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We calculate the cosmic microwave background (CMB) anisotropy spectrum in models with millicharged par-
ticles of electric charge q ~ 10–6–10–1 in units of electron charge. We find that a large region of the parameter
space for the millicharged particles exists where their effect on the CMB spectrum is similar to the effect of
baryons. Using WMAP data on the CMB anisotropy and assuming the Big Bang nucleosynthesis value for the

baryon abundance, we find that only a small fraction of cold dark matter, Ωmcp  < 0.007 (at 95% CL), may
consist of millicharged particles with the parameters (charge and mass) from this region. This bound signifi-
cantly narrows the allowed range of the parameters of millicharged particles. In models without paraphotons,
millicharged particles are now excluded as a dark matter candidate. We also speculate that recent observation
of 511-keV γ rays from the Galactic bulge may be an indication that a (small) fraction of cold dark matter is
comprised of millicharged particles. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 14.80.-j; 98.70.Vc; 95.35.+d; 12.90.+b
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Search for particles carrying small but nonvanishing
electric charge (millicharged particles) has long history.
If observed, millicharged particles would either cause
serious doubts on the concept of Grand Unification or
imply the existence of a new massless gauge boson–
paraphoton [1, 2]. Furthermore, the existence of milli-
charged particles would hint towards processes with
apparent electric charge nonconservation, like electron
or proton decay to “nothing” [3].

There are various constraints on the parameters
(charge and mass) of millicharged particles, coming
from accelerator and laboratory experiments and from
cosmology and astrophysics (see, e.g., [4–8] for the lat-
est results and [8, 10] for reviews), Fig. 1. Interestingly,
reported bounds did not exclude the possibility [11]
that a significant part (or even all) of the cold dark mat-
ter (CDM) is comprised of millicharged particles.

The constraints on the parameters of millicharged
particles are somewhat different in theories with and
without paraphotons. Without paraphotons, two
domains in the parameter space of millicharged parti-
cles are allowed. The first one corresponds to heavy
particles with tiny electric charge (left upper corner in
Fig. 1) which would never be produced thermally in the
early Universe. This region is far beyond the reach of
future accelerator and laboratory experiments. In the
current letter, we are concerned with another region.
This is a narrow window of relatively light particles
with masses M ~ 10–3–102 GeV and charges q ~ 10–6–
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10–1. Larger charges q * 0.1 are ruled out by limits on
the cosmic ray fluxes of fractionally charged particles
[10]. It is worth noting that particles with q * 0.2 are
also excluded by measurements of the width of Z boson
(cf. [5]) if one makes use of the latest data [12].

In a model with paraphotons, and for not very small
values of the paraphoton coupling constant α', milli-
charged particles annihilate mainly into pairs of para-
photons. As a result, their annihilation in the early Uni-
verse is more efficient and the cosmological bound
coming from the relic abundance depends on the value
of α' and is generically less restrictive (see Fig. 1) than
in the model without paraphotons.

It was noted in [13] that there is a part of the param-
eter space for the millicharged particles where they do
not decouple from the acoustic oscillations of the
baryon-photon plasma during recombination, and it
was suggested that the effect of these particles on the
cosmic microwave background (CMB) anisotropy
spectrum may be similar to the effect of baryons. The
purpose of this letter is, using the recent precise CMB
data from WMAP [14], to set an upper limit on the frac-
tion of millicharged particles in CDM and to narrow the
allowed window for millicharged particles. Assuming
the standard Big Bang nucleosynthesis (BBN) value for

the baryon abundance,  = 0.0214 ± 0.0020 [15],
we arrive at the following constraint on the milli-
charged particle abundance,
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if millicharged particles are coupled to baryons during
recombination. The latter condition is satisfied on the
right of the dark solid line in Fig. 1. We see that the
upper limit (1) applies to the whole allowed window for
millicharged particles in models without paraphotons.
It is also worth stressing that, in models with parapho-
tons, the domain of applicability of the upper bound (1)
does not depend on the value of α'. Using the Lee–
Weinberg formula [16] for the relic abundance, one
then translates the upper bound (1) into the lower limit
on the annihilation cross section of millicharged parti-
cles. As a result, the upper bound (1) excludes most of
the allowed window for the millicharged particles in
models without paraphotons, leaving a small allowed
region with masses in the range m ~ 10–1–10 GeV and
charges in the range q ~ 10–3–10–1. In models with para-
photons, bound (1) translates into meaningful limit on
the parameters of millicharged particles, as shown in
Fig. 1; the excluded region depends on the value of α'.

Let us proceed to the derivation of the upper bound (1).
To calculate the CMB anisotropy spectrum, we adapt
the CMBFAST code [17], which numerically solves the
set of kinetic equations [18] for the linear perturbations
in the primordial plasma. To take into account the pres-
ence of millicharged particles, we extend this set by

Fig. 1. The exclusion plot in the parameter space for milli-
charged particles. Light dashed area is excluded by acceler-
ator experiments and BBN. Dashed region is excluded by
the relic abundance of millicharged particles in models
without paraphotons. Part of this region above the dash–
dotted line is excluded by the relic abundance in models
with paraphotons (assuming α' = 0.1). On the left of the dot-
ted line, millicharged particles cannot be thermally pro-
duced in the Early Universe. Dark gray areas are the previ-
ously allowed regions which are now excluded by Eq. (1) in
models without and with paraphotons. On the right of the
dark solid line, millicharged particles are coupled to bary-
ons (see Eq. (8) in the text).
adding the kinetic equations for the millicharged com-
ponent, modify the equations for the baryon component
to take into account the elastic scattering off milli-
charged particles, and include the millicharged compo-
nent contribution to the energy-momentum tensor. The
rest of the perturbation equations are the same as in
[18]. The Compton scattering off millicharged particles
is negligible, since the corresponding cross section is
suppressed by the fourth power of the charge q.

We work in synchronous gauge and consider pri-
mordial plasma in the expanding Universe with scale
factor a(τ) (where τ is conformal time) normalized to
unity at present time. Let Tf, ρf, vf be the temperature,
density and velocity of the fth component of the
plasma. In particular, f = e, b, γ, mcp for electrons, bary-
ons, photons, and millicharged particles, respectively.
In what follows, a bar denotes space averaging. The
standard variables describing fluid perturbations are
δf(k, τ) = [ρf(k, τ) – (τ)]/  and θf(k, τ) =

ikj (k, τ), where ki is conformal momentum.

