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Analytic expressions in the quasi-static approximation are obtained for the spontaneous decay rates of an atom
placed near the circular aperture of a scanning microscope. The results obtained show not only that the sponta-
neous decay rates increase substantially near the aperture edge but also that the atomic decay appreciably slows
down near the aperture center if the vector of dipole transition moment lies in the aperture plane. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 32.50.+d; 32.30.-r; 07.79.Fc; 68.37.Uv
At present, optical scanning microscopy is actively
used in studying not only nanometer-sized objects but
also single molecules [1–4]. Most recently, experi-
ments aimed at revealing the effect of molecular dipole-
moment orientation on the scanning microscope image
of a molecule have been carried out [5–8]. The geome-
try of such experiments is illustrated in Fig. 1. The
results obtained in the cited works are difficult to inter-
pret, because the theory of light emission and absorp-
tion by a molecule near the scanning microscope tip is
rather complicated. In this work, the problem of spon-
taneous emission rate is considered for an atom placed
near the aperture of a scanning microscope. The atomic
position and the orientation of its dipole moment are
assumed to be arbitrary. The aperture is modeled by a
circular hole with radius a ! λ (λ is the emission wave-
length) in an ideally conducting screen (Fig. 2).

In the case of weak interaction of an atom or mole-
cule with any nanoobject, the spontaneous transition
rate γ can be written as [9, 10]

(1)

where ER(r', r', ω0) describes the reflected field of
dipole d0 at the atomic emission frequency ω0 in atomic
position r' near the nanoobject and can be found from
the solutions to the Maxwell equations with a dipole
source, γ0 is the decay rate in vacuum, and k = ω0/c.

For the incident plane wave, the problem of
reflected field near an aperture is a classical diffraction
problem, which has a relatively simple solution if the
aperture is much smaller than the wavelength [11, 12].
The field structure near the aperture is quite intriguing
even in this case and can be used for the control of
atomic motion with a nanometric accuracy [13].
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For a point source (the molecular dipole moment
can be considered as a point dipole source), the prob-
lem is much more complicated. Nevertheless, for a
nanoaperture, i.e., an aperture whose size is much
smaller than the emission wavelength, spontaneous
decay rate (1) can be represented in the form [10]

(2)

where dtotal is the total dipole moment of the system
atom + nanoobject. In this case, the problem reduces to
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Fig. 1. Operation of a scanning microscope with an aper-
ture.
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the calculation of the total dipole moment of the system
in the quasi-static approximation.

To find the total dipole moment of the system
atom + aperture, one should solve the quasi-static prob-
lem

(3)

where the dipole charge density is determined by the
usual expression

(4)

In Eq. (4), δ is the Dirac delta function; ∇ ' stands for the
gradient with respect to the atomic position r'; and d0 is
the dipole transition moment. Hereafter, the time
dependence of fields will not be indicated explicitly.

By introducing the potential 

(5)

we obtain the usual Poisson equation

(6)

which should be supplemented by the condition that the
potential (or the field tangential component) is zero at
the screen surface.

The solution to Eq. (6) can suitably be represented
in the form

(7)

where ϕ0 is the potential of a unit charge in free space:

(8)

When solving the quasi-static problem (6) and (7),
it is natural to bring the symmetry axis (z axis) of the
system into coincidence with the axis of the toroidal
coordinate system (Fig. 2) [14]. The coordinate sur-

curlE 0, divD 4πρ,= =

ρ d0∇ '( )δ 3( ) r r'–( )e iωt– .=

ϕ̃
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ϕ̃ ϕ0 δϕ,+=

ϕ0 1/ r r'– .=

Fig. 2. Geometry of the problem of spontaneous atomic
emission near the aperture.

(a ! λ)

faces in this system (0 ≤ η ≤ ∞, 0 ≤ ξ ≤ 2π, 0 ≤ ψ ≤ 2π)
consist of toroids (η = const), spheres (ξ = const), and
planes

(9)

The Cartesian coordinates are related to the toroidal
coordinates by

(10)

The Lame coefficients of the toroidal coordinate system
have the form

(11)

The Green’s function (8) of free space can be repre-
sented as

(12)

Expression (12) can be written in the integral form:

(13)

The solution for the reflected-field potential δϕ is
sought in the form

(14)
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0, 2π), one obtains the following expression for the
total potential (7):

(15)

The obtained integral representation of the solution is
valid for arbitrary parameters.

To evaluate the integrals in Eq. (15), we use integral
representation of the Legendre function

(16)

after which the final expression for the point-charge
potential in the presence of aperture in an ideally con-
ducting plane takes the form

(17)

Knowing the potential in the presence of the aperture,
one can determine the total dipole moment of the sys-
tem and, then, using Eq. (2), obtain the expressions for
the spontaneous transition rates for an arbitrary posi-
tion and orientation of the dipole moment.

To find the total dipole moment of the system, one
should obtain the expressions for the potential at large

distances R =  from the nanoaperture. The
corresponding asymptotic expressions are

(18)
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where

(19)

Expressions (18) and (19) demonstrate that the poten-
tial has the dipolar character in both upper and lower
halfspaces, with only the dipole-moment z component
being nonzero to a first approximation. Using Eqs. (18)
and (19), one can easily find the expressions for the
dipole moments responsible for the emission into the
upper and lower halfspace, respectively:

(20)

For the total spontaneous decay rate, one has

(21)

In Eq. (21), the first term allows for the emission into
the upper halfspace, while the second term describes
the emission into the lower halfspace. An important
feature of this approximation is that the spontaneous
emission is strongly suppressed for the ϕ-oriented
dipole moment in any atomic position and is described
by the terms on the order of (ka)2 (magnetic dipole and
quadrupole emission), i.e., by higher-order small terms
than in Eq. (21). In what follows, the coordinates of
atomic position will be unprimed.

Therefore, the spontaneous emission of an atom
placed near the nanoaperture can be described in terms
of relatively simple analytic expressions (19)–(21).

In some particular cases, expressions (19)–(21)
become quite simple. For example, if the atom is situ-
ated on the axis ρ = 0 of the system, the emission is pos-
sible only for the z-oriented dipole moment. The corre-
sponding total dipole moments responsible for the
emission into the upper and lower halfspaces are

(22)

At z = 0, one has /d0 = /d0 = 1; i.e., an atom
placed in the aperture center emits as if it emit in the

free space. At z @ a, /d0 = 2 and /d0 = 0, so
that the system emits with a doubled dipole moment
into the upper halfspace. Clearly, the limit z @ a implies
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λ @ z @ a. As the distance between the atom and aper-
ture becomes comparable with the emission wave-
length, the nanoaperture ceases to influence the emis-
sion, and one should use expressions for the spontane-

Fig. 3. Spontaneous decay rates for the z-oriented atomic
dipole moment: (a) atom is on the system axis and (b) atom
is in the aperture plane.

Fig. 4. Spontaneous decay rates of an atom having ρ-ori-
ented dipole moment and placed in the aperture plane.
ous decay rate in the presence of a plane without a hole
in it [10]:

(23)

In Fig. 3a, the total decay rate and the decay rates into
the upper and lower halfspaces are shown for the z-ori-
ented dipole situated on the axis.

We now consider the decay rates for an atom having
a z-oriented dipole moment and placed in the z = 0
plane. In such a situation, the atomic decay rates in the
very aperture do not change in any atomic position, as

compared to the free-space case: /d0 = /d0 = 1.
For an atom placed near the screen (z  +0, ρ > a),
the dipole moments for the emission into the upper and
lower halfspaces take the form

(24)

In Fig. 3b, the total decay rate and the decay rates into
the upper and lower halfspaces are shown for an atom
having a z-oriented dipole moment and placed at any
point in the z = 0 plane. One can see from Eq. (24) and
Fig. 3b that the decay rates strongly (infinitely) increase
in the vicinity of the aperture edge and that the emission
propagates into both upper and lower halfspaces. If one
takes into account that the thickness and conductivity of
screen are finite, the spontaneous decay rate of an atom
near the aperture edge also becomes finite.

As one more particular example of Eqs. (19)–(21),
we consider the decay rates for an atom having ρ-ori-
ented dipole moment and placed in the z = 0 plane (in
our approximation, the decay rates for an atom with a
ϕ-oriented dipole moment are equal to zero). At ρ < a,
the dipole moments responsible for the emission into
the upper and lower halfspaces are

(25)

Outside the aperture, ρ > a, the total dipole moment is
zero because of the boundary conditions on the ideally
conducting plane. In Fig. 4, the total decay rate and the
decay rates into the upper and lower halfspaces are
shown for an atom placed in any point of the z = 0 plane
and having a dipole moment oriented along the radius.
One can see from Eq. (25) and Fig. 4 that the decay
rates strongly (infinitely) increase in the vicinity of the
aperture edge and that the emission propagates into
both upper and lower halfspaces. If one takes into
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account that the thickness and conductivity of the
screen are finite, the spontaneous decay rates of an
atom near the aperture edge again become finite.

The spontaneous decay rates of an atom inside the
aperture, with the dipole-moment vector lying in the
aperture plane, were also considered in works [15, 16],
where the corresponding rates proved to be of a higher-
order smallness (∝ (ka)2) than in Eq. (21). It is conceiv-
able that the main decay channel (dipole emission with
a z-oriented total dipole moment) was not taken into
account in [15], while the results of [15] describe only
partially the contribution of high-order multipoles
(magnetic dipole and electric quadrupole) to the spon-
taneous decay rate.

In summary, analytic expressions allowing rela-
tively simple estimates to be made for the spontaneous
decay rates near the aperture (nanoaperture) of a scan-
ning microscope have been derived in this work. The
results can also be used to determine the atomic fre-
quency shifts caused by the presence of a nanoaperture
and to interpret the results obtained by scanning micro-
scopes with an aperture and single molecule as an
object [17].

This work was supported by the Russian Foundation
for Basic Research (project no. 01-02-16592) and the
FTsP “Integratsiya.”
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S-shaped kinetic curves are very frequent in nature. Based on our own experimental evidence on the growth of
single dendrites and analysis of literature data, we have demonstrated that such curves may result from the max-
imum entropy production principle. The proposed approach also explains other prevalent laws of relaxation in
nonequilibrium systems (exponential, Kohlrausch, etc.). © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.70.+w; 81.10.Aj; 05.65.+b
The dendrite growth is a typical example of self-
organization. It occurs both in animate (e.g., trees) and
inanimate nature (e.g., snowflakes) [1–3]. The shape
similarity of such different objects may suggest certain
laws common to their evolution. Indeed, dendrites are
formed in a nonequilibrium environment with rela-
tively large gradients of concentrations, temperature,
sunlight, etc. Therefore, some protuberances (formed,
e.g., by chance) may grow faster in this inhomogeneous
medium, and a treelike structure appears [1–3]. One
more startling similarity is true of the nonequilibrium
evolution. This is the resemblance of sigmoidal kinetic
growth curves (S-shaped growth curves). However, this
issue has received little attention. This question and its
consequences are considered in the present paper.

Crystallization of ammonium chloride (NH4Cl)
from an aqueous solution was studied. The experimen-
tal conditions were considerably nonequilibrium: a
solution saturated at 30–40°C was cooled down quickly
to 10–20°C to form dendrites (Fig. 1). They were
grown in quasi-two-dimensional conditions (a flat cap-
illary whose thickness was much smaller than the diffu-
sion length ~400 µm was used) [4]. Consequently, the
mass of the growing dendrite changed in proportion to
its surface area in the plane of the experimental cell. A
microscope with a photometry sensor built into the eye-
glass was used. The integral light flux penetrating
through the sample and hitting the photodetector was
proportional to the surface area ratio of the solution and
the crystal. The sensor signal was registered in the dig-
ital format (sampling frequency was 1 kHz). The mass
was measured on a freely growing dendrite spaced at
least as far as the diffusion length from neighboring
dendrites. Other experimental details have been pub-
lished elsewhere [5, 6].

¶ This article was submitted by the authors in English.
0021-3640/03/7808- $24.00 © 20476
The time-mass dependence had a specific S-shape at
all the supersaturations and saturation temperatures
(Fig. 2). The growth time only changed from several
tens of seconds to several minutes. Measurements were
performed on over fifty growing crystals. The normal-

Fig. 1. Growth of an NH4Cl dendrite from an aqueous solu-
tion with time.
003 MAIK “Nauka/Interperiodica”
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ized data was subject to a regression analysis by the
Levenberg–Marquardt method [7, 8] using CurveEx-
pert statistical software. A feature of the software was a
large number of nonlinear regression models, which are
most commonly used in applications. The aim of the
analysis was to determine equations best fitting the data
(the standard error of the estimate (E) and correlation
coefficient (R) served as the “goodness of fit” [7, 8]).
According to the calculations, the degree of supersatu-
ration and saturation temperatures did not influence
(within the experimental error) the regression models
and their parameters. Therefore, all the data were inte-
grated into one sample whose analysis yielded the fol-
lowing results.

The best fits (from the aforementioned criterion)
provided were the Weibull model M(t) = a – bexp(–ctd)
scoring 86 points (inset of Fig. 2 is an additional argu-
ment for this model), the Richards model M(t) = a/(1 +
exp(b – ct))1/d scoring 122 points, and the MMF model
M(t) = (ab + ctd)/(b + td) scoring 133 points. Some addi-
tional comments are necessary: (1) models having not
more than four parameters (a, b, c, and d) were
selected; (2) the points were equal to the sum of places
(the place is higher if E is less and R is more) taken by
a model fitting each experimental curve. This classifica-
tion is very arbitrary and may provoke objections.
Indeed, the correlation coefficients of the given models
generally differ little (e.g., 0.993 and 0.994). With such
“difference,” the physical interpretation of each model
is most important. In this case, the Weibull model is
well grounded theoretically as will be shown below.

The calculated Weibull model parameters were a =
1.01 ± 0.02, b = 1.00 ± 0.02, c = 0.003 ± 0.001, and d =
2.0 ± 0.1. Then, the normalized experimental kinetic
curves (see Fig. 2) fit the model M(t) = 1 – exp(–ct2)
(the relative error of c is over 30%, and this value is not
substituted to the formula). Thanks to a greater body of
data and a larger sampling frequency of signal digitiz-
ing, these data considerably refine those obtained ear-
lier [5, 6].

The computed regression model agrees to within the
denotation with the equation in the Kolmogorov–
Avrami theory (KAT) for the time variation of the solid
phase volume during mass crystallization [9–11]. This
fact allows hypothesizing the applicability of this phe-
nomenological stochastic–geometrical theory (used
only in studies of mass crystallization of metals, poly-
mers, etc. [9–11]) to describe of the growth of single
dendrites. Indeed, a particular case of this theory is the
uniform nucleation of new phase nuclei in time and
space, when the growth of each nucleus is diffusion
limited (its linear size increase proportionally to the
square root of time) [10]. Such nuclei may be second-
ary branches formed during the dendrite growth. These
branches appear regularly on a growing primary
branch, and their growth is diffusion limited [1, 4].
They (“nuclei”) are nearly ellipsoidal in shape. Accord-
ing to KAT, at this two-dimensional growth, d must be
JETP LETTERS      Vol. 78      No. 8      2003
equal to two [10], which agrees fairly well with the
experimental d value. In terms of KAT, it is possible to
explain the dispersion of c values observed in experi-
ments. This parameter (unlike d, which is controlled by
the growth morphology) depends primarily on the
occurrence rate of new nuclei and is very sensitive both
to the growth time and initial conditions. Therefore, the
correct determination of c calls for additional experi-
ments with another experimental setup.

The modified KAT substantiates the choice of the
Weibull model for fitting. This model should be pre-
ferred for one more important reason. Let us make two
comments first.

(1) The growth rate passes a maximum and
approaches zero asymptotically during mass crystalli-
zation because crystals gradually fill all the vacant vol-
ume (adjacent nuclei collide and stop growing in the
collision direction). This interpretation is incorrect for
dendrite growth, which is decelerated due to the disap-
pearance of solution supersaturation around a dendrite
(the solution areas around dendrite branches “collide”).

(2) M(t) is the fraction of the solid phase during
mass crystallization. Since nucleation sites are random,
M(t) may be taken as the probability that a random site
crystallizes by the time t. In case of the dendrite growth,
the whole area is divided into two parts: (1) a crystal
and a saturated (equilibrium) solution and (2) a super-
saturated solution. These parts do not have a well-
defined boundary. However, one may unambiguously
distinguish the areas and watch their transition with
time by setting a priori a concentration threshold
slightly above the equilibrium. From the above reason-
ing, M(t) may also be related to some area where super-
saturation is removed and the chemical potential is
nearly the same. Therefore, fraction M(t) may be
viewed (similarly to mass crystallization) as the proba-
bility of a transition at a random space site by the time

Fig. 2. Typical experimental S-shaped kinetic curve: den-
drite mass (M) vs. time (t). In the inset, gray curve repre-
sents ln(1 – M) vs. time; the broken curve is their fit using
the power function.
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t (the probability that the chemical potential of the site
is equal to chemical potential of the dendrite crystal).

With this in mind, discuss Fig. 2 again. Consider a
random solution site. Let the time T of the transition at
this site be a random variable. Then, the probability that
the transition occurs in a time T less than t equals M(t)
(which may be considered as a cumulative distribution
function). Therefore, T obeys the Weibull distribution
(since d = 2, it is also called the Rayleigh distribution)
[12]. On the other hand, the mathematical statistics [13,
14] suggests that minimums of random and bounded
below variable have this distribution, i.e., if T = min{T1,
T2, …, Tn} and n  ∞ (T1, …, Tn being identically dis-
tributed random variables equal to zero or larger), T
will obey the Weibull distribution function. Therefore,
one may hypothesize that the transition occurs in a min-
imum possible time or, in other words, mass or dendrite
crystallization is realized at a maximum possible rate.

As is known, the crystallization rate is directly pro-
portional to the entropy production in a system [15, 16].
This brings us to a notion known as the maximum
entropy production principle (MEPP) [17–24]. It is
used sometimes as the basis of the entire nonequilib-
rium thermodynamics (specifically, Prigogine’s princi-
ple [15] was shown to be its corollary) [17, 18]. MEPP
is widely used in natural sciences [17–20, 23], includ-
ing crystallization [21–24]. However, earlier this prin-
ciple was used theoretically and verified experimen-
tally only in selection of solutions at bifurcation points
(e.g., structures with a maximum rate (entropy produc-
tion) were observed during nonequilibrium crystalliza-
tion after morphological transitions) [19–24]. The fore-
going suggests that the principle also holds for growth
without sharp nonequilibrium transitions. A limitation
of the proposed approach, as compared to KAT, is the
impossibility to predict distribution parameters numer-
ically. However, this problem is typical of every general
theory (e.g., thermodynamics).

