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We introduce a new cosmological diagnostic pair {r, s} called the Statefinder. The Statefinder is a geometrical
diagnostic and allows us to characterize the properties of dark energy in a model-independent manner. The
Statefinder is dimensionless and is constructed from the scale factor of the Universe and its time derivatives
only. The parameter r forms the next step in the hierarchy of geometrical cosmological parameters after the
Hubble parameter H and the deceleration parameter q, while a is a linear combination of q and r chosen in such
a way that it does not depend upon the dark energy density. The Statefinder pair {r, s} is algebraically related
to the equation of state of dark energy and its first time derivative. The Statefinder pair is calculated for a number
of existing models of dark energy having both constant and variable w. For the case of a cosmological constant,
the Statefinder acquires a particularly simple form. We demonstrate that the Statefinder diagnostic can effec-
tively differentiate between different forms of dark energy. We also show that the mean Statefinder pair can be
determined to very high accuracy from a SNAP-type experiment. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 98.80.Es; 95.35.+d
Recent observations of type Ia supernovae indicate
that the expansion of the Universe is accelerating rather
than slowing down [1]. These results, when combined
with cosmic microwave background (CMB) observa-
tions of a peak in the angular power spectrum on degree
scales [2, 3], strongly suggest that the Universe is spa-
tially flat with ~1/3 of the critical energy density being
in nonrelativistic matter and ~2/3 in a smooth compo-
nent with large negative pressure (“dark energy”). Indi-
rect support for dark energy (known long ago) comes
from the examination of gravitational clustering within
the framework of the standard gravitational instability
scenario (see the reviews [4, 5]). Finally, with recent
data on the galaxy power spectrum from the 2dF Gal-
axy Survey, combined with CMB data, the existence of
dark energy can be proved without using the superno-
vae data at all [6]. A large body of recent work has
focussed on understanding the nature of dark energy
and its possible relation to a fundamental theory of mat-
ter such as M-theory or supergravity. Despite the con-
siderable effort in this direction, both the nature of dark
energy as well as its cosmological origin remain enig-
matic at present.

The simplest model for dark energy is a cosmologi-
cal constant Λ, whose energy density remains constant
with time, ε = Λ/8πG, and whose effective equation of
state remains fixed, w ≡ P/ε = –1 (P is the pressure) as
the Universe evolves. The cold dark matter (CDM)
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model with the cosmological constant having the corre-
sponding mass density

(1)

where h is the Hubble constant H0 in terms of
100 km s−1 Mpc–1 and ΩΛ = 0.7 ± 0.1, h = 0.7 ± 0.1, pro-
vides an excellent explanation for the acceleration of
the Universe and other existing observational data.
However, it remains quite possible that the dark energy
density may depend sufficiently weakly upon time.
This follows from many proposed models. The possi-
bility that dark energy could be dynamical is also sug-
gested by the remarkable qualitative analogy between
the observed properties of dark energy and properties of
a different type of “dark energy”—namely, the inflaton
field—postulated in the inflationary scenario of the
early Universe.

Once we allow the dark energy density to be time-
dependent, then the next simplest class of models are
those with a constant, nonpositive w. We shall call this
class “quiessence” (Q) (w < –1/3 is a necessary condi-
tion to make the Universe accelerate). Examples
include a tangled and “frustrated” network of cosmic
strings w = –1/3 and domain walls w = –2/3. More gen-
erally, in a Friedmann–Robertson–Walker (FRW)
background with the presence of CDM, an arbitrary but
constant w for dark energy from the range (–1, 0) can
be achieved by using a scalar field with a hyperbolic
sine potential (see Eq. (9) below) [4]. It may be noted
that in principle the value of w may be even less than
−1; the present observational data do not exclude this
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Table 1

Dark Energy State Parameter Energy Density Parameter

Cosmological constant w(z) = const = –1 ρ(z) = Λ/8πG = const

Quiessence w(z) = const < –1/3 ε(z) = ε0(1 + z)3(1 + w)

Kinessence w(z) ≠ const ε(z) = ε0exp 3 dz '
1 w z '( )+

1 z '+
----------------------

0

z

∫ 
 
 
possibility but limit the constant w to a range of about
(–1.6, –0.8) [7].

A more generic alternative to Λ and Q is presented
by “kinessence” (K), which refers to dark energy with
a time-dependent w. Examples of kinessence include
“quintessence”—a scalar field φ with a self-interaction
potential V(φ) minimally coupled to gravity (see [4] for
numerous references), as well as the “Chaplygin gas”
model [8] and braneworld models of dark energy [9,
10]. These three alternatives are summarized in the
Table 1 (where z ≡ a(t0)/a(t) – 1 is the redshift, a(t) is a
FRW scale factor, and the subscript 0 denotes the
present moment).

The effective equation of state is clearly an impor-
tant property of dark energy. This has led to numerous
attempts to reconstruct the former from observations of
high-redshift supernovae in a mode-independent man-
ner [11–13]. However, for field-theoretical models of
dark energy, the equation of state is not a fundamental
property. Strictly speaking, it has reference only to an
exactly isotropic FRW background. For small perturba-
tions superimposed on a FRW background, the pressure
tensor is generically nondiagonal (nonbarotropic), and
the velocity of signal propagation need not be given by

the standard hydrodynamic expression . More-
over, the very notions of ε and P for dark energy pre-
suppose the Einstein interpretation of gravitational
field equations (not to be confused with the notion of
the Einstein frame, which is used in scalar-tensor and
string theories of gravity!). Namely, even if the real
equations for a given model are not the 4D Einstein
equations at all (examples include dark energy models
in scalar-tensor [14] and brane [9, 10] gravity), one can
still write them formally in the Einstein form, by plac-

ing the Einstein tensor Rij – gijR on the left-hand side

and by grouping all other terms on the right-hand side
and calling them (after dividing by 8πG) “the effective
energy-momentum tensor of matter.” After that, the
energy-momentum tensor of dustlike matter (describ-
ing CDM and baryons) is subtracted from the latter, and
the remaining part is used to define ε and P for “dark
energy.” All this reveals how ambiguous the notion of
“equation of state” can be for a non-Einsteinian model
of dark energy.

dP/dε

1
2
---
Fundamental variables (at least, at the field-theoret-
ical level of consideration) are either geometrical
(astronomical)—if they are constructed from a space-
time metric directly, or physical—those which depend
upon properties of physical fields carrying dark energy.
Physical variables are, of course, model-dependent,
while geometrical variables are more universal. Addi-
tionally, the latter do not depend upon uncertainly mea-
sured physical quantities such as the present density of
dustlike matter Ωm. That is why we emphasize the use
of geometrical variables when describing the present
expansion of the Universe and properties of dark
energy.

The oldest and most well-known geometric vari-
ables are the Hubble constant H0 and the current value
of the deceleration parameter q0. At present, accurate
measurements of the expansion law of the Universe
during the past are also possible (e.g., using the lumi-
nosity distance to distant supernovae); therefore, these
variables should be generalized to the Hubble parame-
ter H(t) ≡  and the deceleration parameter q(t) ≡
−a  = – /aH2 (H0 = H(t0) and q0 = q(t0)). However,
both the necessity of consideration of more general
models of dark energy than a cosmological constant
and the remarkable increase in the accuracy of cosmo-
logical observational data during the last few years
compel us to advance beyond these two important
quantities. For this reason, in this letter we propose a
new geometrical diagnostic pair for dark energy. This
diagnostic is constructed from the a(t) and its deriva-
tives up to the third order. Namely, we introduce the
Statefinder pair {r, s}:

(2)

r(z) is a natural next step beyond H(z) and q(z). We will
soon see that it has a remarkable property for the basic
flat ΛCDM FRW cosmological model; s(z) is a linear
combination of r(z) and q(z). In a companion paper, we
shall show that a particular combination of two vari-
ables from the above three, e.g., q and s, can provide an
excellent diagnostic for describing the properties of
dark energy [15].

Below, we will assume that the Universe is spatially
flat, k = 0. This assumption naturally follows from the
simplest versions of the inflationary scenario and is
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convincingly confirmed by recent CMB experiments
[3]. At late times (z & 104), the Universe is well
described by a two-component fluid consisting of non-
relativistic matter (CDM + baryons) Ωm and dark
energy ΩX = 1 – Ωm. In this case, the Statefinder pair
acquires the form

(3)

(4)

where w = PX/εX. Thus, if the role of dark energy is
played by a cosmological constant (w = –1), then the
value of r stays pegged at r = 1 throughout the entire
matter-dominated epoch and at all future times; i.e., r ≡ 1
for z & 104 irrespective of the current value of Ωm. The
extreme simplicity of the parameter r(z) for the basic
cosmological model (ΛCDM), which also provides the
best fit to existing observational data, may, in fact,
prove not to be a mere coincidence!1 Very different
behavior is predicted for quiessence and kinessence, for
which r is a function of time. In particular, if dark
energy is attributed to a minimally coupled scalar field
φ (quintessence),

(5)

The properties of the second Statefinder s comple-
ment those of the first. For the basic ΛCDM model with
any nonzero Λ, s ≡ 0. Moreover, s depends neither on
time nor on Ωm for quiessence models, for which s =
1 + w. In marked contrast, s generically depends on
time for kinessence. E.g., for quintessence,

(6)

Thus, the properties of the Statefinder pair {r, s} enable
it to differentiate between the three canonical forms of
dark energy described in Table 1.

It is straightforward to invert Eqs. (3), (4) and
express w and  in terms of the Statefinder pair. How-
ever, w is more directly related to the deceleration
parameter:

(7)

Thus, w a composite quantity, since it is constructed out
of physical (ΩX) as well as geometrical (q) parameters.

1 Note that the quantity r(z) was also considered in the paper [16]
for a nonflat case when it is time-dependent. However, its remark-
able property for the flat ΛCDM model was not emphasized. For
completeness, let us mention that r = 2q = Ωm(z), s ≡ 2/3 for a
matter-dominated nonflat CDM model with negligible amounts
of dark energy and radiation.
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Note that for quintessence, w > –1, but  may have any
sign (for models with  > 0 and w < 0 the epoch of dark
energy domination is usually a transient). The relation-
ship between geometrical and physical parameters is
summarized in Table 2.

Let us now study the Statefinder pair for different
models of dark energy in greater detail. As was men-
tioned already, its value is equal to {1, 0} for any
ΛCDM model with a nonzero Λ. Quiessence models
(QCDM) have a constant w; as a result,

(8)

Two values of the equation of state are singled out for
special attention: w = –1/3 (cosmic strings) and w =
−2/3 (domain walls). In both cases, the first Statefinder
has the simple form r(t) = 1 – ΩQ(t) = Ωm(t). As a result,
r(t)  1 for t ! t0, r(t)  0 for t @ t0, and r0 . 0.3
at the present time, when ΩQ(t0) . 0.7. This leads to a
degeneracy in r0 for the dual value w = –1/3, –2/3.
Though generic, this degeneracy is easily broken when
one adds information from the second Statefinder s.
Note that the case of an arbitrary –1 < w < 0 in the pres-
ence of a nonzero Ωm can be achieved using quintes-
sence with the potential [4] (see also [17])2 

(9)

In this case, r < 1, 0 < s < 1.
Let us now turn to the quintessence case, where r

and s are given by Eqs. (5) and (6) correspondingly. To
this category belong scalar fields with “tracker” poten-
tials, for which the scalar field φ approaches a common

2 There are some misprints in the numerical coefficients in
Eqs. (119)–(121) of [4], which are corrected here.
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Table 2.  Relationship between geometrical and physical
parameters characterizing the observable Universe

Geometrical parameters Related physical parameters

H = /a Ωtotal, Ωcurv

q = – /aH2 Ωi, wi

r = /aH3 Ωi, wi , 

s = (r – 1)/3(q – 1/2) wi , 

ȧ

ȧ̇

ȧ̇̇ ẇi

ẇi
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evolutionary path from a wide range of initial condi-
tions [18]. Tracker potentials satisfy V''V/(V')2 ≥ 1. We
consider the simplest case of an inverse power-law
potential V(φ) = V0/φα, α > 0 first studied in [19]. For
this potential, the region of initial conditions for φ for
which the tracker regime has been reached before the

end of the matter-dominated stage is φin ! MP ≡ ,
and the present value of quintessence is φ(t0) ~ MP. The
evolving values of the Statefinder pair for this potential
with α = 2 and α = 4 are shown in Figs. 1 and 2. Also
shown are results for the cosmological constant and
quiessence. During tracking, εφ/εm ∝  t4/(2 + α); as a result,
quintessence always becomes dominant at late times.
The equation of state of quintessence and the corre-
sponding value of the Statefinder pair is given by

(10)

(wB = 1/3, 0 during the radiation- and matter-dominated
epochs, respectively).

G

w
wB 2+
α 2+
---------------, r 1, s 1 w+≈≈–=

Fig. 1. The Statefinder pair (r, s) is shown for different
forms of dark energy. In quiessence (Q) models (w = con-
stant ≠ –1), the value of s remains fixed at s = 1 + w, while
the value of r asymptotically declines to r(t @ t0) . 1 +

. Two models of quiessence corresponding to

wQ = –0.25, –0.5 are shown. Kinessence (K) models are
presented by a scalar field (quintessence) rolling down the
potential V(φ) ∝ φ –α with α = 2, 4. These models commence
their evolution on a tracker trajectory described by (10) and
asymptotically approach ΛCDM at later times. ΛCDM
(r = 1, s = 0) and SCDM in the absence of Λ (r = 1, s = 1)
are the fixed points of the system. The hatched region is dis-
allowed in quiessence models and in the kinessence model
under consideration. The filled circles show the current val-
ues of the Statefinder pair (r, s) for the Q and K models
(Ωm0 = 0.3).

9w
2

------- 1 w+( )

K

Q Q
K

ΛCDM
Constraints from structure formation and the CMB
suggest that dark energy must be subdominant at z * 1.
Primordial nucleosynthesis arguments impose the
stringent constraint ΩX < 0.05 at z ~ 109 [20]. Small val-
ues of ΩX and w substantially decrease the terms ΩXw
and ΩX /H that appear on the right-hand side of (3)
and ensure that the Statefinder r remains close to unity
at high z. This is exactly what one finds from Fig. 2. The
extreme sensitivity of r to an evolving equation of state
of the tracker field is reflected by the fact that the value
of r declines rapidly as the Universe expands, dropping
to ~50% from its starting value by z ~ 1, even though
dark energy remains subdominant at this epoch.

As is apparent from Fig. 2, the discriminating power
of r and s can be significant even at moderate redshifts.
Since ΩΛ and ΩQ usually decrease faster with redshift
than ΩK, the value of r(z) for both the cosmological
constant and quiessence is generally closer to unity at a
given large redshift than the corresponding value for a
tracker field (kinessence). Thus, whereas the current
value of r0 allows us to differentiate Λ from Q and K,
the value of r at moderate redshifts distinguishes K
from Λ and Q. This feature is even more pronounced in
the second Statefinder s, whose value does not explic-
itly depend upon ΩX and whose capacity to distinguish

ẇ

Fig. 2. The Statefinder pair {r, s} is shown for dark energy
consisting of a cosmological constant Λ, quiessence Q with
an nonevolving equation of state w = –0.8, and the inverse
power law tracker model V = V0/φ2, referred to here as
kinessence “K.” The lower left panel shows r(z), while the
lower right panel shows s(z). Kinessence has a time-depen-
dent equation of state, which is shown in the top right panel.
The fractional density in matter and kinessence is shown in
the top left panel.
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between Λ and quiessence on the one hand and kines-
sence on the other actually increases with redshift (see
Fig. 2). The present CMB, SNe, and galaxy clustering
data strongly suggest that α & 1 for quintessence with
the inverse power-law potential [7]. However, even then
the Statefinder remains a useful diagnostic, as will be
shown below.

Let us consider another form of kinessence. Below,
we determine the value of the Statefinder pair for the
simplest of brane cosmological models—the Dvali–
Gabadadze–Porrati (DGP) model [9]. It is important to
note that in this model “dark energy” is not the energy
associated with a new form of matter; rather, its origin
is geometrical in nature and is entirely due to the fact
that general relativity is formulated in 5-dimensional
space-time. The model has only one adjustable param-
eter rc—the scale beyond which gravity becomes five-
dimensional. This scale can be related to the current
values of H0 and Ωm0 by the relation H0rc = 1/(1 – Ωm0).
The FRW equation for this model reads

(11)

(the choice of sign in front of the last term on the right-
hand side corresponds to the “Brane2” class of models,
according to the terminology of [10]).

The solution to (11) can be written in the following
parametric form:

(12)

The values of the deceleration parameter and the
Statefinder pair read

(13)

In particular, r = 0.74, s = 0.11 for Ωm = 0.3. At large
redshifts, the Universe becomes matter-dominated and
r  1, s  0.5.

At the end of the paper, we estimate the accuracy
with which the Statefinder pair (averaged over a range
of z) can be determined in future SNAP-type satellite
missions. The “SuperNovae Acceleration Probe”
(SNAP) is expected to observe approximately 2000
type Ia supernovae within a year up to a redshift z ~ 2
and to improve luminosity distance statistics by over an
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order of magnitude [21]. Measurement of the luminos-
ity distance DL(z) allows us to determine the Hubble
parameter, since [11, 4]

(14)

To determine the Statefinder pair, we use the follow-
ing model-independent parameterization of H(z):

(15)

where x = 1 + z and A + B + C = 1 – . This form is
simpler than that used in [12], but it is sufficient for our
purposes. It becomes exact in the case of the ΛCDM
model (i.e., dark energy being a cosmological con-

stant). Note that the fact that we parameterize H2(z)/
by a 3-parameter fit means that the real H(z) curve is
smoothed over some redshift interval z ~ zmax/3. In prin-

ciple, the value of  can be somewhat larger than the
current density in CDM + baryons if dark energy has a
tracker component having equation of state equal to
that of matter at high z. However, the difference

between Ωm0 and  (if it exists at all) is known to be

small:  & 1.1Ωm0. Supernovae observations of DL

and relations (14) and (15) can be used to determine A,
B, C, and the Statefinder pair {r, s}, since

(16)

In Fig. 3, we present the results obtained from 1000
random simulations of a SNAP-type experiment for the
“mean Statefinder statistic”

(17)

(18)

with zmax = 1.7. The simulated numbers of SNe Ia
events for a one-year period of observations are taken
to be 50, 1800, 50, and 15 for the redshift intervals (0–
0.2), (0.2–1.2), (1.2–1.4), and (1.4–1.7), respectively.
The statistical uncertainty in the magnitude of SNe is
assumed to be constant over redshift and is given by
σmag = 0.15. Details will be presented in a companion
paper [15]. Figure 3 shows that a future SNAP-type
experiment determining {r, s} can easily distinguish a
fiducial ΛCDM model from several alternative time-
dependent forms of dark energy, including the inverse
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power-law quintessence potential V(φ) ∝ φ –α with α ~
1 and the DGP brane cosmological model.
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Neutron Lifetime and the Background Structure
in a Neutron Magnetic Trap

V. V. Vasil’ev
Institute of Theoretical and Experimental Physics, ul. Bol’shaya Cheremushkinskaya 25, Moscow, 117218 Russia

e-mail: basil_v@vitep1.itep.ru
Received November 24, 2002; in final form, February 6, 2003

A new cycle of processing the 1985–1986 experimental data concerning the storage of neutrons in a magnetic
gravitational trap was carried out. It was shown that the count rates determined for the background are multiples
of the neutron decay constant. This is explained by the fact that the background in the experiment on the storage
of ultracold neutrons was caused by the electron count from background neutrons penetrating through trap
walls. Numerous measurements for a small and varying number of background neutrons in the trap make it pos-
sible to extract and use data for determining the mean neutron lifetime. This lifetime turns out to be τn =
900.01 ± 0.15 s in a nonuniform magnetic field. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 14.20.Dh
1. INTRODUCTION

In order to demonstrate the possibility of long-term
storage of neutrons in a nonuniform magnetic field,
experiments on the magnetic storage of ultracold neu-
trons (UCNs) were carried out at ITEP in 1981–1986.
It was demonstrated that there is such a “long-lived”
component of neutrons in a trap whose storage time
exceeds 700 s [1–3]. Since the verification of the unitar-
ity condition by means of neutron parameters is of cur-
rent interest [4] and new experiments are in prepara-
tion, the whole set of data presented in [2] was recently
processed once again in order to exactly separate the
background contribution to the UCN count and to
determine more precisely the neutrons storage time. It
turned out that background data are of their own impor-
tance, which was most pronounced in the last measure-
ment run, where “short-lived” neutrons, whose storage
time was in the range 200–300 s depending on the stor-
age conditions, were specially suppressed [1, 3]. To
give the complete representation, the scheme of the
experiment on the storage of UCNs in a magnetic grav-
itational trap, method of their injection and removal,
and UCN detector will be described below. The results
concerning the storage of UCNs and storage curve are
not considered in this work. Basic attention is focused
on the storage of neutrons in a trap, when a neutron
detector records the background and neutrons that do
not satisfy the storage conditions and leak from the trap
to the detector. A more careful analysis of the data
revealed a certain background structure, which was
such that certain background count rates seemed most
probable. The background that was recorded by a neu-
tron detector was attributed to the count of electrons
from the decay of neutrons penetrating through the
walls and cap of the magnetic trap. When the detector
0021-3640/03/7705- $24.00 © 20207
is almost equivalently applicable for the detection of
both UCNs and electrons from the decay of neutrons,
background neutrons, more exactly electrons from their
decay, make the determining contribution in the long
storage interval. As will be shown below, available data
for the determination of the count rate are sufficient for
determining the neutron lifetime in a nonuniform mag-
netic field.