Before recombination, the interaction between non-
relativistic electrons and protons is strong enough to
ensure that electron and baryon components have equal
velocities, θe = θb. This makes it possible to use tight
coupling approximation and consider electrons and
protons as a single baryon fluid [19]. Then, the set of
equations for baryons and millicharged particles reads
(cf. [18])

(2)

(3)

where h is the longitudinal metric perturbation; the dot
stands for derivative with respect to the conformal time
τ; cs, cs, mcp are the sound velocities in the baryon and
millicharged components; ne is the number density of
electrons; and Γmcp is the velocity transfer rate for mil-
licharged particles due to scattering off baryons and
electrons. The latter is given by

(4)

where brackets stand for thermal averaging, vM, e(p) is
relative velocity, and ∆vM is velocity transfer in a single
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NARROWING THE WINDOW FOR MILLICHARGED PARTICLES 3
process of scattering; dσM, e (dσM, p) is the Rutherford
cross section for millicharged particles scattering off
electron (proton).

The Rutherford cross section is singular at zero scat-
tering angle, but due to Debye screening, the integral in
Eq. (4) is cut at the value of the scattering angle equal

to the Debye angle, θD = . As a result,
one arrives at the following expression for the velocity
transfer rate in the case of thermal equilibrium:

(5)

where µM, e(p) is the reduced mass of a millicharged par-
ticle and electron (proton), α is the fine structure con-
stant, and T0 ≈ 2.726 K is the present CMB temperature.
It is straightforward to generalize Eq. (5) to the non-
equilibrium case when electrons, protons, and milli-
charged particles have different temperatures. In that
case, the value of Γmcp is larger than the one given by
Eq. (5), so Eq. (5) may be used as a lower estimate of
the interaction rate, which is sufficient for our purposes.

We solve the system of the kinetic equations starting
from the early moment of time τi and using inflationary
initial conditions [18],

where constant C determines the overall normalization.

The last terms in the right-hand side of Eqs. (2), (3)
tend to equalize the velocities of the baryon and milli-
charged components of the fluid. This results in the
kinetic equilibrium, θmcp = θb, provided Γmcp is large
enough. In this case, the perturbation equations are dif-
ficult to solve numerically, because the kinetic relax-
ation rate for the interaction of millicharged particles
and baryons is much larger than the rates of other pro-
cesses. To deal with this situation, we make use of the
zeroth order tight coupling approximation, adopting the
method of Peebles and Yu [19]. Namely, we expand

Eqs. (2), (3) to the zeroth order in , setting θb =
θmcp = θ. Then, we exclude Γmcp from Eqs. (2), (3) and
arrive at the following equation:

(6)
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The CMB spectrum obtained in this approximation
agrees with the solution of the original set of equations
at the level of one percent, provided that

(7)

where τrec is conformal time at recombination and
H(τrec) is the Hubble parameter. In what follows, we
discuss a region of parameters where tight coupling
condition (7) is satisfied (in particular, this region cov-
ers the whole allowed window in models without para-
photons) and comment on the rest of the parameter
space in due course.

To compare the results of our simulation with the
CMB data, we consider the flat ΛCDM model with the
number of massless neutrino species Nν = 3. We per-
form a scan over the space of the cosmological models
by varying parameters from minimal to maximal values
as given in the table. All priors are at 95% CL.

We assume the helium fraction at the moment of
recombination YHe = 0.24. We have checked that reion-
ization effects are irrelevant here, the reason being that
reionization affects the spectrum only at the lowest val-
ues of the multipole moments.

For each cosmological model, we calculated the
likelihood to the WMAP data [14]. As a result, we
arrived at the limit given by Eq. (1), which means that
no model exists in the considered parameter range with
larger values of Ωmcp  and likelihood better than 5%.

We also checked that additional CMB data from CBI
[20] and ACBAR [21] do not improve the limit (1).

Using the Lee–Weinberg formula we translate the
limit given by Eq. (1) into the bound on the parameter
space. The corresponding excluded areas are shown in
Fig. 1. In models with paraphotons, we extend our anal-
ysis to the region where the tight coupling condition (7)
is not satisfied. We checked that the upper bound (1)
actually applies provided that the following less restric-
tive condition holds

(8)

This inequality is true on the right of the black solid line
in Fig. 1.

Γmcp τ rec( ) Ωb Ωmcp+( )H τ rec( ) 1–
 * 250,

h0
2

Γmcp τ rec( ) Ωb Ωmcp+( )H τ rec( ) 1–
 * 2.5.

The ranges of the cosmological parameters used in simula-
tions; we never have a good fit outside the region ns ∈  [0.8,
1.2], and for Ωmcp > 0.02

Parameter Min. value Max. value Step Reference

ΩCDM 0.2 0.4 0.01 PDG [12]

h0 0.64 0.79 0.01 PDG [12]

ns 0.8 1.2 0.01

0.0194 0.0234 0.0005 BBN [15]

Ωmcp 0 0.020 0.001
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Coming back to the tight coupling regime, let us
illustrate the upper bound (1) pictorially by generating
a set of models with random parameters in tight cou-
pling regime, assuming uniform distribution of models
in the parameter space within ranges given in the table.
For each model, we calculated likelihood to the
observed CMB spectrum and plot the resulting distribu-

tion of models in the (Ωb , Ωmcp ) plane in Fig. 2.
One observes that the CMB spectrum is approximately
degenerate along the straight line

(9)

This degeneracy is in agreement with the expectation of
[13] that the effect of millicharged particles is similar to
that of baryons. Thus, in models with millicharged par-
ticles, the CMB data [14] determine actually the sum

(Ωb + Ωmcp)  = 0.022 ± 0.001 (68% CL). Combining

this value with the lower limit Ωb  > 0.019 from BBN
one arrives at the upper bound very similar to Eq. (1).
This serves as a qualitative explanation of our result.

Another illustration of the approximate degener-
acy (9) is shown in Fig. 3, where two CMB anisotropy
spectra calculated for different models on the degener-
acy line are shown. One observes that the two spectra
almost coincide in the region of the first and second
acoustic peaks. However, the degeneracy is no longer
present at higher multipoles. This is due to the fact that
the electroneutrality of the plasma implies that the elec-
tron number density is proportional to the baryon den-
sity. Hence, replacing a certain amount of baryons by
millicharged particles results in the enhancement of the
Silk damping at small scales. With future precise data
for high values of l, one will be able to set a constraint
on the value of Ωmcp using the CMB data only, without

h0
2 h0

2

Ωbh0
2 0.022 1.1Ωmcph0

2
.–=

h0
2

h0
2

Fig. 2. Distribution of models in the 

plane. Crosses and dots denote models agreeing with data at
the 2σ and 1σ CL, respectively. The bold line illustrates the
degeneracy of the CMB anisotropy spectrum. Two dotted

lines show the range of  allowed by BBN.

