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Abstract—It is shown that an analog of Thomson waves, existing in an ideal fluid, is possible in metals and
semiconductors. Possibility of observation of such waves is discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Charge carriers with mobility µ when exposed to
mutually perpendicular electric E and magnetic B
fields move in a circular motion around an axis oriented
in the field B direction. In a first approximation, the car-
rier velocity is perpendicular to E and has an order of
magnitude of aµ2EB, where a is a factor of order unity.
Such movement can be obviously considered as rota-
tion.

Then, an analogy can be drawn between movement
in an axial symmetric wave (a Thomson wave) propa-
gating along the axis, about which the ideal fluid spins
as a whole [1], and the movement in an axial symmetric
wave propagating along the magnetic field in a solid
state plasma. The analogy embraces not only the sym-
metry of the movements mentioned but also the possi-
bility to neglect viscosity in both the case of plasmas
[2] and the case of an ideal fluid. To the author’s knowl-
edge, up to now, nobody has considered analogs of the
Thomson wave in metals and semiconductors.

2. STATEMENT OF THE PROBLEM. SOLUTION 
TO THE PROBLEM UNDER THE ASSUMPTION 

OF INCOMPRESSIBILITY

Let us consider a long hollow thin cylinder of a con-
ductive material. The length of the cylinder L is much
larger than its inner (Ri) and outer (Re) radii. The cylin-
der thickness ∆R = Re – Ri, in turn, is significantly less
than either of the radii and so

(1)

We introduce the cylindrical coordinates r, ϕ, and z
along the cylinder axis. Then, let the external magnetic
field B be along z and a potential difference U be
applied between the cylinder axis and its outer surface.
Now we can consider the carriers in the cylindrical
layer as rotating as a whole with the angular velocity

(2)

∆R ! Ri ; Re{ }  ! L.

Ω aµ2B
U

R2
-----.=
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Here, R is either of the radii Ri and Re.

It is enough for qualitative analysis to regard Ω as a
constant. Quantitative calculations, taking into account
the dependence of the angular velocity on the radial
variable r, confirm this assumption.

Let us suppose a wave of a small amplitude travels
along the cylinder and has the time and spatial coordi-
nate dependence given by the factor

. (3)

In a wave of axial symmetry kϕ = 0, while in the cylin-
der of infinite length, due to translational symmetry, it
would be kz = πq /λ, where λ is the wavelength and
q = 1, 2, 3, … . Evidently, it is always possible to find an
integer number q0 for which kz = πq0/L. Let us find the
dependence of the velocity in the wave v = (v r; vϕ ; v z)
on the radial variable. To do this, we write the Euler
equation taking into account the Coulomb force

(4)

Here, E1 = –∇ϕ  is the variable component of the elec-
tric field in plasma, which also includes the pressure,
and e and m are the electric charge and mass of a carrier,
respectively. We can solve it simultaneously with the
continuity equation. In the case of an incompressible
fluid, taking the radial dependence of the velocity v r in
the wave of axial symmetry in the form

(5)

we find that, just as in the Thomson wave [1], v r(r) sat-
isfies the equation

(6)

i kϕϕ kzz ωt–+( ){ }exp

∂v
∂t
------ 2Ω v×+

e
m
---- ∇ϕ .=

v r v r r( ) i ωt kzz–( ){ } ,exp=

d2v r r( )
dr2

------------------
1
r
---

dv r r( )
dr

----------------+

+ 4Ω2

ω2
---------- 1– 

  kz
2 1

r2
----– v r r( ) 0,=
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which, in turn, reduces to a harmonic equation when
condition (1) is satisfied. The solution of the last equa-
tion is given by

(7)

vanishing at the inner side of the cylinder (at r = Ri).
The entire picture of the motion in the wave splits into
domains between coaxial cylinders of radii rp which
can be obtained from the relationships

, (8)

v r = 0 at these surfaces and, hence, they are never
crossed by the plasma.

The solution (7) is also zero at the outer surface of
the cylinder, i.e., at r = Re, which leads to the equation

(9)

relating ω to kz for waves with a given value of the
parameter p, which is the number of the coaxial domains.

The following conclusions can be drawn from this
simple model of an incompressible plasma.

First, it follows from (9) that the wave is not attenu-
ated and propagates with an angular velocity

(10)

where b is a factor of order unity.
Second, as seen from the relationships (3)–(7), for a

hollow thin cylinder and a wave of a small amplitude it
is possible to assume the coordinate and time depen-
dences to be given by the factor

(11)

where kr = pπ/∆r.
The argument of the exponential function in (11) is

the same for a solution which does not satisfy condition
(1). In that case, the harmonic functions are replaced by
the Bessel functions, whose roots take the place of the
numbers pπ.

As a concluding remark to the section it should be
mentioned that in the same way as the pressure induced
by the Thomson wave is found in an ideal incompress-
ible fluid in [1], a small disturbance of the electric field
E1 produced by the analog of this wave in a plasma can
be derived. When the disturbance of the electric field is
known, from the Poisson equation

(12)

(here ε is the permittivity) it is easy to find the pertur-
bation induced by the wave in the concentration of
charge carriers n.

v r r( ) const kz r Ri–( ) 4Ω2

ω2
---------- 1– 

 
1/2

,sin×=

kz rp Ri–( ) 4Ω2

ω2
---------- 1– 

 
1/2

pπ, p 0 1 2 …., , ,= =

kz∆r
4Ω2

ω2
---------- 1– 

 
1/2

pπ,=

ω ω0 bµ2B
U

R2
-----kz∆r/ kz∆r( )2 π2 p2+[ ]1/2

,= =

i kr r Ri–( ) kϕϕ kzz ωt–+ +[ ]{ } ,exp

∇ 2ϕ en1ε–=
P

3. SINGLE-COMPONENT SOLID-STATE PLASMA 
OF A METAL 

A wave propagating through the electron gas in a
metal produces perturbations of the electric current
which can be described by

(13)

This equation takes into account conduction (the
conductivity is given by σ = µne), diffusion (D is the
diffusion constant), and a charge carrier transport with
the flow of fluid (V is the flow velocity).

Electron gas cannot be regarded as incompressible.
Its compression in the course of wave propagation con-
tributes to the kinetic equation. It suffices to consider
this equation in the relaxation time τ approximation [3], 

(14)

Making use of solution (11), from the Euler (4),
Poisson (12), and Boltzmann (14) equations, we find a
dispersion law for the waves of axial symmetry under
no-flow conditions

(15)

Here,  = ne2/(mε) is the square of the plasma fre-
quency, Γ = a1/τ + a2D/(∆r)2 + a3σ/ε is the decrement,
and a1, a2, a3 are parameters of about unity indicating
relative contributions of different relaxation processes
into absorption of the wave.

The plasma frequency ωp is always higher than the
rotation speed Ω and so the dispersion equation (15)
can be rearranged as

(16)

It is obvious that at a low frequency ω ! ωp, from (16)
we obtain relationship (10). As shown in [3], in a low-
frequency approximation, the electron gas can be
assumed to be incompressible, while at a high fre-
quency ω @ ωp, equation (16) results in ω = – iΓ, which
corresponds to absorption of high-frequency waves [3].
In the general case, we have ω = ω0 – iΓ. A condition
for weak extinction, i.e., Γ ! ω0 can be expressed as

(17)

To derive the last estimation, it was taken into
account that the diffusion term D /(∆r)2 is the main con-
tribution to the decrement Γ and the diffusion coeffi-
cient is of the same order of magnitude as the product
of the mean velocity of thermal carrier motion vT and
of the mean free path l, i.e., D . vTl. The inequality (17)

j1/e n1V nv µn∇ ϕ– µn1E D∇ n1.–+ +=

∂n1

∂t
--------

n1

τ
----- D∇ 2n1– µn∇ 2ϕ–+

+ µ E∇( )n1 V∇( )n1 n div v+ 0.=+

ω2 4Ω2–( ) 1 1
kr

2

kz
2

----+
 
 
  ω ω iΓ+( )

ωp
2

-------------------------–
kr

2

kz
2

----ω2+ 0.=

ωp
2

ω4 iΓω3 ωp
2 ω2 ω0

2–( )+ + 0.=

µ2UB
R

--------------/v T  @ 
LRl

∆r( )3
-------------.
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is well satisfied under the condition of a weak magnetic
field (µB . 1) in virtue of the smallness of the mean
free path of electrons in typical metals.

In the case of axially asymmetric waves, we have
kϕ = 1, 2, 3, … and the quantity ω0, given by (10), is eas-
ily shown to be replaced by a multiple of it, (1 + kϕ)ω0.

Taking the flows in the plasma into account would
result in replacing the parameter iΓ in (15) and (16) by
iΓ – kV, where k is obviously given by components (kr;
kϕ ; kz). If the only kind of flow is present, i.e., the flow
caused by the fields, and, therefore, its velocity is about
ΩR, then the result ω . ω0 – iΓ will be true even in the
high frequency range.

Both complications mentioned do not change the
results qualitatively. Therefore, the only difference
between the Thomson waves in an ideal incompressible
fluid and the (charge) waves in metals is the weak
extinction of the charge waves. At the same time, the
waves in the electron gas of a metal and the Thomson
waves in the ideal fluid are similar in that both kinds of
waves are, in general, the waves of velocity. It is easy to
show that the ratio of the velocity amplitude v  to the
velocity ω0R (a characteristic velocity of the stationary
plasma in metals) significantly exceeds (as much as
(L /∆r)2 times) the ratios ϕ /U and n1/n.

4. BICOMPONENT SOLID-STATE PLASMA
OF A SEMICONDUCTOR 

The wave propagating in the gas of electrons and
holes of a semiconductor produces perturbations of
both components of the electric current, j±. These per-
turbations can be written in the form of (13) but sepa-
rately for the electrons and holes. 

In this case, the system of equations of the problem
includes the Euler equations (4), written separately for
the velocities of charge carriers of two kinds. The angu-
lar velocity of the plasma moving as a whole, given by
(2), also differs for electrons and holes, which is due to
the difference in the carrier mobility µ±. Deviation from
neutrality is introduced into the Poisson equation (12) for
the semiconductor plasma through the difference of the
carrier concentrations  – . At last, in the kinetic
equations with the same form as (14) but written sepa-
rately for electrons and holes, the compressibility of both
electrons and holes should be taken into account. 

Both charged and quasi-neutral waves are possible
in the semiconductor plasma. An analysis of cumber-
some equations describing the wave propagating
through this bicomponent semiconductor plasma has
shown that the results earlier obtained for the electron
gas in a metal are valid for semiconductors. It is only
necessary in the corresponding equations to take into
account the difference in the characteristics of the two
plasma components, for example, to take into account
two components of diffusion characterized by the dif-
fusivity of electrons D– and holes D+. 

n1
+ n1

–
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All the conclusions made in Section 3 for the waves
in the plasma of metals can be extended to the case of
semiconductors. 

To sum up the results obtained, we note that in the
first approximation, the frequency of an axial symmet-
ric wave can be obtained from relationship (10), disre-
garding the type and number of current carriers and
without regard to the resulting electric charge or quasi-
neutrality of the wave. In the case of an axially a sym-
metric wave, in addition to the wave given by (10), a
drift wave appears with a frequency being a multiple of
Ω. A characteristic of the latter wave is an extinction
associated either with the limited free-carrier lifetime
or with conductivity (for electrically charged waves in
the plasma of metal) or, possibly, with diffusion (for
quasi-neutral waves in the plasma of a semiconductor).
In the drift waves, the sense of inequality (17) is
reversed. In the case where no voltage is applied but the
radial temperature difference Te – Ti exists, an analog of
the Thomson wave caused by thermoelectric effect is
also possible. 

Owing to the inequality ∆r ! L, expanding the fre-
quency in (10) into a series yields ω = d1k + d2k3 (d1 and
d2 are constants here). This demonstrates a possibility
for the waves described to form a soliton of the
Korteweg–de Vries type [2]. 

Excitation and observation of the Thomson-type
wave in solids is possible by applying a probe field
B' ! B near one of the cylinder end faces, which will
cause a frequency deviation Ω' ~ B'. An excitation with
such a frequency will propagate along the cylinder axis
at a speed of Ω'∆r /(pπ), so that after a time delay of
(L /∆r)/(pπ/Ω') at the other face of the cylinder it will
be possible to detect an additional magnetic field. Such
a delay takes place when condition (17) is satisfied. To
observe the soliton, a Π-shaped pulse of the magnetic
field is necessary. In a weak field B . 1/µ and at an
electrical field level below the heating level, the fre-
quency of the waves analogous to the Thomson waves
will be of 106–107 Hz.
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Abstract—The two-dimensional Heisenberg model is applied to the interpretation of the experimental data on
the thermodynamic and magnetic properties of 3He monoatomic films in the millikelvin temperature range, i.e.,
under conditions when these properties are completely governed by the dynamics of the nuclear spin sub-
system. The theoretical results obtained make it possible to describe the internal energy E, the heat capacity Cs,
and the magnetic susceptibility χ of the two-dimensional spin-1/2 Heisenberg ferromagnets and antiferromag-
nets on a triangular lattice within the unified approach over the entire range of temperatures. The data available
in the literature on the heat capacity and magnetic susceptibility of 3He films are interpreted in the framework
of the advanced theory. Most attention is concentrated on the layers characterized by the ferromagnetic
exchange. Comparative analysis of theoretical and experimental data is carried out with the use of two fitting
parameters: the exchange interaction constant J and the number of “active” spins n2 in the layer that is deter-
mined from the entropy of the system in the limit T  ∞. It is demonstrated that, for the ferromagnetic layers,
the theoretical results obtained within the Heisenberg model are in very good agreement with the experimental
data reported by different authors. © 2000 MAIK “Nauka/Interperiodica”.
In recent years, considerable interest has been
expressed in studies of 3He films deposited on exfoli-
ated graphite substrates [1–9]. The 3He monolayers
provide an excellent example of two-dimensional
quantum systems whose physical properties in the mil-
likelvin temperature range are completely governed by
the dynamics of a nuclear spin subsystem.

The 3He films investigated experimentally consist of
several monoatomic layers [3]. The first monolayer
deposited directly on a graphite substrate turns out to be
solid and paramagnetic, because the interaction with
substrate atoms dominates over the interatomic interac-
tion in the layer. The second 3He layer applied on top of
the first layer rather weakly interacts with a substrate,
and its properties are determined by the appreciable (of
the order of several millikelvins) exchange interaction
between atoms within the layer. In its nature, this layer
is virtually the ideal two-dimensional spin-1/2 magnet
on the triangular lattice. In this layer, the exchange
interaction constant J depends on the coverage ρ (the
total number of atoms per unit area of a substrate). At
small ρ, the second layer exhibits antiferromagnetic
properties. As the coverage increases, the J constant
changes sign, and the exchange interaction becomes
ferromagnetic. Typically, the exchange interaction con-
stant |J | is equal to ~1–3 mK.

A large amount of experimental data on the heat
capacity and the magnetic susceptibility of 3He mono-
1063-7834/00/4201- $20.00 © 20103
layers on graphite has been amassed to date [1–9].
However, it can be stated that there is no general agree-
ment in the literature regarding the choice of an ade-
quate physical model describing the effects observed.
In a number of works [1, 3, 4], the Heisenberg model
was used for the interpretation of experimental data. At
present, the concept advanced by Bäuerle et al. [7–9] is
more widely accepted. According to this concept, the
Heisenberg model is of limited utility for describing the
behavior of 3He films in the ferromagnetic state at suf-
ficiently high coverages and, in essence, is inapplicable
to the interpretation of their properties in the antiferro-
magnetic state. The reason is that the processing of the
experimental temperature dependences of the spin heat
capacity Cs and the magnetic susceptibility χ in the
framework of the Heisenberg model leads to different
values of the exchange interaction constants Jc and Jχ.
As an alternative to the Heisenberg model, the authors
of [2, 5, 7–9] proposed the multiple-spin exchange
model [10, 11], which involves several exchange inter-
action constants Jn corresponding to the ring exchange
in groups composed of n atoms (n = 2, 3, …, 6). In this
model, the Jc and Jχ constants are expressed by differ-
ent combinations of the Jn constants, and their variation
as fitting parameters makes it possible to achieve a rea-
sonable agreement between experimental and theoreti-
cal data. However, it should be emphasized that the
number of fitting parameters Jn in the multiple-spin
000 MAIK “Nauka/Interperiodica”
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exchange model is more than two, whereas only two
constants Jc and Jχ can be obtained experimentally.
Therefore, the uncertainty arises in the choice of the Jn

constants, and, hence, the advantages in the processing
of experimental data that are seemingly offered by the
multiple-spin exchange model appear to be sufficiently
controversial. It should be also kept in mind that, in vir-
tually all the above works, treatment within the Heisen-
berg and multiple-spin exchange models is commonly
restricted to high-temperature series expansions [12,
13], which, in principle, give no way of describing, for
example, such an important feature in the behavior of
two-dimensional magnets as the peak in the tempera-
ture dependence of the spin heat capacity in the temper-
ature range T ~ |J |. De Mello et al. [14, 15] attempted
to interpret the thermodynamic characteristics of two-
dimensional ferromagnets at T ≤ J in terms of the
Heisenberg model on the basis of the renormalization
group approach. However, the authors themselves
noted that their theory satisfactorily describes the
experimental data only at T ≥ J [14, 15].

Therefore, the interpretation of the thermodynamic
behavior of 3He two-dimensional films in the low-tem-
perature range T ≤ J is an urgent problem. In particular,
the question about the boundaries of the applicability
of the Heisenberg model to the description of these
systems for different exchange types remains open.
Recently, one of the authors of this work, within the
unified approach, analytically described the thermody-
namics of two-dimensional Heisenberg ferromagnets
and antiferromagnets on the triangular lattice at arbi-
trary temperatures [16]. The aim of the present work
was to interpret the temperature dependences of the
spin heat capacity and the magnetic susceptibility for
the 3He solid monolayers at coverages corresponding to
the ferromagnetic exchange interaction [1–9] in the
framework of the theory developed in [16].

In Section 1 of the paper, we briefly describe new
theoretical results obtained in [16] for the thermody-
namics of Heisenberg systems on the triangular lattice.
Section 2 is dedicated to detailed comparison of the
theoretical results with the experimental data of differ-
ent authors [1–9]. As will be shown below, the correct
choice of only two fitting parameters of the theory—the
exchange interaction constant J in the Heisenberg
model and the number of “active” spins n2 in the second
layer [17, 18]—allows us, within the unified approach,
to achieve a very good accord with the experimental
data on the heat capacity [1–5] and the susceptibility
[7–9] of 3He solid monolayers in the ferromagnetic
state and to corroborate the applicability of this model
for the above systems. At the end of Section 2, the the-
oretical results are compared with the experimental
data obtained by Siqueira et al. [2] on the heat capacity
of 3He layers in the antiferromagnetic state. In this case,
too, the theoretical and experimental data correlate
well.
P

1. HEAT CAPACITY AND SUSCEPTIBILITY 
OF TWO-DIMENSIONAL HEISENBERG 

MAGNETS ON THE TRIANGULAR LATTICE

Let us consider the isotropic Heisenberg system
with the spin S = 1/2. Hamiltonian of the system can be
represented as

(1)

where J is the exchange interaction constant (J > 0 for
a ferromagnet, and J < 0 for an antiferromagnet), Sf is
the spin operator on the site f, and δ is the vector spec-
ifying the coordinates of the nearest neighbors on the
triangular lattice. The computational technique used in
this work is based on the two-time Green function for-
malism [19]. The uncoupling of functions of greater
order was carried out according to the procedure that
was proposed by Kondo and Yamaji [20] for the
description of the thermodynamics of one-dimensional
Heisenberg system and was extended in [21, 22] to
two-dimensional magnets on the square lattices. The
advantage of this procedure resides in the fact that,
without assumption regarding the existence of a long-
range order in a system, the problem is reduced to the
calculation of correlation functions adequately taking
into account the details of a short-range order. There-
fore, the technique used explicitly reflects the specific
feature of low-temperature Heisenberg magnets, in
which, as is known, the long-range order is absent at
any finite temperatures; i.e., the thermodynamic mean
〈Sz〉  is equal to 0 (the Mermin–Wagner theorem [23]).

In [16], the thermodynamics of spin-1/2 Heisenberg
ferromagnets and antiferromagnets on the triangular
lattice was analyzed in the framework of the above
approach. Below, we will briefly describe such results
of this work that are necessary for the subsequent com-
parison of the theoretical and experimental data.1 The
uncoupling of the Green functions of greater order
leads to the correlation functions (ν = x, y, and z)

(2)

(3)

Ultimately, all the thermodynamic characteristics of a
system are expressed by these functions.

As follows from definition (2), the c1 function
accounts for the correlations of spin in the site f with
neighbors located in the first coordination sphere. The
second correlation function c2 describes the correla-
tions between spins being two steps apart along the
translation vectors d. Note that, in addition to the trivial

1 We call attention to the fact that the exchange interaction constant
J in formula (1) is two times less than the corresponding constant
in [16]. The choice of the Hamiltonian in the form of (1) in the
present paper is connected only with convenience of comparison
between the theoretical results and numerical experimental data
taken from [1–9].

H J StSf d+ ,
fd
∑–=

c1 4 Sf
νSf d+

ν〈 〉 ,=

c2 4 Sf
νSf δ δ'+ +

ν〈 〉 , d d', d– d'+ d''.≠ ≠=
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condition d ≠ –d', the definition of c2 on the triangular
lattice requires the fulfillment of the second nonequal-
ity in (3). This excludes the two-step paths that can lead
to the spin in the first coordination sphere, which corre-
sponds to the correlations between the nearest neigh-
bors that is already included in the function c1. In addi-
tion to correlators (2) and (3), the theory involves the
additional parameter α [16, 20], which is chosen so that
the following kinematic relationship is met:

(4)

It is interesting to note that this uncoupling procedure
turns out to be more efficient than the universally
adopted method, in which α ≡ 1. Specifically, the ful-
fillment of condition (4) automatically leads to the tem-
perature dependence of the correlation functions,
which follows from the direct high-temperature series
expansion (see [20, 21]).

After the uncoupling of all the Green functions of
greater order and going to the Fourier transform in
terms of coordinates, for the function

,

we have

(5)

Here, we introduced the following designations:

(6)

(7)

and  = αci (i = 1, 2).

By using the spectral relationships for the Green
functions [19], we can obtain the self-consistent set of
equations for the determination of α, , and :

(8)

(9)

(10)

where N is the total number of sites, and

(11)

S2〈 〉 S S 1+( ) 3/4.= =

G ω k,( ) Sf
ν Sf '

ν〈 〉〈 〉 ω ikf( )exp
f

∑=

G ω k,( )
3Jc1

π
-----------

1 γk–

ω2 ωk
2–

------------------.=

ωk
2 12J2 1 γk–( ) ∆ 6c̃1 1 γk–( )+[ ] ,=

γk
1
6
--- ikd( ), ∆exp

δ
∑ 1 5c̃1– 3c̃2,+= =

c̃i

c̃1 c̃2

α
12Jc̃1

N
-------------- g k( ),

k

∑=

1
12J
N

--------- γkg k( ),
k

∑=

c̃2

4Jc̃1

N
----------- 6γk

2 2γk– 1–( )g k( ),
k

∑=

g k( )
1 γk–

ωk
--------------

ωk

2T
------.coth=
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Hereafter, we assume that the Boltzmann constant kB is
equal to unity. Note that system (8)–(10) has the form
that is formally identical for ferromagnets and antifer-
romagnets, because it was derived without any special
assumptions regarding the sign of the exchange integral
[16]. The fundamental difference between ferromag-
nets and antiferromagnets becomes essential only in
specific analysis of system (8)–(10) at J > 0 and J < 0.

The thermodynamic characteristics of interest are
expressed in terms of the , , and α functions. The
internal energy E is equal to the mean value of Hamil-
tonian (1)

(12)

The heat capacity Cs of the spin subsystem is given by

(13)

and the magnetic susceptibility normalized to Curie’s
constant takes the form

(14)

where ∆ is defined according to (7).
At arbitrary temperatures, the system of equations

(8)–(10) can be solved only using numerical tech-
niques. The analytic asymptotics can be found in the
limit of high and low temperatures. Before proceeding
to the discussion of the results obtained by numerical
computations, let us write the asymptotic expressions
for the internal energy, heat capacity, and susceptibility
of two-dimensional Heisenberg magnets. In the high-
temperature limit, at |θ| @ 1 (θ = T /J), system (8)–(10)
can be solved by the expansion in terms of inverse pow-
ers of the θ parameter. In this case, for ferromagnets
and antiferromagnets, the asymptotic expressions for
thermodynamic quantities (12)–(14) formally have the
same form and differ only in the sign of the θ parame-
ter. Retaining terms of the order of θ–2, one obtains

(15)

(16)

(17)

It should be noted that relationships (15)–(17) coincide
with the corresponding formulas obtained by the direct
high-temperature series expansion (see, for example,
[12, 24]).

Compared to the high-temperature limit, the calcu-
lation of asymptotics in the low-temperature limit is
much more complicated and has the specific features

c̃1 c̃2

E
N
----

9
4
---Jc1.–=

Cs

N
-----

∂E
∂T
------,=

χ
C
----

4
T
--- Sk

z S k–
z〈 〉

k 0→
lim

2c1

J∆
--------,= =

E
JN
-------  . 

9
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Fig. 1. Spin heat capacities of two-dimensional ferromagnet
and antiferromagnet on the triangular lattice as functions of
the dimensionless temperature. For comparison, the high-
temperature asymptotics taken from [12] are shown by
dashed lines.
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Fig. 2. Magnetic susceptibilities of two-dimensional
(a) antiferromagnet and (b) ferromagnet on the triangular
lattice as functions of the dimensionless temperature. For
comparison, the high-temperature asymptotics taken from
[12] are shown by dashed lines.
for the ferromagnetic and antiferromagnetic systems.
Specific analysis of the system of equations (8)–(10)
essentially depends on the sign of the exchange inte-
gral; in particular, the sign of the  correlation func-
tion is determined by the sign of J. For this reason,
either of these two cases should be considered individ-
ually [16]. For ferromagnets at low temperatures, we
have

(18)

(19)

(20)

Note that relation (19) agrees with similar formula
given in [25].

The low-temperature asymptotics for the antiferro-
magnet on the triangular lattice are such that the coeffi-
cients of expansions in power series of temperature can
be determined only by the numerical solution of some
system of transcendental equations [16]. As a result, the
expressions are written as

(21)

(22)

(23)

As is seen from formulas (19) and (22), the heat capac-
ity of ferromagnets at T  0 is the linear function of
the temperature, which is consistent with the theory of
spin waves.

In order to obtain the thermodynamic functions in
the intermediate temperature range, it is necessary to
numerically solve the system of transcendental equa-
tions (8)–(10) and to determine the α, , and  quan-
tities as functions of the temperature. Then, the internal
energy, heat capacity, and susceptibility of the magnet
are calculated by relationships (12)–(14). The results of
numerical calculations are depicted in Figs. 1 and 2.
The calculated temperature dependences of the spin
heat capacity for the ferromagnet and antiferromagnet on
the triangular lattice are displayed in Fig. 1. Figures 2a
and 2b demonstrate the temperature dependences of the
magnetic susceptibility for the antiferromagnet and fer-
romagnet, respectively. It can be seen from Fig. 1 that,
for the triangular lattice, the heat capacity of the ferro-
magnet is larger than that of the antiferromagnet over
the entire range of temperatures (it is worth noting that,
by contrast, for the square lattice, the heat capacity of
the antiferromagnet is higher than that of the ferromag-
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net [16, 18]). The maximum values of the calculated
heat capacities of ferromagnet and antiferromagnet dif-
fer two times. It is interesting that the same ratio
between the heat capacities at a maximum was experi-
mentally observed by Siqueira et al. [2] in the investi-
gation on the 3He films in the ferromagnetic and anti-
ferromagnetic states.

For comparison, the graphs of the high-temperature
series expansions determined to within the ~|θ|–13 terms
in [21] are shown by dashed the lines in Figs. 1 and 2.
It is easy to see that our results very well agree with the
data taken from [21] up to temperatures at which the
series expansions in actual fact become inapplicable.

There is one more evident criterion that enables us
to assess the efficiency of the proposed approach for
analysis of the Heisenberg model. This criterion lies in
the fact that the entropy of the spin subsystem

(24)

at high temperatures should tend to the limit

(25)

Figure 3 depicts the dependence S(T) calculated from
formula (24) for the ferromagnet on the triangular lat-
tice. It is seen that, for the ferromagnet, condition (25)
is met with a high accuracy. This fact, and also the
excellent agreement between the calculated heat capac-
ity and the high-temperature series expansions, suggest
that, for the ferromagnet, the proposed method ade-
quately describes the thermodynamics of the spin sys-
tem over the entire temperature range.

For the antiferromagnet, Fig. 1 demonstrates that
our calculated data and the results of the high-tempera-
ture series expansions also correlate very well; how-
ever, condition (25) is fulfilled notably worse. This fact
was mentioned and discussed in detail by Kondo and
Yamaji [20] in consideration of the one-dimensional
Heisenberg model. In [20], it was shown that the used
method correctly predicts the temperature dependence
of the heat capacity at low temperatures Cs ~ aT, but the
a coefficient becomes underestimated. It seems likely
that similar situation takes place in our antiferromagnet
on the triangular lattice; i.e., the coefficient of the θ2

term in expression (22) is underestimated. Note also
that the applicability range of low-temperature asymp-
totics (21)–(23), as in the one-dimensional case [20], is
extremely narrow. Therefore, all the foregoing permits
us to argue that the advanced theory is applicable for
describing the thermodynamics of antiferromagnetic
system over the entire temperature range with the
exception of a narrow range in the vicinity of absolute
zero.

S T( ) T
Cs T( )

T
--------------d

0

T

∫=

S ∞( ) N 2.ln=
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2. COMPARISON WITH EXPERIMENTAL DATA

The heat capacity and the magnetic susceptibility of
the second layer in the 3He films have been measured
over wide ranges of the coverages ρ and temperatures
(for example, Ishida et al. [5] measured Cs down to
90 µK). As to the interpretation of experimental data, the
question regarding the applicability of the Heisenberg
model for describing the observed properties of 3He
films is actively discussed in the literature [2, 4, 5, 8, 9].
The majority of authors believe that the Heisenberg
model is appropriate solely for the ferromagnetic layers
(moreover, only at the high coverages ρ ≥ 0.26 Å–2) and
is not applicable to antiferromagnetic layers, in which
the effects of multiple-spin exchange play an essential
part [7, 9]. However, it should be pointed out that this
conclusion was made solely on the basis of results
obtained with the high-temperature series expansions
for both the Heisenberg and multiple-spin exchange
models. At the same time, the high-temperature series
expansions do not reflect such an important feature in
the Cs(T) dependence as the maximum at T ~ |J |. There-
fore, the fitting of theoretical results to experimental
data with the use of these series expansions appears
ambiguous and the question as to the applicability
range of the Heisenberg model for the systems under
consideration remains open.

In this section, we will compare the aforementioned
experimental data with the results of our theory, which
describes the thermodynamics of the Heisenberg mag-
nets on the triangular lattice over the entire range of
temperatures.

In this respect note that, for antiferromagnetic lay-
ers, there is a considerable scatter in the data reported
by different authors. For example, in [3, 5, 26, 27], it
was found that, at high temperatures, the heat capacity

1.0

0.5

0 20 40
T/J

S/n2ln2

Fig. 3. Entropy of two-dimensional ferromagnet on the tri-
angular lattice.
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Fitting parameters for comparison of theoretical and experimental data

Experiment [4, 5] [9] [9] [9] [2] [3] [5] [3]

ρ, Å–2 0.23 0.2303 0.236 0.2383 0.24 0.24 0.26 0.26

ρ2, Å–2 × 102 8.084 8.086 8.115 8.125 8.131 8.131 8.176 8.176

σ 0.77 – – – 0.86 0.86 0.97 –

J, mK 2.2 2.18* 1.85* 1.7* 1.6 1.6 0.83 0.83

Note: Constants J marked by asterisk are obtained by fitting to the data on magnetic susceptibility, and the remaining values are found by
fitting to the heat capacity.
of 3He films decreases more slowly than 1/T2 (in some
cases, Cs ~ 1/T). On the other hand, the usual behavior
Cs ~ 1/T2 at T @ |J | was observed in [1, 2]. Further-
more, in these works, it was demonstrated that the same
universal dependence of the heat capacity on the dimen-
sionless temperature θ = T/|J| takes place for the films
with the coverages ρ in the range 0.178–0.202 Å–2 (see
Fig. 3 in [2]). This serves as an indirect indication that
the Heisenberg model is applicable to the antiferromag-
netic systems. At present, it is difficult to draw definite
conclusions of whether the above effects are associated
with some features of particular experimental tech-
niques or their presence reflects the physical nature of
these systems.

The experimental data obtained in different works
for ferromagnetic layers are in good agreement, and,
consequently, it can be believed that the behavior of the
ferromagnetic system is revealed reliably. Therefore, in
what follows, we will predominantly compare the the-
oretical and experimental data concerning the ferro-
magnetic system.

In the Heisenberg model, the heat capacity per one
spin is the universal function of the dimensionless tem-
perature θ = T / |J |. Therefore, for convenience of com-
parison, the experimental data were processed in the
following way. The experimental heat capacity should
be normalized to the number of spins involved in the
exchange interaction and be represented as a function
of the dimensionless variable θ. The total number of
atoms N2 in the second layer is known from indepen-
dent structural investigations [3, 9]. However, as was
first mentioned in [17, 18] and, then, was confirmed in
other works [1–3, 7–9], there are strong grounds to
believe that spins in the second layer of the 3He multi-
layer system do not all contribute to the thermodynamic
properties of two-dimensional crystal. To put it differ-
ently, the number of active spins n2 in the second layer
is always less than the number of atoms N2 forming this
layer. The n2 number can be evaluated from criterion
(25). The entropy of the system was calculated by for-
mula (24) from the experimental temperature depen-
dence of the total spin heat capacity Cs(T) for the layer.
Then, we determined the limiting value of the entropy
at T  ∞, which should be equal to n2ln2 for both the
ferromagnetic and antiferromagnetic layers. This limit-
P

ing entropy allowed us to calculate n2 and, thus, the
heat capacity per one active spin. The ratios

determined from the experimental data usually fall in
the range 0.75–0.95 [1–9]. Note that, at least, in the fer-
romagnetic state (0.21 Å–2 < ρ < 0.26 Å–2), the value of
σ monotonically increases with an increase in ρ; i.e.,
the larger the coverage, the higher the value of σ.
Therefore, an increase in the total coverage ρ leads to
an increase in the second layer coverage ρ2 and also in
the fraction of spins involved in the exchange interac-
tion in the second layer (n2  N2). Likely, this fact
explains the inference made by Roger et al. [9] that the
Heisenberg model is applicable to layers with the cov-
erage ρ ≥ 0.26 Å–2. Nowadays, there is no universally
accepted physical interpretation of this effect; however,
it is quite clear that the effect stems from the structural
transformation of the second layer as the next layers are
built up. Since the relationship (25) does not depend on
the exchange interaction constant J, the number of
active spins n2 in the second layer can serve as an inde-
pendent fitting parameter used in comparison of the
theoretical and experimental data.

The exchange interaction constant J is the second
fitting parameter. In all, without any exception, experi-
mental works [1–9], this quantity was evaluated in one
way or another from the high-temperature asymptotics
of the heat capacity or magnetic susceptibility. In our
case, we can fit the J constant in such a way as to obtain
the best agreement between the experimental and theo-
retical dependences over the entire temperature range,
including the temperatures corresponding to the maxi-
mum of the heat capacity (T ~ J) and the low-tempera-
ture branch.

The fitting parameters determined by the above-
described procedures for different experimental data
corresponding to the ferromagnetic state are summarized
in the table. The experimental data for the ferromagnetic
exchange and the results of theoretical calculations
described in Section 2 are compared in Figs. 4–7 (solid
lines correspond to the theoretical curves shown in
Figs. 1 and 2, and points are the experimental data
taken from different works). Since the representation of

σ
n2

N2
------=
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all the experimental data in the same figure would be
too difficult to grasp, the data for different coverages
are demonstrated in different figures.

Figure 4 displays the spin heat capacity of the sec-
ond layer at the total coverage ρ = 0.23 Å–2. As is easy
to see, two groups of experimental points taken from [4,
5] agree closely with the theoretical results [16] (the
solid line in Fig. 4) at all temperatures. It is of interest
that the dependence Cs(T) obtained by Ishida et al. [5]
more recently and, likely, with a higher accuracy, better
fits the correct asymptotic curve described by formula
(19) in the low-temperature range.

The theoretical results and the experimental data
taken from [2, 3] at the coverage ρ = 0.24 Å–2 are com-
pared in Fig. 5. In this case, too, there is a very good
conformity with our theoretical data (solid line) over
the entire range of temperatures. The theoretical depen-
dence of the heat capacity that was calculated by de
Mello et al. [14, 15] with the use of the renormalization
group method at J = 1.69 is depicted by the dashed line
in Fig. 5. It is clear that this dependence only qualita-
tively correlates with the experimental data.

Figure 6 illustrates the agreement between our the-
oretical results and the experimental data taken from
[3, 5] for layers with ρ = 0.26 Å–2.

The experimental [9] and theoretical dependences
of T · χ(T)/C (where C is Curie’s constant) on the
dimensionless temperature θ are demonstrated in
Fig. 7. The experimental data in [9] were obtained for
layers with ρ = 0.2303, 0.236, and 0.2383 Å–2. As can
be seen from the figure, here, again, our theory
describes well the experimental data. The correspond-
ing values of the σ and J fitting parameters are listed in

0.1

0.01

0.1 1 10
T/J

Cs/kBn2

1
2

Fig. 4. Dependence of the normalized heat capacity on the
dimensionless temperature for the second layer at the cover-
age ρ = 0.23 Å–2. Points are the experimental data taken
from (1) [4] and (2) [5]. Solid line represents the theoretical
dependence (see Fig. 1).
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the table. Note that, for the layer with ρ = 0.23 Å–2, the
exchange interaction constants J determined from the
heat capacity and the magnetic susceptibility are coin-
cident, as it should be the case of the Heisenberg model.
Unfortunately, except for this case, other examples
when the heat capacity and the susceptibility were mea-
sured for layers with the identical coverage ρ are not
available. Therefore, in order to illustrate the applica-
bility of the Heisenberg model to the interpretation of
physical properties of the ferromagnetic second layer,

0.1

0.01

1 10

1
2

T/J

Cs/kBn2

Fig. 5. Dependence of the normalized heat capacity on the
dimensionless temperature for the second layer at the cover-
age ρ = 0.24 Å–2. Points are the experimental data taken
from (1) [2] and (2) [3]. Solid line represents the theoretical
dependence. Dashed line indicates the dependence obtained
by the renormalization group method [15].
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T/J
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Fig. 6. Dependence of the normalized heat capacity on the
dimensionless temperature for the second layer with the
coverage ρ = 0.26 Å–2. Points are the experimental data
taken from (1) [4] and (2) [5]. Solid line represents the the-
oretical dependence.
0
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the graph of the exchange interaction constants J
obtained from the data on the heat capacity and the sus-
ceptibility is constructed as a function of the second
layer coverage ρ2 (the values of ρ2 were calculated from
the values of the total coverage ρ by using the Greywall
approximation formula [5]) in Fig. 8. It is seen that all
the J(ρ2) values fall on the same smooth curve, which
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χT/C

1
2
3

2.2

2.0

1.8

1.6

1.4
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8.08 6.10 8.12 8.14 8.16 8.18

J, mK

ρ2, 10–2Å–2

Fig. 7. Dependence of the magnetic susceptibility on the
dimensionless temperature for the ferromagnetic layers at
ρ = (1) 0.2303, (2) 0.236, and (3) 0.2383 Å–2. Points are the
experimental data taken from [9].

Fig. 8. Dependence of the exchange interaction constant J
on the second layer coverage ρ2 for the ferromagnetic layer.
P

monotonically slopes down with an increase in ρ2. Con-
sequently, it is evident that the Heisenberg model ade-
quately describes the experimental properties of the
3He monolayer in the ferromagnetic state at the cover-
ages ρ ≥ 0.23 Å–2.

Now, we briefly dwell on comparison between the
theoretical and experimental data for the antiferromag-
netic layers. Let us use the data from [2], in which the
dependences of the heat capacity normalized to one
spin were obtained as a function of the dimensionless
temperature T / |J | for several antiferromagnetic layers
with the coverages 0.178 Å–2 < ρ < 0.202 Å–2 (see
Fig. 3 in [2]). In this case, the experimental data can be
directly used for comparison. Since the corresponding
figure from [2] contains a very large number of experi-
mental points, the smoothed experimental dependence
is represented in Fig. 9. One can see that the theoretical
and experimental data reasonably agree over the entire
temperature range. The heat capacities at a maximum
are coincident, even though the maximum in the theo-
retical curve is somewhat shifted toward the right of the
maximum in the experimental dependence (the shift ∆θ
is equal to approximately 0.1).

In summary of analysis carried out in the present
work, it can be concluded that the Heisenberg model on
the triangular lattice makes it possible to adequately
describe the observed physical properties of the 3He
ferromagnetic solid monolayers over the entire range of
temperatures. This inference is based on the following
findings. First, the proposed theory in the case of ferro-
magnetic layers provides the rigorous quantitative
description at arbitrary temperatures. Second, there is
the excellent agreement between the experimental and
theoretical data on the heat capacity and the magnetic

0.20
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0.10

0.05

0 5 10 15
T/J

Cs/kBn2

Fig. 9. Experimental (points) [2] and theoretical (solid line)
dependences of the normalized heat capacity on the dimen-
sionless temperature for the antiferromagnetic layers at
0.178 < ρ < 0.202 Å–2.
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susceptibility, which is achieved by the unique choice
of only two independent fitting parameters—the
exchange interaction constant J and the number of
active spins n2 in the second layer. Finally, the J con-
stants evaluated from the data on both the heat capacity
and the magnetic susceptibility exhibit the same univer-
sal dependence on the second layer coverage ρ2, as
should be the case of the Heisenberg model, within
which the thermal and magnetic properties are deter-
mined by the same exchange interaction constant.

As regards the 3He antiferromagnetic films, the
experimental data available in the literature are rather
contradictory and, in some cases, do not allow one to
make unambiguous conclusions on the properties of the
system. In particular, the behavior of the heat capacity
of antiferromagnetic layers at high temperatures is still
not understood, and the Cs(T) dependences in the low-
temperature range are not studied in sufficient detail.
The results obtained in the present work indicate that
the Heisenberg model furnishes an opportunity to
describe the heat capacity of the 3He antiferromagnetic
layers; however, the ultimate answer to the question
regarding the boundaries of the applicability of this
model to the system under consideration calls for fur-
ther experimental and theoretical investigations.
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Abstract—The superconducting transition temperature Tc of the ZrD0.48 alloy is measured in the pressure range
up to 41.5 GPa. The measurements are carried out in a high-pressure chamber with diamond anvils by the induc-
tometric method. It is found that Tc(P) increases to 3.1 K at a pressure below 30 GPa, exhibits a sharp increase
up to 8 K near 30 GPa, and then smoothly decreases to ~6.5 K at 41.5 GPa. A similar dependence Tc(P) is
obtained for pure Zr. The similarity of the Tc(P) curves suggests that the dependence Tc(P) observed for ZrD0.48
is due to the presence of ω-phase in this alloy at pressures P < 30 GPa and the ω–β transition at P < 30 GPa,
which leads to the establishment of new ratios between the phases in the Zr–D system. In the pressure range
studied, no indications are observed for new superconducting phases similar to the phases of intermediate com-
position in the Ti–H(D) system, which are formed by the hydrogen transfer from tetrahedral to octahedral inter-
stitials. © 2000 MAIK “Nauka/Interperiodica”.
In the phase T–c diagram of the Zr–H system at
atmospheric pressure, four phases are believed to be
equilibrium [1]: the solid solution of hydrogen in hex-
agonal close-packed (hcp) α-Zr, the hydrogen solid
solution based on the body-centered cubic (bcc) high-
temperature phase β-Zr, the nonstoichiometric dihy-
dride δ-ZrH2 – y with the face-centered cubic (fcc) sub-
lattice of Zr, and the ε-ZrH2 – y dihydride with the
homogeneity region extending up to the stoichiometric
composition x = H/Zr = 2. The ε-phase is formed from
the δ-phase due to its tetragonal distortion accompa-
nied by an increase in the hydrogen content. The high-
temperature phase β-ZrHx is in an eutectoid equilib-
rium with α-Zr(H) and δ-ZrH2 – y at a point with the
coordinates T = 550°C and x = 0.5 Recent studies [2–5]
indicate that one more phase, namely, γ-ZrH with the
face-centered orthorhombic sublattice of Zr, also has
the stability region at temperatures below ~235°C and
slowly arises in the two-phase alloys (α + δ)-ZrHx even
at room temperature.

In all these phases, the hydrogen atoms occupy the
tetrahedral interstitials (tetrapores) of the Zr sublattice.
The problem of hydrogen transfer from tetrapores to
octapores in Zr hydrides under pressure has already
been discussed in the literature [5, 6]. In the Ti–H sys-
tem, which is an analog of the Zr–H system at atmo-
spheric pressure [7–10], such a transfer occurs under a
pressure of 2.05 GPa [11, 12]. In the composition range
close to the eutectoid composition (x = 0.7–0.9), the
hydrogen transfer gives rise to a new phase, which,
after the quenching under pressure in liquid nitrogen,
remains metastable up to atmospheric pressure. In the
metastable state, the new phase is characterized by the
superconducting transition temperature Tc = 4.3 K and
also by the reverse isotropic effect (Tc = 5.0 K in the
1063-7834/00/4201- $20.00 © 20011
Ti−D system) [13, 14]. Empirical estimates of the pres-
sure of the tetra–octa transition for hydrogen in the Zr–
H system gave values from 45 [6] to 58 GPa [5]. How-
ever, these estimates disregarded the electronic transi-
tion in pure Zr under a pressure of 30 GPa [15–18],
which is attended by an increase in the metallic radius.
The existence of electronic transition in pure Zr
decreases the reliability of the estimates obtained in [5,
6] and stimulates interest in the direct experimental
measurements. The structural measurements were per-
formed with zirconium dihydride under pressures up to
18 GPa [6, 19], which showed the absence of phase
transformations.

The aim of the present work was to carry out the
measurements of the superconducting properties of
alloys in the zirconium–hydrogen system in the pres-
sure range extended through the use of chambers with
diamond anvils and also to verify experimentally
whether the new phases, whose existence can be con-
nected with the tetra–octa transfer of hydrogen, are
formed in this system under pressures up to ~40 GPa.
As the temperature Tc in the Ti–H(Ti–D) system exhib-
its a reverse isotope effect, we studied the deuteride
alloy ZrD0.48, which is close in composition to the
eutectoid alloy in the Zr–H(D) system (x = 0.5 [1]).

1. EXPERIMENTAL TECHNIQUE

The initial alloy of chemical composition D/Zr =
0.48 ± 0.01 was prepared by the saturation of high-
purity (~99.96 at. %) zirconium with a gaseous deute-
rium obtained by heating of a TiD2 sample (for more
detail, see [5]). The deuterium content was determined
by the weighing method.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Experimental temperature dependences of the mag-
netic susceptibility upon heating of the ZrD0.48 sample at
pressures of (1) 17.9, (2) 23.5, (3) 28.9, (4) 30.1, (5) 36.5,
and (6) 41.5 GPa and the pure Zr sample at pressures of
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Fig. 2. Pressure dependence of the superconducting transi-
tion temperature for ZrD0.48 and pure Zr. Short lines indi-
cate the transition temperature ranges. The dotted line cor-
responds to the ω–β transition in Zr.
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High pressures were produced using an apparatus
with diamond anvils, which was fabricated from the non-
magnetic materials [20]. A sample and crystals of ruby
reference specimen were mounted in the orifice of a
metallic gasket with diameter of 0.15 mm. The metha-
nol–ethanol mixture in the ratio 4 : 1 serves as a medium
transferring the pressure. The change in pressure and its
measurement were performed at room temperature. The
pressure was determined from the shift of the ruby
R-line with an accuracy of ±0.05 GPa. The supercon-
ducting transition was determined from the ac measure-
ments of the magnetic susceptibility χ(T) [21]. The
amplitude of the alternating magnetic field with a fre-
quency of 5.2 kHz was equal to 0.3 Oe. The high-pres-
sure apparatus was entirely cooled in a cryostat down to
1.5 K, and the recording of the χ(T) curve was per-
formed upon heating. The (Cu–Fe)–Cu thermocouple
was used to measure the temperature with an accuracy
of ±0.2 K. Since the apparatus required the preliminary
warming-up for a pressure change and its determina-
tion, the measuring cycle for each pressure took a day.

2. RESULTS

The temperature dependences of the magnetic sus-
ceptibility χ(T) for the ZrD0.48 alloy in the range 17.9 ≤
P ≤ 41.5 GPa are shown in Fig. 1. Abrupt changes in
χ(T) caused by the superconducting transitions in
ZrD0.48 are clearly seen in the curves. In the data pro-
cessing, the superconducting transition point Tc was
determined as a temperature at which the χ(T) jump
reached its half-height. The temperatures between
which the jump magnitude changed from 10 to 90%
were taken as the temperature boundaries of the transi-
tion region. Thus determined temperatures and temper-
ature ranges of the superconducting transitions as func-
tions of pressure are given in Fig. 2. It is seen from the
figure that Tc monotonically increases with pressure in
the range up to ~29 GPa. A jumpwise increase in Tc by
about 5 K is observed at a pressure of 30.1 GPa, and
then the dependence Tc(P) becomes a decreasing func-
tion.

A similar dependence Tc(P) was obtained earlier for
pure Zr with the help of electrical resistance measure-
ments [18]. The resistivity data usually somewhat differ
from the results obtained with the help of magnetic sus-
ceptibility measurements; hence, we repeated our mea-
surements for the initial Zr material, from which the
deuteride was prepared. The experimental curves χ(T)
for pure Zr are given in the lower part of Fig. 1, and the
results of the curves processing are presented in Fig. 2
together with the data for ZrD0.48. It is seen from Fig. 2
that the Tc(P) curves for pure Zr and ZrD0.48 coincide to
within the spread of experimental points. A certain cor-
relation between our data and the results obtained in the
earlier studies on the T–P diagram of the Zr–H(D) sys-
tem under a pressure up to 7 GPa [5] and the phase tran-
sitions in pure Zr in the pressure range up to 70 GPa
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
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[15–18, 22–24] allows us to make a number of sugges-
tions about the phase transformations in the Zr–H(D)
system in the pressure range P ≤ 41.5 GPa.

3. DISCUSSION

Under pressure, pure zirconium undergoes a num-
ber of phase transitions [22]. In the T–P phase diagram
of Zr in the ranges P ≤ 6.5 GPa and T ≤ 900°C, the α−β
phase boundary has a negative slope up to the triple
point with the coordinates P = 5.5 GPa and T = 700°C,
at which α-Zr, β-Zr, and the high-pressure hexagonal
phase ω-Zr are in an equilibrium [23]. In the compres-
sion experiments with shear [24], the equilibrium pres-
sure of the α–ω transition at room temperature was
determined as P = 2.2 GPa. However, under quasi-
hydrostatic pressure, the α  ω transition occurs at
4–7 GPa owing to the hysteresis [18, 23]. Near P =
30 GPa, ω-Zr at room temperature transforms into the
bcc phase [15–17], and then experiences an isomorphic
transition near 56 GPa [17]. The ω–β transition at P =
30 GPa is followed by the jumpwise increase in Tc [18].
According to [15–18], the structural transformations
and the Tc jump under ultrahigh pressure are due to the
s–d electronic transition, as a result of which the elec-
tronic configuration of Zr becomes similar to the con-
figurations of the bcc Group V metals.

In the T–P phase diagram of the Zr–H (Zr–D) sys-
tem studied in the ranges P ≤ 7 GPa and T ≤ 700°C, a
curve of the phase equilibrium new for this system, the
temperature of which increases with pressure, has been
found at pressures above 4 GPa [5]. The X-ray powder
diffraction analysis of the samples quenched up to 80 K
under a pressure of 5–6 GPa showed that this curve is
the boundary for the new (second) eutectoid equilib-
rium involving the ω-, δ-, and ε-phases. Its appearance
is explained by the fact that, under pressure, the region
of existence of the fcc δ-ZrH(D)2 – y dihydride narrows
to zero, and the temperature of intersection of the
δ-phase homogeneity boundaries at the second eutec-
toid point increases with pressure [5].

Therefore, in the ZrD0.48 alloy close in composition
to the eutectoid, the ω-phase with a low hydrogen con-
tent and the ε-ZrD2 – y dihydride should coexist at pres-
sures above 7 GPa and at room temperature. The close
values of Tc(P) for ZrD0.48 and pure Zr (Fig. 2) suggest
that, in the range up to 30 GPa, the superconductivity of
ZrD0.48 is due to the presence of the ω-phase, whereas
the hydrogen-rich phase, most likely, the ε phase,
remains nonsuperconducting. From this fact, it can be
concluded with confidence that new superconducting
phases, whose appearance can be related to the hydro-
gen transition from tetrapores into octapores, are not
formed in the Zr–D system at pressures up to 30 GPa.

The superconducting transition temperature jump
near 30 GPa in ZrD0.48 is likely caused by the transfor-
mation of the ω-phase in the alloy into the bcc phase.
Two most probable variants can be considered for the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      200
distribution of hydrogen in the alloy above this transi-
tion. In the first case, the β-phase in the Zr–D system at
low temperatures and pressures above 30 GPa is
depleted in hydrogen and coexists with the nonsuper-
conducting hydride, ε-ZrDy – 2, in which virtually all
hydrogen is concentrated. Such an impurity distribu-
tion explains in a simple way the similarity in the
behavior of Tc(P) for ZrD0.48 and pure Zr. However, it
seems rather strange, since hydrogen dissolves in both
β-Zr and the bcc Group V metals over a wide range of
concentrations. The numerous ordered phases are
formed in solid solutions of hydrogen in the bcc Group
V metals at low temperatures [25]. It can be assumed
that, in the Zr–D system, a hydrogen solid solution
based on the bcc β-Zr phase is formed above 30 GPa
and undergoes ordering at low temperatures. In this
case, the coincidence of superconducting transition
temperatures in pure metal and its alloy with hydrogen
seems to be unusual. In both cases, the superconducting
properties of ZrD0.48 above 30 GPa can be explained
without invoking the tetra–octa transition of hydrogen.
However, the question on the presence of this transition
in the Zr–H(D) system can be solved unambiguously
only with the help of compression structural studies.

Thus, it is shown that pressure dependences of super-
conducting transition temperatures in the alloy of eutec-
toid composition ZrD0.48 and in pure Zr in the range up
to 41.5 GPa virtually coincide. This evidences for the
presence of the two-phase ω-Zr(D) + ε-Zr(D) ~ 2 state in
ZrD0.48 at P < 30 GPa. The jumpwise increase in Tc near
P = 30 GPa is likely connected with the ω–β transition
resulting in the appearance of new phase ratios in the
Zr–D system. The experimental dependence Tc(P)
gives no evidence of the existence of hydrogen transfer
from tetrapores to octapores in the Zr–D system under
a pressure up to 41.5 GPa.
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Abstract—Magnetite nanoparticles with an average particle size of 7.5 nm were studied by Mössbauer spec-
troscopy in the 100–300 K temperature range. Using experimental data on the temperature variation of isomer
shifts in the partial spectra of 57Fe nuclei in the A and B crystal sublattices, the linear thermal expansion coef-
ficient of the ultradisperse magnetite particles in the temperature range studied was estimated within the frame-
work of the molecular orbital formalism: α = (1.2 ± 0.2) × 10–4 K–1. © 2000 MAIK “Nauka/Interperiodica”.
By nanoparticles, we usually imply the species with
linear dimensions below 40 nm. According to the
experimental data available (see, e.g., [1–4]), the phys-
ical properties of these particles (magnetic characteris-
tics, heat capacity, hardness, etc.) can markedly differ
from the properties of their “massive” counterparts.
The main factor responsible for this difference is a con-
siderable fraction of the surface layer in the total parti-
cle volume.

Below, we present the results of our attempt to use
the data of Mössbauer spectroscopy for investigation of
the thermal expansion of nanoparticles. The idea of the
method used for evaluation of the linear thermal expan-
sion coefficient of nanoparticles is based on determina-
tion of the partial isomer shifts in the spectra of 57Fe
nuclei in a regular structure as functions of the inter-
atomic distances calculated using the method of molec-
ular orbitals (MO).

Experiments were performed with an ultradisperse
powder of magnetite Fe3O4 prepared by the standard
method of chemical condensation. According to the
electron microscopy data, the average particle size in
the sample studied was d ≈ (7.5 ± 0.5) nm. The Möss-
bauer spectra were recorded in the absorption mode
using samples with an effective thickness of about
0.15 mg 57Fe/cm2, which corresponded to the case of
“thin” samples [5]. The γ-radiation source was a 57Co
isotope in the Cr matrix.

From the standpoint of processing and interpreta-
tion of the Mössbauer spectra, it is important to note
that small magnetite particles (d ≤ 9 nm) have the
Vervey temperature value above room temperature [6].
This is confirmed by some characteristic details in the
room-temperature Mössbauer spectrum of our samples
(Fig. 1). In connection with this, the model interpreta-
tion of the experimental spectrum was performed
assuming the presence of three Zeeman sextets, one
corresponding to Fe3+ ions in positions A of the spinel
1063-7834/00/4201- $20.00 © 20112
structure and two others, to Fe2+ and Fe3+ ions in posi-
tions B of this structure.

From the standpoint of the purpose of our study, of
most importance were the data concerning the temper-
ature variation of the isomer shifts δA and δB in the par-
tial spectra corresponding to Fe3+ ions in the positions
A and B (Fig. 2). This is related to the fact that the wave-
functions of Fe3+ ions are studied in sufficient detail and
the MO formalism allows a quantitative relationship to
be established between the isomer shift δI and the inter-
atomic distance [5, 7] through the electron charge den-
sity on the Mössbauer nucleus. Moreover, using the dif-

ferential shift  – , we may determine a free
parameter of the spinel structure, the so-called oxygen
parameter u [5]. This is an important circumstance
because the thermal expansion (and the related change
in the lattice parameter a) in ferrite spinels may be

δI
B δI

A

100

98

96

94

–10 –5 0 5 10
v , mm/s

I, %

Fig. 1. The room-temperature Mössbauer spectrum of mag-
netite nanoparticles.
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accompanied by variation of the oxygen parameter u

and, hence, by additional changes in  and  [8].
Note that the spinel structure rearrangement related to
variations of the oxygen parameter leads to different
signs of changes in the cation–ligand distance r for the
cations in positions A and B, as reflected by the well-
known formulas

In particular, as the oxygen parameter u grows at a =
const, the rA distance increases and the rB value
decreases.

In order to calculate the coefficient of linear thermal
expansion α = (1/a)(∂a /∂T)p, we made two corrections
in the initial data on δA(T) and δB(T), so as to take into
account the temperature dependence of u(T) and the
temperature-induced shift of lines δT(T) in the Möss-
bauer spectra.1

The temperature-induced shift was calculated in a
single-parameter approximation, with the effective
Debye temperature assumed to be the same for cations
in both A and B positions, ϑD = 300 (± 30) K, in accor-
dance with data on the temperature variation of the area
under the spectral curve S(T). As for the temperature
variation of the oxygen parameter u, it was found that
this quantity actually depends on the temperature and
decreases from 0.384 at room temperature to 0.382 at
100 K.

Figure 3 shows the results of evaluation of the linear
thermal expansion coefficient for magnetite particles
using data on the temperature-induced shift of the par-
tial Mössbauer spectra corresponding to Fe3+ ions in

1 Because changes in the isomer shift δI related to the temperature-
induced variations of the parameters a and u are relatively small,
these contributions can be considered as independent.

δI
B δI

A

rA 3a u 1/4–( ),=

rB a 5/8 u–( )2 2 3/8 u–( )2+ .=

δA – Fe3+

δB – Fe3+

δB – Fe2+

100 150 200 250 300
T, K

0.9

0.8

0.7

0.6

0.5

δ, mm/s

Fig. 2. The temperature dependence of the partial isomer
shifts in magnetite nanoparticles.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
positions A and B. As seen from this figure, the linear
thermal expansion coefficient is virtually constant in
the temperature interval studied. The results are consis-
tent for the α values determined separately from data
on the partial shifts δA and δB. This agreement could
hardly be observed if there were no correction for the
temperature-dependent variation of the oxygen parame-
ter u. Note an unusually high absolute value of the linear
thermal expansion coefficient: α = (1.2 ± 0.2) × 10–4 K–1.

In concluding, it should be noted that the above
method of determination of the linear thermal expan-
sion coefficient in nanoparticles from data on the 57Fe
isomer shift can be readily generalized to allow evalua-
tion of the compressibility factor KT of these particles.
Then, the initial experimental data must refer to depen-
dence of the isomer shift in the partial Mössbauer spec-
tra on the pressure P, and the compressibility coeffi-
cient KT can be determined by analogy with linear ther-
mal expansion coefficient α.
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Abstract—The heat capacity of three single-crystal samples of La1 – xSrxMnO3 (x = 0, 0.2, and 0.3) is measured
in the temperature range 4–400 K. It is found that the heat capacity undergoes abrupt changes due to the tran-
sitions from the antiferromagnetic phase to the paramagnetic phase (x = 0) and from the ferromagnetic phase
to the paramagnetic phase (x = 0.2 and 0.3). The phonon contribution to the heat capacity and the Debye char-
acteristic temperatures for the La0.7Sr0.3MnO3 sample are determined over a wide range of temperatures. The
electronic density of states at the Fermi level is evaluated. It is demonstrated that an increase in the strontium
concentration x brings about an increase in the electronic density of states at the Fermi level. The contributions
of spin waves to the heat capacity and the entropy are estimated under the assumption that the phonon spectrum
remains unchanged upon doping with Sr. © 2000 MAIK “Nauka/Interperiodica”.
The giant magnetoresistance observed in oxides
with the La1 – xSrxMnO3 perovskite-type structure has
attracted considerable attention to research into struc-
tural, magnetic, and electronic properties of these mate-
rials [1–3].

The stoichiometric compound LaMnO3 is a layered
antiferromagnetic dielectric. Its magnetic structure
exhibits an antiferromagnetic ordering along the c-axis
and a ferromagnetic ordering in the crystallographic ab
planes (MnO layers) separated by the nonmagnetic
LaO layers. A weak planar ferromagnetism observed is
treated either as an intrinsic property or as an effect
associated with the superstoichiometric oxygen. The
antiferromagnetic ordering in LaMnO3 at low tempera-
tures is revealed by the neutron diffraction analysis [4].
According to [4], the Néel temperature TN is equal to
141 K.

Upon doping with strontium, LaMnO3 transforms
from the antiferromagnetic insulating state to the metal-
lic ferromagnetic state with the maximum Curie temper-
ature Tc (about 400 K). The doping with divalent stron-
tium that replaces La3+ brings about the formation of
holes and the appearance of spontaneous magnetization
in the La1 – xSrxMnO3 crystals. In the La1 – xSrxMnO3 sys-
tem, the ferromagnetic state is unsaturated at small val-
ues of x and reaches a saturation only at x = 0.3. For the
x values, at which the complete ferromagnetic ordering
is not achieved, the neutron scattering spectra at 4.2 K
are superpositions of the spectra corresponding to the
ferromagnetic and antiferromagnetic orderings.

According to the earlier investigations into the
La1 − xSrxMnO3 system by the photoelectron spectro-
scopic [5] and optical conductivity [6, 7] methods, the
1063-7834/00/4201- $20.00 © 20114
electronic density of state in this system is rather
unusual: it is very low and depends on temperature.

In the present work, we experimentally investigated
the heat capacity of the La1 – xSrxMnO3 single-crystal
samples at different strontium concentrations (x = 0, 0.2,
and 0.3) over a wide range of temperatures (0.4−400 K).
This made it possible to determine the integral character-
istics of the magnon, electron, and phonon excitation
spectra (the electronic density of states at the Fermi level,
the Debye characteristic temperature over a wide range
of temperatures, and the contribution of spin waves to the
heat capacity) and also to reveal the change in the mag-
netic contribution to the heat capacity with an increase in
the strontium concentration.

EXPERIMENTAL

Samples of La1 – xSrxMnO3 single crystals were
obtained by the crucibleless zone melting with radia-
tion heating on a URN2-3M apparatus. Preforms in the
form of ceramic rods were prepared from the initial
materials La2O3, SrCO3, and Mn3O4 with a purity of no
less than 99.99%. Prior to the melting, La2O3 was dehy-
drated by the calcination at a temperature of 900°C for
10 h. In order to compensate for a loss of manganese due
to the evaporation from the melted zone, the Mn3O4 con-
centration was increased by 1–2 at. %. The initial mate-
rials were mixed in the required proportions and pressed
into pellets under a pressure of (0.6–0.8) × 103 kg/cm2.
Then, the pellets were crushed and ground in an agate
mortar. The batch obtained was pressed into preforms
under a pressure of 103 kg/cm2. After the pressing, the
preforms were sintered at 1300°C for 24 h in air. The X-
000 MAIK “Nauka/Interperiodica”
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ray powder diffraction analysis of the preforms
obtained was carried out on a DRON-3 X-ray diffracto-
meter. All the preforms were found to be single-phase
within the accuracy of the method. The initial preforms
destined for the zone melting were cylinders 4–7 mm in
diameter and 40 mm in length.

Single crystals of LaMnO3 were grown in air,
whereas the La0.8Sr0.2MnO3 and La0.7Sr0.3MnO3 single
crystals were grown in an argon atmosphere at a pres-
sure of 3–4 atm; the liquid zone velocity was equal to
5–10 mm/h. According to the data of X-ray diffraction
microscopy, the grown single crystals consist of two or
three single blocks disoriented relative to each other by
0.5°–1°. The halfwidth of the rocking curve for each
block was equal to 5′–10′. The deviation of the crystal-
lographic direction [110] from the axis of single crystal
growth was usually equal to 10°–15°. The annealing of
a growing crystal at a temperature about 1300°C during
the preparation made it possible to avoid the cracking
of the grown crystal.

The crystal structure of single-crystal samples was
studied by the X-ray diffraction and neutron diffraction
analyses. The symmetry and unit cell parameters of the
studied samples are presented in the table and agree
well with the data available in the literature [8].

The heat capacity in the temperature range 2–150 K
was determined by the adiabatic technique with the
pulsed heat input [9]. The experimental error was equal
to 1% in the range 4–10 K and 0.2–0.5% in the range
10–150 K. At temperatures of 130–400 K, the heat
capacity was measured by the differential calorimetric
technique [10]; the error of measurements was 2%.
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Fig. 1. Temperature dependences of the heat capacity for (1)
LaMnO3, (2) La0.8Sr0.2MnO3, and (3) La0.7Sr0.3MnO3 sin-
gle-crystal samples in the range 4–400 K. Not all experi-
mental points are shown.
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RESULTS

The main experimental results obtained in the study
on the heat capacity of La1 – xSrxMnO3 single-crystal
samples are shown in Figs. 1–4 and listed in the table.

Figure 1 displays the temperature dependences of
the heat capacity for three single-crystal samples:
LaMnO3, La0.8Sr0.2MnO3, and La0.7Sr0.3MnO3. From
comparison of these curves, it follows that, upon intro-
duction of Sr atoms, the heat capacity decreases in the
temperature range 6–150 K and increases in the range
below 6 K.

An abrupt change is observed in the temperature
dependence of the heat capacity for LaMnO3 at a tem-
perature of 136 K, which is associated with the phase
transition from the antiferromagnetic state to the para-
magnetic state at the Néel temperature. The tempera-
ture dependences C(T) for the doped samples exhibit
more pronounced features of the λ-peak type (at 296 K
for La0.8Sr0.2MnO3 and at 345 K for La0.7Sr0.3MnO3),
which are caused by the phase transition from the fer-
romagnetic state to the paramagnetic state. At tempera-
tures just higher than those of the heat-capacity jumps
(145–150 K and above 350 K), the heat capacities of all
three samples under study are rather close to each
other: the difference in heat capacities of the samples
does not exceed 3%. The phase transition temperatures
determined from the heat capacity maxima are in close
agreement with the literature data [11].

The heat capacities measured at temperatures below
10 K are represented on the C/T–T2 coordinates in Fig. 2.
Our experimental data on the heat capacity in the tem-
perature range 4–8 K are adequately (accurate to within
3%) described by the equation C = γT + βT3, which cor-

20

15

10

5

0 20 40 60 80
T2, K2

C/T, mJ/(mol K2)

1

2

3

Fig. 2. Temperature dependences of the heat capacity on the
C/T–T2 coordinates in the range 4–9 K for (1) LaMnO3, (2)
La0.8Sr0.2MnO3, and (3) La0.7Sr0.3MnO3 single-crystal
samples. Solid lines correspond to the equation C = γT +
βT3.
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responds to a straight line on the C /T–T2 coordinates.
The heat capacity of the La0.8Sr0.2MnO3 sample was
measured in a broader range of temperatures starting
with 2 K. It is seen that the character of the temperature
dependence does not change with a decrease in the tem-
perature.

A systematic deviation from this dependence with a
tendency toward the positive curvature (concavity
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Fig. 3. Temperature dependences of the heat capacity
minus the term linear in temperature in the range 4–50 K
on the (C – γT)/T3–T coordinates for (1) LaMnO3, (2)
La0.8Sr0.2MnO3, and (3) La0.7Sr0.3MnO3 single-crystal
samples. Temperature dependence of the Debye characteris-
tic parameter Θ is shown in the inset.

Fig. 4. Temperature dependences of the contribution from
spin waves to the heat capacity for (1) LaMnO3, (2)
La0.8Sr0.2MnO3, and (3) La0.7Sr0.3MnO3 single-crystal
samples.
P

downward) is observed at temperatures above 8 K. A
comparison of our data with the results obtained by
Woodfield et al. [12] demonstrates reasonable agree-
ment for the samples with x = 0.2 and 0.3. However, for
the undoped sample with x = 0, our results considerably
differ in both magnitude and character of the tempera-
ture dependence from the data reported in [12]. In our
opinion, this difference can be connected with a high
sensitivity of the properties of samples with x = 0 to
small deviations from the stoichiometry.

The parameters γ, β, and the low-temperature value
of the Debye characteristic temperature ΘLT that is
related to the β parameter by the relationship β =

12π4R/(5n ) (where, R is the gas constant, and n is
the number of atoms in the formula unit) were deter-
mined by the approximation of the experimental data in
the temperature range 4–8 K with the least-squares
technique and are given in the table.

DISCUSSION

It is common practice to separate the low-tempera-
ture heat capacity of a magnetic metal into the elec-
tronic contribution proportional to the temperature, the
phonon contribution proportional to the temperature
cubed, and the contribution of spin waves. The separa-
tion of these contributions is usually based on their dif-
ferent temperature dependences. In the simplest theo-
retical models of antiferromagnets [13], the magnetic
contribution to the heat capacity is proportional to T3 in
the three-dimensional case and T2 in the two-dimen-
sional case. For three-dimensional ferromagnets, the
heat capacity of spin waves is proportional to T3/2 [13].
As can be seen from Fig. 2, no negative curvature (con-
vexity upward) is observed in the dependence of C /T
on T2, which indicates that, within the limits of experi-
mental error, the contributions proportional to T2 and
T3/2 to the heat capacity are absent. This fact is in good
agreement with the inferences drawn by Hamilton et al.
[14], who studied the low-temperature heat capacity of
the ferromagnetic compounds La0.77Ba0.23MnO3 and
La0.8Sr0.2MnO3 and also did not observe the contribu-
tions following these temperature dependences.

Since indications of the antiferromagnetism are
absent in the compound with the strontium concentra-
tion x = 0.3, it can be assumed that the term cubic with
respect to the temperature is completely determined by
the phonon contribution to the heat capacity. For the
LaMnO3 and La0.8Sr0.2MnO3 samples, the term cubic in
temperature is contributed by both phonons and antifer-
romagnetic spin waves.

The term linear in temperature corresponds to the
electronic contribution to the heat capacity. For the
La0.7Sr0.3MnO3, La0.8Sr0.2MnO3, and LaMnO3 samples,
the γ coefficients of the linear term of the heat capacity
are equal to 4.4, 5.2, and 1.1 mJ/(mol K2), respectively.
For the dielectric LaMnO3 sample, the nonzero γ coef-

ΘLT
3
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ficient of the term linear in temperature is likely con-
nected with the contribution from small amounts of an
impurity phase to the heat capacity. Note that the γ
coefficient has about the same nonzero value in both
dielectric and superconducting samples in the
La2 − xSrxCuO4 system [15, 16]. Under the assumption
that the impurity contribution remains unchanged upon
doping LaMnO3 by strontium, an increase in the γ coef-
ficient for the compounds with x = 0.2 and 0.3 by a value
of 3.3 and 4.1 mJ/(mol K2), respectively, can be attrib-
uted to the appearance of the electronic density of states
at the Fermi level N(EF). These data enable us to evaluate
the electronic density of states at the Fermi level from the
relationship γ = π2k2N(EF). The found electronic densi-
ties of states are given in the table and agree closely with
the experimental data reported in [11, 14] and also with
the results of calculations for similar system
La0.67Ca0.33MnO, for which N(EF) = 1.4 × 1022 state/(eV
cm3) [17]. These findings permit us to draw the conclu-
sion that the electronic density of states at the Fermi
level increases upon doping LaMnO3 by strontium.

Figure 3 depicts the temperature dependences of the
heat capacity of the studied samples minus the contri-
bution linear in temperature in the range 4–60 K. We
suppose that, in the case of La0.7Sr0.3MnO3, the quantity
(C – γT) at low temperatures describes the phonon con-
tribution to the heat capacity, because the antiferromag-
netism is completely suppressed, and the contribution
of ferromagnetic spin waves (proportional to T3/2) is not
found experimentally and, apparently, is negligibly
small in the low-temperature range. For the samples at
the strontium concentration x = 0 and 0.2, one can
expect the presence of the contribution from the antifer-
romagnetic spin waves to the heat capacity. This contri-
bution is proportional to the temperature cubed and
cannot be separated from the phonon contribution rea-
soning from the character of the temperature depen-
dence.

The temperature dependence of the phonon contri-
bution to the heat capacity provides information regard-
ing the energy density of phonon states and can be con-
veniently represented in the graphic form as the tem-
perature dependence of the Debye characteristic
parameter Θ. Figure 3 demonstrates this dependence
obtained by the conversion of the phonon contribution
to the heat capacity of the La0.7Sr0.3MnO3 sample. As
the temperature increases, the Debye parameter Θ
passes through a minimum at a temperature of 25 K,
and the ratio between the phonon heat capacity and the
temperature cubed reaches a maximum at this temper-
ature. The presence of a minimum in the temperature
dependence of the Debye parameter Θ is a typical phe-
nomenon and can be explained by the deviation of the
energy dependence of the density of phonon states from
the dependence predicted by the simple Debye model
due to either the dispersion of acoustic modes or the
occurrence of low-lying optical modes.
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As mentioned above, the phonon and magnon con-
tributions to the heat capacity of antiferromagnets are
proportional to the temperature cubed, which makes
impossible their separation reasoning only from differ-
ent character of the temperature dependences. How-
ever, under the assumption that the phonon contribution
to the heat capacity insignificantly varies upon doping
LaMnO3 by strontium, the magnon contribution to the
heat capacity can be separated relying on the fact that
the magnon contributions to the heat capacity of the
antiferromagnetic LaMnO3 sample and the ferromag-
netic La0.7Sr0.3MnO3 sample are observed in different
nonoverlapping temperature ranges. The suggestion
was made that the magnon contribution to the heat
capacity of the LaMnO3 sample manifests itself in the
low-temperature range, that is, below the Néel temper-
ature, whereas, for the La0.7Sr0.3MnO3 sample, the mag-
non contribution at these temperatures is negligibly
small. This assumption can be supported by the fact
that the difference between heat capacities of the stud-
ied samples at a temperature of about 140 K is absent.
In order to separate the contribution of spin waves, the
term linear in temperature (and specific for each sam-
ple) and the phonon contribution (identical for all the
samples) were subtracted from the total heat capacity.

Parameters characterizing the LaMnO3, La0.8Sr0.2MnO3, and
La0.7Sr0.3MnO3 single-crystal samples: symmetry; unit cell
parameters a, b, c, and α; Curie paramagnetic temperature
TC; Néel temperature TN; coefficients γ and β in the equation
Cp = γT + βT3 describing the heat capacity in the temperature
range 4–8 K; low-temperature value of the Debye character-
istic temperature ΘLT; and magnetic entropy Sm at high tem-
peratures

Parameter Sample

Symmetry

L
aM

nO
3

L
a 0

.8
Sr

0.
2M

nO
3

L
a 0

.7
Sr

0.
3M

nO
3

Pnma R3c R3c

a, Å 5.7419 ± 0.002 5.4822 5.4714

b, Å 7.6945 ± 0.002 – –

c, Å 5.5359 ± 0.002 – –

α, ° – 60.59 60.43

Tc, K – 296 345

TN , K 136 – –

γ, mJ/(mol K2) 1.1 5.2 4.4

β, mJ/(mol K4) 0.192 0.108 0.101

ΘLT, K – – 458

N(EF), 
state/(eV cm3)

0 2.9 × 1022 2.4 × 1022

Sm, J/mol K 6.0 7.5 7.2
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The γ coefficient of the linear term was calculated from
the low-temperature asymptotics, and the phonon con-
tribution was determined as the difference between the
total heat capacity of a “reference sample” and the rel-
evant term linear in temperature.

The ferromagnetic La0.7Sr0.3MnO3 sample was used
as a reference sample at temperatures below 140 K, and
the LaMnO3 sample, already being in the paramagnetic
state, served as a reference sample at temperatures
above 140 K. Thus obtained contribution of spin waves
Cm to the heat capacity of the studied samples is shown
in Fig. 4. A comparison between the magnetic and
phonon heat capacities demonstrates that, at low tem-
peratures, the heat capacity of spin waves in antiferro-
magnetic LaMnO3 is almost equal to the phonon heat
capacity; however, the relative fraction of the magnetic
heat capacity rapidly decreases with an increase in the
temperature.