Our approach, which relates S-shaped growth
curves, distribution of extreme values and MEPP, pro-
vides a unified viewpoint on numerous data about non-
equilibrium kinetics and relaxation. Let us dwell on two
points only.

(1) S-shaped kinetic growth curves are observed in
chemistry (the mass of reaction products vs. time) [25]
and biology (number of bacteria and organism weight
vs. time) [26, 27]. Although such curves have particular
explanations, they may result from MEPP too, espe-
cially if arguments are controversial. For example,
S-shaped empirical kinetic curves in biology are fre-
quently described by the logistic model (Richards
model with a = d = 1) [27]. However, this approach
does not have solid theoretical grounds and has come
under a storm of criticism [27]. Certainly, kinetic
curves may be other than S-shaped (e.g., oscillation
chemical reactions) [15]. This fact does not disprove
our approach or MEPP. Several simultaneous processes
(each following MEPP) mutually interact and, there-
fore, kinetic curves change their shape [18].

(2) Various relaxation phenomena in physics are
considered using the exponential (~exp(–ct)) and Kohl-
rausch (~exp(–ctd)) laws [28, 29]. These laws of the
time perturbation dissipation are related to various
physical mechanisms and are described by different
models. However, they may also be viewed as the man-
ifestation of a general law, namely MEPP. Indeed,
relaxation may be considered either as disappearance
of some parameter or its replacement by another
parameter. In the latter case, normalized relaxation laws
are (1 – exp(–ct)) and (1 – exp(–ctd)), respectively. Con-
sequently, the perturbation evolution laws follow the
Weibull distribution and, therefore, may be considered
as the MEPP corollary in the context of our approach.

In conclusion, we shall emphasize that the proposed
approach should not be considered as an antithesis to
existing theories. Our approach provides a unified
MEPP interpretation of many nonequilibrium natural
phenomena (in turn, they can be viewed as indirect con-
firmation of MEPP).
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The stochastic and self-oscillation regimes established under the action of a longitudinal high-frequency mag-
netic field in a multilayer magnetic structure with antiferromagnetic exchange coupling are considered. A bifur-
cation diagram revealing the types of magnetization dynamic states is constructed in various frequency inter-
vals. Poincaré diagrams are constructed for the stochastic regimes. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Cn
1. In many cases, the stability and attainable ampli-
tudes of magnetic oscillations, as well as the presence
of static and dynamic magnetic states in a magnetic
subsystem play the decisive role in the practical use of
magnetically coupled multilayer structures [1–3]. The
magnetization self-organization processes induced by
external fields in such structures are also significant,
because these structures serve as good objects for
studying various nonlinear dynamic regimes, stochastic
oscillations, and synergistic processes. However, the
available works, as a rule, deal with overly simplified
models [4, 5], so that the nonlinear dynamics of real
structures are not always reflected adequately. In this
work, the stochastic oscillations of magnetic moments
and the conditions for appearance of self-oscillation
regimes in the exchange-coupled film nanostructures
are investigated. Their static and dynamic properties
are greatly determined by the coupling character
between neighboring layers. This coupling is due to a
strong indirect exchange interaction and, depending on
the thickness of a nonmagnetic spacer, can give rise to
the ferromagnetic, antiferromagnetic, or noncollinear
ordering of magnetic moments in the neighboring lay-
ers [6, 7]. The possibility to implement a variety of
equilibrium states and nonlinear dynamic regimes ren-
ders the antiferromagnetic coupling type most prefer-
ential, and it will be discussed in this work.

2. Consider the structure consisting of a sufficiently
large number (n @ 1) of identical magnetic metal layers
separated by the spacers that provide the antiferromag-
netic type of initial magnetic-moment ordering for the
nearest-neighboring layers. In this case, all magnetic
layers are divided into two subsystems (j = 1, 2) with
identical behavior of magnetic moments in the layers of
each subsystem. In accordance with the experimental
data on the structures of this type [8], we assume that
0021-3640/03/7808- $24.00 © 20480
the layer magnetic anisotropy is combined from the
uniaxial induced anisotropy of the easy axis type and
the crystallographic cubic anisotropy, with the crystal-
lographic [100] and [010] axes lying in the layer planes
and the easy magnetic axis of induced anisotropy being
oriented perpendicular to the layers. In this case, the
free energy per unit area of the system is given by the
expression

(1)

where d is the thickness of magnetic layers; Mj is the
magnetization of the layers in the jth subsystem; J is the
bilinear exchange-coupling constant between the mag-
netic moments of the nearest-neighboring layers, which
depends, in the general case, on the thickness, type of
material, and the structural properties of the spacers; K1

and Ku are the constants of cubic and growth anisot-
ropy, respectively; H is the static magnetizing field; ϕj

is the azimuthal angle measured from the [100] axis and
determining the in-plane orientation of magnetic
moment; and ψj is the angle of Mj departure from the
film plane. Taking into account that the demagnetizing
fields are high (4πM @ 2Ku/M, JM) in the structures
with metallic magnetic layers, the magnetic moments
in the case of in-plane magnetizing field H lie in the
layer planes, so that the equilibrium angles ψ0j = 0. To
determine the equilibrium azimuthal angles ϕ0j(H), we
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use the equilibrium condition ∂E/∂ϕj = 0, ∂2E/∂  > 0
and Eq. (1) to obtain the system of equations

(2)

where the angle ϕH is measured from the [100] axis and

determines the H field direction, and  = 2J/d.

The equations of motion for the magnetization vec-
tors of each layer in the spherical coordinate system is
written as

(3)

where γ is the gyromagnetic ratio and λ are the damping
parameters. In our numerical analysis, we will use the
parameters corresponding to the parameters of a real
(Fe/Cr)n structure. For the iron layers, the magnetiza-
tion M = 1620 G; the anisotropy parameters K1 = 4.6 ×
105 erg/cm3, K2 = 1.5 × 105 erg/cm3, and Ku = 2.06 ×
106 erg/cm3; the thickness d = 21.2 × 10–8 cm; λ =
5 × 107 s–1; and γ = 1.76 × 107 (Oe s)–1; although the
chromium parameters do not enter explicitly in Eq. (1),
they determine the coupling constant J [9]. In the films
under study, the oscillation amplitude of the polar angle
is always much smaller than for the azimuthal angle.

3. Analysis of equilibrium condition (2) shows that
a change in the magnitude of the magnetizing field in
the systems considered is accompanied by orientational
hysteresis loops and attendant bistability states. In
Fig. 1, field dependences of the equilibrium azimuthal
angles of magnetic moments of the first (solid curves)
and second (dashed curves) subsystems are shown for
the coupling constants J = 0.1, 0.17, and 0.24 erg/cm2

(curves 1–3). In the case of initial orientations ϕ0j =
±π/2 and ϕH = 0, the equilibrium orientation of mag-
netic moments of the neighboring layers in the interval
0 < H ≤ Ha is noncollinear. With an increase in field, the
angle ∆ϕ0 = ϕ01 – ϕ02 between the magnetization vec-
tors of the neighboring films decreases. As the field
achieves the critical value Ha, this angle achieves its
minimal value

(4)

which decreases with increasing coupling constant,
whereupon phase transition occurs to establish a col-
linear magnetic-moment orientation that is aligned with
the field. As the magnetizing field decreases from the
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values H > Ha, the state with the co-directed orientation
of the film magnetic moments is retained down to the
field Hb. At H = Hb, the reverse phase transition occurs,
which is accompanied by the orientational misalign-
ment of the vectors M1 and M2 and the jumpwise
achievement of angles ϕ01(Hb) = –ϕ02(Hb). On further
decrease in the demagnetizing field, the angle between
the magnetizations increases smoothly, and again
becomes equal to π at H = 0. Therefore, at small cou-
pling constants, the boundaries of the orientational hys-
teresis loop are

(5)

With an increase in the coupling constant, the hystere-
sis loop narrows to disappear at J ≥ Jab, where Jab is
determined from the equality Hb = Ha.

4. For the implementation of various dynamic
regimes, the systems with narrow hysteresis loops are
of special interest. At fields H corresponding to the
middle of the hysteresis loop, various high-amplitude
self-oscillation and stochastic regimes are induced by a
longitudinal high-frequency field (h || H) with an
amplitude close to the loop width (h ≥ Ha – Hb) in the
layered system of magnetic moments. The most com-
plete pattern of dynamic regimes in the structure con-
sidered can be obtained over a broad frequency range
from the bifurcation diagram. For the exchange-cou-
pling constant J = 0.24 erg/cm2 (close to Jab ≈
0.244 erg/cm2), the magnetizing field H = 2227.4 Oe,
the microwave amplitude h = 0.2 Oe (Ha – Hb ≈ 0.144 Oe),
and zero initial azimuthal angles of magnetic moments,

Ha
4

3M
--------

J K1+
6K1

--------------- J K1+( ), Hb
2
M
----- J K1–( ).= =

Fig. 1. Field dependences of the equilibrium azimuthal
angles of magnetic moment obtained for the structures with
J = 0.1, 0.17, and 0.24 erg/cm2 (curves 1, 2, and 3, respec-
tively).
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the bifurcation diagram is shown in Fig. 2, where the
microwave frequency is laid off as abscissa and the
maximal and minimal angles of the magnetic moment
of one of the layer subsystems are laid off as ordinate.
The magnetic-moment oscillations of both subsystems
are always in antiphase, and the equality ϕ2(t) = –ϕ1(t)
is fulfilled with a high accuracy in both regular and sto-
chastic regimes.

Zero point on the ordinate axis is the only point
where the oscillations are absent; two points corre-
spond to the oscillation regime with one maximum and
one minimum; a larger denumerable set of points cor-
responds to a more complex oscillation; and the set of
closely spaced points correspond to the stochastic mag-
netic-moment dynamics. One can see in Fig. 2 that,
upon changing the microwave frequency, one of the
regular oscillation regimes, as a rule, transforms into
the other after passing through the frequency intervals
corresponding to the stochastic dynamics. Both sym-
metric and asymmetric regular regimes are present.
When tracing the diagram from the high-frequency
side, one can see that the system is initially insensitive
to the action of a microwave field. Then, after the Hopf
bifurcation [10], a limit cycle arises with the amplitude
increasing as the frequency decreases. Next, after the
period-doubling cascade, the system arrives at the sto-
chastic behavior. As the amplitude of stochastic oscilla-
tions becomes sufficiently large, the magnetic moments
appear in the attraction zone of an attractor representing
a high-amplitude limit cycle. This results in new bifur-
cation with establishing the self-oscillation regime.

High-amplitude oscillations can be established at
high frequencies as well, but only after changing the
initial orientations of magnetic moments. In other
words, dynamic bistability occurs in some frequency
interval. The amplitude in the self-oscillation regime

Fig. 2. Bifurcation diagram of the frequency-dependent
maximal and minimal angles ϕ1, as obtained for the struc-
ture with a narrow hysteresis loop (Ha – Hb ≈ 0.144 Oe), J =

0.24 erg/cm2, H = 2227.4 Oe, and h = 0.2 Oe.

(108 s–1)
shows weak frequency dependence and is invariably
much larger than the difference between the angles of
magnetic moments in the hysteresis loop (ϕa ≈ 6°). The
oscillation amplitude depends on h, though weakly. For
instance, as h increases fivefold, the amplitude of angle
ϕ1 increases only by one third.

With a decrease in frequency, the regular oscilla-
tions again become stochastic. In Fig. 3, the phase por-
traits of magnetic-moment dynamics of the first layer
are shown for the microwave frequencies ω = (a) 12.5
and (b) 11.3 × 108 s–1 corresponding to the regular and
stochastic dynamics, respectively. The corresponding
time dependences of ϕ1(t) are shown in the insets. Near
the frequencies corresponding to the regular dynamics,
the oscillation amplitude is confined in a certain angu-
lar interval, as a result of which the boundary of the
cycle phase trajectory spreads out. On further decrease
in microwave frequency, the stochasticity becomes

Fig. 3. Phase trajectories in the (a) regular and stochastic
and (b) dynamic regimes. Insets: ϕ1(t) curves.
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more pronounced and the oscillation attractor is thick-
ened. At frequency ω = 11 × 108 s–1, the attractor covers
the entire range of angular oscillations of magnetic
moment, and the stochastic regime has a laminar phase
alternating with the splashes of turbulence [11] and
oscillation amplitudes characterized by a certain angu-
lar scatter. Strange attractor (b) corresponds to the sto-
chastic dynamics and has the sections of strong con-
traction or folding and the expansion sections. Because
of this, the phase trajectories are sensitive to the initial
conditions. The separation between two closely spaced
phase trajectories first increases following, on average,
the exponential low δ = δ0exp(ζt), where ζ is the largest
Lyapunov coefficient (equal to the slope of the curve
approximating the divergence of phase trajectories).
Numerical analysis showed that ζ ≈ 6.2 × 107 s–1 for the
case in hand. After the divergence achieves the attractor
scale, the separation between phase trajectories starts to
oscillate about the value determined by the attractor
size.

For clarity, the complex phase trajectories can suit-
ably be represented as a set of points calculated at time
intervals equal to the period of the microwave field (in
the case of many regular oscillations, this results in the
Poincaré diagram). In Fig. 4, a discrete-time represen-
tation of the phase portraits of magnetic-moment
dynamics is shown on the (ϕ1, ) plane for the micro-
wave frequencies ω = (a) 13.1, (b) 8.2, and (c) 5.0 ×
108 s–1; the corresponding ϕ1(t) curves are shown in the
insets. In the case (a), the stochastic dynamics devel-
oped as a result of the period-doubling cascade and
after the reverse cascade [11] corresponding to the coa-
lescence of the noiselike intervals of angle ϕ1; for this
reason, the stochasticity in this case covers the entire
angular range of magnetic-moment oscillations. As for
case (b), the stochasticity appears only for a certain
angle of magnetic moment. The dynamic regime (c)
near the frequency ω = 5.0 × 108 s–1 appears through the
alternation, although the laminar phases (high-ampli-
tude angular oscillations either in the positive or nega-
tive halfplane) have only few periods. The phase por-
trait of this regime represents the combination of two
funnel-shaped attractors, with the transitions between
them occurring at small azimuthal angles. The
Lyapunov coefficients corresponding to the stochastic
regimes (a), (b), and (c) are ζ ≈ (a) 1.6, (b) 0.8, and
(c) 1.2 × 108 s–1.

In the low-frequency range ω ~ 107 s–1 (Fig. 2), the
regular dynamic regimes are characterized by the pres-
ence of time intervals on which the angle is zero and
fast oscillations occur due to the magnetization rever-
sal. The asymmetric regimes with the oscillation period
equal to the microwave period occur at some frequen-
cies, and the symmetric regimes with the alternating
sign of high-amplitude angular oscillations of magnetic
moment and, hence, with a doubled period, occur at the
other frequencies.

ϕ̇1
JETP LETTERS      Vol. 78      No. 8      2003
It follows from the above analysis that, depending
on the parameters of the magnetic subsystem, the mag-
nitude of magnetizing field, and the frequency of a lon-
gitudinal variable magnetic field, various types of sto-
chasticity and high-amplitude regimes are established
under the action of the variable field on the structure
with the type of antiferromagnetic coupling considered
in this work. The diversity of possible dynamic regimes

Fig. 4. Discrete-time (with step ∆t = 2π/ω) representation
obtained for the phase trajectories of magnetic moment at
ω = (a) 13.1, (b) 8.2, and (c) 5.0 × 108 s–1. Insets: ϕ1(t)
curves.
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renders such systems quite valuable for the practical
use and experimental study of nonlinear oscillations.

This work was supported by the Ministry of Educa-
tion of the Russian Federation, project no. PD02-1.2-
72.
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The voltage–current characteristics (VCC) of Sm1 – xSrxMnO3 samples with x = 0.425 and x = 0.450 were exper-
imentally studied at a temperature of 77 K in pulsed and constant electric (E) and magnetic (H) fields up to
10 kOe for the H || E and H ⊥  E orientations. N-shaped VCCs and high-frequency (up to 3 MHz) current oscil-
lations were observed. It was found that the effect of colossal magnetoresistance had a threshold character and
was smoothly reduced to zero with E  0. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.20.Ht; 72.80.Ga; 75.47.Gk
The discovery of colossal magnetoresistance
(CMR) in manganites stimulated research into the
charge-transfer processes in systems with strong inter-
action between the magnetic, lattice, and electron sub-
systems. It has been found that the magnetoresistive
effect decreases with increasing voltage and that the
magnitude of the effect strongly depends on the barrier
structure [1–7].

Nonlinear voltage–current characteristics (VCCs)
of manganites and manganite-based heterostructures,
as well as the relaxation processes of current steady-
state transition under the action of voltage, were studied
in [8–11]. Nonlinear VCCs exhibiting sublinear or
superlinear behavior [8–10] and S-shaped VCCs [9, 10]
were observed. It was shown in [12] that the transition
of current to its steady-state value corresponding to the
applied voltage has the character of a relaxation process
with long characteristic times (up to 10 min). It should
be noted that the majority of studied VCCs exhibit hys-
teresis; i.e., the ascending and descending VCC
branches do not coincide. The nonlinearity can be
caused by such physical mechanisms as the current
effect on the magnetic homogeneity of the system [13],
inelastic charge-carrier scattering in magnetoactive lay-
ers by the contact [6, 9], or electric modulation of the
double-exchange processes in ferromagnetic systems
[8].

The goal of this work was to study the effect of elec-
tric field on the CMR magnitude in manganites. Mea-
surements were made in Sm1 – xSrxMnO3 manganites
with x = 0.425 and x = 0.450 at a temperature of 77 K
in magnetic fields up to 10 kOe for H || E and H ⊥  E.

X-ray diffraction showed that the ceramic
Sm1 − xSrxMnO3 samples under study were orthorhom-
bic perofskites with a homogeneous granulometric
composition, good cleavage, and a porosity of ~20%.
The results of a thorough experimental study of heat
0021-3640/03/7808- $24.00 © 20485
capacity and electrical resistance of the samples with
x = 0.450 over a wide temperature range are reported in
[14]. The sizes of the samples with x = 0.425 and x =
0.450 were 6 × 1.7 × 0.7 mm and 2.5 × 1.2 × 0.7 mm,
respectively. Current contacts were applied to the ends
of the samples by silver paste. All measurements were
performed at a temperature of 77 K. The sample tem-
perature was monitored by a copper–constantan ther-
mocouple.

The VCCs of the samples were measured both in the
dc mode and in the pulse operation mode of the voltage
generator; Rsmp @ Ri, where Rsmp is the sample resis-
tance and Ri is the current-collecting resistor connected
in series with the sample. The duration of a triangular
pulse used in VCC measurements did not exceed
120 µs; the duration of rectangular pulses did not
exceed 80 µs with 0.1-µs leading edges or shorter.

