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Magnetization-induced third harmonic generation was experimentally observed in thin films of bismuth-doped
yttrium-iron garnet. The magnitude of magnetization-induced nonlinear optical response was enhanced through
building-in a garnet film into a photonic-crystal microcavity. It was shown that the observed magnetization-
induced variations in the third-harmonic intensity were caused by the internal homodyne of interfering weak
magnetic and strong nonmagnetic polarization components of the cubic nonlinearity of the garnet. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 78.20.Ls; 42.65.Ky; 42.70.Qs
The magnetization-induced nonlinear optical effects
predicted in [1] were observed in second-harmonic
(SH) generation from thin films of yttrium iron garnet
(Y3Fe5O12) doped with bismuth (Bi:YIG) [2]. More
recently, the nonlinear analogues of the magnetooptical
Faraday and Kerr effects were observed for the SH gen-
eration in various magnetic structures: magnetic super-
lattices [3], nanograin films possessing giant magne-
toresistance [4], magnetic interfaces [5], etc. However,
the weakness of the magnetization-induced effects in
SH generation, which was observed, as a rule, in the
experiments, foretold considerable difficulties in the
experimental observation of higher order nonlinearity
magnetization-induced effects, e.g., of third- harmonic
(TH) generation. This is likely the reason why publica-
tions on the experimental observation of magnetiza-
tion-induced TH generation are lacking [6].

In recent years, enhancement of optical and nonlin-
ear-optical processes in photonic crystals and micro-
cavities has become the subject of extensive experi-
mental studies. For example, the light-localization-
induced giant intensity enhancement of the second and
third harmonics in mesoporous silicon microcavities
was recently observed in [7]. This phenomenon gives
promise that the magnetization-induced TH generation
can be observed in magnetophotonic crystals and
microcavities based on them, the technology of which
has recently been developed [8]. For such structures,
one might expect the enhancement of the magnitudes of
nonlinear magnetooptical contributions as a result of
strong light localization in the ferromagnetic layer of a
microcavity. Such an enhancement was demonstrated
for the Bi:YIG-based magnetic microcavities in the
magnetization-induced SH generation in the geometry
0021-3640/03/7710- $24.00 © 20537
of the polar magnetooptical Kerr effect [9, 10]. The
enhancement of the magnetization-induced nonlinear-
optical signal magnitude does not imply an increase in
the magnetic response contrast, because the nonmag-
netic also increases. At the same time, an increase in the
TH contrast must be observed due to the internal homo-
dyne effect, which has recently been demonstrated for
the magnetization-induced SH [11].

This work reports the observation of magnetization-
induced optical third harmonic generation in a mag-
netic microcavity with a thin bismuth-doped yttrium–
iron garnet film as a spacer.

Samples of magnetophotonic microcavities were
190-nm-thick half-wave layers (with an optical thick-
ness λ/2) of polycrystalline Bi:YIG surrounded by
pairs of Bragg reflectors, each composed, in turn, of
five pairs of alternating quarter-wave SiO2 and Ta2O5
layers with thicknesses of 135 and 95 nm, respectively.
When manufacturing magnetic MC, a one-dimensional
photonic crystal SiO2/Ta2O5 was grown at a fused silica
substrate by magnetron sputtering. It played the role of
a distributed Bragg reflector. Then, a Bi:YIG film of the
required optical thickness was deposited. After subse-
quent annealing at a temperature of 725°C for 10 min,
a polycrystalline ferromagnetic garnet layer was
formed. At the final stage of structure preparation, a cap
photonic-crystal reflector was deposited on the MC gar-
net layer. The SEM image of a cleavage of the layered
structure of magnetophotonic MC is shown in the inset
in Fig. 1a.

Experiments on the magnetization-induced optical
second and third harmonic generation were conducted
using YAG:Nd3+ laser radiation with a wavelength of
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1064 nm, a pulse intensity of 10 MW/cm2, a pulse dura-
tion of 15 ns, and a pulse repetition rate of 25 Hz. The
SH and TH radiation reflected from the sample were
separated from the fundamental radiation by glass and
interference filters and detected by a photomultiplier
and gated electronics. Part of the fundamental radiation
was led to a reference channel, where the SH signal
from the reference sample (quartz crystal) was
detected. The normalization of the intensity measured
in the signal channel to the signal intensity in the refer-
ence channel allowed the influence of laser-intensity
fluctuations on the accuracy of the SH and TH intensi-
ties measured from the MC sample to be reduced. The
polarization of fundamental radiation was varied using
a half-wave plate and monitored, together with the SH
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Fig. 1. (a) Linear transmission coefficient of the p-polarized
fundamental wave at normal incidence; inset: SEM image
of the magnetophotonic microcavity cleavage. (b) Angular
spectra of the SH intensity for the p–p combination of the
fundamental and SH waves, respectively, measured in the
vicinity of the MC mode for the opposite directions of a
magnetic field (circular symbols) and the spectra of mag-
netic TH contrast (triangular symbols). Inset: angular TH
spectra for the p–p and s–p polarization combinations.
polarization, by Glan prisms. For magnetic measure-
ments, the sample was placed in a saturating static mag-
netic field with a strength of .2 kOe produced by per-
manent magnets in the geometry of the transverse mag-
netic Kerr effect. When measuring the angular spectra
of SH and TH intensities, the sample was mounted on a
computer-controlled automated goniometer with an
angular resolution of 0.24°.

The transmission spectrum of a magnetic MC at
normal incidence is shown in Fig. 1a. It demonstrates
the presence of a photonic band gap in the wavelength
range from 1000 to 1340 nm, as follows from the
almost total absence of the transmitted light (i.e., its
total reflection) in this range, and an MC mode centered
at λ . 1117 nm.

For this sample, the quadratic nonmagnetic and
magnetic nonlinear-optical properties were primarily
characterized by the SH generation method.

For the in-plane isotropic nonlinear film, the follow-
ing components of quadratic susceptibility are nonzero

in the absence of an external magnetic field: ,

 = , and  = . The coordinate system is
chosen in such a way that the z axis is directed along the
normal to the sample plane and the x axis lies in the
sample plane and in the incidence plane. In this case,
the SH generation is allowed only for the p–p and s–p
combinations of the fundamental and SH waves,
respectively. The corresponding experimentally mea-
sured angular SH spectra are presented in the inset in
Fig. 1. One can see that the angular positions of the
nonmagnetic p–p and s–p SHs are different, which cor-
relates with the presence of two modes for the p and s
pumping in the frequency spectra of the linear reflec-
tion coefficient [9, 10]. The spectral (angular or fre-
quency) distinction between the positions of the p and
s modes can be caused by both the polarization splitting
[12] and the uniaxial anisotropy of the ferrite garnet
layer in the normal direction to the sample. Such an
anisotropy can be induced during the course of sample
preparation as a result of the deformation of the ferrite
garnet layer, which is clamped between the dielectric
Bragg reflectors [10].

The angular positions of the SH maxima correspond
to the angles of incidence for which the condition for
exciting the MC mode by the fundamental radiation
with a wavelength of 1064 nm is achieved. Using the

expression λ = λ0  for the wavelength
resonant with MC at a nonzero incidence angle, where
λ0 is the resonant wavelength at the normal incidence
on the sample, α is the angle of incidence, and n is the
refractive index, one can determine the value of the lat-
ter at the fundamental wavelength: n1064 = 1.554.

For a sample placed in a magnetic field in the geom-
etry of the transverse magnetooptical Kerr effect (along
the Y axis), additional M-odd (M is the magnetization)
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quadratic susceptibility components appear: ,

, , , and , where the fourth
index indicates the orientation of a magnetic field
(magnetization) in the laboratory coordinate system. In
the case where the nonmagnetic and M-odd magnetic
contributions to the nonlinear polarization interfere,
one can also observe the M-odd effects in the SH inten-
sity.

The SH angular spectra of magnetic MC, as mea-
sured for the p-polarized SH and fundamental radia-
tions and for the opposite directions of a magnetic field
in the geometry of the transverse Kerr effect, are shown
in Fig. 1b. One can see from this figure that the mag-
netic field induces an appreciable M-odd change in the
SH intensity, whereas the angular position of the SH
maximum remains virtually unshifted. The magnetic
contrast 2ω = (I2ω(↑ ) – I2ω(↓ ))/(I2ω(↑ ) + I2ω(↓ )) serves
as a measure of the magnetization-induced change in
the intensity of reflected SH, where I2ω(↑ ) and I2ω(↓ )
are the SH intensities measured for the opposite mag-
netic-field directions. The angular spectrum of mag-
netic contrast at the SH wavelength in the MC mode is
also shown in Fig. 1b. It is seen that, within the mea-
surement error, the magnetic contrast is spectrally inde-
pendent and equal to ≈0.6.

We now turn to the TH generation in magnetic MCs.
Symmetry analysis of the cubic dipole susceptibility
tensor responsible for the optical third harmonic gener-
ation shows that, in the absence of a magnetic field, the
following components are nonzero for a nonlinear
medium that is isotropic in the layer plane:

(1)

It follows from the form of nonlinear susceptibility
components that the nonmagnetic TH generation is
possible only for the s–s and p–p combinations of the
fundamental and TH waves, respectively. The corre-
sponding experimentally measured TH angular spectra
are shown in Fig. 2b. As in the case of SH generation,
the angular spectra of the TH s and p modes were
shifted by 1.5°–2° relative to each other.

The dependence of the TH intensity on the funda-
mental radiation intensity is shown in the inset in
Fig. 2a. The logarithm of TH intensity linearly depends
on the logarithm of fundamental intensity, with the
slope being equal to three. This cubic dependence con-
firms that the experimentally detected signal belongs to
the third harmonic.

As in the case of SH, a magnetic field induces the
appearance of magnetization-odd components of cubic
dipole susceptibility. One can show that the following
components appear in the geometry of the transverse
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(longitudinal) Kerr effect in a magnetic field parallel to
the Y(X) axis:
M || Y:

(2)

M || X:

(3)

where the fifth index indicates the orientation of a mag-
netic field (magnetization) in the sample.

The magnetization-odd intensity variations in TH
generation are possible if the nonmagnetic and M-odd
magnetic components of the cubic nonlinear polariza-
tion interfere, thereby causing the internal homodyne
effect that was previously studied for magnetization-
induced SH generation in [11, 13]. It follows from the
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Fig. 2. (a) Angular TH spectra for the p–p and s–s combina-
tions of fundamental and TH wave polarizations (open and
dark circles, respectively). Inset: TH intensity as a function
of pump intensity (log–log scale). (b) Angular spectra of
p-polarized TH for oppositely directed magnetic fields in
the geometry of the meridional Kerr effect (circles) and the
TH magnetic contrast (triangles). The polarization of funda-
mental radiation makes an angle of 7° with the s polariza-
tion.

p–p s–s
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form of the above M-odd cubic susceptibility compo-
nents that such a situation occurs only for the p–p com-
bination of polarizations in the geometry of the trans-
verse magnetooptical Kerr effect. However, the M-odd
effect was not experimentally observed in the TH gen-
eration, most likely because of a comparatively low
magnetic cubic susceptibility.

The following experimental scheme was chosen for
recording the magnetization-induced TH component:
the pump polarization was turned by 5°–7° from s, and
the p-polarized TH component was recorded. Under
these conditions, almost the entire magnetic TH s–p

component , which interfered with a strongly
suppressed nonmagnetic TH p–p component, was
recorded. The TH magnetic contrast was also measured
for the s-polarized TH component, and the pump polar-
ization shifted from p by an angle of .7°. Similar to the
magnetization-induced SH generation, the TH mag-
netic contrast was determined by the expression 3ω =
(I3ω(↑ ) – I3ω(↓ ))/(I3ω(↑ ) + I3ω(↓ )), where I3ω(↑ ) and
I3ω(↓ ) are the TH intensities for the oppositely directed
magnetic fields. The resulting value of the TH magnetic
contrast 3ω was found to be .0.1 for the incidence
angles corresponding to the MC-mode center and for a
shift of ±1°.

The observed TH magnetic contrast can be caused
by two factors. First, it can be due to TH generation by
the magnetization-induced cubic susceptibility compo-
nents and by the internal homodyne effect, which con-
sists in the revelation of a weak TH magnetic compo-
nent on the background of a much stronger nonmag-
netic TH interfering with the former [11, 13]. In this
case, χ(3), M can be estimated at ~2 × 10–4χ(3), where χ(3)

is the effective nonmagnetic cubic susceptibility for the
p–p combination. Second, the magnetization-induced
effect may reveal itself in the TH intensity because of a
change in the polarization of the fundamental radiation
as a result of a Faraday rotation in the ferromagnetic
MC layer. The latter contribution is, presumably, small,
because the Faraday rotation of infrared fundamental
radiation with a wavelength of 1064 nm is less than 1°
even for the MC-enhanced linear Faraday effect [7].

In summary, magnetization-induced optical TH
generation has been experimentally observed in mag-
netophotonic yttrium–iron garnet microcavities. It has
been shown that the magnetization-induced change in

χzyyyX
3( ) M,

ζρ

ζρ
the TH intensity is primarily due to the odd contribution
from the magnetic cubic susceptibility, as becomes
clear from the interference with the nonmagnetic con-
tribution from the internal homodyne effect.
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Dust-Alfvén Mach Cones in Saturn’s Dense Rings¶

A. A. Mamun*, 1, P. K. Shukla*, 2, and R. Bingham**, 3

* Institut für Theoretische Physik IV, Rubr-Universität Bochum, D-44780 Bochum, Germany
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The formation of Mach cones associated with long-wavelength dust-Alfvén waves in Saturn’s dense rings has
been theoretically investigated. It is explicitly shown that for typical dusty plasma parameters corresponding to
Saturn’s dense rings, Mach cones are only formed by dust-Alfvén waves, which are found to be more prominent
than any other longitudinal waves (e.g., long-wavelength dust-acoustic waves). The characteristics of the dust-
Alfvén Mach cones that are found to be formed in Saturn’s dense rings are also presented. The dusty plasma
model, dust-Alfvén waves, and dust-Alfvén Mach cones that we predict in our present letter are expected to be
observed in Saturn’s dense rings by the imaging and occultation experiments on board the NASA/ESA space
mission CASSINI, arriving at Saturn in 2004. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 96.30.Mh; 52.27.Lw; 52.35.Bj
It is well known that an object moving with a super-
sonic speed in a dispersive medium creates a pressure
disturbance that is not felt upstream from the object.
The cone that confines the disturbance is called a Mach
cone. The latter is well known in gas dynamics. They
are produced, for example, by bullets and supersonic jet
planes. If the perturbing object moves straight at a con-
stant velocity U, it creates expanding waves that are cir-
cular in two-dimensions and spherical in three dimen-
sions. The superposition of these waves forms a cone.
The Mach cone opening angle θ, defined as a semiver-
tex angle of the cone, is determined by the geometry as
θ = sin–1(1/M), where M = U/Cs is the Mach number of
the supersonic object and Cs is the acoustic (sound)
speed in the undisturbed medium.

Mach cones are also known to occur in gas dynam-
ics [1, 2], solid matter [3], and in some crystals [4, 5].
In an elastic medium surrounding a fluid-filled bore-
hole, spontaneously launched surface waves propagat-
ing along the fluid-solid boundary excite P and S waves
propagating into the bulk solid. The interference
between P and S waves forms Mach cones. The wave-
front of the surface wave acts as the supersonic object,
since its speed is typically higher than the P and S
waves.

Ship waves have an appearance similar to Mach
cones. The latter are also known as the “Kelvin wedge”
that forms behind a ship in deep water. Here a moving

¶ This article was submitted by the authors in English.
1 Permanent address: Department of Physics, Jahangirnagar Uni-

versity, Savar, Dhaka, Bangladesh.
2 Also at the Department of Plasma Physics, Umeå University,

SE-90187 Umeå, Sweden.
3 Also at the Department of Physics and Applied Physics, Univer-

sity of Strathclyde, Glasgow, G4 ONG, Scotland.
0021-3640/03/7710- $24.00 © 20541
pointlike disturbance generates either gravity or capil-
lary waves on the fluid surface. These deep-water
strongly dispersive surface waves [6] are responsible
for multiple Mach cone structures.

Besides the above-mentioned Mach cones on
human scales, Mach cones also occur on astronomical
scales (e.g., the Earth’s magnetotail formed by interac-
tion with the solar wind) and microscopic scales (e.g.,
Cherenkov radiation created by rapidly moving ele-
mentary charge). Havnes et al. [7, 8] theoretically pre-
dicted the existence of super dust-acoustic Mach cones
associated with dust-acoustic waves [9] of an unmagne-
tized dusty plasma, which are claimed to be relevant to
Saturn’s rings. Dubin [10] developed a linear theory for
the phonon wake produced by a charge moving relative
to a crystalline lattice in an unmagnetized plasma con-
taining strongly coupled dust grains. The theory pre-
dicts multiple Mach cones due to constructive interfer-
ence of strongly dispersive compressional phonons.
However, Dubin’s theory cannot be applied to Saturn’s
magnetized plasmas with weakly correlated dust
grains. In Saturn’s rings, we may have Mach cones
associated with numerous dispersive plasma waves that
are affected by the ambient magnetic field. For exam-
ple, we may have obliquely propagating intermediate-
frequency (ωcd ! ω ! ωci, kzv te, where ωcd and ωci are
the dust and ion gyrofrequencies, respectively, kz is the
component of the wave vector k along the external
magnetic field B0, and v te is the electron thermal
speed) long-wavelength (in comparison with the elec-
tron Debye radius λDe and the ion gyroradius ρs, at the
electron temperature) dust-acoustic waves [11] whose

phase speed for kzλDe ! ωpd/ωpi is CDe/(1 + )
1/2

,
where CDe = λDeωpd, ρs = λDeωpi/ωci , ωpd (ωpi is the dust

ẑ

k ⊥
2 ρs

2
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(ion) plasma frequency, and k⊥  is the component of k
across . Here, the electrons rapidly thermalize along
the magnetic field direction and follow a Boltzmann
distribution, while the density distributions of magne-
tized ions (unmagnetized dust grains) are affected
(unaffected) by the external magnetic field. Further-
more, in the opposite limit, viz. kzλDe @ ωpd/ωpi, the
dust grains can be considered stationary, and the corre-
sponding parallel (to ) phase speed of the dust ion-

acoustic wave (DIAW) is CI = λDeωpi/(1 + )
1/2

,
indicating that the DIA waves are nondispersive along
the magnetic field direction. The high-phase speed DIA
waves would not participate in the Mach cone forma-
tion, as they propagate much faster than a dust boulder,
whose speed is given by Eq. (3). On the other hand, in
the short-wavelength (in comparison with the ion gyro-
radius ρi) dust-acoustic fields, the ions follow a
straight-line orbit across  and establish a Boltzmann
density distribution in the wave potential. Taking a
Boltzmann electron density distribution and inertial
dust, one then obtains the dust-acoustic wave (DAW)

whose phase speed is CD = λDωpd/(1 + k2 )1/2, where

λD = λDeλDi/(  + )
1/2

 and λDi is the ion Debye
radius. As usual, for niTe @ neTi, the dust-acoustic phase

speed is [11, 12] Cd = ( ndTi/nimd)1/2, where ni(nd) is
the ion (dust) number density, Te(Ti) the electron (ion)
temperature, and Zd is the number of electrons residing
on the dust grain surface. For typical plasma parameters
corresponding to Saturn’s rings [11, 13–16], viz. B0 .
0.2 G, Ti = 10 eV, nd . 10 cm–3, Zd . 103, rd . 0.25 µm,
where rd is the dust particle radius, one finds that

/  . 5 × 10–5, where VA = B0/  is the dust-
Alfvén speed, ρd = ndmd is the dust mass density, and md

is the mass of micron-sized dust particles. This means
that in Saturn’s rings the dust-magnetoacoustic wave
propagation [17] is more prominent than the long-
wavelength dust-acoustic wave propagation, and the
waves involving perturbation of magnetic fields are
likely to participate in the formation of Mach cones.
Accordingly, in this letter we have taken into account
the dynamics of both the ion and dust species in the
ambient Saturn’s magnetic field and study the dust-
hydromagnetic waves and associated Mach cones in
Saturn’s dense rings. We have predicted here that the
perturbation/acoustic waves that may exist in Saturn’s
rings are not long-wavelength dust-acoustic but dust-
magnetoacoustic, in which the magnetic pressure

/4π gives rise to the restoring force and the dust
mass density ndmd provides the inertia. Therefore, in
Saturn’s dense rings, if Mach cones are formed, they
are formed by dust-magnetoacoustic waves but, of
course, not by the long-wavelength dust-acoustic
waves.

ẑ

ẑ

k ⊥
2 ρs

2

ẑ

λD
2

λDe
2 λDi

2

Zd
2

Cd
2 V A

2 4πρd

B0
2

We consider a negatively charged dust particle of
mass md and charge-Zde moving in a field that includes
Keplerian gravity and a corotating planetary magnetic
field (taken to be aligned centered dipole) with con-
comitant induced electric field [13–16, 18]. We first
consider single particle dynamics and neglect the radi-
ation pressure, plasma drag, planetary oblateness,
charge fluctuations, and collective effects. The dynam-
ics of such a negatively charged dust particle is gov-
erned by the combined gravitational, magnetic, and
electric forces. The orbital angular velocity ωd of the
negatively charged dust particle can, therefore, be
expressed as [13, 16]

(1)

where r is the dust particle position normalized by the

planet radius Rp, ωcd = ZdeB0/mdc and Ωk = (GMp/ )
1/2

are the dust cyclotron and Kepler frequencies both eval-
uated at a point on the planetary equator, Ωp is planetary
spin rate, Mp is the planet mass, G is the universal grav-
itational constant, and n is the speed of light in vacuum.
We note that in deriving (1) the planetary magnetic field
Bp is assumed to be dipolar with the dipole strength

M = B0  (where B0 is the magnetic field strength on
the planetary equator), which is appropriate for Saturn
and Jupiter. The + (–) sign in (1) represents the pro-
grade (retrograde) motion of the dust particle.

A large boulder and a small dust particle will, there-
fore, move at different velocities. The difference in
velocities Vd is given by

(2)

To approximate Vd, let us consider a dust particle in Sat-
urn’s rings where [7, 13, 14, 16, 18] Rp = 60300 km,
Mp = 5.688 × 1026 kg, Ωp = 1.691 × 10–4 rad/s, r = 7,
B0 . 0.2 G, Zd . 103, rd . 0.25 µm, so that Ωk = 4.16 ×
10–4 rad/s and ωcd . 4.89 × 10–5 rad/s. So for a particle
in Saturn’s rings, we can safely take the approximations
ωcd ! Ωk, Ωp ≤ Ωk, and r ≥ 1, which allow us to approx-
imate (2) as

(3)

To study the perturbation of the medium, we con-
sider a two-component magnetized dusty plasma com-
posed of negatively charged dust grains and positively
charged ions. We assume that the electron number den-
sity is highly depleted due to the attachment of almost
all the electrons to the surface of highly charged and
extremely massive dust grains. The dust-ion plasma
system is assumed to be immersed in a homogeneous
magnetic field B0. This model is quite appropriate for

ωd
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Saturn’s rings (e.g., Saturn’s F-ring [11, 13–15, 19). We
consider a small-amplitude long-wavelength (in com-
parison with ρi) perturbation in such a dust-ion plasma,
which may be described by the two linearized coupled
equations

(4)

and

(5)

where ud is the dust fluid velocity, B is the wave mag-
netic field normalized to B0, ωci = eB0/mic is the ion
gyrofrequency, and mi is the ion mass. We now assume
that the perturbation mode propagates in the x–z plane,
i.e., B and ud are proportional to exp[–iωt + i(kxx + kzz)].
Therefore, using (4) and (5), we obtain

(6)

where

(7)

Here, λi = c/ωpi is the ion skin depth. We note that the
origin of the dispersive effect involving the kλi term is
attributed to the ion inertial effect, which breaks the fro-
zen-in-field condition.

