H

Hs
D , N5

v0

v~H !
. ~11!

Herev(H) is the frequency of the nonlinear oscillations, a
v0 is the frequency of the small oscillations~we note thatv0

is specified by the linear growth rate of the problem!. When
¸51, expression~10! goes over to the definition ofc at the
separatrix. Assuming that there is a developed turbule
regime in the system att850 and settingc50 at t850 or
(]c/]t8)52v0 at c50, we obtain

ċ52v0cosh21~v0 t8!. ~12!

When other conditions on (]c/]t8) and c are chosen,
the initial instant of ‘‘time’’ t8 is simply shifted, and a con
stant t0 must be added to~12! @for example, t05` for
(]c/]t8)50 andc5p#.

Substituting~10! and~12! into ~9!, we obtain the expres
sions for the dynamics ofA1

A1
25

v0

a H dn~ t8,¸!1¸ cn~ t8,¸!, ¸<1,

¸dn~ t8,1/̧ !1cn~ t8,1/̧ !, ¸>1, ~13!

A1
25

2v0

a
cosh21~v0 t2k0x!, ¸51. ~14!

Using the definitions~5!, ~8!, and ~9!, we can calculate
the amplitude valueA1

~A1
2!5A0

250.4S nb

n0
D . ~15!

Equations~13! and ~14! describe the evolution of the
energy of nonlinear Langmuir waves. In particular, Eq.~14!
corresponds to two types of waves: solitons,

A151S 2v0

a D 1/2

cosh21/2S v0S t2
x

V0
D D ,

and antisolitons~cavitons!
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A152S 2v0

a D 1/2

cosh21/2S v0S t2
x

V0
D D .

Interesting information on the dynamics of the wav
can be obtained if we consider the expression for the ph
difference when H5Hs . Under the initial condition
Dw50 at t850, from Eq.~8! we find

Dw52arctan@exp~v0 t8!2p/2#. ~16!

As t8→`, the phases of the waves go out of resonan
andDw→p/2.

STOCHASTIC DYNAMICS OF PARTICLES

Let us turn to the spectral properties of the system
was shown in Ref. 6 that near the separatrix (¸2→1,
H→Hs) the parameterN, which is defined in~11!, has the
form

N;
1

p
ln

32Hs

Hs2H
. ~17!

Near the separatrixv(H)→0, and the oscillation period
diverges logarithmically. The phase velocity]c/]t8 and the
energyA2(t8) of the waves approach a periodic sequence
soliton-like pulses with a distance between crests along
time scale equal to 2p/v(H) and a crest width close to
2p/v0. The spectrum of these modes becomes broad
contains harmonics with the amplitudes6

bn;8vH 1, N>n.1,

exp~2n/N!, n.N, ~18!

i.e., all the harmonics are approximately equal up ton;N
and are exponentially small atn.N. The numberN specifies
the off-on ratio of the functions]c/]t8 andA2 and the char-
acteristic number of harmonics in the spectrum. As the se
ratrix is approached,N→`, and the spectrum tends to
continuous spectrum.

Let us determine the correlation properties of the sys
at the separatrix. For this purpose we introduce the correl
q1(t)5^A1(t8)A1(t81t)&, where the angle brackets^ . . . &
denote averaging over the ensemble~time!.6 The spectral
power densityq1(v) is related to the correlatorq1(t) by the
expression

q1~v!5E
2`

`

dt eivtq1~t!.

Substituting the expressions forA1(t8) from ~14! into
these definitions, we have

q1~t!5
2p

a
cosh21~v0t!,

q1~v!5
p2

av0
cosh21~pv/2v0!. ~19!

It can be seen from~2! and~4! that the wave spectrum i
continuous ~the characteristic width of the spectrumDv
'v0), the decorrelation timetc5(v0)21, and the correlator
q(t) behaves as exp(2v0t) at t→`.
se

e,

It

f
e

nd

a-

m
or

Let us investigate the dynamics of electrons in a plas
field. As follows from the foregoing, a high-frequency wav
with a slowly varying amplitude, or, stated differently,
broad wave packet, appears in the plasma. We shall s
that the trajectories of particles in the field of such a pac
become stochastic under certain conditions The phase ve
ties of the packet tightly fill a certain interval (v/k)max.V0

.(v/k)min , so that an effective interaction~Landau reso-
nance! of the waves with the particles occurs in this regio
Because of the overlap of resonances, the trajectories of r
nant particles become complicated, and regions with stoc
tic particle dynamics appear on the (ẋ,x) phase plane. Since
the main nonlinear effect is associated with the reverse
fluence of the plasma oscillations on the distribution of re
nant particles,4 the equation describing the dynamics of t
particles will have the following form:

ẍ52
e

me
(

k
Ekexp~ ikx2 iv0t !. ~20!

Here the Fourier harmonicEk of the electric field is de-
termined from Poisson’s equation and Eqs.~14! and ~15!. It
follows from ~17!–~19! that the wave spectrum consists of a
even number of harmonics with the wave numberskn and the
frequenciesvn , which range from2` to 1`. It was shown
above that the amplitudes of the harmonics are appr
mately equal up to a certain number. Then the followi
simplifying assumptions can be made regarding the struc
of the packet:

kn5k01nDk, vn5Ve1nDv,

k05VeV0
21 , An5const, An

2N5A0
2 , ~21!

where A0 is the density-wave amplitude normalized ton0

andN is the effective number of harmonics.
Furthermore, a large portion of the plasma electro

have velocitiesv,V0. In that case Eq.~20! reduces to the
problem of the motion of a particle in the field of a tempor
packet.6 Using the conditions~15! and ~21! and averaging
over the high-frequency oscillations, we obtain an equat
which describes the slow evolution of a particle in the wa
packet field:

ẍ5«
Ve

2

k0
cos~k0x2Vet !(

n
Ancos~nDvt !

5
V0

2

k0
TcosQ~x,t ! (

n52`

`

d~ t2nT!. ~22!

Here we have introduced the following notation:

Q~x,t !5k0x2Vet, V0
25«Ve

2A0N21/2,

v05VeS nb

n0
D 1/2

, T5
2p

Dv
5

2p

v0
N, «5N21, ~23!

where T is the characteristic time period of the field
tc5v0

21 is the decorrelation time,« is a small averaging
parameter, andV0 is the frequency of the small oscillation
of a particle in the potential well created by the central h
monic of the wave packet.
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It is easy to write a mapping (T̂ is the mapping in Ref. 6!
which is equivalent to Eq.~22!:

v̄5v1
K

k0T
cosQ, K5V0

2T2,

Q̄5Q1v~ v̄ !T, v~v !5k0v2Ve , ~24!

wherev, Q, v̄, andQ̄, are the velocities and phases of t
particle, respectively, at the timesnT and (n11)T.

The mapping~24! is a standard mapping, and whe
K>1, the particle trajectories become stochastic, and
corresponding kinetics are described by an equation like
Fokker–Planck–Kolmogorov~FPK! equation. At small par-
ticle velocities, at which the packet is temporal, the FP
equation can be written in the divergent form

] f ~v,t !

]t
5

1

2

]

]v
D

] f ~v,t !

]v
. ~25!

Here f (v,t) is the distribution function of the particles;D is
the diffusion coefficient, which is calculated in the usu
manner,

D5 K K ~Dv !2

T L L , Dv5 v̄2v5
K

k0T
cosQ,

D5
1

2

K2

k0
2T3

, ~26!

and the angle bracketŝ. . . & denote averaging over th
phase.

It can be seen from Eqs.~25! and ~26! that

^v2&5u0
21Dt ~27!

and that stochastic heating takes place.
If the problem~25! would be solved in a certain bounde

velocity range in the absence of a flow of particles from t
range, then during the characteristic timet>td , where

td5V0
2D21 ~28!

the equilibrium distribution

f ~v !5const ~29!

would be established in that region.
The distribution~29! has the form of a plateau in veloc

ity space.
We use formulas~24!, ~26!, and ~28! to calculateK,

which characterizes the degree of stochasticity of the sys
the diffusion coefficient D, and the characteristic
distribution-function relaxation timetd . Utilizing formulas
~23! in the calculations, we find the following dependenc

K5S n0

nb
D 3/4

N1/2,

D5
1

2p
V0

2VeN
22, td52pVeN

2. ~30!
e
e

l

t

m,

:

Formulas~30! contain N, i.e., the effective number o
harmonics in the wave packet. For rough estimates ofK and
D we can setN'n0 /nb . Under this condition expression
~30! take on the following form:

K5S n0

nb
D 5/4

,

D5
1

2p
V0

2VeS nb

n0
D 2

, td52pVe
21S n0

nb
D 2

. ~31!

There are several effects that were not taken into acco
in describing the stochastic dynamics of electrons. First,
finite decorrelation timetc is taken into account in the FPK
equation, then Eq.~25! can contain a description of the sto
chastic acceleration of the particles.6 Since the distribution
function in a plasma–beam system is nonequilibrium, it
possible that the particles are slowed, rather than acceler
and impart energy to the wave packet. As a result, this le
to modification of the velocity distribution function and e
tablishment of the stationary distribution~29!. Another effect
is associated with the influence of friction on the mechani
of stochastic heating~the diffusion time along the stochast
trajectories is of the order of the damping timeg21). In this
case it can easily be shown that the maximum energy wh
the particles can acquire is

K mev
2

2 L
`

5
meV0

2K2

8gVe
2T3

.

Substituting the expressions forK and T from ~23! and
~31! into the last formula, we obtain (mev

2)` /meV0
2;gtd .

For electrons moving with velocitiesv.V0 ~on the
‘‘tail’’ of the distribution function!, the energy confinemen
mechanism is associated with the features of the chaotic
havior of the particles. The dynamics of the particles in t
case are described by the equation

ẍ5
V0

2

k0
LcosQ~x,t ! (

n52`

`

d~x2nL!, ~32!

whereL52pV0Nv0
21 is the spatial period of the field.

The chaotic behavior of the particles occurs only in
bounded velocity range (V0 ,Vmax), where

Vmax5~V0L2V0
2!1/3. ~33!

The averaged evolution of the system is derived from
FPK equation, from which it follows that chaotization of th
motion of the particles causes the formation of a plateau
energy space on the tail of the distribution function and t
the energy of the particles varies on the average accordin
the law

K mev
2

2 L ;
meV0

2

2
1const•t2/3. ~34!

This occurs until the energy of the particles reaches
value ^meVmax

2 /2&. Using the definitions forV0 and Vmax

from ~23! and ~33!, we find

K meVmax
2

2 L 5
meV0

2

2 S n0

nb
D 5/6

. ~35!
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Let us evaluate the influence of ions on the dynamics
the system. In the experiments in Refs. 1 and 2 the leve
ion fluctuationsdni /ni;1022, i.e., dni /ni!dne /ne . If the
field of ion fluctuations is totally neglected, then the moti
of the heavy particles can be described as the result of t
interaction with the Langmuir wave electric field envelop
Reasoning as above, we can write the dynamical equatio
the ions in the form

ẍ5«
V i

2

k0
A0TcosQ~x,t ! (

n52`

`

d~ t2nT!, ~36!

whereV i is the ion plasma frequency.
It can easily be shown that because of the weak

chastization of the ion motion@the stochastization paramet
K;2p(me /mi)(n0 /nb)5/4;1# only slow growth of the en-
ergy is possible in the system in the field~36!:

K miv i
2

Ti
L 511

me

mi

Te

Ti

meV0
2

Te

Ve

2pS nb

n0
D 2

, ~37!

whereTe andTi are the electron and ion temperatures, a
mi is the mass of an ion.

DISCUSSION OF RESULTS. CONCLUSION

Let us compare the experimental data with the calcula
values. In the experiments in Refs. 1 and 2 the typical plas
and beam parameters were as follows:Te53 eV, Ti /Te

50.1, n05531011 cm23, ne5Ve/2p553109 GHz,
meV0

2/2Te5100,nb /n0;1022, and the beam pulse duratio
t;1026 s.

Let us first determine the characteristic temporal a
spatial scales of the problem. Using Eqs.~8!, ~14!, ~19!, ~23!,
and ~31!, we find the field pulse time tc5v0

21

5Ve
21(n0 /nb);1028 s, the pulse repetition perio

T;v0
21(n0 /nb)<1026 s, the modulation frequenc
f
of

ir
.
of

-

d

d
a

d

v;T21>106 s21, the distribution-function relaxation time
td;ne

21(n0 /nb)2;1026 s, the characteristic width of the
potential well created by the central harmonicl 0;k0

21

5V0Ve
215(V0 /VT)r d (r d is the Debye radius!, and the har-

monic interaction scale~the width of the soliton-like pulse!
l;V0v0

21' l 0(n0 /nb)1/2. It follows from ~16! that the turbu-
lence energy level (dne /n0)2'0.4, (nb /n0)1/2'431022,
and uEu2/4pn0Te;10. Using formulas~27!, ~31!, and ~34!
we calculate the electron energy increment during a be
pulse (meV0

2/2)(nb /n0)2net;1021, (meV0
2/2), and the

maximum electron energy on the tail of the distribution fun
tion (meV0

2/2)(n0 /nb)5/6. An estimate for ions from~37!
shows that the relative ion energy increment (miv i

2/Ti)
;(me /mi)(Te /Ti)(meV0

2/Te)(nb /n0)2net;0.1.
In summation, it has been shown in this paper that

induced scattering of beam electrons excites nonlinear La
muir waves in the plasma. The electric field envelope of
Langmuir oscillations has the form of a cnoidal wave. T
dynamics of electrons in the wave field becomes chaotic,
the stochasticity is manifested in several macroscopic effe
The results obtained within this model provide explanatio
for several experimentally observed features of the evolu
of a plasma–beam system.

1D. A. Whelan and R. L. Stenzel, Phys. Rev. Lett.47, 95 ~1981!.
2D. M. Karfidov, A. M. Rubenchik, K. F. Serge�chev, and I. A. Sychev, Zh.
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Structure of group cathode spots on the surfaces of hot-rolled steels
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The results of investigations of cathode spots on steel surfaces are presented. Their behavior is
found to have some distinctive features in comparison with the results obtained on clean
metals. © 1998 American Institute of Physics.@S1063-7842~98!01111-8#
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INTRODUCTION

Research on the dynamics of cathode spots on var
surfaces is of interest largely in connection with the solut
of practical problems, particularly with the development
technologies for the vacuum-arc treatment of the surface
electrically conductive materials.1–3 Most of the known ex-
perimental results have been obtained in studies perfor
on clean metal surfaces.4–7 At the same time, for practica
purposes it is important to know the features of the beha
of cathode spots on surfaces covered by various films,
ticularly fairly thick layers of scale. Such studies have n
been carried out to any appreciable extent on account of
complexity of the interpretation of the results and their po
reproducibility, which is due to the nonuniformity of ox
dized surfaces.

The preliminary results of investigations of catho
spots on the surface of hot-rolled steel performed by
‘‘autograph’’ method4 were recently reported in Ref. 8.
was established that elementary cathode spots, which
also known as cells4 or as independent or separate catho
spots,5 exist on such a surface in the form of compact grou
which determine the type of erosion of the surface. A the
on such compact groups of elementary cathode spots
previously advanced in Ref. 5, where they were term
group cathode spots.

The purpose of this paper is to report the results of f
ther, more systematic investigations of group cathode sp
Samples of hot-rolled stainless steels 304 and 430 were
lected as objects of investigation.

EXPERIMENTAL METHOD

The idea behind the investigation of group cathode sp
by the ‘‘autograph’’ method is exceptionally simple4 and can
be described as follows. As a group cathode spot moves
a surface, it leaves an imprint, which forms as a result
erosion of the surface. If the surface is covered by an ox
layer ~scale!, its erosion includes removal of the scale fro
it, as a result of which the imprint formed has a very clea
outlined contour. Measuring the geometric parameters of
imprint ~length, width, and area! for a fixed discharge burn
ing time permits determination of the dimensions of t
group cathode spot and its mean rate of motion over
surface. The geometric parameters of imprints w
1321063-7842/98/43(11)/6/$15.00
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measured on an automated image-processing system wit
put of the images into a computer from a television cam
with an assigned magnification.

A pulsed discharge power supply, which genera
pulses of rectangular shape with a regulatable dura
T5121000 ms and an amplitude up toI 5300 A, was used.

The following discharge parameters were measured
dependently: the discharge currentI , the voltage on the dis-
charge gapU, the total electric charge passing through t
discharge during a single pulseQ5*0

TI (t) dt, and the dis-
charge pulse durationT.

The electrode system had a flat geometry with an e
trode gap much smaller than the linear dimensions of
electrodes, and the sample being investigated served a
cathode. The experimental setup permitted the performa
of investigations both in the absence of an external magn
field and in an external magnetic field.

In the former case a cassette holder for six samp
whose geometry ensured the most symmetric distribution
the local magnetic fields created by the discharge current
the leads over the surface of each sample, was mounte
the vacuum chamber. Investigations associated with dete
nation of the most probable value of the current per gro
spot, as well as other parameters of the group cathode s
under conditions allowing their free movement over the s
face, were performed in this variant.

In the latter case an electromagnet with one test sam
in its opening was mounted in the vacuum chamber. T
maximum magnetic field strength over the surface of a n
magnetic material wasH51.33105 A/m. The corresponding
value over the surface of a sample of a material having
romagnetic properties wasH58.63104 A/m. The depen-
dence of the width of the imprint of a group cathode spot~its
dimensions! and the rate of motion on discharge current,
well as the influence of the magnetic field on the propert
of the group cathode spot, were investigated in this varia

The value ofQ was measured by a special instrument
a relative error of 2%. The automated image-processing
tem enabled us to measure the area of the cleaned surfa
a relative error of 5% and the linear geometric parameter
the imprints of group cathode spots to a relative error
3.5%. The duration of the discharge pulses was varied w
1-ms steps and established to within610 ms.
3 © 1998 American Institute of Physics
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EXPERIMENTAL RESULTS

In the absence of an external magnetic field at su
ciently large discharge currents (.100 A! the ‘‘autograph’’
of cathode spots on a surface~the outline of the area freed o
scale! has a clearly expressed structure in the form of alm
symmetrically dispersed, winding tracks of irregular sha
on which there are branches. A typical example of an ‘‘a
tograph’’ is shown in Fig. 1. At small currents, for examp
at I 520 A, such a structure is not observed even for la
discharge-current durations: the ‘‘autograph’’ has the fo
of a spot of irregular shape. One interesting feature of
microrelief of an eroded surface is the presence of axi
symmetric columnar protrusions of the fused metal, wh
reach heights up to several tens of microns. They are p
tioned randomly at the center of the ‘‘autograph’’ and
widened portions of the tracks. On narrow portions of w
formed tracks the protrusions are located predomina
along the axial line of the track, sometimes fusing and for
ing a structure resembling an axial ridge. This is display
especially clearly on the tracks formed in the presence o
external magnetic field, which will be discussed below.

The measurements were performed for various am
tudes (1102160 A! and durations (5250 ms! of the dis-
charge current. The most probable value of the currenti g in
a group cathode spot was determined by counting the n
ber of tracksNk at each value of the discharge current und
the assumption that all the tracks form simultaneously
must be admitted that the procedure for counting the num
of tracks is very subjective. Therefore, several counting
teria were used: for example, only tracks diverging from
center were counted~without consideration of branching!;
short branches were not counted; and allowance was m
for the possibility of two group cathode spots moving alo

FIG. 1. ‘‘Autograph’’ of group cathode spots~1–6! on a surface of steel 430
for I 5150 A andT50.015 s.
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a track simultaneously, which would be displayed in t
form of one highly branched track. It turned out that t
result of calculatingi g depends weakly on the choice of th
criterion for countingNk . The values ofi g determined ac-
cording to different criteria, were confined to the followin
ranges:i g525.1228.7 A for steel 430 andi g522.5223.7 A
for steel 304. The best criterion for determiningNk was es-
timated from the minimum of the quantity

D5 (
k51

n

~Nk2I k / i g!2/~n21!,

where n is the number of ‘‘autographs’’ treated,I k is the
discharge current for the formation of thekth ‘‘autograph,’’
and Nk is the number of tracks counted in thekth ‘‘auto-
graph.’’

The following values were taken as a result:i g527.5
60.7 A for steel 430 andi g523.761.0 A for steel 304.
Under these conditions the variance of the normal distri
tion of the current in a group cathode spot isD( i g)56.8 A2

for steel 430 andD( i g)515.2 A2 for steel 304.
The mean values of the width (d) of the tracks of group

cathode spots were determined. The width of each track
measured at 10 equidistant points. The results of many m
surements performed for different discharge pulse am
tudes and durations were treated according to the le
squares method. No correlation was discovered between
track width and the discharge current~the number of tracks
for the group cathode spot!, as well as the discharge puls
duration. The following values were obtained:d5(0.045
60.006) cm with a varianceD(d)50.0002 cm2 for steel
430 and d5(0.08460.008) cm with a varianceD(d)
50.0005 cm2 for steel 304.

It is easy to see that the distribution function of th
group cathode spots with respect to the relative value of
current flowing in them is narrower than their distributio
with respect to the measured relative track width. Thus
our opinion, the great spread of measured track widths
determined to a considerable extent by the superpositio
the chaotic component of the velocity of the group catho
spots on the radial component. This is also supported by
character of the surface microrelief in the regions of app
ciable widening of the tracks~the chaotic arrangement of th
protrusions on the surface!.

The radial components of the velocity of group catho
spots were measured. Anisotropy of the velocity of the gro
cathode spots on the surfaces of the samples investigated
discovered. The velocity of the group cathode spots in
rolling direction was higher than the velocity in the tran
verse direction. The radial components of the velocity of
group cathode spots decrease with increasing distance
the discharge initiation center, in agreement with the conc
tion of the influence of the total magnetic field created
group cathode spots on their motion. Plots of the depende
of the radial component of the velocity in the rolling dire
tion (Vmax) and in the transverse direction (Vmin) on the dis-
charge pulse duration for both types of steel are shown
Fig. 2. Processing of the results of measurements of a
freed of scale (S) for various values ofQ5*0

TI (t) dt showed
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that the relationship between these quantities at a fixed
rent and pressure is approximated well by the linear dep
dence S5Q/qeff ~the linear correlation coefficient is n
poorer than 0.99!. Thus, for fixed current and pressure valu
qeff is a constant~which does not depend on time!. The con-
stancy ofqeff with time attests to the constancy of the fra
tion of the current in a group cathode spot which removes
scale from the surface.

For steel 430 we haveqeff5(11.861.5) C/cm2, and for
steel 304 we haveqeff5(13.860.6) C/cm2. The parameter
qeff has a weakly expressed maximum in the range of
charge currents 1402150 A, remaining essentially consta
for other values of the current.

An external magnetic field was used to induce the
rected motion of a single group cathode spot for the purp
of subsequently determining the dependence of the rat
motion and the characteristic dimensions of the group c
ode spot on the current value of the current in it. A gro
cathode spot moves in an external magnetic field in the
rection opposite to the Ampe`re force.

Measurements were performed for three values of
magnetic field and 6–10 values of the discharge current.
minimum value of the magnetic field strength was chosen
that a straight track of approximately invariant width with
regular microrelief in the form of an axial ridge consisting
closely arranged and partially merging protrusions wo
form.

The following values of the magnetic field strengthH
were chosen:Hl52.233104 A/m, Hm54.53104 A/m, and
Hh56.753104 A/m for steel 430; Hl52.43104 A/m,
Hm54.73104 A/m, andHh583104 A/m for steel 304. The
values of the discharge currents were chosen in the ra
i g/2,I ,2i g , which corresponds to the existence region o
single group cathode spot. The velocity of the group cath
spot in these measurements was found asv5 l /T, wherel is
the track length andT is the discharge pulse duration.

Two types of dependences of the mean track widthd on

FIG. 2. Dependence of the radial component of the velocity of group c
ode spots on the duration of the discharge pulse for steel 304:j — vmin ,
m — vmax.
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the discharge currentI were discovered: a linear dependen
and a dependence of the formd5kdAI . The dependence ofd
on I for steel 430 turned out to be nearly linear at all ma
netic field strengths. The dependence ofd on I for steel 304
is nearly linear at low magnetic fields (Hl), while at high
fields (Hh) it has the formd5kdAI . With respect to the
dependence at medium values of the magnetic field (Hm),
the spread observed in the experimental data precludes m
ing an unequivocal choice between these two types of dep
dences.

The results of the measurements of the velocity of gro
cathode spots as a function of discharge current showed
a regular dependence is observed in only one case, viz.
steel 304 at a high magnetic field, and has the fo
v5kvAI . In the remaining cases it can be stated that thei
no dependence of the velocity of group cathode spots
current.

When the dependence ofd on I is linear, the character
istic track microrelief~the axial ridge consisting of mergin
protrusions! does not undergo any qualitative changes. T
dimensions of the axial ridge decrease as the track w
decreases. The transition to the dependence of the f
d5kdAI ~steel 304 at a high magnetic field! is accompanied
by qualitative changes in the microrelief. More specifical
the pronounced axial ridge disappears, and an appreci
quantity of fused scale appears on the bottom of the trac

The measurements ofqeff5Q/S, where S is the track
area, showed that it does not depend on discharge cur
The value ofqeff for steel 430 does not depend on magne
field strength to within the measurement accuracy range
remains the same as in the absence of an external mag
field. At the same time, for steel 304 there is an apprecia
decrease inqeff in an external magnetic field, the stronge
change occurring upon the transition from fields of mediu
strength to fields of high strength. The values ofqeff for
various magnetic field strengths are listed in Table I.

To complete this section we note that a significant co
tribution to the statistical spread of the measured parame
of group cathode spots could be made by the inhomogen
of the scale on the sample surface. In order to clear up
question, the thickness of the scale on a large numbe
samples~22 samples for each kind of steel! was measured
The results were as follows: a mean scale thickness
7.0 mm with a variance of the normal distribution of th
thickness equal to 2mm2 for steel 430, and a mean sca
thickness of 7.6mm with a variance of the thickness distr
bution equal to 0.7mm2 for steel 304.

DISCUSSION OF RESULTS

Examining the results obtained, we start out from t
most widely used conceptions of an elementary cathode
as a local active emission center, which provides for the fl
of large currents with a comparatively small voltage on t
discharge gap. According to these conceptions, an elem
tary cathode spot is a highly nonstationary and unstable
tem, which forms, develops, and ends its existence in a fi
local region on the surface. The movement of an elemen
cathode spot over the surface should be regarded as the r

-
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TABLE I. Types of dependences of the parameters of group cathode spots on the discharge current, their configuration, and the value ofqeff for various
external magnetic field strengths.

Magnetic
field

Type of steel 304 430

strength Parameters d, cm v, cm/s qeff , C/cm2 d, cm v, cm/s qeff , C/cm2

Low Type of d5kdI v5const 8.160.5 d5kdI v5const 12.861.0
(Hl) dependence kd5(1.9260.05)31023 v56264 kd5(1.7160.17)31023 v54667

Configura-
tion of group One-dimensional One-dimensional
cathode spot

Medium Type of d5kdI v5const 7.461.0 d5kdI v5const 11.161.1
(Hm) dependence kd5(1.3160.12)31023 v59966 kd5(1.0160.10)31023 v584610

Configura-
tion of group One-dimensional One-dimensional
cathode spot

High Type of d5kdAI v5kvAI 5.660.5 d5kdI v5const 10.260.8
(Hh) dependence kd5(5.9360.23)31023 kv526.160.8 kd5(0.9860.06)31023 v59467

Configura-
tion of group Two-dimensional One-dimensional
cathode spot
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of the successive formation of new elementary cathode s
in the immediate vicinity of disappearing elementary spo
The characteristic parameters of elementary cathode s
such as their probability~frequency! of formation, lifetime,
linear dimensions, and mean current, depend both on
physical properties of the surface in the region where t
form and on the initial local conditions~the density of the
near-surface plasma and the temperature! and do not depend
on total discharge current, i.e., the discharge current is
rectly proportional to the number of elementary spots on
cathode.

Unlike an elementary cathode spot, a group cathode
is a stable system, whose existence is sustained by the
librium between the rate of formation and the rate of destr
tion of the elementary cathode spots comprising it. T
movement of a group cathode spot over the surface is m
likely attributable to the difference in the probability of th
formation of elementary cathode spots in certain selected
rections due to the inhomogeneous distribution of the ne
surface plasma density in local magnetic fields.

The following qualitative explanation for the formatio
of a group cathode spot on a surface covered by scale ca
conjectured. An isolated elementary cathode spot on su
surface obviously cannot provide the necessary initial con
tions for the formation of a new elementary cathode s
with a sufficiently high probability and thus cannot crea
successively appearing new elementary cathode spots
the course of any prolonged time period. If there are sev
fairly closely arranged elementary cathode spots on the
face, their combined influence on the surface results in
creation of more favorable conditions for the formation
new elementary cathode spots to replace the disappea
spots. Thus, a group of elementary cathode spots is a m
viable system than an isolated elementary cathode spo
addition, the fact that each type of surface has a defin
most probable value of the current in a group cathode spo~a
ts
.
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most probable number of elementary cathode spots com
ing a group cathode spot! with a comparatively small vari-
ance seems to be evidence of the operation of a mecha
which displaces the equilibrium between the rate of form
tion and the rate of disappearance of elementary cath
spots in accordance with their number with a group cath
spot. When the current in a group cathode spot~the number
of elementary cathode spots! is less than the most probab
value, the rate of formation of elementary cathode spot
higher than the rate of disappearance. In the opposite
the rate of formation becomes less than the rate of disapp
ance.

The results of the measurements of the dependenc
the group cathode spot track width on the current in an
ternal magnetic field showed that in all cases, with the
ception of steel 304 in a high external magnetic field, a gro
cathode spot has a configuration in which the elemen
cathode spots are arranged along the outline of the gr
spot according to a law which does not depend on curren
other words, the mean distancea between the elementar
cathode spots remains constant as the current in the g
spot varies. Below we shall call such a configuration on
dimensional by convention. The extreme examples of o
dimensional configurations of group cathode spots are a
ear segment of length;d and a circle of diameter;d. Here

d5kdI , ~1!

where kd5a/ f i e , i e is the mean current in an elementa
cathode spot, andf is the geometric factor.

The dependence of the form

d5kdAI ~2!

obtained for steel 304 in a high magnetic field correspond
a configuration of the group cathode spot in which the
ementary spots are distributed over the entire area of
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group spot according to a law which does not depend
current. Below we shall call such a configuration tw
dimensional. In this case

kd5a/Ai e,

where a is the mean distance between elementary cath
spots, which likewise does not depend on the current in
group cathode spot.

The conceptions of group cathode spots with one-
two-dimensional configurations are in good agreement w
the results of the measurements of the velocity of group c
ode spots as a function of current.

Let us consider the formation of a surface freed of sc
in the form of a straight track as a result of the motion o
group cathode spot. Then the area of the cleaned surfa
specified by the expression

S5dvt, ~3!

wherev is the rate of motion of the group cathode spot.
On the other hand, the cleaning of the surface can

regarded as the result of the interaction of the elemen
cathode spots forming a group spot with the scale. In
case

S5xn
se

te
t, ~4!

wheren is the number of elementary cathode spots form
the group spot;x is the effective fraction of elementary cath
ode spots interacting with the scale (x<1), se is the area of
the cleaned surface formed during the lifetime of an elem
tary cathode spot as a result of its interaction with the sc
andte is the lifetime of an elementary cathode spot.

Comparing the right-hand sides of~3! and ~4!, we find

v5n
1

d
x

se

te
5

I

i e

1

d
x

se

te
.

Using formulas~1! and ~2!, we can easily find the de
pendence of the velocity of a group cathode spot on cur
for different structures:

v55
const5

f

a
x

se

te

for a one2dimensional
configuration,

kvAI , where kv5
1

aAi e

x
se

te

for a two2dimensional
configuration.

The types of the dependences of the parameters
group cathode spot and its structure on discharge curren
given in Table I. It was assumed in all the arguments ab
that the basic parameters of elementary cathode spots d
depend on discharge current.

The observed axially symmetric structure of typical e
ments of the microrelief of an eroded surface, i.e., the p
trusions, leads to an intuitive picture of the analogous sy
metry in a group cathode spot. For example, in the case
one-dimensional configuration it suggests a group cath
spot of annular structure with a uniform distribution of e
ementary cathode spots around a circle. However, the m
ment of the group cathode spot over the surface is at varia
n
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with this intuitive picture. As we have already stated abo
the motion of a group cathode spot is caused by the hig
probability of the formation of new elementary cathode sp
in the direction of motion of the group spot, and, therefo
there cannot be a uniform distribution of elementary catho
spots along the outline or over the area of the group spo
can theorized, for example, that an overwhelming majo
of elementary cathode spots in the region of a group cath
spot with a one-dimensional configuration will be conce
trated on the arc of a circle facing the direction of motion
the group cathode spot at a certain value of the magn
field strength. The elementary structure of the microrelief
an eroded surface is displayed most clearly when the d
tion of the discharge pulse is small in the absence of a m
netic field. At durations less than 1 ms an eroded surface
the form of individual, closely arranged craters with a nea
circular outline. The following crater formation dynamics a
observed. In the initial stage of development of the discha
the dimensions of the craters grow with increasing time. T
bottom of each crater has a flat shape at its center wit
considerable quantity of fused scale and islands of cl
metal. There are subsequently qualitative changes in the
crorelief of the crater without significant changes in its d
mensions. A columnar protrusion of fused metal appear
the center of the crater, and a clearly expressed borde
fused scale forms along the edges. A schematic represe
tion of such a crater is shown in Fig. 3.

Approximate estimates of the time of formation of th
characteristic microrelief were obtained: 502100 ms for
steel 430, and 1002150ms for steel 304. In our opinion, the
processes which shape the structure of a group cathode
and the microrelief of a crater are directly related to o
another. In this situation, a group cathode spot apparently
a two-dimensional configuration at the initial moment, a
then it relaxes to a one-dimensional configuration durin
finite time.