The ascending and descending VCC branches mea-
sured for the sample with x = 0.425 in the pulse mode
are shown in Fig. 1a. The ohmic segments at the begin-
ning of VCC goes smoothly to the superlinear segments
with the characteristic slope I ~ Vn, where n = 1.4–1.6.
Then, at voltages V ≈ 1.5 V, the VCC has an N-shaped
segment. As the voltage increases, this segment shifts
again to a positive branch (dI/dU > 0).

The ascending and descending VCC branches mea-
sured for various maximal applied voltages do not coin-
cide; i.e., the VCCs exhibit hysteresis whose magnitude
depends both on the voltage and on the load resistance.
For an appropriately chosen load resistance, oscilla-
tions appear in the current pulse (Fig. 1b). The ampli-
tude and frequency of these oscillations depend on the
applied voltage. In a field E, these oscillations show the
following characteristic features: (1) the frequency
decreases and the amplitude increases with increasing
field; (2) the second positive VCC branch also exhibits
003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Ascending and descending VCC branches;
(b) oscillations in current pulse at different voltages U:
(1) 2.48, (2) 2.64, (3) 2.72, (4) 2.8, and (5) 3.02 V. The
curves were measured in a Sm1 – xSrxMnO3 sample with x =
−0.425 at a temperature of 77 K.

Fig. 2. VCCs for a Sm1 – xSrxMnO3 sample with x = 0.450
measured at different values of longitudinal magnetic field
H: (1) 0, (2) 1.38, (3) 2.25, (4) 4.5, (5) 6.7, and (6) 8.5 kOe
at a temperature of 77 K.
oscillations after the N-shaped segment up to high volt-
ages U (20–30 V); the properties of these oscillations
(period doubling, quasi-periodicity, alternation, sto-
chastic behavior, etc.) are typical of chaotic systems.
The frequencies corresponding to maximal amplitudes
were determined from the Fourier analysis and are
given in Fig. 1b together with the pulse. The reversal of
current direction through the sample has no effect on
the VCC (VCCs are absolutely identical for both direc-
tions). Although the current reversal slightly changes
the shape of current oscillations, the main oscillation
properties remain the same, independently of the volt-
age U. For the N-shaped segment at the beginning of
the current pulse, the current decreases with a charac-
teristic time on the order of several microseconds.

In the longitudinal (H || E) and transverse (H ⊥  E)
pulsed electric fields, the CMR effect calculated by the
formula (ρH – ρ0)/ρH reached 35%. It was found that the
exposure to a magnetic field reduced the oscillation
amplitude and shifted the threshold of N-shaped seg-
ment toward lower electric fields.

The VCCs for a sample with x = 0.450 measured in
longitudinal magnetic fields H || E and constant electric
fields are shown in Fig. 2. It should be noted that all
measurements were performed at a constant tempera-
ture T = const (77 K). The temperature was monitored
by a thermocouple to make sure that the power dissipa-
tion on the sample did not lead to Joule heating of the
sample. As in the case of x = 0.425, the VCCs measured
for the samples with x = 0.450 in a magnetic field show
that the CMR reaches 35% and the threshold of
N-shaped segment slightly decreases with increasing
magnetic field. As is seen from Fig. 2, the CMR is
slightly reduced at the N-shaped segment. However, at
the minimum point and on the second ascending VCC
branch, the CMR effect is on the same or even higher
order than before the N-shaped segment. The VCC
behavior in the transverse magnetic fields H || E is abso-
lutely identical with its behavior in the longitudinal
magnetic fields H ⊥  E. It should be noted that there is a
slight anisotropy of the CMR; the effect of longitudinal
field is stronger, so that the CMR effect is more pro-
nounced in the longitudinal fields on all VCC segments.
On the VCC segments obeying the law I ~ V1.6, the
CMR magnitude is constant or slightly decreases
(~3%) with increasing voltage up to the appearance of
the N-shaped segment.

The CMR effect was thoroughly studied under con-
ditions where the voltage bias U was reduced to zero
(U  0). It was found that the CMR effect had an
electric-field threshold (!). As the applied voltage was
reduced, the CMR gradually decreased on the linear
segment and disappeared at U = 1–2 mV for the sam-
ples of both compositions in a magnetic field H =
10 kOe. It was also found that the CMR on the linear
VCC segment was always greater at H || E than at H ⊥
E (up to the complete disappearance of the CMR).
JETP LETTERS      Vol. 78      No. 8      2003
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If a sample does not contain any built-in hetero-
structures or sandwich structures, point contacts, or
other types of contacts with nonequilibrium properties
[8–12], the results of measuring N-shaped VCCs in
manganites can be interpreted using the ∆mτ model
suggested in [15]. In this model, the resistivity is calcu-
lated using the Drude formula:

(1)

where e is the electron charge, m* is the effective mass,
n is the concentration of charge carriers, and the relax-

ation time τ is the sum τ –1 =  +  + , where τst,
τph, and τm are the characteristic times of scattering by
the static breakings of translational symmetry, by
phonons, and by local magnetic-moment fluctuations,
respectively. The resultant expression with allowance
for the activation energy ∆ is

(2)

Strongly inelastic charge-carrier scattering at cer-
tain values of the threshold electric field can lead to a
sharp increase in the resistance as a result of a decrease
in the scattering time, especially for the second
(polaron) and third (spin disorder) terms in brackets in
Eq. (2). This can lead to the appearance of an N-shaped
segment in the VCC.

A further rise in the voltage increases the energy of
charge carriers for overcoming the polaron and spin
barriers. Thus, a new increase in the current is observed
in the VCC. The current effect on the magnetic homo-
geneity of the systems under consideration or some
other mechanism causing a sharp change in the concen-
tration of charge carriers also cannot be excluded [12].
As to the threshold character of the CMR with respect
to the electric field, it obviously requires further inves-
tigation in many systems with various compositions.

We are grateful to A.B. Batdalov and Sh.B. Abdul-
vagidov for stimulating discussion, and O.Yu. Gor-
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was supported by the Russian Foundation for Basic
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Elastic Properties of D2O Ices in Solid-State Amorphization 
and Transformations between Amorphous Phases
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Nonequilibrium phase transformations in D2O ices, including the solid-state amorphization of ice 1h (1h–hda)
and the heating-induced transition cascade hda–lda–1c–1h from high-density amorphous (hda) ice to low-den-
sity amorphous (lda) ice followed by crystallization in cubic ice 1c and phase transition to ordinary hexagonal
ice 1h, were studied using an ultrasonic technique. It has been shown that, as in H2O ice, the softening of a crys-
tal lattice or an amorphous network precedes nonequilibrium transformations. However, noticeable isotopic dif-
ferences in the behavior of the elastic properties of H2O and D2O, in particular, their 1h and hda modifications,
call for a more detailed study of the structural features of these H2O and D2O phases. © 2003 MAIK
“Nauka/Interperiodica”.

PACS numbers: 62.20.Dc; 62.50.+p; 64.70.Kb
1. H2O and D2O ices can be considered as model
systems for the study of pressure effects on hydrogen-
bonded substances. The phase diagram of H2O, as well
as that of its isotope analogue D2O, is interesting for the
fact that at least 12 crystalline ice phases are observable
in the attainable pressure and temperature ranges [1–3].
At temperatures below the ice crystallization point
(Tcr ≈ 150 K), ice offers a unique opportunity to study
nonequilibrium phase transformations in solids, such as
solid-state amorphization (SSA) [4, 5] and transforma-
tions between amorphous ice phases [6, 7]. Many
investigations into the structure and phase transforma-
tions in water phases and ice modifications are dealing
with the properties of D2O. Elastic [8–10] and inelastic
[11, 12] neutron scattering studies of D2O amorphous
ice phases are a demonstrative example.

Currently, a significant progress has been achieved
in the understanding of the nature of SSA [5, 13–16]
and transformations between amorphous phases [7, 17–
19]. However, the details of the transformation scenario
are as yet unclear. New information on the dynamics of
metastable transformations and the character of meta-
stable phases can be gained from a comparitative study
of structural isotope analogues, in particular, H2O and
D2O ice phases.

The thermodynamic characteristics of H2O and D2O
modifications differ from one another only by several
percent; equilibrium lines between phases are very
close to one another [1]. Previously [22], it was found
that the SSA pressure for D2O is about 0.05 GPa higher
than for H2O. However, dynamic properties, such as
0021-3640/03/7808- $24.00 © 0488
some vibrational frequencies, can differ appreciably.
For example, intramolecular (to within the accuracy of
intracrystal interactions) Raman modes for ices 1h H2O
and 1h D2O differ by ≈35% [20]. Noteworthy is a sig-
nificant effect of isotope substitution on the value and
behavior of the shear modulus in a solid [21]. The non-
equilibrium transformations considered here are deter-
mined by both thermodynamic relations between
phases and the atomic dynamics [13–19]; therefore, the
role of isotope effects in such transitions is not clear a
priori. In fact, isotope effects on nonequilibrium transi-
tions, including those in ices, have not yet been studied
systematically.

Here, we employed ultrasound to study nonequilib-
rium transformations in D2O ice under pressure and
measured elastic moduli for D2O ice phases. The elastic
properties were studied during pressure-induced SSA
in hexagonal 1h D2O ice and during heating-induced
transition between high-density and low-density amor-
phous ices hda  lda. Many of our inferences made
in this work for D2O coincide with those made previ-
ously for H2O. Nonetheless, significant isotopic differ-
ences observed in the behavior of H2O and D2O call for
a more detailed structural comparison of H2O and D2O
phases, especially under pressure.

2. Ultrasonic experiments for D2O ices were carried
out in the pressure range 0–1.7 GPa at temperatures
from the nitrogen boiling point to 180 K. The experi-
mental procedure was similar to the one we employed
previously to study H2O ices [5, 7, 16, 18]. Polycrystal-
line samples (16 mm in diameter, 8 mm high) were pre-
2003 MAIK “Nauka/Interperiodica”
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pared by rapid cooling of heavy water in liquid nitro-
gen. x-Cut and y-cut quartz plates with the carrier fre-
quency 5 MHz were used as piezometric gages. In the
experiments, the velocities of longitudinal (Vl) and
transverse (Vt) ultrasonic waves were measured as a
function of either pressure or temperature.

3. The 1h  hda SSA phenomenon at T = 78 K in
D2O was observed as abrupt changes in the travel time
of ultrasonic waves and in the sample length in the pres-
sure range 1.14–1.51 GPa. Experimental plots of the
relative volume and ultrasound velocity versus pressure
are given in Fig. 1. The density jump in SSA was
≈18%, which is smaller than the density change in H2O
(≈20%). Interestingly, despite the significant changes
in the volume of the sample and the travel time of a
longitudinal ultrasonic signal, SSA is, in fact, not
detected as a change in the longitudinal wave velocity;
in H2O, in contrast, a clear-cut irregularity was
observed in the Vl(T) trend [5, 16, 18]. The SSA in hex-
agonal 1h D2O ice is preceded by a near-linear
decrease in the shear wave velocity.

Fig. 1. Experimentally observed variations in the relative
volume and the transverse and longitudinal ultrasonic wave
velocities upon pressure-induced SSA in ice 1h D2O at
78 K. Arrowed lines show the directions of pressure change.
The dashed vertical marks the SSA onset.
JETP LETTERS      Vol. 78      No. 8      2003
The calculated variations in the adiabatic bulk mod-
ulus Bs and shear modulus G upon the transition 1h 
hda in D2O are plotted in Fig. 2. As in H2O, the trend of
the shear elasticity is evidence that the crystal-structure
instability of ice 1h develops before SSA in D2O. At the
same time, the negative pressure derivatives of Vt

(Fig. 1) and G (Fig. 2) for phase 1h D2O are far smaller
than the respective values for 1h H2O ices [5, 16, 18].

To study transformations between amorphous D2O
ice phases, we measured the longitudinal and trans-
verse ultrasonic wave velocities as a function of tem-
perature in the regime of natural heating of ice hda
from T = 78 K at a fixed pressure P = 0.05 GPa. The
experimental results are presented in Fig. 3. Phase tran-
sition hda  lda is preceded by the decreases in both
wave velocities, which is evidence of softening of the
amorphous network of ice hda. Transition hda  lda
is accompanied by a dramatic change in volume; the
magnitude of the jump in D2O (≈18%) is again slightly
smaller than in H2O [16, 18]. Note that the densities of
phases lda, 1c, and 1h are practically identical, whereas
the features observed in the Vl(T) and Vt(T) plots in the
range 100–180 K show the transition sequence hda 
lda  1c  1h (Fig. 3). We assume that the temper-
ature range in the case of D2O, as for H2O [18], can be
divided in segments as follows: 78–130 K is the domain
of existence of phase hda; 130–140 K is the transition
hda  lda; 140–148 K is the domain of existence

Fig. 2. Calculated variations in the shear modulus and bulk
modulus during SSA in ice 1h D2O. Crosses show G varia-
tion during SSA in ice 1h H2O given for comparison. The
other notations are the same as in Fig. 1.
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of phase lda; and 148–160 K is the phase transition
from lda to cubic ice 1c, the latter subsequently trans-
forming to hexagonal phase 1h.

The calculated values of the elastic moduli for this
transformation cascade are presented in Fig. 4. Here, as
in the case of H2O [18], G softening precedes transition
hda  lda. A further decrease in G is a consequence
of this transition. In the case of D2O, however, we do
not observe softening of the bulk modulus associated
with transition hda  lda (Fig. 4); in H2O, Bs

decreases from about 10 to 8.5 GPa in the range 78–
130 K.

4. Thus, our data indicate that, as in H2O, the elas-
tic softening of the structure (the crystal lattice in ice
1h or amorphous network in ice hda) precedes the
nonequilibrium transformations under discussion; this
fully confirms the general inferences made previously
about the nature and mechanisms of such transforma-
tions [13–19]. Nonetheless, H2O and D2O signifi-
cantly differ in their behavior. Let us consider these
differences.

Fig. 3. Experimentally observed variations in the relative
volume and the transverse and longitudinal ultrasonic
velocities upon heating ice hda D2O under 0.05 GPa.
Dashed verticals mark structure-transformation stages.
To understand the reasons for which the absolute
value of the negative pressure derivative of G for D2O
is notably smaller than for H2O, one evidently must
know the whole tensor of elastic constants for ice 1h
and the pressure derivatives of its components. Unfor-
tunately, such information is available only for H2O at
T = 238 K [23, 24]. Nonetheless, we can assume that
lattice softening and instability of ice 1h D2O is gov-
erned by the same shear constant as for H2O, namely,
µ1 = 1/2(c11 – c12); for details, see [16, 18]. From the
microscopic viewpoint, the higher degree of ordering in
ice 1h D2O [25] can be responsible for the different
behaviors of elastic properties for phases 1h H2O and
1h D2O; this is seen, in particular, from the smaller
mean-square displacements of atoms in the 1h D2O lat-
tice.

The isotope shift of the SSA pressure for ice D2O to
higher values (see also [22]) can be interpreted in terms
of a model that considers the dynamic lattice instability
as the driving force of SSA [13, 14], if we assume that
the instability criterion for the soft mode is an analogue
of the Lindemann criterion for melting. The vibrational
amplitude is inversely proportional to the effective
mass. In the case of D2O, both the intramolecular and
the intermolecular vibrations are associated with
smaller mean-square atomic displacements; in this
case, therefore, the isotope effect in ice amorphization
can be explained both qualitatively and quantitatively.

Fig. 4. Calculated variations in the shear modulus and bulk
modulus upon heating ice hda D2O. The structure-transfor-
mation stages marked with dashed verticals correspond to
Fig. 3. Crosses show Bs variation upon heating ice hda H2O
for comparison.
JETP LETTERS      Vol. 78      No. 8      2003
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Another intriguing feature of SSA in D2O is a weak
decrease in Bs upon amorphization, unlike H2O, where
Bs increases in accordance with the fact that the transi-
tion results in a denser phase. For amorphous ice hda
D2O, modulus Bs for all pressures has a lower value
than for ice 1h (Fig. 2); in the case of H2O, an opposite
situation is observed [16, 18]. Moreover, the results of
studying the transformation cascade hda  lda 
1c  1h show that the bulk modulus for phase hda
D2O is lower than the respective values for all tetrahe-
dral D2O phases, namely, lda, 1c, and 1h (here, tetrahe-
dral phases mean phases in which oxygen atoms are
surrounded by near-regular tetrahedral neighboring O
atoms). For H2O ices, phase hda has a Bs value slightly
greater than any of the three aforementioned tetrahedral
phases [16, 18]. This is natural, since the ice hda den-
sity is appreciably higher than the densities of these
phases. Note that the ratio of the bulk moduli of the tet-
rahedral phases is the same for H2O [16, 18] and D2O
(Fig. 4): Blda < B1h < B1c; this might be associated with
a decrease in the disorder of the tetrahedral packing of
oxygen atoms.

The quantitative and qualitative differences in the Bs

values for phases hda H2O and D2O must be related to
the different behaviors of the 1st and 2nd coordination
spheres under pressure. Recent neutron studies of ice
hda D2O under pressure showed [10] that, under pres-
sure, the 2nd oxygen coordination sphere in phase hda
D2O is severely contracted (the 1st coordination sphere
is virtually incompressible); under about 2 GPa, the 2nd
sphere approaches the 1st sphere. Note that the 1st and
2nd spheres are not hydrogen-bonded [9, 10]. In fact,
various parts of a network formed from hydrogen-
bonded oxygen atoms penetrate each other under pres-
sure [10]; this analogy is exemplified by the clathrate
structure of ice VI (see [12]). To our knowledge, no
similar data exist for phase hda H2O; however, the
dynamics of the interpenetration of the 1st and 2nd oxy-
gen coordination spheres in this case can be different.
Indeed, the motion dynamics of H and D atoms in sim-
ilar ice phases are substantially different from both
classical and quantum viewpoints.

Quantum calculations for phases hda H2O and
D2O [26] showed a significantly higher extent of
quantum (tunneling) delocalization of H atoms. The
lower mobility of D2O molecules in the course of
structure ordering (in particular, in the classical mean-
ing of this word) manifests itself as the slower kinet-
ics of molecular reorientation during structure order-
ing [27] or as a wider pressure range of O–D optical
mode softening compared to the O–H mode [28, 29].
Thus, in ice hda H2O, extra relaxation mechanisms
can exist for the softer nanodomains that appear upon
the compression of an amorphous network, such as
the reorientation of molecules or the quicker dynam-
ics of interpenetration of the 1st and 2nd oxygen coor-
dination spheres.
JETP LETTERS      Vol. 78      No. 8      2003
To summarize, we must stress the unexpectedly
high isotope effects observed for the elastic properties
of H2O and D2O ices. Evidently, the interpretation of
these effects calls for the more detailed experimental
and theoretical comparison of the structure, dynamic
properties, and elastic properties of H2O and D2O
phases.