The temperature dependences of the magnetic heat
capacity of the LaMnO3 and La0.7Sr0.3MnO3 samples
show a maximum at the temperatures of the phase tran-
sition to the paramagnetic state. The magnetic heat
capacity of the La0.8Sr0.2MnO3 sample exhibits two
maxima at temperatures of about 30 and 296 K. Since
the heat capacity is uniquely related to the entropy,
which, in turn, is related to the ordering, the large value
of magnetic heat capacity in a certain temperature
range indicates an intensive disordering of the system
in this range. The presence of two maxima in the tem-
perature dependence of the magnetic heat capacity of
the La0.8Sr0.2MnO3 sample suggests that, in this case,
the magnetic ordering is disturbed in two different tem-
perature ranges, possibly, due to the separation of the
sample into two phases: the phase with a well-defined
phase transition at 296 K and another phase character-
ized by a more gradual transition to the disordered state
in the temperature range below 140 K.

The experimental data obtained made it possible to
calculate the entropy that corresponds to the disorder-
ing of the magnetic system upon transition to the para-

magnetic state. The magnetic entropy Sm = 

was calculated as the integral of the heat capacity of
spin waves Cm over the temperature range from 4 to
400 K. The calculated data are listed in the table. The
entropies of the magnetic system at 400 K were found
to be close to Rln2 = 5.74 J/(mol K), where R is the gas
constant. It should be remarked that the value of S = R
ln2 is characteristic of a system in which each formula
unit involves a localized multiplet. At low tempera-
tures, only the highest-lying level of a multiplet is
unoccupied, and all the low-lying levels are completely
occupied. As the temperature increases, the populations
of only the two highest-lying levels of a multiplet are
equalized. The fact that the experimental entropy of the
phase transition is close to R ln2 suggests that the phase
transition from the magnetically ordered low-tempera-
ture states to the paramagnetic high-temperature state is

Cm/T( ) Td∫
P

predominantly determined by the change in the popula-
tion of the upper doublet.

The experimental results obtained for the tempera-
ture dependence of the heat capacity of the
La1 − xSrxMnO3 single-crystal samples can be summa-
rized as follows.

In the temperature range 250–350 K, the heat capac-
ity undergoes abrupt changes due to the transition from
the ferromagnetic phase to the paramagnetic phase. The
temperatures of transition from the ferromagnetic state
to the paramagnetic state and the entropies of this tran-
sition are determined.

The electronic density of states at the Fermi level is
calculated for the La1 – xSrxMnO3 samples. The results
obtained indicate a change in the electronic spectrum
upon doping LaMnO3 by strontium, namely, an
increase in the electronic density of states at the Fermi
level.

The phonon components of the heat capacity and
the Debye characteristic temperatures Θ are calculated
over a broad range of temperatures (4–400 K).

The contribution of spin waves to the heat capacity
of the La1 – xSrxMnO3 samples is determined. It is
revealed that this contribution changes with an increase
in the strontium concentration, which provides support
for the coexistence of the ferromagnetic and antiferro-
magnetic ordering in the samples at the strontium con-
tent x = 0.2. A comparison of the magnon and lattice
heat capacities demonstrates that, at low temperatures,
the magnon heat capacity in the antiferromagnetic
phase is comparable in magnitude to the lattice heat
capacity.
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Abstract—The process of magnetization reversal in an ultrathin magnetic trilayer is analyzed. It is shown that
the shape of magnetization hysteresis loops and the giant magnetoresistance essentially depend on the relative
magnitudes of magnetic parameters of the top and bottom layers. Hysteresis loops are found for characteristic
relative magnitudes of the parameters. Analysis is performed of the dependence of the shape of hysteresis loops
on the magnitude of interlayer exchange. A phase diagram is constructed, which determines the regions of exist-
ence of characteristic hysteresis loops for different relative magnitudes of the uniaxial anisotropy constant and
exchange constant J1. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Magnetic properties of the surfaces of thin films and
multilayers attract considerable interest. In recent
years, a large variety of unexpected and nontrivial
effects have been discovered that are associated with
the properties of magnetic surfaces and interfaces:
giant magnetoresistance, strong surface anisotropy, a
difference in magnitude between magnetic moments in
the surface and in the bulk, the oscillatory behavior of
the exchange interaction between adjacent magnetic
layers, and strong biquadratic exchange in multilayer
structures [1–3]. Being of fundamental importance,
studies of the properties of these systems are also of
significant practical importance to the development of
magnetic memory devices, sensors, etc. [4, 5]. When
studying the process of magnetization reversal in such
systems, it was found that the models proposed for
describing this process are too much simplified to be
adequate. A better description can be given using com-
puter simulation techniques [6, 7]. In this paper, we
investigate magnetization reversal in a trilayer nano-
structure (Fig. 1) for different relative magnitudes of
the parameters of the top and bottom magnetic layers.
These parameters are shown to significantly affect the
nature of magnetization reversal and, hence, the shape
of magnetization hysteresis curves and magnetoresis-
tance. The nanostructure under study is often referred
to as a spin valve.

2. A THEORETICAL MODEL OF A TRILAYER 
AND BASIC EQUATIONS

A typical trilayer is depicted in Fig. 1. The thickness
of magnetic layers is assumed to be small in comparison
with their length and width and, hence, the variation of
the magnetization through the thickness may be
neglected. Therefore, the magnetization distribution
1063-7834/00/4201- $20.00 © 20120
depends only on the coordinates x and y. The z axis is
normal to the plane of the structure. The thickness of the
nonmagnetic spacer is assumed to be small (1–5 nm)
and, therefore, the exchange interaction between the
magnetic layers should be taken into account. The mag-
netization is found by solving the Landau–Lifshitz equa-
tion

(1)

where γ is the gyromagnetic ratio, M is the magnetiza-
tion, α is the damping constant, and Heff is the effective
field given by

where F is the free energy, H0 is the external magnetic
field, HA is the anisotropy field, and Hin-exch and

M γ M Heff×[ ] αγ
Ms

------- M M Heff×[ ]×[ ] ,–=
.

Heff r( ) δF r( )
δM

--------------– H0 HM r( )+= =

+ HA r( ) Hin–exch r( ) Hinter–exch r( ),+ +

Lx
Ly

d1

d2 Ms2, K2, A2

Ms1, K1, A1

J1

Fig. 1. Trilayer spin-valve structure (schematic).
000 MAIK “Nauka/Interperiodica”
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Fig. 2. (a) Magnetization curve of the symmetric structure (average magnetization of the structure vs. magnetic field) and (b) giant
magnetoresistance (GMR) vs. magnetic field.

Hx = –150 Oe

Hx = 0

Hx = 60 Oe

Hx = 138 Oe

Fig. 3. Magnetization distributions for characteristic points of the hysteresis curve.
Hinter-exch are the intralayer and interlayer exchange
fields, respectively.

In computer simulation, difficulties emerge when
we calculate the magnetostatic interaction

where r and r' are the position vectors of the elements
between which the interaction is calculated; the sum-
mation is performed over all l layers. It should be noted
here that the magnetostatic field is a function of all
three spatial coordinates (x, y, z). Therefore, this inter-
action should be calculated everywhere in the volume
V [8], which is a very labor-intensive computational
problem. For this reason, it is of importance to develop
efficient numerical micromagnetic techniques [6, 7, 9].
As mentioned above, we assume that the magnetization

Hm r( ) divMl rl( ) r r'–

r r'– 3
----------------- rl ,d

V

∫
l

∑=
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distribution M(x, y, z) is uniform over the thickness of
each layer, but the vector M has a z component. There-
fore, this model is quasi-three-dimensional.

3. SYMMETRIC SPIN-VALVE STRUCTURE

Let us first consider a symmetric spin-valve struc-
ture consisting of two identical magnetic layers sepa-
rated by a nonmagnetic spacer. Computer simulation is
performed for the following values of parameters: Fig-
ure 2 shows a calculated curve (Fig. 2a) and the effect
of magnetic switching (Fig. 2b). Figure 3 shows the
magnetization distribution calculated for characteristic
values of the external field. It is seen from these figures
that the magnetization reversal occurs synchronously in
the top and bottom magnetic layers; they are switched
simultaneously, at the same value of the external mag-
netic field. The switching mechanism is similar to that
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Fig. 4. (a) Magnetization curve and (b) giant magnetoresistance (GMR) of the nonsymmetric structure for the case of  Ms1d1 =
Ms2d2, K1 > K2.
of a single magnetic plate [9]: Reversed domains are
nucleated at the edge of the layers and grow deep into
them as the external field increases, so that a 180°
domain wall is formed. When the external field reaches
a critical value, the “breakdown” occurs and the central
regions of the layers are switched.

4. NONSYMMETRIC SPIN-VALVE STRUCTURES

Now, let us consider more complex, nonsymmetric
spin-valve structures, consisting of layers with different
magnetic and geometrical parameters. As we will see
later, the shape of hysteresis curves and the nature of
magnetization reversal essentially depend on the relative
magnitudes of the parameters of the top and bottom lay-
ers. We will consider three cases: (1) Ms1d1 = Ms2d2,
K1 > K2; (2) Ms1d1 > Ms2d2, K1 > K2; and (3) Ms1d1 >

Hx = –400 Oe

Hx = 60 Oe

Hx = 400 Oe

Hx = 500 Oe

Fig. 5. Magnetization distributions for characteristic points
of the hysteresis curve.
P

Ms2d2, K1 < K2, where K1 and K2 are the uniaxial anisot-
ropy constants of the top and bottom magnetic layers,
respectively. The anisotropy axis is parallel to the
x axis.

4.1. The Case of Ms1d1 = Ms2d2, K1 > K2

Figure 4 shows a magnetic hysteresis curve and the
effect of magnetic switching. The magnetization distri-
butions calculated for characteristic values of the exter-
nal field are presented in Fig. 5. The magnetic hystere-
sis curve is seen to have two steps, corresponding to the
switching of the soft and hard magnetic layers, respec-
tively (Fig. 4a). From the magnetic switching curve
(Fig. 4b), it is obvious that a stable antiferromagnetic
(AFM) distribution of magnetization takes place in a cer-
tain range of the external magnetic field. The calculation
is carried out for the following values of magnetic
parameters: K1 = 1000 erg/cm3, K2 = 30000 erg/cm3,
Ms = 1000 emu/cm3, and d1 = d2 = 40 Å.

From the magnetization distributions (Fig. 5) it is
seen that the switching process proceeds more uni-
formly in the hard magnetic layer than in the soft one.
In the former case, the magnetization undergoes a dis-
continuous change, with its distribution being relatively
uniform before the switching. In contrast, the soft mag-
netic layer is switched very nonuniformly; nonunifor-
mities expand gradually, moving from the edges of the
layer to its center. This distinction manifests itself in the
fact that on the magnetization curve, the first step is
smooth, whereas the second is sharp.

4.2. The Case of Ms1d1 > Ms2d2, K1 > K2

Figure 6 shows a magnetization curve (Fig. 6a) and
the effect of magnetic switching (Fig. 6b). In this case,
the switching process proceeds highly nonuniformly in
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
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Fig. 6. (a) Magnetization curve and (b) giant magnetoresistance of the nonsymmetric structure for the case of  Ms1d1 > Ms2d2, K1 > K2.
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both the soft and the hard magnetic layers. Both steps
are seen as being very smooth. From the curve of the
magnetic switching effect (Fig. 6b), it is obvious that no
stable AFM distribution occurs in this case. For a
trilayer of this type, magnetic hysteresis curves were
observed experimentally in [10].

In this case, calculations are carried out for the follow-
ing values of magnetic parameters: K1 = 1000 erg/cm3,
K2 = 30000 erg/cm3, Ms1 = 1200 emu/cm3, Ms2 =
800 emu/cm3, and d1 = d2 = 40 Å.

4.3. The Case of Ms1d1 > Ms2d2, K1 < K2

In this case, we investigate the dependence on the
relative magnitudes of the uniaxial anisotropy constant
of the hard magnetic layer and the interlayer AFM
exchange constant J1. Four typical hysteresis curves are
obtained (Fig. 7), characterizing four different types of
magnetization reversal. Calculations are performed for
the following values of magnetic parameters: Ms1 =
1200 emu/cm3, Ms2 = 800 emu/cm3, and d1 = d2 = 40 Å.

We also calculate a diagram (Fig. 8) determining the
regions of occurrence of these types of magnetization
reversal depending on the relative magnitudes of the
uniaxial anisotropy and interlayer exchange.

Let us discuss each of the four types of a hysteresis
curve.

(1) When the AFM exchange is weak, the shape of a
hysteresis curve is similar to that shown in Fig. 7a. At a
certain positive value of the external field, the soft mag-
netic layer is switched with a large remanent magneti-
zation. As the external field is further increased, the
hard magnetic layer switched with a less remanent
magnetization.
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Fig. 8. Diagram determining the ranges of the anisotropy
constant K and the interlayer exchange constant in which
the characteristic hysteresis curves take place. 
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(2) As the interlayer exchange is increased, the hys-
teresis curve becomes three-looped (Fig. 7b). A special
feature of this case is that the magnetization of the sys-
tem can be opposed to the external field. This takes
place when the transition occurs from the state with
negative magnetization to that with positive magnetiza-
tion, whereas the external field remains negative. This
effect may be explained by the fact that the exchange
field produced by the magnetic layer exceeds the exter-
nal magnetic field and the anisotropy field hindering the
magnetization reversal. This phenomenon was
observed experimentally in [11] (see also [3]).

(3) When the interlayer AFM exchange increases
further, the order of the layer switching is reversed; first
the layer with the larger anisotropy constant and then
the soft magnetic layer are switched (Fig. 7c). This may
be due to the exchange field produced by the layer with
higher magnetization (and weak anisotropy) far
exceeding the exchange field produced by the layer
with low magnetization (and strong anisotropy). At a
certain value of J1, the former field becomes higher
than the external field and the anisotropy field, which
hinder the layer switching. At the same time, the
exchange field in the soft magnetic layer is lower than
the fields hindering the switching process, because this
field is produced by the layer with low magnetization.

(4) And, finally, when J1 increases still further, we
have a hysteresis curve shown in Fig. 7d. This curve is
similar to that in the second case, but the switching pro-
cess proceeds much differently. The hard magnetic
layer is reversed first. Then, as the external field
increases, the soft magnetic layer is also reversed, but
the hard magnetic layer is reversed once again. Then,
finally, the hard magnetic layer is reversed for the third
time, so that both layers become switched. In this case,
the AFM exchange is so strong that the switching of the
layer with higher magnetization is accompanied by the
switching of the other layer.

5. CONCLUSION

Thus, we performed a computer simulation and con-
structed magnetic hysteresis curves for characteristic
relative values of parameters of the magnetic layers.
The process of magnetization reversal was investigated
as a function of the strength of the interlayer exchange
and the relative values of the anisotropy constants of
the magnetic layers. A phase diagram was constructed
determining the regions of existence of characteristic
hysteresis loops, depending on the interlayer exchange
and the relative magnitudes of the anisotropy constants.
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Abstract—The conditions of the formation of different magnetic structures with ferromagnetic (FM) and anti-
ferromagnetic (AFM) ordering in granular materials containing a subsystem of ferromagnetic granules are con-
sidered within the phenomenological approach. It is supposed that the magnetostatic field and the exchange
interaction between conduction electrons and magnetic ions are responsible for the formation of magnetic
structure. © 2000 MAIK “Nauka/Interperiodica”.
The discovery of the giant magnetoresistance effect
in multilayer films with sequentially alternating layers
of magnetic and nonmagnetic metals [1], as well as in
granular films with ferromagnetic inclusions (granules)
dispersed in a nonmagnetic matrix [2, 3], has offered
considerable scope for the development of a new class
of micromagnetic electronic devices and lent impetus
to complex investigations into the physical properties
of these structures.

The degree of ordering in the arrangement of gran-
ules, their shape, concentration, and sizes substantially
affect magnetic characteristics of granular films such as
the static and dynamic susceptibility, giant magnetore-
sistance, temperature phase transitions, etc. It has been
found that the upper boundary of saturation fields for
different effects in these structures is governed, in par-
ticular, by the sizes of granules and their shape. The
maximum susceptibility is observed in samples with
large-sized spherical granules and also in the samples
involving thin granules of disk form, which rather eas-
ily reverse magnetization in their plane provided that
the magnetocrystalline anisotropy of a ferrogranule
material is sufficiently weak [4]. As a rule, magnetic
inclusions are irregularly arranged in granular films
produced by the conventional method. However, there
is evidence for the existence of regular two-dimen-
sional magnetic lattices obtained by the lithographic
techniques [5, 6].

The purpose of this work was to consider the condi-
tions for the formation of different structures with fer-
romagnetic (FM), antiferromagnetic (AFM), and para-
magnetic (PM) ordering of the magnetic moments of
granules in granular films. In order to describe the
exchange interaction, we advanced the phenomenolog-
ical theory that provided a basis for determining the
conditions of the existence of ferromagnetic, antiferro-
magnetic, and paramagnetic states in granular and
quasi-granular films (the latter film was produced by
the annealing of a multilayer magnetic film). Moreover,
1063-7834/00/4201- $20.00 © 20126
the temperature phase diagram was constructed for
these systems.

As is known, multilayer magnetic films during
annealing transform into quasi-granular structures with
magnetic inclusions in the form of disks whose planes
are parallel to the film plane [7, 8]. Let us consider the
magnetic properties of these systems under the assump-
tion that ferromagnetic inclusions have the form of
disks with thickness L and cross-section d (L ! d). We
assume that the plane of circular ferrogranules (hereaf-
ter, granules) is parallel to the Y0X plane.

It is evident that, at nanoscale sizes, the granules are
in a single-domain state. Owing to the form anisotropy,
the magnetostatic self-energy of thin-disk granules is

 = 2π /v i, (where Mi and v i = π Li/4 are the
magnetic moment and the volume of the ith granule,
respectively). Consequently, their magnetization is
orthogonal to the 0Z axis and lies in the film plane.

As follows from the calculations performed with
allowance for the magnetostatic interaction, the forma-
tion of magnetic threads is energetically favorable for
the lattices consisting of thin cylindrical granules with
a rectangular cell. In these threads, the magnetic
moments line up in the form of chains so that the mag-
netizations of adjacent chains are oppositely directed
relative to each other (Fig. 1). The chains of magnetic

Ei
a Mi

z
2

di
2

a
b

Mi

Lidi

Fig. 1. Magnetic ordering in the two-dimensional lattice of
cylindrical magnetic granules.
000 MAIK “Nauka/Interperiodica”
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granules shown in Fig. 1 resemble ferromagnetic
domains. This structure exhibits zero net magnetic
moment and two subsystems magnetized in the oppo-
site directions. Hence, in what follows, this system will
be treated as antiferromagnetically ordered. Analysis
shows that the magnetostatic energy of the system in
this state is less than that in the ferromagnetic state.

If the interaction between granules was magneto-
static only, the granule arrangement depicted in Fig. 1
would be reasonable for the system. However, as was
shown in [9, 10], the exchange interaction arises
between granules in the case of their close packing even
in a nonconducting matrix (for example, Co–Al–O).
The exchange interaction gives rise to the magnetic
ordering and the giant magnetoresistance effect owing
to the spin-dependent tunneling of conduction elec-
trons.

In the study on the magnetic properties of the sys-
tem, the magnetization of granules Mi/v i is conven-
tionally taken to mean the contribution of magnetic
ions due to the inner shell electrons, which are strongly
localized in magnetic atoms. Note that these electrons
insignificantly contribute to the transport processes.
The matrix represents a subsystem of conduction elec-
trons that occupies the whole of the interionic space in
the system under consideration. The matrix magnetiza-
tion m(r) is determined by the polarization of conduc-
tion electrons of a material.

The magnetic energy of a matrix can be described
within the phenomenological approach based on the
use of the spin density function as an order parameter
[11]:

(1)

The matrix magnetization is expressed in terms of
the ψ(r) functions via the known relationships

(2)

where  denotes the Pauli matrices, and µB is the
Bohr magneton.

The magnetic energy of a film involving ellipsoidal
granules can be written as the sum

(3)

Here, the magnetostatic energy of granules is given by

(4)

ψ r( ) ψ1 r( )
ψ2 r( ) 

 
 

.=

mα r( ) µBψ+ŝαψ,=

ŝα

E EM Eψ EMψ.+ +=

EM
1
2
--- Jαβ Rij( )Mi

α M j
β

i j≠
∑– 2π Nα Mi

α2

/v i( ),
i

∑+=
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where

i and j are the indices of granules; Nα denotes the
demagnetization coefficients of granules; α and β are x,
y, and z; Rij is the vector connecting the centers of gran-
ules (hereafter, the summation is conducted over the
doubly repeated indices α and β); and Mi is the mag-
netic moment of a granule whose components in the
spherical coordinate system with the polar axis 0Z take
the form

The first and second terms in equation (4) describe
the exchange energy and magnetodipole self-energy of
the ferromagnetic granule system, respectively.

In relationship (3), the third term is the energy
of exchange interaction between the magnetization of
conduction electrons and the magnetic moment of
granules

(5)

where J is the exchange interaction constant. The func-
tion Θi(r) introduced in relationship (5) is defined as
follows:

The Eψ quantity that corresponds to the magnetic
energy of a matrix can be represented as

(6)

where A and I are some phenomenological parameters.
The second term in relationship (6) accounts for an

increase in the energy of a nonmagnetic matrix upon
polarization of conduction electrons. In the phenome-
nological theory, the first term traditionally described a
variation in the energy upon spatial modulations of the
order parameter.

For simplicity, the terms describing the contribu-
tions of conduction electrons to the magnetostatic
energy of the system can be omitted from consideration
because of the small magnetizations.

Assume that the concentration of magnetic inclu-
sions in the system is small. Then, on average, the vol-
ume per one magnetic granule a3 = V /N @ v i (where V
is the volume of the system, and N is the number of
granules). Therefore, the quantity a can be considered
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a characteristic scale of inhomogeneity in the arrange-
ment of granules.

By varying the energy of the system [equation (1)
with respect to ψ+, we obtain the equation for the spin
density function

(7)

where ∇ *2 = a2∇ 2 is the Laplacian operator in terms of

dimensionless variables, l =  is the charac-
teristic length of magnetic interaction, and m0 = Mi/v i

is the magnetization of a granule material (in this work,
it is constant).

Now, we consider the case when the characteristic
length l is considerably larger than the mean intergran-
ule distance, so that the following relation is met:

l @ a. (8)

The right-hand side of equation (7) can be treated as
a perturbation, and its solution is written as

(9)

where r = r /a, and ψ0 is constant. The latter quantity is
determined from the solvability condition of the equa-
tion for the correction ψ1(r).

This condition has the form

(10)

The integration in equation (10) is performed over
the entire volume of the system.

The solution of equation (10) within the above
approximations leads to the following expression for
the magnetization of conduction electrons:

(11)

Therefore, with condition (8), the result obtained is
similar to that derived in the theory of paramagnetism
for a system of Fermi particles, provided that conduc-
tion electrons travel in the effective magnetic field H =
(J /I) . The I–1 quantity has the role of the para-
magnetic susceptibility of conduction electrons, and,
hence, it can be evaluated from the relationship I–1 ≈ χ =

ν(εF) , where ν(εF) is the density of electron conduc-
tion states at the Fermi level.

As a result, the magnetic energy (1) of a granular
film is determined by the state of the subsystems of
magnetic granules and, with allowance for approxima-
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tion (8) and relationships (5), (6) and (11), takes the
form

(12)

A complete analysis of the magnetic configuration
of the system can be carried out only with the regular
lattices consisting of granules identical in their shape
and sizes. The techniques for producing films with
these characteristics are currently under development
[5, 6, 12]. For example, a regular tetragonal lattice of
magnetic disks (2 × 10–4 cm in diameter) with a period
of 4 × 10–4 cm was obtained in the [FeNi / Ag] multi-
layer films by the standard microphotolithographic
technique [5]. This two-dimensional ordered system
covered with a thin conducting nonmagnetic film
shows a giant magnetoresistance effect. Moreover, the
magnetoresistance of this system is saturated in
response to weak magnetic fields, which indicates an
insignificant antiferromagnetic ordering of the mag-
netic moments of granules. Similar regular two-dimen-
sional structures can also be obtained by the laser-
focused atomic deposition of ferromagnetic films [13].

The employment of granular films with random
parameters of granules, which are produced by evapo-
ration, has received wide current acceptance. It should
be mentioned that the investigation into the magnetic
structure of the granular film surface indicates the
domain structure in the form of magnetic granule
chains [14], which, in turn, confirms the ordering of the
magnetic moments of granules.

By using expression (12), we determine the condi-
tions of realizing the ferromagnetic and antiferromag-
netic ordering in granular films in the case when at least
the short-range order between granule groups can be
distinguished. Note that the existence of short-range
order in the orientation of the moments of individual
granules stems from the properties of the magnetostatic
field, which is induced by the magnetic moments of
these granules and is potential in nature. As is known,
the force lines of potential fields do not intersect.
Hence, in a certain fragment of the granular film, there
is a preferred direction corresponding to the averaged
orientation of the force lines. The magnetic moments of
granules are aligned parallel to the force lines of the
field, and, therefore, the ordering should also be traced
in their orientation.

It is easy to verify that Jαβ(Rij) is a homogeneous
function with the degree of homogeneity k = –3. Con-
sequently, for the dimensionless variables rij = Rij/a,
the following relationship is fulfilled:

(13)

For a granule in the form of a flat disk lying in the
Y0X plane, the demagnetization coefficients meet the
relationships nz ≈ 1 and nx = ny ! nz . By using relation-

E EM
1
2
--- J2I 1–

V
------------ MiM j.

i j,
∑–=

Jαβ Rij( ) a 3– Jαβ rij( ).=
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000



MAGNETIC ORDERING IN GRANULAR SYSTEM 129
ships (12) and (13), and taking into consideration that

the integral of motion  is constant, the effective field
affecting the magnetic moment of a granule can be rep-
resented as

(14)

where

Since the net moment of granules is rather large, the
state of their magnetization can be determined with the
Langevin statistical averaging. According to formula
(14), the mean value of the magnetization components
of the ith granule is represented in the form

(15)

where

mi = Mi/Mi  and kB is Boltzmann’s constant.

For granules with m0 = 103 G, diameter d ≈ 6 nm, and
thickness Lz ≈ 2 nm, at T ≈ 300 K, we obtain D ≈ 6 @ 1.
Consequently, in relationship (15), the integration over
cosθi can be carried out by the Laplace asymptotic
method with a high accuracy. As a result, we have

(16)

In order to simplify further calculations, the parameters
of magnetic inclusions are replaced by their mean val-
ues. Then, Mi = M and νi = ν.

Suppose that a certain fragment of the film involves
two subsystems of magnetic granules, so that their
mean moments 〈M1〉  and 〈M2〉  are oriented along the 0X
axis.
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By writing  and  in equation (16), we replace

 with the mean values. Then,

(17)

where  = /M,  = /M, and N1 =
N2 = N /2 are the numbers of particles in the sub-
systems.

Taking into consideration the properties of the Jαβ(rij)
functions, it can easily be shown that, for regular lattices

of granules,  = 0. In the general case,  ≠ 0, but the
alternating character of Jyx(rij) implies the fulfillment of

the condition  ! , and,

hence, the  value is negligibly small and can be elim-
inated from further consideration.

On this basis, equations (16) after the integration
take the form

(18)

where

In equations (18), we introduced the mean parameters

,

(19)

where I0(x) and I1(x) are the Bessel functions of imagi-
nary argument. The differences from the Langevin the-
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ory reside in the “freezing” of the degree of freedom of
magnetic moments along the 0Z direction.

A set of transcendental equations (18) can possess
the following qualitatively different types of solutions:

 =  = 0 for the paramagnetic state,

 =  = 〈m〉 for the ferromagnetic ordering,

 = –  = 〈m〉  for the antiferromagnetic ordering.

Let us consider in more detain the conditions of
realizing a particular state. 

For the ferromagnetic ordering,  =  = 〈m〉
and

(20)

Analysis of the set of equations (18) reveals that they
possess nontrivial solutions at the condition

(21)

For the antiferromagnetic ordering,  = –  =
〈m〉 and

(22)

In this case, the condition for a nontrivial solution to the
set equations (18) has the form

(23)

The found regions of the ferromagnetic and antifer-
romagnetic phases share a common region. Analysis of
the system in the antiferromagnetic phase for the resis-
tance to small ferromagnetic perturbations along the 0Y
direction was performed with the use of equation (11)
and yielded the criterion for the transition from the anti-
ferromagnetic state to the ferromagnetic state

(24)
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Fig. 2. Phase diagram of a granular system in the magnetic
state.
P

This condition is rather reasonable because, for the
equality sign in relationship (24), the energies of the
ferromagnetic and antiferromagnetic states are equal to
each other.

Figure 2 displays the phase diagram for granular
films, which was constructed in the J2I–1–T/Tc coordi-
nates with allowance for conditions (21)–(24) specify-
ing the phase boundaries.

The well-defined phase boundaries shown in Fig. 2
can be observed in materials with a perfect lattice. In
the general case, the boundaries separate the regions
with the predominance of the relevant phases.

The numerical parameters γ1 and γ2 are of the order
of unity. For example, the calculations performed in the
limit of low granule concentrations v /a3 ! 1 for lat-
tices of granules lead to the following results: (a) γ1 =
4.8 and γ2 = 0.3 for a two-dimensional lattice with a tet-
ragonal cell and (b) γ1 = 3.7 and γ2 = 1.7 for a three-
dimensional lattice with a cubic cell.

The critical temperature Tc for a granular film with
the granule parameters m0 ≈ 103 G and v1/3 ≈ 6 × 10–7 cm
at the volume concentration of magnetic material
v /a3 ≈ 5% was estimated at about 200 K. At higher fer-
romagnet concentrations, the γ1 and γ2 parameters
depend on the granule size.

Note that the proposed approach, as applied to the
system of spherical granules (the case of normal gran-
ular films) leads to the appearance of the Langevin
function in equations (18) rather than the Bessel func-
tions. A comparison of the results obtained for these
two cases shows that the critical temperature Tc for the
system of disk granules is higher by a factor of 3/2 than
that for the system of spherical granules. This is likely
due to the freezing of the degree of freedom in the 0Z
direction for flat granules.

Now, we write the relationship for Tc in the form

(25)

It should be noted that, at a constant concentration of
magnetic material v /a3, the critical temperature lin-
early increases with an increase in the granule volume.
This effect is caused by the change in the role of the
magnetostatic interaction with an increase in the gran-
ule size.

Finally, with the results obtained, let us derive the
relationship that determines the gain in energy of the
magnetostatic interaction in the antiferromagnetic
phase as compared to that of the ferromagnetic phase.
In the relative units, it can be written as

(26)

Tc γ1 γ2+( )
m0

2v

2kBa3
--------------v .=

σ
EAFM EFM–

EAFM
---------------------------------

2γ2

γ1 γ2+
----------------.

J 0=
= =
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The value of σ is equal to approximately 10% for a two-
dimensional lattice (Fig. 1) and about 60% for a three-
dimensional lattice with a cubic cell.

These estimates indicate that the ferromagnetic
ordering in granular films at a low granule concentra-
tion can be achieved only as a result of the indirect
exchange interaction between granules through con-
duction electrons, provided that condition (21) is ful-
filled.
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Abstract—It is shown that, within deep narrow quantum potential wells in systems based on semimagnetic
semiconductors containing Mn2+ ions, both magnitude and sign of the exchange interaction between electrons
in the conduction band and in the d-shell of a magnetic ion depend significantly on the spatial position of this
ion. This situation allows magnetic polarons with zero magnetic moment to appear, for which the localized-
electron-induced spatial distribution of polarization of the surrounding magnetic ions exhibits an antiferromag-
netic character. The possibility of experimental detection of these “nonmagnetic” magnetic polarons is consid-
ered. © 2000 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

By definition, magnetic polaron is a complex
formed by a localized charge carrier and surrounding
magnetic ions with their spins correlated by the
exchange interaction [1–3]. In semimagnetic semicon-
ductors of the CdxMn1 – xTe type, these complexes may
possess rather large magnetic moments reaching about
one hundred of Bohr magnetons (see, e.g., [4, 5]). This
is explained by a comparatively large field created by a
localized carrier on the neighboring magnetic ions
(Bp ≅  1T) and by a large number of these ions (~103).

However, this estimate implicitly assumes that the
exchange interaction field Bp(r) created by the charge
carrier has approximately the same direction in the
entire localization region. In fact, this assumption was
valid for the previously studied magnetic polarons
formed by localized electrons or holes.2

Below, we will demonstrate that, within a deep nar-
row quantum well with high potential barriers in the
above semimagnetic semiconductor systems, both
magnitude and sign of the exchange interaction
between an electron in the conduction band and elec-
trons in the d-shell of a Mn2+ ion depend significantly
on the spatial position of the magnetic ion. This may
lead to a situation where the spin correlation between
the electron in the conduction band and the surrounding
ions would markedly decrease the energy of the charge

1 This work was partly supported by the DFG Foundation (grant
no. SFB410) and by the Russian Foundation for Basis Research
(project no. 96-15-96392).

2 Berkovskaya et al. [6] considered a magnetic polaron formed by a
hole localized at an acceptor and by the surrounding magnetic
ions occurring within a narrow spherical layer at a distance
slightly above the Bohr radius. It was found that the lowest energy
state of this system corresponds to a nontrivial distribution of the
magnetic polarization, which differs from zero at any particular
point of this sphere but gives zero values of the exchange interac-
tion field and the magnetic polarization on averaging over the
whole sphere.
1063-7834/00/4201- $20.00 © 20132
carrier,

(1)

at a virtually zero total spin of this complex:

(2)

Here, M(r) is the density of the magnetic moment of
Mn2+ ions in the electron localization region, dM/dB is
the magnetic susceptibility of the magnetic ion system,
kB is the Boltzmann constant, and T is the absolute tem-
perature.

In Section 2, we will present qualitative consider-
ations showing the principal possibility of a situation
where both magnitude and sign of the exchange inter-
action between a localized two- dimensional (2D) elec-
tron and the d-shell electrons of a Mn2+ ion would
depend on the position of this ion in a nanometer-size
heterostructure. Section 3 gives mathematical relation-
ships describing spatial variation of the exchange inter-
action parameters for a quantum potential well with
rectangular walls. On this basis, formulas are derived
describing dependence of the magnetic moment and
energy of a magnetic polaron on the quantum potential
well width and depth. Section 4 presents calculations
for semimagnetic semiconductor heterostructures of
the Cd1 – xMnxTe type, in which magnetic polarons can
be reliably detected by optical methods [7]. In section
5 we will discuss the possibility of experimental obser-
vation of the magnetic polaron with zero magnetic
moment.

2. QUALITATIVE MODEL ANALYSIS
As demonstrated in [8] for semimagnetic semicon-

ductor heterostructures, a decrease in the characteristic

Ep M r( )Bp r( )( )d3r∫–=

≈ dM
dB
-------- Bp

2   =  r( )d3r∫– kBT ,>

Mp
dM
dB
-------- Bp r( )d3r∫ 0.≈=
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size of the system (and, hence, an increase in the
dimensional quantization energy) is accompanied by
dramatic variations in the parameter of exchange inter-
action between a localized electron and surrounding
magnetic ions. This behavior is related to an admixture
of wavefunctions of the valence band top to the Bloch
electron wavefunction amplitude. This admixture
increases with the distance from the Brillouin zone cen-
ter and, as a result, a new channel of exchange interac-
tion–the kinetic exchange–is opened, which is forbid-
den with respect to symmetry at the point Γ of the con-
duction band [9]. In Cd1 – xMnxTe solid solutions, a
parameter characterizing the magnitude of the
exchange interaction has the opposite sign and a mark-
edly greater value (by a factor exceeding 5) as com-
pared to the corresponding quantity for the potential
exchange interaction at the point Γ [8–10]. Thus, as the
admixture of the valence band states to the conduction
band states increases, the exchange interaction param-
eter decreases and even changes in sign.

A calculation of this parameter was performed in
our previous work [8] within the framework of the
Kane band model. We have analyzed the splitting of the
electron spin levels in the exchange field created by a
spatially homogeneous polarization of magnetic ions
induced by the applied magnetic field. Theoretical
description of this situation required knowledge of the
exchange interaction parameter averaged over the sys-
tem volume, and the corresponding theory was devel-
oped in [8].

At the same time, the exchange interaction constant
exhibits a rather unusual spatial variation in the state
described by superposition of the s and p functions. The
reason is the phase difference between the s and p parts
of the standing planar wave being equal to π/2. As a
result, the envelope of the s component in a standing
wave describing bottom states of the lowest 2D band in
the quantum potential well has the shape of cosqz (not
changing sign upon mirror reflection from the potential
well center z = 0), while the p function envelope has the
shape of sinqz (odd with respect to the mirror reflection
operation). Here, q denotes the electron wavevector
component normal to the potential well plane. For a
potential well with infinite walls, this value can be
expressed through the well width L by a well-known
formula q = π/L [11, 12].3 Thus, the s component of the
wavefunction is large at the wall and is zero at the cen-
ter of the well. Accordingly, the potential exchange
interaction plays a major role at the center, while the
kinetic exchange interaction is maximum at the wall.
As a result, both magnitude and sign of the parameter

3 This estimate for q follows immediately from the condition that
the wavefunction has a zero value at the infinitely high wall.
However, the s and p components of a 2D electron wavefunction
cannot simultaneously acquire zero values. According to [12], q =
π/L if the barrier height V increases simultaneously with the well
width. In the limiting case of V  ∞, we have V/EB, g  0;
otherwise, the first level of dimensional quantization corresponds
to qL < π.
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of exchange interaction between the spins of electron
and Mn2+ ion depend on the magnetic ion position in
the quantum structure.

3. THEORETICAL MODEL CALCULATIONS

In order to calculate spatial variation of the parame-
ter of exchange interaction between a 2D electron and
Mn2+ ions, let us consider an equation for the electron
wavefunction at the bottom of the first band of dimen-
sional quantization. Inside the potential well (–L/2 <
z < L/2)

(3)

where E(q) is the energy of an electron with the
wavevector q measured from the top of the valence
band. This energy is related to the wavevector by the
following relationship:

(4)

where m0 is the mass of the free electron, 〈s |pz |Z〉  is the
element of the momentum matrix calculated between
functions of the conduction band bottom and the
valence band top, Eg is the bandgap width, and ∆ is the
distance between tops of the valence band and the sub-
band split as a result of the spin–orbit interaction. As
seen, a maximum of the s wave correspond to a node of
the p wave and vice versa.

Under the barriers (|z | > L /2), all components of the
electron wavefunction exhibit the same spatial varia-
tion described by the “tunneling” exponent

(5)

(6)
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where quantities with the “tilda” symbol refer to the
band structure parameters inside the barrier material.
Taking into account that, as demonstrated in [11, 12],
envelopes of the s wave and the p-wave z component
normal to the wall are continuous on the wall, we
obtain

(7)

The position of levels inside the quantum potential well
is determined by the following equation:

(8)

which has to be solved consistently with equations (4)

and (6) taking into account that (Q) = E(q) + VB and
VB is the barrier hight for a hole. Combined with the
normalization condition

(9)
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equations (7) and (8) determine the values of coeffi-
cients entering into general expressions (3) and (5) for
the 2D electron wavefunction. Using equations (3) and
(5), the Hamiltonian of the exchange interaction
between a 2D electron and an ion occurring at a point
with the coordinates (z, R) can be written as

(10)

where r is the 2D radius-vector describing the position
of the electron in the plane of the potential well. Note
that the exchange interaction parameter in equation
(10), in contrast to the analogous parameter for a bulk
semiconductor with a cubic structure, is a second-rank
tensor and has a different dimensionality. The two prin-
cipal axes of this tensor are equivalent and occur in the
plane of the quantum potential well, the third axis is
normal to this plane, and the eigenvalues depend on the
magnetic ion position. For ions inside the well (|z | <
L /2), we have

(11)

Here, amplitudes of the constant and variable compo-
nents of the sp–d exchange are given by the formulas

(12)
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are the electron-energy-dependent contributions to the
exchange constant, which are related to an exchange
via the states at the conduction band bottom α '(E) and
the valence band top (E); αC is the parameter of theβC'
exchange interaction between electron and magnetic
ion at the conduction band bottom; βpot and βkin are the
potential and kinetic components of the exchange
constant of a hole at the valence band top, respec-
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000



“NONMAGNETIC” (ANTIFERROMAGNETIC) MAGNETIC POLARON 135
tively; and

(16)

is a factor describing the resonance dependence of the
kinetic exchange on the distance to the acceptor (ε–)
and donor (ε+) levels of the magnetic ion [8], that is, on
the electron energy difference between the conduction
band and the d levels of manganese ion with six or four
electrons (see Fig. 1).

Figure 2 shows the plots of the constant (ferromag-
netic) and variable (antiferromagnetic) components of
the exchange interaction parameter versus the dimen-
sional quantization energy of the electron Ekin = E(q) –
Eg. The calculation was performed for semimagnetic
CdMnTe solid solutions. As seen, the ferromagnetic

γ E( )
Ev ε+–( ) ε– Ev–( )

Ev Eg E+ +( ) ε+–[ ] ε– Ev Eg E+ +( )–[ ]
--------------------------------------------------------------------------------------------------=

EV – ε+ ≈ 3.5 eV

EV – ε+ 

ε– – EV ≈ 2.5 eV

ε– – EV 

3d6

3d6

3d4

3d4

Eg, B Eg,W

Vc

L

Ekin

Vv

Fig. 1. Schematic diagram showing spatial distribution of
the potential energy of charge carriers, positions of the
acceptor and donor levels on the d shell of manganese ions
in the a quantum potential well and under the barriers.
Dashed line shows the dimensional quantization level for an
electron with the energy E; ε+ and ε– are the energies of the
donor (3d4) and acceptor (3d6) levels of manganese (dis-
tances from these levels to the valence band top taken from
[8, 10, 13]). A virtual capture of electrons on the d levels is
responsible for the kinetic component of the exchange inter-
action between a conduction electron and the d-shell elec-
trons of manganese.
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component of the exchange interaction monotonically
decreases, and the antiferromagnetic component–
increases with decreasing Ekin.

Under the barrier (|z | > L /2), we have

(17)

where  ad  are given by expressions (13)–(15) with
the material parameters and the amplitude CW in the
quantum well replaced by the corresponding values for
the barrier.

Note that, because the ratio of the spin–orbit energy
splitting in the valence band to the bandgap width is
small (∆ /Eg ≤ 0.5), the anisotropy of exchange interac-
tion in CdMnTe is insignificant. For this reason, in what
follows we will assume ∆ /Eg ≈ 0. The relative error of
this approximation is ∆ /(3Eg) < 0.2.
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Fig. 2. Plots of (a) the constant (ferromagnetic) and variable
(antiferromagnetic) components of the exchange interaction
of a 2D electron with d-shell electrons of manganese and (b)
the anisotropy of these components in a state described by
the standing wave (3) versus the dimensional quantization

energy. (a): (1) ; (2) ;

(b): (1) (  – ; (2) (  –

. The calculation was performed for a

CdxMn1 – xTe solid solution with the parameters corre-
sponding to the limit of small magnetic ion concentration
(x  0); N0 is the concentration of positions occupied by
magnetic ions in the crystal lattice studied.

αZZ
f

E( )N0/ CW
2 αZZ

af
E( )N0/ CW

2

αZZ
f

E( ) α XX
f

E( ) )N0/ CW
2 αZZ

af
E( )

α XX
af

E( ) )N0/ CW
2

0



136 MERKULOV
4. NONMAGNETIC POLARONS IN CDMNTE 
HETEROSTRUCTURES

Using equations (10)–(17), we may write an explicit
expression for the exchange magnetic field created at
the surrounding magnetic ions by a localized 2D
electron:

(18)Bp z r,( )  
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Fig. 3. Plots of (a) the magnetic moment and (b) the energy
of a magnetic polaron versus the quantum potential well
width for a semimagnetic semiconductor with the same Mn
ion concentration (x = 0.1) in the quantum potential well and
under the barrier (other parameters as indicated in the text)
for the barrier height VC = ∞ (1); 600 meV (2); 555 meV (3);
500 meV (4).
P

where 〈s〉 is the average spin of the localized electron
and ψ(r) is the wave function describing the charge
carrier localization in the potential well plane. Substi-
tuting (18) into (1) and (2), we eventually obtain the
formulas describing the magnetic moment and energy
of the polaron:

(19)

(20)

where Ω =  is the area of electron

localization in the quantum potential well. Below, we
will use an estimate Ω = 10–12 cm2, which corresponds
to the area of a circle with a radius equal to the Bohr
radius of a Coulomb’s donor. The magnetic susceptibil-
ity is expressed by an empirical formula [14]

(21)

The calculation is performed for a Cd0.9Mn0.1Te solid
solution with the following set of parameters:

(22)

It was assumed that the barrier heights in the conduc-
tion (VC) and valence (VV) bands are related as 3VC =
7VV [15, 16].

Figure 3 shows the magnetic moment and energy of
a polaron formed by the localized 2D electron plotted
as a function if the quantum potential well width. In the
calculation, the magnetic ion concentrations in the well
was taken equal to that under the barrier (x = 0.1). The
plots are constructed for four values of the barrier
height, including three finite values VC = 500, 550,
600 meV and the infinite barrier. As is seen, the Ep

value in a quantum potential well with infinitely high
walls monotonically increases with decreasing L, while
the polaron energy in finite wells in exhibit a change

Mp
dM
dB
--------=

× α f( ) E( )L α af( ) E( ) qL( )/qsin+[ ] α̃ Ẽ( )/Q+
µgMn

------------------------------------------------------------------------------------------------------- s〈 〉 ,

E p
dM/dB( )

8 µgMn( )2Ω
--------------------------- L 2α f( )2 E( ) α af( )2 E( )+[ ][=

+ α̃ Ẽ( )/Q α af( ) E( ) qL( ) α f( ) E( )(sin+

+ α af( ) E( ) qL( )cos )/q ] ,

ψ r( ) 4d2ρ)∫( )
1–

dM
dB
--------

7J0xN0 µBgMn( )2

6kB T T0+( )
----------------------------------------- .=

βpotN0 0,  αC 0( )N0 220 meV,= =

N0 7 1022 cm 3– ,  βkinN0×≈ 880 meV,–=

Eg 1.606 1.592x+( ) eV 1.765 eV,= =

P2/m0 21 eV,  T 2 K,= =

T0 4.2 K,  J0 1.04.= =
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from growth to decrease at a sufficiently small width.
Qualitatively, both increase in the polaron energy and
the decrease in Ep for very narrow wells are naturally
related to changes in the size of the electron localiza-
tion region. In the quantum potential wells of large
width, a decrease in L leads to a decrease in the local-
ization region volume and an increase in Ep(L) ∝  1/L.
In very narrow wells, the electron wavefunction pene-
trates to increasing depth of the barrier and, as the L
value decreases, the volume of the localization region
increases and the polaron energy drops.

The magnetic moment Mp of a magnetic polaron
also significantly depends on the width and depth of the
quantum potential well. For a not too narrow potential
well (Fig. 3a) with the ferromagnetic exchange compo-
nent depending on the kinetic energy of electron as
depicted in Fig. 2, a decrease in the well width leads to
decreasing Mp. If the well width is small and the major
role belongs to the exchange interaction with magnetic
ions occurring in the barrier, the character of variation
of the magnetic moment with the well width changes to
the opposite: a decrease in L leads to an increase in Mp.

As the barrier height increases, a minimum value of
the magnetic moment of the polaron decreases and (for
VC > 550 meV) becomes negative. Strictly speaking, it
is a spin correlator between electron and surrounding
magnetic ions that changes the sign. There are two val-
ues of the well width at which the polaron magnetic
moment is zero. A large value increases from 11 Å for
VC ≈ 550 meV to 34 Å for the well with infinite walls.
Detailed description of the polaron magnetic moment
in this region of L requires special analysis, because
large VC values may give rise to resonances between the
electron energy level and the acceptor 6d level of man-
ganese ions occurring within the barrier or (at still
greater VC) inside the well.

Figure 4 shows a distribution of the magnetic
moment density of a polaron with Mp = 0 over the well
width for VC ≈ 550 meV and for the well with infinite
walls. In the first case (Fig. 4a), the sign of the magnetic
ion polarization changes to opposite on the passage
from barrier into well. Note that a change in the sign of
the exchange component in the barrier takes place
before that in the well, because a distance between the
6d level of manganese and the valence band top is
approximately constant for various materials [10].
Thus, for a fixed electron energy, a decrease in the
valence band top energy is accompanied by decreasing
resonance denominator in the formula (16) for the
kinetic exchange parameter.

In the case of infinitely high barrier, the electron
wavefunction does penetrate into the barrier and the
“nonmagnetic” (ferromagnetic) magnetic polaron
appears when the average exchange constant is zero.
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5. EXPERIMENTAL OBSERVATION 
OF A POLARON WITH ZERO MAGNETIC 

MOMENT

A combination of decreasing ferromagnetic compo-
nent and increasing antiferromagnetic component of
the exchange interaction, together with a resonance
dependence of the kinetic exchange on the difference
between energies of the 2D electron and the 6d electron
of manganese, leads to a rather involved character of
variation of the polaron energy with the quantum
potential well width (Fig 3a, curves 1–3). However, no
specific features take place for Mp = 0. Therefore, mea-
surements of the magnetic polaron energy cannot be
used for detecting the magnetic polaron possessing
zero magnetic moment.

This unusual “nonmagnetic” magnetic polaron can
be detected, for example, in experiments on the Raman
light scattering with the electron spin reversal [8, 17].
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Fig. 4. Spatial distribution of the magnetic moment density
for a “nonmagnetic” magnetic polaron with (a) relatively
small (555 meV) and (b) infinite barrier height. For VC =
555 meV, the magnetic moments of Mn ions in the well and
under the barrier are oriented in opposite directions and
mutually compensate each other. For the infinite barrier, the
probability to detect an electron under the barrier is zero–
and in this case, the “nonmagnetic” magnetic polaron is
manifested by antiferromagnetic ordering of the spins of
magnetic ions in the well.
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As can be readily demonstrated for a sample placed in
a not too strong magnetic field B (i.e., with the field
strength significantly below the saturation level), the
Raman scattering with the electron spin reversal in a mag-
netic-polaron state is accompanied by the Stokes shift:

(23)

Thus, by measuring the Stokes shift in a zero field, we
obtain the double magnetic polaron energy, and by
determining the slope of the "∆(B) curve, the double
magnetic polaron moment. For a usual magnetic
polaron, the energy (Ep ∝ ) rapidly decreases with
the slope of the "∆(B) curve. In contrast, the Stokes
shift for a “nonmagnetic” (antiferromagnetic) polaron
has a finite value at "∆(B) = 0, which is independent of
the applied magnetic field.

Figure 5 shows an example of theoretical curves cal-
culated for the Stokes shift in the spectra of Raman
scattering with spin reversal of a 2D electron in a mag-
netic polaron. The calculation was performed for four
values of the quantum potential well width L = 60, 45,
34, and 25 Å. As the well width decreases, the slope of
the "∆(B) plot decrease to zero (corresponding to Mp =
0) and then increases again. At the same time, the
Stokes shift in a zero field would monotonically
increase with decreasing L.

6. CONCLUSION

We have demonstrated that reconstruction of the
internal structure of the electron Bloch wavefunction
amplitude in semimagnetic dimensionally-quantized
nanometer heterostructures leads to a strong spatial
variation of the parameter of exchange interaction

"∆ B( ) 2 Ep MpB+( ).≈

Mp
2

12
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4

2

0 0.5 1.0 1.5 2.0
B, T

∆ERam, meV

1
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3

4

Fig. 5. Plots of the Stokes shift versus applied magnetic field
strength for the Raman scattering with the electron spin
reversal in a magnetic-polaron state. The calculation was
performed for a quantum potential well with infinite walls
and the widths L = 60 (1), 45 (2), 34 (3), and 25 Å (4), the
other parameters being the same as in Fig. 3. 
P

between an electron in the conduction band and sur-
rounding magnetic ions. As a result, a potential
exchange component characterized by a positive value
of the exchange interaction parameter is significant at
some points of the structure, and the kinetic exchange
component with a negative value of the parameter plays
a determining role at the other points. The alternating
sign of the exchange interaction provides conditions for
the appearance of a magnetic polaron with zero mag-
netic moment, in which the spins of magnetic ions
exhibit antiferromagnetic ordering.
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Abstract—Possibility of the ferroelastoelectric behavior manifestations in a uniaxial ferroelectric TGS crystal
was investigated. Analysis of the spontaneous piezoelectric moduli tensors for each of the 180°-domains
formed as a result of the phase transition in TGS revealed possible directions for simultaneous application of
the electric field and mechanical stresses to induce the switching effect in TGS. Influence of the uniaxial
mechanical stresses σ11, σ22, σ33 on the parameters of saturated and unsaturated dielectric hysteresis loops in
TGS is considered. It was found that a nontraditional E3σ12 combination of fields may lead to the domain
switching in TGS crystals. © 2000 MAIK “Nauka/Interperiodica”.
According to the classification of Aizu [1], crystals
containing domains (oriented states) with different
components of the piezoelectric constants belong to the
high-order ferroics and are called ferroelastoelectrics.
Switching of these crystals from one to another state
can be induced only by simultaneous application of the
electric field and mechanical stresses. The class of fer-
roelastoelectrics includes, for example, quartz crystals
at temperatures below that of the phase transition from
α to β modification (Tc = 573.5°C) [2].

The symmetry analysis indicates that all ferroelec-
trics are potential ferroelastoelectrics. From the stand-
point of investigation into the ferroelastoelectric prop-
erties, especially favorable conditions are offered by
the “purely” uniaxial ferroelectrics, in which the effect
of mechanical stresses is not masked by the ferroelastic
behavior.

An example of typical “purely” uniaxial ferroelec-
tric crystals is offered by triglycine sulfate (TGS),
exhibiting a phase transition of the 2m  2 type at
49.2°C to give rise to two oriented states (domains) S1
and S2. The tensor of spontaneous piezoelectric moduli
for one of these 180°-domains (S1) has the following
form [3]:

(1)

The tensor of spontaneous piezoelectric moduli for
another 180°-domain (S2) can be obtained by multiply-
ing tensor (1) by –1.

Analysis of the form of the spontaneous piezoelec-
tric moduli tensor (1) allows the directions to be deter-
mined in which the electric field and mechanical
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stresses must be simultaneously applied in order to pro-
duce the switching effect in TGS crystals, provided that
the material possesses ferroelastoelectric properties.
The corresponding combinations are as follows:

(2)

Below, we present the results of investigation of the
TGS crystal switching upon the combined action of
electric field and mechanical stresses in these direc-
tions.

1. EXPERIMENTAL METHODS
The crystallophysical system of coordinates, in

which the necessary TGS crystal cuts (

 

X

 

, 

 

Y

 

, 

 

Z

 

) were
prepared, was analogous to that adopted in [4]. Experi-
ments on the TGS crystal switching by application of
various combinations of the electric field and mechani-
cal stresses were performed using a special sample
crystal holder. This device allowed the electric field and
mechanical stresses to be simultaneously applied to a
sample either in the mutually perpendicular directions
or in the same direction.

The sample surfaces perpendicular to the polar axis
were coated with platinum (by vacuum deposition) or
graphite (by rubbing) to obtain electrodes for the field
application. Uniaxial mechanical stresses were applied
along the axes 
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 (
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), and 
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) and the effect
of these stresses upon the parameters of the dielectric
hysteresis loop (DHL) measured according to a modi-
fied Sawyer–Tower scheme was studied in the temper-
ature range 20–50

 

°

 

C.
In order to study the possibility of crystal switching

by the field combinations 
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 and 
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, the elec-
trodes were applied onto the sample surfaces perpen-
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E2σ33; E2σ13; E3σ23; E3σ12.
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dicular to the axes X, Y and Z, Y, respectively. Note that
the piezoelectric coefficients with like indices have the
same absolute values and opposite signs for the
domains in TGS crystals with opposing orientations of
the spontaneous polarization vector. Therefore, mea-
surements of the piezoelectric response on the crystal
faces perpendicular to the polar axis Y under the action
of compressive stresses σ22 allows the direction and
degree of polarization of a TGS crystal sample to be
determined.

2. TGS CRYSTAL SWITCHING BY THE E2σ11, 
E2σ22, AND E2σ33 FIELD COMBINATIONS

Field combinations of the E2σ11, E2σ22, and E2σ33
types are quite readily realized in experiment by apply-
ing compressive stresses σ11, σ22, σ33 in the course of
DHL measurements.

Figures 1 and 2 show the results of DHL measure-
ments on saturated samples (corresponding to virtually
complete switching of the TGS crystal), performed at
various temperatures upon the application of mechani-
cal compressive stresses σ11, σ22, and σ33. As seen from
this figure, the σ11 and σ22 stresses lead to a decrease,
and the σ33 stresses–to an increase in the spontaneous
polarization Ps in the entire temperature range studied.
We believe that this behavior is caused by the direct
piezoeffect and corresponds to different signs of the
piezoelectric coefficients (sgnd21 = sgnd22 = –sgnd23).
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Fig. 1. Temperature dependence of the spontaneous polar-
ization Ps in TGS crystals: (1) unstressed; (2) stressed at
40 MPa along the X-axis; (3) stressed at 3.6 MPa along the
Y-axis; (4) stressed at 40 MPa along the Z-axis. 
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It is interesting to consider effects of the corre-
sponding mechanical stresses upon magnitude of the
coercive field Ec (Fig. 2). As seen from the curves
depicted in Fig. 2, the mechanical stresses σ11 and σ22
lead to a decrease, and the σ33 stresses, to an increase in
the Ec value, thus favoring or retarding the re- polariza-
tion process in TGS, respectively.

At the same time, the DHL study in the unsaturated
regime (corresponding to incomplete re-polarization
processes) showed that application of the electric field
with a strength below certain “critical” level (approxi-
mately equal to the Ec value for saturated DHL curves)
leads to an increase in the measured polarization value
(proportional to the re-polarized crystal domain vol-
ume) in the presence of σ11 and σ22 stresses, and to a
decrease in the polarization in the presence of σ33
stresses. These trends are opposite to the behavior
observed for the same mechanical stresses acting upon
the system with saturated DHL. These data indicate
that the σ11 and σ22 stresses favor the motion of
domains while the σ33 stresses retard this mobility. It
must be noted that the “critical” field strength is virtu-
ally not affected by the application of mechanical
stresses and the observed phenomena exhibit a revers-
ible character.

The above results can be explained taking into
account that TGS crystals are not only ferroelectrics,
but possess the ferroelastoelectric properties as well. As
is known [1], simultaneous application of the electric
field and mechanical stresses in definite crystallo-
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Fig. 2. Temperature dependence of the coercive field Ec in
TGS crystals: (1) unstressed; (2) stressed at 40 MPa along
the X-axis; (3) stressed at 3.6 MPa along the Y-axis;
(4) stressed at 40 MPa along the Z-axis. 
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graphic directions to a ferroelastoelectric sample leads
to the crystal transition into a monodomain state, that
is, to establishing one of the several possible oriented
states. A change in the sign of one of the external fac-
tors (i.e., the change from compressive to tensile
stresses or alteration of the electric field direction)
leads to switching from one to another oriented state by
means of the domain wall motion, similar to that
observed in ferroelectrics. However, since the ferroelas-
toelectric crystals are ferroics of a higher order than are
simple ferroelectrics, the corresponding electric and
mechanical coercive field strengths prove to be suffi-
ciently high at low temperatures (far from the tempera-
ture of the structural phase transition). For example, the
motion of ferroelastoelectric domains upon combined
application of the electric field and mechanical stresses
in quartz crystals is observed only at a temperature 3 K
below the α  β transition temperature [2].

The TGS crystals, in contrast to quartz, are not
“purely” ferroelastoelectric systems and are mostly
known as “purely” ferroelectric compounds. Since the
ferroelectric 180°-domains in TGS possess the fer-
roelastoelectric properties as well, this system is subject
to the action of two driving forces. The low Curie tem-
perature of TGS crystals suggests that the ferroelasto-
electric behavior can be observed at room temperature.

The alternating electric field E2 is a re-polarizing
field in the ferroelectric state and, in combination with
mechanical stresses, gives rise to an additional driving
force related to the ferroelastoelectric properties. The
two driving forces may act either in the same or in the
opposite directions, depending on the signs of the
piezoelectric coefficients. Taking this circumstance
into account and analyzing the signs of piezoelectric
coefficients in the system studied (–d21, –d22, +d23), we
may conclude that the field combinations E2σ11 and
E2σ22 would favor the motion of domain walls, while
the E2σ23 combination will hinder this mobility.

Evidently, by changing the sign of mechanical
stresses (compressive versus tensile) we may alter the
behavior of both DHL-saturated and unsaturated crystals
and observe the trends opposite to those described above.

3. TGS CRYSTAL SWITCHING BY THE E1σ23 
AND E3σ12 FIELD COMBINATIONS

Since TGS is a uniaxial ferroelectric, in which the
re-polarization is produced by applying the electric
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
field along the Y axis, the crystal state switching by one
of the combinations E1σ12, E1σ23, E3σ12, or E3σ23
(whereby the electric field is perpendicular to Ps) would
be a direct evidence of the ferroelastoelectric properties
of the system. We have undertaken an experimental
verification of this possibility.

First, the TGS samples were converted into a mon-
odomain state by exposure to an electric field with the
strength 300 kV/m applied along the polar axis Y, after
which the piezoelectric modulus d22 was measured and
its sign (i.e., the crystal polarization direction) was
determined. Then a combination of the fields (E3σ12 or
E1σ23) was applied to the sample, with an electric field
strength of 400 kV/m and a mechanical stress of
15 MPa. The experiments were performed at room tem-
perature. A comparison of the values and signs of the
piezoelectric response before and after the combined
action indicated the degree of sample switching.

The E1σ23 combination weakly affected the piezo-
electric response even upon prolonged action. At the
same time, exposure to the E3σ12 combination for 30–
90 min led to a change in the sign of the piezoeffect in
several samples. Separate application of the electric
field and mechanical stresses of the same magnitude to
the same samples led to no changes in the piezoelectric
response. This result indicates that the E3σ12 combina-
tion produces switching Ps in the TGS crystal, which
allows TGS crystals to be classified as both ferroelec-
trics and ferroelastoelectrics.

It should be noted that the above results have a pre-
liminary character and are currently verified in inde-
pendent experiments.
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Abstract—The effect of a dc electric field on the phase transition process in lead scandotantalate single crystals
differing in the degree of ion ordering has been studied by small-angle light scattering (SAS). The spontaneous
phase transition occurring in these crystals is shown to be accompanied by a sharp SAS intensity peak indicat-
ing the percolation nature of this transition. A phase diagram in the field–temperature coordinates has been con-
structed for all the PST crystals studied in the work. The electric field and the temperature variation rate have
been found to affect the SAS intensity. © 2000 MAIK “Nauka/Interperiodica”.
AB'B''O3 perovskite-type ferroelectrics, to which
the lead scandotantalate PbSc1/2Ta1/2O3 (PST) belongs,
represent a broad class of substances, where chemical
disorder in the arrangement of the B' and B'' ions gives
rise to relaxor behavior. The degree of diffuseness of
the phase transition between the ferroelectric and the
paraelectric phase depends on the extent of ordering of
the Sc3+ and Ta5+ ions (s) at the octahedral lattice sites.
In crystals with a long-range order (s ~ 1 corresponds
to practically ordered compounds), one observes a
clearly pronounced first-order ferroelectric phase tran-
sition with no intermediate relaxor phase between the
ferroelectric and the paraelectric phase [1,2]. By prop-
erly varying the temperature regime of single-crystal
growth [3] or sample heat-treatment conditions [4], one
can affect the degree of ion ordering and, thus, modify
the relaxor properties.

The possibility of realizing phase transitions of dif-
ferent characters in the same material accounts for the
scientific interest in these compounds and makes PST
crystals a particularly convenient subject for the inves-
tigation of relaxor behavior in various substances.
Besides, some relaxors, among which are the PST and
PSN crystals, possess another unique property. They
exhibit, in addition to typical relaxor behavior, a spon-
taneous transition between the ferroelectric and relaxor
phases at temperatures below that corresponding to the
maximum in the dielectric permittivity in a zero electric
field [1,5]. Such transitions in ceramic PLZT samples
with 17/30/70 and 12/40/60 compositions were
reported in [6,7], and in the ordered and disordered PST
ceramic, in [1]. This phenomenon appears particularly
interesting and significant, because only in this case can
one observe the ferroelectric relaxor together with con-
ventional ferroelectric behavior in the same compound
without applying any external field. This pattern of
behavior distinguishes them from other relaxors, which
1063-7834/00/4201- $20.00 © 20142
exhibit such transitions only in an electric field. The
existence of a spontaneous transition was confirmed by
a sharp drop of the dielectric permittivity [1] at a certain
temperature (Td) in a sample cooled below the temper-
ature of the maximum in ε, by the absence of a fre-
quency dependence in the temperature interval between
Td and Tmax ε, an anomaly in the transition heat, and by
double dielectric hysteresis loops observed above the
spontaneous transition temperature [8].

Particularly many studies have appeared recently on
the effect of a dc electric field on the character of the
spontaneous phase transition from the normal ferro-
electric to the relaxor state in ordered and disordered
PST ceramics. This may be attributed to the fact that the
electric field acts differently on the relaxor properties
and the character of the spontaneous phase transition in
these compounds. The application of an electric field
can increase the uniformity and stability of the ferro-
electric state and its effect on the relaxor properties,
which could help in studying the nature of the relaxor
behavior. All these studies dealt only with the changes
in the dielectric properties of the PST and PSN ceram-
ics induced by an electric field. Unfortunately, the
anomaly in the ε curve corresponding to the spontane-
ous transition in these compounds is not pronounced
clearly enough (one observed only a sharp drop in ε
under cooling, whereas when heated, the anomaly in
the ε of the sample was practically not seen at all), and
the temperature of the anomaly itself is very close to
that of the maximum in ε (∆T ~ 1–5 K, depending on
the degree of the phase-transition diffuseness). There-
fore, in order to obtain a revealing pattern of the effect
of an electric field on the shape of the dielectric anom-
aly, it would be required, on the one hand, to have a suf-
ficiently sensitive setup, and on the other, to perform
measurements within a broad electric-field range.
000 MAIK “Nauka/Interperiodica”



        

EFFECT OF ELECTRIC FIELD ON THE PERCOLATION PHASE TRANSITION 143

                                                                                              
Optical methods, including small-angle light scat-
tering (SAS), are more sensitive in studying the effect
of an external field on the variation of spatial nonuni-
formities in polarization. Our previous investigations of
the diffuse phase transition in PST single crystals made
by the SAS method [8,9] established the existence of a
sharp peak in the temperature dependence of SAS
intensity, which argues for the percolation nature of the
transition between the relaxor and ferroelectric phases.
The temperature at which this peak was observed lies
below that of the maximum in ε. The difference
between these temperatures is the larger, the less
ordered the ions are. One can confidently state that the
temperature of the anomalous SAS peak can be associ-
ated with a spontaneous phase transition from the fer-
roelectric to the relaxor phase.

Thus, the objectives of this work were twofold:
investigation of the effect of a dc bias field on the spon-
taneous phase transition in PST single crystals, and on
the character of the percolation processes accompany-
ing this transition. Besides, it appeared of interest to
follow the influence of the rate of the sample tempera-
ture variation during the experiment on the spontane-
ous phase transition itself.

1. EXPERIMENTAL TECHNIQUE 
AND THE SAMPLES

We studied SAS measured in the transmission
geometry [10] on a series of PST ferroelectrics differ-
ing in the degree of ordering of the Sc3+ and Ta5+ ions.
The crystals were synthesized in different growth tem-
perature regimes [11] and had the following character-
istics: PST I—Tmax ε = 297 K, Tan. peak = 287 K, s = 0.65;
PST II—Tmax ε = 301 K, Tan. peak = 294 K, s = 0.7;
PST III—Tmax ε = 309 K, Tan. peak = 304 K, s = 0.95; and
PST IV—Tmax ε = 316 K, Tan. peak = 313 K, s = 0.98. The
degree of ordering s was measured by x-ray diffraction.
The electric field was applied along the [001] direction
at 273 K, and the light was propagated along [100]. The
dielectric measurements were carried out at a fre-
quency of 50 kHz. All the measurements were per-
formed under heating. The sample temperature varia-
tion rate was 3 K/min, unless otherwise specified. After
the electric-field application, the samples were ther-
mally depolarized before each measurement.

2. EXPERIMENTAL RESULTS AND DISCUSSION

Figs. 1 and 2 display the temperature dependences
of the SAS intensity and of the dielectric permittivity
for the PST IV and PST I crystals obtained under heat-
ing in the absence of an electric field. In both figures
one can clearly see SAS peaks at the Td temperature,
which supports the existence of a percolation-type
spontaneous ferroelectric transition and the onset in
this transition of a large-scale nonuniform structure. As
seen from the curves in Fig. 1 taken in the heating and
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
cooling runs, the difference between the peak positions
is ~11 K. This temperature hysteresis is one of the prin-
cipal features of a first-order phase transition. The dif-
ference between the temperatures of the anomalous
peak and of the maximum in ε for the PST IV crystal is
only ~2–3 K. The temperature where a sharp increase
of the dielectric permittivity sets in (curve 2 in Fig. 2)
corresponds to the temperature of the anomalous peak
(Td) in the ε curve. As is obvious from curve 2, the ε
anomaly obtained in a heating run is not clearly mani-
fest, whereas the SAS peak is distinct. Application of a
dc electric field shifts the temperature of the spontane-
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Fig. 1. Temperature dependences of small-angle light scatter-
ing intensity (curve 1) and dielectric permittivity (curve 2) for
the PST IV crystal. Scattering angle 30 arcmin.

Fig. 2. Temperature dependences of small-angle light scatter-
ing intensity (curve 1) and dielectric permittivity (curve 2) for
the PST I crystal. Scattering angle 20 arcmin.
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ous ferroelectric transition toward higher temperatures,
as is the case with PST ceramic samples [2]. That the
temperature of the anomalous SAS peak measured at
zero frequency in the absence of an electric bias corre-
sponds to that of the spontaneous transition in the tem-
perature dependence of the dielectric permittivity
obtained at 50 kHz, is another argument in favor of the
nonrelaxation character of this transition.

The SAS intensity measurements carried out under
the application of a dc electric field on the PST I,
PST II, and PST III crystals were used to construct an
electric-field dependence of the temperature of the
spontaneous transition (Fig. 3). The transition tempera-
ture Td in the practically ordered PST III crystal
depends linearly on an electric field, which is typical of
a first-order phase transition from the ferroelectric to
the paraelectric state (curve 1 in Fig. 3). The PST III
crystal is a practically ordered sample, in which only
5% of the sample volume remained disordered. For the
more disordered crystals PST I (curve 3) and PST II
(curve 2) the dependence of Td on an electric field dif-
fers somewhat from a linear course, although the pres-
ence of the SAS peak and the results published in [8]
indicate that the phase transition from the ferroelectric
to the relaxor state in a disordered crystal is of the first
order. This deviation from the linear dependence in the
PST I and PST II crystals, in which 35 and 30% of the
volume is disordered, respectively, can be ascribed to
the existence of the relaxor state within a sufficiently
broad temperature region and to the presence of polar-
ization in local regions of the crystal at temperatures
above Td. These findings agree with the results of the
study [2] carried out on the PST ceramic, where it was
shown that local polarization vanishes only at ~170°C,
when the compound transforms into a paraelectric
state.

The second part of the work deals with an investiga-
tion of percolation-type processes in PST crystals per-
formed in various electric fields and at various crystal-
temperature variation rates. As follows from our mea-
surements and from [2], an increase of the electric field
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Fig. 3. Temperature of the spontaneous ferroelectric transi-
tion (Td) vs the bias electric field for PST III, PST II, and
PST I crystals (curves 1, 2, and 3, respectively).
P

up to 10 kV/cm reduces the magnitude of ε at the max-
imum for disordered samples by nearly a factor of three
and practically does not affect that for ordered ones.
There is no information in the literature on the effect of
an electric field on the percolation phase transition.

Figure 4 plots the dependence of SAS intensity vs
the electric field for the PST II and PST III crystals
(curves 1 and 2, respectively). Despite the different
degree of ion ordering in these crystals, the behavior of
the SAS intensity is practically the same in them and
differs from the behavior of the maximum value of ε.
One readily sees that in fields E > 2 kV/cm the SAS
intensity drops dramatically, with the peak vanishing at
~4 kV/cm. Our analysis [12] of the polarization charac-
teristics of SAS intensity in disordered PST crystals
revealed that the surface fractal structure forming in
this transition has a heterophase, rather than domain
origin. The external electric field applied to a sample
changes the profile of spatial fields and, therefore,
affects the positions of the interfaces, their structure
and thickness, and initiates coalescence of the neigh-
boring polar regions, which results in a decrease of the
total area of the interfaces separating them. Hence, an
increase of the electric field should reduce the SAS
intensity. Our experimental data are in accordance with
the theoretical conclusions [13] that the SAS intensity
near a phase transition in a disordered system placed in
an electric field is inversely proportional to the latter.

We conclude by presenting some comparative data
on the effect of the temperature variation rate (sample
heating rate) on the SAS intensity in a PST crystal (in
the absence of an electric field) and in the classical
relaxor PMN (in an electric field of 3 kV/cm). In
relaxor ferroelectrics, the temperature at which the
macrodomain state sets in an electric field, as well as
the amplitude of the dielectric anomaly observed at this
temperature, depends not only on the electric field
strength, but also on the temperature variation rate (the
FHaZEC regime) [14,15]. Indeed, the phase transition
from a micro- to macrodomain state correlates with the
kinetics of microdomain reorientations. The stronger
the electric field applied to a sample, the faster the mac-
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Fig. 4. Electric field dependence of small-angle light scat-
tering intensity for the PST II and PST III crystals (curves 1
and 2, respectively). Scattering angle 20 arcmin.
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rodomain state sets in, and the weaker the field, the
longer the time needed for this. The field applied to a
sample may induce a phase transition to the macro-
domain state only if the rate of this process is fast
enough for this state to set in during the experiment
[16]. Hence, in order to observe dielectric and optic
anomalies at the temperature of the transition to the
macrodomain state, one should choose an appropriate
experiment time (sample heating rate) and the electric
field strength. Obviously, the effect of the heating rate
on the magnitude of the anomalies should become
manifest particularly strongly in the relaxor ferroelec-
trics, in which the orientation of the polar regions and
the motion of their interfaces, as well as of the domain
walls in polar clusters, play an important role. In PST
crystals, most of the sample volume is ordered, with
only a very small fraction of it remaining disordered,
and therefore the effect of the rate on, say, the SAS
intensity should be less pronounced. This is seen
clearly from Fig. 5. At the temperature variation rate
~20–25 K/min, the anomalous peak in the PMN crystal
disappears (curve 3), whereas in the PST crystals
(curves 1 and 2) its amplitude remains practically con-
stant.

Thus, our study has shown that the spontaneous
phase transition observed in PST single crystals with
different degrees of ion ordering is of the first order, has
a percolation nature, and is accompanied by the occur-
rence of an anomalously narrow SAS intensity peak.
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Fig. 5. Effect of the sample heating rate on small-angle light
scattering intensity in PST II (curve 1) and PST I (curve 2)
with no electric field applied, and in the classical relaxor
PMN (curve 3) measured in an electric field of 3 kV/cm.
Scattering angle 20 arcmin.
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The dependence of the spontaneous transition temper-
ature on the applied electric field has been found, with
a linear dependence characteristic of a first-order tran-
sition observed only in an ordered PST sample.
Increasing the electric field above 2 kV/cm results in a
sharp decrease of the SAS intensity and a disappear-
ance of the peak at ~4 kV/cm, which is apparently asso-
ciated with the decrease of the interface area. A study
has been made of the effect of the sample temperature
variation rate on the SAS intensity. The amplitude of
the SAS intensity peak remains practically constant,
with the rate increasing up to 20 K/min, which distin-
guishes the PST crystals from the classical relaxor
PMN.
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Abstract—A model is proposed to describe the evolution of 180° domains in a ferroelectric. Closed analytic
expressions are obtained for the velocity of sideways motion of a 180° domain wall in an electric field and
numerical calculations are performed. The connection between polarization reversal and electron emission is
discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, considerable attention has been focused on
the processes of polarization reversal and domain-wall
motion in connection with the development of pulsed
ferroelectric-based cathodes with current densities up to
100 A/cm2 [1–5]. The physical nature of intense electron
emission observed in this case is associated with the pro-
cess of polarization reversal in the ferroelectric caused
by nanosecond high-voltage pulses. The electron emis-
sion was first observed during motion of a 180° domain
wall in BaTiO3 [6]; more recently, an analogous investi-
gation was made in [7]. An unusual effect, also associ-
ated with inhomogeneous polarization distribution in
surface layers and named anomalous electron emission,
was exhibited by some ferroelectric electrets when irra-
diated by soft X-rays [8, 9].

To adequately describe the physical mechanisms of
the polarization reversal in these new phenomena, a
more consistent theoretical approach to polarization
reversal is needed than the classical theory of nucle-
ation commonly used for solving problems of this kind
[10, 11]. Specifically, account must be taken of the pro-
cesses occurring on the electrodes.

An appropriate method based on the concepts of the
kinetics of phase transitions [12–14] was used in [15,
16] to investigate the dynamics of head-to-head
domains. However, some assumptions made in these
papers do not permit the method to be applied to 180°
domain walls with whose motion the electron emission
is associated [1–4, 6, 7]. A theoretical analysis of the
latter phenomenon is given in this paper.