2. EXPERIMENTAL SETUP

Figure 1 shows the layout of the experimental setup
for the magnetic storage of UCNs that was used at ITEP
until 1987. Only the storage interval of neutrons in the
total measurement cycle “filling–storage–discharge to
the detector” is primarily important for estimating the
results under consideration. After filling the trap with
UCNs, the total current is turned on in the magnetic
valve and confines UCNs in the storage region. Simul-
taneously with the closing of the valve, the tube of the
injection–removal device is turned to the removal posi-
tion, i.e., joins the trap chamber with the detector. The
device remains in this position until the opening of the
valve and then until the finish of the leakage of neutrons
to the detector. This procedure ensures both the detec-
tion of neutrons that do not correspond to the storage
conditions and the measurement of the background.

A UCN detector designed by A.V. Strelkov (Labora-
tory of Neutron Physics, JINR) is a proportional dou-
ble-wire gas counter that is filled with an Ar–CO2–3He
mixture at a pressure of 1.02 atm and has an Al window
with a thickness of 10–4 m. The entrance-window diam-
eter 9.5 × 10–2 m of the counter corresponds to the
diameter of the electropolished copper tube of a turning
neutron guide. The thickness and material of the foil
003 MAIK “Nauka/Interperiodica”
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were chosen so as to detect UCNs that flow from the
open magnetic valve and are accelerated in the gravita-
tional field up to a velocity necessary for penetrating
through the foil barrier (v gr = 3.2 m/s for Al). As will be
shown below, the detector is universal: it is applicable
for detection both UCNs and electrons with energies
above 150 keV [5].

A magnetic field on the valve axis was equal to 3.2
and 2.5 kG at the maximum point and at the bottom of
the vacuum chamber, respectively. The magnetic guide
of the trap was made of Steel 3. The radial width of
poles and windings was equal to 6 × 10–2 m and the
diameter of the central winding (magnetic valve) was
equal to 1.2 × 10–1 m. The drop in the field from the bot-
tom along the vertical and from the wall along horizon-
tal is approximated by an exponential [6].

Special attention in the experiment was focused on
the protection of the detector and the injection device.
The magnet case, its walls, and the cap of the vacuum
chamber were not additionally protected by neutron-
moderating and neutron-absorbing materials. More
than 1500 filling–storage–discharge measurement
cycles were analyzed. The readout interval ∆t in the
storage mode ranged from 2 to 22 s and was equal to 5 s

Fig. 1. Layout of the ITEP setup for the removal of neutrons
from a reactor and their storage: (1) converter block,
(2) upper chamber, (3) UCN gate, (4) correcting winding,
(5) magnetic valve, (6) basic-magnet winding, (7) pumping
tube, (8) vacuum chamber, (9) accumulator support,
(10) injection–removal device for neutrons, (11) detector
protection, (12) UCN detector, (13) neutron guide tube,
(14) concrete fundament block, (15) iron–lead protection,
(16) magnetic accumulator, (17) reactor protection,
(18) polyethylene layer, and (19) additional absorber. The
position of the injection of neutrons is shown. In the con-
finement position, the neutron guide inside device 10 joins
the trap neck with the socket of detector 12.
in some runs. The cycles were realized with various
readout intervals in the two different magnetic modes
and provided 324 weighted-mean values of the count
rate (variant 1). Among these 324 values, 159 values
were obtained when the UCN absorber was placed at
half the height of the trap (Fig. 1), the current in the
lower winding of the wall was equal to 300 A, and two
upper windings were turned off (variant 2). The remain-
ing values were obtained without the absorber at a cur-
rent of 200 A in each of three windings of the wall. The
count rates were determined with data reduced to inter-
vals 7, 8, 10, 12, 15, and 22 s; i.e., the set of values was
a mix of six independent groups. Each group of data
was measured in one to two weeks. Thus, the neutron
background (thermal and fast neutrons) in the experi-
ment could vary depending on the reactor mode, sur-
rounding experiments, and protection conditions. As
was mentioned above, the integral background ranged
from 6 × 10–3 to 10–2 s–1 for different runs. No attempts
to improve the protection of the detector reduced the
background below the achieved level.

This work was initiated by my hypothesis that the
background described above is attributed to the detec-
tion of electrons from the decay of background neu-
trons penetrating through the cap and walls of the elec-
tromagnet and chamber. It turns out that this hypothesis
is corroborated by the experimental data.

3. DATA PROCESSING METHOD 
AND THE DETERMINATION

OF THE NEUTRON LIFETIME

The time differentiation of the radioactive-decay
law N = N0exp(–t/τ), where N is the number of neutrons
in a certain volume at time t and τ is the neutron life-
time, provides the rate G of the production of electrons
and protons in this volume:

(1)

where λ = 1/τ is the decay constant. Formula (1) is the
decay law in the form convenient for the case of the
neutron flux through the volume under consideration. If
the change in the neutron flux is stepwise, N1, N2, …,
Nk, we have G1 = λN1, G2 = λN2, …, Gk = λNk; i.e., the
change in the count rate is also stepwise. Let us assume
that the neutron decay region is monitored by a detector
of decay electrons; i.e., electrons from this region arrive
at the detector and are recorded with the integral effi-
ciency ε, which is naturally considered as time con-
stant. Multiplying Eq. (1) by ε, we obtain d(εN)/dt =
λ(εN) or the electron-detection rate

(2)

where n = εN. Therefore, the efficiency is the similarity
factor transforming Eq. (1) into Eq. (2). Thus, the
detector records electrons from the decay of neutrons
with the count rate that is proportional to the number of
neutrons whose decay is fixed by the detector, and the

G dN /dt λN ,= =

g dn/dt λn,= =
JETP LETTERS      Vol. 77      No. 5      2003



        

NEUTRON LIFETIME AND THE BACKGROUND STRUCTURE 209

                                     
proportionality factor is equal to the neutron decay con-
stant. If the detector fixes the decay of one, two, three,
etc., neutrons, the count rate of the detector obviously
changes stepwise with the step λ. In this case, it is con-
venient to represent information in the form of the fre-
quency histogram, which is the number of events at
each interval (Fig. 2). If the detector records electrons
from a variable number of neutrons, the result is the set
of the count-rate values gk = λnk. Multiplying this rela-
tionship by τ, we obtain

(3)

This relationship means that the count-rate scale is
determined by the neutron lifetime; i.e., if τ is equal to
the real neutron lifetime, the tops of the peaks in the fre-
quency diagram of the count rate coincide with the
scale divisions. The scale of the count rates gk will con-
sist of values approximately equal to 0.0011, 0.0022,
0.0033, etc., and the corresponding numbers of neu-
trons are equal to 1, 2, 3, etc., because τ ≈ 900. If an
erroneous value is used for the lifetime, the scale divi-
sions are shifted from the physically determined posi-
tions of the peaks in the count-rate diagram. Thus, dis-
tances between peaks depend on the numbers of neu-
trons corresponding to respective measurements and on
the neutron decay constant. The numbers of neutrons
determining the detector count rate can be estimated
from this relationship. This estimate is obtained by
multiplying the count rates by the assumed neutron life-
time, rounding the resulting numbers to an integer (for
variant 2) or to chosen rounding step (0.17 or 0.1 for
variant 1 depending on the depth of averaging of the
primary measurements), i.e., by finding nk. Moreover,
one can also verify whether the neutron lifetime value
used in this case and set of nk values agree with experi-
mental data. To do this, one must calculate the func-
tional

(4)

where σk is the error of gk measurement. If the lifetime
value is chosen correctly in the count rate scale, i.e., if
λ0 value corresponds to the neutron lifetime, F(λ) has a
minimum at the point λ = λ0. Otherwise, F(λ) is larger
than F(λ0); i.e., the real lifetime value corresponds to
the count-rate scale such that the scale divisions maxi-
mally approach the physical maxima of the count rate
histogram. All other values provide worse agreement
according to the above LSM estimate. The λ0 value and
its error can be determined from the condition of the
minimum of this functional dF(λ)/dλ = 0. This method
of the scale fitting can be verified using the data of the
ITEP-1986 experiment. The vacuum chamber of the
magnetic trap is obviously a region that is monitored by
the detector. Background neutrons penetrating through
the magnetized walls of the trap are polarized and
decay in the chamber with the corresponding decay

τgk nk.=

F λ( )
gk nkλ–( )2

σk
2

--------------------------,
k 1=

k K=

∑=
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constant. This decay is in particular accompanied by
the production of electrons. Serving for the storage of
neutrons, the nonuniform magnetic field of the bottom
and walls of the trap reflects electrons and collects them
in the central part of the trap on the sink orifice (see
Fig. 1). The magnetic valve orients the electron
momentum along the axis of the neutron guide leading
electrons to the detector. At a low value of the lower
threshold, the UCN detector serves also as a detector of
electrons.

4. RESULTS OF DATA PROCESSING
AND DISCUSSION

Figure 2 shows the frequency histogram of the count
rates, and Figure 3 shows about 300 count rates with

Fig. 3. Detector count rates at UCN confinement and
leakage.

Fig. 2. Frequency histogram of the count rates obtained in
the experiment. The scale corresponds to τ = 900 s.
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Probable values of the neutron lifetime

No.
Lifetime, s Error, s

No.
Lifetime, s Error, s

No.
Lifetime, s Error, s

Left wing Average value Right wing

1 886.95 0.15
3 900.01 0.15

4 911.08 0.155

2 888.87 0.15 5 913.01 0.155
errors. Errors were calculated by the weighted-mean
method [7] in the total number of runs, where this count
rate was obtained. The entire set of count rates (in vari-
ant 1) is analyzed by the above method for the lifetime
τ ranging from 884 to 916 s, which corresponds to the

Fig. 4. Least squares method functional for the resulting set
of count rates.

Fig. 5. Determination of the lifetime from the LSM func-
tional for variant 2 (159 measurements of the count rate).

s

neutron lifetime values obtained in previous experi-
ments. Figure 4 shows the dependence of functional (4)
on the probe neutron lifetime τ determined by this
method. It turns out that functional (4) has seven local
minima rather than one minimum in this region. The
five most reliable values are given in the table.

Results according to variant 2 provide one value
τ0 = 899.99 ± 0.45 s (see Fig. 5). Value no. 3 from the
table seems to be the most reliable value. The two “left”
values give 888 s in average (to the left from 900 s in
the curve), and the two “right” values correspond to a
mean of 912 s. These values coincide with the known
results of previous measurements of the neutron life-
time with a magnetic field [8]. This result seems to be a
consequence of the possible splitting of the neutron
lifetime in the magnetic field, when decay electrons are
detected. However, the origin of this splitting requires
additional investigations, because it can be a technical
sequence of the method. The most probable average
value of 900.01 ± 0.15 s is determined in the framework
of the method of decay scale fitting under consider-
ation. This value is obtained by processing the entire set
of measurements of the count rate (variant 1,
324 points).

5. CONCLUSIONS

It was shown that electrons from the decay of polar-
ized neutrons from the external background inside the
trap make the basic contribution to the background in
the experiment with the magnetic trap. The method of
the decay-scale fitting was proposed and applied to the
data. Some data correspond to the lifetimes ≈888.0 and
912.0 s, which are shorter and longer than the average
neutron lifetime in the nonuniform magnetic field. This
fact indicates splitting of the neutron lifetime in the
decay of polarized neutrons in the magnetic field. A
value of 888 s is very close to the results of the most
precise recent experiments [8] based on the storage of
UCNs in material vessels, and a value of 912 s corre-
sponds to experiments reported in [9]. However, this
indication needs additional verification.

It was shown that the average neutron lifetime in the
nonuniform magnetic field is equal to 900.01 ± 0.15 s.
This result possibly provides an additional stimulus for
the more precise determination of the neutron lifetime
by the methods of both the storage of neutrons and
detection of the products from neutron decay.
JETP LETTERS      Vol. 77      No. 5      2003
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This work is based on the results obtained at the
storage of UCNs in 1985 and 1986 at the ITEP reactor.
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work on the magnetic storage of UCNs, to V.V. Vla-
dimirskiœ, who initiated this work, and to I.L. Karpikhin
for support at the stage of data processing. The process-
ing stage was supported by INTAS, grant no. 00-00043.
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It is shown that the efficiency of attosecond pulse and high-harmonic generation in the ionization of excited
molecular structures by a powerful femtosecond optical pulse can appreciably exceed the efficiency of analo-
gous processes in atomic systems. This is due to the presence of a delocalized electron wave-packet component
in the nonequilibrium molecular states, resulting in an increase of the number of particles that are effectively
involved in the bremsstrahlung generation in the course of recollisions of laser-accelerated electrons with
molecular core. Calculations suggest that, by optimizing the nonlinear response of molecular systems in the
ionization process, one can develop compact sources of coherent vacuum ultraviolet and X-ray radiation with
luminance at a level that is presently achieved only at large-scale accelerator facilities with free-electron lasers.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Ky
High-harmonic generation in the course of atomic
ionization by powerful femtosecond laser pulses is of
great interest for developing compact sources of coher-
ent vacuum-ultraviolet (VUV) and X-ray radiation.
Recent experimental efforts in this field [1–3] have
been devoted to the optimization of interaction condi-
tions between femtosecond radiation and rarefied inert
gases to demonstrate the possibility of fabricating
“desktop” VUV sources with pulse luminance only one
or two orders of magnitude inferior to the best world
achievements obtained at large-scale accelerator facili-
ties with free-electron lasers [4, 5]. Further progress in
enhancing the efficiency of high-harmonic generation
might be associated with the conversion of optical radi-
ant energy into the short-wavelength radiation using
molecules or clusters as particles with nonlinear
response potentially stronger than in atoms. In this
work, high-harmonic generation and attosecond radia-
tion bursts in the course of ionization of the simplest
molecular structures by an ultrashort laser pulse were
studied to demonstrate that the nonlinear response in
the VUV and soft X-ray regions can be optimized at a
level that sizably exceeds the analogous atomic
response.

Compared to atoms, molecules and clusters possess
a diversity of sizes, shapes, orientations about the excit-
ing laser field, i.e., new factors that can be used to opti-
mize the nonlinear response. In recent theoretical stud-
ies, some advantages of molecular systems were for-
0021-3640/03/7705- $24.00 © 20212
mulated. Among them are the extension of short-
wavelength plateau in the spectra of harmonic genera-
tion owing to the collision of a laser-accelerated elec-
tron with a “foreign” ion in the molecule [6–9]; the
excitation of even harmonics with an amplitude compa-
rable to the amplitude of traditional odd harmonics in
the ionization of heteroatomic molecules [10]; and the
increase in harmonic generation efficiency in an excit-
ing field oriented transverse to the molecular axis [11].
However, regimes with a noticeable increase in the gen-
eration efficiency, as compared to inert gases, have not
been observed so far in experiments with molecular
gases [12–15]. As shown in this work, a plausible
explanation is that the regime of optimal nonlinear
response corresponds to the essentially nonequilibrium
nuclear positions in a molecule, for which the internu-
clear separations differ from their equilibrium values
corresponding to the minimum of potential energy sur-
face of the molecule. In other words, the optical radia-
tion can be efficiently converted into short-wavelength
radiation if the molecule is either in a highly excited
vibrational state or on the decaying term at the begin-
ning of dissociation. These conditions obviously
require special preparation of molecular medium in the
experiment.

Numerical calculations were carried out using the
widely accepted model (see, e.g., [7, 11, 16]) of the
simplest molecular system, namely, a two-dimensional

analogue of the  ion with a smoothed CoulombX2
+
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potential V(x, y) formed by two identical single-
charged centers confining a single electron:

(1)

Here, R is the internuclear distance and a is the smooth-
ing parameter, which is usually chosen from the condi-
tion that the ionization energy for the ground electron
term of the model ion coincides with its value for the
real molecular ion. The particle ionization dynamics in
the field of a laser pulse with electric field E(t) linearly
polarized along the y axis is described, in the dipolar
approximation, by the Schrödinger equation (in atomic
units):

(2)

In this work, molecular orientation is assumed to be
fixed and perpendicular to the direction of the exciting
laser field. This assumption is justified both by the
experimentally proved possibility of aligning simple
molecules by a long laser prepulse [15, 17–19] and by
the short duration of the main powerful pulse with
ensuing harmonic generation during the molecular ion-
ization. We also ignore the collective effects caused by
the radiation interaction with a large number of parti-
cles in the course of propagation in the ionized gas,
such as phase and group mismatch, blue shift of the
fundamental and higher harmonics, etc. The optimiza-
tion of the nonlinear response of a single particle can be
considered as the first step in the problem of designing
a high-efficiency source of coherent VUV and X-ray
radiation in a molecular gas.

The stationary electronic states in potential (1) can
be obtained, e.g., by numerical imaginary-time integra-
tion of Eq. (2) with zero external field. The resulting
potential energy curve U(R) of molecular ion including
the nuclear repulsion is shown in Fig. 1 for the smooth-
ing parameter a = (0.5)1/2. The equilibrium internuclear
distance R = 2.4 corresponds to the ionization potential
Ip = 28.5 eV, and the dissociation energy D is equal to
2.9 eV. These values are close to their experimental val-

ues for the real molecular ion  (R = 2, Ip = 29.9 eV,
D = 2.8 eV).

The oscillation period of nuclei with a mass of
1836 au at the potential well bottom is about 15 fs. This
implies that, when studying the processes accompany-
ing the ionization of a light molecule by a powerful
femtosecond optical pulse, one must generally take into
account the nuclear dynamics [10, 20] and at least sup-
plement the set of Eqs. (1) and (2) with the equation for
self-consistent evolution of the internuclear distance
R(t) [21]. However, our calculations show that, for
heavier nuclei and/or molecular ionization during few
periods of optical field, the distance R can be set fixed
and corresponding to the running molecular size at the

V x y,( ) x R/2–( )2 y2 a2+ +[ ] 1–
–=

– x R/2+( )2 y2 a2+ +[ ] 1–
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beginning of ionization, which will be assumed in what
follows.

The mechanism underlying high-harmonic genera-
tion of optical radiation in the course of atomic ioniza-
tion is well known [22, 23]. It is caused by the laser-
synchronized bremsstrahlung of electrons ejected from
atoms and accelerated by optical field to collide again
with parent ions. The repetition of identical
bremsstrahlung bursts emerging from a given physi-
cally small (compared to the radiation wavelength) vol-
ume with the half-period of ionizing field gives rise to
the sharp peaks (harmonics) in the spectrum of nonlin-
ear response of atomic system. Quite the reverse, if the
ionization of almost all atoms and the recurrent electron
collisions with parent ions proceed during one period of
laser field, the atomic response corresponds to the exci-
tation of an attosecond electromagnetic pulse with a
broad continuum spectrum extending to the X-ray
band.