We are interested in extremely low-frequency
obliquely propagating dust-hydromagnetic waves for
which ω ! ωcd are valid. Using these approximations,
we obtain from (6) three types of obliquely propagating
dust-hydromagnetic waves. These are

(8)
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and

(9)

where δ is the angle between the directions of the ambi-
ent magnetic field and the wave propagation. Equation
(8) represents the dispersion relation for the shear dust-
Alfvén waves modified by the effect of the ion-skin
depth, which decreases their phase speed by the factor

. On the other hand, (9) with the + (–) sign
represents the dispersion relation for the fast (slow)
dust-hydromagnetic waves modified by the effect of the
ion-skin depth and obliqueness. For typical plasma
parameters corresponding to Saturn’s rings [11, 13–

16], we find that /  . 5 × 10–5. This means that in
Saturn’s rings the dust-Alfvén wave propagation is
much more prominent than the long-wavelength dust-
acoustic wave propagation, and therefore the consider-
ation of the long-wavelength dust-acoustic wave prop-
agation and associated Mach cones in Saturn’s rings is
not realistic. We are, therefore, interested in examining
the formation as well as detecting the characteristics of
Mach cones associated with the dust-hydromagnetic
waves defined by (8) and (9).

As we explained physically in the introduction,
Mach cones associated with the waves defined by (8)
and (9) will be formed if the dust particle speed Vd is
larger than the wave phase speed Vp = ω/k, i.e., if
Vd/Vp > 1. If this condition is satisfied, the Mach cone
opening angle θ is given by

(10)

where Vd is given by (2) and Vp = ω/k is given by (8) for
shear dust-Alfvén waves, and by (9) for fast and slow
dust-magnetosonic waves. We have numerically ana-
lyzed Vd/Vp for typical plasma parameters correspond-
ing to Saturn’s rings [11, 13–16], given in the figure
caption, and have shown that Mach cones are formed
by the shear dust-Alfvén waves of wavelength ~7 km or
less (cf. lower plot) and by slow dust-magnetosonic
waves of any wavelength [without the upper bound on
the wavelength (cf. upper plot)]. We have also found
that the upper bound on the wavelength of both the
shear dust-Alfvén and slow dust-magnetosonic waves
by which Mach cones are formed increases as we
increase their propagation angle δ (cf. lower and upper
plots). We note here that, for parameters corresponding
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to Saturn’s rings, Mach cones are not formed by fast
dust-magnetosonic waves.

It is obvious from the figure and Eq. (9) that the
Mach cone opening angle θ decreases with increasing
propagation angle δ in the case of shear dust-Alfvén
waves. We have also estimated the Mach cone opening
angle θ (that may be formed in Saturn’s dense rings)
associated with shear dust-Alfvén and slow dust-mag-
netosonic waves of wavelength 5 km, propagating with
an angle δ = 85°. These are ~30° and ~4°, respectively.
Physically, Mach cones arise due to the constructive
interference of dispersive dust-hydromagnetic waves in
dust-ion plasmas of Saturn’s dense rings. We expect
that the NASA/ESA space probe CASSINI can make
direct observations of the dust-hydromagnetic modes
and associated Mach cones that we have reported in this
letter. From the opening angle of the dust-Alfvénic
Mach cones, one can then deduce the dust and ion mass
densities, as well as dust charge and the optical depth of
Saturn’s dense rings. Although the present investigation
provides the parameter regimes for the existence of the
dust-Alfvénic Mach cones, the fine structure of a dust
magnetoacoustic wake behind a dust boulder can be
obtained by numerically solving the dust magnetoa-

The wavelength regimes of shear dust-Alfvén (lower plot)
and of slow dust-magnetosonic (upper plot) waves propa-
gating with different angle δ for which Mach cones are
formed in Saturn’s dense rings (B0 = 0.2 G, Ti = 10 eV, nd =
10 cm–3, Zd = 103, r = 7, rd = 0.25 µm). The solid, dotted,
and dashed curves are for δ = 85°, δ = 87°, and δ = 89° in
both the plots. 
coustic wave equation with an appropriate source. This
investigation can be carried out along the lines of Brattli
et al. [8].

In closing, we mention that although the formation
of Mach cones in a magnetized dusty plasma of Sat-
urn’s rings is attributed to constructive interference
between linear dispersive dust magnetohydrodynamic
waves, nonlinear and dissipative effects can appear
when the wave amplitudes are large and dust charge
perturbations are taken into consideration. A delicate
balance between nonlinearity and dissipation can pro-
duce magnetoacoustic shock waves, similar to those
studied by Popel et al. [20, 21] for an unmagnetized
dusty plasma. However, a detailed investigation of the
dust grain charging in a magnetized dusty plasma con-
taining large amplitude dust hydromagnetic waves is
quite involved and is beyond the scope of the present
work. We anticipate that dust charge perturbation
effects might be insignificant, since the dust grain
charging time is typically much shorter than the times-
cale on which the dust magnetoacoustic perturbations
develop.
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For the first time weak turbulent theory was demonstrated for surface gravity waves. Direct numerical simula-
tion of the dynamical equations shows Kolmogorov turbulent spectra as predicted by analytical analysis [1]
from kinetic equation. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.35.+i; 92.10.Hm
In this letter we numerically study the steady Kol-
mogorov spectra for spatially homogeneous gravity
waves. According to the theory of weak turbulence, the
main physical process here is the stationary energy flow
to the small scales, where the energy dissipates [1, 2].
This flow is described by a kinetic equation which has
power-like solutions—Kolmogorov spectra. This
straightforward picture takes place experimentally and
numerically for different physical situations. For capil-
lary waves, it was observed on the surface of liquid
hydrogen [3, 4]. The numerical simulation of this pro-
cess was performed in [5]. In nonlinear fiber optics,
these spectra were demonstrated in numerical simula-
tion [6]. There are many other results [7–11]. One of the
most interesting applications of weak turbulence theory
is surface gravity waves. From the pioneering article by
Toba [12] to the most recent observations [13], many
experimentalists get the spectra predicted by weak tur-
bulence theory. But these experiments cannot be treated
as a complete confirmation, because the Zakharov–
Filonenko spectrum is isotropic, while the observed
spectra are essentially anisotropic. It is worth noting
that the wave kinetic equation, which is the keystone of
this theory, was derived under several assumptions.
Namely, it was assumed that the phases of all interact-
ing waves are random and are in a state of chaotic
motion. The validity of this proposition is not clear
a priori. The direct numerical simulation of nonlinear
dynamical equations can confirm whether this assump-
tion is valid or not. But for the particular case of gravity
surface waves, the numerical confirmation was absent
in spite of the significant efforts applied. The only suc-
cessful attempt in this direction was the simulation of
freely decaying waves [14]. The reason for that, in our
opinion, was concerned with the choice of numerical
scheme parameters. Namely, the numerical simulation
is very sensitive to the width of resonance of four-wave
interaction. It must be wide enough to provide reso-

¶ This article was submitted by the authors in English.
0021-3640/03/7710- $24.00 © 20546
nance on the discrete grid, as was studied in [15] for
decay of the monochromatic capillary wave. On the
other hand, it has to be not too wide (due to nonlinear
frequency shift) when the weak turbulent conditions
fail. We have spent significant efforts to secure the right
choice of numerical parameters. As a result, we have
obtained the first evidence of the weak turbulent Kol-
mogorov spectrum for energy flow for surface gravity
waves. The numerical simulation was surprisingly time
consuming (in comparison to capillary waves turbu-
lence), but we finally got a clear spectrum for surface
elevation,

(1)

which is in agreement with real experiments [12, 13].

Theoretical background. Let us consider the
potential flow of an ideal incompressible fluid of infi-
nite depth and with a free surface. We use standard
notations for velocity potential φ(r, z, t), r = (x, y); v =
∇φ  and surface elevation η(r, t). Fluid flow is irrota-
tional ∆φ = 0. The total energy of the system can be rep-
resented in the form

(2)

(3)

where g is the acceleration of gravity. It was shown [16]
that under these assumptions the fluid is a Hamiltonian
system

(4)
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where ψ = φ(r, η(r, t), t) is a velocity potential on the
surface of the fluid. In order to calculate the value of ψ
we have to solve the Laplace equation in the domain
with varying surface η. This problem is difficult. One
can simplify the situation using the expansion of the
Hamiltonian in powers of “steepness”

(5)

For gravity wave, it is enough to take into account terms

up to the fourth order. Here,  is the linear operator cor-
responding to multiplying of Fourier harmonics by
modulus of the wavenumber k. In this case, dynamical
equations (4) acquire the form

(6)

Here, Dr is some artificial damping term used to pro-
vide dissipation at small scales; Fr is a pumping term
corresponding to external force (having in mind wind
blow, for example). Let us introduce the Fourier trans-
form

With these variables, Hamiltonian (5) acquires the form

(7)
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Here,

(8)

It is convenient to introduce the canonical variables ak
as shown below:

(9)

where

(10)

This is the dispersion relation for the case of infinite
depth. Similar formulas can be derived in the case of
finite depth [17]. With these variables, equations (4)
take the form

(11)

The dispersion relation (10) is of the “nondecay type”
and the equations

(12)

have no real solution. This means that, in the limit of
small nonlinearity, the cubic terms in the Hamiltonian
can be excluded by a proper canonical transformation
a(k, t)  b(k, t) [18]. The formula of this transforma-
tion is rather bulky and well known [17, 18], so let us
omit the details here.

For statistical description of a stochastic wave field,
one can use a pair correlation function

(13)

The nk is a measurable quantity, connected directly
with observable correlation functions. For instance,
from (9) one can get

(14)

In the case of gravity waves, it is convenient to use
another correlation function,

(15)

The function Nk cannot be measured directly. The rela-
tion connecting nk and Nk is rather complex in the case
of a fluid of finite depth. But in the case of deep water,
it becomes very simple [17]:
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ȧk i
δH
δak*
---------.–=

ωk1
ωk2

ωk3
, k1+ k2 k3+= =

akak'*〈 〉 nkδ k k'–( ).=

Ik ηk
2〈 〉 1

2
---

ωk

g
------ nk n k–+( ).= =

bkbk'*〈 〉 Nkδ k k'–( ).=

nk Nk–
nk

-----------------  . µ,



548 DYACHENKO et al.
where µ = (ka)2. Here, a is a characteristic elevation of
the free surface. In the case of the weak turbulence µ ! 1.
The correlation function Nk obeys the kinetic equation
[1]

(17)

Here,

(18)

The complete form of matrix element  can be
found in many sources [1, 2, 17]. Function fp(k) in (17)
corresponds to wave pumping due to wind blowing, for
example. Usually it is located on long scales. Function
fd(k) represents the absorption of waves due to viscosity
and wave-breaking. None of these functions are known
to a sufficient degree.

Let us consider stationary solutions of Eq. (17)
assuming that

—the medium is isotropic with respect to rotations;
—dispersion relation is a power-like function: ω =

akα;

—  is a homogeneous function:

 = eβ .

Under these assumptions, one can get Kolmogorov
solutions [18]

(19)

Here, d is a spatial dimension (d = 2 in our case). The
first one is a Kolmogorov spectrum, corresponding to a
constant flux of energy P to the region of small scales
(direct cascade of energy). The second one is the Kol-
mogorov spectrum, describing inverse cascade of wave
action to large scales, and Q is a flux of action. In both
cases, C1 and C2 are dimensionless “Kolmogorov con-
stants.”

In the case of deep water, ω =  and, apparently,
β = 3. It has been known since [1] that for deep water

(20)

In the same way [19], for the second spectrum,
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In this letter, we will explore the first spectrum
(energy cascade). Using (14), one can get

(22)

Numerical Simulation. Dynamical Eqs. (6) are
very hard for analytical analysis. One of the main

obstacles is the  operator, which is nonlocal. How-
ever, using the Fourier technique makes practically no

difference between the derivative and . The numerical
simulation of the system is based on consequent appli-
cation of the fast Fourier transform algorithm. The
details of this numerical scheme will be published sep-
arately.

For numerical integration of (6), we used the func-
tions F and D defined in the Fourier space

(23)

Here, Rk(t) is the uniformly distributed random number
in the interval (0, 2π). We solved the system of Eqs. (6)
in the periodic domain 2π × 2π (the wave numbers kx

and ky are integers in this case). The size of the grid was
chosen as 256 x 256 points. Acceleration of gravity
g = 1. Parameters of the damping and pumping were
the following: kp1 = 5, kp2 = 10, kd = 64. Thus, the iner-
tial interval is about half a decade.

During the simulations, we paid special attention to
problems that could “damage” the calculations, first of
all, the bottleneck phenomenon at the boundary
between inertial interval and dissipation region. This
effect is very fast but can be effectively suppressed by
proper choice of damping value γ2 in the case of mod-
erate pumping values F0. The second problem is the
accumulation of “condensate” in low wave numbers.
This mechanism for the case of capillary waves was
examined in detail in [15]. This obstacle can be over-
come by a simple adaptive damping scheme in small
wave numbers. After some time, the system reaches the
stationary state, where equilibrium between pumping
and damping takes place. An important parameter in
this state is the ratio of nonlinear to linear energy (H1 +
H2)/H0.

For example, in the case of F0 = 2 × 10–4, γ1 = 1 ×
10–3, γ2 = 400, the level of nonlinearity was equal to
(H1 + H2)/H0 . 2 × 10–3. The Hamiltonian as a function
of time is shown in Fig. 1.
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Fig. 1. Hamiltonian as a function of time.

Fig. 2. The logarithm of the correlator function of surface
elevation as a function of logarithm of the wave number.

Fig. 3. Compensated correlators in inertial interval for dif-
ferent values of the compensation power: z = 3.5 solid line
(weak turbulence theory), z = 4.0 dashed one (Phillips the-
ory). 
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The surface elevation correlator function appears to
be power-like in the essential part of inertial interval,
where the influence of pumping and damping was
small. The correlator is shown in Fig. 2.

One can try to estimate the exponent of the spec-
trum. It is worth noting that an alternative spectrum was
proposed earlier by Phillips [20]. That power-like spec-
trum is due to the wave-breaking mechanism and gives
us a surface elevation correlator as Ik ~ k–4. Compen-
sated spectra are shown in Fig. 3. This seems to be evi-
dence that the Kolmogorov spectrum predicted by
weak turbulence theory better fits the results of the
numerical experiment.

The inertial interval was rather narrow (half a
decade). But the obtained results allow us to conclude
that the accuracy of experiment was good enough under
the time constraints of simulation (we get the steady
state after 20–30 h using available hardware, and we
need several days to average the |ηk|2 function). Simu-
lation on a larger grid (512 × 512, for example) can
make the accuracy better. But even these results give us
a clear qualitative picture.
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The memory effects in stochastic transport, namely, the dependence of the form of transport equations on the
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PACS numbers: 05.60.Cd; 05.40.Fb
In recent years, growing interest has been shown in
the processes of stochastic transport because of the spa-
tial and temporal nonlocalities inherent in this phenom-
enon [1–4]. The use of an adequate mathematical lan-
guage of fractional derivatives [5, 6] and stable distri-
butions [1, 7] allowed the physical theory of random
transport to be substantially generalized, as compared
to the primitive diffusion picture.

There are many physical reasons that are responsi-
ble for the above-mentioned nonlocalities (fractional
derivatives) in the transport equations (see discussion in
[8, 9]). One of the most frequently occurring phenom-
ena is the presence of slowly damping spatial and time
correlations in the motion of individual particles in a
spreading cloud. Inasmuch as the macroscopic (for
cloud) transport equations are derived from the random
walk model for individual (not necessarily physical)
particles, these equations basically have an asymptotic
character. In our preceding work [8], concerning the
effects caused by the limited walk rate, we drew atten-
tion to the nontriviality of this asymptotic transition and
to the nontrivial dependence of the macroscopic trans-
port on the microscopic details and on the initial condi-
tions. It is our purpose to reveal, in this work, the details
of the physical consequences of this ideological and
mathematical nontriviality.

Evidently, one should expect that evolution is con-
tinuous for any physical process satisfying the causality
principle: if the solution to the equations is functionally
related to the initial state by the Green’s function Gt,
i.e., if n(x, t) = Gt * n(t = 0), then

(1)

In other words, if we consider the state at any time t1 as
a new initial condition, we do not disturb the evolution
continuity. Nevertheless, the equations discussed in all
available works devoted to the nonlocal nondiffusion

Gt1 t2+  * n t 0=( ) Gt2 * n t t1=( )=

=  Gt2 * Gt1 * n t 0=( )( ).
0021-3640/03/7710- $24.00 © 20551
transport with a fractional time derivative, including a
recent excellent review [4], strictly speaking, do not
possess this property. This unpleasant fact has in no
way been discussed in the literature, though it is pre-
cisely the point that is expected to be helpful in the rec-
ognition of a hidden defect of the above-mentioned
description, namely, of the incompleteness in the
description of a particle cloud only in terms of its mac-
roscopic concentration n(x, t). Interestingly, similar
problems arise for strongly coupled coulombic systems
in the quantum kinetic theory, where the solutions show
a strong dependence on the initial correlations [10].

An attempt to unravel this phenomenon leads to the
paradoxical conclusion that, even in the cases where the
effective equation for macroscopic evolution reduces to
the classical diffusion equation containing the familiar
first-order time derivative (evidently, satisfying Eq.
(1)), the defect is often “hidden under the rug.” In real-
ity, the time for approaching the microscopic evolution
regime strongly depends on the initial condition and
can be much longer than the microscopic time 〈τ〉  char-
acterizing the random walk of individual particles (see
below). This is especially characteristic of the subdiffu-
sion time operators.

Therefore, the memory effects considered in this
work consist not in the familiar temporal nonlocality
(fractional derivative) in the effective transport equa-
tion but in the fact that the form of this equation
depends on the macroscopic time t (see below).

When deriving the transport equations, we will use,
as in [6, 8], the standard random walk model. A one-
dimensional motion of a particle along the x axis obeys
the probability laws g(|x |) and f(t): a particle appearing
at any point (say, x0) may undergo an instantaneous
jump to the neighboring points in such a way that the
probability of finding it in the interval (x0 + x, x0 + x +
dx) equals g(x)dx, and this transfer proceeds after some
waiting process, so that the probability of escaping the
003 MAIK “Nauka/Interperiodica”
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particle residence in the interval (t, t + dt) is equal to
f(t)dt. For the convenience of intermediate calcula-
tions, we choose, without loss of generality, these func-
tions in the form [6, 8]

(2)

Here, Γ is the Euler gamma function, and the numerical
coefficients are determined by the unity normalization
condition for g and f. The exponents of the power-law
“tails” parameterized by the positive indices β and γ are
only essential for further consideration.

The particles at point x “remember” their time of
arrival at this point, so that their spatial density n is the
integral of a certain distribution N over the “lifetime” τ:

Let us define the transition to the subsequent motion in
terms of “probability of surviving to time τ,” which is
simply related to the function f as

Then, the particle flux Q(x, t) leaving (on both sides and
at all distances) a given point can be expressed using
the formula for the conditional probability (see [6])

(3)

We can now write the balance equations for the particle
at a given time and a given point:

(4)

The last term on the right-hand side of this equation
accounts for the effect of initial particle lifetime distri-
bution N0(x, τ) ≡ N(x, 0, τ). The set of Eqs. (3) and (4)
completely describes the situation and, obviously, sat-
isfies condition (1). Note that, if N0 = n0δ+(τ) (“shifted”

Dirac delta function:  = 1), then, after the

arrival of new particles at each point (at any t > 0), the
self-similar profile

(5)

g x( )
Γ β 1/2+( )

πΓ β( )
------------------------ 1

1 x2+( )β 1/2+
------------------------------;=

f t( )
γ

1 t+( )γ 1+
-----------------------.=

n x t,( ) N x t τ, ,( ) τ .d

0

∞

∫=

F τ( ) 1 f t( ) t.d

0

τ

∫–=

Q x t,( ) N x t τ, ,( )
F τ( )

---------------------

0

∞

∫ f τ( )dτ .=

n x t,( ) g x'( ) Q x x'– t t'–,( )F τ'( ) t'd x'd

0

t

∫
∞–

+∞

∫=

+
N0 x τ t–,( )

F τ t–( )
--------------------------F τ( ) τ .d

t

∞

∫

δ+ τ( ) τd
0

∞∫

N t τ,( ) θ t τ–( )P t τ–( )F τ( )=
forms instantaneously with the correlated dependence
on t and τ, where P is the incoming flux and θ(t) is the
Heaviside step function. In this case, one can pass from
the set of Eqs. (3) and (4) to a single basic equation for
the macroscopic density n [6]:

(6)

The Green’s function of this equation reads

(7)

where the symbol [·]k, p denotes the Fourier and/or
Laplace component of the corresponding function.

The transport equation can also be written in terms
of only n if f = µexp(–µt) (µ = 1/〈τ〉 ); then F and f (and,
hence, Q and n) are proportional to each other. The rea-
son for setting off the exponential law is quite clear,
because only in this case does a fixed percentage of the
sitting particles leave the point, irrespective of the time

of their arrival at this point; i.e., all particles 

in a “common bag” are in the same conditions. In all
other cases, the “reel game” depends on the waiting
time τ, and one cannot ignore the details of the N(τ) dis-
tribution.

In the majority of works, Eq. (6) is written without
any substantiation, which should imply that either one
of the two above-mentioned conditions is fulfilled or a
certain model is used (the authors of those works did
not discuss this issue). In the general case, Eq. (6) is
valid only for a certain asymptotic meaning: a time
must be elapsed (see below) until the self-similar
dependence (5) covers the larger part of the N(τ) profile
and becomes dominating Q, as compared to N0. One
can readily verify that condition (1) is met for Eq. (6)
only if f = µexp(–µt). In all other cases, one should use
the initial set of Eqs. (3) and (4) to adequately describe
the transport process. In what follows, we propose a
method for solving this set exactly and show that the
initial particle lifetime distribution influences the sub-
sequent evolution.

To begin with, it is convenient to divide N(x, t, τ)
into two terms (see Eq. (4)):

(8)

(9)

n x t,( ) g x'( )

∞–

+∞

∫=

× f t'( )n x x'– t t'–,( ) t'd x'd

0

t

∫ F t( )n0 x( ).+

Gk p,
Fp

1 f pgk–
--------------------,=

N τ( ) τd
0

∞∫

N1 x t τ, ,( )
N0 x τ t–,( )F τ( )

F τ t–( )
-------------------------------------θ τ t–( );=

N2 x t τ, ,( ) g x'( )F τ( )Q x x'– t τ–,( )θ t τ–( ) x',d

∞–

+∞

∫=

τ t.<
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The term N1 describes the particles living at the time
point τ > t, i.e., those particles of the initial distribution
N0 which survived up to time t. The term N2 is the par-
ticle profile formed by the flux Q(x, t), to which both N1
and N2 make a contribution. The equation for N2 is anal-
ogous to Eq. (4) and follows from Eq. (3) for the flux:

(10)

Let us substitute Eqs. (8) and (9) in Eq. (10) and per-
form the Laplace and Fourier transforms with respect to
time and spatial variables, respectively, to get rid of
convolution integrals. After this, we again use Eq. (9)
and set off the term N2p, k on the right-hand side of the
resulting expression. By solving the linear equation for
this term, we get

(11)

The particle density can also be written as the sum of
two terms n = n1 + n2, where

Since N2 depends on its variables in the self-similar
manner (9) (cf. Eq. (5)), we can write

(12)

Now, using Eqs. (8) and (11) and the relationship fp(t +
t ') = F(t ') – pFp(t + t ') (hereafter, the index p denotes the
Laplace transform with respect to t), we obtain, after
simple mathematics,

(13)

Note that the first term in braces is the solution to
Eq. (6) for the density (see [6]), and, hence, the second
term demonstrates the dependence of the solution on
the initial lifetime distribution. Note again that the sec-

N2 x t τ, ,( )

=  F τ( ) g x'( )
N2 x x'– t τ– τ1, ,( ) f τ1( )

F τ1( )
-------------------------------------------------------- τd

0

t τ–

∫



∞–

+∞

∫

+
N1 x x'– t τ1– τ1, ,( ) f τ1( )

F τ1( )
---------------------------------------------------------- τd

t τ–

+∞

∫ 



dx'.