Ωbh0
2 Ωmcph0

2,( )

Ωbh0
2

reference to BBN results. To check this, we created a
simulated dataset, which contains the same values of l
as in the WMAP data up to l = 500, and then, with the
step ∆l = 50 up to l = 1600. The CMB anisotropy spec-
tral coefficients Cl’s were taken from the best fit [14] to
WMAP data. The error bars for these coefficients were
assumed to be equal to cosmic variance. Repeating the
above procedure for this dataset, we found that an upper

limit Ωmcp  < 0.003 can be placed. Further improve-
ment of this limit turns out to be impossible due to the
new approximate degeneracy,

(10)

arising at smaller values of Ωmcp .

To conclude, we note that, when translated into the
parameter space, the limit (1) is especially interesting
for the models without paraphotons, where it excludes
most of the window with not very heavy particles and
substantial electric charges. To completely close the
window, sensitivity to millicharged particle abundance

at the level of Ωmcp  ~ 3 × 10–4 would be required,
which cannot be achieved with future CMB experi-
ments due to the degeneracy (10). Determination of the
baryon abundance from the BBN is not accurate
enough to improve the situation. Hopefully, the rest of
the window will be explored by future accelerator
and/or laboratory experiments.

Finally, it was recently suggested [22] that the flux
of the 511-keV γ rays from the Galactic bulge
detected by the INTEGRAL satellite [23] may be
explained by the annihilation of the ~1–100 MeV
dark matter particles into e+e– pairs, provided their

h0
2

Ωbh0
2

0.002 0.65Ωmcph0
2
,–=

ns 0.94 8.0Ωmcp,+=

h0
2

h0
2

Fig. 3. Two different CMB anisotropy spectra compared
with extended WMAP dataset. Solid line represents the best

fit model without millicharged particles,  = 0.022.

Dashed line corresponds to model with  = 0.014,

Ωmcp  = 0.007.
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NARROWING THE WINDOW FOR MILLICHARGED PARTICLES 5
annihilation cross section σβ and abundance Ω sat-

isfy (σβ/pb)(1 MeV/M)2(Ω2/ ) . 10–(3.5–4.5).
Intriguingly, this condition holds in the left corner of
the parameter space for millicharged particles without
paraphoton allowed by Eq. (1) (say, for q = 3 × 10–3,
M = 100 MeV). One is tempted to speculate that the
observation of the 511 keV line is an indication that a
(small) fraction of CDM is comprised of millicharged
particles. This possibility will be checked by future
CMB data.
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part by the RFBR (no. 02-02-17398) and GPRFNS
(no. 2184.2003.2). The work of D.G. was also supported
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Double Beta Decay of 150Nd to the First 0+ Excited State of 150Sm¶
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Two neutrino double beta decay of 150Nd to the first 0+ excited state in 150Sm is investigated with the 400 cm3

low-background HPGe detector. Data analysis for 11320.5 h shows the excess of events at 333.9 and 406.5 keV.

This makes it possible to estimate the half-life of the investigated process as [ (stat) ± 0.3(syst)] × 1020 yr.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 23.40.Hc; 23.40.Bw

1.4 0.2–
+0.4
The neutrinoless double beta (0νββ) decay is
allowed if neutrino mixing, involving the electron neu-
trino νe, is present in the weak charged lepton current
and the neutrinos with definite mass are Majorana par-
ticles (see, e.g., [1]). Strong evidence for neutrino mix-
ing, i.e., for oscillations of solar electron neutrinos νe

driven by nonzero neutrino masses and neutrino mix-
ing, have been obtained in solar neutrino experiments
(see review [2]): Davis et al. (Homestake) experiment
and in Kamiokande, SAGE, GALLEX/GNO, and
Super-Kamiokande. This evidence has been spectacu-
larly reinforced during the last two years by the data
from the SNO solar neutrino [3–5] and KamLAND
reactor antineutrino [6] experiments. This very exciting
result has greatly renewed the interest in 0νββ decay.
This process is the most sensitive to the possible Majo-
rana nature of massive neutrinos. Their detection will
give information on the absolute scale of neutrino
masses and their type of hierarchy (normal, inverted,
and quasi-generated), and under specific conditions of
the CP violation in the lepton sector (see review [2]).

One of the problems in 0νββ decay physics is the
reliable evaluation of nuclear matrix elements having
an accuracy of a factor of two to three up to date. In
connection with the 0νββ decay, the detection of dou-
ble beta decay with the emission of two neutrinos
(2νββ), which is an allowed process of second order in
the Standard Model, enables the experimental determi-
nation of nuclear matrix elements involved in the dou-
ble beta decay processes. Accumulation of experimen-
tal information for the 2νββ processes (transitions to
the ground and excited states) promotes a better under-
standing of the nuclear part of double beta decay and
allows one to check theoretical schemes of nuclear
matrix element calculations for the two neutrino mode,
as well as for the neutrinoless one.

¶ This article was submitted by the authors in English.
0021-3640/04/7901- $26.00 © 200010
The ββ decay can proceed through transitions to the
ground state, as well as to various excited states of the
daughter nuclide. Studies of the latter transitions allow
one to obtain supplementary information about ββ
decay [7]. Because of smaller transition energies, the
probabilities for ββ-decay transitions to excited states
are substantially suppressed in comparison with transi-
tions to the ground state. However, as it was shown [8],
by using low-background HPGe detectors, the 2νββ
decay to the  level in the daughter nucleus may be
detected for such nuclei as 100Mo, 96Zr, and 150Nd. In
this case, the energies involved in the ββ transitions are
large enough (1903, 2202, and 2627 keV, respectively)
and the expected half-lives are of the order of 1020–1021 yr.
The sensitivity required for detection was only reached
for 100Mo, and the transition was detected in the three
experiments [9–11] with the half-life lying within (6–
9) × 1020 yr (the average value is (6.8 ± 1.2) × 1020 yr)
[12]. Recently, additional isotopes, 82Se, 130Te, 116Cd,
and 76Ge, have become of interest in studies of the 2νββ
decay to the  level too (see review [13]).