Wave-packet diffusion in the course of electron
acceleration outside the atom (molecule) is the main
factor weakening the nonlinear response of an ionized
particle in a linearly polarized optical field with nonrel-
ativistic intensity. The acceleration time comprises a
part of the optical period and far (by an order of magni-
tude and more) exceeds the interatomic time scale of
electron wave function, as a result of which the wave
packet spreads significantly by the time of recollision,
and only a small fraction of accelerated electrons con-
tribute to the bremsstrahlung generation. In classical
terms, the transverse (with respect to the ionizing field)
momentum component deflects the trajectory of the
majority of escaped electrons far beyond the scattering
center.

Evidently, the wave-packet spreading upon optically
induced electron acceleration will slow down if a com-
ponent characterized by a small transverse momentum

Fig. 1. Potential energy curve for the ground electronic state
of a two-dimensional model of molecular ion (1) with a =
(0.5)1/2. The internuclear distance is in atomic units and
energy is in electronvolts.
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increases in the initial ψ function. It is precisely this
situation that is typical of molecular (contrary to
atomic) systems, which necessarily contain a delocal-
ized ψ-function component in the internuclear region to
provide mutual attraction of nuclei.

A decrease in the wave-packet spreading upon
increasing internuclear separation and, as a result, a siz-
able enhancement of the nonlinear response in the
short-wavelength range of the spectrum is clearly seen
in the regime of attosecond pulse generation upon the
above-barrier ionization of a molecule during one
period of a rapidly increasing laser field. The corre-
sponding pattern is free of multiple wave-packet inter-
ference, which inevitably arises for the ionization
extended over several field periods and hampers the
unambiguous identification of the effect. Figure 2
shows the “snapshots” obtained by numerical integra-
tion of Schrödinger equation (2) for the electron wave
packet before its recollision with the molecular core of
size R = (a) 2.4, (b) 5, and (c) 7.2 in the electric field
E(t) = E0[exp(2ω0t/π) – 1]sinω0t (E0 = 0.36, ω0 =
0.114). The initial electron distribution p(kx) =

 in transverse momentum is alsoψ kx ky,( ) 2 kyd
∞–

∞∫

Fig. 2. Left: electronic wave packet before recollision with
ion core (also shown in the figure); right: electron trans-
verse-momentum distribution in the initial state. Results are
obtained for R = (a) 2.4, (b) 5, (c) 7.2, and (d) 18.
shown in Fig. 2. The cross-hatched regions correspond
to the electrons displaced in the transverse direction at
a distance shorter than R during free motion: |kx |∆t ≤ R.

The time dependence of the second derivative  of
the dipole moment of a molecular ion in the direction of
the laser field demonstrates the excitation of a burst
with a duration shorter than 200 as. This dependence
and the corresponding response spectra are presented in
Fig. 3 for various R values. Note that the generation
efficiency of the short-wavelength quanta with frequen-
cies ω > 30ω0 is, at least, an order of magnitude higher
for the internuclear separation R = 7.2 than for the equi-
librium molecular configuration with R = 2.4.

The variation in the efficiency of frequency conver-
sion with varying R is crucial in the comparison of the
atomic and molecular responses. Evidently, the molec-
ular ion transforms in the limit R  ∞ into a pair of
noninteracting singly charged ions sharing a single
electron. The recurrent bremsstrahlung directed per-

ḋ̇ y〈 〉

Fig. 3. Time dependence of the polarization response of a
molecular ion in the laser-field direction for (a) R = 7.2, and
the spectra of molecular response for (b) R = 2.4, 3.5, 7.2,
and 18. Figure (b) also shows the response spectrum for H
in a two-dimensional model of hydrogen atom with
V(x, y) = –(x2 + y2 + 0.5)–1/2.
JETP LETTERS      Vol. 77      No. 5      2003
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pendicular to the molecular axis is identical with the
radiation of a single-electron atom. Thus, by increasing
the internuclear separation in our model, we can answer
the question of to what extent the molecular system is a
more efficient generator of short-wavelength quanta
than the analogous atomic system with the same num-
ber of radiating electrons. In Fig. 3, the heavy line cor-
responds to the spectrum of attosecond burst upon the
ionization of an atom with the potential V(x, y) = –(x2 +
y2 + 0.5)–1/2. One can see that the gain for the optimal
internuclear separation (R ≈ 7) is almost an order of
magnitude greater than for the atomic system over the
entire short-wavelength portion of the spectrum. At the
same time, the response of the atomic system is gener-
ally not small compared to the molecular system.
Moreover, it exceeds, at least in our model, the molec-
ular response in the equilibrium state (R = 2.4).

Note that the gradual transition from the molecular
to atomic response is accompanied by the appearance
of a new “cross” bremsstrahlung component at the
intermediate nuclear distances. It is caused by the laser-
accelerated electrons ejected from the ion and colliding
with another ion. The presence of such electrons and
their dominance over the delocalized electrons at R ≥
20 is reflected in the interference modulation of the
wave-packet structure as it returns to the molecular core
(Fig. 2d). At even larger internuclear distances, those
wave-packet parts corresponding to the electrons that
were initially localized near the attracting centers have
no time to overlap in the course of acceleration and
spreading, as a result of which the response becomes
purely atomic.

The fact that the optimal internuclear distance for
the energy conversion into the VUV and X-ray regions
is larger than the equilibrium distance is confirmed by
high-harmonic generation in the molecular ionization
during several periods of optical field. This is illustrated
by the results obtained within the framework of the
same model of a molecular ion subjected to the field
E(t) = E0sin2(ω0t/24)sinω0t (E0 = 0.125, ω0 = 0.057)
corresponding to a laser pulse with a duration of 16 fs,
peak intensity of 5 × 1014 W/cm2, and a wavelength of
0.8 µm. Figure 4 shows the spectra of odd high-har-
monic generation after smoothing with the averaging
window equal to the excitation frequency. The maxi-
mum of integrated generation intensity in the spectral
interval 5ω0 < ω < 85ω0 corresponds to the distance
R = 3.5 and also exceeds (by five to seven times) the
atomic response in the plateau region.

The optimization of nonlinear response, which was
observed for the ionization from the ground electronic
state of a molecular system, can occur at more complex
initial conditions and for more complex quantum
objects. It is conceivable that the presence of a greatest
possible number of delocalized electrons with a small
wave momentum in the direction transverse to the ion-
izing field is the main “indicator” in choosing the
molecular structures and their states. In this respect,
JETP LETTERS      Vol. 77      No. 5      2003
e.g., of a considerable interest are the excited electronic
states of molecules (including the simplest ones), in
which the spatial size of electron cloud is larger than in
the ground state and, hence, is less subject to spreading
upon the laser-induced acceleration. Our preliminary

calculations of the model of the molecular ion  in
one of its lower lying excited initial electronic states
show that the maximal efficiency of attosecond burst
generation can be increased, in this case, at least by sev-
eral times, as compared to the ionization from the
ground electronic state.

Evidently, the optimal interaction regime between
laser radiation and molecules can be attained only upon
special preparation of a working gas in experiment.
One such possibility consists of the preliminary orien-
tation of molecules, their resonance excitation, or ion-
ization by a low-intensity ultrashort laser pulse fol-
lowed by the action of a powerful pulse on a gas with a
time delay (relative to the ionizing pulse) that is deter-
mined by the time of optimal “expansion” of the mole-
cule in the course of its oscillations or incipient disso-
ciation.

In closing, let us assess the possibilities that are pre-
sented by the optimal high-harmonic generation regime
in the experiments on molecular ionization. The energy
conversion ratio into a high VUV harmonic achieved to
date using a powerful femtosecond optical pulse under
phase-matching conditions approaches 10−4 in inert
gases [2]. An order-of-magnitude increase in this ratio
upon changing to molecular gases increases the average
coherent VUV-radiation power to 5 mW for a compact
Ti:sapphire laser with a pulse duration of 20 fs, a repe-
tition rate of 1 kHz, and an energy of 5 mJ. This level
corresponds to the highest values that are presently

H2
+

Fig. 4. Harmonic generation spectra of a molecular ion with
R = 2.4 and 3.5 and (dashed line) of the H atom upon the
action of a laser pulse with E0 = 0.125 and ω0 = 0.057.
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obtained only at large-scale accelerator facilities with
free-electron lasers in the wavelength range λ ~ 100 nm.

This work was supported by the Russian Foundation
for Basic Research (project no. 01-02-18006) and the
Presidium of the Russian Academy of Sciences (pro-
grams “Femtosecond Optics” and “Quantum Macro-
physics”).
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Long-lived optical anisotropy generated in glasses by bichromatic mutually coherent radiation is associated
with the accumulation of a built-in electric field. The kinetics of photoinduced anisotropy was studied within
the framework of a phenomenological model taking into account the polarization- and current-induced mech-
anisms of field formation and the medium conductivity. The combination of the current and polarization mech-
anisms gives rise to new effects. The accumulation of anisotropy and its dark relaxation have a nonmonotonic
character. For a sufficiently high and rapidly relaxing photoconductivity, “hidden writing” is possible, for which
the anisotropy is absent during the course of bichromatic illumination, but it appears after switching off the light
and relaxes slowly due to dark conduction. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.20.Ek; 78.20.Jq
It is known [1–3] that a centrally symmetric medium
becomes optically anisotropic under multichromatic
coherent illumination. As a result, the refractive index
changes and even-order effective polarizabilities
appear in the medium. A change in polarizabilities is
accompanied by a broad spectrum of observed effects:
second harmonic generation [1, 2], self-diffraction [4],
degenerate parametric amplification [5], etc. [6, 7].
This fact attracts the attention of researchers, because it
presents new opportunities in scientific and practical
applications.

The nature of anisotropy is associated with the for-
mation of a long-lived built-in electric field in the
medium. Although the detailed microscopic mecha-
nisms of the formation of this field are highly diversi-
fied, all are based on the spatial asymmetry of the prob-
abilities of optical transitions under the action of a mul-
tichromatic coherent light. From the phenomenological
point of view, the kinetics of long-lived photoinduced
anisotropy and the parameters governing the saturation
time of anisotropy and its lifetime are of fundamental
interest. This communication is devoted to this prob-
lem.

Let the medium be illuminated by mutually coher-
ent light sources with the fundamental and doubled fre-
quencies:

where m = 1, 2 refer to the fundamental and doubled
frequencies, respectively; km and ϕm are, respectively,
the wave vectors and phases; and em and Em(r) are,
respectively, the polarizations and envelopes of the
radiations.

Em r t,( ) Em r( ) i kmr mωt ϕm+–( ) c.c.,+exp=

Em r( ) emEm r( ),=
0021-3640/03/7705- $24.00 © 20217
In a system of localized electronic states, this radia-
tion induces spatial asymmetry of optical electronic
transitions between the localized levels. Due to gemi-
nate recombination, part of such electrons are restored
to the initial state in a certain time τ. This mechanism
generates long-lived polarization Ps(t, r) and the corre-
sponding electric field Ep(t, r) in the medium. The other
part of asymmetrically excited electrons transfer at
large distances to produce a constant current density
JCPG in the medium. This is known as the coherent pho-
togalvanic effect (CPGE) [8–10]. The separation of car-
riers by the current JCPG gives rise to the space charge
ρJ(t, r) and the corresponding electric field Eq(t, r). If
the medium possesses nonzero conductivity σ, the
fields will be screened and a compensating space
charge ρσ(t, r) will appear. Therefore, the total space
charge is ρ = ρσ(t, r) + ρJ(t, r), and the total electric field
E(t, r) is the sum of polarization and space-charge
fields. The accumulation and relaxation of E(t, r)
depend on the partial excitation efficiencies, time τ, and
medium conductivity.

Let us consider these processes in more detail.
Define the total carrier flux density for the asymmetric
transitions as

where ∆k = 2k1 – k2; ∆ϕ = 2ϕ1 – ϕ2; j is unit vector in
the direction of asymmetric electron transfer:

C1, 2 are the photogalvanic parameters; and A =
 is the effective photogalvanic

coefficient.

S jAE1
2
E2 ∆kr ∆ϕ+( ),cos=

j e1 e1e2( )C1 e2C2+( ) e1 e1e2( )C1 e2C2+( ) 1– ,=

e1 e1e2( )C1 e2C2+( )
003 MAIK “Nauka/Interperiodica”



 

218

        

BALAKIREV, SMIRNOV

   
We assume that the accumulation of space charge ρ
and field E(t, r) = E(t)E(r) is described by the equations

(1)

The diffusion of charge carriers is ignored.

The constitutive equation for electric induction D is
represented in the form

(2)

The change in Ps(t, r) under the action of mutually
coherent radiations is described by the following
model:

(3)

In Eqs. (1)–(3), the constants A1, 2 characterize the
relative fractions of asymmetrically photoexcited elec-
trons for the photogalvanic effect (A1) and polarization
(A2), so that A1 + A2 = 1.

By eliminating space charge from Eq. (1), one
obtains

(4)

For zero initial conditions, Eqs. (3) and (4) have the
following solutions:

(5)

td
d ρ div σE t r,( ) JCPG+( ),–=

divD 4πρ; JCPG A1S.= =

D εE t r,( ) 4πPs t r,( ).+=

td
d

Ps –
Ps

τ
-----

A2

τ
------Sτ .+=

td
d

E t( )
1
τm

-----E t( )+ 
  divE r( )

+
A2

τ
------ t

τ
--– 

 exp
A1

τ
------+ 

  div
4πτ

ε
---------S 0,=

τm 4πσε 1– .≡

Ps t r,( ) A2 1 t
τ
--– 

 exp– 
  P r( ),=

P r( ) Sτ ;=

Fig. 1. Kinetics of field squared at ξ > 1.
(6)

The spatial distribution of the field E(r) is found from
the equation

and described the shape of the so-called photoinduced
gratings [3].

For identical relaxation times, one has

Finally, the relaxation of accumulated field is
described by the expression

where time t is measured from the completion of illu-
mination and T is the illumination time.

Let us briefly discuss this result.

1. ACCUMULATION
The electric fields of space charge and photoinduced

polarization have different signs and compensate each
other in part. For this reason, the resulting field may be
lower than either of them. For a sufficiently prolonged
illumination, the field tends asymptotically to the sta-
tionary value Es(r) = –A1τmτ–1E(r). The accumulation
kinetics is determined by the parameter ξ = A1τmτ–1.

If ξ > 1, the total field tends monotonically with time
to its stationary value (Fig. 1; T = 10τ, ξ = 1.2). All fig-
ures presented below show, for clearness, the relative

value G = E2(t)  that characterizes the efficiency of
photoinduced second harmonic generation (PSHG).

 is the maximal value in the graph. Solid lines dem-
onstrate the accumulation and dashed lines demonstrate
the dark relaxation. Time is normalized to τ.

If ξ < 1, the total field first reaches its maximum
whereupon tends to Es(r), which can be rather small
compared to the maximal value (Fig. 2; T = 6τ, ξ =
0.03). Such a PSHG behavior was observed recently in
the TF-4 glass [11] and, earlier, in an optical fiber [12].

2. RELAXATION
The character of field relaxation depends on ξ, accu-

mulation time T, and relative magnitudes of the accu-

E t r,( )
τm

τ τ m–
-------------- 1 t

τ
--– 

 exp– 
  A2E r( )=

–
τm

τ τ m–
-------------- 1 t

τm

-----– 
 exp– 

  1 A1

τm

τ
-----– 

  E r( ).

div εE r( )( ) 4πdiv τS( )=

ρ t r τ τ m, ,( ) 1 t/τm–( )exp–( ) A2 A1+( )ρ r( ),=

E t r τ τ m, ,( ) 1 t/τm–( )exp–( )A1E r( ).–=

E t r,( )
τm

τ τ m–
-------------- A2 1 T

τ
---– 

 exp– 
  t

τ
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2
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mulated fields. If ξ > 1, then the usual relaxation takes
place (Fig. 1; T = 10, ξ = 1.2). If ξ < 1 and field magni-
tudes accumulated by the time t = T are comparable,
then the field rises in the time interval t ~ τ to a level
corresponding to the accumulated charge field, after
which it slowly relaxes to zero (Fig. 2; T = 6τ, ξ = 0.03).
Interestingly, the field can change sign during t ~ τ if the
polarization field exceeds the charge field. This fact
may substantially alter the observed PSHG dynamics.
It should be emphasized that the illumination duration
governs only the grating amplitude, while the grating
lifetime is virtually equal to τm and can be rather long.

3. PHOTOCONDUCTIVITY EFFECT

Let the photoconductivity be sustained by photoex-
cited carriers that “instantly” recombine in time τR !
τm, τ. In other words, we assume that the conductivity
is restored stepwise to its dark value after switching off
the illumination. The maxwellian relaxation time
τm(|E1 |2, |E2 |2) = Tm in the illuminated sample is
assumed to be much shorter than the dark relaxation
time; i.e., Tm ! τm.

In such a situation, the analysis of the accumulation
process can be carried out using the grating write equa-
tions with the substitution τm  Tm, so that the field
relaxation can be described by the expression

where

E t( )
Ps

τ τ m–
--------------τm

t
τ
--– 

 exp=

+ E T( )
Ps

τ τ m–
--------------τm– 

  t
τm

-----– 
  ,exp

E T( )
Tm

τ Tm–( )
-------------------A2 1 T

τ
---– 

 exp– 
 =

–
Tm

τ Tm–( )
------------------- 1 T

τm

-----– 
 exp– 

  A2 A1 A1

Tm

τ
------–+ 

  ,

Fig. 2. Kinetics of field squared at ξ < 1.
JETP LETTERS      Vol. 77      No. 5      2003
One can see that, under these writing conditions, the
maximum attainable field level is considerably lower,
and field tends to zero with the characteristic time Tm in
the course of further writing. The behavior of dark
relaxation is unusual; after switching off the light, the
field reaches a maximum in a short time τR, whereupon
relaxes to zero with the dark time τm (Fig. 3).

The physical nature of the phenomenon can be
explained assuming, for simplicity, that the photocon-
ductivity is large, Tm ! τ, and JCPG is negligibly small.
In this case, the polarization field is fully compensated,
during writing, by the field of screening charge ρσ(t, r).
After the illumination is terminated, the polarization
relaxes to zero with time τ, but the field of screening
charge is retained, and it can be rather high. However,
this field slowly relaxes to zero due to the low dark con-
ductivity. Interestingly, if the photoconductivity is high,
the process shows up as a “hidden writing,” because
there are no indications of optical anisotropy during the
illumination, although it appears after switching off the
light. At the same time, if τ is small, one can rapidly
write the photoinduced grating, which will exist for a
long time.

This phenomenon may be useful in practical appli-
cations. It is worthy of note that the photoconductivity
can be produced by an outside light source and, thus,
controlled independently. This not only allows one to
control the process in those cases where the photocon-
ductivity induced by bichromatic illumination is small
but also provides a tool for studying the photoconduc-
tivity as such.

Note, in closing, that the physical picture may be
essentially different upon inhomogeneous illumination,
because, in this case, Tm also becomes spatially inho-
mogeneous. However, discussion of this issue is
beyond the scope of this communication.

We are grateful to M.V. Éntin for helpful discus-
sions. This work was supported by the Russian Founda-
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Fig. 3. Kinetics of field squared for high photoconductivity.
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On the Mechanism of the Runaway of Electrons in a Gas: 
The Upper Branch of the Self-Sustained Discharge 

Ignition Curve
A. N. Tkachev and S. I. Yakovlenko

Institute of General Physics, Russian Academy of Sciences, Moscow, 119991 Russia
Received January 23, 2003

Based on the results of simulation by the method of particles, it is shown that the Townsend mechanism of elec-
tron multiplication in a gas at a sufficiently large electrode spacing is valid at least up to such large values of
E/p at which relativistic electrons are generated. On the other hand, the phenomenon of electron runaway in a
gas is determined by the electrode spacing, which must be either comparable with or smaller than the charac-
teristic electron multiplication length, rather than the local criteria accepted presently. It is shown that, for a par-
ticular gas, the critical voltage across the electrodes at which the runaway electrons comprise a significant frac-
tion is a universal function of the product of the electrode spacing by the gas pressure. This function also deter-
mines the condition of self-sustained discharge ignition. It not only incorporates the known Paschen curve but
also additionally contains the upper branch, which describes the absence of a self-sustained discharge at a high
voltage sufficiently rapidly supplied across the electrodes. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 51.50.+v
The phenomenon of electron runaway in a fully ion-
ized plasma lies in the fact that, in a sufficiently strong
electric field, electrons gain a higher energy in their free
paths than they lose in collisions with plasma particles.
The Coulomb cross sections drop quadratically with
growing energy of the relative motion of colliding par-
ticles. Therefore, if an external electric field occurs in
the plasma, a certain fraction of high-energy electrons
will always be constantly accelerated. The electron run-
away phenomenon in a plasma was predicted long ago
[1]. Numerical calculations [2, 3] and an analytic con-
sideration for weak fields [4] were also carried out long
ago. This phenomenon is significant for impurity diag-
nostics and energy balance in tokamak plasmas [5].