N2 p k, τ( )
gkF τ( ) pτ–( )exp

1 f pgk–
----------------------------------------=

×
N0k τ1 t–( ) f τ1( ) τ1d

F τ1 t–( )
---------------------------------------------

t

+∞

∫ 
 
 

p

.

n1 N1 x t τ, ,( ) τ , n2d

t

∞

∫ N2 x t τ, ,( ) τ .d

0

t

∫= =

n2 p k,
FpN2 p k,

F τ( ) pτ–( )exp
----------------------------------.=

np k,
1

1 f pgk–
--------------------=

× Fpn0k 1 gk–( ) N0k τ( ) F τ t+( )
F τ( )

------------------ F t( )– 
 

p

τd

0

∞

∫+
 
 
 

.
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ond term becomes zero for F(t) = exp(–µt); i.e., the
dependence on the microscopic distribution vanishes.

To demonstrate the distinctions between Eqs. (13)
and (6), we consider an example with the initial condi-
tion N0(x, τ) = n0(x)δ+(τ – t0), where t0 is a certain non-
negative delay time. In this case, the solution can be
written in a different and more compact form. By sub-
stituting the initial condition into Eq. (11) and using
Eq. (12), we obtain

Finally, we write the expression for the particle density
n(x, t)

where n(x, t) stands for the already known solution to
Eq. (6), towards which  tends at large t’s. How-
ever, the initial stage of density evolution at t < t0,
which, depending on t0, can be rather prolonged, pro-
ceeds in a different way. For clearness, let us consider
the situation with β, γ > 1. In this case, the function f has
a nonzero first moment 〈τ〉  (mean waiting time) and the
function g has a finite or noninfinite second moment
〈x2〉  (mean square displacement). Hence, after expand-
ing the integrand in Eq. (6) with allowance for the

smallnesses t @ 〈τ〉  and x @ , we should arrive at
the standard diffusion equation with the coefficient D =
〈x2〉/2〈τ〉 . In our situation, this is not the case. After
expanding the expression for n1 in powers of the small
parameter t/t0 ! 1, we see that the number of such par-
ticles decreases linearly with time following the law

(14)

which leads, correspondingly, to a linear increase in the
number of particles n2, so that the evolution of density
n2 at t @ 〈τ〉  obeys the diffusion equation with a con-
stant source on the right-hand side:

(15)

n2 p k,
gk

F t0( )
-----------

Fpn0k

1 f pgk–
-------------------- f p t t0+( ),=

n1

F t t0+( )n0 x( )
F t0( )

--------------------------------.=

n x t,( )
1

F t0( )
----------- x'g x'( )d

∞–

+∞

∫



=

× f τ t0+( )ñ x x'– t τ–,( ) τd

0

t

∫ F t t0+( )n0 x( )+




,

ñ x t,( )

x2〈 〉

n1 x t,( ) . n0 x( ) 1 γt/t0–( ),

∂n2

∂t
-------- D

∂2n2

∂x2
---------- ϕ x( );+=
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γ
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--- g x'( )n0 x x'–( ) x', Dd
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Its solution has the form (see, e.g., [11])

(16)

Denoting by x0 the characteristic width of the func-

tion ϕ(x) and by tD = /D the corresponding diffusion
time, one can replace ϕ by the delta function if the ine-
qualities tD ! t ! t0 are fulfilled and arrive, after inte-
grating with respect to the coordinate, at an even sim-
pler expression.

Consequently, the introduction of a delay time t0
into the initial lifetime distribution brings about a devi-
ation from the standard picture on the interval 〈τ〉  < t <
t0 even for the parameters β and γ corresponding to the
conventional diffusion. The particles in the initial distri-
bution decrease in number, according to Eq. (14), and
serve as a source for the formation of the self-similar n2
profile (16). This is so because of the absence of any
internal scale in a power function. For instance, the
exponential law is characterized by the time 〈τ〉 , which
indicates that the function at t = t0 + 〈τ〉  decreases by e
times compared to its value at t = t0, irrespective of the
chosen t0. One can easily verify that such is not the case
for a power function. Moreover, as t0 increases, one is
forced to wait an even longer time t1 ~ t0, after which
the function decreases, e.g., twofold, and t1  ∞ for
t0  ∞.

Let us now turn to the property (1). This problem
differs from the preceding one in that the initial distri-
bution N0 is now not arbitrary but arises from the pre-
liminary evolution of δ+(τ) during time t1 according to
Eqs. (3) and (4). In the case where the transport process
is described asymptotically by the conventional diffu-
sion equation, the time it takes for establishing the self-
similar solution is determined by the microscopic time
〈τ〉 ; i.e., Eq. (1) is fulfilled even at t1, t2 @ 〈τ〉 . This is not
the case for the subdiffusion regime. Let us apply the
Laplace transform with respect to variables t1 and t2 to
Eq. (1) and use the property

Then the relationship

must be fulfilled. One can easily verify that it is valid
for the Green’s function of the form (7) only if p2 ! p1
or t2 @ t1. This signifies that, depending on the duration
t1 of the first evolution stage, the time t2 ~ t1 is required
for establishing the previous self-similar solution. The
real transport process at times t2 ! t1 can be described

n2 x t,( )
ϕ ξ t,( )

4πD t τ–( )
----------------------------- x ξ–( )2

4D t τ–( )
-----------------------– 

 exp ξd τ .d

∞–

+∞

∫
0

t

∫=

x0
2

f t1 t2+( )[ ] p1 p2,

f t1( )[ ] p1
f t2( )[ ] p2

–

p2 p1–
---------------------------------------------.=

Gp1
Gp2

–

p2 p1–
---------------------- Gp2

Gp1
=

using the equations with a source on the right-hand
side, as was done for the model problem with time
delay (see above). However, in contrast to the example
considered, a decrease in n1 in this case and, corre-
spondingly, an increase in the number of particles n2

would be more rapid (at small t), because N0(τ) is no
longer concentrated at the far boundary τ = t1 but is
extended over the entire interval (0, t1). For example,
the source q(x, t) in the equation for n2 (cf. [12])

brings about an increase in n2 according to the law

In summary, we have demonstrated that the micro-
scopic features of the initial distribution have a sizable
effect on the process of stochastic transport. These fea-
tures should be explicitly taken into account in the
transport equation because they are responsible for the
memory effects, specifically, for the dependence of the
form of the equation on the macroscopic time. This
additional degree of freedom allows the first stage of
system evolution to be modified. This stage can be
rather prolonged, as we have demonstrated by a model
example where the effective equations are different
from the classical diffusion equation even for the diffu-
sional parameters of the problem (for the functions of
class (2)). The number of particles in the initial condi-
tion linearly decreases with time to form a profile
whose evolution is described by the diffusion equation
with a constant source. The reason is that a power func-
tion describing the waiting time at any point for a par-
ticle executing random walk has no internal scale. Tak-
ing account of the initial distribution allows one to
remove the main drawback consisting in the violation
of evolution continuity in the asymptotic equation and
use the subdiffusion equation with a time-independent
source for the description of the transient process of
profile formation by the particles of the initial distribu-
tion. We can say that the zero moment of a distribution
function, i.e., the total number of particles, is insuffi-
cient for a correct description of the process. This func-
tion must be represented as a sum of terms, each corre-
sponding to its own type of particles. A simple illustra-
tion of this approach is provided by the initial lifetime
distribution in the form of a comb of shifted delta func-
tions. However, it turns out that the division of particles
even into two classes and the inclusion of the next
moment of the distribution function (transition time
from one sort of particles to the other) appreciably
improves the accuracy of equations.

∂γn2 x t,( )

∂tγ----------------------
1
2
---

∂2n2

∂x2
---------- q x t,( )+=

n2 x t,( ) xd

∞–

+∞

∫ t1 γ– .∝
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A field-theoretical description of the behavior of compressible Ising systems with long-range interactions is
presented. The description is performed in the two-loop approximation in three dimensions with the use of the
Padé–Borel resummation technique. The renormalization group equations are analyzed, and the fixed points
that determine the critical behavior of the system are found. It is shown that the effect of elastic deforma-
tions on a system with a long-range interaction causes changes in its critical, as well as multicritical, behavior.
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PACS numbers: 46.05.+b; 46.25.Cc; 64.60.Ak
In compressible systems, the relation of the order
parameter to elastic deformations plays an important
role. Earlier [1] it was shown that, in the case of an elas-
tically isotropic body, the critical behavior of a com-
pressible system with a quadratic striction is unstable
with respect to the relation of the order parameter to
acoustic modes, and a first-order phase transition close
to a second-order one is realized. However, the conclu-
sions formulated in the cited paper [1] hold only for low
pressures. As was shown later [2], at high pressures
beginning from a certain tricritical point Pt, the defor-
mations induced by the external pressure affect the sys-
tem to a greater extent and lead to a change of sign of
the effective interaction constant for the order parame-
ter fluctuations and, as a consequence, to a change in
the order of the phase transition. In this case, according
to [2], a homogeneous compressible system is charac-
terized by two types of tricritical behavior with a
fourth-order critical point formed as the point of inter-
section of the two tricritical curves. Calculations per-
formed in terms of the two-loop approximation [3] con-
firmed the presence of two types of tricritical behavior
for Ising systems and provided values of the tricritical
indices.

In structural phase transitions that occur in the
absence of the piezoelectric effect, in the paraphase the
elastic strains play the role of a secondary order param-
eter whose fluctuations are not critical in most cases.

The effect of the long-range interaction described by
the power law 1/r–D – a at long distances was studied
analytically in terms of the ε expansion [4–6] and
numerically by the Monte Carlo method [7–9] in two
and three dimensions. It was found that the long-range
interaction considerably affects the critical behavior of
Ising systems for the parameter values a < 2. A recent
0021-3640/03/7710- $24.00 © 20556
study carried out for a three-dimensional space in the
two-loop approximation [10] confirmed the prediction
of the ε expansion for systems with long-range interac-
tions.

This paper describes the critical and tricritical
behavior of three-dimensional compressible systems
by taking into account the effect of the long-range inter-
action with different values of the parameter a.

For a homogeneous Ising-like model with elastic
deformations and a long-range interaction, the Hamil-
tonian can be represented in the form

(1)

where S(x) is the scalar order parameter, u0 is a positive
constant, τ0 ~ |T – Tc|/Tc, Tc is the phase transition tem-
perature, uαβ is the strain tensor, a1 and a2 are the elastic
constants of the crystal, and a3 is the quadratic striction
parameter. Let us change to the Fourier transforms of
the variables in Eq. (1) and perform integration with
respect to the components depending on the nonfluctu-
ating variables, which do not interact with the order
parameter S(x). Then, introducing, for convenience, the

H0 xD 1
2
--- τ1 ∇ a+( )S x( )2 u0

4!
----- S x( )2( )2

+d∫=

+ xD a1 uαα x( )
α 1=

3

∑ 
 
 

2

a2 uαβ
2

α β, 1=

3

∑+d∫

+
1
2
---a3 xD S x( )2 uαα x( )

α 1=

3

∑ 
 
 

,d∫
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new variable y(x) = , we obtain the
Hamiltonian of the system in the form

(2)

In Eq. (2), the components y0 describing the homoge-
neous strains are separated. According to [1], such a
separation is necessary, because the inhomogeneous
strains yq are responsible for the acoustic phonon
exchange and lead to long-range interactions, which are
absent in the case of homogeneous strains.

For the system under study, let us determine the
effective Hamiltonian that depends only on the strongly
fluctuating order parameter S:

(3)

If the experiment is performed at constant volume, y0 is
a constant and the integration in Eq. (3) is performed
with respect to only the inhomogeneous strains, while
the homogeneous strains do not contribute to the effec-
tive Hamiltonian. If the experiment occurs at constant
pressure, the term PΩ is added to the Hamiltonian, the
volume is represented in terms of the strain tensor com-
ponents as

, (4)

and the integration in Eq. (3) is performed with respect
to the homogeneous strains as well. According to [11],
the inclusion of quadratic terms in Eq. (4) may be
important when dealing with high pressures and crys-
tals with large striction effects. The neglect of these
quadratic terms restricts the applicability of the results
obtained by Larkin and Pikin [1] to the case of low
pressures. Thus, the Hamiltonian has the form

uαα x( )α 1=
3∑

H0
1
2
--- qD τ0 qa+( )SqS q–d∫=

+
u0

4!
----- qD

iSq1Sq2Sq3S–q1 q2– q3–d∫
+ a3 qD yq1Sq2S–q1 q2–d∫

a3
0( )

Ω
--------y0 qD SqS q–d∫+

+
1
2
---a1 qD yqy q–d∫ 1

2
---

a1
0( )

Ω
--------y0

2.+

H S[ ]–{ }exp B HR S y,[ ]–{ } yq.d∏exp∫=

Ω Ω0 1 uαα

α 1=

∑ uαα uββ

α β≠
∑ O u3( )+ + +=
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The effective interaction parameter v 0 = u0 – 12z0 that
appears in the Hamiltonian due to striction effects,
which are determined by the parameter z0, can take not
only positive but also negative values. As a result, the
Hamiltonian describes both first-order and second-
order phase transitions. At v 0 = 0, the system exhibits a
tricritical behavior. In its turn, the effective interaction
determined in Hamiltonian (5) by the parameter differ-
ence z0 – w0 may cause a second-order phase transition
in the system when z0 – w0 > 0 and a first-order phase
transition when z0 – w0 < 0. This form of the effective
Hamiltonian suggests that a higher order critical point
can be realized in the system as the point of intersection
of the tricritical curves when the conditions v 0 = 0 and
z0 = w0 are simultaneously satisfied [2]. It should be
noted that, with the tricritical condition z0 = w0, Hamil-
tonian (5) of the model under consideration is isomor-
phic with the Hamiltonian of a rigid homogeneous sys-
tem.

In the framework of the field-theoretical approach
[12], the asymptotic critical behavior and the structure
of the phase diagrams in the fluctuation region are
determined by the Callan–Symanzik renormalization
group equation for the vertex parts of the irreducible
Green functions. To calculate the β and γ functions as
the functions involved in the Callan–Symanzik equa-
tion for renormalized interaction vertices u, a1, and

, or complex vertices z = /4a3, w = /4 ,
and v  = u – 12z, which are more convenient for the
determination of critical and tricritical behavior, a stan-
dard method based on the Feynman diagram technique
and on the renormalization procedure [13] was used
with the propagator G0(k) = 1/(τ + |k|a). As a result, the
following expressions were obtained for the β and γ
functions in the two-loop approximation:

H
1
2
--- qD τ0 qa+( )SqS q–d∫=

+
u0

4!
-----

z0

2
----– 

  qi{ } Sq1Sq2Sq3S–q1 q2– q3–
Dd∫

+
1

2Ω
------- z0 w0–( ) qi{ } Sq1S–q1Sq2S–q2,Dd∫

z0 a1
2/ 4a3( ), w0 a1

0( )2/ 4a3
0( )( ).= =

a1
0( ) a1

2 a1
0( )2 a3

0( )
βv – 4 D–( )v 1 36v J0– 1728 2J1 J0
2–

2
9
---G– 

  v 2+ ,=

βz – 4 D–( )z 1 24v J0 2zJ0–– 576 2J1 J0
2–

2
3
---G– 

  v 2+ ,=

βw – 4 D–( ) w 1 24v J0 4zJ0 2wJ0 576 2J1 J0
2–

2
3
---G– 

  v 2 ,+ +––=
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(6)

.

γt 4 D–( ) –12v J0 2zJ0– 2wJ0 288 2J1 J0
2–

1
3
---G– 

  v 2+ + ,=

γϕ 4 D–( )96Gv 2,=

J1
qDd pDd

1 q a+( )2
1 p a+( ) 1 q2 p2 2pq+ +

a/2
+( )

-------------------------------------------------------------------------------------------------------,∫=

J0
qDd

1 q a+( )2
------------------------,∫=

G –
k a∂
∂

= qDd pDd

1 q2 k2 2kq+ +
a

+( ) 1 p a+( ) 1 q2 p2 2pq+ +
a/2

+( )
-----------------------------------------------------------------------------------------------------------------------------------∫
Redefining the effective interaction vertices as

(7)

we arrive at the following expressions for the β and γ
functions:

v
v
J0
-----, z

z
J0
-----, w

w
J0
-----,= = =

βv – 4 D–( )v 1 36v 1728 2 J̃1 1–
2
9
---G̃– 

  v 2+– ,=

βz 4 D–( )–=

× z 1 24v 2z 576 2 J̃1 1–
2
3
---G̃– 

  v 2+–– ,
(8)

The redefining procedure makes sense for a ≤ D/2. In
this case, J0, J1, and G become divergent functions.
Introducing the cutoff parameter Λ and considering the
ratios

βw – 4 D–( )w 1 24v– 4z– 2w+ -=

+ 576 2 J̃1 1–
2
3
---G̃– 

  v 2 ,

γt 4 D–( )=

× 12v– 2z– 2w 288 2 J̃1 1–
1
3
---G̃– 

  v 2+ + ,

γϕ 4 D–( )96G̃v 2.=
(9)

J1

J0
2

-----

qDd pDd / 1 q a+( )2
1 p a+( ) 1 q2 p2 2pq+ +

a/2
+( )( )

0

Λ

∫
0

Λ

∫

qDd / 1 q a+( )2

0

Λ

∫
2

----------------------------------------------------------------------------------------------------------------------------------------,=

G

J0
2

-----

–∂/ ∂ k a( ) qDd pDd / 1 q2 k2 2kq+ +
a

+( ) 1 p a+( ) 1 q2 p2 2pq+ +
a

+( )( )
0

Λ

∫
0

Λ

∫

qD / 1 q a+( )2
d

0

Λ

∫
2

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
in the limit of Λ  ∞, we obtain finite expressions.
The values of the integrals were determined numer-

ically. For the case a ≤ D/2, a sequence of the values of

J1/  and G/  was constructed for different Λ and
then approximated to infinity.

J0
2 J0

2

It is well known that perturbative series expansions
are asymptotic and the interaction vertices of the order
parameter fluctuations in the fluctuation region are suf-
ficiently large to directly apply Eqs. (8). Therefore, to
extract the necessary physical information from the
expressions derived above, the Padé–Borel method
JETP LETTERS      Vol. 77      No. 10      2003
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Table

No. v* z* w* b1 b2 b3 ν η

a = 1.9

1 0.042067 0 0 0.684 –0.184 –0.184 0.620054 0.013420

2 0.044353 0.095190 0 0.684 0.185 0.183 0.713861 0.013420

3 0.044353 0.095190 0.095190 0.684 0.185 –0.185 0.620054 0.013420

4 0 0.5 0 –1 1 1 1 0

5 0 0.5 0.5 –1 1 –1 0.5 0

a = 1.8

1 0.023230 0 0 0.628 –0.488 –0.488 0.572714 0.007461

2 0.023230 0.245404 0 0.628 0.489 0.490 0.704621 0.007461

3 0.023230 0.245404 0.245404 0.628 0.489 –0.489 0.572714 0.007461

4 0 0.5 0 –1 1 1 1 0

5 0 0.5 0.5 –1 1 –1 0.5 0

a = 1.7

1 0.020485 0 0 0.699 –0.532 –0.532 0.567334 0.004862

2 0.020485 0.266497 0 0.699 0.533 0.532 0.706051 0.004862

3 0.020485 0.266497 0.266497 0.699 0.533 –0.533 0.567334 0.004862

4 0 0.5 0 –1 1 1 1 0

5 0 0.5 0.5 –1 1 –1 0.5 0

a = 1.6

1 0.015974 0 0 0.874 –0.616 –0.616 0.557889 0.003936

2 0.015974 0.309684 0 0.874 0.617 0.620 0.711578 0.003936

3 0.015974 0.309684 0.309684 0.874 0.617 –0.618 0.557889 0.003936

4 0 0.5 0 –1 1 1 1 0

5 0 0.5 0.5 –1 1 –1 0.5 0

a = 1.5

1 0.015151 0 0 0.919 –0.635 –0.635 0.555566 0.002647

2 0.015151 0.316966 0 0.919 0.636 0.630 0.712195 0.002647

3 0.015151 0.316966 0.316966 0.919 0.636 –0.636 0.555566 0.002647

4 0 0.5 0 –1 1 1 1 0

5 0 0.5 0.5 –1 1 –1 0.5 0
generalized to the three-parameter case was used. The
corresponding direct and inverse Borel transformations
have the form

(10)

f v z w, ,( ) ci1 i2 i3, , v
i1z

i2w
i3

i1 i2 i3, ,
∑=

=  e t– F v t zt wt, ,( ) t,d

0

∞

∫

F v z w, ,( )
ci1 i2 i3, ,

i1 i2 i3+ +( )
----------------------------v

i1z
i2w

i3.
i1 i2 i3, ,
∑=
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For an analytical continuation of the Borel transform of
a function, a series in an auxiliary variable θ is intro-
duced:

(11)

and the [L/M] Padé approximation is applied to this
series at the point θ = 1. This approach was proposed
and tested in [14] in describing the critical behavior of
systems characterized by several vertices of interaction
of the order parameter fluctuations. The property [14]
of the system retaining its symmetry under the Padé

F̃ v z w θ, , ,( )

=  θk ci1 i2 i3, ,

k!
--------------v

i1z
i2w

i3δi1 i2 i3+ + k, ,
i1 i2 i3, ,
∑

k 0=

∞

∑
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approximants in the variable θ is essential in the
description of multivertex models.

In the two-loop approximation, the β functions were
calculated using the [2/1] approximant. The character
of the critical behavior is determined by the existence
of a stable fixed point satisfying the set of equations

(12)

The requirement that the fixed point be stable is
reduced to the condition that the eigenvalues bi of the
matrix

(13)

lie in the half-plane of the right-hand complex. The
fixed point with v * = 0, which corresponds to the tric-
ritical behavior, is a saddle point and must be stable in
the directions determined by the variables z and w and
unstable in the direction determined by the variable v.
The stabilization of the tricritical fixed point in the
direction determined by the variable v  is achieved by
taking into account the sixth-order terms with respect to
the order parameter fluctuations in the effective Hamil-
tonian of the model. The fixed point with z* = w*,
which corresponds to the tricritical behavior of the sec-
ond type, is also a saddle point and must be stable in the
directions determined by the variables v  and z and
unstable in the direction determined by the variable w.
Its stabilization is possible at the expense of the anhar-
monic effects.

The resulting set of the resummed β functions con-
tains a wide variety of fixed points. The table specifies
the fixed points that are of most interest for describing
the critical and tricritical behavior and lie in the physi-
cal region of vertex values with v, z, w ≥ 0. The table
also shows the eigenvalues of the stability matrix for
the corresponding fixed points and the critical indices ν
and η.