This analysis is based on the general ideas [14–16]
of the mechanisms of stratification of a spatially uni-
form system during phase transitions. Mathematically,
the formation of domain walls is due to an N-shaped
singularity in the equation of state of the ferroelectric,
that is, in the dependence of the electric field Es(P) on
the polarization P. The manner in which the stratifica-
tion occurs depends on the conductivity of the material
1063-7834/00/4201- $20.00 © 20146
and carrier concentration n0. The nucleation and for-
ward growth of wedge-shaped domains (of a new
phase) with a small wedge angle is observed at low n0
[10, 11, 16], when the Debye screening length lD

exceeds the dimensions of the sample. As n0 increases,
so does the wedge angle, and at a certain value of n0 the
bulk new “phase” appears with the opposite polariza-
tion direction. This phase increases in volume through
the motion (along the polar axis) of the plane front of a
kink-like nonlinear wave of a large amplitude resulting
in polarization reversal. In [15, 16], this model was
used to theoretically analyze the motion of head-to-
head domains.

In high-resistivity materials (with small n0), the
polarization reversal can also be described in terms of a
kink-like wave propagating perpendicular to the polar
axis and to the electric field E0 (see Fig. 1). This process
corresponds to the sideways motion of the 180° domain
wall. In the general case, the velocity of domain walls
is a function of two time parameters: the relaxation
time τs of polarization and the dielectric relaxation time
τd dependent on the conductivity of the material. The
time τs can be estimated from experimental data on the
frequency dispersion of the dielectric permittivity and
is obtained to be τs ≈ 10–8–10–11 s [10, 11]. The ratio
τs/τd may vary over wide limits depending on the con-
ductivity and the mechanism of the ferroelectric phase
transition. At the same time, in studying the dynamics
of head-to-head domains, it was implicitly assumed in
[15, 16] that τs = 0. This assumption is not well founded
physically, especially in the case of sideways motion of
a 180° domain wall, where there are no bound charges
on the wall and, hence, its motion is not limited by
dielectric relaxation and is characterized by a single
relaxation time, τs. For this reason, the system of equa-
tions used in [15, 16] must be supplemented by the
kinetic equation describing the relaxation of polariza-
tion. This will be done in the following section, where
we present the theoretical model used in this paper.
000 MAIK “Nauka/Interperiodica”
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2. A THEORETICAL MODEL

The model geometry of sideways motion of the 180°
domain wall is shown in Fig. 1. We assume that only the
x components of the electric field E0 and polarization P
are nonzero. The polarization is a function of only one
spatial variable, x, while the field E0 is uniform over the
sample. Strictly speaking, the latter assumption is valid
only if there is no gap between the ferroelectric and
electrodes; the effect of a gap on the switching process
will be discussed later. In what follows, differentiation
with respect to time t and space coordinate x is indi-
cated by the corresponding subscript. The rate of polar-
ization relaxation Pt is proportional to the derivative of

the thermodynamic potential (P, E0) with respect to P
taken at the field E0 kept fixed [12]. Therefore, we have

Pt ~ δ /δP = Es(P) – E0. With the potential  includ-
ing gradient corrections, the above relation leads to the
following nonlinear equation [17–19] governing the
relaxation of polarization P:

(1)

where l is the correlation length [14] and η is a charac-
teristic time constant. In the general case of a nonuni-
form field, equation (1) should be solved in combina-
tion with Poisson’s equation and the continuity equa-
tion, which gives the distributions of the polarization
P(t, x) and electric field. For a stationary nonlinear
wave propagating with a velocity c, the polarization P
is a function only of the difference (x – ct). Hence,
introducing the notation Y = ηP and D = l2/η, we may
write (1) in the form

(2)

In this paper, we solve this equation under the assump-

F̃

F̃ F̃

ηPt E0 Es P( )– l2Pxx,+=

DYxx cYx E0 Es Y( )–+ + 0.=

E0 z

X
C+

C–

P

P

Fig. 1. Geometry of the theoretical model of sideways
motion of a 180° domain wall (schematic); profiles of non-
linear kink-like waves C+ and C– are shown by solid and
dashed line, respectively.
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tion that Es(P) has the following model form (see Fig. 2):

(3)

where

(3a)

ε is the permittivity of the ferroelectric; δ0 is a parame-
ter defining the slope of the Es(P) curve in the instabil-
ity region (ε; δ0 > 0); and Ec = 4πPs/εs is the coercive
field. Sideways motion of the 180° domain wall is
described by a kink-like solution for which Y(±∞) 
±Y± and in the region 0 < x < x0 we have |P | < P0, i.e.,
|Y | < ∆0. This solution has the form

(4)

where

(4a)

Es Y( ) E0–
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K0 Y ∆–+( )  Y– ∆0,<

K Y Y+–( )  Y ∆0– 0,>





=

Y+− Y0 1
ε
εs

----E0+− 
  , Y0 ηPs,= =

∆–

δ0

ε
-----E0Y0, K 4π/εη , K0 4π/δ0η ,= = =

∆0 ηP0, εs ε δ0, E+ E0/Ec;= = =

Y Y–+ a–e
λ–x

x x0,>=

Y ∆–+ b+e
α+x

b–e
α–x

0+ x x0,< <=

Y Y+– a+e
λ+x

x 0,<=

λ± α– κ s, κ s± 1
2D
------- c2 4KD+ ,= =

α± α– κ , κ± 1
2D
------- 4K0D c2– ,= =

α c/2D.=

Es(P)

–Ps P0

PPs–P0

Fig. 2. Model Es(P) dependence (equation of state) of a fer-
roelectric (schematic).
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Matching together the expressions for the function Y
and its derivative on each side of the points x = 0 and x0
and using the conditions Y(0) = ∆0 and Y(x0) = –∆0, we
obtain a system of two equations, one of which gives
the position of the point x0,

, (5)

while the other determines the dimensionless velocity

s = c /cl  (with cl = ),

(6)

where g0(s) = exp(sx0/2L)(s + ) and L = 2D/cl.
In the limit of δ0  0 and x0  0, we have

g0(s) ≈ s +  and a simple analytic expression is

obtained for s( ) from (6),

(7)

It follows from the above expressions that in the ranges
of parameters where stationary kink-like solutions of
(1) exist, the velocity of the wave reaches its maximum
value s0 = (ε/δ0)1/2 when E0 = Ec (i.e.,  = 1). If E0 >
Ec, there are no stationary solutions and the mechanism
of polarization reversal becomes different. Near the
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Fig. 3. Velocity of a 180° domain wall c as a function of
electric field  for ε/δ0 = 0; 0.1; 1.0; and 4.0 (curves 1 to
4, respectively). The inset shows an experimental curve for
TGS [10].

E0
P

coercive field, E0 & Ec, the function s( ) has a singu-
larity

(8)

Figure 3 shows s( ) curves calculated numerically
from (5) and (6) for several values of the parameters
and an experimental curve for triglycine sulfate [10]. It
is seen that in the region where the field becomes
strong, the experimental curve has a discontinuity in
slope, which may be associated with the above-men-
tioned singularity located near the coercive field. It fol-
lows from the results presented, that in the vicinity of
the coercive field, the shape of the c(E0) curve is sensi-
tive to the specific form of the equation of state of the
ferroelectric Es(P) in the region of instability. Hence,
for the model to be more adequate in this region, the
approximation to Es(P), given by (3), should be refined.

Let us evaluate the quantity cl = (4KD)1/2 character-
izing the velocity of the domain wall. Note that the lin-
earized equation (1) describes the Debye relaxation of
polarization with relaxation time τs ≡ 1/K = εη /4π.

Hence, cl = 2 l /τs. From experimental data on fre-
quency dispersion of ε it follows that τs ~ 10–8–10–11 s
[10, 11]. Putting ε ~ 104 and l ~ 5 Å [14–16], we obtain
cl ~ 103–106 cm/s. In many experiments with metallic
electrodes [10, 11], the velocity of domain walls was
observed to be of the same order, commonly being
higher than the velocity of sound.

3. PERIODIC SOLUTIONS

In addition to kink-like solutions, there are periodic
solutions of (2). Using a common method [17, 19], it
can be shown that c = 0 for the periodic solutions and
that closed trajectories in the Yx–Y phase plane are
determined by the equation

(9)

where the thermodynamic potential may be written as

 = .

The amplitude and period of the wave are specified

by the value of the constant . As  approaches the

minimum of the thermodynamic potential , the wave
disintegrates and becomes a system of isolated nuclei
of the new phase. Considering an individual nucleus in
the limit as δ0  0 in (3), simple expressions can be
obtained for the dimension 2x0 of a planar nucleus and

the activation energy for its formation ∆ , which is
defined as the change in the total thermodynamic

potential  (volume integral of  including the gradi-
ent terms) required for the nucleus to be created from
the spatially uniform state. Matching together the solu-

E0

s0 s– π s0/2/ 2s0
2 1 E0–( ).ln–≈

E0

ε

DYx
2 F̃ Y( ) F̃0,–=

F̃ Y Es Y( ) E0–( )d
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F̃0 F̃0
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tions of (2) on each side of the nucleus boundary x = x0
[13] and using the conditions Y(±∞) = –Y– yields

(10)

Here, d = 2kx0 and k = (K /D)1/2.
The activation energy per unit area of the side sur-

face of a nucleus is

(11)

The quantity ∆  is finite at  = 0, falls off steeply

with increasing , and tends towards zero as E0  Ec.
Evaluations from (11) show that the formation of nuclei
in the bulk is likely only if E0 ~ Ec. For example, for
a disk-shaped nucleus of diameter about 10–4 cm at ε ~
104 and Ps ~ 10 µC, we have ∆  ~ 102 eV if E0 ~ 0,
whereas at ∆E0/Ec ~ 0.1, i.e., near the coercive field, we

have ∆  ~ 0.5 eV. Note that the classical theory of
nucleation (which applies, strictly speaking, only when

 is small) predicts that, formally, ∆  is finite for

any  [11, 12]. The specific form of the ∆ (E0)
function is dictated by the shape of the nucleus.

4. NUCLEUS GROWTH

The periodic solutions and those corresponding to a
nucleus are both unstable [17, 19]. If the polarization
distribution in a nucleus deviates by δY from a station-
ary distribution Y0(x), the nucleus either collapses or
increases infinitely in size. The latter process is not sta-
tionary and at the later stages (as t  ∞), the polariza-
tion distribution corresponds to two kink-like waves
propagating in opposite directions with velocity c
found above. The equation determining the kinetics of
nucleus growth in the initial stage is obtained by vary-
ing (1) about Y0(x),

(12)

Here, the “potential” ν(x) is

(12a)

In the limit as δ0  0 in (3), this potential reduces to
a sum of δ potentials

(12b)

where δ± = δ(x ± x0) and ∆Y = ηPs.
Assuming δY ~ exp(–λt)Yλ(x), we seek a solution to

(12) by expanding it in terms of eigenfunctions Yλ(x)

d–( )exp E0 E0/Ec.≡=

∆ F̃̃act
PsEc

k
----------- 1 E0– E0 E0ln+( ).=

F̃̃act E0

E0

F̃̃act

F̃̃act

E0 F̃̃act

E0 F̃̃act

δYt D
d2

dx2
-------- ν x( )– 

  δ Y( ).=

ν x( ) δEs

δY
--------

Y Y0 x( )=

.=

ν x( ) K
K∆Y

|Y0' x0( )|
------------------- δ+ δ–+( ),–=
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that satisfy a Schrödinger-like equation

(13)

Unstable solutions correspond to bound states for
which λ < 0. Putting λ = K – κ2D and joining the solu-
tions corresponding to the δ potentials by a conven-
tional technique [13], we arrive at a dispersion relation

(14)

Here, κ is a dimensionless “momentum” of the nucleus
[in units of k = (K /D)1/2 and d is its dimensional width.
Equation (14) has two roots: κ = 1, λ = 0 for the upper
(plus) sign and κ > 1, λ < 0 for the lower sign. Physi-
cally, the first root corresponds to a displacement of the
nucleus as a unit; the nucleus is indifferent to such per-
turbations (λ = 0). The second solution (with λ < 0)
describes spontaneous growth of the nucleus. Simulta-
neous solution of (10) and (14) gives the root λ as a
function of the field .

The solution δY describing the nucleus growth in the
region x > x0 can be represented as

(15)

where cs = |λ|/κ is a parameter characterizing the initial
growth rate.

Let us evaluate cs for a low field E0. Using (10) and

(14), it can be shown in this case that cs ~ 2cl , where
cl = (4KD)1/2. A comparison between this result and (7)
shows that the initial growth rate cs is twice as high as
the steady-state velocity of an isolated kink-like wave.
Observations of a higher nucleus growth rate in exper-
iments on polarization reversal were repeatedly
reported [10, 11]. The typical value of the increment λ
determining the relaxation rate of both the nucleus and
periodic waves is of the order of 1/τs ≡ K and, according
to our evaluation τs ~ 10–8–10–11 s made above, it falls
in the frequency range of pulsed cathodes [1–5].

5. DISCUSSION

In experiments on electron emission, the dynamics
of 180° domains considered above has peculiar fea-
tures. We will discuss one aspect concerning the influ-
ence of a gap d between the electrodes and ferroelec-
tric. In the case of a plate of thickness L having no
charges that can screen the polarization, the equation of
state of the system is given by the known relation [14]

(16)

where Es(P) = –αP + γP3 and β = 4πd /L.
The process of polarization reversal has a number of

special features in this case. If the gap is so large that
β > βc ≡ α, then the Es(P) curve has no N-shaped por-
tion and there are no solutions corresponding to an iso-

D
d2

dx2
--------– ν+ 

  Yλ λYλ .=

1 κ 1 d–( )exp–( )– κd–( ).exp±=

E0

δY κ x cst–( )–( ),exp∼

E0

E P( ) βP Es P( ),+=
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lated 180° wall (kink), because these solutions may
appear only when there are asymptotic states with
opposite directions of polarization. In fact, the switch-
ing effect is also absent; when the field is removed, the
system will relax to its initial state and its behavior will
be quasi-linear. However, the situation is different in
the case where there is electron emission and the elec-
trodes and ferroelectric can exchange electrical
charges. Physically, it is clear that if this process is fast,
the behavior of the system will be similar to that in the
case where the gap is absent. The periodic distribution
of polarization taking place for β > βc [14] will be
unstable (see Section 3) and evolve to a uniform state
(dictated by the applied field) through the growth of
180° domains. The kink-like waves will also be made
possible. The polarization reversal will be accompanied
by a change in the charge state of the surface layer of
the ferroelectric. The kink-like solutions may also
appear in the case where electron emission is absent,
but the gap is narrow and β < βs. Rigorous analysis [14]
shows that the critical value βs is less than βc obtained
from (16). However, the asymptotic uniform states of
the kink are stable only if β < βc. The parameter βs is a
function of temperature and the plate thickness L.

Under the time-varying electric field, when the
pulsed cathode is operated, the above-mentioned cou-
pling between the processes of switching and emission
will give rise to stationary nonlinear oscillations of the
charge distribution in the ferroelectric surface layer and
of the polarization distribution. For this coupling to be
efficient, the characteristic time of electron emission
must be comparable with the relaxation time of 180°
domains τs ~ 10–8–10–10 s. To obtain some amount of
information about the charge state of the surface layer,
we may use data on the effect of anomalous electron

0 z
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λ2λ(
k)

, a
rb

. u
ni
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0
kc

(1) kc
(2) λ1

k

e

Fig. 4. Schematic dependence of the decrement λ(k) on the
wave vector k lying in the plane of the sample for the surface
layer of a ferroelectric electret; the inset shows the distribu-
tion of the potential ϕ(z) in the layer according to [8].
P

emission (AEE) from ferroelectric electrets during
their irradiation with X rays [8, 9]. In this case, the
intensity of electron emission is more than two orders
of magnitude higher than from the neutral surface.
According to the theoretical model proposed in [8], this
effect is due to the fact that in the ferroelectric surface
layer there occurs an electron flow towards vacuum
[see the inset of Fig. 4, showing the potential ϕ(z)] pro-
duced by the inhomogeneous polarization distribution
in the electret [8]; in particular, P ! Ps in the surface
layer. Such a state of the surface layer, uniform over the
plane of the sample, may become unstable and the tran-
sition to an inhomogeneous state will occur in which
the potential ϕ will be modulated over the surface. This
transition may explain a broadening of the electron
emission spectrum observed in experiment [8, 9]. Let
us assume that the charge of the electret is localized and
separated from the surface by a distance ∆. Following
[18], we also assume that there are surface states (or
adsorbate states) whose charge may be changed. Then,
our problem reduces to the problem of the stability of a
ferroelectric plate of thickness ∆ lying on an anisotro-
pic dielectric with dielectric permittivities εx and εz.
Using (1), we arrive at an equation for the decrement λ
as a function of the wave vector k in the plane of the
sample

(17)

Here, s0 = (εx/εz)1/2; δ(εx/ε+)1/2;  = α + λ – k2l2, L is
the thickness of the sample, and Λ is a parameter
inversely proportional to the density of surface states
[18]. Equation (17) determines an infinite number of
branches of the function λ(k). Two of them, corre-
sponding to states with the lowest energy, are plotted in
Fig. 4 for the case of L  ∞. It is seen that, there are
ranges of k in which λ(k) < 0 and, therefore, the transi-
tion of the surface layer of the ferroelectric electret to
an inhomogeneous state may occur with the formation
of a periodic 180° domain structure. In this case, in the
surface layer there will be regions of different potential
and electric field and, according to [8], of different
emission activity. Experimentally, the relative size of
these regions will be different depending on the specific
picture of the stratification of the ferroelectric. For
example, irradiation with X-rays will cause the free-
electron density to increase and the parameter Λ to
decrease, which may lead to the formation of new dis-
sipative (polarization) structures characteristic of open
nonlinear systems [20–22]. When Λ is small enough,
the system will become unstable with respect to homo-
geneous fluctuations, with k = 0, for which λ(0) < 0 (see
Fig. 4).

Experimental observations show [9] that for a single
crystal of lead magnesium niobate and single crystals of

sk∆( )tan ε+s εzs0{=

+ 1 2/kΛ+( ) s0kL( )tanh } / εzε0 1 1/kΛ+( ){

– ε+s( )2 1 1/kΛ+( )/kΛ–[ ] s0kL( )tanh } .

ε+
1–
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lithium niobate and lithium tantalate, the full width at
half-maximum of emission spectra is frequently above
100 eV. Such high values may be due to the inhomoge-
neous state of the surface layer of ferroelectric electrets.
Under irradiation, the characteristics of the inhomoge-
neous state are varied and the spectrum width also
changes. When the surface potential is low (30–50 V),
the spectra become narrow (down to 3 eV).

The AEE spectra exhibit a finite-size effect, which is
also consistent with the features of the stratification
process; the instability corresponding to λ(k) < 0 occurs
only in a finite range of k. This explains the fact that in
the case of electron emission from strips (1–5 mm
wide) of polarized ceramics PKR-70 (PbTiO3-based
material) and PLZT (PbTiO3- and PbZrO3-based mate-
rial doped with La), an increase in the spectrum width
(from 3 to 18 eV) was observed with an increase in the
width of the strips. Figure 5 shows AEE spectra
obtained from a narrow strip of PKR-70 (Fig. 5a), a
wide strip of PLZT at a low surface potential (Fig. 5b),
and a conventional pulsed emitter (Fig. 5c). In the last
case, the emitting surface of the emitter was a system of
narrow strips of width ~200 µm, each separated by
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 1

03  p
ul
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0 100 200 Ekin, eV

Fig. 5. Experimental spectra of anomalous electron emis-
sion from (a) a narrow strip (0.2 × 10 mm) of ceramics PKR-
70; (b) a strip (10 × 10 mm) of ceramics PLZT-8 at the sur-
face potential about 40–50 V; and (c) a conventional pulsed
emitter. 
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metallic electrodes. In accordance with predictions of
the model described above, the AEE spectra in these
three cases were observed to be qualitatively similar to
each other and to the electron emission spectrum from
a cold ferroelectric cathode excited with voltage pulses
[23].

CONCLUSION

Thus, the above discussion of the mechanisms of
anomalous electron emission shows that when a pulsed
cathode is operated, the charge state and electrophysi-
cal properties of its surface layer are similar to those of
a ferroelectric electret [8, 9].

At present, we are performing a detailed study of the
features of AEE spectra indicated above.
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Abstract—For the Josephson junction in a two- or three-dimensional magnetic superconductive thin film, an
integro-differential equation of phase-difference dynamics, including time and space nonlocality, is deduced. It
is shown that the magnetic subsystem induces the substantial renormalization of the spectrum of small-ampli-
tude electromagnetic excitations and causes them to decay. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

By now, the equations of nonlocal Josephson elec-
trodynamics have been obtained and examined for five
cases. These are the following: (1) the tunnel junction
at the butt of two superconductive ultrathin films whose
thicknesses are much smaller than the value of the Lon-
don length; (2) the tunnel junction between massive
superconductors whose thicknesses are considerably
greater than the London penetration depth; (3) the tun-
nel junction between superconductive layers of finite
thickness in a direction perpendicular to the magnetic
field; (4) the tunnel junction at the butt between super-
conductive plates of finite thickness along the magnetic
field; and (5) the tilted (tapered) Josephson junction
between superconductive plates of finite thickness
along the magnetic field.

Thus, in [1–8], it has been shown that the nonlocal
effects may be essential even in contacts of large thick-
ness d along the magnetic field (in the direction of the
vortices) (d @ λ, λ is the London penetration depth),
i.e., even in the cases that were considered before in a
local approximation. Otherwise, in the case of thin
films, when d ! λ, the effect of nonlocality is very
important and grows into the decisive factor. The corre-
sponding equations have been obtained and examined
in [9–12]. The Josephson junction between two super-
conductive layers of finite thickness in the direction
perpendicular to the magnetic field in vortices has been
studied in [13]. In the recent works [14, 15], the exam-
ination of the butt-contact and tilted (tapered) junction,
respectively, of finite thickness along the vortex mag-
netic field has been performed for the arbitrary ratio
d /λ.

Nowadays, a wide range of magnetic superconduc-
tors is known, exhibiting new unique properties [16–
18]. In addition to the ternary compounds [19], super-
conductivity and magnetism coexistence was estab-
lished for the HTSC compounds of the REBaCuO and
RECuO type, where RE is a rare-earth ion, and others.
1063-7834/00/4201- $20.00 © 20015
The strong antiferromagnetic correlation of the spins of
copper atoms in the CuO2 planes in the superconduct-
ing state is the most important feature of the HTSC
materials [20].

Therefore, nonlocal electrodynamics of the Joseph-
son junction in ultrathin magnetic superconductive
films characterized by d ! λ becomes all the more
pressing for investigation. In this case, the problem
may be reduced to that of an infinitely thin two-dimen-
sional superconductive plane, when the dependence of
physical characteristics of a superconductive contact on
the coordinate along the normal to the film plane may
be neglected, and the current and the magnetic field
may be thought of as slowly varying through the plate
thickness [21].

The system under consideration—a thin film of
magnetic superconductor—may be two- or three-
dimensional in magnetic properties, when the magnetic
permeability  would be dependent on two (in the film
plane) or three coordinates and on time as well.

The geometry of the problem is as follows: the film
plane coincides with the xy-plane, the current propa-
gates along the y-axis, and the line of weak bonding is
associated with the x-axis.

BASIC EQUATIONS OF ELECTRODYNAMICS 
OF A MAGNETIC SUPERCONDUCTIVE 

THIN FILM
As in [22], we start from Maxwell’s equations for the

magnetic induction vector B(r, t) = rotA(r, t) (A(r, t)) is
the vector potential), given by the sum of the magnetic
field H(r, t), generated by a persistent current j(r, t), and
of the magnetization M(r, t)

(1)

The relation between the current, the potential and
the phase of the order parameter Θ(r, t) (with the Lon-

µ̂

rotB r t,( ) 4π
c

------ j r t,( ) 4πrotM r t,( ).+=
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don gauge of the potential div A(r, t) = 0) is specified
by the expression 

(2)

where r = (x, y, z), r = (x, y), and the vector S(r, t) is
determined by the phase gradient 

(3)

Here, Φ0 is a quantum of the magnetic flux.

The phase of the order parameter satisfies the condi-
tion 

(4)

where z is the unit vector along the z-axis, δ(y) is the
Dirac delta-function, and ϕ(x, t) is determined by the
phase difference of the order parameter in the junction 

(5)

The equations (1) and (2) lead to the relation 

(6)

which may be presented for the ultrathin film (d ! λ)
in the form 

(7)

where λeff = λ2/d is the Pearl penetration depth.

THE FILM OF A TWO-DIMENSIONAL 
MAGNETIC SUPERCONDUCTOR

At first, we will assume that the system under con-
sideration is two-dimensional not only in superconduc-
tive, but in magnetic properties as well, when the mag-
netic permeability can be written as

(8)

Therefore, in the case of a two-dimensional magnetic
superconductor, the magnetic field H(r, t) is connected
with the magnetic induction B(r, t) through the integral
material relation 

(9)

where µ(r – r', t – t') is the magnetic permeability of
the two-dimensional superconductive film.

j r t,( ) c/4πλ2( ) S r t,( ) A r t,( )–[ ] ,=

S ρ t,( )
Φ0

2π
------ ∇ Θ ρ t,( ).=

rotS ρ t,( ) z
Φ0

2π
------∂ϕ x t,( )

∂x
-------------------δ y( ),–=

ϕ x t,( ) Θ x +0 t, ,( ) Θ x –0 t, ,( ).–=

rotH r t,( ) c

4πλ2
------------ S ρ t,( ) A r t,( )–[ ] ,=

rotH r t,( ) λ eff
1– S ρ t,( ) A r t,( )–[ ]δ z( ),=

µ̂ µ r r'– t t'–,( ) µ r r'– t t'–,( )δ z z'–( ).= =

H r t,( ) t' r'µ 1– r r'– t t'–,( )B r' z t', ,( ),d

∞–

∞

∫d

∞–

t

∫=
P

From relations (7) and (9), we obtain the equation
for the vector potential 

(10)

which expresses the potential in terms of the source
field S(ρ, t).

From the continuity equation div j(r, t) = 0 and equa-
tion (2) it follows that divS(ρ, t) = 0. Consequently, the
vector field S(ρ, t) may be represented as the rotor of a
vector field F(ρ, t)

(11)

where 

(12)

Substituting (12) in relation (4), we obtain the equation
for F(ρ, t) 

(13)

On the one hand, the current density fy(x, 0, t)
through the Josephson junction is the sum of three com-
ponents: the Josephson supercurrent density, the den-
sity of the normal (quasiparticle) current, and of the
capacitive displacement current 

(14)

where β is the damping parameter and jc and ωJ are the
critical current and the Josephson frequency, respec-
tively.

On the other hand, from equation (2) it follows that
the current density jy(x, 0, t) may be represented in the
form 

(15)

Equating expressions (14) and (15), we see that 

(16)

rot t' ρ'µ 1– r r'– t t'–,( )rotA r' z t', ,( )d

∞–

∞

∫d

∞–

t

∫ 
 
 

=  λ eff
1– S r t,( ) A r z t, ,( )–[ ]δ z( ),

S ρ t,( ) rotF ρ t,( ),=

F ρ t,( ) ẑF ρ t,( ).=

∆F ρ t,( )
Φ0

2π
------∂ϕ x t,( )

∂t
-------------------δ y( ).=

jy x 0 t, ,( ) jc ϕ x t,( )sin
β
ωJ

2
------∂ϕ x t,( )

∂t
-------------------+=

+
1

ωJ
2

------∂2ϕ x t,( )
∂t2

--------------------- dδ z( ),

jy x 0 t, ,( )

=  
c

4πλ eff
-------------- Sy x 0 t, ,( ) Ay x 0 0 t, , ,( )–[ ]δ z( ).

jc ϕ x t,( )sin
β
ωJ

2
------∂ϕ x t,( )

∂t
------------------- 1

ωJ
2

------∂2ϕ x t,( )
∂t2

---------------------+ +

=  
c

4πλ2
------------ Sy x 0 t, ,( ) Ay x 0 0 t, , ,( )–[ ] .
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To obtain a closed equation of dynamics for the
phase difference ϕ(x, t), it is necessary to find the func-
tional relation between 

(17)

and 
To solve equation (10), let us introduce the Fourier-

transforms of the vectors A(r, t), S(ρ, t) and of the scalar
function µ–1(ρ, t)

(18)

(19)

(20)

Using (18) and (19), we write ∆y(x, t) as the integral 

(21)

where q = (  + )1/2, ϑ  is the polar angle in the plane
(qx , qy), and 

A(q, ω) = (22)

Thus, the solutions of (10) may be written in the
form 

(23)

As it is evident from (22) and (23), the relation
between S(q, ω) and A(q, ω) may be written as

(24)

and, hence,

(25)

To obtain Sy(q, ω), equation (13) should be differen-
tiated with respect to the coordinate x, because, accord-
ing (11) and (12), Sy(ρ, t) equals –∂F(ρ, t)/∂x. As a
result, we have 

(26)

∆y x t,( ) Sy x 0 t, ,( ) Ay x 0 0 t, , ,( )+=

ϕ x t,( ).

A ρ z t, ,( )
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– Ay q ω,( ) ] iqx ϑcos iωt–( ),exp

qx
2 qy

2

dp
2π
------A q p ω, ,( )
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∫ .

A q p ω, ,( )

=  λ eff
1– µ q ω,( ) q2 p2+( ) S q ω,( ) A q ω,( )–[ ] .

A q ω,( ) µ q ω,( )
µ q ω,( ) 2qλ eff+
---------------------------------------S q ω,( ),=

Sy q ω,( ) Ay q ω,( )–
2qλ eff
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From (26) it follows that 

(27)

Combining (27), (25), (21), and (16), we obtain an
integro-differential equation of dynamics of the phase
difference ϕ(x, t) in the Josephson junction at any type
of magnetic ordering in a two-dimensional magnetic
superconducting film:

(28)

where lJ = /λ, λJ is the Josephson penetration depth,

and the kernel , nonlocal with respect

to the space and time variables, has the form 

(29)

Here, J0 is the zero-order Bessel function. Time nonlo-
cality of equation (28) is caused by the frequency dis-
persion of the magnetic permeability µ(q, ω).

Since λ @ a (a is the lattice constant), it is natural to
use the hydrodynamical description of the magnetic
subsystem. Restricting ourselves to the temperature
range of the paramagnetic state, we obtain the expres-
sion

(30)

where χ0 is the static magnetic susceptibility; D2 =
(1/3)(2π)1/2Ja2[s(s + 1)]1/2 is the spin diffusion coeffi-
cient for two-dimensional Heisenberg-type magnets,
J is the intralayer exchange parameter, and s is the spin.
In the strict sense, the superconduction current screens
the long-wave part of the exchange and electromag-
netic interaction thereby renormalizing the parameters
of the magnetic subsystem. However, in the paramag-
netic interval of temperature, we will not take this into
account and will make only order-of-magnitude esti-
mates in what follows.
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Let us consider the spectrum of small-amplitude
electromagnetic excitations (SAEE) propagating along
the Josephson junction with a wave vector Q and a fre-
quency Ω 

(31)

From (28), combined with (29)–(31), the following

dispersion equation  =  is obtained in the
absence of dissipation (β = 0), transport current and
external field,

(32)

where 

(33)

Here, dimensionless quantities  = 2λeffQ and  =
Ω /ωJ have been introduced, and the following designa-
tions are used:

At χ0 = 0 (nonmagnetic superconductor), equations
(32) and (33) give a well-known spectrum of SAEE in
long- and short-wave regions, calculated in [12]. In this

case,  is a real function of the wave vector , and, in
nondissipative limit, the modes do not decay. At χ0 ≠ 0
(magnetic superconductor), the situation is quite differ-
ent. The typical value of χ0 for antiferromagnets lies in
the interval 10–3–10–5. Numerical analysis showed that
at χ0 = 10–3, which is comparable with the value of
magnetic susceptibility of the cuprous subsystem in
HTSC-materials, equations (32) and (33) have a com-

plex solution  =  = Re  + iIm  with
a small negative imaginary part satisfying the condition 

(34)

This points to damping of SAEE caused by the influ-
ence of the magnetic subsystem. Therewith, a small
share of the energy of electromagnetic waves is trans-
ferred to the magnetic subsystem and irreversibly dissi-
pates because of spin-wave diffusion. No increasing
solutions were found. In Fig. 1, the electromagnetic
wave spectrum renormalized by the magnetic sub-
system and the damping decrement in the Josephson
junction are shown for the values of the wave vector

0 ≤  ≤ 1 and the following values of parameters: χ0 =
10–3, l = 1, and η = 103. In Fig. 2, at the same values of
parameters, the spectrum and the damping decrement
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P

of SAEE are shown for the values of the wave vector in

the interval 1 ≤  ≤ 100.

A THREE-DIMENSIONAL MAGNETIC 
SUPERCONDUCTING FILM

Now, let us suppose that the system under consider-
ation is three-dimensional in magnetic properties,
which implies the magnetic susceptibility  of the film
to be dependent on three space coordinates and time,

 = µ(r – r', t – t').
In this case, the magnetic field H(r, t) is related to

the magnetic induction B(r, t) by the integral material
equation 

(35)

From (7) and (35), we obtain an equation for the
vector potential as a function of the source field S(ρ, t),

(36)

Let us introduce the Fourier-transforms for A(r, t),
S(ρ, t) similar to (18) and (19), and represent the func-
tion µ–1(r, t) in the form 

(37)

Now the solutions of (36) become

(38)

As follows from (22) and (38), the relations between
S(q, ω) and A(q, ω) may be written as

(39)

where R(q, ω) is the integral 

(40)

therefore, we have

(41)

Combining (27), (41), (21), and (16), we obtain the
integro-differential equation of dynamics of the phase
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difference in the Josephson junction in three-dimen-
sional MSTF for any type of magnetic ordering 

(42)

where the kernel of the integral, , non-

local with respect to space and time variables, has the
form 

(43)

Nonlocality of (42) in time results from the frequency
dispersion of the magnetic susceptibility µ(q, p, ω)
(through the function R(q, ω).

As in the previous section, at λ @ a, it is natural to
use here the hydrodynamical description of the mag-
netic subsystem. Restricting ourselves to the paramag-
netic interval of temperature, we obtain an expression
for the magnetic susceptibility 

(44)

where D3 is the spin diffusion coefficient for a three-
dimensional Heisenberg-type magnet.

According to (40) and (44), the function R(q, ω)
takes the form 

(45)

where f0(q, ω) is equal to 

(46)

Let us consider the spectrum of SAEE (31), which
propagate along the Josephson junction with a wave
vector Q and a frequency Ω.

In the absence of dissipation (β = 0), transport cur-
rent, and an external field, we obtain the following dis-

persion equation  =  from (42), combined with
(43), (45), (46), and (31):
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where 

(48)

and 

(49)

and, as in the foregoing, we introduced the dimension-
less quantities 
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Fig. 1. Spectrum (renormalized by the magnetic subsystem)
and damping decrement of SAEE in the Josephson junction
in the two-dimensional MSTF for wave vectors in the inter-

val 0 ≤  ≤ 1.Q̂

Fig. 2. Spectrum (renormalized by the magnetic subsystem)
and damping decrement of SAEE in the Josephson contact
in the two-dimensional MSTF for wave vectors in the inter-

val 1 ≤  ≤ 100.Q̂
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and the designations

At χ0 = 0 (nonmagnetic superconductor), equations
(47) and (48) lead to the known spectrum of SAEE cal-
culated for long- and short-wave ranges in [12]. In this

case, the frequency  is a real function of the wave

vector  and the modes do not decay in the nondissi-
pative limit. At χ0 ≠ 0, for the magnetic superconductor,
the situation is different. The typical value of χ0 for
antiferromagnets lies in the interval 10–3–10–5. Numer-
ical analysis showed that, at the value χ0 = 10–3 (com-
parable with the value of the magnetic susceptibility for
the cuprous subsystem of HTSC materials), l = 1, and
η = 10–3, equation (47) combined with (48) and (49)

l lJ/2λ eff, η ωJ/Ωeff, Ωeff D3/ 2λ eff( )2.= = =

Ω̂
Q̂

2

6
8

10

4

–2.0

–1.0
–0.5

0
× 10–4

800 100

Im
(Ω

/ω
J)

R
e(

Ω
/ω

J)
 –

 1

–2.5

–1.5

–3

0
–1

1
2

× 10–5

0.50 1.0
2λeffQ

Im
(Ω

/ω
J)

R
e(

Ω
/ω

J)
 –

 1

0.1

0.2

0.3

–4

–2

20 40 60

Fig. 3. Spectrum (renormalized by the magnetic subsystem)
and damping decrement of SAEE in the Josephson junction
in the three-dimensional MSTF for wave vectors in the

interval 0 ≤  ≤ 1.Q̂

Fig. 4. Spectrum (renormalized by the magnetic subsystem)
and damping decrement of linear SAEE in the Josephson
contact in the three-dimensional MSTF for wave vectors in

the interval 1 ≤  ≤ 100.Q̂

2λeffQ
P

has a complex solution  =  = Re  +

iIm  with a small negative imaginary part satisfy-
ing the condition 

(50)

This points to damping of SAEE caused by the influ-
ence of the magnetic subsystem, when a small share of
the electromagnetic wave energy dissipates because of
spin-wave diffusion. No increasing solutions were
found. The spectrum renormalized by the magnetic
subsystem and the damping decrement of electromag-
netic waves in the Josephson junction are shown in
Figs. 3 and 4 for the wave-vector magnitudes 0 ≤ Q ≤ 1

and 1 ≤  ≤ 100, respectively.

CONCLUSION

From the foregoing, it is clear that nonlocality with
respect to the space variables is very significant and
becomes a fundamental and decisive factor for Joseph-
son electrodynamics of thin films of both two- and
three-dimensional magnetic superconductors.

Time nonlocality of Josephson electrodynamics of
MSTF in the cases of two and three dimensions is con-
nected with frequency dispersion of the magnetic sus-
ceptibility, which eventually results from delay pro-
cesses.

According to (30) and (44), damping of electromag-
netic excitations in the Josephson junction in MSTF is
associated with the complex-valued magnetic suscepti-
bility of media, and the physical mechanism of such
damping is the process of spin diffusion with a finite
relaxation time, due to which a small share of electro-
magnetic field energy dissipates irreversibly. The mere
absence or presence of damping of linear electromag-
netic waves in the Josephson junction (in the nondissi-
pative limit) may be indicative of, respectively, the non-
magnetic or magnetic type of superconductor.

The numerical study showed that the real parts

Re  of the linear electromagnetic excitation spec-
tra in the Josephson junction of two- and three-dimen-
sional MSTF differ from those in a nonmagnetic super-
conductor only slightly (in the third decimal place),
because the static magnetic susceptibility χ0 is small.

Numerically, the spectra Re  of SAEE propa-
gating along the Josephson junction also differ only
slightly (in the fourth decimal place) for two-dimen-
sional (Figs. 1 and 2) and three-dimensional (Figs. 3, 4)
magnetic superconductors. The significant distinction
of two and three-dimensional superconductors is

observed in damping decrements of SAEE Im .
This fact provides a way to determine the dimension of
magnetic ordering in a thin film.
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Abstract—An X-ray diffraction study is reported of the symmetry in the spatial distribution of thermal vibra-
tions of Cu2+, Gd3+, and Pr3+ ions in Gd2CuO4 and Pr2CuO4 crystals. An analysis of the pattern of the angular
thermal-vibration amplitude distribution obtained experimentally at different temperatures allows a conclusion
about the character of the local Jahn–Teller effect for the Cu2+ ions, structural phase transitions, and the orbital
ground state of the Cu2+ ions. © 2000 MAIK “Nauka/Interperiodica”.
This paper reports a high-precision X-ray diffrac-
tion investigation of the symmetry of ion displacements
in thermal vibrations in R2CuO4 crystals (R = Pr and
Gd). What one actually studies is the symmetry of the
local crystal-field potential, because the spatial distri-
bution of the amplitudes of ion thermal vibrations is
determined by this symmetry. An analysis of the expe-
rimentally measured local-potential symmetry allows
us to elucidate a number of important structural charac-
teristics in crystals, such as the presence and character
of local-symmetry distortions and of structural phase
transitions. The main objective of this work was to
study the Jahn–Teller effect and the orbital ground state
of Cu2+ ions in R2CuO4 crystals with the rare-earth
(RE) elements R = Pr and Gd. Information on these
crystal characteristics is also contained in data on the
symmetry of the effective local potential.

The quasi-2D R2CuO4 crystals with RE elements
(R = Nd, Pr, Sm, Eu) possess the T ' tetragonal structure
(space group I4/mmm), which persists at all tempera-
tures [1, 2]. La2CuO4 and Gd2CuO4 undergo structural
phase transitions from the high-temperature tetragonal
to the low-temperature orthorhombic phase (see [2] and
[3], respectively). La2CuO4 and R2CuO4 with RE ele-
ments also differ in the symmetry of the nearest-neigh-
bor environment of the Cu2+ ions, namely, in La2CuO4
it is octahedral, and in R2CuO4, it forms square lattices
in the CuO2 layers.

It is usually accepted that the Cu2+ ions in all
R2CuO4 crystals (R = La and RE) have a singlet orbital
ground state with wave functions  or , which

originates from the orbital cubic doublet Γ3(eg) (the
notation adopted here is the same as in [4, 5]). This
orbital state follows from calculations based on the

d
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2
y

2–
d

z
2

1063-7834/00/4201- $20.00 © 0153
simplest version of the crystal-field theory, taking into
account only the nearest neighbors [4, 5]. However, we
managed to explain the results of an experimental
investigation [6, 7] of the magnetic and structural prop-
erties of the Eu2CuO4 crystal within a common scheme
by assuming a nonzero orbital angular momentum of
the Cu2+ ion in the ground state. It was accepted that the
orbital ground state of the Cu2+ ion is a degenerate tet-
ragonal doublet (with wave functions dxz and dyz) origi-
nating from the ground cubic triplet Γ5(t2g). Note that
the anisotropy in the (001) plane observed experimen-
tally [8] in R2CuO4 crystals with RE ions was consid-
ered to be due to the orbital ground state being a 

singlet with an admixture of a tetragonal doublet.
The symmetry of ion displacements in thermal

vibrations and their anharmonicity were studied earlier
in Eu2CuO4 and La2CuO4 crystals [9]. It was shown that
the spatial distribution of Cu2+ thermal displacements
in La2CuO4 corresponds to a two-well local potential
created by the Jahn–Teller vibronic effect and to a sin-
glet orbital ground state of the Cu2+ ion. The average
orbital angular momentum for a singlet is known to be
zero. Linear spin-orbit coupling is inefficient here, and
the structural state of the crystal is determined by the
vibronic Jahn–Teller interaction [4, 5].

In the case of the Eu2CuO4 crystal, the symmetry of
the Cu2+ thermal displacements corresponded to an
effective crystal-field local potential characteristic of a
cubic nearest-neighbor environment (with a Z = 8 coor-
dination) [9]. A degenerate orbital ground state of the
Cu2+ ions in the form of a tetragonal doublet (or a
mixed state with a strong enough admixture of an
excited doublet to the ground singlet) should corre-
spond to this effective local potential. In these condi-
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tions, the average orbital angular momentum in the
ground state is nonzero, and the linear spin-orbit cou-
pling is efficient and suppresses the Jahn–Teller effect
[4, 5]. Indeed, the experimentally measured symmetry
of Cu2+ thermal displacements in Eu2CuO4 crystals
does not reveal any manifestations of the vibronic
Jahn–Teller effect, and the crystal retains a tetragonal
symmetry for all temperatures [9].

Thus, experimental investigations of the symmetry
of thermal vibrations of copper ions in La2CuO4 and
Eu2CuO4 revealed a radical difference between the sit-
uations in these crystals. In this paper, an investigation
of thermal vibrations is conducted similarly to those
made in [9] for R2CuO4 crystals with the RE elements
R = Pr and Gd. We were interested in the extent to
which the situation for the R2CuO4 tetragonal crystals
with different RE elements is common, as well as in the
specific features of the Gd2CuO4 crystal, which has an
orthorhombically distorted T ' structure at T < 600 K
and in which the nearest-neighbor environment of cop-
per ions in the lattice is the same as in the purely tetra-
gonal R2CuO4 crystals.

1. EXPERIMENTAL RESULTS

We performed a complete X-ray diffraction charac-
terization of Pr2CuO4 and Gd2CuO4 crystals at four
temperatures (145, 175, 295, and 395 K). The measure-
ments were carried out on single crystals grown by
spontaneous crystallization by a method similar to the
one described in [10], but with a somewhat different
crystallization regime. The ratio of the charge to the
crucible volume, as well as the temperature regime of
crystallization, were chosen so as to favor crystalliza-
tion in the bulk (rather than on the melt surface) under
a minimum temperature gradient. This permitted us to
produce single crystals characterized by stoichiometry
in oxygen and by a low structural strain density, which
distinguishes them substantially from crystals grown in
the surface layer of a melt in the presence of a temper-
ature gradient.

The samples chosen for X-ray diffraction measure-
ments were from the same lots from which the crystals
for the investigation [11] of the magnetic and structural
properties were taken. The samples chosen were rect-
angular prisms 0.18 × 0.20 × 0.11 (Pr2CuO4) and
0.13 × 0.10 × 0.10 (Gd2CuO4) mm in size. All the mea-
surements were carried out on the same samples and in
the same setup. During the measurements, the samples
were cooled by blowing them over with nitrogen vapors
of the appropriate temperature.

The measurements of X-ray reflections at all θ
angles (up to that for which sinθ/λ = 1.075 Å–1) were
carried out on an automated single-crystal diffractome-
ter by ω scanning under a perpendicular beam in the
layer-by-layer arrangement by rotating the crystal
P

around the a axis. MoKα radiation (λ = 0.71069 Å) with
a graphite monochromator was used.

The structural parameters were refined by the least-
squares technique in a block-matrix approximation,
mainly by the scheme employed in [9]. As in [9], the
extinction was taken into account by the Becker–Cop-
pens [12] technique for type-II crystals (rext ! λg,
where rext is the radius of the spherical mosaic block,
and g is a mosaic distribution parameter) with a Lorent-
zian distribution of the blocks.

The anharmonicity parameters of the thermal factor
of Eu2CuO4 and La2CuO4 crystals were refined [9] by
the Edgeworth model [13], which permitted one to
obtain the minimum divergence factors (R and Rw).
However, in this work both the Edgeworth and the
Gram–Charlier models [14] gave practically the same
values of the divergence factors. On the other hand, it is
known [15] that the application of the Edgeworth
model always results in the appearance of regions in
which the probability density functions (PDF) are neg-
ative. In order to reduce such negative regions, this
study made use of the Gram–Charlier model to refine
the parameters of the anharmonic temperature factor

Here, Tharm(h) = exp(–βpqhphq) and βpq are anisotropic
harmonic temperature parameters, cpqr and dpqrs are
anharmonic temperature parameters of the third and
fourth order, respectively, and h is the scattering vector
with components (h1, h2, h3) = (h, k, l). The temperature
factor parameters thus obtained were used to construct
the PDF, which is the Fourier transform of the temper-
ature factor.

A preliminary analysis showed that at all tempera-
tures, the Pr2CuO4 crystal has tetragonal symmetry
(space group I4/mmm). The experimental and main
structural parameters for Pr2CuO4 are listed in Table 1.
The Gd2CuO4 crystal exhibited practically the same
symmetry for all temperatures. Table 2 presents the
experimental and main structural parameters for
Gd2CuO4. A neutron diffraction study [3] revealed
weak orthorhombic distortions caused by displace-
ments of oxygen atoms (O1) in the CuO2 plane of the
Gd2CuO4 crystal. We took these distortions into
account by splitting the positions of the O1 oxygen
atoms into two half-filled, closely lying (~0.3 Å) posi-
tions (see Table 2). If one leaves these oxygen atoms in
the ideal position (as in Pr2CuO4, see Table 1), then a
least-squares refinement results in a very large temper-
ature factor due to the anisotropic harmonic component
β11. Thus, the Cu2+ and Gd3+ positions in the model of
the Gd2CuO4 structure accepted by us are the same as
in the tetragonal Pr2CuO4 crystal, whereas the O1 ions
are displaced from their positions.

T h( ) Tharm h( ) 1 2πi( )3/3!cpqrhphqhr+[=

+ 2πi( )4/4!d pqrshphqhrhs ] .
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000



X-RAY DIFFRACTION STUDY OF ION THERMAL VIBRATIONS IN R2CuO4 155
Table 1.  Details of the experiment and the structural parameters of the Pr2CuO4 single crystal (space group I4/mmm, dimen-
sions 0.13 × 0.10 × 0.10 mm) 

Parameter 145 K 175 K 296 K 396 K

a, Å 3.949(1) 3.951(1) 3.953(2) 3.9583(6)
b, Å a a a a
c, Å 12.211(3) 12.215(3) 12.232(3) 12.2484(9)
Nrefl (I > 3σ(I)) 288 327 266 266
R, % 2.15 2.78 2.05 2.11
Rw , % 2.25 2.93 2.24 2.28
µ, cm–1 305.5(1) 305.1(1) 304.3(1) 303.12(7)
rext, Å 2602(15) 2626(16) 3288(15) 3380(16)

Pr(0, 0, z/c), p = 1
z/c 0.35143(2) 0.35136(2) 0.35132(2) 0.35122(2)
Beq, Å2 0.302(2) 0.362(2) 0.522(2) 0.652(2)
U11, Å 0.0676(3) 0.0679(4) 0.0861(3) 0.0934(3)
U22, Å U11 U11 U11 U11

U33, Å 0.0484(6) 0.0673(6) 0.0707(4) 0.0854(4)
c333 × 108 1.0(8) –0.5(10) –0.7(8) –3.4(9)
c113 × 108 –15(8) –15(12) –19(10) –13(11)
c223 × 108 c113 c113 c113 c113

d1111 × 109 521(45) 511(53) 786(49) 1077(56)
d2222 × 109 d1111 d1111 d1111 d1111

d3333 × 109 2.2(3) 4.2(3) 1.5(3) 4.4(3)
d1122 × 109 –317(23) –371(30) –513(24) –980(31)
d1133 × 109 –14(2) –19(3) –12(2) –13(3)
d2233 × 109 d1133 d1133 d1133 d1133

Cu(0, 0, 0), p = 1
Beq, Å2 0.261(5) 0.304(7) 0.439(6) 0.536(7)
U11, Å 0.060(1) 0.058(1) 0.072(1) 0.076(1)
U22, Å U11 U11 U11 U11

U33, Å 0.053(2) 0.069(2) 0.079(1) 0.093(1)
d1111 × 109 271(140) 174(179) 130(148) 144(169)
d2222 × 109 d1111 d1111 d1111 d1111

d3333 × 109 0.4(9) 1.0(11) 0.3(10) 1.7(11)
d1122 × 109 –184(66) –190(100) –325(71) –373(107)
d1133 × 109 –15(7) –16(10) –8(8) –30(9)
d2233 × 109 d1133 d1133 d1133 d1133

O1(0, 1/2, 0),  p = 1

Beq, Å2 0.61(4) 0.56(5) 0.82(5) 1.06(6)
U11, Å 0.096(6) 0.095(8) 0.105(6) 0.122(7)
U22, Å 0.070(7) 0.051(11) 0.092(6) 0.099(7)
U33, Å 0.096(6) 0.098(6) 0.107(5) 0.125(5)

O2(0, 1/2, 1/4),  p = 1

Beq, Å2 0.46(2) 0.56(3) 0.59(3) 0.72(3)
U11, Å 0.081(3) 0.079(6) 0.080(4) 0.088(4)
U22, Å U11 U11 U11 U11

U33, Å 0.068(6) 0.093(6) 0.099(5) 0.109(5)

Note: a, b, c are unit cell parameters; Nrefl is the number of chosen independent nonequivalent reflections with I > 3σ(I); R is the final
divergence factor; Rw is the final weight divergence factor, weights calculated by Cruikshank; µ is the absorption coefficient (the
error calculated from the errors of unit-cell measurements); rext is the extinction parameter obtained by least-squares refinement (the
radius of the mosaic spherical block); p are site occupation coefficients; Uii are rms thermal atom displacements (the harmonic part
of the temperature factor); cpqr and dpqrs are the anharmonic temperature parameters of the third and fourth orders, respectively; Beq
is equivalent isotropic temperature factor, Beq = 4/3Σ βiiai, where βii are the anisotropic temperature parameters.
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2. ANALYSIS OF EXPERIMENTAL DATA

It is known that the character of the local Jahn–
Teller effect is determined to a considerable extent by
the orbital ground state of the ions responsible for this
effect [4, 5]. The type of the orbital ground state of the
3d ions also affects the principal interactions in mag-
netic crystals, namely, the exchange and spin-orbit cou-
pling.

As shown in the nearest-neighbor approximation of
the crystal-field theory, the orbital ground state of 3d
ions is determined by the actual type of the ion (d1–d9)
and by the character of the ion environment, which
determines the sign of the crystal-field cubic compo-
nent [4, 5]. The Cu2+ ion (d9) can exist in the following
orbital ground states in a cubic lattice: (i) the orbital
doublet Γ3(eg) (the orbital angular momentum |1〉 = ±2
and the wave functions  and ) for an octahedral

(Z = 6) and a square (Z = 4) environment and (ii) the
orbital triplet Γ5(t2q) (orbital angular momenta |1〉 = ±1,
0 and the wave functions dxz, dyz, and dxy) for a tetrahe-
dron and a cube (Z = 4 and Z = 8) [4, 5].

If the local crystal-field potential is indeed created
by the nearest-neighbor ion environment, determina-
tion of the orbital ground state of a 3d ion does not usu-
ally raise any problems. However, in the cases where
the effective local potential of an ion in the lattice is not
solely determined by its nearest-neighbor environment,
the orbital ground state may differ from the one corre-
sponding to the nearest-neighbor approximation; it can
be quite complex and have an admixture of excited
states. These cases require a special experimental
investigation.

The experimentally observed local-potential sym-
metry can be associated with an effective nearest-
neighbor ion environment in the cubic lattice, and one
can assume that it is this environment that determines
the orbital ground state. Because the potential of a
cubic crystal field substantially exceeds, as a general
rule, those of a tetragonal or an orthorhombic lattice
distortion, the effective local potential symmetry
obtained experimentally for the crystal under study
offers the possibility of gaining information on the
orbital ground state of the Cu2+ ions.

Gd2CuO4

Figures 1 and 2 plot the PDF by lines of equally
probable displacements of the Cu2+ and Gd3+ ions in
Gd2CuO4 in the (001) and (010) planes obtained at dif-
ferent temperatures.

Note that the PDF distribution of Cu2+ ions in
Gd2CuO4 reproduces basically that for Eu2CuO4 (see
Fig. 1 in [9]). For all temperatures at which the mea-
surements were made, the Cu2+ PDFs in Gd2C4O4 were
found to be centrosymmetric, i.e. the positions of the
maximum values of PDF (taken as 100%) are not dis-
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placed from the centers of the figures (which corre-
spond to the ion positions in the cell). Thus, one can
infer that in this case, the vibronic Jahn–Teller effect is
not observed, because a characteristic feature of the
Jahn–Teller effect is the displacement of ions from their
central positions [4, 5].

Similar to Eu2CuO4, the PDF isolines in the (100)
and (010) planes are extended along the [011] and
[101] diagonals. The values of the softest effective local
potential with a cubic (Z = 8) effective nearest-neighbor
environment should correspond to these directions. In
this case, Cu2+ ions in the Gd2CuO4 crystal should have
a tetragonal doublet (dxz and dyz) as the orbital ground
state. However, one cannot exclude here, as in the case
of Eu2CuO4, a mixed orbital ground state, i.e., a state
described by a combination of the wave functions of the
orbital singlet and the orbital doublet. As already men-
tioned, if the orbital ground state is degenerate and rep-
resented by a tetragonal doublet, the average orbital
angular momentum in the ground state is not com-
pletely frozen by the crystal field (|lz〉 ≠ 0, although
|lz〉 ! 1 due to vibronic reduction [5]). Nevertheless,
linear spin-orbit coupling is efficient in this case. The
orbital ground state in the form of a doublet can occur
only if the spin-orbit coupling exceeds the vibronic
Jahn–Teller interaction, and if an orbital state with a
nonzero angular momentum is dominant [4, 5]. We
believe that this is the situation that occurs for the Cu2+

ions in Gd2CuO4 and Eu2CuO4. As is seen from Fig. 1,
as the temperature increases, the relative Cu2+ displace-
ments in the (010) and (100) planes along the [100] (or
[010]) and [001] directions change. At T = 145 K
(Fig. 1b), the maximum displacements are observed to
occur along [100]; at T = 175 K (Fig. 1d), the displace-
ments are the largest along the [001] directions, and at
still higher temperatures, displacements along [100] are
again dominant. Thus, near T ≈ 175 K the situation is
special in that the local effective potential changes
without any change in the general crystal symmetry;
i.e., we have an isostructural phase transition. Note that
these data correlate with experimental microwave mea-
surements of dielectric permittivity [11], which also
indicated the presence of a structural transition in a
Gd2CuO4 crystal at a similar temperature.

Turning now to the main features of the PDF of Gd3+

ions in Gd2CuO4 crystals (Fig. 2), we note that here, the
PDF distribution symmetry is basically similar to that
of Cu2+ ions in the same crystals (Fig. 1). We also have
here a predominantly cubic coordination of the effec-
tive local potential and, likewise, there are no displace-
ments of the PDF peaks from the centers of the figures.
As seen from Figs. 1 and 2, in the vicinity of 175 K the
temperature dependence of ion displacements in ther-
mal vibrations exhibits a feature that can be associated
with an isostructural phase transition.

Note that the nearest-neighbor environment of RE
ions in R2CuO4 tetragonal crystals with a T ' structure
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000



X-RAY DIFFRACTION STUDY OF ION THERMAL VIBRATIONS IN R2CuO4 157
Table 2.  Details of the experiment and the structural parameters of the Gd2CuO4 single crystal (space group I4/mmm, dimen-
sions 0.13 × 0.10 × 0.10 mm) 

Parameter 145 K 175 K 296 K 396 K

a, Å 3.887(1) 3.888(1) 3.8917(5) 3.895(1)
b, Å a a a a

c, Å 11.876(1) 11.877(1) 11.8883(5) 11.8952(6)
Nrefl (I > 3σ(I)) 253 251 250 257
R, % 2.87 2.69 2.79 2.76
Rw , % 3.17 2.80 2.96 2.95
µ, cm–1 424.8(2) 424.6(2) 423.3(1) 422.4(2)
rext, Å 2826(36) 2434(33) 2897(35) 3105(34)

Gd(0, 0, z/c), p = 1
z/c 0.34926(3) 0.34926(3) 0.34922(3) 0.34920(3)
Beq, Å2 0.251(3) 0.244(3) 0.478(3) 0.537(2)
U11, Å 0.0607(6) 0.0582(5) 0.0832(4) 0.0850(4)
U22, Å U11 U11 U11 U11

U33, Å 0.0463(10) 0.0500(9) 0.0655(7) 0.0771(6)
c333 × 108 –1.8(14) –0.6(13) –1.4(14) –2.4(13)
c113 × 108 –0.3(16) –3.9(14) –25(16) –10(15)
c223 × 108 c113 c113 c113 c113

d1111 × 109 251(78) 191(66) 765(78) 502(63)
d2222 × 109 d1111 d1111 d1111 d1111

d3333 × 109 –0.02(54) –1.0(5) –3.4(5) –2.8(5)
d1122 × 109 –261(39) –73(31) –673(36) –614(36)
d1133 × 109 3.0(43) 6.0(37) 36(4) 21(4)
d2233 × 109 d1133 d1133 d1133 d1133

Cu(0, 0, 0), p = 1

Beq, Å2 0.235(10) 0.234(9) 0.447(10) 0.529(9)
U11, Å 0.054(2) 0.052(2) 0.074(1) 0.079(1)
U22, Å U11 U11 U11 U11

U33, Å 0.055(3) 0.059(3) 0.078(2) 0.088(2)
d1111 × 109 –33(278) –10(231) 305(262) 509(236)
d2222 × 109 d1111 d1111 d1111 d1111

d3333 × 109 –1.9(19) –3.6(19) –7.3(21) –8.6(20)
d1122 × 109 –46(144) –18(123) –649(132) –652(129)
d1133 × 109 12(17) 20(14) 58(16) 41(14)
d2233 × 109 d1133 d1133 d1133 d1133

O1(x/c, 1/2, 0),  p = 0.5
x/c 0.0452(22) 0.0504(22) 0.0491(25) 0.0417(26)
Beq, Å2 0.52(13) 0.56(11) 0.84(13) 0.99(15)
U11, Å 0.070(34) 0.087(22) 0.113(21) 0.130(22)
U22, Å 0.086(14) 0.089(13) 0.099(12) 0.096(11)
U33, Å 0.086(12) 0.076(13) 0.098(12) 0.106(9)

O2(0, 1/2, 1/4),  p = 1

Beq, Å2 0.60(5) 0.50(4) 0.56(4) 0.81(15)
U11, Å 0.089(8) 0.078(7) 0.080(6) 0.097(6)
U22, Å U11 U11 U11 U11

U33, Å 0.083(11) 0.082(10) 0.093(9) 0.110(8)
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does have cubic oxygen-ion coordination (with Z = 8).
However, the upper and lower four oxygen ions, which
are the nearest neighbors of the RE ions and are their
body centers, are not fully equivalent, because one of
the four-ion groups lies in the CuO2 plane (the O1 posi-
tions in Tables 1 and 2), and the second group is located
in the plane containing only oxygen ions (the O2 posi-
tions in Tables 1 and 2). As a result, the pattern of the
local RE symmetry distortions can be affected by the
states of both the copper and RE ions. In the cases
where the RE ions are not of the Jahn–Teller type, and
the Cu2+ ions do not exhibit the vibronic Jahn–Teller
effect, the PDF of RE ions should have cubic symmetry
(with Z = 8). The Gd3+ ion, whose ground state is 8S7/2,

[010] [001](a) (b)

[100] [100][010] [001]

[100] [100][010] [001]

[100] [100][010] [001]

[100] [100]

(c) (d)

(e) (f)

(g) (h)

Fig. 1. PDF of Cu2+ ions in Gd2CuO4 crystals for the planes
(a, c, e, g) (001) and (b, d, f, h) (010) obtained at the temper-
atures (K): (a, b) 145, (c, d) 175, (e, f) 295, and (g, h) 395.
The PDFs curves were constructed with a 10% step from the
maximum value (100%) specified in the figures by a cross.
The dash-dotted lines correspond to PDF zero. The negative
values of the PDF are shown by dashed lines. The frame size
0.48 × 0.48 Å2.
P

is a typical example of an RE without the Jahn–Teller
effect, and Cu2+ ions in Gd2CuO4 crystals do not exhibit
the vibronic Jahn–Teller effect (see Fig. 1). In this case,
the local potential for the Gd3+ ions indeed has cubic
symmetry. Thus, the similarity between the angular
PDF distributions of the Gd3+ and Cu2+ ions in
Gd2CuO4 crystals may be considered as an additional
argument for the correctness of the above analysis of
the PDF symmetry for the Cu2+ ions.

Pr2CuO4

The PDF of Cu2+ ions in the Pr2CuO4 crystal is a
multiply connected region with six maxima displaced

[010] [001](a) (b)

[100] [100][010] [001]

[100] [100][010] [001]

[100] [100][010] [001]

[100] [100]

(c) (d)

(e) (f)

(g) (h)

Fig. 2. PDF of Gd3+ ions in Gd2CuO4 crystals for the planes
(a, c, e, g) (001) and (b, d, f, h) (010) obtained at the temper-
atures (K): (a, b) 145, (c, d) 175, (e, f) 295, and (g, h) 395.
The PDF step, line designation, and the frame size are the
same as in Fig. 1.
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symmetrically from the center (Fig. 3). The equilibrium
ion positions (corresponding to the maximum values of
the PDF) are displaced from the central position and,
hence, the vibronic Jahn–Teller effect can exist. How-
ever, in Pr2CuO4, in contrast to La2CuO4 (see Fig. 2 in
[9]), the lowering of the local symmetry induced by the
Jahn–Teller effect is substantially weaker, with the cor-
responding local potential having six wells with the tet-
ragonal symmetry intact. In this case, the vibronic
Jahn–Teller interaction is apparently weaker than in
La2CuO4. Note that each of the off-center regions of the
multiply connected PDF has the same symmetry as in
the Gd2CuO4 and Eu2CuO4 crystals, which corresponds
to the cubic coordination of the local effective potential
for Cu2+ ions (Z = 8).

[010] [001](a) (b)

[100] [100][010] [001]

[100] [100][010] [001]

[100] [100][010] [001]

[100] [100]

(c) (d)

(e) (f)

(g) (h)

Fig. 3. PDF of Cu2+ ions in Pr2CuO4 crystals for the planes
(a, c, e, g) (001) and (b, d, f, h) (010) obtained at the temper-
atures (K): (a, b) 145, (c, d) 175, (e, f) 295, and (g, h) 395.
The PDF step, line designation, and the frame size are the
same as in the preceding figures.
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The observed angular PDF of the Cu2+ ions in
Pr2CuO4 can be interpreted if one assumes the exist-
ence here of a mixed orbital ground state described by
wave functions of both the singlet state and the tetrag-
onal doublet. The state of the crystal is determined by
both the vibronic Jahn–Teller and the spin-orbit cou-
pling, which are close in magnitude. In these condi-
tions, one observes neither a complete suppression of
the vibronic Jahn–Teller effect (as in Gd2CuO4 and
Eu2CuO4) nor total splitting, down to the singlets of the
orbital ground state (as in La2CuO4).

As in Gd2CuO4, in Pr2CuO4 the Cu2+ displacements
in the (010) and (100) planes exhibit a temperature
dependence (see Figs. 3b, 3d, 3f, 3h). In the low-tem-
perature region (Fig. 3b, T = 145 K), the displacements

[010] [001](a) (b)

[100] [100][010] [001]

[100] [100][010] [001]

[100] [100][010] [001]

[100] [100]

(c) (d)

(e) (f)

(g) (h)

Fig. 4. PDF of Pr3+ ions in Pr2CuO4 crystals for the planes
(a, c, e, g) (001) and (b, d, f, h) (010) obtained at the temper-
atures (K): (a, b) 145, (c, d) 175, (e, f) 295, and (g, h) 395.
The PDF step, line designation, and the frame size are the
same as in the preceding figures.
0
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along the [001] directions are the largest; at the same
time at T = 175, 295, and 395 K (Figs. 3d, 3f, 3h), the
largest are the [100] (or [010]) displacements. Thus, the
maximum displacements of the Cu2+ ions in thermal
vibrations undergo a change in direction at a tempera-
ture within the 145–175 K interval. Studies of the
microwave dielectric permittivity in Pr2CuO4 crystals
revealed a diffuse structural phase transition in the
same temperature interval [11]. An analysis of the
angular PDF distributions permits the conclusion that
in this temperature region, the crystal undergoes an iso-
structural phase transition, which retains the general
symmetry of the crystal while bringing about a change
in the direction of the maximum Cu2+ ion displacement.

As is evident from Fig. 4, the PDF of Pr3+ ions in
Pr2CuO4, in contrast to Gd3+ ions in Gd2CuO4, repro-
duces less accurately that of the copper ions, although
it is fairly similar in shape to the Gd3+ PDF. This
appears only natural, because the local positions of RE
elements in all R2CuO4 crystals are close. Some differ-
ences in the shape of the PDF of Pr3+ ions in Pr2CuO4

from that of Gd3+ ions in Gd2CuO4 are apparently due
to the fact that Pr3+ (3H4) is a Jahn–Teller ion, and cop-
per ions in Pr2CuO4 exhibit the vibronic Jahn–Teller
effect (see Fig. 3). It is these two factors that apparently
account for some PDF asymmetry along the [001]
direction (Figs. 4b, 4d, 4f, 4h). Note that the Jahn–
Teller effect with RE elements manifests itself most
clearly for Eu3+ ions in Eu2CuO4 crystals (see Fig. 4 in
[9]). In all the crystals that we studied (with the excep-
tion of La2CuO4), the PDFs of copper and RE ions
exhibit extended flat regions, indicating a quite strongly
developed anharmonicity of ion thermal vibrations.
The same is seen from Tables 1 and 2. Studies of the
magnetic and dielectric properties of R2CuO4 crystals
(R = Eu, Pr, Gd) [6, 7, 11] established the existence in
them for T > 100 K of diffuse phase transitions and non-
uniform structural and magnetic states of the random-
field type. It is apparently such states and phase transi-
tions that could account for the observed anharmonicity
of ion thermal vibrations in these crystals.

Thus, Cu2+ ions in R2CuO4 crystals (R = Eu, Pr, Gd)
have an orbital ground state with a nonzero orbital
angular momentum. As for crystals with RE elements
(R = Eu, Gd), the properties of these crystals are deter-
mined by the degenerate ground tetragonal doublet and
P

spin-orbit coupling. In La2CuO4, the orbital ground
state does not have a nonzero orbital angular momen-
tum (orbital singlet), and the main interaction deter-
mining the structural properties of the crystal is the
vibronic Jahn–Teller coupling. In the Pr2CuO4 crystal,
we observed a more complex situation, where a mixed
orbital ground state (a singlet and a tetragonal doublet)
exists, and both types of the interaction are efficient
(the spin-orbit and the vibronic Jahn–Teller coupling).
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Abstract—The cooling of Pb1 – xBaxSc0.5Nb0.5O3 solid solutions with x ≤ 0.04 leads to a spontaneous transition
from a relaxor to a macrodomain ferroelectric state, accompanied by anomalous variation of the dielectric and
optical properties of the material. As the barium content in the system increases, the relaxor state becomes more
stable and eventually “freezes” at x ≈ 0.05. The crystals with x = 0.06 exhibited the appearance of a macro-
domain ferroelectric phase induced both by an external electric field with a strength of 1.5 kV/cm and by an
internal electric field formed in the course of dielectric aging. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Properties of a compositionally-ordered ferroelec-
tric compound with the formula PbSc0.5Nb0.5O3 (PSN)
can be modified within a broad range even without
changing the chemical composition, namely, by vary-
ing the degree of ordering of the Sc and Nb ions occu-
pying equivalent sites of the crystal lattice [1–3]. In the
state of high ordering, the PSN crystals and ceramics
exhibit a non-smeared ferroelectric phase transition. In
a disordered state of the ferroelectric, the transition
smears and PSN exhibits the properties characteristic
of the so-called relaxors [2], in which both the maxi-
mum dielectric permittivity εm and the temperature Tm
corresponding to the maximum of ε(T) are significantly
dependent on the temperature.

Later investigations [4] showed that even almost
complete disorder of Sc and Nb in the structure of PSN
ceramics is insufficient to obtain a stable relaxor state
similar to that observed for a model relaxor system
PbMg1/3Nb2/3O3: cooling of a PSN sample is accompa-
nied by a spontaneous transition from a relaxor (micro-
domain) to a macrodomain state reflected by a jump on
the ε(T) curve. In order to obtain a stable relaxor state
in PSN, it is necessary to provide for an additional dis-
ordering of the crystal lattice. Disappearance of the jump
in ε(T) and enhancement of the frequency dependence of
ε in the PSN ceramics, interpreted as “freezing” of the
relaxor state [4], was achieved by increasing the concen-
tration of lead vacancies VPb from 0.2–0.5 at. % (the level
inherent in the ceramics as a result of uncontrolled PbO
evaporation in the course of annealing) to 1.5–2 at. %
[5]. However, the structural investigation [5] showed
that even this increase in the VPb concentration does not
eliminate the spontaneous transition from relaxor to
macrodomain state, although the transition becomes
1063-7834/00/4201- $20.00 © 20161
strongly smeared and takes place at lower tempera-
tures. It should be also noted that the VPb formation
leads to the appearance of approximately the same
number of oxygen vacancies, that is, the concentration
of induced defects is in fact approximately twice that of
VPb. Moreover, the VPb vacancies are essentially the
charged polar defect, which accounts for their strong
interaction with heterophase fluctuations [6] and must
favor “freezing” of the relaxor state. Thus, it is still
unclear what is the defect concentration actually ensur-
ing the relaxor state “freezing” in PSN and whether this
critical defect concentration depends on their nature
(polar vs. nonpolar).

It is known that a partial substitution of isovalent bar-
ium ions for lead in the PSN ceramics also results in
smearing of the ε(T) maximum and increasing of the
relaxor properties [7–9]. However, since the ion radius of
Ba2+ is greater than that of Pb2+, the defects formed upon
the Pb2+  Ba2+ substitution must be nonpolar. More-
over, while the concentration and homogeneity of the VPb
distribution in a sample are difficult to control, the partial
substitution of barium for lead would simplify this task.
We may expect that a gradual increase in the barium con-
tent would allow an increase in stability of the relaxor
state in PSN up to its complete “freezing.”

It is difficult to perform such investigations on
ceramic samples because of difficulties in obtaining
equilibrium solid solutions of the Pb1 – xBaxSc0.5Nb0.5O3
(PBSN) system, which are related to a considerable
difference in reactivity between the PSN and
BaSc0.5Nb0.5O3 (BSN) [8]. This difference leads to a
gradient of the component concentrations in the grains
of PBSN ceramics, which is reflected by additional
anomalies in the ε(T) curves reported in a number of
works [8, 9]. Smearing of the ε(T) maximum as a result
of the formation of macroscopic and/or mesoscopic
000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) The ε(T) plots for the Pb1 – xBaxSc0.5Nb0.5O3
solid solution crystals with x = (1) 0.2, (2) 0.04, and (3) 0.06
measured on heating (solid lines) and subsequent cooling
(dashed lines); curve 3b was measured upon holding the crys-
tal for 80 days at room temperature (aged sample); curve 3c
was measured upon cooling the crystal from 100 to 30°C in a
constant electric field with the strength 1500 V/cm; (b) the
plots of (lnf0 – lnf)–1 versus Tm for Pb1 – xBaxSc0.5Nb0.5O3
with x = (1) 0, (2) 0.04, (3a) 0.06, and (4) 0.08 illustrating
validity of the Vogel–Fulcher law.

Fig. 2. The ε(T) plots for the Pb1 – xBaxSc0.5Nb0.5O3 solid
solution crystals with x = 0.04 (solid lines) and 0.08 (dashed
lines) measured on heating at various frequencies of the prob-
ing electric field f (Hz): (1) 103, (2) 104, (3) 105, and (4) 106.
P

composition inhomogeneities masks the effects devel-
oped on the microscopic level, related to the ion substi-
tution in the crystal lattice sites. In order to reach the
equilibrium state, it is necessary to increase the temper-
ature and duration of annealing of the samples of PBSN
ceramics. However, this would increase the probability
of formation of the additional VPb vacancies favoring,
as noted above, the relaxor state “freezing.”

The purpose of this work was to obtain single crys-
tals of a PBSN solid solution and study the effect of the
isovalent substitution of barium for lead on the sponta-
neous transition from relaxor to macrodomain ferro-
electric state.

2. EXPERIMENTAL RESULTS AND DISCUSSION

Transparent yellow crystals of Pb1 − xBaxSc0.5Nb0.5O3
with 0 ≤ x ≤ 0.58 (determined from data obtained with
a Camebax-Micro electron microscope–analyzer),
with predominantly an isometric shape and a size of
1−2 mm, were grown by the bulk crystallization tech-
nique. The methods of crystal growth and investigation
were analogous to those described elsewhere [10]. The
X-ray diffraction analysis showed that the value of the
reduced unit cell parameter of a rhombohedrally dis-
torted perovskite crystal lattice increases almost lin-
early with x. In contrast to the case of ceramics [8], no
line broadening was observed in the X-ray diffraction
patterns of PBSN as compared to those of PSN, which
is indirect evidence of the equilibrium character of the
solid solutions studied. Nor did the diffractograms of
the PBSN crystals contained any superstructural reflec-
tions related to ordering of the Sc and Nb ions. This
result agrees with our previous data [3, 10] indicating
that PSN crystals grown in the temperature range
employed (1170–1060°C) are strongly disordered.

The results of dielectric measurements showed that
increasing barium content leads to decrease in the Tm
value corresponding to the ε(T) maximum for PBSN
crystals, increase in the degree of smearing of this max-
imum, and a decrease in the peak height εm (Fig. 1a).
All the crystal samples studied exhibited a significant
frequency dispersion of ε values and an increase in the
Tm value with the frequency f of the probing electric
field. The pattern of variation of the ε(T) curves with
increasing frequency observed in the crystals with x ≥
0.08 was typical of the relaxor behavior (Fig. 2). For the
crystals with 0 ≤ x ≤ 0.04, the ε(T) curves exhibit a jump
at a temperature slightly below Tm (Figs. 1a and 2). The
position of this feature, in contrast to the Tm value, is
virtually independent of the frequency f, but shows a
considerable temperature hysteresis increasing with x
(Fig. 1a). A similar anomaly of ε(T) was previously
observed for disordered PSN ceramics and related to a
spontaneous transition from relaxor to macrodomain
ferroelectric state [4, 5].

Since the latter transition was previously observed
only in ceramic samples, it was of interest to study
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
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related changes in the optical properties of PSN and
PBSN crystals. Room-temperature measurements in
the transmitted polarized light showed that crystals
exhibit symmetric quenching (at an angle of 45° rela-
tive to the side crystal faces) during the table rotation.
This character of quenching corresponds to a rhombo-
hedral structure of the low-temperature crystal phase
formed in PSN ad PBSN. Indeed, because of the natural
crystal faceting by planes on the {100} type in the per-
ovskite basis and the possibility of the optical axis ori-
entation in directions of the [111] type, the axes of the
central cross-section of the optical indicatrix by the
plane of the wave front parallel to a developed plane of
the plate crystal make an angle of ~45° with the visible
plate edges.

On heating, the crystal exhibits a transition to the
relaxor state accompanied by a sharp drop in the mag-
nitude of birefringence (to virtually zero in the central
part of the sample) followed by the motion of smeared
phase fronts toward the outer boundaries. Separate
parts of the crystal (in particular, those near the crystal
ends) may remain clarified even above the phase transi-
tion temperature, still exhibiting quenching in the for-
ward direction. Incomplete quenching of the crystal is
probably related to internal mechanical stresses caused
by defects, including the near-surface growth layers.