Theoretical estimates of the 2νββ decay to a 2+

excited state have shown that, for a few nuclei (82Se,
96Zr, 100Mo, and 130Te), the half-lives can be ~1022–
1023 yr [7]. This would mean that the detection of such
decays becomes possible using present and new instal-
lations in the near future.

It is very important to note that, in the framework of
QRPA models, the behavior of nuclear matrix elements
with parameter gpp is completely different for transi-
tions to the ground and excited (2+ and 0+) states [7, 14].
This is why the decay to excited states may probe dif-
ferent aspects of the calculational method than the
decay to the ground states. So, the search for ββ transi-
tions to the excited states has its own special interest.
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+
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In this article, results of an experimental investiga-
tion of the ββ decay of 150Nd to the first 0+ excited state
in 150Sm are presented. The decay scheme is shown in
Fig. 1. A search for ββ transitions of 150Nd to the first 0+

excited state in 150Sm has been carried out using a ger-
manium detector to look for γ-ray lines corresponding
to the decay scheme.

The experimental work was performed in the
Modane Underground Laboratory (depth of 4800 m
w.e.). A 400 cm3 low-background HPGe detector was
used for investigation of 3046 g Nd2O3 powder placed
in a special Marinelli delrin box which was put on the
detector endcap. Taking into account the natural abun-
dance (5.64%), 153 g of 150Nd was exposed. The data
collected for 11320.5 h were used for analysis.

The HPGe detector was surrounded by a passive
shield consisting of 2 cm of archeological lead, 10 cm
of OFHC copper, and 15 cm of ordinary lead. To reduce
the 222Rn gas, which is one of the main sources of the
background, special efforts were made to minimize the
free space near the detector. In addition, the passive
shield was enclosed in an aluminum box flushed with
high-purity nitrogen. The cryostat, the endcap, and the
critical mechanical components of the HPGe detector
were made of very pure Al–Si alloy. Finally, the cry-
ostat had a J-type geometry to shield the crystal from
possible radioactive impurities in the dewar.

The electronics consisted of currently available
spectrometric amplifiers and an 8192 channel ADC.
The energy calibration was adjusted to cover the energy
range from 50 keV to 3.5 MeV. The energy resolution
was 1.9 keV for the 1332 keV line of 60Co. The elec-
tronics were stable during the experiment due to the
constant conditions in the laboratory (temperature of
23°C, hygrometric degree of 50%). A daily check on
the apparatus functioning was made.

The detection photopeak efficiencies were equal to
2.33% at 333.9 keV and 2.33% at 406.5 keV. The effi-
ciencies were computed with the CERN Monte Carlo
code GEANT3.21. Special calibration measurements
with radioactive sources and powders containing well-
known 226Ra activities confirmed that the accuracy of
these efficiencies is about 10%.

The dominate detector backgrounds come from nat-
ural 40K, radioactive chains of 232Th and 235,238U, man-
made and/or cosmogenic activities of 137Cs and 60Co.
The sample was found to have considerable activity of
40K (46.3 mBq/kg). Additionally, long-lived radioactive
impurities were observed in the sample but with much
weaker activities. In our case, the most important iso-
topes contributing to energy ranges of the investigated
transition are 214Bi (1.15 mBq/kg), 228Ac (0.93 mBq/kg),
227Ac (0.62 mBq/kg), and their daughters.

Figures 2 and 3 show the energy spectrum in the
ranges of interest. As one can see, there is an excess of
events above continuous background at the investigated
JETP LETTERS      Vol. 79      No. 1      2004
energies. Isotopes of natural radioactivity (211Pb, 214Bi,
227Th, and 228Ac), found in the spectrum, have γ lines
near these energies. 214Bi contributes to both investi-
gated ranges through γ rays with energies of 333.31
(0.080%) and 334.78 keV (0.034%) for the 333.9 keV
peak and 405.74 keV (0.17%) for the 406.5 keV peak.
228Ac touches the 333.9 keV peak range with its γ
(332.37 keV, 0.40%). 227Ac exhibits through its daugh-
ters, 227Th (334.37 keV, 1.14%) and 211Pb (404.853 keV,
3.78%). There is also the artificial isotope, 150Eu (T1/2 =
36.9 yr), decaying to the same daughter, 150Sm, with γ
rays of 333.9 (96%), 406.5 (0.14%), 439.4 (80%), and
584.3 keV (52.6%). However, its possible exhibition at

Fig. 1. Decay scheme of 150Nd. Energies of levels are in
keV.

Fig. 2. Energy spectrum in the range of 333.9 keV. Dashed
line is continuous background used in the analysis.
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Analysis of events in the range of peaks under study

Peak 333.9 ± 1.12 406.5 ± 1.12

Number of events 779 603

Continuous background 656.6 484.5

Isotopes 214Bi 227Th 228Ac 214Bi 211Pb

Eγ, keV 333.1; 334.78 334.37 332.37 405.74 404.853

Contributions from isotopes 8.8 22.6 5.4 9.7 8.7

Excess of events 86 ± 28 100 ± 25
439.4 keV is within standard deviation of continuous
background; therefore, it can be taken into account as a
systematic error.

The table presents the results of the analysis for the
two peak energy ranges under study. A peak shape is
described as a Gaussian with a standard deviation of
~0.56 keV at the energies investigated. For the analysis,
a peak range is taken within four standard deviations
(E ± 2σ), i.e., 0.9545 of a peak area. As one can see,
there is an excess of events for each peak under study.
Summing the two peaks gives (186 ± 38) events, which
corresponds to about the 5σ positive effect. Finally, we
can estimated the half-life of the 2νββ decay of 150Nd
to the first 0+ excited state of 150Sm as T1/2 =

[ (stat) ± 0.3(syst)] × 1020 yr.

Previous experiments gave only limits on this tran-
sition, >1 × 1020 yr [15] and >1.5 × 1020 yr [16]. Taking
into account all errors, our result is not in contradiction
with the previous limits.

1.4 0.2–
+0.4

Fig. 3. Energy spectrum in the range of 406.5 keV. Dashed
line is continuous background used in the analysis.
If one compares our result with the average experi-
mental value of the half-life for the 2νββ transition of
150Nd to the ground state, T1/2 = (7.0 ± 1.7) × 1018 yr
[12], and take into account phase space factors [7], then
one can obtain for nuclear matrix elements the follow-

ing ratio,  ≈ 1.4 . So, the nuclear matrix ele-

ment for the transition to the first 0+ excited level is a
little less than one for the transition for the ground state.