The phenomenon of electron runaway is also
observed in gases [6, 7]. So-called open discharges [8–
11], used, in particular, for laser pumping [12, 13], were
created on its basis. Below, it will be shown that, con-
trary to the accepted point of view, the mechanism of
electron runaway in a gas-discharge plasma is totally
different from that in a fully ionized plasma. Electron
runaway is carried out within the framework of the
Townsend ionization mechanism (see, e.g., [14] about
this mechanism). In this mechanism, the energy gained
in the field is compensated by the expenditure for gas
excitation and ionization. In this case, the runaway
electrons arise when the characteristic multiplication
length (reciprocal Townsend coefficient) becomes com-
parable with or exceeds the electrode spacing.
0021-3640/03/7705- $24.00 © 20221
ON ELECTRON MULTIPLICATION
AND RUNAWAY

Townsend Multiplication Mechanism

Consider the propagation of electrons in a neutral
gas between two parallel planes with a voltage U
imposed across them. Electrons are generated at the
cathode and move to the anode, undergoing elastic and
inelastic collisions with gas atoms. Additional electrons
are generated upon ionization. The situation when the
arrival of electrons into a particular range of velocities
due to inelastic collisions is compensated by their
escape from a particular point of the space is described
by the equation

(1)

Here, x is the distance to the cathode; v  is the electron
velocity; Ne(x) is the electron density; f(x, v) is the elec-
tron distribution function normalized to unity

(  = 1); N is the density of neutral atoms; and

the expression Nσi.c.(v, v')v ' determines the frequency
of inelastic collisions of an electron with a neutral atom
at which the incident electron has a velocity in the
range (v', v' + dv'), and the collisions generate new elec-
trons in the velocity range (v, v + dv).

Let us assume further that the distribution function
f(x, v) does not depend on the coordinate x. Then, inte-
grating Eq. (1) over dv gives the Townsend equation

v x x∂
∂

Ne x( ) f x v,( )( )

=  Ne x( )N σi.c. v v',( )v ' f x v',( ) v'.d∫

f x v,( ) vd∫
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describing the exponential growth of electrons in the
avalanche

(2)

Here, σi.c.(v) =  is the total cross section

for an inelastic electron–neutral collision and αi is the
known Townsend coefficient expressed through the ion-
ization frequency νi and the electron drift velocity ud.

Thus, two fundamental assumptions provide the
basis for the Townsend model: (a) on the compensation
of electrons arising at a given x by their drift and (b) on
the independence of the form of the distribution of elec-
trons over velocities from x.

On the Runaway Criterion

As distinct from the commonly accepted local crite-
ria for electron runaway, we will consider that the run-
away electrons arise in the case when the electrode
spacing d becomes comparable with the characteristic
multiplication length, that is, the reciprocal Townsend

coefficient . At αid ! 1, the runaway electrons must
predominate in the spectrum of electrons that reach the
anode.

At a sufficiently large value of the ratio of electric
field strength E = U/d to gas density N (or pressure p),
an electron gains a sufficiently high energy ε ≡
mev 2/2 = eEl over the mean free path l = 1/σN. At this
energy, the overall cross section of all processes σ starts
to decrease. This leads to a decrease in the Townsend

dNe x( )/dx α iNe x( ), α i ν i/ud,≡=

ν i σi.c. v'( )v ' f v'( ) v', ud v x f v( ) v.d∫≡d∫≡

σi.c. v' v,( ) v'd∫

α i
1–

Fig. 1. Energy dependence of the cross section for an elec-
tron collision with a helium atom: (1) inelastic-collision
cross section σel(ε), (2) ionization cross section σi(ε),

(3) 21P excitation cross section, (4) 21S excitation cross
section, (5) 23P excitation cross section, and (6) 23S excita-
tion cross section (by the data from [16–18]).
coefficient (an increase in the multiplication length)
and to the appearance of runaway electrons. In this
case, as distinct from the currently prevailing point of
view, the Townsend mechanism of electron multiplica-
tion itself remains in force for particular values E and p
if the value of d is sufficiently large. Correspondingly,
as the criterion for the appearance of a considerable
number of runaway electrons, we take

(3)

On the other hand, it is commonly accepted that runaway
electrons arise when the value of E/p exceeds a certain
critical value that does not depend on d [6, 7, 14].

RUNAWAY ELECTRONS IN HELIUM

Model Used

In order to confirm the above suggestion, the multi-
plication and runaway of electrons in helium were sim-
ulated based on one of the modifications of the method
of particles [15]. Electrons were generated at the cath-
ode with a randomly directed velocity, a Poisson distri-
bution of their starting energy, and the average energy
ε0 = 0.2 eV. The equations of motion of all the electrons
were solved at short time steps, and elastic and inelastic
collisions were simulated with probabilities determined
by the cross sections of elementary processes. Figure 1
presents the cross sections for various processes used in
this work, based on the data from works [16–18].

Townsend Ionization Regime

Calculations reveal that the Townsend ionization
regime actually takes place and runaway electrons are
virtually absent at all the considered values of the
reduced field strength E/p = 5–5000 V torr–1 cm–1 at

sufficiently large electrode spacings d @ . With
increasing distance from the cathode x, the acts of exci-
tation and electron generation exponentially grow in
number, and a constant average velocity and a constant
average energy of electrons are attained at sufficiently
large distances from the cathode (see Fig. 2). The dis-
tribution function of electrons reaching the anode
attains a maximum at low energies. The slopes of the
logarithms of the number of acts of ionization and the cur-
rent determines the Townsend multiplication coefficient
αi. The multiplication coefficient αi, as commonly
accepted, is proportional to the gas density (pressure) and
essentially depends on the reduced field strength E/p. The
following approximation is known for helium [14]:

(4)

where, from here on, αi is measured in cm–1; the pres-
sure p, in torr; and the field strength E, in V/cm.

However, calculations show (Fig. 3) that this
approximation is correct only for a relatively small

α i Ecr p,( )d 1.=

α i
1–

α i 4.4 p
14 p

E
---------– 

  ,exp=
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reduced field strength E/p < 200. At large values of E/p,
the multiplication coefficient αi starts to drop. The drop
in αi with increasing E/p is related to the drop in the
ionization cross section at ε > 100 eV, and the average
energy of electrons at E/p = 200 just comprises a close
value ε* = 70 eV.

The average velocity of electrons along the field ux

at small values of E/p is significantly smaller than the

Fig. 2. Characteristics of electron multiplication in the
Townsend regime as a function of the distance to the cath-
ode x (measured in cm) at the following parameters: NHe =

5.15 × 1017 cm–3 (p = 16 torr), U = 36 kV, d = 15 mm, and
E = 24 kV/cm (E/p = 1500). (a) The amount of the generated
ions ni (circles) and atoms excited to the 21P (n2P, rhom-

buses) and 21S (n2S, squares) states; the dotted line corre-
sponds to the dependence 40exp(5.9x). Correspondingly,
αi = 5.9 cm–1, and αid ≈ 9. (b) The ratio of electron flux at
a particular point j(x) to electron flux from the cathode j0;
the dotted line corresponds to the dependence 1.7 exp(5.9x).
(c) The projection of the electron velocity onto the x axis
directed along the electric field ux (circles) and the magnitude
of the velocity u⊥  in the plane perpendicular to the x axis
(squares). (d) The average electron energy. (e) The energy
distribution function of electrons reaching the anode. The
solid curve corresponds to the calculated results, and the dot-
ted line corresponds to the dependence 2 × 105exp(–ε/4200).

2 × 109
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average magnitude of the transverse velocity u⊥ . The
average velocities ux and u⊥  become equal only at E/p =
350. At E/p < 350, the directed velocity depends almost
linearly on the field strength

(5)

The dependence of the average energy measured in eV
on the field strength can be approximated by the equa-
tion

(6)

The fact that ux ! u⊥  for small fields (E/p ! 350) is
explained in the following way. The velocity projection

ux 106E/ p.=

ε∗ 5.5 E/40 p( )1/2[ ] .exp=

Fig. 3. Dependence of ionization and drift characteristics on
the reduced field strength E/pHe. Points were obtained at
various values of the field strength. Unless otherwise speci-
fied, NHe = 3.22 × 1018 cm–3 (p = 100 Torr). (a) Values of
the Townsend coefficient normalized to pressure αi/p (black
circles) and ionization frequencies νi/pHe (squares)
obtained by simulations at various values of the field
strength. The heavy solid line corresponds to the approxi-
mation by Eq. (8), and the dot-and-dash line corresponds to
the approximation by Eq. (4). The straight crosses corre-
spond to αi/p at p = 10 Torr, and the skew crosses corre-
spond to αi/p at p = 1 Torr. (b) The average projection of the
electron velocity onto axis x directed along the electric field
ux (circles) and the average magnitude of the velocity u⊥  in
the plane perpendicular to the x axis (squares). Obtained by
simulations at various values of the field strength. The dot-
ted curve corresponds to the linear dependence by Eq. (5).
(c) The average electron energy. Obtained by simulations at
various values of the field strength. The dotted curve corre-
sponds to the dependence by Eq. (6).
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onto the x axis can take both positive and negative val-
ues. At the same time, the magnitude of the transverse
velocity is always positive. Therefore, in weak fields,
when the velocity only slightly increases during the
free path of an electron from one elastic collision to
another and the distribution over velocities is almost
isotropic, the average value of the velocity projection ux

is considerably lower than the average value of the
magnitude of the transverse velocity u⊥ . At high fields,
when an electron gains a considerable energy during its
free path, scattering becomes essentially nonisotropic,
small-angle scattering prevails, and ux becomes larger
than u⊥ .

Runaway Electrons

The Townsend ionization regime is attained at a cer-

tain distance from the cathode x ~ , which corre-
sponds to the characteristic multiplication length (see

Fig. 2). On the other hand, if d < , the electron mul-
tiplication pattern changes radically (see Fig. 4). A sig-
nificant part of electrons accelerate continuously: with
increasing distance to the cathode x, both ux and ε*
grow. At the same time, the peak of the energy distribu-

α i
1–

α i
1–

Fig. 4. Ionization by runaway electrons. The same as in Fig. 2
at the same value E/p = 1500 and p = 16 Torr, but at U =
2.4 kV and d = 1 mm. Correspondingly, αid ≈ 0.6. Such
parameters are characteristic of open discharges.

2 × 109
tion function of electrons reached the anode corre-
sponds to the maximum value of the energy eU = eEd
gained by an electron in its path from the cathode to
anode.

The criterion for the appearance of a considerable
number of runaway electrons given by Eq. (3) can be
rewritten in the universal form based on the character of
the dependence of αi on E and p. Assuming that
αi(E, p) = pξ(E/p), where ξ(E/p) is a function charac-
teristic of the particular gas, we obtain for the criterion
given by Eq. (3)

(7)

This equation gives an implicit dependence of the crit-
ical voltage Ucr at which large-scale electron runaway
takes place on the product of the electrode spacing by
the pressure pd. Based on the results of our numerical
simulations and known experimental data, the follow-
ing approximations can be proposed for helium:

(8)

where function ξ is measured in Torr–1 cm–1.

A curve Ucr(pd) constructed based on the results of
numerical calculations and Eq. (7) is presented in
Fig. 5. The curve that determines the criterion for dis-
charge ignition has a similar shape. Actually, the dis-

pdξ Ucr/ pd( ) 1.=

ξ E/ p( ) 5.4
14

E/ p
--------- 

 
1/2

– 1.5 10 3– E×
p

----------------------------– ,exp=

Fig. 5. Curve characterizing the criterion for electron run-
away (heavy solid curve), curve (dashed) characterizing the
criterion for discharge ignition (L = ln(1 + 1/γ) = 2.89)
obtained on the basis of Eq. (7), and experimental Paschen
curve (dotted line) [14]. The dot-and-dash curve corre-
sponds to the approximation given by Eq. (4). In the outer
regions with respect to the heavy solid curve, electrons run
away having no time to multiply. The inner region of the
dashed line corresponds to a self-sustained discharge.

Self-sustained
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charge ignition potential Ubr(pd) is determined by the
following condition (see, for example, [14]):

(9)

Here, γ is the secondary electron emission coefficient.
Comparing the equations for the criteria for dis-

charge ignition (Eq. (9)) and the criterion for electron
runaway (Eq. (7)) gives the relation Ubr(pd) =
LUcr(pd/L), which was used in constructing curve
Ubr(pd) in Fig. 5.

The dependence Ubr(pd) obtained contains princi-
pally new information as compared to the known Pas-
chen curve (Fig. 5). It is known that a Paschen curve is
characterized by the right-hand and left-hand branches
directed from the minimum of Ubr(pd) to the regions of
large and small pd values. These branches are actually
obtained, and the results of our calculations are in a
good agreement with experimental data. However,
according to our consideration, the self-sustained dis-
charge ignition curve must additionally contain an
upper branch due to the drop in αi with increasing E/p.
Finding the minimum value of pdmin at which self-sus-
tained discharge ignition is still possible (for helium,
pdmin ≈ 1.8 Torr cm) is another important result of our
consideration.

The existence of the upper curve of the self-sus-
tained discharge ignition curve is quite understandable
from the general considerations. This branch is due to
the drop in inelastic cross sections with increasing elec-
tron energy. However, to date this branch has not been
investigated. In order to observe this branch, the voltage
across the electrodes must be built up sufficiently rap-
idly until the ionization wave reaches the anode and the
plasma short-circuits the electrodes.

Thus, we showed that the Townsend mechanism of
electron multiplication is valid for a sufficiently large
electrode spacing at least up to the large values of E/p
at which relativistic electrons are generated. On the
other hand, the phenomenon of electron runaway in a
gas is not determined, as is commonly accepted, by the
predominance of the acceleration of an electron in the
field over its deceleration due to collisions, which leads
to a local criterion for runaway. The runaway of elec-
trons in a gas arises when the electrode spacing turns
out to be comparable with or less than the characteristic
electron multiplication length. Therein lies the princi-
pal difference between the phenomena of runaway in a
Coulomb plasma and a gas. This difference is due to the
fact that, in a fully ionized plasma, new electrons with
relatively small velocities are not generated, but the
existing electrons are accelerated. In contrast, in a gas
at sufficiently large electrode spacings, the number of
the generated electrons is exponentially high. Some
amount of fast electrons that have not participated in
collisions becomes negligibly small against their back-
ground.

α i E p,( )d 1 1/γ+( )ln=

or pdξ Ubr/ pd( ) L, L 1 1/γ+( ).ln≡=
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It is also shown that for a particular gas the critical
voltage across the electrodes at which the runaway
electrons comprise a significant fraction is a universal
function of the product of the electrode spacing by the
gas pressure. This function also determines the condi-
tion for self-sustained discharge ignition. It describes a
Paschen curve but additionally contains an upper
branch, which describes the absence of a self-sustained
discharge at a high voltage sufficiently rapidly supplied
across the electrodes. An approximation of this func-
tion for helium is given.

We are grateful to V.F. Tarasenko for stimulating
discussions.
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ence and Technology Center (ISTC project no. 1270).
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Oscillations in the Threshold Photoemission Spectra 
of GaN(0001) with Submonolayer Cs Coverages
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It is found that Cs adsorption on the n-type GaN(0001) surface generates an unusual change in the electronic
properties of the surface and the near-surface space-charge layer, which leads to the appearance of photoelec-
tron emission upon excitation in the transparent region of GaN. It is established that the photoemission is due
to the formation of quasimetallic states induced by Cs adsorption in the band-bending region near the surface.
The behavior of the photoemission threshold upon excitation by s-polarized light is studied as a function of the
Cs coverage. It is found that the minimum value of the threshold corresponds to ~1.4 eV at a concentration of
Cs atoms of ~4.5 × 1014 atom/cm2 in the submonolayer coverage. A new effect is revealed, namely, the appear-
ance of oscillations in the spectral curves of threshold photoemission. A model is proposed for photocurrent
oscillations that takes into account the formation of quasimetallic states in the near-surface layer of GaN band
bending and the occurrence of interference in the GaN slab upon light irradiation in the transparent region.
© 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.-r; 79.60.Dp
Studying the electronic properties of adsorbed
metallic coverages on the surface of group III nitrides
is of both fundamental and applied importance, which
is determined by the prospects for using these systems
in creating emission and photodetector devices [1–3].
The GaN(0001) surface is of special importance for
obtaining Schottky barriers and photoemitters in the
near ultraviolet region. Recent studies have shown that
the adsorption of Cs on epitaxial GaN(0001) layers of
the p type [4, 5] and the n type [6] leads to a decrease in
the work function ϕ, a change in the electron affinity at
the surface, and a certain modification of the spectrum
of intrinsic surface states lying below the valence band
edge. The adsorption of Cs on the n-type GaN(0001)
was studied by ultraviolet and x-ray photoemission
spectroscopy at a temperature of 150 K [6]. It was
determined that the work function for the pure surface
ϕ ~ 4.3 eV decreases down to a value of ϕ ~ 1.35 eV at
a certain unidentified Cs coverage. It was found that
cesium is adsorbed layer by layer, and the sticking coef-
ficient of cesium apparently decreases approximately
by half in the formation of the second layer. The authors
did not find the appearance of cesium-induced occu-
pied surface states in the GaN band gap and in the
vicinity of the conduction band edge.

It should be noted that a sharp decrease in the work
function down to a value ϕ ~ 1.35 eV is observed upon
Cs adsorption only on the n-type GaN(0001) surface,
whereas the minimum value reached on the p-type
GaN(0001) surface is ϕ ~ 3.5 eV [5]. In this connection,
studying the photoemission properties of the n-type
Cs/GaN(0001) system in the threshold excitation
0021-3640/03/7705- $24.00 © 20226
region is of special interest. The threshold photoemis-
sion spectroscopy (TPS) technique with s- and p-polar-
ized excitation was successfully applied to studying the
surface state spectrum and changing the work function
and ionization energy in the case of Cs adsorption on
the surface of semiconductors with a relatively small
band gap, such as Si(111), Si(100), and GaAs(100) [7,
8]. The method is based on the separation of bulk and
surface photoemission and on the effect of the near-
threshold enhancement of photoemission from surface
states. Under s-polarized light and the tangential com-
ponent of p-polarized light, bulk electron states from
the valence band of the substrate are excited. In this
case, photoemission proceeds from the near-surface
region, the size of which is determined by the escape
depth of ~20 nm for low-energy electrons. This conven-
tional quasibulk threshold photoemission takes place
under the optical excitation of valence band states;
hence, the photoemission threshold hνs for s-polarized
light corresponds to an ionization energy equal to the
position of the valence band edge at the surface with
respect to the vacuum level. The normal component of
p-polarized light excites surface states localized
directly at the surface at a depth of ~0.5 nm. The occur-
rence of surface states leads to a significant difference
in the photoemission thresholds hνs and hνp and also to
a difference in the photoemission spectra Is(hν) and
Ip(hν) for s- and p-polarized excitation, respectively.
The TPS technique is described in detail in [7–9].