The analysis of the values and stability of the critical
points suggests the following conclusions. Qualita-
tively, the critical phenomena seem to be identical for
any value of the long-range interaction parameter a.
The critical behavior of incompressible systems is
unstable with respect to the deformation degrees of
freedom (points 1). The stable point proves to be the
one at a constant strain (points 2). Fixed points 3
describe the first type of tricritical behavior of com-
pressible systems, which occurs at constant pressure.
Fixed points 4 are tricritical for systems studied at con-
stant volume. Points 5 are fourth-order critical points at
which two tricritical curves intersect.

For the tricritical behavior of the first type (points 3),
Hamiltonian (5) is isomorphic with the Hamiltonian of

βi v ∗ z∗ w∗, ,( ) 0 i 1 2 3, ,=( ).=

Bi j,
∂βi u1* u2* u3*, ,( )

∂u j

------------------------------------ ui u j, v z w, ,≡( )=
an incompressible homogeneous model and, hence, the
critical indices also coincide with those of the incom-
pressible model. The tricritical behavior of the second
type (points 4) corresponds to the critical behavior of a
spherical model and is determined by the correspond-
ing indices. The fourth-order fixed points (points 5) are
characterized by the field-average values of the critical
indices.

The large values of the effective vertices z and w in
comparison with the systems with short-range interac-
tions [3] are caused by the fact that the mechanism gov-
erning the effect of elastic deformations on the critical
phenomena is related to the dependence of the interac-
tion integral in the Ising model on the distance between
the lattice sites.

The study described above revealed the consider-
able effect of elastic deformations on the critical behav-
ior of systems with a long-range interaction. This effect
manifests itself as a change in the values of the critical
indices for Ising systems along with the appearance of
multicritical points in the phase diagrams of the sub-
stances.
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Exciton luminescence in AlGaAs layers is studied under interband excitation by circularly polarized light.
Curves of luminescence depolarization in a transverse magnetic field (Hanle effect) exhibit peaks arranged
symmetrically about a point H = 0. It is shown that this effect is attributable to crossings of fine-structure levels
in the magnetic field. The exchange splitting of bulk exciton levels and also recombination and spin-relaxation
times are determined from a comparison between theoretical and experimental dependences. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.35.Ji; 72.25.Rb
In recent years, effects of the fine structure in exci-
ton levels in systems of low dimensionality have been
studied intensively [1, 2]. The exchange splitting in
such systems is considerably increased as compared to
the bulk case as a result of a larger overlap between
electron and hole wave functions. Owing to this fact,
various manifestations of the fine structure can be
observed at not-too-low temperatures. In this work,
such effects were observed for bulk excitons in
AlxGa1 − xAs crystals under nonresonant excitation with
circularly polarized light.

This work is devoted to studying the transverse
magnetic field effects on the degree of the circular
polarization of exciton luminescence (Hanle effect) in
high-purity samples of AlxGa1 – xAs. The layers were
grown by molecular-beam epitaxy on semiinsulating
GaAs substrates with a (100) orientation using a Riber-
32P setup. The Al content varied within the range
0.09 < x < 0.295. The layer thickness was 2.5 mm. To
decrease surface recombination, the layers were coated
with buffer AlAs layers 25 nm thick. The details of the
growth procedure were described in our previous work
[3].

The measurements were performed at a superfluid
helium temperature of 1.6 K. Steady-state lumines-
cence was excited with a He–Ne laser with a power
density of order 3 W/cm2. The sign of the circular polar-
ization was reversed using an electro-optical modulator
in the range of frequencies from 100 Hz to 100 kHz.
Luminescence was measured in the back-scattering
geometry at a fixed position of the analyzer using a
monochromator with a focal distance of 0.64 m. The
monochromator was connected to a dual-channel pho-
ton counter synchronized with the modulator.
0021-3640/03/7710- $24.00 © 20561
The free-exciton line predominated in all the lumi-
nescence spectra [3]. The circular-polarization degree
of luminescence was measured at the line maximum.
The Hanle curves were measured in AlxGa1 – xAs sam-
ples with x = 0.09, 0.15, and 0.21 (Fig. 1). In the
absence of a magnetic field, the circular-polarization
degree of luminescence for all samples comprised a
value of order 8% (curves for x = 0.09 and x = 0.15 are
shifted in vertical). In the measurements, the polariza-

Fig. 1. Dependence of the circular-polarization degree of
luminescence Pc on the magnetic field in AlxGa1 – xAs sam-
ples with compositions x = 0.09, 0.15, and 0.21 (curves with
x = 0.09 and 0.21 are shifted in vertical).
003 MAIK “Nauka/Interperiodica”
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tion of the exciting light was reversed with a frequency
of 1 kHz. For the compositions indicated above, the
sign of the electron g-factor ranged over the region of
both positive and negative values.

It is evident in Fig. 1 that the Hanle curves are intri-
cate in shape. They represent a superposition of two
contours with widths differing approximately by a fac-
tor of 10. Two additional peaks arranged symmetrically
about the zero magnetic field are observed for the com-
position x = 0.15. These peaks are not associated with
the dynamic polarization of nuclei, because measure-
ments at a frequency of 100 kHz do not change the
shape of the curves. In the sample with x = 0.21, the
peaks are not clearly defined and weak deviations from
the monotonic behavior of the curves are observed in
their place. In the sample with x = 0.09, a broad “pad”
is observed instead of peaks.

The following model was used to account for the
results obtained. We assumed that the main part of exci-
tons is formed through a bimolecular mechanism as a
result of coupling of free electrons and holes. By virtue
of the experimental conditions, the intensities of photo-
excitation cannot be weak. For this reason, the forma-
tion of hot excitons through the geminate (pump-linear)
mechanism, in this case, turns out to be less efficient. It
was suggested that luminescence at a low temperature
is determined by bound excitons grouped in the tail
region of the density of states, which is associated with
composition fluctuations in a disordered solid solution.

The pattern of the luminescence spectrum formation
in a disordered solid solution, in the general case, is
rather intricate [4, 5]. In this work, it is suggested that
the exciton centers of mass are localized in fluctuation
wells. In this case, the internal structure of an exciton
wave function can be close to the state of a free exciton.
The smallness of the line width of exciton lumines-
cence, which comprises about 1 meV in the experi-
ment, corroborates the suggestion that the potential
fluctuations are weak.

In the proposed model, the spin orientation of exci-
tons arises in the course of a two-stage cascade process.
At the first stage, free electrons and holes are generated
through direct interband optical transitions. Depending
on the composition of the solid solution, at a fixed
pumping frequency, the kinetic energy of photoexcited
excitons in the conduction band falls into either the pas-
sive band or the band lying higher than the passive band
by a value of up to ten energies of optical phonons.
Under these conditions, electrons retain their spin ori-
entation during energy relaxation. In the opposite case,
photogenerated holes lose it completely.

Excitons are formed at the second, slower stage of
the cascade. In our samples, a radiationless recombina-
tion channel is virtually absent [3]. For this reason, the
lifetime of free carriers is fully determined by the pro-
cess of their escape to excitons. During the coupling of
electrons and holes to excitons, the electrons them-
selves do not lose their spin orientation.
With the suggestions indicated above, the dynamics
of the electron spin Se is described by the equation

(1)

where G is the photogeneration intensity, se is the vec-
tor of the average spin of a photoexcited electron, Ωe =
geµBB/", µB is the Bohr magneton, and ge is the gyro-
magnetic ratio. The relaxation time Te is determined by

the equation  =  + , where τb is the exciton
coupling time and τes is the electron spin relaxation
time. The steady-state number of electrons Ne in the
absence of the thermal dissociation of electrons is given
by the equation Ne = τbG.

The kinetics of bound excitons will be described
with the use of the density matrix formalism [6]. The
Hamiltonian of an exciton in the magnetic field H is
taken in the form

(2)

Here, ge and gh are g-factors of electrons and holes, j is
the angular momentum operator of a hole (j = 3/2),
s are the Pauli matrices, J is the total angular momen-
tum operator of an exciton, and ∆ is the exchange split-
ting between exciton levels with total angular momenta
J = 1, 2.

The equation for the density matrix of an exciton ρ
has the structure

(3)

The first term on the left-hand side takes into account
recombination. This term involves τ1 and τ2 twice for
levels with J = 1, 2 and the nondiagonal relaxation time

defined by the equation  = (  + )/2. By analogy
with [6], we suggest that the exciton spin relaxes
mainly through fluctuations of the hole spin. Corre-
spondingly, the second term in Eq. (3) is characterized
by only one time τs. In the above approach, it is
assumed that temperature is high compared to ∆.

The matrix  in Eq. (3) describes the generation of
excitons. In accordance with the model assumed above,
it can be taken in the form of the product of the density
matrix of nonpolarized holes by the density matrix of
electrons

(4)

Here, s = Se/Ne is a vector numerically equal to the aver-
age spin of a free electron. As distinct from [6], we take
into account the rotation of this vector in the magnetic
field, which is determined by Eq. (1).
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Based on the proposed model, we performed numer-
ical calculations of the circular-polarization degree of
luminescence Pc in a transverse magnetic field. From
the very start, the relaxation broadening of levels "/τ
was suggested, where τ–1 ~  +  is sufficiently
small compared to the exchange splitting ∆. In this
case, details of the fine structure can be revealed. The
following relation among times was considered: τ1 ~
τs ! τ2. For the spin of photoexcited electrons, the
highest possible value of se = –0.5 was taken.

The calculated results for the solid solution with x =
0.15 are presented in Fig. 2. The initial part of the
curve, including the side peak, corresponds to exciton
depolarization. The strong-field region corresponds to
the precession of the free-electron spin. This circum-
stance seems rather unconventional, because the life-
time and the spin relaxation time are usually suffi-
ciently long (>1 ns). On the contrary, it is the central
peak that should be associated with electrons. In fact,
here the small value of the electron g-factor plays an
essential part: ge ≈ 0.1 at x = 0.15 [7]. The estimate of
the characteristic width of the Lorentzian tail δH
involves the product geµBTeδH/" ~ 1, and, thus, the
large value of Te is partially compensated by the small-
ness of ge.

We relate the increase in luminescence polarization
at a finite field to the convergence or crossing (depend-
ing on the sign of the ge factor) of a certain group of
exciton levels. The corresponding curves are con-
structed in Fig. 3 in the case of x = 0.15. The spectrum
of the Hamiltonian (Eq. (2)) is found in an analytical
form. Its levels are classified by the projection of the
total angular momentum M onto the magnetic field. It
is evident in the figure that the pair of levels with M = 0
and M = 1, originating, correspondingly, from the states
with the total angular momenta J = 2 and J = 1,
approach each other in the peak region in a zero mag-
netic field. Under certain conditions, the above levels
make the main contribution of to the degree of lumines-
cence polarization.

τ1
1– τ s

1–

Fig. 2. Experimental and theoretical dependences Pc(H) for
x = 0.15 (curve with noise is experimental). The arrow
shows the place at which the slope of the curves changes.
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The mechanism of this phenomenon can be clarified
in the simplest case when the recombination times are
equal, that is, τ1 = τ2 = τ. The solution of the equation
for the density matrix in this case can be written explic-
itly. The elements of the density matrix calculated from
the exact wave function of their levels of the Hamilto-
nian (Eq. (2)) with the energies ε1 and ε2 are propor-

tional to ρ12 ~ [i(ε1 – ε2) + "/T]–1, where T–1 = τ–1 + .
These values are calculated in the basis set of states
with a certain projection of the angular momentum of
the exciton onto the magnetic field. For this reason, the
density matrix elements diagonal in their level number
make no contribution to the circular luminescence
polarization in the direction perpendicular to the mag-
netic field. The luminescence polarization is deter-
mined solely by the nondiagonal elements, whose
values depend on the distance between the levels ∆ε =
|ε1 – ε2|. If this distance for a particular pair of levels is
smaller than the parameter "/T and all the other levels
are separated by a considerably larger distance, then,
according to the parameter "/∆εT ! 1 the contribution
of the latter to polarization turns out to be small.

The calculation shows that a broad side peak must
appear at a fixed orientation of the free electron spin Se.
The large extension of this peak is caused by the small-
ness of the electron g-factor. Taking into account the
rotation of the free electron spin in the magnetic field
considerably decreases the peak width. However, the
obtained decay rate of polarization is slower than in the
experimental curves. The faster decay of polarization
compared to the calculated rate could be associated
with the processes of relaxation acceleration during
large level splitting, which are not taken into account in
the proposed model.

A comparison between the experimental and theo-
retical dependences for the sample with x = 0.15 gives
the value ∆ ≈ 18 µeV, which is in agreement with the
known data for the short-range part of the exchange
splitting in the bulk exciton [8]. The obtained exciton
recombination times are equal to τ1 = 50 ps and τ2 =

τ s
1–

Fig. 3. Splitting of exciton levels in a magnetic field. Graphs
are constructed for ge = 0.1, gh = –2, and ∆ = –18 µeV.
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4 ns, and the spin relaxation time is τs = 60 ps. In the
field determined by the estimate ghµBHτs/" ~ 1 (indi-
cated by an arrow in Fig. 2), a characteristic kink is
observed in the region of the central peak of the Hanle
curve. Here, the change in the curve slope corresponds
to the transition between two approximate asymptotes,
considered in [6] in the case of a large exchange split-
ting of exciton levels ∆ @ "/T and τ1 < τs ! τ2. Calcu-
lation with the approximate equations [6] describes
well the Hanle curves in a weak field.

The electron relaxation times are found to be τb =
0.9 ns and τes = 2.1 ns. The obtained value of the elec-
tron lifetime τb agrees with the fact that the case when
the density of electron–hole pairs is not too low takes
place in the experiment. It is for this case that long-term
exciton luminescence decay is usually observed in the
samples under study.

Note that the measured spin relaxation time can
apparently characterize the processes of energy relax-
ation of excitons in the region below the mobility edge.
In this region, processes of radiative recombination and
phonon-assisted hopping down in energy through exci-
ton tunneling between localized states are in competi-
tion [5]. During inelastic tunneling, hole spin relaxation
inevitably proceeds because of spin–orbit interaction in
the valence band.

In the sample with x = 0.09, ge = –0.07. The best
agreement with the experimental curves is obtained at
∆ = 15 µeV and relaxation times τ1 = 30 ps and τs =
50 ps. In this case, because of the smallness of the elec-
tron g-factor and the shorter exciton lifetime, the struc-
ture with a side peak smears out into a broad “pad”
under the central peak. In the sample with x = 0.21, ge =
0.2. Good agreement is obtained at ∆ = 8 µeV, τ1 =
60 ps, and τs= 110 ps. At this value of the g-factor, the
crossing region of the group of levels mentioned above
lies in a weak field, where the contribution of all other
Zeeman levels has already become notable. The reason
for the wide scatter in the value of ∆ in the samples
under study is not clear and calls for detailed investiga-
tion.

In conclusion, it can be noted that manifestations of
the fine structure of a bulk exciton were observed in this
work using the optical orientation method and the value
of exchange splitting was calculated independently.

This work was supported by the Russian Foundation
for Basic Research, project no. 01-02-16967.
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The field dependence of the magnetic penetration depth over the entire range of stability and metastability of
the Meissner state was determined within the framework of the Ginzburg–Landau theory. A simple interpola-
tion formula is suggested. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Ha; 74.20.De; 74.25.Op
Ginzburg and Landau [1] calculated the low-field
correction to the magnetic penetration depth for an
arbitrary value of the parameter κ:

(1)

In the limiting cases of large and small κ values, Eq. (1)
is valid over the entire domain of existence of the equi-
librium Meissner state (up to the field Hc in type-I
superconductors and Hc1 in type-II superconductors).

In type-I superconductors, an normal metal–super-
conductor transition in an external magnetic field is a
phase transition of the first order. It can be accompanied
by superheating or supercooling. In type-II supercon-
ductors, the process of superconductivity destruction
involves a stage, during which the superconductor is in
a mixed state. The transition from the normal to the
mixed state in the field Hc2 is a classical phase transition
of the second order. The occurrence of the mixed state
in a superconductor exposed to an external field Hc1, as
well as its reconstruction in a varying magnetic field,
should be accompanied by superheating or supercool-
ing even in the absence of pinning. This is caused by the
Bean–Livingston energy barrier to vortex penetration
into superconductors [2]. In the limit of large values of
the Ginzburg–Landau parameter, the barrier to vortex
penetration disappears in a field Hm = Hc (see [3], §34)
that considerably exceeds the field Hc1, in which the
transition to the mixed state occurs.

A phase diagram (κ, H) for superconductors near
the transition temperature, where the Ginzburg–Landau
theory is valid, is shown in Fig. 1. The highest possible
superheating field Hm(κ) for the Meissner state was
determined by Ginzburg [4], who numerically solved
the Ginzburg–Landau equations.

δ H( ) δ 0( ) 1
κ κ 2 2+( )
8 κ 2+( )2
----------------------------H2

Hc
2

------+
 
 
 

.=
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In the limit of large κ values, Ginzburg [4] obtained
an analytical solution to the problem of magnetic field
decay in the superconductor bulk:

(2)

where the constant C is a function of the external field
and determined by the following equation:

(3)

Ginzburg’s solution determines the dependence of
magnetic penetration depth

B 2Hc
x
δ
-- C+ 

 sinh x
δ
-- C+ 

 cosh
2–

,=

C( )cosh
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------+ 1 H
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------–+ 
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∞

∫=

Fig. 1. Ginzburg–Landau phase diagram for superconduc-
tors. Solid curves (except Hc) for the maximal superheating
field Hm and the field Hc1 (equal to the ratio between the
one-quantum vortex energy and the magnetic flux quantum)
were obtained by numerical computation. The dotted curve
is the function HGL(κ) given by Eq. (7).
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on a magnetic field over the entire range 0 < H < Hm =
Hc, where the Meissner state can be observed at large
values of κ:

(4)

In the limit of small κ values, the Ginzburg–Landau
equation for the Meissner state was solved by Galaœko
[5]. For small κ, the presence of a magnetic field at dis-
tances greater than the penetration depth can be
neglected. Then,

(5)

The parameter a is determined by matching solution (5)
and the solution near the boundary of the field penetra-
tion region.

In the approximation considered, the field penetra-
tion is described by a simple exponential function A =

H exp(–|ψ0|x). It can easily be shown, using the
solution obtained in [5], that in this limit the depen-

dence of magnetic penetration depth δ(H) =  on the
external magnetic field is also given by Eq. (4) with the
superheating field Hm equal to

(6)

δ H( ) 2δ 0( ) 1 H
Hm

-------+ 1 H
Hm

-------–+ 
 

1–

.=

ψ κ x a+( )
2

--------------------.tanh=

ψ0
1–

ψ0
1–

Hm

Hc

2κ
---------------.=

Fig. 2. Field dependence of the magnetic penetration depth
for various values of the parameter κ. Solid lines are the
results of a numerical solution to the Ginzburg–Landau
equations. Dotted lines are interpolation functions (4). The
dashed line is the Ginzburg–Landau quadratic low-field
approximation (1).
Thus, quite unexpectedly, the field dependences for
the small and large values of the parameter κ were
found to coincide. The numerical solution to the
Ginzburg–Landau equations for an arbitrary value of κ
showed that the field dependence of the penetration
depth over the entire field range deviated only slightly
(Fig. 2) from the interpolation function (4), where the
critical superheating field for an arbitrary κ is taken to
be

(7)

as follows from the low-field limit (1).
As the maximum superheating field is approached,

both Eq. (4) and the numerical solution to the Ginz-
burg–Landau equations (Fig. 2) exhibit a root singular-
ity. Such a singularity is usually indicative of loss of
stability of a metastable state against uniform distur-
bances (see [6], part 3).

The close similarity between the results of numeri-
cal computation of the function Hm(κ) and the curve
HGL(κ) (Fig. 1), as well as the fact that the maximal

increase in the penetration depth is close to  (Fig. 2),
shows that the accuracy of the suggested interpolation
formula is rather high. Thus, the superconductor
parameters Hc and κ can be reliably determined from
the measured field dependence of the penetration depth
in bulk superconductors only in the combination enter-
ing the equation for HGL. To separately determine these
parameters with an accuracy of 10–1, the accuracy of
measuring the penetration depth should be 10–3 or bet-
ter.

We are grateful to G.M. Éliashberg and V.F. Gant-
makher, who called our attention to works [4] and [5].
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A new type of photonic crystals is proposed. The new crystals have a forbidden gap in the microwave spectrum
of magnetostatic spin waves, and, by analogy with photonic crystals, they are called magnon crystals. Speci-
mens of such crystals were fabricated on the basis of yttrium iron garnet films. The surfaces of ferromagnetic
films containing two-dimensional etched hole structures were studied by atomic force and magnetic force mag-
netometry. The propagation of spin waves through the magnon crystals was investigated. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 42.70.Qs; 75.30.Ds; 75.70.Ak
Studies of the physical properties of photonic crys-
tals stimulated the design of crystals intended for oper-
ation in the visible frequency range and formed on the
basis of synthetic opals, colloidal particles, nanostruc-
tured films, etc. [1–4]. The properties of photonic crys-
tals and, in particular, the presence of a photonic band-
gap depend on the wavelength of propagating light.
Miniature devices based on photonic crystals can be
designed only for wavelengths corresponding to the
visible or infrared regions. Photonic crystals with a
bandgap in the rf region should be fairly large, because
the corresponding electromagnetic wavelengths are on
the order of several centimeters. In parallel with the
development of photonic crystals, an idea was put for-
ward to develop similar crystals whose operation is
based on the propagation of magnons (spin waves) [5–
11]. Such crystals should exhibit the same properties as
photonic crystals, but with respect to the spin waves.
The crystals similar to photonic crystals but formed on
the basis of magnetic materials (namely, magnon crys-
tals), in which spin waves can propagate, have a series
of advantages over the photonic crystals. First, the spin
wavelength and, hence, the properties of these crystals
depend on an external magnetic field and, hence, can be
controlled by it. Second, for a wide class of ferromag-
netic materials, the spin-wave wavelengths in the
microwave (rf) range are within tens or hundreds of
microns, and, hence, it is possible to fabricate photonic
(or magnon) bandgap crystals of about several millime-
ters in size. Moreover, such crystals can be fabricated in
the planar geometry, which is important for designing
0021-3640/03/7710- $24.00 © 20567
integrated devices, such as narrow-band optical or
microwave filters or high-speed switches. The proper-
ties of magnon crystals are, as yet, little investigated.
The first publications on the crystals with a magnon
bandgap only posed the problem of the existence of this
kind of crystals. However, the authors of these publica-
tions recognized that the development of such crystals
should be very promising and important from both sci-
entific and practical points of view. In particular, they
discussed the problem of controlling the magnon band-
gap by an external magnetic field for one- and two-
dimensional magnon crystals [5, 6, 8, 9]. With an
appropriate choice of magnetic materials in a periodic
structure, it is possible to obtain nonreciprocal magnon
crystals with one-way transparence (i.e., crystals that
transmit the spin waves in one direction and do not
transmit them in the opposite direction) [7]. The prob-
lem of light propagation and diffraction in linear [10,
11] and nonlinear [12] magnetic photonic crystals was
also considered in the literature. In particular, the cited
publications considered the growth of the additive Fara-
day effect due to the resonant wave reflection [10] and
anisotropic transformation of waveguide modes in
magnetic photonic crystals.

In this paper, we discuss the possibilities of fabricat-
ing magnon crystals, report the results of an experimen-
tal realization of these crystals, and consider the pros-
pects of their application.