This work was supported by the Russian Foundation
for Basic Research (project nos. 01-02-16557, 02-02-
16298) and the President’s grant for the support of lead-
ing scientific schools.
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Appearance of Anomalous Phase in 4He Crystal 
in the Presence of Small 3He Impurity
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The kinetics of formation of an anomalous phase from a solution with a small 3He impurity was studied in the
temperature range 0.2–0.7 K up to a supersaturation of ~30 mbar. The phase diagram was determined for nor-
mal and anomalous growths. It is found that, in the presence of impurities, the formation of a fast-growing state
is retarded. This experimental fact indicates that the dissipative processes in fluids have an appreciable effect
on the phase formation kinetics. The retardation is, possibly, caused by the direct interaction of an impurity with
the crystal surface. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 67.80.Mg
1. INTRODUCTION

To date, a sharp transition of helium crystal from the
state with slow growth kinetics to the phase with rates
several orders higher has not been explained theoreti-
cally [1– 8]. It is even unclear whether this transition is
associated with the bulk or surface crystal properties.
On the one hand, simultaneous increase in the rates of
all facets, below both the second [2] and the third
roughening transitions [8], counts in favor of the bulk
mechanism. It would be logical to expect that the facets
of different crystallographic orientations with different
roughening transition temperatures and surface param-
eters (e.g., linear step energies or interplanar spacings)
undergo transition to the anomalous state at different
degrees of supersaturation. On the other hand, the bulk
thermodynamic parameters (including those indicated
above) of fluid and crystal have no singularities in this
temperature range and depend weakly on temperature.
This cannot explain the observed appreciable tempera-
ture-induced increase in the critical supersaturation Dp0
corresponding to the onset of transition [5]. The general
form of this dependence is the same as for the concen-
tration growth of the normal component that deter-
mines the step kinetics at the facet surface. This, in turn,
favors the surface formation mechanism for the anom-
alous state.

The introduction of a small 3He impurity sizably
affects the kinetics of surface defects [9], but it has only
a little (measured by concentration) effect on the bulk
thermodynamic parameters. The experiment with
impurities allows additional arguments to be gained in
favor of one or another of hypotheses. Moreover, the
effect of even a low impurity concentration can be quite
substantial at low temperatures. According to the theo-
retical estimates [10] and experimental data [11, 12],
0021-3640/03/7808- $24.00 © 20493
the impurity is adsorbed at the liquid–crystal interface
in a potential well with a depth of ~4 K. For our con-
centrations, the population of the adsorbed layer below
~0.4 K is on the order of unity, so that a layer of two-
dimensional Fermi liquid forms at the surface. The
appearance of such a layer, generally, can change sub-
stantially the formation kinetics for the anomalous
state.

Earlier, it has been reported that the introduction of
a small 3He impurity increases the critical supersatura-
tion at 0.68 K [8] and in the range 2 mK – 0.2 K [3]. In
this work, the results of measurements in a solution
with atomic concentration x = 180 ppm and tempera-
tures 0.2–0.7 K are reported.

2. MEASUREMENTS 
AND EXPERIMENTAL RESULTS

The measurement technique and the container
design were described in detail in [5, 7]. We present
here only the key experimental details. Helium crystal
was nucleated at the center of a cylindrical container of
volume 1.8 cm3 by an electrostatic field pulse. With this
method, the initial supersaturation Dp0 could be estab-
lished in the interval from zero (phase-equilibrium
pressure) to its maximal value that was determined by
the spontaneous nucleation at the inner container wall.
A change in pressure in the course of growth was mea-
sured by a capacitive transducer with a time resolution
of 35 µs. A temperature of 0.48 K was achieved by the
evacuation of 3He vapor and served as a starting point
for the magnetic cooling by paramagnetic salt
(chrome–potassium alum). Temperature was measured
by a Matsushita thermometer placed inside the con-
tainer in contact with the superfluid helium.
003 MAIK “Nauka/Interperiodica”
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The introduction of an impurity noticeably affected
the crystal growth kinetics, as can well be seen from the
record of a pressure drop in the container during the
growth. The overall trend consisted of growth deceler-

Fig. 1. Phase diagram of the anomalous state in a solution
with a concentration of 180 ppm. Light circles correspond
to the points of transition to the anomalous state, and black
circles are for the normal growth. The lower curve is a
boundary between these two regions in pure helium.

Fig. 2. Delay time as a function of initial supersaturation at
three temperatures: T = (triangles) 0.24, (circles) 0.42, and
(squares) 0.545 K. The dashed curves correspond to pure
helium. The solid lines are drawn for clarity. The arrows to
the left of the points indicate the values of critical supersat-
uration for these temperatures in the diagram of the anoma-
lous state (see Fig. 1).
ation, but the pressure curves had a more complicated
character and were not described by the growth coeffi-
cient alone, as in pure helium [13]. In this case, analysis
of kinetics requires the solution of a rather complex
problem of heat and impurity flows in fluid. For this
reason, only those results which did not change qualita-
tively upon the inclusion of impurities are presented in
this work. Among these is the transition to the anoma-
lous state, which, as in pure helium, is detected from the
abrupt pressure drop due to a change in the growth
kinetics [4]. Therefore, the growth rate in solutions also
increases jumpwise by several orders of magnitude.
After the transition, the crystal growth time decreases
to ~0.2 ms. As shown in [6, 7], this time is determined
by the oscillating growth mode. Due to a qualitative
similarity of the processes of anomalous state forma-
tion in pure helium and in solution, one can construct a
phase diagram for the anomalous state and determine
its formation kinetics by measuring the delay time from
the instant of crystal nucleation to the pressure jump.

The measured phase diagram is shown in Fig. 1.
One can see that the boundary separating the anoma-
lous and normal growths is shifted from its position in
pure helium to higher supersaturations [5]. A sharp
increase in the critical supersaturation observed in pure
helium above ~0.75 K shifts to ~0.6 K. Thus, a small
3He impurity retards the formation of the anomalous
state. In Fig. 2, the same fact is seen from the plot of
delay time against supersaturation. As in pure helium,
the delay time (time interval between the crystal forma-
tion and the transition to the anomalous state) shortens
with lowering temperature. As before, the delay time
strongly depends on the supersaturation. Note that no
long delay times were detected in this experimental run,
contrary to pure helium, where this time was as long as
200 ms. The possible reason is that the curve for the
delay time τ(Dp0) is steeper than in pure helium. Then,
the desired segment of the curve could be missed
merely because of relatively poor statistics. This con-
clusion is confirmed by the direct delay measurements
(Fig. 2). The delay times in the solution are longer than
in pure helium, in accordance with the fact that the
boundary of anomalous region is shifted upward
(Fig. 1). Note that, in this method, the transition is
detected only during the crystal growth time (20–
200 ms), so that the boundary in Fig. 1 is drawn for the
delay times shorter than the indicated times.

The influence of impurities on the formation of the
anomalous phase was studied in [3], where the cumula-
tive probability distribution for its appearance was mea-
sured in the 10- and 50-ppm solutions. The normalized
distribution N(Dp) is related to the probability w of
anomalous state formation by

(1)N 1
1
c
--- w x( ) xd

0

Dp

∫–
 
 
 

, D p t( )exp– ct,= =
JETP LETTERS      Vol. 78      No. 8      2003



        

APPEARANCE OF ANOMALOUS PHASE 495

                                               
(see Eq. (38) in [3]). By taking the inverse of this
expression, one finds the mean delay time for the for-
mation of the anomalous state:

(2)

The result of processing for a temperature of ~0.25 K is
shown in Fig. 3. The data presented in [3], as well as our
results, demonstrate that the delay time increases upon
the introduction of impurities in helium. Although it
makes no sense to compare the numerical values
because of a too large data scatter (three orders of mag-
nitude for the delay time), the overall trend (accelera-
tion of the anomalous state formation with an increase
in supersaturation) is the same in both measurement
regions. Based on the tendency demonstrated by the
results of work [3], one can assume that the τ(Dp0)
curve should pass to the right of and above the points
measured for a solution with x = 50 ppm. In this case,
the overall τ(Dp0) dependence will exhibit a fast
increase within a delay time range of 10–1000 ms, as
was assumed previously (see above).

3. DISCUSSION

Measurements in the solution gave additional evi-
dence that the anomalous transition observed in this
work is identical with the burstlike growth observed in
[3]. This was conjectured in [4] and confirmed for pure
helium after measurements at temperatures down to
0.2 K [8].

The first measurements of the impurity effect on the
formation kinetics of an anomalous state were per-
formed in the temperature range 2–250 mK [3]. At
these temperatures, the 3He solubility in crystal is expo-
nentially small, and the action of impurities amounts to
the scattering of their atoms from the surface and the
formation of an adsorbed layer. Experiments on the
facet growth under these conditions [9] for the concen-
trations x = 40–220 ppm showed that the growth kinet-
ics can adequately be described solely by the quasipar-
ticle scattering from the steps; i.e., the saturated
adsorbed layer has no noticeable effect on the kinetics.
Above 0.2 K, the influence of impurities of this concen-
tration on the step motion is negligible. In our temper-
ature range, there are two singular points corresponding
to (a) the same concentrations of both phases at Tx ≈ 0.6
K and (b) the onset of the formation of a saturated
adsorbed layer at Tad ≈ 0.45 K. Above Tx, the equilib-
rium impurity concentration is higher in the solid
phase, and, below this temperature, it is higher in the
liquid (cf. [14] and references cited therein). Exactly at
this point, the concentrations are identical, so that the
crystal growth does not initiate the impurity diffusion
flows in the bulk and additional growth-decelerating
dissipation [15]. If the role of impurity flows consisted
only in the deceleration of growth kinetics, then the sin-

1
w
---- c

d 1 N–( )ln[ ]
d Dp( )

--------------------------------–
 
 
 

1–

.=
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gularity (decrease in the critical supersaturation) would
be observed at the Tx point. However, one can see in
Fig. 1 that this singularity does not occur. This signifies
that the deceleration of the formation of an anomalous
state is caused not only by a change in the growth kinet-
ics. This is indirectly confirmed by a weak temperature
dependence of the critical supersaturation below 0.6 K.
Indeed, the impurity concentration below this tempera-
ture starts to rapidly (exponentially) decrease. When
growing, the crystal “gathers” impurities, so that the
characteristic time of reducing the excessive near-sur-
face concentration also influences the growth kinetics.
However, one can see in Figs. 1 and 2 that this phenom-
enon is reflected neither in the phase diagram nor in the
delay time curves.

The second temperature point corresponds to the
transition of the adsorbed layer from the rarefied two-
dimensional gas state to the degenerate two-dimen-
sional Fermi gas state. The influence of the adsorbed
layer on the formation kinetics of the anomalous state
is now unknown. For this reason, we restrict ourselves
only to stating the fact that, at temperature Tad, no
anomalies are observed in the phase diagram and the
state formation rate (Figs. 1, 2).

We note in conclusion that the introduction of impu-
rities has retarded the formation of an anomalous state.
This effect, however, cannot be understood only in
terms of surface growth kinetics, i.e., explained by a
change in the step mobility. Nevertheless, such a char-
acter of impurity action on the anomalous state is evi-

Fig. 3. Delay time as a function of initial supersaturation.
Rhombi are the data of this work (T = 0.24 K and x =
180 ppm); squares, circles, and triangles are the results of
work [3] recalculated using Eq. (2) for T = 0.25 K and con-
centrations x = (squares) 0.1, (circles) 10, and (triangles)
50 ppm. Straight lines are drawn using the least-squares
method.
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dence of the decisive role of the surface in the forma-
tion of the fast-growing phase.

I am grateful to A.Ya. Parshin for discussion of
results. This work was supported by the Russian Foun-
dation for Basic Research, project no. 02-02-16772.
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We analyze the dissipative dynamics of a two-level quantum system subject to low-frequency, e.g., 1/f noise,
motivated by recent experiments with superconducting quantum circuits. We show that the effect of transverse
linear coupling of the system to low-frequency noise is equivalent to that of quadratic longitudinal coupling.
We further find the decay law of quantum coherent oscillations under the influence of both low- and high-fre-
quency fluctuations, in particular, for the case of comparable rates of relaxation and pure dephasing. © 2003
MAIK “Nauka/Interperiodica”.

PACS numbers: 03.65.Yz; 75.10.Jm; 74.50.+r; 85.25.Cp
Recent experiments with superconducting Joseph-
son-junction circuits [1, 2] demonstrated quantum
coherent oscillations with a long decay time and a qual-
ity factor up to ~104. These experiments, on one hand,
probe coherent properties of Josephson qubits (quan-
tum bits) and demonstrate their potential for applica-
tions in quantum computing and quantum communica-
tion. On the other hand, they may be viewed as a probe
of the noise mechanisms in the devices studied.

For the description of the dynamics of a two-level
system (qubit, spin) subject to weak short-correlated
noise, one may use the Bloch equation, known from
NMR studies, which describes exponential relaxation
of the longitudinal spin component and dephasing of
the precessing transverse spin component (here and
below, we use the spin-1/2 language to discuss the
dynamics). This description is valid as long as the cor-
relation time of the noise is short compared to the typi-
cal dissipative times T1, T2. However, in Josephson-
junction qubits, the low-frequency noise is strong.
These low-frequency fluctuations are correlated over
distant times, and special treatment of their influence
on a qubit is needed. They could lead to complicated
decay laws [3–6]. In [7], the influence of low-frequency
fluctuations nonlinearly coupled to a qubit was ana-
lyzed; this analysis is relevant for operation at the so-
called optimal operation points [1]. Here, we extend
this analysis to account for the effect of transverse fluc-
tuations also present at optimal points. While our dis-
cussion applies to an arbitrary dissipative two-level sys-
tem, for illustration we consider the Josephson charge
qubit, similar to that studied in the experiment [1]. We
begin by discussing this system and the relevant noise
sources, and then proceed to the analysis of dephasing
in general and at optimal points.

¶ This article was submitted by the authors in English.
0021-3640/03/7808- $24.00 © 20497
Dissipative dynamics of a Josephson charge
qubit. The simplest Josephson charge qubit is the Coo-
per-pair box shown in Fig. 1 [8]. It consists of a super-
conducting island connected by a dc-SQUID (effec-
tively, a Josephson junction with the coupling EJ(Φx) =

2 cos(πΦx/Φ0) tunable via magnetic flux Φx; here,
Φ0 = hc/2e) to a superconducting lead and biased by a
gate voltage Vg via a gate capacitor Cg. The Josephson

energy of the junctions in the SQUID loop is , and

their capacitance  sets the charging-energy scale

EC ≡ e2/2(Cg + CJ), CJ = 2 . At low enough tempe-
ratures, single-electron tunneling is suppressed and
only even-parity states are involved. Here, we consider
low-capacitance junctions with high charging energy

EC @ . Then, the number n of Cooper pairs on the
island (relative to a neutral state) is a good quantum
number; at certain values of the bias Vg ≈ Vdeg = (2n +
1)e/C, two lowest charge states n and n + 1 are near-
degenerate, and even a weak EJ mixes them strongly. At
low temperatures and operation frequencies, higher

EJ
0

EJ
0

CJ
0

CJ
0

EJ
0

Fig. 1. The simplest Josephson charge qubit.
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charge states do not play a role. The Hamiltonian
reduces to a two-state model,

(1)

in the basis |↓〉  = |n〉 , |↑〉  = |n + 1〉; here, Ech(Vg) =
2e(Vg – Vdeg)Cg/(CJ + Cg). The Hamiltonian (1) can be
controlled via the gate voltage Vg and the applied flux
Φx; this allows one to manipulate the qubit’s state and
perform quantum logic operations. To read out the final
quantum state, one has to couple the qubit to a quantum
detector, e.g., a single-electron transistor [8].

Quantum bits are inevitably coupled to fluctuations
in the environment (bath). This destroys the coherence
of the qubits’ dynamics. To slow down the dephasing,
the coupling should be made as weak as possible. In
solid-state systems, decoherence is potentially strong
due to numerous microscopic modes. In Josephson
qubits, the noise is dominated by material-dependent
sources, such as background-charge fluctuations or
variations of magnetic fields and critical currents, with
power spectrum peaked at low frequencies, often 1/f. A
further relevant contribution is the electromagnetic
noise of the control circuit, typically ohmic at low fre-
quencies. The 1/f noise appears difficult to suppress
and, since the dephasing is dominated by low-fre-
quency noise, it is particularly destructive. On the other
hand, Vion et al. [1] showed that the effect of this noise
can be substantially reduced by tuning the linear longi-
tudinal qubit-noise coupling to zero (in a modified
design; they also suppressed the coupling to the quan-
tum detector to minimize its effect on the qubit before
the readout). This increased the coherence time by two–
three orders of magnitude compared to earlier experi-
ments.

Of special interest is the analysis of the slow dephas-
ing at such an optimal point. On one hand, comparison
of theory and experiment may verify our understanding
of the physics of the device studied as a dissipative two-
level system. Further, from the analysis of the dephas-
ing time scale and the decay law, one may extract addi-
tional information about the statistical properties of the
noise. On the other hand, understanding of the dissipa-
tive processes should allow their further suppression in
future qubit designs.

Part of the noise (including the background-charge
fluctuations) can be thought of as fluctuations of the
gate voltage, and another part, as fluctuations of the
control flux Φx. It is convenient to discuss the effect of,

e.g., the voltage noise Vg =  + Y(t) in the qubit’s
eigenbasis:

(2)

where the level splitting ∆E = (Ech( )2 + )1/2 and
the angle between the static and fluctuating “magnetic”

*
1
2
--- Ech Vg( )σ̂z EJ Φx( )σ̂x+[ ] ,–=

Vg
0

*
1
2
---–= ∆Eσ̂z ζ Ŷ t( ) – ησ̂ xsin ησ̂zcos+( )+[ ] ,

Vg
0 EJ

2

fields is given by tanη = EJ/Ech( ). We expanded the
variation of Ech in Y to the linear order. Consider first
the effect of weak short-correlated noise (with correla-
tion time shorter than the dissipative times; this
includes the finite-temperature ohmic noise). In this
case, one can use the lowest-order perturbation theory
and finds that the spin dynamics is described by the
Bloch equations, known from NMR. The interlevel
transitions are induced by the transverse fluctuations
∝ sinη and give the relaxation time 1/T1 =
ζ2sin2ηSY(ω = ∆E)/2; the dephasing time is 1/T2 =

1/2T1 + 1/ , where the pure dephasing is induced by

the longitudinal noise ∝ cosη and gives 1/  =
ζ2cos2ηSY(ω = 0)/2 (here, the noise power SY(t) =
(1/2)〈[Y(t), Y(0)]+〉; we set " = 1). The effect of the mag-
netic-flux noise can be analyzed similarly. For Joseph-
son qubits, these expressions give good estimates for
the measured relaxation times but do not suffice to
describe the dephasing. Indeed, the expression for 
cannot be used for strong longitudinal low-frequency,
e.g., 1/f noise; still, it indicates that dephasing is strong.
In early experiments [4, 9], dephasing times in the
range of fractions to a few nanoseconds were achieved.
Tuning to an optimal point extended the coherence time
to ~1 µs [1].