This work is devoted to studying the n-type
Cs/GaN(0001) system at various submonolayer cesium
003 MAIK “Nauka/Interperiodica”
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coverages with the use of the TPS technique. It has been
found that Cs adsorption on the GaN(0001) surface
gives rise to a sharp decrease in the photoemission
threshold hνs, which shifts to the visible spectral
region. The variation of the threshold hνs has been stud-
ied as a function of the Cs coverage. It has been found
that the bulk photoemission threshold hνs in this case
corresponds to the work function ϕ = hνs and is deter-
mined by photoemission from quasimetallic states in
the conduction band when the band edge at the surface
lies below the Fermi level. Thus, the formation of a
degenerate electron gas layer induced by Cs adsorption
has been detected in the GaN(0001) near-surface
region. A new effect has been observed for photoemis-
sion, namely, the appearance of oscillations in the spec-
tral dependences of the photoemission current. It has
been found that the oscillation period in the spectrum is
constant in energy and does not change for various cov-
erages of the adsorbed Cs. The data obtained indicate
that the nature of oscillations is associated with the
occurrence of several factors, the main of which are,
first, the existence of the near-surface layer of a degen-
erate electron gas and, second, the occurrence of multi-
ple-beam interference in the GaN slab upon light irra-
diation in the transparent region. A model of the phe-
nomenon observed has been proposed.

The experiment was performed in situ in an ultra-
high vacuum P < 1 × 10–10 torr at room temperature. An
n-type sample doped with silicon (2 × 1017 cm–3) 4-µm
thick represented an epitaxial GaN(0001) layer grown
on a sapphire substrate by MOCVD epitaxy. Data of
atomic force microscopy pointed to a good quality of
the surface. The sample was annealed directly in a vac-
uum at a temperature of ~800°C. Atomically pure
cesium was evaporated on the surface from a standard
source. The dose of the adsorbed Cs at a minimum of
the work function was determined in situ by the proce-
dure described in [8]. Photoemission was excited by
monochromatic light incident on the sample at an angle
of 45°. The Is(hν) and Ip(hν) spectra of integral photoe-
mission currents were studied upon excitation by s- and
p-polarized light, respectively. Photoemission currents
were measured in the range 10–8–10–13 A, and the mea-
surement error did not exceed 10%.

The variation of the photoemission threshold hνs is
given in Fig. 1 as a function of the time of Cs evaporat-
ing on the n-type GaN(0001) surface. The points in the
curve in Fig. 1 were obtained from an approximation of
the spectral dependences of the photoemission Is(hν),
which were measured for each Cs evaporating time. A
sharp decrease in the threshold energy hνs down to a
value of (1.40 ± 0.03) eV was found at a cesium evap-
orating time tmin ~ 700 s. It was found that the Cs dose
corresponding to the time tmin comprises ~4.5 ×
1014 atom/cm2. This coverage corresponds to ~0.5
monolayer of Cs and, hence, lies in the submonolayer
range. The surface concentration of Cs on GaN(0001)
JETP LETTERS      Vol. 77      No. 5      2003
was determined for the first time. This result allows the
cesium coverages to be calculated for the entire range
with regard to the fact that the sticking coefficient of Cs
remains unchanged within the monolayer [6]. Studying
the Is(hν) and Ip(hν) spectra showed that these spectra
coincide up to optical constants. The equality of the
photoemission thresholds hνs = hνp was also found.
The results obtained indicate that the energy region
below the vacuum level by 1.4–3.2 eV contain no sur-
face states. This fact corresponds to the data obtained
previously [5, 6].

Studying the character of the spectral dependences
Is(hν) in the entire studied range of cesium coverages
demonstrated that the spectra in the vicinity of the
threshold obey the Fowler–Nordheim law Ip(hν) ~ (hν –
hνs)2. It is well known that this law is valid only for
photoemission from the metal bulk and, in the case of
semiconductors, for photoemission from the quasime-
tallic band of surface states positioned in the band gap
at the Fermi level [8]. In our case, the Fowler–Nord-
heim law was fulfilled for the bulk photoemission
Is(hν). Note that GaN is among wide-band-gap semi-
conductors with a band-gap width of 3.4 eV. Hence,
photoemission upon excitation in the transparent region
of GaN cannot be induced by the excitation of a
valence-band electron. This is the principal distinction
from the photoemission processes for all the known
semiconductor photocathodes with a cesium coverage
when valence-band states are excited.

Thus, it was found that photoemission for the n-type
Cs/GaN(0001) system proceeds from quasimetallic
bulk states; that is, the metallization of a near-surface
region ~20 nm of the GaN(0001) sample is observed.
Recall that no surface states were found in the band gap

Fig. 1. Variation of the photoemission threshold hνs = ϕ as
a function of the time of Cs evaporating onto the n-type
GaN(0001) surface.
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for the system under study. These results as a whole can
be explained by the excitation of photoemission from
the conduction band in the case of the appearance of a
degenerate electron gas layer when the conduction
band edge at the surface lies below the Fermi level

Fig. 2. Schematic diagram of the near-surface bending of
the n-type GaN(0001) conduction band and the occurrence
of a degenerate electron gas layer induced by Cs adsorption.
Free and occupied polaron states are indicated. Arrows indi-
cate optical transitions upon the excitation of photoemis-
sion.

Fig. 3. Threshold photoemission spectra Is(hν) for various
times of Cs evaporating onto the n-type GaN(0001) surface:
(1) 300, (2) 400, and (3) 700 s.

2.0
(Fig. 2). Metallization in the band-bending region pro-
vides a sharp decrease in the photoemission threshold
in such a way that the excitation of electrons from the
GaN conduction band by visible light from the trans-
parent region becomes possible. In this case, the photo-
emission threshold corresponds to the work function
hνs = ϕ. Also note that the minimum value of the pho-
toemission threshold obtained in this work hνs = 1.4 eV
virtually coincides with the minimum value of the work
function 1.35 eV determined for n-type Cs/GaN(0001)
at a temperature of 150 K [6]. Thus, it was stated that
Cs adsorption on the n-type Cs/GaN(0001) surface
leads to the formation of a degenerate electron gas layer
in the band-bending region. For the p-type
Cs/GaN(0001) surface, the occurrence of an analogous
pattern of the modification of the electronic properties
of the surface upon Cs adsorption is most apparently of
little likelihood. This is evidenced by a significantly
higher value of the minimum work function of ~3.5 eV
for the p-type Cs/GaN(0001) system [5]. This fact indi-
cates that the conventional excitation of valence-band
electron states should proceed for the photoemission
process in the latter case.

Figure 3 gives threshold photoemission spectra at
various Cs evaporating times. The character of the
spectra seems very unusual. The appearance of pro-
nounced oscillations of the photocurrent was revealed
in the spectra. It was found that the oscillation period
∆ ~ 0.07 eV in the spectrum is constant in energy and
remains unchanged at various doses of the adsorbed
cesium. It is evident that the depth of oscillations in the
spectrum Is(hν) increases as the work function
decreases. It should be emphasized that both the photo-
emission itself and the effect of oscillations in the pho-
toemission spectra were observed upon excitation of
the GaN sample in the transparent region. We do not
know earlier facts of observing this kind of photoemis-
sion or of observing oscillations in the spectral depen-
dences of the photoemission current.

As a possible origin of the appearance of oscilla-
tions in photoemission spectra, we will primarily con-
sider the interference of light from the transparent
region arising in the GaN slab. In this case, photoemis-
sion from the near-surface layer of a degenerate elec-
tron gas can be excited by light hν ≥ ϕ, which falls both
from the side of vacuum and multiply from the side of
the GaN slab (Fig. 4). In this case, the observed oscilla-
tion period ∆ ~ 0.07 eV corresponds to an estimate
made for interference in a slab 4-µm thick with regard
to the refraction index n = 2.32 in the region of GaN
excitation used in this work. However, two essential
facts find no explanation in this approach. First, it was
found that the photoemission currents upon light exci-
tation in the transparent region exhibit an unexpectedly
high intensity, comparable, for example, to the photoe-
mission from Cs/GaAs(100), given the equality of the
work function. Second, an abnormally high amplitude
of oscillations is observed, which is comparable with
JETP LETTERS      Vol. 77      No. 5      2003
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the photoemission intensity in the vicinity of the thresh-
old. These facts require invoking an additional mecha-
nism.

Consider the appearance of oscillations in photoe-
mission spectra as a result of a certain resonance effect.
Namely, let us suggest a combined action of classical
interference in the scheme of light reflections from the
plane-parallel surfaces of the sample on the one hand
and Stokes Raman scattering (SRS) at such reflections,
on the other (Fig. 4). We will assume the occurrence of
resonance electron SRS with the absorption of light in
the infrared range by well-defined electron levels with
an energy gap δ close to the oscillation period δ ~ ∆.
Here, the nature of levels that must lie in the near-sur-
face band-bending region is an important factor. Note
that the oscillation period ∆ ~ 0.07 eV turns out to be in
a good correspondence with the range of vibronic fre-
quencies. We will consider the difference between the
energies of the excited and ground vibronic states of a
small polaron localized in the near-surface band-bend-
ing region. In this case, it may be believed that the con-
duction band bending at the surface proceeds as the
energy decreases for both electrons and electronic
polarons. As a result of such band bending, the concen-
tration of electronic and polaronic states in the near-
surface region significantly increases because of the
directed transport of Bloch current carriers and small
polarons to the semiconductor surface (Fig. 2). This
process leads to an enhancement of the photoemission
current from the near-surface region. Moreover,
polarons localized in the near-surface band-bending
region will be excited upon multiple light reflections
(Fig. 4) under conditions of resonance electron SRS
within the framework of the Franck–Condon principle.
Here, a quasiresonance (with respect to interference
peaks) decrease in the light frequency occurs at each
successive light reflection from the actual surface. The
exciting light intensity turns out to be sufficient for the
process to proceed just because of resonance electron
SRS by polaron states, which has a significant probabil-
ity. The SRS process itself phenomenologically corre-
sponds to its purely vibrational analogue [10]. Delocal-
ized excited states of the polaron band can be consid-
ered as intermediate polaron states in the SRS process.
The effective matrix element of SRS in this case exhib-
its a very weak spectral dependence. As a result of the
combined effect of multiple-beam light interference
and resonance electron SRS with the excitation of well-
localized polarons into the band of delocalized excited
polaron states with an excitation energy δ ~ ∆, an sub-
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stantial increase in the amplitude of oscillations in the
photoemission spectra can be expected.
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The resistivity, magnetoresistance, thermopower, and magnetic susceptibility of La1 – xAxMnO3 (A ≡ Ca, Sr; x =
0.07–0.1) single crystals are investigated in the temperature range from 77 to 400 K. Sharp changes in the prop-
erties (the resistivity activation energy ∆Eρ, its temperature coefficient γ, the thermopower activation energy
∆ES, the magnetoresistance, and the appearance of spontaneous magnetization) of these crystals occur near a
temperature of 275 ± 25 K, which is approximately twice as high as their Curie point TC and approximately half
of the structural transition temperature. The results are explained by the phase separation: the formation of fer-
romagnetic clusters. The phase separation occurs through the coalescence of small-radius unsaturated magnetic
polarons, in which only two or three magnetic moments of Mn are polarized, into a large-radius ferromagnetic
polaron (a cluster about 10–12 Å in size) with several charge carriers. As a result, the short-range order occurs
in the cluster at a temperature of about 275 K, which is close to TC of conducting doped manganites. The results
of the experimental studies of the resistivity and the magnetoresistance as functions of temperature and mag-
netic field and the estimates agree well with the cluster model. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.38.-k; 72.15.Gd; 75.47.Lx; 75.30.-m
Determination of the mechanisms of electrical con-
duction and the nature of magnetoresistance in lantha-
num manganites is one of the most interesting problems
of today’s physics because of the strong interactions
that occur between the electron, spin, and phonon sub-
systems of these substances and give rise to the com-
plex structure of their phase diagrams [1]. The electric
properties of manganites were discussed in the litera-
ture in terms of the polaron mechanism caused by the
strong electron–phonon coupling [2] and in terms of the
double exchange with a charge carrier localization by
spin disorder [3, 4].

Recent investigations showed [5–7] that the proper-
ties of manganites can also be explained [8–10] within
the framework of the phase-separation model [1]. This
model assumes that, due to energy gain, an electron
tends to form a conducting ferromagnetic cluster in the
antiferromagnetic matrix with the size of the cluster
being about several lattice constants, while in ferro-
magnets, clusters can exist somewhat above the Curie
point [10]. For conducting ferromagnetic manganites,
the qualitative relation between the presence of mag-
netic clusters about 12 Å in size and the magnetoresis-
tance somewhat above the Curie point was demon-
strated in [6].

The phase separation should manifest itself most
clearly in the properties of weakly doped manganites.
For lanthanum manganite single crystals with the com-
position La1 – xAxMnO3 (A ≡ Ca, Sr; x = 0–0.2), neutron
0021-3640/03/7705- $24.00 © 20230
studies revealed the presence of magnetic droplets of
size ≈14–17 Å in the antiferromagnetic matrix at x =
0.05–0.1 [7, 11]. The transition from the antiferromag-
netic to ferromagnetic state upon the Ca and Sr doping
of manganites was explained by the changes in the
exchange coupling between magnetic moments, as well
as by the changes in the size, concentration, and shape
of isolated clusters and by their coalescence [12, 13].
By now, the electric properties of such manganites are
poorly understood, and no conclusions can be made
about the effect of phase separation on the electric
properties and the colossal magnetoresistance of man-
ganites.

The determination of the mechanisms that govern
the resistivity and magnetoresistance of manganites,
their evolution with varying doping, and the compari-
son of the experimental results with the cluster model
should give better insight into the effect of phase sepa-
ration on the electric phenomena in these materials. For
this purpose, we studied the resistivity, magnetoresis-
tance, thermopower, and magnetic susceptibility of
La1 – xAxMnO3 (A ≡ Ca, Sr; x = 0.07–0.1) in the temper-
ature range within 77–400 K. We observed abrupt
changes in the electric properties (the activation ener-
gies of resistivity ∆Eρ and thermopower, the tempera-
ture coefficient of ∆Eρ, and the magnetoresistance) and
the appearance of a spontaneous magnetization near the
temperature T ≈ 275 K, which is two times as high as
the Curie and Néel temperatures TC ≈ TN ≈ 125–135 K
003 MAIK “Nauka/Interperiodica”
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and much lower than the structural transition tempera-
ture TOO' = 580–450 K [12] of the samples.

The results are explained in terms of the small-scale
phase separation model. It is assumed that, in weakly
doped manganites, the ferromagnetic polarons of a
large radius (clusters and droplets) are formed through
the coalescence of small-radius polarons and contain
several electrons (their number is the number of
polarons in the cluster) rather than one. Therefore, the
short-range order occurs in the cluster at a temperature
of about 275 K, which is close to TC of the conducting
doped manganites. The results obtained by studying the
resistivity and magnetoresistance as functions of tem-
perature and magnetic field and the estimates agree
well with the cluster model.

Below, we present the experimental results that for
the most part refer to the La0.92Ca0.08MnO3 single crys-
tal grown by the floating zone method at the Laboratory
of the Chemistry of Solids of the Paris-Sud University.
The sample was a canted antiferromagnet with the cant-
ing angle θ ≈ 13°, the Curie temperature TC = 126 K, the
Néel temperature TN = 122 K, the ferromagnetic
exchange J1 = 1 meV in a layer, and the antiferromag-
netic exchange J2 = –0.28 meV between the layers [13].

The dc resistivity measurements were performed by
the standard four-probe method. The magnetic mea-
surements were performed by an MPMS-5XL SQUID
magnetometer. The e.m.f. was measured with a temper-
ature difference of about 2 K between the sample ends.

EXPERIMENTAL RESULTS

The temperature dependence of the magnetic sus-
ceptibility χo of La0.92Ca0.08MnO3 in the paramagnetic
temperature region, from 300 to 350 K, is described by
the Curie–Weiss law with the effective moment µeff ≈
5.52µB exceeding the theoretical value µeff ≈ 4.84µB (µB

is the Bohr magneton). The ferromagnetic Curie tem-
perature determined by the peak of the initial magnetic
susceptibility in zero magnetic field is TC = 128 ± 1 K,
which agrees well with the results of neutron studies
[13]. The differential magnetic susceptibility χac mea-
sured at a frequency of 80 Hz does not depend on mag-
netic field at temperatures above 270 K, while below
270 K it drastically decreases in weak magnetic fields
H0 ≈ 100 Oe and remains almost constant in stronger
fields (Fig. 1). Such a behavior of χac testifies to the
appearance of a spontaneous magnetization and, as a
rule, is observed when magnetic particles are intro-
duced into a paramagnetic medium [14].

A higher value of µeff was obtained for a
La0.93Sr0.07MnO3 single crystal in the paramagnetic
region in our previous experiment [15]. For a
La0.93Sr0.07MnO3 sample, we observed dependences
χac(H) similar to those shown in Fig. 1 along with the
appearance of a spontaneous magnetization below
290–300 K.
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According to the measurements of the ther-
mopower, the La0.92Ca0.08MnO3 single crystal is a p-
type semiconductor. The temperature dependence of
the thermopower (curve S in Fig. 2) can be described by
the activation formula characteristic of semiconductors
[16]:

(1)

where e is the electron charge and k is the Boltzmann
constant. Near T ≈ 280–300 K, below which the spon-
taneous magnetization appears (Fig. 1), the ther-
mopower activation energy ∆ES and the coefficient S0,
which usually characterizes the charge carrier scatter-

S k/e ∆ES/kT S0+( ),=

Fig. 1. Dependence of the relative low-frequency magnetic
susceptibility χac(H)χac(H = 0) of a La0.92Ca0.08MnO3 sin-
gle crystal on the magnetic field strength for T = 200, 240,
270, and 330 K; the frequency is 80 Hz.

Fig. 2. Temperature dependences of the thermopower (S in
k/e units) of a La0.92Ca0.08MnO3 single crystal and the
resistivity of (1) La0.92Ca0.08MnO3, (2) La0.9Ca0.1MnO3,
and (3) La0.93Sr0.07MnO3 single crystals. For clarity, the
resistivity values for La0.93Sr0.07MnO3 are increased by a
factor of ten (curve 3).
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Activation energies of the resistivity ∆Eρ, thermopower ∆ES, and hopping W1, the temperature coefficient of the conductivity
activation energy γ, and the values of the minimal metallic conductivity σ0 and σmin for a La0.92Ca0.08MnO3 single crystal

T, K ∆Eρ, meV ∆ES , meV W1, meV γ, meV/K σ0, Ω–1 cm–1 σmin, Ω–1 cm–1

400 > T > 300 223 162 61 0.30 1350 45

270 > T > 165 170 113 57 0.12 200 50

130 > T > 90 167 – – – 180 –
ing, exhibit jumps: ∆ES jumps from 162 to 113 meV,
and S0, from –2.4 to –0.4. Note that negative values
S0 ≈ –0.5, which are noncharacteristic of semiconduc-
tors, were also observed for lanthanum manganites by
other researchers [17].

The temperature dependence of the resistivity ρ of
the La0.92Ca0.08MnO3 single crystal exhibits an activa-
tion behavior and, in a wide range of variation of the
quantity ρ over more than seven orders of magnitude
(part of the results is shown on curve 1 in Fig. 2), is ade-
quately described by the expression

(2)

where W1 is the hopping activation energy. As the tem-
perature decreases, in the same temperature region T =
270–300 K (the inflection points of ρ and S are shown
in Fig. 2 by vertical arrows), the resistivity activation
energy ∆Eρ and the pre-exponential value of the con-
ductivity σ0 extrapolated to 1/T  0 exhibit jumps:
∆Eρ jumps from 223 to 170 meV, and σ0, from 1350 to
200 Ω–1 cm–1. At the same time, the hopping activation
energy varies insignificantly (see table). Below TN =
122 K, the values of ∆Eρ and σ0 vary only slightly. A
small resistivity dip is observed in the exponential
dependence ρ(1/T) in the region T = TC ± 5 K. Below

ρ T( ) 1/σ0( ) ∆Eρ/kT( )exp=

=  1/σ0( ) ∆ES W1+( )/kT[ ] ,exp

Fig. 3. Temperature dependences of the magnetoresistance
of (1, left scale) La0.92Ca0.08MnO3 and (2, right scale)
La0.93Sr0.07MnO3 single crystals.
T ≈ 270 K, the values of ∆Eρ decrease steeply also for
the La0.9Ca0.1MnO3 and La0.93Sr0.07MnO3 single crys-
tals (curves 2 and 3 in Fig. 2).