The simplest one-dimensional magnon crystal is a
strictly periodic multilayer structure consisting of mag-
netic layers with different magnetizations, or a similar
003 MAIK “Nauka/Interperiodica”
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structure consisting of magnetic and nonmagnetic lay-
ers. The realization of such a structure is rather diffi-
cult, because the periodicity of the magnetic properties
of layers can be violated in the course of the layer
growth, which will break the magnon crystal structure
possessing a magnon bandgap. From the point of view
of application, a two-dimensional magnon crystal
formed on the basis of ferromagnetic films seems to be
preferable. This crystal represents a ferromagnetic
waveguide with two-dimensional magnetization inho-
mogeneities. The inhomogeneities can be represented
by, e.g., implanted elements of another ferromagnet or
holes made in the structure. As the initial object for fab-
ricating a magnon crystal, we choose a ferromagnetic
yttrium iron garnet (YIG) film grown epitaxially on a
nonmagnetic gadolinium gallium garnet substrate.
Magnetostatic spin waves can be easily excited in such
films by microstrip transducers. Owing to the high
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Fig. 1. Magnetic photonic crystals based on the YIG films
with (a) a square lattice and (b) a hexagonal lattice. The
period of the structure is 50 µm, and the radius of the holes
is 20 µm. The image is obtained by an atomic force micro-
scope.
quality of the films, the propagation loss in them should
be fairly small, and the magnetostatic spin waves prop-
agate in these films without any considerable attenua-
tion within distances of many wavelengths. The struc-
ture studied by us was a YIG film with holes made by
etching. The diameter of the holes and their periodicity
were taken to be close to a half-wavelength (to satisfy
the Bragg reflection condition). The transverse dimen-
sions of the film were 1.5 × 0.5 cm2, and the film thick-
ness was 5 µm. The periodic hole structures were made
in the films by the photolithographic technique accord-
ing to the following procedure. A silicon dioxide layer
was deposited on the YIG film. Then, the structure was
covered by a 1.3-µm-thick photoresist layer, which was
insolated through a chromium mask with a periodic
hole pattern. Two types of hole patterns were used: a
square lattice and a hexagonal lattice. After exposure,
silicon dioxide was eliminated by a mixture of hydrof-
luoric acid and ammonium fluoride (solution 1). Then,
the remaining silicon dioxide lattice was used as a mask
for etching the YIG film in an aqueous solution of phos-
phoric acid and iron chloride (with a molar proportion
of 49.4 : 49.4 : 1.2; solution 2). The time and tempera-
ture of etching were chosen so as to etch the material
through a thickness of 4–4.5 µm. After the etching pro-
cedure, silicon dioxide was completely eliminated by
solution 1. The hole thickness and the surface structure
were studied by a three-dimensional optical rugosi
meter and an atomic force microscope (D300 Digital
Instruments and Solver P47H NT-MDT). Figure 1 pre-
sents the micrographs of square and hexagonal etch
patterns in the YIG films. The micrographs were
obtained using the atomic force microscope. The hole
thickness is 4 µm, and the hole period is about 50 µm.
In addition, the film surface was also analyzed by a
polarizing microscope. Figure 2 shows the micrograph
of the ferromagnetic film surface in a weak bias mag-

100 µ

Fig. 2. Image of the magnon crystal surface from a polariz-
ing microscope. In addition to the holes, one can see the
domain structure.
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netic field. Apart from the holes, a magnetic domain
structure is clearly visible on the film surface.

The spectrum of spin waves propagating in a ferro-
magnetic film with a two-dimensional periodic struc-
ture is determined from the solutions to the Landau–
Lifshits equations for the magnetization motion and the
Maxwell equations with the corresponding boundary
(at the film surface) and periodic conditions [11, 12]. As
a result of solving the boundary-value problem, we
obtain the generalized dispersion equation

(1)

where d is the film thickness, D is the period of the peri-
odic structure, qz is the wave number of the propagating
spin wave, and κ1 and κ2 are the propagation constants
of spin waves. The latter are determined by the relations

where H is the external magnetic field, M0 is the satura-
tion magnetization of the ferromagnet, and ω is the spin
wave frequency. The spectrum of the waves propagat-
ing in the periodic structure is shown in Fig. 3. One can
see that the spectrum contains bandgaps corresponding
to frequencies at which the wave propagation through
the periodic structure is impossible. It should be noted
that the position of the bandgap in the frequency spec-
trum depends on the parameters of the film (the peri-
odic structure) and on the external magnetic field. Thus,
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Fig. 3. Spectrum of magnetostatic spin waves propagating
in the periodic structure with the period D = 10 µm; v  is the
group velocity of spin waves.
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by varying the magnetic field, one can control the spec-
trum of the waves propagating in a magnetic photonic
crystal.

To experimentally test the spectra of spin waves
propagating in magnon crystals, we constructed delay
lines, each line containing a ferromagnetic film with the
etched structure and transducers converting electro-
magnetic signals to spin waves (the input and output
transducers). We studied the amplitude–frequency
characteristics of the propagating spin waves. The char-
acteristics were obtained using a phase compensator
(PC2-18), which measured the phase difference and
attenuation. The model delay line was placed in the gap
of an electromagnet, so that the bias magnetic field
could be varied by changing the distance between the
magnet poles. The spacing between the antennas was
5 mm, and the length and width of the antennas were
3 mm and 40 µm, respectively. We compared the ampli-
tude–frequency characteristics of the YIG film part that
was not etched and the part that was adjacent to the
etched film area (in Fig. 4, the etched area is the small
rectangle) with the amplitude–frequency characteris-
tics of the film part containing the periodic etch pattern.
From Fig. 4, one can see that the frequency band of spin
wave excitation (the zone of magnon existence) is
much narrower for the case of wave excitation in the
film containing the periodic structure of etched holes.
Figure 5 presents the amplitude–frequency characteris-
tics of the propagating spin waves for the cases when
the exciting antennas partially covered the area of the
etched hole structure. The frequency band of spin wave
excitation decreases by an order of magnitude: when
the wave excitation occurs in the smooth (nonetched)
region, the frequency band is 400 MHz, and when the
waves are excited and propagate in the region with the
holes, the frequency band of wave excitation is about
50 MHz.

Fig. 4. Amplitude–frequency characteristic of the model
delay line for the case of the propagation of magnetostatic
surface spin waves in a film with a hexagonal structure. The
bias magnetic field is 530 Oe.
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Thus, in this paper, we proposed the fabrication of
ferromagnetic film–based photonic crystals that have a
photonic bandgap in the frequency spectrum of spin

Fig. 5. Amplitude–frequency characteristic of the model
delay line for the case of the propagation of magnetostatic
surface spin waves in a film with a hexagonal structure in a
bias magnetic field of 55 Oe for different positions of the
input and output antennas with respect to the region con-
taining the holes.
waves propagating in them (the magnon crystals). We
fabricated specimens of such crystals on the basis of
YIG films. Using atomic force and polarization micro-
scopes, we studied the structure of these crystals. We
studied the propagation of magnetostatic spin waves in
the ferromagnetic films representing the magnon crys-
tals. We presented the amplitude–frequency character-
istics of spin waves and calculated the band structure of
magnetic photonic crystals.

This work was supported by the Russian Foundation
for Basic Research, project nos. 02-02-17166 and
01-02-17178, and the International Science and Tech-
nology Center (ISTC), project no. 1522.
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Magnetic Phase Diagram for a Random Three-Dimensional Ising 
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It is shown, within the framework of the generalized mean-field theory, that the ground state of a system of Ising
point dipoles randomly filling the sites of a three-dimensional cubic lattice depends on the fraction p of filled
sites. For example, a body-centered lattice is ferromagnetic at p > pc1 ≈ 0.55, a spin glass at pc1 < p < pc2 ≈ 0.35,
and paramagnetic at p < pc2. The transition between these states has a percolation nature. The temperature
dependences of the magnetization in the ferromagnetic phase and the susceptibility in the paramagnetic phase
were determined. The magnetic phase diagram of the system was constructed. © 2003 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 75.10.Nr; 75.50.Lk; 75.30.Kz
1. INTRODUCTION 

The traditional mean-field theory of magnets, while
taking into account thermal fluctuations of interacting
magnetic moments, does assume that their local fields
are identical. This assumption is not true for random
systems with configurational disorder. The latter leads
to spatial fluctuations of a local field, which, in contrast
to thermal fluctuations, precludes the establishing of
magnetic order even at zero temperature. In the systems
with long-range interactions, to which our random
three-dimensional Ising point-dipole lattice belongs,
this is supplemented by the necessity of including the
anisotropy of this interaction.

Thus, to adequately describe disordered magnetic
systems, the traditional mean-field theory must be gen-
eralized. The character of generalization depends on
the type of random process. In “liquid” random sys-
tems, the point dipoles can be situated at any site of the
space, and, to a first approximation, the correlation in
their spatial arrangement need not be taken into
account. The corresponding random process is mark-
ovian, and, to determine the distribution function for
random magnetic fields in such a system, one can use
the Markov theory [1]. The magnetic properties of such
systems are considered in [2]. In random lattice struc-
tures, dipoles can (randomly) occupy only the sites of a
certain regular (crystal) array. The method [1] does not
apply to such systems, because they are not markovian.
It is the purpose of this work to consider the magnetic
properties of a non-markovian three-dimensional ran-
dom lattice.

The properties of Ising ferromagnets with short-
range (exchange) interaction between magnetic
moments have been studied by the statistical [3] and
0021-3640/03/7710- $24.00 © 20571
percolation [4] methods. Unfortunately, these methods
are unsuitable for the systems with long-range (in par-
ticular, dipolar) interactions. In this case, it is necessary
to appropriately modify the mean-field theory for ran-
dom systems.

The model of a random dipole lattice considered in
this work can be used to describe the properties of var-
ious physical objects. Among these are materials with
giant magnetoresistance (magnetic nanograins in a
nonmagnetic metallic matrix), transparent ferromag-
nets (including those in a polymeric matrix), frozen fer-
romagnetic fluids, and crystalline systems with par-
tially substituted magnetic ions. Among the latter, the
LiHoF4 compound crystallizing in the sheelite structure

CaWO4 (space group ) is noteworthy. Its ferromag-
netism (Curie temperature TC = 1.53 K) is due to the
Ho3+ ions with magnetic moments m ~ 13µB. A partial
substitution of the nonmagnetic ions Y3+ (with a closed
4p6 electronic configuration) for Ho ions gives rise to
the LiHoxY1 – xF4 compound, in which the magnetic
ions Ho3+ are randomly distributed over the corre-
sponding lattice sites. The exchange interaction
between the magnetic moments of these ions (their 4f
shell is unfilled (4f 10 configuration)) is efficiently
screened by 5s and 5p electrons. In such a situation, the
dipole–dipole interactions between ions become domi-
nant and, due to crystal anisotropy, their magnetic
moments assume an Ising character. The Curie temper-
ature TC(x) of this compound decreases monotonically
with increasing x (especially in the range x = 0.4–0.3),
and it becomes paramagnetic at x ~ 0.2 [5].

C4h
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In this work, a model of a random Ising-dipole lat-
tice is suggested which can be used for the adequate
description of the magnetic properties of LiHoxY1 – xF4.

2. GENERALIZED MEAN-FIELD THEORY
FOR A RANDOM 3D POINT-DIPOLE LATTICE

Let us consider a three-dimensional square lattice,
whose sites are randomly occupied by Ising magnetic
dipoles. The fraction of filled sites is p and the dipole
magnetic moments mikl are parallel to one of the lattice
faces and take only two values: mikl = ±me0, where e0 is
a unit vector in the dipole direction.

In the traditional theory, each dipole is subjected to
the same local field H0, which determines the mean
magnetic dipole moment 〈mikl〉T (angular brackets stand
for ensemble averaging, and the subscript T denotes
thermodynamic averaging). For Ising dipoles, H0 || e0,
and one has

(1)

where I is the magnetization of the system and n is the
dipole concentration. For a sample shaped like a prolate
cylinder with its axis parallel to the direction of mag-
netic dipoles, the local field H0 is also parallel to its axis
and equals

(2)

Here, (4π/3)I is the Lorentz field produced by the polar-
ization magnetic charges at the surface of a sufficiently
large sphere,

(3)

where the summation goes over the sites occupied by
the dipoles inside the sphere, ρik is the distance between
a certain dipole (placed at the origin of coordinates) and
the dipole at the site (ikl), and αikl is the angle between
the line connecting these dipoles and the direction e0.

Let the system with randomly distributed dipoles be
in the state with mean magnetization I || e0. The local
magnetic fields H3 are different for different lattice sites
and characterized by the distribution function Fp(η;
H3), which that depends on the fraction p of occupied
lattice sites and the fraction η of dipoles whose average
moments are directed along the magnetization I of the
system.

Let us consider the possibility of magnetic ordering
in the random system of interest. The magnetization is

mikl〈 〉 T

m mH0/kT( )exp
m me0±=

∑
mH0/kT( )exp

m me0±
∑

---------------------------------------------------------=

=  me0 mH0/kT( ), Itanh n mikl〈 〉 T ,=

H0
4π
3

------ I H3.+=

H3 m
3 α iklcos

2
1–

ρikl
3

-------------------------------,
ikl

∑=
I = pn〈mi〉T, where the average magnetic moment 〈mi〉T

should be calculated with allowance made for the scat-
ter of random fields H3 through the generalization of
regular Eq. (1). The corresponding mean random-field
equation for the magnetization j = I/pnm has the form

(4)

where Θ = kT/m2n is the reduced temperature (the mag-
netization j = 2η – 1 is one of the arguments of the func-
tion Fp).

The ground state (T = 0) of the system is ferromag-
netic (j0 ≡ j(T = 0) = 1) if the integral on the right-hand
side of Eq. (4) equals unity at j = 1. With allowance for
the normalization of the distribution function, this condi-
tion means that the random fields H0 must be positive at
all lattice sites. It is fulfilled if Fp(1; 4πI/3 + H3 < 0) = 0.

The limiting case of a lattice whose sites are com-
pletely filled with dipoles (p = 1) was considered in [6],
where it was shown that the character of the ground
state of a long sample with a cubic dipole lattice
depends on the lattice type; a simple lattice is always
antiferromagnetic, whereas body-centered and face-
centered lattices are ferromagnetic. In the two latter
cases, the magnetic field H3 is zero at all lattice sites if
p = 1. According to the abovesaid, this corresponds to
the distribution function Fp(1; H3) = δ(0), which,
clearly, satisfies the above- mentioned condition for fer-
romagnetism.

To answer the question of whether the ferromag-
netic state can be the ground state of a partially filled
random lattice (p < 1), one must know how the distribu-
tion function Fp(j; H3) changes its form with a decrease
in p. Inasmuch as no exact methods for determining the
form of this function are presently available, we calcu-
lated it numerically for a body-centered cubic lattice of
Ising point dipoles, whose magnetic moments were
directed along one of the lattice faces. The dipoles were
distributed uniformly and randomly (with probability
p) over the sites of a 21 × 21 × 21 lattice, and the mag-
netic field H3 was calculated for the central site. The
functions Fp(1; H3) were found by exhausting a large
number (about 104) of realizations for this system. The
resulting distribution functions Fp(1; H3) are shown in
Fig. 1.

At p ≈ 1, the distribution function has a quasi-delta-
like form and is centered near zero. As the fraction p of
filled sites decreases, the width of the distribution first
increases and then decreases. This follows from the fact
that the distribution functions Fp(1; H3) and F1 – p(1; H3)
for the complementary systems with, respectively, the
fractions p and (1 – p) of filled sites are related to each
other as Fp(1; H3) = F1 – p(1; –H3).

One can see from Fig. 1 that, when p is close to
unity, the distribution function corresponds to the ferro-

j
1
Θ
---- 4π

3
------ pj

H3

mn
-------+ 

  Fp j; H3( )tanh H3,d

∞–

∞

∫=
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magnetic ground state. However, at relatively small p
values, this function becomes nonzero in a broader
range of H3 fields, which, according to the abovesaid,
precludes the formation of a ferromagnetic state with
j0 = 1. Therefore, with a decrease in p, the system
undergoes a percolation magnetic phase transition from
the ferromagnetic state to the magnetic (spin) glass
state with j0 < 1.

To determine the percolation threshold pc1 for this
transition, we introduce the parameter Ω(p) character-
izing the degree of penetration of the distribution func-
tion Fp(1; H0) into the region with H3 < 4πI/3. It is equal
to the probability of a dipole configuration with such an
H3 value occurring among various configurations with
a given p value. In other words, Ω(p) is the fraction of
configurations with H3 < 4πI/3 among all studied (for a
given p) dipole configurations. The corresponding
(numerically found) dependence is presented in Fig. 2.

As in the standard percolation theory [4], the Ω(p)
dependence follows the power law (it is linear in our
case): Ω(p) ∝  (pc1 – p) with the percolation threshold
pc1 = 0.55 ± 0.02. This value considerably (more than
twofold) exceeds the value pc = 0.25 corresponding to
the percolation magnetic phase transition from the fer-
romagnetic to paramagnetic state in a body-centered
cubic magnetic-moment lattice with short-range (pair)
interactions [4]. This is so because the net result of the
long-range dipole–dipole interactions is more sensitive
to the disorder in the system.

Analogous calculations suggest that the face-cen-
tered cubic Ising-dipole lattice is even more sensitive to
disorder; in the ground state, it remains a genuine fer-
romagnet (i.e., characterized by the magnetization
j0 = 1) only in a very narrow interval pc1 < p < 1, where
pc1 ≈ 0.95 (recall, in this connection, that the ground
state of a simple cubic Ising-dipole lattice is not ferro-
magnetic at p = 1).

3. MAGNETIC PHASE DIAGRAM

It was established above that, at p > pc1, the ground
state (T = 0) of our system corresponds to a magnetic
glass with magnetization j0 < 1. The temperature
dependence of magnetization and the Curie tempera-
ture of the system for a chosen p value is determined by
Eq. (4). To find its solution, one should trace how the
corresponding distribution function Fp(j; H0) changes
upon varying j. An example of such evolution is shown
in Fig. 3 for the distribution function F0.9(j, H3). In the
numerical calculations, the sign of the dipole magnetic
moment was chosen at random on the condition that the
fraction of dipoles with upward directed moments is
η = (1 + j)/2. It is seen that the distribution width
increases monotonically with decreasing magnetiza-
tion (cf. Fig. 1 relating to the systems with j = 1 but var-
ious p), leading to a decrease in the Curie temperature.
JETP LETTERS      Vol. 77      No. 10      2003
Using the calculated distribution functions Fp, one
can evaluate the integral on the right-hand side of
Eq. (4) and find its solution for different values of mag-
netization j and temperature. The temperature depen-

Fig. 1. Local-magnetic-field distribution functions
Fp(1; H0) over the sites of a body-centered cubic Ising-
dipole lattice for dipoles of the same sign (j = 1) and various
fractions p of randomly occupied sites.

Fig. 2. Extrapolation method for determining the percola-
tion threshold. Points are for the results of numerical calcu-
lations, and the dashed line represents the linear depen-
dence Ω(p) ∝  (pc1 – p) (pc1 = 0.55).
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dences of magnetization determined for two p values,
one of which (p = 0.9 > pc1) corresponds to the ferro-
magnetic phase and the other (p = 0.5 < pc1), to the glass
phase, are shown in Fig. 4.

The width of the temperature range (0 < Θ < ΘC)
where the random system of interest possesses sponta-
neous magnetization j > 0 decreases with decreasing p,
and the system becomes paramagnetic in its ground

Fig. 3. Local-magnetic-field distribution functions
F0.9(j, H0) over the sites of a random (p = 0.9) body-cen-
tered cubic Ising-dipole lattice for dipoles of different sign.

Fig. 4. Temperature dependences of the magnetization of
random (p = 0.9, 0.5) body-centered cubic Ising-dipole lat-
tices. The dashed lines indicate the corresponding Curie
temperatures calculated by Eq. (8).
state at dipole concentrations smaller than a certain crit-
ical value (p < pc2; see below).

To describe the properties of the paramagnetic sys-
tem in an external magnetic field He, one can again use
the mean-field Eq. (4) with the replacement H3 
He + H3 in the argument of tanh, following which this
equation takes the form

(5)

As before, of greatest interest is the low-field mag-
netic susceptibility χ = , for which one

obtains from Eq. (5)

(6)

where

(7)

Analysis of the calculated distribution functions
Fp(j; H3) showed that J2 ! J1; this greatly simplifies
Eq. (6) for the susceptibility and the Curie temperature
of the system. The Curie temperature is found from the
condition that the denominator in Eq. (6) turn to zero;
i.e., it is the root of the equation

(8)

j
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3
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Fig. 5. Concentration dependence of the Curie temperature
of a random body-centered cubic Ising-dipole lattice.
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The concentration dependence of the reduced Curie
temperature ΘC(p) calculated by Eq. (8) is shown in
Fig. 5. It fits well the power law ΘC ∝  (p – pc2)1/2, where
pc2 = 0.35. The value ΘC ≈ 3 found for the maximal
Curie temperature for p = 1 corresponds to the charac-
teristic dipole-dipole interaction energy kTC ~ m2n (for
LiHoF4, m ≈ 13µB and n ≈ 1.4 × 1022 cm–3 [5], which
gives TC ~ 1 K, in agreement with the experiment).

These results can be used to construct the magnetic
phase diagram for the random system considered
(Fig. 6). In this diagram, the regions of ferromagnetic,
glass, and paramagnetic states are plotted in the coordi-
nates “dipole concentration–temperature.”

To what degree this diagram is correct in describing
the magnetic behavior of the systems of interest, one
need only compare it with the experimental data on the
properties of the LiHoxY1 – xF4 compound. The experi-
mental magnetic phase diagram for LiHoxY1 – xF4 (inset
in Fig. 6) closely resembles the diagram obtained in this
work. One can thus believe that the magnetic properties
of LiHoxY1 – xF4 can be adequately described by the
model of a random Ising-dipole lattice considered in
this work.

The temperature dependence of the susceptibility in
the paramagnetic phase is given by Eq. (6). The corre-
sponding χ(T) curves shown in Fig. 7 indicate that the
temperature behavior of the susceptibility at Θ @ ΘC

obeys the Curie law. However, the susceptibility of a
system with nonzero ground-state magnetization does
not fit the standard linear law χ–1 ∝  (T – TC); as T 
TC, it increases more slowly because of the “destruc-
tive” effect of configurational disorder.

CONCLUSIONS

For random systems with magnetic interactions, the
mean-field theory requires generalization and the tak-
ing into account the nonequivalence of individual mag-
netic moments, because their surroundings are different
(random). As the fraction p of the sites occupied by
dipoles decreases in a configurationally disordered
three-dimensional Ising point-dipole lattice, the system
undergoes a percolation transition from the ferromag-
netic state to the glass state and then to the paramag-
netic state. In contrast to the percolation phase transi-
tion in a system with short-range exchange interactions,
our system provides an example of long-range percola-
tion. The percolation thresholds for these two cases are
substantially different.

All of the results of this work were obtained within
the framework of a modified mean-field theory, which,
like the traditional approximation, disregards spin cor-
relations. In a system with long-range interactions, to
which the three-dimensional dipole–dipole interaction
belongs, only long-range correlations are possible. The
latter can be taken into account using the Ginzburg–
Landau (GL) theory. As known [7], the GL theory
JETP LETTERS      Vol. 77      No. 10      2003
brings about results that differ from the mean-field
results only in the temperature range near the critical
temperature and which change only slightly the mean-
field TC value and, hence, the magnetic phase diagram
obtained in this work. One of the possible manifesta-
tions of spin correlations is that, in certain local config-
urations, the moments of some dipoles are in opposi-
tion to the magnetization of the system (i.e., j0 < 1 even
at pc1 < p < 1). The magnetization of the system differs

Fig. 6. Magnetic phase diagram of a random body-centered
Ising-dipole lattice (FM = ferromagnet, SG = spin glass,
PM = paramagnet). Inset: experimental magnetic phase dia-
gram of the LiHoxY1 – xF4 compound.