Dephasing at an optimal point. We illustrate our
discussion of decoherence at an optimal point by con-
sidering a qubit deep in the charge limit, although in the
device of [1] EC and EJ were comparable (in which case
two lowest eigenstates, which form the qubit, are no
longer charge states). Using two control parameters Vg

and Φx, one can tune the longitudinal linear couplings
to the charge and flux noise to zero. For instance, for the
system (2), tuning the gate voltage to the degeneracy

point Ech( ) = 0 yields cosη = 0. Further, tuning Φx to
the point of maximal EJ(Φx) also suppresses the linear

coupling to the flux fluctuations Φx =  + X(t). Thus,
at this optimal point, the Hamiltonian reads:

(3)

where we left only the leading fluctuating terms.

The quadratic longitudinal low-frequency noise
λX2  may result in an unusual dephasing law (with a
power law crossing over to exponential decay) due to
strong higher-order contributions [7]. Here, we discuss
the effect of the transverse noise ζY . It can lead to
relaxation processes and contribute to pure dephasing
in higher orders. Thus, in the analysis of dephasing, one
needs to account for both λX2 and ζY terms.

The effect of the low-frequency (ω ! ∆E) transverse
noise can be treated in the adiabatic approximation: we

Vg
0

T2*

T2*

T2*

Vg
0

Φx
0

*
1
2
--- ∆Eσ̂z λ X2σ̂z ζY σ̂x+ +[ ] ,–=

σ̂z

σ̂x
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diagonalize (3) to – /2 ≈
− [∆E + λX2 + ζ2X2/(2∆E)]/2, thus the low-ω trans-
verse noise contributes to pure dephasing. In general,
higher-frequency fluctuations are also present and
induce relaxation. If the relaxation is much slower than
the pure dephasing, one may neglect its contribution to
the total dephasing. If the relaxation is much faster, it
dominates the decoherence; in this limit, its rate
ζ2SY(∆E)/2 is given by the golden rule. However, of
special experimental interest [1] is the situation with
comparable relaxation and pure-dephasing time scales.
We analyze whether evaluation of each of them is influ-
enced by the other in this case, that is whether the low-
and high-ω contributions interfere. In particular, we
expect [7] strong higher-order contributions to the pure
dephasing due to strong low-ω noise. Does it also con-
tribute to relaxation? In the lowest order, the relaxation
is due to transitions with emission of a single resonant
bath excitation; can instead a near-resonant excitation
be emitted accompanied by low-frequency excitations?
Here, we show how the dephasing and relaxation laws
and time scales can be obtained.

Dephasing by transverse noise. We begin with a
discussion of purely transverse noise, λ = 0. We focus
on the long-correlated noise (slow decay of 〈Y(0)Y(t)〉),
i.e., on the noise power peaked at low and smooth at
high frequencies. In our analysis, below we assume
weak dissipation: pure dephasing and relaxation slower
than the oscillations Γ ! ∆E, where Γ represents the
total-dephasing time scale. This limit is of primary
interest for the circuits that realize qubits. In addition,
for illustration below we consider a source of Gaussian
noise Y(t), which can be characterized by its second
correlator, but our major conclusions persist in more
general situations.

Our discussion is based on the analysis of the evolu-
tion operator of the qubit dynamics using the “real-
time” Keldysh diagrammatic expansion in the qubit-
bath coupling (this approach [10] is useful, since the
spin degree of freedom does not satisfy the Wick theo-
rem; it reminds the approach of [11]). We begin by
showing that the subleading-order effects of the low-
frequency transverse noise reduce to the lowest-order
contribution of longitudinal quadratic noise (this can
also be seen from the adiabatic approximation, but our
derivation indicates the diagrams important in the dis-
cussion below).

In the diagrams, the horizontal direction explicitly
represents the time axis. The solid lines describe the
unperturbed (here, coherent) evolution of the qubit’s
2 × 2 density matrix , exp(–iL0t)θ(t), where L0 is the
bare Liouville operator (this translates to 1/(ω – iL0) in
the frequency domain). The vertices are explicitly time-
ordered; each of them contributes the term ζYσxτz/2,
with the bath operator Y(t) and the Keldysh matrix
τz = ±1 for vertices on the upper/lower time branch.

σ̂z ∆E λ X2+( )2 ζY( )2+

σ̂z

ρ̂
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Averaging over the fluctuations should be performed;
for Gaussian correlations, it pairs the vertices as indi-
cated by dashed lines in Fig. 2, each of the lines corre-
sponding to a correlator 〈YY〉 . Figure 2 shows contribu-

tions to the second-order self-energy  (here, ij =
↑↓  label four entries of the qubit’s density matrix). The
term in Fig. 2a gives

(4)

with integration over the domain t ' < τ2 < τ1 < t.

After the summation over vertex positions on the
lower/upper branches in Figs. 2a and 2b, we evaluate
the behavior of the Fourier-transformed self-energy in
the vicinity of the level splitting, at ω = –∆E – ω' + i0,
where ω' ! ∆E. If the integral is dominated by low fre-
quencies, we find:

(5)

where  is the noise of

(6)

The result (5) coincides, as expected, with the lowest-
order contribution of the term –Y2σz/2; note that the left
and right vertex pairs in Fig. 2 can be viewed as com-
posite vertices corresponding to –Y2σz/2. Below, we
demonstrate that similar reduction occurs in every
order of the perturbative expansion. Specifically, we
show that the decay of the off-diagonal entry of the den-
sity matrix is ρ↑↓ (t) = ρ↑↓ (0)exp(–t/2T1)γϕ(t), where the
relaxation time is given by the golden rule and the pure
dephasing term γϕ(t) is the same as for the longitudinal
fluctuations –Y2σz/2 (analyzed in [7]).

To demonstrate this, we consider the diagrammatic
calculation of the evolution operator for the density
matrix. We begin by evaluating the evolution of the off-

diagonal entry  (the phase dynamics and dephasing),

and then discuss relaxation (evolution of , ).

Σ↑↓←↑↓
2( )

ζ
2
--- 

 
4

τ1 τ2 Y t( )Y t'( )〈 〉 Y τ1( )Y τ2( )〈 〉 e
i∆E τ1 τ2–( )

,dd∫

ReΣ↑↓←↑↓
2( ) ω ∆E– ω'– i0+=( ) ζ4

8∆E2
------------- νd

2π
------∫–≈

× Yν ω'+
2〈 〉 Y ν–

2〈 〉 Yν ω'–
2〈 〉 Y ν–

2〈 〉+[ ] 1
2
---SY2

ω'( ),–=

SY2

Y2 ζ2Y2/ 2∆E( ).≡

ρ↓
↑

ρ↑
↑ ρ↓

↓

Fig. 2. Second-order contributions to the self-energy
. Other terms are obtained by shifting an even

number of the vertices in (a) or (b) to the lower branch.

Σ↑↓←↑↓

t ' t '
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The expansion of the propagator contains vertices
on the horizontal solid lines representing the Keldysh
contour. For a given number and ordering of the verti-
ces, one is to integrate over their time positions, and
then add up all diagrams. Consider the dependence of
the integrand on the time position of a vertex. This
dependence includes fast oscillations with frequency
±∆E, since the vertex flips the spin and changes the
energy of the bare Hamiltonian –∆Eσz/2, and a much
slower dependence of the dashed line. Thus, the inte-
grand is a fast oscillating function of the time positions
of each vertex. Since integration is typically performed
over a time range much wider than the period of oscil-
lations (at all times of interest for the analysis of
dephasing; this range is ~1/Γ at t ~ 1/Γ), the contribu-
tion for the most part of the integration space (with ver-
tices’ time positions as coordinates) is strongly sup-
pressed by fast oscillations. However, in certain direc-
tions in this space, in which pairs of vertices with
opposite oscillation frequencies ±∆E move together,
the variation is slow, and the respective domains domi-
nate the integral. One can arrive at this conclusion, and
determine the dominant domains, by considering the
evaluation of a particular diagram: the integral over the

time t of a vertex exp(i∆Et)dt is taken between

the positions a and b of the neighboring vertices. Since
g(t) is slow on scale 1/∆E, the oscillatory integral is
dominated by the boundary terms,

g(t) /i∆E. One can say that the vertex t
joins one of its neighbors, and later one integrates over
the vertex-pair position, a or b.

One can continue this process, integrating at each
step over time positions of unpaired vertices (or clusters
with an odd number of vertices and, hence, oscillatory
behavior), if any are still present. Finally, one arrives at
a situation where all vertices are paired, and the depen-
dence of the integrand on pair time positions is slow
(the exponentials exp(±i∆Et) for two paired vertices
compensate each other). The integral in each domain
with a fixed time ordering is dominated by the bound-

g t( )
a

b∫

i∆Et( )exp a
b

Fig. 3. (a) Double vertices with low-ω tails, which appear in
the evaluation of dephasing. (b) Examples of clusters built
out of them [7]. (c) A low-ω object with a high-frequency
dashed line. The relaxation process in (e) also contributes to
dephasing as shown in (d).
ary terms, that is, the terms with paired vertices. Thus,
we eliminate the high-frequency (~∆E) behavior, and
now can evaluate the propagators using the diagram
technique with ingredients that are slow (without oscil-
latory dependence on their time position): “double”
vertices with two dashed tails in Fig. 3a and dashed
lines connecting these tails (cf. the examples in
Fig. 3b). Although four-, six-, and, further, 2n-fold
clusters also form slow objects—their creation requires
additional constraints on the vertex times (compared to
building n pairs) and the respective integration domain
is much smaller; thus, the contribution of such clusters
is of higher order in Γ/∆E.

A closer inspection of the spin dependence and the
Keldysh two-branch structure reveals that, in each pair,
the vertices are located either both on the upper or on
the lower branch (for vertices located on different
branches, two terms with different time orderings can-
cel each other unless the vertices are linked by a dashed
line; such a term appears in the analysis of relaxation
but not of dephasing), and they indeed effectively cor-
respond to the term –Y2σz/2 in the Hamiltonian.

So far, we have constructed slow composite objects
paying attention only to the oscillations of the solid
lines in the diagrams and assuming very slow dashed
lines, i.e., neglected the higher-frequency noise. In fact,
one can construct another slow object shown in Fig. 3c,
if the respective oscillations of the solid lines are com-
pensated by the dashed line from this vertex. In other
words, in the frequency domain, one constrains the fre-
quency of the dashed line to be ∆E (or –∆E, depending
on the direction of the spin flip at the vertex). The
dashed lines from such objects pair up, and the integral
with respect to their relative position is dominated by
small separations, δt ~ 1/∆E. Thus, one finds the slow
object of Fig. 3d: two vertices linked by a dashed line
at frequency ∆E, which describes the relaxational con-
tribution to dephasing exp(–t/2T1), where

(7)

In similar clusters of higher order additional constraints
strongly limit the integration domain. Note that the
object in Fig. 3d involves weak noise at a high fre-
quency ∆E, unlike those in Fig. 3a, but it is still relevant
since the lowest-order term in the upper part of Fig. 3b
is imaginary and does not contribute to dephasing.

Similarly, we analyze the relaxation of the diagonal

entries , . The new slow ingredient in this analysis
is shown in Fig. 3e. As for the composite objects in
Fig. 3a, the terms with these objects located on the
upper and lower branches cancel each other, due to dif-
ferent signs ascribed to them in the Keldysh formalism

(in contrast, in the analysis of the evolution of , dis-
placing a vertex from one branch to the other flips the
spin thus yielding an additional sign change rather than
cancellation). Hence, the relaxation is given by the
terms in Figs. 3d and 3e and Eq. (7). We find that the

1/T1 ζ2SY ∆E( )/2.=

ρ↑
↑ ρ↓

↓

ρ↓
↑
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strong low-frequency noise does not influence the
relaxation rate.

Discussion. We focused on the effect of the purely
transverse noise. One can verify that, in the presence of
the longitudinal fluctuations –λX2σz/2, the reduction
persists: the relaxation is still given by Eq. (7), and the
dephasing can be found by considering the longitudinal
noise –[λX2 + ζ2Y2/2∆E]σz/2. For uncorrelated fluctua-
tions X(t) and Y(t), their effects just add up (this would
happen in the charge limit EC @ EJ for the qubit in
Fig. 1 at the degeneracy point, where the charge noise
is transverse, and at the proper flux bias, where the flux
noise is quadratic longitudinal). In the experiment [1],
EC and EJ were comparable; hence, both charge and
flux noise contributed to longitudinal and transverse
fluctuations making them correlated. This should be
taken into account but does not complicate the analysis.

We considered slow fluctuations. For short-corre-
lated noise, the double vertices of Fig. 3a do not con-
tribute, and one recovers the Bloch equations.

Furthermore, we illustrated our analysis by an
example of Gaussian noise. Such fluctuations are
indeed encountered: The low-frequency noise, e.g., the
background-charge fluctuations in Josephson circuits,
is possibly produced by a collection of bistable fluctua-
tors (or a discrete system with more states). With a
proper wide distribution of their parameters (couplings
to the qubit, switching rates), they produce a smooth 1/f
noise power. If the qubit is affected by many fluctua-
tors, with a dense distribution in the parameter space,
due to the central limit theorem, one expects Gaussian
noise. In some Josephson devices, sharp noise features
indicate that a few fluctuators dominate and the result-
ing noise is non-Gaussian (dephasing by such fluctua-
tors was studied, e.g., in [6]). We emphasize that our
reduction applies also to the analysis of these systems.
Indeed, our derivation used only the fact that the fluctu-
ations are slow. Thus, one can still build the diagrams
from the slow objects constructed above, but for non-
Gaussian fluctuations, the dashed tails of the vertices
may join not in pairs but also in larger bunches. After
JETP LETTERS      Vol. 78      No. 8      2003
the reduction to quadratic longitudinal noise, one may
use other, nondiagrammatic, ways to analyze its effect.

Our results are relevant for the analysis of the exper-
iment of [1], in which the measured relaxation and
dephasing times were comparable. The prediction of a
specific decay law requires a detailed knowledge of the
noise power of charge and flux fluctuations. It can be
acquired via measurements away from the optimal
point, as indicated in [1].

We thank G. Schön and J. Schriefl for useful discus-
sions. This work is part of the CFN of the DFG. Yu.M.
was supported by the Humboldt foundation, the BMBF,
and the ZIP program of the German government.
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Experiments on the L-2M stellarator have shown the occurrence of steady-state low-frequency strong structural
(LFSS) turbulence throughout the entire plasma column. A key feature of LFSS turbulence is the presence of
stochastic plasma structures. It is shown that different types of LFSS turbulence are correlated throughout the
entire plasma volume. Stable non-Gaussian probability density distributions of all of the fluctuating plasma
parameters are measured. The characteristic spatial and time scales of LFSS turbulence, which is responsible
for non-Brownian diffusion in plasma, are determined. © 2003 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.35.Ra; 52.55.Hc
1. INTRODUCTION

In recent years, low-frequency (LF) plasma turbu-
lence in closed magnetic confinement systems has
attracted considerable interest of plasma physicists.
The 2003 EPS conference has demonstrated that exper-
imental research of this kind is presently being carried
out in all of the existing tokamaks and stellarators:
T-10, LHD, TJ-II, DIII-D, JET, etc. (see [1], report
nos. P-2.56, P-3.121, P-4.5, O-2.1A, and P-120). A rea-
son for increased interest in LF turbulence is that many
experimental facts directly indicate its influence on the
macroscopic plasma parameters in closed magnetic
confinement systems. For example, LF turbulence gov-
erns anomalous transport in the edge plasma [2, 3], a
change in the parameters of turbulence correlates with
observations of internal and peripheral transport barri-
ers in plasma [4, 5], and the statistical parameters of the
edge turbulent flux serve as indicators of the state of the
chamber wall [6]. Another reason for a particular inter-
est in the nature of LF turbulence is the problem of eval-
uating the frequency with which rare large-amplitude
events (of a “catastrophic” type) occur in devices with
long-duration or steady-state discharges [7]. The last
reason, in our opinion, is that modern, computerized
data acquisition systems made it possible to process
long data arrays (temporal and spatial samples) of the
fluctuating parameters, which are then used to calculate
the transient and steady-state spectral, correlation,
probabilistic, dimensional, and other characteristics of
LF plasma turbulence.

The L-2M stellarator was among the first toroidal
magnetic confinement systems in which LF turbulence
in a steady-state phase of the discharge was proposed to
be studied by the methods of numerical data analysis.
0021-3640/03/7808- $24.00 © 20502
In 1989, a report on the general characteristics of two
types of LF turbulence was presented [8]. These types
of turbulence were initiated by different plasma insta-
bilities in the L-2M stellarator and the TAU-1 model
linear device. Further studies of LF plasma turbulence
resulted in the fact that a specific turbulent state was
identified by analyzing the characteristics of turbulence
in the TAU-1 device. In [9], this state was called LF
structural turbulence. This is a determinate–chaotic tur-
bulent state in which ensembles of stochastic plasma
structures are present. These structures determine a
number of spectral, correlation, and probabilistic
parameters of turbulence. In the present paper, we
describe LF structural plasma turbulence observed in
the L-2M stellarator.

2. DESCRIPTION OF THE DEVICE 
AND DIAGNOSTIC TECHNIQUES

The L-2M stellarator is an l = 2 stellarator [10]. The
major radius of the torus is R = 100 cm, and the mean
plasma radius is 〈r〉  = 11.5 cm. The plasma was created
and heated by one or two gyrotrons under electron-
cyclotron resonance conditions at the second harmonic
of the electron gyrofrequency (the magnetic field at the
plasma center was B = 1.3–1.4 T). The gyrotron radia-
tion power was P0 = 150–300 kW, and the duration of
the microwave pulse was up to 15 ms. Measurements
were carried out in a hydrogen plasma with an average
density of 〈n〉  = (0.8–2.0) × 1013 cm–3 and a central tem-
perature of Te(0) = 0.6–1.0 keV. In the edge plasma (at
a radius of r/rs = 0.9, where rs is the mean separatrix
radius), the density was n = (1–2) × 1012 cm–3, and the
electron temperature was Te = 30–40 eV. The duration
003 MAIK “Nauka/Interperiodica”
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Table

 Diagnostics Location of the measuring 
region Measured fluctuations Number

of channels
Wavenumber k
of fluctuations

Gyrotron radiation scattering Heating region (high-tem-
perature plasma)

Plasma density 2 20 cm–1

40 cm–1

2-mm scattering High-temperature plasma 
outside the heating region

Plasma density 3 6 cm–1

9 cm–1

13 cm–1

Langmuir probes Edge plasma 1. Plasma density
2. Potential
3. Particle flux

up to 15 Broad spectrum

Magnetic probes Outside the plasma Magnetic field up to 9 Broad spectrum
of the steady-state phase of the L-2M discharge was
10 ms.