The fact that passage from a one-dimensional to a t
dimensional configuration of a group cathode spot was
served on steel 304 at high magnetic fields in the exp
ments in an external magnetic field is confirmed not only
the dependence ofv andd on the discharge current, but als
by the changes observed in the track microrelief in this ca

FIG. 3. Schematic representation of a crater~in section! in the final stage of
the formation of a typical microrelief: a — scale layer, b — metal, c —
protrusion, d — border of fused scale.
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It is significant that the microrelief of the track left on
surface by a group cathode spot of two-dimensional confi
ration is qualitatively similar to the microrelief of the crate
formed in the initial stage of discharge development. T
significant decrease in the value ofqeff upon passage from
the one- to the two-dimensional configuration agrees w
with the qualitative change in the microrelief of the clean
surface, since an appreciable portion of the energy expen
on cleaning the surface must be used to form the protrusi

The absence of a change in the structure of a gr
cathode spot on steel 430 is probably attributable to
shorter relaxation time of a group cathode spot and the lo
rate of motion of a group cathode spot at high magne
fields on this type of steel than on steel 304.

CONCLUSIONS

1. The elementary cathode spots on the surfaces of
rolled steels 304 and 430 in a quasistationary vacuum
discharge at large currents exist in the form of compact st
turally ordered groups, i.e., group cathode spots. The p
erties of group cathode spots are characterized by the m
value of their diameter, the current, and the rate of th
motion over the surface with comparatively small varianc

2. At small discharge currents (I ,2i g , wherei g is the
mean current of the group cathode spots! a discharge con-
tains one group cathode spot. At large currents (I .2i g) the
group cathode spot tends to divide. No qualitative change
the structure of the group cathode spot are observed as
current is varied. The mean distance between the elemen
cathode spots in a group cathode spot and their basic p
erties do not depend on the current flowing in the gro
cathode spot.

3. In most of the investigations performed th
group cathode spots had a one-dimensional configura
The formation of group cathode spots with a on
-
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dimensional configuration is unequivocally associated w
the formation of a characteristic microrelief on the erod
surface in the form of axially symmetric columnar protr
sions of fused metal.

4. Passage from the one-dimensional configuration to
two-dimensional configuration of a group cathode spot
observed on steel 304 at high magnetic fields. The chang
the structure of the group cathode spot is accompanied
qualitative changes in the dependences of the width of
track of the group cathode spot and its rate of motion on
current flowing in it, alteration of the microrelief~disappear-
ance of the protrusions! and a decrease in the specific ener
expended to free the surface of scale~a decrease inqeff).

In conclusion we would like to express our gratitud
to the developers of the image-processing system, T.
Zakirov, R. D. Sadykov, and E. I. Zyat’kova~Laboratory
of Applied Physics, Institute of Electronics, Uzbekista
Academy of Sciences! for their assistance in performing th
measurements.
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Leader discharge over a water surface in a Lichtenberg figure geometry
V. P. Belosheev
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A multichannel leader discharge over a water surface is investigated in a Lichtenberg figure
geometry. It is established that the Ohmic conductivity of water causes nonlinearity of theR(t)C
discharge circuit. A mutual one-to-one correspondence between the channel lengths and the
currents flowing in them is established during the discharge, and the discharge has a self-
consistent character. A mechanism is proposed for the initiation of initial channels by
maxima which arise in the charge structure of the planar double layer on the water surface
during the development of Rayleigh–Be´nard instability in the layer after the pulsed corona from
the anode reaches the water. ©1998 American Institute of Physics.@S1063-7842~98!01211-2#
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In Ref. 1 we investigated the conditions for the form
tion of a single-channel spark discharge over a water sur
with the intention of using it for the UV disinfection of wa
ter. The results of that work enabled us, in particular,
disclose the unique features of the evolution of a spark
charge over a water surface due to its conductivity in co
parison to the development of a spark discharge over
surface of a solid dielectric.2 The influence of these feature
of water on the development of a single-channel leader
spark discharge over a water surface was investigated in
3. In that study, on the basis of experimentally determin
distributions of the electric field and current density alo
the leader we found that its development has a self-consis
character and that the product of the storage capacitance
the initial potential difference between the tip of the lead
and the water surface beneath it is an invariant of chan
development. A natural continuation of the work in Re
1–3 would be an investigation of a multichannel leader o
water in the geometry used to record Lichtenberg figures
discharges over solid dielectrics. This is the subject of
present paper.

EXPERIMENTAL SETUP AND CONDITIONS

A diagram of the experimental setup is shown in Fig.
It includes a cylindrical glass cell1 with a diameter of 9 cm
and a height of 1.5 cm, which is two-thirds full of tap wat
2 with a conductivity.131024 S/cm. A brass disk3 with a
diameter of 7 cm and a thickness of 0.05 cm, which serve
the cathode, was positioned concentrically to the cell a
distance of 0.3 centimeters below the surface of the wa
The tip of a stainless steel wire of diameter 7.531023 cm,
which was placed over the center of the cell at a distanc
0.1–0.3 cm from the water surface, served as anode4. A
storage capacitor5 with a capacitance of 0.1mF, which was
charged to an initial voltageU05326 kV, was used in the
experiments. The discharge over the water surface was i
ated by decreasing the width of the air gap in a spark ga6.
The capacitor voltageUc and the discharge currenti were
recorded on an oscillograph during evolution of the d
1321063-7842/98/43(11)/4/$15.00
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charge using a resistive voltage divider7 and shunt8. The
discharge was photographed by camera9 on Izopankhrom
film ~type 22! with the samef stop in all cases.

EXPERIMENTAL RESULTS

Oscillograms ofUc and i ~Fig. 2, curves1 and 2! and
integral photographs of the discharges~Fig. 3a–3d! were ob-
tained in the experiments in the rangeU05326 kV. The
current oscillograms enable us to determine the amplitu
of the initial currenti 050.3 and 3 A atU053 and 6 kV,
respectively, and to calculate the initial resistance of the d
charge circuitR05U0 / i 0, and the oscillograms ofUc and i
permit determination of the resistance of the discharge
cuit at other moments in time~Fig. 2, curve3!. In addition,
the amplitude of the maximum currenti M and the time of its
achievementtM were determined from the current oscillo
grams, enabling us to calculate the charge transferred u
that momentqM.( i M•tM)/2 and to construct plots of the
dependence of all these quantities onU0 ~Fig. 4!.

Figure 3 shows the central diffuse luminescent regi
the channels developing from it, and the image of the w
anode, which is defocused as the distance from the w
surface increases~Figs. 3b–3d!. In the rangeU05326 kV
the diameter of the diffuse region determined from negati
increases approximately linearly from.0.15 to .0.3 cm.
As in Ref. 3, each channel has side branches of vari
length, which are directed at an angle to the channel a
and branches with a length of the order of the channel dia
eter, which are normal to its axis~Fig. 3a!. While branching
occurs over virtually the entire length of the channels wh
U053 kV, it occurs only near their beginning whenU056
kV. The structure of the discharge channels, which is pr
tically symmetric forU053 kV, is asymmetric whenU0 is
large. This may be due to the nonparallel configuration of
cathode and the water surface. In this case, the wedged s
of the water layer has an appreciably stronger effect on ch
nels of large length.

The number of initial channels forU053 kV was 3–6.
Out of 29 discharges the probabilities of the appearance
~Fig. 3b!, 4 ~Fig. 3c!, and 5 and 6~Fig. 3d! initial channels
9 © 1998 American Institute of Physics
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are equal to 0.17, 0.62, 0.14, and 0.07, respectively. In
case ofU056 kV the number of initial channels was 3 or
with roughly equal probabilities. The radius of the structu
or the averaged maximum channel lengthl M depends lin-
early onU0 ~Fig. 4!. Using these data and the time of th
achievement of the maximum channel length, we can de
mine the mean velocity of channel development for vario
values ofU0 ~Fig. 5!.

DISCUSSION OF THE EXPERIMENTAL RESULTS

The experimentally obtained oscillograms ofUc and i
and the integral photographs of a multichannel leader do
permit tracing the dynamics of the development of a d
charge and its specific electrical characteristics. This was
complished under the conditions of a single-channel lea3

by calling upon data on the distribution of the current a
voltage along a discharge channel with time obtained b
probe technique. However, since the conditions for perfo
ing the present experiments~the conductivity of the water
the thickness of the water layer above the cathode, and
range of initial voltages! were the same as in Ref. 3 and sin
the oscillograms of the capacitor voltage and the curr
were qualitatively similar in both cases, it can be presum
that there is qualitative similarity between the processes
volved in the development of single-channel and multich
nel leaders. The quantitative differences are associated
the large area of the two-dimensional cathode and the t
area of the channels, i.e., the smaller resistance of the
charge circuit in the present cases. Accordingly, on the b

FIG. 1. Diagram of the experimental setup.
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of Refs. 1 and 3 and the present experiments it can be
sumed that the presence of a positive voltage on anod4
gives rise to negative polarization charges on the water
face with an axisymmetric density distribution, in acco
dance with the distribution of the electric field in the anod
cathode gap. Then a pulsed corona begins to develop f
the anode, and a capacitive current appears in the disch
circuit. The duration of this phase of the discharge is.0.1
ms. At the moment when the corona cone touches the w
surface, the conductivity of the entire anode–cathode
takes on an Ohmic character. The amplitude of the curren
that momenti 050.3 A for U053 kV and 3 A forU056 kV.
Such a great difference between the values of the initial c
rent occurs because not only the cross-sectional area o
corona cone on the water surface, but also the cross se
of the current-conducting layer of water above the catho
increase whenU056 kV. This conclusion is supported b
the fact thati 050.2 A in the case of a one-dimensional wi
cathode of diameter 0.16 cm, withU056 kV and the other
conditions as in Ref. 3.

The further increase of the current in the circuit is no
associated with the development of discharge channels
the water surface. In this stage there is a mutual one-to-
correspondence between the lengths of these channels

FIG. 2. Oscillograms of the capacitor voltage~1! and the discharge curren
~2! and time dependence of the resistance of the discharge circuit~3!
(U0, kV: a — 6, b — 3!.
FIG. 3. Discharges withU056 ~a! and 3 kV ~b–d!.
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the amplitude of the current flowing through them. An i
crease in the area of the channels and the current-condu
layer of water above the cathode leads to a correspon
decrease in the resistance of the discharge circuit~Fig. 2,
curves1 and3!.

As was established in Ref. 3, the development of a ch
nel is determined by the potential difference between the
of the channel and the water surface beneath it. The for
tion of plasma at the tip, as well as along the entire chan
is due mainly to the component of the electric field norma
the water surface, which also determines the flow of curr
in the water layer. The velocity of the tip of the channel
determined mainly by the longitudinal component of t
field, on which the conductivity of the channel also depen
The magnitude of the potential difference between the tip
the channel and the water decreases during developme
the channel as a result of the decrease in the capacitor
age and~mainly! on account of the increase in the volta
drop across the channel itself. This leads to a decrease in
velocity of the tip of the channel and ultimately causes it
stop. At that moment in time the channel length and
current reach their maxima, and the resistance of the
charge circuit drops to its minimum~Fig. 2!.

The maximum amplitude of the current in a multicha
nel discharge was 5–6 times greater than that in a sin
channel discharge3 with the same voltageU056 kV. This
led to more rapid falloff of the capacitor voltage. Accor
ingly, the potential difference between the tips of the ch
nels and the water surface decreases more rapidly. In a
tion, since the initial velocities of the tips of the channe
should be roughly equal~identical! in the two cases, the
length of the channels in the multichannel discharge w
smaller than the length of the channel in the single-chan
discharge.3

After the current in the channel ceased to increase,
power balance was disrupted. The power lost exceeded
power released as a result of the passage of current, prim
at the tips of the channels, with a resulting decay of
plasma in the channels and a decrease in their maxim
length. This also triggered the mechanism for the mut
one-to-one correspondence between the current and

FIG. 4. Maximum values of the current~1!, channel length~2!, and charge
transferred~3! and the time they are attained~4! as functions of the initial
capacitor voltage.
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channel length, but now in the direction of further reducti
of their values.3

The capacitor voltage~Fig. 2, curve1! falls off linearly
up to the current maximum. As the current decreases, the
of decrease in the voltage also declines. By the time w
the current ceases, the capacitor voltage is equal to app
mately one-third of the initial value, and further dischargi
of the capacitor occurs because of the residual conducti
of the air gap and the water.

The multichannel and symmetric structure of the d
charge in the final stages is specified by its correspond
initial structure. This prompts us to examine its inception
greater detail than was done in Refs. 1 and 3. Under
conditions of these studies there was an asymmetric distr
tion of the field in the discharge gap relative to the ano
Nevertheless, the initial structure of the discharge was a
multichannel, and only one channel remained as a resu
the competition between the channels and developed u
preferential conditions along the axis of the gap. This s
gests that the initial multichannel structure of the discharg
related in all cases to the symmetry of the corona discha
in which the initial channels appeared after the corona d
charge touched the water surface. Under the present co
tions with a symmetric two-dimensional cathode all the i
tially appearing channels existed under equal conditions
were capable of developing to completion, thereby facilit
ing the investigation of this stage. For the same reaso
experiments were carried out atU053 kV, where the illu-
mination of the central part of the photograph by the coro
was minimal.

We, first of all, note that the channels move apart af
their appearance~Fig. 3b–3d! and during branching~Fig.
3a!. This indicates that the process has an electrostatic c
acter in both cases and that all the channels have a char
the same sign. Consequently, the entire boundary layer o
plasma, beginning from the corona, has the same pos
charge. Therefore, at the moment when the corona c
reaches the negatively charged water surface, a planar do

FIG. 5. Mean velocity of channel development as a function of the ini
voltage.
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layer forms above it. The field of this layer, which draw
electrons from the water surface~the cathode!, provides
for Ohmic conductivity in the discharge gap from that m
ment on.

As the current in the circuit increases, the current den
in the anode region, with allowance for its diameter, reac
.104 A/cm2 already wheni 50.1 A. This unavoidably
causes reduction of the current in the corona cone.
brightly luminescent channel could be observed visually
the background of the corona. Developing from the anod
the water surface, this instability caused a potential ju
upon reaching the double layer and could lead to the em
gence of charge-density oscillations and the appearance
space-charge structure of the Rayleigh–Be´nard type. Its
maxima could initiate the development of discharge ch
nels. In this case the channel appearing first and each su
quent channel increased the current in the circuit and the
raised the potential at the center of the structure, promo
the development of subsequent channels. On the other h
according to Fig. 5 and the data in Ref. 3, the lowering of
capacitor voltage in view of the sharp dependence of
velocity of the chennel tip on it should slow the developme
of the subsequent channels. These opposing tendencie
termined the time interval for the appearance of chann
and, consequently, their number, since the time of the
pearance of a channel is a random quantity. On the o
hand, there is apparently also a spatial constraint on the n
ber of channels, involving the relationship between the
rimeter of the corona cone and the channel diameter. S
the current and, therefore, the diameter of the initial chann
are smaller at a smaller value ofU0, a greater number could
be accommodated on the corona spot whenU053. The com-
paratively larger probability of the appearance of four init
channels in all cases~Figs. 3a and 3c! is associated with the
character of their electrostatic interaction. Under conditio
of an axisymmetric field and a uniform water surface, t
second channel more likely appears diametrically oppo
the first, and then the third and fourth channels appear a
the other diagonal. If two channels azimuthally separated
an angle smaller than 180° were to appear synchronous
first, then a third channel would most probably appear
addition to them to form a stable electrostatic structure~Fig.
3b!. Nevertheless, random irregularities on the water surf
influence the number of channels and the initial structure

The integral photographs do not allow us to state t
there were actually five or even six initial channels, since t
effect could be the result of rapid division of the first cha
nels. Nevertheless, the photographs make it possible to
tulate the sequence of the appearance of the channels o
ty
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basis of their maximum length and the magnitude of
angle of the sector occupied by channel branches with c
sideration of the mutual one-to-one correspondence betw
the current and channel length. Before the beginning
branching, the channels that have appeared develop inde
dently. However, already after the first bifurcation act, th
begin to compete for the area of the water surface thro
which the current flows. The first channel and the chann
appearing with a short delay will ultimately develop in
larger sector and have a larger current amplitude. Ultimat
more charge will be transferred through them, and they w
attain greater lengths. However, this will occur only und
conditions of a symmetric cathode. The wedged shape of
water layer and the consequent asymmetry of its resista
and the current in the channels lead to asymmetry of th
structure~Fig. 3a!.

As can be seen from Fig. 4, the averaged maxim
channel lengthl M and the amount of charge transferred
the circuit up to the current maximumqM exhibit the same
dependence on initial voltage. This implies a proportiona
betweenl M andqM and fits the conclusion in Ref. 3 that th
product of the storage capacitance and the initial poten
difference between the tip of the channel and the water
face beneath it, i.e., the charge transferred, is an invarian
channel development. Of course, because of the sprea
times for the appearance of channels, the values ofl M and
qM for each channel differ.

Everything we have said regarding the structure o
multichannel discharge, as well as the detailed similarity
tween the oscillograms of the current and the capacitor v
age for it and the corresponding oscillograms of a sing
channel discharge,3 allow us to assert that the discharg
circuit becomes a nonlinearR(t)C circuit from the onset of
the development of channels over the water surface in
present case, too. A mutual one-to-one correspondence
tween the channel length and the current is established
ing discharge, and it has a self-consistent character a
whole. This allows us to examine the relationship betwe
the energy characteristics and the structure of the lea
channels over the surface of a dielectric having some c
ductivity on the basis of a single theory.

1V. P. Belosheev, Zh. Tekh. Fiz.66~8!, 50 ~1996! @Tech. Phys.41, 773
~1996!#.

2S. I. Andreev, E. A. Zobov, and A. I. Sidorov, Prikl. Mekh. Tekh. Fiz. N
3, 38 ~1978!.

3V. P. Belosheev, Zh. Tekh. Fiz.68~7!, 44 ~1998! @Tech. Phys.43, 783
~1998!#.

Translated by P. Shelnitz
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The thermodynamic aspects of the diagnosis, prevention, and inhibition of the growth of
excrescences in mixed electronic–ionic conductors are considered in the case of the representative
material copper selenide. ©1998 American Institute of Physics.@S1063-7842~98!01311-7#
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The processes leading to the ‘‘spontaneous’’ growth
new formations or ‘‘excrescences’’~a term which we take to
include ‘‘moustaches,’’ whiskers, ribbons, nodules or ‘‘hi
ocks,’’ pores, cavities, etc.! are currently a focus of researc
attention. This subject is of interest because the growth
excrescences significantly shortens the service life of m
rials and instruments in some cases. For example, the fo
tion of pores and cavities leads to the swelling and failure
some structural and functional alloys, and the growth
‘‘moustaches’’ on the surfaces of cables and microcircu
leads to the short-circuiting and malfunctioning
instruments.1

The growth of excrescences is stimulated by concen
tion, temperature, and pressure differentials and by elec
magnetic fields, ionizing radiation, and plastic deformat
of the samples.1,2 All other conditions being equal, th
growth rate of excrescences is determined by the diffus
mobility of the atoms and ions. The latter reaches a ma
mum in superionic conductors~solid electrolytes!, especially
in the presence of mixed electronic–ionic conductivity@in
superionic semiconductors of the I–VI group (AIBVI, where
A5Cu, Ag, Au; B5S, Se, Te! the diffusion coefficientsD of
the cations are as high as 1021 cm2/s].3 Superionic conduc-
tors with mixed electronic–ionic conductivity (Cu22xSe and
Ag22xSe), in particular, have previously been found to e
hibit anomalously rapid growth of excrescences, based
both the ‘‘molten’’ metallic sublattice@copper ~silver!
‘‘moustaches,’’ ribbons, and drops; the growth ratev was as
high as 0.1 mm/h atT.TC , where TC is the superionic
phase transition temperature# and on the entire crystal as
whole ~pores, hillocks! (v up to 0.001 mm/h atT.Tt

;(0.520.8)Tm , whereTm andTt are the melting point and
the Tammann temperature!.4–9

Questions concerning the diagnosis, prevention, and
hibition of excrescences growing on surfaces have not
viously been specially investigated. The purpose of
present work was to develop methods for the diagnosis,
vention, and inhibition of the growth of excrescences, i
copper whiskers and drops on the representative mat
Cu22xSe@TC52912430 K,Tm51380 K,x50.0120.3,DCu

up to 1022 cm2/s ~Refs. 3 and 4!#.

EXPERIMENT

Polycrystalline samples of Cu22xSe withx ranging from
20.03 to10.21, which lie, according to their compositio
1331063-7842/98/43(11)/5/$15.00
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either near the boundary of the homogeneity region of
copper-saturated compound (x0;0.005 atT5300 K! or far
from it, as well as samples doped to 123 at. % Zn, In, Sb,
and In1Sb ~Table I!, were obtained by ampul synthes
(t51 h! at 1400 K, and then the alloys were air-cooled
room temperature over the course oft;40 min. Molten
samples of cylindrical shape (D56 mm,h516 mm! with a
crystalline grain size equal to 1002300 mm were used. The
samples were annealed in argon atT51073 K;0.8Tm in a
temperature gradient¹T;100 K/cm over the course o
t5240 h. We measured the differential thermopowera300 K

of the samples

E52~mM
0 2mM!/Ze5

DG

ZF
~2!

and the emf of electrochemical cells of the type

Cu/aq CuSO4 /Cu22xSe, ~3!

where mCu and mCu
0 are the chemical potentials of copp

atoms in Cu22xSe and in metallic copper,DG is the corre-
sponding difference between the Gibbs free energies,Ze is
the charge of a metal ion in the electrolyte,e is an elemen-
tary charge, andF is Faraday’s number.10

The compositionx of the Cu22xSe matrices were found
from the values ofa300 K and E ~Ref. 10!. The number of
phases present in the samples was determined by meta
raphy, and the relative porosityP5((d/d0)21) of each ma-
terial was determined by comparing the theoretical (d0) and
experimental (d) densities, the latter being found by hydro
static suspension of the samples~Table I!.

The composition of the alloy matrix was varied in th
rangex50.00520.2 by the extraction and injection of mo
bile copper. Mobile copper was extracted from the samp
by 10% nitric acid @the chemical reaction is Cu22xSe
1HNO3→Cu22(x1Dx)Se1Cu(NO3)21NO(NO2)↑1H2O],
and it was injected by self-doping in short-circuited cells
the type~3! with a liquid electrolyte~aq CuSO4).10

EXPERIMENTAL RESULTS AND DISCUSSION

The characteristics of the alloys investigated before a
after annealing are listed in Table I, and the samples
which excrescences appeared after annealing are mar
(1 for copper drops and/or11 for whiskers!. One of the
samples, on which both of these types of excrescences g
3 © 1998 American Institute of Physics
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simultaneously, is shown in Fig. 1. It can be seen fro
Table I that the alloys with excrescences consisted of at l
two phases prior to annealing and contained metallic cop
in the form of a separate phase.

Figures 2a–2c show the relative positions of the lev
of the chemical potentialsm1 of the metal~M! in the metallic
phase andm2 in the compound~X! in a two-phase M–X
system~M denotes Cu, and X denotes Cu22xSe) at a fixed
temperature. According to Fig. 2, when there is mechan

TABLE I. Characteristics of the alloys investigated at room temperat
before/after annealing (T51073 K!.

Alloys and Number of Thermopower emf Porosit
excrescences phases a, mV/K E, mV P

Cu1.99Se 1 111/108 79/80 0.98/0.9
Cu2.03Se1,11 2* 334/189 32/45 0.97/0.96
Cu1.95Se 1 54/52 101/98 0.99/0.9
Cu1.79Se 1 9/10 121/119 0.98/0.9
Cu0.636In0.02Se0.344

11 3* 256/155 27/40 0.96/0.94
Cu0.641Sb0.003Se0.342 2 64/63 101/100 0.97/0.9
Cu0.641Se0.342In0.01Sb0.003

11 3* 290/167 36/61 0.96/0.95
~Cu1.99Se)0.98(Zn2Se)0.02

1,11 2* 220/180 28/47 0.95/0.95

* — Copper is present as one of the phases;1 — copper drops;11 —
whiskers.

FIG. 1. Sample of Cu22xSe (x520.03) with a colony of filamentary cop
per crystals~a! and copper drops~b! formed as a result of annealin
(t5240 h,T51073 K! on the surface (103).
st
er

s

al

contact between the materials, depending on the relative
sitions of the chemical-potential levels, the copper atoms
fuse from the metallic copper into the Cu22xSe sample
(m1.m2) ~a! or in the reverse direction (m1,m2) ~c! until a
state of equilibrium is established in the system (m15m2)
~b!. If the materials in contact are separated by an elect
filter, i.e., a copper-conducting electrolyte~e!, which passes
Cu1 ions and holds back electronic charge carriers, the e
E ~2! appears on the open contacts of the electrochemical
~3!, and its sign indicates the relative positions of t
chemical-potential levels in the phases in contact@E.0
whenm1.m2 ~Fig. 2a!, E,0 whenm1,m2 ~c!, andE50
whenm15m2 ~2d–2f!#.

WhenE,0 ~Fig. 2c!, the system is supersaturated wi
copper, and the nucleation and growth of excrescences~M!
can occur on the sample~X!. When E.0 ~a!, the excres-
cences~M! growing on the sample dissolve in the solid s
lution ~X!, and whenE50, the excrescences and the sam
are in a state of equilibrium.3 It can be seen from Table I tha
values in the rangeE*0 are typical of alloys with excres
cences both before and after annealing. Hence it follows t
1! during cooling after synthesis and storage at room te
perature, the supersaturated solid solutions based on co
selenide have already attained an equilibrium state by un
going the decomposition reaction (Cu22x8Se→Cu22x0

Se
1Cu) with the formation of ‘‘primary excrescences’’~inter-
nal and surface microdeposits of copper! (D;12100 mm;
Refs. 5 and 10!; 2! the whiskers and drops are ‘‘seconda
excrescences,’’ which grow as a result of the migration
copper in the primary excrescences to the boule surface
ing annealing under the action of external forces~tempera-
ture gradients, pressure gradients, etc.! according to the
scheme CuI→Cu22xSe→CuII ; and 3! the nucleation centers
for the primary excrescences in Cu22xSe are pores and th
sample surface,5,6 while the nucleation centers for the se
ondary excrescences~Fig. 1! are the ‘‘primary’’ surface de-
posits of copper. The role of the external forces reduces h
to ensuring the conditionE,0 in the regions where coppe
condenses. WhenE;30 mV, the conditionE,0 is achieved
in the samples~Table I! if there is a local increase in th

e

FIG. 2. Possible arrangements of the chemical-potential levels of a met
the metallic phase and in a compound in M–X andM–E–X systems.
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copper concentrationDCCu>1018 cm23. Such values of
DCCu can be caused by a temperature differenceDT;10 K,
a pressure differenceDP;0.320.6 GPa,11 an electric cur-
rent of densityj ;0.1 A/mm2 ~Ref. 12!, and acceleration o
the sample at a rateg;103g0 ~Ref. 13! ~see Table II!. The
relative smallness of these values shows that the risk fa
for the growth of excrescences on samples of Cu22xSe is
fairly high whenx;x0.

The increased tendency for the growth of excrescence
associated with the special state of the ‘‘molten’’ superio
sublattice and the high diffusive mobility of the respecti
ions.4 It is known that mobile copper ions are in a mo
disordered state in the ‘‘molten’’ Cu22xSe sublattice
(T.TC) than in the liquid phase. Therefore, at the sa
degree of supercooling~supersaturation! the condensation
process of mobile copper according to the ‘‘molten
Cu22xSe sublattice→crystal scheme corresponds to a grea
entropy change than does crystallization from a melt~by a
factor of ;3), and the thermodynamic stimulus of the fo
mation of copper nuclei in Cu22xSe as a result of fluctua
tions increases accordingly.

On the other hand, the probability of fluctuations in
system which is not too close to the critical point is specifi
by the Einstein formula

W;exp~~S92S!/k0!, ~4!

whereS andS9 are the entropies of the system in the eq
librium state and in the fluctuation state, and k0 is
Boltzmann’s constant.14,15

Since the quantityam8 5((SCu9 2SCu)/k0) ~hereSCu9 and
SCu are the entropies of copper in the ‘‘molten’’ Cu22xSe
sublattice and in the copper excrescences! is increased
significantly,16 the probability of the formation of copper nu
clei as a result of fluctuations is diminished, and the pr
ability of the resorption of a copper excrescence is increa
in comparison to ordinary materials. For just this reason!
primary excrescences form in Cu22xSe exclusively at sites o
defects~pores, surfaces!;5,6 this is promoted by the relative
porosity of the boules~Table I!, and the high diffusive mo-
bility of the copper ions specifies the rapid achievement
critical dimensions by the nuclei of the excrescences;14 as a
whole, the formation of copper nuclei in the samples is
cilitated significantly, as is indicated by the virtual absen
of an incubation period for decomposition of the correspo
ing solid solution;10 2! the primary excrescences readily di
solve in the solid solutions in Cu22xSe, creating, in particu

TABLE II. Various diffusion effects observed in Cu22xSe (T5300 K!.

Magnitude of effect
Type of effect (dCCu /dY) Reference

Thermodiffusion 631017, K21 cm23 Ref. 11
Piezelectric diffusion:
a — hydrostatic
pressure 2331016, MPa/cm3 Ref. 7
b — uniaxial compression 2731016, MPa/cm3 Ref. 11
Electrodiffusion 231019, mm2/(A•cm3) Ref. 12
Gravitational ;1014, S2/cm4 Ref. 13
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lar, a possibility for the rapid growth of seconda
excrescences based on the primary excrescences accord
the scheme CuI→Cu22xSe→CuII .

The rapid growth rate of all the excrescences inve
gated in Cu22xSe is associated with the high diffusive m
bility of copper in the samples.4 The characteristic times fo
the diffusion of copper are

t;d2/~p2D !, ~5!

whereD is the diffusion coefficient of mobile copper andd is
the diffusion length.3 If the distance between microdeposi
d;100 mm andD300 K(1000 K);1026(23) cm2/s ~Refs. 3 and
17!, this formula gives the following estimates of the deco
position time of a supersaturated solid solution of coppe
Cu22xSe: ;10 h and ;1 min at 300 and 1000 K,
respectively.18

For secondary excrescencesd;1 cm, whence we obtain
the estimate fort of several months and several hours
T5300 and 1000 K, respectively. The results obtained in
present study permit formulation of the main principles f
the diagnosis, prevention, and inhibition of the growth
excrescences on samples of Cu22xSe.

Diagnosis of excrescences.The condition E,0 can
serve as a criterion for the possible growth of primary e
crescences~copper microdeposits! on samples of Cu22xSe
~Fig. 2f!. The states of samples withE,0 are unstable and
exist for a relatively short time (;1 min to several hours!,
after which the solid solution decomposes asE→0 ~Fig.
2e!.10 The conditionE;0 and the presence of metallic cop
per in the alloy in the form of a separate phase can serv
a criterion for the possible growth of secondary excrescen
~copper ‘‘moustaches’’ and drops! on the samples of
Cu22xSe ~Table I!.

Treatment of excrescences.Copper excrescences on
Cu22xSe surface can be removed by nitric acid@in the
chemical reaction Cu1HNO3→1Cu(NO3)21NO(NO2)↑
1H2O# (t;1 h! or dissolve in the solid solution~in the
chemical reaction Cu1Cu22xSe→Cu22x8Se, x.x8).10 To
realize the latter possibility, the level of the chemical pote
tial of copper in Cu22xSe must be lowered untilm1.m2

~Fig. 2a!.
The level of m2 was lowered in the present study b

extracting mobile copper from the sample with nitric ac
(x→0.20).10 Figure 3 shows how the thermopowera ~curve
1!, the massm/m0 ~curve 2!, and the emfE ~curve 3! of
a sample of Cu22xSe (x520.03) vary in this process
(b→c). Then the sample with excrescences was subjecte
an homogenizing anneal in argon (T51000 K, t5100 h!.
During the anneal, however, the excrescences were lar
removed from the sample.

In order to stabilize the mass-transfer process,
sample was placed in the copper-conducting electrolyte
CuSO4, where it was held for 24 h (T5300 K! ~Fig. 3d!.
This produced a short-circuited galvanic cell of the type~3!,
under whose emfE the copper in the excrescences dissolv
in the electrolyte and was then injected by the electric fi
of the cellE into the solid solution through the free surfac
of the sample~Fig. 3d!.10 Complete resorption of the excres
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cences required 5–16 h, during which the total mass
the sample remained essentially unchanged~Fig. 3, c→d,
curve2!.

Prevention of the growth of excrescences.It can be seen
from Table I that copper excrescences do not grow
samples of Cu22xSe withx>0.05 (m1@m2; Fig. 3a!. There-
fore, the prevention of the growth of both primary and se
ondary excrescences can include shifting the compositio
the solid solution into the safe range~in practice tox.0.02
20.03) by extracting copper from the sample. It is also p
sible to introduce dopants which form chemical compoun
with copper and thus eliminate the possibility of the form
tion of copper nuclei on the boules~antimony-doped alloys
Table I!. The influence of external forces on the samp
should be eliminated in all cases~Table I!. The critical val-
ues of external forces capable of causing the growth of
crescences on a specific sample can be estimated from
condition

Yc;~x2x0!/k, ~6!

where x and x0 are the current alloy composition and th
composition corresponding to the boundary of the homo
neity region, andk5(dCCu/dY)/(1.9931022) is a dimen-
sionless coefficient which describes the corresponding di
sion effect~Table II!.

It can be seen from~6! that under the action of stron
external forces (Y@YC) excrescences can appear not on

FIG. 3. The thermopowera ~1!, the relative mass changem/m0 ~2!, and the
emf E ~3! of a Cu22xSe/aqCuSO4/Cu electrochemical cell with a sample o
copper selenide (x520.03) in various stages of its processing~a–f!: a —
synthesis;b — growth of copper filaments;c,e — extraction of copper by
nitric acid; d,f — saturation with copper in short-circuited electrochemic
cells ~3!.
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on samples withx;x0 (E;0), but also on samples with
x.x0 (E.0), as was previously observed9 in the plastic
deformation of samples of Cu1.99Se.

CONCLUSION

In summary, we have developed methods for the di
nosis, prevention, and treatment of excrescences, i.e., co
whiskers and drops formed during annealing on boules of
nonstoichiometric superionic conductor copper selen
Cu22xSe and solid solutions based on it~Table I!. We have
shown that growing excrescences can be classified as
mary and secondary formations, which have different di
nostic criteria (E,0 andE;0) ~Table I!. The criteria indi-
cated can be used to completely eliminate the growth
copper excrescences on samples of Cu22xSe by shifting the
composition of the solid solution into the safe range. At t
same time, copper excrescences growing on sample
Cu22xSe can be eradicated by stimulating reverse m
transfer with the sample~Fig. 3!.