On the subsequent cooling, the spontaneous transi-
tion to a macrodomain ferroelectric phase was accom-
panied by the development of birefringence, typical of
the crystals belonging to the rhombohedral system, and
by a considerable temperature hysteresis with a width
close to that observed for the ε(T) curve. The aforemen-
tioned increase in the Tm value of PBSN with the prob-
ing field frequency f is well described by the Vogel–
Fulcher formula

(1)

where f0 is the frequency of attempts to surmount the
potential barrier E, k is the Boltzmann constant, T0 ids
the Vogel–Fulcher temperature interpreted as a temper-
ature of the “static freezing” of electric dipoles or the
transition to a “dipole glass” state [4–6, 11] (Fig. 1b).
For PBSN crystals, f0 = (0.5– 1) × 1011 Hz is close to the
values reported for some other ferroelectric relaxors [4,
11]. In the crystals with 0 ≤ x ≤ 0.04, the T0 values are
close to the temperature of the jump in ε(T), which is
analogous to what was observed for disordered PSN
ceramics [4, 5] (Fig. 1). The activation energies E in the
Vogel–Fulcher formula, as well as the differences T
between Tm (measured at f = 1 kHz) and T0, increase
with x to reach ∆T ≈ 50–60 K and E = 0.08 ± 0.01 eV
at x ≈ 0.4 and then remain approximately constant. It
should be noted that nearly the same ∆T and E values
were observed for the crystals of a classical ferroelec-
tric relaxor PbMg1/3Nb2/3O3 [4, 11]. Note that the
curves of ∆T(x) and E(x) exhibit breaks at x ≈ 0.05, that
is, in the region of Ba concentrations corresponding to
“freezing” of the relaxor state (Fig. 3).

f f 0 E/k Tm T0–( )–[ ] ,exp=
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
Some of the crystals studied exhibited the phenom-
enon of so-called dielectric aging, whereby the ε values
and the dielectric losses tend to decrease with time. A
similar aging was previously observed both in the usual
ferroelectrics and in relaxors, and was explained by sta-
bilization (fixation) of the domain structure as a result
of the screening of domain boundaries and the forma-
tion of internal electric fields [2, 12, 13]. In the crystals
with x = 0.06, exhibiting no spontaneous transition
from relaxor to macrodomain state during cooling of a
paraelectric phase, the room-temperature aging for sev-
eral weeks resulted in development of the optical bire-
fringence. Subsequent heating made the crystal opti-
cally isotropic at a temperature markedly lower than
Tm. This temperature also corresponded to a jump on
the ε(T) curve (Fig. 1a, curve 3b).

Thus, the properties of aged crystals with x = 0.06
are analogous to those of the PBSN crystals with a
lower Ba content (in which the heating induces the
transition from macrodomain ferroelectric to relaxor
state) and of the classical ferroelectric relaxors
PbMg1/3Nb2/3O3 and PbMg1/3Zn2/3O3, subjected to the
action of a constant electric field with a strength
exceeding 2–2.5 and 10–20 kV/cm, respectively [14].
Apparently, the observed changes in properties of the
PBSN crystals are related to the appearance of a mac-
rodomain ferroelectric phase under the action of inter-
nal electric fields formed in the course of dielectric
aging. The magnitude of these fields in a relaxor ceram-
ics of the PbMg1/3Nb2/3O3–PbTiO3 reached a level of
several kV/cm [2], being comparable with the external
field strength necessary to induce the macrodomain
phase formation in PbMg1/3Nb2/3O3.

In order to obtain additional information concerning
the effect of the electric field on the properties of
PBSN, we have measured the ε(T) curves of a crystal
with x = 0.06 in the regime of heating without applied

80

60

40

20

0 0.05 0.10 0.15 0.20
x

∆T, K; E × 103, eV

1

2

Fig. 3. The plots of (1) activation energy E in the Vogel–
Fulcher law and (2) difference ∆T between the position of
maximum dielectric permittivity (measured at 1 kHz) and
the Vogel–Fulcher temperature T0 versus concentration for
the Pb1 – xBaxSc0.5Nb0.5O3 solid solution crystals. 
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field upon cooling the crystal from 100 to 30°C in a
constant electric field of various strength. After each
measurement, the crystal was heated to 150°C to
remove the residual effects. At an external field strength
of 0.5 kV/cm, no changes were observed in the shape
of the ε(T) curve as compared to that of the non-aged
crystal cooled in the absence of the field. On cooling in
a field of 1.5 kV/cm, the ε(T) curve exhibited a jump
similar to that observed for an aged crystal (Fig. 1a,
curve 3c). Heating the crystal to 120–150°C com-
pletely eliminated the residual effects, and the ε(T)
curves observed on the subsequent cooling and heating
coincided with the initial curve (Fig. 1a, curve 3a).
These results give evidence that the external field, com-
parable with the internal ones, formed in the course of
dielectric aging [2] and induces a macrodomain ferro-
electric phase in PBSN crystals with x = 0.06. Appar-
ently, a change in the properties of PBSN crystals with
x = 0.06 in the course of aging is analogous to the
behavior reported in some works [15] where a macro-
domain ferroelectric state was observed in relaxor sys-
tems as a result of the electron beam action during the
electron-microscopic investigation. Indeed, the intensi-
fication of the dielectric aging process under the action
of light or ionizing radiation, increasing the concentra-
tion of nonequilibrium charge carriers and facilitating
development of the screening effects, was observed in
many ferroelectrics [12, 13].

Thus, the relaxor (microdomain) state in disordered
PSN crystals is unstable. Cooling of the crystals leads
to their spontaneous transition into a macrodomain fer-
roelectric state, which is accompanied by anomalous
variation of the dielectric and optical properties. During
partial substitution of barium for lead, which results in
additional disordering of the crystal lattice, stability of
the relaxor state gradually increases and this state
exhibits “freezing” at a critical barium concentration of
x ≈ 0.05. In crystals with a barium content slightly
above the critical level, the macrodomain ferroelectric
phase can be induced by application of a comparatively
small external electric field or by a internal electric field
formed in the course of dielectric aging.

Note that the critical barium concentration x ≈ 0.05
corresponding to “freezing” of the relaxor phase in
PSN–BSN crystals is close to the total concentration of
P

vacancies in the lead and oxygen sublattices correspond-
ing to suppression of the spontaneous transition from
relaxor to macrodomain ferroelectric state in PSN
ceramics. Thus, the concentration of defects responsible
for “freezing” of the relaxor phase is apparently indepen-
dent of whether the defects are polar or nonpolar.
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Abstract—A field-theoretic description of phase transitions in disordered systems with two coupled order
parameters is given. An analysis of renormalization-group functions is performed directly for three-dimen-
sional systems in a two-loop approximation by using the Pade–Borel summation technique. Fixed points are
found corresponding to stable multicritical behavior. The effect of frozen point impurities on the phase dia-
grams of the system is studied. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There is a large class of systems [1, 2] in which a
phase transition is observed which cannot be described
with a single order parameter transforming according
to an irreducible representation. Phase diagrams of
such systems have a singular multicritical (bicritical or
tetracritical) point. At the bicritical point, two lines of
second-order phase transitions and one line of a first-
order phase transition meet, whereas four lines of sec-
ond-order phase transitions meet at the tetracritical
point. In the immediate vicinity of a multicritical point,
the system exhibits special critical behavior character-
ized by competition between different types of order-
ing. In the case of bicritical behavior, one type of order-
ing of the system suppresses the other, whereas in the
case of tetracritical behavior, a mixed phase may occur
in which both types of ordering coexist.

A model Hamiltonian of a system with two coupled
order parameters φ and ψ transforming according to
two different irreducible representations of dimensions
n and m, respectively, has the form

(1)

The problem of a phase transition in such a system was
treated in [3, 4] by the ε-expansion method in a one-
loop approximation. Recently, with the aim of refining

*0 ddx
1
2
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the dependence of the multicritical behavior on the
structure of order parameters, we have performed [5] a
direct field-theoretic description of a three-dimensional
system in terms of the Hamiltonian (1) in a two-loop
approximation, without resorting to ε expansion. Stud-
ies of critical phenomena show [6] that this approach
allows one to most adequately describe the critical
behavior. Very accurate results can be obtained by
applying this method in a many-loop approximation in
combination with methods for summation of asymptot-
ically convergent series. Using the Pade–Borel summa-
tion technique, analysis of renormalization group func-
tions was made in [5] in a two-loop approximation and
fixed points were determined which correspond to sta-
ble bicritical and tetracritical behavior. The coordinates
of the fixed points and the conditions for their stability
differ essentially from those found in [3, 4], which
leads to noticeable changes in the phase diagrams in the
critical region and to other types of symmetry of the
system at the multicritical point.

In this paper, we investigate the effect of frozen
point impurities on the multicritical behavior of a sys-
tem with two coupled order parameters. It is known [7]
that the disorder caused by frozen impurities in a sys-
tem may be in the form of random fluctuations of the
local critical temperature or in the form of random
fields. The statistical properties of disordered systems
differ essentially in these two cases, because random
fields break down the symmetry of the system to the
sign reversal of an order parameter. The systems with
disorder of the random critical-temperature type are
exemplified by ferro- and antiferromagnets with non-
magnetic impurity atoms in the absence of an external
magnetic field, whereas anisotropic antiferromagnets
with nonmagnetic impurity atoms in a uniform mag-
netic field have disorder of the random-field type [8]. In
this paper, we investigate the multicritical behavior of
systems with disorder of the critical-temperature type.
Such behavior may be observed in disordered systems
000 MAIK “Nauka/Interperiodica”
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in which, as in MnAs [9], the sequence of phase transi-
tions can be described in terms of two coupled order
parameters of different nature corresponding to a struc-
tural and a ferromagnetic phase transition, or in XY-type
antiferromagnets such as Cr2TeO6 and KCuF3 [10], in
which a multicritical point appears in the absence of an
external magnetic field. In some cases, the description
of the multicritical behavior of disordered binary alloys
composed of magnetic atoms of two species with
mixed exchange interaction may correspond to the
assumption of disorder of the random critical-tempera-
ture type in a system with two coupled order parame-
ters [11, 12].

Early investigations of the effect of disorder of the
random-temperature type on the multicritical behavior
of the system were performed in [11–13] by the ε-
expansion method in the one-loop approximation.
However, it was clearly demonstrated on the example
of a homogeneous system [5] that the results obtained
in the one-loop approximation are in rather poor agree-
ment with the actual multicritical behavior. One would
expect even more essential discrepancies in the case of
disordered systems, as may be inferred from the results
obtained for disordered systems with a single order
parameter [14, 15]. For disordered Ising-type systems,
an accidental degeneracy occurs in the set of renormal-
ization group equations for interaction vertex functions
in the one-loop approximation [16]. For these reasons,
we cannot use this approximation when studying the
effect of impurities on the critical behavior of disor-
dered systems. In this paper, we apply a field-theoretic
method directly to three-dimensional systems and use
the two-loop approximation.

2. RESULTS AND DISCUSSION

The Hamiltonian of a system with two coupled
order parameters, in which there are frozen impurities
producing disorder of the random-temperature type,
can be written in the form

(2)

where *0[φ, ψ] is the Hamiltonian (1) for the homoge-
neous system. The term *imp[φ, ψ] describing the inter-
action of impurities with fluctuations of the order
parameters is written as

(3)

Here, Vi(x) are the potentials of the random field of
impurities characterized by a Gaussian distribution; in
the case of point impurities, their correlators are

(4)

* φ ψ,[ ] *0 φ ψ,[ ] *imp φ ψ,[ ] ,+=

*imp φ φ,[ ] 1
2
--- ddx V1 x( )φ2 V2 x( )ψ2+[ ] .∫=

Vi x( )〈 〉〈 〉 0,  V1 x( )V1 x'( )〈 〉〈 〉 u40δ x x'–( ).–= =

V2 x( )V2 x'( )〈 〉〈 〉 u50δ x x'–( ),–=

V1 x( )V2 x'( )〈 〉〈 〉 u60δ x x'–( ).–=
P

Using the method of replicas, we take an average over
random configurations of impurities and reduce the
problem of statistical description of the weakly disor-
dered system to the problem of statistical description of
a homogeneous system with the effective Hamiltonian

(5)

which contains k samples (“replicas”) of the initial
Hamiltonian *0 of the homogeneous system and a
number of extra terms (with impurity vertices u40, u50,
and u60) which describe the effective interaction of
(k × n)-component and (k × m)-component order
parameters through the impurity field. Thermodynami-
cally, this statistical model is equivalent to the initial
disordered model in the limit k  0.

In the framework of the field-theoretic approach
[17], the asymptotic critical behavior and the structure
of phase diagrams in the fluctuation region are deter-
mined by the Callan–Symanzik renormalization group
equation for the vertex parts of the irreducible Green’s
functions. To find expressions for the (renormalization
group) β functions in terms of the renormalized interac-
tion vertices ui (i = 1,…, 6) involved in the renormaliza-
tion group equation, we apply a common method based
on the Feynman diagram technique and the renormal-
ization procedure [18]. In the two-loop approximation,
we obtain the following expressions for the β functions:
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k

∑=

+
1
2
--- u40φα

2 φβ
2 u50ψα
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(6)
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It is well known that the perturbation series are
asymptotically convergent in this case and the quanti-
ties represented by the interaction vertices of fluctua-
tions of the order parameters are too large for expres-
sions (6) to be used immediately in the fluctuation
region r1, r2  0. To extract the desired physical
information from these expressions, we apply the gen-
eralized Pade–Borel method, which is used to find the
sum of an asymptotically convergent series. The direct
and inverse Borel transformations generalized to the
six-dimensional case have the form

(7)

To perform the analytic continuation of the Borel trans-
form, we introduce a power series in an auxiliary vari-
able λ

(8)

and take the Pade approximant [L/M] at the point λ = 1.
This technique was proposed and applied in [19] for
describing the critical behavior of a number of systems
characterized by several interaction vertices of fluctua-
tions of order parameters. It was found in [19] that the
Pade approximation in the variable λ conserves the
symmetry of the system. This property is of importance
in multivertex models.

To calculate the β functions in the two-loop approx-
imation, we use approximant [2/1]. The nature of the
multicritical behavior depends on the presence of a sta-
ble fixed point that is determined from the set of equa-
tions

(9)

This fixed point is stable if the real parts of the eigen-
values bi of the matrix

(10)

are positive.
The system of β functions obtained by calculating

the sums representing them has a wide variety of fixed
points for each value of n and m. The table shows stable
fixed points for the physically most interesting values
of n and m and also a number of fixed points unstable

f u1 … u6, ,( ) ci1 … i6, , u1
i1u2
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i4u5
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∑=
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∞

∫
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i1 … i6+ +( )
-------------------------------u1
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i3u4
i4u5

i5u6
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F u1 … u6λ, ,( )

=  λ k ci1 … i6, ,

k!
---------------u1
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i3u4
i4u5

i5u6
i6λ i1 … i6 k,+ +

i1 … i6, ,
∑

k 0=

∞

∑

βi u1* u2* u3* u4* u5* u6*, , , , ,( ) 0  i 1 … 6, ,=( ).=

Bi j,
∂βi u1* u2* u3* u4* u5* u6*, , , , ,( )

∂u j

-----------------------------------------------------------------=
0
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Fixed points of the disordered system and the eigenvalues of the stability matrix

n m bi  (i = 1, …, 6)

1 1 1.58892 1.58892 0 –0.03448 –0.03448 0 0.4612 ± 0.222i, 0.0362,

0.4612 ± 0.222i, 0.0362

1 2 1.58892 0.93832 0 –0.03448 –0.00026 0 0.4612 ± 0.222i, 0.0183,

0.0183, 0.6671, 0.0017

1 2 1.58892 0.93498 0 –0.03448 0 0 0.4612 ± 0.222i, 0.0172,

0.0172, 0.6673, –0.0017

1 3 1.58892 0.82962 0 –0.03448 0 0 0.4612 ± 0.222i, 0.0834,

0.0834, 0.1315, 0.6814

1 3 1.58892 1.28357 0 –0.03448 –0.07098 0 0.4612 ± 0.222i, 0.3266,

0.3266, 5.9782, –3.1324

2 2 0.93832 0.93832 0 –0.00026 –0.00026 0 0.6671, 0.0017, 0.0017,

0.0005, 0.0005, 0.6671

2 2 0.93498 0.93498 0 0 0 0 0.6673, –0.0017, –0.0017,

–0.0017, –0.0017, 0.6673

2 3 0.93832 0.82962 0 –0.00026 0 0 0.6671, 0.0017, 0.0659,

0.0659, 0.1315, 0.6814

2 3 0.93498 0.82962 0 0 0 0 0.6673, –0.0017 0.1315

0.6814, 0.0648, 0.0648

3 3 0.82962 0.82962 0 0 0 0 0.6814, 0.1315, 0.1315,

0.6814, 0.1315, 0.1315

u1* u2* u3* u4* u5* u6*
in the two-loop approximation, which will be useful in
subsequent analysis. The table also shows the eigenval-
ues of the stability matrix (10) for the corresponding
fixed points.

Analysis of the nature of the fixed points and their
stability allows the following conclusions to be made.
In the presence of impurities in the system, the order
parameters become decoupled in their fluctuations and
only the tetracritical behavior with the general symme-
try SO(n) ⊕  SO(m) of the system is stable. In the case
of one-component order parameters (n = m = 1), the
presence of impurities is crucial and leads to the critical
behavior with indices corresponding to the indices of
a disordered Ising model [14, 15]. As for the cases of
n = 1, m = 2 and n = 2, m = 2, calculations predict sta-
bility of a fixed point for which the impurity vertices

a b c

Fig. 1. Possible types of phase diagrams (schematic): solid
lines correspond to first-order phase transitions and dashed
lines, to second-order phase transitions. 
P

 and  are nonzero for both order parameters.
However, we are inclined to believe that in higher
approximations, the situation will reverse and that fixed
point will become stable at which the order parameters
are decoupled and the impurity vertices are nonzero
only for one-component order parameters. This is indi-
cated by the weak stability of fixed points of the former
type and the weak instability of fixed points of the latter
type. Furthermore, a similar situation is encountered in
a study of the effect of impurities on the critical behav-
ior of a system with a one order parameter in the two-
loop approximation [14, 20]. In the case of n, m ≥ 3,
only the homogeneous fixed point is stable that is iden-
tical to a critical point of type 3 of a homogeneous sys-
tem [5] and has a tetracritical character. Thus, when the
order parameters of a system have two or more compo-
nents, the presence of impurities produces no effect on
their critical behavior, and the multicritical behavior
has a tetracritical character. The presence of impurities
in systems with two order parameters severely restricts
the number of possible types of stable fixed points and,
hence, the number of possible phase diagrams in com-
parison with homogeneous systems. Of fundamental
importance is the restriction that disordered systems
cannot have a phase diagram with a bicritical point. In
these systems, critical fluctuations and fluctuations of
the local critical temperature for interacting fields
whose bare vertices satisfy the bicritical-behavior con-

u4* u5*
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dition  ≥ u10u20 [5] make the bicritical behavior
unstable and result in a decoupling of the order param-
eters. As a consequence, phase diagrams with a bicriti-
cal character outside the critical region will contain
portions of lines of first-order phase transitions in the
critical region as shown in Fig. 1a. If the bare vertices
of the system satisfy the tetracritical-behavior condi-

tion  < u10u20, only phase diagrams shown in Figs. 1b
and 1c are possible.

CONCLUSION

It is hoped that the differences in the multicritical
behavior found here between homogeneous and disor-
dered systems with competing order parameters will be
taken into account in experimental studies of the multi-
critical behavior of the systems in question.
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Abstract—The effect of pressure on the α  β and ω  β transformations in the equiatomic alloy TiZr is
studied by the differential thermal analysis (DTA) and calorimetric technique. The α–β equilibrium at atmospheric
pressure occurs at a temperature of 579°C, and the heat of transition ∆H is 40.9 ± 2.0 J/g. As the pressure increases
up to 28 kbar, the temperature of the α–β equilibrium linearly decreases, dT/dP = –2.2 ± 0.3 K/kbar. In the pres-
sure range 28–48 kbar, the β-phase undergoes a transition to the two-phase (α + ω) state upon cooling to room
temperature. At pressures above the triple point with the coordinates P = 49 ± 3 kbar and T = 460 ± 30°C, the
cooling of the β-phase gives rise to only the hexagonal ω-phase with the unit cell parameters a = 4.843 Å, c =
2.988 Å, and c/a = 0.617 under normal conditions. The slope of the ω–β equilibrium boundary is positive at
pressures up to 70 kbar, dT /dP ≈ 0.46 K/kbar. The ω  α transformation at atmospheric pressure proceeds
in the temperature range T = 425–470°C with the enthalpy of transition ∆H = 2.8 J/g. © 2000 MAIK
“Nauka/Interperiodica”.
The phase equilibria in pure titanium and zirconium
have been investigated in considerable detail in the T−P
regions up to the triple points of the α–β–ω equilibrium
[1]. At atmospheric pressure, the low-temperature hex-
agonal close-packed (hcp) α-phase transforms into the
high-temperature body-centered cubic (bcc) β-phase at
T = 882°C for titanium and at T = 863°C for zirconium
[1]. An increase in the pressure leads to a decrease in
the α–β transition temperatures down to triple points
with the coordinates T = 640°C and P = 80 kbar for tita-
nium [2] and T = 700°C and P = 55 kbar for zirconium
[3]. The equilibrium boundary between the α-phase
and the high-pressure hexagonal ω-phase exhibits a
positive slope. In the compression experiments with
shear [4], it was found that the equilibrium pressures of
the α–ω transitions at T = 20°C are equal to 20 and
22 kbar for titanium and zirconium, respectively. In
quasi-hydrostatic pressure chambers, the complete
conversion to the ω-phase due to the hysteresis can be
achieved at substantially higher pressures (40–80 kbar
at room temperature [1–4]) than the equilibrium pres-
sure. The β–ω equilibrium boundaries above the triple
points exhibit a small positive slope [1]. In addition to
the aforementioned equilibria, the reversible transition
from the ω-phase to the β-phase at room temperature is
observed in pure zirconium under a pressure of 350 kbar
[5, 6].

The Ti–Zr system is characterized by the complete
solubility of components in both the liquid and solid
states [7]. Upon the mutual doping, the α–β transition
temperature decreases and reaches a minimum for the
TiZr equiatomic alloy. The data available in the litera-
1063-7834/00/4201- $20.00 © 0170
ture on the minimum temperature differ considerably,
from 525°C in the review of early works [7] to 610°C
in more recent works [8, 9].

The question of the α–ω transformations in the Ti–
Zr alloys remained open until the behavior of these
alloys was investigated in the pressure range up to 80–
100 kbar [10, 11]. With the electron microscopic
method, Dobromyslov et al. [10] observed the precipi-
tation of the ω-phase in a series of the TixZr1 – x alloys
preliminarily compressed to a pressure of 80 kbar at
room temperature when the titanium concentration in
the alloy was either no more than 32.2 at. % or no less
than 97.5 at. %. From these observations, the inference
was drawn that the curve describing the pressure of the
α–ω transition in the Ti–Zr system shows a maximum
[10]. More recently, Aksenenkov et al. [11] subjected
the Ti–Zr alloys containing from 50 to 74 at. % Ti to
shear deformation under a pressure up to 90 kbar at
temperatures of 300°C and 77 K (as is known, the shear
promotes phase transformations [4, 12]). The subse-
quent X-ray diffraction study of the samples led these
authors to the conclusion that the mutual doping of Ti
and Zr results in an increase in the equilibrium pressure
of the α–ω transformation, and its value for the TiZr
equiatomic alloy is as high as 66 kbar [11]. The calcu-
lations of the T–P–c diagrams for the Ti–Zr system
within the regular-solution approximation demon-
strated that, upon mutual doping of Ti and Zr, the triple
point of the α–β–ω equilibrium should shift toward
higher pressures and lower temperatures as compared
to the pure metals [11]. According to these calculations,
2000 MAIK “Nauka/Interperiodica”
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the parameters of the triple point for the TiZr equi-
atomic alloy are equal to 85 kbar and 420°C.

The aim of this work was to investigate the high-
temperature region of the T–P diagram for the TiZr
equiatomic alloy. We measured the pressure depen-
dence of the α–β transition temperature. It was found
that, at relatively low pressures, the T–P diagram has a
triple point. This point was identified as the α–β–ω
equilibrium point. The parameters of the triple point
were determined from the intersection of the bound-
aries for the α–β and ω–β transformations. The charac-
teristics of the α–β and ω–β transformations at atmo-
spheric pressure were measured by the calorimetric
technique. The unit cell parameters for ω-phase of the
TiZr alloy were refined.

1. EXPERIMENTAL

An equiatomic alloy TiZr was prepared from rods of
titanium and zirconium (iodide grade) remelted by the
vacuum electron-beam zone melting. The purity of Ti
and Zr obtained by this technique, as a rule, is higher
than 99.95% (including interstitial impurities) [13, 14].
Then, a zirconium rod of calculated weight was coaxi-
ally pressed into a titanium tube and repeatedly
remelted under vacuum. The chemical composition of
the prepared rod was measured at nine points distrib-
uted over its length and cross-section by using a JXA-5
electron-probe X-ray microanalyzer. It was found that
the alloy is homogeneous and contains 49.6 at. % Ti
and 50.4 at. % Zr with an accuracy of ± 0.4 at. %. The
unit cell parameters for the hexagonal close-packed
phase of the alloy are a = 3.104 Å and c = 4.923 Å. The
samples in the form of pellets 5–8 mm in diameter and
1.5–2 mm in height were either cut from the ingot or
pressed from chips produced on a lathe.

Compression measurements were performed by the
differential thermal analysis (DTA) at temperatures up
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Fig. 1. DTA curves for the Ti49.6Zr50.4 alloy in the pressure
range 2–30 kbar (a lens-type chamber). Lower and upper
pairs of the curves correspond to pressures of 7 and 30 kbar,
respectively. Heating and cooling are shown by arrows.
Determination of the initial temperature of the α  β
transformation is illustrated in the heating curve at 7 kbar.
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to 750°C in quasi-hydrostatic pressure chambers cali-
brated against the phase transitions in Bi and Ti. We
used chambers of two types with the operating pressure
ranges from 2 to 30 kbar (a lens-type chamber) and
from 20 to 70 kbar (a toroid-type chamber). The pres-
sure was determined accurate to within ± 5%. Elements
of an experimental assembly were arranged inside a
sleeve fabricated from pyrophyllite annealed at 900°C.
The sleeve was inserted into a channel of a catlinite
container. The studied sample and a reference sample
(stainless steel) in pyrophyllite dishes were arranged in
an operating channel in a symmetric fashion about the
symmetry plane of the container (the experimental
assembly was described in more detail in [15]). The heat-
ing and cooling rates were equal to about 40 K/min. Sig-
nals from differential and absolute thermocouples were
fed into an N-306 self-recorder. The temperature,
which corresponds to a maximum of the thermal peak
in the DTA curve, was taken as the phase transition
point. The boundaries of the phase transition range
were determined as points of intersection between two
tangent lines, of which one tangent line is an extension
of the normal portion of the DTA curve and the other
line is an inflectional tangent to ascending or descend-
ing branches of the peak, respectively.

In the operating channel, there are unpredictable
temperature gradients [15], which, at high tempera-
tures, can bring about systematic errors in magnitudes
of temperatures, even though these errors are of less
importance in determination of the relative changes in
the transition temperatures. In order to simplify the
determination of the curve location in the T–P diagram,
the α–β transition temperature in the TiZr alloy at
atmospheric pressure was measured by the calorimetric
technique. Then, the pressure dependences of the tran-
sition temperatures, which were obtained in particular
experiments, were located with reference to the temper-
ature found by the calorimetric technique.
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Fig. 2. DTA curves for the Ti49.6Zr50.4 alloy in the pressure
range 24–70 kbar (a toroid-type chamber). Lower, middle,
and upper pairs of the curves correspond to pressures of 25,
37, and 55 kbar, respectively. Heating and cooling are
shown by arrows.
0
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The calorimetric measurements at atmospheric
pressure were carried out on a Perkin–Elmer DSC7 dif-
ferential scanning calorimeter in the range from room
temperature to 700°C in an argon stream at heating and
cooling rates of 20 K/min. Prior to each experiment,
the calorimeter was calibrated in temperature and sen-
sitivity against In and Zn references samples. The DTA
curves were processed with a software package fur-
nished with a calorimeter.

The X-ray diffraction patterns were recorded in
reflection geometry under normal conditions on a
DRON4.07 automated diffractometer (MoKα radia-
tion). The patterns were fitted with the DBWS-9411
standard program for multiphase profile analysis.

2. RESULTS AND DISCUSSION

The greater part of the DTA measurements under
pressure was performed with bulk samples cut from an
ingot of the initial alloy. Figures 1 and 2 demonstrate
the evolution of thermal anomalies in the DTA curves.
At the lowest pressures, the heating and cooling curves
show only one thermal peak at the temperature corre-
sponding to the α–β transformation in the alloy. As the
pressure increases, the α–β transition temperature
decreases. Beginning with a pressure of about 7 kbar,

0 10 20 30 40 50 60 70

α ω

β

TiZr

400

500

600

P, kbar

T, °C

Fig. 3. Curves of the α  β and ω  β transformations
in the T–P phase diagram of the Ti49.6Zr50.4 alloy. Symbols
indicate the maxima of thermal peaks, vertical segments
represent the transformation ranges, and horizontal dashes
display sharp peaks of explosion-like heat release in cooling
curves. Open and solid symbols correspond to the heating
and cooling, respectively. Circles are the calorimetric data at
P = 1 atm. Rhombuses and triangles represent the results of
measurements in two pressure ranges in different chambers.
Thin lines are drawn by the least-squares method through
the initial points of the α  β transformation ranges
determined in a lens-type chamber, solid heavy lines indi-
cate the schematic boundaries of the α–β and ω–β equilib-
ria, and dotted lines show the extrapolation of the ω–β equi-
librium curve to atmospheric pressure. The dashed line cor-
responds to the α–ω phase boundary.
P

the thermal effects in the cooling curves exhibit a new
feature: the onset of the transformation manifests itself
as a sharp peak corresponding to the explosion-like
heat release, after which the curve returns to the shape
characteristic of thermally activated transformations
with normal kinetics. The height of a sharp peak of
explosion-like heat release is determined by the frac-
tion of the product that undergoes the β  α transi-
tion in a jumpwise fashion. The fraction increases in a
certain pressure range and, then, decreases to the com-
plete disappearance at pressures above 37 kbar (cf.
Figs. 1, 2). This feature suggests two mechanisms of
the β  α transformation: as the mobility of metal
atoms decreases with an increase in the pressure and a
decrease in the temperature, the thermally activated
character of the β  α transformation progressively
changes to martensitic explosion-like. The change in
the mechanism of the β  α transformation is con-
firmed by the shape of the cooling curves at pressures
below 7 kbar: the ascending branches of peaks in these
curves are sawtooth rather than smooth, which implies
that the initial stage of the transformation in these cases
occurs as a sequence of small abrupt changes.

Beginning with a pressure of 27.5 kbar, the heating
curves also exhibit a new feature (Figs. 1, 2). At tem-
peratures ∼ 100 K below the thermal peak of the α–β
transformation, the second peak appears in the heating
curves. Initially, the second peak is small in area, but,
with a further increase in the pressure, its area increases,
whereas the first peak decreases in area down to the com-
plete disappearance at pressures above 48 kbar (Fig. 2).
No splitting of the peaks is observed in the cooling
curves. If the sample was cooled from a temperature
lying in the range between the completion of the first
transformation and the onset of the second transforma-
tion upon heating, the area of the peak in the cooling
curve was less than that observed upon cooling from a
temperature lying above the completion of the second
transformation. This suggests that, upon heating, two
transformations proceed at different temperatures,
whereas, upon cooling, these processes occur within
the same temperature range and contribute to the same
peak in the DTA curves. The aforementioned features
of the DTA curves are summarized in the T–P diagram
of the TiZr alloy (Fig. 3), in which symbols correspond
to the maxima of the peaks and vertical segments indi-
cate the ranges of thermal anomalies. A clear-cut
change in the slope of the transition curves shown in
Fig. 3 and the splitting of thermal anomalies in the heat-
ing curves indicate that, at temperatures below the tran-
sition lines, there is the transition from the α-phase to
the high-pressure phase.

A series of DTA measurements with the chip-
pressed isotropic sample under a pressure up to 60 kbar
was carried out with the aim to provide support for the
existence of the high-pressure phase and also to reveal
its structure. The sole difference between the thermal
effects in the DTA curves obtained in these experiments
and those shown in Figs. 1 and 2 resides in the absence
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
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of the peaks corresponding to the explosion-like onset
of the β  α transformation in all the cooling curves.
The sample was cooled under a pressure of 60 kbar and,
then, was unloaded at room temperature. The X-ray dif-
fraction pattern of this sample is depicted in Fig. 4. This
pattern is well identified with the hexagonal ω-phase
with the unit cell parameters a = 4.843 Å, c = 2.988 Å,
and c /a = 0.617 (space group P6). The calculated and
theoretical discrepancy factors are Rcalcd = 5.4% and
Rtheor = 4.0%. The positions of reflections with percep-
tible intensity (for the MoKα1 radiation) are indicated
by dashes in Fig. 4. The splitting of lines into the Kα1
and Kα2 doublets illustrates the quality of samples and
their single-phase nature. The difference pattern repre-
sented below the experimental X-ray diffraction pattern
in Fig. 4 demonstrates the quality of the fitting. The unit
cell parameters obtained are approximately 0.01 Å
larger than the corresponding parameters for the com-
pressed samples [11].

In order to confirm that the presence of two thermal
effects in the heating curves at pressures in the range
between 27.5 and 48 kbar is brought about by the for-
mation of two phases (namely, the α- and ω-phases)
upon cooling, another pressed sample was prepared
using the procedure described above, but at a maximum
pressure of 35 kbar. As expected, the X-ray diffraction
pattern of this sample is a superposition of the diffrac-
tion patterns for the α- and ω-phases.

For the T–P diagram to be correctly constructed, the
experimental data on the phase transformations in the
TiZr alloy at different pressures should be referred to
the characteristics of the α–β transition at atmospheric
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
pressure. As mentioned above, there is a large scatter in
these characteristics determined by different authors.
This is not surprising, since the mechanism and kinetic
characteristics of the α–β transformation can depend
on factors such as the impurity composition, the pres-
ence of new phase nuclei governed by the defect struc-
ture of the alloy, and the heating and cooling rates. In
this respect, for the purpose of more accurately refer-
ring the data obtained at different pressures to those
measured at atmospheric pressure, we made special
measurements of some characteristics for the α–β
transformation in the TiZr alloy by the calorimetric
technique.

In order to evaluate how the prehistory and defect
structure affect the parameters of the α–β transition, the
calorimetric measurements were performed with sam-
ples of three types: the bulk samples annealed under a
vacuum of 10–5 mm Hg at 750°C and cooled together
with a furnace, the chip-pressed samples without
annealing, and the samples completely transformed
into the ω-phase after the compression experiments.
The thermal anomalies observed in the first heating–
cooling cycles for these three samples are compared in
Fig. 5a. To obtain a pictorial representation of the ther-
mal effects of the transformations in Fig. 5, the base
lines were subtracted from the experimental calorimet-
ric curves. The base lines were plotted for each curve
with a cubic spline from the reference points outside
the range of thermal anomaly. In turn, the thermal
anomaly range in the calorimetric curve was deter-
mined from the deviation of its derivative from values
that rather weakly vary outside this range.
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All the curves exhibit thermal peaks associated with
the α–β transformation. The peaks are approximately
identical in areas, but differ considerably in shape. For
the strongly deformed pressed sample, the ascending
branch of the peak is steepest, and the peak width does
not exceed 30 K. Upon heating in a calorimeter, the
sample, which has been transformed into the ω-phase
under pressure, initially undergoes the irreversible
ω  α transformation in the temperature range
425−470°C (shown on an enlarged scale in the inset in
Fig. 5a). For this sample, the peak corresponding to the
α–β transition begins at the lowest temperature and
rises least steeply. The ascending branch of the peak
shows more than one inflection point, which indicates
the multistage character of the process. The total width
of the peak is almost twice as large as that for the
pressed sample. Therefore, the differences in defect
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Fig. 5. (a) Calorimetric curves of the Ti49.6Zr50.4 alloy in the
first heating–cooling cycles for (1) bulk sample annealed
under vacuum at 750°C, (2) chip-pressed sample (without
annealing), and (3) ω-phase sample after the DTA experi-
ment under pressure. Heating curves are at the top, and cool-
ing curves are at the bottom. Heating and cooling rates
dT/dτ are 20 K/min. The thermal peak associated with the
ω  α transformation in the third sample is shown on an
enlarged scale in the inset. (b) Calorimetric curves of the
three heating–cooling cycles for the Ti49.6Zr50.4 sample
after the DTA experiment under pressure (the initial state
corresponds to the ω-phase; cycle numbers are given in the
legend). Heating curves are at the top, and cooling curves
are at the bottom. Heating and cooling rates dT/dτ are 20
K/min. Graphic determination of the initial temperature T0
of the α  β transformation is illustrated in the heating
curve for the third cycle.

(a)

(b)
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structures of the samples differently treated prior to the
measurements actually have a pronounced effect on the
initial temperature and the character of the transforma-
tion in the alloy.

However, the effect of preliminary treatment of the
alloy manifests itself so strongly only in the first cycle.
Beginning with the second cycle, the thermal peaks for
all the samples become identical in shape, and the tem-
perature range of anomalies in different experiments
and cycles coincide to within ± 5 K (Fig. 5b). As in the
DTA experiments, the onset of the transformation was
determined from the intersection of two tangent lines
(see Fig. 5). The initial temperature T0 averaged over all
the experiments is equal to 612°C for heating and
546°C for cooling. Usually, it is believed that the tem-
perature of the phase equilibrium is the average of the
initial temperatures obtained upon heating and cooling,
which results in Teq = 579°C for the α–β transformation
in the TiZr alloy. The hysteresis interval associated with
this transformation is equal to 66 K. The averaged
enthalpy ∆H of the α–β transition is 40.9 ± 2.0 J/g. As
can be seen from Fig. 5, the peaks are asymmetric:
upon both heating and cooling, the low-temperature
portions of the peaks show a tail whose origin is difficult
to explain by methodical causes. Most likely, the low-
temperature tail stems from the phase strain hardening in
the β  α transformation, which retards the comple-
tion of the transformation upon cooling, and, in the next
heating cycle, the transformation is preceded by stress
relaxation. An alternative, but less probable, explana-
tion implies strong changes in the α-phase near the
phase transition. The elucidation of the nature of this
low-temperature tail is beyond the scope of the present
work. However, it is clear that, if the tail is brought
about by the phase hardening or pretransitional anom-
aly in the α-phase, the true enthalpy of the α–β transi-
tion should be less than our value given above by
approximately the area under this section of the calori-
metric curve.

A comparison with the available data on the initial
temperature of the α  β transformation in the TiZr
alloy shows good agreement (to within 3 K) between
our results and those obtained in [8] (heating rate,
300 K/min). On the other hand, our estimate for the
onset of the β  α transition considerably differs
from the temperature (600°C) reported in [8]. The rea-
sons for this disagreement are not quite clear. In partic-
ular, Auffredic et al. [8] pointed out the influence of
impurities on the temperatures and hysteresis interval
of the α  β transformations and also the possibility
of reaction between the TiZr alloy and container mate-
rial of the measuring cell. The fact that the peak shapes
are irreproducible in the sequentially measured thermal
curves also suggests that the experimental results
obtained in [8] depend on foreign factors such as con-
tamination of the alloy in the course of thermal cycles.
Blacktop et al. [9] measured only the α  β transition
temperatures and obtained the values of T0 = 606°C for
the Ti0.6Zr0.4 alloy and T0 = 591°C for the Ti0.4Zr0.6
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
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alloy, which are considerably less than the T0 tempera-
tures obtained in our work and in [8]. In our case, the
found enthalpy of the α–β transition lies between the
value of ∆H = 35.4–36.7 J/g for the TiZr alloy with
the smallest content of the initial impurities [8] and
∆H = 45.8–51.2 J/g for the alloys with 40 and 60 at. %
Ti [9]. With due regard for the fact that the origin of the
low-temperature tail of thermal peaks in Fig. 5 remains
unknown, the true enthalpy of the α–β transition in our
TiZr alloy can coincide with the value reported in [8],
to within the limits of experimental error. Conse-
quently, except for the β  α transition temperatures,
our calorimetric data and the results obtained in [8] are
in a reasonable agreement.

The enthalpy of the ω  α transformation in the
ω-TiZr alloy after the DTA experiment under pressure
is equal to 2.8 J/g. Note that a small thermal peak in the
vicinity of 450°C was also observed for the sample,
which, after the annealing under vacuum, was cooled to
room temperature (for this purpose, the external heat-
ing furnace was removed from an evacuated sealed sil-
ica tube with the sample). This indicates that the
ω-phase is formed in the TiZr alloy even at relatively
low rates of quenching. The formation of metastable
phase under these conditions points to the existence of
a high barrier to the β  α transition and agrees with
the large hysteresis interval for the α–β transformation.

The α–β transition parameters, which were measured
by the calorimetric technique, served as the references
points for the construction of the T–P diagram in Fig. 3.
The α  β transition curves plotted in the pressure
range up to 30 kbar (a lens-type chamber) and the calo-
rimetric data are in complete agreement. The slopes
dT /dP of straight lines drawn by the least-squares
method through the initial temperatures of transitions
are equal to –1.9 and –2.5 K/kbar for heating and
cooling, respectively. By passing the α–β equilibrium
boundary as the midline between the curves of the
direct and reverse transformations, we have dT /dP =
–2.2 ± 0.3 K/kbar. This is somewhat lesser in magni-
tude than the slopes of the α–β equilibrium curves for
pure Ti and Zr (approximately –3 K/kbar [1–3]). The
hysteresis interval for the α–β transformation in TiZr
alloy increases with an increase in the pressure and a
decrease in the temperature, which can be accounted
for by the fact that a decrease in the temperature hinders
the overcoming of potential barriers to the transition.

At pressures up to 30 kbar, the experimental points
obtained in the pressure range 24–70 kbar (a toroid-
type chamber) fall on an extension of the α  β tran-
sition curves (Fig. 3). In the range from 30 to 50 kbar,
the slope of the β  α transition curve smoothly
changes upon cooling, so that the curve goes into the β

 ω transition curve. The points of the ω  β tran-
sitions upon heating fall on the straight line with the
slope dT /dP = 0.46 K/kbar. Upon linear extrapolation
to atmospheric pressure, the ω  β transition curve
intersects the temperature axis in the range of the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      200
ω  α transformations. The hysteresis interval of the
β–ω transformation is small as compared with that of
the α–β transformation, which is indicative of a lower
potential barrier to the β  ω transitions.

Now, let us discuss the nature of the two-phase state
formed after the DTA cooling cycle at pressures in the
intermediate range 28–48 kbar. It is believed that the
ω-phase formed in this case is metastable. This
assumption is based on the above fact that the β  α
transformation is substantially hindered owing to a
decrease in the diffusive mobility of metal components
with an increase in the pressure and a decrease in the
temperature. At the same time, as the pressure
increases, the depth of the local minimum in the ther-
modynamic potential that corresponds to the ω-phase
approaches the depth of the absolute minimum corre-
sponding to the α-phase. Well before the depths of min-
ima turn out to be equal to each other, that is, beginning
with a pressure of ∼ 28 kbar, the barrier to the transition
from the β-phase to the ω-phase (metastable at these
pressures) becomes less than the barrier to the transi-
tion to the α-phase. Therefore, in the pressure range
28–48 kbar, the β-phase becomes unstable upon cool-
ing and transforms into both the stable α-phase and the
metastable ω-phase, which, in turn, is responsible for
two transitions upon the subsequent heating. In the
pressure range, where the ω-phase becomes stable, the
α  β transition is not observed in the heating curves.

On the other hand, if the (α + ω) two-phase state was
thermodynamically stable under these pressures at low
temperatures, this would imply that, in the T–c sections
of the three-dimensional T–P–c diagram, the points of
equal concentrations for the α–β and ω–β equilibria
should differ in concentration. As a consequence, for the
TiZr equiatomic alloy, the β  ω transformation upon
cooling at the pressures P > 48 kbar should be accompa-
nied by the intersection of the two-phase (ω + β)-region.
The intersection of the (ω + β)-region would lead to the
dispersion of concentration in the ω-phase and the
smearing of its X-ray diffraction pattern, which, how-
ever, is not observed experimentally.

Therefore, with a fair degree of confidence, it can be
concluded that the point of the α–β–ω three-phase
equilibrium in the TiZr equiatomic alloy is located at
P = 49 ± 3 kbar and T = 460 ± 30°C, i.e., at the consid-
erably lower pressure as compared to the value pre-
dicted earlier from the calculation by Aksenenkov et al.
[11].

At atmospheric pressure, the α  β transforma-
tions in the TiZr equiatomic alloy are characterized by
a rather large hysteresis interval (up to 66 K) and the
heat of transition ∆H = 40.9 ± 2.0 J /g. The α–β equi-
librium temperature determined as the average of the
transition points upon heating and cooling is equal to
579 ± 5°C. In the pressure range up to 28 kbar, the α–
β equilibrium temperature linearly decreases with the
slope of the equilibrium curve in the T–P diagram
dT /dP = –2.2 ± 0.3 K/kbar. At pressures in the range
0
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from 28 to 48 kbar, the β-phase upon cooling trans-
forms into the two-phase mixture of the stable α-
phase and the metastable ω-phase, which, upon subse-
quent heating transforms into the β-phase through two
individual phase transitions. At pressures above the
triple point with the coordinates P = 49 ± 3 kbar and
T = 460 ± 30°C, the ω-phase is the low-temperature
stable phase. The hysteresis interval for the ω  β
transformations is close to zero, and the slope of the
ω–β equilibrium boundary is positive, dT /dP =
0.46 °C/kbar. Under normal conditions, the unit cell
parameters of the ω-phase are as follows: a = 4.843 Å,
c = 2.988 Å, and c /a = 0.617. At atmospheric pres-
sure, the ω-phase of the TiZr alloy transforms into the
α-phase in the temperature range 425–470°C with the
heat of transition ∆H = 2.8 J /g.
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Abstract—The effect of the nonlocality of the metallic-state instability upon the formation of semiconducting
domains is considered theoretically in terms of the “strain” theory of the formation of superlattices consisting
of alternating metallic and semiconducting phases in a vicinity of the critical point of the thermodynamically
equilibrium phase transition metal–semiconductor in single-crystal vanadium oxide films. The above effect is
shown to lead to the stabilization of a heterostructure in the region where the dimensions of the semiconducting
and metallic domains are approximately equal. The obtained theoretical temperature dependence of the hetero-
structure period d is compared with the experimental data. © 2000 MAIK “Nauka/Interperiodica”.
1. The experimental investigations [1] of single-crys-
tal vanadium dioxide films of thickness h = 0.18 µm on
a substrate with the crystal axis c of the film being par-
allel to the substrate show that with decreasing temper-
ature near the critical point Tc = 340 K, there first
appear isolated, relatively far separated regions of the
semiconductor phase in the form of long stripes of
width a ≈ 1.2 µm located perpendicular to the c axis. As
the temperature decreases further, the positions of the
semiconductor domains and their dimensions remain
unaltered, whereas in the region of the retained metallic
phase, new semiconductor regions of a similar shape
are formed, so that the general picture looks like a s
quasi-one-dimensional heterostructure of alternating
metallic and semiconductor phases.

The theory of the superlattice formation that was
developed in [2] based on the “strain” mechanism
implies that the sufficient condition for the formation of
a semiconductor domain is the existence in the metallic
phase of at least one point with a Peierls instability
against the transition into the semiconductor state [3–5].
The theoretical temperature dependence of the spatial
period d(T) of the heterostructure [2] is in qualitative
agreement with the experimental data of [1], but the
plateau observed in the experimental curve (see figure)
has not been explained in [2].

In this work, we take into account, in terms of [2],
that for a semiconductor domain of size a to be formed
in the metallic phase, a region with the Peierls instabil-
ity should appear, whose dimensions should be close to
that of the arising semiconductor domain (effect of the
nonlocality of the metallic-phase instability). This
imposes more rigid conditions (as compared to the case
of point instability of the metallic phase considered in
[2]) on the possibility of the formation of new semicon-
1063-7834/00/4201- $20.00 © 0177
ductor domains and thus stabilizes the heterostructure.
This makes it possible to more adequately describe the
available experimental data. In particular, this permits
us to account for the almost horizontal plateau in the
experimental d(T) dependence, which corresponds to
almost identical dimensions of the metallic (b) and
semiconductor (a) domains (b ≈ a).

2. Let us consider a VO2 film in which several iso-
lated semiconductor stripes of width a were formed at
a certain temperature T. We introduce the coordinate
axis X in such a manner that it is parallel to the c axis
(which is parallel to the substrate surface) with the ori-
gin located at the center of the metallic phase domain.
Upon the transition into the semiconductor phase, VO2
is known to expand along the c axis [6]; the correspond-
ing expansion coefficient is

(1)

where ls and lm are the lengths of the VO2 sample along
the crystal axis c in the semiconductor and metallic
states, respectively. Owing to this expansion, a
mechanical stress σ directed along the crystal axis c
arises in the metallic region of the film (at |x| < b/2),
which can be approximately calculated by the follow-
ing formula [2]:

(2)

Here, E and E0 are Young’s moduli of the film and sub-
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strate, respectively; and

(3)

It can be seen from (2) and (3) that the mechanical
stress σ is greatest near the boundaries with the semi-
conductor domains (at x = ±b/2) and decreases toward
the center of the metallic domain (x = 0); the character-
istic length is l ≈ Eh /E0 ≈ a /2.

The temperature Tc of the instability of the metallic
phase with respect to the transition into the semicon-
ductor state is well described (in a wide range of chang-
ing stresses) by the formula [3, 7]

(4)

J x( ) x( ) π
2
--- Si x( )–cos x( )Ci x( ).sin+=

Tc T0 γσ.+=
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336 337 338 339 340

T, K

d, µm

Experimental and calculated dependences of the superlat-
tice period d on temperature T. Solid line corresponds to
numerical calculation using formulas (2) and (5); solid cir-
cles represents the results obtained from the experimental
data on the diffraction of light on a quasi-periodic superlat-
tice formed by different phases that arise in the VO2 film [1].
P

where T0 = Tc(σ = 0) ≅  340 K is the temperature of the
Peierls instability of VO2 at σ = 0, and γ = ∂Tc/∂σ ≅
−1.2 × 10–9 K cm2/dyne. Therefore, we find the condi-
tion for the formation (at a temperature T) of a new
semiconductor domain of size a in the center of the
metallic domain as follows:

(5)

The results of a numerical analysis of equations (2),
(5), which form a closed set of equations for the deter-
mination of the temperature dependence of the average
spatial period of the heterostructure d = a + b, are
shown in the figure.

In the temperature range 336 < T < 339 K, the theo-
retical results obtained agree well with the experimen-
tal data of [1]. At temperatures of 339–340 K, when
b @ a, the mechanical stress σ (2) produced by the
semiconductor domains in the region |x| < (b – a)/2 is
small in comparison with random mechanical stresses
in the film that may arise during film preparation (due
to cracks, scratches, and other defects). Therefore, the
process of the formation of new domains of the semi-
conductor phase at the initial stage (at b @ a) is prima-
rily determined by the initial spatial fluctuations of
strains in the film and cannot be described in terms of
the suggested theory.
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Abstract—A study is undertaken into the kinetics of phase transitions in solids under a load at a fixed temper-
ature. The critical size of the micropores forming at a given load in the course of a phase transition in a material
is found. The steady-state flux of pores in size space and the time required to reach this state, which depend at
a given load on the surface energy of the solid and on an additional parameter characterizing the boundary kinet-
ics of microdefects, are calculated. The parameters found in this work, which describe the onset of the latent
stage in the fracture of a solid and the intensity of defect formation in the material in this stage, are new in the
mechanics of fracture. This approach allows generalization to load-induced structural and martensitic transi-
tions. © 2000 MAIK “Nauka/Interperiodica”.
This work is a continuation of our investigation [1]
on the initial stages in the fracture of strained solids.
The model of microcrack formation has been devel-
oped in [1]. According to this model, the deformation
of a solid initiates fluctuations of the surfaces of the
already existing microflaws. When entering the region
where the load gradient exceeds a critical level, the
fluctuations begin to grow. In these conditions, the sur-
face of a microflaw can lose stability, and the fluctua-
tions will propagate into the bulk of the material. It is
these fluctuations that are actually microcracks.

Thus, the fracture starts with the development of
microflaws, and it is the kinetics of their nucleation that
we are going to study in this work.

The concept of the fracture of strained solids as a
multi-stage process is well known and has been reliably
supported by the experiments on many materials under
diverse testing conditions. Investigations of various
stages of the process has stimulated the development of
the micromechanics of fracture and become the subject
of a number of monographs [2–4]. Identification of the
onset of the latent stage preceding the formation of
microcracks in a solid is currently an urgent problem,
because actually from this moment, microflaws can be
studied by methods of the mechanics of deformable
continuum. Note that the process of pore formation in
solids is usually considered as pore nucleation from a
supersaturated vacancy solution [2]. It is assumed that
vacancies in a solid are either created by ionizing radi-
ation or are already present at a given temperature. The
pores themselves grow through the diffusion of incom-
ing vacancies, and extended diffusion fields appear in
the solid. Obviously enough, pore formation in a loaded
sample occurs in a somewhat different manner.
1063-7834/00/4201- $20.00 © 20179
1. PHYSICAL ESSENCE OF THE PROBLEM

Loading a deformable solid with defects, without
which it cannot exist in a thermodynamic equilibrium,
generates heterophase fluctuations of stresses, strains,
and material density. After the local stresses have
reached a certain level, microflaws start to nucleate in
the solid. These microflaws grow not by the vacancy
diffusion mechanism, but rather through the creation of
vacancies in the immediate vicinity of the pore surface
or at the surface itself, and through their transfer from
the solid into the pore. Thus, we conceive pore nucle-
ation under loading as a process similar to nucleation of
a new phase from a melt [5, 6].

It is well known that the driving force of any first-
order phase transition is the difference between the
thermodynamic potentials in the new and old phases. In
the case of solutions, this potential difference is a con-
sequence of a difference between the concentrations
and, correspondingly, the energy states of atoms in the
new and the old phase. For pure solutions, this potential
difference is a result of different stabilities of the new
and old phases to temperature. In the case of pore
growth under loading, the driving force of pore forma-
tion can be likewise the difference between the thermo-
dynamic potentials of the continuum (the old phase)
and the pore (the new phase). This potential difference
originates from the difference between the vacancy
states in the solid and the pore under loading. Consider
now quantitatively the process of micropore nucleation
and, in order to obtain the critical size of the
micropores, we start with calculating the minimum
work required to create a micropore.
000 MAIK “Nauka/Interperiodica”
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2. MICROPORES OF CRITICAL SIZE

In accordance with [7], we can write the Gibbs poten-
tial in a loaded solid as Φ(σ) = F(σ) – Ae, where F is the

free energy of the solid, and Ae(σ, v) =  : εdv  is the

elastic potential energy of the region of the solid in vol-
ume v, where σ and ε are the stress and strain tensors.1

When a material is loaded, there arise local metastable
regions, in which, before the pore nucleation, the stress
is σv, and after the pore formation, . We denote the
specified macroscopic uniform (mean) stresses in a
loaded solid by σ0.

We assume the micropore nucleus forming in a
metastable medium under loading to be spherical.
Besides, we assume for the sake of simplicity that the
vacancy is an elementary structural element making up
the pore.2 The difference between the thermodynamic
potentials before and after the nucleation can be written
as F'( ) – Ae(σv , v ') – (F(σv) – Ae(σv , v)). We
express the minimum work done by an external load to
produce a nucleus through the difference between the
thermodynamic potentials and additional terms in the
form of the work done by the elastic stresses Ae and the
work required to create the surface

(1)

where 4πγr2 describes the work of formation of the sur-
face for a nucleus of size r. Assuming a small degree of
metastability, for the state with a new phase, we have
the first-order approximation Φ'( ) = Φ'(σv) +

(Ae(σv , v ') – Ae( , v ')). Introducing the chemical
potentials for a vacancy in the medium µ and in the pore
of radius R = ∞, µ' and using this expansion, from (1),
we obtain

(2)

where Ω is the vacancy volume. By varying the work
(2)

(3)

one obtains the maximum of the volume for  = 0,

which is reached at the critical size rc of the nucleus. As
follows from (3), at r < rc, the nuclei decrease in size, at

1 For σ = –PI, where I is the identity tensor, we have the isobaric–
isothermal potential, and the critical size of defects for this case is
considered in [8].

2 In a general case, any point or line defects can act as structural
elements.

σ
v( )∫

σv ''

σv ''

Amin Φ' σv ''( ) Φ σv( )–=

– Ae σv v ',( ) Ae σv '' v ',( )–( ) 4πγr2,+

σv ''

σv ''

Amin
4
3
---πr3

Ω
-------- µ σv( ) µ' σv( )–( )– 4πγr2,+=

δAmin

δr
-------------

4πr2

Ω
----------- µ σv( ) µ' σv( )–( )– 2γΩ

r
----------+ 

  ,=

δAmin

δr
-------------
P

r  > rc, they grow, and for r = rc the nucleus is at equi-
librium, where

(4)

Here, σv is the stress tensor corresponding to the meta-
stable state of the effective region. The chemical poten-
tial of a vacancy in the original medium µ(σv) can be
expressed in a first approximation through the chemical
potential in the unstressed state and the work done by the
stresses on the strains associated with the stress-induced
distortion of the vacancy: µ(σv) = µ(0) + Ωε0 : σv. The
chemical potential of vacancies in the pore nucleus
phase is equal to µ(0), then

(5)

As follows from (5), nucleation of pores under load is
similar to sedimentation of a solid phase from a solu-
tion, where the role of supersaturation is played by a
specified stress tensor σ0.

A particular case of this relation for all-sided tensile
stresses is discussed in monograph [9] with usual reser-
vations about the impossibility of homogeneous nucle-
ation through mutual diffusion, which would require
stresses in excess of the elastic limit of a material. The
approach developed in this work makes use of a proba-
bilistic measure of the formation of a nucleus, which
assumes, at the physical level, the existence of het-
erophase stress-field fluctuations under load and the
possibility of realization of formula (5).

In the uniaxial case, when the only component s of
the σ0 tensor is close to its extreme value sf, the critical
size should be equal to the size of the starting defect a,
of which the pore originates.3 This brings us to the rela-

tion εfsf = 2γ/a, which at a = a0, coincides with the

breaking strength by Orowan [10] and is , where a0

is the equilibrium interplanar distance (with no load
applied), and εf is the limiting strain.

3. KINETICS OF MICROPORE FORMATION
IN A BRITTLE BODY

We have shown that the process of micropore for-
mation is similar to the nucleation of a new phase in
first-order phase transitions. A loaded solid is locally in
a metastable state. The transition of a metastable to the
stable state occurs through formation in the originally
homogeneous body of micropores, i.e., nuclei of voids,

3 It should be pointed out that the model of vacancy as a defect with
surface tension is a good approximation to estimate the energy of
formation of vacancies, bivacancies, and the vacancy migration
energy in a material.

rc
2γΩ

µ σv( ) µ' σv( )–
-------------------------------------.=

rc
2γ

ε0 : σ0
---------------.=

4
π
---

π
2
--- γ

a0
-----
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by the fluctuation mechanism. As is seen from formula
(3), stable nuclei are those of the critical size.

Our description of the micropore formation process
will be based on the Fokker–Planck equation, which is
used widely in the kinetics of first-order phase transi-
tions [5]. For this purpose, we introduce the distribution
function of micropore nuclei in size f(r, t), where r is
the micropore radius, and f(r, t)dr is the number of
nuclei with sizes in the interval [r + dr, r) at instant of
time t in a unit volume of the material. Note that one
can use two approaches to derive the equation describ-
ing micropore formation. The first of them is due to
Zeldovich [11, 12]. In this approach, in deriving the
rate equation, one should use the equilibrium distribu-
tion function of nuclei in size. By the second approach
developed in [13, 6], in order to derive the equation for
new phase nucleation, one has to find the relation
between the probabilities of emission and absorption of
structural elements. In our case, these structural ele-
ments are vacancies. When using the latter approach,
there is no need to invoke the equilibrium distribution
function. In the final count, both approaches yield the
same results. Using [11–13], we can obtain the rate
equation describing the evolution of the nucleus distri-
bution function in size, that is,

(6)

where Dr is the pore diffusion coefficient in the size

space. The expression –  is the drift coeffi-

cient for equation (6) and determines the average rate of
pore radius variation

(7)

To find the diffusion coefficient in the size space, one
has to consider the kinetics of averaged growth in
accordance with the boundary kinetics of vacancy
transport through the nucleus boundary r, which is

given by the equality  = –V, where V is the rate of this

process. We accept within a linear approximation that
the rate of vacancy transport from the solid into a pore
is proportional to the force acting on a vacancy, V = βF,
where, in accordance with Section 2, the thermody-
namic force F is determined by the expression F = –

; here a is the size of the structural element, and

 = µ' + . Hence, using (3), one can write the rate

of pore nucleus growth in the form

(8)
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As follows from expressions (3) and (4), at r < rc, we

have  > 0, and the nuclei decrease in size in accor-
dance with (8), whereas, at r > rc, they continue to grow.
A comparison of expressions (7) and (8) yields the fol-
lowing relation for the diffusion coefficient in the size
space

(9)

Relation (9) shows that, as the radius increases, the dif-
fusion coefficient in the size space decreases, which
results in a decrease of the probability for a pore to
appear as its size increases.

4. CHARACTERISTICS OF THE PORE 
NUCLEATION PROCESS

By solving the steady-state equation (6) and taking
into account (8) and (9) subject to the natural boundary
conditions f(r, t)  N(t), where N(t) is the number of
atoms per unit volume, at r  0, and f(r, t)  0 at
r  ∞, in the same way as it is done in [6, 11, 12], we
can obtain the characteristics of the kinetic process.
The steady-state number of nuclei passing through a
unit volume per unit time is estimated from the expres-
sion for the steady-state flux I

(10)

In (10), the diffusion coefficient in the size space is
given by equation (9). The values of the diffusion coef-
ficient (9), the minimum work (2), and its second deriv-
ative for the critical radius are calculated using (5)

(11)

(12)

(13)

From expressions (11) and (13), one finds the steady-
state flux

(14)

This expression provides a scalar characteristic of the
initial stage in the fracture process, which is essentially
the stage of nucleation of stable microdefects. If the σ0
level grows from one sample to another, the flux (14)
increases, and the critical size of the pore nuclei
decreases. For σ0  σf, the flux in the size space per

Ar'
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unit time reaches a maximum, so that the material can
undergo macrofracture by the ideal brittle mechanism.

The time for a steady-state flux to set in can be writ-
ten as

(15)

where δrc is the width of the region near the critical
point given by the expression [13]

Thus, using (11) and (13), we can calculate the time of
establishment of a steady-state flux for a phase transi-
tion under load (15) from the relation

(16)

For σ0  σf, the time t decreases to reach in the limit
its minimum tmin. Relation (16) can be used to derive
the relation connecting the surface energy (Aγ = γa2)
with the potential energy of the structural element of
the medium (A = Ωε0 : σ0), which has the form αAγ =

A, where α =  is a dimensionless parameter less

than unity. Ideal brittle fracture occurs at α = 1, which

yields an estimate for the kinetic parameter β = .

In the case of nonideal brittle fracture, the excess of the
potential energy of a strained medium (α – 1)Aγ is
expended to propagate an acoustic wave, whose eigen-
frequencies are determined by the size of the critical
nucleus, and the amplitude depends also on the excess
of potential energy [7]. The elastic potential energy of
a material behaving in a plastically elastic manner is
expended to create plastic zones near micropores. We
believe that (16), as well as relation (14), are character-
istics of the latent stage in the brittle fracture of materi-
als.

A similar situation occurs in loaded bodies, in which
martensitic or structural transformations take place
[14]. Indeed, equations (6), (8), and (9) derived by us to
describe the kinetics of micropore formation also ade-
quately reproduce the formation of new-phase nuclei in
diffusionless transformations. In deriving these equa-
tions, we did not invoke additional assumptions con-
cerning the nature of the new phase, a micropore being
nothing else but a negative crystal.

When considering a structural transition, we have to
replace the coefficient β in the equation (8) describing
the pore growth rate with another coefficient character-
izing the rate of atom transfer from one phase to
another. All the other equations remain unchanged.

t
δrc( )2
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tβγ
------------

π/34

t1γ
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5. DISCUSSION

We have considered here the nucleation of pores
within the framework of the kinetics of a first-order
phase transition in a loaded material. The critical radius
of a stable pore nucleus in a loaded material, which is
determined by the surface energy of a body and the
potential energy of a strained medium, has been
obtained. The kinetics of pore nucleation is described
using an additional parameter characterizing the behav-
ior of a material on the microscale.

The kinetics of a phase transition in a loaded body
is determined by the flux of nuclei in the size space (14)
and the time for this flux to reach a steady-state level
(16), similar to the processes involved in sedimentation
of a solid phase from a solution. The characteristics of
a phase transition under loading determine the onset of
the latent stage of fracture and the structural level of
microdamage of the material in this stage. Expressions
(14) and (16) describe qualitatively the behavior of a
material in the initial stage of fracture under loading. In
experiments carried out at different levels of a fixed
load, the intensity of creation of the nuclei of the ele-
ments accounting for the fracture increases noticeably
with increasing load, and the time of establishment of
the steady-state intensity decreases. The latent stage in
the fracture of a material itself consists in a buildup and
interaction of the forming nuclei, which result in their
coalescence. In the limiting case of extreme loads, the
minimum size of the fracture nuclei gives rise to a
spontaneous disintegration of the body into parts (its
transformation in a void), with no latent stage of frac-
ture practically observed at the macrolevel. In the oppo-
site case, when the loads are small, a large defect can
form, the time required for another such defect to
appear in the material is long, and, therefore, the latent
stage lasts substantially longer.

The characteristics of the nucleation kinetics can be
used in nonsteady-state problems of the mechanics of
fracture as well. In particular, in the problem of crack
propagation, the time required for a steady-state flux of
nuclei to set in determines the minimum time of inter-
action of a crack with the microdefects forming at its
tip.

In the case of structural or martensitic transforma-
tions, these characteristics play a similar role.
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3. J. Čadek, Crepp Kovovych materialu (Academia, Pra-
gue, 1984; Mir, Moscow, 1987).

4. S. Suresh, The Fatigue of Materials (Cambridge Univ.
Press, Cambridge, 1991).

5. S. A. Kukushkin and V. V. Slezov, Disperse Systems on
the Surface of Solids: an Evolutionary Approach
(Nauka, St. Peterburg, 1996).

6. V. V. Slezov and S. A. Kukushkin, Fiz. Tverd. Tela
(St. Petersburg) 38 (2), 433 (1996).

7. L. D. Landau and E. M. Lifshits, The Theory of Elasticity
(Nauka, Moscow, 1965; Pergamon, Oxford, 1980),
Vol. 7.

8. L. D. Landau and E. M. Lifshits, Statistical Physics
(Nauka, Moscow, 1965; Pergamon, Oxford, 1980),
vol. 5.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
9. Ya. E. Geguzin, The Diffusion Zone (Nauka, Moscow,
1979).

10. A. Kelly, Strong Solids (Oxford Univ. Press, London,
1971; Mir, Moscow, 1976).

11. S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk 168
(10), 1083 (1998).

12. E. M. Lifshits and L. P. Pitaevskiœ, Kinetics in Physics
(Nauka, Moscow, 1979).

13. V. V. Slezov and J. Schmelzer, Fiz. Tverd. Tela
(St. Petersburg) 36 (2), 353 (1994).

14. A. L. Roitburd and D. E. Temkin, Dokl. Akad. Nauk 288
(1), 111 (1986).

Translated by G. Skrebtsov



  

Physics of the Solid State, Vol. 42, No. 1, 2000, pp. 184–188. Translated from Fizika Tverdogo Tela, Vol. 42, No. 1, 2000, pp. 176–179.
Original Russian Text Copyright © 2000 by Nesterenko.

                                                                                                                                    

LATTICE DYNAMICS. 
PHASE TRANSITIONS
Symmetry Analysis of the Possible Low-Temperature Phases 
in KDy(MoO4)2

N. M. Nesterenko
Physicotechnical Institute of Low-Temperatures, National Academy of Sciences of Ukraine, Kharkov, 310164 Ukraine

Received January 21, 1999; final version received June 21, 1999

Abstract—The possible asymmetric phases in the Jahn–Teller crystal of KDy(MoO4)2 are analyzed. Phases

appearing upon a second-order phase transition from an orthorhombic  group with the unit cell volume dou-
bling are described. It is shown that KDy(MoO4)2 crystals are capable of featuring the Jahn–Teller pseudoeffect
caused by the interaction between the electron states of dysprosium ions and the compressive (tensile) or shear
deformations. © 2000 MAIK “Nauka/Interperiodica”.

D2h
14
A second-order phase transition in KDy(MoO4)2
was originally detected in the absorption spectra [1].
An increase in the energy difference between the
ground level and the first excited level in the main mul-
tiplet 6H15/2 of the Dy3+ ion, observed upon decreasing
the temperature from T ~ 15 K to the liquid-helium
temperatures, was explained by ordering of the type of
the cooperative Jahn–Teller effect [1, 2]. However,
study of the optical birefringence and magnetic proper-
ties of KDy(MoO4)2 [3, 4] showed that the latter effect
involves a sequence of phase transitions described by
two critical temperatures:  ~ 14.5 K and  ~ 11.5 K.
Note that it was assumed that KDy(MoO4)2 is charac-
terized by an incommensurate crystal structure in the
14.5–11.5 K temperature interval [3, 4].

Unfortunately, no X-ray diffraction data are available
at present on the symmetry of low-temperature phases in
dysprosium molybdates. A symmetry analysis per-
formed in [5] described a separate second-order phase
transition; the analysis was based on the character of
anomalies in the transverse sound velocity at 12 K [6].

The purpose of this work was to analyze the possi-
ble second-order phase transitions for the point in the
Brillouin zone where the phase transitions are accom-
panied by doubling of the crystal unit cell volume. The
results of analysis are compared to experimental EPR

data for the initial (space group , T = 300 K [7]) and
low-temperature phases and the results of ultrasonic
measurements [6].

1. SYMMETRY ANALYSIS

Let us consider the possible variants of decrease in
the crystal symmetry within the framework of the Lan-
dau theory. The table (second column) presents irreduc-
ible representations related to the boundary points of

T1
cr T2

cr

D2h
14
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the Brillouin zone of the G0 =  group, where the
unit cell volume exhibits doubling, and to the point
with k = 0 [7] (here and below we use the notation of
axes adopted in the Kovalev tables [8]). All the active
representations admit the second-order phase transi-
tions with a decrease in the symmetry. For vectors k20,
k21 and k22, the phase transitions to commensurate
phases proceed via intermediate incommensurate
phases.

All the two-dimensional representations listed cor-
respond to a single planar group L = C4v [9] and, hence,
the thermodynamic potential as a function of (η, ξ) is
characterized by the same set of invariants (η2 + ξ2),
(η4 + ξ4), η2ξ2 and can be written (retaining terms up to
the sixth order and neglecting the gradient invariants) in
the following form:

(1)

Each two-dimensional representation may induce
three commensurate asymmetric phases (G1, G2, G3).
Stationary solutions of equation (1) are possible for
nonzero values of the order parameter (η, 0), (0, η), and
(η, η), that is, for the phases G1 and G2 [9, 10].

The results of our symmetry analysis are summa-
rized in the table. The table lists phases capable of fea-
turing the second-order phase transitions from the ini-
tial orthorhombic structure and the first-order phase
transitions close to the second-order ones. Also indi-

cated are the factor groups G1/  and G2/  isomor-
phous to the point groups of the most symmetric phases

G1 and G2, where  and  are the subgroups of
translations for G1 and G2. Symmetry of the G3 phases
with arbitrary values of the order parameter (η, ξ) is

D2h
14

Φ η ξ,( ) 1/2α T( ) η2 ξ2+( ) 1/4β1 η4 ξ2+( )+=

+ 1/2β2 T( )η2ξ2 1/6β3 η2 ξ2+( )3…+

G1
Γ G2

Γ

G1
Γ G2

Γ
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determined in each case as the intersection of groups
for the phases characterized by the (η, 0) and (η, η)
order parameters. The indices of the space groups for the
phases induced by the components {η, 0} and {0, η} of
the order parameter are the same for all representations.
The table also indicates the local symmetry of the
Jahn–Teller centers in the asymmetric phases. Note that
the local symmetry of dysprosium ions in KDy(MoO4)2
at T = 4.2 K is C1 [11].

2. DISCUSSION

For the comparison with experiment, let us consider
mixed invariants including the lowest powers of com-
ponents of the order parameter and the stress tensor.
These quantities differ for the transitions into mono-
clinic and orthorhombic phases. In the first case, we
may construct two types of the mixed invariants using
components of the order parameter and the deformation
tensor: (η2 – ξ2)uij  and ηξuij, where i, j = x, y, z. In the
case of phase transitions to orthorhombic phases, the
(η2 – ξ2)uij invariants are absent because the combina-
tion (η2 – ξ2) transforms according to odd representa-
tions of the orthorhombic group.

For the directions x, y, z selected in the table, the
elastic energy of an orthorhombic crystal can be written
in the following form:

(2)

The types of anomalies in the longitudinal sound veloc-
ity, corresponding to transitions at the boundary points
of the Brillouin zone are known and, in the simplest
case of the G0–G1 transition, can be written as [10]

(3)

where i = 1, 2, 3;  are the elastic moduli at T > Tcr;

 is the coefficient at the mixed invariant of the type
(η2 + ξ2)uii; and β1 = const > 0 is the coefficient at the
order parameter term of the fourth power. The jump is
retained at the tricritical point. At the point of transition
to the monoclinic phase, one of the transverse moduli
has a jump of the same sign as that of the longitudinal
moduli, while the two other moduli exhibit a break
point at T = Tcr and a linear increase at T < Tcr. The
phase transitions to an orthorhombic phase are accom-
panied by jumps only in the longitudinal moduli. For
the G0–G2 chain, the anomalies are observed at differ-
ent temperatures because α(T) is replaced by β2(T).

Let us turn to the analysis of data for the ultrasound
velocity anomalies in KDy(MoO4)2 in the temperature
range 1.5–30 K [6] (see Figs. 1a and 1b). Anomalies
observed at T2 ~ 12 K in the velocity of longitudinal c33
(1) and transverse c44 (3) waves have a similar ν-like
shape. Since the ultrasound velocity at a liquid-helium

Ee1 c11uxx
2 c22uyy

2+=

+ c33uzz
2 c44uyz

2 c55uxz
2 c66uxy

6 .+ + +

cii cii
0 α i

2/2β1,–=

cii
0

α i
2
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temperature is lower than that at elevated temperatures
(above 17 K), the change ∆cij is related to a phase tran-
sition at the boundary point of the zone [5]. We may
suggest that the axis C2 || y is retained at temperatures
below T2 ~ 12 K. This axis is retained upon a phase
transition to the monoclinic phase induced by the rep-
resentations τ78, τ79 of the point k23 in the Brillouin
zone of the initial phase (see table). Selection of the
centrosymmetric crystal group at low temperatures
agrees with the data obtained from the Raman and IR
spectra [12, 13].

However, as seen from Figs. 1a and 1b, the elastic
moduli exhibit changes in a broad temperature range.
Vitebskiœ et al. [6] related the smeared temperature pro-
files to the effect of fluctuational contributions. Let us
consider some features in the behavior of elastic mod-
uli, which are not related to the fluctuations and not dis-
cussed in [5].

Active points in the Brillouin zone of the  symmetry
group leading to monoclinic ad orthorhombic phases

Brillouin vector Representation Gd/
Symme-
try at R3+ 
position

τ2(A1u) D2 C2

k19 = 0 τ3(B1g) C2h, 21 || x C1

x || c τ4(B1u) C2v , 21 || x C1

y || a τ5(B2g) C2h, 2 || z C2

z || b τ6(B2u) C2v , 2 || z C2

τ7(B3u) C2h, 21 || y C1

τ8(B3g) C2v , 21 || y C1

τ69(η, 0) C2h, 21 || y C1

k20 = 1/2b1 (η, η) C2h, 21 || y C1

b1 || x τ70(η, 0) C2h, 21 || y C1

(η, η) C2h, 21 || y C1

τ61(η, 0) C2v , 21 || x C1

k21 = 1/2b2 (η, η) C2h, 21 || z C1

b2 || y τ62(η, 0) C2v , 21 || x C1

(η, η) C2h, 21 || z C1

τ47(η, 0) D2 C2

k22 = 1/2b3 (η, η) C2v , 2 || z C2

b3 || z τ48(η, 0) D2 C1

(η, η) C2v , 21 || z C1

τ78(η, 0) C2h, 21 || x C2

k23 = 1/2(b2 + b3) (η, η) C2h, 2 || z C2

τ79(η, 0) C2h, 21 || y C1

(η, η) C2h, 2 || z C1

Note: Unit cell parameters of the orthorhombic lattice a = 5.084 Å,

b = 18.18 Å, c = 7.97 Å; Gd/  is the factor group isomor-

phous to the point groups Gd = G1, G2.

D2h
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Gd
Γ

Gd
Γ
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The elastic moduli c11 (4) and c55 (6) exhibit a break
at higher temperatures (17 K) as compared to the tem-
perature of anomalies in c33 and c44 (12 K). As seen
from Figs. 1a and 1b, there are two temperatures (T1 ~
17 K; T2 ~ 12 K) at which the moduli vary in the oppo-
site directions.

Let us assume that a difference in the behavior of
elastic moduli at T1 and T2 is caused by sequentially
occurring phase transitions. If the anomalies at 17 K are
induced by a phase transition into phase G2 (i.e., into
the second monoclinic phase, C2 || z), which proceeds
with respect to the parameter η and takes place at the
same point k23, then the jump should be observed in the
transverse sound velocity c66. However, a more pro-
nounced anomaly is observed in the transverse modu-
lus c55 at 17 K (Fig. 1a), which is characteristic of the
phase transition into a monoclinic phase with the axis
C2 || y.