It is well known that, in a thermodynamic sense, a
toroidal magnetic confinement device is an open
plasma system. All of the various types of steady-state
plasma fluctuations that are studied under the condi-
tions of dynamical equilibrium have an energy source
and energy sink. There can also exist plasma regions in
which energy is redistributed between different turbu-
lent states. For this reason, when experimentally study-
ing plasma fluctuations, it is important that these con-
stituents of plasma turbulence could be changed by
varying some parameters of the device: the heating
power, the magnetic configuration (the rotational trans-
form), and the state of the chamber wall (the intensity
of gas flux from the wall). The L-2M stellarator meets
these requirements. The plasma heating power can be
varied by varying the gyrotron power. Five different
configurations of the magnetic field (with a rotational
transform at the axes of 0.175, 0.119, 0.082, 0.064, and
0.043) can be created in the device. In addition, by
applying a weak magnetic field transverse to the stellar-
ator plane (Bν = ±20, 40, or 70 G), it is possible to shift
the magnetic axis along the major radius of the torus
[11]. The properties of the first wall depend on the
method of its cleaning. Along with the baking of the
vacuum chamber, an inductive discharge in hydrogen, a
glow discharge in helium, or the boronization of the
chamber are employed. A graphite limiter can also be
used.

In L-2M, fluctuations were measured in several
poloidal sections throughout the entire plasma column
(from the heating region to the separatrix). All the diag-
nostics used to measure fluctuations are listed in the
table. As an illustration, Fig. 1 schematically shows the
arrangement of the diagnostics in one poloidal section.
Plasma density fluctuations in the heating region were
measured by the scattering of the heating gyrotron radi-
ation [12, 13]. Density fluctuations of the high-temper-
ature plasma in the region shifted in the radial and tor-
oidal directions from the heating region were measured
by the scattering of 2-mm probing microwaves [14, 15].
JETP LETTERS      Vol. 78      No. 8      2003
Fluctuations of the density, potential, electric field,
and particle flux in the edge plasma were measured by
Langmuir probes of different design in several sections
along the torus [10]. Fluctuations of the magnetic field
outside the separatrix were measured by magnetic
probes [17]. The results of measurements from all the
diagnostics were unified arrays of the fluctuating
amplitudes in the form of time samples to which the
same program package for the numerical evaluation
could be applied. The length of some samples was up to
256 thousands of readings, the number of simulta-
neously taken samples was up to 20, and the sampling
rate was from 0.1 to 40 MHz. The program package
included the multidimensional spectral Fourier analy-
sis; the correlation analysis [18, 19]; the spectral and
coherent wavelet analysis [20–23]; the drawing of his-
tograms; the calculation of the moments of random val-
ues; and other supplementary programs for smoothing,
filtering, and averaging the signals.

Fig. 1. Arrangement of diagnostics and time samples of the
magnitudes of (a) density fluctuations in the high-tempera-
ture plasma, (b) potential fluctuations in the low-tempera-
ture edge plasma, and (c) magnetic-field fluctuations out-
side the plasma. The frequencies below 1 kHz are filtered.
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3. RESULTS OF STUDIES

LF fluctuations are naturally present throughout the
entire plasma column of the L-2M stellarator—from
the center to the boundary. In this paper, we only con-
sider the general features of fluctuations regardless of
their localization in the plasma column. Figure 1 shows
the time samples of the magnitudes of (a) density fluc-
tuations in the high-temperature plasma in the heating
region, (b) potential fluctuations in the low-temperature
edge plasma, and (c) fluctuations of the magnetic field
outside the plasma. In all three samples, frequencies
below 1 kHz are filtered out. We note that the time
behavior of other signals that were measured in the
experiment and are listed in the table is similar to the
signals presented in Fig. 1 [10, 13, 16]. The time sam-
ples consist of bursts of different durations and pauses
between them. Observations showed that both the sig-
nal frequency within the bursts and the rise and decay
times of the signals in the bursts varied.1 The level of
fluctuations was fairly large as compared to the average
values of the corresponding parameters. The minimum
relative fluctuation level was observed for the magnetic

field /B ~ 5 × 10–5. The level of density fluctuations
inside the plasma column was substantially higher:
from 20–30% ( /n ~ 0.2–0.3) in the edge plasma to
10% ( /n ~ 0.1) in the central region. The level of
potential and electric field fluctuations in the edge
plasma was 10–20% ( /ϕ ~ 0.1–0.2).

The autocorrelation functions (ACFs) of time sam-
ples of LF turbulent fluctuations in the L-2M consist of
two components: a finite-width (rather than a δ-shaped)
maximum and a slowly decreasing tail with repetitive
bursts [8, 13–15, 23]. Figure 2 shows ACFs of density
fluctuations in the central and edge plasmas. The long-

1 At present, such signals are referred to as “burst-type” signals.

B̃

ñ
ñ

ϕ̃

Fig. 2. ACFs of density fluctuations (a) in the central region
and (b) near the plasma edge.

no. 50847

term components of the ACF usually comprise up to
10–30% of the energy of the density, potential, mag-
netic-field, and electric-field fluctuations (the noise
level in these measurements usually does not exceed 1–
2%). Correlation analysis of weak-turbulence signals
shows that they are characterized by a slowly decreas-
ing ACF, so that the characteristic autocorrelation time
is much longer than the oscillation period. In the case
of strong turbulence, fluctuation signals are character-
ized by a rapid decrease in the ACF and the autocorre-
lation time does not exceed the oscillation period. In
experiments, these two turbulent states can easily be
distinguished by the ACF shape. Hence, the measured
ACFs indicate, on the one hand, a strongly turbulent
character of fluctuations and, on the other hand, the
presence of long-term correlated components in this
turbulence.

However, the Fourier spectra of the same fluctua-
tions are uniform and, as a rule, do not contain harmon-
ics [10, 14, 24]. Figure 3a shows a Fourier spectrum of
plasma density fluctuations in the central region of the
plasma column. It can be seen that the spectrum is noisy
in character. Only for certain magnetic configurations,
diffuse harmonics can be observed in the Fourier spec-
tra of magnetic-field fluctuations outside the plasma
column (Fig. 3b). Therefore, Fourier analysis is inade-
quate for describing bursty signals because long-term
correlations do not manifest themselves in continuous
Fourier spectra and the fine structure of the spectra
remains unresolved.

A more adequate description of the frequency spec-
tra of bursty signals is provided by wavelet analysis, in
which a signal under study is represented as a superpo-
sition of finite-duration wavelets.2 Wavelet analysis
turns out to be very convenient when analyzing signals
containing bursts, fast frequency variations, and short-
term events. Therefore, this analysis can be useful when
examining signals from strongly turbulent plasma. In
our experiments, fluctuations were analyzed using
Gaussian wavelets [22, 23]. A wavelet spectrum of den-
sity fluctuations in the edge plasma is shown in Fig. 3c.
In this spectrum, quasi-harmonics corresponding to
long-term ACF components are clearly seen. Similar
wavelet spectra with quasi-harmonics were obtained
for all of the measured fluctuations in L-2M. Using
wavelet spectra (instead of Fourier spectra), we could
study the spatial-coherence parameters of turbulence
on short time intervals and trace the behavior of indi-
vidual bursts or their ensembles. This allowed us to
determine the spatial scales of turbulent fluctuations.
Figure 4a shows the wavelet-coherence coefficient
between density fluctuations measured at two points
separated by 2 mm in the radial (solid line) and poloidal
(dashed line) directions [10]. It can be seen that the
wavelet-coherence coefficient is anisotropic. In the
poloidal direction, this is about 60% for wavelets of any

2 We recall that the wavelet frequency ω is related to the wavelet
duration ∆ by the formula ω = 2π/∆.
JETP LETTERS      Vol. 78      No. 8      2003



        

LOW-FREQUENCY STRUCTURAL PLASMA TURBULENCE 505

                           
duration. In the radial direction, this coefficient reaches
such a level only for short wavelets and decreases
sharply for long wavelets. As the distance between the
probes increases, the coherence coefficient decreases
more rapidly in the radial direction. In such a way, we
measured the characteristic spatial scale of individual
pulsations. It turned out to be up to 4 mm in the radial
direction (the minimum spatial scale in this direction
could not be determined because the probe diameter
was 1 mm) and varied from 4–7 mm to 12–20 cm in the
poloidal direction. The radial velocity of some struc-
tures attained 4 × 106 cm/s. The toroidal coherence
coefficient could be reliably measured only in the
regime with a boronized chamber wall, when the gas
flux from the wall (this flux is also stochastic in charac-
ter) was minimum.3 Figure 4b shows the time behavior
of the toroidal wavelet-coherence coefficient, which
reached a level of 30–70% in some time intervals for
density fluctuations in the frequency range 25–
150 kHz. The amplitude of the wavelet-coherence coef-
ficient is shown by gray shading. The observation time
is plotted on the abscissa, and the wavelet frequency is
plotted on the ordinate. In this figure, the intermittent
character of the wavelet coherence is clearly seen.
Irregularly emerging structures with a large poloidal
size are extended in the toroidal direction. Thus, we can
conclude that stochastic poloidal structures are present
in the edge plasma [6, 24].

The time evolution of the cross-coherence spectrum
of density fluctuations in the central (heating) region
and in the edge plasma is shown in Fig. 5a (in the same
figure, a noise spectrum is also shown).4 The time evo-
lution of the cross-coherence spectrum is obtained by
interpolating individual spectra calculated on 0.5-ms
intervals. The amplitude of the cross-coherence coeffi-
cient is shown by gray shading. The observation time is
plotted on the abscissa, and the wavelet frequency is
plotted on the ordinate. For frequencies below 100–
200 kHz, the cross-correlation coefficient attains 50%
[13, 26]. These measurements can be supplemented by
the cross-coherence wavelet spectra of potential fluctu-
ations in the edge plasma and magnetic-field fluctua-
tions outside the plasma column (Fig. 5b). It can be
seen that, in this case, the cross-coherence coefficient
reaches fairly high values for the same frequencies.
This result, however, does not imply that the stochastic
structures existing in the central region are of the same
nature as the extended poloidal structures in the edge
plasma. Various plasma instabilities can be responsible
for the onset of LF turbulent fluctuations in the plasma:
in the central region of the plasma column, this may be
due to instability driven by trapped electrons and drift-

3 In [25], it was demonstrated that, as the gas flux from the cham-
ber wall increases, the radial electric field Er in the edge plasma
under study (0.75 < r/rs < 1) decreases. At the same time, the
probability of the formation (and, consequently, observation) of
stochastic structures decreases.

4 The background wavelet spectrum is obtained using two signals
measured in different shots.
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dissipative instability related to the difference in the rel-
ative radial density and temperature gradients [13, 27,
28], whereas in the edge plasma, this may be due to the
onset of unstable resistive ballooning MHD modes [10,
29]. MHD structures can arise in the edge plasma,
whereas drift vortices can appear deeper in the plasma
[15, 24]. In the heating region, the nature of the struc-
tures cannot yet be identified even hypothetically. Pre-
viously, it was shown that interrelations between turbu-

Fig. 3. (a) Fourier spectrum of density fluctuations in the
central region, (b) Fourier spectra of potential fluctuations
in the edge plasma and magnetic-field fluctuations outside
the plasma (in a discharge with a graphite limiter and a ver-
tical field of B = –20 G), and (c) wavelet spectrum of density
fluctuations in the edge plasma.
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Fig. 4. (a) Wavelet-coherence coefficient between plasma density fluctuations measured at two points separated by 2 mm in the
poloidal and radial directions in the edge plasma. (b) Time evolution of the toroidal coherence coefficient of fluctuations in the edge
plasma.

no. 44487

Poloidal
lent fluctuations in different types of LF structural tur-
bulence are due to the mutual influence of ensembles of
various stochastic structures [30]. The high cross-corre-
lation coefficient of LF fluctuations, which is probably
attributed to ensembles of the corresponding stochastic
structures, shows that these structures occupy the entire
plasma column.

Important characteristics of LF turbulent fluctuations
are the probability density function (PDF) of the mea-
sured random values [6, 10–13, 24, 31–34]. Figure 6
shows the PDFs of the magnitudes of density fluctua-
tions in the central region (a) and near the plasma edge
(b). The signal magnitude is plotted on the abscissa, and
the number of counts is plotted on the ordinate. In each
case, the total number of counts is 2000. For plasma
density fluctuations in the central region, the shape of
the histogram differs markedly from Gaussian by a
sharper vertex and heavier tails (the third and fourth
moments are m3 = 0.9 and m4 = 8.2, respectively) and is
consistent with the shape of an ACF with a long-term
component. The probability of events with large signal
magnitudes in this type of turbulence far exceeds the
probability of the occurrence of such events for fluctu-
ations described by a Gaussian PDF. As a rule, in toroi-
dal magnetic systems, the PDFs of fluctuations mea-
sured far from the energy source and sink differ from a
Gaussian PDF by heavier self-similar tails only [34]. To
study the self-similar tails of these PDFs, it is necessary
that the time sample consist of more than 104 points.
However, the duration of the steady-state phase of the
L-2M discharge is insufficiently long for such an anal-
ysis. The question of whether the PDF of density fluc-
tuations in the edge plasma (Fig. 6, histogram b) can be
JETP LETTERS      Vol. 78      No. 8      2003
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described by a self-similar distribution with m3 = 0.05
and m4 = 3.2 still remains open.

The difference from a Gaussian PDF is most pro-
nounced for PDFs of fluctuations of the local particle
flux in the low-temperature edge plasma of L-2M [31–

33]. In the experiment, the local particle flux  =
 was determined from three-pin probe mea-

surements [10]. Here, δne is the fluctuating plasma den-
sity, δv r = δEΘ/B is the fluctuating radial velocity,
δEΘ = (δϕ1 – δϕ2)/r∆Θ is the fluctuating poloidal elec-
tric field, δϕ is the fluctuating plasma floating potential,
and Θ is the poloidal angle. Figure 7a shows the ACFs
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Fig. 5. (a) Time evolution of the cross-coherence spectrum
between density fluctuations in the central (heating) region
and near the plasma edge (a noise spectrum is also shown).
(b) The coherence spectrum between potential fluctuations
in the edge plasma and magnetic-field fluctuations outside
the plasma.
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of time samples of the flux and its increments.5 The first
step in studying the PDF of the local flux magnitudes in
L-2M is the analysis of the PDF of the flux increments.
The point is that the magnitudes of the original process
at successive instants of time do not make up a homo-
geneous and independent sample because of the spe-
cific shape of the ACF. From such samples, it is very
difficult to draw inference about the probabilistic–sta-
tistical properties of the process under study. At the
same time, the statistical analysis of the increments of
the fluctuating flux on disjoint time intervals shows that
their PDFs are identical. Figures 7b and 7c show the
PDFs of the flux and its increments in the edge plasma
of L-2M. One can see that the PDFs of both the magni-
tudes and increments of turbulent fluxes differ from
normal distributions. The local turbulent flux in L-2M
was shown to be a doubly stochastic diffusion process
(or, what is formally the same, a diffusion process with
random time).6 The probability density distributions of
the increments of these processes are scale mixtures of
Gaussian distributions; in our case, this is confirmed by
the statistical analysis of time samples of the flux incre-

5 The time sample of the increments  = (tj) – (tj – 1) is

calculated from the time sample of the flux (tj).
6 The processes of this kind result from the passage to the limit in a

generalized Cox process [35]: the doubly stochastic Poisson pro-
cess has the form N(k)(t) = N1(Λk(t)), where N1 is a homogeneous
Poisson process with a unit intensity and Λk are random pro-
cesses independent of N1.

∆Γ̃ j Γ̃ j Γ̃ j 1–

Γ̃ j

Fig. 6. PDFs of time samples of density fluctuations (a) in
the central region and (b) near the plasma edge.
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ments [32, 36].7 All of the measured probability density
distributions of the density, potential, and flux fluctua-
tions in L-2M can be classified as stable distributions
[37].8 Although the problem of analyzing the PDFs of
time samples of random processes in the L-2M stellar-
ator still remains unsolved, the determination of these
PDFs can be useful. For example, it was established
that the third moment (skewness) of a time sample of
the turbulent flux (which characterizes the PDF asym-
metry) is an indicator of the state of the stellarator
chamber wall. Measurements showed that, after boron-
ization, when the gas flux from the wall was reduced,
the third moment differed from zero and did not change
its sign during the discharge and the fluctuating flux
was directed from the center toward the periphery
throughout the entire edge plasma.

In our opinion, the analysis of the PDFs is very
important for the correct interpretation of diffusion
phenomena associated with turbulent fluctuations in

7 The introduction of [32] is devoted to non-Gaussian probability
models of random plasma-turbulence processes. It is pointed out
there that, if the system under consideration is closed, then the
observed PDF for a time sample of a random value is normal. In
an open system affected by external factors, this is not the case;
instead of a normal distribution, one can obtain a mixture of nor-
mal distributions with mixing distributions determined by the
external factors.

8 Stable distributions represent the class of the possible limiting
distributions of normalized sums formed by sequences of inde-
pendent and uniformly distributed random values. Note that
Gaussian, Levy, Cauchy, and many other distributions can be
classified as distributions of this kind.

Fig. 7. (a) ACF of the flux and its increments and the PDFs
of time samples of (b) the flux and (c) its increments.

no. 44 479
toroidal magnetic systems. To correctly estimate the
diffusion coefficient, it is necessary to analyze the sto-
chastic differential equation including the stochastic
summand described by the measured non-Gaussian
PDF [38, 39]. For this purpose, it is expedient to ana-
lyze the increments of the magnitudes of turbulent fluc-
tuations. Note that the correlation (“dynamic”) time of
increments is nearly one order of magnitude shorter
than the correlation time of the fluctuating variables
themselves. This dynamic correlation time of incre-
ments is related to the characteristic time of a stochastic
plasma process. This means that the formation and
decay of a stochastic plasma structure occurs nonadia-
batically and is characterized by an abrupt dephasing of
the fluctuating electric field and the local plasma den-
sity. It is well known that, to estimate the diffusion
coefficient, it is necessary to know the characteristic
decorrelation time τdecorr and the characteristic spatial
length ∆l of the random process. Then, the diffusion
coefficient can be estimated as D ~ (∆l)2/τdecorr. Thus,
the problem of estimating these quantities arises. We
can assume that the decorrelation time is the time over
which the cross-correlation coefficient between the
fluctuations of the plasma density and the poloidal field
varies and, consequently, the flux changes. In other
words, this is the correlation time of the flux incre-
ments, which is a minimum characteristic time for the
flux. As a characteristic spatial scale length, we can
choose the maximum characteristic length, i.e., the
radial scale length of the structures. Then, it can be sup-
posed that the dynamic time and the characteristic scale
length of structures determine the transport velocity
across the magnetic field. Let us estimate this time for
the L-2M stellarator. Assuming the characteristic
length of fluctuations to be ∆l ~ 0.4 cm and the dynamic
time to be τdecorr ~ 1–2 µs, we find that the transport
velocity is (2–4) × 105 cm/s (which is consistent with
probe measurements in the edge plasma).