Fig. 7. Temperature dependences of low-field magnetic sus-
ceptibility in the paramagnetic state of random (p = 0.99,
0.5, 0.2) body-centered Ising-dipole lattices. The vertical
dashed lines indicate the corresponding Curie temperatures
calculated by Eq. (8). Inset: the same for the reciprocal of
magnetic susceptibility; the inclined dashed straight lines
are the extrapolations of the linear high-temperature curves
χ–1 ∝  (Θ – ΘC).
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from unity if the distribution function Fp(1; H0) is non-
zero in the region of large negative magnetic fields.
Numerical calculations could have provided the answer
to the question of how much this function is different
from zero and how fast it decreases in this region. How-
ever, any numerical calculation based on exhausting a
finite number of random realizations cannot give an
answer to the question about the degree of penetration
of the distribution function Fp(1; H0) into the region of
large negative fields. It is seen only that this degree is
exceedingly small, because the functions Fp(1; H0)
resemble Gaussian functions (Figs. 2, 4), for which the
system magnetization is close to unity with exponential
accuracy.

This work was supported by the Russian Foundation
for Basic Research, project no. 03-02-17029.
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For high-mobility two-dimensional electrons at a GaAs/AlGaAs heterojunction, we have studied, both experi-
mentally and theoretically, the recently discovered giant magnetoresistance oscillations with nearly zero resis-
tance in the oscillation minima which appear under microwave radiation. We have proposed a model based on
nonequilibrium occupation of Landau levels caused by radiation which describes the oscillation picture. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 73.40.-c; 73.43.Qt; 75.47.De
Recent observations in high-quality two-dimen-
sional electron systems of microwave-stimulated giant
magnetoresistance oscillations (MSGMO) [1, 2] with
positions corresponding to subharmonics of the cyclo-
tron resonance [3] and especially the discovery of zero-
resistance states in the MSGMO minima [4, 5] attract
great attention to this spectacular phenomenon [6–14].
Observation of zero-resistance states was a reason to
assume [4, 5] their collective origin, such as photon-
stimulated superconductivity [4]. An alternative
approach to the explanation of zero-resistance states is
based on the peculiarities of electron motion in crossed
electric and magnetic fields, when electron drift along
an electric field can occur only as a result of scattering
events. In recent preprint [7], it has been demonstrated
that MSGMO with negative magnetoresistance in min-
ima can result from transitions between broadened
Landau levels caused by photon absorption and accom-
panied by elastic scattering on short-range scatterers. A
similar effect was shown rather long ago [15] to give a
sequence of photocurrent peaks of different signs for
unbroadened Landau levels and nonlinear conditions
with respect to an electric field. For bulk semiconduc-
tors and quantizing magnetic fields, photocurrent oscil-
lations with negative conductivity in minima were pre-
dicted in [16] for δ-type photoelectron energy distribu-
tion function. A link between states with negative
dissipative conductivity and the zero-resistance states
was proposed in [8] (see also [11]). It implies that neg-
ative dissipative resistivity gives rise to instability in a
system which finally breaks its symmetry and produces
inhomogeneous states with nearly zero average resis-
tance. This result allows one to associate theoretical
states with negative dissipative resistivity and the
experimental zero-resistance states. The inhomoge-

¶ This article was submitted by the author in English.
0021-3640/03/7710- $24.00 © 20577
neous states are characterized by high local current
density even at zero net current through a sample. One
more approach to the explanation of MSGMO based on
edge magnetoplasma instability was considered in pre-
print [13].

In this paper, we reproduce previous experimental
observations [1, 2, 4, 5] of MSGMO with some addi-
tional data and compare them with our calculations,
based on the results of the self-consistent Born approx-
imation (SCBA), which are capable of explaining the
main features of MSGMO in terms of nonequilibrium
occupation of broadened Landau levels under micro-
wave radiation. Additionally, our model predicts the
appearance of the second harmonic in Shubnikov–de
Haas oscillations for an appropriate choice of micro-
wave frequency and sample parameters.

We have measured a Hall bar sample with an
L-shaped conducting channel. Channel width was
equal to 0.2 mm, and the distances between neighbor-
ing potential probes were either 0.4 or 0.6 mm. Magne-
toresistance per square Rxx and Hall resistance Rxy have
been measured by the standard technique exploiting the
low-frequency AC current excitation and phase-sensi-
tive detection of a voltage between potential probes
with the use of a lock-in amplifier. We used the fre-
quency 9.2 Hz and amplitude of the current 1 µA, well
within the ohmic regime. The results for Rxx and Rxy

presented in this paper do not depend on pairs of poten-
tial probes used for measurements. The sample was
produced from a GaAs/AlGaAs wafer of the standard
structure containing a two-dimensional electron system
at a single remotely doped GaAs/AlGaAs heterojunc-
tion with the spacer width about 55 nm. The most pro-
nounced MSGMO were observed after illumination of
the sample until saturation of electron density at about
ns = 3 × 1011 cm–2. The corresponding mobility of elec-
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trons was µ = 7 × 106 cm2/(V s). The sample was placed
in a close ended rectangular waveguide of the WR-62
type with cross-section 16 × 8 mm, which was placed
in a 3He refrigerator. The two arms of the L-shaped
sample were parallel to the long and the short sides of
the rectangular. The microwave radiation in the fre-
quency range 10–170 GHz was produced by a set of
oscillators. The microwave power reaching the low-
temperature end of the waveguide was estimated to be
always below 2 mW. At frequencies greater than
50 GHz, the transmission coefficient between oscillator
output and the low-temperature part of the waveguide
was rather low, falling down to values on the order of
0.01.

Typical experimental data are shown in Fig. 1. In the
absence of microwave radiation, magnetoresistance Rxx

demonstrates at H ≥ 0.15 T standard Shubnikov–de
Haas oscillations periodic in the inverse magnetic field
with the period determined by the areal density of elec-
trons ns in a two-dimensional system. Corresponding
oscillations in Rxy become visible only at magnetic
fields higher than 0.4 T. Microwave radiation sup-

Fig. 1. Magnetoresistance Rxx Hall resistance Rxy measured

with excitation current I~ = 1 µA versus magnetic field H in
the absence of microwave radiation (dotted lines) and under
microwave radiation (dashed and solid lines). Data in
(a) and (b) were measured at frequencies 168 and 30 GHz,
respectively, at temperature T = 0.4 K. Power P shown in
Figs. corresponds to the oscillator output. Positions of
magnetic fields corresponding to subharmonics of the
cyclotron resonance are marked in (a) by diamonds. ns =

2.84 × 1011 cm–2.
presses Shubnikov–de Haas oscillations at low mag-
netic fields and gives rise to new oscillations (micro-
wave stimulated giant magnetoresistance oscillations)
also periodic in the inverse magnetic field with the
period determined by microwave frequency (compare
Fig. 1a and 1b). Positions of MSGMO follow those of

subharmonics of the cyclotron resonance ω = k  ≡
k(eH(k)/m*c). Here, m* = 0.067me is the effective mass
of electrons in GaAs. The main minima and maxima of
MSGMO are shifted to different sides from the corre-
sponding subharmonic. Additional weaker oscillation
arises at comparatively low-frequency and high-power
radiation at ω < ωc and can be associated with the
cyclotron resonance harmonic ω < ωc/2 (see Fig. 1b). In
the main MSGMO minima, the magnetoresistance can
become rather close to zero (see also [4, 5]). MSGMO
peaks have a characteristic asymmetric triangular form
with a steep drop at the low-magnetic-field side. At the
same time, the microwave radiation has practically no
effect on the Hall resistance (in Fig. 1a the solid Rxy

curve measured in the presence of the microwaves is
practically indistinguishable from the “dark” dotted
curve).

Our calculations of magnetoconductivity tensor
components σxx and σxy are based on formulas obtained
within the self-consistent Born approximation in the
absence of Landau level mixing (see [17] and refer-
ences therein):

(1)

(2)

(3)

Here, D(e) is the density of states and en = "ωc(n + 1/2)
is the energy of the nth spin-degenerate Landau level
with the width Γn and the total number of states on the
level N0 = 2eH/hc. Contributions of this level to σxx and

σxy are characterized by the parameters  and ,
respectively. Our modification of the equations of [17]
is the use of nonequilibrium distribution function f(e),
which is formed, at zero temperature, as a result of
direct one-photon transitions (induced and spontane-
ous), i.e., transitions accompanied by the energy
change by "ω and the nearly zero momentum variation
equal to the photon momentum. We neglect all other
excitation and relaxation processes. Such a function
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can arise if the lifetime of a photoexcited electron is the
shortest time in the problem. This condition is normally
justified if the energy of this electron is less than the
energy of optical phonon (see, for example, [18]),
which is fulfilled in our experiment. As can be shown,
the distribution function obtained under these condi-
tions is appropriate for calculations of the magnetocon-
ductivity in accordance with Eqs. (2) and (3).

At zero temperature, it is easy to write down the
condition of the steady state which relates values of the
distribution function f(e) at energies differing by "ω:

(4)

Here, the parameter λ characterizes microwave inten-
sity. This relation is applicable at nonzero densities of
states D(e) and D(e – "ω). If D(e) = 0 or D(e – "ω) = 0,
we set f(e) = f0(e), where f0 is the Fermi distribution

function at T = 0. Eq. (4) and condition D(e)de =

ns define the nonequilibrium distribution function that
was used for calculations of the conductivity. Figure 2
demonstrates that, in some ranges of energy, photon-
stimulated interlevel transitions can give rise to an
inverted population of electron states (df/de > 0) lead-
ing to negative contributions to the conductivity σxx.
The inversion is possible only when ω > ωc. The
inverted occupation shown in the right panel of Fig. 2 is
obviously independent of the position of the Fermi
energy on the lower level, i.e., of the filling factor of
Landau levels. Our computation shows (see Fig. 3) that
the appearance of energy regions with inverted popula-
tion of broadened Landau levels can lead to the nega-
tive sign of σxx and, consequently, to the negative mag-

netoresistance Rxx = σxx/(  + ). We have consid-
ered two limiting cases of the short- and long-range
scatterers when analytical formulas are available for

dependences of the parameters Γn, , and  on n
and magnetic field [17]. For the short-range (long-
range) scatterers there is only one (two) independent
parameter (s). Figure 3 shows the results of our calcu-
lations. To get data corresponding to the absence of
radiation, we have set the parameter λ to the very low
value λ = 1 × 10–10. The results obtained under radiation
provide MSGMO with both the form of the oscillations
and their positions, in reasonable agreement with the
experiment (namely, the minimum (maximum) associ-

ated with a particular subharmonic lies at ω > k

(ω < k ). The main difference from the experiment
is the fact that the calculated magnetoresistance in the
MSGMO minima is negative. Elimination of this dis-
crepancy lies beyond our model, which is applicable for
macroscopically homogeneous systems, and could be
referred to the results of [8]. Additionally, there are at
least two more mechanisms leading to suppression of
the negative conductivity, which are finite temperature
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Fig. 2. Schematic of the electron redistributions between
two neighboring broadened Landau levels, which are
caused by microwave radiation of two frequencies ω1 < ωc
(left panel) and ω2 > ωc (right panel). Partly occupied states
are shaded. The lowest level contains the Fermi energy eF at
zero temperature. Assumptions concerning relaxation pro-
cesses are discussed in the text.

Fig. 3. Calculated magnetoresistance Rxx and Hall resis-
tance Rxy versus ratio ωc/ω proportional to magnetic field
for two very different intensities of microwave radiation,
characterizing by parameter λ = 1 × 10–10 (dotted line) and
λ = 2 (solid line). The solid and dotted Rxy lines overlap,
(a) and (b)—correspond to two limiting cases of the scat-
terer range, different values of the microwave frequency,
and different values of Landau level width (corresponding
parameters are shown in the figure).
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and all kinds of relaxation processes. These arguments
show that the calculated regions of negative magnetore-
sistance can be associated with the experimental min-

ima of MSGMO. For ω = k , our model predicts the
absence of the photoresponse in magnetoresistance.
But this is valid only for the two limiting cases of short-
range and long-range scatterers, when the width of a
Landau level Γn is independent of a level number n
[17]. For the intermediate-range scatterers, points
where Rxx|P = 0 = Rxx|P ≠ 0 should depend on the radiation
power P and be shifted from the positions of the subhar-
monics, which is consistent with our experimental data,
where these points always appear at lower magnetic
fields than the corresponding subharmonics. Additional
shift of these points can result from relaxation pro-
cesses.

It is necessary to discuss the role of different
unknown parameters that enter our model. Absolute

values of Γn, , , and λ affect only amplitude and
the detailed form of the Shubnikov–de Haas oscilla-
tions and MSGMO. Neither of these parameters influ-
ences the positions of the oscillations. Explanation of
the experimentally established absence of the photore-
sponse in the Hall resistance is closely related to the

absolute values of parameters Γn, , and . Within
SCBA this result appears rather natural for the case of
long-range scatterers (in Fig. 3a the solid and dotted Rxy

lines overlap) and needs very narrow Landau levels in
the other limiting case. A problem arises with the abso-
lute values of the magnetoresistance even in the
absence of microwaves (see also the results of [7]
obtained within SCBA for short-range scatterers). In
comparison with experiment, SCBA gives either too
high or too low values of magnetoresistance for two
limiting cases of short-range and long-range scatterers,
respectively. But it seems to be possible to get reason-
able absolute values of the magnetoresistance together
with the absence of the photoresponse in the Hall resis-
tance for intermediate-range scatterers. Comparison of
the lower limit for the range of potential fluctuations,
given by the spacer width, with the cyclotron radius in
magnetic fields involved shows that, in our experimen-
tal conditions, intermediate-range scatterers are of
great importance.

An important aspect of the experimental results is
the existence of MSGMO in very weak magnetic fields,
where Shubnikov–de Haas oscillations are not
observed. Obviously, the appearance of MSGMO
proves the existence of the Landau quantization in cor-
responding magnetic fields. We explain the absence of
the Shubnikov–de Haas oscillations in these fields by
inhomogeneous broadening of the oscillations picture
caused by long-range carrier density fluctuations in a
sample. MSGMOs are much less affected by this
broadening because of the larger period of these oscil-
lations measured in the filling factors of Landau levels.

ωc
k( )

Γn
xx Γn

xy

Γn
xx Γn

xy
Inhomogeneous broadening is not included in our
model, and Shubnikov–de Haas oscillations and
MSGMO coexist at the same magnetic fields.

It is interesting to note that, in addition to MSGMO,
the results of our calculations describe some additional
features of the experimental data. In the case of com-
paratively narrow Landau levels, the Shubnikov–de
Haas oscillations are only slightly modified by micro-
wave radiation at ω & ωc and in between the k = 1 min-
imum and k = 2 maximum of MSGMO (compare
Figs. 1a and 3a). At rather wide Landau levels, experi-
mentally realized at weaker magnetic fields, our model
describes strong suppression of the magnetoresistance
at ω ! ωc in very good agreement with our observa-
tions (compare Figs. 1b and 3b) and leads to the appear-
ance of additional minima related to the ω = ωc/2 har-
monic (shown by arrow in Fig. 3b). Note that the latter
effect appears in our model without two-photon pro-
cesses. Our model predicts that, for the appropriate
choice of Landau level width and microwave frequency
and power, a great second harmonic can appear in the
Shubnikov–de Haas oscillation picture (in Fig. 3b it
occurs at ωc/ω > 2.5).

In summary, we have shown that the experimentally
measured photoresponse of two-dimensional electrons
on microwave radiation, including MSGMO, is consis-
tent with our theory considering conventional magne-
totransport effects under conditions of nonequilibrium
occupation of electronic states.
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Anomalously intense dispersion was observed in the magnetic resonance signals of manganese clusters in the
chalcopyrite crystal ZnGeP2:Mn with a high concentration of manganese. The EPR signals detected corre-
sponded to two types of isolated manganese ions. One of these apparently possesses acceptor properties, which
makes manganese a self-contained impurity for the formation of a ferromagnetic state in accordance with recent
theoretical predictions. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 76.30.Da; 75.30.-m; 75.50.Pp
Electron charge and spin are the basis of modern
information technology; however, charge and spin
properties are used in different materials: semiconduc-
tors (Si, GaAs) and ferromagnets, respectively. It is nat-
ural to suggest that the use of electron charge and spin
properties in the same material holds the greatest prom-
ise. In this case, inasmuch as the electronic properties
(conductivity) are controlled by doping donor or accep-
tor impurities, the magnetic properties can be changed
by introducing magnetic impurities; in other words, the
solution of the problem resides in the creation of a new
class of materials, namely, magnetic semiconductors.
Originally, it seemed that compounds of the II–VI type
were the most suitable semiconductors. These com-
pounds can readily be doped with magnetic ions, for
example, manganese, in high concentrations, because
manganese readily replaces a cation, for example, zinc.
However, it is difficult to control n and p types of con-
ductivity in such materials. At the same time, com-
pounds of the III–V type are difficult to dope with Mn
ions in sufficient concentrations because of the low sol-
ubility of these elements. The development of methods
for doping such compounds with the use of molecular-
beam epitaxy (MBE) is one of the ways for solving this
problem [1]; however, the use of ternary compounds of
the chalcopyrite type (for example, ZnGeP2) is also
promising. On the one hand, these compounds are ana-
logues of III–V compounds, on the other hand, manga-
nese can replace zinc in a natural way. In this case, high
concentrations of manganese can be obtained under
equilibrium conditions, in contrast to oversaturated
solutions of III–V (Mn) compounds obtained by MBE.
It should be noted that, at one time the use of ternary
compounds (for example, yttrium–aluminum garnets)
0021-3640/03/7710- $24.00 © 20582
instead of binary ones (sapphire) solved the problem of
introducing high concentrations of rare-earth element
impurities into crystals for creating lasers based on
them.

Electron paramagnetic resonance (EPR) is one of
the most direct methods for studying magnetic impurity
ions. A number of papers have been published in which
manganese was studied by the EPR method in III–V
crystals [2–4] and in a number of chalcopyrites [5, 6].
In all the materials, except for GaAs, the EPR spectra
of only Mn2+ ions were observed. Signals of the Mn2+–
hole complex were detected in the GaAs crystal along
with Mn2+ spectra. The hole occupied a delocalized
orbital centered at the Mn2+ ion [2, 3]; that is, Mn2+ is a
negatively charged acceptor A–(3d5).

In recent years, a number of works have appeared in
which the observation of magnetic ordering (ferromag-
netism) at room temperature is reported for chalcopy-
rite films doped with manganese in high concentrations
[7–9], in particular, in (Zn,Mn)GeP2 films grown on
single crystal ZnGeP2 substrates [8, 9]. Recently, ferro-
magnetism at room temperature has been observed in
bulk (Zn,Mn)GeP2 materials [10]. Studies of magnetic
resonance in the (Zn,Mn)GeP2/ZnGeP2 system are pre-
sented in [11]. EPR signals of isolated Mn2+ ions
replacing zinc were detected in the ZnGeP2 substrate.
In this case, in the process of manufacturing the mag-
netic film, manganese diffused into the substrate con-
taining, according to the EPR data [11], a high concen-
tration of zinc vacancies. It was also suggested that
more than one type of manganese centers are contained
in the substrate. The occurrence of two types of manga-
nese in (Zn,Mn)GeP2 is a principal problem, because,
003 MAIK “Nauka/Interperiodica”
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according to the new theory [12], manganese can
replace germanium and create holes, which just leads to
ferromagnetism in these compounds. Thus, searching
for EPR signals of manganese replacing germanium is
an urgent problem. The goal of this work is to perform
studies of bulk ZnGeP2:Mn crystals containing high
concentrations of magnesium (~2%) using magnetic
resonance techniques.

The experiments were carried out on a commercial
EPR spectrometer (Jeol) at a frequency of 9.3 GHz
(X-range) with the use of a laboratory-made flow
helium cryostat, which allowed the temperature to be
varied in the range of 4–300 K. All EPR spectra pre-
sented in the figures were recorded without accumula-
tion as a result of one sweep.

Several types of magnetic resonance signals were
detected in ZnGeP2:Mn (~2%) crystals. Part of the sig-
nals represented EPR absorption spectra of isolated
manganese ions. These signals were characterized by
the conventional hyperfine (HF) structure in the form of
a sextet of lines due to the HF interaction of unpaired
electrons with the nuclear magnetic moment of manga-
nese I = 5/2; the signals were observed without signifi-
cant changes throughout the entire range of tempera-
tures at which the studies were performed (4–300 K). A
signal in the form of a broad (~30 mT) unresolved line
was also observed. This signal significantly differed
from the conventional EPR signal, because it was char-
acterized by anomalously intense dispersion.

Figure 1 presents EPR spectra of the
(Zn,Mn)GeP2/ZnGeP2 structure (curves 1a and 1b) and
the ZnGeP2:Mn crystal containing ~2% Mn (curve 2).
EPR spectra 1a and 1b were measured at a temperature
of 4.2 K in the ZnGeP2 substrate of the structure
(because of the small thickness of the (Zn,Mn)GeP2
film, EPR spectra cannot be observed in it) in orienta-
tions close to B || c (five groups of fine-structure lines
corresponding to transitions MS = 1/2  MS = –1/2,
MS = ±3/2  MS = ±1/2, and MS = ±5/2  MS =
±3/2 are shown only for the B || c orientation; see [11])
and B ⊥  c, respectively. Spectrum 2 was measured in
the ZnGeP2:Mn crystal (~2%) at a temperature of 30 K.
EPR signals 1a and 1b belong to isolated Mn2+ ions

replacing zinc ions ( ), and the broad unresolved
line in the form of absorption belongs to saturated EPR
signals of zinc vacancies (a low temperature of 4.2 K
was used precisely for the saturation of this line over-
lapping with the Mn2+ signals, and the EPR signal of
zinc vacancies was used for the detection of the crystal
orientation).

Six virtually equidistant narrow lines are observed
in the spectrum in Fig. 1, curve 2. These lines are of
approximately the same intensity, and an additional five
pairs of lines are seen between them. This EPR signal
(we designate it as Mn(I)) is typical of the central tran-
sition MS = 1/2  MS = –1/2 for Mn2+ ions (S = 5/2),

          

MnZn
2+
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where the lines arranged between the six main transi-
tions correspond to forbidden transitions ∆MS = 1,
∆mI = ±1. Additional lines of lower intensity are seen in
spectrum 2 (also shown with 15× magnification). These
lines are arranged symmetrically about the central line
and represent the fine structure of isolated manganese
centers (spectrum 2 was recorded for the orientation
with the largest splitting of this fine structure). Appar-
ently, the fine-structure lines do not belong to Mn(I)
centers because of the large difference in intensities;
therefore, we designate them as Mn(II). The narrow

Fig. 1. EPR spectra of (1a, 1b) the (Zn,Mn)GeP2/ZnGeP2
structure and (2) the ZnGeP2:Mn crystal containing ~2%
Mn. EPR spectra 1a and 1b were measured in the ZnGeP2
substrate of the structure at a temperature of 4.2 K for ori-
entations close to B || c (five fine-structure-line groups are
shown only for the B || c orientation); spectrum 2 was mea-
sured in the ZnGeP2:Mn crystal (~2%) at a temperature of
30 K for the orientation of the magnetic field corresponding
to the maximum splitting of the fine structure assigned to
the Mn(II) spectrum. The low-field and high-field parts of
signal 2 are shown separately with 15× magnification. The
sextet of lines of the HF structure with forbidden transitions
between them is assigned to Mn(I) centers. The narrow line
in curves 1a and 1b with g = 2.00237 designated by a rhom-
bus belongs to quartz, and narrow lines designated by stars
in spectrum 2 belong to boundary lines in the EPR spectrum
of Mn2+ ions in MgO, which we used as a reference.
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line with g = 2.00237 designated by a rhombus belongs
to quartz, and narrow lines designated by stars belong
to boundary lines in the EPR spectrum of Mn2+ ions in
MgO. These lines were used as reference signals.