0 5 10 15 20 25 30
T, KT2

∆
S/

S
2(C44)

1(C33) 10–3

0 5 10 15 20 25 30
T, K

∆
S/

S

T1

10–3

10–3

5(C55)
4(C66)

3(C11)

(a)

(b)

10–3

Fig. 1. Temperature variation of relative changes in the longi-
tudinal and transverse sound velocity along the principal axes
of an orthorhombic crystal: (1) q || b || z; (2) q || b || z; u || a ||
y; (3) q || c || x; (4) q || a || y; u || c || x; (5) q || b || z; u || c || x;
[6]. The scales of the c66 and c55 moduli are the same. 
P

In order to elucidate the reasons of this behavior, let
us consider an additional order parameter ξ related to
the representations τ2–τ8 (k19 = 0). Simple consider-
ations show that an allowance of the interaction
between the order parameter ξ and deformations cannot
explain an increase in the modulus c11, as well in poten-
tial (1), near the temperature of the second-order phase
transition. For the further analysis, let us consider the
interaction of deformation with the electron subsystem
related to the Jahn–Teller ions.

The main multiplet 6H15/2 of the Dy3+ ion is charac-
terized by a half-integer total moment J = 15/2. In the
crystal field, the state degenerate with respect to J splits
into eight Kramers levels. Their wavefunctions corre-
spond to double-valued representations  of the

orthorhombic group , since the direct self-product

 ·  contains the A- and B-representations of the
local group C2, the electron states of the Jahn–Teller ion
may interact both the fully symmetric components of
the deformation tensor and with the deformations
changing the local symmetry of the Jahn–Teller cen-
ters. Because it is the c11 modulus that exhibits an
anomalous break above the  temperature, we will
take into account only the interaction with deforma-
tions of the uxx type. A relationship between rare-earth
ions and the deformation can be expressed in the fol-
lowing form [14]:

(4)

where σx is the energy of splitting between the Kramers
doublets 0 and 1 above T1. Then the total elastic energy
of the crystal can be written as a sum

where Eel is the elastic energy of the orthorhombic crys-
tal without an allowance for the interaction with the
electron subsystem at temperatures above T2.

Let us consider the elastic energy Eeff  of the crystal
in the temperature range T > T2, that is, assuming that
〈η〉  = 0. Taking into account the conditions Eeff > 0 and
dEeff/duii = 0, we obtain a relationship 

which implies that the electron–deformation interaction
compensates for a change in the elastic energy in the
temperature interval T > T2, thus leading to a tempera-
ture-induced energy splitting between levels 0 and 1. We
should also take into account that uii ~ δli/ li (li is the
crystal size along the corresponding direction) and that
the effective energy must exhibit a minimum in the vicin-
ity of the phase transition temperature: dEeff/dT = 0.
Then, the value of splitting 〈σx(t)〉  in the electron spec-
trum, which is related to the cooperative Jahn–Teller
effect, depends on the values of moduli and their deriv-
atives and may be also affected by changes in the sam-

E1/2'

D2h
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E1/2' E1/2'

T2
cr

Estr τuxxσ
x,–=

Eeff Eel Estr,+=

τσx c11uxx c22uyy c33uzz,+ +∼
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ple shape. Note that these factors may account for the
difference between the temperatures T1 and T2, as well

as between  and . The most interesting problem
is that determining the symmetry of the low-tempera-
ture phase in the intermediate temperature interval. Let
us return to Fig. 1b. Since the anomalous increase in the
modulus c11 begins at a temperature where the longitu-
dinal modulus c55 exhibits a break, we may suggest that
this behavior is also related to the electron subsystem.
However, as noted above, the relationship with defor-
mation cannot be linear because 1/cij ~ 1/(T – Tcr).

The above considerations show that the phase trans-
formation in KDy(MoO4)2 is described as a transition
of the displacement type, “softening” the low-energy
vibrations at the boundary point of the Brillouin zone.
Anomalies of the type of the collective Jahn–Teller
effect, observed in the absorption spectra, result from
sharp changes in the longitudinal moduli in the pre-
transition region and are apparently determined by the
elastic electron–deformation interaction. If the elec-
tron–deformation interaction is related only to the A1g
component of the deformation, the splitting of levels of
the Jahn–Teller centers above T2 may be not accompa-
nied by a decrease in the local symmetry of the Jahn–
Teller ions in KDy(MoO4)2 [15].

It is also necessary to note some features of the
transformation in KDy(MoO4)2, which are characteris-
tic of the phase transitions of the order–disorder type. If
the symmetry of the low-temperature phase is not
higher than monoclinic ad the phase transition is
accompanied by doubling of the inequivalent Jahn–
Teller centers (this number increases to eight), the ratio
of the number N of positions occupied by the Jahn–
Teller centers in the low-symmetry phase to the group
order n is N/n = 2. Therefore, one unit cell in the mon-
oclinic phase contains both the orientation-inequivalent
centers and the energy-inequivalent Jahn–Teller centers
not related by any symmetry elements. In the tempera-
ture interval featuring redistribution of the Jahn–Teller
centers with respect to the types of inequivalent posi-
tions, the properties of the low-temperature phase may
be close to those of incommensurate systems.

In addition, the adiabatic potential for each Jahn–
Teller center in the orthorhombic phase has several
minima caused by the presence of two 
layers in the unit cell. This is related to the fact that each
ion is involved in two types of the displacement of lay-
ers differing by the polarization. If the temperature is
sufficiently low, the symmetry axis C2 at the Jahn–
Teller ion position is lost, the minima become inequiv-
alent, and the unit cell exhibits a monoclinic distortion.

In conclusion, it should be noted that the symmetry
analysis of possible phases can be used for interpreta-
tion of the phase diagram of KEr(MoO4)2, which is iso-
structural to KDy(MoO4)2. The former crystal exhibits
no shift of the electron energy levels at low tempera-
tures, although an anomaly in the c22 modulus at 11 K,

T1
cr T2

cr

R3+ MoO4( )2{ } ∞
–
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analogous to that described above for c11 (see Fig. 1a),
was reported in [16]. However, the other moduli do not
change to any significant extent and, despite an elec-
tron–deformation coupling, no cooperative Jahn–Teller
effect was observed in this crystal. The anomalies in the
SHF absorption reported for KEr(MoO4)2 [17] can be
related to the structural features of crystals of this type
considered above.

Thus, the analysis of possible low-temperature
phases, which agrees with the experimental data for
KDy(MoO4)2, allows us to make some general conclu-
sions. The elastic anomalies in KDy(MoO4)2 cannot be
described using a single point k23 of the Brillouin zone.
A more realistic approach consists in considering a cas-
cade of phase transitions k19–k23 occurring within a
narrow temperature interval. These phase transitions
are “linked” in the temperature interval featuring a rel-
atively sharp change in the longitudinal moduli, which
accompanies “softening” of the boundary low-fre-
quency vibrations. A combination of the properties of
phase transitions of the displacement type and the
order–disorder type may lead to more complicated
phase diagrams considered in [18].

The above analysis also suggests that the anomalies
in KDy(MoO4)2, which are characteristic of the cooper-
ative Jahn–Teller effect, can be induced by the elec-
tron–deformation interaction–quadratic for the shear
deformations and linear for the A1g deformations,
which allows us to expect a change in the linear dimen-
sions of samples near the critical temperature.

The results of ultrasonic measurements were pre-
sented and interpreted in our work with permission of
the authors of [6], which confirmed reliability of these
data.
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Abstract—A strong influence of the quantization of the electronic spectrum of nonmagnetic spacers in multi-
layers is discovered on the dependence of the exchange interaction on the thickness of the spacer. It is shown
that the antiferromagnetic dip is observed experimentally in Fe/Cr multilayers, as small thicknesses can be
interpreted in terms of the simple RKKY approximation. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In this paper, we consider the influence of the spatial
quantization of the momenta of conduction electrons of
nonmagnetic spacers in multilayers on the magnetic
susceptibility χ and exchange interaction I(R), where R
is the thickness of the spacer.

In the literature, several mechanisms have been sug-
gested to explain the occurrence of an ordered magnetic
structure in multilayers. These mechanisms are based
on the RKKY interaction, with allowance made for the
lattice discreteness and the actual geometry of the
Fermi surface.

Although the nature of the experimentally observed
magnetic effects has been qualitatively understood, no
unambiguous quantitative explanation of these effects
has yet been given. In particular, there are no adequate
calculations of the periods and amplitudes of oscilla-
tions and the thickness dependences, which are the
main characteristics of the magnetic structure of multi-
layers (see, e.g., [1]).

A serious problem is explaining long-period oscilla-
tions corresponding to small values of the wave vector
k, which cannot be the Fermi momentum kF or other
characteristic wave vectors of the electronic structure,
if one recalls that the amplitude of these oscillations is
rather large.

A dramatic example is the so-called antiferromag-
netic (AFM) dip observed in Fe/Cr multilayers with
small thicknesses of Cr layers [2] (see Fig. 1). This dip
may be due to an intense long-period harmonic in the
interaction between magnetic layers.

To our knowledge, only one attempt to explain the
AFM dip has been made in the literature. In addition to
the RKKY interaction in the framework of the Friedel–
Anderson sd model, a mechanism was proposed in [3]
that corresponds to fourth-order perturbation theory in
the sd interaction. It was shown in [3] that experimental
data can be explained by the balance between the two
1063-7834/00/4201- $20.00 © 20189
mechanisms just mentioned. However, the fourth-order
terms should be assumed to be large in that case. In this
paper, we propose an alternative mechanism [3].

2. CALCULATION OF I(R)
IN A MULTILAYER

The indirect exchange interaction I(R) between
magnetic layers separated by nonmagnetic spacers of a
thickness R occurs owing to conduction electrons of
spacers and in the RKKY approximation it can be writ-
ten in the form

(1)

Here, Isd(k, k') is the exchange integral of conduction

I R( ) V / 2π( )3( )2
I k k',( ) i k k'–( )R( )exp k k',dd∫∫=

I k k',( ) Isd
2 f εk( ) 1 εk–( )/ εk εk'–( ).=

0
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Fig. 1. Exchange interaction energy (per unit area of inter-
face surface) as a function of the thickness of a chromium
spacer (after [2]).
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electrons (with momenta k and k') interacting with the
spins of magnetic ions, f(εk) is the Fermi function, ε(k)
is the energy of an electron, and V is the normalization
volume.

In the free-electron approximation, integration in (1)
leads to the following familiar formulas for the inhomo-
geneous magnetic susceptibility χ(q) with q = k – k' and
for the oscillatory exchange interaction I(R) (N is the
number of atoms in the volume V):

(2)

(3)

In this paper, we calculate I(R) while taking into
account the following two special features of the situa-
tion in multilayers.

(i) The possibility of restricting our consideration to
the one-dimensional case because only I(Rz) is of inter-
est (the z axis is normal to the plane of the multilayer).
Integrating it with respect to the coordinates x and y, we
will obtain the interaction I(Rz) between magnetic lay-
ers.

(ii) The spatial quantization of the momenta kz of
electrons of a nonmagnetic spacer.

In addition to the isotropic cases (2) and (3), we will
also consider the case where there is an inherent direc-
tion (the z axis) in the system. Assuming Isd(k, k') to be

independent of k and k', we may take  outside the
integral in (1) and, going to the variables k and q, we
write the denominator in the form

(4)

where ϕ is the angle between k⊥ and q⊥  in the xy plane.
In this case, expression (1) can be reduced to a known
integral in the two-dimensional case [4] by introducing
a new variable

(5)

Integrating with respect to k⊥  and ϕ in (1), we obtain

(6)

Here, V2 is the normalization volume in the 2D case.
Formally, expression (6) is identical to the result

obtained in the 2D case in [4], but q* is dependent on qz

χ q( ) mkF/8π2N"
2( )=

× 1 4kF
2 q2–( )/4kFq( ) q 2kF+( )/ q 2kF–( )ln+[ ] ,

I R( ) 9π/2( ) Isd
2 /εF( ) xsin x xcos–( )/x4,=

x 2kFR.=

Isd
2

ε k q+( ) ε k( )–

=  
"

2

2m
------- 2k ⊥ q⊥ ϕcos 2kzqz qz

2 q⊥
2+ + +( ),

q⊥ 2kzqz/q⊥ qz
2/q⊥ q∗ .+ +

I q∗ qz,( )
V2m

4π"
2q⊥

------------------=

× q∗ q∗( )2
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q∗ , q∗ 2kF⊥ .≤



P

and kz in (6). With (6), we can evaluate the integral in
(1) and find I(R⊥ , Rz) in the anisotropic case.

In this paper, we restrict our consideration to the
case where the medium is infinite in the planes perpen-
dicular to the ⊥ z axis and ignore the discrete atomic
structure of magnetic layers in these planes. The thick-
ness of the nonmagnetic layer is assumed to be finite.
Under these assumptions, the problem becomes much
simpler; I(R) depends only upon Rz, and we can per-
form the integration with respect to {Rx , Ry} = R⊥  in (1),
which yields δq⊥ , 0 = δqx, 0δqy, 0 on the right-hand side of
(1). As a consequence, the product q*q⊥  becomes, as
seen from (5),

(7)

It is worth noting that if the discrete atomic structure
(with a lattice parameter a⊥ ) in the planes perpendicular
to the z axis is accounted for, we will obtain the depen-
dence I(R) = , which includes the exchange

interaction both between ions lying along a line parallel
to the z axis and between neighboring ions lying in the
planes perpendicular to the z axis. In that case, δq⊥ , 0 does
not appear in the integral in (1) and we obtain a more
general expression for I(q⊥ , qz), for example, in the form
of (6). A more detailed treatment shows that the quanti-
tative results will be different in that case, but the overall
picture will be the same.

Further, we take into consideration the spatial quan-
tization of the momenta along the z axis,

(8)

(9)

As a result, from (1) we obtain

(10)

(11)

At low temperatures, T ~ 0, the Fermi functions in
(10) determine the limits of summation over kz and qz

or, equivalently, over n and ν. Introducing the notation
f = nF, we have

(12)

Since the limits (12) of summation over ν depend on n,
first we sum over ν and then over n. Taking into account

q∗ q⊥ qz 2kz qz+( ).=

I R a⊥+( )
a
∑

kz πn/aNz, n 1± 2 … Nz,, , ,= =

qz kz' kz–
πν
aNz

---------, ν 1± 2 … 2Nz., , ,= = =

I qz( ) Isd
2 m

4"
2

--------
f εk( ) 1 f εk q+( )–( )

qz qz 2kz+( )
---------------------------------------------- ,

kz
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I Rz( ) 1/Nz I qz( ) iqzRz( ).exp
q

∑=

f 1 n–+ ν N n,–≤ ≤

f 1 n+ + ν N n, (≤n+ f ).≤ ≤ ≤
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that in our discrete case, exp(iqzRz) = exp(iπν) = (–1)ν,
we thus obtain

(13)

where the function F(Nz , f) is an analog of the Ruder-
man–Kittel function for a continuous spectrum.

In (13), the Fermi level f is assumed to be doubly
occupied. In some cases, the occupation of the level f
may be incomplete and, hence, the lower limits of sum-
mation over ν in (13) will be ν = f ± n, which, in con-
trast to (13), may lead to an integrable divergence at
ν = 2n. That divergence will be of the same nature as
the divergence at the point q = 2kF of the continuous
spectrum in the 1D case.

Calculating (13), we arrive at finite sums

(14)

which obey simple recurrence relations and can be
approximated by analytic expressions

(15)

where O1(r) and O2(r) are small quantities except when
r is small, r = 1, 2. Only the difference of S1 and S2 is

involved in  (13), so that the logarithmic terms (lnr)
cancel each other out and the summation over n in (13)
can be carried out analytically. For the function F(Rz) in
(13) we thus obtain (putting Nz = N in what follows)

(16)

where the subscripts “e” and “o” indicate the contribu-
tions from different n-dependent terms even and odd,
respectively, with respect to the layers, and

(17)
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or, using expansions (15),

(18)

Formula (17) is also true for the case of f = 2, where
only the expression in the third square brackets remains
in (17). Further,

(19)

With expansions (15), formula (19) becomes

(20)

Formulas (16)–(20) are true for the case where N
and f are even integers. The function F(N, f) for the odd
values of N and f and for their combinations with even
values of N and f can be found using the following rela-
tionships, which can be derived from (13):

(21)

Fe N f,( ) 1
Nz

------ N2 f 2–

N2
----------------- 

 ln
N

N2 f 1–( )2–
-------------------------------+=

–
3N 4–

N N 2–( )
----------------------

f 2>

1
f 2–
------------ 1 1

2 f 1–( )
-------------------- 2 2ln–+

f 2>
+

+
1

2 f
------ C 1– f 2–( )ln 1

2 f 2–( )
-------------------- 2

f
---–+ +

f 4>

+
2
f
--- f

N2 f 2–
----------------- 1

4 f
------ 2ln–+ .

Fo N f,( ) 1
N 1+
------------- S1

N f–
2

------------- 
  S1

N f+
2

-------------- 
 –=

–
1

f 1+
------------ S1 f 1–( ) S1 1( )–[ ] f 4≥

–
2

f 1–
------------ 1– S1 f 1–( )– S2 f( )+[ ] .

Fo N f,( ) 1
N 1+
------------- 1

2
--- N f–

N f+
--------------ln f

N2 f 2–
-----------------+=

–
1

2 f 1+( )
-------------------- C fln 1

2 f
------– 1–+ 

 

+
2

f 1–
------------ 1 2ln– 1

4 f
------– 

  , f 2, N f– 2> >( ).

∆FN
± No Ne 1 f e,±≡( ) F No f e,( ) F Ne f e,( )–=

=  

2
N 1+
------------- ∆ v( )– ∆ u( ) f

N 1+( ) N f 1+ +( )
-----------------------------------------------+ + ,

2
N
---- ∆ v( ) ∆ u( )– f

N N f–( )
-----------------------– ,

∆F f
– Ne f e, 1–( ) F Ne f e, 1–( ) F Ne f e,( )–=

=  
2
f
--- ∆ u( ) ∆ v( )– 3

2 f
------– ,



192 IRKHIN
(22)

(23)

Expressions (16)–(23) allow one to calculate F(N, f)
for any integer values of N and f. These expressions
should be combined with the term in (13) correspond-
ing to n = 0,

(24)

Analysis of these formulas shows that (i) F decreases
slowly with increasing N; (ii) F(N, f) < 0 for all N; (iii)
F(No, f) < F(Ne, f); and, finally, (iv) F(N, f) varies non-
monotonically with both N and f, most noticeably for
small N and f (N, f  < 5) and for odd values of N. This last
effect is due to the fact that F(N, f) is larger for odd values
of N than for even ones and this accounts for, in particu-
lar, a minimum observed at N ~ 6.

Figure 2 shows an I(N) curve for f/N = 1/2. The last
condition corresponds to the case where discrete levels
are filled in proportion to the thickness of the nonmag-
netic spacer Rz = Na. Indeed, the number of doubly
occupied levels is equal to f = Nz/2, where z is the num-
ber of conduction electrons per atom. If z = 1, the number
of occupied levels is N/2 and, hence, f = 1 for N = 2, f = 2
for N = 4, and so on. Therefore, of interest is the I(N)
dependence I(N, f) for f/N = const = z/2.

∆FN
– No Ne 1– f o,=( ) F Ne 1– f o,( ) F Ne f e,( )–≡

=  
2
N
---- ∆– u'( ) ∆ v '( )–

Ne 1–
Ne Ne 2–( )
--------------------------– ,

u Ne f e+( )/2, v Ne f e–( )/2,= =

u' Ne f o 1+ +( )/2, v ' Ne f o– 1+( )/2.= =

Fo N f,( ) 1–( )ν/ν2.
ν f 1+=

N

∑=

0

–1

2 4 6 8 10 12 14
d, monolayer

I(N), mJ/m2

Fig. 2. Theoretical I(Nz, f) dependence calculated from (25)
for f/Nz = 1/2: circles are experimental data corresponding
to Fig. 1 and squares are theoretical values. 
P

3. DISCUSSION AND COMPARISON 
WITH EXPERIMENT

The I(N) dependence under spatial-quantization
conditions differs essentially from that in the case of a
continuous spectrum. This suggests that the AFM dip
observed experimentally in Fe/Cr multilayers [2, 3]
can be interpreted in terms of our model. It is seen
from Fig. 2 that there is a pronounced minimum of
I(N) for f/N = 0.5 (one electron per atom, which is nat-
ural in our model), and its position is predicted to be at
N = 6, which is consistent with the experiment, despite
our model being too simple to expect a quantitative
agreement.

Let us evaluate the strength of the AFM exchange
interaction I(Rz) = I(N, f), which is determined for the
most part by the exchange integral Isd. Putting Isd = 0.1 eV,
from (13) we obtain the minimum value of I(N) which
agrees with the experimental value in Fig. 1. The
quantity I(N, f) per unit area of the interface surface
(in mJ/m2) is

(25)

and its graph is presented in Fig. 2. It is seen that the
experimental data of Fig. 1 correlates well with the cal-
culated dependence with a single adjustable parameter,
Isd. The fitted value of Isd is consistent with data pub-
lished in the literature, which suggests that spatial
quantization may be an important factor determining
physical properties of multilayers.
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Abstract—An acoustic study is reported of the crystallization and melting of gallium embedded in an opal-like
matrix. The variations of the velocity and absorption of longitudinal ultrasonic waves during phase transitions
in the α and β modifications have been found to be hysteretic in nature. It is shown that acoustic methods do
not detect gallium melting and crystallization in the tetragonal phase forming in a restricted geometry. Experi-
mental evidence for heterogeneous crystallization of gallium in pores has been obtained. © 2000 MAIK
“Nauka/Interperiodica”.
Phase transitions in materials incorporated in
porous glass matrices with pores ranging in size from a
few to hundreds of nanometers have been stimulating
considerable interest in connection with the possibility
of studying various size effects and the significance of
confined geometry. Recent experimental investigations
of such phase transformations in porous glasses cov-
ered transitions to the superfluid and the superconduct-
ing state, transitions in liquid crystals, separation in
binary liquids, the ferroelectric phase transition, struc-
tural transformations in solids, transition to the glassy
state, gas formation and condensation (see references
in [1]), and the melting-crystallization phase transition
(see [1–11] and references therein). The latter type of
phase transitions was investigated primarily for liquids
wetting a glass surface. Studies of the melting and crys-
tallization of nonwetting liquids, done to a consider-
ably lesser extent, were performed on such fusible met-
als as mercury, indium, and gallium. We are aware of
only two papers [12, 13] reporting on the melting and
crystallization in opals. The temperature dependences
of the liquid gallium concentration in artificial opal
were measured by the NMR method [12]. In [13], tem-
perature dependences of X-ray spectra of crystalline
gallium and of the electrical resistivity of a sample were
obtained for a similar matrix. It is known that acoustic
methods can provide valuable information on phase
transitions of various natures, including melting and
crystallization, and it therefore appeared reasonable to
carry out an acoustic investigation of opals in the region
of the melting and solidification temperatures of the
metals embedded in this material. The present paper
reports the results of such a study performed on gal-
lium.
1063-7834/00/4201- $20.00 © 20193
The matrix of an artificial opal represents a piece-
wise-regular dense packing of SiO2 spheres about
250 nm in diameter. The opal structure was described
in considerable detail, for instance, in [14]. The densely
packed spheres enclose octahedral and tetrahedral
voids differing in size by about a factor of two (of the
order of 100 and 50 nm, respectively). The total volume
occupied by these pores adds up to approximately 25%
of the sample volume. Gallium was introduced into the
opal matrix under a pressure of up to 9 kbar. The pore
filling determined by weighing the sample was about
85%.

The acoustic studies were performed by pulse-phase
measurements. One obtained temperature dependences
(in the 160–320-K range) of the velocity and damping
of longitudinal ultrasonic waves relative to their room-
temperature values at a frequency of 5 MHz. The error
∆v /v  of the relative velocity measurements did not
exceed 10–5, and that of the damping ∆α/α, 5%. The
sample was parallelepiped–shaped, with a volume of
about 1 cm3.

Figure 1 presents the temperature dependences of
ultrasonic velocity in a sample heated preliminarily to
320 K, which were obtained under cooling of the sam-
ple down to 160 K and its subsequent heating to 320 K.
The choice of the upper boundary (320 K) of this tem-
perature cycle was motivated by the x-ray diffraction
observation [11, 13] that the melting of the gallium
embedded in a porous matrix is completed at substan-
tially lower temperatures, about the melting point of the
conventional bulk α modification (303 K). A similar
dependence for the damping coefficient is displayed in
Fig. 2. The plots of Figs. 1 and 2 clearly show the
changes in the velocity and damping corresponding to
the melting and crystallization of gallium in the pores.
000 MAIK “Nauka/Interperiodica”
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The acoustic anomalies have a two-stepped nature,
with the melting and crystallization being separated by
a substantial temperature shift giving rise to a double
hysteresis loop. The total change in the ultrasonic
velocity on the phase transitions adds up to about 6%,
which demonstrates a high enough sensitivity of the
acoustic method in studies of the melting and crystalli-
zation of metals in pores.

The regions of gallium melting in the pores are
shifted noticeably relative to the melting point of the α
modification of bulk gallium. In the NMR study [12],
where measurements of the amount of liquid gallium
performed in the course of sample heating and cooling
also demonstrated a double hysteresis loop, the lower-
ing of the melting temperature was assigned to a ther-
modynamic size effect [15, 16], and the double loop
itself, to the existence of voids of two characteristic
sizes in the opal matrix. X-ray diffraction showed [13],
however, that gallium in the opal matrix is capable of
crystallizing in three different modifications, one of
which differs from the known bulk-gallium phases and
has tetragonal symmetry [17], whereas the other two
coincide with the disordered α phase of bulk gallium
and the β phase forming usually under strong super-
cooling of bulk liquid gallium. The phase transitions of
these three modifications are shifted in temperature
with respect to one another. The first to solidify under
cooling (somewhat below 300 K) is the tetragonal mod-
ification, which differs from the bulk phases, after
which the α modification freezes near 260 K, followed
by the onset of β phase solidification below 220 K.
When heated, their melting becomes completed near
310, 290, and 240 K, respectively. A comparison of the
results of our acoustic measurements with the x-ray dif-
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Fig. 1. Temperature dependences of the velocity of longitu-
dinal ultrasonic waves under cooling (1, 2) and under heat-
ing (3, 4) obtained in a full cycle (2, 4) and after a prelimi-
nary heating to 303 K (1, 3). The line segment connects two
successive experimental points.
P

fraction data reveals that the high-temperature hystere-
sis loop in Figs. 1 and 2 can be associated with the melt-
ing-crystallization region of the α modification of gal-
lium, whereas the low-temperature loop can be
associated with the phase transitions in the β modifica-
tion. No acoustic anomalies were observed by us to
occur near the onset of solidification of the gallium tet-
ragonal phase in the opal pores and near the end of its
melting. This result can be interpreted in two ways:
namely, either the tetragonal modification does not
form in the sample under study at all, or the ultrasound
velocity and damping are not sensitive to its formation.
Although the sample studied here is similar to the one
investigated in [13], the assumption of the gallium crys-
talline phases being different in them appears justified,
because according to [11, 17, 18], one of two identical
porous-glass matrices with pores 4 nm in size exhibited
only the tetragonal modification, whereas in the second
matrix one observed, besides the tetragonal phase, a
successive formation of the two others. Apparently
insignificant variations in the pore geometry and filling
may produce a strong effect on the structure of solid
gallium under the conditions of confined geometry. In
order to verify the existence of the tetragonal modifica-
tion in the sample under study, we performed acoustic
studies in a thermal cycling regime in which the sam-
ple, after a cooling to 175 K, was then successively
heated to temperatures in the 320–290 K interval.
These studies revealed that when the sample was
cooled after a preliminary heating to 310 < T < 320 K,
the dependences of the ultrasonic velocity and damping
reproduced the general pattern of the relations shown
graphically in Figs. 1 and 2 for the total cycle (from 320
to 175 K). However, after a preliminary heating to tem-
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Fig. 2. Temperature dependences of the damping of longitu-
dinal ultrasonic waves under cooling (1, 2) and under heat-
ing (3, 4) obtained in a full cycle (2, 4) and after a prelimi-
nary heating to 303 K (1, 3). The solid lines connect exper-
imental points.
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peratures below 310 K, the solidification of the α modi-
fication set in considerably earlier. The case with heating
to 303 K is shown for the illustrations in Figs. 1 and 2.
The shift of the solidification region should apparently
be assigned to an increase of the number of crystallites
of the high-temperature tetragonal phase as a result of
its incomplete melting when heated below 310 K. Such
crystallites can serve as centers of crystallization of the
α modification in the opal matrix voids. Incidentally,
the independence of the β modification freezing of the
temperature to which the preliminary heating was con-
tinued is most likely due to the fact that our thermal
cycling regime does not affect the number of crystal-
lites of the tetragonal and α phases below 250 K. The
above interpretation supports the assumption of the
acoustic methods being insensitive to the formation of
the gallium tetragonal phase in the opal matrix, which
may be caused by various factors, including the close-
ness between the acoustic impedances of this modifica-
tion and of molten gallium, or the tetragonal modifica-
tion being present in small amounts. Note that the elec-
trical resistivity of gallium-filled opal was found to be
insensitive to the formation in a porous matrix not only
of the tetragonal, but also of the β modification [13].

The present study has not revealed any clear con-
nections between the melting temperature shifts and the
existence of two characteristic void sizes in opals. One
possible explanation of this observation consists in that
the size of the crystallites forming in the pores differs
from that of the latter, as this was pointed out for
indium and gallium embedded in various porous matri-
ces [10, 11, 13]. This makes a quantitative interpreta-
tion of the lowering of the melting points of the α and
β modifications within the model of the thermody-
namic size effect difficult. A quantitative interpretation
for the tetragonal modification is in principle possible
only by comparing the melting temperatures of crystal-
lites of different size embedded in various porous
matrices, because this modification forms neither in
bulk gallium nor in micron-sized drops [19].

In Figs. 1 and 2, one clearly sees a temperature hys-
teresis between the solidification and melting of gal-
lium in opal. This hysteresis was observed for all liq-
uids in porous glass matrices studied thus far, both wet-
ting and not. The explanations proposed for this shift
between the melting and crystallization are contradic-
tory [3, 4, 11, 13, 20]. The suggestion that the hystere-
sis is the result of the liquid being supercooled appears
the most natural. At first glance, this suggestion is con-
tradicted by the high reproducibility of the solidifica-
tion temperatures stressed in most papers, and by their
independence of the cooling rate. These features of the
process stimulated development of a model of “geo-
metric freezing” described in detail [3, 20]. By this
model, the freezing in pores occurs when the energy of
a solid particle, including the surface energy, becomes
smaller than that of a liquid particle [3, 20]. To be able
to account for the hysteresis, this model requires addi-
tional speculation. We believe that the contradiction
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      200
between the assumption of the supercooling of liquids
in pores and the reproducibility of solidification tem-
peratures is removed if one takes into account the
strong temperature dependence of nucleation in homo-
geneous crystallization and of the probability of crys-
tallization at foreign nuclei in heterogeneous nucle-
ation [21]. This factor is known to result in the repro-
ducible freezing of bulk liquids, although it occurs
substantially below the melting points [21]. Inhomoge-
neities on the inner surfaces of porous matrices, oxides,
and in the case of gallium—crystallites of other modi-
fications, could serve as centers of heterogeneous crys-
tallization. Thus, our data on the increase of the α mod-
ification solidification temperature in a sample sub-
jected to preliminary heating to a lower temperature
provide an argument for the heterogeneous crystalliza-
tion of a supercooled melt. Note that the assumption of
heterogeneous crystallization of indium in a porous
glass put forward in [10] was based on calorimetric
measurements.

We would also like to point out an interesting fea-
ture of the acoustic properties of a gallium-filled opal
matrix. Namely, when the α modification is freezing or,
particularly, when it is melting, one observes a pro-
nounced increase of the sample transmission, which
becomes manifest in a strong decrease of the ultrasonic
damping coefficient within a narrow temperature inter-
val (Fig. 2). This effect was not observed to occur in
acoustic studies of porous glasses filled with gallium or
other liquids [1, 3, 5, 7, 22].
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Abstract—The paper presents experimental data and a simple theoretical model for the change in the energy of
radiative transitions in the HOMO-LUMO molecular-orbital system of the C60 fullerene induced by a chemical
covalent attachment of polymer chains or other ligands to the latter. © 2000 MAIK “Nauka/Interperiodica”.
It has recently been shown [1] in the specific case of
star-shaped polymers with a fullerene core that attach-
ment of polymer chains to C60 through covalent bonds
substantially affects the fullerene electronic structure.
A photoluminescence study of radiative transitions in
the HOMO-LUMO molecular-orbital system of
fullerene with chemically attached polystyrene chains
led us to conclude that each newly forming covalent
chemical bond causes a change in the HOMO-LUMO
structure, which increases the energy gap treated as a
forbidden gap of the C60. This increase in the radiative-
transition energy may be considered in a first approxi-
mation as linear (with the number of the polystyrene
chains attached to the fullerene varying from one to
six). It obeys approximately a linear empirical relation-
ship ∆E = 0.04n, where ∆E is the energy shift of the
photoluminescence spectrum maximum expressed in
eV and n is the number of the polystyrene chains
attached to the fullerene. This experimental finding is
displayed graphically in Fig. 1.

A theoretical consideration of this observation
should be started from the mixing of the ligand-frag-
ment wave functions (in our case, these are the C–C and
C–H covalent bonds forming in the course of the reac-
tion of lithium polystyryl with fullerene [2]) with the
fullerene ground state. In a first approximation, it can
be presented in the form (ψ + αΨ1Ψ2)/(1 + α2)1/2, where
ψ is the wave function of electrons in the fullerene mol-
ecule, Ψ1 and Ψ2 are the wave functions of the electrons
belonging to the ligand fragments and affecting the
electronic structure of the fullerene, as one of its C–C
double bonds ruptures to form a C–C bond (with the
polystyrene chain) and a C–H bond (as a result of a
reaction of lithium polystyryl with fullerene and water
and substitution of hydrogen for Li at the other end of
the ruptured double bond [2]), and α is the mixing coef-
ficient. In a general case, such wave-function mixing
may be considered approximately as a sum of the per-
turbations introduced by each pair of the newly formed
1063-7834/00/4201- $20.00 © 20197
chemical bonds. As a result, the wave function of the
system can be written in the form

ψ ΣαiΨiΨi 1++( )/ 1 Σα i
2+( )1/2
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Fig. 1. (a) PL spectra of films of fullerene-containing poly-
styrenes with different numbers of attached polystyrene
(PS) chains: (1) 1–2 PS chains, (2) 4 PS chains, and (3) 6 PS
chains at T = 300 K; and (b) energy shift of the maximum in
a PL spectrum vs the number of polystyrene chains attached
to the fullerene: experimental points are circles (300 K) and
crosses (77 K); the points for n = 12 refer to a C60(C6H5)12
film; the dashed line is linear empirical relation ∆E = 0.04n
and the solid line is calculated using (1).
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This mechanism yields the following photon energy
emitted in the HOMO-LUMO radiative transition:

where ∆ is the original HOMO-LUMO gap of the
unperturbed fullerene, n is the number of pairs of the
newly formed chemical bonds (one pair per “ruptured”
double bond), and W1 and W2 are the matrix elements of
the state-mixing Hamiltonian for the cases of the C–C
and C–H bond formation, respectively.

The above dependence of the HOMO-LUMO gap
on a chemical bond number is weaker than a square-
root one. For a bond number large enough, the growth
of the effective HOMO-LUMO gap should reach, in
accordance with (1), a square-root dependence.

Relation (1) agrees well with the experiment (Fig. 1b)
within experimental error.

Despite the assumption of (  + ) being indepen-
dent of the successively increasing bond number n
(which can fail for sufficiently large n), the proposed
simple model appears to adequately reproduce the real
physical situation and is capable of accounting for the
experimentally observed energy shift of the maximum
in the photoluminescence spectrum of a fullerene when
new chemical bonds appear on its spherical surface.

hν ∆2 n W1
2 W2

2+( )+[ ]1/2
,=

W1
2 W2

2

P

The actual type of the bonds may affect the magnitude
of the matrix elements W1, 2, but the relationship itself,
in our opinion, should retain its nature. This also
explains why the energy shift is not affected by the
ligand chemical structure and why only the type of the
bond is significant; indeed, while the structure of the
fullerene depends only slightly on the properties of the
polymer chain as a whole or of the phenylene rings
attached to it, it is greatly affected by the nearest atoms
to which the fullerene is covalently bonded.
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Abstract—Changes in the local-center luminescence spectrum initiated by structural defects in the TlGaS2
crystal are studied in the temperature range from 2 to 77 K and under a hydrostatic pressure up to 35 kbar. The
effect of hydrostatic compression can be explained by the relative slipping of the two elementary layers com-
prising the layer stack, which results in a lowering of the symmetry of the cavities occupied by the thallium
atoms. © 2000 MAIK “Nauka/Interperiodica”.
Ternary layered semiconductors of the TIMIII

type (M = In or Ga; X = S, Se, or Te) can crystallize in
different polytype structures [1], including mixed poly-
type systems. The unit cell of the TlGaS2 monoclinic
crystal contains seven molecules, which accounts for
its very rich vibrational spectrum. The TlGaS2 layered
stack is made up of two elementary layers, each layer
being a sequence of Ga4S10 pyramidal groups, which, in
turn, are built of GaS4 tetrahedra. The pyramids of the
two elementary layers face each other with the vertices,
and the thallium atoms lie in the trigonal cavities thus
formed.

The luminescence spectra of TlGaS2 crystal sam-
ples, which were grown by the Bridgman–Stockbarger
method and contained structural defects, exhibit a
vibronic system due to the emission of a local center.
The system consists of two zero-phonon lines A and B
with energies of 16790 and 16796 cm–1 and a large
number of vibrational replicas. These vibrational repli-
cas can be divided into two groups. The first group (up
to 20 cm–1) contains closely lying lines corresponding
to low-frequency interlayer vibrations, and the second
group (up to 400 cm–1) includes higher-frequency intra-
layer vibrations. The assignment of the zero-phonon
lines and a number of vibrational lines by the Raman
scattering technique, as well as the EPR and Zeeman
splitting investigations of the zero-phonon lines caused
by this center, were performed in [2]. The paramagnetic
properties of the center originate apparently from the
unsaturated valence bonds of thallium atoms.

The objective of the present study was to compare
the effects of heating and hydrostatic compression on
the zero-phonon emission lines of the local center in
TlGaS2 and their replicas, which correspond to inter-
layer vibrations. Upon heating from 2 to 15 K, the
phonon luminescence components increase several
times as compared to the zero-phonon lines A and B
(Fig. 1). A further heating of the crystal results in a

X2
VI
1063-7834/00/4201- $20.00 © 0022
strong broadening of the structure originating from the
interlayer vibrations. At 15 K, the A and B lines become
equal in intensity, and this situation persists at higher
temperatures.

The hydrostatic pressure P was applied at 2 K and
measured from the R-line shift of a ruby sample (with a
low chromium concentration) placed alongside the
TlGaS2 sample inside the compressed volume. The
maximum pressure P was 35 kbar. As the pressure P
increases, the strongest component Eg of the low-fre-
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Fig. 1. Emission spectra of a local center in TlGaS2 upon
heating. Evolution of the zero-phonon lines A and B and
their replicas corresponding to low-frequency interlayer
vibrations. Temperature (K): (1) 2, (2) 15, (3) 40, and (4) 77.
2000 MAIK “Nauka/Interperiodica”



        

EFFECT OF TEMPERATURE AND UNIFORM COMPRESSION 23

                                                                           
quency interlayer vibrations becomes suppressed, the
spectrum shifts as a whole toward longer wavelengths
at a rate of about 2 cm–1/kbar, and the A line increases
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Fig. 2. Emission spectra of a local center in TlGaS2 at
hydrostatic pressures (kbar): (1) 0, (2) 3, (3) 7, (4) 25, and
(5) 35. T = 2 K. Spectra 3–5 contain only the zero-phonon
lines A and B.

Fig. 3. Schematic representation of variation in the relative
position of the two elementary layers making up the layer
stack under hydrostatic compression of a TlGaS2 crystal.
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in intensity as compared to the B line, so that the A line
becomes dominant at P > 25 kbar (Fig. 2).

The smooth variation of the intensity ratio for the
zero-phonon components indicates that these changes
are not due to the polytype phase transitions initiated by
heating or hydrostatic compression. The equalization
of intensities of the A and B zero-phonon lines with an
increase in temperature is accounted for by the popula-
tion of the upper component of the excited doublet state
of the center. As regards the intensity redistribution
between the A and B lines, as well as among the com-
ponents of the interlayer vibrational structure, under
hydrostatic compression, it can be attributed to a
change in the symmetry of the crystal field in which the
center is located. Compression of the crystal brings
together the elementary layers comprising the layer
stack. This results in a relative displacement of the pyr-
amid vertices facing each other in the two layers of the
layer stack, as this is shown schematically in Fig. 3. The
displacement brings about, in particular, the lowering
of the trigonal symmetry of the interlayer cavities con-
taining the thallium regular sites. This symmetry low-
ering changes the selection rules and, as a consequence,
the relative oscillator strengths of the A and B transi-
tions from the doublet sublevels of the excited state to
the ground state of the center. Note that the crystal
deformation remains elastic up to at least 35 kbar, and
the removal of the pressure completely restores the
emission spectrum.

Thus, application of hydrostatic pressure to the
TlGaS2 anisotropic layered crystal containing struc-
tural defects causes nontrivial changes in the local-cen-
ter luminescence spectrum, which indicate an elastic
relative slipping of the two elementary layers making
up the layer stack.
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Abstract—Spectra of excitons in a bulk semiconductor and in a thin semiconducting layer are investigated
in  the two-band Dirac model. The dependences of the exciton binding energy on the energy gap and, in
the two-dimensional case, on the layer width are obtained. The fine structures of exciton spectra are revealed.
© 2000 MAIK “Nauka/Interperiodica”.
Analytical and numerical calculations of the exciton
binding energy performed for all kinds of different
wide-gap semiconductor structures are well-known [1–
3]. However, the dependence of the exciton binding
energy on the energy gap of a semiconductor has not
yet been investigated. This stems from the fact that,
first, the ratio of the exciton binding energy to the
energy gap is small, and, second, it is constant. That is
why the influence of the energy gap finiteness is
masked by other effects, such as the anisotropy of
energy bands, dispersion of dielectric function, etc.
Nonetheless, the investigation of the exciton ground
state splitting caused by the finiteness of the energy gap
is very interesting. Recent technological progress
makes possible semiconductor structures for which the
investigation of the exciton binding energy as a func-
tion of the energy gap is fairly actual. This is explained
by the fact that the effective energy gap in semiconduc-
tor heterostructures can be easily changed since it
depends on the dimensions of quantum well, quantum
wire, or quantum dot, in which charge careers are local-
ized (see, for example, [4]). It should be also noted that
the exciton binding energy in two-dimensional and
quasi-one-dimensional structures is substantially larger
than it is in the three-dimensional case. The effects
under consideration are especially essential for the het-
erostructures composed of semiconductors in which
the ratio of the exciton binding energy to the energy gap
can exceeds 1/10 (see, for example, [5]). These semi-
conductors are considered to be narrow-gap in our case.

In this work, we considered two problems: the for-
mation of three-dimensional and two-dimensional
excitons in a narrow-gap semiconductor with isotropic
energy bands and constant isotropic permittivity ε. In
this case, the free current carriers are described by the
Dirac equation [6]

(1)i"
∂
∂t
-----ψ νâp̂ β̂∆+( )ψ.=
1063-7834/00/4201- $20.00 © 0024
Hereafter,  and  are the Dirac matrices;  is the
operator of the three-dimensional momentum; ∆ = Eg/2
is the halfwidth of the forbidden gap; ψ is the envelope
of the electron wavefunction; ν is the Kane matrix ele-

ment (quasi-speed of light), ν =  ! c; c is the
velocity of light in vacuum; and m is the electron effec-
tive mass, which is equal to the effective mass of the
hole in this model. In this case, the dispersion law is

(2)

The three-dimensional exciton in a bulk semiconductor
is considered in Section 1. The two-dimensional exci-
ton in a thin semiconducting layer in a superlattice or
quantum well is considered in Section 2.

1. EXCITON IN BULK NARROW-GAP 
SEMICONDUCTOR

The calculation of the exciton binding energy is, in
general, analogous to the positronium problem. The
difference is in the mode of inclusion of the interaction
into the free Dirac equation (1) [7]. In quantum electro-
dynamics, the term corresponding to the interaction
with the electromagnetic field is written as

(3)

Here, e is the electron charge;  =  is the cur-

rent density operator,  = ;  = ( , ) is the
electromagnetic field operator; and γµ = (γ0, g) are the
Dirac matrices, convolution on the four-component
index µ is implied. Because of the presence of two
characteristic constants expressed in units of velocity,
the current operator in a narrow-gap semiconductor

â β̂ p̂

∆/m

E p( ) p2ν2 ∆2+ .±=

V̂
e
c
-- ĵ

µ
r( )Âµ

r( )d3r.∫=

ĵ
µ ψ̂γµψ̂( )

ψ̂ ψ̂∗ γ0 Â
µ Φ̂ Â
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contains the coefficient ν /c before the vector part
(see [7])

and the term representing the interaction with the elec-
tromagnetic field has another form

(4)

Formula (4) is obtained under gauge invariance
requirement. Since the condition ν ! c is always ful-
filled in semiconductors, it is clear that only the first
term

(5)

should be retained. A comparison of formulas (5) and
(3) shows that the exciton fine structure is calculated
without regard for the delay of the electron–hole Cou-
lomb interaction and the magnetic interaction between
the particles.

In order to obtain the spectrum of the bound state of
two particles, we constructed the effective single-parti-
cle Hamiltonian taking into account their dynamics and
interaction up to α2 (α = e2/ε"ν). For this purpose, we
calculated the electron–hole scattering amplitude in the
second approximation of perturbation theory on α and
restored the effective Hamiltonian using the scattering
amplitude

(6)

Here,  is the effective Hamiltonian representing the
electron–hole interaction in the effective mass approx-
imation (the interaction of the conduction and valence

band is not taken into account);  is the correction for

orbital effects;  is the spin–orbit interaction;  is

jµ j0 ji,( ) ψ̂γ0ψ̂ ν
c
---ψ̂γiψ̂, 

  ,= =

V̂ e ψ̂∗ r( )ψ̂ r( )Φ̂ r( )d3r∫=

+
eν
c

------ ψ̂ r( )gψ̂ r( )Â r( )d3r.∫

V̂ e ψ̂∗ r( )ψ̂ r( )Φ̂ r( )d3r∫=

i"
∂
∂t
-----ψ Ĥψ,=

Ĥ Ĥ0 V̂1 V̂2 V̂3 V̂4,+ + + +=

Ĥ0
p̂2

m
-----

e2

εr
-----,–=

V̂1
p̂4

4m3ν2
---------------– 4πµ2δ r( ),+=

V̂2 4µ2 Ŝ Î,( )
r3

-------------,=

V̂3 0,=

V̂4
4
3
---πµ2Ŝ

2δ r( ) 6
µ2

r3
----- S r,ˆ( ) S r,ˆ( )

r2
---------------------------

1
3
---Ŝ

2
– 

  .+=

Ĥ0

V̂1

V̂2 V̂3
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the spin–spin interaction (in case of the exciton, this
term is small with respect to the parameter ν /c and is

introduced for comparison with the positronium);  is
the exchange (annihilation) interaction; ψ is the three-
component wavefunction (it means that the spin of the

electron–hole system can be zero or unity);  is the

spin operator;  is the orbital momentum operator; and

µ = e /2 mν is the quantity analogous to the effective
Bohr magneton in a semiconductor µ* = e" /mc, which
appears in the terms taking into account the interaction
with the magnetic field (we did not take the magnetic
field into account). A similar procedure was performed
for the electron and the positron (see, for example, [8]).
For comparison, we present the potential of electron–
positron interaction in vacuum to an accuracy of the

terms proportional to  (the fine structure constant is
α0 = e2/"c), that is,

where

(7)

Here, me is the free electron mass; and , , ,

, and  have the same meaning as in the case of
exciton.

It is not surprising that, in general, the number of
terms in the electron–hole interaction potential (6) is
less than that in the electron–positron (7) potential,
because formula (6) does not contain the terms corre-
sponding to the delay of the interaction and the mag-
netic interaction between particles. The presence of

corrections , , , and  in Hamiltonian (6)
leads to the appearance of the exciton fine structure. To
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Table 1.  Ortho–para splitting of the exciton ground state for different semiconductors

Crystal GaSb GaAs InSb InAs InP AlSb ZnTe ZnSe ZnS CdTe CdSe CdS

Eg , meV 813 1410 236 425 1416 2320 2301 2670 3912 1606 1842 2583

Ex, meV 1.8 5.1 0.5 1.8 6.5 7.5 13.0 19.0 40.1 10.0 15.7 29.4

∆E0, meV 0.011 0.049 0.003 0.020 0.080 0.065 0.20 0.036 1.10 0.17 0.36 0.89
calculate the splitting of energy levels, we averaged the

corrections , , , and  over unperturbed
wavefunctions of excitonic states with different values
of the energy n, the total momentum j, the orbital
momentum l, the spin s, and the projection of the orbital
momentum m. Note that, for the states with this set of
quantum numbers, the correction terms are diagonal.
This fact is essential because the unperturbed states are
degenerate. Using the results taken from [8] in the aver-
aging, one can easily obtain the complete expression
for the exciton energy

(8)

Here, the energy is counted off from the bottom of the
conduction band. The result is expressed in terms anal-
ogous to the atomic units. The unit length and unit
energy are defined by the relations ax = ε"2ν2/∆e2 and
Ex = ∆e4/ε2"2ν2, respectively. It is useful to present the
value of the ortho–para splitting as an important special
case of formula (8)

(9)

It is convenient to express the energy of the ortho–para
splitting in terms of the observable values Ex and Eg

(10)

The splitting for some semiconductors is listed in Table 1.

2. EXCITON IN THIN LAYER OF NARROW-GAP 
SEMICONDUCTOR

In order to determine the fine structure of quasi-two-
dimensional exciton, we applied the approach analo-

V̂1 V̂2 V̂3 V̂4

Ex
njls 1

4n2
--------– α2 3

64n2
----------- α2 1 δl0–( )
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---------------------------–+=

+ α 2δl0 1 δs0–( )
12n3
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8n3

-----------------------------------------+

×

1
l l 1+( ) 2l 1+( )
-------------------------------------, j– l,=

4l 1–
l 2l 1–( ) 2l 1+( )
---------------------------------------- , j– l 1– ,=

4l 5+
l 1+( ) 2l 3+( ) 2l 1+( )

------------------------------------------------------ , j l 1+ .=

∆E0 Ex
1101 Ex

1000–
α2

12
------.= =

∆E0

8Ex
2

3Eg

---------.=
P

gous to that used in the previous section. To consis-
tently calculate the corrections conditioned by the non-
parabolic dispersion of free electrons and holes (2) and
also by their nonidentity, we used the following model.

(1) The noninteracting charge carriers are described
by the Dirac equation (1).

(2) Both the electrons and holes are localized in the
quantum well created along one of the coordinate axes
(the z-axis) with the aid of the modulation of the energy
gap

(11)

It is assumed that the barrier height for electrons and
holes essentially exceeds the energy of the dimensional
quantization and the walls of the well are infinite, that
is, ∆2 @ ∆1.

(3) The width of the well 2a is assumed to be con-
siderably less than the radius of the bulk exciton rx =
2e"2ν2/∆1e2, δ = a /rx ! 1; that is, the separation
between the levels of dimensional quantization is much
larger than the binding energy of the bulk exciton Ex =
∆1e4/4ε2"2ν2. Thus, it is suggested that there is one
exciton on each level of dimensional quantization.

(4) The dielectric constant of the medium surround-
ing the layer of the narrow-gap semiconductor is con-
sidered to be equal to the dielectric constant of the layer
ε, whose frequency and spatial dispersion is supposed
to be negligible. If the nonidentity of interacting parti-
cles is not taken into account, the complete two-particle
equation has the following form:

(12)

Here,  = – i"∂/∂r±, the index plus (minus) corre-
sponds to the hole (electron), and r = |r– – r+|. The cor-
rections caused by the nonidentity of the electron and
the hole (the “annihilation” corrections) will be ana-
lyzed below. We considered the exciton on the lowest
level of dimensional quantization. The free particle on
the lowest level is represented by the wavefunction in
the standard gauge of the Dirac equation (the final

∆ ∆ z( )
∆1, z a;<
∆2, z a.>




= =

ÊΦ r– r+,( ) ĤΦ r– r+,( ),=

Ĥ να̂–p̂– να̂+p̂+ β̂–∆ z–( ) β̂+∆ z+( ) e2/εr.–+ + +=

p̂±
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Table 2.  Exciton binding energy and its splitting for layers of some semiconductors of different width

Crystal InSb GaSb GaAs InAs InP AlSb ZnTe

a, Å 20 100 20 100 20 100 20 100 20 100 20 100 20 100

, meV 3.8 1.8 9.0 6.3 17 13.6 5.8 3.5 14.0 11.8 28.4 28.4 50.0 45.8

0.015 0.070 0.019 0.010 0.02 0.10 0.009 0.04 0.20 0.11 0.024 0.15 0.03 0.22

0.028 0.070 0.06 0.29 0.01 0.54 0.018 0.11 0.01 0.53 0.01 0.83 0.01 0.80

Ex
2( )

Ã1

Ã2
result does not depend on the gauge; see, for example,
[8])

(13)

Here, ω = , where a and b are arbitrary complex

numbers. The energy E0 and wavenumber k0 can be
obtained from the dispersion equation

(14)

To obtain the two-dimensional equation describing the
electron–hole interaction, formula (12) should be aver-
aged over z+ and z–. In the first approximation on δ and
α, as expected, we obtained the Schrödinger equation
for two particles of mass m* = E0/ν, which interact by
Coulomb’s law

(15)

Here, E = 2E0 is the exciton energy, which is counted
off from the lowest level of the dimensional quantiza-
tion; h± are the two-dimensional vectors defining the
coordinates of particles in the XY plane; h = h– – h+;
η = |h |; and  = – i"∂/∂h± is the two-dimensional
momentum. The solution of this equation is well-
known (see, for example, [9]). We present only the for-
mula for the binding energy of the two-dimensional
exciton

(16)

This energy is obtained in the first approximation on δ
and α. As in the case of the three-dimensional exciton,
in order to obtain the corrections linear in δ and α, we
considered the electron–hole scattering amplitude.
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Averaging it over z+ and z–, we retained the terms linear
in (δ, α). Using these terms, we restored the corrections
to the scattering potential of equation (15), which are
linear in (δ, α). The annihilation corrections are found
to be complex in the general case; the imaginary part

diverges at (2k0 – E0 /"c)  0. The matter is that,

at 2k0 ≈ E0 /"c, the one-photon annihilation cross-
section

(17)

is large, and it is incorrect to treat the exciton as the
bound state. Hence, in the case of the exciton, we sup-
posed that the width of the well a satisfies the condition

(18)

The inverse relation and the restriction accepted in this
section are hardly fulfilled simultaneously in real semi-
conductors. Taking into account these facts, the correc-
tion to the Coulomb potential has the form

(19)

To estimate the order of terms in equation (19), it is
convenient to introduce the dimensionless quantities
defining the unit length and unit energy as  =

2ν" /E0α and  = E0α2/2, respectively. Then,

(20)
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Û Û
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Ã2 ζ( ) δ 1 ζ2φ2+( )1/2
1

1
2
---ζ+

=

+ 2ζ2φ2




2– 4
3
---

5
4
---φ2– ζ 2

1
2
---φ2– 

 +

+ ζ2 8
3
---φ2 3

4
---– 

  ζ3 2φ2 1
2
---+ 

  4
3
---ζ4φ4+ + .
0



28 SILIN, SHUBENKOV
Here, ζ = ν" /a∆1 = α /2δ is the dimensionless parame-
ter characterizing the increase in the energy gap at a
given width of the layer; φ = k0a ∝  1 is determined by
the equation  = –2φζ (see relation (14)). It is inter-

esting that (ζ) is the first-order infinitesimal with
respect to α, whereas, in the three-dimensional case, all
the energy corrections are of an order of α2 or higher.

(ζ) is the function of the first order in max(α, δ).
Indeed, if the condition ζ @ 1 is fulfilled, we have

 ∝ α . If ζ ! 1, then  ∝ δ . The total binding energy
expressed in the same units is

(21)

Here, s, sz, and m are the quantum numbers: the total
spin, its projection onto the z-axis, and the projection of
the orbital momentum onto the z-axis, respectively. The
exciton binding energy and its splitting for some semi-
conductors are listed in Table 2 [9].
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Ã2 Ã2
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Abstract—The spin quartet splitting of the ground state sublevels of shallow acceptor centers in a magnetic
field has been calculated for diamond-like semiconductors with a strong spin-orbit coupling, such as Ge and
GaAs. The anisotropy of this splitting has been shown to depend strongly on the binding energy and to be very
sensitive to small changes in the Luttinger band parameters. These strong dependences permit one to use
calculated ground-state g factors to determine the Luttinger magnetic band-structure parameters κ and q.
A new method is proposed for determination of these parameters, and their values for Ge and GaAs are calcu-
lated. © 2000 MAIK “Nauka/Interperiodica”.
A large number of experimental and theoretical
studies deal with the electronic states of shallow accep-
tor centers in cubic semiconductors. High-resolution
spectra were measured by IR absorption [1–7], photo-
conductivity [8–10], and other [11–14] methods. These
results were interpreted qualitatively in terms of group
theory [15], and quantitatively using variational [16]
and numerical [17–19] calculations of the acceptor-
center states in a magnetic field. The g factors calcu-
lated by these methods are in good agreement with the
experimental data obtained for excited states. Both
experimental and theoretical results obtained by differ-
ent methods for the acceptor ground state differ notice-
ably, thus making determination of the ground state of
the acceptor center an urgent problem. This paper pre-
sents the results of a theoretical calculation of the
ground-state magnetic moment of shallow acceptors in
diamond-like semiconductors with a strong spin-orbit
coupling, analyzes the anisotropy of the magnetic split-
ting of the ground-state spin quartet, discusses the pos-
sibility of using ground-state g-factor calculations to
determine the band parameters of a material, and pro-
poses a new method for determination of the Luttinger
magnetic parameters κ and q.

It is well known that an external magnetic field
splits the carrier localized states degenerate in the pro-
jection of the angular momentum (the Zeeman effect).
In cubic semiconductors with a strong spin-orbit cou-
pling (such as Ge and GaAs), the ground state of a
hole localized on a shallow acceptor center is fourfold
degenerate in the projection of the total angular momen-
tum (Fz = ±3/2, ±1/2) [20]. It was shown [21, 22] that,
in the general case, the spin Hamiltonian describing the
linear Zeeman effect for a quartet of levels of symmetry
1063-7834/00/4201- $20.00 © 0029
Γ8 can be written as

(1)

Here, µB = e"/(2mc) is the Bohr magneton and Fα
(α = x, y, z) are the projections of the total localized-
hole angular momentum on the crystallographic axes.1 

In contrast to the simplest case of the spin doublet,
where the Zeeman effect is isotropic and described by
a single parameter (the g factor), in the general case the
magnetic splitting of a quartet of levels depends on the
magnetic-field direction and is determined by two
parameters (g1 and g2).

In order to calculate these parameters describing the
interaction of a hole localized on an acceptor with a
magnetic field, one has to know the hole wave function.
Until recently, the wave function of an acceptor-bound
hole was calculated either by a variational procedure
[16, 23–25], within which the form of the wave func-
tion is postulated and the accuracy is difficult to assess,
or numerically (see, e.g., [19]). The studies quoted
above made use of simplified models, which disregard
either the valence-band warping or the central-cell cor-
rections to the acceptor potential. As we are going to
show here, these factors substantially affect the magni-
tude and anisotropy of the magnetic moment of an
impurity center (the g1 and g2 parameters).

A new method for calculation of the ground-state
wave function of a spherical Coulomb acceptor based
on solving coupled integral equations in momentum
representation was proposed in [26]. This method was

1 In the literature, one frequently uses electronic notation for label-
ing the hole sublevels, in which case the minus sign on the right-
hand side of equality (1) is dropped.

H'ˆ µB g1 FxHx FyHy FzHz+ +( )[–=

+ g2 Fx
3Hx Fy

3Hy Fz
3Hz+ +( ) ] .
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subsequently generalized to the case where account
was taken of the cubic lattice symmetry [27] and the
difference of the hole attractive potential from the Cou-
lombic form (the chemical shift) [28, 29], which made
possible high-accuracy description of acceptors with
different binding energies. Within this method, the
dependence of the wave function Ψ(k) on the direction
of the wave vector k is obtained analytically (to within
2%), and the wave function is presented in a compact
form convenient for subsequent manipulations. The
wave functions derived in this way will be used in the
present work to calculate the magnetic splitting of the
acceptor ground state (the g1 and g2 quantities). The
calculations will be carried out by perturbation theory
in the first order in the magnetic field.

1. ACCEPTOR MAGNETIC-MOMENT OPERATOR

The state of a free hole in a fourfold-degenerate
valence band Γ8 in the presence of an external constant
magnetic field is described by the Luttinger Hamilto-
nian [30]

(2)

Here,  = "k – (|e |/c)A is the hole momentum, A =
(1/2)[H × r] is the vector potential of the magnetic field
H,  (α = x, y, z) are the matrix operators of the free-
hole spin projection in the valence band, and γ1, γ2, γ3,
κ, and q are the Luttinger band parameters.

The Hamiltonian of an acceptor-bound hole con-
tains, besides the kinetic energy operator (2), the poten-
tial energy operator, which does not depend on the
magnetic field. The attractive potential of an acceptor
center can be represented as a superposition of a long-
range Coulomb potential and a short-range central-cell
potential, whose inclusion permits consideration of
acceptors with different binding energies [28, 29].

Thus, the interaction of an acceptor-bound hole with
a magnetic field is described by operator (2) and
depends, in the general case, on the type of the impurity
(the acceptor binding energy). By separating in (2) the
perturbation linear in the magnetic field, one can obtain
the operator of the “intrinsic” magnetic moment of the
acceptor center it possesses in the absence of a mag-
netic field. In the case where the magnetic field is
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directed along the 

 

z

 

 axis, the perturbation operator can
be written as

(3)

where  is the operator of the 

 

z

 

 projection of the
intrinsic acceptor-center magnetic moment

(4)
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z

 

) are the compo-
nents of the hole position-vector and wave-vector oper-
ators.

2. METHODS OF CALCULATION

By comparing the expressions for the matrix ele-
ments of operators (1) and (3) for the acceptor states
with the 

 
z 

 
projections of the total angular momentum
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1/2 we obtain two coupled linear
equations for the 
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 parameters

(5)

The angular brackets denote here the integration
over the whole 

 

k

 

 space. Knowing the  wave
functions, one can readily calculate the matrix elements
on the right-hand sides of the equalities, after which, if
the Luttinger parameters are known, (5) becomes an
inhomogeneous system of two linear equations with
respect to 

 

g

 

1

 

 and 

 

g

 

2

 

. The angular dependence of the
wave functions  used in the calculations was
obtained in a very compact analytical form [28, 29].
This permitted us to integrate the matrix elements over
the angles analytically and to reduce the original three-
dimensional integrals to one-dimensional ones, which
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considerably simplified the subsequent calculations
and expressions for the g1 and g2 parameters

(6)
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where ∆ = γ3/γ2, and the angular brackets denote inte-
gration over the modulus of the wave vector: 〈 f(k)〉 =

. The functions g10(k), g14(k), g20(k), and

g24(k) determine the dependence of the acceptor
ground-state wave function  on the modulus of
the wave vector. In the general case, these functions are
calculated numerically by the technique described in
[28, 29]. The prime on the gij(k) functions refers to dif-
ferentiation with respect to the modulus of the wave
vector.

In the case where the experimental values of the g1
and g2 quantities are known for one or several different
acceptor centers (differing in the ground-state binding
energy), expressions (6) become equations for the band
parameters, which permits one to solve the inverse
problem, i.e., to determine the band parameters from
known g factors. For each type of the impurity (differ-
ing in the binding energy), one can calculate the wave
functions and matrix elements (7) entering the system
(6), which is a system of two linear equations for the
magnetic parameters κ and q. Thus, the knowledge of
the g1 and g2 quantities for an acceptor center permits
one to calculate the magnetic band constants.

If the g factors are known for several different cen-
ters, the Luttinger magnetic parameters can be obtained
by minimizing the rms deviation of the theoretical from
experimental values as a function of the band parame-
ters. This approach was used, for instance, to determine
the complete set of the Luttinger parameters for GaAs
by comparing the calculated splittings of the magnetic
sublevels of the ground and first excited acceptor states
[19] with experimental data [3] obtained within a broad

f k( )k2dk

0

∞

∫

ΨFz
k( )
P

magnetic-field range. The above calculations [19],
however, did not take into account the corrections due
to the central cell to the impurity potential and did not

include the contribution of the operator  cubic
in the hole spin to the acceptor magnetic moment:
besides, the magnetic constant κ, rather than being con-
sidered an independent parameter, was calculated using
an approximate expression. As shown below, this could
change the ground-state g factors by a few times.

In the present work, we are going to use experimen-
tal values of the γ parameters determining the hole
effective masses in the valence subbands. These param-
eters are known from cyclotron-resonance experiments
with a high accuracy (see, e.g., [31]). There are several
sets of values of the magnetic constants κ and q [19, 32]
which differ noticeably from one another. As will be
shown below, small changes of these parameters can
result in a change of the g1 and g2 quantities by a few
times. For this reason the magnetic constants κ and q
will be determined here by comparison of the calcu-
lated and experimental g factors.

3. RESULTS OF THE CALCULATIONS

The ground-state wave functions of various accep-
tor centers found in [28, 29] were used to derive the
dependence of the g1 and g2 quantities on acceptor
binding energy for a number of semiconductors. The
results of such calculations for Ge and GaAs are pre-
sented by solid lines in the figure. The triangles are
experimental values of the g factors for Ge : B [5],
Ge : Ga [5] and GaAs : C [3], GaAs : Be [4]. The
dashed lines are calculated within the zero-range poten-
tial model, which permits us to derive wave functions
in an analytic form [33]. The band parameter sets used
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in the calculations are as follows: γ1 = 13.38, γ2 = 4.24,
γ3 = 5.69 [31,32], κ = 3.134, and q = 0.0861 for Ge, and
γ1 = 6.85, γ2 = 2.1, γ3 = 2.9 [32, 34], κ = 1.30, and q =
0.017 [35] for GaAs. The κ parameter for Ge and GaAs
and the parameter q for Ge were derived from a com-
parison with the experimental data quoted in [4, 5] by
the technique described in Section 2.

The plots in the figure reveal a strong dependence of
the g1 and g2 quantities on binding energy, i.e., on the
type of the impurity (the chemical shift). The calcula-
tions show that the dependence of the g1 parameter on
the binding energy EA is dominated by the matrix ele-

ment , which is negative and whose magnitude
decreases monotonically with increasing EA. For Ge,
the g1 parameter is positive for low energies, EA ≤ 0.9EB

(here and henceforth EB is the Bohr energy of the heavy
hole; for GaAs, EB = 51.3 meV, and for Ge, EB =
18.25 meV), and also falls off monotonically with
increasing binding energy. At EA ≈ 0.9EB, g1 vanishes.
In the case of GaAs, the g1 parameter behaves qualita-
tively in the same way, but, in contrast to Ge, the sign
reversal occurs at very low binding energies, where
there are no real impurity centers. Here, the binding
energy is noticeably lower than the Coulomb energy,
which corresponds to the repulsive potential of the cen-
tral cell (to a negative chemical shift).

The behavior of the g2 parameter with binding
energy is determined primarily by the matrix element

, which is positive and grows monotonically with
EA. The g2 quantity is negative for low binding energies,
EA ≤ EB, both for Ge and GaAs, and grows monotoni-
cally with increasing energy. At EA ≈ EB the g2 parame-
ter passes through zero and reverses sign. Thus, the

N1

L2

anisotropy of the magnetic splitting of the acceptor
ground state, which is determined by the g2 parameter,
varies qualitatively with increasing binding energy;
namely, at EA ≈ EB the g2 quantity becomes zero, the
acceptor ground-state magnetic moment becomes iso-
tropic, and the splitting no longer depends on the mag-
netic-field direction.

In the general case (g1 ≠ 0, g2 ≠ 0), the splittings of
the acceptor-center magnetic sublevels are given by the
expressions

(8)

for the magnetic field H directed along the [001] axis
and 

(9)

for the H field aligned with the [111] axis.
In the case where the g1 parameter becomes zero

(for Ge, at EA ≈ 0.9EB), the splitting is completely deter-
mined by the g2 parameter. For the [001] direction, the
splitting of the states with Fz = ±3/2 is 27 times as large
as that of the Fz = ±1/2 states, the magnetic-moment
anisotropy for the Fz = ±3/2 states is small
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Table 1.  Comparison of the values of g1 and g2 calculated in this work with available experimental data (The signs of the g1
and g2 parameters taken from [3–6] are reversed, which corresponds to crossing over from the electronic notation of the accep-
tor sublevels used in those publications to the hole one.) 

Acceptor 
center EA (meV) γ1 γ2 γ3 κ q g1 g2

GaAs : Be 28 6.85 2.1 2.9 1.30 0.017 –0.31 –0.08

GaAs : Be 28 6.65 1.95 2.63 1.1 0.017 –0.22 –0.085

GaAs : Be [4] 28 –0.30 –0.07

GaAs : C [3] 27 –0.30(8) –0.09(5)

Ge : B 10.82 13.38 4.24 5.69 3.134(4) 0.086(3) 0.158 –0.093

Ge : B [5] 10.82 0.164(1) –0.091(1)

Ge : Ga 11.32 13.38 4.24 5.69 3.134(4) 0.086(3) 0.137 –0.083

Ge : Ga [5] 11.32 0.132(2) –0.084(2)

Ge : Ga [11] 11.32 –0.16(8) 0.08(4)

Ge : Zn– 87 13.38 4.24 5.69 3.134(4) 0.086(3) –0.079 0.023

Ge : Zn– [6] 87 –0.53(1) –0.002(7)

Note: The magnetic band parameters κ and q were calculated by the method described in Section 2.
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Table 2.  Comparison of the values of g1 and g2 calculated in this work for different Luttinger band-parameter sets with the-
oretical data in [19] (The signs of the g1 and g2 parameters taken from [19] are reversed, which corresponds to crossing over
from the electronic notation of the acceptor sublevels used in that publication to the hole one.)

Acceptor center EA (meV) γ1 γ2 γ3 κ q g1 g2

GaAs : C 27 6.65 1.95 2.63 1.1 0.017 –0.214 –0.089

GaAs : ACoul 25.70 6.65 1.95 2.63 1.1 0.017 –0.202 –0.095

GaAs : ACoul 25.70 6.65 1.95 2.63 1.1 0 –0.210 –0.118

GaAs : ACoul [19] 25.59 6.65 1.95 2.63 1.1 0 –0.208 –0.115

Ge : Ga 11.32 13.35 4.24 5.69 3.41 0.07 0.595 –0.131

Ge : ACoul 10.35 13.35 4.24 5.69 3.41 0.07 0.639 –0.151

Ge : ACoul 10.35 13.35 4.24 5.69 3.41 0 0.595 –0.236

Ge : ACoul [19] 13.35 4.24 5.69 3.41 0 0.590 –0.226
moment of states with Fz = ±1/2 is strongly anisotropic

(  = 13).

For deeper impurity centers, whose binding energy
exceeds the heavy-hole Bohr energy (EA > EB), the g1
and g2 quantities have opposite signs, and the anisot-
ropy of the magnetic-sublevel splitting with Fz = ±3/2
is larger than that for the Fz = ±1/2 states.

Some of the above qualitative features in the behav-
ior of the acceptor-center magnetic moment are
observed experimentally. For instance, the sign reversal
of the g1 parameter with increasing binding energy was
found to occur for acceptors in Ge. Table 1 lists exper-
imental and calculated values of the g factors for vari-
ous acceptor centers in Ge. One readily sees that, for
shallow impurity centers (B and Ga [5]), the g1 param-
eter is positive, whereas for the deeper Zn– acceptor [6]
this parameter is negative. Table 1 demonstrates good
quantitative agreement between the theoretical and
experimental data for shallow acceptor centers.

Isotropic magnetic splitting of the ground state was
experimentally observed in Ge doped with Zn, which is
a doubly charged acceptor in this material. Experiment
[6] gave a very small value of g2 for the ground state of
the singly charged Zn– center (see Table 1). The theo-
retical results listed in Table 1 for Ge : Zn– agree only
qualitatively with the experiment; indeed, as in the
experiment, the absolute magnitude of g2 is small, and
the sign of g1 for the deep Zn– center is opposite to that
for the shallow centers. The poor quantitative agree-
ment with experimental data is possibly due to the fact
that Zn– is a fairly deep acceptor in Ge and the binding
energy of its ground state (EA = 87 meV [32]) is more
than four times as large as the heavy-hole Bohr energy
EB. Because of the high binding energy, the contribu-
tion of the spin-split valence band to the wave function
of the center and to the magnetic moment is not small.
This contribution should be taken into account when
attempting a quantitative interpretation of experimental

∆E111
1/2( )/∆E001

1/2( )
P

results obtained with deep acceptors, which is outside
the scope of the model considered here.

The g factor of the acceptor center was calculated in
a spherical approximation [36–38]. The results quoted in
these publications can be obtained from those presented
in this work in the corresponding limit (γ3 = γ2 = γ). It
was shown [37, 38] that the ground-state g factor calcu-
lated in a spherical approximation depends only weakly
on the binding energy and can be approximated well
both in the zero-range potential model and in the other
widely used limiting model of a Coulomb center within
which the central-cell corrections are neglected com-
pletely. As seen from the figure, in contrast to the case
of a spherical acceptor [37, 38] the limiting model of
zero-range potential (the dashed lines) is at odds with
the experimental data and more accurate calculations
(the solid lines). This model yields only asymptotic val-
ues of g1 and g2 for high binding energies (EA @ EB).
The zero-range potential model used in the spherical
approximation [36, 37] reproduces well the splitting of
the Fz = ±3/2 sublevels in a magnetic field directed

along the [001] axis (gF ≈  = g1 + (9/4)g2).

Let us note a significant point associated with calcu-
lations of the acceptor magnetic moment, taking into
account the cubic symmetry of the lattice. In theoretical
calculations of g1 and g2, the contribution of the

 operator to the acceptor-center magnetic
moment (4) is, as a rule, neglected [16, 19]; i.e., one
sets q = 0. The reason for this lies in that the q constant
is of the relativistic nature and must be small [20, 30];
indeed, for Ge and GaAs the magnitude of q is typically
two orders of magnitude smaller than that of the γi and
κ parameters. This approach is justified when consider-
ing highly excited acceptor states, for which the g fac-

tors are large in absolute magnitude, and the  opera-
tor does indeed contribute little. In the ground state the
g1 and g2 quantities are, as a rule, small, so that the con-

tribution of the  operator may be comparable
to these quantities. For example, as seen from Table 2,

g3/2
001[ ]

2µBqĴα
3

Ĵα
3

2qĴα
3
/Fz
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neglecting the q parameter results in a change of the g2
parameter by a factor of 1.5 for the same binding
energy of the unperturbed acceptor in Ge (the κ and q
parameters do not affect the binding energy in a zero-
order approximation). Thus, neglecting the q constant
for acceptor states with small values of the magnetic
moment (comparable to the contribution due to the

 operator) can bring about a change of the
result by a few times. Among such states is, as a rule,
the ground state (1S3/2) and, possibly, the first excited
state (2P3/2) of the acceptor center.

The splittings of the magnetic sublevels of the
ground and first excited acceptor states in Ge and GaAs
were numerically calculated [19] within a broad mag-
netic-field range, taking into account the cubic symme-
try of the crystal. A fitting to experimental data [3]
yielded a new set of the band parameters γ1, γ2, γ3, and
κ for GaAs and demonstrated good agreement of the
theoretical values of g1 and g2 with experimental data
obtained for excited states. The value of g1 calculated
for the acceptor ground state in GaAs differed by more
than 30% from the measurement, a discrepancy that,
until present, remained unaccounted for.

Table 2 presents the calculated [19] values of g1 and
g2 for GaAs and Ge (rows 4 and 8), as well as the results
of our calculations carried out for the band parameters
obtained in [19] and using the simplifying assumptions
made in the quoted work, i.e., assuming a Coulomb
acceptor and q = 0 (rows 3 and 7). The results obtained
in these two independent calculations are in very good
agreement with one another. However, as is evident
from Table 2, the g1 and g2 parameters change strongly
when one introduces the corrections due to the central
cell and the finiteness of the q parameter; indeed, for
q = 0.017 [35] for GaAs and q = 0.07 [32] for Ge the
value of g2 changes by about a factor of 1.5 (rows 6
and 2), and taking into account the non-Coulomb
nature of the potential (rows 1 and 5) changes the
result for g1 and g2 by 10–20% (with the binding
energy changing by 5–10%). Besides, in [19] the κ
constant was not varied when fitting the band param-
eters for GaAs. It was assumed that it satisfies the rela-
tion γ1 – 2γ2  – 3γ3 + 3κ + 2 = 0 [39], which is valid only
in an approximate way. It will be shown, however, that
small variations in the κ parameter may bring about
large changes in the magnitude and anisotropy of the
magnetic-sublevel splitting. Thus it is using the Cou-
lomb acceptor model and an approximate relation for κ
and neglecting the term  in the magnetic
moment that accounts for the large errors in the calcula-
tion of the acceptor ground-state g factors quoted in [19].

Another important result of the calculations is the
strong dependence of the g1 and g2 quantities on the
Luttinger band parameters. For instance, a decrease of
the magnetic constant κ for Ge by 10% (from 3.41 to
3.1) results in a sign reversal of g1 (for the same unper-

2µBqĴα
3

2µBqĴα
3
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turbed acceptor binding energy). Note that the absolute
value of g1 changes here by a factor of about three.