4. CONCLUSIONS

(i) Steady-state low-frequency strong structural
(LFSS) turbulence has been observed in a magnetized
plasma of the L-2M stellarator.

(ii) Time samples of any fluctuating plasma param-
eters over the entire plasma volume in L-2M are bursty
in character. Such time samples are more adequately
described by finite-duration oscillating wavelets rap-
idly decaying in time (rather than infinitely long har-
monic oscillations). LFSS turbulence in both the high-
temperature plasma and the low-temperature edge
plasma is characterized by the same spectral and corre-
lation characteristics: wavelet spectra with quasi-har-
monics and correlation functions with pulsating tails.

(iii) LFSS turbulence was observed in the L-2M
stellarator throughout the plasma volume, although dif-
ferent mechanisms are responsible for the excitation of
turbulence in different plasma regions because of the
JETP LETTERS      Vol. 78      No. 8      2003
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onset of various instabilities: drift-dissipative instabil-
ity, MHD resistive ballooning instability, and instability
driven by trapped electrons.

(iv) A key characteristic feature of LFSS turbulence
is the presence of stochastic plasma structures. The
nonlinear structures comprise a considerable fraction
(from 10% to 30% in different plasma regions) of the
turbulence energy. The following stochastic plasma
structures have been identified in LFSS turbulence
observed in the L-2M stellarator: extended radial and
poloidal MHD structures in the edge plasma and drift
vortices at the mid-radius of the plasma column. Sto-
chastic structures at the center of the plasma column
have not been identified.

(v) High wavelet coherence (up to 50% for frequen-
cies below 150 kHz) between time samples of the mag-
nitudes of density fluctuations in the central region and
near the plasma edge has been observed in L-2M. Tur-
bulent fluctuations in LFSS turbulence are correlated
throughout the entire plasma volume, which, probably,
indicates the presence of ensembles of stochastic
plasma structures.

(vi) Another characteristic feature of LFSS turbu-
lence is that the PDF of fluctuations differs from a nor-
mal distribution by heavier tails and a larger peaked-
ness. Stable non-Gaussian PDFs were measured for
plasma density fluctuations in the central region and for
the local turbulent flux in the edge plasma.

(vii) An analysis of the increments of fluctuating
plasma parameters (density, potential, and turbulent
flux) have allowed us to measure the dynamic times of
LFSS turbulence in the L-2M stellarator.

From the aforementioned, several problems can be
formulated for future investigations. How do the PDF
and the characteristic correlation time of the increments
of fluctuations change when one state characterized by
its own macroscopic plasma parameters changes to
another? What are the probabilistic parameters of local
turbulence in transport barriers in toroidal magnetic
systems? Do the turbulent states under study belong to
systems with dynamic chaos, in which transitions can
be controlled by means of weak regular waves, as is the
case of a stochastic resonance regime [40]? For exam-
ple, in [41], it became possible to both provoke a trans-
formation of a wide drift-wave spectrum into a single
mode and suppress the noise spectrum by applying a
weak control signal. In this case, it turned out that the
phase of the control signal should be adjusted in a spe-
cial fashion. The problem of non-Brownian particle
motion in random non-Gaussian fields is one of the
very interesting and still unsolved problems of the
transport theory. The same is also true of the necessity
of taking into account random events when evaluating
diffusion in steady-state plasmas. Finally, it should be
noted that, although we considered here the features of
random processes in the L-2M stellarator, similar pro-
cesses are also observed in other toroidal and linear
devices.
JETP LETTERS      Vol. 78      No. 8      2003
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The studies of hopping conductivity in carbynes modified under high pressure are reviewed. Experimental data
are presented on the dc and ac conductivities, thermopower, magnetoresistance, and Hall effect. The results
obtained are discussed within the framework of a model that takes into account the substantially nonuniform
distribution and clusterization of sp2 bonds in the carbyne sp matrix. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Interest in basic and applied studies of new carbon
materials is, to a large extent, due to the possibility of
obtaining experimental low-dimensionality systems.
The boom in the field of studies of fullerenes and nan-
otubes, which can be considered as zero-dimensional
(0D) and one-dimensional (1D) objects, respectively,
serves as a striking example of this interest. Because
carbon atoms in these materials are in states close to sp2

hybridization, they are generically related to such an
allotropic form of carbon as graphite. However, sp2-
bonded carbon systems are not the only possible 1D
systems. An alternative approach to their creation can
be based on the use of linear carbon (carbyne), which
represents one of the three basic modifications of car-
bon and is characterized by the sp hybridization of
valence electrons.

Because linear polymer chains of the polyyne
(…−C≡C–C≡C–…) or cumulene (…=C=C=C=C=…)
type constitute the basis of carbyne structure [1, 2], car-
byne can be considered, at first glance, as a 1D object.
However, in fact, the situation turns out to be substan-
tially more complicated, because, as distinct from the
other allotropic modifications of graphite (sp2 hybrid-
ization) and diamond (sp3 hybridization), carbyne can-
not be obtained in the form of an ordered crystalline
material. This presents evident problems in the identifi-
cation of its structure. The historical difficulties in the
studies of carbyne structures were so serious [1, 2] that
some authors denied the very possibility of the exist-
ence of the carbyne modification of carbon. At present,
however, it is established that carbyne has a “right to
exist,” because, at least, three theoretically and experi-
0021-3640/03/7808- $24.00 © 20511
mentally justified methods for obtaining the linear form
of carbon have been found to give carbynes with iden-
tical physical and chemical properties [2].

Nevertheless, the structure of carbynes remains, to a
large extent, a matter of discussion. It is suggested that
the disorder in carbynes is associated with the instabil-
ity of large linear carbon clusters [2], as a result of
which linear sp sections alternate with carbon atoms in
the sp2 state [1, 2]. The appearance of sp2 centers first
leads to a break in carbon chains and, second, creates
dangling bonds that can join the neighboring chains (in
the absence of sp2 centers, the sp chains are bound to
each other only by the van der Waals forces) [1, 2]. As
a result, carbyne samples acquire a quasi-amorphous
structure, and a complicated topology of the random
network of atoms can be expected a priori in these
materials.

Because the conventional methods of structural
analysis proved to be inadequate for studying the struc-
ture of carbynes, it is of interest to use different
approaches that gain information on the “interior
arrangement” of these materials. In this work, this
problem was solved by studying hopping transport,
which is sensitive to the specific feature of the topology
of the random network.

It was stated in the literature (see review [1] and ref-
erences therein) that hopping conduction was observed
in pure carbyne samples. Note that these statements
were based on the conductivity measurements made in
the temperature range 300 K ≤ T ≤ 600 K, where certain
activation behavior of conductivity σ ~ exp(–Ea/kBT)
was related to hopping [1]. It is evident that, in this
case, we are dealing at best with hopping conduction
003 MAIK “Nauka/Interperiodica”
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with a constant hopping distance [3, 4] due to tunneling
between the nearest neighboring localization centers.
Unfortunately, this conduction mechanism is insensi-
tive to the topology of the random network and, there-
fore, is hardly suitable for obtaining independent data
on the “internal arrangement” of carbynes. Moreover,
an advance into the low-temperature region (where it
would be possible to observe variable-range hopping
conduction, which carries information on the topology
of the random network) in pure carbyne samples proved
to be impossible because of an extremely high resis-
tance of the samples [1, 5].

Reliable data on variable-range hopping conduction
were obtained in [5], where additional possibilities
associated with exposure to high pressures and temper-
atures were used to control the structure and properties
of carbynes. It has been found that an increase in the
temperature of synthesis under pressure Tsyn induces a
growth of the concentrations of sp2 bonds in carbyne
and eventually leads to an sp  sp2 transition, that is,
to a transformation of the well-defined chainlike struc-
ture to a graphite-like disordered network [5].

An increase in the fraction of sp2 bonds is accompa-
nied by a decrease in the resistivity ρ of the samples. At
T ~ 90 K, ρ(Tsyn) decreases by more than seven orders
of magnitude (Fig. 1), and a metal–insulator transition
is observed at Tsyn ~ 650°C [5]. The samples obtained
at Tsyn ~ 800°C exhibit temperature dependences of the
form ln(ρ) ~ (T0/T)n, with the exponent n close to 1/3,
which is characteristic of variable-range hopping con-
duction.

A more detailed investigation of the hopping con-
duction of high-pressure-modified carbynes (HPMCs)
was performed in [6–8]. In these papers, an attempt was
made to connect the specific features of hopping trans-
port with the data of structural studies. This approach

Fig. 1. Resistivity of carbine samples obtained at different
Tsyn measured at T = 90 K. The synthesis pressure in all
cases was the same and equal to 77 GPa (according to [5]).
proved to be very fruitful. Not only was new informa-
tion on the structure of carbynes gained with this
approach, but it also provided an insight into nontrivial
regimes of the hopping conduction mechanisms. In par-
ticular, it turned out that HPMCs can be presumably
considered as a model system in which the conduction
dimensionality could be varied experimentally from
one to three (3D).

The goal of this review is to present the fullest
account of the problem of hopping conduction in car-
bynes. At present, the list of publications on this prob-
lem is exhausted by the papers [5–9]. We supplemented
the results of these papers by new data on the Hall effect
and magnetoresistance. Along with the properties of
HPMCs, which can be interpreted within the frame-
work of the existing theories of hopping conduction, we
will consider phenomena that have not been explained
adequately so far. We will not analyze in detail the gen-
eral problematics of the sp  sp2 transition as well as
other physical characteristics of carbynes not related to
hopping transport. Those who are interested in this
problem are referred to the reviews [1, 2, 9] and to the
paper [5]. The data on the sp  sp2 transition will be
used exclusively from the viewpoint of constructing a
qualitative structural model of carbynes that would be
able to explain the majority of the experimental data
obtained by now.

2. HOPPING CONDUCTION

In this work, as the starting material, we used car-
byne with chains of the cumulene type synthesized at
the Nesmeyanov Institute of Organoelement Com-
pounds, Russian Academy of Sciences. The carbyne
samples were modified according to the procedure
described in [5, 9].

The temperature dependences of the resistivity
obtained for HPMCs at various Tsyn are presented in
Fig. 2a in the Mott coordinates log(ρ) = f(T–n) [6]. It is
evident that HPMCs in the range T ≤ 40 K are charac-
terized by variable-range hopping conduction, for
which

(1)

An increase in the temperature of synthesis under
pressure leads to a decrease in the hopping-conduction
exponent n from n = 1/2 to n = 1/4, and n = 1/3 in the
intermediate region of Tsyn. In the theory of hopping
conduction for a disordered system with a constant den-
sity of states g(EF) ≈ const at the Fermi level, the fol-
lowing equation is fulfilled [3, 4, 6]:

(2)

where d is the spatial dimensionality. Therefore, the
result obtained can signify that the modification under
pressure induced a transition from 1D (n = 1/2) to 2D
(n = 1/3) and then finally to 3D (n = 1/4) hopping con-

ρ T( ) ρ0 T0/T( )n[ ] .exp=

n 1/ 1 d+( ),=
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duction (a detailed discussion of the applicability of
Eq. 1 to the 1D case is given in [6]).

In the light of the subsequent analysis of the data, it
is appropriate to raise the question of the reliability of
determining the parameter n from experimental data. In
the history of studying hopping conduction, this prob-
lem arose repeatedly [3, 4, 10, 11], for example, in con-
nection with the Shklovskiœ–Efros Coulomb gap
model, for which n = 1/2, whereas n = 1/4 according to
Mott. In order to solve the 1/2–1/4 dilemma, Zabrodskiœ
proposed a procedure of differentiating the ρ(T) curves
[10]. However, this approach is not free of criticism,
because the numerical differentiation of experimental
ρ(T) curves requires the application of a regularization
procedure, which in its turn affects the calculated value
of n [10, 11]. As an alternative, it was proposed in [11]
to use a procedure of the reconstruction of the temper-
ature dependence of the resistivity ρ(T) in the coordi-
nates lnlnρ = f(lnT), which is also not free from short-
comings.

At present, the controversy of the late 1970s–early
1980s on the problem of determining index n is pre-
sumably of only historical interest. With the new com-
putational facilities and modern mathematical pack-
ages of data processing, n can be considered as a fitting
parameter. For example, a direct approximation of the
ρ(T) data by the Levenberg–Marquardt method in the
range 1.5 K ≤ T ≤ 40 K with the use of Eq. (1) gives the
values n = 0.49 ± 0.05, n = 0.33 ± 0.03, and n = 0.24 ±
0.02 for curves 1, 2, and 3, respectively (Fig. 2a). It is
interesting that a decrease in the range limit down to
T ~ 20 K did not change the obtained values of n but
only led to an increase in the error by 30–40%.

Because the theory of hopping conduction repre-
sents n as a rational fraction (Eq. (2)), in order to com-
pare the theory with the experiment, the ρ(T) data for
HPMCs were subsequently analyzed in the coordinates
lnρ = f(T–n), where n = 1/2, 1/3, 1/4 (Fig. 2a). In order
to additionally verify the accuracy of fitting index n, the
values of n were fixed in the range 0.1 ≤ n ≤ 0.9 and the
dependence χ2(n) was constructed, where χ2 is the stan-
dard deviation of the low-temperature section of the
experimental dependence ρ(T) from the theoretical
curve lnρ = f(T–n) calculated by the least-squares
method. As was to be expected, the values of n at which
a minimum of χ2(n) was reached exactly coincided with
the results obtained by the Levenberg–Marquardt
method. Thus, for the subsequent analysis of experi-
mental data, the theoretical value of index n was
selected in such a way that it was most close to the
value obtained by numerical methods.

When the problem of accurate determination of
index n is discussed, one sometimes has to deal with the
statement [4] that this parameter can be determined cor-
rectly only if the temperature dependence of the prefac-
tor ρ0 in Eq. (1) is taken into account; in this case, it is
suggested that this dependence is of power type. Note
that the R–ε percolation problem or, in other words, of
JETP LETTERS      Vol. 78      No. 8      2003
variable-range hopping conduction, is solved in the the-
ory with an exponential accuracy [4]. Therefore, the
percolation approach gives no definite answer to the
question of the temperature dependence of ρ0, and,
strictly speaking, it should be considered that ρ0 = const
in the theoretical solution to the R–ε problem (Eq. (1)).
Nevertheless, several estimates are known for the pos-
sible functions ρ0(T) [3, 12, 13], including those based
on the scaling theory of the metal–insulator transition
[4, 13]. All these estimates give differing results that
depend on additional a priori assumptions. Moreover,
in the case of amorphous and quasi-amorphous materi-
als (carbynes are among them), as distinct from doped
semiconductors, it is presumably impossible to obtain a
reasonable estimate for ρ0(T) from first principles [4].

Fig. 2. (a) Temperature dependences of the resistivity of
carbyne samples obtained at different synthesis tempera-
tures (according to [6]). Points are experimental; solid lines
represent the fitting of the ρ(T) data for T ≤ 40 K by Eq. (1)
in the approximation ρ0(T) = const; dashed lines represent
the fitting with regard to the power dependence of the pre-
exponential factor ρ0(T) = bTm. (b) Relaxation of the car-
byne conductivity: (1) starting sample and (2) the same
sample after a yearly hold at room temperature.

690°C

800°C

890°C
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The determination of n at sufficiently low temperatures
for which one may neglect the possible temperature
dependence of the prefactor and consider that ρ0 =
const remains the only approach in this situation [4]. As
follows from the above analysis, this situation arises in
carbynes at T < 40 K.

Power corrections could be substantial at T > 40 K;
however, in this temperature region, an additional acti-
vation contribution to the conductivity of HPMCs
comes into effect (see below); this dependence is stron-
ger than a power one. Hence, taking into account ρ0(T)
in the materials under consideration goes beyond the
possible accuracy.

As an illustration, along with the approximation of
the ρ(T) data under the assumption that ρ0 = const
(solid lines), Fig. 2a displays the result of fitting with
the use of Eq. (1), in which ρ0 is given by the equation
ρ0 = bTm [3, 4, 12, 13] and index n takes the values n =
1/2, n = 1/3, and n = 1/4 for curves 1, 2, and 3, respec-
tively (dashed lines). It is evident that, in the cases of
n = 1/3 and n = 1/4, both approaches are virtually

Fig. 3. AC conductivity of carbyne with n = 1/2. (a) Fre-
quency dependence of σ'/σ'' at different temperatures.
(b) Temperature dependence of the exponent s: (1), (2)
experiment at a frequency of 100 and 500 MHz, respec-
tively; (3) Coulomb gap model; (4) Hunt model of 1D ac
conductivity (according to [6]).
equivalent; however, the best agreement with the exper-
iment is achieved only at low values of the exponent
m = –(0.01–0.08). These values have no physical mean-
ing within the framework of the calculations performed
in [3, 4, 12, 13]. In the case of n = 1/2 (Fig. 2a, curve 1),
taking into account the temperature dependence ρ0(T)
considerably deteriorates the quality of the approxima-
tion of the low-temperature section of ρ(T), and m
increases up to m ~ –0.6.

Emphasize that the values of the slope of  that
were determined for each curve ρ(T) by different meth-
ods coincided with each other in all cases within the
error of the numerical procedure (5–15%). Hence, from
the viewpoint of the problems of this work, the approx-
imation ρ0 = const proves to be sufficient. It is essential
that the number of fitting parameters decreases in this
case, which improves reliability of the determination of
parameters n and T0.

Thus, it may be argued that index n in HPMCs can
be reliably determined, and the quality of the experi-
mental data is sufficient for the cases of n = 1/2, n = 1/3,
and n = 1/4 to be distinguished with confidence.

Let us return to the discussion of the value n = 1/2 in
connection with the possibility of the experimental
observation of 1D hopping conduction (Eq. (2)). This
explanation of values n > 1/2 is not the only possible
one, because a similar increase of index n can be
obtained in the model of a correlation gap in the density
of states [8, 9]. For example, for the case of a Coulomb
gap, n = 1/2 in both the 2D and 3D cases. Then, based
on Fig. 2a, it may be suggested that a decrease in Tsyn
from Tsyn ~ 800°C to Tsyn ~ 690°C induced the opening
of a Coulomb gap at the Fermi level in the 2D system,
as a result of which the parameter n increases to the
value n = 1/2.