The results obtained in this work can also be applied
other superionic conductors. They are also valid for an
tensive list of solids, on which excrescences grow unde
mechanism of diffusive transport of a substance.

We thank V. F. Bankina and N. N. Filipovich for syn
thesizing the samples investigated in this work.
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One of the main properties characterizing the behav
of magnetic materials in variable magnetic fields is the m
netic permeabilitym, which is a complex quantity:m5m8
2 im9. The frequency dependence of the permeability is
fluenced mainly by two processes: motion of the dom
boundaries, and rotation of the magnetization vector. Th
are numerous models that are used to describe and ex
the behavior of the permeability as the frequency
varied.1–3 However, the calculations based on these mod
generally provide adequate descriptions of the frequency
pendence of the permeability only in a narrow frequen
range.3 This may be because most of the models conside
do not take into account the rotation of the magnetizat
vector. At high frequencies~for example, frequencies abov
108 Hz for yttrium iron garnet!1 the influence of the rotation
of the magnetization vector becomes comparable to the
fluence of the motion of the domain boundaries and e
exceeds it, and at low frequencies the maximum contribu
of the rotation of the magnetization vector is specified by
quantityx'MS /HA ~whereMS is the saturation magnetiza
tion andHA is the anisotropy field! and can amount to only
20% of the contribution of the motion of the doma
boundaries.3 In other models only the rotation of the magn
tization vector is considered, and consequently these mo
describe the experimental data at high frequencies.1 This pa-
per proposes a model for calculating the permeability w
consideration of the contributions of both the motion of t
domain boundaries and the rotation of the magnetiza
vector over a broad frequency range for polycrystalline f
rites. The permeability is calculated as the sum of two c
tributions: m5mdom1m rot , wheremdom is the permeability
due to the motion of the domain boundaries andm rot is the
permeability due to the rotation of the magnetization vec
The calculations are performed under the assumption tha
external magnetic fieldH0 is equal to zero and the anisotrop
field HA is greater than 4pMS , as is typical of the
independent-grain model.1 The applicability of the model is
demonstrated in the example of yttrium iron garnet with
aluminum impurity, for which the independent-grain cond
tion holds.

Each domain boundary is characterized by its own re
nance frequencyf 0. With consideration of the independen
grain model, we assume that the spatial orientation of
grain boundaries is random in a polycrystalline mediu
Then, with allowance for the eigenfrequency distributi
function w( f 0) of the domain boundaries, the mean perm
1331063-7842/98/43(11)/4/$15.00
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ability due to the motion of the domain boundaries can
represented in the form3

mdom8 ~ f !5114pB

3E
f 0min

f 0max
f 0

f 0
22 f 214E f2aelas

2

~ f 0
22 f 2!214aelas

2 f 0
2f 2

w~ f 0! d f0 ,

mdom9 ~ f !58pBa f

3E
f 0min

f 0max f 0
22E f0

21E f2

~ f 0
22 f 2!14aelas

2 f 0
2f 2

w~ f 0! d f0 , ~1!

where f 5v/2p, B5C* MSf 0* /4p f u , C* 59.45 MHz/Oe,
aelas is the quasielastic coefficient of the domain boundari
f u is the frequency for maximum absorption in the expe
mental spectrum,f 0* is the effective resonance frequenc
w( f 0) d f0 specifies the fraction of domain boundaries with
resonance frequency in the range fromf 0 to f 01d f0 @w( f 0)
must be normalized#, f 0 min is the minimum resonance fre
quency of the domain boundaries, andf 0 max is the maximum
resonance frequency of the domain boundaries.

The form of the eigenfrequency distribution function
the domain boundariesw( f 0) shown in Fig. 1 was taken
from Ref. 3. The functionw( f 0) should have the form of a
Poisson distribution, but to speed up the calculation proc
it was represented in the form of a broken line, in the man
of Ref. 3. The normalization constants, the values off 0 min

and f 0 max, and the intermediate frequencies on the brok
curve f 1, f 2, f 3, f 4, and f 5 were selected experimentally.

The components of the permeabilitym due to the rota-
tion of the magnetization vector have the following form:1

m rot8 5114p~gMSf 0~ f 0
22~12a2! f 2!!

3@~ f 0
22~11a2! f 2!214a2f 2f 0

2#21,

m rot9 54p~agMSf ~ f 0
21~11a2! f 2!!

3@~ f 0
22~11a2! f 2!214a2f 2f 0

2#21, ~2!

whereg52p•2.8 MHz/Oe is the gyromagnetic ratio,MS is
the saturation magnetization,a5 f r / f 0 is the dissipation pa-
rameter,f 0 is the ferromagnetic resonance frequency,f r is
the relaxation frequency, andf is the frequency of the mag
netic field.

The frequenciesf 0 and f r depend on the effective field
Heff , acting on the magnetic moment in the respective p
ticle of the polycrystal:f 05g/2pHeff , f r5 f r(Heff).

4 It is
8 © 1998 American Institute of Physics



-
v-
e
d
e
a
id
il

ifi-
ee

av
g

ag
he

e-

is

i
e
-
a

tio
re
th
m
in
o
n-

in
ain
el,
s-
ion
i-

re-

of
in
.

n

.,

n.

g
ed
ti-

g

lue

d in

ble

ch
the
tly,

of a
ld
n-
a-

es,

nd
of a

ne
to

e

ies

1339Tech. Phys. 43 (11), November 1998 L. N. Kotov and K. Yu. Bazhukov
assumed thatf r(Heff) is a linear function; therefore, the dis
sipation parametera will be regarded as a constant. In sol
ing the problem,a is varied until agreement between th
experimental and theoretical magnetic spectra is obtaine

The nonuniformities of the internal field within th
grains have different scales. The largest nonuniformities
associated with the shape of the sample. We shall cons
domains in the form of parallelepipeds or cylinders. This w
be done for the following reasons: a! the simplicity of the
formation of domain structures in the crystal without sign
cant distortion of the field near a common boundary betw
neighboring domains; b! the possibility of considering the
variation of the field along one preferred axis, i.e., theZ axis,
which makes the most significant contribution to the beh
ior of the field; c! the fact that the dependence of the ma
netic field strength along the field axis in the case of m
netic saturation is well known, and the variation of t
transverse field components can be neglected.

For a magnetized sample~a domain in our case! of
lengthL and widthD the demagnetizing field can be repr
sented in the form5

HR~0.j!

2pMS
5221

12j

@k21~12j!2#1/2
1

11j

@k21~11j!2#1/2
, ~3!

wherej52z/L, k5D/L, and theZ axis is directed along the
axis of the parallelepiped.

The distribution of the internal magnetic field in th
case has the formH(z)5HA1HR(z), whereHR is the de-
magnetizing field andHA is the anisotropy field.

We have described the internal magnetic field that
characteristic of a single grain with a single domain. Wh
the external fieldH050, a ferrite polycrystal has a multido
main structure. If we assume that there are only 180° dom
boundaries, then in each individual grain the magnetiza
vectorsM in neighboring domains are antiparallel; therefo
the number of domains in a grain must be even, due to
presence of two types of 180° domains. We shall assu
that each grain in a polycrystal consists of two 180° doma
and closing domains. The contribution of the closing d
mains to the susceptibility is negligible and will not be co

FIG. 1. Differential distribution function of the resonance frequenc
of domain boundaries.
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sidered further. An increase in the number of domain pairs
a polycrystal grain leads only to a decrease in the dom
width D and does not influence the final result in our mod
altering only the domain-width distribution function. We a
sume that the domain width and length satisfy the condit
D/L!1 ~i.e.,D<0.01L). We performed a numerical exper
ment, which revealed that a decrease in the ratioD/L, be-
ginning at 0.01, has practically no influence on the final
sult ~the values vary within less than 1%!. For this reason,
we shall not examine the width distribution. The spread
domain lengths~which is simultaneously the spread of gra
lengths! will be taken into account by a distribution function
The lengthsL of an individually taken grain and a domai
obey a certain distributionf (L), which must satisfy the fol-
lowing conditions: a! the function must be normalized, i.e
*0

` f (L) dL51, and b! the following boundary conditions
must be satisfied:f (L)50 at L50 and f (L)→0 at L→`.

A Poisson law was selected for the distribution functio
When the conditions~a! and~b! are taken into account,f (L)
has the following form: f (L)5(L/^L&2)exp(2L2/2^L&2),
where^L& is the mean length of the domains. After findin
the susceptibility of each domain, averaging is perform
over the polycrystal. The chaotic orientation of the magne
zation vectorsM of the grains relative to the axis alon
which the variable magnetic field propagates~the Z axis!
must be taken into account during the averaging. The va
of the projection of the internal~effective! field Heff along
theZ axis for randomly oriented grains can be represente
the form

Heff5uHeffucos~2pc!, ~4!

wherec, i.e., the angle between the magnetization vectorM
and theZ axis, obeys a Gaussian distribution.

The choice of a Gaussian distribution is most applica
to the independent-grain model (HA.4pMS), which we are
considering in this paper. Various additional fields, whi
can be associated with various inhomogeneities within
crystallites, can also appear in the grains. Consequen
there is always some constant mean field at the center
grain. We shall call it the anisotropy field, since it is this fie
that makes the main contribution. A typical value of the a
isotropy field — that of yttrium iron garnet at room temper
ture, for example — is;80 Oe.6

The internal magnetic field is nonuniform in most cas
and this must be taken into account. In formulas~2! there are
quantities which depend on the internal field. In order to fi
the permeability of a substance in a sample in the shape
parallelepiped with a nonuniform internal field along theZ
axis, averaging must be performed over the volume of o
domain. For the integration we divide the parallelepiped in
thin layers of thicknessdZ ~within which we can regardHeff

as a uniform field!:

dm8

m8
5

dV

V
, dm85m8

dV

V
, ^m8&5E

V
m8

dV

V
, ~5!

where dm8 and dV are the magnetic permeability and th
volume of a thin layer of the parallelepiped, andm8 and V
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are the permeability when there is a uniform field through
the entire parallelepiped and the volume of the crystal.

From ~2! and ~5! we obtain

^m rot8 &5114p

3E
V

g2MSHeff /2p~~2g/2p!2Heff
2 2~12a2! f 2!

~~g/2p!2Heff
2 2~11a2! f 2!214a2~g/2p!2Heff

2 f 2

dV

V
,

~6!

whereV5D2L, dV5D2 dL, anddL5dZ.
Since the cross section of the parallelepiped is const

we can go from an integral over volume to an integral o
the lengthL, and then formula~6! ultimately takes the form

^m rot8 &5114p

3E
2L/2

L/2 g2MSHeff /2p~~g/2p!2Heff
2 2~12a2! f 2!

~~g/2p!2Heff
2 2~11a2! f 2!214a2~g/2p!2Heff

2 f 2

dZ

L
,

^m rot9 &54p

3E
2L/2

L/2 agMSf ~~g/2p!2Heff
2 1~11a2! f 2!

~~g/2p!2Heff
2 2~11a2! f 2!214a2~g/2p!2Heff

2 f 2

dZ

L
. ~7!

The integrals~7! cannot be solved analytically. There
fore, the problem of calculating the permeability was
duced to numerical integration. In the next step the m
permeability for an entire polycrystal is found with allow
ance for the fact that the domain lengthL varies according to
a distribution function.

Calculations were performed for samples of yttrium ir
garnet containing aluminum impurities with the compositi
Y2O3(52X)Fe2O3XAl2O3 (X50.7 and 1.5!. The anisotropy
field (HA'80 Oe!, the values of the saturation magnetizati
(MS561 and 13 G!, and experimental frequency depe
dences of the permeability over a broad frequency range
known for them.6 In addition, the loss peaks caused by t
motion of the domain boundaries and the rotation of
magnetization vector are observed in different freque
ranges for these samples. This is undoubtedly important
refining the present model. Variation of the grain-length d
tribution function showed that the mean grain length^L&
52.5 mm is optimal for these samples. In fact, the dime
sions of the particles in polycrystalline ferrites have the me
value just indicated.6 In our model we adopted the conditio
D/L!1, which also holds for yttrium iron garnet with a
aluminum impurity, because the experimental data used w
obtained on a sample in the form of a torus.7 The mean
magnetic field existing within the grains of the polycrys
was estimated. According to the results obtained, the m
field ~the anisotropy field, the demagnetizing field, and
magnetostriction field! is identical for the yttrium ion garnet
of both compositions and amounts to 157 Oe, i.e., the m
field at the center of the polycrystal grains generally exce
the anisotropy field (HA'80 Oe!. The minimum and maxi-
mum resonance frequencies of the domain-boundary mo
for the sample withX50.7 are f 0min513 MHz and f 0max

551 MHz with the intermediate frequencies~in MHz! along
the broken curvef 1513.2 MHz, f 2513.5 MHz, f 3513.8
MHz, f 4515.6 MHz, andf 5518 MHz and the absorption
frequency f u5107 MHz. The values for the sample wit
t
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X51.5 aref 0min520 MHz, f 0max558 MHz, f 1520.2 MHz,
f 2520.5 MHz, f 3520.8 MHz, f 4522.6 MHz, f 5525 MHz,
and f u52.33107 MHz. The parameterE51 and the quasi-
elastic coefficientaelas50.56 (Oe•G)/cm were used for both
samples. It became clear during further numerical exp
ments that the dissipation coefficienta50.8 and the spin
relaxation frequencyv r52p f r50.8v0 for the yttrium iron
garnet withX50.7, whilea50.57 andv r52p f r50.57v0,
respectively, for the sample withX51.5, in good agreemen
with the data obtained in Ref. 8.

Figure 2 shows plots of the frequency dependence of
real and imaginary parts of the magnetic permeability of
yttrium ion garnet Y2O3(52X)Fe2O3XAl2O3 with X50.7.
The solid line in Fig. 2 corresponds to the experimental da
and the dashed line corresponds to the theoretical values
tained using the independent-grain model. It is seen that
forms of the theoretical and experimental plots coinc
poorly with one another, although the experimental and t
oretical values of the real part of the permeability at differe
frequencies are close~the differences amount to no mor

FIG. 3. Same as in Fig. 2 for the sample withX51.5.

FIG. 2. Frequency dependence of the real and imaginary parts of the m
netic susceptibility for the yttrium ion garnet withX50.7.
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than 20%!. This is attributed to the fact that the grain
independence conditionHA.4pMS does not hold for this
ferrite. As can be seen from Fig. 2, the interaction of t
magnetic subsystems of the grains in this ferrite leads
alteration of the resonance frequencies and the recomb
tion frequencies. In order to allow for the influence of t
grains on one another, another distribution function, wh
takes into account the magnetic interaction between dom
in neighboring grains, must be introduced into the mode

The plots shown in Fig. 3 were obtained for the yttriu
ion garnet Y2O3(52X)Fe2O3XAl2O3 with X51.5 ~the solid
line shows the experimental data, and the dashed line is
theoretical result!. It can be seen from Fig. 3 that the fre
quency dependences for this ferrite agree very well with
experimental data. Thus, for polycrystals in which the co
dition HA.4pMS holds, the model of a polycrystal with
independent grains, in which both the motion of the dom
boundaries and the rotation of the magnetization vector
taken into account, permits obtaining the frequency dep
dences of the magnetic permeability to within good ac
racy. This is undoubtedly important for using this model
e
to
a-

h
ns

he

e
-

n
re
n-
-

calculate the magnetic permeability of polycrystalline ferr
media with specified frequency properties.
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The possibility of predicting the lifetime of loaded materials at variable~increasing! temperature
is demonstrated on the basis of a kinetic approach to the problem of the failure of such
materials. ©1998 American Institute of Physics.@S1063-7842~98!01511-6#
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INTRODUCTION

Questions concerning the thermostability of materi
and structures are of great importance for solving ma
problems in modern technology. If the temperature of ma
rials or structures under a mechanical load should rise~in
comparison to the normal service temperature!, their strength
begins to drop and failure can set in. Therefore, estima
the fitness of materials and predicting the possibility of fa
ure in extreme situation associated with a rise in tempera
~for example, in a fire! is an important and topical problem
The treatment of this problem has been the subject of num
ous studies, predominantly taking a mechanical-enginee
approach~see, for example, Refs. 1 and 2!. For this reason,
the solutions proposed have generally had a particular
narrowly specialized character, which, of course, does
detract from their practical significance. The treatment of t
problem on the basis of modern physical theories regard
the failure of solids has just been started.3,4

A physical basis for analyzing the mechanical failure
bodies as the temperature varies is provided in a natural
by conceptions of failure as a kinetic phenomenon, rat
than a critical act.5,6 The macroscopic fracture of a loade
body is preceded by the formation and development of m
roscopic cracks and pores, which develop in the body fr
the moment when the load is applied, and the actual frac
is the final act in this process.

The lifetime t, i.e., the time from the moment when
load is applied until fracture of the body occurs, is an in
gral characteristic of this process. In the simplest case
which the tensile stresss and the temperatureT are held
constant over the course of the lifetime, the general exp
sion obtained5 for the lifetime of an extensive list of mater
als over a fairly broad range~of not excessively small o
excessively large values ofs andT) is

t5t0 expS U02gs

kT D , ~1!

wheret0'10213 s is close to the vibration period of atom
U0 coincides with the interatomic bond dissociation ener
g includes the activation volume and the local excess st
coefficient~a consequence of the structural inhomogeneity
the material!, andk is Boltzmann’s constant.

The basic form of expression~1! as a Boltzmann factor
the closeness oft0 to the vibrational period of atoms, and th
identification of the initial barrierU0 that is being removed
1341063-7842/98/43(11)/5/$15.00
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by the applied stresss permit one to characterize the kinetic
of failure as a process controlled by the thermal-fluctuatio
decay of stressed interatomic bonds, which leads to the
mation and development of microscopic cracks~defects! in
the loaded body.

The analysis of the kinetics of failure under conditio
where the temperature is held constant (T5const) but the
stresses vary with timet ~i.e., s5s(t)) has been the subjec
of several studies.5,7 It was shown in these studies that th
mechanism of failure does not vary~the values oft0, U0,
and g remain unchanged! and that only the rate of failure
varies with time. Formulas for calculating the lifetime und
the conditionss5s(t) at T5const were derived.

No similar analysis has hitherto been performed for
case ofs5const andT5T(t). Just such a situation is cha
acteristic of the case of a rising temperature, which is of
realized in practice.

The purpose of the present work is to examine the kin
ics of failure with variation of the temperature of a load
body with time @i.e., under the conditionss5const and
T5T(t)#.

OBJECTS OF INVESTIGATION AND CONDITIONS

A typical construction material, viz., class A-1 reinforc
ment steel~GOST 5781-75!, was chosen as the object o
investigation. Samples were prepared in the form of ro
with a diameter of 10 mm and a length of the working p
equal to 400 mm. In addition, flat samples in the form o
double blade with a thickness of 0.2 mm and a length a
width of the working part equal to 22 and 3 mm, respe
tively, were tested. The samples were tested under condit
of uniaxial extension. The lifetime was measured in tw
regimes: 1! under static conditions, i.e., constancy
s5const andT5const during the fracture of each individu
sample, with variation ofs and T from sample to sample
2! with variation of the temperature for a sample loaded
the same value ofs. All the measurements were performe
in an air environment.

STATIC LIFETIME

The results of measurements oft (s,T) curves under
static conditions are presented in Fig. 1a. The plots in se
logarithmic coordinates comprise a family of straight line
whose slopes decrease with increasing temperature. Afte
2 © 1998 American Institute of Physics
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trapolation in the direction of increased values ofs, the
straight lines converge to a hub lying near 10213 s ~i.e., the
family of lines has a fan-like pattern!.

Does the family oft(s,T) curves just described corre
spond to the general kinetic expression~1!? It follows from
~1! that

U~s!5U02gs5kT~ ln t2 ln t0!. ~2!

Each point in Fig. 1a was recalculated using Eq.~2!. In
accordance with the position of the hub in Fig. 1a, the va
of t0 was set equal to 10213 s. The results of the recalcula
tion are shown in Fig. 1b, where the symbols correspond
to different temperatures are the same as in Fig. 1a. Fa
close bunching of all the points along a single straight l
can be seen. This shows that the relation~1! holds for this
steel. Thus, the kinetics of the failure of this constructi
material conform to the general physical laws governing
failure of solids.

The value ofU0 can be found from Fig. 1b~by extrapo-
lation to s50): U05360 kJ/mol53.9 eV. This value is
fairly close to the dissociation~sublimation! energy of iron.5

The slope of the plot in Fig. 1b givesg50.8 nm3. In
accordance with the interpretation of the coefficientg ~see

FIG. 1. a — Dependence of the lifetime on stress for steel sample
various temperatures:1 — 673,2 — 773,3 — 873 K. b — dependence o
the activation energy for the failure of steel on stress.
e

g
ly
e

e

Refs. 5 and 6!, g5q•Va , whereVa is the activation volume
in an elementary act of decay of interatomic bonds and h
typical value of 1022 nm3, andq is the local excess stres
coefficient. We thus obtainq580. Such a value for the loca
excess stress coefficient lies in the typical range of exc
stresses for polycrystalline metals.5

Thus, the construction materials investigated confo
completely to the fundamental assumptions of the kinetics
the failure of solids. This situation allows us to move on to
discussion of the laws governing failure in a regime w
variation of the temperature during the time that the sam
remains under load.

LIFETIME IN A REGIME WITH VARIATION
OF THE TEMPERATURE

The variation of the temperature with time was assign
by the corresponding temperature increase during a ‘‘n
mal’’ fire.4 A schematic representation of a typical mon
tonic rise in temperature is shown in Fig. 2a. The rate
increase in temperature slows with time, andT approaches a
more or less pronounced asymptotic valueTk . For a sample
under the influence of a certain constant tensile stresss,
fracture occurs at the timet f at the value of the temperatur
at that momentTf . Of course, the greater iss, the smaller
are the values oft f andTf .

Two ‘‘normal’’ fire regimes were assigned in the prese
work: regime 1 and regime 2, which differ with respect
the heating rate~or intensity!. Plots of the rise in temperatur

at

FIG. 2. a — Schematic representation of a monotonic increase in temp
ture with time corresponding to a normal fire regime; b — dependence of
the reciprocal temperature on heating time.
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FIG. 3. Monotonic temperature-variation regimes for different heating rates. The arrows indicate fracturing of the samples under different stresse
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with time for the two regimes are shown in Fig. 3. It is se
that the common functional course ofT(t) corresponds to
the form of the T(t) curve schematically represented
Fig. 2a.

The arrows on the curves in Fig. 3 indicate fracturing
the samples under different stresses. Thus, a set of valu
t f andTf corresponding to the values of the applied stress
is obtained for each of the regimes. The values oft f andTf

as functions ofs are listed in Table I.
The approach used in the present work to describe

lifetime of a loaded body under variation of the temperat
with time is based on the simple and natural argument
defects accumulate in a loaded body during preparation
failure. This argument is based on numerous data on
processes occurring in loaded bodies.5,6

If the temperature of a loaded body varies with time, i.
if T5T(t), the principle of defect summation leads
Bailey’s condition8, i.e., a criterion for the failure of a body

E
0

t f dt

t@s,T~ t !#
51, ~3!

wheret f is the time to failure.

TABLE I. Calculated and experimental values of the lifetime of loaded s
samples at increasing temperatures.

Calculation from data
Regime s, MPa Tf , K t f3103 s in Fig. 3:t f3103 s

1 200 820 8.1 10.7
300 770 6.5 –
400 690 5.1 5.9

2 50 1020 4.6 –
100 950 3.3 4.4
150 910 2.8 –
200 860 2.3 –
300 790 1.85 –
400 690 1.40 1.3
425 660 1.20 –
f
of

e
e
at
or
e

,

Expression~3! means that the ‘‘partial’’ lifetimes, i.e,
the relative fractions of the lifetime at different values ofT,
are summed, and thus it corresponds to a summation of
defects accumulated at different temperatures.

It follows from ~1! that t@s,T(t)#5t0 expU(s)/kT(t),
and expression~3! becomes

1

t0
E

0

t f
expF2

U~s!

kT~ t !G dt51. ~4!

Thus, the problem of calculating the integral in~4! for a
specified form of the functionT(t) has been defined. Th
explicit form of the functionT(t), or the equivalent form of
the function 1/T(t), is needed to obtain an analytic solutio
and integrability of expression~4! is desirable for this pur-
pose. Switching to 1/T(t) would, of course, be usefu
because the function is in the numerator, rather than the
nominator, of the exponential function in the integrand, a
this change will certainly facilitate finding the solution.

The form of the function 1/T(t) derived from the func-
tion T(t) is schematically represented in Fig. 2b. Incident
it is easier to mark the asymptotic level of 1/Tk using this
plot. The plot of 1/T(t) resembles a decaying exponent
function, and this calls for replotting the data in Fig. 3 o
T(t) as plots of the dependence of log(1/T21/Tk) on t. The
estimates of the level ofTk are indicated by the dashed line
in Fig. 3.

Figure 4 presents the results of such replotting. It can
seen that the plots of the dependence of log(1/T21/Tk) on t
for the two regimes are nearly linear.

Therefore, as a good approximation of the functi
1/T(t) we can take

1

T
~ t !5

1

Tk
1

1

Ta
exp~2at !, ~5!

where 1/Ta51/T021/Tk (T0 is the value ofT at t50; here
T05293 K!.

l
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Then

E
0

t f
expF2

U~s!

kT~ t !G dt5expF2
U~s!

kTk
G

3E
0

tk
expF2

U~s!

kTa
exp~2at !G dt.

We make the change of variablesU(s)/kTa exp(2at)
5z.

Then

E
0

t f
expF2

U~s!

kTa
exp~at !G dt

52
1

aEU~s!/kTa

U~s!/kTa exp~2aTf !exp~2z!

z
dz

5
1

aF E
U~s!/kTa exp~2aTf !

` exp~2z!

z
dz

2E
U~s!/kTa

` exp~2z!

z
dzG . ~6!

The integrals in~6! cannot be taken exactly, but there
known approximation

E
b

`exp~2z!

z
dz.

exp~2b!

b
for b.1. ~7!

In order to be able to use this approximation, we m
estimate the lower limits of the integrals in~6!.

It follows from the data in Fig. 1b that the values
U(s) for stresses varying from 400 to 100 MPa lie in t
range 2002300 kJ/mol. As follows from Fig. 4, 1/Ta equals
2.331023 K21. Then the lower limit of the second integra
in ~6! lies in the range 50–90, i.e., is much greater than un

According to the slopes of the plots in Fig. 4 and t
expression~5!, the values ofa area150.3931023 s21 for
regime 1 anda251.0731023 s21 for regime 2. Then, tak-

FIG. 4. Replotting of the data in Fig. 3 in new coordinates.
t

.

ing the data on the failure timet f from Fig. 3 for the corre-
sponding stressess, we obtain a range of values from 3 to
for the lower limit of the first integral in~6! for regime 1 and
a range from 3 to 10 for regime 2. Thus, in all cases
lower integration limits in~6! have values greater than 1
which permit the use of the approximation~7! for the inte-
grals in ~6!.

Since, as follows from the estimates just given, the low
limits of the second integral in~6! are significantly higher
than those of the first integral, then, according to~7!, the
second term in~6! is much ~by an order of magnitude!
smaller than the first, and the second term can thus be
glected. As a result, from~4! and ~6! we obtain

1

a
expF2

U~s!

kTa
exp~2at f !GFU~s!

kTa
exp~2at f !G21

.t0expFU~s!

kTk
G . ~8!

We take into account that, in accordance with~5!,

1

Tf
5

1

Tk
1

1

Ta
exp~2at f !.

Then, from~8! we obtain

U~s!5kTfFat f2 lnS t0a
U~s!

kTa
D G . ~9!

In ~9! the dependence of the second term on the v
ables appearing in ita, U(s), and Ta is logarithmic, i.e.,
weak. With consideration of the relatively weak variabili
of these quantities@a5(0.421.0)31023 s21, U(s)5200
2300 kJ/mol, and 1/Ta52.331023 K21 is essentially con-
stant# and the large value logt05213 of the control para-
meter, we can assume that ln(t0•a•U(s)/kTa) is approxi-
mately constant:

lnS t0•a•
U~s!

kTa
D'233. ~10!

Then

U~s!.kTf~a•t f133!.

Thus, an approximate expression has been obtained
determining the activation energy of the failure process fr
the values of the failure timet f and the failure temperatur
Tf in an assigned temperature-variation regime, which
characterized by the coefficienta.

Expression~10! enables us to find theU(s) curve for
the steel from the data plotted in Fig. 3 and to compare
with the U(s) curve obtained in the experiments with co
stants andT ~Fig. 1b!. The results of the determination o
U(s) from the data in Fig. 3 are presented in Fig. 5. Fai
dense bunching of the points~corresponding to both
temperature-variation regimes! along a straight line can be
seen. The plot in Fig. 5 is close to the plot ofU(s) in Fig.
1b. It is described by a function of the same form, i.
U(s)5U02gs. In addition, it is found from Fig. 5 that
U05340 kJ/mol53.7 eV andg50.7 nm3, i.e., the values of
U0 andg for the data in Figs. 1b and 5 are fairly close.
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This means that the nature of the failure process a
temperature which varies with time remains both qual
tively and quantitatively the same as that which has b
reliably revealed in experiments with constants andT. With
this finding one can develop methods for predicting the li
time of materials or structures at varying temperature on
basis of the general physical laws governing the kinetics
failure.

Implementation of this possibility will require: 1! knowl-
edge of the dependence of the temperature on time, i.e.,T(t),
and 2! knowledge of the kinetic characteristics of the failu
of the material under consideration, i.e., the values ofU0, g,
and t0. These characteristics can be obtained by measu
the dependences of the lifetime on stresss and temperature
T, as was shown above~Fig. 1!.

We now present examples of estimates of the time
failure (t f) for the steel investigated in the present work
the same heating regimes, using the values ofU(s) from
Fig. 1 for specified values ofs.

Such an estimate was made on the basis of relation~8!.
The complicated form of this expression precludes a dir
analytical solution with a determination oft f from the speci-
fied values ofs. Therefore, we make the substitution

U~s!

kTa
exp~2at f !5y. ~11!

Then, from~8! we have

exp~2y!/y5at0 expFU~s!

kTk
G . ~12!

Taking the logarithm of~11!, we obtain

y1 ln y52 lnH at0 expFU~s!

kTk
G J . ~13!

The right-hand side of~13! contains quantities known
from Figs. 1 and 2@we assigns and determineU(s) from
Fig. 1b#. We numerically construct the dependence
y1 ln y on y ~Fig. 6! and then use it to find the values ofy
from the values of the right-hand side of~13!. Now we can
use them to find the values oft f , i.e., the values of the time

FIG. 5. Dependence of the activation energy for the failure of steel on s
according to the data in Fig. 3.
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to failure for different values of the stresss from ~11!. Es-
timates were made for regime 1 withs5200 and 400 MPa
and for regime 2 withs5100 and 400 MPa. The calculate
values oft f are listed in Table I, where they can be compar
with the experimentally obtained values oft f for the same
stresses.

It can be seen that the calculated values differ o
slightly from the measured values. Thus, the satisfactory
liability of predictions of the time to failure has been dem
onstrated for reinforcement steel. We note that similar e
mates, which confirmed the legitimacy of a similar approa
to predicting the lifetime at increasing temperature, were
tained in Ref. 9 for samples of concrete, whose temperat
force dependences closely conform to expression~1!.

The problem of estimating the safe stress for an assig
temperature-increase time can also be solved on the bas
~11!. Of course, cases of different forms of the functionT(t)
can also be of interest. Then other methods, both analy
and numerical, for calculating integrals of the type~4! are
needed~see, for example, Ref. 5!. However, the physica
principles of the approach to solving these problems sho
clearly still be based on the kinetic concepts of the failure
solids.
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TECHNICAL PHYSICS VOLUME 43, NUMBER 11 NOVEMBER 1998
On the dimensionality of superconductivity in cuprate superconductors
M. V. Krasin’kova

A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
~Submitted April 15, 1998!
Zh. Tekh. Fiz.68, 82–84~November 1998!

The question of the dimensionality of superconductivity is considered within the framework of a
model of superconductivity via asymmetric, delocalized ‘‘crystalline’’p orbitals~analogous
to the corresponding molecular orbitals! extending along chains of covalently bonded copper and
oxygen ions. It is shown that superconductivity is preceded by a separation of the bonds in
the CuO2 layer into covalent and ionic bonds with ordering of the covalent bonds into chains. Such
an ordering facilitates the formation of a crystallinep orbital lowering the crystal energy by
the resonance energy of thep bond and is therefore favored. The superconducting current is
created by non-dissipative motion ofp-electron pairs along the asymmetric, ‘‘crystalline’’
p orbitals extending along chains of covalently bonded copper and oxygen ions, in the presence
of an ionic bond between neighboring chains extending through the easily polarizable O22

ions. This ionic bond correlates the motion of the electron pairs along all thep orbitals and
stabilizes the superconducting state. Only in this sense is the apparent ‘‘one-
dimensionality’’ of superconductivity in cuprate superconductors to be understood. ©1998
American Institute of Physics.@S1063-7842~98!01611-0#
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A model was proposed in Ref. 1 which explained t
nature of high-temperature superconductivity in cuprate
perconductors by proceeding from a picture of electron p
in the material forming a chemical bond~an asymmetricp
bond! which under certain conditions becomes delocaliz
and enables superconductivity.

According to this model, the superconducting pa
move along spatially separated, asymmetricp orbitals ex-
tending along chains of covalently bonded copper and o
gen ions lying in the CuO2 plane. The latter circumstanc
creates the impression that the superconductivity is o
dimensional.

Let us examine the problem of the dimensionality of t
superconductivity of cuprate superconductors in this mo
in more detail and consider what may be the cause of
formation of these chains of covalently bonded ions, wh
superconducting current is possible only along chains ly
in one plane, and how such apparently one-dimensio
superconductivity is stabilized.

The difference in the electronegativities of copper a
oxygen is such that the bond in the CuO2 layer should be
half ionic and half covalent. Let us see how this condition
fulfilled in these cuprate structures. The coordination po
hedron of copper in most cuprate superconductors i
square-based pyramid. Thus, the copper ion has five ne
neighbors and should therefore form at least five bonds.1!