The dc magnetoresistance of the La0.92Ca0.08MnO3
single crystal, MRH ≡ [ρ(H) – ρ(H = 0)]/ρ(H) (curve 1
in Fig. 3), is small at room temperature: MRH = –0.12%
at H = 1.7 kOe and MRH ~ H2. It sharply increases
below T ≈ 270 K to the values MRH ≈ –(2.0 ± 0.5)% in
the temperature range 250–170 K. Below 170 K, |MRH |
increases up to MRH ≈ –10% near 100 K and has a sharp
dip in a narrow temperature interval of ±5 K with a min-
imum at T ≈ 128 K = TC. A similar temperature depen-
dence of magnetoresistance with MR increasing below
260 K but without a dip near TC is observed for the
La0.93Sr0.07MnO3 single crystal (curve 2 in Fig. 3) [18].

DISCUSSION

The small conductivity of the samples observed for
the acceptor concentrations below the percolation
threshold x < xc ≈ 0.16 can be explained by the fact that
the charge carriers are either captured by the localized
states on the tails of the valence band or localized by a
Mn+4 ion with the resulting polaron formation. Both
mechanisms may cause an activation behavior of the
resistivity and the thermopower in some temperature
region, so that this behavior will be described by
Eqs. (1) and (2) with different values of the activation
energy [16].

The negative value of S0 observed for the activation
behavior of the resistivity and thermopower as func-
tions of temperature shows that the activation energy
∆ES = EF – EV is a linear function of temperature [16]
(e.g., owing to a change in the lattice constant [19]):

(3)

where EF and EV are the Fermi energy and the valence
band bottom energy, and γ is the temperature coefficient
of the conductivity activation energy. As a result, the
experimental values of the minimal metallic conductiv-
ity σmin prove to be overestimated by the value of
exp(γ/k), while the values of S0 (S0 ≈ 1 for a disordered
medium [16]) are underestimated: S0 = –γ/k + 1. From
the table, one can see that the quantity γ exhibits a jump
near 270 K, and the value of σmin = σ0/exp(γ/k) remains
almost constant. One can expect that the jump in γ cor-

∆ES T( ) EF EV– ∆ES γT ,–= =
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responds to a change in the coefficient of thermal
expansion near T ≈ 270 K.

For the conduction mechanism on the valence band
tails, the value of W1 usually decreases with decreasing
temperature, and the typical values of the minimal con-
ductivity are σmin ≤ 10 Ω–1 cm–1 [16]. Thus, the inde-
pendence of W1 and σmin of temperature, the values
σmin ≈ 50 Ω–1 cm–1, and the activation behavior of the
resistivity and the thermopower testify to a hopping
polaron conduction in La0.92Ca0.08MnO3 single crystals
in the temperature range from 400 to 150 K.

In manganites, in the paramagnetic region, polarons
can be formed owing to the strong electron–phonon
coupling caused by the Jahn–Teller lattice distortion
[2]. The interaction of a charge carrier with magnetic
moments reduces the energy in the case of the parallel
orientation of their moments, which gives rise to the
formation of a “ferromagnetic” region around the
charge carrier, i.e., to the formation of a magnetic
polaron. Such autolocalized states may be formed in
both antiferromagnetic [20] and paramagnetic [10, 21–
23] states. As a result, the effective moment of para-
magnetic susceptibility becomes greater than the corre-
sponding moments of the Mn3+ and Mn4+ ions [3]:

(4)

where x is the concentration of spins with the moment
S1 and P is the number of polarized spins with the
moment S2.

The higher value µeff = 5.52µB means that, at T ≈
300–350 K, one electron per Mn4+ polarizes approxi-
mately two Mn3+ ions (P = 2.13) out of the six Mn3+

ions in its nearest environment. Since all Mn3+ ions are
equivalent, the polarized state is evidently spread
between them, thus forming a molecule with a moment
of ≈10–12µB and with the polaron radius Rpol =
RMn−Mn = 1a ≈ 4 Å (a is the lattice constant). The esti-
mates [3] for manganites also yield the polarization of
two or three Mn3+ ions at room temperature. The
increase in the size of “thermal” ferrons with decreas-
ing temperature because of the weak temperature
dependence Rpol ~ T–1/5 [10, 22, 23] cannot account for
the appearance of ferromagnetic clusters near 270 K
(Fig. 1).

However, these estimates did not take into account
the Jahn–Teller character of Mn3+ ions and the strong
interaction of the electron and lattice subsystems in
manganites. The appearance of magnetic polarons is
known to cause considerable elastic stresses in the lat-
tice. This is evidenced by the abrupt changes in the vol-
umetric [6] and linear expansion coefficients of manga-
nites [24] at the transition from ferromagnetic to mag-
netic polaron states. We believe that, in the case of a
weak doping (x < xc = 1/3), these stresses can be

Seff
2 x S1 PS2+( ) S1 PS2 1+ +( )=

+ 1 x– Px–( )S2 S2 1+( ),
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reduced at the temperature T ≈ 250–300 K, which is
approximately equal to TC of conducting manganites
with x ≈ 0.2–0.3, as a result of the coalescence of small
magnetic polarons into greater conducting clusters with
a ferromagnetic ordering in them. This process should
be accompanied by a change in the linear expansion
coefficient. The change in the lattice constant gives rise
to a change in the conductivity activation energy ∆ES

and its temperature coefficient γ (see table).
Changes in the cluster size are evident from the val-

ues of ∆ES. The hole concentration in a sample with
small polarons is determined by the well-known
expressions for weakly compensated impurity semi-
conductors containing both acceptors and donors [25]:

(5)

The polaron ionization energy Epol consists of the Cou-
lomb polarization energy [16, 25]

(6)

and the magnetic part of the potential barrier between a
ferromagnetic droplet and the paramagnetic matrix of
the manganite. The estimates Wp ≈ 200 meV obtained
with the effective dielectric constant [16, 25]  = 10
and the polaron radius Rpol = 4 Å agree well with the
experimental value of ∆ES. The coalescence of polarons
into a ferromagnetic cluster leads to an increase in the
magnetic part and a decrease in the Coulomb part of the
ionization energy. A decrease by a factor of ≈1.5 in the
activation energy ∆ES below 270 K (see table) corre-
sponds to an increase in Rpol to 1.5a and to the coales-

cence (in the spherical model) of no less than  =
4π/3(1.5)3 ≈ 12–14 polarons into one cluster ≈10–12 Å
in diameter. The inclusion of the magnetic contribution
Epol can only increase the number of polarons in a clus-
ter.

The hopping activation energy W1, which character-
izes the mobility of charge carriers µ ~ 1/Texp(−W1/kT),
is determined by the Coulomb energy [10, 16, 25] and
should be expected to decrease with the cluster forma-
tion. However, it varies with temperature only slightly
(see table). According to [16, 25], this energy is
expressed as W1 = 1/2Wp(1 – Rpol/Rhop) and depends on
the hopping distance between polarons Rhop because of
the overlapping of the wave functions of the wells. In
the temperature region T > 270 K, we have Rhop =
a(x)−1/3 ≈ 2.3a for x = 0.08 and W1 ≈ Wp/3. The transfor-
mation of polarons into clusters leads to their repulsion,
to an increase in the distance between them, and to a
change in W1 up to Wp/2. These processes can explain
the weak variation of W1 below 250 K in the course of
the transformation of polarons into clusters in a
La0.92Ca0.08MnO3 single crystal. From the table, one
can see that, in this case, we have W1 ≈ ∆ES/2.

p T3/2 ∆ES/kT–( ), ∆ESexp∼ Epol.=

W p e2/2εp' Rpol≈

εp'

npol
kl
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The studies of magnetoresistance also testify to the
magnetic cluster mechanism of the electrical resistance
of these samples. In manganites with the phase separa-
tion, the source of magnetoresistance is the variation of
Rpol and the corresponding variation of the Coulomb
energy W in magnetic field [10]. At the temperatures
T > 270 K, the magnetization of polarons occurs at the
expense of the turns of the magnetic moments of Mn3+,
and, up to very high magnetic fields, the polaron size
will be independent of magnetic field: Rpol(H) = 1a and
MRpol = 0. The magnetoresistance MR ~ H2 ≈ 10–3

observed at 297 K is associated with the decrease in the
scattering from magnetic inhomogeneities.

To estimate the magnetoresistance of clusters, we
use the results of calculations for Rpol(H) and MRH =
1 − exp(WpbH/2kT) [10, 23]. In the antiferromagnetic
state, we have b ≡ bAF = gSµB/5If f Sz [23]. In the para-
magnetic state for T > TN, from [22, 23] we obtain b ≡
bPM = gSµB/5kTln(2S + 1). Here, g = 2 is the giromag-
netic ratio, If f is the antiferromagnetic exchange
between the local spins at neighboring sites, and z is the
number of nearest neighbors. Then, for the antiferro-
magnetic and paramagnetic regions, the magnetoresis-
tance (for small MR) is expressed as

(7)

(8)

The analysis of the results obtained by studying
MR(H) for a La0.93Sr0.07MnO3 single crystal [18] shows
that we have MRH ~ H in the temperature range T < TC =
128 K and MRH ~ H2 near TC. In our model, the mobil-
ity and concentration of holes are determined by the
Coulomb energy. This agrees well with the conclusion
[18] that, in La0.93Sr0.07MnO3, the magnetoresistance is
determined by the changes in both mobility and con-
centration of holes. Hence, in estimating MRH by
Eqs. (7) and (8), the value of Wp/2 should be replaced
by the experimental value of ∆Eρ. The estimates for

La0.92Ca0.08MnO3 and La0.93Sr0.07MnO3 yield  ≈

2–3% and  ≈ 15 and 35% when If f ≈ I2 =
−0.3 meV [12, 13].

The clusters may also account for the absence of
magnetoresistance (the sharp dip in MR) at TC in
La0.92Ca0.08MnO3 (Fig. 3). For this sample, the Curie
point is TC = 128 K > TN = 122 K [13]. In the corre-
sponding narrow temperature interval where the ferro-
magnetic state exists, the magnetic part of the potential
barrier between the cluster and the matrix vanishes, and
the resistivity slightly decreases at T ≈ TC while the
cluster radius Rcl does not depend on magnetic field,
and, hence, MR ≈ 0.

Thus, the nuclei of conducting ferromagnetic man-
ganites exist near room temperatures in weakly doped

MRH
AF 1 W pbAFH/2kT( )exp– H/T ,∼=

MRH
PM 1 W pbPMH/2kT( )exp– H/T2.∼=

MRH
PM

MRH
AF
manganites and are the source of magnetoresistance of
these materials. The behavior of the resistivity and mag-
netoresistance of weakly doped manganites as functions
of temperature and magnetic field and the estimates
agree well with the phase separation model [1].

In closing, we note that the model adequately
explains such results of neutron studies as the low con-
centration of magnetic droplets, which is 25 times
smaller than the acceptor concentration [11], and the
increase in the cluster size in magnetic field with a
simultaneous decrease in the number of clusters [6]. In
the model under discussion, the concentration of clus-

ters Ncl = Npol/  is smaller than the number of

polarons Npol = xa–3, where  = 4π/3(Rpol/a)3 is the
number of polarons in a cluster. From the relation Rpol ≈
2a for La1 – xCaxMnO3 [7] or the volume of 2D clusters

in La0.94Sr0.06MnO3 [11], it follows that  ≈ 30, and
the concentration of clusters proves to be 30 times
smaller than the acceptor concentration.

We are grateful to M. Hennion for fruitful coopera-
tion. The work was supported by the Russian Founda-
tion for Basic Research (project nos. 02-02-16429 and
01-02-96403) and by the Ministry of Science and Tech-
nology (contract no. 40.012.1.1.1153).
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According to recent photoconductivity measurements in 2D electron semiconductor systems in magnetic fields
normal to the 2D plane, the photoconductivity as a function of magnetic field exhibits oscillations in the region
of fields much weaker than those necessary for the observation of the Shubnikov–de Haas effect. In this paper,
the aforementioned oscillations are interpreted as a two-dimensional analogue of magnetophoton (phonon)
oscillations studied in detail by different authors on 3D samples. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.40.+w
The problem of the photoconductivity  of a 2D
electron system in a normal magnetic field under high-
frequency pumping was considered in the literature as
early as in the 1970s [1]. Somewhat later, indepen-
dently of the theory, photoconductivity was studied
experimentally on inversion layers in silicon [2, 3].
These experiments revealed no extraordinary effects
except for the expected photoconductivity burst in the
resonance region Ω = ωc (Ω and ωc are the external and
cyclotron frequencies). It is only recently that some
progress was achieved in studying this interesting prob-
lem.

First of all, one should note the experiments with 2D
electrons over helium [4, 5]. Among other results, it
was found that the positions of the peaks of the cyclo-
tron resonance (CR) absorption and the photoconduc-
tivity stimulated by it on the magnetic field axis are not
always coincident. Even more interesting results were
obtained from the detailed experimental studies of the
photoconductivity of 2D electron systems formed on
the basis of GaAs [6–8]. In weak magnetic fields satis-
fying the condition Ω ≥ ωc, these experiments revealed
oscillations of the conductivity  with a period
governed by the parameter γ, which had nothing in
common with the quantities responsible for the Shubni-
kov–de Haas (SdH) oscillations:

(1)

Extrema of  occur near the points

(2)

At the same time, the Hall conductivity exhibits a clas-
sical behavior

σ̃

σ̃xx H( )

γ Ω/ωc.=

σ̃xx

γ j 1 2 3 … j., , , ,=

σxy H 1– ,∝
0021-3640/03/7705- $24.00 © 20236
while the SdH oscillations become visible only in rela-
tively high magnetic fields corresponding to γ < 1.

In the first of the cited publications [6–8], the
authors mention a scenario that leads to the dependence

(3)

However, in more recent publications [7, 8], this inter-
pretation was not discussed. Thus, the unusual oscilla-
tory behavior of  reported in [6–8] remained
unidentified.

This paper refers to the publication by Ryzhiœ [1],
which offers a qualitative explanation for the new oscil-
lations of  observed in the experiments [6–8]. It
relates the oscillations to the inelastic processes that
accompany the electromagnetic irradiation of the sam-
ples. As a result of these processes, the resonance
absorption of the photon energy "Ω becomes possible
not only at the cyclotron frequency Ω = ωc but also at
its multiple frequencies Ω = jωc (j = 2, 3, …), which
coincides with the experimental observations.

1. The publication by Ryzhiœ [1] appeared on the
background of intensive studies of magnetophonon
oscillations. Initially, the object under discussion was
the behavior of the magnetoconductivity of 3D samples
in the presence of an inelastic interaction between elec-
trons and optical phonons [9–11]. The period of these
oscillations on the magnetic field axis is determined by
the parameter

(4)

with logarithmic extrema of σxx at the points

Here, ωo is the optical phonon frequency. In addition to
the original (as compared to the SdH case) distribution

σ̃xx 2πΩ/ωc( ) –2π/Ωcτ( ).expcos∝

σ̃xx H( )

σ̃xx H( )

γo ωo/ωc=

γo
j 1 2 3 … j., , , ,=
003 MAIK “Nauka/Interperiodica”



        

PHOTOCONDUCTIVITY OF 2D ELECTRON SYSTEMS IN MAGNETIC FIELD 237

                              
along the magnetic axis, these oscillations are insensi-
tive to the degree of degeneracy of the 3D system, they
have another (as compared to SdH) temperature depen-
dence, etc.

The magnetophonon studies are represented by sev-
eral areas of research: the behavior of highly nonequi-
librium electron systems in magnetic field (beginning
with the papers by Elesin and Manykin [12] and Elesin
[13], in which the notion of totally negative conductiv-
ity is introduced, and the first successful experiments
[14], which confirm its existence), magnetic impurity
resonances in the electron transport of semiconductors
(see the review by Gantmakher and Zverev [15]), and
the extension of the theory to the 2D case [1, 16].

The cited paper [1] considers the two-dimensional-
ity of the electron system with taking into account pho-
tons. The role of an optical phonon plays the high-fre-
quency pumping field, and its frequency Ω appears in
place of the quantity ωo in Eq. (4). In the case of the
scattering from optical phonons, the change in the
energy and “momentum” of an electron in crossed
magnetic and drift electric fields is compensated by a
phonon. In the photon version of the problem, when an
electron is scattered from a photon Ω and a phonon
(impurity), the necessary compensation occurs sepa-
rately: the change in energy occurs through the photon,
and the change in the momentum, through the phonon
(impurity). Such a combined scattering leads to the
final expression for the current that contains the contri-
butions from multiple cyclotron transitions, which cor-
respond to the relation

.

Evidently, this condition coincides with the experimen-
tal observation described by Eqs. (1) and (2).

As for the physical reason for the oscillations of the
current with the period determined by Eqs. (1) and (2),
the oscillating conductivity component changes its sign
in the vicinity of these points [1]; i.e., as in the 3D case,
portions with a totally negative conductivity appear in
the current–voltage characteristic:

(5)

. (6)

Here, E is the driving electric field, N(Ω) is the effective

number of photons (N(Ω) is proportional to ), ns is
the average density of 2D electrons, τ is the relaxation
time due to impurities, e(Ω) is the real part of the
dielectric constant, lH is the magnetic length, and

jωc Ω, j 1 2 3 …, , ,= =

jxx Ω( )
e2N Ω( )ns

Ωe Ω( ) E τ
--------------------------=

× A j Ω H lH
2 q j

2, ,( )q j lH
2 q j

2/2–( ),exp
j 1=

∞

∑

q j

" jωc Ω–( )
eElH

2
---------------------------, eElH "/τ>=

EHF
2
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An(Ω , H, ) is a slowly varying function. The rela-
tive width of conductivity peaks of different sign and
the distance between two such “neighbors” is
~eElH/"ωc [1].

2. In discussing the results of the cited publication
[1], it is necessary to note that its most significant state-
ment concerning the presence of the negative conduc-
tivity portions of the current–voltage characteristic
needs some refinement. The smooth component of the
current–voltage characteristic, on the background of
which oscillations (5) take place, is not investigated.
The behavior of the current–voltage characteristic at
E  0 also remains poorly understood.

The situation with E  0 is partially elucidated
below. A 2D electron system in magnetic field selec-
tively absorbs high-frequency energy (with a period
determined by Eqs. (1) and (2)) in the absence of the
field E as well. This means that photoconductivity
oscillations of type (1), (2) are also possible without
anomalous behavior (5), (6) of the current–voltage
characteristic (the absorption changes the symmetric
component of the electron distribution function and,
hence, the electron mobility; this scenario of the photo-
conductivity formation is most probable and conven-
tional, and the first photoconductivity experiments [2,
3] were interpreted in precisely this way).

To demonstrate the properties of the photoabsorp-
tion of a 2D system in magnetic field, it is convenient to
follow [11], where the 3D version of this problem was
considered with reference to similar procedures used in
solving other problems [17–19].

In the 2D problem, the absorption coefficient K2(Ω)
should be determined as

(7)

where σxx is the diagonal component of the 2D conduc-
tivity in magnetic field; c is the velocity of light; and R
and (1 + T) are the coefficients of reflection and trans-
mission, respectively, of a plane electromagnetic wave
for a 2D electron system in magnetic field. The essen-
tial part of the absorption coefficient is determined by
the expression [11]

(8)

where

(9)

lH
2 q j

2

K2 1 R 2 1 T+ 2+( ), R– T ,= =

R σ/ 1 σ–( ), σ 2πσxx/c,= =

K2 Av i | i H̃ f〈 〉 2δ Ei E f–( ),
f

∑∝

i H̃ f〈 〉
i HL v〈 〉 v HR f〈 〉

Ei Ev–
----------------------------------------------

v

∑=

+
i HR v〈 〉 v HL f〈 〉

Ei Ev–
----------------------------------------------.

v

∑
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Here, HR and HL are the energies of the electron inter-
action with the high-frequency field and the lattice,
respectively; the wave function |i〉  with the components

is a certain initial state with the characteristics α of an
electron in magnetic field and with the phonon and pho-
ton occupation numbers n(q) and N(k); and q and k are
the wave numbers of phonons and photons. Corre-
spondingly,

is the final state, in which the electron state changes and
emission or adsorption of a phonon takes place.