The strong dependence of the g1 and g2 quantities on
the magnetic band parameters makes possible the
determination of these constants to a high accuracy.
Table 1 lists experimental data for g1 and g2 obtained
for GaAs [3, 4] and Ge [5, 6, 11], as well as the calcu-
lated values of these quantities and of the band param-
eters κ and q. The determination of the κ constant for
GaAs was based on the experimental data from [4],
because a better spectral resolution was attained here.
For the same reason the data for Ge were taken from
[5]. The κ and q constants were derived by solving
the coupled equations (6). As seen from Table 1, the
calculated values of g1 and g2 are in very good agree-
ment with the experimental data obtained on shallow
acceptors.

The good agreement of our present calculations
with the available theoretical and experimental data
suggests that the model proposed for the acceptor
ground-state magnetic moment can give an accurate
quantitative description of the Zeeman effect in shallow
acceptor centers. This is due, in a large measure, to the
fact that the comprehensive model of the acceptor
ground state developed in [28, 29] permits one to obtain
the wave function of a center with a high accuracy. This
factor, as well as the strong dependences of the g1 and
g2 quantities on the magnetic constants κ and q, raises
hope that the latter are determined with a good accu-
racy within the method proposed in the present work.

The main results of this work can be summed up as
follows.

(1) Expressions have been derived for the g1 and g2
quantities for the ground state of a shallow acceptor
center in cubic semiconductors with strong spin-orbit
coupling.

(2) It has been shown that the g1 and g2 parameters
describing the splitting of the acceptor sublevel quartet
in a magnetic field depend strongly on the ground-state
binding energy. These dependences have been calcu-
lated for GaAs and Ge, and they are shown to be in
good quantitative agreement with experimental data.

(3) It has also been shown that the  operator,
which is frequently neglected in calculations, contrib-
utes significantly to the magnetic moment of the
ground and, possibly, of the first excited state of the
acceptor.

(4) The paper proposes the reasons for the notice-
able discrepancies between the previous theoretical
g-factor calculations and experimental data for the
acceptor ground state.

(5) The g1 and g2 quantities have been demonstrated
to be very sensitive to small changes in the Luttinger
magnetic band constants κ and q.

(6) A new method is proposed for determination of
the magnetic parameters κ and q, which makes use of

2µBqĴα
3

0
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the strong dependences of the g1 and g2 quantities on
these parameters and the acceptor binding energy. This
method has been employed to calculate the magnetic
constants for Ge and GaAs.

It should be noted, in conclusion, that the model
proposed in this work is valid for fairly shallow accep-
tor centers whose binding energy is small compared to
the valence-band spin-orbit splitting.
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Abstract—The complete sets of the fundamental optical functions of molybdenum dichalcogenides have been
considered for the first time. The energies of their bulk and surface plasmons of two types are determined. It is
found that the energies of long-wavelength plasmons correlate with the energies of the deep minima in the
reflectivity and ε2E2 spectra and the maxima in the reflectivity phase spectra. © 2000 MAIK “Nauka/Interpe-
riodica”.
The electronic structure of solids over a wide range
of energies is studied experimentally by using the spec-
tra of reflection, transmission, photoemission, etc. [1].
The light is traditionally used as a source of excitation,
which permits one to obtain the spectrum of transverse
transition components. The longitudinal components of
a transition spectrum can be measured with the use of
fast charged particles. By the perturbation theory, the
intensity of the energy transfer from a particle is deter-
mined by the energy loss function W(ν, E, q), which is
expressed through a double integral of the function of
the velocity ν, momentum q, and energy E of the parti-
cles. Using certain approximations and normalizations,
from the measured function W, one derives a function
−Im(ε–1), which is called the function of bulk character-
istic losses, unlike the surface loss function –Im(1 + ε)–1.

Within the range of comparatively high energies and
very small values of ε1(E) and ε2(E), the energy loss
function spectra contain very broad intense bands
caused by excitation of all valence electrons. They are
universally assigned to bulk and surface plasmons with
the band maxima located at EPV and EPS, respectively.
One can also observe substantially weaker and very
narrow maxima associated with excitation of the longi-
tudinal components of interband or excitonic transi-
tions. The presence of the latter transitions causes a
decrease in EPV and EPS compared to the free-electron
plasmon energy EP.

The experimental techniques used to measure the
losses W are far from being simple, and the error of EPV

determination reaches ∆E ≈ 0.5 eV. In this respect, the
methods used to calculate the loss spectra from the
experimental optical reflectivity spectra are of particu-
lar importance. The objective of this work was to estab-
lish the bulk and surface characteristic-loss spectra for
the MoS2, MoSe2, and MoTe2 crystals and to reveal the
specific features in the correlation between the spectral
1063-7834/00/4201- $20.00 © 20037
structures of –Im(ε–1), –Im(1 + ε)–1, and other optical
fundamental functions.

Dichalcogenides of the MoX2 group are semicon-
ductors with Eg in the vicinity of 1 eV. These com-
pounds have a pronounced layered structure. They have
been investigated for many years following theoretical
predictions of their anomalous properties, specifically
of the high-temperature superconductivity [2, 3].

1. CALCULATION TECHNIQUE

The complete set contains 15 optical fundamental
functions [4], namely, the reflectivity R and absorptiv-
ity µ; the indices of refraction n and absorption k; the
real (ε1) and imaginary (ε2) parts of the dielectric per-
mittivity; the ε2E2 function proportional to the joint
density of states at a constant oscillator strength; the
effective number of the valence electrons neff(E) partic-
ipating in transitions to a given energy E and the effec-
tive permittivity εeff; the characteristic losses of the bulk
(−Imε–1) and surface –Im(1 + ε)–1 plasmons; the phase
of the reflected wave Θ; and the electro-optic differen-
tial functions α, β, and R–1dR /dE. Usually, the com-
plete set of functions is calculated from one experimen-
tal spectrum R(E), but over a very wide range of energy,
by means of the Kramers–Kronig integral relations and
analytical functions. The calculational method is
described in considerable detail and has been employed
before [4, 5].

2. RESULTS AND DISCUSSION

The reflectivity spectra of MoS2, MoSe2, and MoTe2
single crystals were measured experimentally at 300 K
in the E ⊥  C polarization in the energy ranges 1–12.5 eV
[6] and 1–30 eV [7]. The R(E) spectra obtained in [7]
were used by us to derive the complete sets of the opti-
cal fundamental functions for these three compounds.
000 MAIK “Nauka/Interperiodica”
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The present paper briefly considers only the loss spec-
tra (Figs. 1, 2, and table).

According to our calculations, the energies of the
bulk (EPVO) and surface (EPVS) plasmons vary in the
MoS2–MoSe2–MoTe2 series from 22.90 to 19.95 eV
and from 19.35 to 16.30 eV, respectively. The experi-
mental data on EPVE are available only for bulk plas-
mons in MoS2 and MoTe2; they are equal to approxi-
mately 22.3 and 22.2 eV, respectively [2]. Estimates for
the plasmon energies obtained for MoX2 in the free-
electron approximation range from 27.3 to 22.5 eV. In
some cases, the EPVO energies are estimated directly
from the ε1 spectrum at ε1 ≈ 0. For MoX2, such an eval-
uation substantially underestimates EPVO, namely, by
0.75 eV (MoS2), 1.7 eV (MoSe2), and 0.5 eV (MoTe2).
An analysis of our calculated data for EPVO permits one
to readily predict the expected EPVE energy for MoTe2,
i.e., ~20 eV (it is given in parentheses in the table). No
experimental study has been made of surface plasmons
in MoX2. According to our calculations, their energies
are less than those of the bulk plasmons by ~3.55 eV
(MoS2, MoTe2) and by ~5.0 eV (MoSe2). As expected
from the general theory of plasmons [1], EP is notice-
ably larger than EPVO. In the case of MoX2, ∆E = EP −
EPVO = 4.4 eV (MoS2), 2.8 eV (MoSe2), and 2.5 eV
(MoTe2).

Apart from the above strongest, broad band, the
spectrum of the bulk and surface characteristic losses
exhibits one more band at lower energies, E ≈ 7–9 eV,
which is narrow and substantially weaker. It should be
pointed out that this band, like the main plasmon band,
does not have a counterpart in the reflectivity and
absorption spectra, i.e., in the spectra of R, ε2, k, and
ε2E2. As follows from an analysis of the spectra of the
optical fundamental functions of MoX2 crystals, the
maximum of this additional band in the bulk and sur-
face loss spectra coincides with a high accuracy with

Fig. 1. Spectra of (1, 2, 3) –Imε–1 and (1', 2', 3') –Im(1 + ε)–1

for (1, 1') MoS2, (2, 2') MoSe2, and (3, 3') MoTe2 crystals in
the range 0–25 eV.
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the energy of the deep minimum in the ε2E2 function,
the energy of a pronounced narrow maximum of the
reflected-wave phase Θ(E), and the intersection point
of the ε1(E) curve with the energy axis ε1(E) ≈ 0. It lies
~0.3–0.4 eV below the very deep reflectivity minimum.
These features of the additional loss maxima, besides
the main band, permit the conclusion that they are also
due to the purely plasma effects. The energies of the
long-wavelength bulk and surface plasmons (type I)
differ by only 0.2–0.3 eV, i.e., ten times less than those
in the case of the main plasmons (type II). The energies

Fig. 2. Spectra of (1) –Imε–1, (2) –Im(1 + ε)–1, (3) R, (4) Θ,
(5) ε2Ε2, and (6) neff for (a) MoS2, (b) MoSe2, and
(c) MoTe2 crystals in the range 5–10 eV.
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Energies (eV) of the calculated plasmons EP , EPVO, and EPSO; experimental EPVE; extrema in ε1, R, ε2E2, and phase Θ; and
the effective number of valence electrons for the MoX2 crystals and graphite

Parameter
MoTe2 MoSe2 MoS2 Graphite

I II I II I II I II

EP – 22.50 – 25.30 – 27.30 12.50 23.0

EPVO 7.20 19.95 8.10 22.45 8.75 22.90 7.10 26.3

EPSO 7.00 16.30 7.80 17.40 8.55 19.35 6.50 20.10

EPVE (~7.1) (~20.0) 8.00 22.20 8.70 23.30 6.3–7.5 25–28

E(ε1 = 0) 7.05 19.45 8.05 20.75 8.65 22.15 6.95 25.6

E(min R) 7.55 – 8.40 – 9.15 – 8.3 –

E(min ε2E2) 7.05 – 8.05 – 8.75 – 9.9 –

E(max Θ) 7.0 – 8.1 – 8.75 – 7.29 –

Neff 10 24 12 28 9 21 1.4 6
of the type-I plasmons were estimated approximately
from the experimental loss spectra of MoS2 (~8.7 eV)
and MoSe2 (~8 eV) [2]. By our estimates for MoTe2, the
type-I plasmon band should lie in the −Imε–1 spectra in
the vicinity of 7.1 eV (this value is given in the table in
parentheses).

Plasmons of two types differing strongly in energy
and intensity in the loss spectra are well known to exist
in graphite [8]. They are accounted for by the strongly
pronounced layered crystal structure of graphite and
the separation of the valence electrons into two groups
(the π and σ electrons). The compounds of the MoX2
group have also a layered structure. It is not accidental
that the optical axes of MoX2 and graphite are perpen-
dicular to the basal plane of the samples. The crystal
structure and the character of interatomic interactions
in the MoX2 dichalcogenides are considerably more
complex than those in graphite. Therefore, in MoX2,
one could expect a more complex model of bonding-
orbital orientation and participation of d electrons in
both intra- and interlayer interatomic coupling. In this
connection, it is of interest to compare the parameters
of the MoX2 and graphite plasmons.

We calculated the complete set of the optical funda-
mental functions for graphite from the reflectivity spec-
trum in the range 0–40 eV [8] in the same way as it was
done for MoX2. The table lists our data, except for EP

and EPVE [9, 10]. An analysis of the data in the table
reveals a noticeable similarity of the features of two
plasmon types in two different groups of layered crys-
tals, namely, MoX2 and graphite. Therefore, one can
argue that all types of layered crystals should have plas-
mons of two different types. The extent of separation of
the valence electrons into two different groups depends
on the actual anisotropy of a crystal lattice. One of the
most sensitive methods of revealing these two groups
of valence electrons consists in measuring the charac-
teristic losses, specifically the method based on the cal-
culations of the reflectivity spectra.
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The positions of the type-I and type-II maxima in
the –Imε–1 and –Im(1 + ε)–1 spectra of MoX2 crystals
differ by ~3.5–5 eV (II) and 0.2 eV (I). In the energy
range E < 7 eV, the loss spectra contain many very
weak narrow peaks, whose positions in the surface and
bulk loss spectra coincide to within 0.01 eV. These
peaks are due to direct interband and excitonic transi-
tions. A comparison of the loss and ε2 spectra for MoX2

shows that the loss peaks are located higher in energy
than the ε2 peaks by ~0.5–1 eV for E > 2.5 eV and virtu-
ally coincide for lower energies. As follows from an
analysis of these data, the energy of the longitudinal–
transverse transition splitting is very small, ∆E < 0.05 eV
for E < 2.5 eV, and increases with an increase in the
energy by about an order of magnitude for higher ener-
gies.

Thus, we have established for the first time the exist-
ence of two types of surface and bulk plasmons in the
MoS2, MoSe2, and MoTe2 crystals, the closeness in
energies of the long-wavelength plasmons, the mini-
mum in ε2E2, the maximum in Θ(E), E(ε1 = 0), and the
sharp minimum in R(E), and close analogies of these
compounds with graphite. Therefore, the distinct sepa-
ration of the valence electrons and atomic interactions
into two different groups in graphite has been proven to
extend to the considerably more complex layered crys-
tal structures of the MoX2 group as well. The model of
two different valence-electron groups is apparently
characteristic of layered and strongly anisotropic crys-
tals. The probability of realization of this model in a
particular crystal can be found from the intensity of the
long-wavelength plasmon. A detailed analysis of the
neff(E) spectrum will permit quantitative separation of
the valence electrons into two different groups partici-
pating in transitions to a given energy E.
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Abstract—The polarized reflectivity and optical conductivity spectra of microcrystals of the new organic con-
ductor (BEDO-TTF)5[CsHg(SCN)4]2 based on the donor molecule bis(ethylenedioxy)tetrathiafulvalene
(BEDO-TTF) have been studied in the spectral ranges 600–6500 and 9000–40000 cm–1 at 300 K for three prin-
cipal lattice directions. The optical evidence for the quasi-two-dimensional character of the conducting elec-
tronic system is obtained. The conclusion is made that the studied crystal is the quasi-two-dimensional semi-
metal with overlapping electron energy bands. The basic parameters of the electronic system of the crystal are
determined in the framework of the Drude model. It is found that the allowed electron energy bands of the crys-
tal are somewhat narrower than those of the previously studied structurally allied superconductor based on the
same molecule. The features of vibrational structure are identified in the σ(ω) spectra for the specified three
polarizations. © 2000 MAIK “Nauka/Interperiodica”.
A large number of high-conductivity radical cation
salts based on the bis(ethylenedithio)tetrathiafulvalene
(BEDT-TTF) molecule have been synthesized in recent
years [1–3]. The properties of these compounds vary
over a broad range (from semiconductors to quasi-two-
dimensional metals and superconductors) depending
on the structure of the BEDT-TTF conducting radical
cation layers and the chemical nature of anions.
Among the twenty superconductors produced on the
basis of the BEDT-TTF molecule, there is a group of
k-(BEDT-TTF)2Cu[N(CN)2]X salts with the highest
superconducting transition temperatures Tc observed in
organic compounds: Tc = 12.3 K at 0.3 kbar (X = Cl),
11.6 K (X = Br) [1], and 11.3 K (X = Cl0.5Br0.5) [4].

In the search for new organic superconductors,
Suzuki et al. [5] synthesized the new donor heterocy-
clic molecule—an analog of the BEDT–TTF molecule,
in which four sulfur atoms in the six-membered rings
are replaced by the oxygen atoms—bis(ethylene-
dioxy)tetrathiafulvalene (BEDO-TTF) (Fig. 1). In the
case of the conventional phonon (Bardeen–Cooper–
Schrieffer) mechanism of superconductivity, Wudl
et al. [6] assumed that the replacement of four sulfur
atoms with lighter oxygen atoms can lead to an increase
in the Tc temperature due to a decrease in the overall
mass of the molecule and the higher density of states at
the Fermi level in salts based on BEDO-TTF. On the
other hand, according to Yamaji [7], the superconduct-
ing transition temperature can increase in the BEDO-
TTF salts as a result of an increase in the frequency of
intramolecular vibrations interacting with the elec-
1063-7834/00/4201- $20.00 © 0004
tronic system. By now, two superconductors were syn-
thesized on the basis of this molecule: (BEDO-
TTF)5Cu2(NCS)3 with Tc = 1.1 K [1] and (BEDO-
TTF)2ReO4(H2O) with Tc = 2.5 K [8, 9]. The polarized
reflectivity spectra of the later superconductor were
studied by Sommer et al. [10] and also by Swietlik and
Kushch [11].

Recently, we synthesized a new family of organic
metals based on the BEDO-TTF molecule, namely,
(BEDO-TTF)m[MHg(SCN)4]2 (where M = Cs, Rb, K,
NH4, and Li), and investigated the structure and the
electrical conductivity of some compounds [12, 13].

In the present work, we studied the polarized reflec-
tivity spectra of the (BEDO-TTF)5[CsHg(SCN)4]2
compound—a new organic metal belonging to the
above family of salts, which undergoes a transition
(at 85 K) to the dielectric state with a decrease in the
temperature. The measurements were carried out over a
wide spectral range (600–6500 and 9000–40000 cm–1)
at a temperature of 300 K. The spectra obtained were
compared with the corresponding spectra of the
(BEDO-TTF)2ReO4(H2O) superconductor [10].

1. EXPERIMENTAL

Crystals of (BEDO-TTF)5[CsHg(SCN)4]2 are black,
well-faceted parallelepipeds 2 × 0.5 × 0.2 mm in size
with smooth specular surfaces.

The main crystal data are as follows: triclinic
crystal system, space group P1, Z = 1, a = 10.436 Å,
2000 MAIK “Nauka/Interperiodica”
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b = 10.709 Å, c = 19.973 Å, α = 89.59°, β = 81.88°,
γ = 72.76°, and V = 2109 Å3 [13]. The crystals have a
layered structure: the BEDO-TTF+0.4e radical cation
layers alternate with the anion layers along the c-axis
aligned parallel to the (ab) plane. (The oxidation state
of the BEDO-TTF molecules is +0.4e.) In the conduct-
ing layer, the BEDO-TTF+0.4e radical cations form
stacks and ribbons. The stacks are oriented along the

b−2a direction (i.e., along [ 10]) with the shortest con-
tacts (3.55–3.67 Å) between the S atoms of the adjacent
molecules. In the stacks, almost planar molecules
BEDO-TTF are packed in a face-to-face manner. The
planar ribbons are aligned along the 3b–a direction. In
the ribbons, the contacts between the adjacent mole-
cules are shortest (3.36–3.47 Å), and the molecules are
arranged side-by-side. In the anionic layers, the Hg
atom is coordinated with four SCN groups to produce a
tetrahedron. The [Hg(SCN)4]2– anions linked by the
Cs+ ions give rise to the chains along the a-axis. The
cation and anion layers are linked by the shortest con-
tacts.

The external faceting of the crystal is formed by the
ab (001) and bc (100) faces. The b–2a direction of
stacks, which we designated as I, coincides with the
direction of the long crystal edge.

The polarized reflectivity spectra R(ω) at normal
light incidence to the more developed (001) and side
(100) crystal faces in the range 600–6500 cm–1 were
recorded on a Perkin–Elmer 1725X Fourier spectrome-
ter equipped with a microscope with a nitrogen-cooled
MCT detector (light beam diameter, 100 µm; resolu-
tion, 4 cm–1; “golden wire” as a polarizer). In the range
9000–40000 cm–1, the spectra were taken on a double-
beam microspectroreflectometer devised at the State
Optical Institute (beam diameter, 25 µm; resolution,
60 cm–1; Glan–Thompson prism as a polarizer). The
quality and position of the analyzed surface with
respect to the microscope axis and the orientation of the
crystal in the light wave field were inspected through an
exit pupil of instruments. When measuring the reflec-
tion from each face, different microregions on the sur-
face of several crystals were examined to choose the
region with the highest reflectivity for each face. The
absolute reflectivities were determined with respect to
an aluminum mirror and SiC.

The reflectivity spectra of the developed crystal face
(001) were measured in the polarizations correspond-
ing to the largest anisotropy of the spectra in the range
600–6500 cm–1. These are the polarizations in which
the electric vector of light wave is parallel and perpen-
dicular to the direction of the BEDO-TTF stacks, i.e.,
E || I and E ⊥  I. The spectra of the side crystal face
(100) were measured at E || I and E ⊥  (ab); i.e., E is
almost parallel to c. The crystal was oriented in the light
wave field with an accuracy of 7°–10°.

The optical conductivity spectra σ(ω) were obtained
from the R(ω) spectra by the Kramers–Kronig method.

2
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In the low-frequency range, the extrapolation was per-
formed in the Hagen–Rubens approximation R(ω) =
1 – αω1/2. In the high-frequency range, we employed
the standard extrapolation in the form R(ω) ~ (ω0/ω)α.
In the spectral range 6500–9000 cm–1 (not measured in
the present work), the reflectivity spectra were extrapo-
lated using the spectra obtained earlier in this range for
crystals of the BEDT-TTF salts [14].

2. RESULTS

Figures 2a and 2b demonstrate the reflectivity spec-
tra obtained for faces (001) and (100) in the
(BEDO-TTF)5[CsHg(SCN)4]2 crystals in the range
600–40000 cm–1.

As can be seen from Fig. 2a, the maximum reflectiv-
ity is achieved in polarization E ⊥  I, and the minimum
reflectivity is observed at E || I. For both polarizations,
the reflectivity at low frequencies is rather high: up to
0.75 at E ⊥  I and up to 0.60 at E || I. E ⊥  I, as the fre-
quency increases, the reflectivity first smoothly
decreases, then rapidly declines, and exhibits a well-
defined plasma edge in the range 2500–6000 cm–1 and
a deep minimum (down to 0.05) at about 6000 cm–1.
For E || I, an increase in the frequency results in a
smoother decrease in the reflectivity. In this case, the
plasma edge is less pronounced and observed in the
narrower range 3700–5500 cm–1 with a minimum at
5500 cm–1. It is seen that, for both polarizations, the
spectra obtained are qualitatively similar to the spectra
of metals and have the shape close to the reflectivity
spectra of the (BEDO-TTF)2ReO4(H2O) superconduc-
tor [10]. The anisotropy observed in the spectra of the
(001) face is insignificant.

In the frequency range below 2000 cm–1, the spectra
at E ⊥  I show features in the form of shallow minima at
860, 1188, 1199, 1440, and 1612 cm–1. In our opinion,
these features are brought about by the interaction
between the electronic system and intramolecular
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Fig. 1. Structural formulas of the bis(ethylenedithio)tetra-
thiafulvalene (BEDT-TTF) and bis(ethylenedioxy)tetrathia-
fulvalene (BEDO-TTF) molecules.
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vibrations of the BEDO-TTF molecule, which is typi-
cal of organic conductors. At E || I, there are only two
vibrational features: a rather strong band in the form of
a “minimum–maximum” at 956 cm–1 and a very shal-
low minimum at 1188 cm–1. For both polarizations, a
narrow intense doublet attributed to the characteristic
stretching vibrations of the CN groups in the anion is
observed at 2100 cm–1.

The reflectivity spectra of the side crystal face (100)
at E || I and E ⊥  (ab) plane are displayed in Fig. 2b. A
strong anisotropy of the reflectivity for this plane qual-
itatively differs from a weak anisotropy of the reflectiv-
ity in the (001) plane. The reflectivity spectrum at E || I
shows metallic behavior and is close in shape to the
reflectivity spectrum of the (001) face in this polariza-
tion (E || I). The difference between these spectra

Fig. 2. Polarized reflectivity spectra of the (BEDO-
TTF)5[CsHg(SCN)4]2 crystal: (a) the (001) face at (1) E ⊥  I
and (2) E || I and (b) the (100) face at (3) E || I and (4) E ⊥  (ab)
plane. Solid lines correspond to the experimental data, and
dashed lines represent the results of calculations within the
Drude model. Inset: (2) the (001) face and (3) the (100) face
at E || I.
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resides in the fact that, as is seen from the inset in
Fig. 2a, the plasma edge in the reflectivity spectrum of
the (100) face occurs at a lower frequency with a mini-
mum at about 4500 cm–1. The spectrum measured in the
other polarization, i.e., at E ⊥  (ab) plane (when the E
vector is virtually perpendicular to the conducting lay-
ers) exhibits a qualitatively different behavior. In the
entire IR range, one can observe a low reflectivity (from
0.13 to 0.06), typical of dielectrics. In the range below
2000 cm–1, against this low background, there appear
narrow intense vibrational features at frequencies of
864, 1010, 1188, 1201, 1270, 1378, and 1609 cm–1,
which are associated with the optically active vibra-
tions of the BEDO-TTF molecule. A very weak band
attributed to the vibrations of the CN groups in the
anion is also observed at about 2100 cm–1.

In the range 9000–40000 cm–1 lying above the
plasma frequency, the reflectivity spectra contain very
broad weak bands. The reflectivity spectrum of the
(001) face at E ⊥  I involves the band (Rmax = 0.13) with
a maximum at 32400 cm–1. A similar, but weaker band
(Rmax = 0.08) is observed in the spectra of both (001)
and (100) faces at E || I. For the polarization when the
E vector is perpendicular to the conducting layers [face
(100), E ⊥  (ab) plane], there is a band at about
13000 cm–1. We believe that these bands are associated
with the intramolecular electron transitions in the
BEDO-TTF molecule. The structural analysis [13] and
the band intensities suggest that the band at 32400 cm–1

is predominantly polarized along the short molecular
axis, whereas the band at 13000 cm–1 is polarized along
the long molecular axis.

The optical conductivity spectra σ(ω) in the range
700–6000 cm–1 are depicted in Fig. 3. It is seen that, for
the polarizations when the E vector lies in the plane of
conducting layers, i.e., E ⊥  I and E || I for the (001) face
and E || I for the (100) face, the shape of three spectra
is qualitatively identical. In the range 700–1500 cm–1,
the conductivity decreases rather sharply. At frequen-
cies above 1500 cm–1, the metallic conductivity
smoothly decreases with an increase in the frequency.
For the (001) face at E || I, one can see a small inflection
near 4000 cm–1 against the background of a smooth
decrease in the conductivity. It is worth noting that,
over the entire frequency range studied, the optical con-
ductivity for the (001) face at E || I is larger than that for
the (100) face in the same polarization because of the
difference in the reflectivity spectra. In the range below
2000 cm–1, the σ(ω) spectra under consideration exhibit
weak vibrational features in the form of narrow bands
or bands with a “minimum–maximum” shape, which is
characteristic of the features brought about by the reso-
nance interaction between the intramolecular vibra-
tions and conduction electrons.

As is seen from Fig. 3, unlike the metallic character
of the σ(ω) spectra for the polarizations with the E vec-
tor lying in the plane of conducting layers, the σ(ω)
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
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Fig. 3. Optical conductivity spectra of the (BEDO-TTF)5[CsHg(SCN)4]2 crystal for the (001) face at (1) E ⊥  I and (2) E || I and for
the (100) face at (3) E || I and (4) E ⊥  (ab) plane. Solid lines correspond to the experimental data, and dashed line represent the
results of calculations within the Drude model. Inset: the same spectra in the range 700–1600 cm–1 on an enlarged scale.
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spectrum does not show the metallic behavior when
the E vector is perpendicular to this plane [face (100),
E ⊥  (ab) plane]. A very broad (2000–6000 cm–1) elec-
tron-type band with a maximum near 4000 cm–1 is
clearly observed in the σ(ω) spectrum. In the range
below 2000 cm–1, the spectrum contains intense narrow
bands associated with the optically active intramolecu-
lar vibrations of the BEDO-TTF molecule. The assign-
ment of all the vibrational features observed in the R(ω)
and σ(ω) spectra will be given below in the discussion
of experimental data.

3. DISCUSSION
3.1. Electronic Phenomena

The R(ω) and σ(ω) spectra of the (BEDO-
TTF)5[CsHg(SCN)4]2 crystals (Figs. 2, 3) indicate that
the metallic behavior of the reflectivity and optical con-
ductivity in the IR range is observed only in the case
when the E vector is parallel to the plane of the BEDO-
TTF layers and does not occur when the E vector is per-
pendicular to this plane. The found anisotropy suggests
the quasi-two-dimensional character of the conducting
electronic system in the crystals. A similar result was
obtained in our earlier work [14] for a number of con-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      200
ductors and superconductors based on the BEDT-TTF
molecule. The quasi-two-dimensional character of the
electronic system can also manifest itself in a broad
maximum in the σ(ω) spectrum at about 4000 cm–1 in
the case when the E vector is perpendicular to the plane
of conducting layers in the crystal [face (100), E ⊥  (ab)
plane]. Owing to the large focal aperture of an objective
lens in an IR microscope, the light incident on the crys-
tal involves oblique rays. As was demonstrated by
Bulaevskiœ and Kukharenko [15], in a quasi-two-
dimensional crystal, the oblique incidence of light on a
crystal face perpendicular to conducting planes should
bring about the direct excitation of plasmons when the
E vector lies in the incidence plane. Actually, as is seen
from Fig. 3, the broad maximum in the σ(ω) spectrum
is located near the plasma minimum (4500 cm–1)
observed for this face at E || I. A similar maximum for
the corresponding polarization was previously
observed for the (BEDO-TTF)2Cu[N(CN)2]Cl0.5Br0.5
crystals in our earlier work [16], in which other possi-
ble causes of its appearance in the spectra were also dis-
cussed.

As the R(ω) and σ(ω) spectra of the studied crystal
exhibit a behavior close to metallic, their quantitative
analysis was performed by the fitting of the calculated
0
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spectra to the experimental data with the use of the
Drude expression for the frequency dependence of the
dielectric constant

where ωp is the plasma frequency, ε∞ is the dielectric
constant of the lattice at high frequencies, and γ is the
damping constant for charge carriers. It should be
emphasized that the precise fitting of the reflectivity
spectra can be obtained only in a narrow range cover-
ing the plasma edge and the plasma minimum: 3000–
6500 cm–1 at E ⊥  I and 3750–6500 cm–1 at E || I for
the (001) face and 3000–6000 cm–1 at E || I for the
(100) face. In the range of smooth decrease in σ
(2500–6500 cm–1), the σ(ω) spectrum is sufficiently
well described by the Drude frequency dependence.
Table 1 presents the found parameters ωp, ε∞, γ and the
effective masses of charge carriers m*, which were cal-

ε ω( ) ε∞ ωp
2 /ω ω iγ+( ),–=

Table 1.  Parameters of the electronic structure of the
(BEDO-TTF)5[CsHg(SCN)4]2 crystal

Polarization ωp , cm–1 γ, cm–1 ε∞ Ωp, cm–1 m*

E ⊥ I, (001) 8000 2400 2.5 7200 1.0

E || I, (001) 7400 3100 3.2 5700 1.6

E || I, (100) 6000 2300 3.2 5300 2.4
P

culated from the relationship  = 4πne2/m* (where
n = 0.95 × 1021 cm–3 is the charge carrier concentration
obtained from the X-ray diffraction analysis [13]). The

values of ωp found from the sum rule  = 

are also listed in Table 1. At lower frequencies, the exper-
imental spectra deviate from the simple Drude depen-
dence described by the parameters given in Table 1.

Note that the ωp values obtained for the (BEDO-
TTF)5[CsHg(SCN)4]2 crystal are somewhat less than
those for the (BEDO-TTF)2ReO4(H2O) superconductor
(ωp = 9900 and 7850 cm–1 for two polarizations). This
indicates that the allowed electron energy bands in the
studied BEDO-TTF-based organic crystal with the
metal–dielectric transition are somewhat narrower than
those in the superconductor based on the same mole-
cule.

As shown above, the R(ω) and σ(ω) spectra of the
crystals under consideration deviate from the simple
Drude dependence. We believe that one of the reasons
for this deviation can be the presence of several types
of charge carriers, as is the case for the (BEDO-
TTF)2ReO4(H2O) compound [10]. The band structure
calculations performed by Kahlich et al. [17] demon-
strate that the aforementioned compound is the semi-
metal with overlapping valence and conduction bands,
and the valence band overlaps with two more bands.
Therefore, the electronic properties of this compound

ωp
2

Ωp
2 8 σ ω( ) ωd∫
Table 2.  Location and assignment of the features of vibrational structure in the σ(ω) spectra of the (BEDO-TTF)5[CsHg(SCN)4]2
crystal

Band frequencies in the σ(ω) 
spectra, cm–1

Frequencies (cm–1), symmetry, and mode of vibrations in 
BEDO-TTF (D2h symmetry) [18]

E || I, (001) E ⊥ I, (001) E ⊥  (ab)
frequency (cm–1)

 symmetry vibrational mode
observed calculated

1615 1657 1654 ag (2) C=C bond stretching in fulvalene rings

1594 1647 1647 b1u (2) ''

1450 1445 1454 ag (4) CH2 bending

1375 1374 1393 b2u (45)

1268 1270 1279 b1u (29) Bending of ethylene fragment

1189

1196 1203 ag (6) C–O–C vibrations

1201

1178 1170 1169 au (14) Bending of ethylene fragment

1200 1199 1203 b1u (30) C–O–C vibrations

954 1005 1015 1014 b1u (31)

865 865 860 ag (8) Mixed vibrations of six-membered rings in 
BEDO-TTF860 864 861 b1u (32)
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are affected by all four bands. It can be supposed that
similar overlapping of bands also takes place in the
(BEDO-TTF)5[CsHg(SCN)4]2 crystals. In our opinion,
the vibronic and electron–electron interactions can also
contribute to the above deviation.

It follows from Table 1 that the ωp and γ parameters
at E || I are different for the (001) and (100) faces. This
difference likely implies that the parameters and the
relevant spectra R(ω) (inset in Fig. 2a) depend on the
direction of the wavevector k in the quasi-two-dimen-
sional crystals under consideration.

3.2. Vibrational Features

The locations of vibrational features in the σ(ω)
spectra for three polarizations of the incident light are
given in Table 2. The assignment of these features was
performed by comparison of their locations in the spec-
trum with the frequencies of normal vibrations in the
neutral BEDO-TTF molecule, which were found in
[18] by the calculation and measurements of the Raman
and IR spectra for BEDO-TTF crystals. It is seen from
Table 2 that the locations of the features observed at
E ⊥  I (except for the band at 1615 cm–1) correspond to
the frequencies of the totally symmetric (ag) intramo-
lecular vibrations. This corroborates the above conclu-
sion that the vibrational features are brought about by
the interaction of the electronic system with these
vibrations. The location of the band at 1615 cm–1 differs
from the frequency of the ag(2) intramolecular vibra-
tions by about 40 cm–1. This is likely explained by the
fact that the frequency of the ag(2) intramolecular
vibrations (the C=C bond stretching in fulvalene rings)
in the BEDO-TTF+0.4e cation in the salt crystals is less
than the frequency in the neutral molecule due to a
stronger interaction of these vibrations with the elec-
tronic system, as evidenced by the broadening of this
band. The doublet character of the feature at 1189–1201
cm–1 can be associated with the presence of crystallo-
graphically nonequivalent BEDO-TTF cations in the
crystals [13]. It is worth nothing that the vibrational
features brought about by the interaction of the elec-
tronic system with the ag intramolecular vibrations are
observed for the E ⊥  I polarization. This polarization
corresponds to the charge transfer in the direction per-
pendicular to stacks; i.e., when the molecules are
arranged in a side-by-side fashion, and the charge
transfer can lead to a change in the molecular symmetry
[19]. It can be assumed that some change in the symme-
try reduces the vibronic interaction in this compound,
and, hence, the vibronic features observed in the spec-
tra are of low-intensity. At E || I, the spectrum contains
only one band at 954 cm–1, which is attributed to the
optically active vibrations b1u(31). As can be seen from
Fig. 3 and Table 2, for polarization E ⊥  (ab), the band
at 1594 cm–1, which is assigned to the b1u(27) vibra-
tions, differs from the other bands in this spectrum: it is
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shifted by 51 cm–1 with respect to the relevant band for
BEDO-TTF and is considerably broadened. These fea-
tures are caused by the same factors that have been con-
sidered above for the ag(2) vibrations, which also cor-
respond to the stretching of the C=C bonds in the ful-
valene rings.

Thus, the polarized spectra of reflectivity R(ω) and
optical conductivity σ(ω) of the new organic conductor
(BEDO-TTF)5[CsHg(SCN)4]2 based on the bis(ethyl-
enedioxy)tetrathiafulvalene molecule are studied.
Comparison of these spectra with the spectra of the
(BEDO-TTF)2ReO4(H2O) superconductor indicates
that the conductor studied in this work has the elec-
tronic structure of quasi-two-dimensional semimetal
with overlapping electron energy bands. The main
parameters of quasi-two-dimensional electronic system
ωp, ε∞, γ, m*, and their anisotropy are determined
within the Drude model. It is found that the allowed
electron energy bands in the studied conductor are
somewhat narrower than those in the superconductor
based on the same molecule. The vibrational features
arising from the interaction of the two-dimensional
electronic system with the totally symmetric intramo-
lecular vibrations ag and also the bands of the optically
active vibrations b1u and b2u of the BEDO-TTF mole-
cule are identified in the spectra.
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Abstract—The spectra of dipole-active optical phonons are measured for the cubic and orthorhombic phases
of PbF2 single crystals. The frequencies and eigenvectors of normal modes in the Pnma orthorhombic phase are
calculated. It is found that the spectrum of the cubic phase exhibits excess vibrational modes of the PbF2 orthor-
hombic phase. © 2000 MAIK “Nauka/Interperiodica”.
Single-crystal lead fluoride is a promising material
for the development of ionizing radiation detectors [1].
In this respect, the investigations into the optical prop-
erties and the lattice dynamics of PbF2 crystals are of
considerable interest from the experimental and theo-
retical viewpoints. Two modifications of PbF2 are
known: the orthorhombic modification, whose symme-

try is described by the space group Pnma (62), and
the cubic modification with crystal symmetry repre-

sented by the space group Fm m (225). The spectra
of dipole-active optical phonons in the orthorhombic
phase have hitherto not been studied, whereas the spec-
tra of dipole-active phonons in the PbF2 cubic phase
were investigated, for example, in [2, 3]. Except for a
phonon feature that should be observed in the cubic
phase, the spectra of this phase contain additional
bands, for example, at about 140 cm–1; however, their
nature has remained unknown. In the present work, we
measured the spectra of dipole-active optical phonons
in the cubic and orthorhombic phases of PbF2 single
crystals and theoretically analyzed the eigenvectors and
natural frequencies of optical phonons in the Pnma
phases. It was revealed that the spectrum of the cubic
phase contains several excess bands, which become
more pronounced with a decrease in the temperature of
the crystal from 300 to 5 K. Moreover, it was demon-
strated that the excess vibrational modes correspond to
the PbF2 orthorhombic phase.

1. EXPERIMENT

1.1. Experimental Technique

Single crystals of the PbF2 cubic phase were grown
by the Czochralski method. The studied samples of
cubic PbF2 single crystals had the unit cell parameter
a = 5.92 Å.

It is known that orthorhombic PbF2 can be produced
from aqueous solutions [4]. However, small sizes of the
resulting single crystals (as small as 20 µm) make the

D2h
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3 Oh
5
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investigation of their vibrational spectra impossible. In
this work, single crystals of the orthorhombic phase
were grown with the use of a saturated solution of PbF2
in a mixture of perchloric acid with distilled water.
Cooling of the solution at a rate of 1–2 K/h resulted in
transparent faceted crystal plates up to 3 × 3 × 0.15 mm
in size [5]. According to the X-ray diffraction analysis,
the crystals obtained are orthorhombic, and the unit cell
parameters are as follows: a = 6.42 ± 0.02 Å, b = 3.89 ±
0.02 Å, c = 7.63 ± 0.02 Å, space group Pnma. The
developed surface of plates is characterized by the
(001) orientation. Since the crystal plates were very
thin, the reflectivity spectra were measured only for two
orientations: E || a and E || b (the light wavevector q || c).

The infrared (IR) reflectivity spectra of PbF2 single
crystals were recorded on a Fourier-transform spec-
trometer in a geometry close to that of the normal light
incidence on the single-crystal surface. In order to elu-
cidate the temperature evolution of the reflectivity
spectra in the range 5–300 K, the samples were fas-
tened on a cold conductor in a vacuum cavity of a
helium-flow cryostat.

1.2. Experimental Results

The reflectivity spectra of the cubic and orthorhom-
bic single crystals at T = 300 K are displayed in Figs. 1
and 2, respectively. In both cases, the one-phonon excita-
tions are observed in the frequency range ν < 400 cm–1.
At these frequencies, the spectrum of the cubic crystal
exhibits a broad band. The spectrum of the orthorhom-
bic phase is more complex: it was measured in two
polarizations E || b and E || a (Figs. 2a and 2b, respec-
tively).

The dependences σ(ν) and Im[–1/ε(ν)] (where ε is
the dielectric function) that have been derived from the
Kramers–Kronig transformation are also depicted in
these figures. The locations of maxima in these depen-
dences allow one to determine the frequencies of trans-
verse optical (TO) and longitudinal optical (LO)
phonons at the Γ point of the Brillouin zone. Because
000 MAIK “Nauka/Interperiodica”
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the mathematical processing of the spectra with this
method requires the integration with respect to the
energy, generally speaking, in the interval from zero to
infinity, the spectra were measured at frequencies up to
6000 cm–1 and, at higher energies, were fitted within the
one-oscillator approximation. An approximation char-
acteristic of dielectric crystals was applied at ν <

Fig. 1. Reflectivity (R), optical conductivity (σ), and
Im(−1/ε) (dashed line, arbitrary units) of the cubic PbF2 sin-
gle crystal at T = 300 K.

Fig. 2. Reflectivity (R), optical conductivity (σ), and Im(–1/ε)
(dashed line, arbitrary units) spectra of the orthorhombic
PbF2 single crystal at T = 300 K for (a) E || b and (b) E || a
polarizations. Vertical dashes indicate the calculated TO fre-
quencies.
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50 cm–1. As can be seen from Fig. 1, the dependence
σ(ν) for the PbF2 cubic modification is characterized by
a maximum at the frequency νTO = 103 cm–1, which
corresponds to the TO phonon. In the case of the orthor-
hombic crystals (Fig. 2), the σ(ν) curves show two
maxima at the νTO frequencies for the E || b polariza-
tion. For the E || a polarization, the dependence σ(ν)
exhibits three clear-cut maxima at νTO = 59, 107, and
168 cm–1 and a weak maximum at νTO = 198 cm–1. The
νTO and νLO frequencies obtained for the cubic and
orthorhombic modifications of PbF2 single crystals are
summarized in Table 1.

The angular frequencies of the TO and LO modes
ωTO and ωLO make it possible to calculate the effective
dynamic charge Ze of vibrating ions and to evaluate the
degree of ionicity of interatomic coupling. According
to Denham et al. [2], the charge of the fluorine ion in a
cubic crystal is defined by the relationship

(1)

where m = MPbMF/(MPb + 2MF) is the reduced mass of
ions; MPb is the mass of the metal ion; MF is the mass of
the fluorine ion; r0 = a/2, where a is the unit cell param-
eter; and ωTO and ωLO are the angular frequencies of the
TO and LO modes, respectively.

Taking into account that MPb @ MF, the above for-
mula gives the effective charge of fluorine ions. From
formula (1), it follows that Ze = 0.97 for the PbF2 cubic
phase at T = 300 K. This is in agreement with the data
reported by Denham et al. [2], who studied PbF2 thin
films at T = 300 and 100 K and obtained the effective
charges equal to 0.93 and 0.94, respectively. Axe [3]
obtained an effective charge of 0.91 at T = 295 K.

Since the PbF2 orthorhombic phase is characterized
by three types of atoms (Pb, F1, and F2), the equation
for the effective charges takes the following form [6]:

(2)

(3)

where α stands for the polarization; Z and m are the
charges and masses of ions, respectively (subscripts
indicate the ion type); V is the unit cell volume; ωTO and
ωLO are the angular frequencies of the TO and LO
modes, respectively; and εν is the electric permittivity
of vacuum.

For anisotropic crystals, the measurements of the IR
spectra in the polarized light provide information on the
ion charges and, in some cases, enable one to determine
the difference in charges of the symmetrically inequiv-
alent ions of the same type. An example is the spectrum
of La2CuO4, in which the anisotropy of the dynamic
charge of oxygen was found experimentally [7, 8]. The
possibility of revealing the charge anisotropy in
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La2CuO4 stems from the fact that, for one polarization
in all the modes, the energy is predominantly contrib-
uted by the O2 oxygen, whereas, for another polariza-
tion, the dominant contribution is provided by the O1
oxygen. The difference in charges of the O1 and O2
oxygens, which we experimentally observed in
La2CuO4 in the earlier work [7], agrees with the
results of calculations of the energy band structure in
the strong coupling approximation, according to
which the charges of the O2 and O1 oxygens are equal
to –1e and –1.5e, respectively [9]. This differences is
associated with the short Cu–O2 distance (1.9 Å),
which brings about a strong hybridization of the Cu
and O2 electronic states. The hybridization of the Cu and
O1 electronic state is considerably weaker because the
Cu−O1 distance is equal to 2.43 Å.

The calculation of the effective fluorine charges in
the PbF2 orthorhombic phase for two polarizations gave
close values: 0.92 for E || a and 0.94 for E || b. This can
be explained as follows. Analysis of the eigenvectors of
normal modes demonstrates that, in the crystal under
consideration, both fluorine ions participate in the
modes of both polarizations. The absence of dominant
contribution from fluorine of one type in any polariza-
tion (see Fig. 4) leads to close effective charges in two
polarization even at appreciably different charges of F1
and F2 ions. The difference between the effective
charges in PbF2 should be less than that in La2CuO4,
because the Pb–F1 and Pb–F2 distances only slightly
differ.

2. THEORETICAL CALCULATIONS OF NORMAL 
MODES IN PbF2 ORTHORHOMBIC PHASE

2.1. Group-Theoretic Analysis of Normal Modes
in the Pmna Orthorhombic Phase

Figure 3 demonstrates the crystal lattice of the PbF2
orthorhombic phase. First and foremost, we note that,
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as follows from the lattice symmetry, all the fluorine
ions in the cubic phase are equivalent. The X-ray dif-
fraction analysis [10] revealed that the unit cell of the
orthorhombic phase contains twelve ions: four lead
ions and eight fluorine ions of two types F1 and F2.
Four F1 ions (and, analogously, four F2 ions) can be
transformed into each other by the symmetry opera-
tions, and, therefore, these atoms are symmetrically
equivalent. However, there is no symmetry operation
that can transform the F1 atom to the F2 atom. This
stems from the fact that, although these atoms have the
identical local symmetry Cs, the sets of their distances
to the nearest lead ions are different: the F1–Pb dis-
tances are equal to 2.48, 2.51, and 2.50 Å, and the F2–
Pb distances are 2.57, 2.81, and 2.84 Å. In general, the

Fig. 3. The unit cell structure of the orthorhombic PbF2
phase. Two orientations of the coordinate systems Pnma and
Pbnm and the directions of the electric dipole moment vec-
tors are indicated.

x
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Pbnm

Pb

F1
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B1u

B3u
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Table 1.  Frequencies of dipole-active optical phonons in PbF2 single crystals

Cubic phase

Symmetry type

Orthorhombic phase

νTO, cm–1 νLO, cm–1
νTO, cm–1 νLO, cm–1

observed calculated observed calculated

103(105) 347(344) F1u

168(176) B3u 59 40 87 124

200(218) 107 114 164 176

250(265) 168 156 196 248

(307) 198 218 343 260

307 309

B2u 83 92 217 240

232 214 358 273

Note: Parenthetic frequencies are obtained at T = 5 K.
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Fig. 4. Normal frequencies and normal vectors of the B1u , B3u, and B2u modes and the silent Au modes in the orthorhombic phase
with the Pnma symmetry. The calculated frequencies of the LO phonons are given in parentheses.
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symmetrically inequivalent F1 and F2 ions should pos-
sess different charges and different electric field gradi-
ents induced at a particular ion by the other ions in a
crystal.

The symmetrically equivalent ions (for example,
four F1 ions) should have the displacement vectors
identical in magnitude for each vibrational mode, but
the directions of the vectors can be different. The sym-
metrically inequivalent F1 and F2 ions can exhibit dif-
ferent magnitudes of the displacement vectors for each
mode, and, hence, the PbF2 orthorhombic phase can
possess the vibrational modes in which the F1 ions exe-
cute vibrations, while the F2 ions remain virtually
immobile, and vice versa. Examples of these modes are
the B3g modes with the calculated frequencies of 224
and 116 cm–1, as illustrated in Fig. 5.

In the group-theoretic analysis of the phonon spec-
tra of the cubic phase, the choice of the coordinate axes
is of no consequence. However, in the case of the
orthorhombic phase, the coordinate system and the axis
orientations with respect to the symmetry elements
should be chosen more carefully. In the PbF2 orthor-
hombic phase, the symmetry plane determining the
local symmetry of all the ions is normal to the direction
of the smallest unit cell parameter. When the orienta-
tions of the axes correspond to the International Tables
for Crystallography [11] (the standard coordinate sys-
tem), the space group is Pnma (a = 6.42 Å, b = 3.89 Å,
c = 7.63 Å). Another choice of the axis orientation leads
to the space group Pmnb (a = 3.89 Å, b = 6.42 Å, c =
7.63 Å) or the space group Pbnm (a = 7.63, b = 6.42,
c = 3.89 Å). It should be mentioned that Wyckoff [10]
considered the PbF2 orthorhombic phase in the Pbnm
orientation of coordinate axes, which is not standard
coordinate system.

In the space group Pnma, all the atoms have the local
symmetry Cs. This point group involves two symmetry
elements: the unit element E and the mirror plane m. For
the Pnma orientation of the coordinate system, the m

plane is the σy plane, and the local group is . In the
case of the Pbnm and Pmnb orientations, the m planes
are represented by the σz and σx planes, and the local

groups are  and , respectively. The Cs group has
two irreducible representations: A' and A'' with group
characters 1 and –1 relative to m. Two displacement
components lying in the mirror plane are transformed
through the irreducible representation A': these are x
and z, x and y, and y and z components, respectively, in
the Pnma, Pbnm, and Pmnb orientations of axes. The
displacement component normal to the mirror plane is
transformed through the irreducible representation A'':
these are the y, z, and x components in the Pnma, Pbnm,
and Pmnb orientations, respectively. As a result, for dif-
ferent axis orientations, the irreducible representations
of the positional symmetry group induce the following

Cs
xz

Cs
xy Cs

yz
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irreducible representations of the corresponding space
groups at the Γ point:

Therefore, different axis orientations of the orthor-
hombic crystal are characterized by different decompo-
sitions of the modes at the Γ point, that is,

By invoking the data obtained by Rousseau et al.
[12], some authors have not quite correctly determined
the decomposition of the modes into irreducible repre-
sentations. We would like to draw attention to the fact
that, in [12], all the space groups are considered only in
the coordinate systems available in the International
Tables for Crystallography [11]. Therefore, the data

Pnma: 2A' 2Ag 2B2g 2B1u 2B3u,, , ,⇒
A'' Au B1g B3g B2u;, , ,⇒

Pbnm: 2A' 2Ag 2B1g 2B2u 2B3u,, , ,⇒
A'' Au B1g B3g B1u;, , ,⇒

Pmnb: 2A' 2Ag 2B3g 2B1u 2B2u,, , ,⇒
A'' Au B1g B2g B3u., , ,⇒

Pnma: 6Ag 3B1g 6B2g 3B3g+ + +

+ 3Au 6B1u 3B2u 6B3u,+ + +

Pbnm: 6Ag 6B1g 3B2g 3B3g+ + +

+ 3Au 3B1u 6B2u 6B3u,+ + +

Pmnb: 6Ag 3B1g 3B2g 6B3g+ + +

+ 3Au 6B1u 6B2u 3B3u.+ + +

Table 2.  Model parameters (Aij and bij are the constants of
the Born–Mayer potential, Lij and Tij are the longitudinal and
tangential force constants for ith and jth ions, R is the bond
length, and Z is the ion charge)

Bond Aij, eV bij, Å Lij, N/m Tij, N/m R, Å

Pb–F1 3300 3.86 53.36 –3.5 2.48

Pb–F1 52.66 –3.2 2.50

Pb–F1 52.9 –3.38 2.49

Pb–F2 3300 3.78 40.9 –2.4 2.57

Pb–F2 16.19 –1.06 2.81

Pb–F2 14.53 –0.94 2.84

F1–F1 3300 4.5 6.3 –0.5 2.97

F1–F2 11.16 –1.0 2.88

F1–F2 10.38 –0.93 2.90

F1–F2 4.7 –0.39 3.10

F1–F2 1.87 –0.14 3.35

Atom type Pb F1 F2

Z[e] 1.77 –0.83 –0.94
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Fig. 5. Normal frequencies and normal vectors of the Ag , B2g, B1g, and B3g modes in the orthorhombic phase with the Pnma sym-
metry. The parenthetic experimental frequencies are taken from [14].

Ag

Ag

B1g

B2g

B2g

B3g

261 (exp. 250) 224 (exp. 211) 160 (exp. 172)

110 (exp. 124) 70 (exp. 62) 57 (exp. 48)

243 (exp. 253) 106 (exp. 211) 41 (exp. 81)

307 (exp. 241) 258 (exp. 228) 247 (exp. 174)

141 (exp. 127) 106 (exp. 48) 93 (exp. 48)

224 (exp. 228) 116 (exp. 151) 42 (exp. 48)
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reported in [12] are inapplicable in the case of any other
axis orientation in orthorhombic PbF2.

The choice of the coordinate system is important for
both the decomposition of the modes into irreducible
representations and the derivation of selection rules.
The directions of the electric dipole moment vectors for
two axis orientations Pnma and Pbnm are shown in
Fig. 3.

The group-theoretic analysis of the Fm m cubic
phase indicates that PbF2 exhibits one triply degenerate
mode of F1u symmetry that manifests itself in the IR
spectrum. This is confirmed by the experimental reflec-
tivity spectrum (Fig. 1). The phonon frequencies νTO =
103 cm–1 and νLO = 347 cm–1 are in good agreement with
the frequencies obtained by Denham et al. [2] from the
reflectivity spectra of thin films (νTO = 106 cm–1 and
νLO = 338 cm–1) and also with the frequencies deter-
mined by Axe et al. [3] from the reflectivity spectra of
PbF2 single crystals (νTO = 102 cm–1 and νLO = 337 cm–1).

2.2. Model

The calculations were carried out within the model
of rigid ions with effective charges. The interionic
interaction between the kth and k'th atoms was

described by the potential  =  + ,

where  = ZkZk' /(4πε0r) is the Coulomb long-

range potential, and  = akk'exp(–bkk'r) is the
Born–Mayer short-range potential. Since the unit cell
parameters measured are almost coincident with those
reported by Wyckoff [10], the positional parameters of
the lattice virtually coincide with the parameters given
in [10]; and, hence, the positional parameters of ions in
the unit cell were taken from [10]. It should be
remarked that both the unit cell parameters and the
positional parameters slightly differ from those
obtained by Boldrini and Loopstra [13].

In calculations within the rigid-ion approximation,
it is important to know the effective ion charges Zk,
which can be used as the initial parameters in order to
determine the Coulomb part of the dynamic matrix.
The effective charges e* used in our calculations were
equal to 0.75 and 0.85 for the F1 and F2 ions, respec-
tively. The mean fluorine charge (0.92–0.94), which
was obtained in the experiment, somewhat exceeded
the model mean value (0.8). The Coulomb part of the
dynamic matrix was calculated by the Ewald method.
For crystals with the low local symmetry, it is necessary
to take into account a rather large number of coordina-
tion spheres. The control was exerted by the calculation
of the electric field gradient produced at a particular ion
site by the other ions in the crystal. The electric field
gradient is described by the tensor of second rank,
which should meet the following three conditions:
(i) the tensor components should remain constant (to

3

Vkk' r( ) Vkk'
C r( ) Vkk'

BM r( )

Vkk'
C r( )

Vkk'
BM r( )
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within a specified accuracy) with an increase in the
number of coordination spheres; (ii) the spur of the ten-
sor should be equal to zero, which implies the fulfill-
ment of the electronegativity condition divE = 0; and
(iii) the electric field gradient of each ion should pos-
sess the symmetry of local environment of this ion. The
maximum number of coordination spheres NMAX was
equal to 100, and the maximum distance of summation
DMAX in the real space was 17.3 Å.

Table 2 lists the model parameters, which corre-
spond to the best agreement between the calculated and
experimental frequencies.

2.3. Infrared-Active Modes

The PbF2 orthorhombic phase exhibits twelve
dipole-active modes, including three silent Au modes
(Fig. 4). Let us consider the B2u modes. For the Pnma
axis orientation, there are two dipole-active B2u modes
whose symmetry admits the sole component uy of ionic
displacements (Fig. 4). One mode (with a calculated
frequency of 214 cm–1) is predominantly associated
with the fluorine vibrations. Note that the vibration
amplitude of the F1 ions is larger than that of the F2
ions. In the mode at 92 cm–1, all the fluorine ions have
the same direction of displacement vectors. The net
dipole moment arising upon excitation of this mode is
larger than that of the mode at 214 cm–1, which involves
the displacements of fluorine ions in the opposite direc-
tions. This is in agreement with the experimental data
(Fig. 2a). The TO frequencies of these modes also rea-
sonably agree with the frequencies observed experi-
mentally. The TO–LO separation of these modes is
very large: 134 cm–1 for the mode at 83 cm–1 and
125 cm–1 for the mode at 232 cm–1. The calculated val-
ues are equal to 140 cm–1 for the mode at 92 cm–1 and
70 cm–1 for the mode at 215 cm–1.

Moreover, the five B1u and five B3u modes should
be observed. For these modes, the uy displacement
component is symmetry-forbidden (uy ≡ 0), and,
hence, the ionic vibrations in these modes can occur
only in the symmetry plane. In our experiment, we
measured only the B3u modes active for the polariza-
tion E || a (a = 6.42 Å), q || c (c = 7.63 Å). The calcu-
lated frequencies of the four TO modes are in satisfac-
tory agreement with the experimental data (see Table 1).
The fifth modes (the calculated frequency is equal to
307 cm–1) was not observed in our experiment.

In any orthorhombic crystal, all the irreducible rep-
resentations are unidimensional, and, therefore, the
vector of the electric dipole moment possesses one
component in each dipole-active representation. This
means that, for any dipole-active mode, all the symmet-
rically equivalent ions, for example, four F1 ions,
should have identical directions of the displacement
vectors for only one component (z for B1u, y for B2u, and
x for B3u at the Pnma orientation). The other displace-
0
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ment vector components of fluorine ions should have
signs such that the corresponding component of the net
dipole moment would be identically equal to zero. The
components of the net dipole moment of some dipole-
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Fig. 6. Temperature evolution of (a) the reflectivity (R) and
(b) optical conductivity (σ) spectra for the mechanically
polished surface of the cubic PbF2 single crystal. T, K: (1)
300, (2) 200, (3) 100, and (4) 5. Reflectivity spectra are
shifted along the y-axis by the value y = R – 0.1(n – 1),
where n is the number of spectrum (n = 1–4).

Fig. 7. Temperature evolution of the reflectivity spectra
taken from as-prepared cleavage surface of the cubic PbF2
single crystal. T, K: (1) 300, (2) 80, and (3) 5.
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active modes can be too small to be represented in the
figure on the chosen scale. The LO–TO separation of
these modes is small. In particular, this is true for the
B3u mode at 307 cm–1 (see Fig. 4: the x component of
the ionic displacement is small), for which the calcu-
lated LO–TO separation is equal to 2 cm–1. Therefore,
the oscillator strength of this mode is low, and the mode
is difficult to observe in the experiment.

2.4. Raman-Active Modes

Figure 5 shows the Raman-active modes in PbF2 for
the Pnma orientation of the coordinate axes. The paren-
thetic experimental frequencies were taken from
Kessler et al. [14]. These authors did not indicate the
orientation of coordinate axes [14], but, reasoning from
the number of the B1g modes, it can be assumed that
they dealt with the Pbnm orientation; i.e., the direction
of the parameter c = 3.89 Å is chosen as the z-axis.

For the B1g and B3g modes, only the uy component of
the displacement of all the ions is symmetry-allowed,
and ux ≡ 0 and uz ≡ 0. In this case, only three modes with
the symmetry described by the B1g and B3g irreducible
representations are possible. Note that the displacements
of symmetrically equivalent ions (for example, F1)
should be equal in magnitude, but can differ from the

displacements of the F2 ions (  ≠ ). Conse-
quently, the situation can occur when fluorine ions of
one type are displaced, while the ions of another type
remain virtually immobile (Fig. 5, the B3g modes at 233
and 119 cm–1). A similar situation is impossible when
all the fluorine atoms are symmetrically equivalent, as,
for example, is the case of the cubic phase.

The calculated frequencies of the Ag modes coincide
well with the experimental values. For the B1g, B2g, and
B3g modes, there are appreciable discrepancies between
the calculated and experimental values of some fre-
quencies. In particular, Kessler et al. [14] assigned the
band at 48 cm–1 to all the Raman-active representations.
In the case of the orthorhombic crystal, such an acci-
dental degeneracy is unlikely. Analysis of the eigenvec-
tors of the modes permits us to assume that, among the
B2g modes, there are no modes with a frequency of
48 cm–1, but there is the mode at 81 cm–1.

3. TEMPERATURE EVOLUTION 
OF THE REFLECTIVITY SPECTRA 

OF THE PbF2 CUBIC PHASE

Figure 6a illustrates the evolution of the reflectivity
spectra of optical phonons in the PbF2 cubic phase in
the temperature range 5–300 K. A decrease in the tem-
perature brings about the transformation of the spec-
trum. This manifests itself in the appearance of rela-
tively weak (but clearly defined at 5 K) minima at 176,
218, 265, and 307 cm–1 on the background of a high

uy
F1 uy

F2
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reflectivity of the cubic phase. These minima are
matched by the bands with maxima at the aforemen-
tioned frequencies in the spectrum of optical conduc-
tivity (Fig. 6b). The intensities of the additional bands
are not high as compared to the intensity of the main
maximum at 105 cm–1 (σmax = 300 Ω–1 cm–1) in the
spectrum of optical conductivity of the cubic crystal.
As the temperature increases up to room temperature,
the first three additional bands become smoothed at
168, 200, and 250 cm–1, and the relatively weak band at
307 cm–1 is not observed at T > 100 K. Analysis of the
spectra showed that the additional bands become more
pronounced with a decrease in the temperature due to
the decrease in their halfwidths. The spectral location
of these bands is close to the location of the B3u modes
at 168 and 198 cm–1 and the B2u mode at 232 cm–1 for
the orthorhombic phase. This suggests that the PbF2
cubic phase contains inclusions of the orthorhombic
phase.

It is common knowledge that, at room temperature,
the thermodynamically equilibrium phase of lead diflu-
oride is the orthorhombic modification. Upon heating,
the orthorhombic phase transforms into the cubic mod-
ification (according to different authors, at tempera-
tures from 200 to 450°C [15]; specifically at 447°C
from the data reported by Wyckoff [10]). In the case of
bulk single crystals, a decrease in the temperature down
to room temperature at atmospheric pressure does not
lead to the reverse transition from the cubic phase to the
orthorhombic modification. The cubic PbF2 single
crystals grown by the Czochralski or Verneuil method
also do not transform into the orthorhombic modifica-
tion upon cooling. It is agreed that the main hindrance
to the transformation from the cubic phase to the
orthorhombic modification is a considerable decrease
in the volume (~10%) upon phase transition. The ther-
mogravimetric measurements revealed that the orthor-
hombic single crystals used in the present work exhibit
transition to the cubic phase at 310°C and do not
undergo transformation into the orthorhombic modifi-
cation with a subsequent decrease in the temperature.

Samara [17] showed that the phase transition from
the cubic modification to the orthorhombic modifica-
tion can be initiated, for example, at room temperature,
under the external pressure. In particular, the mechani-
cal treatment leads to the appearance of the orthorhom-
bic phase on the surface of cubic PbF2 [18–20]. Alov
and Rybchenko [18] experimentally demonstrated that
chemical polishing of the surface does not ensure the
complete removal of the orthorhombic phase from the
surface layer. Based on the X-ray diffraction experi-
ments, Shmyt’ko et al. [20] also made the inference
that a thin layer of the orthorhombic phase is always
formed on the free surface of cubic PbF2 single crystals.
According to [18], the surface free from the orthorhom-
bic phase impurity can be observed on the cleavage sur-
face of cubic PbF2 single crystals.
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From the foregoing, it is seen that the above
assumption about the presence of the orthorhombic
phase in the cubic PbF2 single crystals is in agreement,
in part, with the conclusions drawn in [18, 20]. The
main difference resides in the fact that the spectrum
measured in our experiments for the cleavage surface of
the cubic single-crystal modification also contains
additional bands (Fig. 7) similar to those observed in
the spectrum of the orthorhombic phase. Furthermore,
the band at 307 cm–1 is more pronounced in the spec-
trum of the cleavage surface, because, in this case, its
width is less. It is worth noting that the spectral location
of the band corresponds to the calculated value for the
mode that is not observed in the room-temperature
spectrum of the orthorhombic crystal.

Thus, the spectrum of dipole-active optical phonons
is measured for the PbF2 orthorhombic phase. With due
regard for the data on the Raman-active modes
obtained in [14], the theoretical calculation of the nor-
mal frequencies is performed in the rigid-ion model
with effective charges. The model parameters that pro-
vide a reasonable agreement between the calculated
and experimental frequencies are determined.

A number of excess vibrational modes are revealed
in bulk single crystals of the PbF2 cubic phase. It is
shown that their presence in the spectrum of the crystal
is caused by inclusions of the PbF2 orthorhombic phase
at the surface and in the bulk of the crystal.
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Abstract—Trigonal 157Gd3+ impurity centers in SrF2 and BaF2 were experimentally studied by EPR and dou-
ble electron-nuclear resonance (DENR) techniques. Parameters of the hyperfine and quadrupole interactions
between these centers were determined. Possible distortions of the nearest atomic environment of the impurity
centers are estimated within the framework of a superposition model using the EPR and DENR data for the cen-
ters of cubic and trigonal symmetry in the crystals studied. © 2000 MAIK “Nauka/Interperiodica”.
Fluorine-compensated trigonal Gd3+ centers appear
in SrF2 and BaF2 crystals grown in a fluorine-contain-
ing atmosphere. The excess positive charge of these
impurity centers is compensated by an F– ion localized
in the lattice site adjacent to Gd3+ along the C3 crystal
axis [1]. This additional anion may lead to displace-
ments of the eight nearest-neighbor F– ions occupying
cube vertices in the undistorted structure. These dis-
placements cannot be determined using only data
obtained by the EPR method alone. Data on the DENR
on ligands are usually also insufficient to determine the
coordinates of fluorine atoms, because the hyperfine
interactions of ligands in the nearest-neighbor positions
to the impurity center are not of a purely dipole-dipole
nature. Below we will demonstrate that a combined use
of the EPR, ligand DENR, and 157Gd3+ DENR data elu-
cidates the character of distortions in the crystal lattice
in the environment of the impurity center and the com-
pensator ion (Fk). The purpose of this work was to ana-
lyze these distortions within the framework of a super-
position model for the spin Hamiltonian parameters
[2, 3], using comparative data on these parameters for
the cubic and trigonal 157Gd3+ centers in SrF2 and BaF2
crystals.

1. EPR AND DENR MEASUREMENTS

Experiments were conducted on the samples of SrF2

and BaF2 single crystals with a 157Gd2O3 admixture
(0.01 wt % in the initial charge), which were grown by
the Czochralski method in an atmosphere containing
excess fluorine. The measurements were performed
using 3-cm-band superheterodyne EPR spectrometers
at a temperature of T = 1.8 K. Both SrF2 and BaF2 sam-
ples exhibited all the known EPR spectra with local-flu-
orine and nonlocal compensation of the excess positive
1063-7834/00/4201- $20.00 © 20051
charge on the impurity atoms. When the external mag-
netic field H was oriented along the principal symmetry
axes of the impurity centers, the EPR spectra exhibited
a complicated structure determined by the combined
effect of the intrinsic hyperfine coupling (HFC) and the
ligand hyperfine coupling (LHFC) components. For the
other (intermediate) orientations of H, the structure of
the SHF absorption signals from all non-cubic centers
was also significantly affected by the quadrupole cou-
pling (QC).

The EPR spectra of the trigonal centers were
described using a standard spin Hamiltonian [4] in the
coordinate system XYZ with the axes parallel to the

crystallographic directions [ ], [ ], and [111],
respectively. The parameters of the spin Hamiltonian
are presented in Table 1. Our results for BaF3 : Gd3+

coincide, to within the margin of experimental error,
with the data reported in [5]. 

The experimental investigations of hyperfine and
quadrupole interactions were performed by the station-
ary and nutation DENR techniques [6]. The DENR
spectra were analyzed using a spin Hamiltonian includ-
ing a part describing the EPR spectrum and an addi-
tional term H' responsible for the HFC and QC of
157Gd3+ (S = 7/2, I = 3/2) with the C3v symmetry (we use
the conventional notation according to [4]):

(1)

112 110

H' AzSzIz Axy SxIx SyIy+( ) gnβn HI( )–+=

+ 1/3P2
0O2

0 I( ) 1/252 B1 B2 B4+ +( ) O2
0 S( )O2

0
I( )( )[+

3B1( –+ 3B2 0.5B4+ ) O2
2 S( )O2

2 I( ) Ω2
2 S( )Ω2

2 I( )+( )

+ 12B1 6B2 8B4–+( ) O2
1 S( )O2

1 I( ) Ω2
1 S( )Ω2
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+ A1O3
0 S( )O1

0 I( ).
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Table 1.  Spin Hamiltonian parameters (MHz) describing EPR spectra of Gd3+ impurity centers in SrF2 and BaF2 at T = 1.8 K

Crystal gxy gz

SrF2
(tr)

1.9902
(16)

1.9924
(15)

–461.1
(2.5)

86.5
(1.0)

–2448
(16)

–0.8
(1.0)

–0.7
(1.8)

–25.2
(25.0)

SrF2
(cub)

1.9916
(7)

1.9916
(7)

0 84.3
(4)

–2384.4
(4)

–0.5
(5)

–6.6
(6.6)

–5
(5)

BaF2
(tr)

1.9921
(15)

1.9921
(15)

–460.8
(2.6)

77.6
(1.0)

–2188
(17)

–0.8
(1.0)

–3.6
(4.0)

–6.0
(5.9)

BaF2
(cub) [6]

1.9916
(5)

1.9916
(5)

0 75.5
(1.5)

–2134.5
(5.0)

–0.8
(2)

–9.3
(1.5)

–7.2
(1.3)

b2
0 b4

0 b4
3 b6

0 b6
3 b6

6

In (1), only those terms were retained among the sym-
metry-allowed terms which were determined from the
experimental data. The corresponding spin Hamilto-
nian parameters are listed in Table 2.

The parameters presented in Tables 1 and 2 were
calculated by the numerical minimization based on the
total energy matrix and the set of the resonance fields
of EPR transitions and DENR frequencies.

2. SUPERPOSITION ANALYSIS OF THE SPIN 
HAMILTONIAN PARAMETERS 

AND ESTIMATION OF LOCAL DISTORTIONS

An analysis of the data presented in Table 2 shows
that the HFC constants for the trigonal centers in SrF2
and BaF2 are virtually isotropic, their values being
equal (to within the experimental error) to those for the

cubic centers [7]. Moreover, the , , and  values
are close for the impurity centers of two types both in
SrF2 and BaF2 crystals, which was already noted in
[5, 8] (see Table 1 for these parameters presented in the
trigonal system of coordinates). As is known, the spin
Hamiltonian parameters are significantly affected by
coordinates of the nearest-neighbor ligands and depend
both on the electrostatic interaction and on the overlap

integral and covalency of the Gd3+  complex [2–4, 8].
In turn, the HFC component also depends on the dis-
tances Ri between the impurity center and the nearest-
neighbor ligands and on the degree of ionicity in this
complex [4] (see Table 3 in [7]). Taking into account
these considerations and the above data, we infer that
no significant changes in coordinates of the eight near-
est-neighbor F– ions takes place upon going from cubic
to trigonal Gd3+ centers with fluorine compensation in
the crystals studied.

Indeed, the ligand DENR data for a trigonal
BaF2 : Gd3+ center (complete data will be reported in a
separate communication) showed that noticeable F19

displacements are observed only in the vicinity of Fk.
The environment of the impurity center can be conven-
tionally divided into two regions by a plane, containing

b4
0 b4

3 b6
0

F8
–

P

this center, perpendicular to its symmetry axis. In the
first region (not containing Fk), the positions of anions
are the same as for F19 nuclei in the second and more
distant coordination shells of the cubic impurity center.
The LHFC for these shells (as well as for Fk) has a
purely magnetic-dipole character and the correspond-
ing nuclear coordinates are readily determined. For the
fluorine ions closest to Gd3+, where the LHFC also sig-
nificantly depends both on Ri and on the chemical
bonds, only the angular coordinates can be directly and
unambiguously determined. For the fluorine ions form-
ing a triangle, these angles are virtually the same as in
the cubic center (where θ = 109.47°, ϕ = 0° ± 120°),
while the experimental data for the trigonal center give
θ1 = 109.59(11)° and ϕ1 = ϕ. In our opinion, the R1 val-
ues in the triangle structure must also be close to those
in the cubic center (where R = 2.431 Å [7]), because
noticeable displacements of the ligands in the nearest
vicinity of the impurity center are usually accompanied
by significant shifts of the nuclei in the second coordi-
nation shell [7]. A similar situation is observed for the
fluorine ion situated on the C3 axis.

The second region (containing Fk) includes, besides
F19 nuclei of the second and other coordination shells,
four remaining F– nearest neighbors of the impurity
center. Three of these fluorine ions also make a regular
triangle with the angular coordinates θ2 = 71.02(8)° and
ϕ2 = ϕ (in the cube, θ = 70.53°; ϕ = 60°, 180°, 300°),
and one ion is situated on the C3 axis. In this case, the
distances are obviously different from those in the
cubic case, because of the repulsion between compen-
sator ion and the likely charged particles. A distance
from the impurity center to the compensator ion deter-
mined from the ligand DENR data is Rk = 5.178(9) Å.

In order to estimate displacements of the nearest-
neighbor ligands in the second region, we have used a
superposition model [2, 3] according to which the spin
Hamiltonian parameters are represented in the form

 = , where bn(Ri) is the “intrin-
sic” parameter corresponding to the ith nearest-neigh-
bor ligand with the spherical coordinates Ri, θi , ϕi , and

bn
m bn Ri( )kn

m θi ϕ i,( )∑
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Table 2.  HFC and QC parameters (MHz) of 157Gd3+ impurity centers in SrF2 and BaF2

Crystal Axy Az A1, 104 B1, 10–2 B2, 10–2 B4, 10–2

SrF2
(tr)

16.767
(3)

16.759
(2)

4
(2)

–33.434
(5)

–70
(5)

6
(6)

–15
(5)

SrF2
(cub) [8]

16.7534
(10)

16.7534
(10)

–3.4
(9)

0 –76
(8)

0 0

BaF2
(tr)

16.640
(7)

16.646
(3)

4
(2)

–29.932
(10)

–85
(5)

–4
(5)

0

BaF2
(cub) [8]

16.6398
(15)

16.6398
(15)

–3
(1)

0 –75
(10)

0 0

P2
0

 is the angular structural factor of this ligand
[2].

We have analyzed these factors in the coordinate
system of the trigonal impurity center. It was found that

the main contributions to  are due to the fluorine ions
situated on the C3 axis (θ = 0°, 180°), while the main

contribution to  is that from fluorine ions with θ ≠ 0°,
180°. Thus, we can subdivide eight F– nearest neigh-
bors of the impurity center with respect to their contri-
bution to the spin Hamiltonian parameters. Taking into
account the fact that coordinates of the four closest
ligands in the first region are the same for the trigonal
and cubic centers, we can determine contributions for
one of the F– nearest neighbors from the second coordi-
nation shell and compare these values with those for the
cubic center. For fluorines forming a triangle, the val-
ues are as follows [2]:

(2)

where b4(cub) = (cub)/ (θ, ϕ) = (cub)/ (θ, ϕ)

and  because all fluorines

in the triangle are equivalent.
For the cubic impurity centers in BaF2 and SrF2, we

have b4(cub) = 36.4(2) and 40.6(1) MHz, while the cor-
responding values for the trigonal centers are b4(tr) =
38.4(8) and ≥41.7(1.2) MHz, respectively. The b4(tr)

values for SrF2 were calculated using (cub)because
no ligand DENR data for this crystal are available.
Since the θ2 value is greater than the corresponding
angle in the cubic impurity center, it follows that

(cub) ≥ (tr) and the thus obtained b4(tr) value for
SrF2 gives a lower estimate.

The condition b4(tr) ≥ b4(cub) shows evidence of a
displacement of ligands close to the compensator ion
and impurity center. The directions and magnitudes of

kn
m θi ϕ i,( )

b4
0

b4
3

b4 tr( ) b4
3 tr( ) b4 cub( )K4

3 θ1 ϕ1,( )–[ ] /K4
3 θ2 ϕ2,( ),=

b4
0 K4

0 b4
3 K4

3

K4
3 θi ϕ i,( ) k4

3 θi ϕ i,( ).
1

3

∑=

k4
3

K4
3 K4

3

PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      200
these shifts can be determined using the function b4(R)
for the cubic Gd3+ centers in CaF2, SrF3, and BaF2. Tak-
ing the Ri values and the function from [7], we obtain

(3)

where R0 = 2.37 Å [3], b4(R0) = 40.9(3) MHz, and
n = 4.72(6).

The value of b4 is independent of the local symmetry
of impurity centers [2]. Therefore, we can estimate the Ri

values by equation (3), using the experimentally deter-
mined b4(R) value corresponding to the ith ligand. For a

trigonal impurity center in BaF2, where the (θ, ϕ)
values for all ligands are known, we obtain R2 =
2.401(12) Å for F– in the triangle close to Fk (provided
that the Ri values of nuclei distant from Fk are the same
as those in the cubic impurity center).