Jumping somewhat ahead, note that copper forms
five, but six bonds: three ionic bonds~two in the CuO2 plane
and one along theC axis! and three covalent bond
(2s11p). But such a state of the bonds, in complete agr
ment with the difference in electronegativities and theref
stable, is apparently reached only in the superconduc
state.1

In the undoped material, the achievement of such
1341063-7842/98/43(11)/3/$15.00
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balance between ionicity and covalency of the bonds a
result of the difference in electronegativities runs up aga
a series of difficulties. First of all, the presence of a fl
square coordination of the Cu21 ion requires that four bonds
in the CuO2 plane be equivalent, which is quite a few for ju
one type of bond. Second, in the presence of an unpa
electron on the Cu21 ion and a pair of electrons on the O22

ion in orbitals perpendicular to the CuO2 plane, the forma-
tion of a p bond between these ions becomes impossi
Third, the distance between the Cu21 and O22 ions is greater
than the sum of their covalent radii and increases w
growth of the temperature as a result of thermal expansio
the lattice, which also hinders the formation of a covale
bond.

A way out of this predicament for the undoped mater
is provided by the state of covalent–ionic resonance.2 The
term ‘‘state of covalent–ionic resonance’’ means that
bond between the ions is found in some intermediate stat
neither ionic nor covalent.3 Therefore, the distance betwee
the ions can also have some intermediate value, i.e., it ca
less than the value expected for the ionic bond, but gre
than the value required for the covalent bond, as is in f
observed experimentally.

It is hard to say how closely the required balance b
tween ionicity and covalency of the bond in the copper c
ordination polyhedron is fulfilled under conditions o
covalent–ionic resonance of four bonds in the CuO2 plane
and one ionic bond along theC axis. It is more likely that it
is not fulfilled completely and the bond is not complete
stable, although this instability is partly compensated b
lowering of the energy of the system by the energy of
covalent–ionic resonance. But when the material is dope
changes are made in its stoichiometry or additional layers
introduced incommensurate with the copper layers, the in
7 © 1998 American Institute of Physics
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bility of the bond manifests itself immediately in the ea
with which the flat-square coordination of the copper ions
distorted. If upon doping it becomes possible for an e
change of electrons between the CuO2 layer and the doped
layers to occur, then the bonds in the CuO2 plane will sepa-
rate into two ionic bonds~with greater distance between th
ions! and two covalents bonds ~with a smaller distance
between the ions!. To achieve the required balance betwe
ionicity and covalency of the bonds in this case, in addit
to the two covalent bonds just mentioned, ap bond is also
formed. Thisp bond is formed by the overlap of copper an
oxygen orbitals perpendicular to the CuO2 plane that be-
tween themselves have lost one electron to doping~the elec-
tron goes into the doped layer!.2!

But separation of the bonds in the CuO2 plane into two
ionic and two covalent bonds~with one of the latter a double
bond! takes place apparently not in a random fashion, bu
an ordered fashion — with the formation of chains of c
valently bonded ions. These chains turn out to be ionica
bonded with each other through the O22 ions ~see Fig. 1!.
Such ordering is energetically favorable for the system a
consequence of the possibility of lowering the energy of
system by the resonance energy of thep bond along the
entire length of the chains.3!

On the other hand, ordering of the covalent bonds in
form of chains by itself creates conditions for the formati
of a ‘‘crystalline’’ p orbital ~analogous to the correspondin
molecular orbital! extending along the entire length of th
chains of covalently bonded ions and necessary for the em
gence of the superconducting state, as will become appa
below.

FIG. 1. Diagram of the CuO2 plane. The chains of covalent bonds a
represented by the heavy lines joining copper ions~filled circles! and oxy-
gen ions~unfilled circles!. The dashed lines are ionic bonds between cha
extending through the O22 ions ~squares!. Superconducting pairs mov
along asymmetricp orbitals extending along the chains and located on o
side of the CuO2 plane~above or below the plane!. Thepz orbital of the O22

ion bridge, deformed by the field and containing two electrons, is also fo
on that side of the plane.
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Recall that we are talking here about an asymmetricp
orbital. The asymmetry is created by the asymmetric elec
field on either side of the CuO2 plane. The orbitals of the
copper and oxygen ions perpendicular to the CuO2 plane are
deformed by this asymmetric field — the ‘‘volume’’ of the
lobes increases, facilitating a better overlap on the side of
CuO2 plane facing the larger positive charge.1

Thus, from the above consideration it follows that t
formation of ‘‘crystalline’’ p orbitals running along chains
of covalently bonded ions is a consequence of the mi
covalent–ionic character of the interaction between cop
and oxygen and is energetically favorable for the syst
since it lowers its energy by the resonance energy of thp
bond.

Delocalization of thep electrons of the asymmetricp
bond along the chains in fact implies the possibility of no
dissipative motion of electron pairs along a ‘‘crystalline’’p
orbital. The chains of copper and oxygen ions with deloc
ized p electrons in this case reminds one of conjuga
bonds in molecules of aromatic compounds with the o
difference being that they are unclosed, and theirp orbital is
asymmetric about the plane of the ‘‘molecule’’~in the given
case the CuO2 plane!. Such motion of the electron pair
along p orbitals constitutes motion along spatially isolat
‘‘filaments’’ located on one side of the CuO2 plane, a cir-
cumstance which creates the impression of o
dimensionality.

But a necessary condition for the superconducting st
being a macroscopic phenomenon, is that the motion of
electron pairs on each separate chain and all of them toge
in the CuO2 plane be correlated.

Correlation of the motion of the electron pairs alon
each separate chain is ensured by the strong repulsion
tween the electron pairs. As they move along ap orbital,
they do not collide with each other but rather keep th
distance as they move, maintaining a separation betw
them equal to the distance between the copper and oxy
ions in the chain.

Correlation of the motion of the electron pairs in neig
boring chains is ensured by the ionic bond between th
through the easily polarized O22 ions, forming bridges be-
tween the chains. Here each copper ion of one chain
coupled through the two nearest O22 ions with two copper
ions of the neighboring chain~see Fig. 1!. Under these con-
ditions, polarization of the O22 ion can transfer to a neigh
boring chain an excitation in the electron density distributi
created by the motion of an electron pair along ap orbital in
one of the chains. Thus, it is possible to realize correla
motion of electron pairs over all of thep orbitals extending
along the chains in the CuO2 plane.

It is necessary to allow for the fact that the O22 ion also
finds itself in an asymmetric field, and its orbital perpendic
lar to the CuO2 plane and containing two electrons is al
asymmetric and can overlap with thepz orbitals of the cop-
per ions joined by the given oxygen ion. However, this p
of electrons of the O22 ion probably does not participate i
the superconducting current along the chains, since it d
not conform to the long-range order underlying the conju

s
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tion of the chain of covalently bonded ions, but it can app
ently take part in screening currents.

In view of the O22 bridge ions correlating the motion o
the electron pairs, the superconductivity is not really o
dimensional even though the electron pairs move along
tially separatedp orbitals.

As for the stability of superconductivity along thep
orbitals, it is vouchsafed, as was seen above, by the lowe
of the crystal energy by the resonance state of thep bond,
correlated over all the chains in the CuO2 plane.

Thus, the ordering of covalent bonds in the CuO2 plane
in the form of chains ionically bonded to each other ensu
coherence of oscillations of thep-electron density over the
entire CuO2 plane.

Since the energy of the resonance state of the bond
ceeds the energy of the electron–phonon interaction
stands to reason that the theTc of such superconductor
will be higher than theTc of superconductors with a BCS
mechanism.

In conclusion, it should be said that some confirmat
of the importance for superconductivity of the presence
chains of bonds may be garnered from the fact that in m
presently known superconductors some aspects of
dimensionality, or more precisely, a low dimensionality a
observed. All complex materials in which superconductiv
has been observed are layered, and in many of them me
oxygen or metal–metal chains have been observed. On
other hand, it is interesting to note that in organic materi
conjugation of the bonds is observed only in molecules w
a planar configuration.

Recently published observations of asymmetry in
oxygen environment of Cu in the CuO2 plane~observation of
-
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two different Cu–O distances!4 along with data pointing to
localization of holes in the CuO2 plane and the absence o
any influence of these holes on the mobile carriers5 not only
do not contradict the above ideas, but can also be taken
direct experimental confirmation.

1!Recall that to form covalent bonds on the Cu21 ion, one 4s orbital, three
4p orbitals, and one half-filled 3d orbital are available. All these orbi
-als are similar in energy. The O22 ion has completely filled 2s and 2p
orbitals.

2!In this case it is apparently not even important which of the ions loses
electron: the copper ion loses its unpaired electron and transitions from
Cu21 state to the Cu31 state, now having a freepz orbital which now
overlaps with a completely filledpz orbital of an O22 ion to form ap
bond, or an oxygen ion transitions from the O22 state to the O2 state. In
the latter case, thepz orbitals of the copper and oxygen ions can overla
each one occupied by one electron. It may be supposed that upon do
one electron is lost for every pair of electrons Cu21 –O22 forming between
themselves a covalent bond. Note that in this case only onep bond is
formed for every twos bonds Cu–O–Cu.

3!The loss of the covalent–ionic resonance energy of four bonds upon
above-mentioned separation of the bonds appears to be compensat
the resonance energy of thep bond formed along the chains.

1M. V. Krasin’kova, Pis’ma Zh. Tekh. Fiz.23~17!, 57 ~1997! @Tech. Phys.
Lett. 23, 681 ~1997!#.

2L. Pauling, Phys. Rev. Lett.59, 225 ~1987!.
3L. Pauling,The Nature of the Chemical Bond and the Structure of M
ecules and Crystals, 2nd ed.~Cornell University Press, Ithaca, New York
1940, Goskhimizdat, Moscow 1947, 440 pp!.

4H. Oyanagi and J. J. Zegenhagen, Superconductivity10, 415 ~1997!.
5P. C. Hammel, B. W. Statt, R. L. Martinet al., Phys. Rev. B57, R712
~1998!.
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Aspects of the self-organization of carbonaceous conducting nanostructures
during electroforming of a metal–insulator–metal open sandwich structure
with a nanometer-size insulating gap

V. M. Mordvintsev, S. E. Kudryavtsev, and V. L. Levin

Institute of Microelectronics, Russian Academy of Sciences, 150007 Yaroslavl’, Russia
~Submitted June 24, 1997!
Zh. Tekh. Fiz.68, 85–93~November 1998!

Experimental results are presented on the electroforming of a nanometer-size MIM
~metal–insulator–metal! diode with a carbonaceous active medium. The diode is in the form of
an MIM sandwich structure which is open on one face and has a nanometer-size insulating
gap. Measurements of its current–voltage characteristics are made which reflect processes of self-
organization and self-forming of carbonaceous conducting nanostructures in the insulating
gap. It is shown that the properties of such a circuit element differ greatly from those of a
conventional MIM diode. These differences can be explained if it is taken into account
that a thin insulating layer is built in, in series with the carbonaceous conducting medium growing
in the insulating gap. The data obtained indicate that the carbonaceous structure is of
nanometer size in all three spatial dimensions. The models that have been developed to represent
this structure correspond well with the experimental results, in particular the spatiotemporal
self-organization in this system. ©1998 American Institute of Physics.@S1063-7842~98!01711-5#
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INTRODUCTION

Diodes with a metal–insulator–metal~MIM ! structure,
placed in vacuum with vapors of organic compounds a
subjected to electroforming~as a rule, the cyclic application
of a voltage ranging from 0 to 15 V!, have been studied fo
quite some time now.1 The insulating gap of a planar MIM
structure, openly accessible to the organic vapor and ha
a characteristic width of the order of a micron, is prepared
the ‘‘burnout’’ of a thin metallic conductor located on th
surface of an insulating substrate by means of an elec
current. In the case of a sandwich MIM structure, it is c
ated in a process similar to breakdown of the correspond
insulating film placed between metal electrodes. In both v
ants, the prepared structures possess a small-to-moderat
tial conductivity, which increases by several orders of m
nitude during electroforming. TheN-shaped character of th
quasistationary current–voltage~I–V! characteristics ob-
served after electroforming have been linked with the form
tion of carbonaceous conducting pathways out of the
sorbed organic molecules, their burnout upon the passag
a certain level of current through the structures, and so
process of regeneration when the voltage is decreased
will refer to such structures as conventional MIM diodes.
has been experimentally shown that in their composition
structure the carbonaceous conducting pathways are sim
to graphite.2 Later it was found3 that in such a formed MIM
diode the entire applied voltage falls across the narrow in
lating gap of nanometer width. The authors of Ref. 4, on
basis of scanning tunneling microscope experiments and
available data on conventional MIM diodes, proposed
mechanism of their functioning, the main elements of wh
are the nanometer width of the insulating gap and the p
ence of an internal reverse bias in such objects. This me
1351063-7842/98/43(11)/8/$15.00
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nism has been used previously to develop models for
appearance ofN-shaped I–V characteristics in simila
structures,5,6 and the analysis of these models has led to
understanding of electroforming as a process of s
organization of a nanometer-size gap in the carbonace
conducting medium.7 To start up this process it is necessa
to ensure that a flux of electrons can be passed through
organic material, which is initially an insulator. In a conve
tional MIM diode the necessary initial conductivity of th
structure is provided by a special technology used in
formation of the insulating gap, which, after the conductor
burned out, is left with a modified surface and contains so
residual metal particles. However, it was suggested bac
Ref. 4 that the necessary conditions can be provided sim
by making the nanometer-width initial insulating gap open
accessible to the organic molecules; then the high elec
fields created in the organic medium on the surface of
gap will be sufficient for the appearance of a field-emiss
current from the cathode. Such an element will be sign
cantly more controllable than a conventional MIM diod
while possessing substantially greater reproducibility of
spatial structure during fabrication. The passage of a flux
electrons through the organic material leads to dissocia
of its molecules, carbon enrichment, and thus to the form
tion of a carbonaceous conducting medium~CCM! upon
reaching the percolation threshold. In this paper we pres
experimental results confirming the validity of these conc
sions. Such a structure has been called5 a nano-MIM diode
with a carbonaceous active medium.

SAMPLES AND EXPERIMENTAL TECHNIQUE

A nano-MIM diode with the width of the insulating ga
not exceeding a few tens of nanometers, as is necessa
0 © 1998 American Institute of Physics
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order to create high electric fields at the voltages actu
used in electroforming, was created in the form of an op
sandwich structure.8 The insulating gap is an end face of th
insulating film which is made accessible to the organic m
ecules by a local etching of the upper metal layer and
insulator layer of a typical three-layer MIM structure. Her
the gap widthH is determined by the thickness of the ins
lating film, which can be prepared to an acceptable leve
quality without any particular technical difficulties at thick
nesses down to a few nanometers.

In the preparation of the samples, silicon wafers coa
with silicon oxide served as the substrate. Metallic films w
a thickness of 0.220.3 mm were deposited by magnetro
sputtering. The material of the upper electrode~cathode! of
the MIM structure was tungsten. The insulating film of al
minum oxide, which is one of the better insulators in t
thin-film state, was formed by liquid anodization of th
lower aluminum electrode. As is well known,9 in this case a
high-quality insulating layer is obtained which itself does n
undergo electroforming in the sandwich structures. In
case this was a useful property, precluding electroform
beyond the limits of the open face of the insulating film. Th
face was created by precision etching of the aluminum ox
after local removal of the material of the upper electro
The thicknessesH ranged from 15 to 40 nm, and the brea
down field strengths of the anodic aluminum oxide we
around 93106 V/cm. In a plane parallel to the substrate t
structures had the form of crossed metallic bars separate
the anodic oxide. In the intersection region a square wind
was etched into the upper bar, through which the oxide w
etched further. The dimensions of the window varied from
to 16 mm. The prepared structures were encased and pla
in a vacuum chamber, which was pumped out in succes
by a mechanical pump and then by a oil diffusion pum
thereby providing the usual gaseous medium for electrofo
ing, containing vapors of organic molecules.

Figure 1 shows in block form one of the circuits that w
used for electroforming and measurement of current–volt
characteristics. A triangular voltage waveform with amp
tude up to 20 V and sweep rate of the order of a few V/s w
imposed on the sample. Such a slow rate of change of
voltage ensured quasistationary I–V characteristics~in par-
ticular, ruling out effects arising due to an insufficiency
organic molecules adsorbed on the surface of the insula
gap!, thereby making the results of the measurements in
pendent of the parameters of the adsorption stage. A ba
resistanceRb was connected in series with the sample
lower the probability of catastrophic breakdown of the stru
ture during electroforming~it later turned out that its role
was significantly more important!. The current was measure
with a standard chart recorder.

Judging from the dimensions of the structures, prima
from the perimeter of the open face of the insulating fil
and data on conventional MIM diodes, one may expect c
rents in the formed samples from a few to a few tens
milliamperes. However, the very first experiments show
that, even in the presence of a large ballistic resistance
with measures taken to eliminate parasitic capacitance
parallel with the sample, a catastrophic breakdown of
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structure develops at significantly lower currents, short
out the metal electrodes. Nevertheless, a more detailed
servation in the range of currents 3–4 orders of magnit
less than expected showed that a process takes place in
case very similar to ordinary electroforming.

RESULTS AND DISCUSSION

Figure 2 plots typical curves characterizing the develo
ment of the current through an open MIM sandwich struct
with an insulating gap about 20 nm in width during seve
cycles of variation~passes! of the generator voltageU at a
constant ballast resistance. In the first pass the curren
absent untilU59 V, where it appears with a jump. We ca
this point the breakaway point. With each successive p
the current gradually grows and, for a given value of t
ballast resistance, a limiting curve4 is set up, which varies
very little if U remains below a certain value. If this latte
condition is violated, an abrupt~discontinuous! drop in the
current is possible, with subsequent gradual recovery to

FIG. 1. Block diagram of the setup for electroforming and measuremen
current–voltage characteristics:1 — transformer unit,2 — generator,3 —
chart recorder,4 — sample,5 — analog-to-digital converter,6 — computer.

FIG. 2. Current–voltage characteristics of an open MIM sandwich struct
reflecting its electroforming:Rb55 MV; 1 — first, 2 — third, 3 — fifth
pass,4 — after the tenth pass;5 — I–V characteristic of the ballast resis
tance without the structure.
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initial value. This limiting current–voltage characteristic d
pends on the magnitude of the ballast resistance, whose
consists in an automatic limitation of the growth of the vo
age across the structure as the current grows in the cir
For comparison, a straight line, corresponding to having o
the ballast resistance in the circuit, is also plotted in Fig. 2
can be seen that at large voltages the slope of the limi
curve4 almost coincides with the slope of the straight lin
This implies that in the given region, despite the growth
U, the voltage across the structure itself remains nearly c
stant. WhenRb50 or its value is too small, a gradual grow
of the current leads to catastrophic breakdown if the volt
amplitudeU is not decreased accordingly.

The difference between such a process of electroform
and the usual process observed in conventional planar M
diodes, and it is substantial, is that the initial nonzero c
ductivity appears only at some quite high voltage. But this
the way a nano-MIM diode should behave: the field emiss
from the cathode depends very abruptly on the field stren
in the insulating gap. But after a current begins to flo
through it, the formation of particles of the carbonaceo
conducting phase begins, accompanied by formation o
carbonaceous conducting medium which gradually fills
insulating gap, thereby narrowing the residual clearance
the gap, which leads to growth of the conductivity of t
structure.

Figure 3a shows the current–voltage characteristic o
sample that had been formed at a ballast resistance
Rb55 MV to the limiting curve4 of Fig. 2, after which the
ballast resistance was bypassed. For comparison, Fig
plots a typical I–V characteristic of a conventional form
MIM diode of planar design, with a width of the conductin
bar of the same order as the perimeter of the face of the o
sandwich structure~40 mm!. It was fabricated by the burning
out of a thin~15 nm! gold film and was formed in the sam
vacuum chamber. The similarity of the shape of the cur
speaks of a similarity of the processes taking place in b
cases, but there are important differences. First, the curr
differ by 3.5 orders of magnitude for almost the sam
‘‘working’’ perimeter of the structures. Second, anN-shaped
curve is traced out in a conventional MIM diode on the
verse leg of the voltage cycle as well as on the forward l
although with significant hysteresis. In the open sandw
structure this is not the case. Moreover, after being ‘‘
verted,’’ during the growth ofU, to large values correspond
ing to complete shutoff, it remains, as a rule, on theOff
branch for any number of subsequent passes. Third, in
case of a conventional MIM diode found on a branch of
current–voltage characteristic with negative differential
sistance, after having been switched off by abruptly dropp
the voltage across the structure to zero it also passes in
the zero-current state@theOff curve in Fig. 3a#. But this state
is maintained only up to some threshold voltageU th ~around
2–2.5 V!. With subsequent increase of the voltage, the
vice switches on~transitions to theOn state!; such behavior
is entirely normal. For the open sandwich structure, on
other hand, in order to get it to switch on~transition to the
On state! it is necessary to apply a voltage to it several vo
greater than the switch-off amplitude, having first connec
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the ballast resistance in the circuit. In this case, a proc
develops that is similar to accelerated forming, as oppose
the slower, unaccelerated forming~Fig. 2!. It appears as if
the threshold voltagesU th are significantly greater and ex
ceed the sweep amplitude for a switching-off pass.

The lower currents in an open sandwich structure c
simply be attributed to the circumstance that a relativ
small part of its ‘‘working’’ perimeter undergoes forming
However, if the carbonaceous formed structure on eve
small segment of the perimeter were entirely equivalent t
conventional MIM diode, one would also observe
N-shaped I–V characteristic on the reverse leg of the volt
cycle. The absence of current growth with decreasing volt
implies that some factor exists that limits regeneration of
carbonaceous conducting medium. But since the reason
its formation, as is clear from the model devised in Ref. 5
an electron flux through the adsorbed organic material,
influence of this factor may consist simply in the fact that
limits the current density in the structure, i.e., not only a
the currents small, but the local current densities in the in

FIG. 3. Current–voltage characteristics of an open MIM sandwich struc
for H524 nm, Rb50 ~a! and for a conventional planar MIM diode for a
20 mm bar~b!: 1 — sweep analogous to that shown in part a,2 — voltage
rapidly switched off atU58 V, 3 — sweep analogous to case1 after rapidly
switching off the voltage atU58 V.
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lating gap are also less than their usual values. On the o
hand, if the current densities in the structure are significa
lower, it is not clear why burnout of segments of the CC
begins in practically the same voltage range as in a conv
tional MIM diode, this process being reflected by the po
tion of the maximum and of the descending branch of
I–V characteristic in Fig. 3a.

All of the noted peculiarities of the open MIM sandwic
structure can be explained if we take into account the p
ence of a residual oxide on the surface of the alumin
electrode after the anodic oxide is etched away~Fig. 4!. Even
if the latter were completely removed, a contiguous layer
the native oxide would quickly form on the aluminum su
face, whose thickness~not less than 1.7 nm! would exceed
the width of the auto-formed insulating gap in the CCM o
conventional MIM diode~about 1 nm; Refs. 3 and 6!. Thus,
in the insulating gap a thin layer of insulator material
connected in series with the CCM and limits the curre
density in the structure.

In this case the mechanism of electroforming and c
duction in the device~in view of the results of the mode
proposed and developed in Refs. 6 and 7! looks as follows.
As the voltage on the structure is increased, field emiss
begins when the breakaway point is reached~Fig. 2! from
some nanoprotrusion on the surface of the cathode~Fig. 4a!.
Electrons injected into the organic insulator~the adsorbate
layer! cause the molecules of the organic material to dis
ciate, resulting in the formation of particles of the carbo
aceous conducting phase. Due to divergence of the elec
flux, the current density falls with distance from the catho
but since it is small in the initial stages of electroforming, t
temperatures caused by Joule heating do not reach the v
necessary for disappearance of the particles of the car
aceous conducting phase4,6 even near the cathode. Therefor
formation of a connected conducting cluster of carbonace
particles ~percolation! begins, in contrast to the case of
conventional MIM diode, on the cathode side, i.e., where
current density is maximum. Thus the CCM is initiated ne
the metal cathode, and as it forms it propagates toward
anode, decreasing the width of the insulating gap and
creasing the conductivity of the structure, as is manifeste

FIG. 4. Diagram of a nanometer-size insulating gap of an open MIM sa
wich structure showing the carbonaceous conducting structure1 that is
formed in the electroforming process: a — end view of the open face, b —
profile of the structure;2 — metal cathode,3 — insulating aluminum-oxide
film, 4 — metal anode,5 — residual oxide.
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a gradual increase in the current~Fig. 2!. The carbonaceous
conducting medium in this case plays the role of an effect
cathode. If an appropriately selected ballast resistanc
present in the electrical circuit, then the CCM grows acro
the entire width of the insulating gap and rests against
residual oxide. This state corresponds to the limiting curv4
in Fig. 2. If we switch the ballast resistance out, then t
initial branch of the curve in Fig. 3a~up to the maximum! is
simply the I–V characteristic of the residual oxide, acro
which the entire applied voltage falls. Taking its actual thic
nesses and its high quality into account, one expects tha
main conduction mechanism is tunneling,10,11 which qualita-
tively explains the nonlinearity of the curve in the first r
gion. Next, asU increases, the field in the residual oxid
intensities sufficient to cause electrical breakdown of the
ide. Its resistance falls abruptly and the current through
structure increases accordingly, ‘‘burning out’’ individu
segments of the CCM on the anode side and thereby incr
ing the width of the insulating gap. This latter circumstan
is connected with spatial localization of the current puls
~see below!, which causes the maximum local power den
ties in the CCM to occur near the anode. Electrical bre
down of the insulator does not cause irreversible change
it, since in the first place, the CCM burns out before that
account of its poorer thermal contact with the substrate.5 The
increase in the gap width drastically decreases the field in
residual oxide, which suppresses the state of electrical br
down and accordingly increases the resistance of the oxid
is these processes that lead to a decrease in the conduc
of the structure, all the way to its complete switching o
which is what we observe on the descending branch of
I–V characteristic.

This mechanism can also account for the absence
transition of the structure to theOn branch over the entire
range of voltagesU less than the voltage at which the stru
ture switched off. In the case in which the resistance of
residual oxide decreases when it undergoes electrical br
down, almost all the applied voltage drop is across the CC
In this case, partial burnout of the latter determines the eq
librium width of the insulating gap corresponding to th
value ofU. After completion of the process~recovery of the
initial resistance of the oxide! the total width of the insulat-
ing gap turns out to be increased by the thickness of
residual oxide. Therefore, in order to have sufficient curr
for switching the structure to theOnstate~repeated forming!,
which requires a certain field strength in the gap, it is nec
sary to apply a voltageU th that is somewhat greater than th
voltage at which the structure switched off. Thus by in
account the effect of the residual oxide on the conduct
mechanism of an open MIM sandwich structure with a c
bonaceous active medium in a nanometer-size insula
gap, one can explain all the experimentally observed pe
liarities of the I–V characteristics.

A fundamental question is, does the electroforming p
cess encompass the entire open perimeter of the sand
structure, or are there individual formed segments distribu
randomly, i.e., more or less uniformly, over the perimet
or, finally, does all the forming take place only in one su
carbonaceous nanostructure? The first possibility is eli

-
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nated by a simple estimate: to form the CCM it is necess
to collect a certain dose of electron flux. This dose can
estimated from the condition that the entire perimeter of
insulating gap is the working region in a conventional MI
diode. Taking the actual currents and maximum switch
times of the switched-off structure~of the order of seconds!
into account in our case gives doses for the case in which
CCM fills the entire perimeter that are several orders of m
nitude smaller than needed. The choice between the se
and third alternatives is also unambiguous and is based
the following simple experiment. Several topologically u
connected open sandwich structures connected in par
with one another and in series with a single ballast resista
were subjected simultaneously to electroforming. It alwa
turned out that only one of them was formed while in t
others the process did not even begin. This implies that
single structure the process develops only at one point. T
result is easily explained if we take into account the abr
exponential dependence of the current on the voltage app
to a field emitter, which in our case is some nanoprotrus
of the cathode surface. Since the ballast resistance efficie
limits the growth of the voltage across the structure as
current increases, an automatic selection of a single, m
critical element takes place from the set of elements c
nected in parallel. Taking into account general argume
namely that for the actual divergence angles of the elec
flux emitted from an edge, its thicknessl ~Fig. 4a!, which
defines the diameter of the CCM, is of the order of the thi
nessH of the insulating film, we can say that we are deali
here with a single carbonaceous structure of nanometer
in all three spatial dimensions.

We should call attention to the deep analogy betwe
such an object and a scanning tunneling microscope. In b
cases there is a mobile conducting nanotip. Only, in a t
neling microscope its position is controlled by external fee
back while in the given case it is controlled by internal fee
back within the structure. In the first case the mobility of t
tip is a result of mechanical translation, and in the secon
is the result of the growth~or recession! of the conducting
medium. But in both cases the same mechanism is res
sible for the high sensitivity of the current to processes t
ing place in a nanometer-size insulating gap. In this ob
the carbonaceous conducting structure, by moving tow
the anode, probes itself, as it were. For this reason, meas
ment of the current–voltage characteristics may be rega
as a method of studying the processes of formation
growth of nanostructures.

Figure 5 displays current–voltage characteristics of
open sandwich structure formed to various states. Elec
forming took place in the usual way, but was interrupted
the states corresponding to curves1–3, obtained with a bal-
last resistance ofRb55 MV. Then, in the voltage growth
phase the corresponding I–V characteristics without the
last were traced out~curves18–38!, during which the struc-
ture switched itself off. After this, it switched itself back o
~formed itself! upon application of a somewhat larger vo
age and with the ballast resistance present in the circuit.
order in which the curves were obtained corresponds to
numeration in the figure.
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As is clear from the character of curves18–38, the cor-
responding carbonaceous structures differ in more than
the magnitude of the active parameter~or cross section of the
CCM! and the corresponding values of the current. So
qualitative parameter is also different from curve to curv
since the positions of the maxima along theU axis are dif-
ferent. This parameter does not vary irreversibly as the p
cesses develop in the structure, rather its value is determ
by the state in which the forming cycle was halted~although
curves28 and38 were obtained after18, they correspond to
earlier stages within the limits of one cycle!. This peculiarity
also distinguishes an open sandwich structure from a c
ventional MIM diode, for which the position of the max
mum of the I–V characteristic on the voltage axis~around
4 V!, already visible in the first cycle of variation of th
voltage, does not subsequently vary, although the amplit
of the current grows significantly.12 As was noted above, the
branch of the curve up to the maximum in our case is
I–V characteristic of the residual oxide, and the maximu
corresponds to its electrical breakdown and the burnou
segments of the CCM. It is therefore natural to suppose
the parameter distinguishing the carbonaceous structures
responding to different curves in Fig. 5 is the thickness of
residual oxide: a thicker oxide layer requires a larger volta
to reach the breakdown field strength. Since the current in
open sandwich structure increases as the structure is form

FIG. 5. Current–voltage characteristics of an open MIM sandwich struc
with H524 nm.
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i.e., it passes successively through states analogous to2, 3,
and1, the first segments to form and be connected into
electrical circuit are the segments with thicker residual oxi
But if we look at the actual oblique profile of etching of th
anodic oxide@Fig. 4b# in the insulating gap, then this i
exactly what should take place as the CCM advances f
the cathode to the anode: first the state with residual ox
thicknessh1 is reached, then the state withh2, etc. ~of
course, the propagation of the CCM presupposes that at
part of the electron flux goes out into the organic insulat
this process is facilitated by the specific configuration of
electric field in the insulating gap and by the fact that t
organic material and aluminum oxide have different diel
tric constants, giving rise to an enhanced field strength at
CCM–organic insulator boundary!. In the final state, all of
them work in parallel; however, since the tunneling curre
depends exponentially on the width of the insulating gap11

the I–V characteristic is governed by the regions with mi
mum thickness of the insulator. The discontinuous drops
the current at voltages greater than the maximum of the
characteristic correspond to burnout of individual regions
the CCM, where the first segments to go are the ones w
minimum thickness of the residual oxide, i.e., the lower t
of the carbonaceous structure, since it is specifically in th
that the maximum power is dissipated due to the local na
of the current paths through the nanotips of the CCM.

From the proposed mechanism of processes in an o
MIM sandwich structure it follows that another interestin
effect is possible, namely natural~free! oscillations of the
conductivity in such an object. Indeed, suppose we app
sufficiently large voltage to such a structure, one correspo
ing to the descending branch of the I–V characteristic. Th
as the CCM grows from the cathode, the insulating g
shrinks and the field strength in it grows. When the fie
reaches the breakdown value in the residual oxide, the re
tance of the latter falls abruptly and almost all of the volta
now falls across the carbonaceous conducting medium
lower end burns off to some equilibrium position, which
determined by the magnitude of the applied voltage. T
field strength in the oxide falls and the breakdown is ‘‘ext
guished.’’ But the state so obtained is not stationary.
applied dc voltage leads to the passage of a significa
smaller, but finite current amplitude that causes the CCM
grow and approach the anode until the next breakdown of
residual oxide, after which the cycle repeats itself, i.e., na
ral oscillations of the current should be observed in the str
ture. It is clear that such oscillations will have a stochas
character: there are too many fundamentally random p
cesses and major nonlinearities in the system for it to
otherwise. First of all, these include the atomic discreten
of the material, which can have a large effect, since the
mensions of the insulating gap can be measured in nan
eters. In such a situation, the addition of another carbon a
to the CCM can significantly alter the size of the insulati
gap and noticeably increase the current through the struc
due to its exponential dependence on the size of the
Another random factor is the probability of onset of brea
down in the nanometer-size residual oxide and the natur
its development. This factor determines the degree of bur
e
.

m
e

ast
;
e

-
e

t

-
in
V
f
th
s
m
re

en

a
d-
n,
p

is-
e
Its

e

n
ly
o
e
-

c-
c
o-
e
ss
i-
m-
m

re
p.
-
of
ff

of the CCM, which is to say, the width of the insulating ga
at which regeneration of the carbonaceous nanostructure
gins. In addition, the random noise can be overlaid by
namical chaos, which is very probable in such a system c
taining feedback loops and strong nonlinearities.