The authors would like to thank the Modane Under-
ground Laboratory staff for their technical assistance in
running the experiment. This work was supported in
part by INTAS (grant no. 00-00362).
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The Evaluation of the Branching Ratios of the Decays 
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Combining the Okubo–Zweig–Iizuka rule in the decay φ  ρπ  π+π–π0 with the ρ  4π decay ampli-
tudes, we calculate the φ  2π+2π–π0 and φ  π+π–3π0 ones. The partial widths of the above φ decays are
evaluated, and the excitation curves in e+e– annihilation are obtained, assuming reasonable particular relations
among the parameters characterizing the anomalous terms of the HLS Lagrangian. The evaluated branching
ratios  ≈ 2 × 10–7 and  ≈ 7 × 10–7 are such that, with the luminosity L = 500 pb–1

attained at DAΦNE φ factory, one may already possess about 1685 events of the decays φ  5π. © 2004
MAIK “Nauka/Interperiodica”.

PACS numbers: 13.25.Jx

B
φ π+π–3π0→

B
φ 2π+2π–π0→
The decay of the φ(1020) meson to the state 3π
occurs due to the violation of the Okubo–Zweig–Iizuka
rule (OZI). The decay φ  5π, expected to proceed
due to the violation of this rule, should be dominated by
the process φ  ρπ followed by the decay ρ  4π,
whose amplitudes and decay width were calculated in,
e.g., [1]. See the diagram in Fig. 1a. The ρ meson in
these diagrams is resonant. Indeed, choosing the aver-
aged pion energy from the condition of “equilibrium”
as 〈Eπ〉  = mφ/5, one finds that the invariant mass of four
pions emitted in the transition ρ  4π is m4π . mρ.
The seemingly resonant diagrams Fig. 1b and 1d do
not, in fact, possess this property, because three pions
produced either from the transition π  πππ or
directly from the φ  ρπππ transition push ρ meson
away from the resonance. Indeed, the invariant mass of
the pion pair in the transition ρ  2π evaluated
assuming the same average pion energy as above falls
into the interval 2mπ ≤ m2π ≤ 0.41 GeV, which is far
from the resonance value. The contribution of the dia-
gram in Fig. 1e containing the OZI-suppressed vertex
φρρπ is, at the φ mass, deeply under the threshold of the
production of two ρ mesons and because of this is also
suppressed. The two diagrams in Fig. 1c, containing
OZI-suppressed pointlike vertices φ  5π and φ 
3π, do not contain the intermediate ρ-meson at all and,
hence, can be neglected in the approximation of the res-
onant ρ meson. The effect of relaxing these approxima-
tions is considered below.

There are two feasible models of the OZI-sup-
pressed φ  ρπ decay amplitude. The first one is the
φω mixing model [2], where the above decay proceeds

¶ This article was submitted by the authors in English.
0021-3640/04/7901- $26.00 © 0013
due to the small admixture of nonstrange quarks in the
flavor wave function of φ meson composed mostly of a
pair of strange quarks. In the second model, φ goes to
ρπ directly, see [3]. Irrespective of these models, the

effective φ  ρπ coupling  in the diagram
(Fig. 1a) is determined by the branching ratio of the
well-studied process φ  ρπ  π+π–π0. Then, the
contribution to the decay amplitude of the dominant
diagram (Fig. 1a) for each isotopic mode, 2π+2π–π0 and
π+π–3π0, can be represented as

(1)

where the sum is over all possible permutations of the
final pion momenta, q and e are the four-momentum
and polarization vector of the φ meson, and qπ is the
four-momentum of the final pion in the decay φ 
ρπ. The coupling constant gρππ is calculated from the
ρ  π+π– decay width, and fπ = 92.4 MeV is the pion
decay constant. The inverse propagator of the ρ meson is

(2)

The expressions for the ρ  4π decay currents
Jσ(ρ  4π) are given in [1]. The partial width of the
decay φ  5π is

(3)

gφρπ
eff

M
gφρπ

eff gρππ

f π
2

--------------------εµνλσ
qµeνqλ

πJσ ρ 4π( )
Dρ q qπ–( )

--------------------------------------------------,∑–=

Dρ q( ) mρ
2 q

2
– i

gρππ
2

6π q2
---------------- q2

4
----- mπ

2– 
 

3/2

.–=

Γφ 5π→ s( ) 1

2 s 2π( )11Nsym

------------------------------------- M 2 $5,d∫=
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where s is the total energy squared in the rest frame sys-
tem of the decaying φ meson; the Bose symmetry factor
Nsym = 6, 4 for the decay φ  π+π–3π0 and φ 
2π+2π–π0, respectively; and d$5 given in [4] is the dif-
ferential element of the phase space volume of the five
pion final state. Note that we take into account the mass
difference of the charged and neutral pions both in
amplitude and in the phase space volume.

The evaluation of the branching ratios with the res-

onant diagram (Fig. 1a) gives  = 2.1 × 10–7

and  = 6.2 × 10–7, where Bφ → 5π ≡

Γφ → 5π( )/Γφ( ). The excitation curves for the
φ  5π decays in e+e– annihilation,

(4)

are plotted in Fig. 2. We take the fixed width approxi-
mation for the φ meson propagator, because this meson
is narrow.

B
φ π+π–3π0→
resonant

B
φ 2π+2π–π0→
resonant

mφ
2 mφ

2

σφ 5π→ s( )

=  12π
mφ

s
------ 

  3

Γ
φ e

+
e

–→
mφ

2( )
sΓφ 5π→ s( )

s mφ
2–( )2

mφ
2Γφ

2+
-----------------------------------------

Fig. 1. Diagrams describing the amplitudes of the decay
φ(1020)  5π. The total set of diagrams for each isotopic
final state 2π+2π–π0 and π+π–3π0 should include all possi-
ble permutations of the final pion momenta. The shaded cir-
cle in (b), (c) [(a)] refers to the π  3π (ρ  4π) ver-
tex, which includes the ρ exchange. See [1].
Let us discuss the role of the remaining diagrams in
Fig. 1. To this end, one should write the effective
Lagrangian for the decays φ  3π and φ  5π as

(5)

where β1, 2, 3 are arbitrary parameters responsible for
the violation of the OZI rule in the φ  5π decays,
g = gρππ. Expression (5) is written guided by the form
of the anomalous contributions in the hidden local sym-

+φ ρ π, ,
an 1

2 f π
3

--------- β1 β2– β3–( )=

× εµνλσφµ ∂νp ∂λp ∂σp×[ ]⋅( )