In order to estimate a distance from the impurity
center to F– situated on the C3 axis, we have used the

experimental value of  that depends both on Rk and
on the Ri values of all ligands. Taking the “intrinsic”

parameters and the expression for  from [3], we
obtained R3 = 2.385(14) Å. Note that the R3 value can-

not be determined using the (tr) value containing an
unknown contribution due to the compensator ion. The
errors of the R2 and R3 values were calculated from
errors of the experimental determination of the spin
Hamiltonian parameters and the angular coordinates of
ligands.

It was difficult to analogously calculate the trigonal
impurity center in SrF2, since no experimental data are
available on the angular structural factors of the ligands
adjacent to the impurity center. However, taking into
account that the SrF2 lattice is more “rigid,” we may
expect that the angular and radial distortions in this
structure are smaller than in BaF2. Assuming that the
character of distortions in the two crystals is the same,
we can take the R1, θ1, ϕ1 values equal to those for the
cubic impurity center in SrF2 (R1 = 2.372 Å [7]). In

b4 R( ) b4 R0( ) R0/R( )n,=

kn
m

b2
0

b2
0

b4
0

0
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order to estimate the R2 value, we may use the fact that
F– ions forming a triangle in the second region are char-
acterized by 70.53° < θ2 < 71.02°, that is, by the angular
coordinates intermediate between those for the cubic
center and the trigonal center in BaF2. In this approxi-
mation, we have 2.340 < R2 < 2.346 Å. All the subse-
quent estimates for the distances in SrF2 are obtained
for R2 = 2.343 Å.

The value of R3 can be estimated using the following
considerations. By analogy with the trigonal impurity
center in BaF2, where the compensator ion is shifted by
0.03 Å toward Gd3+ relative to the midpoint between F–

ions on the C3 axis of the first and fourth shells in the
cubic impurity center, we assume that Rk < R = 4.935 Å
(the distance to an analogous point in SrF2). For Rk = R,

the experimental  yields R3 = 2.326 Å. A decrease in
the Rk by 0.03 Å (corresponding to the Fk shift in BaF2)
leads to R3 = 2.325 Å, that is, has a little effect upon this
distance. Errors in the R2 ad R3 values for SrF2 calcu-
lated within the framework of the model described
above are not less that 5% due to uncertainty in the
“intrinsic” parameters [3], the errors of θ and Rk values,

and the experimental scatter of .

In order to verify the estimates obtained for distor-
tions of the atomic environment of the impurity centers,

let us calculate the average contributions to  related
to the nearest-neighbor ligands. Using equation (3) and

the corresponding  and Ri values, we obtain (tr) =
80.2 and 89.5 MHz for BaF2 and SrF2, respectively.
These values are greater that the experimental dis-
tances, which is quite natural since the contribution of
Fk (according to the LHFC data, acting as a point
charge on the impurity center) in this case must be neg-
ative [4].

An additional evidence for validity of the Ri estimates

obtained above is provided by calculation of the  val-
ues for the centers studied, performed within the same
superposition model [3]. Taking the “intrinsic” parame-
ters P2p = –120 × 10–4 cm–1 and P2s = 60 × 10−4 cm–1, we

obtain (for Rk = 4.915 Å) the values  = –29 and
−31 MHz for BaF2 and SrF2, respectively, which are
close to the experimental data. Note that P2p ad P2s dif-
fer from the values reported in [3], where these quanti-
ties were determined from a system of equations con-

b2
0

bn
m

b4
0

kn
m b4

0

P2
0

P2
0

P

taining phenomenological parameters . These 
values were estimated using the crystal field parameters

 for the rare- earth ions other than Gd3+, which may
well account for the observed difference. Attempts at
more accurately estimating the Rk and  values are
senseless because of the uncertainty in Ri and the
“intrinsic” parameters

In summarizing the above considerations, we may
ascertain that analysis of the combined EPR and DENR
data within the framework of the superposition model
allows a pattern of local distortions in the nearest-
neighbor environment to be studied for the fluorine-
compensated trigonal Gd3+ impurity centers in crystal
structures of the fluorite type. According to this pattern,
the Gd3+ ion is localized at the same site as in the cubic
center; four nearest-neighbor F– ions on the compensa-
tor ion side repulse from this ion so that the distances
between these fluorines and the impurity centers tend to
decrease; the other four F– ions occupy the same posi-
tions as in the cubic center. Note that this model of dis-
tortions differs from that proposed by Newman [8], but
is rather close to the data reported in [9] for the ligand
DENR of trigonal Yb3+ impurity centers in the same
crystals.
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Abstract—Data on acoustic (absorption and velocity of sound), optical (refractive index and optical absorption
coefficient), and photoelastic (coefficients of acoustooptical quality and photoelastic constants) properties of
KY(MoO4)2 crystals are obtained. It is shown that, not only does the anisotropy of binding forces lead to a sig-
nificant anisotropy of acoustic and photoelastic properties, but it also determines anomalously high elastic non-
linearity in the direction of the Y-axis perpendicular to cleavage planes. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Laminated crystals possessing a clearly defined

anisotropy of the mechanical strength are a convenient
object for studying the influence of anisotropy of bind-
ing forces on physical properties of solids. It was
shown in a number of papers [1] that this influence on
thermal, optical, electric, and other properties is so
strong that it becomes possible to speak of a two-
dimensional structure of such crystals.

The influence of anisotropy of binding forces on the
photoelastic effect was studied in detail using hexago-
nal layered GaSe crystals as an example [2]. The
authors of [2] showed that lamination of the structure
leads to the exciton wave function becoming two-
dimensional. But data on features of photoelastic prop-
erties of other laminated crystals are rather incomplete.

Acoustic properties of various laminated crystals
were studied earlier by the pulsed echo method [3].
Because of restrictions associated with the integral
nature of this method, the results obtained require that
they be refined by using the acoustooptical method,
allowing local measurements to be carried out (this is
particularly important for laminated crystals with
defects being possibly present in their structure).

This work is devoted to the study of photoelastic and
acoustic properties of laminated KY(MoO4)2 crystals.
They possess the rhombohedral symmetry (D2h), a per-
fect cleavage in the XZ-plane, and a less perfect cleavage
in the XY-plane [4]. Those crystals possessing a high
optical transparency in the visible spectral region are an
excellent object for studying features of acoustic absorp-
tion in laminated crystals by the acoustooptical method.
We obtained data on optical properties, acoustooptical
efficiencies, and components of the photoelastic tensor
of these crystals. Features of propagation of acoustic
waves are studied. Absorption of longitudinal and trans-
verse acoustic waves is measured by the acoustooptical
method in the frequency region of 300–1600 MHz. Data
on the velocity of various acoustic waves are obtained.
1063-7834/00/4201- $20.00 © 20055
MEASUREMENT TECHNIQUE

We used single crystals grown at the Institute of
Inorganic Chemistry, Siberian Division of the Russian
Academy of Sciences. Optically uniform samples of
dimensions of 4 × 4 × 10 mm3 were oriented along the
crystallographic axes. The faces perpendicular to the
layers were processed by fine polishing with subse-
quent optical polishing. The faces parallel to the layers
were processed by separating the destroyed layer.
Sound was excited by lithium niobate resonant piezo-
electric transducers cemented to the corresponding face
of the sample by Nonaq Stopcock cement. Both the
fundamental frequency of the transducer (f = 30 MHz)
and its higher harmonics were used.

The method of Bragg diffraction of light from an
acoustic wave was used in acoustooptical measure-
ments. The acoustooptical Q-factor M2 was measured
by the traditional Dixon method [5]. We used a He–Ne
laser (λ = 0.63 µm) as a light source and GaP single
crystals as a reference.

We determined the absolute values of refractive
indices with an accuracy of ~10–2 from the measure-
ments of the displacement of the laser beam due to
refraction as it passed through a plane-parallel
KY(MoO4)2 sample of the corresponding geometry.
The angle of incidence was 45°.

The velocity of acoustic waves was calculated with
an accuracy up to 10–3 from the data of measurements
of the time interval between the neighboring echo
pulses by the method of combining UHF filling of these
pulses.

RESULTS AND DISCUSSION

It is known that the efficiency of the Bragg diffrac-
tion of light from ultrasonic waves is determined by the
000 MAIK “Nauka/Interperiodica”
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acoustooptical Q-factor M2

(1)

(2)

where I1 and I0 are the intensities of diffracted and inci-
dent light, respectively; P is the intensity of sound; λ is
the wavelength of light; d is the width of the acoustic
beam; θi is the angle of incidence; ni is the refractive
index; pik is a component of the photoelastic tensor; ρ
is the density of the crystal; Vk is the velocity of the
acoustic wave; i, k = 1–6; i is the index of polarization
of light and k is the index of deformation in the matrix
representation. As M2 includes anisotropy of both elas-
tic and optical properties, anisotropy of this parameter
reflects the influence of anisotropy of binding forces on
the photoelastic effect most completely.

The results of the measurements of the parameter of
the acoustooptical Q-factor presented in the table dem-
onstrate that the greatest photoelastic effect induced by
longitudinal deformation is observed in the direction
Y(M2)22, i.e., transverse to the main cleavage planes as
in GaSe crystals [2]. However, the highest acoustoopti-
cal efficiency (M2)66 is observed for the shear deforma-
tion (S6) of layers with respect to one another. It should
be noted that this result is unique in a certain respect,
since materials where the efficiency of light diffraction
from shear waves would be higher than that from lon-
gitudinal ones were unknown up to now. We failed to
observe light diffraction from the corresponding acous-
tic waves (deformations S4 and S5) in the studies of the
photoelastic effect in laminated GaSe crystals [2]. Due
to a large difference (n0 – ne ~ 0.3) of the refractive indi-
ces in these crystals, diffraction is possible in the region
of high acoustic frequencies (f ~ 1.5 GHz) and, hence,

I1 1/2I0M2P πd/ λ θicos( )( )2,=

M2( )ik ni
6 pik

2 / ρVk
3( ),=

The values of the parameters of the acoustooptical Q-factor
(M2)ik, the components of the photoelastic tensor (pik), the
refractive indices (ni), the optical absorption coefficients βi,
and the velocities of sound (Vk); ρ = 3.9 g/cm3 and λ = 0.63 µm

ik
Mik , 

10–18 s3 g–1 pik ni βi, cm–3 Vk , 
105 cm s–1

11 0.5 0.092 1.8342 0.015 5.08

12 21 0.253 2.87

13 1.93 0.108 3.6

21 4.15 0.242

22 28 0.267 1.7658 0.1

33 3.86 0.21 1.7474 0.1

44 1.86

55 2.47

66 36 0.12 1.5
P

large (~70°) diffraction angles, which makes the obser-
vation of the effect very difficult.

The study of light diffraction from shear (S6) waves
in KY(MoO4)2 crystals is important, and not only from
the standpoint of the detection of high acoustic effi-
ciency. It also enabled us to determine (with a suffi-
ciently high accuracy) the differences of the refractive
indices ∆n12 = 0.0683 (∆n12 = nx – ny), ∆n13 = 0.0867
(∆n13 = nx – nz), and ∆n23 = 0.0184 (∆n23 = ny – nz). To
do this, we utilized our experimental data on the geome-
try of light diffraction from transverse sound S6 (Fig. 1)
and familiar [6] relations for the angle of incidence out-
side of the crystal θi and the diffraction (θd) and scatter-
ing (θs) angles under the conditions of anisotropic
Bragg diffraction

(3)

where n = (ni + nd)/2 and ∆n = ni – nd.
In our measurements, we have ni = n2 and nd =

F(n1, n3). For θi = 0, we have nd = n1 and, as it follows

from (3), ∆n = /2nV 2. By measuring f0 and knowing
n, we can calculate ∆n21. ∆n23 can be calculated through
the fitting of the calculated and the experimental data
(Fig. 1) for θi ≠ 0.

The value n = 1.8 used in the calculations of ∆n was
obtained from the measurements of the displacement of
the laser beam due to refraction (the angle of incidence
was 45°) as it passed through a plane-parallel
KY(MoO4)2 sample of the corresponding geometry.
The final values of ni are presented in the table.

Our data on the velocity of sound (see table) demon-
strate that elastic properties clearly correlate with
anisotropy of binding forces: the greater the binding
forces, the higher the sound velocity.

With the values of acoustic and optical parameters
determined in this work (see table) and the foregoing
relation (2) for (M2)ik, we calculated the components pik

of the photoelastic tensor. As seen from these data (see
table), anisotropy of the photoelastic tensor, as well as
elastic properties, are unambiguously related to anisot-
ropy of binding forces. However, this relation is quali-
tatively of the opposite type: the weaker the binding
force, the higher the pik, i.e., the variations of the polar-
izability of the crystal are larger due to deformations.

The results of the measurements of sound absorp-
tion in the crystals studied in the frequency interval of
300–1800 MHz are presented in Fig. 2. The frequency
dependences for all the cases studied have a form close
to quadratic, which is typical of the Akhiezer mecha-
nism for lattice absorption in crystals. The relative val-
ues of the absorption coefficients for various types of
waves directly correlate with the relative magnitudes of

θisin λ f 1 n∆nV2/ f 2λ2( )+[ ] /2V ,=

θdsin λ f 1 n∆nV2/ f 2λ2( )–[ ] /2V ,=

θs θi θd,+=

f 0
2
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the binding forces: the highest absorption is observed in
the direction of the weakest bonds, the Y-direction.
However, attention is attracted by a relatively small
absorption for all types of waves. This is particularly
surprising for both longitudinal and shear waves prop-
agating in the direction of the Y-axis (perpendicular to
the plane of main layers). A higher viscosity, and hence
higher absorption of elastic waves could be expected in
these crystals due to weak binding between the layers.

Of special note are the results of the study of the
absorption of longitudinal sound (S2) propagating
transverse to the layers. The data on absorption for the
wave presented in Fig. 2 were obtained under very low
sound intensity conditions (P < 0.1 W/cm2). As the
intensity increases, absorption starts to grow and a
sharp dependence of the absorption coefficient on the
sound intensity is observed (Fig. 3), whereas higher
harmonics appear and grow in the spectrum of the
acoustic flux (Fig. 4). We follow the pattern of the spa-
tial development of the spectrum of the acoustic flux for
a lower frequency (f = 334 MHz), because it is possible
to observe the development of a great number of har-
monics with a decreasing frequency. For the levels of
diffraction observed, nonlinear acoustooptical effects
are possible in the first order. They can lead to the trans-
fer of the intensity of diffracted light to higher orders.
However, this should result in the inverse spatial effect,
and the magnitude of absorption measured should
decrease with the increasing intensity of sound. There-
fore, it is clear that energy is transferred to higher har-
monics due to elastic nonlinearity in the process of
sound propagation when sound intensity is high.

To calculate the nonlinear coefficient Γ [7] (u2 =

, where u1 and u2 are the amplitudes of the8Γu1
2∆xk1

2

Fig. 1. The geometry of light diffraction from a shear acous-
tic wave (S6): (1) θi, (2) θd, and (3) θs.
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displacement of the corresponding component and k1 is
the wave number of the fundamental frequency), we
measured the development of the second harmonic S2
for a low level of the input signal (Fig. 4a). This made
it possible to observe a region of linear growth of its
amplitude. It is seen from this figure that in KY(MoO4)2
crystals in the linear region, the second-harmonic inten-
sity increases by an order of magnitude at a distance
less than 1 mm for a sound intensity P ≈ 4 W/cm2. The
calculations using these data demonstrated that elastic
nonlinearity is anomalously high in the Y-direction,
Γ ≈ 40. According to the data available [8], such a mag-
nitude of the nonlinear coefficient was not observed in
any familiar materials.
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Fig. 2. The absorption coefficients of longitudinal (1) S2 and
(3) S1 and transverse (2) S6 acoustic waves as functions of
the frequency.
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Fig. 3. The absorption coefficient of transverse waves (S2,
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CONCLUSION

Thus, data on optical, photoelastic, and acoustic
properties of KY(MoO4)2 crystals are obtained for the
first time in this work. Their direct correlation with the
anisotropy of binding forces is established. The values
of the difference between the principal components of
the refractive indices are calculated with a high degree
of accuracy (10–4) from the data on the geometry of
anisotropic diffraction of transverse waves.

It is found that the propagation of transverse waves
in the direction perpendicular to the plane of a layer is
essentially nonlinear. The absorption coefficient of the
corresponding longitudinal waves depends consider-
ably on the sound intensity. The linear regime is real-
ized only for intensities <0.1 W/cm2. The value of the
nonlinear coefficient is the highest (Γ ≈ 40) of those in
all familiar materials.
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Fig. 4. The spatial development of the spectrum of the acoustic flux
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Abstract—The problem of the partial inclusion of electron correlation effects has been considered in the frame-
work of the unrestricted Hartree–Fock method. The calculation of the electronic structure of the [Ti2O9]12– clus-
ter is performed. The results obtained demonstrate that, in some cases, a major part of static correlation effects
can be taken into account in the unrestricted Hartree–Fock approximation. The influence of these effects on the
local characteristics of crystals is analyzed. © 2000 MAIK “Nauka/Interperiodica”.
The calculations of the electronic structure of crys-
tals within the Hartree–Fock formalism at the LCAO
level have been applied to the theory of chemical bond-
ing in crystals only in recent years [1–3].

At the same time, the specific features of chemical
bonding in molecules have already long been described
by the so-called local characteristics of electronic struc-
ture (charges on atoms, orders of interatomic bonds,
atomic covalences, and spin density in radicals), which
are determined by the one-particle electron density
matrix [4, 5].

However, even for molecular systems, these charac-
teristics are usually considered either without regard
for the electron correlation effects (in ab initio calcula-
tions) or with a partial implicit inclusion of these
effects through the atomic parameters (in semiempiri-
cal calculations). To our knowledge, only a few
attempts have been made to evaluate the influence of
the electron correlation on the features of chemical
bonding in molecules [6]. On the other hand, just the
local characteristics of the electronic structure should
be substantially affected by the correlation corrections
owing to the short-range character of correlation inter-
actions.

In modern techniques of computing the electronic
structure of molecules, the electron correlation effects
are included by using the post Hartree–Fock methods
(configuration interaction method, coupled cluster
method, etc.) with the aim of improving the quality of
wavefunctions. In the case of crystals, the electron cor-
relation effects, as a rule, are taken into account to eval-
uate the corrections to the total energy of a system and
the binding energy, most frequently, in the framework
of the density functional method [1].

In this work, we proposed the molecular–crystalline
approach to the evaluation of correlation corrections in
the investigations of the chemical bonding in crystals.
1063-7834/00/4201- $20.00 © 20059
Conceptually, the method is as follows. The local char-
acteristics of a crystal are calculated within the band
model by the Hartree–Fock method to choose the
molecular cluster that adequately describes the local
features of electronic structure. In the majority of cases,
the number of atoms comprising this cluster is appre-
ciably less than the number of atoms contained in the
clusters simulating one-electron states in a crystal. At
the next stage of the advanced approach, the chosen
cluster is calculated in the framework of the multicon-
figurational approximation with molecular programs
providing the expansion of wavefunctions into determi-
nants. Then, by applying the unrestricted Hartree–Fock
(UHF) method to the calculations of the cluster and the
crystal, one can obtain the one-determinant solutions,
which correspond to the generalized valence bonds.
Simple rearrangements of the multiconfigurational
cluster function permit one to explicitly separate the
obtained valence bonds in its expansion. If these
valence bonds turn out to be dominant in the expansion,
then, in order to construct the many-electron function
of a crystal, it is sufficient to replace the cluster valence
bonds by the crystal valence bonds. Thus constructed
wavefunction explicitly includes the electron correla-
tion effects. By convoluting the many-particle density
matrix into two- and one-particle density matrices, it is
possible to calculate the local characteristics of chemi-
cal bonding in a crystal by the known formulas.

The aim of the present work was to investigate the
electron correlation effects in the Ti2O3 crystal within
the molecular–crystalline approach. It is common
knowledge that the electron correlation can play an
important part in compounds of transition metals with
unfilled d electronic shell. The density functional
method, which has been widely employed for these
crystals, often appears to be unsatisfactory because of
incorrect description of the self-interaction.
000 MAIK “Nauka/Interperiodica”
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In Section 1, the main local characteristics of the
electronic structure of molecular systems are defined as
applied to the many-determinant wavefunctions in the
configuration interaction (CI) and multiconfigurational
self-consistent field (MC SCF) methods.

In Section 2, the electronic structure of the crystal is
calculated within the band and cluster models, and the
results of calculations are compared to choose the
[Ti2O9]12– cluster, which reproduces the features of the
Ti–Ti and Ti–O bonds in the crystal.

In Section 3, the results of the UHF calculations of
the crystal and the chosen cluster are analyzed. More-
over, consideration is given to the MC SCF calculations
of the cluster, including the structure of the many-deter-
minant wavefunction. It is demonstrated that the one-
determinant approximation in these calculations ade-
quately describes the influence of the electron correla-
tion on the main characteristics of chemical bonds.

In conclusion, further possibilities of the proposed
approach are discussed as applied to the theory of
chemical bonding in crystals with ionic–covalent
bonds.

1. LOCAL CHARACTERISTICS OF ELECTRONIC 
STRUCTURE IN POST-HF METHODS

Local characteristics (such as charges on atoms,
bond orders, valences, and covalences) are very useful
for the qualitative description of the electronic structure
in molecular and crystalline systems. However, there
are no rigorous quantum-mechanical definitions for
these characteristics. Indeed, in attempting to separate
an atomic subsystem or a molecular subsystem in sys-
tems with a strong coupling, we should refuse to
describe this subsystem by using pure states, which
leads to considerable conceptual and computational
problems. For example, an atomic subsystem in a
molecular system, as a rule, cannot be assigned a cer-
tain integral number of the electrons involved, which
implies that this subsystem should be represented by an
ensemble of states matched by different numbers of
electrons.

However, there exists an approach that gets around
the above difficulties. This approach rests on the analy-
sis of reduced density matrices (as a rule, these are the
first-order and second-order matrices) of a system as a
whole, and the separation of a particular subsystem is
generally based on some geometric criteria. This makes
it possible to considerably simplify computations, but
leads to some arbitrariness in the choice of the defini-
tions for local characteristics of the electronic structure.
This arbitrariness most clearly manifests itself in going
beyond the scope of the Hartree–Fock approximation,
as evidenced by a wide variety of definitions available
in the literature for valences and bond orders in the case
of post Hartree–Fock methods [4, 6].
P

The one-electron density operator associated with
some multiconfigurational N-electron wavefunction Ψ
can be written as

(1)

where ψi are the natural (molecular) spin orbitals, and
λi are the natural orbital occupation numbers, which
satisfy the following conditions:

(2)

(3)

The density operator is the Hermitian positive semidef-
inite operator with a spur equal to the number of elec-
trons. At the same time, in general, this operator does
not possess any other specific properties such as, for
example, idempontency. After the convolution over the
spin variables, the density operator breaks down into
two components whose matrix representation in the
basis set of atomic orbitals (AOs) has the form

(4)

where S is the AO overlap matrix, and the matrix ele-
ments of the Pσ matrix are related to the occupation

numbers  and the coefficients  in the expansion of
the spatial parts of natural spin orbitals in the AO basis
set through the expressions

(5)

By assuming that the atomic basis set is well local-
ized on atoms (or atomic fragments under consider-
ation) and that it is orthonormal and also by using the
expansion of the unit operator

(6)

(where  is the orthogonal projector onto the AO
space of the A atom), we can rewrite the condition for
normalization of the σ-component of the density oper-
ator in the form

(7)

where Nσ is the number of σ-electrons.1 In this case, the

quantity  can be interpreted as the

ρ̂ Ψ( ) λ i ψi| 〉 ψi〈 |,
i 1=

2n

∑=

λ i

i 1=

2n

∑ N ,=

0 λ i 1≤ ≤

i 1 … 2n, ,=( ).

ρ̂σ Ψ( )χµ χν PσS( )νµ,
ν 1=

n

∑=

λ i
σ ϕ i

σ

Pµν
σ Cµi

σ λ i
σ Ciν

σ( )+ σ α β,=( ).
i 1=

n

∑=

Î ρ̂A

A

∑=

ρ̂A

Spρ̂σ Ψ( ) Spρ̂σ Ψ( )ρ̂A

A

∑ Nσ,= =

Spρ̂σ Ψ( )ρ̂Aσ∑
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occupation of the AO space of the A atom in a system
under consideration or as the occupation of the A atom
when the diffuse orbitals occurring in this space are
occupied only slightly. Unfortunately, the atomic basis
sets actually used in calculations are nonorthogonal,
and attempts at their orthogonalization (by using, for
example, the Löwdin scheme) result in an essential
delocalization of AOs. Then, equality (7) holds true, but

the interpretation of the  quantities as
occupations of atoms becomes very conventional. One
of the most successful attempts to retain the localiza-
tion of AOs without violation of equality (7) consists in
going to the biorthogonal atomic basis set

(8)

which obeys the relationships

(9)

By introducing

(10)

we have the idempotent operators meeting equality (7).
The nonorthogonality of the basis set manifests itself in
non-Hermitian operators (9).

Going to the AO basis set in expression (1) and
using definition (8), we obtain the occupation of the A
atom

(11)

In order to determine the two-center bond order, it is
reasonable to attempt to obtain the expansion similar to
(7), but for the squares of the density operator compo-
nents. Unfortunately, in the general case, the spur of the

density operator squared Sp( (Ψ))2 = 
depends on both the AO basis set and the computational
technique and can be treated as a certain characteristic of
a system only with the very large basis sets and full con-
figuration interaction. Furthermore, even in this limiting
case, the physical meaning of the given characteristic is
not quite clear. However, instead of the σ-components of
the density operator, it is possible to consider their com-
binations

(12)

1  In consideration of the states with the specified projection MS of
the total spin, the number of α- and β-electrons in the system is

fixed, because N = Nα + Nβ and MS = .
1
2
--- Nα Nβ–( )

Spρ̂σ Ψ( )ρ̂Aσ∑

χ̃ χS 1– ,=

χµ χ̃µ〈 〉 δµν.=

ρ̂A χµ| 〉 χ̃µ〈 |,
µ A∈
∑=

NA NA
α NA

β+=

=  Spρ̂σ Ψ( )ρ̂A

σ
∑ PσS( )µµ.

µ A∈
∑

σ
∑=

ρ̂ Sp ρ̂σ Ψ( )( )
2

σ∑

ρ̂α β+ Ψ( ) ρ̂α Ψ( ) ρ̂β Ψ( )+=
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and

(13)

which are referred to as the total electron and spin den-
sity operators, respectively, and to examine the contri-
butions to the squares of these operators. Both
approaches are consistent with each other and with the
standard analysis within the Hartree–Fock approxima-
tion for occupied shells when one uses the expansion of
the doubled sum of the density operator σ-components
squared

(14)

The quantities

(15)

at B ≠ A can be interpreted as characteristics of the A−B
bond orders, and their sum

(16)

can be treated as the covalence of the A atom. The one-
center terms FA = BAA in equation (14) are termed the
free (nonrealized) valence of atoms.

2. BAND AND CLUSTER MODELS 
OF TI2O3 CRYSTAL

The Ti2O3 crystal with a corundum structure (space

group R C, rhombohedral crystal system) contain two
Ti2O3 molecules in a unit cell. All four Ti atoms are
arranged in pairs along the triad axis, and each pair
consists of the nearest atoms (the bond length RTi–Ti =
2.58 Å).

Catti et al. [7] calculated the electronic structure of
the Ti2O3 crystal within the band model at the restricted
Hartree–Fock (RHF) and unrestricted Hartree–Fock
(UHF) levels with allowance made for the core elec-
trons. It was demonstrated that the ground state of the
crystal corresponds to an antiferromagnetic ordering of
uncompensated spins of Ti atoms, and the Ti–O bond is
essentially covalent. However, the features of chemical
bonding in the Ti2O3 crystal were not analyzed in detail
in [7], because the authors computed only the charges
on atoms and Mulliken overlap populations, which pro-
vided only a qualitative description of the interatomic
bonds. In order to consider in greater detail the chemi-

ρ̂α β– Ψ( ) ρ̂α Ψ( ) ρ̂β Ψ( ),–=

2 Sp ρ̂σ Ψ( )( )
2

σ
∑ 2 Spρ̂σ Ψ( )ρ̂Aρ̂σ Ψ( )ρ̂B
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∑

σ
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=  2 PσS( )µν PσS( )νµ.
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ν B∈

∑
A B,
∑
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∑

BAB 2 PσS( )µν PσS( )νµ
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Table 1.  Local characteristics of the electronic structure of the Ti2O3 crystal and the [Ti2O9]12– cluster

Parameter

Crystal Cluster

with inclusion of 
core electrons

with core effective 
potential

with inclusion of 
core electrons

with core effective 
potential

RHF UHF (Sz = 0) RHF UHF (Sz = 0) RHF UHF (Sz = 0) RHF UHF (Sz = 0)

QTi 2.18 2.21 2.01 2.08 2.38 2.42 2.16 2.22

QO1 –1.46 –1.47 –1.34 –1.38 –1.72 –1.74 –1.65 –1.68

EO2 – – – – –1.93 –1.94 –1.90 –1.90

BTi–Ti 0.925 0.04 0.87 0.05 0.95 0.04 0.88 0.03

BTi–O1 0.230 2.26 0.26 0.25 0.12 0.11 0.17 0.17

BTi–O2 0.221 2.20 0.26 0.24 0.24 0.21 0.30 0.27

CTi 2.42 1.50 2.56 1.64 2.04 1.06 2.32 1.37

CO1 1.04 1.26 2.01 1.12 0.55 0.52 0.68 0.63

CO2 – – – – 0.17 0.16 0.22 0.21

VTi 3.71 3.08 3.67 3.05 3.61 3.01 3.61 3.01

VO1 2.06 2.23 2.05 2.05 2.02 2.02 2.02 2.02

VO2 – – – – 2.02 2.02 2.01 2.01
cal bonding in this crystal with due regard for the elec-
tron correlation effects at the molecular–crystalline
level, we used the pseudopotential approximation for
the description of the core electrons.

Table 1 presents the results of our RHF and UHF
calculations performed for the Ti2O3 crystal by using
the Crystal-95 program [8] with inclusion of the core
electrons and also in the pseudopotential approxima-
tion (for the Ti and O atoms, the pseudopotentials were
taken from [9] and [10], respectively). A comparison
with the results obtained in [11] with the use of the
pseudopotential taken from [12] demonstrates that a
specific set of pseudopotentials weakly affects the elec-
tron density distribution. Table 1 lists the charges on

Geometric structure of the [Ti2O9]12– cluster.

O2

Ti1

Ti2

O2

O1
O

Ti

c

P

atoms QA, the interatomic bond orders BAB, the cova-
lences of atoms CA (defined as the sums of the bond
orders), and the total valences VA = (1/2)(CA +

). These quantities were calculated within
the band model according to the formulas taken from
[4]. Now, let us compare the corresponding values
obtained with and without inclusion of the core elec-
trons. It can be seen that the local characteristics of
electronic structure of the crystal only slightly vary
when the pseudopotential is introduced to describe the
core electrons. Moreover, it turns out that the oxygen
atoms of the two nearest spheres make the largest con-
tribution to the covalent component for the titanium
atoms. At the same time, as follows from Table 1, the
Ti–Ti bond orders calculated at the RHF and UHF lev-
els differ considerably. As shown below, this difference
is associated with the inclusion of electron correlation
effects in the UHF approximation.

On the basis of the performed calculations within
the band model, we chose the [Ti2O9]12– cluster in
which either of the two titanium atoms is surrounded by
the atoms belonging to the three nearest spheres: one
sphere of metal atoms and two spheres of oxygen atoms
(see figure). The total number of electrons in the cluster
is chosen reasoning from the ion model. In the cluster,
the oxygen atoms (equivalent in the Ti2O3 crystal by
virtue of the crystal symmetry) can be divided into two
groups: the O1 atoms located between titanium atoms
and the O2 boundary atoms (see figure).

4QA
2 CA

2+
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It follows from Table 1 that all the main local char-
acteristics of the electronic structure that are associated
with the titanium atoms are sufficiently well repro-
duced by the chosen cluster both with explicit inclusion
of the core electrons and in the pseudopotential approx-
imation. Furthermore, the cluster also reproduces the
appreciable difference in the Ti–Ti bond orders calcu-
lated with the UHF and RHF methods.

3. CORRELATION EFFECTS

So far, the molecular methods using multiconfigura-
tional wavefunctions have not found application in the
theory of crystal systems. It is believed that the direct
use of these methods for calculating the electronic
structure of crystals is impossible at all, and, hence,
radically new approaches should be developed to eval-
uate the correlation effects. This raises the topical ques-
tion as to whether the already existing and software-
implemented methods, such as, for example, the UHF
method, can account for the correlation effects in crys-
tals. Generally, the answer to this question can be
obtained only quantitatively by comparison of the UHF
and MC SCF (or CI) functions [13] for any judiciously
chosen cluster. To accomplish this, it is necessary to re-
expand the UHF molecular orbitals (MOs) of the
β-basis set into the MOs of the α-basis set

(17)

and, after their substitution in the UHF determinant, to
rewrite it in the form of multiconfigurational function
constructed with the MO α-basis set. Then, one should
obtain the projection of this expansion onto a pure spin
state and compare the result with the function of the
MC SCF method. If both functions involve the same
dominant configurations, the UHF method accounts for
a part of correlation effects.

Let us consider a rather usual case when the UHF
and MC SCF functions are related by a simple transfor-
mation. Assume that the singlet nondegenerate state of
a many-electron system (cluster) is described by the
wavefunction

(18)

which involves a double excitation from the Hartree–
Fock reference state with a material weight. By using a
nondegenerate transformation, we can pass on to the
orbitals of the generalized valence bond method and
rewrite function (18) as

(19)

Here, Φab and Φba are the UHF determinants whose
symmetric and antisymmetric combinations corre-
spond to the singlet and the triplet states, respectively.
Generally speaking, the nondiagonal matrix element

〈Φab | |Φba〉  differs from zero and serves as a measure

ϕ i
β ϕ j

αT ji

j

∑=

ΨMC SCF C1det …ϕhαϕhβ C2det …ϕ lαϕ lβ ,+=

ΨMC SCF Φab Φba.+≅

Ĥ
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of accounting for the correlation effects in the UHF
approximation. Indeed, when this matrix element is
small, the Φab and Φba UHF configurations virtually do
not interact, and the UHF method makes allowance for
a larger part of electron correlation effects.

Table 2 lists the energies and local characteristics of
the [Ti2O9]12– cluster, which were calculated by the
UHF and MC SCF methods with the GAMESS com-
puter program [14] for the lowest-lying singlet and trip-
let states. In the MC SCF method, the active space
involved the five highest occupied and three lowest vir-
tual MOs, which were obtained by the preliminary cal-
culation of the singlet state of the cluster at the RHF
level. In the chosen active space, we considered all the
possible excitations from the occupied MOs to the
vacant MOs. As a result, 1176 singlet and 1512 triplet
many-electron basis functions were generated. It was
found that the lowest-lying singlet state in the studied
cluster is described by the two-term wavefunction

(20)

and the lowest-lying triplet state is determined by the
one-determinant function.

Comparison between the total energies of the
[Ti2O9]12– cluster indicates that the UHF calculations
correctly describes the relative energies of the singlet
and triplet states and, in particular, reproduces the small
difference in these energies. Moreover, the difference
between the RHF and MC SCF energies (correlation
energy, 0.209 au) is satisfactorily simulated by the UHF
method (0.170 au). This method also adequately repro-
duces the influence of the correlation effects on the Ti–
Ti bond order. Actually, this bond order in the RHF

0.8 ϕh
2ϕ l

0[ ] 0.6 ϕh
0ϕ l

2[ ] ,–

Table 2.  Energies and local characteristics of the electronic
structure of the [Ti2O9]12– molecular cluster in the UHF and
MC SCF approximations

Parameter
UHF MC SCF

(Sz = 0) (Sz = 1) (S = 0) (S = 1)

E (a. u.) –137.874 –137.867 –137.913 –137.904

QTi 2.22 2.28 2.11 2.12

QO1 –1.68 –1.68 –1.63 –1.64

EO2 –1.90 –1.90 –1.89 –1.89

BTi–Ti 0.03 0.01 0.09 0.01

BTi–O1 0.17 0.17 0.19 0.20

BTi–O2 0.27 0.27 0.31 0.32

CTi 1.37 1.34 1.62 1.56

CO1 0.63 0.62 0.70 0.71

CO2 0.21 0.21 0.23 0.24

VTi 3.01 3.02 3.07 3.04

VO1 2.02 2.02 2.02 2.03

VO2 2.01 2.01 2.01 2.01
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approximation is equal to 0.88 (Table 1), whereas its
value in the UHF method is 0.03, which is in complete
agreement with the data of the MC SCF method (0.09).
At the same time, as can be seen from Table 2, the
charges on atoms are weakly sensitive to the calcula-
tion technique.
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Abstract—The vitreous SiO2 samples irradiated with fast neutrons at a dose of 5 × 1017–2.2 × 1020 per cm2 are
investigated by the Raman scattering technique. It is demonstrated that the maximum of the low-frequency
Raman spectrum (boson peak) shifts with an increase in the irradiation dose, and the medium-range order size
decreases from 25 Å for the initial glass to 19 Å for the sample subjected to irradiation at a maximum dose. It
is revealed that the fast relaxation intensity obtained from analysis of the low-frequency Raman spectra linearly
correlates with the specific volume of the studied samples. © 2000 MAIK “Nauka/Interperiodica”.
It is well known that vitreous SiO2 undergoes a tran-
sition to an amorphous state under irradiation. This
state is commonly referred to as the metamict phase.
The metamict phase has attracted considerable atten-
tion of many scientists engaged on research into the
fundamental properties of vitreous systems. It is estab-
lished that the structure of glasses and liquids on the
nanometer scale exhibit fragments similar to elements
of the local structure of their crystal primogenitors. In
the case of SiO2, these elements are closed configura-
tions of silicon–oxygen tetrahedra. An important prob-
lem of the solid state physics is to elucidate how the
local structure changes its type under the action of
external factors. Research in materials with identical
chemical compositions and, correspondingly, the same
short-range order, but differing in physical properties,
has opened up fresh opportunities for critical verifica-
tion of many theoretical and model approaches to the
description of the amorphous state in solids.

The purpose of this work is to investigate the Raman
scattering spectra of amorphous SiO2 in vitreous and
metamict phases. Particular attention is focused on the
low-frequency Raman spectra, which, as shown below,
provide important information regarding the dynamics
of amorphous materials on the nanometer spatial scale.

The Raman scattering spectroscopy is an efficient
method of investigating the structure and dynamics of
materials. Traditionally, Raman light scattering is used
to analyze the spectra of optical vibrations in crystal or
their analogues—stretching vibrations in disordered
condensed media. A characteristic feature of the low-fre-
quency vibrational spectra of glasses and other amor-
phous materials is the occurrence of a broad vibrational
mode with a maximum in the range 10–100 cm–1, which
1063-7834/00/4201- $20.00 © 20065
was termed the boson peak. For amorphous materials,
the appearance of the boson peak is associated with the
excess density of quasi-local acoustic vibrations in the
corresponding frequency range, which arises from the
absence of the long-range order in these materials and
the violation of translational symmetry.

The frequency at a maximum of the boson peak is
correlated with the characteristic scale (size) in a mate-
rial, on which it cannot be regarded as a homogeneous
medium. The correlation radius of the physical parame-
ters of a material on these scales is referred to as the
medium-range order size. The numerical estimation of
the characteristic medium-range order size from the
experimental data gives values in the range 1–5 nm.
A considerable body of currently available experimen-
tal data indicates that the medium-range order plays an
important part in describing the behavior of amorphous
materials.

1. EXPERIMENT AND BASIC RESULTS

The samples used in this work were prepared and
studied earlier by other experimental techniques in [1, 2].
These samples are the KI silica glasses containing
unintentional impurities (10–3–10–1 wt %). The glasses
were subjected to irradiation with fast neutrons. The
irradiation doses are given in the table. A change in the
amorphous state is accompanied by a change in the
density of amorphous SiO2. The densities of the sam-
ples used in the present work were measured in [2].
Their values are also listed in the table.

The Raman scattering spectra were recorded on a
U1000 spectrometer using the 458-nm exciting line of
an argon laser. All the spectra were measured in a 90°
scattering geometry. The spectral resolution was equal
000 MAIK “Nauka/Interperiodica”
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to 2 cm–1. The polarized spectra were measured in the
frequency range 5–1500 cm–1, and the depolarized
spectra were taken in the range 5–500 cm–1.

The polarized Raman spectrum of the sample irradi-
ated at a maximum dose (KI3 sample, see table) is
shown in Fig. 1 (curve 2). It can be seen that the lumi-
nescence contribution completely predominates in the
spectrum at frequencies above 900 cm–1. Curve 3 rep-
resents the spectrum of the KI3 sample with the sub-
tracted contribution of luminescence component. In
order to perform the subtraction, the experimental spec-
trum at frequencies of 1300–1500 cm–1 was approxi-
mated by the Gaussian contour wing, and the contour
obtained was subtracted from the experimental curve.
An essential result of analyzing thus obtained spectrum
is the inference that the luminescence contribution is
negligibly small at frequencies below 500 cm–1 and
cannot affect the shape of the low-frequency spectra.
Curve 1 in Fig. 1 corresponds to the sample of the ini-
tial silica glass (KI0). For further analysis, we use the
relative intensity of the Raman scattering spectra of
irradiated and unirradiated samples. Such a normaliza-
tion of the spectra can be achieved with the Raman

Characteristics of SiO2 samples used in Raman scattering
measurements and the found position of the boson peak

Sample  Dose, f.n./cm2 Density, g/cm3 Position of boson 
peak, cm–1

KI0 – 2.206 51

KI1 5 × 1017 2.226 53

KI2 5 × 1018 2.265 63

KI3 2.2 × 1020 2.265 70

20
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5
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3

Frequency, cm–1

Intensity, arb. units

Fig. 1. Polarized spectra of (1) vitreous and (2) metamict
SiO2 samples. (3) Polarized spectrum of the metamict sam-
ple with the subtracted contribution of luminescence com-
ponent.
P

scattering band at a frequency of ~810 cm–1, which cor-
responds to the O–Si–O bending vibrations. It is evi-
dent that the number of these vibrations and their inte-
gral contribution to the inelastic light scattering should
remain unchanged for both phases. Hence, the spectra
were normalized to the integrated intensity of the band
at ~810 cm–1 (Fig. 1).

Figure 2 displays the depolarized Raman spectra of
the KI0 and KI3 samples at low frequencies. The depo-
larized spectra make it possible to avoid the contribu-
tion of the stretching vibrational modes observed in the
polarized spectra at frequencies above 100 cm–1

(Fig. 1). As can be seen from Fig. 2, the spectrum of the
sample irradiated at a maximum dose (curve 2) is sig-
nificantly shifted relative to the spectrum of the initial
material (curve 1) [3]. Maxima observed at ~50 and
70 cm–1 correspond to the boson peak. At frequencies
below 100 cm–1, the low-frequency polarized Raman
spectra exhibit the same spectral shape as the spectra
shown in Fig. 2, which agrees with the known result
that the depolarization factor for the boson peak is fre-
quency independent.

2. DISCUSSION

2.1. Stretching modes. As evident from Fig. 1, the
transition to the metamict phase is accompanied with
an increase in the intensity of the D1 and D2 lines,
whose frequencies are 495 and 605 cm–1, respectively.
According to recent studies, these peaks correspond to
the vibrations of four-membered and three-membered
ring structures, respectively [4, 5]. It follows from the
spectra that the number of rings involving three or four
SiO2 fragments increases under irradiation with fast
neutrons. An increase in the number of three-mem-

Intensity, arb. units
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0 100 200 300 400
Frequency, cm–1
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2

Fig. 2. Depolarized spectra of (1) vitreous and (2) metamict
SiO2 samples.
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bered rings upon irradiation with fast neutrons was
observed earlier in [6].

2.2. Boson peak. Earlier [7], we experimentally
showed that glasses exhibit a universal shape of the
low-frequency spectra; that is, the spectra of boson
peak normalized to the frequency and intensity at a
maximum of the spectrum coincides with each other.
Pocsik and Koos [8] demonstrated that the boson peak
at a maximum can be adequately described by the log-
normal distribution function. On the other hand, as was
shown in [9], the shape of the boson peak in low-fre-
quency spectra of amorphous silicon differs from uni-
versal. It was concluded that the shape of the boson
peak (different for glasses and nonvitreous amorphous
materials) reflects the internal “structure” of an amor-
phous material. Strictly speaking, a metamict phase is
not glass from the viewpoint of preparation tech-
nique—the latter materials are produced by cooling the
melts [10]. Therefore, it would be expected that the
spectral shape of the boson peak for a metamict phase
differs from its universal shape for vitreous materials.
To compare the boson peaks in their shapes, the low-
frequency spectrum of the metamict phase was normal-
ized to the frequency at a maximum of the boson peak
for the unirradiated sample (Fig. 3). As is seen from
Fig. 3, the shapes of the spectra for silica glass and the
metamict phase are identical. For glasses subjected to
irradiation at intermediate doses (KI1 and KI2 sam-
ples), the spectral shape of the boson peak also coin-
cides with that of silica glass. Figure 3 demonstrates the
reduced spectra, i.e., the spectra divided by (n + 1)ω,
where n is the Bose factor. We used such a normaliza-
tion in order to compare the shape of the experimental
spectrum with the spectral shape predicted from the
lognormal distribution for this case. For comparison,
the lognormal distribution with a maximum at a fre-
quency of 51 cm–1 is shown in Fig. 3. From the similar-
ity of the spectral shapes of boson peaks for irradiated
and unirradiated SiO2 samples, we can draw an impor-
tant inference about the “glass-likeness” of the metam-
ict phase on the nanometer scale.

The found positions of the boson peak for silica
glass samples irradiated with fast neutrons are listed in
the table. Noteworthy is a strong nonmonotonic depen-
dence of the position of boson peak on the density of
materials. This is an important point because the posi-
tion of the boson peak is related to the medium-range
order radius, which is proportional to the ratio of sound
velocity to frequency of boson peak. In the simplest
approximation, the medium-range order size R is
defined by the expression [11]

(1)

Here, ω0 is the frequency of boson peak (in cm–1), c is
the velocity of light, S is the factor of an order of unity
(dependent on the cluster form: S = 0.8 for sphere),

R S
v

ω0c
---------.=
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and v  is the Debye velocity determined by the rela-
tionship

(2)

where vL and vT are the longitudinal and transverse
velocities of light, respectively. The sound velocities
for silica glass and the metamict phase can be taken, for
example, from [12], in which the sound velocities were
found from the experiments on the Mandel’shtam–Bril-
louin scattering: vL = 5.97 km/s and vT = 3.78 km/s for
pure silica glass, and vL = 6.16 km/s and vT = 3.89 km/s
for the metamict phase. The sound velocities measured
for our sample (KI0) in the radio-frequency range and
the results obtained in [12] coincide to within 1%.
Thus, knowing the positions of boson peak and the
sound velocities, one can estimate the characteristic
medium-range order size by formula (1). For the KI0
and KI3 samples (irradiated at a maximum dose), the
medium-range order size was evaluated with the sound
velocities taken from [12], whereas, for the samples
irradiated at an intermediate dose, the estimate was
made by the linear approximation of sound velocities as
a function of density. Since the sound velocity undergoes
a very small relative change (<3.5%) upon metamictiza-
tion as compared to the change in boson peak position
(up to 37%), the accuracy of this approximation cannot
substantially affect the drawn conclusions. For the KI0,
KI1, KI2, and KI3 samples, the medium-range order
sizes were estimated at 25, 24, 21, and 18 Å, respec-
tively. Therefore, the medium-range order size consid-
erably decreases in going from vitreous silicon dioxide
to the metamict phase.

A nonmonotonic dependence of the position of the
boson peak at a maximum on the density of materials is
reflected in the nonmonotonic dependence of the

3

v 3
------ 1

v L
3

------
2

v T
3

------,+=

2
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0 100 200 300
Frequency, cm–1

I/(n + 1)ω, arb. units

1 2

3

Fig. 3. Low-frequency Raman spectra (normalized to the
maximum of the boson peak) for (1) vitreous and (2)
metamict SiO2 samples. (3) Lognormal distribution with a
maximum at a frequency of 51 cm–1.
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medium-range order parameter R. For example, the
positions of the boson peak and the relevant medium-
range order sizes substantially differ for the KI2 and
KI3 samples, whereas their densities are identical. An
explanation for such a “paradox” is provided by the
dependence of the density of silica glass (irradiated
with fast neutrons) on the irradiation dose. Figure 4
demonstrates this dependence for samples used in our
experiment (solid circles) and the data for the sample
prepared in the same experiment, but not used in the
present work (open circle). The solid line is taken from
an analogues dependence reported in the review [13].
As can be seen from Fig. 4, the density of materials also
exhibits nonmonotonic behavior with respect to the
irradiation dose. Some deviation of the density data for

2.28

2.26

2.24

2.22

2.20
0 10 20

Neutron dose(1019/cm2)

Density, g/cm3

Fig. 4. Dependence of the sample density on the dose of
irradiation with fast neutrons (circles); the solid line is taken
from [13] for comparison.

Fig. 5. Low-frequency Raman spectra (normalized to the
maximum of the boson peak) for (1) vitreous and
(2) metamict SiO2 samples on the log–log scale. Dashed
line 3 corresponds to the approximation by the quadratic
power law at low frequencies.
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our samples from the solid line in Fig. 4 can be caused
by the difference in energies of neutrons used in two
experiments. The metamict state itself, as is known
(see, for example, [13]), does not depend on the neutron
energy. It is evident that the states with the same den-
sity, but located on opposite sides of the maximum
shown in Fig. 4 should be different because one of these
states changes its structure upon further irradiation,
while the structure of the other state remains
unchanged. Thus, the difference in positions of the
boson peak for the KI2 and KI3 samples indicates the
physically different structure of these samples on the
nanometer scale, even though their densities are identi-
cal.

It is worth noting that the positions of boson peak
for the KI0 and KI1 samples are very close to each
other, even though the densities of these samples differ
significantly. Belitskiœ et al. [2] examined the character
of density relaxation in the KI1 sample and made the
conclusion that the small irradiation dose initiated pre-
dominantly radiation-induced defects in this sample
without transferring an appreciable part of the material
to the metamict state. These authors assumed that the
occurrence of the metamict state requires a certain crit-
ical concentration of defects [14]. The results of inves-
tigations into the low-frequency Raman scattering are
also indirect evidence in support of this assumption.

2.3. Quasi-elastic light scattering. The term
“quasi-elastic light scattering” is applied to the low-fre-
quency part of Raman light scattering spectra for
glasses (<20 cm–1), which is characterized by an anom-
alous temperature dependence. The vibrational spectra
of Raman light scattering follow the dependence
n(ω) + 1 for the Stokes component or n(ω) for the anti-
Stokes component, whereas the quasi-elastic contribu-
tion increases with a rise in temperature considerably
faster [15]. It is believed that the quasi-elastic light
scattering is brought about by the relaxation motion in
glasses whose rate increases with temperature (the so-
called “fast” relaxation). At present, there has been no
universally accepted theoretical description of the fast
relaxation and its manifestation in the low-frequency
Raman light scattering. The radiation-induced modifi-
cation of vitreous SiO2 provides an interesting opportu-
nity to compare the characteristics of quasi-elastic light
scattering in two different materials, but with the same
chemical composition and at the same temperature,
which can appreciably simplify theoretical interpreta-
tion.

Actually, a comparison of the intensities at low fre-
quencies (<20 cm–1) demonstrates a substantial differ-
ence in the samples irradiated with different doses
(Figs. 2, 3). Figure 5 presents the reduced low-fre-
quency spectra (shown in Fig. 3) for the unirradiated
sample and the sample irradiated at a maximum dose
on the log–log scale where the difference in the spectra
at low frequencies is most clearly seen. The integral
relaxation contribution to the low-frequency spectra
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
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can be characterized by the δ quantity—the ratio of the
integral relaxation contribution to integral vibrational
contribution [16]. For the compete analysis of the relax-
ation contribution to the low-frequency spectra, it is
necessary to investigate the Raman light scattering at
very low temperatures (<10 K) and at very low frequen-
cies (as small as 0.1 cm–1) [17]. However, the amplitude
of the relaxation spectrum can be evaluated from the
intensity of the reduced spectrum at sufficiently low
frequencies [18]. The relative change in the δ ratio for
two glasses can be estimated by comparing the intensi-
ties at the same, sufficiently low frequency in the
reduced spectra normalized to the position of the max-
imum and its value (as was done in Fig. 5). This estima-
tion relies on the experimental fact that the width of the
quasi-elastic scattering spectrum is proportional to the
position of the maximum of the boson peak [19].

Our experimental data allow this estimation at fre-
quencies of about 10 cm–1, which can be considered as
being sufficiently low (compared to the position of
boson peak) and unaffected by the spurious contribu-
tion from the instrumental wing of the elastic line. For
accurate estimation, it is necessary to subtract the
vibrational contribution at the given frequencies. To
accomplish this, the reduced spectrum was approxi-
mated by the power behavior ω2. This corresponds to
the approximation of decaying plane waves, which is
assumed to be valid at frequencies considerably below
the maximum of the boson peak [18]. Such a frequency
dependence was observed earlier [20] for covalent
glasses in the low-frequency region (<10 cm–1) at rather
low temperatures (T ~ 10 K) when the vibrational spec-
trum also dominates at low frequencies. In the case of
the metamict phase, this dependence clearly manifests
itself even at room temperature in the frequency range
20–30 cm–1 (Fig. 5). In order to estimate the vibrational
contribution at a frequency of 10 cm–1, we used the
extrapolation of this dependence to lower frequencies
as shown by line 3 in this figure.

The found quasi-elastic (or relaxation) contribution
at a frequency of 10 cm–1, which, as discussed above, is
proportional to the integral contribution of the relax-
ation spectra, is depicted in Fig. 6 as a function of the
specific density of samples. Interestingly, there is a
clear correlation between the intensity of relaxation
spectrum and the specific volume. This correlation nat-
urally corresponds to the free volume theories. The the-
ories relying on the free volume approach have long
been in use to account for the viscosity properties of
glass-forming materials above the glass transition tem-
perature [21], whereas the currently available versions
of this approach are efficient for descriptions of vitre-
ous systems (see, for example, [22] and the references
cited in this work). In [16], a similar correlation was
revealed between the temperature dependence of the
intensity of relaxation spectrum and the free volume,
which was obtained by using the positron annihilation
technique. The found correlation was illustrated by the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      200
example of four vitreous polymers [16]. This approach,
as applied to polymers, is justified for reasons of a large
difference between elastic constants for interchain
interactions and those along polymeric chains. How-
ever, its extension to nonpolymeric glasses is not evi-
dent. The correlation revealed in the present work
(Fig. 6) suggests that the given approach or its modifi-
cation can also be efficient for covalent glasses. The
found correlation is of particular value, because, as dis-
cussed above, the density is not a parameter character-
izing the state of SiO2; nonetheless, the specific volume
is a good parameter describing fast relaxation intensity.

A linear fitting of the correlation between the inten-
sity of the relaxation spectrum and the specific volume
(shown by the solid line in Fig. 6) makes it possible to
evaluate the density of vitreous (or metamict) SiO2 in
the absence of free volume. The line depicted in the fig-
ure gives the estimate ρ = 2.31 g/cm3. In order to eval-
uate statistical and systematic errors, we performed
similar calculations for a frequency of 16 cm–1, which
led to an estimate of the density of amorphous SiO2

without free volume at ρ = 2.29 g/cm3. It is of interest
to compare this estimate with the model representations
describing vitreous SiO2 as consisting of the ordered
domains separated by less ordered regions (the refer-
ences to the models based on this approach are given in
[13]). In these models, the domains are treated as hav-
ing an ordering of the cristobalite or tridymite type,
even if not completely crystalline. The densities of cris-
tobalite and tridymite are equal to 2.32 and 2.26 g/cm3,
respectively. Therefore, our estimate of amorphous sil-
icon dioxide without free volume (~2.30 g/cm3) agrees
well with the expected density of these clusters.

2.4. Low-temperature heat capacity. An important
interesting point in the theory of low-frequency spectra
of glasses is the calculation and explanation of the so-
called coupling coefficient C(ω), which appears in the
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Fig. 6. Relaxation contribution to the low-frequency Raman
spectrum at 10 cm–1 as a function of the specific density of
samples. Solid line corresponds to a linear fitting.
0
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Shuker–Gammon formula [23] relating the intensity of
low-frequency Raman scattering I(ω) to the density of
vibrational states g(ω)

(3)

By now, it is established that C(ω) monotonically
(linearly or almost linearly) increases with frequency of
the low-frequency Raman scattering spectrum in the
vicinity of the boson peak [24]. However, the theoreti-
cal justification of the C(ω) behavior remains the sub-
ject of discussions.

The behavior of C(ω) can be evaluated from mea-
surements of the low-temperature heat capacity, which
is related to the density of vibrational states by an inte-
gral expression. Assuming a certain dependence for
C(ω), the density of vibrational states can be deter-
mined from experiments on the low-frequency Raman
scattering, and then, the corresponding integral is com-
pared with the experimental heat capacity. Earlier, this
approach was used to reveal the frequency dependence
of C(ω). It was found that the linear behavior of the
coupling coefficient adequately describes the low-tem-
perature heat capacity derived from the experimental
Raman scattering spectra [20]. In these calculations,
the magnitude of C(ω) remains as the fitting parameter.
The investigation of glasses modified without changes
in the chemical composition furnishes a unique oppor-
tunity to compare not only the frequency behavior in
these glasses, but also the relative value of C(ω).

The heat capacities of the samples used in the
present work—the unirradiated sample (KI0) and the
sample irradiated at a maximum dose (KI3)—were
measured in [1]. Figure 7 displays the low-temperature
heat capacities divided by T 3 as is commonly accepted
in the literature. It is clearly seen that the low-tempera-

I ω( ) C ω( )g ω( )n 1+
ω

------------.=

Fig. 7. Low-temperature heat capacity (divided by T3) for
(1) KI0 and (2) KI3 samples. Solid lines indicate the heat
capacities calculated from the low-frequency Raman spec-
tra.
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ture heat capacities of irradiated and unirradiated sam-
ples differ in amplitude and position of the maximum.
Every so often, the maximum in the low-temperature
heat capacity of glasses is also referred to as the boson
peak, because it reflects the spectral features of glasses
near a maximum of the low-frequency Raman scatter-
ing spectrum. The heat capacity CV is related to the den-
sity of vibrational states by the formula [25]

(4)

Here, N is the number of atoms per gram (in our case,
this quantity is proportional to the density), ν is the fre-
quency in Hz, kB is Boltzmann’s constant, and h is
Planck’s constant. Assuming that the dependence
C(ω) ∝ ω  leads to the best result [20, 24], we introduce
the constant A

(5)

Then, formula (4) can be rewritten with the use of
relationships (3) and (5) in the form

(6)

Here, β = 1.439 K/cm–1, ρ is the density of a sample,
and B is a constant defined by the expression

(7)

where M is the mean atomic weight. Integral (6) over
the experimental dependence of I(ω) can be found by
numerical integration. In the integration, we also used
the approximation I /((n + 1)ω) ∝ ω 2 for low frequen-
cies (Fig. 5) to avoid the errors introduced into the cal-
culated heat capacity by relaxation contributions,
which become frozen at these temperatures (~10–20
K). As was shown in [20], the contribution of the den-
sity of vibrational states to the low-temperature heat
capacity at a frequency above 100 cm–1 is negligibly
small. We restricted our integration to 150 cm–1, at
which the linear approximation for the coupling coeffi-
cient C(ω) is correct [24]. The fitting of the low-tem-
perature heat capacity from the Raman scattering spec-
tra of the unirradiated silica glass (KI0) was performed
with the B constant as a free parameter. As can be seen,
the numerical integral over the Raman scattering data
(the solid line in Fig. 7) adequately describes the
observed heat capacity. The calculation of the heat
capacity from the low-frequency Raman spectrum
(normalized to the intensity) of the irradiated sample
(KI3), as already mentioned, was carried out using the
same constant B as for the unirradiated sample. The
heat capacity calculated for the irradiated sample KI3
also adequately describes the observed heat capacity.
With allowance made for the fact that the Raman scat-
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tering spectra were normalized to the intensity at
810 cm–1, the equality of constants B implies the equal-
ity of constants A for irradiated and unirradiated sam-
ples in absolute units. Therefore, the C(ω) coefficients
for vitreous and metamict phases are identical in their
spectral dependence and absolute value. Note that the
coupling coefficient is determined by the space integral
of the vibration correlation function [23]. This suggests
the equivalence of the vibration correlation function for
vitreous and metamict phases at the same frequency.
Hence, it follows that the metamict phase is “glasslike”
on the nanometer scale.

Thus, the samples of amorphous SiO2 in the vitreous
state and in the phase state (metamict phase) obtained
under irradiation with fast neutrons were studied by the
Raman scattering spectroscopy. Analysis of the Raman
scattering spectra led to the following inferences.

(1) The metamict phase exhibits a glasslike behavior
of the low-frequency Raman scattering spectra (boson
peak): their shape coincides with the spectral shape for
vitreous SiO2 and the universal spectral shape for
glasses, and the coefficients of coupling between vibra-
tions and light scattering are identical for these materi-
als. Since the boson peak reflects the dynamic features
of glasses on the nanometer scale, the conclusion can
be drawn that the main nanometric fragments of SiO2
glass are similar to those of its metamict phase.

(2) The characteristic medium-range order size esti-
mated from the position of the boson peak decreases in
the course of metamictization from 25 to 19 Å. In this
case, the density is not a parameter characterizing the
state of a material.

(3) The idea that the free volume of a vitreous mate-
rial characterizes the intensity of fast relaxation is effi-
cient in analyzing the properties of amorphous SiO2.
The density is the parameter characterizing the inten-
sity of the relaxation spectrum with respect to the vibra-
tional spectrum.

(4) The obtained estimate of amorphous SiO2 with-
out free volume provides support for the structural
model that describes vitreous and metamict silicon
dioxides as consisting of ordered clusters (an ordering
of the cristobalite and tridymite type) separated by
more disordered regions.
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Abstract—The mechanism of the acoustoplastic effect is discussed which arises when an oscillatory stress of
an acoustic frequency is superimposed during quasi-static deformation of a crystal. The kinetics of the acous-
toplastic effect and its dependence on the amount of plastic deformation, amplitude of acoustic-frequency
stresses, temperature, and strain rate are investigated in terms of the stress superimposition mechanism by a
computer simulation method. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The acoustoplastic (AP) effect is a decrease in the

flow stress during deformation at a constant strain rate
[1–12] or an increase in strain rate during plastic defor-
mation under a constant stress [4, 13, 14], which is
observed when an oscillatory stress of a sonic or an
ultrasonic frequency is superimposed to the deforming
crystal. Experimentally, this effect has been studied
extensively and found practical use [15, 16]. However,
its mechanism is still discussed [8–12, 17, 18]. The
most popular is a theoretical model based on the stress
superimposition mechanism [4, 5, 13, 19–22]. Accord-
ing to this model, when an oscillatory (acoustic) stress
is superimposed to a deforming crystal under a quasi-
static stress, the strain rate of thermally activated plastic
deformation increases giving rise to relaxation of elas-
tic stresses (in constant strain rate tests) or to an
increased creep rate (under constant-stress conditions).

However, recent observations of the low sensitivity
of the AP effect to temperature [8, 12] and strain rate
[5, 7] have cast some doubt on the assumption of ther-
mally activated dislocation motion through obstacles
when oscillatory stresses are applied to a crystal. The
suggestion has been made that, basically, the AP effect
has an athermic nature and, under oscillatory stresses,
dislocations surmount athermic obstacles and internal
stress fields by interacting with each other [8–12].
Some doubts are also cast upon the stress superimposi-
tion mechanism itself [8–12, 17, 18]. 

In this paper, we perform computer simulation of
the AP effect and show that under both quasi-static-
deformation and creep conditions, the stress superim-
position mechanism, in combination with dislocation
overcoming short-range obstacles with the aid of ther-
mal agitation, agrees best with the experiment. None-
theless, some problems and contradictions associated
with this mechanism remain to be resolved, which we
will discuss in the Conclusion.

Our computer simulation of the AP effect is based
on a known phenomenological model involving the
stress superimposition mechanism and the assumption
1063-7834/00/4201- $20.00 © 20072
of the thermally activated plastic deformation [4, 5, 13,
19–22]. In this paper, the model is developed further
and used for the first time to investigate the kinetics of
the AP effect and the dependence of its magnitude on
the amount of plastic deformation, temperature, and
strain rate.

2. STRESS SUPERIMPOSITION MECHANISM

According to the stress superimposition mecha-
nism, an oscillatory stress with amplitude τm and fre-
quency ω causes a periodic variation in the effective
stress

(1)

which determines the rate of dislocation overcoming
short-range obstacles with the aid of thermal agitation.
In equation (1), τ∗  is the effective stress in the absence
of acoustic stresses,

(2)

τ is the stress applied to the crystal, τf is the athermal
component of friction stress due to the interaction of
dislocations with impurity atoms and their clusters,
τµ = τµ(ε) is the strain hardening of the crystal due to
the interaction between dislocations, and ε is the plastic
strain.

The rate of plastic deformation is governed by the
Arrhenius equation

(3)

Here, H(τ∗ ) is the activation energy; T is temperature;
k is the Boltzmann constant; and  is the preexponen-
tial factor (depending on the density of mobile disloca-
tions), which will be assumed to be constant. When the
crystal is loaded at a constant strain rate  in a
machine with effective modulus E, the anelastic relax-

τ~* t( ) τ∗ τm ωt,cos+=

τ∗ τ τ f– τµ,–=

ε̇ ε̇ν
H τ∗( )

kT
---------------– .exp=

ε̇ν

ε̇0
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ation rate of the stress applied to the crystal is given by
the expression

(4)

Solving the system of equations (1)–(4), we will find
the AP effect and its dependence on the length of time
for which the acoustic stress is applied, the amplitude
and frequency of this stress, the test temperature, and
also on the strain rate  and the amount of deforma-

tion ε = t controlled by the machine.

To solve these equations analytically, we linearize
the activation energy in (3) as a function of the effective
stress

(5)

where V = –dH /dτ is the activation volume. In this
case, after substitution of (3) into (4), the variables τ
and t can be separated [19–22] and we obtain the fol-
lowing expressions for the stress applied to the crystal:
in the absence of the acoustic stress,

(6)

and in the presence of the acoustic stress,

(7)

where (0) = exp(–H0/kT), t1 is the time at which
the oscillatory stress is applied. The magnitude of the
AP effect ∆τ(t) = τ~(t) – τ(t) is obtained to be

(8)

Equation (6) gives the time dependence of the
applied stress τ(t) and, therefore, the stress–strain (τ–ε)
curve of the crystal in the linear approximation (5) in
the absence of the oscillatory stress. Figure 1a shows
this curve (curve 1) in the (τ /E–t/t0) or, equivalently,
(τ /E–ε/ε0) coordinates, where t0 = kT /VE . The
parameters are taken to be ε0 = kT /VE = 10–4, τf/E = 2 ×
10–3, (0)/  = 106, τµ(ε) = χε1/2; and χ /E = 5 × 10−2.
Curve 2 in this figure is the time dependence of the

dτ
Edt
--------- ε̇0 ε̇.–=

ε̇0

ε̇0

H τ∗( ) H0 Vτ∗ ,–=

τ t( ) Eε̇0t
kT
V
------ 1 q t( )–[ ] ,ln–=

q t( ) VE
kT
------- ε̇0 0( ) V

kT
------ Eε̇0t τ f– τµ ε( )–[ ]

 
 
 

exp t,d

0

t

∫=

τ~ t( ) Eε̇0t
kT
V
------ 1 q~ t( )–[ ] ,ln–=

q~ t( ) VE
kT
------- ε̇0 0( )=

× V
kT
------ Eε̇0t τ f– τµ ε( )– τm ωtcos+[ ]

 
 
 

exp t,d

t1

t

∫
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∆τ t( ) kT
V
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1 q~ t( )+
---------------------.ln=

ε̇0

ε̇ ε̇0
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plastic strain rate during deformation of the crystal,

(9)

On the elastic portion of the τ(t) curve, the plastic strain
rate is virtually zero, but near the yield point it rises
steeply and rapidly approaches the strain rate  con-
trolled by the test machine. Curve 3 in Fig. 1a is the
time (or strain) dependence of the effective stress

(10)

ε̇ t( )
ε̇ 0( ) V

kT
------ Eε̇0t τ f– τµ ε̇0t( )–( )exp

1 q t( )+
-----------------------------------------------------------------------------------=

=  ε̇ 0( ) V
kT
------ τ τ f– τµ ε̇0t( )–( ) .exp

ε̇0

τ∗ t( )
H0 kT ε̇ν/ε̇ t( )( )ln–

V
----------------------------------------------=

Fig. 1. (a) Stress–strain (time) curve (curve 1), the time
dependencies of the effective stress (curve 2) and of the
plastic strain rate (curve 3); and (b) the AP effect as a func-
tion of the time for which the stresses were applied for
the oscillatory-stress amplitude τm/E equal to 5 × 10–4

(curve 1), 10–3 (2), 1.5 × 10–3 (3), and 2 × 10–3 (4).
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for H0/kT = 30,  = 107 s–1, and a fixed value of the
activation volume. On the elastic portion of curve 3, we
have τ < τf and, hence, the stress level is not high
enough for dislocations to become mobile. This occurs
at τ > τf , and mobile dislocations make plastic deforma-
tion possible. On further deformation, the effective
stress becomes constant, its magnitude being deter-
mined by the controlled strain rate .

It is obvious that, owing to the oscillatory stress in
(7), the plastic strain rate becomes higher during posi-
tive half-cycles, which leads to relaxation of the applied
stress determined by (8). As an illustration, Fig. 1b
shows the time dependence of the magnitude of the AP
effect ∆τ = |∆τ| calculated from (8) for the case where
the acoustic stress is applied coincidentally with the
beginning of the crystal deformation [t1 = 0 in (7)]. In
this figure, ∆τ(t)/E is plotted against t / t0 for four values
of the amplitude of the oscillatory stress (curves 1 to 4).
It is seen that the AP effect is nonzero on the anelastic
portion of the stress–strain curves if the amplitude of
the oscillatory stress is so large that the effective stress
is positive and can produce an increase in the plastic
strain rate high enough for the relaxation of the applied
stress to occur. When the plastic deformation occurs
everywhere in the crystal, the magnitude of the AP
effect increases sharply and rapidly approaches its
steady-state value

(11a)

where

(11b)

ε̇ν

ε̇0

∆τ kT
V
------

ε̇ω

ε̇0

-----ln
kT
V
------ I0 Vτm/kT( ),ln= =

ε̇ω ε̇0ω
Vτm

kT
--------- ωtcos 

 exp td

0

2π

∫ ε̇0I0 Vτm/kT( )= =

1.0

0.5

ε × 102
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t/tm
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4

Fig. 2. Creep curves in the absence (portion 1) and in the
presence (portions 2–4) of the superimposed oscillatory
stress with amplitude τm/E equal to 2 × 10–4 (2), 3 × 10–4

(3), and 4 × 10–4 (4).
P

is the steady-state plastic strain rate in the presence of
the oscillatory stress [3, 4] and I0(x) is the modified
Bessel function of order zero. Experimental curves
similar to those presented in Fig. 1b were observed in
[7, 10].

Concluding the section, we consider the AP effect
under low-temperature (logarithmic) creep conditions.
In this case, the plastic strain rate (in the absence and in
the presence of the oscillatory stress, respectively) is
given by

(12a)

(12b)

where θ = dτµ/dε is the strain hardening coefficient, 
is the strain jump at the instant the static stress is
applied, and ε1 is the strain at the moment the acoustic
stress is applied. Integrating (12) gives the strain in the
process of logarithmic creep

(13a)

(13b)

Figure 2 shows the creep function given by (13a)
(curve 1) and by (13b) (curves 2 to 4). In the latter case,
the dimensionless amplitude of the oscillatory stress
Vτm/kT equals 2, 3, and 4, respectively. The magnitude
of the AP effect under logarithmic creep conditions
∆ε = ε~ – ε is equal to

(14a)

Taking the time average of (12b) gives

(14b)

The dependencies similar to those presented in Fig. 2
were observed in [4, 13, 14]. It was found in [13] that
when the time for which the oscillatory stress was

ε̇ ε̇ν
H0 V τ τ f– τµ ε0'( )–( )– θε–

kT
--------------------------------------------------------------------– ,exp=

ε~̇ ε̇ν=
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------------------------------------------------------------------------------------------------------– ,exp×
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ε kT
Vθ
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applied was longer than several seconds, the strain
jump was described by (14b) for different values of the
amplitude τm. From (14b) it follows that the magnitude
of the AP effect equals ∆ε = τm/θ when the oscillatory
stress is high enough (τm @ kT /V).

3. THE KINETICS 
OF THE ACOUSTOPLASTIC EFFECT

Figure 3 shows the time dependence of the applied
stress during loading and unloading as calculated from
(7) for the case where oscillatory stress pulses of short
duration (∆t = 3t0) are applied at some instants of time
(labeled 1 to 6 in the figure) with amplitude τm/E = 10–3

and frequency ω = 2π . It is seen that the AP effect
takes place during both loading and unloading [8, 10].
During unloading, the calculated plastic strain rate and
the effective stress decrease; hence, this process is
opposite in direction to that taking place during loading
(Fig. 1a). In [8, 10], the AP effect was observed to be of
an opposite sign at the final stage of unloading, the rea-
son for which is still unclear. In our computer simula-
tion, the change in sign of the AP effect does not occur.

In order to elucidate during which half-cycles of the
oscillatory stress the AP effect occurs, the oscillatory
stress pulses are taken separately to consist of complete
cycles (instant 2 in Fig. 3), of positive half-cycles only
(instant 3), and of negative half-cycles only (instant 4).
It is seen that the presence of positive half-cycles leads
to an increase in the effective stress giving rise to relax-
ation of the applied stress (instants 2 and 3). During
negative half-cycles, the effective stress decreases
thereby causing the applied stress to increase slightly
(instant 4) because the plastic strain rate becomes lower
in comparison with the controlled strain rate ; hence,
the AP effect disappears.

Calculations show that the occurrence of the AP
effect is not due to the oscillatory character of addition-
ally applied stresses, but depends crucially on whether
they increase or decrease the effective stress. Instant 5
in Fig. 3 corresponds to the application to the crystal of
a rectangular positive stress pulse of the same duration
and amplitude as at instants 2 and 3. It is seen that in the
case of the positive pulse the AP effect is qualitatively
the same, but the magnitude of the stress relaxation is
somewhat larger.

Figure 4 shows the calculated time dependence of
the AP effect for amounts of strain corresponding to the
steady-state values of τ∗  and ∆τ (see Figs. 1a and 1b,
respectively) and for different values of the amplitude
of the oscillatory stress. The curves are seen to consist
of two different portions. On the initial portion, the
relaxation of the applied stress is fast, while the other
portion corresponds to noticeably slower stress relax-
ation. This character of the dependence of ∆τ on the
length of time during which the oscillatory stress is
applied is explained by the fact that the plastic strain

t0
1–

ε̇0
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rate increases exponentially with the oscillatory-stress
amplitude; hence, the rate of stress relaxation also
increases and higher steady-state values of ∆τ can be
reached for the same time t0.

According to [11], the existence of portions of
AP-effect curves with fast stress relaxation is one of the
reasons for the athermal nature of obstacles that dislo-
cations overcome when acoustic stresses are applied to
a crystal. The results presented in this paper show that
this character of the kinetics of the AP effect is natu-
rally explained in terms of the stress superimposition

1.0

0.5

0 100 200

(τ/E) × 102

t/t0

1

2
3

4 5

6

Fig. 3. Dependence of the AP effect on the sign of the oscil-
latory stress: portions 1, 2, and 6 correspond to complete
cycles of the oscillatory stress; portions 3 and 5, to positive
half-cycles only; and portion 4, to negative half-cycles only.
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Fig. 4. Dependence of the AP effect on the time for which
the acoustic stress is superimposed with amplitude τm/E

equal to 2 × 10–4 (curve 1), 6 × 10–4 (2), 10–3 (3), 1.5 × 10–3

(4), and 2 × 10–3 (5).
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mechanism and thermally activated dislocation motion
over barriers.

Figure 5 shows the dependence of the AP effect on
the oscillatory-stress amplitude as calculated from (8)

1.0
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0 5 10 15
(τm/E) × 104

(∆τ/E) × 103

1
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4

Fig. 5. AP effect as a function of the amplitude of the acous-
tic stress superimposed for the time ∆t = 5t0 at different
moments during loading: t/t0 = 5 (curve 1), 15 (2), 25 (3),
and 60 (4).

Fig. 6. (a) Temperature dependence of the parameter kT/V for
two different magnitudes of the strain rate:  (curve 1) and

 >  (curve 2) and (b) temperature dependence of the AP
effect for two different magnitudes of the oscillatory-stress
amplitude, τm1 (curves 1 and 2) and τm2 > τm1 (curves 3 and

4), and for two different strain rates,  (curves 1 and 3) and

 >  (curves 2 and 4). 

ε̇1

ε̇2 ε̇1

ε̇1

ε̇2 ε̇1

1.0

0.5

(kT/VE) × 105

1

2

a

0.5 1.00
T/Tc

(∆τ/E) × 103

0.50

0.25

1 2

4

3b
P

for different amounts of plastic strain, i.e., at different
moments t during loading (see Fig. 1a). As in Fig. 1b,
the magnitude of the AP effect increases with the
amount of deformation. When ∆τ(τm) is plotted against
lnI0(Vτm/kT), it is seen that dependence (11a) takes
place for all values of the oscillatory-stress amplitude
only if the amount of deformation corresponds to a
steady-state value of ∆τ in Fig. 1b.