In the first sum of Eq. (9), the transitions occur
through the virtual states |v 〉  = |α'', ±q, 0〉; i.e., the num-
ber of phonons changes first, and then the number of
photons. In the second sum, we have |v 〉  = |α'', 0, –k〉 ,
and the number of photons is the first to change, while
the number of phonons is the second.

The summation over the final states in Eq. (8) means
the summation with respect to α' and ±q. The averaging
(if required) over the initial states is denoted by Av i and
implies thermal averaging with respect to α and n(q).
As a result, following [11], we obtain

(10)

where  and  are the contributions due to
the phonon emission and adsorption to the photon
absorption. These contributions are expressed as

(11)

where

(12)

(13)

Here, the factor B(q) in Eq. (12) characterizes the elec-
tron–phonon interaction and is a smooth function of q,
αR is the electron–photon coupling constant, and T is
the temperature.

The integral in Eq. (12) is taken using the delta func-
tion, which, for acoustic phonons with the dispersion
law ω(q) . Sq (where S is the velocity of sound along

i| 〉 α… n q( )… N k( )…,,| 〉 α 0 0, ,| 〉≡=

f| 〉 α '… N q( ) 1… N k( ) 1– …,±,| 〉 α ' q± k–, ,| 〉≡=

K2 Ω( ) K2
+ Ω( ) K2

– Ω( ),+=

K2
+ Ω( ) K2

– Ω( )

K2
–± Ω( ) Kl l',

± Ω( ),
l l', 0=

∑=

Kl l',
± Ω( ) A Ω( )wl qq3 nT q( ) 1

2
---

1
2
---±+d

∞–

+∞

∫=

× B q( ) Qll' qlH( ) 2δ l l'–( )ωc Ω ω q( )±+[ ] ;

A Ω( )
1
4
--- 2π( )3nsα R

1

m2Ω
----------- 1

Ω ωc+( )2
----------------------- 1

Ω ωc–( )2
-----------------------+ ,=

α R e2/c e Ω( ),=

wl 2 ωc/T( ) ωc l 1/2+( )/T–[ ] ,expsinh=

Qll' x( ) 1–( )l l'– l'!/l1( )1/2xl l'– Ll'
l l' x2( ) x2/2–( ).exp–=
the 2D metal film), selects the necessary phonon q = q*
in the integral of Eq. (12):

(14)

Then, the factor Qll' given by Eq. (13) comes into play.
For this factor (and, hence, the absorption coefficient as
a whole) not to be exponentially small, the quantity q*
must be close to zero. More precisely, the following
inequality must be satisfied:

(15)

The optimal value of q* corresponding to the maximal
Qll' is zero, which is equivalent to conditions (1), (2)
with the only possible exception of the point j = 1,
where, additionally, the function A(Ω) has a pole. As a
result, at j = 1, the absorption becomes classical, i.e.,
takes the cyclotron character.

The sharpness of the multiple cyclotron resonances
is mainly determined by the requirement imposed on
the energy of the initial photon. According to expres-
sions (14) and (15), for the appearance of such reso-
nances with the participation of phonons, it is desirable
that the following condition is satisfied:

(16)

This is achievable not only for the classical cyclotron
resonance but also for the appearance of multiple cyclo-
tron harmonics.

SUMMARY

The existing theory of magnetophoton phenomena
for 2D electrons in magnetic field allows one to quali-
tatively explain the appearance of multiple cyclotron
photoconductivity peaks determined by Eqs. (1) and (2)
as a result of the inelastic processes that accompany the
absorption of a photon with an energy Ω @ ωc in a
medium containing a 2D electron system, conditions
(14) and (15) being optimal for the manifestation of
these processes. The presence of the aforementioned
peaks is easily determined in terms of the theory devel-
oped in [1, 9–11]. It is also possible to mention the sub-
sequent publications [20] that point to the presence of
multiple cyclotron resonances in photoabsorption. As
for the amplitude of the oscillations under discussion, a
systematic study aimed at the development of the 2D
formalism of magnetophoton phenomena by analogy
with the 3D case is necessary. An additional specific
feature of the 2D situation is that the dimensionless
parameter σ from Eq. (7) approaches unity for high-
quality samples [6–8]. In these conditions, the oscilla-
tions of photoabsorption may considerably increase for
“impedance” reasons. For illustration, one can refer to
the publication [21] reporting on the observation of
weakly pronounced multiple cyclotron peaks on the
wings of the CR peak. However, the quality of the sam-
ples studied in [21] was considerably lower than that in

q∗ l l'–( )ωc Ω+[ ] /S.±=

q∗ lH 1.<

Ω @ S/lH.
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[6–8], so that the case σ ! 1 took place and no imped-
ance amplification was present.

I am grateful to V. Gantmakher and S. Iordanskiœ for
discussing the results of this study and for useful com-
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Foundation for Basic Research, project no. 03-02-
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Order Parameter of A-like 3He Phase in Aerogel
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In the framework of a phenomenological description of superfluid 3He in aerogel, a criterion of choosing the
form of the order parameter close to the transition is obtained. Besides the BW phase, the order parameter of
the axiplanar phase with specially chosen free parameters also satisfies this criterion. Such an order parameter
is proposed as limiting at T  Tc for an A-like phase observed for 3He in aerogel. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 67.57.-z
1. Two superfluid phases, A-like and B-like, are
observed in liquid 3He filling the free space between the
filaments of aerogel. The names of the phases show the
connection with superfluid A and B phases of impurity-
free (pure) 3He and present the existing indefiniteness
in their identification. Pulsed NMR experiments [1]
indicate that the order parameter in the B-like phase
after averaging over small-scale fluctuations has a form
the same as or close to that in pure 3He-B. There is no
unambiguous indication to a possible form of the order
parameter in the A-like phase. It is known that the static
magnetic susceptibility in this phase is the same as in
the normal phase and the A phase of pure 3He [2].
Therefore, pairing particles in the A-like phase have
equal spins (ESP, equal-spin pairing); i.e., there are no
Cooper pairs with zero spin projection onto the direc-
tion of magnetic field (z axis). In this case, the order
parameter (matrix Aµj) can be represented in the form

(1)

where  and  are the orts of the corresponding axes
in the spin space and aj and bj are the complex vectors
in the momentum space. The A phase (axial) of pure
3He is a particular case, and its order parameter has the
form

(2)

i.e., involves only one spin vector  and “orbital” vec-
tors  and  are real, normalized, and perpendicular
to each other. Volovik demonstrated that matrix (2) can-
not describe a phase transition in aerogel to a state with

long-range order [3]. The vector  =  +  randomly
changes its direction. Therefore, the average Aµj value
is equal to zero. A transition to a superfluid-glass state
[4], where the mean values of quadruples of the cre-
ation and annihilation operators for quasiparticles play

Aµj x̂µa j ŷµb j,+=

x̂µ ŷµ

Aµj ∆ 1

2
------- d̂µ m̂ j in̂ j+( ),=

d̂µ

m̂ j n̂ j

l̂ m̂ n̂
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the role of the order parameter, is possible. However, as
will be demonstrated below, the existence of the super-
fluid phase with the magnetic susceptibility of normal
3He can be explained with the Cooper pairing and long-
range orientational order.

2. The interaction of aerogel with superfluid 3He
near Tc can be described phenomenologically [5] by
introducing the energy density

(3)

to the Ginzburg–Landau functional. Here, ηjl(r) is the
random symmetric tensor and gη is the coupling con-
stant. Addition (3) takes into account fluctuations in the
positions of the filaments of aerogel. The functional
takes the form

(4)

where f∇  and f4 are, respectively, the gradient energy
and the fourth-order terms. The isotropic part of the
tensor η0(r)δjl can be included into the transition tem-
perature Tc. After that, ηjj; i.e., the trace is equal to zero.
Aerogel is assumed to be isotropic on average; i.e.,
〈η jl(r)〉  = 0. The tensor ηjl(r) physically describes split-
ting in Tc due to the local breaking of the spherical sym-
metry. The temperature Tc in pure 3He is the same for all
spherical harmonics with l = 1. For volumes exceeding
ξ0 in aerogel, the “local temperature of the transition”
can generally be different for the different projections
of the angular momentum. The added energy fη is of the
second order in Aµj and makes the basic contribution to
functional (4), when 〈Aµj 〉  ≠ 0 in some region near Tc.
The choice of 〈Aµj 〉  in this region is expected to be
determined by perturbation fη. Of special interest are
those combinations of the projections of the angular

f η gηη jl r( )Aµj Aµl* ,=

FGL r3 α T Tc–( )Aµj Aµj* f η f ∇ f 4+ + +{ } ,d∫=
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momentum and spin that are not split by the tensor field
ηjl(r), i.e., satisfy the condition

(5)

In this case, the energy fη does not dominate, and those
terms in functional (4) that are responsible for the phase
transition become substantial. If Aµj is an extremum of
functional (4) and satisfies condition (5), ∂FGL/∂gη = 0
and the change in interaction with aerogel does not
affect energy. The order parameter of the B phase Aµj =
∆eiϕRµj, where Rµj is the orthogonal matrix, has this
property. Indeed, the substitution of this expression into
Eq. (2) yields

(6)

Similar substitution for the axial phase provides the
nonzero result fη ~ –ηjnljln that is responsible for the
appearance of the orientational disordering. Let us seek
those ESP phases [of form (1)] that, similarly to the B
phase, are not split by the tensor field ηjl(r), i.e., satisfy
condition (5). We decompose the vectors a and b in def-
inition (1) into real and imaginary parts: a = m + in, b =
l + ip, where m, n, l, and p are real vectors. Substituting
Eq. (1) into Eq. (5), we obtain an equation whose imag-
inary part is identically zero due to the symmetry of ηjl.
The real part is zero, if

(7)

The constant on the right-hand side can be taken equal
to unity. Quadruples of vectors, one of which is zero,
e.g., p = 0, and the three remaining vectors form an
orthonormal triple, satisfy Eqs. (7). The corresponding
desired order parameter has the form

(8)

Substitution shows that matrix (8) satisfies condition
(5); i.e., “isotropic” ESP phase with this order parame-
ter does not lose the orientational order under the action
of aerogel. A matrix found from condition (5) need not
coincide with one of the extrema of the free energy of
pure 3He [6]. Nevertheless, the isotropic ESP phase is a
particular case of the axiplanar phase [7, 8] whose order
parameter is proportional to

(9)

The parameters of the axiplanar phase are a triple of

real numbers v x, v y, and v z related as  +  +  = 1.

The isotropic ESP phase (8) corresponds to  =  =

 = 1/3, and axial phase (2), to  =  = u and v z =
0. Both limiting cases belong to the one-parameter fam-

η jlAµj Aµl* 0.=

η jlRµjRµl η jlδjl η jj 0.= = =

m jml n jnl l jll p j pl+ + + δjlconst.=

Aµj ∆ 1

3
------- d̂µ m̂ j in̂ j+( ) êµ l̂ j+[ ] .=

d̂ iê+( ) m̂v x i n̂v y l̂v z+( )+[ ]

+ d̂ iê–( ) m̂v x i n̂v y l̂v z–( )+[ ] .

v x
2 v y

2 v z
2

v x
2 v y

2

v z
2 v x

2 v y
2
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ily v x = v y = 1/2 ≡ u, v z ≡ w, and 2u2 + w2 = 1 with the
order parameter proportional to

(10)

For w ≠ 0, this expression corresponds to a nonunitary
phase differing from the axial phase in symmetry. In
particular, the nonunitary phase does not exhibit the
combined symmetry about the gauge transformation

and rotation of and  about . For this reason, con-
tinuous vortices are absent in the axiplanar phase.

3. In the scheme proposed above, the transition at
T = Tc must lead either immediately to the B phase or to
the symmetric ESP phase (8). In a magnetic field, phase
(8) is favorable due to its larger magnetic susceptibility.
As temperature decreases, the coefficients u and w in

Eq. (10) can deviate from the value u = w = 1/ . Devi-
ations become significant at temperatures that can be
estimated by considering fluctuation corrections to
average Aµj for temperatures far from Tc, where they can
be considered as small, and by extrapolating them to
the region where they become on the order of unity. For
ordinary superconductors [9], this occurs at (Tc – T)/Tc ~

( / ξ0)2, where λcorr is the correlation length of the
random field ηjl(r), ltr is the transport free path of fer-
mion excitations, and ξ0 is the coherence length in
superfluid 3He. For values λcorr ~ 500 Å, ltr ~ 2000 Å,
and ξ0 ~ 200 Å, we obtain (Tc – T)/Tc ~ 1/30. This esti-
mate is depreciated, because it involves the sixth power
of the poorly known quantity λcorr . A more reliable esti-
mate can be obtained from the observed smearing of the
heat-capacity jump [10]. According to these data, (Tc –
T)/Tc ~ 1/25. Within this temperature range near Tc, the
order parameter must be close to that for the symmetric
ESP phase. This range can be wider if the symmetric
ESP phase is close to the minimum of functional (4)
at fη = 0 and for the f4 form realizing in fact. There is
no cause for the destruction of the long-range orienta-
tional order in the symmetric ESP phase. For u ≠ w,
energy (w2 – u2)ηjlljll tends to destroy this order. For
|w2 – u2| ! 1, the length where the order must be
destroyed according to [3] is certainly larger than the
dipole length. In this case, the directions of l and m are
fixed by the directions of d and e, respectively. Without
comprehensive quantitative analysis, it is difficult to
estimate whether a decrease in temperature leads to fur-
ther disordering. An additional transition was not
observed in experiments.

Possible methods of experimental observation of
difference between the axiplanar and axial phases in
pure 3He were discussed in publications and used in [8].
All these methods are, principally, applicable to aero-
gel. Measurement of the orbital properties, e.g., the
anisotropy of the superfluid-density tensor is a more
direct method. This tensor must be isotropic in phase
(8). The negative shift observed in experiments [2] for

ud̂ m̂ in̂+( ) wê l̂.–

m̂ n̂ l̂

3

λ corr
3 ltr

2



242 FOMIN
the frequency of the transverse NMR does not exclude
the suggested identification of the A-like phase,
because a negative addition to the spin precession fre-
quency with deviations of d from l can arise due either
to longitudinal oscillations [11] or to the orientating
effect of walls [12].

I am grateful to V.V. Dmitriev, V.I. Marchenko, and
T.E. Panov for stimulating discussions and to the ref-
eree of the paper for useful remarks. This work was
supported in part by the U.S. Civilian Research and
Development Foundation for the Independent States of
the Former Soviet Union (grant no. RP1-2089) and the
Russian Foundation for Basic Research (project no. 01-
02-16714).
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The diagram of the anomalous state of 4He crystals was determined in the range 0.2–0.45 K. Agreement was
obtained with the diagram of “bursteike” growth of a dislocation-free facet. This confirms previous assumption
about the common nature of these phenomena. The requirements to the theoretical model of the phenomenon
are formulated. The growth rate of the facets in the anomalous state was measured up to supersaturations of
~20 mbar. It was found that the growth rate becomes constant and equal to ~3.5 m/s above ~8 mbar. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 67.80.-s; 81.10.-h
The anomalous state of 4He crystals with an exceed-
ingly high growth rate is formed below 0.78 K at super-
saturations Dp ~ 15 mbar and has been studied down to
a temperature of ~0.45 K [1, 2]. This temperature range
lies below the first (TR1 = 1.28 K) and the second (TR2 =
0.9 K) but above the third (TR3 = 0.35 K) roughening
transition [3]. Temperature lowering provides a unique
possibility of revealing whether the roughening transi-
tion has an effect on the formation of the anomalous
state or not. It is known from experiment [4] that the
appearance of the anomalous state leads to a simulta-
neous increase in the growth rate of both basal and lat-
eral facets, which are equilibrium in this temperature
range, i.e., to the simultaneous transition of facets into
the state with a high growth kinetics. It is unjustified to
assert that this is also valid for the third roughening
transition. The Miller indices of the facets formed upon

this transition are (10 1). If the growth rate of these
facets below TR3 is slow and typical of crystals in the
normal state, then growth time of the crystal will
increase by two to three orders of magnitude.

Earlier [5], I have suggested that the effects of the
anomalous state and “bursteike” growth of a disloca-
tion-free facet [6] have a common physical origin. This
assumption was based both on the common features of
the phenomena and on the similarity of the Dp*–T dia-
grams of the anomalous and bursteike growths. How-
ever, there is a gap between the lowest point of my mea-
surements (~0.45 K) and the upper point (~0.25 K)
obtained in [6]. Measurements below 0.4 K will be
helpful in checking the agreement between these phase
diagrams.

Measurements in this temperature range provide
additional information on the growth kinetics of a crys-

1
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tal in the anomalous state. Previously, it was found that
the growth rate increased on cooling. However, the
measurement interval was too small to determine the
temperature dependence of surface mobility. Moreover,
the growth rate decreased upon approaching the bound-
ary of the anomalous region. This fact was supposedly
associated with the state-formation kinetics rather than
with the dissipative mechanisms governing the growth
kinetics in the anomalous state. It is thus necessary to
measure the growth rate deep inside the anomalous
zone and, desirably, in the region where the critical
supersaturation Dp* of state appearance weakly
depends on temperature, i.e., in the region below 0.4 K.

MEASUREMENT RESULTS

Phase diagram. The measuring technique and the
container design were described in detail in [2, 5]. For
this reason, only the main details of the experiment will
be outlined here. A helium crystal was nucleated by a
pulse of electrostatic field in the center of a cylindrical
container with a volume of 1.8 cm3. This technique
allows the initial supersaturation Dp to be set in the
interval from zero (phase equilibrium pressure) to the
maximal value determined by the spontaneous nucle-
ation at the inner wall of the container. The change in
pressure during the growth process was measured by a
capacitive transducer with a time resolution of 35 µs.
A temperature of 0.48 K was achieved by evacuation of
3He vapor and served as a starting point for the mag-
netic cooling by paramagnetic salt (chrome potash
alum). Temperature was measured by a Matsushita
thermometer placed inside the container in contact with
superfluid helium.
003 MAIK “Nauka/Interperiodica”
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Figure 1 presents the results of measuring the phase
diagram [2], together with the additional data extended
to 0.2 K. The spontaneous-nucleation threshold at the
container wall was about 20 mbar, although it achieved
45 mbar in some experiments (Fig. 1). This allowed the
phase diagram to be extended into the range of higher
temperatures (dashed line). Unfortunately, supersatura-
tions as high as those were not reproduced in a repeat
experiment, which did not allow the phase boundary to
be located more precisely, so that the dashed line in the
high-saturation region represents the lower boundary of
the transition.

The second result of these measurements was that
no special features were observed in the phase diagram
and growth kinetics at the point of third roughening
transition. Therefore, the transition to the anomalous

state imparts a high growth rate to the (10 1) facets.

The third conclusion is that the anomalous and
bursteike growth diagrams are in agreement with each
other. One can see from the graph that all the crystals
formed above the line connecting these two regions
demonstrate the growth with a high rate. It also should
be taken into account that, as was observed experimen-
tally in [7], the anomalous state is formed in a finite
time, which decreases with increasing the initial super-
saturation. In the bursteike growth experiments, this is
manifested by the statistical character of state appear-
ance [6]. In our experiments, the growth time of nor-
mal-state crystals was ≤10 ms, so that, to observe the
fast-growth effect, it is necessary that the crystal
undergo transition to the anomalous state within this
time. In the bursteike growth experiments, the time dur-

1

Fig. 1. Diagram of anomalous state. Light circles corre-
spond to the fast growth and black circles are for the normal
slow crystal growth. Arrows indicate the temperatures of the
second and third roughening transitions.
ing which the crystal facet stays under the action of an
excess pressure is several orders of magnitude longer
and comprises ~10 s. Hence, it follows that our experi-
ments yield values of boundary supersaturation corre-
sponding to the formation time 0.1–10 ms, which must
be longer than the times obtained in the experiments
with the slow buildup of pressure over the facet [6] (for-
mation time ~1–10 s). With regard to this remark, both
phase diagrams agree well with each other. This con-
firms the assumption that was made in [5] about the
common nature of these phenomena. Such an identifi-
cation makes the range of possible mechanisms
accounting for this phenomenon even narrower. Evi-
dently, the effects associated with the topological
defects at the surface structure (assessed in [7]) should
then be excluded from consideration, because the burst-
eike growth was observed just for the facet that was free
of such defects. Likewise, the mechanisms associated
with the vortices in superfluid helium [7] should also be
ruled out, because the facet in experiments [6] was
almost immobile before the fast-growth onset; i.e.,
there were no fluid flows.