The choice between the two alternative approaches
was made on the basis on an analysis of the frequency
and temperature dependences of the ac conductivity
[6]. In the hopping region, the real and imaginary parts
of the conductivity, σ' and σ'', depend on the frequency
as a power function σ', σ'' ~ ωs, where the exponent s
can be found from the condition [4, 6]

(3)

The data in Fig. 3 indicate that the ratio σ''/σ' for a sam-
ple with n = 1/2 is independent of the frequency over
the wide range of frequencies ω/2π ≤ 500 MHz and is
determined only by the sample temperature (Fig. 3a). In
this case, the experimental parameter s calculated by
Eq. (3) is characterized by a strong temperature depen-
dence (Fig. 3b, curves 1 and 2). The theoretical curve
s(T) can be calculated for the Coulomb gap model [4,
14] and in the Hunt model of 1D ac conduction [15–17].
It can be shown [6] that, in the first case, the exponent s
weakly depends on temperature (Fig. 3b, curve 3),

T0
n

s
2
π
--- σ''

σ'
-----.arctan=
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whereas the 1D model agrees well with the experimen-
tal data (Fig. 3b, curve 4).

Based on the outline above, the conclusion was
made in [6] that a change in the temperature of synthe-
sis under pressure leads to a 1D–3D crossover in the
hopping conductivity of carbynes and that the system is
two-dimensional in the intermediate region.

It is natural to expect that the 2D case will be the
least stable, because HPMC in this state must represent
a set of 2D carbon layers that do not interact with each
other. The diffusion of atoms must break such a distinc-
tive situation, causing 2D HPMC to relax to the 3D
state. The assumption made agrees well with the experi-
ment (see Fig. 2b, which presents the temperature depen-
dences ρ(T) of the freshly prepared sample (curve 1) and
the same sample after being kept for a year at room
temperature (curve 2)). The relaxation of the samples
first leads to an increase in the ratio ρ(1.8 K)/ρ(300 K)
and second modifies the functional dependence ρ(T), as
a result of which index n decreases from n = 1/3 to the
value n = 1/4. This result may serve as an additional
argument in favor of the interpretation of carbyne as a
system with conduction of variable dimensionality.

3. THERMOPOWER

It was possible to investigate the thermopower of
carbynes in the cases of n = 1/4 and n = 1/3 [8], whereas
the resistivity of the samples with n = 1/2 was found to
be too high for obtaining reliable data. It was found [8]
that, in going to the hopping-conduction region, the
Seebeck coefficient S(T) undergoes a sign inversion
(Fig. 4a). This behavior indicates that several conduc-
tion mechanisms can exist. A quantitative analysis of
the temperature dependences of the conductivity σ(T)
showed that σ(T) over the entire studied temperature
range can be represented as a sum of two terms, a hop-
ping term and an activation term,

(4)

The procedure of separating the hopping and activation
contributions in HPMCs is described in detail in [8, 18,
19]. The parameters σh(T) were determined in the range
T < 40 K, that is, in the range where the contribution of
σa(T) or the effect of σ0h(T) is negligibly small [8].
Then, we analyzed the possible effect of the tempera-
ture dependence σ0h(T) taken from different models
(see the preceding section). It proved that taking into
account this factor is insufficient for the explanation of
the curve σ(T) in the temperature range 1.5 K ≤ T ≤
300 K. In this situation, it is natural to suggest that the
stronger activation dependence (Eq. (4)), whose param-
eters σ0a and Ea are determined by the condition of the
best approximation of the experimental curve σ(T),
should be taken into account at higher temperatures.

σ T( ) σa T( ) σh T( )+=

=  σ0a

Ea

kBT
---------– 

 exp σ0h

T0

T
----- 

 
n

– 
  .exp+
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The numerical procedure of approximation with two
fitting parameters was stable, and the error in the deter-
mination of σ0a and Ea did not exceed 5–10%.

The results of separating the contributions to the
conductivity is shown in Fig. 4b. It is seen that the rela-
tionship σa ! σh is fulfilled at T < 40 K and that the acti-
vation contribution does not affect the determination of
parameters σh, in particular, the exponent n. The sum
σa(T) + σh(T) reproduces well the shape of the curve
σ(T) over the entire investigated range of temperatures.
Small deviations of the calculated curve from the exper-
imental dependence in the range 50 K ≤ T ≤ 100 K and
at T > 250 K can be associated with the necessity of tak-
ing into account the temperature dependences of the
preexponential factors in Eq. (4).

It was found that the activation energy Ea weakly
depends on the synthesis temperature Tsyn and is of the
order Ea ~ 30 meV [8]. Thus, the effect of Tsyn is first
reflected in the hopping conductivity σh, which com-
pletely agrees with the data described in the preceding
section. According to these data, the temperature of

Fig. 4. (a) Carbyne thermopower with n = 1/3 (according to
[8]). Points are experimental; line corresponds to a model
calculation. Partial contributions to the integral ther-
mopower are designated by dashed lines. (b) Separation of
the carbyne conductivity into the hopping and activation
contributions (designations are the same as in (a)).



516 DEMISHEV et al.
synthesis under pressure strongly affects the topology of
the random network and, hence, the character of hopping.

It can be shown [8] that the two above contributions
to the conductivity are sufficient for the qualitative
interpretation of the thermopower data. This problem is
described in more detail in Section 6 along with the
description of the corresponding model.

4. MAGNETORESISTANCE

The magnetoresistance of carbynes was reported in
[7, 8], where the field dependences of the magnetoresis-
tance were investigated at T = 4.2 K. It was noted that
the negative magnetoresistance (NMR) is fully absent
in the hopping region. In this situation, it was natural to
relate the positive magnetoresistance (PMR) to the
wave-function compression effect, for which the equa-
tion [3, 20]

(5)

is fulfilled, where a is the localization radius, the
parameter T0 is the same as in Eqs. (1) and (4), and td is
a numerical coefficient that weakly depends on the spa-
tial dimensionality [7, 8, 20]. Using Eq. (5) and the val-
ues of T0 determined from the ρ(T) data (Fig. 2), the
values of the localization radius of HPMCs a ~ 60–
140 Å were calculated in [7, 8].

The detailed investigation of the temperature depen-
dences of PMR in HPMCs (Fig. 5) showed that the
indicated approach is only partially applicable in the
hopping region. The inset in Fig. 5 displays the values
of the effective localization radius calculated from
Eq. (4) with the use of the relation aeff =
(c2"2A(T)/e2td)1/4(T/T0)3n/4, in which the coefficient
A(T) = ∂lnρ(H, T)/∂H2 is determined by the initial qua-
dratic section of the ρ(H) curve (Fig. 5). It is clear that

ρ H( )/ρ 0( )[ ]ln tde2a4H2 T0/T( )3n/c2
"

2=

Fig. 5. Field dependences of the carbyne magnetoresistance
with n = 1/4 at different temperatures. Inset displays the
effective values of the localization radius calculated by
Eq. (5).

a e
ff
 (

Å
)

the empirical localization radius obtained in this way
increases by a factor of 1.5–2 with decreasing tempera-
ture from T ~ 20–30 K down to T = 1.8 K. At the same
time, if Eq. (5) is true, the value of a should not depend
on temperature: a(T) ≈ const. The latter condition was
fulfilled in our experiments only for the 3D sample with
n = 1/4 and only in the temperature region T ≤ 3 K (inset
in Fig. 5). Nevertheless, if the obtained values of a are
used as estimates, one should expect sufficiently large
values of the localization radius in HPMCs, comprising
at least several tens of angstroms (Fig. 5).

It is interesting that Eq. (5) follows from a consider-
ation of the elementary magnetocoulombic problem in
the case of a weak magnetic field [3, 20], for which the
first magnetosensitive correction to the resistance of the

Miller–Abrahams network is proportional to aR3/ ,
where R and lH are the hopping distance and the mag-
netic length, respectively. Therefore, relationship (5)
must be of sufficiently general character and should not
depend on a certain mechanism of jumps. In this con-
nection, the reasons for the violation of the applicabil-
ity of Eq. (5) in carbynes remain unclear and call for an
additional theoretical study. A possible hypothesis of
the nature of this anomalous behavior is discussed in
Section 6.

5. HALL EFFECT

Measurements of the Hall effect in the hopping
region represent one of the most complicated experi-
mental tasks, which is associated with the necessity of
measuring small Hall voltages across a high-resistivity
sample [21]. Therefore, at present, reliable data on the
Hall effect in HPMCs have been obtained only for the
case n = 1/4. It was found that, in such samples, the Hall
coefficients R(T) corresponds to a p-type material and
increases with decreasing temperature (Fig. 6a). It is
interesting that, as distinct from thermopower, the sign
inversion of the Hall coefficient does not occur in going
to the hopping region. The fact that HPMCs are charac-
terized by high values of the Hall concentration nH =
1/Re, reaching nH ~ 3.7 × 1019 cm–3 at T ~ 200 K
(Fig. 6a), attracts attention.

It is interesting that the Hall coefficient in the hop-
ping region T < 40 K varies according to the law lnR ~
( /T)1/4, which is analogous to the temperature
dependence of resistivity (Fig. 5b). However, the quan-
tities  and T0, which determine the slope of the lin-
ear portions of the curves logR = f(T)–1/4 and logρ =
f(T)–1/4, correspondingly turn out to be different
(Fig. 6b), and the measured ratio of slopes equals
( /T)1/4 ≈ 0.8.

It should be emphasized that we do not know any
other experimental papers in which the temperature
dependence of R(T) is observed in the region of vari-
able-range hopping conduction. The only publication

lH
4
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on this question [21] reports that R(T) ≈ const in the
region of Mott’s law action.

At the same time, the temperature dependence of the
Mott type was predicted for the Hall coefficient in [22,
23]. According to these papers, the parameter  must
be smaller than T0. It is expected that the quantity

( /T0)1/4 must comprise 5/8 = 0.625 [22, 23], which is
somewhat lower than the value observed experimen-
tally. It is likely that this discrepancy is a consequence
of the approximate character of calculations in [22, 23]
and can be overcome in the course of the subsequent
development of the theory of the hopping Hall effect.

6. MODEL OF THE STRUCTURE 
AND HOPPING CONDUCTION OF CARBYNES

As was already mentioned above, the x-ray spectra
of HPMCs correspond to a quasi-amorphous material.
In this situation, the most reliable structural parameter
that can be determined experimentally is the correlation
length Lcor. This correlation length determines the char-
acteristic size of the ordered carbon chain of the cumu-
lene type …=C=C=C=…. Because carbon atoms in the
sp2 state presumably play the role of the main structural
defects that determine the bend of carbon chains in the

T0*

T0*

Fig. 6. (a) Temperature dependences of the Hall coefficient
and Hall concentration for carbyne with n = 1/4. (b) Hall
coefficient and resistivity in the region of Mott’s hopping
conduction.
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carbyne matrix [1, 2, 5, 9], the concentration of sp2 cen-
ters can be estimated from the relation  ~  ~

1021 cm–3.

It was found that the parameter Lcor only weakly
depends on the synthesis temperature in the range
690°C ≤ Tsyn ≤ 890°C and comprises Lcor ~ 10–12 Å.
At the same time, from the previous investigations, it
follows that an increase in Tsyn leads to an increase in
the concentration of sp2 centers and eventually to an
sp  sp2 transition. The concept of the sp  sp2

transition can be reconciled with the constancy of Lcor

if it is assumed that the new sp2 centers arising in the
synthesis under pressure will be formed in the vicinity
of the already present defects, for example, because of
the fact that the activation energy of the creation of the
second sp2 center beside an already present one proves
to be lower than the activation energy of the creation of
a single sp2 center inside an sp chain. Such pairs of
neighboring sp2 centers will lead not only to a break in
certain chains but also to the formation of closed ring
structures, which can effectively localize electrons
(Fig. 7a). As a result, we come to the following model
proposed in [8].

If the concentration of sp2 bonds in the sample is
small (low synthesis temperatures), quasi-linear chains
of carbon atoms in the sp state (containing only a small
number of sp2 centers) will connect regions of more
complicated topology characterized by an increased
fraction of sp2 centers (sp “string” of sp2 “beads”). Con-

N
sp

2 Lcor
3–

Fig. 7. (a) Model of the carbyne structure; Rij designates the
hopping distance between the localized states of radius a;
(b) effective medium model used to describe the ther-
mopower; (c) energy diagram illustrating conduction mech-
anisms in carbynes. D0 and D– designate the lower and
upper Hubbard bands, respectively.

sp2 center
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duction in such a system will be carried out by means
of hops between clusters with an increased concentra-
tion of sp2 centers (Fig. 7a). In the case when the inter-
action between such nonuniform chains can be
neglected, the conduction of this system will be of a
quasi-one-dimensional character. It is evident that an
increase in the fraction of sp2 bonds with increasing Tsyn
will lead to the appearance of interchain interaction and
to an increase of the effective dimensionality of con-
duction first to 2D and then to 3D.

Based on the data on the Hall effect (Section 5), one
more important assumption of the properties of local-
ized states in carbynes can be made. It is evident that
the consideration of the hopping mechanism loses its
meaning in the high-temperature region and the sample
can be described in the effective medium limit. Then,
the Hall concentration can be used to estimate the vol-
ume-average electron concentration. In the case of the
activation dependence of conduction of any type, the
electron concentration and, hence, the Hall concentra-
tion will decrease with decreasing temperature. There-
fore, the high-temperature values of nH (Fig. 6) can be
considered as the lower estimate of the total electron
concentration in the sample. As a result, using estimates
of the localization radius (Section 4), we come to the
conclusion that the fulfillment of the condition 4/3πa3 ×
( , nH) @ 1 should be expected in HPMCs. That is,

many partially occupied electronic levels must occur
inside the electron localization region (at least, this
must certainly be fulfilled for the 3D samples with
n = 1/4). An analogous result can also be obtained for
2D and 1D samples if estimates of the density of local-
ized states are used (a detailed discussion of this ques-
tion is given in [8]). 

Presumably, the anomalies of magnetoresistance in
the hopping region can be associated with the consid-
ered property of localized states in carbynes. It is well-
known that both the wave-function compression effects
and the quantum interference effects make a contribu-
tion to magnetoresistance in the general case [3, 20]. As
a rule, quantum interference predominates in the region
of weak magnetic fields and is responsible for NMR,
and PMR associated with the shrinkage effect arises in
the region of stronger magnetic fields [11, 20, 24]. In
the case of HPMCs, the character of quantum interfer-
ence can change substantially. Actually, the cylindrical
volume connecting localized states i and j spaced at the

hopping distance Rij will contain πa2Rij/  ~

πa3(T0/T)n/  centers at which quantum interference
can arise. For T = 4.2 K, the number of such scattering
centers will be on the order of 1.2 × 103, whereas the
number of centers in usual materials that are significant
from the viewpoint of interference effects does not
exceed several dozen.

Suppose that the change in the interference charac-
ter will lead to the fact that the interference contribution

N
sp

2

Lcor
3

Lcor
3

will be quadratic in the magnetic field in the same
region of magnetic fields as the contribution associated
with the wave-function compression effects. Then
instead of Eq. (5), we may write

(6)

where c is a numerical coefficient, and function f(T)
takes into account the quantum interference effects.
Hence, the effective localization radius (inset in Fig. 5)
will be determined by the relation

(7)

Then, the data in Fig. 5, including the saturation of aeff

at T < 3 K, can be explained assuming that f(T)T3n  0
at T  0 and, in addition, f(T) < 0. The negative sign
of f(T) corresponds to the NMR effect as in the usual
materials with hopping conduction; however, it is nec-
essary to admit a significant modification of the field
dependence of the contribution due to quantum inter-
ference in order to explain the magnetoresistance in
HPMCs. The verification of this assumption can be per-
formed when the corresponding theoretical investiga-
tions are performed.

As an additional argument in favor of the compli-
cated structure of localized states in HPMCs, consider
a model of the quantitative analysis of the ther-
mopower. Following [8], consider HPMC in the effec-
tive medium model (Fig. 7b), in which the “metallic”
regions (M) correspond to the regions of localization
with an excessive concentration of electrons and sp2

bonds and the “dielectric” regions (D) correspond to
the sp matrix. The conductivity of such a medium will
be determined by the dielectric regions, whereas metal-
lic regions can also contribute to S(T). In this case,
SM(T) for the “metal” will be described by the general-
ized Mott equation [18, 19] SM(T) = aT + bT3. As fol-
lows from Fig. 4, two contributions should be taken into
account in the thermopower of a dielectric SD(T), the
hopping one Sh ~ T1 – 2n [4, 8] and the activated one Sa,
summed with the weights σh/(σh + σa) and σa/(σh + σa)
[8]. The detailed analysis made in [8] showed that σa in
HPMCs is presumably determined by activation to the
upper Hubbard zone D– (see Fig. 7c), as a result of
which Sa = const. An example of the separation of con-
tributions to the thermopower is given in Fig. 4a: it is
evident that the indicated procedure reproduces well
the shape of the integral S(T) curve. In addition, it can
be shown [8] that the “metal” thermopower is positive
in all the studied samples (SM(T) > 0), whereas the
“dielectric” thermopower is negative, which causes the
sign inversion in the dependence S(T) (Fig. 4a).

It is interesting that the thermopower sign inversion
in the model under consideration is not associated with
the change of sign in the major current carriers, but
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ρ 0( )
-----------ln c a4 T0
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reflects the specific properties of the electronic states of
carbynes [8]. Actually, the states inside the localization
region must be almost completely occupied; therefore,
it is natural to expect that conduction of “metal” would
be of the hole type (SM(T) > 0). The negative sign of SD,
first, arises by virtue of the condition ∂g(EF)/∂ε < 0 (the
negativity of the hoping contribution, Sh < 0) and, sec-
ond, is a consequence of the fact that the occupation
numbers of localized states are of the order of unity
(Sa < 0) [8]. As a result, it becomes possible to explain
simultaneously the thermopower sign inversion and the
absence of sign inversion in the Hall effect.

7. CONCLUSION

Thus, we have shown that an adequate understand-
ing of hopping transport in carbynes can be obtained
within the framework of the model that takes into
account the substantially nonuniform distribution of sp2

bonds on the nanometer scale. It is nontrivial here that
the classical theory of hopping conduction adequately
describes the majority of experimental data, in spite of
the complicated structure of the localization region. At
the same time, the existing theories of magnetoresis-
tance and hopping Hall effect are evidently incomplete
and insufficient to describe adequately experimental
data. Note that attempts have been made recently to cre-
ate a consistent theory of hopping transport for the case
of localized states inside which there are a number of
energy levels [25, 26]. It is possible that better descrip-
tion of the physical properties of carbynes will be
obtained in the future within the framework of this
approach, including the properties of PMR that have
not been understood by now. However, at present, the
indicated calculations have not reached the level such
that the whole set of experimental data obtained in this
work could be compared with theoretical predictions.
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