+
1

8 f π
5

--------- β1–
5
3
--- β2 β3+( )+

× εµνλσφµ ∂νp ∂λp ∂σp×[ ]⋅( )p2

–
2β3g

f π
------------εµνλσ∂µφν rλ ∂σp⋅( ) ---





+
1

6 f π
2

--------- rλ p⋅( ) p ∂σp⋅( ) p2 rλ ∂σp⋅( )–[ ]




–
2g
f π
------ β1 β2 β3–+( )εµνλσφµ

1

4 f π
2

--------- ∂νp rλ⋅( )




× p ∂σp⋅( ) g
4
--- rν rλ×[ ] ∂ σp⋅( )–





,

Fig. 2. The excitation curve of the decays φ  5π in e+e–

annihilation.
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metry approach [5, 6]. As is evident from Eq. (5), the
coupling constant of direct φ  ρπ transition is

(6)

Since there is no sizeable pointlike φ  π+π–π0 con-
tribution, see [7, 8], one can set

(7)

The results of relaxing this conditions are discussed at
the end of the paper. After all, the ratio β1/β3 remains
arbitrary. We set

(8)

hence, β1 = β3, β2 = 0, so that the φ  5π decay ampli-
tudes are determined by only parameter β3. The ampli-
tudes in this case are very lengthy and given elsewhere
[9]. The results of the evaluation are

(9)

The evaluation of the nonresonant contribution in
Figs. 1b–1e gives  = 0.34 × 10–7, which con-

stitutes 16% of the resonant contribution, and
 = 0.70 × 10–7, which constitutes about

11% of the resonant one. The above estimates clearly
illustrate the dominance of the diagrams with the reso-
nant ρ meson in the intermediate state in the decay
φ  5π, because the resonant and the smaller nonres-
onant contributions add incoherently in the case of the
φ  5π decay. Indeed, the phase space averaged rela-
tive phase between the resonant and nonresonant con-
tributions calculated with the help of the given branch-
ing ratios is about δ = 91° in the decay φ  π+π–3π0

and δ = 89° in the φ  2π+2π–π0. For comparison, the
opposite situation takes place in the case of the ω  5π
decay amplitudes, where the smaller nonresonant con-
tribution to the decay amplitude adds almost in phase
with the resonant one and because of this is essential
[9].

Relaxing constraint Eq. (8) to –1 ≤ (β1 + β2 –
β3)/4β3 ≤ 1 implies the deviations of Bφ → 5π by less than
1%. Relaxing the constraint of the absence of the point-
like φ  π+π–π0 amplitude, Eq. (7), gives the follow-
ing. Using the KLOE data [8], one can estimate the
combination characterizing the pointlike φ  π+π–π0

vertex as |3(β1 – β2 – β3)/2β3 | . 1. Then, the evalua-
tion of Bφ → 5π gives results deviating by ±8% (depend-
ing on the sign of the above combination) from those
obtained under Eq. (7). All the above discussion shows
that the branching ratios of the decays φ  π+π–3π0

and φ  2π+2π–π0 are determined within the conser-
vatively estimated accuracy 20% by the well-studied

gφρπ
2β3g

f π
------------– 0.8 GeV 1– .= =

β1 β2– β3– 0.=

β1 β2 β3–+ 0,=

B
φ π+π–3π0→

mφ
2( ) 2.4 10 7– ,×=

B
φ 2π+2π–π0→

mφ
2( ) 6.9 10 7– .×=

B
φ π+π–3π0→
nonresonant

B
φ 2π+2π–π0→
nonresonant

mρ
2
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OZI rule violating transition of φ meson to the ρπ state
followed by the transition ρ  4π in the model inde-
pendent way.

The excitation curves of the decay φ  5π in e+e–

annihilation can be used to evaluate the expected num-
ber of these decays at the φ peak. With the luminosity
L = 1032 cm–2 s–1, the observation of, respectively, 750
(250) φ  2π+2π–π0 (φ  π+π–3π0) decays per
month is feasible. Note that the existing upper limit is

 < 4.6 × 10–6 (90% CL) [10]. With the lumi-

nosity L = 500 pb–1 already attained at φ factory
DAΦNE [11], one could gain about 1685 events of the
decay φ  5π proceeding via chiral mechanisms con-
sidered in the present paper. The possible nonchiral-
model background from the dominant decay φ 
KLKS, KL  3π, KS  2π is well cut from the con-
sidered chiral mechanism by macroscopic distances
kaons fly away. Rare decay φ  ηπ+π–, whose branch-
ing ratio was estimated [12, 13] at the  ~ 3 ×
10–7, is cut by removing events in the vicinity of the η
peak in the three pion distribution observed in the five
pion events [10].

This work was supported in part by the Russian
Foundation for Basic Research (project no. RFFI-02-
02-16061) and by the President Grant no. 2339.2003.2
for support of Leading Scientific Schools.
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The nonlinear Schrödinger equation with periodic coefficients is analyzed under the condition of large variation
in the local dispersion. The solution after n periods is represented as the sum of the solution to the linear part
of the nonlinear Schrödinger equation and the nonlinear first-period correction multiplied by the number of
periods n. An algorithm for calculating the quasilinear solution with arbitrary initial conditions is proposed.
The nonlinear correction to the solution for a sequence of Gaussian pulses is obtained in the explicit form.
© 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Interest in the study of optical solitons in the frame-
work of the nonlinear Schrödinger equation with peri-
odic coefficients has grown considerably in the last
decade in connection with practical advances in using
solitons in current fiber-optic communication lines. So-
called dispersion-managed solitons are used as infor-
mation carriers in communication systems (see, e.g.,
[1]). We note that such a soliton is a stable localized
solution rather than a traditional (fundamental) soliton
in the theory of completely integrable systems [2]. Peri-
odic variation in the system dispersion makes it possi-
ble to increase the soliton amplitude compared to a sim-
ilar pulse in constant-dispersion systems and, therefore,
to increase the signal-to-noise ratio.

Spurious field perturbations, which arise at initially
empty places in a sequence of optical pulses as a result
of nonlinear four-wave interaction, are among the main
causes restricting data transmission over long distances
with low error ratios in lines with a rate of 40 Gbit/s and
above [3]. There have been several recent attempts to
develop a simplified quasilinear theory of this phenom-
enon [4–8]. To calculate suprious field perturbations
and energy in a “test” bit, Ablowitz and Hirooka [5]
considered its interaction with nearest neighbors. In [6,
8], the mean amplitude jitter for a random bit sequence
was obtained by summing all possible combinations
with allowance for the resonance condition. A similar
approach was used in [7] to calculate the mean timing
jitter due to cross-phase modulation. In that work, the
pair interaction of a test pulse with each pulse of the
sequence was considered and, then, summation over all
possible bit combinations was carried out.