It is advantageous to perform experimental observati
of natural oscillations of the current with the ballast res
tance included in the circuit, since the latter limits curre
jumps, thereby decreasing the depth of switching-off of
structure, i.e., it does not permit the appearance of too-la
insulating gaps, which facilitates subsequent switching-on
the growth phase of the CCM. Figure 6b shows a I–V ch
acteristic of a structure preformed to the state shown in F
6a. The sweep rate here is an order of magnitude lower t
usual. This made it possible to identify in just one pass
range of voltages in which natural oscillations are possible
can be seen that in the interval from 8 to 10 V one does
observe a simple continuous switching-off of the structu
due to burnout of the CCM as in the previous cases,
rather an oscillatory regime arises, with large current surg
Figure 7 displays time plots of the current for structur
formed as in Fig. 6a, at a constant voltage taken from
range in which pronounced natural oscillations are pres
The varied character of the dependences in these grap
connected with the different values of the ballast resistan
A large ballast resistance, by efficiently damping t
switching-off process, leads to an increase in the mean v
of the current and suppresses extinction of the oscillatio
For small Rb the natural oscillations that obtain have th
form of separate spikes against a background of relativ
small currents. As a rule, they are produced by a comp
switching-off of the structure to zero current, after which t
structure does not switch back on for a fairly extended tim

A study of such processes with high time resoluti
~down to 2.5ms! and computer recording of the data show
that a standard recording device strongly smooths out
true time dependence of the current. At large voltages
dependence is a quite smooth curve, against which relati

FIG. 6. Current–voltage characteristics of an open MIM sandwich struc
with H524 nm: a — limiting forming curve forRb57.5 MV, the thickness
of the residual oxide is greater than in Fig. 3; b — voltage sweep rate equa
to 0.08 V/s,Rb51 MV.
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FIG. 7. Time plots of the current of an open MIM sandwich structure forU58.5 V; Rb51 ~a!, 0.3 MV ~b!.
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rare chaotic current pulses are observed, having charact
tic durations in the range 10–50ms. The amplitudes of the
pulses reach their largest values in~severalmA! in the region
of the maximum of the I–V characteristic and are sign
cantly lower at large voltages, corresponding to the desce
ing branch. The pulses are absent in the initial segment o
I–V characteristic. These results fit well into the picture
such an object proposed above. The separate pulses can
respond to isolated acts of growth–burnout of the CCM
the molecular level, but the curves in Fig. 7 reflect chan
in the geometrical characteristics~envelope! of the carbon-
aceous nanostructure as a whole. The largest amplitude
the pulses at voltages near the maximum of the I–V cha
teristic are due to the fact that it is precisely in this regi
that the width of the insulating gap is at its minimum, mea
ing that the relative influence of the appearance~or disap-
pearance! of a particle of the carbonaceous conducting m
dium in the gap will be at its greatest.

In connection with the above, the question arises as
what extent does the characterization7 of electroforming as a
process of self-organization of a nanometer-size insula
gap in a carbonaceous medium, which is valid for the mo
of a conventional MIM diode, apply to the object und
study here. The presence of a thin insulating layer, rigi
built in and connected in series with the CCM, radica
alters the behavior of the structure despite the fact that a
the fundamental physical processes taking place in it rem
the same. The fundamental difference is that the appear
of the new element — the insulating layer — changes
attractor of the system. In a conventional MIM diode t
final state to which the system tends is a stationary struc
ris-
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~a nanometer-size insulating gap!, which corresponds to a
static attractor, i.e., it is simply a point in phase space. In
present case, the final state is an oscillatory process with
attractor in the form of a limit cycle or, what is more likely
a strange attractor. Thus, in the present case we must s
not only of spatial, but also temporal self-organization.

In the investigated system, self-organization is ma
fested in yet another form. We have a self-organizing str
ture on a nanometer scale not only across the insulating
but along it as well. Indeed, the voltage is applied to t
entire open perimeter of the sandwich MIM structure, w
the result being the formation of a single, isolated carb
aceous nanostructure despite the absence of external org
ing factors with such a degree of localization. The reas
for this include the abrupt exponential dependence of
current on the field strength in the insulating gap, on the o
hand, and the presence of the ballast resistance in series
the sample during electroforming, on the other. As soon
one nanoprotrusion on the cathode surface begins to e
part of the voltage falls across the ballast resistance, the v
age on the sandwich structure is decreased, and the car
aceous conducting medium can no longer form at any o
spot.

In view of all we have said, it is more correct to speak
electroforming of such objects as a process of s
organization not of a nanometer-size insulating gap,
more generally of the carbonaceous conducting struct
Such a formulation, being more general, is valid in all cas

In conclusion, it should be noted that the proposed
sign of a nano-MIM diode in the form of an open sandwi
structure is not only a new and interesting means of study
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the phenomenon of electroforming, but also an object v
similar to an actually existing nonvolatile memory eleme
based on self-organizing carbonaceous structures.13
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Ultrafast photodetectors based on the interaction of microwave radiation
and a photoexcited plasma in semiconductors

V. V. Antonov, S. V. Ivanov, V. P. Tsarev, and V. N. Chupis

Saratov State Technical University, 410034 Saratov, Russia
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The interaction of microwave radiation with the plasma in photoionized semiconductor
photocells~CdS, CdSe! placed in waveguide measurement systems is investigated theoretically
and experimentally. The interaction of the characteristic waveguide modes with a
photoexcited semiconductor plasma is investigated. The dependence of the reflection coefficient
and phase of the microwave radiation on the intensity of the optical radiation to be
measured is obtained, and the influence of the surface of the semiconductor photocells on these
parameters is investigated. A microwave photodetector design based on a millimeter-wave
interferometer is developed. ©1998 American Institute of Physics.@S1063-7842~98!01811-X#
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One of the more important directions of development
semiconductor photometry has to do with the need to v
the parameters of short and ultrashort~as low as 1 ns! pulses
of optical~laser! radiation. The creation of measurement sy
tems of this kind is of fundamental importance, both to p
vide a metric for a new class of high-power pulsed source
coherent optical radiation and to investigate the propertie
various materials under the action of laser pulses.

However, the traditional principles of semiconduct
photometry, based on measuring the parameters of a ph
excited semiconductor at constant current, have finally
hausted practically all their possibilities. The main and fu
damentally unavoidable limitation on the response time
such traditional photodetectors as photodiodes and pho
sistors derives from the low mobility of ionized carriers. T
creation of large extracting fields in the given case does
solve the problem, since generation–recombination no
and heating of the semiconductor element are greatly
creased under these conditions. Another characteristic d
back of this measurement principle has to do with limitati
of the sensitivity of semiconductor photodetectors by reco
bination processes, as a consequence of which not all
electrons excited into the conduction band make it from
‘‘cathode’’ to the ‘‘anode.’’ Rather, a significant fraction o
them recombine, which naturally lowers the sensitivity a
accuracy of the method.

One of the most promising directions of research in t
field consists in using the interaction of weak microwa
radiation with a photoexcited~photoionized! plasma in a
semiconductor. The primary advantage and distinguish
feature of this effect is that weak microwave radiation ‘‘re
isters’’ the carriers at the instant they are excited into
conduction band. The current level of development of mic
wave technology in the millimeter and submillimeter ban
makes it possible to carry out such measurements in the
quency range 37–150 GHz during times of 10 ps or less

The most promising measurement system is a mic
wave interferometer which has semiconductor inserts~pho-
1351063-7842/98/43(11)/5/$15.00
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todetector elements! as its reflecting mirrors. In such a cas
as theoretical and experimental studies have shown,
change of the phase of the wave reflected from the semic
ductor is directly proportional to the concentration of pho
excited carriers.

The bulk character of the interaction of the microwa
field with the semiconductor and the presence of resona
effects in the given frequency range substantially expand
possibilities for the development of semiconductor photo
etry for a wide class of materials. To determine the m
parameters of microwave photodetectors, it is necessar
examine the peculiarities of the interaction of microwave
diation with a photoionized semiconductor in a channel
electrodynamic system~e.g., in the aforementioned wave
guide system of a microwave interferometer!.

Let us consider the interaction of anH10 electromagnetic
wave propagating in a rectangular waveguide with a pho
excited semiconductor slab which completely covers
cross section of the waveguide system and is nonuniform
the direction of propagationz. To measure the parameters
optical radiation, one customarily uses thin semiconduct
and semiconductor films with thickness substantially le
than the characteristic diffusion length. In this case, it is n
essary to take into account the strong influence of the sur
on the distribution and concentration of the photoexci
electrons. In such photodetector elements the carriers
diffuse to the surface and recombine there. The concentra
distribution under such conditions is defined by the ra
Ls /L, whereLs5D/Ps , with Ps the surface recombination
rate andD the ambipolar diffusion coefficient.

Let us consider a steady-state distribution of electro
and holes in a semiconductor irradiated by light with inte
sity I 0. The intensity of the optical radiationI inside the
semiconductor layer is given by the well-known relation1,2

I 5I 0~12Rs!exp~2a•z!, ~1!

whereRs is the reflection coefficient of light from the surfac
z50, anda is the attenuation coefficient.
8 © 1998 American Institute of Physics
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The total current density in the sample is determined
the electron and hole diffusion currents

j n5enmnEz1eDn

dn

dz
, ~2!

j p5enmpEz2eDp

dp

dz
, ~3!

j5 jn1 j p , ~4!

where

Dn5
mnkT

e
, Dp5

mpkT

e

are the diffusion coefficients of the electrons and holes,
Ez is the intensity of the associated electric field.

We represent the equations of continuity in stand
form2

]~dn!

]t
5qn2

dn

tn rec
1

1

e

d jn
dz

50, ~5!

]~dp!

dt
5qp2

dp

tp rec
2

1

e

d jp

dz
50, ~6!

where dn5n2n0 and dp5p2p0, tn rec and tp rec are the
recombination times of the electrons and holes,qn andqp are
the generation rates of the electrons and holes, andn0 andp0

are the equilibrium concentrations of the electrons and ho
It follows from system~2!–~4! that

Ez5

Dp

dp

dz
2Dn

dn

dz

nmn1pmp
. ~7!

As a result of the action of the fieldEz , a space charge
r exists during the Maxwellian relaxation timetm ~Ref. 2!

r~z!5r~z,0!exp~2t/tm!. ~8!

For a number of semiconductors the timetm is much
less than the lifetimestn rec and tp rec; therefore it may be
, i
he
y

d

d

s.

assumed thatr(z)'0 ~Ref. 1! and, correspondingly
dn'dp. Substitutingdn'dp (n'p) into Eq.~7!, we obtain
the expression

Ez5
Dp2Dn

n•~mn1mp!

d~dn!

dz
,

which together with Eqs.~2! and ~5! gives the following
equation for the electron concentrationdn:

]~dn!

]t
5D

d2dn

dz2
1q0exp~2az!2

dn

tn rec
, ~9!

where

q05
I 0~12Rs!

\v
,

and\v is the energy of one of the photons incident on t
semiconductor slab.

The general solution of Eq.~9! has the form1

dn5
q0tn rec

12a2L2
exp~2az!1C1exp~2z/L !1C2exp~z/L !,

~10!

whereL5AD•tn rec is the ambipolar diffusion length.
We determine the integration constantsC1 andC2 from

the boundary conditions1

j n~z50!5Ps1•dn~z50!,

j n~z5d!5Ps2•dn~z5d!, ~11!

where uPs1u5uPs2u5Ps are the surface recombination rat
at the facesz50 andd; Ps1.0 andPs2.0 if the current is
directed into the interior of the sample from its boundarie1

In terms of the customary notation

a05
D

L
2Ps , a15

D

L
1Ps , b05

q0tn rec

12a2L2

system~11! admits a solution of the form
C15
b0@aD•~a1exp~d/L !2a0exp~2ad!!1Ps~a1exp~d/L !1a0exp~2ad!!#

a0
2exp~2d/L !2a1

2exp~d/L !
,

C25
b0@aD•~a0exp~2d/L !2a1exp~2ad!!1Ps~a0exp~2d/L !1a1exp~2ad!!#

a0
2exp~2d/L !2a1

2exp~d/L !
.

e,
An H10 electromagnetic wave, incident on such a slab
characterized by the following field structure inside t
waveguide:

Ex
050, Ey

052
j vm0

p
aH0sinS px

a Dexp~2 j bz!,

Ez
050,
s
Hx

05
j ba

p
H0sinS px

a Dexp~2 j bz!, Hy
050,

Hz
05H0cosS px

a Dexp~2 j bz!, ~12!

wherea is the length along the wide wall of the waveguid
which is aligned with thex axis;
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b5AS v

c D 2

2S p

a D 2

,

H0 is the amplitude of the magnetic component of the wa
v is the frequency of the field, andm0 is the magnetic per-
meability of free space.

The z axis points in the direction of propagation of th
wave. The wave reflected from the surface of the semic
ductor ~at z50! has the following components:

Ex
150, Ey

152
j vm0

p
aH0

1sinS px

a Dexp~ ibz!, Ez
150,

Hx
152

j ba

p
H0

1sinS px

a Dexp~ j bz!, Hy
150,

Hz
15H0

1cosS px

a Dexp~ j bz!. ~13!

In the region of the waveguide filled by the semicondu
tor, the electric and magnetic components of the field
determined by the system of equations

Ey5A~z!sin
p

a
x, Hx5

]Ey

]z

1

j vm0
,

Hz52
]Ey

]x

1

j vm0
.

The functionA(z) in the given case satisfies the diffe
ential equation

]2A~z!

]z2
1

v2

c2 S « r1
s

j v«0
2S p

a

c

v D 2D •A~z!50, ~14!

where« r is the dielectric constant of the semiconductor l
tice, and

s5c2~dn1n0!•S 1

mn~ j v1nn!
1

1

mp~ j v1np! D .

If the dimension of the slab along the axis of propagat
of the wave is chosen to be less thana21 and L, then the
excess concentrationdn(z)'dn(0)'const~Ref. 1!, so that
Eq. ~14! can be solved by the Wenzel–Kramers–Brillou
~WKB! method.3 Defining the functionA(z) in the form

A~z!5FA0~z!1
c

v
A1~z!1

c2

v2
A2~z!1 . . . 1

cn

vn
An~z!G

3expS 2 j
v

c
c~z! D ,

we obtain the following solution:3

A~z!5«21/4
•S C1expS 2 j

v

c E0

z
A«dzD

1C2expS j
v

c E0

z
A«dzD D , ~15!
,

n-

-
e

-

n

where

«~z!5« r1
s

j v«0
2S p

a

c

v D 2

.

The solution of Eq.~14! in the form~15! can be obtained
provided the inequality

c

vUA1~z!

A0~z!
U!1.

is satisfied.
For the semiconductors we used in our experime

~CdSe and CdS! the indicated ratio varies within the limits

0.03,
c

vUA1~z!

A0~z!
U' 1

2A2

1

LA« r

c

v
,0.1,

so that a solution of the form~15! satisfies Eq.~14! to a good
approximation.

The estimates obtained allow us to determine they com-
ponent of the electric fieldE and thex component of the
magnetic fieldH:

Ey5@C1•F1~z!1C2•F2~z!#sinS p

a
xD •«21/4,

Hx5@C1• f 1~z!1C2• f 2~z!#sinS p

a
xD , ~16!

where

F1~z!5expS 2 j
v

c E0

z
A«dzD ,

F2~z!5expS j
v

c E0

z
A«dzD ,

f 1~z!52
1

j vm0
S 1

4
«25/4

]«

]z
1«1/4j

v

c D •F1~z!,

f 2~z!5
1

j vm0
S 2

1

4
«25/4

]«

]z
1«1/4j

v

c D •F2~z!.

Equating the tangential components of the field at
boundariesz50 and d, we obtain an algebraic system o
equations in the reflection coefficientsR5H0

1/H0, R1

5C2 /C1 at z50 andz5d, respectively:

11R

j b~R21!
5

1

«1/4~0!
S 11R1

f 1~0!1R1f 2~0! D ,

2
1

j b
5

1

«1/4~d!
S F1~d!1R1F2~d!

f ~d!1R1f 2~d! D . ~17!

The system of equations~17! has the solution

R5
11 j bF3

j bF321
, R15

j bF12«1/4~d!• f 1~d!

j bF21«1/4~d!• f 2~d!
,

where

F35
1

«1/4~0!
S 11R1

f 1~0!1R1f 2~0! D .



o

f
o
a

r
an

te
p

d
e

es,
de-

the
t

ffi-
ia-
se
ace
en-

se
m

lig ight

th

ight

1361Tech. Phys. 43 (11), November 1998 Antonov et al.
Figure 1 plots the modulus of the reflection coefficient
microwave radiation as a function of the light intensityI 0 at
the microwave frequencyf537.5 GHz for different values o
the thickness of a CdS slab in the direction of propagation
the microwave radiation. The curves of this dependence
nonmonotonic, and the minima ofuRu shift to higher inten-
sities asd is increased. Increasing the intensity causes cha
carriers to appear in the volume of the semiconductor
results in a decrease in the real part of«, which leads to
matching of the media at the vacuum–semiconductor in
face. As the thickness of the sample is decreased, the am
tude of the wave reflected from the second face grows, an
the boundaryz50 the two oscillations, phase-shifted relativ

FIG. 2. Dependence of the phase of the reflection coefficient on the
intensity forPs510 m/s~1–3 — the same as in Fig. 1!.

FIG. 1. Dependence of the modulus of the reflection coefficient on the
light intensity forPs510 m/s;d5300 ~1!, 200 ~2!, 100mm ~3!.
f

f
re

ge
d

r-
li-
at

to each other, add. As a result of this superposition of wav
the modulus of the reflection coefficient decreases with
crease ofd. The surface recombination ratePs in the given
case is equal to 10 m/s.

Figure 2 plots quantitative estimates of the phase of
wave reflected from thez50 face as a function of the ligh
intensity. In the interval of values from 0 to 1.5W/cm2 the
dependence of the phase on the intensityI 0 is almost linear.

The dependence of the modulus of the reflection coe
cient uRu and its phase on the intensity of the optical rad
tion for Ps550 m/s is plotted in Figs. 3 and 4. The decrea
in the charge carrier concentration associated with surf
recombination of carriers leads to a more gradual dep
denceR(I ). Matching of the media for Re«50 is observed
for Ps550 m/s at a higher light intensity than in the ca
Ps510 m/s. As can be seen, in the intensity interval fro

htFIG. 4. Dependence of the phase of the reflection coefficient on the l
intensity forPs550 m/s~1–3 — the same as in Fig. 1!.

e

FIG. 3. Dependence of the modulus of the reflection coefficient on the l
intensity for forPs550 m/s~1–3 — the same as in Fig. 1!.
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1.0 to 8W/cm2 the dependencew(I ) is described by a linea
function.

The experimental system in the given case~Fig. 5! con-
sists of a microwave interferometer based on a wavegu
double tee4 in circuit with a generator1 for the eight-
millimeter band. The arms of the interferometer are clos
off by the CdS semiconductor element5, an attenuator2, and
a shorting plunger3. The principle of operation of the mi
crowave interferometer is based on contact-free meas
ment of the parameters of the photoexcited semicondu
element. Waves reflected from the semiconductor and
shorting plunger interfere in the symmetry plane of t
waveguide tee.5 If the maximum of the electric field is lo
cated in this plane, then energy does not enter the arm
the detector6. When the semiconductor element is acted
by optical radiation from an LG-38 He–Ne laser with wav
length l50.63 mm, the charge carrier concentration in
varies. This leads to a change in the reflection coefficient

FIG. 5. Block diagram of a microwave interferometer:1 — GCh-156 gen-
erator,2 — attenuator,3 — shorting plunger,4 — waveguide double tee
5 — semiconductor element,6 — microwave detector with V6-4 microvolt-
meter,7 — laser.
e

d

e-
or
e

ith
n

d

the appearance of a signal in the indicator circuit. During
measurement of the dependenceR(I ) the intensity of the
laser radiation is regulated by a polarizer.

Figure 6 plots experimental curves of the depende
R(I ) for sample thicknessd5300 mm and cross section 7.2
33.4 mm for three microwave frequencies. As can be s
from the figure, the experimental curves are in qualitativ
good agreement with the theoretical results.

To summarize, the principle of contact-free measu
ment of the parameters of a photoexcited plasma by me
of microwave radiation makes it possible to broaden the p
sibilities of semiconductor photometry in the direction
creating ultrafast photodetectors with high accuracy of m
surement of the optical radiation parameters.

1B. T. Bo�ko and Yu. G. Gurevich,Physics of Solar Cells@in Russian#
~Kharkov State Univ. Press, Kharkov, 1992!.

2S. P. Kireev,Physics of Semiconductors@in Russian# ~Vysshaya Shkola,
Moscow, 1975!.

3V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma@in
Russian# ~Nauka, Moscow, 1967!.

4L. I. Kats, V. P. Tsarev, and V. N. Chupis, Inventor’s Certificate N
1185259~USSR!; International Classification OIP 21/12, No. 375621/2
09; publ. Byull. Izobret., No. 38~1985!.

5L. A. Dushin,Microwave Interferometers for Measuring the Density of
Plasma in a Pulsed Gas Discharge@in Russian# ~Atomizdat, Moscow,
1973!.

6V. N. Chupis and V. P. Tsarev, inDefense Technology@in Russian#,
Scientific–Technical Collection~Moscow, 1996!, 35 pp.

Translated by Paul F. Schippnick

FIG. 6. Experimental curves of the dependence of the modulus of the
flection coefficient on the laser intensityI 0 for f527 ~1!, 36 ~2!, and
29.8 GHz~3!.
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X-ray converters for radiation treatment of thin films
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Russia
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The energy absorbed in thin films of selected materials bombarded by x rays emitted in the
braking of low-energy electrons (E0,500 keV) in converters with various atomic numbers
(Z529273) is calculated by the Monte Carlo method. The program takes into account both of the
K-shell ionization mechanisms that lead to emission of characteristic photons as a result of
electron impact and as a result of the photoelectric effect, and the characteristic radiation is shown
to make a large contribution to the absorbed energy in thin films. Calculations show that the
proper choice of material and thickness of the converter affords a two- to fivefold increase in the
energy of the x radiation absorbed in thin films of semiconductor materials.
© 1998 American Institute of Physics.@S1063-7842~98!01911-4#
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INTRODUCTION

Trends in the generation of bremsstrahlung arising in
braking of high-energy electrons in a target have been w
examined both theoretically and experimentally.1,2 As a rule,
materials with a high atomic numberZ ~tungsten and tanta
lum! are used to obtain a maximal bremsstrahlung yield
these energies. However, in the braking of low-energy e
trons, a considerable fraction of the energy can be emitte
the form of the characteristic radiation that arises both a
result of photoabsorption of secondary photons and as a
sult of ionization of the inner shells of the atom by electr
impact. Since the cross section of the secondary pro
grows as the atomic numberZ is decreased, a high efficienc
of generation of x radiation is also possible in materials w
low Z. This circumstance must be taken into account in
radiation treatment of thin films and foils, where the ef
ciency is determined not only by the total energy of t
radiation but also by its spectral composition.

PROGRAM

With the aim of investigating the optimal conditions
irradiation and the choice of efficient x-ray converters
treating thin films, we used a program that performs a Mo
Carlo simulation of the development of an electron–pho
cascade in a converter and the absorption of the radiatio
the film material. For the calculations of the spectral dis
bution of the radiation on the other side of the converte
modification of the program was developed3 that took into
account processes of generation of the characteristic ra
tion both by secondary bremsstrahlung and by electrons.
K-shell ionization cross section by electron impact was ta
from Ref. 4.

Note that in most Monte Carlo programs simulating t
passage of electrons and photons through matter, the ch
1361063-7842/98/43(11)/3/$15.00
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teristic radiation is either not taken into account or is tak
into account only through the inner-shell channel of ioniz
tion due to the photoelectric effect. This is because the ch
acteristic radiation does not play a substantial role in tra
tional problems associated with the calculation of the to
energy of bremsstrahlung and radiation protection.

CALCULATED RESULTS

To investigate the optimal conditions of radiation trea
ment of thin films, we calculated the absorbed energy
films of gold and semiconductor materials for converte
with the representative atomic numbersZ529, 42, 57, 73.
The initial electron energy was varied from 100 to 500 ke
The thickness of the converters was optimized with resp
to the total yield of radiation energy, and a graphite block
appropriate thickness was placed behind the converter to
sorb electrons escaping from it.

The important role of characteristic radiation in pro
lems connected with energy absorption in a calorime
based on a thin gold foil (d527.9mm) was demonstrated in
Ref. 1. One unexpected result obtained by the authors of
work is that for lanthanum converters (Z557) roughly 20%
more energy is absorbed in the calorimeter than for a t
nium converter (Z573). At the same time, the total brem
strahlung yield for a tantalum converter should be roug
that much higher.

The calorimeter used in the experiments measured
energy absorbed in a gold foil, whose thickness was insu
cient for total absorption of all the radiation energy. The
fore we investigated the influence of the foil thickness on
amount of energy absorbed in the foil~Fig. 1!. It follows
from Fig. 1 that the readings of the calorimeter with a th
gold foil behind a lanthanum converter are higher than
a tantalum converter; however, at greater thicknesses
3 © 1998 American Institute of Physics
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the absorbing foil ~according to the calculations, fo
d.50 mm) the situation corresponds to the usual picture
the dependence of the bremsstrahlung yield onZ.

An analysis of the results of our calculations suppor
the conclusion of the authors of Ref. 1 that the reason for
effect is the high contribution of the characteristic radiati
to the energy absorbed in the thin gold foil. Our values
thecontribution of the characteristic radiation to the ene
absorbed in the calorimeter are plotted in Fig. 2. It can
seen from Fig. 2 that the contribution of the characteris
radiation depends on the converter material and the thick
of the calorimeter foil. For thin gold foils (d,30 mm for
lanthanum converters andd,100 mm for tantalum convert-
ers! the fraction of the energy of the characteristic radiat
absorbed in the calorimeter grows and reaches 45% and
for lanthanum and tantalum converters, respectively.
should be noted that the contribution of the characteri

FIG. 2. Contribution of the characteristicK-shell radiation to the energy
absorbed in the calorimeter, plotted as a function of the thickness of the
foil: 1, 3 — calculated with ionization of theK shells by electrons and
bremsstrahlung taken into account;2, 4— calculated with only ionization of
the K shells by bremsstrahlung taken into account.

FIG. 1. Energy absorbed in the calorimeter versus thickness of the gold
for electrons with initial energyE051.0 MeV incident on a lanthanum
~solid curve! or tantalum~dashed curve! converter of optimal thickness.
f
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ss
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radiation formed by electron ionization of theK shell reaches
50% for lanthanum relative to the total energy of the brem
strahlung and is essentially independent of the foil thickne
while for the tantalum converters it does not exceed 20
This is explained by the corresponding dependence of
K-shell ionization cross section onZ. The important role of
the characteristic radiation in the radiation spectrum for c
verters with varying atomic numberZ, optimized for the
total radiation energy, follows from the data shown in Tab
I. The calculations were performed for a planar geometry
unidirectional, monoenergetic electron beam is incident o
converter~Cu, Mo, La, Ti!, behind which is an electron ab
sorber~a carbon block of appropriate thickness! and, behind
it, a film of the material being irradiated~Si, Ge, Au!. It
follows from the table that up to initial electron energi
E05100 keV the total energy yield of the x radiation behin
the copper converters is higher than that behind the tanta
converters. The contribution of the characteristic radiat
for copper exceeds 50%, whereas for tantalum it is an or
of magnitude lower.

Results of calculations for silicon films irradiated by
rays from electrons with initial energy 500 keV are plotted
Fig. 3. The calculations show that the choice of the conve
material depends on both the thickness of the foil be

ld
FIG. 3. Dependence of the radiation energy absorbed in the silicon laye
its thickness and the converter material for initial electron energyE0

5500 keV.

TABLE I. Energy~keV! of the photons exiting a converter of optimal thick
ness, and fraction~%! of the characteristic emission in it~results of calcu-
lations normalized to one incident electron!.

E0, keV Cu Mo La Ta

50 0.098 0.0608 0.0516 0.060
69 40 16 0

100 0.235 0.224 0.221 2.43
54 34 16 5

500 2.26 3.10 4.08 5.08
5 8 9 8

il



e
s
th

f
ni
l
in

o
m

y

th

to
dia-

x
ble
ot
sult
nd
os-
in

i.

in
ce

1365Tech. Phys. 43 (11), November 1998 Bespalov et al.
treated and the initial electron energy. Thus, forE0

5500 keV when treating thin films of silicon (d
,100 mm) it is necessary to use copper converters, wher
for thick films (100,d,500 mm) molybdenum converter
are the most efficient. Notice that the energy absorbed in
silicon film ~see Fig. 3! is two times higher than in a film o
the conventional converter material tantalum. For lower i
tial electron energies the most efficient converter materia
copper, for which there is a 5–6-fold an improvement
terms of the absorbed energy atE05100 keV as compared
to tantalum.

Calculations showed that when treating germanium, m
lybdenum converters should be used only for very thin fil
(d,20 mm), while for films of medium thickness (20,d
,200 mm) lanthanum converters are the most efficient.

CONCLUSIONS

When an electron beam brakes in a target, the energ
the characteristic radiation arising as a result ofK-shell ion-
ization in low-atomic-number converters can exceed half
as

e

-
is

-
s

of

e

total energy of the x radiation, which gives us a basis
recommend them as the most efficient converters for ra
tion treatment of thin films and coatings.

A correct Monte Carlo calculation of the generation of
radiation in the braking of low-energy electrons is possi
only if one takes into account ionization of inner shells n
only as a result of the photoelectric effect but also as a re
of electron impact. Basing the choice of the material a
thickness of the converter on such calculations makes it p
sible to increase the energy of the x radiation absorbed
thin films of semiconductor materials by two- to fivefold.

1J. A. Halbleib, G. J. Lockwood, and G. H. Miller, IEEE Trans. Nucl. Sc
NS-23, 1881~1976!.

2V. V. Ryzhov and A. A. Sapozhnikov, inProceedings of the Ninth Inter-
national Conference on High-Power Particle Beams ‘‘Beams-92,’’Wash-
ington ~1992!, Vol. 2, pp. 1199–1204.

3V. I. Bespalov, S. D. Korovin, V. V. Ryzhov, and I. Yu. Turchanovsky,
Proceedings of the Tenth IEEE International Pulsed Power Conferen,
Albuquerque, New Mexico~1995!, Vol. 1, pp. 75–79.

4H. Kolbenstvedt, J. Appl. Phys.38, 4785~1967!.

Translated by Paul F. Schippnick
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Color coding of images of deformed zones of diffusely scattering surfaces
during optical processing of photographs of projected fringes

A. M. Lyalikov

Ya. Kupala Grodno State University, 230023 Grodno, Belarus
~Submitted August 19, 1997!
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An optical method is developed wherein different colors are imparted to zones of the image of a
diffusely reflecting flat surface corresponding to different degrees of deformation of the
surface. The method is based on principles of spatial filtering during optical processing of
photographs of projected fringes in white light. Experimental verification of the method is
presented. ©1998 American Institute of Physics.@S1063-7842~98!02011-X#
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In studies of flat surfaces, primary information about d
formations and surface stresses is contained in the first
rivatives ]v/]x and ]v/]y of the normal displacements o
the surfacev(x,y), where thex andy axes lie in the plane o
the surface.1 The simplest method of differentiating such di
placement data is optical differentiation of interferograms
moiré patterns.1–4 In studies of comparatively large surfac
displacements, there has been a movement away from m
ods of holographic interferometry to less sensitive meth
of projection of fringes or deposition of grids on the inve
tigated surface.1,2,5,6 The application of optical methods fo
processing photographs of projected fringes has made it
sible to adjust the contour bands in an arbitrary way and
control the sensitivity of the measurements of the relief
the investigated surface.7–9

The present paper considers a further refinement of
method developed in Ref. 10, which allows one to visual
deformed zones of diffusely scattering surfaces for opt
processing of photographs of projected fringes using spa
filtering. It is demonstrated that one can arrange for the
ages of zones of a diffusely scattering flat surface hav
different degrees of deformation to be colored in differe
hues. The given effect is achieved by optical processing
photographs of projected fringes in white light.

Color coding of information about the parameters of t
state of an object has been used previously in the op
processing of holograms of a phase object for visualiza
of the angles of deflection of light rays in the object,11,12and
also to determine the direction of the gradient of the refr
tive index.13,14 Pseudocolor coding has been used for rec
nition of various brick walls, for example.15 In connection
with a study of surface relief it has been proposed to co
code surface regions having the same depth by projecti
grid in white light onto the investigated surface.16 The color
coding in the given method is based on the Talbot effe
which arises when a periodic structure is illuminated in wh
light.

Let us consider aspects of white-light optical process
of photographs of projected fringes in the study of deform
tions of a flat, diffusely scattering surface. The amplitu
1361063-7842/98/43(11)/3/$15.00
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transmittance of such a photograph of projected fringes
equal to8,10

t~x,y!;H 11cosF2py

T
1F~x,y!G J 2g/2

, ~1!

where T is the period of the observed fringes in an und
formed region of the flat surface, andg is the contrast coef-
ficient of the photographic emulsion.

In expression~1! the functionF(x,y) is defined as

F~x,y!5
2pv~x,y!tan u

T
, ~2!

wherev(x,y) is the normal displacement of the investigat
surface due to the deformation;u is the angle between th
projected planes of the shadows creating the system
fringes on the object and the normal to the flat surface of
object.

Figure 1 presents the optical scheme of a device
color visualization of images of deformed zones of the d
fusely scattering surface during optical processing of pho
graphs of the projected fringes in white light. A photogra
of the projected fringes3 is illuminated by a collimated
beam of light emanating from a point source1. In this case,
spectral images of the point source will be constructed in
back focal plane of the objective4 as a result of the disper
sive properties of the periodic structure of the photograph
projected fringes in all diffraction orders~except the zeroth!.
The images of the point source will be stretched in the pla
of the visualizing slit diaphragm5 along the dispersion line
parallel to they axis. We assume that the visualizing di
phragm5 is oriented with the edges of the slit parallel to th
x axis. In this case only the middle part of the spectral ima
~labeled2 in Fig. 2!, with wavelengthl0 , will be extracted
by the slit from the spectral image of the point source form
by the refracted wave on those parts of the photograp3
which correspond to the image of undeformed zones of
investigated surface. In this case, in the visualization pl
~labeled 7 in Fig. 1!, which is optically conjugate to the
photograph3, the image of the undeformed zones of t
investigated surface will be colored green (l0). If the con-
dition
6 © 1998 American Institute of Physics
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cosa05nl0 /T, ~3!

is fulfilled for the wave illuminating the photograph3, where
n51,2,3, . . . anda0 is the angle between the direction
the illuminating wave and they axis, then, with relation~1!
taken into account, it can be shown that the angles of defl
tion of the diffracted rays from the normal to the photogra
are equal to

ay5
l0n

2p

]F

]y
. ~4!