Orientation dependences of the EPR signals in the
ZnGeP2:Mn crystal (~2%) recorded at 4.2 K are shown
in Fig. 2. A fine structure is seen in the spectrum (shown
below for an angle of 0° as four sextets). Its distinctive
feature is a strong broadening and, as a consequence, a
sharp decrease in the intensity of these lines upon devi-
ation from the orientation with maximum splitting.
This behavior can be observed in the presence of a cer-
tain defect in the nearest environment of manganese
(for example, a hole center), which causes symmetry
lowering and reduces strain in the vicinity of the Mn ion
(deviation from the axial symmetry). In this case, a

Fig. 2. Orientation dependences of the EPR signals
observed in the ZnGeP2:Mn crystal (~2%) recorded at
4.2 K. The orientation at which the fine structure splitting is
a maximum and the line width is a minimum corresponds to
0°. The sextet of lines above is designated as Mn(I), and its
position insignificantly varies with orientation. At the bot-
tom, the four groups of six lines correspond to the position
of the fine structure lines for an angle of 0°. Their corre-
spondence to the Mn(I) center or a center with S = 2 is dis-
cussed in the text.
               

defect can be located at several positions with respect to
the manganese ion. The fine structure is characterized
in the standard designations [13] by the spin Hamilto-
nian parameters 

 

D

 

 (axial symmetry) and 

 

E 

 

(deviation
from the axial symmetry). The sharp broadening of the
lines upon variation of the angle proves that an angle of
0

 

°

 

 approximately corresponds to the magnetic-field
direction along the symmetry axis of the manganese
center. Only for this orientation does parameter 

 

E

 

 make
no contribution to the position of the EPR line. This
contribution increases with increasing angle and
reaches a maximum at an angle of 90

 

°

 

. The greatest
effect is observed for the outer groups of the fine struc-
ture; therefore, the signal is hardly seen at angles
exceeding ~40

 

°

 

 and the outer lines are broadened more
rapidly. Exchange interactions between manganese
ions can also make a certain contribution to the broad-
ening of fine-structure lines. In addition, relatively
intense EPR signals were detected as a group of six
lines of the manganese HF structure in the region of
fields of 150–160 mT (

 

g

 

 ~ 4), which, probably, corre-
spond to the transitions forbidden for Mn(I) centers
with the selection rules 

 

∆

 

M

 

S

 

 = 2, 

 

∆

 

m

 

I

 

 = 0, 

 

±

 

1. Signifi-
cant orientation dependences of the intensity were
observed for these forbidden EPR signals. It was also
found that EPR signals for some orientations exhibited
splitting into a larger number of lines. The EPR spectra
presented in Fig. 2 essentially differ from the conven-

tional signals of ; therefore, we believe that these
spectra belong to isolated manganese ions located at a
different crystal lattice position. Two suggestions can
be made concerning the observed fine structure in
Fig. 2. The first suggestion is that this line is associated
with the central sextet of lines (Mn(I), shown above in
Fig. 2) and belongs to a center with 

 

S

 

 = 5/2, that is, to
an Mn

 

2+

 

 ion, because the appearance of this fine struc-
ture correlates with the disappearance of the lines of the
forbidden transitions and because all the lines are com-
parable in intensity. The hyperfine structure constant of
Mn(I) manganese centers is comparable with the corre-

sponding constant for  (~5.6 mT), which may
point to a high degree of covalence [14]. Thus, the inter-
stitial position of manganese can be excluded from con-
sideration, and it is very likely that manganese occupies
a germanium position in the lattice. According to the
second suggestion, the fine-structure lines observed in
Fig. 2 can be considered separately from the central
sextet of lines if it is assumed that the fine structure for
Mn(I) is completely averaged, for example, due to
strong exchange interactions. Then, the fine structure in
Fig. 2 in the form of four mutually overlapping groups
of lines by six lines in each group may belong to Mn

 

3+

 

centers with a spin 

 

S

 

 = 2, which also confirms the ger-
manium position of manganese.

The charge and spin state of Mn(II) centers cannot
be unambiguously determined because of the strong
overlap of their EPR signals with more intense lines of

MnZn
2+

MnZn
2+
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Mn(I) centers. It is important to emphasize that the fine
structures presented in Fig. 1 (curve 2) and Fig. 2 are
observed for different orientations of the magnetic
field; that is, the symmetry axes of these centers do not
coincide. Along with the natural suggestion that these
signals belong to Mn2+ centers, the occurrence of the
state with an integer spin S cannot be excluded, which
excludes the charge state Mn2+ and corresponds to the
state Mn3+ or Mn+. However, additional investigations
with precisely oriented crystals are necessary. The main
challenge of this work was to show that several differ-
ent EPR spectra of isolated manganese ions are
observed in the crystal. The occurrence of twins in the
crystal cannot be excluded, which complicates the
interpretation of the EPR spectra; however, we investi-
gated crystals of different sizes (differing by approxi-
mately an order of magnitude) and observed no signif-
icant difference in the EPR spectra.

Figure 3 presents the magnetic resonance spectrum
for the ZnGeP2:Mn crystal (~2%) measured at a tem-
perature of 25 K by absorption (curve 1) and by disper-
sion (by the change in the microwave frequency at the
instant of resonance) (curve 2). A broad unresolved line
is seen in the spectrum, which overlaps with the signals
of isolated manganese ions shown previously in Fig. 1
(curve 2) and Fig. 2. In the case of conventional mea-
surements by the absorption of the microwave power
(curve 1), these signals are observed as the derivative;
however, the intensity of the broad line was signifi-
cantly lower than that of the EPR signals of isolated
manganese ions. Thus, the signals with broad lines are
characterized by anomalously large dispersion and,
apparently, belong to clusters of manganese ions occu-
pying zinc positions. It is not excluded that the manga-
nese ions are magnetically ordered. The temperature
dependence of the intensity of this signal qualitatively
corresponds to the temperature dependence of magne-
tization observed in [10], where a relatively fast
decrease in magnetization was observed for a close
concentration of manganese (~2%) in the temperature
range of 4–50 K, followed by a smooth decrease in
magnetization up to 300 K.

Thus, it is rather probable that at least two types of
manganese ions differing in their charge state with
respect to the lattice occur in ZnGeP2:Mn (~2%):

(i) , which may be conceived as a neutral A0(3d5)

site, and (ii)  (or ), which corresponds to the
A2–(3d5) (or A–(3d4) state in the lattice and represents a
double acceptor, similarly to the way the Mn2+ state in
GaAs represents a negatively charged A–(3d5) acceptor
[2, 3]. It may be suggested that anomalous orientation
dependences in the EPR spectra associated with MnGe
are due to the occurrence of a defect, possibly a hole,
delocalized in the vicinity of Mn, which is similar to
what takes place in the GaAs:Mn crystal [2, 3]. The
broad line with anomalous dispersion most likely

MnZn
2+

MnGe
2+ MnGe

3+
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belongs to  ions coupled with strong exchange
interactions, because the concentration of these ions is
high. The HF structure is unresolved because of these
interactions. The occurrence of inclusions of the MnP
type, which may be responsible for the broad line in a
way similar to the inclusions of MnAs in GaMnAs
compounds [15], cannot be completely excluded. How-
ever, studies of the photoemission of electrons from
film samples of (Zn,Mn)GeP2 showed the absence of
chemical states typical for the MnP compound.

The results of this work corroborate the theoretical
prediction [12] of the existence of stable defects in the
material. These defects generate holes, which can form
complexes with manganese ions replacing zinc. Hence,
it may be suggested that manganese is a self-contained
impurity for the creation of a ferromagnetic state,
which is in agreement with the theory [12]. At the same
time, the conclusion made by the authors of [10] that
ferromagnetism in chalcopyrites, as distinct from the
GaMnAs system, may not have a hole nature cannot be
considered sufficiently justified in light of the results
presented in this work.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 03-02-
17645; the St. Petersburg Committee on Science and
Higher Educational Institutions (project no. 8V145);
and the program “Physics of Solid-State Nanostruc-
tures.”

MnZn
2+

Fig. 3. EPR spectra of the ZnGeP2:Mn crystal containing
~2% Mn measured at 25 K (1) by absorption and (2) by dis-
persion. The orientation of the crystal approximately corre-
sponds to an angle of 10° in Fig. 2. The meaning of the nar-
row lines designated by the rhombus and stars is the same
as in Fig. 1.
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We study the Josephson junction between two d-wave superconductors, which is discussed as an implementa-
tion of a qubit. We propose an approach to calculate the decoherence time due to an intrinsic dissipative process:
quantum tunneling between the two minima of the double-well potential excites nodal quasiparticles, which
lead to incoherent damping of quantum oscillations. The decoherence is weakest in the mirror junction, where
the contribution of nodal quasiparticles corresponds to the superohmic dissipation and becomes small at small
tunnel splitting of the energy level in the double-well potential. For available experimental data, we estimate
the quality factor. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 85.25.Cp; 03.67.Pp
Among various candidates for physical implemen-
tation of quantum bits, solid-state proposals, and in par-
ticular superconducting devices, have a number of
advantages, e.g., scalability and variability [1]. Particu-
larly interesting are the so-called quiet qubits, which
are intrinsically degenerate, i.e., do not require any
external source for maintaining the degeneracy. Such
qubits can be realized in systems involving d-wave
superconductors [2]. Recently, it was experimentally
demonstrated that a double-well potential is indeed
realized in the Josephson junctions between d-wave
superconductors [3]. The qubit variable in this case is
the phase difference ϕ across the junction. The energy
of the phase qubit has two nontrivial minima as a func-
tion of the phase difference (see Fig. 1). Alternatively, a
quiet flux qubit can be realized if the spontaneous flux
is generated in the loop of d-wave superconductors [4].
The two qubit implementations are quite similar; for
definiteness we shall speak about the phase qubit.

In such intrinsic qubits, there are also intrinsic
mechanisms of decoherence even at low temperatures.
The quantum tunneling of the phase between the two
minima leads to fluctuating voltage across the junction,
which excites quasiparticles. Dissipative current across
the interface arises, leading to a finite decoherence time
τϕ. The knowledge of τϕ is essential for estimating the
efficiency of the qubit: short decoherence time makes
the qubit senseless, while a long enough decoherence
time opens the way for quantum correction algorithms
that in principle allow one to perform an infinitely long
computation [5].

The relevance of quasiparticle processes at low tem-
peratures is specific for d-wave superconductors. In the

¶ This article was submitted by the authors in English.
0021-3640/03/7710- $24.00 © 20587
conventional s-wave case, the quasiparticle transport
below the gap is suppressed. At the same time, in gap-
less anisotropic superconductors, the gap vanishes in
certain directions (the nodal directions); hence, low-
energy quasiparticles appear. In the present letter, we
consider a DID Josephson junction (D = d-wave super-
conductor, I = insulator) and study the decoherence due
to nodal quasiparticles (quasiparticles moving along
the nodal directions).

Decoherence time (general strategy). Theoretical
description of the quantum dynamics of a tunnel junc-
tion between two s-wave superconductors was devel-
oped in [6] (see [7] for a review). The effective action
for the phase difference ϕ was obtained. Later this
description was generalized to the case of d-wave
superconductors in [8, 9]. The effective action for ϕ is

Fig. 1. Schematic dependence of the Josephson energy U on
the phase difference ϕ (in the flux qubit ϕ is substituted by
2πΦ/Φ0, with Φ0 the flux quantum). The barrier of the
height 2EJ separates two nontrivial minima. The splitting of
the lowest energy level due to the tunneling across the bar-
rier is denoted ∆t.
003 MAIK “Nauka/Interperiodica”
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similar to the general case considered by Caldeira and
Leggett [10, 11], who studied the influence of dissipa-
tion on quantum tunneling in macroscopic systems.
The dissipation was described as being due to the inter-
action with a bath of oscillators (the environment). The
“strength” of the environment, depending on the fre-
quency ω, is characterized by the spectral function
J(ω). In the Josephson junction, the environment is rep-
resented by the quasiparticles, and the spectral function
is given by "I("ω/e)/e, where I is the dissipative quasi-
particle current taken at “voltage” "ω/e [6].

A system living in a double-well potential and
described by an extended coordinate can be “truncated”
to the two-state system (spin 1/2) with the two states
(σz = ±1) corresponding to the minima of the potential
(see Fig. 1). The theory of dissipative two-state systems
is thoroughly elaborated [11] for the cases when the
spectral function behaves as J(ω) ∝  ωs up to some high-
frequency cutoff. The situations when s = 1, s > 1, and
0 < s < 1 are called ohmic, superohmic, and subohmic,
respectively. In this language, the dissipation due to
nodal quasiparticles in the Josephson junction is super-
ohmic, as we demonstrate below.

What is the decoherence in such a system? Assume
that during the time t < 0 the system is held in the right
well (i.e., at σz = 1). At t = 0 the constraint is released,
and we consider the expectation value of the system
coordinate: P(t) = 〈σz(t)〉 . Below we shall encounter the
superohmic case at zero temperature. Then [11]

, (1)

where the cosine describes coherent oscillations
between the two wells (∆t is the tunnel splitting of lev-

P t( ) ∆tt/"( ) t/τϕ–( )expcos=

Fig. 2. DID junction of mirror orientation α/–α. An electron
e moving along a truly nodal direction θi of the left super-
conductor tunnels into an induced nodal direction of the
right superconductor. ∆R(θi) ≠ 0, therefore the electron
experiences Andreev reflection; the hole h returns to the
interface and, after reflection at the interface, escapes into
the bulk along the truly nodal direction –θi. In this process,
the total current into the bulk of the right superconductor is
composed of the Cooper pair along θi and the hole along –θi.
els; see Fig. 1) while the exponential leads to their inco-
herent damping.

The decoherence time τϕ is expressed in terms of the
spectral function [11]. Returning from the general the-
ory to the particular case of the Josephson junction, we
write the corresponding result as

(2)

where δϕ is the distance between the potential minima
and Rq = h/2e2 ≈ 13 kΩ is the quantum resistance. Com-
paring the decoherence time with the characteristic
time of oscillations between the wells, "/∆t, we obtain
the quality factor

(3)

which must be large for successful operating of the
qubit.

In the DID junction, the tunnel splitting ∆t is much
smaller than the order parameter ∆; hence, τϕ is deter-
mined by the quasiparticle current at low “voltage.”

Quasiparticle current. Motivated by experiment
[3], we consider the grain-boundary Josephson junction
between two quasi-two-dimensional -wave

superconductors with cylindrical Fermi surfaces. The
orientations of the superconductors are characterized
by the angles between the a axes and the normal to the
interface (the x axis); see Fig. 2. According to [3], we
consider the mirror junction, in which the misorienta-
tion angles on both sides are equal in magnitude but
opposite in sign, α/–α (we take –45° ≤ α ≤ 45° because
all physically different situations in the mirror junction
are realized in this interval). The order parameter
depends on the direction (parametrized by the angle θ)
and the distance to the interface:

(4)

where the indices L and R refer to the left- and right-
hand side of the junction, respectively.

The quasiparticle current in the tunneling limit at
low temperatures, kBT ! "ω, is given by

(5)

τϕ
4e

δϕ2I ∆t/e( )
--------------------------

4π"

δϕ2eRqI ∆t/e( )
------------------------------------,= =

Q
τϕ∆t

2"
----------

2π∆t

δϕ2eRqI ∆t/e( )
------------------------------------,= =

d
x

2
y

2–

∆L R, x θ,( ) ∆̃L R, x( )e
iϕL R, 2 θ α+−( )( ),cos=

I "ω/e( ) 1
eRN

--------- θD θ( ) θcos

D̃
------------------------d

π/2–

π/2

∫=

× Ed

0

"ω

∫ N E "ω– θ,( )N E θ,( ),

D̃ θD θ( ) θ.cosd

π/2–

π/2

∫=
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Here, RN is the normal-state resistance of the interface,
N(E, θ) is the density of states (DoS) at the interface
normalized to the normal-metal value, and D(θ) is the
angle-dependent transparency of the interface. We have
not labeled the DoS by the indices L and R because
NL(E, θ) = NR(E, θ) in the mirror junction.

Below we calculate the nodal contribution to the

current (5) at "ω ! , where  = (±∞) is the bulk
amplitude of the order parameter. The angle integration
contributing to the current is then limited to narrow
angles around the nodal directions, where the low-
energy DoS is nonzero (as we shall see below, the width

of the angles is δθ = "ω/ ).

To calculate the DoS, we employ the quasiclassical
approach. The quasiclassical matrix Green’s function

(6)

obeys the Eilenberger equation [12] and satisfies the

normalization condition  = . It can be parame-
trized as

(7)

Then the normalization condition is automatically sat-
isfied. The equations for the new functions a(x, θ) and
b(x, θ) take the form of the Riccati equations [13]:

(8)

where vF is the absolute value of the Fermi velocity vF

and θ denotes the angle between vF and the x axis.

In the tunneling limit, the DoS is calculated at an
impenetrable interface. Let us consider, e.g., the right
superconductor (the right half-space). We need to find
the low-energy DoS in two cases: (1) in the vicinity of

a nodal direction, so that E, ∆(θ) ! , and (2) at a
gapped direction, so that E ! ∆(θ). In the first case, the
spatial scale ξE = "vFcosθ/  on which the quasi-
classical Green’s functions vary (we denote %± =

) is much larger than the coherence
length ξ = "vF/2πkBTc on which variations of ∆ occur.
This allows us to regard ∆ as constant when integrating
Eqs. (8) over x. In other words, the functions a and b at
low energies do not feel the suppression of ∆ near the
interface, because it takes place on a small scale. In the
second case, the spatially dependent parts of a and b are
proportional to E/∆(θ) ! 1 and hence small. Thus, a
and b at the interface are equal to their bulk values, as
if ∆ was constant.

∆̃0 ∆̃0 ∆̃

∆̃0

Ĝ
g f

f g– 
 
 

=

Ĝ
2

1̂

g
1 ab–
1 ab+
---------------, f

2a
1 ab+
---------------, f

2b
1 ab+
---------------.= = =

"v F θ da/dx( )cos 2iEa– ∆∗ a2 ∆–+ 0,=

"v F θ db/dx( )cos 2iEb ∆b2– ∆∗+ + 0,=

∆̃0

%+

E2 ∆ ∞ θ±,( ) 2–
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Thus, we can regard ∆(x, θ) as equal to the bulk
value ∆0(θ) = ∆(∞, θ). The integration of the functions
a and b over x in Eqs. (8) is stable only in the directions
determined by the sign of cosθ. At cosθ > 0, the func-
tion b(x, θ) is stably integrated from x = ∞ to the inter-
face (x = 0); hence,

(9)

At the same time at cosθ > 0, the function a is stably
integrated from the interface to x = ∞. Therefore, to find
a(0, θ), we consider the trajectory directed along π – θ.
Since cos(π – θ) < 0, the function a is stably integrated
from x = ∞ to the interface. Finally, the direction π – θ
is converted to θ upon reflection at the specular inter-
face:

(10)

As a result, the DoS N = Re g at the interface is

(11)

The gap in the spectrum is Eg(θ) = min(|∆0(θ)|,
|∆0(−θ)|).

The DoS is symmetric, N(θ) = N(–θ), because the
Green’s functions are continuous upon reflection. Thus
in each superconductor there are two “truly” nodal
directions θi (i = 1, 2) in the interval –π/2 < θ < π/2, and
also two “induced” nodal directions –θi. Near a nodal

direction Eg(θ) = 2 |θ – θi |. Along a truly nodal direc-
tion, the gap vanishes and the DoS is the same as in the
normal metal, N(E) = 1. For an “induced” nodal direc-
tion, this is so only near the interface.

In the left superconductor, the truly nodal directions
are θ1, 2 = α ± 45°. Due to the mirror symmetry, the truly
nodal directions of the right superconductor coincide
with the induced nodal directions of the left one, and
vice versa. In total, there are four nodal directions in the
junction, which are symmetric with respect to the inter-
face normal.

In this situation, the transport is due to the processes
of the following type. An electron moving along a truly
nodal direction θi of the left superconductor tunnels
into an induced nodal direction of the right supercon-
ductor (see Fig. 2). However, the electron cannot
escape into the bulk of the right superconductor
because ∆R(θi) ≠ 0. Therefore, the electron experiences
Andreev reflection; the hole returns to the interface and,
after reflection at the interface, escapes into the bulk
along the truly nodal direction –θi. In this process, the
total current into the bulk of the right superconductor is
composed of the Cooper pair along θi and the hole
along –θi, which is overall equivalent to the transfer of
one electron.

b 0 θ,( ) b ∞ θ,( ) i E %+ Esgn–( )/∆0 θ( ).= =

a 0 θ,( ) a 0 π θ–,( ) a ∞ π θ–,( )= =

=  i E %– Esgn–( )/∆0* θ–( ).

N E θ,( ) Re
E %+ %–+( )

E2 ∆0 θ( )∆0* θ–( ) %+%–+–
--------------------------------------------------------------.=

∆̃0
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The nodal contribution to the current (5) appears
only due to integrating in the vicinity of the nodal direc-
tions where Eg < "ω. The DoS near the nodal directions
at small energies can be found from Eq. (11). Below, we
distinguish the general case when ∆0(θ) ≠ ±∆0(–θ), and
two special cases: ∆0(θ) = ∆0(–θ) (at α = 0°) and ∆0(θ) =
–∆0(–θ) (at α = 45°).

At α = 0°, the truly nodal and induced nodal direc-
tions coincide in each superconductor, and Eq. (11)
yields the BCS-like DoS:

(12)

At α = 45°, the truly nodal and induced nodal direc-
tions again coincide, and Eq. (11) yields the DoS of the
inverse BCS type:

(13)

Finally, if |α| @ "ω/  and 45° – |α| @ "ω/  (i.e.,
α is not too close to 0° and ±45°), then ∆0(θ)in the

essential angle of the width δθ = "ω/  around a nodal
direction is much smaller than ∆0(–θ). Then in the
region of energies that contribute to the quasiparticle
current, |∆0(θ)| < |E| < "ω ! |∆0(–θ) |, the DoS is again
given by the inverse BCS formula:

(14)

Figure 3 demonstrates the DoS at different angles θ,
which are parametrized by different ratios
∆0(−θ)/∆0(θ). At ∆0(–θ) = ∆0(θ), the DoS has a BCS-
like square-root singularity near Eg [see Eq. (12)]. At
∆0(–θ) ≠ ∆0(θ), the DoS has the inverse-BCS behavior
near Eg [see Eq. (14)].

N0° E θ,( ) Re E / E2 ∆0 θ( ) 2–( ).=

N45° E θ,( ) Re E2 ∆0 θ( ) 2– / E( ).=

∆̃0 ∆̃0

∆̃0

Ng E θ θi≈,( ) Re E2 ∆0 θ( ) 2– / E( ).=

Fig. 3. Density of states following from Eq. (11). The
energy is normalized to ∆0(θ), while ∆0(–θ) is varied. 
Inserting Eqs. (12)–(14) into Eq. (5), we obtain

(15)

where θ1, 2 = α ± 45° and A is a number that depends on
the orientation of crystals: A(0°) ≈ 0.46, A(45°) ≈ 0.19,
and A(α) ≈ 2A(45°) ≈ 0.37 when α is not too close to 0°
or ±45°.

In [8, 9], the quadratic current–voltage characteris-
tic, I ∝ ω 2, was obtained for the case of aligned nodal
directions (i.e., for the α/α orientation).