One more argument in favor of the commonness of
the phenomena observed in [2] and [6] is that impurities
affect the phase diagram. The boundary supersaturation
for the bursteike growth increases upon adding 10–
50 ppm of 3He impurity; i.e., the fast-growth region
shifts upward [6]. Although our experiments with
180 ppm of impurities are at the initial stage, one nev-
ertheless can state that the addition of 3He in the tem-
perature range 0.64–0.78 K also shifts the critical
supersaturation Dp* upward.

The main features of the formation of anomalous
state with a high growth rate can be summarized as fol-
lows:

(i) The state arises in a finite time that decreases
with a rise in supersaturation.

(ii) The formation time increases with temperature.
(iii) The critical supersaturation Dp*, measured at a

fixed formation time, increases monotonically with
temperature.

(iv) The process has a statistical character.
(v) The transition brings about simultaneous change

in the growth kinetics of all facets, as it was experimen-
tally demonstrated for all three roughening transitions.

(vi) The appearance of the anomalous state is related
neither to the surface topological defects nor to the vor-
tices in fluid.

None of the existing hypotheses satisfies all these
requirements.

Growth rate. Crystal growth with a high rate
induces radial oscillations of a fluid in the container and
leads to the oscillatory character of the growth. In [8],
it was suggested that the ratio between the amplitude of
the first pressure minimum and the initial supersatura-
tion can be used for determining the average growth
JETP LETTERS      Vol. 77      No. 5      2003
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kinetic coefficient K in the first 100 µs; it is defined by
the expression

where V is the growth rate of crystal surface; ρ and ρ'
are the densities of liquid and solid helium, respec-
tively; ∆ρ = ρ' – ρ; and Dp is the supersaturation. It is
essential that K in this method is assumed constant; i.e.,
the growth rate is linear in supersaturation. If this con-
dition is not fulfilled, this technique can be used to
semiquantitatively estimate the growth rate through
determining the average crystal growth rate at the first
half-wave, where the pressure drops from its initial
value Dp0 to zero as

The results of the corresponding processing are given in
Fig. 2. The upper panel shows the dependence of the
average growth rate on supersaturation, as constructed
by combining the measurement results obtained in [7]
and in this work. One can see that the growth rate
reaches its saturation value of ~3.5 m/s above ~8 mbar.
The lower panel presents the temperature dependences
of the average growth rate for two supersaturations, as
obtained by the optical methods and derived from the
pressure decay rate during the growth. Within the mea-
surement accuracy, the rate becomes constant below
0.35 K and equal to 3–3.5 m/s for both saturations. The
absence of a sharp temperature dependence of the
growth rate, typical of atomically rough surfaces [9]
and facets in the normal state [10], is noteworthy. The
maximal growth rate is an order of magnitude lower
than the critical rate in superfluid helium (46 m/s at
25 atm [11]). Note that the velocities of helium flowing
to the crystal are even one order of magnitude lower
(~0.3 m/s). Thus, the maximal surface growth rate bear
no relation to the critical rates in liquid helium.

The spiral growth model, developed in [6], makes
allowance for the associated mass, renormalization of
linear energy of the moving step, localization of step
kinks at high supersaturations, and the Cherenkov
phonon radiation. For the step mobility caused at high
supersaturations by the localization of bends, the theory
[6] predicts that the facet growth rate will tend to a con-
stant. The supersaturation Dpsat is estimated as (param-
eters are given in the CGS system of units)

and the limiting spiral growth rate is

V K
∆ρ
ρρ'
--------Dp,=

V〈 〉 K〈 〉 ∆ρ
ρρ'
--------

D p0

2
----------.=

D psat
ρ

∆ρ
------- 1

a ηµ0

-----------------, η≈ 430–960( ),=

µ0 3 107 1

T3
-----,×∼

Vmax
Λ
2π
------ 1

β/a( )η
-----------------,

β
a
--- 0.011,= =
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where a is the lattice parameter. Numerical estimates
show (parameters are taken from [6]) that, at 0.45 K,
the rate in this model becomes constant at ~0.8 mbar,
while the maximal facet velocity is ~0.01 cm/s. These
values are substantially smaller than those experimen-
tally observed in this work, so that the spiral growth is
not responsible for the facet growth rate above 8 mbar.

Measurements of the helium crystal-surface growth
for supersaturations of 0.15–0.4 bar and temperatures
of 0.1, 0.6, and 0.85 K were carried out by Graf and
Maris in [12] using the supersonic method. Unfortu-
nately, our data cannot be directly compared with the
results of that work for a number of reasons. Measure-
ments in [12] were made at the atomically rough sur-
faces rather than at facets, as in our case, while their
minimal supersaturation was an order of magnitude

Fig. 2. (a) Dependence of the average growth rate on the
supersaturation at T = 0.45 K. Arrow indicates the threshold
supersaturation at this temperature. (b) Temperature depen-
dence of rates for two fixed supersaturations of (triangles
and squares) 6.5 and (circles) 20 mbar. Squares are for the
optical method of determining the growth rate, and circles
and triangles are for the determination from pressure oscil-
lations. Arrow indicates the transition temperature for
Dp0 = 6.5 mbar.
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higher than our maximal value. It should also be noted
that the surface growth rates in [12] achieved 5–10 m/s,
and the growth kinetic coefficients at large amplitudes
lay in the range 2–20 s/m; i.e., they are comparable to
our values.

The main result of this work is that two qualitatively
close phenomena are combined together, and the
requirements for the physical mechanism explaining
the anomalously fast crystal growth are formulated.
Nevertheless, the mechanism of efficient deceleration
of crystal facets upon achieving growing rates of ~4 m/s
still remains to be understood.

I am grateful to A.Ya. Parshin for discussion of
results. This work was supported by the Russian Foun-
dation for Basic Research, project no. 02-02-16772.
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It is demonstrated that Jain’s rule for determining fractions in the quantum Hall effect can be obtained without
recourse to the phenomenological concept of composite fermions. The possibility of existence is considered for
topologically nontrivial many-electron wave functions, whose group classification gives an indication of special
values of electron density in the ground states separated by a gap from excited energies. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 73.43.Cd
Despite the fact that more than twenty years have
elapsed since the experimental discovery of the quan-
tum Hall effect (QHE), the theory of this phenomenon
is far from being complete (see reviews [1, 2]). This is
primarily true for the fractional quantum Hall effect
(FQHE), which necessitates the electron–electron
interaction and can by no means be explained by the
one-particle theory, in contrast to the integer QHE. The
most successful variational many-electron wave func-
tion for explaining the 1/3 fraction was constructed by
Laughlin [3, 4]. In those works, the approximation of
extremely high magnetic field was used, in which one
can restrict oneself to the states of the lowest Landau
level. However, this does not conform to the experi-
mental situation, where the cyclotron energy is on the
order of the mean energy of electron–electron interac-
tion. Moreover, this approach encounters difficulties in
generalizing to the other fractions. Computer simula-
tions give a rather crude approximation for the realistic
multiparticle functions, because the number of particles
in the corresponding calculations on modern computers
does not exceed several tens.

The most successful phenomenological description
is given by Jain’s model of “composite” fermions [5, 6],
which predicts the majority of observed fractions.
According to this model, electrons are dressed with
magnetic-flux quanta, whose magnetic field is concen-
trated in an infinitely narrow region around each elec-
tron. It is assumed that the even number of flux quanta
provides the Fermi character for these particles. The
inclusion of this additional magnetic field in the formal-
ized theory leads to the so-called Chern–Simons
Hamiltonian. This approach is described in detail in [7].
However, practical calculations use the mean-field
approximation, in which the effective magnetic field is
assumed to be equal to the sum of an external magnetic
field and an additional constant magnetic field that pro-
vides the total number of additional magnetic-flux
0021-3640/03/7705- $24.00 © 20247
quanta for all composite electrons. It is just this fact that
leads to Jain’s rule for fractional electron densities ρe =
(H/φ0)(l/(1 + 2l)) corresponding to the complete filling
of Landau levels in the effective magnetic field, when it
is assumed that there are (–2) flux quanta φ0 per com-
posite electron, if the external-field flux is taken to be
positive and l is a positive integer. According to this
model, one can assert that, as l  ∞ and ρe 
H/2φ0, the effective magnetic field turns to zero and the
composite fermions should behave as an ordinary 2D
Fermi liquid in the absence of magnetic field. This
statement qualitatively explains the experimentally
observed phenomena for the half-filled Landau level.
Attempts at extending the calculations beyond the
mean-field approximation for the Chern–Simons
Hamiltonian revealed numerous intrinsic difficulties of
this theory and did not aid in calculating the assumed
Fermi liquid parameters for half-filled Landau levels. A
review of works on this subject can be found in the B.
Halperin’s article published in [2].

The introduction of an infinitely narrow region
around each electron, which, nevertheless, provides a
finite flux for the internal magnetic field, seems to be
quite artificial. When accepted on the microscopic
level, this electron property cardinally changes our
notion of the electron and, in fact, bears no relation to
two-dimensionality or to the presence of an external
magnetic field.

However, the theory of FQHE can likely be devel-
oped on a different physical basis that is associated with
the existence of topological textures stable to nonzero
deformations. The topological classification of multi-
particle wave functions is a rather complicated mathe-
matical problem, and, to my knowledge, no simple and,
simultaneously, effective definition of topological
classes is presently known. The classification of topo-
logical excitations is well elaborated for a ferromag-
netic 2D electron gas in a strong magnetic field with
003 MAIK “Nauka/Interperiodica”
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filling ν = 1 (skyrmions [8, 9]). When developing the
theory, one can apply the canonical transformation to
electron spinors ψ(r) at each point by introducing new
spinors χ(r), according to the equation

(1)

where U is the rotation matrix depending on the three
Euler angles; e.g., U = Uz(α)Uy(β)Uz(γ) (indices denote
the rotation angles). After the canonical transformation,
the Lagrangian of interacting electrons takes the form
(in the system of units where lH = 1, H = 1, and " = 1/2)

(2)

where

σl are Pauli matrices,

,

and V(r – r') is the Coulomb interaction. It is assumed
that γ = α, because the angle γ plays an auxiliary role,
although it eliminates singularities of the matrix U. The
spinors ψ and ψ+ are the electron-field operators obey-
ing the Fermi commutation rules. One can readily ver-
ify that χ+ and χ satisfy the same commutation rules.
The new Lagrangian is formally equivalent to the initial
one with Ω ≡ 0. Hence, this Lagrangian gives electronic
states corresponding to Ω ≡ 0, because one can always
perform the inverse transformation. However, one may
attempt to seek any other states that are characteristic of
the Lagrangian with Ω ≠ 0. This program can be suc-
cessfully implemented in the case where U changes
only slightly at a distance on the order of the magnetic

length  =  (H is the external magnetic field) and

all Wl are small. At large distances, β = 0, so that the
matrix U only rotates spinors about the z axis, which
aligns with the spin orientation in a homogeneous fer-
romagnet and endows them with a nontrivial phase. The
desired electronic state with operators χ and χ+ can be

ψ r( ) U r( )χ r( ), ψ+ r( ) χ+U+ r( ),= =

L iχ+∂χ
∂t
------ 1

2m
-------χ+ –i— A0 Ω̂+ +( )2χ–

 
 
 

r2d∫=

+
1
2
--- V r r'–( )χ+ r( )χ+ r'( )χ r'( )χ r( ) r2d r'2 ,d∫

Ω̂ –iÛ
+—U Wlσl,= =

Ωz 1
2
--- 1 βcos+( )—α ,=

Wx 1
2
--- β α—αcossin α—βsin–( ),=

Wy 1
2
--- β α—αsinsin α—βcos+( )=

lH
2 eH

"c
-------
obtained perturbatively for small Ω from a uniform fer-
romagnetic state of operators χ. The existence of a
topological number

which is determined by the vortical number of revolu-
tions through the angle α(r) upon going around an infi-
nite contour, is a nontrivial topological requirement.
This circumstance (K ≠ 0) is precisely that which
defines the wave-function topological class and renders
wave-function deformation into the trivial ferromag-
netic state with identical directions of all ψ spinors

impossible. Thus,  with different K characterize
topologically different classes of multiparticle wave
functions. The condition β = π at the point of α(r) sin-
gularity (of the polar-angle type) guarantees the

absence of singularities for . This approach was sug-
gested in [10]; various physical quantities were calcu-
lated in [11, 12] in the leading order of perturbation the-
ory. The results coincided with those obtained by other
methods (see [7, 8]). The quantity curl Wz plays the role
of an additional effective magnetic field, this field being
the collective property of the multiparticle wave func-
tion rather than the attribute of an individual electron.
The calculations of electron density, energy, and spin
density can, in principle, be carried out up to any order
in the gradient of matrix U.

This example demonstrates the method of determin-
ing isolated topological excitations. However, this
approach can be extended to the analysis of the texture
and a multiparticle wave function corresponding to the
finite density of in-plane topological number K. The

analysis of arbitrary textures of this type for  involves
great methodological difficulties and, likely, bears no
direct relation to the ground-state classification. We
therefore assume that these textures are near-periodic,
so that the mean-spin field is periodic. Let us consider
a unit cell. We assume that the mean-spin vector at the
unit-cell boundary has a constant value and is aligned
with the z axis in the spin space. Thus, the angle β is
assumed to be a periodic function in plane, with β = 0
at the unit-cell boundaries. The angle α is assumed to
possess vortex singularity at some point inside each
unit cell, for which we assume that β = π in order to

eliminate the singularities of . One can set, for

example, α = , where the summation goes over
all unit cells and αi(r) is the polar angle centered inside
the ith unit cell. Therefore, each cell is characterized by
the same topological number

K
1

2π
------ curlWz r2 ,d∫=

Ω̂

Ω̂

Ω̂

Ω̂ r( )

α i r( )∑

K
1

2π
------ curlΩz r2 ,d

σ
∫=
JETP LETTERS      Vol. 77      No. 5      2003



FRACTIONAL QUANTUM HALL EFFECT, JAIN’S RULE 249
which specifies the integer number of quanta for the
additional effective magnetic field with the average

value Heff =  over the sample area, where σ is the

unit-cell area. Taking ferromagnetic χ and χ+ as the
main approximation, the average spin n(r) will give the
K-fold mapping onto the direction sphere for any unit
cell. Although the sum α =  over all cells is, for-

mally, a periodic function, it diverges. Since only sinα
and cosα enter the expression for , the modulo 2π
convergence is sufficient. I will assume, without proof,
that either this convergence holds or Ωx, y can be regu-
larized in a periodic manner.

The suggested construction of finite-energy vortices
without core singularity (regular Wl) is not unique. For
example, in the absence of free spins (large g factor),
one can consider two size-quantization levels (for
motion perpendicular to the 2D plane) and introduce
the corresponding isospin, after which an analogous
construction, though with different constants, can be
obtained for the isospin.

It is not my intention to calculate electron energy in
such textures. This is a rather complicated problem for
unit-cell sizes on the order of magnetic length, for
which the gradient expansion in Ω is impossible. My
goal is to classify the electronic states with the aim of
determining certain special density values that corre-
spond to the ground states separated by a gap from the
excited states. The problem of numerical calculation of
the gap can be posed after the classification of ground
states.

We have, in fact, a system of interacting electrons in
a periodic effective magnetic field (the sum of the exter-
nal magnetic field and a periodic vortex magnetic field
in unit cells) with nonzero mean. The corresponding
transformation group consists of the magnetic transla-
tions and is the projective representation of the conven-
tional translation group. According to the well-known
analysis (Brown, Zak; see, e.g., [13]) for noninteracting
electrons, the band spectrum is regular only for a ratio-
nal number of flux quanta. The irrational number of

quanta or a rational number  with large noncancel-

able numerator and denominator brings about a highly
irregular structure with the allowed and forbidden
bands thickened in a certain energy region. One can
assume, in the spirit of the Fermi liquid theory, that the
interaction does not affect these spectral features.
Restricting oneself to the simplest fractions, for which
the effective-field flux through the unit cell is (Hσ +
Kφ0) = φ0/l, where l is an integer, one obtains σ = (1 –
Kl)φ0/lH for the unit-cell area.

The total number of states per unit area, with one
electron per unit cell, determines the electron density
ρ = Hl/φ0(l – Kl) and must correspond to the filled set

K
σ
----

α i∑
Ω̂

p
q
---φ0
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of bands obtained from S/σ states in the absence of
magnetic field, though in a periodic potential with the
period specified by the unit cell. Here, S is the sample
area. Simple analysis suggests [13] that this initial band
is split into l subbands, each being (odd l) l-fold or
(even l) l/2-fold degenerate, and with the fraction of the
number of states in each subband being (odd l) 1/l2 or
(even l) 2/l2. However, the total number of states in all
subbands is S/σ. One can assume that, even in the pres-
ence of interaction, these states are separated from the
higher energy states by the greatest gap. The structure
of inner forbidden bands is irrelevant, because all
lower-lying states are filled. Note that the evenness of
the K number is immaterial, because, in contrast to the
composite-fermion model, the Fermi commutation
rules for the operators χ and χ+ are fulfilled automati-
cally and have no relation to the topological number K.
The occurrence of any specific numbers of vortex-field
flux quanta is dictated by the ground-state energy.
Assuming that K = –2 is energetically most favorable
and corresponds to the largest gaps, one arrives at Jain’s
rule ρ = Hl/φ0(1 + 2l), with the Landau level half-filling
ρ = H/2φ0 in an external field corresponding to vanish-
ingly small effective magnetic field (zero number of
flux quanta per unit cell).

Thus, I have reproduced the key statement of the
theory of composite fermions. Of course, these results
are quite crude and, to some extent, hypothetical. The
energy gap, the properties of elementary charge excita-
tions, and the conductivity calculations, as well as the
analysis of different K and l values, are still open ques-
tions, and the approach to these problems is as yet
unclear. However, the fact that these results are
obtained within the standard physical approach, with-
out invoking the cardinal hypotheses about electron
properties, is quite intriguing.
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sions. This work was supported by the Russian Founda-
tion for Basic Research (project no. 01-02-17520), the
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the Russian Federation.

REFERENCES

1. The Quantum Hall Effect, Ed. by R. Prange and
S. M. Girvin (Springer, New York, 1987; Mir, Moscow,
1989).

2. New Perspectives in Quantum Hall Effects, Ed. by
S. Das Sarma and A. Pinozuk (Wiley, 1997).

3. R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

4. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

5. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).



250  IORDANSKI
6. J. K. Jain, Phys. Rev. B 41, 7653 (1990).

7. B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47,
7312 (1993).

8. S. Sondhi, A. Kahlrede, S. Kivelson, and E. Rezayi,
Phys. Rev. B 47, 16419 (1993).

9. K. Moon, N. Mori, Kun Yung, et al., Phys. Rev. B 51,
5138 (1995).

10. S. V. Iordanskiœ and S. G. Plyasunov, Pis’ma Zh. Éksp.
Teor. Fiz. 65, 248 (1997) [JETP Lett. 65, 259 (1997)].
11. S. V. Iordanskiœ, S. G. Plyasunov, and I. V. Fal’ko,
Zh. Éksp. Teor. Fiz. 115, 716 (1999) [JETP 88, 392
(1999)].

12. S. V. Iordanskiœ and A. B. Kashuba, cond-mat/0211214;
Phys. Rev. B (2003) (in press).

13. E. M. Lifshitz and L. P. Pitaevskiœ, Course of Theoretical
Physics, Vol. 5: Statistical Physics (Nauka, Moscow,
1978; Pergamon, New York, 1980), Part 2.

Translated by V. Sakun
JETP LETTERS      Vol. 77      No. 5      2003


	201_1.pdf
	207_1.pdf
	212_1.pdf
	217_1.pdf
	221_1.pdf
	226_1.pdf
	230_1.pdf
	236_1.pdf
	240_1.pdf
	243_1.pdf
	247_1.pdf