In expression~4! n is the diffraction order of the wave
propagating along the optical axis~Fig. 1! of the receiving
part of the device. It is clear from expression~4! that the
spectral image3 ~Fig. 2! of the point source formed by th
wave diffracted from the parts of the photograph which c
respond to the image of the deformed surface zone
shifted. The linear displacement along the dispersion lin
given byhl'ayf , wheref is the focal length of the objec
tive 4 ~Fig. 1!. In this case, the visualizing slit5 will overlap
the spectral segment of the image~3 in Fig. 2! of the source
with a wavelengthl different froml0 . This causes the im
age of the deformed surface zone to be colored in hues o
than green (l0). The hue of the image of the deformed zo
is determined by the magnitude and sign ofhl .

Note that in Fig. 2, which illustrates the positions of t
spectral images of the light source relative to the slit of
visualizing diaphragm1, the images2 and 3 are actually

FIG. 1. Optical diagram of the device for color visualization of images
deformed surface zones:1 — white-light point source;2 — collimator;3 —
image of the projected fringes;4, 6 — objectives;5 — visualizing slit dia-
phragm;7— color visualization plane.

FIG. 2. Diagram of the position on the visualizing slit diaphragm of t
spectral images of the point source.
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superimposed on each other and shifted along theh axis.
With allowance for the dispersion of the diffractio
grating,17 the magnitude ofhl can be represented in a sim
lar way as in holographic color shadow methods,18

hl'
~l02l!n f

T
. ~5!

This formula is valid for the propagation of a diffracte
wave in thenth diffraction order only near the normal to th
photograph of the projected fringes~3 in Fig. 1!. Replacing
h on the left-hand side of Eq.~5! by the magnitude of the
shift of the image of the light source due to deformation
the surface for the mean wavelength@(l01l)/2# and taking
Eqs. ~2! and ~4! into account, we finally obtain a working
formula giving a quantitative relation between the magnitu
of the deformation]v/]y and the huel of the visualized
zone of the investigated surface,

]v

]y
'

2~l02l!

~l01l!tan u
. ~6!

For a visual estimate of]v/]y it should be borne in
mind that the recordable range of hues fromlmin to lmax is
determined by the spectral sensitivity of the eye. This n
rows the range of deformations]v/]y that are measurable
by the visual method. It follows from Eq.~6! that the sensi-
tivity of the measurements and the value ofu]v/]yumax are
determined by the geometry of the photographs of the p
jected fringes (tanu) and are independent of the diffractio
order. It follows that it is advisable in the measurements
use the first-order diffracted wave, this being the brighte
and to choose the angleu at which the photographs are take
with the required sensitivity and range of the measureme
of ]v/]y in mind.

Note that the approach suggested here to estimating
sensitivity of the measurements and the range of the m
sured quantity]v/]y and also the spectral purity of the hu
in the visualized picture is similar to the approach in co
methods of studying phase objects reconstructed fr
holograms.18

The use of a single photograph of the projected fring
allows one to obtain a color coding of the derivative of t
displacement in only one direction — along the dispers
axis of the periodic structure of the photograph. For co
coding of]v/]y it is necessary that the projected fringes
oriented along they axis. A reorientation of the fringes of th
type ~1! could be achieved by retaking the photograph us
two coherent beams with a change in orientation of the p
jected fringes in the necessary direction, in accordance w
the method of rewriting of holograms.19 For the photographs
of projected fringes such a reorientation of the fringes w
used earlier to compare the macrorelief of surfaces.20 Thus, it
is possible to take a new photograph of the projected frin
with a period equal to the period of the fringes of the origin
photograph~1! but with the fringes oriented along they axis.
The amplitude transmittance of such a photograph is gi
by

t8~x,y!;H 11cosF2px

T
1F~x,y!G J 2g/2

. ~7!

f
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In the optical processing of a photograph of this type~7!
in the scheme depicted in Fig. 1, deformed image zo
characterized by the derivative]v/]x are visualized. A
working formula analogous to~6! is used to obtain a quan
titative estimate of]v/]x from the hue.

The method of color coding of deformed zones was
perimentally verified by visualizing deformations of a fl
aluminum plate with dimensions 1338 mm, which was sub-
jected to strong plastic deformations. Figure 3 depicts
plate observed in different colors in the plane7 ~Fig. 1! of
the color visualization device. The hue in the observed im
characterizes the degree of deformation]v/]y of the surface
of the plate. The color image was adjusted so that the ima
of the undeformed zones were colored yellow-green. In F
3 the area of the plate is divided into five hues. From
mean wavelength of each of the five hues in the visuali
image, the value of]v/]y was determined using the work
ing formula ~6!. The mean wavelength of each hue was
timated visually by comparing with standard hues as
been done in color shadow methods.18 The relative error of
determination of the mean wavelength in the visualized

FIG. 3. Color visualization of deformed zones of an aluminum plate. Zo
are colored in various hues:1 — red,2 — orange,3 — yellowish-red,4 —
blue,5 — violet.
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age was determined both by the spectral purity of the
and by subjective idiosyncrasies of the eye of the exp
menter. In a specific case, the relative error of the estima
mean wavelength did not exceed 25%; however, it could
substantially reduced, for example, by the use of a rece
with better spectral resolution.

In conclusion, I would like to remark that the method
visualizing deformations of diffusely scattering surfaces d
scribed above is somewhat less accurate than the me
developed earlier.10 However, in contrast to Ref. 10, th
present method allows one simultaneously to visualize al
the deformed zones of the investigated surface.

This work was performed with the support of the Min
istry of National Education of the Republic of Belarus.
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Development of a system of anticoronal shields for the ion beam injector
and accelerator of a diagnostic complex for plasma physics research

M. M. Rezinkina, O. S. Nedzel’ski , S. M. Khrebtov, and O. L. Rezinkin

~Submitted October 1, 1997!
Zh. Tekh. Fiz.68, 106–109~November 1998!

A system of anticoronal shields is proposed, designed, and tested. The system is found to work
efficiently. © 1998 American Institute of Physics.@S1063-7842~98!02111-4#
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Diagnostics of the parameters of a hot plasma usin
heavy-ion probe beam is presently one of the more forwa
looking methods of study of such objects. Heavy-ion be
injectors and electrostatic accelerators are used for this
pose. In order to ensure efficient functioning of the giv
apparatus, it is necessary to prevent the appearance of
rona discharge from the metallic elements of the injector
accelerator tube, which have a positive voltage on them
02200 kV during use. The sharp edges and small radi
curvature of these elements give rise to corona discha
from their edges. The appearance of a corona discharge l
to instability and a nonequilibrium distribution of the acce
erating potentials, overloading of the voltage source, the
pearance of intense electromagnetic interference, ioniza
and ozonation of air in and around the apparatus, and a
ering of the reliability of operation of all the systems a
apparatus of the analyzer.

A condition for the appearance of a corona near the s
face of metallic elements under a voltage~below we will
refer to them simply as electrodes! is the presence of an
electric field exceeding the initial electric fieldE of the co-
rona. Under standard atmospheric conditionsE is of the or-
der of 30 kV/cm.1,2 Preliminary estimates and also expe
ence with such designs show that a corona discharge
take place near their surfaces. Among the most effec
means of dealing with this phenomenon is a setup of shi
ing electrodes.3 On the basis of known engineerin
solutions2–4 and experience with the development of hig
voltage equipment, we chose a design of the system of fi
forming shields~SFS! whose main elements are depicted
Fig. 1. The shield of the ion injector1, made in the form of
a hood with radius of curvature 80 mm, and the flange sh
2 completely shield all the electrodes of the injector unit. T
first and second intermediate shields3 and 4, which are at
potentials of 140 and 80 kV, respectively, lower the ma
mum electric field levels on the gradient rings5. The gradi-
ent rings5 lower the electric field on the resistors6, which
are located between the rings along the length of the ac
erating tube 7 and serve to distribute the accelerati
voltage.

The ion injector shield1 is found at a maximum poten
tial of 1200 kV during operation. Regarding its design, t
shield has three main parts: the injector hood1, flange8, and
flange shield2 ~see Fig. 1!. The hood1 has a cylindrical part
and a face part with rounded edges. The center of the
1361063-7842/98/43(11)/4/$15.00
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part has an opening for the high-voltage cable9. The nomi-
nal mass of the shield1 is 1.4 kg. The first intermediate
shield 3 of the SFS is designed to lower the electric fie
intensity near the surface of the gradient rings, which
found at potentials of11902140 kV during use. The shield
is at a potential of1140 kV. It consists of a toroidal, a
cylindrical, and a conical part. During assembly the shield
mounted to one of the gradient rings5. The nominal mass of
the first intermediate shield is 5.7 kg.

The second intermediate shield4 is designed to lower
the electric field intensity near the surface of the gradi
rings, which are at potentials of1130280 kV during use.
The shield is at a potential of180 kV. This shield has a
toroidal and a conical part. During assembly, this shield
mounted to one of the gradient rings5. The nominal mass of
the second intermediate shield is 4.48 kg. Each gradient
5 consists of a torus fabricated from aluminum thin-wall
tubing of diameter 10 mm and welded to it along the inn
surface of the aluminum ring of thickness 1 mm. The ri
has elements mounting it to the electrodes of the accelera
tube7 ~Fig. 1!. Mounted to the surface of the ring by rive
on both sides are fringes to which KE´ V-1 resistors are sol-
dered~position6 in Fig. 1!.

To estimate the efficacy of the SFS design describ
above, we calculated the electric field distribution in the
gions of maximum field. Preliminary estimates enabled us
select two such dangerous regions: regionA and regionB
~Fig. 1!. Since the investigated zones possess axial sym
try, we used cylindrical coordinates. This allowed us to so
the problem of calculating the field in two-dimensional form
We assumed thatE depends only on the radialr and the

FIG. 1. Diagram of the system of anticoronal shields.
9 © 1998 American Institute of Physics
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FIG. 2. Axial cross section of the first design re
gion: 1 — shield 1; 2 — shield 2; 3 — insulator
ring; 4 — gradient ring.
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azimuthal z coordinates. In view of the complicated ge
metrical shapes of the electrodes and the SFS, we utilized
method of finite differences.

Let us consider an axial cross section of the zone
question. A nonuniform rectangular mesh was imposed
the computational region, with mesh lines parallel to thz
axis: r 150; r 25Dr 1 ; r 35r 21Dr 2 , . . . ; r i5r i 211Dr i 21,
. . . ; r NR5r NR211Dr NR21 , and mesh lines parallel to ther
axis: z150; z25Dz1 ; z35z21Dz2 , . . . ; zj5zj 21

1Dzj 21 , . . . ; zNZ5zNZ211DzNZ21 ~whereNR is the num-
ber of divisions along ther axis, andNZ is the number of
divisions along thez axis; Dr i andDzj are the step sizes o
the mesh inr and z, respectively!. The quantitiesDr i and
Dzj were determined from the required accuracy of the c
culation so as to take account of field distortions in all t
elements of the system. Toward this end, the step size in
inhomogeneity region, for example, of the gradient ring5,
was chosen to be 8–10 times smaller than the length of
given inhomogeneity. The boundary conditions were de
mined by the type of system. Noting that the voltage on
electrodes is constant, we write down the following equat
for each mesh point of the computational mesh:

E
S
g•Ends50,

whereS is a surface encompassing the mesh point in suc
way that it divides the distances between neighboring m
points in half; the subscriptn denotes the projection of th
electric field vectorE on the surface normal.

We now expressE in the latter expression in terms o
the values of the potentialw i , j (r ,z) at the mesh points of the
computational mesh. Finally, we write it in difference for
for the (i , j )-th cell

L rw i , j1Lzw i , j50,

where

L rw i , j5w i 21,j•ARi , j2w i , j~ARi , j1BRi , j !1w i 11,j•BRi , j ,

Lzw i , j5w i , j 21•AZi , j2w i , j~AZi , j1BZi , j !1w i , j 11•BZi , j ,
he

n
n
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ARi , j5
1

Dr i 21
S r i2

Dr i 21

2 D S Dzj 21

2
g i 21,j 211

Dzj

2
g i 21,j D ,

BRi , j5
1

Dr i
S r i1

Dr i

2 D S Dzj 21

2
g i , j 211

Dzj

2
g i , j D ,

AZi , j5
1

Dzj 21
F S r i1

Dr i

4 DDr i

2
g i , j 211S r i2

Dr i 21

4 D
3

Dr i 21

2
g i 21,j 21G , ~1!

BZi , j5
1

Dzj
F S r i1

Dr i

4 DDr i

2
g i , j1S r i2

Dr i 21

4 DDr i 21

2
g i 21,j G ,

~2!

g i , j is the conductivity of the cell, whose vertices are t
mesh points (i , j ), (i 11,j ), (i , j 11), and (i 11,j 11).

The above equation was solved by an alternai
directions iterative method using a program written
FORTRAN-77 to be run on an IBM PC. The calculation
were similar to those of Ref. 5.

Figure 2 displays an axial cross section of the first co
putational region~Fig. 1,A!. In the calculation we imposed
the following boundary conditions with respect tor . The
conditions at r 50 (i 51) were: w1,15w05140 kV at
z50; w1,j5w15150 kV for z belonging to regionIV; w1,j

5w25160 kV for z belonging to region V; w1,j5w3

5170 kV for z belonging to regionVI; w1,j5w45180 kV
for z belonging to regionVII; w1,j5w55190 kV for z be-
longing to regionVIII ; w1,j5w65200 kV and forz belong-
ing to regionIX. For z.0 and outside regionsIV–IX, as a
consequence of the axial symmetry of the system, we u
homogeneous boundary conditions of the second kind~Neu-
mann conditions!: ]w/]r 50. The condition atr 5r max was
wNR, j5140 kV. The boundary conditions with respect toz
were as follows: 2w i ,15w05140 kV at z50 ( j 51),
w i ,NZ5140 kV atz5zmax ( j 5NZ) for r belonging to region
I; and]w/]z50 for r belonging to regionII . The potential of
the point (NR, NZ) waswNR,NZ5140 kV.
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Calculated distributions of the electric field in regionA
of Fig. 1 are shown in Fig. 3 and summarized in Table I.

Figure 3 plots equipotentials in an axial cross section
the system. The numerical values labeling the equipoten
lines are given in volts. Table I lists the maximum fiel
reached in the zones that are the most dangerous from
point of view of the appearance of a corona. As can be s
from Table I, the maximum field level does not exce
16 kV/cm, which speaks of reliable protection from corona
that region.

Figure 4 shows an axial cross section of the second
culational region~regionB in Fig. 1!. In the calculations we
imposed the following boundary conditions with respect
r : w1,j5w25200 kV for r 50 on the symmetry axis of the
system (i 51) for z belonging to regionI, and]w/]r 50 for
z belonging to regionIV. The potential at the point (1,NZ)
was w1, NZ50. The boundary conditions forr 5Rmax ( i
5NR) werewNR, j50. The boundary conditions with respe
to z were as follows:w i ,15w25200 kV for r belonging to
regionI, andw i ,15w15140 kV for r belonging to regionII .
Outside these zones we used the homogeneous boun
condition of the second kind~Neumann! ]w/]z50.

The potential distribution in such a system is shown
Fig. 5, and the maximum field values are listed in Table I.
start with, the design of the given electrode system w

FIG. 3. Distribution of the potential in the first calculation region.

TABLE I. Maximum electric field levels in zones of the system of anticor
nal shields.

Zone Fig. 2 Fig. 4

Shield I Zone III ZoneVI ZoneV
uEmaxu @kV/cm# 16 15.5 14.6 14.4
f
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somewhat different. Calculations carried out for an electro
system similar to that shown in Fig. 4, but with smaller ra
of curvature~the radius of curvature of regionVI was 70 mm,
and regionVII was not curved!, showed that the maximum
field levels in such a system reach 25 kV/cm. Fields of su
intensities under certain conditions can give rise to a coro
The geometry of the system was modified to lower the fi
levels ~Fig. 4!. As can be seen from the table, the use
this SFS geometry lowered the maximum field levels

FIG. 4. Axial cross section of the second calculation region:1 — shield,
2 — hood,3 — cable.

FIG. 5. Distribution of the potential in the second calculation region.
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14.6 kV/cm, which makes it possible to avoid the appeara
of a corona on the electrode and shield surfaces.

To summarize, we have developed an SFS design
reliably suppresses corona from elements of the system
der voltage. This makes it possible to increase the reliab
and stability of operation of the accelerator, increase the d
factor of the voltage source, and reduce the electromagn
interference and ozone concentration in the work area.

This work was carried out within the purview of a co
tract between the Institute of Plasma Physics~Khar’kov! and
the Center for Research on Energy, the Environment,
Technology, Madrid@Centro de Investigaciones Energetica
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Medioambientales y Tecnologicas~CIEMAT! ~Madrid!# for
the Period 1996–2000.
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Plasma focus as a current switch for a capillary discharge
É. Yu. Khautiev

Sukhumi Physicotechnical Institute, Sukhumi, Abkhazia

P. S. Antsiferov, L. A. Dorokhin, K. N. Koshelev, and Yu. V. Sidel’nikov

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow District, Russia
~Submitted December 30, 1996!
Zh. Tekh. Fiz.68, 110–113~November 1998!

Experiments are described in which a plasma focus is used simultaneously as an inductive store
and a current switch. The obtained rates of current growth on a load of 0.01V is 1012 A/s,
and the maximum values of the switched current lie in the range 502100 kA. The technique is
seen as promising for employing a capillary discharge as a source of laser medium for the
soft x-ray region. ©1998 American Institute of Physics.@S1063-7842~98!02211-9#
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INTRODUCTION

The increased interest in the use of a capillary discha
as a possible source of a medium with population invers
on transitions in the soft x-ray range1,2 has stimulated the
search for new forms of its practical implementation. A
though the total energy of such a discharge can be very s
(102100 J), its realization is by no means a trivial task. T
main difficulty here has to do with the necessity of providi
a sufficiently steep current rise (102100 kA over times of
the order of 102100 ns) in order to eliminate the influenc
on the discharge of the evaporating walls of the capillary

As is well known, despite their much greater energy
pacity in comparison with capacitive energy stores, induct
stores have not met with as wide use, since switching th
over to a load requires interruption of the current circuit.3,4 A
number of devices developed toward this end, such
plasma and explosive opening switches are in themse
quite complicated devices and do not always provide
required current rise at the load. In this paper we report
use of a very widely used device, namely a plasma focus
the simultaneous roles of an inductive energy store an
device for switching the current to the load.

The main idea here is the following: after the curre
layer detaches from the insulator and reaches the disch
axis, the anode–cathode electrode system of the plasm
cus is an inductance with stored energyW. Further develop-
ment of the discharge in certain regimes leads to a siz
jump in the active resistance in the pinched plasma colu
This jump gives rise to an overvoltage, which can throw p
of the energyW over into the load circuit, connected throug
a spark gap in parallel with the anode–cathode circuit of
plasma focus, over times much shorter than the discha
time in the main discharge circuit.

EXPERIMENT

An overall diagram of the experimental device is sho
in Fig. 1. It contains two main parts: the plasma focus pro
1371063-7842/98/43(11)/3/$15.00
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and the load unit. A plasma focus of the maser type w
used, having an outer electrode~cathode! diameter of 70 mm,
an inner electrode~anode! diameter of 26 mm, and a tota
length of the coaxial electrode system of 110 mm. The p
celain insulator had a length of 30 mm and a diameter
26 mm. The main discharge capacitanceC was 10mF, and
the working voltage was 25 kV. The total inductance of t
discharge circuit up to the vacuum chamber~inductance of
the main capacitor, the system of power cables, and the
filled spark gapG1) is estimated asLi50.11mH. The time
of the first half period was 3.2ms. The maximum current in
the main circuit~with the capillary disconnected! was about
200 kA.

FIG. 1. Diagram of the whole experimental setup:I — plasma focus,II —
load unit;1 — vacuum chamber,2 — anode,3 — cathode,4 — spark gap
G2 , 5 — load,6 — magnetic probe,7 — insulator.
3 © 1998 American Institute of Physics
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The process of current switching was investigated wit
load consisting of a thin-walled stainless-steel tube w
outer diameter 4 mm, working length 100 mm, and resista
R150.01V. Regarding the overall design of the circuit, th
stainless-steel tube is coaxial with the electrode system o
plasma focus and is separated from the anode by an air
charge gap of 10213 mm ~the discharge gapG2 in Fig. 1!.
The return current lead of the resistance consists of a cy
der with an inner diameter of 6 mm and is isolated over
entire length from the load tube. The inductance of the lo
unit together with the discharge gapG2 is estimated asL2

50.03mH. Two inductive pickups allowed us to record th
current in the plasma focus circuit and the load circuit.

The numerical model that was used to analyze the
havior of the system was based on the equivalent elect
circuit depicted in Fig. 2. The model assumed that the to
inductance of the discharge chamberL3 varies smoothly, as a
consequence of motion of the current envelope, fr
0.01mH at the onset of the discharge to 0.03mH at the end
of the first quarter period. The key element of the mode
the active resistance of the dischargeR2 . Raising this resis-
tance at a certain stage of pinching of the plasma leads
well-known phenomenon—the appearance of an overvolt
in the discharge. The magnitude of this overvoltageU for
setups similar in their parameters to ours is on the orde
100 kV and higher. For a current of about 200 kA this cor
sponds to a maximum value ofR2'0.521 V.

The spark gapG2 breaks down when the overvoltag
reaches a certain value. From that time onward, a cur
develops in the load circuit that is directed opposite the m
current. The rate of growth of the current in the loaded~cap-
illary! circuit is equal to its rate of decrease in the ma
circuit (L2 , R2) of the plasma focus. The derivative of th
current can be estimated from the relationdI/dt'U/(L2

1L3) and has a value>1012 A/s for the parameter value
discussed. The total value of the switched current also
pends on the existence time of the high resistanceR2 . For
characteristic times of the order of several tens of nano
onds, one can hope for a total current in the load~capillary!
somewhere in the range from 50 to 100 kA. An exact so
tion of the electrical-engineering equations for the equival
circuit in Fig. 2 is described below. As comparison with t
experimental observations shows, the equivalent circuit p

FIG. 2. Equivalent circuit of the main electrical circuit.
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vides a good description of the overall behavior of the c
rent switch.

RESULTS AND DISCUSSION

In the present work we have investigated the switch
of a discharge current to load using hydrogen, helium, a
neon as the working gas, with pressures ensuring the ar
of the current envelope at the discharge axis at the instan
maximum discharge current. Figure 3 presents experime
oscillograms of the current flowing through the dischar
and load for the case of successful switching (10220% of
the total number of discharges, see below!. It can be seen
that during a time of the order of 50 ns a current of 50 kA
successfully switched onto the load, i.e., a rate of current
of 1012 A/s is achieved.

The experimental oscillograms were analyzed with
help of a numerical model of the equivalent circuit~Fig. 2!.
Results of numerical calculations of the time dependence
the corresponding currents are plotted in Fig. 4.

At the initial instant of timet50 the capacitanceC is
charged to 25 kV and all currents in the circuit are equal to
At this same time breakdown occurs at the main spark
G1 and a current starts to develop through the plasma fo
The timet0 at which the maximum value of the active resi
tanceR2 is reached was determined from the oscillograms
the current and corresponded to the onset of current swi
ing. The time dependence of the resistanceR2 is given by the
formula

R25R0 exp~2~ t2t0!2/dt2!. ~1!

The spark gapG2 switched on when the overvoltag
reached 30 kV. The development time of the discharge

FIG. 3. Oscillograms of the current through the plasma focus~upper graph!
and through the load~lower graph!.
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air-filled spark gaps ordinarily does not exceed 10 ns an
not taken into account in the present estimates. Values o
drop in the current through the discharge and the corresp
ing jump in current at the load depend mainly on the prod
R0dt ~provided R1,R0), which under our conditions is
approximately equal to 0.02V•ms for a current jump of
50 kA. This latter fact can be understood if we observe t
the current increment in theR12L2 circuit is determined by
the equationdI/dt5(L21L3)21

•I 0•R2(t), and if the cur-
rent through the plasma focusI 0 varies weakly during the
current throw time~this assumption, generally speaking,
poorly fulfilled, and therefore the dependence in question
not absolutely exact!, then we may use the estimate

I ~ t !>I 0•~L21L3!21E
0

t

R2~ t !dt. ~2!

Here the integral can always be estimated as the produ
some characteristic resistance and the time of the proc
i.e., as was already noted, the value of the switched cur
under these conditions does not depend on the details o
time history ofR2 . Bearing in mind that the total switchin
time is a quantity of the order ofdt, we may conclude tha
the average value ofdI/dt at the load is determined byR0 .
Note that the details of the current rise in the experimen

FIG. 4. Calculated curves of the time dependence of the current throug
plasma focus~upper graph! and through the load~lower graph!.
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oscillograms indicate a time dependence of this resista
that is more complicated than is represented in formula~1!.

The discharge of a plasma focus is, generally speakin
poorly reproducible physical object. The process of using
to switch the current onto the load is therefore characteri
by some statistics. Figure 5 plots results in the form o
histogram of statistical processing of a series of experime
~50 discharges! using helium as the working gas in th
plasma-focus discharge. For each experimental oscillog
we determined the time it took the current through the lo
to reach 20 kA. The histogram plots percent distributions
the number of discharges in which the current switched o
the load reached a given value between the timest and
t1Dt (Dt520 ns). The histogram gives a picture of th
mean and limiting characteristics of the current rise at
load. Thus, in 17% of the total number of discharges a c
rent growth rate of 0.531012 to 131012 A/s was obtained.
From the point of view of obtaining the shortest rise times
is preferable to use He or Ne instead of H2 as the working
gas. The pressure of the working gas does not have a
stantial effect on the current switching process as long as
singularity of the discharge current through the plasma fo
remains in the region of its maximum~between 1 and 2ms).
Note that no effort was undertaken to optimize the plas
focus itself from the point of view of the switching proce
and the given statistics could therefore possibly be improv

This work was carried out with the support of the Ru
sian Fund for Fundamental Research~Project No. 95-02-
04495a!.
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The distinctive features of the low-frequency internal frictionQ21(T) of ~Cu–Sn!–Nb
composites at high temperatures~up to 400 °C) are investigated for strains in the range 1025

21024. Considerable hysteresis ofQ21(T) in the heating–cooling cycle is recorded,
including the presence of a minimum at;175 °C when the sample is heated to 400 °C and two
peaksP2 ~at 280 °C! andP1 ~at ;100 °C) when the sample is cooled from 400 °C. The
activation energy of the anomalous internal friction background~up to 175 °C), the oxygen
diffusion parameters, and the oxygen concentration in the niobium fibers~all of which
govern the peakP2) are calculated, and the value and temperature dependence of the yield point
of the bronze matrix~which govern the peakP1) are estimated. ©1998 American
Institute of Physics.@S1063-7842~98!02311-3#
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INTRODUCTION

In a number of composites obtained by directed crys
lization of alloys it is possible to avoid degradation of t
strength properties right up to pre-melting temperatures.
reason for this encouraging result lies in the relative perf
tion ~semicoherence! of the surfaces that form between th
phases. The high heat resistance of such composites m
them useful for making the nozzle vanes of gas turbin
combustion chambers, heat shields, and other therm
loaded components. However, when choosing a compo
for operation in nonstationary thermal regimes it is necess
to take into account the deleterious effect of interphase t
mal stresses on the directed microstructure. These stre
can be large enough to cause extremely undesirable dis
tion in the composites, e.g., fragmentation of the fibers
microplastic deformation of the matrix.1

A vast amount of information about elementary micr
plasticity events in metals and alloys has been obtained
studies of low-frequency internal friction, since measu
ments of this phenomenon are essentially direct experim
in microdeformation.2 However, at this time there is a no
ticeable lack of studies based on amplitude-dependent in
nal friction that address the problem of microplasticity
metal composites. It is this circumstance that dictates
goal and nature of this work, i.e., the analysis of tempera
spectra of low-frequency internal friction obtained und
thermal-cycling conditions in directed-crystallization~Cu–
Sn!–Nb composites.

SAMPLES AND MEASUREMENT METHOD

Ingots of the ternary alloys~Cu–13%Sn!–30%Nb and
~Cu–8%Sn!–30%Nb were obtained by directed crystalliz
tion in a high temperature gradient (;40 K/mm). The rate
of cooling during hardening was;100 K/s. This high rate of
cooling is necessary in order to prevent the formation of
brittle compound Nb3Sn during directed crystallization, an
1371063-7842/98/43(11)/3/$15.00
l-

e
-

kes
s,
lly
ite
ry
r-
ses
p-
d

y
-
ts

r-

e
re
r

e

to ensure plastic deformation of the ingots. Initially, the
Cu–Nb–Sn ingots had a typical composite microstructure
the form of a bronze matrix with distributed niobium de
drites situated with their first-order axis extending along
longitudinal axis of the ingot. The transverse size of the
niobium dendrites was 2–3mm ~Fig. 1!. The ingots were
deformed into wires by drawing with intermediate anneals
350 °C/h in a vacuum after every 30–40% deformation.
the course of this deformation the niobium dendrites w
stretched into long ribbon-shaped fibers.

Measurements ofQ21(T) for these samples were mad
by observing the free decay of torsional and resonant be
ing oscillations with strain amplitudes in the range 1024

21025 at frequencies 1–70 Hz in a vacuum of;1021 Pa.
The range of thermal cycling was limited to temperatures
20–400 °C in order to avoid the formation of niobium sta
nide (Nb3Sn), the homogeneity region of which in th
Nb–Sn system is still in need of some refinement.3

RESULTS AND DISCUSSION

In our torsion experiments on~Cu–13%Sn! wires of di-
ameter 0.5 mm we recorded considerable hysteresis
Q21(T) over the heating–cooling cycle. In particular, th
internal friction exhibited a minimum~at 200 °C! during the
heating segment of the cycle and two peaksP2 ~at 280 °C!
and P1 ~at 100 °C! as the sample was cooled down fro
400 °C ~see Fig. 2, curves1 and2!. We also found that the
temperature range (202175 °C) within which the internal
friction decreases overlaps the region where the so-ca
‘‘plasticity dip’’ of tin-containing bronzes occurs.4 In this
range, the decrease in the internal friction can be appr
mated by an inverse Arrhenius relationQ215Aexp(U/RT),
whereR is the gas constant,A is a constant, and the energ
parameterU50.1 eV is comparable to the activation ener
for the hysteretic motion of dislocations in metall
materials.5
6 © 1998 American Institute of Physics
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The peakP2 , which is not observed in pure coppe
appears when 0.5-mm diameter wires made of the C
25%Nb composite are subjected to torsion~Fig. 2, curve3!,
and is already discernible during the heating portion of
cycle. This leads us to associate this peak with the Nb fib
The thermal-activation parameters of the compound peakP2

~the inset to Fig. 2! were calculated from resonance measu
ments for a~Cu–8%Sn!–30%Nb sample according to th
temperature position of the corresponding internal frict
peak. The values obtained, viz.,U51.07 eV for the activa-
tion energy of the process andt052.4310214 s for the pre-
exponential factor of the relaxation time, are typical of ph
nomena caused by migration of point defects. The diffus
coefficient for point defects is estimated from the Einst
formula D5a•a2/t, where the relaxation time
t5t0exp(U/RT); for Nb the interplanar distance isa53
310210 m, and the geometric coefficient for the bcc latti
is a51/24.5 The computed temperature dependence
the diffusion coefficient for point defectsD(T)52
31027exp(1.07 eV/RT) m2/s is in satisfactory agreemen
with the diffusion equation for oxygen in niobium as calc
lated from a computer optimization of the aftereffect curve6

As is well known, when dissolved atoms undergo diffusi
under stress in a bcc lattice~Snoek relaxation!, their concen-
tration c can be estimated from the simple formula

c~wt %!5K•Qp
21 ,

whereQp
21 is the height of the internal friction peak after th

background is subtracted off, andK is a coefficient of pro-
portionality that is usually taken as;1. This expression
gives the following value of the oxygen concentration
weight for the composite fibers: 0.013 wt% for~Cu–8%Sn!–
30%Nb and 0.035 wt% for~Cu–13%Sn!–30%Nb. Accord-

FIG. 1. Microstructure of the directed-crystallization alloy~Cu–13%Sn!–
30%Nb ~longitudinal section!.
–
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-
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.

ing to manufacturer’s certificate, the amounts of dissolv
oxygen in the initial components, in the form of a vacuum
melted niobium sheet and rod niobium, are 0.01 and 0
wt%, respectively, i.e., the estimates of the oxygen conten
the niobium are quite close to the manufacturer’s data.

One possible reason for the hysteretic behavior
Q21(T) in composite materials could be losses that occur
the materials are thermoplastically strained. This strain
caused by thermal stresses that appear during the coo
segment of the cycle, which in turn are due to differences
the thermal expansion coefficients of the components.7,8 The
following expression can be used to estimate the inter
stresses in the composites under nonequilibrium ther
conditions1:

usmu5VfEfEmDaDT/VmEm1VfEf ,

us fu5VmEmEfDaDT/VmEm1VfEf ,

where sm and s f are the stresses in the matrix and fibe
respectively,Vm and Vf are the volume fractions of matrix
and fiber material,Em and Ef are their Young’s moduli,
Da5(am2a f) is the difference in thermal expansion coe
ficients of the matrix and fibers, andDT is the temperature
difference.

In the case of fiber composites, it is assumed that th
stresses appear only along the fiber axes and are con

FIG. 2. Temperature dependence of internal friction of wires of diameter
mm and compositions~Cu–13%Sn!–30%Nb and Cu–25%Nb:1 — heating
curve for ~Cu–13%Sn!–30%Nb, 2 — cooling curve for ~Cu–13%Sn!–
30%Nb,3 — heating curve for Cu–25%Nb. The inset shows internal fr
tion curves and the squared frequency of bending-resonance vibrations
~Cu–8%Sn!–30%Nb composite cooled from 550 °C.
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over the cross sections of the components. For the coo
interval 400–100 °C, estimates for the~Cu–13%Sn!–30%Nb
composite give values of roughly 9 kg/mm2 for the bronze
matrix and 21 kg/mm2 for the niobium fibers. When added t
the applied stresses (0.121 kg/mm2) at which the internal
friction measurements were made, the thermal stresses
erated are capable of causing plastic flow of both com
nents of the composite9 as the samples are cooled from 4
to 100 °C, i.e., to the location of peakP1 .