As for the dependence of the AP effect on the fre-
quency of oscillatory stresses, it was found in [20] that
the effect is independent of the frequency if ω @ ω0,

where ω0 =  and t0 = kT /VE  is the stress relaxation

time. At  = 10–6–10–2 s–1 and kT /VE ≈ 10–4, we have
ω0 ≈ 10–2–102 Hz. Therefore, one might expect the AP
effect to be frequency independent in the range of sonic
and ultrasonic frequencies.

4. THE TEMPERATURE AND RATE 
DEPENDENCES OF THE AP EFFECT

The fact that the AP effect depends only weakly on
temperature and strain rate is one of the reasons for the
athermal nature of obstacles that dislocations overcome
when acoustic stresses are applied to a crystal. Accord-
ing to (11a), the steady-state AP effect depends on tem-
perature and strain rate through the parameter kT /V =
∂τ∗ /∂ ln , which is the sensitivity coefficient of the
flow stress to the strain rate. To calculate this depen-
dence, information is needed about the activation
energy for plastic deformation as a function of the
effective stress.

Generally, H(τ∗ ) can be written in the form [23]

(15)

where Hc , τc, p, and q are parameters of an activation
barrier (0 < p < 1 and 1 < q < 2). At p = 1/2 and q = 2,
which corresponds to the case where dislocations over-
come barriers such as impurity atoms in a solid solu-
tion, we obtain

(16)

where Vc = Hc/4τc. At Hc = 0.2–0.6 eV and ln( / ) = 23,
we have Tc = 100–300 K. The plot of the temperature
dependence of the parameter kT/V is a parabola convex
upwards, with its vertex being at the point Tm = 0.25Tc

(Fig. 6a, curve 1, corresponding to kTc/VcE = 10−3 and
 = 10–4 s–1). The temperature Tc and the parameter

kT /V increase with strain rate (see curve 2, correspond-
ing to  = 10–2 s–2).
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Figure 6b shows the temperature dependence of
the AP effect calculated from (11a) and (16) for
τm /E = 1 × 10–4 (curves 1 and 2) and τm /E = 5 × 10–4

(curves 3 and 4) and for two values of the strain rate:
 = 10–4 s–1 (curves 1 and 3) and 10–2 s–1 (curves 2 and 4).

It is seen that at T > Tm, the AP effect increases only
slightly with temperature, which is in agreement with
findings of [9, 12]. At T < Tm, in contrast, the AP effect
decreases with increasing temperature. It is also seen
that the AP effect decreases slightly with increasing
strain rate. In [8], the reverse situation was observed for
aluminum: the AP effect increased with the strain rate.
As was pointed out in [7], this may be due to the fact
that mobile dislocations are locked by atmospheres of
impurity atoms (dynamical aging). It is known that in
this case, as the strain rate is increased, the parameter
kT /V becomes smaller [24] and, hence, the AP effect
increases.

Let us consider the dependence of the AP effect on
the concentration of impurity atoms c in a solid solu-

tion. In (16), we have  ~ τc ~ c1/2 [25], and in the
case of small oscillatory-stress amplitudes, using the
approximation lnI0(x) ~ x2 in (11a), we obtain

(17)

Thus, at small amplitudes, the AP effect decreases
as the concentration of impurity atoms increases. The
dependence ∆τ(τm) becomes linear in the case of
lnI0(x) ~ x at a characteristic amplitude τmc ≈ kT/V ~ c1/2,
which increases with c. These results are in agreement
with the findings of [11]. It was also found in [11] that
at large amplitudes, ∆τ(τm) curves for crystals with dif-
ferent concentrations of impurity atoms approached
each other and the reverse situation was observed: the
AP effect was larger in a more concentrated alloy.
However, this does not occur in our model.

Concluding this section, the following comment
should be made. The AP effect was investigated theo-
retically in [5, 7, 22] and instead of the Arrhenius
dependence of the plastic strain rate on temperature and
stress (3), the power-law dependence was used,

(18)

which is more consistent with the experiment, partic-
ularly in the case of alkali halide crystals for which
n = n(T). It was shown in [23] that the power-law depen-
dence (18) follows from the Arrhenius equation (3) near
the Orowan stress τO associated with a bowing of dislo-
cations moving through a cluster of impurity atoms or a
dispersion of particles; in that case, n = Hc/kT.
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5. CONCLUSION

Thus, the experimental data on the acoustoplastic
effect, which take place when oscillatory (acoustic)
stresses are superimposed on a static stress applied to a
crystal, are adequately described in terms of the stress
superimposition mechanism combined with thermally
activated plastic deformation. In particular, the charac-
ter of the calculated dependencies of the AP effect on
the oscillatory-stress amplitude under different loading
conditions and the influence on it of different structure
factors are consistent with the experiment. However,
there are a number of facts and contradictions which
call for further investigation in our model.

One of the questions is the association of the AP
effect and the amplitude-dependent internal friction
(ADIF), which were observed in the same experiment
[8–12] and are due to the motion of the same disloca-
tions. Although these two effects seem to be associated,
it is clear that they have different physical natures.
Indeed, in the case of the AP effect, a superimposed
oscillatory stress causes relaxation of the applied stress
because of an increase in the plastic strain rate, as dem-
onstrated in this paper, whereas the ADIF is associated
with energy dissipation due to the application of the
acoustic stress and to the cyclic plastic deformation it
causes in the crystal. In the latter case, therefore, the
energetic aspect of the problem, rather than the force
aspect, is of importance. Of course, the effects under
question may be associated, but that association will be
indirect in nature.

Another question arises when one considers the
character of the motion of dislocations under the action
of oscillatory stresses. The models proposed for the
ADIF are based on the assumption of reciprocal motion
of dislocations which leads to dissipation of the energy
associated with oscillatory stresses. On the other hand,
the stress superimposition mechanism of the AP effect
assumes no reciprocating motion of dislocations; the
decrease in the effective stress during negative half-
cycles produces a decrease in the dislocation velocity
and dislocations cease to move when the effective
stress becomes either zero or negative [22].

These inconsistencies between the mechanisms of
the AP effect and ADIF discussed in the literature [7, 8–
12, 17, 18] show that further experimental and theoret-
ical investigations of these effects should be conducted.
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Abstract—Effect of Mn2+ ions on the magnetic microstructure of substituted hexaferrites SrFe12 – 2xMnxTixO19
was studied using the Mössbauer spectroscopy data. A new method is developed for estimating the hyperfine
interaction parameters in substituted ferrites, and is based on a quasicontinuous description of their Mössbauer
spectra. It is shown that a single substitution of manganese for iron in the second coordination shell of Fe3+

changes the local magnetic field strength at this ion by approximately 20 kOe, this value being independent of
the concentration of substituted ions. © 2000 MAIK “Nauka/Interperiodica”.
† The need for new magnetic materials explains the
considerable interest of researchers in the study of hex-
agonal ferrites, the technological potential of which is
still far from being exploited. Much attention is paid to
the attempts at replacing a part of iron ions by cations
of some other metals, which allows various types of
magnetic ordering to be obtained within the framework
of the same crystalline structure. The task of obtaining
optimum magnetic and technological parameters and
providing for their reproducibility requires most com-
plete information to be obtained concerning the effect
of such a substitution. Of special interest is the study of
hexagonal ferrites of the M-type with correlated noni-
somorphous substitution of Me2+–Me4+ pairs for Fe3+

ions so as to obey the condition of electroneutrality [1].
Previously, we have studied the M-type hexaferrites by
Mössbauer spectroscopy with the traditional discrete
processing of the spectra [2, 3]. However, the ambiguity
of results led us to the necessity of using other
approaches to interpretation of the Mössbauer data. In
this paper, we propose a more detailed analysis of the
additional components observed in the Mössbauer spec-
tra of substituted hexaferrites, which is based on the
method of quasicontinuous description of the spectra.

1. INTERPRETATION OF THE MÖSSBAUER 
SPECTRA OF SUBSTITUTED HEXAFERRITES

We will consider the hexagonal ferrites of strontium
having a magnetoplumbite structure (M-type) with cor-
related nonisomorphous substitution of Mn2+–Ti4+

pairs for a part of Fe3+ ions. The samples have a general

chemical formula of SrFe12 – x O19 (x ≤ 1.5).

The crystal structure of compounds belonging to
this class represents a closest package of oxygen ions

† Deceased.

Mnx
2+Tix

4+
1063-7834/00/4201- $20.00 © 20079
with metal ions in the cavities. The hexaferrite structure
is conveniently analyzed by conventionally dividing
into blocks with hexagonal and spinel (cubic) struc-
tures.

The magnetic structure of the M-type hexaferrites is
determined by the superexchange interaction through
oxygen ions. In the absence of substitution, the mag-
netic structure is collinear and comprises five magnetic
sublattices: octahedra 2a, 12k, 4f2; 4f1 tetrahedron, and
2b trigonal bipyramid [1]. The substitution of other
magnetic or diamagnetic cations for a part of iron ions
leads both to changes in the parameters of exchange
interactions between the magnetic sublattices and to the
appearance of new inequivalent positions of the iron
ions.

The 57Fe Mössbauer spectra were measured at room
temperature in a constant-acceleration mode using an
MS 1101E spectrometer equipped with a 57Co source in
the Cr matrix. The velocity scale of the spectrometer
was calibrated with respect to metallic iron. Typical
Mössbauer spectra of the samples studied are presented
in the figure.

Preliminary mathematical processing of the Möss-
bauer spectra obtained was performed by the traditional
optimization methods and the resulting model spec-
trum was assessed in terms of the Pearson criterion.

The Mössbauer parameters of the spectra of hexa-
gonal ferrites obtained as a result of this traditional
treatment are listed in Table 1.

The Mössbauer spectra of hexaferrites are usually
described within the framework of discrete models
based on a physically justified assignment of the indi-
vidual resolved components to various inequivalent
positions of the iron ions.

According to this approach, the Mössbauer spectra
of substituted hexaferrites of the M-type studied in ear-
000 MAIK “Nauka/Interperiodica”
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Table 1.  Parameters of discrete description of the Mössbauer spectra of SrFe12 – x O19 samples

x Sublattice Is, mm/s Qs , mm/s Heff , kOe A, % W, mm/s S, %

12k 0.32 0.41 409.5 13.18 0.36 49.23

2a 0.33 0.15 500.8 2.38 0.25 6.26

0 4f1 0.24 0.20 485.9 6.35 0.36 23.68

4f2 0.36 0.28 512.9 5.19 0.23 15.52

2b 0.25 2.21 406.2 2.03 0.25 5.31

12k 0.32 0.37 408.4 9.10 0.70 59.74

2a 0.31 0.25 489.3 2.27 0.33 6.95

0.3 4f1 0.25 0.17 476.7 5.58 0.32 16.69

4f2 0.34 0.33 502.8 4.48 0.30 12.35

2b 0.25 2.16 404.5 1.47 0.31 4.27

12k 0.37 0.38 408.4 7.85 0.87 65.37

2a 0.32 0.24 479.9 1.40 0.28 3.83

0.5 4f1 0.29 0.16 472.1 5.05 0.32 15.72

4f2 0.39 0.35 496.0 4.53 0.29 12.62

2b 0.26 2.07 403.6 0.88 0.29 2.47

12k 0.37 0.38 403.8 4.89 1.06 69.01

2a 0.35 0.45 477.8 1.15 0.29 4.53

0.7 4f1 0.29 0.10 469.4 3.53 0.33 15.51

4f2 0.38 0.39 492.7 2.45 0.29 9.41

2b 0.2 1.95 381.7 0.76 0.15 1.54

12k 0.33 0.31 393.0 5.60 1.20 74.95

2a 0.32 0.55 462.2 1.23 0.28 3.87

1.0 4f1 0.25 0.09 454.1 3.13 0.37 13.06

4f2 0.38 0.41 479.4 2.27 0.27 6.94

2b 0.22 1.93 374.3 0.69 0.15 1.18

Note: Ix is the isomer shift relative to metallic iron; Qs is the quadrupole splitting; Heff is the effective magnetic field; A is the component
intensity; W is the full linewidth at half height; S is the relative area %; The errors of determination (for p = 0.95) are 0.04 mm/s for
Is, Qs, and W; 5 kOe for Heff; 3% for S.

Mnx
2+Tix

4+
lier works were described using a discrete set of com-
ponents corresponding to various crystallographically
inequivalent positions of iron ions. Additional inequiv-
alent iron ion positions, appearing due to the substitu-
tion of other metal ions for iron, were assigned to an
additional strongly broadened spectral component [2].
In this work, we suggest a different approach to inter-
preting the additional components that appear in the
Mössbauer spectra of substituted hexaferrites.

As is known, the electron configurations of the Mn2+

ions and Fe3+ ions are identical, but the integral of the
superexchange interaction in the Mn–O–Fe chain is
smaller than that in the Fe–O–Fe chain [4]. For this rea-
son, the substitution of manganese for iron in a given
sublattice not only leads to a decrease in the intensity of
components corresponding to this sublattice, but gives
rise to additional components with smaller values of the
local magnetic field corresponding to the crystallo-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
graphic positions of iron ions adjacent to the substitu-
tion sublattice. Unfortunately, the line broadening as a
result of this substitution, as well as the small values of
the changes in the local magnetic field in these sublat-
tices, hinder unambiguous interpretation of the addi-
tional components within the framework of traditional
methods.

In order to obtain additional information about the
effect of substituted cations, it would be expedient to
employ quasicontinuous methods, which are capable of
providing a distribution of the probability density of a
determining parameter. Using these methods, it is pos-
sible to resolve the components that remain unresolved
in a discrete description. In this work, we have used one
of the possible quasicontinuous methods, namely, the
Hesse–Rübartsch regularization technique [5]. Using
this method, we have estimated a change in the local
magnetic field strength at the iron ion upon substituting
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manganese for iron in the nearest environment of the
former iron ion. The calculation was performed using
the following procedure.

First, the parameters of the Mössbauer spectra
determined by the conventional methods were used in
the Hesse–Rübartsch regularization procedure to
restore the local magnetic field distribution with the
other parameters fixed. This allowed us to make prelim-
inary conclusions concerning the presence of addi-
tional components in the Mössbauer spectra measured
upon substitution and to refine the values of local fields
corresponding to the main spectral components.

Then, using a binomial distribution, assuming a sta-
tistical distribution of substituted cations in a given
sublattice, and employing aprioric information on the
substituent concentration, we calculated the probabili-
ties of all components of the line of this sublattice.
These probabilities were calculated using information

Table 2.  Variation of the hyperfine magnetic field at the iron
nucleus in hexaferrite upon single substitution of manganese
for iron in the second coordination shell

x H12k , kOe ∆h , kOe

0.3 408 22

0.5 408 22

0.7 407 20

1.0 403 20

* The error of ∆h determination (for p = 0.95) is 5 kOe.
P

about the possible distribution of iron ions and substi-
tuted cations in various sublattices and the number of
the nearest neighbors in each particular sublattice:

(1)

where j is the index of the sublattice under consider-
ation, N is the total number of positions belonging to
the given substitution sublattice in the nearest environ-
ment of the initial sublattice, m is the number of substi-
tuted ions, and x is the relative concentration of ions in
the substitution sublattice.

Since the Mössbauer intensity determined by the
traditional method characterizes the whole set of sub-
lattices having various degrees of substitution of the
nearest-neighbor ions, the intensity of each sublattice,
corresponding to the positions of iron ions with differ-
ent numbers of substituted cations in the nearest envi-
ronment, was normalized to this overall characteristic.

In the third stage, we employed the Hesse–Rübartsch
regularization method [5] to restore the probability dis-
tribution density of the quantity ∆h representing a
change in the local magnetic field strength at the iron
nucleus in the given sublattice upon replacement of a
single iron ion in the second coordination shell of the
nucleus under consideration. In our particular case, iron
was replaced by manganese. Under these conditions,
we have used the following matrix to describe the shape
of the Mössbauer spectrum within the framework of the
regularization procedure:

P j m x,( ) Cm
N xm 1 x–( )N m– ,=
(2)

Ll n,
aiα k

1 v l δi– βkei/2– γkHi–( )/ Γ i/2( )[ ]2+
-------------------------------------------------------------------------------------------

k 1=

6

∑
i j≠
∑=

+
a jP j m x,( )α k

1 v l δj– βke j/2– γk H j n∆hm–( )–( )/ Γj /2( )[ ]+
-------------------------------------------------------------------------------------------------------------------- ,

k 1=

6

∑
m 0=

M

∑

where ∆h is a change in the local magnetic field
strength to be determined; n is the index of discretiza-
tion for the unknown value distribution; v l is the Dop-
pler velocity of the lth analyzer channel; Pj(m, x) is the
distribution function from equation (1); j is the sublat-
tice number; M is the number of nearest neighbors in
the second coordination shell of the iron ion under con-
sideration; ai , δi , ei , Hi, and Γi are the reduced ampli-
tude, isomer shift, quadrupole splitting, local field
strength, and halfwidth of the ith spectral component,
respectively; αk , βk, and γk are the Mössbauer coeffi-
cients of the kth line.

The value of the smoothness factor necessary for
applying the regularization method was obtained from
the model spectra of substituted hexaferrite. The same
model spectra were used to assess the reliability of the
calculated results.
2. ANALYSIS OF RESULTS

The Mössbauer spectra of the samples studied rep-
resent a superposition of several Zeeman sextets related
to the magnetic ordering typical of the hexagonal fer-
rites. According to the model structure described by
discrete methods, there are five magnetic sublattices
corresponding to different inequivalent positions of
iron ions. Changes in the local fields in these sublattices
are observed already for x = 0.3, and further increase in
the degree of substitution markedly alters the shape of
the spectrum as well. A maximum change in the local
magnetic field strength is observed for the 4f1 and 4f2

sublattices, while the fields in other sublattices vary to
a lower extent. A characteristic feature of changes in
the Mössbauer spectrum is the anomalous behavior of
intensities and broadening of the lines of some sublat-
tices. An example is offered by the 12k sublattice,
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
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which can be described only by using an asymmetri-
cally broadened line shape. This is evidence for the
appearance of additional inequivalent positions of the
iron ions upon the substitution of manganese for iron in
the nearest cationic environment of the 12k sublattice.

Taking into account that Mn2+ ions possess a greater
energy of affinity to the tetrahedral positions [4], we
can suggest that manganese ions in the samples studied
would also occupy the tetragonal 4f1 positions occur-
ring in the spinel blocks. This assumption is confirmed
by decrease in the local magnetic field strength and in
the relative intensity of lines corresponding to this sub-
lattice observed with increasing degree of substitution.
An analysis of the crystalline structure shows that these
positions occur in the nearest cationic environment of
the 12k and 2a octahedra. A small intensity of the 2a
component keeps us from making a reliable description
of the effect of manganese ions on the local magnetic
field in this sublattice. At the same time, application of
the above method provides reliable data for the 12k
sublattice.

The ∆h values calculated using the procedure
described above are presented in Table 2. As seen, this
parameter remains virtually constant when the degree
of substitution increases, which confirms the initial
assumption concerning the distribution of cations in
hexaferrites of the type studied. Moreover, the value is
close to that reported previously for the spinel ferrites
[4, 6]. This proximity is probably related to the fact that
the 12k sublattice occurs in the spinel block of the hexa-
ferrite structure studied.

Further development of the method described above
would involve a more thorough description of effects
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      200
caused by the Mn2+ substitution for iron ions, including
changes in the 2a sublattice.

The above results allow us to ascertain that the hex-
agonal ferrites of the M-type studied, with a correlated
nonisomorphous substitution of Mn2+–Ti4+ pairs for
Fe3+ ions, are characterized by the manganese ions
occupying the tetrahedral 4f1 positions.

The observed position of maximum of the ∆h distri-
bution is independent of the concentration of substi-
tuted ions and is of the same order of magnitude as the
value reported for the manganese- containing spinels
[4, 6].

The proposed method may be also useful for the
study of ferrites with different crystal structures, in
which the iron ions are replaced by ions other than
manganese.
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Abstract—Perovskites of composition La1 – xSrx(Mn1 – x/2Nbx/2)O3 and La0.49Sr0.51(Mn1 – yNby)O3 have been
synthesized and investigated. The substitution of nonmagnetic niobium ions for manganese was shown to lead
to a transition from the metallic into the insulating state due to a decrease in the number of dissimilar (different-
valence) manganese atoms in the lattice. In spite of the high resistivity, the niobium-containing perovskites
exhibit a large magnetoresistive effect and ferromagnetic ordering. Small additions of Nb5+ to La0.49Sr0.51MnO3
stimulate the transition from the antiferromagnetic into the ferromagnetic state, whereas the substitution of
Mg2+ for Mn stabilizes the antiferromagnetic state. It is supposed that the ferromagnetism in the insulating per-
ovskites at hand is due to the positive superexchange of the Mn3+–O–Mn3+ type, and the magnetoresistive effect
owes to the intergranular transfer of spin-polarized charge carriers and the suppression of magnetic nonunifor-
mities by an applied magnetic field near TC. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The discovery of the effect of “giant magnetoresis-
tance” (GMR) greatly stimulated the interest in the
manganites with a perovskite structure. These com-
pounds exhibit a very interesting interrelation between
the magnetism, charge ordering, and electrical trans-
port properties. The metal–insulator transition near the

Curie temperature in La1 – xSrx( )O3 have
long been interpreted (starting from 1950) in terms of
the “double exchange” model, in which the electrical
conductivity and ferromagnetic ordering are closely
related [1]. In recent years, attempts have been made to
modify the theory of double exchange [2–4] with the
purpose of accounting for a number of new facts.
Nagaev [5, 6] emphasized the important role of mag-
netic impurities in the GMR effect. The efficiency of
the double exchange is controlled by the relation
between the amounts of Mn4+ and Mn3+ ions. In terms
of the double exchange model, the system undergoes a
transition into the antiferromagnetic insulating state as
the concentration of Mn4+ ions decreases; this indeed is
observed in the La1 – xSrxMnO3 system as the amount of
Sr decreases. Another way to decrease the concentra-
tion of higher-valence Mn ions is to substitute some
other ions of higher valence for manganese ions, e.g.,
niobium ions. These ions in the lattice of perovskite-
type manganites have the oxidation state Nb5+, since
the synthesis of Nb4+-containing perovskites is carried
out under strongly reducing conditions incompatible
with the stability of La1 – xSrxMnO3-type perovskites.
The magnesium ions in oxides are always in the diva-
lent state. Their introduction into the manganite lattice

Mn1 x–
3+ Mnx

4+
1063-7834/00/4201- $20.00 © 20084
must therefore lead to an increase in the average oxida-
tion state of Mn ions. In this work, we studied the effect
of Nb5+ and Mg2+ ions on the magnetic and electrical
properties of manganites.

1. EXPERIMENTAL

The samples for this investigation were obtained
from starting materials (La2O3, SrCO3, Mn2O3, MgO,
and Nb2O5) of at least 99.99% purity. The initial com-
ponents were mixed in proportions necessary to obtain
the desired stoichiometry. The synthesis was carried
out in air by heating the oxide mixtures for 2 h at
1550°C. The high temperature of synthesis was neces-
sary to obtain a dense ceramics of good quality. The
samples were cooled at a rate of 200 K/h. Some of
the samples were annealed at 800°C in a vacuum of
10−5 atm in order to minimize the concentration of
Mn4+ ions. X-ray diffraction revealed no traces of for-
eign phases. The lattice parameters of the phases that
were synthesized are listed in the table. The unit-cell
volume of niobium-containing perovskites is much
higher than that of the La1 – xSrxMnO3 compounds with
the corresponding amount of strontium. This is because
the ionic radius of Nb5+ is greater than that of Mn4+.

The magnetic measurements were performed with a
Foner vibrating-sample magnetometer in fields up to
15 kOe and with a SQUID magnetometer in fields up to
50 kOe. The electrical conductivity was measured by
the four-probe method with indium electrodes depos-
ited by the ultrasonic technique.
000 MAIK “Nauka/Interperiodica”
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Lattice parameters

Composition Lattice type a c α V

La0.49Sr0.51MnO3 Tetragonal 3.848 3.878 57.789

La0.49Sr0.51Mn0.92Mg0.05O3 Tetragonal 3.843 3.879 57.282

La0.49Sr0.51Mn0.975Nb0.025O3 Tetragonal 3.863 3.877 57.820

La0.49Sr0.51Mn0.95Nb0.05O3 Cubic 3.877 58.309

La0.49Sr0.51Mn0.85Nb0.15O3 Cubic 3.911 59.808

La0.49Sr0.51Mn0.75Nb0.25O3 Cubic 3.939 61.101

La0.8Sr0.2Mn0.9Nb0.1O3 Rhombohedral 3.890 90.404 58.837

La0.8Sr0.2Mn0.9Nb0.1 Cubic 3.927 60.555

La0.7Sr0.3Mn0.85Mn0.15O3 Rhombohedral 3.923 90.257 60.376

La0.6Sr0.4Mn0.8Nb0.2O3 Cubic 3.929 60.655

La0.6Sr0.4Mn0.8Nb0.2 Cubic 3.949 61.582

* Reduced.

O3
*

O3
*

2. RESULTS AND DISCUSSION

The results of the measurements of field dependences
of the magnetization of La1 – xSrx(Mn1 – x/2Nbx/2)O3 sam-
ples at T = 12 K are given in Fig. 1. The samples with
x  ≤ 0.2 are at this temperature in the ferromagnetic
state, since the magnetic moment of Mn3+ ions in the
perovskites is about 3.5 µB, while niobium ions do not
contribute to the magnetization. The Curie tempera-
tures vary between 110 and 190 K, depending on the
niobium concentration and the synthesis conditions
(Fig. 2). The diamagnetic Nb5+ ions do not participate
directly in exchange interactions; this leads to a
decrease in the Curie temperature as compared to the
initial La1 – xSrxMnO3 perovskites. All the samples,

Fig. 1. Magnetization at T = 12 K as a function of magnetic
field in La1 – xSrx(Mn1 – x/2Nbx/2)O3 compounds: (1, 1*) x =
0.2; (2) 0.3; (3, 3*) 0.4; and (4) La0.7Sr0.3(Mn0.85Mg0.15)O3
at 4.2 K. 
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both vacuum-annealed and prepared in air, have rela-
tively close magnetic properties. Vacuum annealing
decreases oxygen content in the samples; this is accom-
panied by the transition of Mn4+ into Mn3+ or Mn3+ into
Mn2+ ions. A small amount of Mn4+ ions may be present
in the samples prepared in air because of the inclination
of the manganites to deviations from stoichiometry in the
cation sublattice, which manifests itself, e.g., in the for-
mation of equivalent amounts of manganese and lantha-
num vacancies [7]. Unlike La0.7Sr0.3(Mn0.85Nb0.15)O3,
the 15% substitution of magnesium ions for manganese
ions destroys the long-range magnetic order, which
is seen from the M(H) dependence at 4.2 K (Fig. 1,
curve 4).

Fig. 2. Magnetization as a function of temperature for
La1 − xSrx(Mn1 – x/2Nbx/2)O3 in a field of 100 Oe. The mea-
surements were performed after cooling in a field of 100 Oe.
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Figure 3 displays the magnetization of
La0.49Sr0.51(Mn1 – yMey)O3 samples as a function of tem-
perature.

La0.49Sr0.51MnO3 exhibits a magnetization jump
near 150 K, which is related to its transition from the
antiferromagnetic into ferromagnetic state. At temper-
atures below 150 K, this compound, as is seen from
Fig. 4, exhibits metamagnetic behavior.

The spontaneous magnetization below 150 K appears
to be due to the presence of a magnetic phase that does
not go over into the antiferromagnetic state due to the
enhanced local concentration of lanthanum ions. The
substitution of niobium for manganese ions fully sup-
presses the antiferromagnetic state and stabilizes the
ferromagnetic state. As the concentration of niobium
ions increases, the Curie temperature decreases gradu-
ally. Near a niobium concentration of 20%, the system
changes into a cluster state of the spin-glass type,
which follows from the results of magnetization mea-
surements in small magnetic fields. In the Mg2+-doped
compound, on the contrary, the antiferromagnetic state
is stabilized, since magnesium increases the antiferro-
magnetic–ferromagnetic transition temperature.

Figure 5 shows the results of measurements of elec-
trical conductivity. All La1 – xSrx(Mn1 – x/2Nbx/2)O3 com-
pounds exhibit conductivity behavior characteristic of
semiconductors. In the temperature range close to
100 K, the resistivity varies from 103 to 106 Ω cm,
depending on the sample. These values are higher by 6–
9 orders of magnitude than those characteristic of the
corresponding La1 – xSrxMnO3 samples. Vacuum
annealing of the samples increases their resistivity.

As a rule, the transition into a magnetically ordered
state in niobium-substituted manganites is not accom-
panied by the appearance of any sharp anomalies in

Fig. 3. Magnetization of La0.49Sr0.51(Mn1 – yMey)O3 (Me =
Nb, Mg) in a field of 12 kOe as a function of temperature:
(1) M = Nb, y = 0.05; (2) Nb, y = 0.15; (3) Nb, y = 0.25;
(4) y = 0; and (5) Me = Mg, y = 0.05.
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the ρ(T) dependences. The resistivity continues to
grow in the ferromagnetic region. Such behavior was
previously observed for ferromagnetic samples of

R0.8Ca0.2( )O3 (R = Pr, Nd) with Curie tem-
peratures of 110–130 K [8].

Figure 6 displays the temperature dependences of the
magnetoresistivity MR = {[ρ(H = 0) – ρ(H = 9 kOe/ρ(H =
0)} × 100% measured in a relatively small magnetic
field of 9 kOe. Upon the transition into the ferromagnetic
state, all the samples exhibit a magnetoresistivity jump.
With decreasing temperatures, the magnetoresistivity, as
a rule, increases gradually, reaching 25%. The niobium-
free manganite La0.7Sr0.3MnO3 exhibits a maximum MR
(10%) near TC; then, the MR increases with the falling
temperature, reaching 15% at 77 K. The MR of nio-
bium-containing samples only slightly depends on the
direction of the magnetic field with respect to the cur-
rent direction. The MR gradually rises, almost linearly,
with increasing magnetic field.

When studying the La(Mn1 – xGax)O3 system, in
which no different-valence Mn ions are present, it was
revealed that as the gallium ions substituted for manga-
nese, the antiferromagnetic state changed into the ferro-
magnetic state [9]. In order to explain this phenomenon,
Goodenough [9] supposed that the sign of exchange
interactions between the ions of trivalent manganese is
determined by the type of the Jahn–Teller effect. In the
case of static Jahn–Teller distortions, the exchange inter-
action is negative, whereas in the case of dynamic Jahn–
Teller effect, the exchange Mn3+–O–Mn3+ interaction is
positive. Upon the dilution of the system by adding gal-
lium ions, the cooperative orbital ordering becomes
destroyed, which changes the sign of exchange interac-
tions. A similar situation appears to take place in the
compounds that were studied in this work, in which

Mn0.8
3+ Mn0.2

4+

30100 20 40 50

2.4

1.6

0.8

M, µB/f. u.

300 K

20 K

100 K
130 K

160 K

H, kOe

Fig. 4. Magnetization of a La0.49Sr0.51MnO3 sample as a
function of magnetic field at various temperatures.
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000



MAGNETIC ORDERING AND MAGNETORESISTIVE EFFECT 87
Nb5+ ions are present instead of the Mn4+ ones. There-
fore, many niobium-containing perovskites exhibit fer-
romagnetic properties, in spite of the absence or a very
small concentration of Mn4+ ions, as compared to the
La1 – xSrxMnO3 system. The strength of the Mn3+–O–
Mn3+ ferromagnetic interaction appears to be compara-
ble to that of the Mn3+–O–Mn4+ ferromagnetic interac-
tion, since the niobium-containing manganites are
dilute. In the case of the Mn3+-based niobium-free com-
pounds, we may expect that the Curie temperature of
the orbitally disordered phase will be close to room
temperature. With the Mn3+/Mn4+ cation ratio less than
unity, the antiferromagnetic exchange interactions pre-
dominate over the ferromagnetic ones, which manifests
itself in the antiferromagnetic behavior observed in
La0.49Sr0.51MnO3 and La0.49Sr0.51(Mn0.95Mg0.05)O3 at
low temperatures.

There are works at present in which the charge car-
riers in manganites are assumed to be p holes in a wide

Fig. 5. Temperature dependence of the electrical con-
ductivity of (a) La1 – xSrx(Mn1 – x/2Nbx/2)O3 and (b)
La0.49Sr0.51(Mn1 – yMey)O3: (1) x = 0.2 (reduced); (2) x =
0.4 (reduced); (3) x = 0.3; (4) y = 0.15, Me = Nb; (5) y = 0.1,
Nb; (6) y = 0.05, Nb; (7) y = 0; (8) y = 0.025, Nb; and (9) y =
0.05, Me = Mg.
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valence band formed mainly by oxygen orbitals [10,
11]. Upon the transition from the ferromagnetic into the
paramagnetic state, the density of charge carriers in the
wide p band collapses, which may be the cause for the
metal–insulator transition and the large magnetoresis-
tance. We established that the decrease in the concen-
tration of different-valence manganese leads to a sharp
increase in the resistivity—by many orders of magni-
tude as compared to the stoichiometric La0.7Sr0.3MnO3.
The temperature dependence of the conductivity of fer-
romagnetic La0.7Sr0.15(Mn0.85Nb0.15)O3 only slightly
differs from that of the antiferromagnetic LaMnO3,
which also contains only small concentration of Mn3+–
Mn4+ pairs. Therefore, formally, the electrical conduc-
tivity is determined by the concentration of these pairs.
In order for the metal–insulator transition to occur near
TC, a sufficiently large concentration of Mn4+ ions and
a proper width of the 3d band are necessary. The latter
width is controlled by the ratio of the ionic radii of the
A and B cations in the structure of ABO3 perovskites.
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Fig. 6. Magnetoresistance as a function of temperature
for        (a) La1 – xSrx(Mn1 – x/2Nbx/2)O3 and (b)
La0.49Sr0.51(Mn1 − yNby)O3: (1) x = 0.2 (reduced); (2) x =
0.4 (reduced); (3) x = 0.3; (4) y = 0.05, Nb; and (5) y = 0.025,
Nb.
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This width should not be too large, since the
La1 − xSrxMnO3 perovskites at x > 0.54 are metals in a
wide temperature range, notwithstanding that their
ground state is antiferromagnetic [12], whereas
Pr0.8Ca0.2MnO3 is an insulator, notwithstanding that its
ground state is ferromagnetic [8]. The ferromagnetic
insulators based on the lanthanum manganite usually
exhibit a very high magnetoresistance (20–30% in
fields to 10 kOe), whereas La1 – xSrxMnO3 with a high
Sr concentration (x ≅  0.5) has a low MR. The applied
magnetic field appears to only slightly affect the pro-
cesses of electronic transport in the manganites with
their wide 3d band.

CONCLUSION

It follows from the results of this work that the pres-
ence of different-valence manganese ions is by no
means required to obtain the GMR effect and ferromag-
netic ordering in manganites. A large magnetoresistive
effect was revealed in pyrochlores such as Tl2Mn2O7

[13], which also contain no different-valence manga-
nese ions. In this compound, the MR effect is ascribed
to charge-carrier scattering by critical fluctuations [14].
The largest effect in strong fields apparently must be
observed in samples with weakened exchange interac-
tions and high resistivity near TC. In this case, the mag-
netoresistive effect is not saturated in strong fields and
is determined by to what degree the applied field is
capable of maintaining the magnetic order. It follows
from neutron diffraction data [15] that cluster magnetic
states exist in manganites in a wide temperature range
near TC.
P
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Abstract—The main tendencies in the formation of local magnetic moments and hyperfine magnetic fields at
Fe nuclei in Fe–Sn and Fe–Si alloys at low metalloid concentrations are analyzed on the basis of “first-princi-
ples” calculations. The results of calculations are compared with experimental data. The main differences
between these alloys were proved to be due to the differences in their lattice parameters. It is shown that a sig-
nificant contribution to the formation of the hyperfine field comes from the orbital magnetic moment and the
Ruderman–Kittel–Kasuya–Yosida polarization, which depend on the impurity concentration and the distance
to an impurity atom in the crystal lattice. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, numerous experimental data are avail-
able on the disordered binary alloys of iron with sp ele-
ments such as Si, Sn, Al, etc. [1–10]. The wide concen-
tration range of existence of the atomically disordered
state in these alloys makes them good model objects for
studying fundamental mechanisms that are responsible
for the formation of their magnetic properties. Some
common features observed in the magnetic behavior of
these alloy with various metalloids depending on the
concentration of a metalloid made it possible to sepa-
rate a limited number of factors that determine these
features. Using this fact, the authors of [6, 11, 12]
obtained, based on model Hamiltonians, a qualitative
and, in some cases, even satisfactory quantitative
description of the formation of local magnetic
moments, total magnetic moments, and Curie tempera-
tures as functions of the metalloid concentration and
temperature. However, already in those works, the
authors indicated the necessity of using ab initio micro-
scopic calculations for the substantiation of the models
and the description of some differences in the behavior
of the magnetic characteristics of these alloys.

In this work, we focused our attention of low-con-
centration dependences of the local magnetic
moments and hyperfine magnetic fields (HFFs) at Fe
nuclei for the most typical representatives of the
metal–metalloid alloys—Fe1 – xSix and Fe1 – xSnx. Figures
1–3 show experimental data that demonstrate differences
in the lattice parameters of the bcc structure (the bcc
structure in these alloys is retained up to impurity con-
centrations of 30 at. % [1, 5]), the average magnetic
moments, and the hyperfine magnetic fields (H0, the HFF
at an iron nucleus whose nearest neighborhood contains
no metalloid atoms; and H1, the HFF at an iron atom
1063-7834/00/4201- $20.00 © 20089
whose nearest neighborhood contains a single metalloid
atom). Linearly approximating the concentration depen-
dences of H0 and M, we obtain ∆H0/∆M ≈ −120 kG/µB.
This value is close to the coefficient of the Fermi-contact
contribution to the HFF at Fe nuclei; therefore, it is nat-
ural to suppose that the changes in H0 are mainly related
to an increase in the local magnetic moments. Note that
this is by no means a trivial fact, as it may seem at first
glance. Indeed, a significant contribution to HFF comes
from the orbital magnetic moment and the Ruderman–
Kittel–Kasuya–Iosida (RKKY) polarization. However,
the coefficient of the orbital contribution to the HFF at Fe
has a large positive value (≈313 kG/µB [13]), whereas
the oscillating coefficient of the RKKY polarization due
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Fig. 1. Concentration dependence of the lattice parameter of
bcc disordered alloys: (1) Fe–Si [3–5] and (2) Fe–Sn [6].
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to distant atoms does not exceed 8 kG/µB in the absolute
magnitude, as is shown below.

In order to study the spatial distribution of the mag-
netic moment and its interrelation with the HFF at Fe
nuclei, we performed “first-principles” calculations for
ordered substitutional alloys Fe15Sn and Fe15Si, whose
lattices are formed as a result of substitution of one Sn
atom for a Fe atom per extended cell of the bcc struc-
ture containing 16 atoms. In such a unit cell, Fe atoms
have four nonequivalent positions located at different
distances from the metalloid atom (see Fig. 4). The
self-consistent band-structure calculations were per-
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Fig. 2. Concentration dependence of the average magnetic
moment per Fe atom in disordered alloys: (1) Fe–Si [7–9]
and (2) Fe–Sn [6, 7]; (3) calculated in this work.

Fig. 3. Concentration dependence of hyperfine magnetic
fields H0 and H1 at Fe nuclei in disordered alloys: (1) Fe–Si
[9] and (2) Fe–Sn [10]; (3) H0 (no nonmagnetic impurities
in the nearest neighborhood of Fe atoms) and (4) H1 (one
nonmagnetic atom in the nearest neighborhood of Fe
atoms).
P

formed by the full-potential linearized augmented
plane wave (FLAPW) method using the WIEN97 pro-
gram [14, 15]. The exchange–correlation contribution
was described in terms of the generalized gradient
approximation (GGA) [16]. The results obtained are
given in Tables 1–3.

1. LATTICE

Based on experimental data, we may assume that at
low solute concentrations, the disordered alloys are
substitutional solid solutions with a bcc structure. In
calculations, we used the experimental values of the lat-
tice parameters corresponding to an impurity concen-
tration of 6.25 at. % (Fig. 1) extrapolated to the abso-
lute zero (a = 10.9924 au for Fe15Sn and a = 10.7926 au
for Fe15Si). To illustrate the effect of the magnitude of
the lattice parameter on the numerical results, we also
performed calculations for Fe15Sn with a = 10.8114 au,
which corresponds to the experimentally measured lat-
tice parameter of pure Fe, and for a partially relaxed lat-
tice with a = 10.9924 au (the relaxation was realized by
shifting Fe atoms nearest to the Sn atom by a distance
δr = 0.038 au along the large diagonal of the cube).
Note that the total energy of the relaxed lattice (E =
−50542.2470 Ry) is slightly lower than the correspond-
ing energy of the unrelaxed lattice (E = –50542.2329 Ry).
This indicates that, in reality, a somewhat distorted bcc
structure should be formed. However, the results
obtained for the magnetic moments and hyperfine fields
(Table 1) only slightly differ for the cases with and
without relaxation; for this reason, we have not consid-
ered relaxation effects in this work. In what follows, the
comparison and the discussion of the results of calcula-
tions will be carried out for Fe15Sn with a = 10.9924 au
and Fe15Si with a = 10.7926 au without indicating their
lattice parameters except for specified cases.

2. AVERAGE AND LOCAL MAGNETIC 
MOMENTS

The experimentally measured magnetizations
(Fig. 2) yield the average magnetic moment per Fe
atom Mtot. In calculations, this value corresponds to the
magnetic moment of the unit cell divided by the num-
ber of magnetic atoms in the cell. Under the local mag-
netic moment Md, we mean the total spin density of d-
like electrons inside a muffin-tin sphere.

The measured average magnetic moments per mag-
netic atom (Mtot = 2.380 µB for Fe15Sn and 2.228 µB for
Fe15Si) exceed the experimental values obtained for the
corresponding disordered alloys. However, their differ-
ence ∆M = 0.146 µB coincides within the experimental
error with the experimentally observed value (Fig. 2).
Taking into account that the disordering leads to a 1.5–
2% decrease in the values of the magnetic moment at
the solute concentration of 6.25 at. % in comparison
with the initial value [6], we may speak of the applica-
HYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
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Table 1.  Calculated values of the hyperfine fields and magnetic moments in Fe15Sn

Quantity Unit cell 
parameter, au

Type of nonequivalent Fe positions relative to Sn atom
Mtot, µB

I II III IV

10.81141 –281.9 –291.7 –304.4 –316.3

Hcor, kG 10.99242 –295.5 –304.0 –317.9 –317.7

10.99243 –299.4 –308.3 –321.7 –317.5

10.81141 –17.4 –24.6 17.4 –7.1

Hval, kG 10.99242 –18.4 –32.2 11.7 –14.2

10.99243 –22.5 –35.3 8.0 –17.8

10.81141 –299.3 –316.3 –287.0 –323.3

Htot, kG 10.99242 –313.8 –336.2 –306.2 –331.9

10.99243 –321.9 –343.6 –313.1 –335.3

10.81141 2.303 2.371 2.472 2.552 2.269

Md , µB 10.99242 2.418 2.489 2.624 2.614 2.374

10.99243 2.433 2.503 2.606 2.565 2.377
1 Unit cell parameter (au) corresponding to the doubled lattice parameter of pure iron. 
2 Unit cell parameter corresponding to the doubled lattice parameter of disordered alloy Fe1 – xSnx (x = 0.0625). 
3 Fe atoms that are nearest neighbors of Sn atoms are shifted by δr = 0.038 au along the large diagonal of the unit cell cube (partially relaxed lattice).

Table 2.  Calculated values of the hyperfine fields and magnetic moments in Fe15Si. Unit cell parameter (au) corresponds to
the doubled lattice parameter of the disordered alloy Fe1 – xSix (x = 0.0625)

Quantity Unit cell 
parameter, au

Type of nonequivalent Fe positions relative to Si atom
Mtot, µB

I II III IV

Hcor, kG 10.7926 –277.8 –290.7 –297.1 –311.7

Hval, kG 10.7926 –27.8 –20.0 4.1 –11.5

Htot, kG 10.7926 –305.5 –310.7 –293.0 –323.2

Md , µB 10.7926 2.264 2.360 2.418 2.518 2.228
bility of our calculations for the analysis of differences
in the formation of magnetic moments in alloys with
impurities such as Sn and Si.

The values of the local magnetic moment at an Fe
atom depending on the distance to the metalloid atom
in ordered Fe15M alloys (M = Sn, Si) are shown in
Fig. 5. As was supposed previously [11], the local mag-
netic moments are determined by at least two opposite
factors. The first is connected with the effective overlap
of d-like wave functions, which decreases with increas-
ing number of impurity atoms or with increasing spac-
ing between the atoms. The second factor is related to
flattening of the d band by increasing the degree of s–d
hybridization at an Fe site due to a distortion of the
potential by an impurity atom. The locality of the s–d
hybridization leads to a strong dependence of this effect
on the interatomic spacings. Figure 6 demonstrates the
different influence of these factors on the width of the
d-state distribution for the Fe atoms located in non-
equivalent positions I and IV. The narrowing of this dis-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 1      2000
tribution for an Fe atom of type IV leads to an increase
in the magnetic moment compared with an atom in
position I. The different values of the local magnetic
moments in the equivalent positions in the alloys with
Sn and Si are only related to the differences in atomic
spacings in these alloys. To prove this, we performed
calculations for the Fe15Sn alloy with lattice parameter

  
Table 3.  Calculated magnetic moments in pure iron

a, au 10.79261 10.81142 10.99243

Md, µB 2.321 2.327 2.439

Mtot , µB 2.214 2.219 2.319
1 Unit cell parameter corresponds to the doubled lattice parameter of

the disordered alloy Fe1 – xSix (x = 0.0625). 
2 Unit cell parameter corresponds to the doubled lattice parameter of

pure iron. 
3 Unit cell parameter corresponds to the doubled lattice parameter of

the disordered alloy Fe1 – xSnx (x = 0.0625). 
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a = 10.8114 au (Table 1) and for the bcc Fe with lattice
parameters 2a = 10.7926, 10.8114, and 10.9924 au
(Table 3). (Here, 2a = 10.8114 is the experimentally
observed value of the lattice parameter of Fe.) It is seen
from the results obtained that the values of the local
magnetic moments in the alloys with Sn and Si are
close to one another (Tables 1 and 2) if their lattice
parameters are close, and that the magnetic moment
increases with increasing lattice parameter (Table 3).

3. HYPERFINE MAGNETIC FIELDS
AT IRON NUCLEI

In hyperfine interactions between the nuclear mag-
netic moment and the electron subsystem, we only take
into account the Fermi contact contribution. The other
contributions to the HFF or related measurements are
usually assumed to be small in virtue of the cubic sym-
metry of the crystal lattice. These additional contribu-
tions may, however, be significant; we will discuss one
case below for illustration. The calculations of the
Fermi contact contribution to the HFF were carried out
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Fig. 4. Nonequivalent positions of Fe atoms in the unit cell
of an ordered alloy Fe15M (M = Si, Sn).

* *

*

* +

+

+

+

*
+

2.6

2.5

2.4

2.3

2.2
4 6 8 10

r, au

Md, µB

1
2

Fig. 5. Local magnetic moments at Fe nuclei in four non-
equivalent positions: (1) Fe15Si and (2) Fe15Sn.
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using the standard procedure of integrating the electron
spin density with allowance for relativistic effects [17].
This contribution is determined by two terms: Hcor, the
polarization of electrons of the inner shells (“core elec-
trons”); and Hval, the polarization of valence electrons.
The mechanisms of polarization of these groups of
electrons are somewhat different.

When analyzing the HFFs, we should primarily note
two circumstances. First, the polarization of core elec-
trons satisfies (to a great degree of accuracy) the relation-
ship Hcor = γMd, where Md is the spin polarization of d
electrons in the muffin-tin sphere, and γ = –123 kG/µB. 

Second, the dependence of Hval on the distance to an
impurity atom is of oscillation character (Fig. 7) and
resembles the RKKY polarization. From the simple
relationships for free electrons between KF and the
number of s electrons per unit cell (Ns ≈ 11–15), we can
easily estimate the period of the RKKY polarization
oscillations [18]:

(1)

This magnitude corresponds to the period of oscilla-
tions in Fig. 7, which confirms the origin of periodic
changes in Hval. In the simple model of the polarization
of free electrons by a localized magnetic moment, the
expression for the spin density has the form
cos(2KFr)/(KFr)3 [18]. Using this relation, we write the
contribution of valence electrons to the HFF at a site ri

in the form

(2)

Given four values of Hval(ri) for the four nonequivalent
positions of Fe atoms in the lattice of Fe15Sn and Hval
for pure iron, we solved the set of equations (2) by the
least-squares method (the summation was restricted to
the atoms that were located inside a sphere of radius
rmax ≈ 70 au) to obtain A = –121.24 kG, B = 917 kG au3,
T = 4.850 au, and φ = 0.128. The graph of the RKKY
polarization by a single Fe atom, corresponding to the
second term in (2), is given in Fig. 8. Using this solu-
tion and expression (2), we calculated the values of Hval
for the Fe15Si system and obtained a significant discrep-
ancy with the results of first-principles calculations
(Table 2). This indicates the unsubstantiated arbitrari-
ness of the choice of the simple functional dependence
of the form cos(2KFr)/r3, which does not take into
account the spatial distribution of the s–d exchange
interaction and the nonuniformity of the s-electron den-
sity distribution. However, for the estimation of the
polarization of valence electrons by Fe atoms randomly
located in the lattice, i.e., for the estimation of average
quantities, expression (2) appears to be quite accept-

T a
π

3Ns

--------- 4.3–4.8 au.≈=

Hval ri( ) A B
2π

ri j–

T
-------- φ+ 

 sin

ri j–
3

-------------------------------------------- .
j Fe j, i≠∈

ri j– r
max=

∑+=
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Fig. 6. Spin-polarized density of states of d electrons at Fe atoms. The upper part of the figure, electrons with spins up, the lower
part, for electrons with spins down.
able, since it satisfactorily reflects the main features of
the RKKY polarization: its period, amplitude, and
phase. Figure 9 displays the average contributions Hval
to the HFF caused by the RKKY polarization. The
averaging was performed over the Fe atoms randomly
located inside a sphere of radius rmax ≈ 70 au. To allow
for the attenuation, the contribution of the RKKY
polarization was multiplied by exp(–ri – j / l0) [19]. The
quantity l0—the electron free path—corresponded to
the average spacing of impurity atoms and changed
from <220 to <20 au with changing the metalloid con-
centration from 0 to 6.25 at. %.

Using the model assumptions, let us estimate the
possible contribution of the averaged RKKY polariza-
tion from the experiment. To this end, we assume that
in the disordered FeSn alloys at hand, the changes in
the magnetic moment are described by a step function
of the type

(3)

This functional dependence agrees with our values of the
calculated magnetic moment (Fig. 5). From (3) and the
experimental data given in Fig. 2, we calculate the
changes (depending on the concentration) in the mag-
netic moment ∆M0(c) at a Fe atom whose nearest neigh-
borhood contains no metalloid atoms (∆M0(c = 3 at. %) =

M

M1 MFe, if an atom is a nearest neighbor=

                     of an impurity atom;

M0 const, otherwise.=





=
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0.05 µB, ∆M0(c = 6.25 at. %) = 0.17 µB). Using a value
of –151.8 kG/µB for the coefficient α that relates the
experimental values of the magnetic moment and the
HFF in pure iron (H = αM), we obtain ∆H0(c = 3 at. %) =
–8.1 kG and ∆H0(c = 6.25 at. %) = –22.8 kG. Both
these values noticeably exceed the experimentally
observed changes in H0 (Fig. 3). Based on the fact that
our calculations yield an almost ideal linear dependence
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Fig. 7. Contribution of the polarization of valence electrons
to the hyperfine magnetic fields at Fe nuclei in four non-
equivalent positions: (1) Fe15Si and (2) Fe15Sn.
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of the polarization of core electrons upon the local mag-
netic moment, we can state that the difference
between the calculated and experimentally measured
changes of ∆H0 is equal to the averaged contribution

of the RKKY polarization. This yields (c = 3

at. %) = 6.1 kG and (c = 6.25 at. %) = 13.8 kG,
which satisfactorily agrees with the concentration

dependence of  obtained upon averaging using
(2) (Fig. 9).

The behavior of mean-square fluctuations also is
consistent with the experimentally observed broaden-
ing of the distribution of HFFs at Fe nuclei depending
on the concentration, which suggests that the fluctua-
tions of the RKKY polarization give one of the major
contributions to the broadening of the HFF distribution.

∆H0 exp
val

∆H0 exp
val

∆H0 calc
val

16
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–8

0 2 4 6 8 10 12 14 16

I II III IV
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H, kG

Fig. 8. RKKY polarization by one Fe atom. I–IV are the
nonequivalent positions of Fe atoms relative to Sn atoms.
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Fig. 9. Concentrational dependence of the averaged
valence-electron to the HFF in a disordered FeSn alloy:
(1) the field H0, (2) the field H1, (3) with damping included,
and (4) this contribution to H0 as evaluated from experimen-
tal data.
P

After averaging the contributions of core electrons
to the HFF (Table 1), we obtain, taking into account the
changes in the average value of valence-electron contri-
bution (Fig. 8), the following figures:

Similar to the case of the magnetic moment, the

value of  is somewhat greater than the experi-

mental values. Since the increase in  is mainly
related to the increase in the local magnetic moment,
the discrepancy with the experiment can be explained
by the effect of disordering (a 1.5–2% decrease of the
magnetic moment due to disordering will square the
experimental results with theoretical data).

The case of the field  is different. Its relative
value differs strongly from the experimental one
(Fig. 3). In the framework of our calculations, this dif-
ference can only be explained by an additional contri-
bution related to the orbital magnetic moment. Up to
here, we have not discussed this contribution to the
magnetization and the HFF. In pure iron, this quantity
caused by the distortion of the cubic symmetry of the
Hamiltonian due to relativistic corrections, is ≈0.08 µB.
At the same time, the incorporation of a metalloid atom
breaks the cubic symmetry of the crystalline potential,
which should lead to an additional “defreezing” of the
orbital magnetic moment, and the increase in the crys-
talline potential should decrease the absolute value of
the HFF at the nuclei. Note that a decrease in the abso-
lute value of the HFF by 20 kG may be caused by an
insignificant increase in the orbital magnetic moment
(by about 0.06 µB) [20]. The maximum change in the
crystalline potential occurs near a metalloid atom, i.e.,
in the first coordination shell, where the main changes
related to the contribution from the orbital magnetic
moment occur. This is confirmed by the almost the
same difference H0 – H1 ≈ 20 kG for both Fe100 – cSnc

and Fe100 – cSic.
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Abstract—The frequency–field, temperature, and angular dependences of the antiferromagnetic resonance
parameters for the tetragonal CuB2O4 single crystal are studied in the frequency range 2.6–80 GHz and at tem-
peratures of 4.2–30 K. The results obtained confirm the fact that, in the high-temperature state in the range 10–
21 K, this compound is an easy-plane weak ferromagnet. The temperature dependence of the Dzyaloshinski
field is determined. An abrupt change observed in the frequency–field dependence of the magnetic resonance
at T = 4.2 K and H ⊥  C4 indicates the transition to the weak ferromagnetic state induced by the external field
H⊥ . The phase diagram for CuB2O4 is constructed on the H⊥ –T coordinates. It is demonstrated that, in the low-
temperature state, the magnetic moments of copper ions remain in the basal plane, but the weak ferromagnetism
is absent. © 2000 MAIK “Nauka/Interperiodica”.
The discovery of the high-temperature supercon-
ductivity gave impetus to active research in copper
oxide compounds. These materials possess a broad
spectrum of magnetic structures from usual three-
dimensional antiferromagnets (Bi2CuO4 [1]) to quasi-
low-dimensional magnets with a spin-Peierls state
(CuGeO3 [2]) and a ladder structure (KCuCl3 and
LiCu2O2 [3, 4]).

Tetragonal CuB2O4 single crystals with the space

group  have been grown in recent experiments [5].
Preliminary studies [5–7] showed that, at temperatures
below TN = 21 K, this crystal is an easy-plane weak fer-
romagnet. According to the data on static magnetic
measurements and heat capacity, the magnetic phase
transition is observed at T ≈ 10 K. It was assumed that
this transition is the Morine transition from the weak
ferromagnetic state to the collinear state with the easy
anisotropy axis parallel to the C4 axis [6, 7].

The aim of the present work was to investigate the
frequency–field and temperature dependences of the
magnetic resonance absorption in the CuB2O4 crystal in
order to obtain additional information regarding the
magnetic structure of this crystal, specifically in the
low-temperature state.

EXPERIMENTAL

Samples of CuB2O4 were grown by the spontaneous
crystallization technique [5].

The magnetic resonance measurements in the fre-
quency range 28–80 GHz were carried out with a
pulsed-magnetic-field spectrometer, in which the sam-
ple was placed in a plunged waveguide unit. In the fre-
quency range 2.5–10 GHz, the measurements were per-
formed on a magnetic resonance spectrometer with a

D2d
12
1063-7834/00/4201- $20.00 © 20096
stationary magnetic field: at a frequency of 2.5–6 GHz,
the sample was mounted in a plunged coaxial unit, and,
at 8–10 GHz, it was placed in a plunged waveguide or
a resonant cavity.

RESULTS

Figures 1 and 2 depict the frequency–field depen-
dences of the antiferromagnetic resonance in CuB2O4
at T = 4.2 K for two orientations of magnetic field with
respect to the C4 axis of the crystal: H || C4 and H ⊥  C4.
At H || C4, the frequency–field dependence of the anti-
ferromagnetic resonance is almost linear and tends to
ωc ≈ 1.5 GHz at H  0. At H ⊥  C4, the frequency–
field dependence also exhibits a small gap at ωc =
2.4 GHz (Fig. 2, inset 1). Moreover, an increase in the
field leads to an abrupt change in the magnetic reso-
nance frequency at H ≈ 12 kOe. This portion of the fre-
quency–field dependence of the antiferromagnetic res-
onance is displayed in inset 2 (Fig. 2).

The temperature dependences of the resonance
parameters were measured at several frequencies for
orientations of the external magnetic field along the C4
axis and in the basal plane. Figure 3 shows the temper-
ature dependences of the resonance field and the
absorption linewidth at two frequencies and H || C4. At
both frequencies, the resonance field drastically
decrease at T ≈ 8.5 K, which is accompanied by a
strong broadening of the absorption line. Upon further
heating of the sample, the resonance field smoothly
increases up to the value characteristic of the paramag-
netic state at T > 20 K [6].

Figure 4 demonstrates typical temperature depen-
dences of the resonance field measured at three differ-
ent frequencies for the orientation H ⊥  C4. At frequen-
cies of 10.6 and 28.65 GHz, the resonance field under-
000 MAIK “Nauka/Interperiodica”
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goes a sharp change in the low-temperature range. The
temperature that corresponds to this change in the res-
onance field decreases with an increase in the fre-
quency. At a frequency of 56.59 GHz, the low-temper-
ature anomaly of the resonance field is not observed
down to T = 4.2 K. Upon heating, as the sample temper-
ature approaches TN = 20 K, the resonance field
increases up to the value characteristic of the paramag-
netic state. Moreover, the temperature range, in which
the resonance field undergoes the above change,
becomes narrower with a decrease in the frequency.

The temperature dependences of the linewidth at
different frequencies for the orientation H ⊥  C4 are also
shown in Fig. 4. It worth nothing that, at a frequency of
56.59 GHz, the linewidth, like the resonance field, does
not exhibit anomalous behavior in the low-temperature
range, whereas a pronounced broadening of the absorp-
tion line is observed at frequencies below ~45 GHz. As
regards the broadening of the absorption line in the
vicinity of TN, the temperature range, in which this
broadening takes place, becomes broader with an
increase in the frequency of the experiment.

The angular dependences of the resonance field and
the absorption linewidth for the magnetic field mea-
sured in the basal plane of the crystal for two frequen-
cies at T = 4.2 K are displayed in Fig. 5.

DISCUSSION
In [6, 7], it was assumed that the tetragonal CuB2O4

crystal in the temperature range 10–21 K is an easy-
plane weak ferromagnet with the spontaneous mag-
netic moment lying in the basal plane of the crystal.
The energy density of this magnet can be written in the
form [8]

(1)

Here, J is the exchange interaction constant; Mi are the
magnetic moments of the sublattices; D is the Dzy-
aloshinski vector directed, in our case, along the z || C4;
K1 and K2 are the first-order and second-order constants
of uniaxial anisotropy, respectively; and βi are the
angles between the magnetic moments of the sublat-
tices and the principal crystal axis. The effective
exchange field, Dzyaloshinski interaction, and uniaxial
anisotropy field that correspond to relationship (1) are
defined as follows:

Hk2 = K2/M0,

If the transition observed in CuB2O4 at T = 10 K in
weak fields is a spin-reorientation transition to the col-
linear antiferromagnetic state, it is caused by the
change in sign of the effective uniaxial anisotropy field

F JM1M2 D M1 M2×[ ]– H M1 M2+( )–=

– K1/2 β1cos
2 β2cos

2
+( ) K2/2 β1cos

4 β2cos
4

+( ).–

HE JM0, HD DM0, Hk1 K1/M0,= = =

M0 M1 M2 .= =
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Ha = Hk1 + Hk2. A similar transition referred to as the
Morine transition is observed in hematite α-Fe2O3 at
TM = 262 K [8]. Below this temperature, the hematite
transforms into the collinear antiferromagnetic state
with the magnetic moments oriented along the princi-
pal crystal axis.

Although the weak ferromagnetism is absent in the
low-temperature collinear state, the Dzyaloshinski
interaction affects the behavior of the antiferromagnet
in the magnetic field [8–10]. Specifically, upon magne-
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tization along the principal crystal axis, the transition to
the spin-flop state occurs in the critical field

(2)

Upon magnetization in the basal plane of the crystal,
the Dzyaloshinski interaction leads not only to the
alignment of magnetic moments with the magnetic
field, but also to the rotation of the antiferromagnetic
vector l = (M1 – M2)/2M0 away from the principal crys-
tal axis toward the basal plane. The angle θ between the
C4 axis and vector l increases with an increase in the
magnetic field and reaches π/2 at the critical field Hc⊥

(3)

In this case, depending on the ratio between the val-
ues of HE, Hk1, Hk2, and HD, the transition to the mag-
netic-field-induced weak ferromagnetic state at H = Hc⊥
can be eithera first-order or second-order phase transi-
tion.

As follows from the investigation on the tempera-
ture–field dependences of the magnetization for
CuB2O4 [11], the critical field Hc⊥  depends on the tem-
perature and reaches 12 kOe at T = 4.2 K. Upon mag-
netization along the C4 axis at T = 4.2 K, the field
dependence of the magnetization shows a weakly pro-
nounced anomaly in the field H = 2 kOe, which can be
taken as the critical field Hc||. Using these values of the
critical fields and the value of HD = 1.9 kOe obtained in
[6] for T = 10 K and also ignoring the temperature
dependence of HD below 10 K, at T = 4.2 K, we can cal-

Hc
2 2HE Hk1 Hk2+( ) HD

2 .–=

Hc⊥ 2HEHk1 HD
2–( )/HD.=
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Fig. 3. Temperature dependences of (a) the resonance field
and (b) the absorption linewidth for H || C4. Frequency,
GHz: (1) 37.76 and (2) 56.00.
P

culate the parameters 2HEHk1 = 26.41 kOe2 and
2HEHk2 = –18.8 kOe2.

The resonance properties of an easy-axis antiferro-
magnet with the Dzyaloshinski interaction were dis-
cussed in detail in [8–10] on the condition that Ha !
HD ! HE, which holds true for CuB2O4. Let us use the
results of these calculations to analyze the experimental
data on the magnetic resonance in CuB2O4.

First and foremost, we consider the frequency–field
dependences of the antiferromagnetic resonance mea-
sured at T = 4.2 K. It should be mentioned that the fre-
quency jump at H ⊥  C4 occurs in the field coinciding
with Hc⊥ . For H ⊥  C4, the resonance frequencies at
H < Hc⊥  (state 1) take the form

(4)

where (ωc/γ)2 = 2HE(Hk1 + 2Hk2) –  =  + 2HEHk2

is the energy gap in the spectrum. In ωij, the subscript i
is the number of vibrational mode, and the subscript j is
the number of state.

In the field range H > Hc⊥  (state 2), the resonance
frequencies are given by

(5)

The experimental data for H > Hc⊥  are adequately
described by formula (5) for the high-frequency vibra-
tional mode ω22. The solid line in Fig. 2 represents the
theoretical dependence at HD = 1.91 kOe. At the same
time, the resonance lines that correspond to the low-fre-
quency vibrational mode ω12 (shown by the dashed line
in Fig. 2) are not observed at the fields up to 80 kOe.

In the field range H < Hc⊥  (state 1), the experimental
data coincide with none of the modes, which are
described by expressions (4) and calculated with the
above parameters 2HEHk1 and 2HEHk2. Furthermore,
the ω11 and ω12 frequencies have real values beginning
with the fields H ≈ 1 kOe, whereas the energy gap ωc

and the frequencies of both vibrational modes in the
fields H < 1 kOe are imaginary, which indicates that the
ground state is chosen incorrectly.

Such a disagreement between the calculated and
experimental data for the fields H < Hc⊥  and also the
imaginary resonance frequencies could be explained by
the fact that an incorrect experimental value of Hc|| was
used to determine the 2HEHk2 parameter.

Hence, it is reasonable to describe the experimental
data on the antiferromagnetic resonance by using for-

ω11/γ( )2 ωc/γ( )2 12HEHk2 θsin
2

–( ) θcos
2

,=

ω21/γ( )2 ωc/γ( )2 4HEHk2 θsin
2

– H2,+=

θsin HHD/ 2HE Hk1 2Hk2 θcos
2

+( ) HD
2–( ),=

HD
2 Hc||

2

ω12/γ( )2 HHD 2HEHk1 HD
2–( )–=

=  HD H HE–( ),

ω22/γ( )2 H H HD+( ).=
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mulas (4) under the assumption that the Hc⊥  value and,
therefore, the parameter 2HEHk1 = 26.41 kOe2 are
uniquely determined from the experiment, and the
2HEHk2 parameter can be obtained from the experimen-
tal energy gap ωc = 2.4 GHz. This approach leads to
2HEHk2 = –11.07 kOe2. In this case, the theoretical fre-
quency–field dependences (4) for ω11 and ω21 (shown
by dashed lines in Fig. 2) are real over the entire range
of fields from 0 to Hc⊥ , but none of these curves coin-
cides with the experimental frequency–field depen-
dence.

Note that, at these values of 2HEHk1 and 2HEHk2, the
calculated critical field Hc|| is equal to 3.4 kOe; how-
ever, at this field, no specific features are observed in
the experimental field dependence of the magnetization
[11].

Another aspect is noteworthy. In [10], it was shown
that, as the field increases from 0 to H = Hc⊥ , the θ angle
either continuously increases from 0 to π/2 (the second-
order transition) or, first, continuously increases from 0
to θ1 < π/2 and, then, at the field H = Hc⊥ , undergoes an
abrupt change to θ = π/2 (the first-order transition). The
relationship for the ω21 frequency in the vicinity of H =
Hc⊥  can be rewritten as follows:

(6)

Consequently, upon transition from the collinear state
to the weak ferromagnetic state, the change ω21 
ω22 proceeds continuously for the second-order transi-
tion and in a stepwise fashion for the first-order transi-
tion, so that ∆ω = ω22 – ω21 < 0.

However, as is seen from Fig. 2, in our case, ∆ω > 0.
Moreover, the experimental frequency–field depen-
dence at T = 4.2 K in the field range from 0 to Hc⊥  is
well described by the law

(7)

with |Ha |/2HE = 0.031 ± 0.005 and  = (0.526 ±
0.004) kOe2 (solid line in Fig. 2). Here, Ha is the effec-
tive field of anisotropy with respect to the C4 axis, and

 is the isotropic energy gap, which can arise from
magnetoelastic [12] or other interactions. The gyro-
magnetic ratio γ⊥  = 2.983 MHz/Oe corresponds to the
value g⊥  = 2.133 obtained from the ESR experiment at
room temperature [6]. Dependence (7) is characteristic
of easy-plane antiferromagnets without weak ferro-
magnetism (see, for example, [13, 14]).

Therefore, the above findings put in doubt the fact
that, as the temperature decreases, the weak ferromag-
net CuB2O4 at T = 10 K transforms into the collinear
state with the easy anisotropy axis aligned parallel to
the C4 axis.

It can be assumed that, in CuB2O4, the magnetic
moments at T < 10 K also remain in the basal plane;

ω21/γ( )2 H H HD/ θsin+( ).=

ω/γ⊥( )2 H2 1 Ha /2HE+( ) H∆
2+=

H∆
2

H∆
2
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however, the magnetic structure in this state allows no
macroscopic spontaneous magnetic moment. Possible
variants of this magnetic structure will be considered
below.
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Sharply defined anomalies in the temperature
dependences of the resonance parameters for CuB2O4

at T < 10 K (Fig. 4) are observed at some frequencies in
the basal-plane fields. They are associated with the
transition from the low-temperature state 1 to the weak
ferromagnetic state 2 in the field Hc⊥ . It is seen from
Fig. 4 that the transition temperature depends on the
frequency of the measurement, which suggests the tem-
perature dependence of the critical field Hc⊥ . Figure 6
demonstrates the H⊥ –T phase diagram constructed
from the data on static magnetic measurements [11],
heat capacity [7], and magnetic resonance. From the
phase diagram, it is evident that the absence of low-
temperature anomaly at a frequency of 56.09 GHz
(Fig. 4c) is explained by the fact that, in the resonance
field for this frequency (~18 kOe), the CuB2O4 crystal
already at T = 4.2 K is in the magnetic-field-induced
weak ferromagnetic state.
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Fig. 6. The H⊥ –T phase diagram for CuB2O4 according to
the data on (1) static magnetic measurements, (2) magnetic
resonance, and (3) heat capacity.
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With equation (5) for ω22 and the temperature
dependence of the resonance field for the weak ferro-
magnetic state, we calculated the temperature depen-
dences of the Dzyaloshinski field HD(T) (Fig. 7). It is
seen that thus obtained values of HD are independent of
the frequency of the measurement at temperatures
below ~12 K. Above this temperature, as the tempera-
ture approaches TN, the higher the frequency of a mea-
surement, the steeper the dependence HD(T) declines to
zero. This is likely due to the fact that the resonance
fields corresponding to high frequencies of the mea-
surement become comparable to the exchange field,
which is anomalously weak in the CuB2O4 crystal [11].
As a result, the canting angle of magnetic sublattices ϕ
in the external field cannot be treated as small, and,
instead of equation (5), ω22 should be calculated by the
formula [15]

(8)

It is clear that the role of this factor increases with a
decrease in the HE field as the temperature approaches
TN. Assuming that measurements at a frequency of
10.6 GHz give the HD(T) dependence, which is the
closest to actual, and ignoring the contribution of Ha

(|Ha | ! HD, H), we obtain that, in the resonance field
H ≈ 18 kOe corresponding to a frequency of 56.09 GHz,
the canting angle of sublattices ϕ is equal to approxi-
mately 50° at T = 15 K.

The broadening of the absorption line in the vicinity
of TN at a frequency of 10.6 GHz is typical of the fluc-
tuation broadening. Usually, an increase in the fre-
quency of the measurement leads to a narrowing of the
peak in the temperature dependence of the linewidth
and a decrease in its height, because the strong field
more efficiently suppresses fluctuations disturbing the
magnetic ordering (see, for example, [16]). However,
the reverse situation is observed for the CuB2O4 crystal:
the peak in the temperature dependence of the line-
width is substantially broadened with an increase in the
frequency. Moreover, at the same frequency, as the tem-
perature approaches TN, a clear correlation is observed
between sharp broadening of the absorption line and
the deviation from the true temperature dependence of
the Dzyaloshinski field. Therefore, it is quite possible
that such an unusual behavior of the linewidth is caused
by the “collapse” of sublattices.

Let us now analyze the data on the magnetic reso-
nance for the orientation H || C4. In the case of a col-
linear antiferromagnet with the easy anisotropy axis
aligned parallel to C4, the frequency–field dependences
have the form

(9)

(10)

ω22/γ( )2 H H Ha ϕsin HD ϕcos+ +( ).=

ω11 21, /γ ωc/γ H , H± Hc||<=

ω12/γ( )2 H2 2HEHk1 HD
2–( ), H– Hc||>=

ω22 0,=
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where ωc/γ is the energy gap in the spectrum in the
same form as in formula (4). The frequency–field
dependences were calculated with the same values of
2HEHk1 and 2HEHk2 as in the case when H ⊥  C4. The
calculated dependences of ω11, ω21, and ω12 (see Fig. 1
and inset) disagree with the experimental data. Further-
more, it follows from the calculations that, at the values
used for 2HEHk1 and 2HEHk2, the resonance absorption
should be absent at all in the field range from approxi-
mately 0.8 to 4.8 kOe; nonetheless, this absorption is
observed experimentally.

Furthermore, the experimental frequency–field
dependence of the antiferromagnetic resonance at T =
4.2 K for H || C4 is smooth over the entire field range
from 0.8 to 25 kOe and does not exhibit features
accompanying the spin-reorientation transition from
the easy-axis state to the spin-flop state. The absence of
this transition at T = 4.2 K is also evidenced by anoma-
lies in the temperature dependences of the resonance
field and the linewidth (Fig. 3). Obviously, it is this
abrupt change in the resonance field and this broaden-
ing of the absorption linewidth that are connected with
the transition from the low-temperature state to the
easy-plane weak ferromagnetic phase. Within the limits
of experimental error, the temperature of the anomalies
coincides with the transition temperature found from
the heat capacity data [7] and does not depend on the
external field, as would be the case of the transition
from the easy-axis state to the easy-plane state.

At T = 4.2 K, the frequency–field dependence for
H || C4 is well represented by the relationship

(11)

with γ|| = 2.92 ± 0.01 and  = 0.26 ± 0.03 kOe2 (solid
line in Fig. 1). This dependence is characteristic of
easy-plane antiferromagnets; in this case, the energy

gap  = 2HEHk1 + . Certainly, a small value of the
gap is surprising. However, the frequency–field depen-
dence similar in character to relation (11) with the same

value of  is retained upon transition to the weak fer-
romagnetic state. An abrupt change in the resonance
field upon this transition can be formally described by
the variation in the g value from g|| = 2.087 at T = 4.2 K
to g|| = 2.210 at T = 13 K. The reason for this behavior
of the g value upon transition remains unclear.

Therefore, the resonance data for H || C4 also indi-
cate that CuB2O4 in the low-temperature phase is not
collinear antiferromagnet with the easy anisotropy axis
aligned parallel to the C4 axis.

As regards the hypothetical magnetic structures,
which could be realized in the low-temperature phase
of CuB2O4, a possible cause of the absence of weak fer-
romagnetic moment in the low-temperature state
resides in the fact that the adjacent, local weak ferro-
magnetic moments in this state are ordered antiferro-

ω/γ||( )2 H2 H∆
2+=

H∆
2

H∆
2 HD

2

H∆
2
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magnetically. In particular, a similar structure is
observed in the Y2CuO4 compound [17] and in the
YFe1 – xCrxO3 system [18]. These magnetic structures
can be regarded as slightly noncollinear four-sublattice
structures, which were investigated, for example, in
[19]. Note that the external field applied across the
basal plane of the Y2CuO4 crystal, as for the CuB2O4
crystal, induces the transition to the weak ferromag-
netic state.

The absence of weak ferromagnetic moment in the
low-temperature state of CuB2O4 can also be associated
with a helical magnetic structure. A similar pattern is
observed for the hexagonal NiBr2 crystal [20]. In this
crystal, the collinear magnetic ordering with the easy
anisotropy plane perpendicular to the hexagonal axis is
achieved at TN = 52 K, and, with a further decrease in
the temperature below T = 22.8 K, NiBr2 transforms
into the helical incommensurable phase. At tempera-
tures below 22.8 K, the external magnetic field applied
across the basal plane destroys the helical structure and
transforms this crystal to the easy-plane collinear state.

The occurrence of the helical magnetic structure in
the low-temperature state of CuB2O4 can be supported
by the presence and absence of the angular dependence
of the resonance parameters in the basal plane at fields
above and below Hc⊥ , respectively. In the absence of
external magnetic field, the local antiferromagnetic
vectors in the helical structure are uniformly distributed
over all directions in the basal plane. Under the external
magnetic field, the helicoid is distorted and trans-
formed into a fanlike structure, in which the antiferro-
magnetic vectors are distributed within the sector of
angular size α. If the α value is comparable to the
period of tetragonal angular dependence (π/2), the
averaging over all the local positions results in the
absence of the angular dependence of the resonance
parameters in the basal plane.

For the refinement of the magnetic structure of
CuB2O4, it is necessary to perform the neutron diffrac-
tion analysis of this crystal.

Thus, in the present work, we studied the fre-
quency–field and temperature dependences of the reso-
nance absorption in the tetragonal CuB2O4 single crys-
tal.

At T = 4.2 K, the frequency–field dependence at
H ⊥  C4 exhibits an abrupt change in the field H ≈
12 kOe, which is connected with the transition from the
low-temperature state to the weak ferromagnetic state.
It is found that the temperature of this transition
depends on the magnetic field H⊥  applied across the
basal plane of the crystal and is independent of the field
along the C4 axis.

The phase diagram for the CuB2O4 crystal is con-
structed on the H⊥ –T coordinates.

In the weak ferromagnetic state, the frequency–field
dependence at H ⊥  C4 is typical of easy-plane antifer-
0
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romagnets with the Dzyaloshinski interaction. The
temperature dependence of the Dzyaloshinski field is
determined from the experimental data at temperatures
of 4.2–20 K.

An analysis of the frequency–field dependences at
T = 4.2 K demonstrates that CuB2O4 in the low-temper-
ature phase is not a collinear antiferromagnet with the
easy anisotropy axis aligned parallel to the C4 axis. It is
assumed that, upon transition to the low-temperature
state, the magnetic moments remain in the basal plane
of the crystal, but the resulting magnetic structure
allows no weak ferromagnetic moment.
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