Estimate. Equations (3) and (15) yield

(16)

To proceed further, we need to estimate the tunnel
splitting ∆t (see Fig. 1). For the estimate, we assume
that the second harmonic dominates in the energy–
phase relation, U(ϕ) = EJ(1 + cos2ϕ), and the energy of
the levels is small compared to EJ. Then the tunneling
action is calculated between the points ϕ = –π/2 and
π/2, and we obtain

(17)

where EC = e2/2C is the charging energy (C is the capac-
itance of the junction).

To obtain a numerical estimate, we take the charac-
teristics of the junction as in the experiment of Il’ichev
et al. [3]. The capacitance of the junction is C ~ 10–14 F
[14]; hence, EC/kB ~ 0.1 K. The characteristic Joseph-
son energy is on the order of several Kelvin. For an esti-
mate, we take 2EJ/kB = 7 K. The resistance of the inter-
face is RN ~ 50 Ω [14].

As a result, ∆t/kB ~ 2.5 × 10–4 K. Finally, we estimate

δϕ ~ π, /kB ~ 200 K, and assume a thin δ-functional
barrier with D(θ) = D0cos2θ; then the quality factor is
Q ~ 103–104. Here we have retained only the order of
magnitude for Q, because we cannot expect a higher
accuracy in the case when important characteristics of
the junction (e.g., N and EJ) are known only by the
order of magnitude. We also made an essential assump-
tion that the second Josephson harmonic dominates.

The latter assumption can be realized under special
conditions, while in a more common situation the first
and the second harmonics are on the same order. Esti-
mates for this case were made in a recent work [15],
where the characteristics of mesoscopic junctions
between high-Tc superconductors were experimentally
studied and theoretically analyzed. A characteristic
value of ∆t ~ 0.1 K was reported under the conditions
that correspond to RN ~ 100 Ω . Assuming such param-
eters for the mirror junction, we obtain Q ~ 10–102.

I "ω/e( ) A α( )
eRN

----------- "ω( )2

∆̃0

--------------
D θi( ) θicos

D̃
--------------------------,

i 1 2,=

∑=

Q
2π

δϕ2A α( ) D θi( ) θi/D̃cos
i 1 2,=

∑
------------------------------------------------------------------

 
 
 
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Rq

------ ∆̃0

∆t
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The above estimates for Q are very different. At the
same time, a general consequence of Eq. (16) is that the
quality factor grows as the splitting ∆t becomes smaller.
We note in this respect that the values of the critical cur-
rent (and hence the Josephson energy) measured in [3,
15], are much smaller than expected. If the critical cur-
rent is enhanced to the expected value, then ∆t

decreases, which finally leads to an increase in Q.
If α ≠ 0°, the low-energy quasiparticles are repre-

sented not only by the nodal quasiparticles, but also by
the midgap states (MGS) with zero energy [16]. In the
case of specular interface and clean superconductors
considered in this paper, the DoS corresponding to the
MGS is proportional to δ(E); hence, the MGS on the
two sides of the interface do not overlap and do not con-
tribute to the current at a finite voltage.

In the asymmetric case, when αL ≠ ±αR (precisely

speaking, when ||αL | – |αR || > "ω/ ), the nodal direc-
tions of the left and right superconductors do not match
each other. Then the transport from nodal to nodal
direction is suppressed. However, a more important
transport “channel” arises between the nodal directions
and the MGS. This leads to a stronger decoherence than
in the symmetric case.

In the mirror junction, the MGS contribute to the
quasiparticle current if they are split and/or broadened
[17]. To take into account the contribution of the MGS
into decoherence, the present approach should be con-
siderably modified. This issue requires a separate study.

In conclusion, we have proposed an approach that
allows to calculate the decoherence time due to nodal
quasiparticles in the DID junctions, which can be used
as phase or flux qubits. The dissipation in the mirror
junctions is weaker than in the asymmetric ones. We
find the superohmic dissipation with s = 2 in the mirror
junction, which becomes weak at small tunnel splitting
of the energy level in the double-well potential. For
available experimental data, we estimate the quality
factor.

The superohmic case is most favorable (compared
to ohmic and subohmic) for possible qubit applications.
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Anisotropy of Microwave Conductivity in the Superconducting 
and Normal States of YBa2Cu3O7 – x: 3D–2D Crossover
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The imaginary parts of microwave conductivity σ'' (T < Tc) and resistivity ρ(T) = 1/σ(T > Tc) along (  and
ρab) and across (  and ρc) the cuprate ab planes of a YBa2Cu3O7 – x crystal with the oxygen doping level x
varying from 0.07 to 0.47 were measured in the temperature range 5 ≤ T ≤ 200 K. In the superconducting state,
the (T)/ (0) and (T)/ (0) curves coincide for an optimally doped (x = 0.07) crystal, but, with an
increase in x, the slopes of the (T)/ (0) curves decrease noticeably at T < Tc/3, on the background of small
changes happening to the (T)/ (0) curves. The two-dimensional (2D) transport along the ab planes in
the normal state of YBa2Cu3O7 – x is always metallic, but there is a crossover (at x = 0.07) from the Drude to
hopping (at x > 0.07) conductivity along the c axis. This is confirmed both by the estimates of the lowest metal-
lic and the highest tunneling conductivities along the c axis and by quantitative comparison of the measured
ρc(T) curves with the curves calculated in the polaron model of quasiparticle transport along the c axis. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Fy; 74.72.Bk

σab''
σc''

σab'' σab'' σc'' σc''
σc'' σc''

σab'' σab''
In recent years, growing interest has been shown in
the evolution of transport properties of high-tempera-
ture superconductors (HTSCs) upon changing the level
of doping with oxygen and other substitutional impuri-
ties or, in other words, upon changing the hole concen-
trations p per one copper atom in the CuO2 plane. The
p value and the superconducting transition temperature
Tc in HTSC are related by the empirical formula [1] Tc =
Tc, max[1 – 82.6(p – 0.16)2].

A narrow region in the phase diagram of an opti-
mally doped HTSC (p ≈ 0.16) with maximal critical
temperatures Tc = Tc, max has received most attention. In
the normal state of an optimally doped HTSC, the resis-
tivity ρab(T) in the cuprate ab planes increases linearly
with temperature, ∆ρab(T) ∝  T. The quantity ρab(T) is
much smaller than the resistivity ρc(T) in the perpendic-
ular direction, which also has a metallic character (the
derivatives of ρab(T) and ρc(T) with respect to tempera-
ture are positive). The exception is provided by the
most anisotropic HTSC compound Bi-2212 (the corre-
sponding ratio is ρc/ρab ≈ 105 at p ≈ 0.16), for which the
resistivity ρc(T) increases as T approaches Tc

(dρc(T)/dT < 0). This property of Bi-2212 agrees with
the estimate of the lowest possible metallic conductiv-
ity in the c direction for anisotropic three-dimensional
(3D) Fermi-liquid model [2]:

(1)σc min,
3D ρab/ρcne2d2/h,=
0021-3640/03/7710- $24.00 © 20592
where n ≈ 1021 cm–3 is the carrier concentration, d is the
lattice constant along the c axis, and h is Planck’s con-

stant. In Bi-2212, the conductivity σc = 1/ρc !  at
T = Tc, but, in other optimally doped HTSCs, σc(T) >

(Tc). The conductivity σc, min in Eq. (1) is lower
than the two-dimensional Ioffe–Regel limiting value

σIR = e2kF/h: σc, min ≈ σIRd/a ! σIR (a ≈ 2π/kF is
the lattice constant in the CuO2 plane), whereas
σab, min ≈ σIR [2].

The ratio of the superconducting liquid densities in
the cuprate planes and in the perpendicular direction
serves as a measure of HTSC anisotropy in the super-
conducting state. This ratio equals (0)/ (0) =

/ , where  and  are the imaginary
parts of the corresponding conductivities and λab and λc

are the microwave-field penetration depths for the cur-
rents flowing, respectively, in the ab planes and perpen-
dicularly to them. It is well known that, in high-quality
optimally doped HTSC single crystals, ∆λab(T) ∝  T at
T < Tc/3, and this experimental fact suggests a 

symmetry of the order parameter in them [3]. There is
no agreement in the literature about the low-tempera-
ture behavior of ∆λc(T). Both the linear dependence
∆λc(T) ∝  T at T < Tc/3 [4–6] and the quadratic depen-
dence [7] have been observed for the most studied
YBa2Cu3O6.95 (Tc ≈ 93 K) single crystals.

σc min,
3D

σc min,
3D

ρab/ρc

σab'' σc''
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Annealing temperatures, doping parameters, and characteristics of the superconducting and normal states of YBa2Cu3O7 – x

Annealing 
temperature

T, °C

Critical
temperature

Tc, °C

Doping parameters λ values at T = 0 ∆λc(T) ∝  Tα

α
λc/λab

at T = 0 at T = 200 Kp x λab, nm λc, µm

500 92 0.15 0.07 152 1.55 1.0 10 11

520 80 0.12 0.26 170 3.0 1.1 18 18

550 70 0.105 0.33 178 5.2 1.2 29 16

600 57 0.092 0.40 190 6.9 1.3 36 16

720 41 0.078 0.47 198 16.3 1.8 83 35

ρc/ρab
A broad region of pseudogap states arising in the
HTSC phase diagram at concentrations p < 0.16 has
been studied to a much lesser extent. It follows from the
measurements of dynamic susceptibility of oriented
HTSC powders at T < Tc [8] that, at T  0, the slopes
of (T)/ (0) for (T)/ (0). The nonmetallic
behavior of resistivity ρc(T) as T approaches Tc, the
deviations from the linear dependence ∆ρab(T) ∝  T, and
a dramatic increase in the ratio ρc/ρab with decreasing
concentration p are common properties of underdoped
HTSCs in their normal state. Although many theoreti-
cal models have been proposed for the explanation of
these properties, none of them describes in full measure
the evolution of the (T), (T), ρab(T), and ρc(T)
curves over a wide range of concentrations and temper-
atures. The transport mechanism along the c axis has
also not been established, and, in particular, it still
remains unclear whether it can be metallic (of the
Drude type) or whether the conductivity for any p is
caused by the quasiparticle tunneling between the
cuprate layers with scattering both within the layers and
between them.

In this work, the anisotropy and evolution of tem-
perature dependences of the conductivity components
of YBa2Cu3O7 – x with oxygen doping in the range
0.07 ≤ x ≤ 0.47 were measured and the measurement
results were analyzed. The crystal was grown in a
BaZrO3 crucible and had a rectilinear shape with sizes
1.6 × 0.4 × 0.1 mm. Measurements were performed at
a frequency ω/2π = 9.4 GHz and temperatures 5 ≤ T ≤
200 K. The oxygen content in the sample changed
through the controlled annealing in air at different tem-
peratures T ≥ 500°C (listed in the table). Measurements
of the conductivity anisotropy were carried out for each
of the five crystal states, in which the superconducting
transition width, according to the susceptibility mea-
surements at a frequency of 100 kHz, was 0.1 K in the
optimally doped (x = 0.07) state and increased with x to
reach 4 K at x = 0.47. The superconducting transition
temperatures were Tc = 92, 80, 70, 57, and 41 K. The
full cycle of microwave studies included (i) measure-
ments of the temperature dependences of the Q value
and the frequency shift for a superconducting niobium
cavity with crystal samples in two, transverse and lon-

σc'' σc'' σab'' σab''

σab'' σc''
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gitudinal, orientations about the microwave magnetic
field; (ii) determination of the surface resistance Rab(T),
reactance Xab(T), and conductivity σab(T) of the cuprate
planes in the normal and superconducting states from
the measurements in the first orientation; and (iii) deter-
mination of σc(T), Xc(T), and Rc(T) using the data
obtained for the longitudinal orientation. The entire
measurement procedure for the optimally doped
YBa2Cu3O6.95 crystal is described in detail in [6]. The
temperature dependences of the components of surface
impedance of YBa2Cu3O7 – x at different x were reported
in our short communication [9].

The (T)/ (0) (light symbols) and

(T)/ (0) (dark symbols) curves at T ≤ Tc are pre-
sented in Fig. 1 for the YBa2Cu3O7 – x crystal in the
states with Tc = 92, 70, and 41 K. The field penetration
depths λab(0) and λc(0) at T = 0 are also given in the
table. The overall temperature behavior of the

(T)/ (0) curves changes only slightly upon vary-
ing p. A distinctive feature of the optimally doped
YBa2Cu3O6.93 state is that the temperature dependences

(T)/ (0) and (T)/ (0) coincide to a good
accuracy. This fact can be rigorously explained only in
the theory of linear response of an anisotropic 3D
superconductor [8]. As p decreases, the (T)/ (0)
dependence at T < Tc/3 becomes noticeably weaker than

(T)/ (0).

The model proposed in [10] is most suitable for a
comparison with the experimental data of our work. In
this model, the following contributions to the quasipar-
ticle transport along the c axis in the superconducting
and normal HTSC states are considered: (a) direct hop-
ping between the cuprate planes and (b) hopping with
inelastic scattering from impurities located between the
planes. The conductivity within the cuprate planes is
assumed to be of the Drude type:

(2)

σab'' σab''

σc'' σc''

σab'' σab''

σab'' σab'' σc'' σc''
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where ν2D = m/π"2 is the two-dimensional density of

states per unit area and Dab = τ/2, vF, τ, and n2D =

/2π are the diffusion coefficient, Fermi velocity,
relaxation time, and two-dimensional quasiparticle
density in the ab plane, respectively. The total Hamilto-
nian of the electron system in model [10] is the sum

 of the Hamiltonians of individual (m) CuO2

layers and the interplane Hamiltonian H⊥ , which is

assumed to be small compared to . As a result,

the second-order perturbative quasiparticle transport
between the neighboring weakly bonded layers proves
to be analogous to the tunneling through the SIS junc-
tion at T < Tc and through the NIN junction at T > Tc. In
this case, the ab component of electron momentum is
conserved in process (a) (mirror tunneling) and is not
conserved in process (b) (diffuse tunneling) [11].

The calculations of the anisotropy of the supercon-
ducting HTSC state were carried out in [10] using the
BCS model with a d-symmetry order parameter in the
CuO2 layers. The (T)/ (0) curve numerically cal-
culated with allowance for both processes (a) and (b) is
shown in Fig. 1 by the solid line and the same for

(T)/ (0) is shown by the dashed line. A compari-
son with the experimental data obtained at T < Tc/2 for

v F
2

kF
2

Hmm∑
Hmm∑

σc'' σc''

σab'' σab''

Fig. 1. The (T)/ (0) (light symbols) and

(T)/ (0) (dark symbols) measured curves for three

states of a YBa2Cu3O7 – x crystal with Tc = 92, 70, and 41 K.
The solid and dashed lines correspond, respectively, to the

(T)/ (0) and (T)/ (0) dependences calculated

in [10] for oxygen-deficient YBa2Cu3O7 – x.

σab'' σab''

σc'' σc''

σc'' σc'' σab'' σab''
YBa2Cu3O7 – x with an oxygen deficiency x > 0.07

clearly demonstrates that the slopes of the (T)/ (0)
curves strongly decrease with increasing x, while the

(T)/ (0) curves change only slightly. The fact
that the experimental curves at T > Tc/2 are steeper than
the theoretical ones may be caused by the strong elec-
tron–phonon interaction [3], which was not taken into
account in [10]. The dashed line in Fig. 1 coincides also
with the (T)/ (0) curve calculated in [10] for the
case where there is no diffuse tunneling (b) and the
remaining mirror-tunneling regime (a) along the c axis
becomes identical with the transport along c in an
anisotropic 3D superconductor. This exceptional situa-
tion corresponds to the optimally doped YBa2Cu3O6.93.

The real and imaginary parts of the surface imped-
ance measured for the YBa2Cu3O7 – x crystal at T > Tc

coincided with each other; i.e., Rab(T) = Xab(T) and
Rc(T) = Xc(T) for each x from the table [9]. Because of
this, the resistivities ρab(T) and ρc(T) were derived from
Rab(T) and Rc(T) using the standard formulas for the

normal skin effect: ρab(T) = 2 /ωµ0 and ρc(T) =

2 /ωµ0. The evolution of the ρab(T) and ρc(T)
curves with changing x is shown in Fig. 2 for the tem-
perature range Tc < T ≤ 200 K, and the (ρc/ρab)1/2 values
at T = 200 K are given in the last column of the table.
The ρab(T) and ρc(T) dependences have a metallic char-
acter only in optimally doped YBa2Cu3O6.93, and the
ρc/ρab ratio approximately corresponds to the anisot-
ropy of charge-carrier effective masses mc/mab =

/  in a pure 3D London superconductor, to
which YBa2Cu3O6.93 belongs. In all other YBa2Cu3O7 − x

states with a lower hole concentration, the resistivity
ρc(T) increases with temperature decreasing, demon-
strating the nonmetallic behavior. In Fig. 3, the experi-
mental σc(T) dependences are compared with the

 values calculated by Eq. (1) for three states of
the YBa2Cu3O7 – x crystal: Tc = 92 K (dashed line), Tc =
70 K (dotted line), and Tc = 41 K (dot-and-dash line).
Over the entire temperature interval, the YBa2Cu3O6.93

conductivity along c is the only one that exceeds the

minimal metallic value of .

Thus, it is natural to assume that, as in the case of the
superconducting state of YBa2Cu3O7 – x, a small
decrease in the carrier concentration from its optimal
level in the normal state leads to a crossover from the
3D metallic conduction to the 2D Drude conduction in
the CuO2 layers and tunneling conduction between the
layers (3D–2D crossover). To analyze this assumption,
it is convenient to again use model [10]. If t⊥  is the hop-

σc'' σc''

σab'' σab''

σc'' σc''

Rab
2 T( )

Rc
2 T( )
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2 0( ) λab
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σc min,
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ping matrix element, the quasiparticle conductivity
along c in process (a) will be [10–13]

(3)

where 2τ(t⊥ /")2 is the direct-tunneling rate between the
neighboring CuO2 planes and σab is the conductivity
along these planes (Eq. (2)). In this case, the character-
istic hopping time "/t⊥  appreciably exceeds the in-plane
relaxation time τ [11]: "/t⊥  @ τ. In the reverse limit
"/t⊥  ! τ, the conductivity is of the Drude type in all
directions, as in the case of an anisotropic 3D metal.
The crossover occurs when "/t⊥  ≈ τ. At this point, the
tunneling conductivity along c (Eq. (3)) reaches its

maximum  = 2σIR , which is approxi-

σc
dir 2e2τν 2D

t⊥

"
---- 

 
2

4σab

t⊥ d
"v F

---------- 
 

2

,= =

σc max,
dir ρab/ρc

Fig. 2. Evolution of the ρab(T) and ρc(T) dependences mea-
sured for YBa2Cu3O7 – x with differing oxygen content.
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mately equal to the minimal metallic conductivity

 given by Eq. (1). In the case of diffuse quasipar-
ticle tunneling (processes (b)) in model [10], the con-
ductivity along the c axis equals [11, 14]

(4)

where Dc = d2τc is the diffusion coefficient and 1/τc is
the scattering probability between the cuprate planes.

As in the preceding case, we find that  =

σIR  ≈  for τc ≈ τ, and, using Eqs. (2) and
(4), we arrive at the following alternative form of the
criterion for a 3D–2D crossover:

(5)

From Eq. (5) it follows that, at n2D = n/d ≈ 1014 cm–2,
the 3D–2D crossover occurs upon reaching the value
ρcρab ≈ 10–6 (Ω cm)2. Returning to the data in Fig. 2, we
make sure that the product ρcρab & 10–6 (Ω cm)2 only at
x = 0.07, thereby substantiating the applicability of the
anisotropic 3D Fermi-liquid model for explaining the
properties of optimally doped YBa2Cu3O6.93.

Equations (3) and (4) account for the basically dif-
ferent temperature dependences of the conductivity

σc max,
3D

σc
diff e2ν2DDc

d
--------------------

e2ν2Dd
τc

----------------,= =

σc max,
diff

ρab/ρc σc min,
3D

σc max, σab

n2D

π
-------- e2

"
---- 

 
2

.≈

Fig. 3. Symbols correspond to the experimental σc(T)
dependences for three YBa2Cu3O7 – x states with Tc = 92,
70, and 41 K. The dashed, dotted, and dot-and-dash lines

are for the corresponding (T) values obtained from

Eq. (1) using the measured ρab(T) and ρc(T) presented in
Fig. 2. The solid line corresponds to σc(T) calculated for
YBa2Cu3O6.67 by the formulas given in [10].

σc min,
3D
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along the c axis at T ≥ Tc; for the direct tunneling,

(T) ∝ σ ab(T) increases with increasing τ(T) as T

approaches Tc, whereas (T) decreases with increas-
ing τc(T). According to model [10], the total conductiv-
ity σc along the c axis is the sum of conductivities
caused by each of the above-mentioned processes ((a)

and (b)). Near the Tc temperatures,  is mainly due
to the quasiparticle scattering from the impurities
located between the cuprate planes and, hence, is inde-

pendent of T, because the phonon contribution to 
is frozen out. Quite the reverse, the phonon contribution
becomes dominant at T @ Tc. As a result, the tempera-
ture dependence of the conductivity σc(T) takes an
approximate form, A/T + C + BT (A, B, and C are inde-
pendent of T), that does not describe the experimental
data; an example of σc(T) calculated by the formulas
given in [10] is shown by the solid line in Fig. 3 for the
YBa2Cu3O6.67 sample.

However, all ρc(T) dependences shown in Fig. 2 can
be described by the c-transport model that was recently
proposed in [15]. Contrary to [10], where the electron–
phonon effects appeared in the second-order of the per-
turbation theory, the model Hamiltonian [15] includes
them through the canonical transformation [16], after
which the interplane quasiparticle tunneling can be
considered as a perturbation of the originally strongly
coupled electron–phonon system. This approach
applies if eF @ ω0 @ t⊥ , where eF is the Fermi energy
and ω0 is the characteristic phonon energy. Both ine-
qualities are fulfilled for the layered anisotropic
HTSCs, in which, according to [15], an electron mov-
ing in the c direction is enveloped by a large number of

σc
dir

σc
diff

σc
diff

σc
diff

Fig. 4. Comparison of the (symbols) experimental and
(solid lines) calculated (by formula (6)) ρc(T) dependences
for YBa2Cu3O7 – x.
phonons to form polaron [17] that only weakly affects
the transverse ab transport. For the Einstein spectrum
of c-polarized phonons, one has

(6)

where g (g > 1) is the parameter characterizing the elec-
tron–phonon coupling strength. The comparison of the
experimental data (symbols) with the ρc(T) depen-
dences calculated by Eq. (6) (solid lines) is demon-
strated in Fig. 4. In the calculations, the data given for
ρab(T) in Fig. 2 were used. The parameter g was almost
identical (g ≈ 3) for all curves in Fig. 4, and ω0

increased from 110 K (75 cm–1) to 310 K (215 cm–1)
upon decreasing the oxygen content (7 – x) in
YBa2Cu3O7 – x from 6.93 to 6.53. It seems not surpris-
ing that the anomalies of the optical c conductivity were
observed for a YBa2Cu3O7 – x crystal with oxygen defi-
ciency just in the indicated range of frequencies ω0
[18].

In summary, the anisotropy of microwave conduc-
tivity was measured for a YBa2Cu3O7 – x crystal in
which the hole concentration p was varied in the range
0.08 ≤ p ≤ 0.15. An analysis of the temperature depen-
dences of the imaginary parts of the conductivity tensor

 in the superconducting state and the resistivity
 in the normal state indicates that optimally doped

YBa2Cu3O6.93 is a three-dimensional anisotropic metal.
A decrease in the carrier concentration leads to a cross-
over from the Drude-type to hopping conduction along
the c axis. In order to quantitatively describe the evolu-
tion of the  and ρc(T) dependences with changing
p, the effects of strong electron–phonon interaction
must be taken into account.
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