Since the volume fraction of matrix materialVm•100%
570%, it is natural to assume that below 140 °C the mic
plastic deformation of the matrix gives the dominant con
bution to the total internal friction of the cooled composi
In this approximation, we can estimate the temperature
pendence of the relative yield pointsy,m(T)/sy,m(20 °C) of
the matrix in the temperature range where the plasticity p
P1 exists. In a theoretical model that treats the dissipation
elastic energy as a function of the probability of appeara
of plastic deformation in a microvolume,10 the internal fric-
tion is proportional to the ratio of the power-law dependen
of the stress in the material to that of its yield point:

Q21;sav,m
n22/sy,m

n ,

where n is a constant that depends on the variance of
distribution function of the stress over microvolumes; for t
estimative calculations we choose this to equal 3. Heresav,m

is the average stress in the matrix at the surface of the sa
being measured, andsy,m is the yield point of the matrix.

The statistical mechanism for the onset of microplas
ity will make the most important contribution to the intern
friction in the case of composite materials whose com
nents differ greatly in their mechanical properties.11

To first approximation, we assume that the averagesav,m

is the same in order of magnitude as the thermal stresse
the matrix:

sav,m.VfEfEmDaDT/VmEm1VfEf .

From this expression, knowing the thermal cycling para
eters and using the previous formula forQ21, we obtain the
desired normalized yield pointsy,m(T)/sy,m(20 °C). The re-
sults of the corresponding calculations are shown in Fig
The curves shown in this figure imply that the recorded le
of internal friction in the temperature range 20–140 °C c
responds to the calculated and experimentally obser
changes in yield point of the matrix to within approximate
20%.

CONCLUSION

In the course of these studies of temperature-depen
internal friction in directed-crystallization~Cu–Sn!–Nb al-
loys we have discovered a temperature (;175 °C) at which
g
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the internal friction is a minimum, which is correlated wit
the temperature at which the ‘‘plasticity dip’’ occurs in ti
bronzes. We have also observed Snoek relaxation in niob
fibers due to oxygen dissolved in the niobium. The meth
of calculation we used here for the residual thermal stres
highlights the considerable potential of the internal fricti
method for reliably estimating the magnitude of the yie
point of the matrix material. If the theory of microplasticity
induced acoustic losses developed here can be adapte
directed-crystallization structures, it may be possible to c
culate quantitatively the temperature distribution of the yie
points of the components of ‘‘composite’’ materials.
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FIG. 3. Temperature dependence of the normalized yield po
sy,m(T)/sy,m(20 °C) of tin bronzes with comparable concentrations of S
1 — calculated yield point of~Cu–13%Sn!–30%Nb bronze,2 — experi-
mental yield point of BR 014 bronze~See Ref. 4!.
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Effect of cubic magnetic anisotropy on angular dependences of the resonance field in
„111…-oriented films
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The angular dependences of the ferromagnetic resonance~FMR! field in ~111!-oriented films are
analyzed with the use of resonance relations and the conditions for equilibrium orientation
of the magnetization. Based on the results obtained, an FMR method is proposed for determining
the sign of the cubic anisotropy and the position of the crystallographic axes. ©1998
American Institute of Physics.@S1063-7842~98!02411-8#
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In Ref. 1, Medved’et al. showed that cubic anisotrop
has a negligible effect on the azimuthal dependence of
ferromagnetic resonance fieldHr(wH) of a film with the
~111! orientation. In Refs. 2 and 3 we showed that the cu
anisotropy has its maximum influence whenHr(wH) is mea-
sured in a geometry in which the angleuM between the nor-
mal to the film and the magnetization vectorM is equal or
close to 60°. In this caseM passes close to both the^100&
and^111& axes, which are either hard or easy axes, depe
ing on the sign of the cubic anisotropy energy, and which
in $100% planes that are perpendicular to the film plane~111!.
As a result, the experimental functionHr(wH) exhibits suc-
cessive maxima and minima over each 60° sweep~Fig. 1!.
By recording the functionHr(wH) in this way, we can de-
termine the position of the$110% planes.

The goal of this paper is to study the effect of cub
anisotropy on the polar dependence of the resonance
Hr(uH) in a $110% plane perpendicular to the film plan
~111!. Calculation of the functionsHr(uH) ~whereuH is the
angle between the fieldH and the normal to the film! were
done with the help of the resonance relation4

S v

g D 2

5@Hcos~uH2uM !1Hk
effcos2uM2Hk1a~uM !#

3@Hcos~uH2uM !1Hk
effcos2uM2Hk1b~uM !#,

~1!

wherev is the angular frequency of the microwave field,g
is the gyromagnetic ratio,Hk

eff5Hku24pMs is the effective
uniaxial anisotropy field,Hk152K1 /M is the cubic anisot-
ropy field,H is the magnitude of the external magnetic fie
applied in the$110% plane at resonance, and

a~uM !5~3216x23y!/16, b~uM !52~x13y!/4,

x5~23/2sin 2uM2cos 2uM !/3,

y52~25/2sin 4uM17cos 4uM !/9.

The positive anglesuH anduM are measured in the~110!
plane from the normal to the film@111# to the crystallo-
graphic direction@001# along the shortest path. The ang
between the magnetization vectorM and the normal to the
1371063-7842/98/43(11)/2/$15.00
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film uM corresponding to a fixed value ofuH is determined
from the condition of equilibrium orientation of th
magnetization:4,5

2Hsin~uH2uM !5Hk
effsin 2uM1Hk1

3F 1

12
sin 2uM1

7

24
sin 4uM1A2sin2uM

2
4A2

3
sin4uMG . ~2!

The polar dependenceHr(uH) is calculated in the fol-
lowing way. First of all, the resonance fieldsH' for the
perpendicular orientation andH i for the parallel, whose
value are known from experiment, are substituted into
expressions

v

g
5H'1Hk

eff2
2

3
Hk1 , ~3!

FIG. 1. Experimental azimuthal dependence of the resonance fieldHr(wH)
for uH corresponding touM560° ~a sample with the composition
Eu1.4Lu1.6Fe5O12).
9 © 1998 American Institute of Physics
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FIG. 2. Polar functionsHr(uH). The curves are calculated, the crosses experiment for samples with the compositions Eu1.4Lu1.6Fe5O12 ~a! and Eu1Tm2Fe5O12

~b!. The numbers on the curves are the values ofHk1 ~Oe!.
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g D 2

5H iS H i2Hk
eff2

1

2
Hk1D . ~4!

From these we can calculateg and Hk
eff . Starting withHk1

set equal to zero, we then calculate the functionHr(uH) for
this choice ofg, Hk

eff andHk1, using~1! and~2!.Then, choos-
ing another value ofHk1 and the sameH' , H i , we calculate
g andHk

eff and again evaluate the functionHr(uH). Thus we
obtain a family of polar functions corresponding to fixe
values ofH' andH i .

The family of curvesHr(uH) obtained for variousHk1

are shown in Figs. 2a and 2b, along with experimental fu
tions for single-crystal films of iron garnets with the comp
sitions Eu1.4Lu1.6Fe5O12 (Hk

eff5765 Oe,Hk152250 Oe,g
51.443107 Oe21s21) ~a! and Eu1Tm2Fe5O12 (Hk

eff5182
Oe, Hk152187 Oe,g51.353107 Oe21s21) ~b!. It is seen
that the experimentalHr(uH) curves are in good agreeme
with the calculated curves for suitable values ofHk

eff , Hk1,
andg. The method used to determine the values ofHk1 in the
films was described in Ref. 3. The measurements were m
at room temperature and at a microwave field frequency
9.34 GHz. The figures show that theHr(uH) curves obtained
for various values ofHk1 have a point of intersection with
the calculatedHr(uH) curve for Hk150 ~starting curve! in
the range (290°,uH,0). This intersection point is com
mon to all families of curves and is located nearuM5 60° in
the quadrant containing thê111& crystallographic axis. In
the adjacent quadrant, which contains the^100& axis, there is
no such point. Depending on the sign ofHk1, the Hr(uH)
curves are located in this quadrant (0,uH,90°) either
above ~for Hk1,0) or below ~for Hk1.0) the curve for
-

de
f

Hk150. Moreover, it is not difficult to see that there is als
a characteristic ordering in the positions of these curves
the first quadrant (290°,uH,0). Note that the polar func-
tion Hr(uH) also possesses analogous properties when
values of the effective uniaxial anisotropy fieldHk

eff are nega-
tive.

Thus, by analyzing the experimental azimuthal dep
dence of the resonance fieldHr(wH) ~obtained, e.g., foruH

corresponding touM560°) we can avoid resorting to x-ra
methods to determine the position of the$110% crystallo-
graphic planes perpendicular to the film plane~111!.

Using the characteristic indicators of the shape of
experimental polar dependence, we can compare it w
curves calculated for the same values of resonance fiel
the perpendicular and parallel orientations and withHk150
and thereby determine the sign of the cubic anisotropy c
stant and the position of the^100& and^111& axes in the$110%
planes mentioned above.

Thus, usingH' andH i and the minimum and maximum
values of the azimuthal dependence of the resonance fi
we can calculate the values of the cubic anisotropy field,
uniaxial anisotropy field, and the gyromagnetic ratio.

1A. V. Medved’, N. P. Nikitin, and L. M. Filimonova, Zh. E´ ksp. Teor. Fiz.,
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Reciprocity relations are derived for the conductivity of finite-size samples of inhomogeneous
weakly nonlinear two-dimensional media. ©1998 American Institute of Physics.
@S1063-7842~98!02511-2#
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INTERACTION

The nonlinear properties of highly inhomogeneous co
posites have always been a focus of interest~see, for ex-
ample, Ref. 1 and the papers cited therein!. One particular
reason for this interest is that the distributions of fields a
currents in these media are highly nonuniform, which forc
us to take into account deviations from Ohm’s law.

For macroscopically inhomogeneous media, to first
proximation with respect to the nonlinearity we replace
linear Ohm’s law by

j ~r !5s~r !E~r !1x~r !uE~r !u2E~r !, ~1!

where j (r ) and E(r ) are the electrical current density an
electric field, ands(r ) andx(r ) are the linear and nonlinea
electrical conductivities.

In two-phase media, which will be topic of discussio
below, the electrical conductivities have valuess1, x1 and
s2, x2 in the first and second phases, respectively. We
discuss the case of strong nonuniformity, whereh5s2 /s1

!1, and weak nonlinearity, wherex(r )uE(r )u2!s(r ).
The most important characteristics of randomly inhom

geneous media are their effective kinetic coefficientsse and
xe , which are defined so as to relate the field and curr
throughout the volume:

^ j ~r !&5se^E~r !&1xe^E~r !&2^E~r !&,^ . . . &

5V21E . . . dV. ~2!

Over a characteristic averaging dimensionL}V1/3 much
larger than the correlation lengthj, a self-averaging of thes
system parameters takes place. The effective conduct
depends on the concentration. For example, in randomly
homogeneous media near the percolation threshold2

se's1t t, t5~p2pc!/pc , t.0, ~3!

wherep is the concentration of the phase with conductiv
s1, pc is the percolation threshold, andt is the critical expo-
nent of the conductivity.

Expression~3! is asymptotically correct whent→ 0, in
which limit we can neglect percolation of the current throu
the phase with conductivitys2. Analogous universal behav
ior of the conductivity is also obtained below the percolati
threshold, i.e., fort , 0. Universal relations of type~3! have
also been established forxe , but obviously with different
1381063-7842/98/43(11)/4/$15.00
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critical exponents.3 The question of what should be taken
the representative sizej for such media, in the terminology
of I. M. Lifshits,4 requires a special discussion in each in
vidual case. For two-phase percolation media we have

j}a0utu2n, ~4!

wherea0 is the minimum size in the system~the ‘‘grain’’
size of the inhomogeneity!, andn is the critical exponent for
the correlation length.5

For samples with dimensionsL,j the system is meso
scopic, and the measured characteristics fluctuate from r
ization to realization. In this case, the well-defined physi
quantities are averages over realizations. Because in pe
lation systems the effective conductivities$se% and$xe% av-
eraged over realizations are power-law functions of the s
tem size,5 such systems are referred to as fractal. When
contribution of one of the phases to the conductivity of t
entire system can be neglected, e.g., fort.0, s250, there
exists a ‘‘recipe’’5 for determining how the parameters ave
aged over realizations depend on the sizeL of the system.
SettingL5j, solving for t in Eq. ~4!, and substituting the
resultt5(L/a0)21/n into Eq. ~3! for se , we obtain

$se%'s1~L/a0!21/n, t.0, ~5!

and proceed analogously for the other effective coefficie
averaged over realizations.

When h5s2 /s1Þ0 this simple ‘‘recipe’’ no longer
applies.5 For inhomogeneous media that are far from the p
colation threshold, where there is no universal dependenc
type ~3!, and for media whose special structure prevents
from defining the concept of proximity to the percolatio
threshold at all, universal functions of type~5! cannot be
found. Nevertheless, as we show below, for a certain clas
two-dimensional media~including percolation media! it is
possible to derive exact reciprocity relations for averag
over realizations. These reciprocity relations interrelate c
tain combinations of the conductivity coefficients averag
over realizations and are generalizations of the recipro
relations for the linear case in media that are on aver
geometrically equivalent with respect to the arrangemen
the phases; those relations were first established forL@j in
Refs. 7 and 8.
1 © 1998 American Institute of Physics
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DERIVING THE RELATIONS BETWEEN FUNCTIONS

Let us consider an inhomogeneous two-dimensio
sample of sizeL i3L' and unit thickness. The currents an
voltage dropsI i , U i andI' , U' along and transverse to th
long side, respectively, are related according to Eq.~2! by
the linear and nonlinear conductances

I i5GiU i1XiU i
3 , I'5G'U'1X'U'

3 . ~6!

Here we assume that in the first case ideal contacts~with
zero resistance! are applied to the vertical faces of th
sample, while in the second case the contacts are applie
the horizontal faces. According to Ref. 8, we can find a c
responding sample that is dual to any sample of an inho
geneous medium:

j 5L P̃p/2Ẽ, E5L21P̃p/2 j̃ , ~7!

whereL5As1s2, andP̃p/2 is the operator of rotation in the
plane of the medium by an anglep/2.

In what follows we will assume that the following rela
tion holds for the local coefficients:

x2 /x152~s2 /s1!2. ~8!

In this case it is easy to show that substituting Eq.~6!
into Eq.~1! leads to expressions that describe, with accur
up to terms cubic in the field, a medium with the same lo
conductivity law

^ j̃ ~r !&5s̃e^Ẽ~r !&1x̃e^Ẽ~r !&2^Ẽ~r !& ~9!

but with mutually exchanged phases: ifs(rP01)5s1, s(r
P02)5s2, then s(rP01)5s2, s(rP02)5s1 in the new
medium, and analogously forx(r ). That is, if we color the
first phase black and the second white, the dual sample
be the ‘‘negative’’ of the first, and the boundary condition
determined by the set of contacts~Fig. 1b!, will be modified
accordingly. In this case the same equations (¹• j̃ 50,
¹3Ẽ50) will hold in the dual medium as hold in the initia
medium.

After averaging~7!, we obtain for the total currents an
voltage drops

FIG. 1. Inhomogeneous finite-size sample~a! and the dual sample obtaine
from the first by exchanging phasess1↔s2, X1↔X2 ~b!.
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I i ,'5LU',i , U i ,'5L21I',i . ~10!

Applying these transformations to Eq.~5!, to accuracy
up to cubic terms we are led to

Ĩ i ,'5G̃i ,'Ũ i ,'1X̃i ,'Ũ i ,'
3 , ~11!

where

G̃i ,'5L2/G',i , X̃i ,'52X',iL
4/G',i

4 . ~12!

From these two relations all the results of this paper w
follow.

RECIPROCITY RELATIONS FOR RANDOMLY
INHOMOGENEOUS MEDIA IN THE FRACTAL REGIME

If the sample consists of a portion of randomly inhom
geneous medium andL i5L'@j, then Gi5G'5se , G̃i

5G̃'5s̃e ~recall that the sample has unit thickness!. Then
the Dykhne reciprocity relation8 ses̃e5s1s2 follows from
Eq. ~12!. Becauses̃e(p)5se(12p) for randomly inhomo-
geneous media, the latter can be written asse(p)se(12p)
5s1s2.

WhenL,j it is necessary to average over realization
There are several ways to transform from Eq.~12! to an
average over realizations. In particular, from the first relat
in Eq. ~12! it follows9 that

$G̃',i%/$Ri ,'%5s1s2 , ~13!

whereRi ,'51/Gi ,' is the sample resistance.
For L i5L' and p5pc the samples are cut out from

medium at the percolation threshold, and each of them
naturally fractal; hence, the averages over realizations in
starting and dual media coincide. Then from Eq.~13! we
obtain7

$G%/$R%5s1s2 , L i5L' , p5pc . ~14!

Yet another reciprocity relation can be obtained for t
linear part of the conductance if we take the logarithm of E
~12! before averaging over realizations. Taking into acco
that $ ln G̃'%5$ln Gi% whenL i5L' andp5pc , we obtain

$ ln G%5 lnAs1s2, L i5L' , p5pc . ~15!

Analogous but more complicated reciprocity relatio
can be written for the nonlinear part of the conductance
particular, it follows from Eq.~12! that

X̃'

G̃'
2

52
Xi

Gi
2

,
X̃i

G̃i
2

52
X'

G'
2

, ~16!

which after averaging over realizations gives

H X̃'

G̃'
2 J 52H Xi

Gi
2J , H X̃i

G̃i
2J 52H X'

G'
2 J . ~17!

We note that Eq.~17! for L i5L' andp5pc gives

H X

G2J 52H X

G2J and thus H X

G2J 50. ~18!
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We now consider the case where one of the dimens
of the sample is smaller than the correlation length, as
fore, while the other is larger, i.e.,L i@j, L'<j, or the case
of a long strip. Despite the fact that one of the dimension
smaller than the correlation length, it is not necessary
average over realizations of the randomly inhomogene
medium. In fact,$Gi%5Gi , whereGi is the conductance o
a given realization, and analogously for other conductan
Moreover, for a strip cut out from a medium at the perco
tion threshold we haveG̃i5Gi , X̃i5Xi , . . . , and we can
obtain from Eq.~12!

GiG'5L2, Xi /X'52~Gi /G'!2,

L'<j, L i@j. ~19!

Thus, despite the fact that the linear and nonlinear c
ductances are power-law functions ofL' , certain combina-
tions of them, in particular Eqs.~19!, do not depend on the
dimensionL' .

RECIPROCITY RELATIONS FOR DETERMINISTIC
STRUCTURES

Over distances smaller than the correlation length,
conductances of individual realizations of a randomly inh
mogeneous medium are not of much interest in gene
However, for certain media with deterministic inhomogen
ity that possess certain symmetries, reciprocity relations
given realization can be informative. Figure 2 shows inh
mogeneous samples that possess symmetry with respe
rotation byp/2 and mutual exchange of phases. When t
symmetry holds we haveGi5G' , Xi5X' , and the dual
medium has the same conductance as the original one. F
Eq. ~12! it follows in this case that

G5As1s2, X50. ~20!

Recall that in the case we are considering the local c
ductances satisfy condition~8!. If, for example, we have
x1.0 in the first phase~a superlinear current–voltage~I–V!
characteristic! and x2,0 in the second~a sublinear I–V
characteristic!, then in the structures under study the sup
linear behavior of one phase exactly compensates the su
ear behavior of the other, and a nonlinear local sample
have an I–V characteristic that is linear overall.

It is also interesting to consider the case of a long s
with deterministic inhomogeneity. Figure 3a shows
layerwise-inhomogeneous medium for which it is not dif
cult to compute the conductances along and transverse t
inhomogeneity. With accuracy up to small higher-order no
linear terms we have

Gi5^G~y!&; Xi5^X~y!&; G'51/̂ 1/G~y!&;

X'5^X~y!/~G~y!!4&/^1/G~y!&4. ~21!

On the other hand, mutually exchanging phases in
plane-layered sample under study does not change the
ductancesG̃i5Gi , . . . , andaccording to Eq.~12!

GiG'5s1s2 , Xi /X'52~Gi /G'!2. ~22!
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It is easy to show that including condition~8! in Eq. ~21!
and substituting the latter into Eq.~22! leads to an identity.

One more example of an inhomogeneous strip is sho
in Fig. 3b — a two-phase film with a ‘‘rough’’ boundary
between phases. If the boundary has symmetry such that
tual exchange of the phases does not lead to a chang
conductances, then for this sample the reciprocity rule~22!
holds. For example, the boundary between phases could
the form of a sine for an arbitrary value of the dimensionL i

FIG. 2. Two-phase dual structures. Under an exchange of phases and
tion by p/2 the resistance of the sample remains unchanged.
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such that this length equals an integer number of perio
The shape of the boundary can also be random. Bounda
of this kind were first introduced in investigations of th
reflection of electromagnetic waves from surfaces with sh
low profiles. In Ref. 9 the authors obtained relations ana

FIG. 3. Plane-layered~a! dual structure with a sinusoidal boundary betwe
phases~b!.
s.
ies

l-
-

gous to the first in Eq.~22! for the effective dielectric con-
stant.
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@Sov. Phys. JETP68, 1066 ~1989!#; O. Levy and D. J. Bergman, Phys
Rev. B50, 3652~1994!.

4I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur,Introduction to the
Theory of Disordered Systems~Wiley, New York, 1998; Nauka, Moscow,
1982!.

5D. Stauffer and A. Aharony,Introduction to Percolation Theory, 2nd ed.
~Taylor & Francis, London, 1992!.

6A. E. Morozovski� and A. A. Snarski�, Zh. Éksp. Teor. Fiz.109, 674
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8A. A. Dykhne, Zh. Éksp. Teor. Fiz.59, 110 ~1970! @Sov. Phys. JETP32,
63 ~1971!#.

9R. Z. Vitlina and A. A. Dykhne, Zh. E´ ksp. Teor. Fiz.99, 1758 ~1991!
@Sov. Phys. JETP72, 983 ~1991!#.

Translated by Frank J. Crowne



TECHNICAL PHYSICS VOLUME 43, NUMBER 11 NOVEMBER 1998
Effect of static and dynamic compression on the healing of pores in copper
A. I. Petrov, M. V. Razuvaeva, A. V. Sinani, and V. V. Nikitin
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~Submitted June 28, 1997!
Zh. Tekh. Fiz.68, 125–127~November 1998!

The distinctive features of the healing of pores in copper~with an initial porosity of 12%! by
various types of static and shock-wave-induced stresses are discussed. It is shown for
static loading that the process of healing is determined by the maximum shear stress at the
surface of a pore and the character of the distribution of shear stresses near the pore. The observed
increase in the efficiency of healing of the porosity when dynamic methods of compression
are used as compared to static methods is attributed to an increase in temperature due to local
heating near the pore. ©1998 American Institute of Physics.@S1063-7842~98!02611-7#
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It is known1 that at ordinary temperatures the healing
pores in crystalline materials under stress takes place v
dislocation mechanism. According to Ref. 1 shear stres
arise near a pore under pressure. When a stress is rea
that exceeds the critical stress for triggering a Frank–R
source near the pore, a dislocation loop forms and the bou
ary of the pore is displaced by the magnitude of the Burg
vector. The degree of healing of the pore is determined
the number of dislocation loops emitted by this sour
which depends on the mobility of the dislocations as well
the magnitude of the stress and the time within which it a
We may therefore expect that the process of healing will
determined by the magnitude of the maximum shear st
tmax at the pore surface, the character of the stress (t) dis-
tribution near the pore, and the time the stress acts. For
reason it is interesting to study the kinetics of pore healing
the presence of various kinds of dynamic and static comp
sions that differ in the parameters listed above. This will
the topic of the present paper.

The system under study was porous copper. Sample
the form of disks 18 mm in diameter with thicknessh 5 1
mm were obtained by evaporating the zinc from brass~Cu
1 26%Zn! in vacuum at a temperature of 800 °C for 8 hou
The initial degree of porosityW05(r02r)/r0 , wherer0 is
the tabulated density of copper andr is the density of the
evaporated samples, was about 12%. The average size
pore was 25mm. Static forces were applied under conditio
of hydrostatic pressure, uniaxial compression, and unia
compression with a clamped lateral surface. Dynamic co
pression of the copper samples was implemented by sh
wave loading of a disk placed in a ring restraint in order
prevent transverse spreading of the material. The duratio
the compression pulse was 628 ms for various pressure am
plitudesP in the plane of the shock wave. A detailed descr
tion of the methods for imposing shock loading was given
Ref. 2. The porosityW was monitored before and after th
various loadings by measuring the density and using an
tical microscope~Neophot-30!.

In Fig. 1 we plot howW varies under static~1! and
dynamic~2! compression. It is clear that regardless of expe
mental conditions the magnitude of the threshold press
1381063-7842/98/43(11)/3/$15.00
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P* does not depend on the kind of compression and
'100 MPa. This implies that the value of critical stress th
causes the healing process to begin is also the same for s
and dynamic compression. However, at pressures higher
threshold (P.P* ) shock compression leads to a higher d
gree of healing than static.

The observed increase in the efficiency for dynam
compression as compared to static can be attributed to
increase in plasticity due to the rise in temperature. It
known3 that the passage of a shock wave causes var
thermal effects; at internal boundaries, such as pores,
crocumulation effects can arise4 that are accompanied b
considerable additional heating.

Another reason for the increased mobility of dislocatio
under dynamic loading could be local heating in slip ban
due to adiabatic processes during the high-velocity motion

FIG. 1. Relative values of the porosity of copper after static~1!, shock~2!,
and pulsed magnetic~3! compression. A value of 1.0 corresponds toW0

50.12.
5 © 1998 American Institute of Physics
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FIG. 2. Optical photograph of a section of a porous copper sample after the passage of a shock wave withP 5 2000 MPa. Magnification 6403.
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dislocations. A consequence of these processes is loca
tion of the plastic deformation in shear bands or in adiab
shear bands.3 Metallographic analysis of sections of copp
samples that had been subjected to dynamic compres
show a high degree of localization of the plastic deformat
near the pores. A decrease in the pore size is accompanie
the formation of shear bands near the pores~Fig. 2!, the
length of these bands increasing with increasing amplitud
the shock-wave compression. Under static compression t
bands are not observed, which indicates that plastic defor
tion occurs homogeneously under these conditions.

Let us compare the effect of compression pulses of v
ous durations on the porosity of copper. In Ref. 5 the auth
studied the effects of pulsed magnetic pressures of diffe
amplitudes with the same compression pulse duratiot
'2 ms. In Fig. 1 we have taken data from Ref. 5 to show
dependence of porosity on the magnitude of the magn
pressure in the range from 0 to 350 MPa. A comparison
curves2 and 3 shows that the degree of healing under d
namic loading is higher for shorter durations of the compr
sion pulse. The results obtained contradict the notions of R
1, according to which a decrease in the time the pressure
should lead to a decrease in the healing effect.

We can assume that the primary cause of the increas
healing effect with decreasing pulse duration is due ma
to the steeper rise of the leading edge of the compres
wave, since this leads to an increase in the rate of str
enhancement of adiabatic effects, and local heating. M
over, if the pore healing time is shortened, the stress fi
around the pore is less attenuated by rarefaction waves a
ing from the surrounding pores. These waves can play a v
role in terminating the healing process.

Let us consider data on how the kind of stress state
fects pore healing. Figure 3 shows the dependence ofW on P
for various modes of static compression that differ in resp
a-
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to tmax and in the character of the decay oft from the pore
into the depths of the material. For hydrostatic compress
~I! we havetmax50.75P, and the stress is short-ranged, fa
ing off with increasing distance from the pore as 1/r 3 ~see
Ref. 1!, wherer is the distance from its center. For uniaxi
compression~II ! and uniaxial compression with a clampe
lateral surface~III ! long-range stresses appear, in which ca
tmax equals 0.7P and 0.3P, respectively.6 Consequently, the
differences we see in Fig. 3 are connected both with
magnitude oftmax and with the distribution of stresses ne
the pore. In fact a comparison ofI andII shows that the value

FIG. 3. Relative mean porosity of copper after hydrostatic compression~I!,
uniaxial compression with a clamped lateral surface~III !, and uniaxial com-
pression with a free surface~II !.
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of tmax under these conditions is the same but that the sh
stresses are different, being long-ranged in the latter c
Because of this, the number of dislocations emitted by
pores in the compressed disk is determined only by the p
ence of obstacles to the motion of dislocations in the ma
rial, whereas under hydrostatic pressure it is determined
the opposing stresses from the dislocations emitted by
pores.1 Uniaxial compression applied in different manne
leads to different degrees of healing, which are determi
by the value oftmax ~curvesII and III in Fig. 3!.

Differences in the stress state for various methods
compression determine not only the different degree of h
ing but also the magnitude of the threshold pressureP* ~Fig.
3! and also the strain«5Dh/h that accompanies the proce
of healing. We have established that for hydrostatic comp
sion and compression with a clamped lateral surface
well-known relations«51/3«v and «5«v hold, where«v
5(W02W) is the bulk strain caused by healing of the p
rosity. For uniaxial stress we have«'5«v in the free state.

Thus, the degree of healing of porosity in copper un
compression is determined by the value of the maxim
shear stresses, the character of the distribution of stre
near the pore, and for shock-wave loading the duration of
ar
e.
e
s-
-
y
e

d

f
l-

s-
e

r

es
e

compression pulse. The increase in efficiency of pore hea
when dynamic methods of compression are used comp
with static methods is probably due to the increase in
temperature of local heating and not to the change in st
state near the pore.

The work on shock-wave loading was supported by
Russian Fund for Fundamental Research under Grant
96-01-01207a.
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Nonholonomic constraint between the polarization state of light and the twisted angle
of a single-mode optical fiber with linear birefringence

G. B. Malykin
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The relation between the polarization state of light propagating in a twisted single-mode optical
fiber with linear birefringence and the twist angle of the fiber is discussed for the case
where the fiber is stretched in a straight line. It is shown that this relation is of the nature of a
nonholonomic constraint. ©1998 American Institute of Physics.@S1063-7842~98!02711-1#
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About 60 years ago, it was shown in a paper by Ryto1

that when an optical beam propagates along a nonpl
path, the plane of its polarization rotates relative to the na
ral Darboux trihedron, which consists of the unit vectors ta
gent, normal, and binormal to the curved path of the be
In this paper, Rytov showed that if the tangent vector retu
to its original state at some point along the beam path,
plane of polarization of the light will in general differ from
its original orientation, but that this phenomenon will n
occur if the trajectory of the beam is a plane curve.

In Ref. 2, Berry showed that the Rytov effect can a
occur in a single-mode optical fiber with a nonplanar co
figuration. In that paper,2 he demonstrated that under the
conditions the relation between the direction of the elec
field vector and the spatial orientation of the Darboux trih
dron, which is fixed in the optical fiber, is nonintegrab
~nonholonomic!.

The goal of this paper is to show that in an optical fib
with intrinsic linear birefringence, the presence of torsi
~i.e., twisting of the fiber! gives rise to this same nonholo
nomic relation between the direction of the electric field ve
tor in the fiber and the angle of twist of the fiber, even wh
the optical fiber is extended in a straight line. In other wor
if only the state of polarization of the light at the input to th
optical fiber and the orientations of the axes of its line
birefringence at the inputa1 and output portsa2 are known,
it is impossible in general to obtain a functional express
for the polarization state at the output of the optical fiber. L
us write the differential equations for the Jones vector

E5UExe
icx

Eye
icy
U

~see Ref. 3;Ex and Ey are amplitudes of the electric fiel
components, andcx andcy are their phases! in the Cartesian
system of coordinates that follows the twist of the optic
fiber:

dE

dz
5N~z!•E~z!. ~1!
1381063-7842/98/43(11)/2/$15.00
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Here z is the length measured from the beginning of t
segment of optical fiber, and:

N~z!5U 2 ibx ~12g!
da

dz

2~12g!
da

dz
2 iby

U
is the differential Jones matrix of an optical fiber4 with in-
trinsic linear birefringenceb5bx2by , bx,y5(2p/l)nx,y

~wherel is the wavelength of the light andnx , ny are the
refractive indices for the slow and fast axes of the opti
fiber; here we takenx , ny5 const! and a twist anglea ; and
g5 const is the photoelastic coefficient of the material fro
which the fiber was made.

The vector relation~1! can be written in scalar form
using four real differential relations that expressdEx , dEy ,
dcx , and dcy in terms ofdz and da. After a few simple
transformations, we can write these relations as conditi
under which the following four ordinary differential~Pfaff-
ian! forms reduce to zero:

dv1,25dEx,y7~12g!cos~cx,x2cy,y!da,

dv3,45Ex,ydcx,y1bx,yEx,ydz1~12g!

3Ey,x sin~cx,x2cy,y!da. ~2!

For integrability of the differential equationsdv1

5dv25dv35dv450, i.e., in order that they be usable
principle to obtain finite relations that determineEx , Ey , cx

andcy as single-valued functions ofz anda, it is necessary
and sufficient that the bilinear forms (dd2dd)vs50
(s51,2,3,4) reduce identically to zero, together wi
dvs50 and dvs50.5,6 The conditionsdvs50 and dvs

50 leave arbitrary the ‘‘variational’’ differentialsdz, dz,
da, andda. In this case the conditions of holonomic beha
ior, which reduce to the requirement that the bilinear fo
vanish identically for arbitrarydz, dz, da, andda, are not
fulfilled, and consequently nonholonomic behavior occu
This implies that when the variablesz and a go from the
8 © 1998 American Institute of Physics
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same initial to the same final values along different paths,
resulting quantitiesEx , Ey , cx , andcy will in general de-
pend on the path, despite the identical initial values. An
ception is the caseg 5 1. In real optical materials we hav
0,g,1. Thus, in quartz optical fibersg 5 0.08–0.065.7

The nonholonomic nature of the relation between
polarization state of light propagating along an optical fib
and the twist in the fiber’s birefringence axes can be ill
trated with a simple example, in which the nonholonom
properties are a consequence of the noncommutative be
ior of the Jones matrix for segments of optical fiber w
different elliptical birefringences caused by twisting, for e
ample, two segments of optical fiber with constant but d
ferent twisting of the axes.