In this work, we obtain a quasilinear equation for
calculating the nonlinear correction to an arbitrary ini-
0021-3640/04/7901- $26.00 © 20016
tial distribution of the optical field at any point of time
interval t rather than at particular points of the test bits,
as was done in [4–8]. We propose an effective numeri-
cal algorithm for calculating spurious perturbations of
the field using the fast Fourier transform. This algo-
rithm provides a considerable time gain, as compared to
the direct algorithms of sum calculations considered
in [7, 8].

In addition, estimates of the minimum number of
neighboring pulses that affect the solution at a given
point of the test bit are obtained for a wide range of the
fiber-optic line parameters.

In this work, we consider periodic lines with rela-
tively large variation of local dispersion compared to
the average dispersion over a period. The case of small
variation of local dispersion was considered in [9].

2. QUASILINEAR SOLUTION

The propagation of optical pulses in optical fibers is
described by the generalized nonlinear Schrödinger
equation

(1)

where B is the complex envelope of the electromagnetic
field and the periodic coefficients d(z), σ(z), and G(z)
describe dispersion, nonlinearity, and gain (loss),
respectively. Let the initial conditions for this equation
have the form B(t, 0) = B0(t). Without loss of generality,
we assume that all coefficients in Eq. (1) vary with the

unit period and 〈G〉  =  = 0. The latter condi-

i
∂B
∂z
------ d z( )∂

2
B

∂t2
--------- σ z( ) B 2B+ + iG z( )B,=

G z( ) zd
0

1∫
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tion means that the loss and gain are mutually compen-
sated at the period.

To exclude the linear part of the equation, we make
the following transformation:

(2)

where g(z) =  and R(z) = .

The equation for X takes the form

(3)

where

(4)

We assume that the nonlinearity coefficient is small;
i.e., c(z) ~ ε ! 1. In this case, initial Eq. (1) is quasilin-
ear. The initial conditions for Eq. (3) have the form
X(t, 0) = B0(t). To solve this equation at distances com-
parable with ε–1, we apply the iteration procedure. The
first iteration gives the solution in the form

(5)

For practical applications, it is of interest to find the
solution at the points zn = n after n periods. Unfortu-
nately, the integrand in Eq. (5) is not a periodic function
of s, except the case 〈d〉  = 0, and, to find the solution
after n periods, it is necessary to integrate from 0 to n.
However, we consider the case where the periodic term
R(z) of the function ρ(z) is much larger than the linear
term 〈d〉z. In this case, Eq. (5) reduces to the equation

(6)

Then, the solution after n periods can easily be found in
the form

(7)

where the correction to the initial solution at one period
is given by the expression

(8)
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z∫

Xz ic z( )e iρ z( )∆– eiρ z( )∆X
2
eiρ z( )∆X[ ] ,=

c z( ) σ z( )e2g z( ), ρ z( ) R z( ) d〈 〉 z,+= =

∆ ∂2

∂t2
-------.=

X t z,( ) X 1( ) t z,( ) B0 t( )= =

+ i c s( )e iρ s( )∆– eiρ s( )∆B0 s( ) 2
eiρ s( )∆B0 s( )[ ] s,d
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X 0( ) B0 t( ).=

X t z,( ) B0 t( )=
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0
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∫
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To obtain the solution in the initial variables, it is
necessary to make the transformation inverse to trans-
formation (2). It is easy to show that the solution B(t, n)
has the form

(9)

where the first term represents the linear evolution of
the initial solution and the second term is the nonlinear
correction to the solution. We emphasize that the func-
tion ∆X(t) describes nonlinear effects. The correction
∆X(t) can be found numerically for an arbitrary func-
tion B0(t) or analytically for the particular initial condi-
tions B0(t).

3. ANALYTIC SOLUTION
FOR GAUSSIAN PULSES

We take the initial conditions in the form of an infi-
nite sequence of Gaussian pulses

(10)

where all coefficients are complex and Repk > 0. In this
case,

(11)

where * means complex conjugation and

(12)

(13)

(14)

The first and second terms in Eq. (9) have the from

(15)
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,

(16)

respectively, where

(17)
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The resulting expressions are too complicated for anal-
ysis and we will consider a simpler case below.

We assume that all pulses have the same width and
they are spaced at the same distance X:

(18)

where Nk is the complex amplitude. General formula (11)
gives

(19)

where

(20)
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Not all terms of the triple sum in Eq. (19) are impor-
tant for calculating the integral. Let us consider the
function

For simplicity, let all amplitudes Nm be identical. To
calculate the width of Flmn as a function of the parame-
ter t, it is sufficient to consider |Flmn|, which is deter-
mined by the real parts of the parameters almn, blmn, and
clmn. We represent |Flmn| in the form

where

characterizes the width of the function,

gives the position of the maximum, and

Flmn t s,( ) almnt2– blmnt– clmn–{ } .exp=

Flmn S–( ) P t Q–( )– 2( )expexp ,=

P
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1 12 p0R s( )( )2+
--------------------------------------- p0=

Q l m– n–( )X– 4l 2m– 2n–( )X

3 1 48 p0R s( )( )2+( )
------------------------------------------------+=
is the amplitude.
To estimate the interaction between pulses, we con-

sider the sum near t = 0. In this case, the expression

(22)

estimates the nonlinear correction to the solution for a
pulse localized at zero.

For two limiting cases (p0R)2  0 and (p0R)2  ∞,
the exponent PQ2 + S for the function |Flmn(0, s)| has the
form

(23)
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respectively, where r1 = l – m – n, r2 = m – n, and r3 =
2l + m + n.

Two types of initial conditions are possible for each
of these limiting cases. If the pulse width is much
smaller than the distance between pulses, then p0X2 @ 1,
otherwise p0X2 ! 1. We calculate estimates for four
possible combinations of the parameter p0R and initial
conditions.

First, (p0R)2  0 and p0X2 @ 1. As is seen from
Eq. (23), the exponent is zero for k = l = m = 0 and much
larger than unity for any other combination of l, n, and
m. This means that the terms in sum (22) decrease
exponentially with an increase in the distance from
zero, and, to approximate the sum, it is sufficient to take
the term corresponding to the point (0, 0, 0) and several
terms with close numbers. In other words, it is suffi-
cient to include several nearest neighbors of the zeroth
pulse.