Thus, the relation between changes inEx , Ey , cx , cy

and changes inz anda is nonholonomic in character, a phe
nomenon also encountered in theoretical mechanics,5 the
theory of electric motors and generators,7 the theory of me-
chanical gyroscopes,8 etc. Note that the propagation of ligh
along a twisted optical fiber has a deep analogy with the t
evolution of spherical coordinates of a sphere that is roll
without slipping along a plane while rotating around t
binormal to the curve along which it is rolling on the plan

Thus, for arbitrary relations betweenz anda, even if the
state of optical polarization is known at the input to the o
tical fiber and the azimuth of the anisotropy axes is known
the input and output, it is impossible to compute the valu
of Ex , Ey , cx andcy that determine the state of polarizatio
at the fiber output. If the functiona(z) is given in explicit
form, then, as is shown in Ref. 4, Eq.~1! can be reduced to
a special Ricatti equation:

dx

dz
52n12x

21~n222n11!x1n21,

where

x5
uEyu
uExu

ei ~cy2cx!,
e

-

e
r
-

av-

-

e
g

.

-
t
s

andni j are elements of the differential Jones matrix.
This equation, as is well known, does not reduce

quadratures for an arbitrary form ofa(z).
The axes of a linearly birefringent optical fiber becom

twisted both in the process of drawing it from the prefor
and in the process of installing it, e.g., into an optical co
munication line or the coil of an optical-fiber detector
some physical parameter. We note that a loop of optical fi
in a coil is already a nonplanar curve, within which chang
in the polarization state of the light should occur connec
not only with the twisting of the linear birefringence axes b
also with the Rytov effect.1

In real cases the functiona(z) in a fiber-optic commu-
nication line or coil cannot be found; only the valuesa1 and
a2 at the beginning and end of the segment of optical fi
are known. As we showed above, in this case the state
polarization of the light cannot be found theoretically.

In conclusion, the authors are grateful to Ya. I. Khan
for discussing the results of this work, and to N. K. Vdo
icheva and I. A. Shereshevski� ~Institute of Theoretical Me-
chanics, Russian Academy of Sciences! for useful consulta-
tions.
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Simulation of arbitrary deformations of polycrystals by the method of cellular atomata
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A computer model for the deformation of polycrystals is developed, based on the concept of
cellular automata. The model is used to investigate a polycrystal by treating it as a multilevel
hierarchical system, and to study the peculiarities in the behavior of this system as a
function of the material structure, mechanisms of low-level deformation, history of loading and/
or deformation at the top hierarchical level, the temperature, and other parameters. ©1998
American Institute of Physics.@S1063-7842~98!02811-6#
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1. In this paper we describe a class of model for defor
able polycrystals based on cellular automata.1,2 In essence,
the concept of cellular automata reduces the region of st
to a uniform grid, each cell of which contains several bits
data. As time progresses in discrete steps, the physical
of behavior of the system are given by a unique set of ru
~for example, a small handbook table!, according to which
every cell calculates its new state at each new time s
based on the states of its nearest neighbors. The autho
Ref. 3 proposed to use the method of moving cellular
tomata to simulate the deformation of solids.

The original solution treated by these authors was a
of cellular automata with self-similar structure, which ma
it possible to immediately build into the model the frac
structure of real materials~it is known, for example, that the
structure of real steels is fractal4!. Moreover, such self-
similar structures are adequately realized by the method
object-oriented programming, which makes it possible to
the most recent developments in programming language
numerical simulations, ensuring a high-speed and ratio
allocation of computer memory, clarity of programming, a
the possibility of easy modification to accommodate n
mechanisms of deformation and material structure.

2. We will model the structure of a real polycrystal4 by a
three-dimensional cellular structure. The cells can be sim
or compound. Simple cells have no internal structu
whereas compound cells consist of simple and/or compo
subcells. As a component, a compound cell can contain c
similar to itself, which allows us to model the fractal stru
ture.

In this paper we use compound cells having the struc
of a cubic lattice and consisting of 27 (33333) cells of
smaller sizes~Fig. 1!. In general, other spatial structures a
possible as well as other numbers of components.

Let us introduce the environment of a cell into the d
cussion, by which we mean its set of nearest neighbors,
assign to each cell three coordinates (m,n,k) that determine
its position~wherem,n,k are integers from 1 to 3!. In Fig. 3
the central cell has coordinates (2,2,2), and its neighborh
consists of all the remaining 26 cells. In defining the neig
borhood of the boundary cells we specify that the system
1391063-7842/98/43(11)/3/$15.00
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cells in Fig. 1 is surrounded on all sides by cells that a
similar to it. This is the case of so-called periodic bounda
conditions, according to which the environment of each
the 27 cells derives from the remaining 26 cells.

3. A loaded polycrystal is characterized by nonunifor
stress–strain states. In order to describe them we introd
stresssn and plastic strain tensorsep

n into the discussion for
each cell of the structure described above. In the notation
will use here, the labeln indicates the level to which the
given cell belongs. In this case we assume that the lar
cell, which models the representative volume of the mac
scopic level, belongs to level 1. Its 27 component cells
long to level 2, the components of each of these 27 c
belongs to level 3, etc. It is obvious that at leveln there are
27n21 cells.

Because plastic strain of a cell of thenth level is caused
by plastic strains of its component cells at the (n11)-th
level, we assume that

ep
n5^ep

n11&, ~1!

where the angle brackets indicate averaging over the volu
of the nth level cell.

In what follows, we will use the notation of direct tenso
calculus.

Let us assume that the stress and plastic-strain tenso
a cells of leveln and its constituent 27 cells of leveln11 are
related by the Kro¨ner equation

sn112sn5M ~ep
n2ep

n11!, ~2!

whereM is in general a fourth-rank tensor.
In this paper we assume thatM is a scalar quantity, and

in what follows we will refer to it as the accommodatio
parameter, the meaning of which will become clear as
results of the computer experiment are discussed.

The previous expression shows that the difference
plastic deformation of each cell of leveln11 from the av-
erage value of this deformation within the corresponding c
of the nth level gives rise to internal microstresses that te
to smooth out this deformation. In this case there is a re
tribution of the stresses within thenth-level cell, and a non-
uniform stress–strain state arises within the compound c
0 © 1998 American Institute of Physics
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FIG. 1. Structure of the cellular automata. The first-lev
cell (I ) equals 27 smaller cells of the second level (II ).
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Relation~1! allows us to find the plastic deformation o
compound cells in terms of plastic deformation of their co
ponents. The plastic deformation of simple cells is det
mined by the deformation mechanisms acting within them

In particular, for plastic deformation that comes fro
slipping of dislocations, the value of the rate of plastic d
formation is calculated by summing up the compone
caused by all the slip systems that act within the cell. In t
case, for small elastoplastic deformations the quantityėp is
calculated from the expression

ėp5
1

2(a ġa~sama1masa!, ~3!

wherema andsa are respectively vectors normal to the s
plane and the direction of slip in the systema, while ġa is
the rate of shear strain in systema.

The value ofġa is determined by the tangential stress
ta acting on the systema, and the value ofta is calculated
as usual from the stress tensor of the corresponding cel

ta5masa:sa. ~4!

The relations that connectġa andta for various mecha-
nisms that control the motion of dislocations are describe
a whole series of publications on the physics of plastic
formation. In particular, according to Eshby,5

ġa5ġ0
aexpS 2

DF

kT S 12S ta

tc
aD pD qD , ~5!

whereDF is the activation energy required to overcome o
stacles in the absence of external stresses;tc

a is the critical
tangential stress for systema; p and q are parameters tha
depend on the mechanism that controls the motion of di
cations (0<p<1,1<q<2); k is Boltzmann’s constant;T is
the temperature; andġ0

a is a certain parameter that chara
terizes the systema.

In accordance with the concept of cellular automata,
will investigate the generation of the stress–strain state
discrete time tm with discretization stepDt ~where tm

5mDt andm is an integer!. At the top level we prespecify
the time dependence of the stresses acting:s15s1(tm). At
the initial time (m50) we will assume that the plastic de
formationsep

a equal zero at all levels.
Relation~2! we write in a somewhat modified form

sn11~ tm!2sn~ tm!5M ~ep
n~ tm21!2ep

n11~ tm21!!, ~6!
-
r-

-
s
s
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which allows us to calculate the cellular stresses at timetm

based on the plastic deformations at the previous timetm21 .
Relations ~1!–~6! make it possible to determine th

stress–strain state of a polycrystal according to a given p
gram of loading at the top level.

If the history of straining the material at the top level
given, i.e., the total strain tensore15e1(tm) is specified, then
the quantitys1(tm) is determined, according to Hooke’s la

s1~ tm!5E:ee
1~ tm!, ~7!

as a function of the elastic strainee
1(tm), where E is the

tensor of elastic constants.
The value of the elastic strain we find from the expre

sion

ee
1~ tm!5e1~ tm!2ep

1~ tm21!. ~8!

Relations ~1!–~8! make it possible to determine th
stress–strain state of a polycrystal according to a presp
fied strain history at the top level.

4. As an example we present the results of compu
simulation experiments of compound strain ina-iron poly-
crystals. The parameters of Eq.~5! were taken from the book
by Ashby:5 DF50.5m0b3, b52.48310210 m is the modu-
lus of the Burgers vector,m056.431010 Pa is the shear
modulus, andtc51.731023m0 .

FIG. 2. Hardness curves and fraction of plastically deformed elementsN for
compound loading of ana-Fe polycrystal: solid curve —s, dashed curve
— N.
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Figure 2 shows the computed hardening curve for
deformation history of the polycrystal listed in Table I.

In Table I ei j are the components of the total strain te
sor of a macroelement of the material~a cell at the top level!.
We call attention to the following. During unloading an
loading in the opposite direction~step 3! the Baushinger ef-
fect appears. In the course of the shear deformation, at st
a time-dependent unloading of the material takes place, a
which the hardening curve approaches the continuation
the curve of the previous step. In this we see manifested
well-known phenomenon of the existence of a comm
hardening curve.

Figure 3 shows the results of calculations for strain
the direction of the second step of Table I for various valu
of the parameterM in Eq. ~2!. According to this equation, the
physical meaning ofM is to incorporate into the calculatio
a capability of the structural elements to accommodate e
other. The largerM is, the less able these structures are
accommodate, i.e., the stronger the reaction of the envi
ment to a ‘‘stranger.’’ It follows from Fig. 3 that the largerM
is, the higher the hardness curve will go, other conditio
being equal.

TABLE I. Program for compound straining.

Step No. exx eyy ezz exy eyz ezx

1 0 0 0 0 0 0
2 0.005 20.005 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0.005 0 0
e
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er
of
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ch
o
n-

s

1T. Toffoli and N. Margolus,Cellular Automata Machines: A New Envi
ronment for Modeling~MIT Press, Cambridge, Mass., 1987; Mir, Mos
cow, 1991, 280 pp.!.

2K. Preston and M. Duff,Modern Cellular Automata. Theory and Appli
cations~Plenum Press, New York, 1994!, 327 pp.

3S. G. Psakh’e, A. Yu. Smolin, S. Yu. Korostelyovet al., Pis’ma Zh. Tekh.
Fiz. 21~20!, 72 ~1995! @Tech. Phys. Lett.21, 849 ~1995!#.

4E. Hornbogen, Prakt. Metallogr.23, 258 ~1986!.
5H. J. Frost and M. F. Ashby,Deformation-Mechanism Maps: The Plas
ticity and Creep of Metals and Ceramics~Pergamon Press, Oxford, 1982!,
425 pp.

Translated by Frank J. Crowne

FIG. 3. Effect of the accommodation coefficientM on the hardening curve
and the number of plastically deformed elementsN ~1,2 — s; 3,4 — N);
M51000 ~2,4! and 5000 MPa~1,3!.
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A description of the motion of an electron in an accelerator is discussed in relation to the
problem of synchrotron radiation. Spectral–angular distributions of the radiation intensity are
obtained that depend strongly on vertical oscillations of the electron. ©1998 American
Institute of Physics.@S1063-7842~98!02911-0#
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As the authors of Ref. 1 emphasized, it is only the in
grated intensity and the spectral distribution of the synch
tron radiation that remain almost unchanged in a stor
ring. The first discussions of the effect of betatron oscil
tions on the angular properties of synchrotron radiation in
axially symmetric magnetic field appeared in Ref. 2. Sub
quently this problem was investigated for a strongly focus
system, and also for weak focusing.3–5

It is well known6 that vertical betatron oscillations o
charged particles in accelerators can be described by
function

z5AbzA

p
cosS E ds

bz
1d0D , ~1!

whereA is the emittance,bz is the betatron function, which
depends on the lengths of the orbit, andd0 is the initial
phase.

Let w5s/R0 be the generalized azimuth, where, in t
case of magnet systems with rectilinear gaps,R0 will be the
average radius~the length of the orbit divided by 2p). Then
the corresponding velocity component from Eq.~1! is given
by

vz5cA A

pbz
A11S 1

2

dbz

ds D 2

cosS E ds

bz
1d11d0D ,

~2!

where sind151/A11(dbz /ds)2/4.
Since radial oscillations have only a small effect on t

angular distribution of the radiation, we can assume tha
particle moves along a circle of radiusR0 and that the mag-
netic field in the bending magnets may be averaged ov
period. Thus, the position of a particle will be determined
the radius vector

r5$~R01r!cosw, ~R01r!sinw, z%.

Expanding the transverse components of the magn
field in a Fourier series, we find for the angular velocity t
following expression

ẇ5
v0

11kF12
r

R0
1

3

2

r2

R0
2

1
1

R2E ~zż2rṙ!n~w!dtG ,

~3!
1391063-7842/98/43(11)/2/$15.00
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wherev05eH/mc, k is the ratio of the mean free path of
particle to the lengths of the bending magnets,R05(1
1k)R, and the periodic functionn(w) has a specific form
for a given magnetic structure.

In studying the properties of synchronous radiation
will follow the operational method of Ref. 2. Let the radia
tion vectork5vn/c, wheren5$0, sinu, cosu%, andu is the
spherical angle. The linear polarization vector we define

es5$1,0,0%, ep5$0,cosu,2sinu%.

Then the components of the radiated intensity in
first-quantization approximation can be written in the form

dWs

d3k
5W1U E dtvxexpS i

n8

n
~vt2k•r ! D U2

,

dWp

d3k
5 W1U E dt~vycosu2vzsinu!expS i

n8

n
~vt2k•r ! D U2

,

~4!

where

W15
ce2

~2p!3R0

n8

n
, v5n

v0

11k
, n85nS 11

hv

E D .

The anglew can be defined in reference to any point
the orbit. Then the small parameters will bew;m0c2/E, t
5Nw ~whereN is the number of magnetic periods!, and also
cosu(u;p/2), r/R0 , z/R0 . Taking this into account in

vt2k•r5n
v0

11kF t2
1

c
~R01r!sinw sinu2

z

c
cosuG

we set sinw'w2w3/6, sinu;1.
In order to find w in Eq. ~3! we must carry out the

integration. In particular, to zero approximation we havew

5v0t/(11k). From the equationv25 ṙ21 ż21r 2ẇ2 we find
the value ofRv0 /c, while the velocity components are de
termined fromvx'ṙ2cw, vy'cb, vz5 ż.

Let us make the substitutionj52vx /c5w2 ṙ/c, and
then carry out an expansion of the type

z5zUt501
dz

dtU
t50

•t1 . . . 'z01R0

vz

c
w.
3 © 1998 American Institute of Physics
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To sum up, retaining terms to third order of smallne
we obtain forvt2k•r the expression

njF12b sinu1
j2

6
2

vz

c
cosu1

1

2S vz

c D 2G1const.

Then in the ultrarelativistic limit we have 12bsinu'«/2,
where«512b2sin2u.

Performing the integration in Eq.~4! with respect to the
new variablej, and also averaging over initial phases, w
obtain the spectral–angular distribution in the followin
form:

dWs~n!

dV
5W2E

0

2p

dd«1
2K2/3

2 S n8

3
«1

3/2D ,

dWp~n!

dV
5W2E

0

2p

dd«1«2K1/3
2 S n8

3
«1

3/2D , ~5!

where

W25
ce2nn8

12p4R0
2

, «1512b21«2 ,

«25~cosu2acosd!2,

a5AA

pF 1

Abz

A11S 1

2

dbz

ds D 2G
t50

.

If we introduce the anglec measured from the plane o
the orbit, then cosu in Eq. ~5! can be replaced byc. If we
sum over the spectrum in~5!, then the angular distribution
can be expressed in terms of elliptic integrals4 and will also
depend on the vertical motion of the electron.

Expression~5! is also convenient for storage rings.
using it for practical applications, we must keep in mind th
usually a plot of the betatron functionbz is known for all the
orbits. Then its value must be taken for that point fro
which the radiation is emitted, and its derivative may
approximately replaced by the ratioDbz /Ds. For bending
magnets the plot of thebz function is approximately a
straight line~see, e.g., Fig. 3 in Ref. 7!; therefore, the slope
of this portion of the line can also be used.

The algorithm for computing the integrals~5! is de-
scribed in particular in Ref. 3. In the cases of most inter
~small oscillation amplitudes or small beam sizes! we can
expand in the parameterq25a2/2«, where«'12b2sin2u
5(11g2c2)/g2.

Then in the classical limit the right-hand sides of~5! can
be replaced respectively by
,

t

t

W3@K2/3
2 1 q2«2c2n2~K1/3

2 1K2/3
2 !

2 q2«A«n~112c2/«!K1/3K2/3#,

W3@~c2/«1q2!K1/3
2 1 q2«c4n2~K1/3

2 1K2/3
2 !

2 5q2A«c2nK1/3K2/3#, ~6!

where

W35
ce2n2«2

6p3R0
2

, Ki5Ki~n«3/2/3!.

The well-known expressions for a uniform magne
field can be recovered here by settingq250 ~no vertical
oscillations! and replacingR by R0 .

If we keep cosu instead ofc in Eq. ~6! and carry out the
integration over the spherical angle, then the spectral exp
sions obtained coincide with the expressions for a unifo
magnetic field, in agreement with Ref. 1.

The plots constructed according to Eq.~5! show that the
maxima of both components will be lower than the curv
for a uniform magnetic field~for the same energyE and
radius R). The radiation in the plane of the orbit will no
longer be completely linearly polarized. For thep compo-
nent a maximum appears atu5p/2 instead of the minimum
in the high-amplitude case; it is also possible for thes com-
ponent to exhibit a slight minimum in the orbital plane
extremely high amplitudes, and thep component can de
velop additional symmetric local depressions. Thus, alo
with theoretical studies of this effect, it is important to car
out more-precise experiments on modern accelerators. S
the radiation is primarily incoherent, the results obtained w
give a good description of the properties of the radiat
generated by beams of electrons as well.
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The problem of characterizing the flow of phosphorosilicate and borophosphorosilicate glasses
during thermally stimulated planarization of the surface profile of microelectronic
structures is solved in a model based on Newtonian viscous flow driven by surface tension
forces. Expressions are obtained for the melting angle as a function of the temperature–time
regimes of the heat treatment and the physical parameters of the glasses. ©1998 American
Institute of Physics.@S1063-7842~98!03011-6#
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Phosphorosilicate and borophosphorosilicate glasses
widely used in integrated-circuit technology to make the
terlevel insulating layers of microelectronic structures. It
possible to smooth out sharp projections at the edges of
tact windows and to planarize the surface profile of th
structures by melting the glass. Although the melting
phosphorosilicate and borophosphorosilicate glasses
been studied in a number of papers,1–5 the data obtained
leave a number of questions unanswered, notably how
melting angle of a step made of phosphorosilicate~or boro-
phosphorosilicate! glass depends functionally on the hea
treatment regime and physical parameters of the glasses
other question without a definitive answer is, why is it th
melting induced by second-long optical heating is so mu
more efficient than long periods of isothermal annealing
an oven?

In order to describe the melting of a glass step~Fig. 1!
we start with a model that assumes Newtonian viscous fl
driven by surface tension forces. In this case

m
]vx

]y
5

s

r
, ~1!

wherem is the viscosity,vx is the flow velocity along thex
axis,s is the surface tension, andr is the radius of curvature

The flow of the glass is caused by the tangential str
Pxx52s/r . Curve AB ~Fig. 1! can be treated4 as a half
period of a sine function with period 2x and amplitudeh/2.
Pxx is a maximum when

r 5
x2

2p2h
5

h

2p2
cot2a. ~2!

The horizontal flow velocity field of a fluid with a
‘‘wedge’’ profile can be written in the form6

vx~y!5
3~2hy2y2!

2h2
u, ~3!

whereu is the average flow velocity.
Substituting Eq.~3! into Eq.~1!, we find that the average

translation velocity of pointB ~Fig. 1! is
1391063-7842/98/43(11)/2/$15.00
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u5
h

3m

s

r
. ~4!

On the other hand, we can also write the following e
pression:

u5
dz

dt
52

h

sin2a

da

dt
. ~5!

Substituting Eqs.~2! and ~5! into Eq. ~4! we obtain the
equation

2
cos2a

sin4a

da

dt
5

2p2

3

s

mh
, ~6!

whose solution is

cot3a2cot3a05
2p2

h E
t1

t2s

m
dt. ~7!

It follows from Eq. ~7! that the dependence of the me
ing angle on temperature is determined by the functio
s(T) and m(T)5m0exp(E/RT), where E is the activation
energy for viscous flow andR is the universal gas constan
Since the temperature dependence ofs(T) is quite weak
(ds/dT'0.12 erg/cm2

•K; see Ref. 7!, we can assume tha
s5 const. For isothermal annealing we obtain from Eq.~7!

cot3a2cot3a052p2
s

m0h
t exp~2E/RT!. ~8!

FIG. 1. Profile of a phosphorosilicate glass step before~a! and after~b!
melting.
5 © 1998 American Institute of Physics
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It follows from Eq.~8! that cota;t1/m, wherem 5 3. In
an analogous empirical relation derived in Refs. 2 and 3
based on experimental data for borophosphorosilic
glasses, the quantitym was 2.460.8, which coincides with
the value of 3 we have obtained within the limits of possib
error.

During second-long heat treatment, the substrate t
perature at the end of the optical pulse increases to a m
mum T* , and then drops rapidly.8 The increase inT and
subsequent decrease are approximated by writingT(t)
5T* At/t and T(t)5T* At/t respectively, wheret is the
heating time, i.e., the duration of the optical pulse. Fro
these expressions we derive the limits of integration
Eq. ~7!: t15(Tg /T* )2t and t25(T* /Tg)2t, where Tg is
the glass-point ~softening! temperature, at which
m51013 Pa.

In general9–11 one hasE(T)5E02TS, where E0 and
S52]E/]T are the enthalpy and entropy of activation
the viscous flow, respectively. If the functionE(T) is ap-
proximately linear over the temperature range fromTg to
T* , i.e., if we assume thatE0 andSare average parameter
then we can find an analytic solution to Eq.~7! that describes
the change in the anglea for pulsed heat treatment of th
glasses:

cot3a2cot3a052p2
s

m0h
t•eS/RH e2aF12a1

2

aS 11
1

aD G
2a2

•Ei~2a!2e2agF S Tg

T*
D 2

~12ag!

1
2

aS T*

Tg
1

1

aD G1a2
•Ei~2ag!J , ~9!

where ag5E0 /RTg , a5E0 /RT* , and 2Ei(2x)
5*1

`e2xyy21dy is the exponential integral function.
Since E/RT;30@1, expanding2Ei(2x) in a series

and keeping terms proportional toRT/E0 we obtain from Eq.
~9!

cot3a2cot3a058p2
s

m0h

RT*

E0
t expS 2

E02T* S

RT*
D .

~10!

In carrying out calculations based on Eqs.~8! and ~10!
~Fig. 2! for the specific experimental data from Ref. 1, w
use valuesm051023 Pa ands5400 erg/cm2 ~Ref. 7!. The
calculated functionsa(T) for isothermal melting of boro-
phosphorosilicate glass (t560 min) are in rather good agree
ment with experiment if we pickE 5 300 ~curve1! and 280
kJ/mol ~curve2!, except for the values ofa at T5900 °C.
For pulsed heat treatment of the glasses (t510 s), the tem-
perature dependences of the melting angle were obtaine
choosingE05325 kJ/mol andS510 J/mol•K ~curve3! and
E05285 kJ/mol andS520 J/mol•K ~curve 4!. The experi-
mental values ofa(T* ) are extremely close to the calculate
values or coincide with them. It is worth noting that th
average valuesE, E0 , andSwe have found agree with hand
d
te

-
xi-

n

by

book data for the various glass compositions.7 Comparing
these results with measured data confirms the correctne
our analytical expressions fora.

Thus, our investigations show that the expressions
have obtained for the temperature–time dependences o
melting angle of steps made of phosphorosilicate~borophos-
phorosilicate! glass on the basis of a model of Newtonia
viscous flow under the action of surface tension forces giv
rather good description of the melting process. By includ
the temperature dependence of the activation energy for
cous flow we were able to obtain expressions for the melt
angle under pulsed heating and to show that the efficienc
this process is a consequence of the dynamic decreas
viscosity due to the entropy factor.
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Translated by Frank J. Crowne

FIG. 2. Temperature dependence of the slope angle of a borophosphor
cate glass step for the following concentrations of doping impurities:1 —
4.6% B and 3.1% P,2 — 5.6% B and 3.1% P,3 — 2.5% B and 3.6% P,4 —
6.3% B and 2.9% P. The dashed curves correspond to isothermal anne
the solid curves to pulsed heating.
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Identification of the bow stabilization mechanism by numerical simulation of the laminar
asymmetric flow of a viscous incompressible fluid past a cylinder with a projecting
disk

S. V. Guvernyuk, S. A. Isaev, and A. G. Sudakov

Civil Aviation Academy, 196210 St. Petersburg, Russia
~Submitted February 9, 1998!
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The mechanism responsible for the bow stabilization that arises as a result of the deformation of
the spatial vortex structures that are organized in the flow of a fluid past a cylinder with a
projecting thin disk is analyzed by solving the Navier–Stokes equations using a factorized finite-
volume method and a simplified approach based on analytical specification of the metric
coefficients. ©1998 American Institute of Physics.@S1063-7842~98!03111-0#
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The idea of organizing the flow around bodies by t
deliberate placement of projecting thin plates and disks
generate large-scale vortex structures, which was propo
by Belov1 more than 20 years ago, has turned out to be
exceptionally fruitful and successful approach for reduc
the aerodynamic drag of bluff bodies and significantly
creasing their static stability~the latter effect has been give
the name ‘‘bow stabilization’’!. By mounting a projecting
coaxial disk on the body, one can reduce the wave drag
blunt body in a supersonic flow by a factor of 2 to 4~Ref. 2!
or lower the profile drag of a cylinder in an axisymmetr
turbulent flow of incompressible fluid by almost two orde
of magnitude.3,4

The problem of reducing the drag on bodies in an or
nized separated flow, which is the first part of the comp
problem of choosing an aerodynamic figure for bodies
unconventional shape, has received detailed and succe
solution through numerical and physical simulations. A
from complete list of useful results deriving from systema
investigations of this class of problems would include: t
existence of optimal ways of mounting a disk on a hig
aspect cylinder so as to minimize the frontal and profile d
coefficients in the laminar-flow regime,5 estimation of how
strongly the degree of turbulence of an oncoming flow infl
ences the drag of a body with a forward separation zo6

extension of the concept of organized flow separation to
flow in the near wake of a body, and the search for optim
ways of mounting protruding disks on bluff cylinders to giv
drag coefficientsCx comparble to those for bodies of stream
lined shape.7

The first study of the problem of static stability of bodi
with organized large-scale vortex structures was underta
to address the problem of flow past loads suspended f
helicopters.8,9 The engineering solution to this practical, rea
world problem was to choose suitable dimensions and p
tions for a shield placed in front of the end of a parallele
ped, which simulates a load such as a girder or contai
However, it proved possible to ensure flight stability of bo
ies with this arrangement only by using tail stabilizers. A
result of a combined approach based on calculations, w
1391063-7842/98/43(11)/4/$15.00
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tunnel experiments, and flight trials, the proposed soluti
were validated; however, this approach did not adequa
elucidate the nature of bow stabilization, nor the hydrod
namic aspects of how it acts as a control mechanism. T
certain extent this was due to the extreme computational
ficulty of dealing with problems of spatial flow past bodie
with unconventional shapes and organized separation zo
The glaring lack of information regarding bow stabilizatio
and the need for more qualitative and exact resolution of
problem dictates a return to the classical problem of flow
a stream of viscous incompressible fluid past a semi-infin
cylinder with a disk at nonzero angle of attack, with e
hancement of the detail of the solution within the leadi
separation zone.

In this numerical investigation a central place is occ
pied by a detailed analysis of the control mechanism for b
stabilization and identification of spatial vortex structures
using the Tecplot graphics package to interpret the result
the numerical calculations, thereby providing computer vi
alization of flows spreading along the control surfaces, a
observation of particles following the tracks of tracer liqu
particles. We will consider a structure made up of a se
infinite cylinder and a protruding disk~diameterd50.75,
gap width l 50.375) that is optimum with respect to profil
drag ~at high Reynolds numbers3,4! in stable laminar-flow
regimes with Re5 700 and 1000, with the formation of
leading separation zone at angles of attack of 0 and 5°.
diameter of the connecting column was 0.18. We took
diameter of the cylinder and the velocity of the oncomi
flow as the characteristic scales.

A previous approach9 to the numerical simulation o
separated flow past a load employedH-shaped and in genr
eral nonorthogonal meshes matched to the surface of
body, with the mesh points arranged in planes perpendic
and parallel to the oncoming flow and having a higher d
sity near the wall and in zones where shear layers develop
contrast to that approach, in our investigation we make
of a cylindrical mesh that is matched with the washed s
face. This allows us to increase considerably~by a factor of
5 or more! the density of cells within the forward separatio
7 © 1998 American Institute of Physics
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FIG. 1. Pattern of flow around a semi
infinite cylinder with a disk of diameter
d50.75 and gapl 50.375 for Reynolds
number Re5103 in the axialx–y plane
at angles of attack of 0~a! and 5° ~b!.
The dashed lines show isobars~the ex-
cess pressure is referenced to a value
twice the velocity-related pressure head!.
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zone. Furthermore, in order to avoid problems connec
with interpolation of the metric coefficients, we use a si
plified approach based on prespecifying an analytic me
In all other details the methodology of our investigation do
not differ from that described in Ref. 4. By using an implic
finite-volume method and the concept of splitting the pro
d
-
c.
s

-

lem with respect to physical processes, we solved the sys
of Navier–Stokes equations given in the natural variables
the Cartesian components of the velocity. A uniform flo
was specified at the input boundary of the computatio
region. At the output boundary we imposed soft bound
conditions ~the conditions of continuation of the solutio
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FIG. 2. Spreading patterns of fluid ove
the end of a cylinder with a projecting
disk (Re5103) at angles of attack of 0
~a! and 5°~b!. The dotted lines show iso-
bars.
Th
co
0

the

lly
mi-
from internal points to the boundary of the region!. At the
solid surfaces the condition of attachment was imposed.
steady flow around the body was calculated on a mesh
taining 51366361 cells. In this case, approximately 30 00
e
n-

points were concentrated in the gap between the disk and
cylinder.

In Figures 1 and 2 and in Table I we systematica
compare our calculated results for laminar flow past a se
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TABLE I. Combined aerodynamic characteristics of the blunt bodies discussed here and of their se
components.

Semi-infinite cylinder Disk–semi-infinite cylinder arrangement withd50.75, l 50.375

Re 700 700 1000

a 0 5° 0 5° 0 5°
CX1 0.762 0.779 20.212 20.184 20.367 20.293
CX2 2 2 0.42 0.42 0.378 0.367
CX3 2 2 0.142 0.128 0.211 0.178
CX4 0.762 0.779 0.349 0.363 0.221 0. 252
MZ1 20.50631024 20.91331022 0.18331023 20.0154 0.17631023 20.0124
MZ2 2 2 0.2831024 20.00382 20.30231024 20.00495
MZ3 2 2 20.26631024 0.00197 20.20131024 0.48231023

MZ4 20.50631024 20.91331022 20.18431023 20.0167 0.12631023 20.0168
Vm 20.0606 20.102 20.146 20.31 20.192 20.27

Note: CX is the drag coefficient,MZ is the transverse moment coefficient. Labels 1–4 refer to the end o
cylinder, the forward face of the disk, the backward face of the disk, and the assembly type respectivm
denotes minimum value.
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infinite cylinder with ~for Re 5 700 and 1000! and without
~for Re 5 700! a disk in front of it, at angles of attack of
and 5°. Note that the results obtained correlate with the
lutions obtained in Ref. 4 and 5 for axisymmetric lamin
flow past a cylinder with a disk, and with visualization da
for flow separation in a model tank.

Placing a disk in front of the cylinder leads to a cons
erable rearrangement of the flow around it, due to the form
tion of a forward separation zone and hence to a decreas
the profile drag (CX4) by a factor of two. It is clear from Fig
1a that toroidal vortices appear in the gap between the
and the cylinder at zero angle of attack, in which the inte
sity of the return flow (Vm) is 15% of the velocity of the
oncoming flow. The low~negative! pressure in the vortex
which is practically the same for the entire forward sepa
tion zone~Fig. 2a!, gives rise to a thrust exerted on the cy
inder (CX1), which is the ultimate source of the lowere
drag of blunt bodies with a projecting disk. With increasi
Reynolds number the intensity of flow separation increas
and the profile drag falls considerably~by more than a factor
of 3 compared withCX4 for a cylinder!.

For a nonzero~but comparatively low! angle of attack,
the flow past a cylinder with a disk acquires a very comp
cated spatial character. The toroidal vortex is distorted, e
cially in the axial plane parallel to the oncoming flux. In th
case the vortex becomes markedly nonuniform. The inte
fication of return flow from the windward region~in which
Vm grows by a factor of 2, reaching 30% of the velocity
the oncoming flow! combines with a weakening of the sep
rated flow on the leeward side. As a consequence of
o-
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-

-
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-
e-
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e

distortion of the vortex, a redistribution of the local loadin
forces takes place along the back end of the cylinder, giv
rise to a considerable restoring torqueMZ4 ~i.e., bow stabi-
lization!.

The complicated vortex structure of the flow is chara
terized by the appearance of jet streams at singular ru
points of the ‘‘focus’’ type at the end of the cylinder~Fig.
2b! and a reflux of fluid from the windward side of the to
oidal vortex to the leeward side and then onto the late
surface, with suction of the liquid from the leeward side
the windward side.
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