Second, (p0R)2  0 and p0X2 ! 1. As is seen from
Eq. (23), the exponent is zero for k = l = m = 0 and
increases slowly with moving away from this point,
because p0X2 ! 1. In this case, sum (22) can be approx-
imated by the integral

(25)

Obviously, the width of the integrand is equal to

1/  @ 1. The number of points for the satisfactory
finite-difference approximation of integral (25) is pro-
portional to the width. Thus, to calculate the initial sum,
it is necessary to take into account pulses with numbers

up to 1/ .

Third, (p0R)2  ∞ and p0X2 ! 1. In this case, coef-
ficients of r1, r2, and r3 are sufficiently small. Therefore,
similar to the preceding case, integral (25) can be con-
sidered as an approximation to the corresponding sum
given by Eq. (22). To satisfactorily approximate inte-
gral (25), it is necessary to take certain numbers of dis-
crete points in the r1, r2, and r3 directions. These num-

bers are on the order of 1/ , p0R/ ,

and p0R/  for the r1, r2, and r3 direction,
respectively. This means that pulses with numbers no

smaller than 1/  must be involved in summation.

Finally, let us consider the fourth variant (p0R)2  ∞
and p0X2 @ 1. It is seen from Eq. (6) that, in contrast to
the preceding cases, the coefficients of coordinates r2

and r3 depend on the quantity p0X2(p0R)–2 and the coef-
ficient of r1 depends only on p0X2. Therefore, to approx-
imate the exponent in sum (22) in the r1 direction, it is
sufficient to include terms for which the coordinate r1 is

e PQ
2– S– l m n.ddd

∞–

+∞

∫

p0X2

p0X2

p0X2 96 p0X2

2592 p0X2

p0X2
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close to zero. For the approximation of the exponent in
Eq. (22) in the r2 and r3 directions, two variants are pos-
sible. To satisfactorily approximate sum (22) in the case
of p0X2(p0R)–2 @ 1, it is sufficient to take into account
pulses near the zeroth pulses in the r2 and r3 coordi-
nates. Otherwise, it is necessary to include

p0R/  and p0R/  points for the
r2 and r3 coordinates, respectively.

The above results were confirmed by the direct cal-
culations of various sums.

In closing this section, we note that the estimates
were obtained for equal amplitudes of the initial pulses.
The case of different amplitudes is more complex.
However, the above estimates give an indication of the
minimum number of neighboring pulses that can affect
the solution at zero.

4. RESULTS OF NUMERICAL INTEGRATION 

First, let us discuss algorithms for the numerical
integration of Eqs. (1) and (6).

Nonlinear Schrödinger equation (1) was numeri-
cally solved by the symmetric method of splitting into
physical processes [1]:

(26)

Here,  is the operator allowing for the dispersion

and loss in a linear medium and  is the nonlinear
operator allowing for the nonlinearity effect on pulse

propagation. The exponential operator exp  can
be estimated in the spectral region by the formula

where FT is the Fourier transform operator.
The function

entering Eq. (6) is calculated by using the fast Fourier
transform. In particular,

After calculation of Y(t, s), X(t, z) is obtained by single
integration with respect to z in Eq. (6).

As an example, we consider the symmetric disper-
sion map TF + CF + TF with a general loss of 20 dB.
For complete compensation of loss in this line, the
inverse Raman pumping was used. The transmission
fiber (TF) had a dispersion of 20 ps/nm/km at 1550 nm;
effective area Aeff = 106 µm2; losses of 0.188 and
0.234 dB/km at 1550 and 1450 nm, respectively; and
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the nonlinear index of refraction n2 = 2.7 × 10–20 V–1/m2.
The compensating fiber (CF) had a dispersion of
−42.3 ps/nm/km at 1550 nm; effective area Aeff =
30 µm2; losses of 0.233 and 0.304 dB/km at 1550 and
1450 nm, respectively; and the nonlinear index of
refraction n2 = 2.7 × 10–20 V–1/m2.

Figures 1 and 2 show the correction δP to the initial
signal power as a function of time after ten periodic sec-
tions of the communication line for the average disper-
sions 〈D〉  = 0 and 0.05 ps/nm/km, respectively. In the
calculations, a pseudorandom sequence consisting of
128 bits with a general duration of 3200 ps (data trans-
mission rate 40 Gbit/s) was simulated. A single Gauss-
ian pulse in the sequence had a width of 12.5 ps and a

Fig. 1. 

Fig. 2. 

0.30

0.20

0.10
peak power of 1 mW. As is seen in these figures, the
quasilinear approximation adequately reproduces sig-
nal evolution and can be used to numerically simulate
periodic fiber-optic transmission lines.

5. CONCLUSIONS

The solution to Eq. (1) has been represented as an
explicit function of the initial data. The equation corre-
sponding to this transformation has the form

(27)

This equation differs from the equation obtained by
averaging in [10, 11]. Equation (27) and transforma-
tion (7) are valid if R(z) @ 〈d〉z. The advantage of this
transformation is that nonlinear effects per period are
described by a single function ∆X(t). A numerical algo-
rithm based on this simple transformation has been pro-
posed and realized. This algorithm can also be used to
find periodic solutions to the averaged equation [12].

An analytic solution for an infinite sequence of
Gaussian pulses has been obtained in this approxima-
tion. Analytic estimates show that the inclusion of only
nearest neighbors in calculation of the nonlinear inter-
action of a test pulse with other pulses of the bit
sequence is insufficient if the local dispersion varies
strongly.
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Processes of ionization of shallow acceptor centers (ACs) in silicon are studied. In crystalline silicon samples
with phosphorus (1.6 × 1013, 2.7 × 1013, and 2.3 × 1015 cm–3) and boron (1.3 × 1015 cm–3) impurities, µAl impu-
rity atoms were produced by implantation of negative muons. It is found that thermal ionization is the main
mechanism for ionizing the Al acceptor impurity in both p-type and n-type silicon with an impurity concentra-
tion of &1015 cm–3 at T > 45 K. The thermal ionization rate of Al ACs in Si varies from ~105 to ~106 s–1 in the
temperature range 45–55 K. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.55.Cn; 61.72.Tt; 76.75.+i; 36.10.Dr
It was shown in our previous publications [1, 2] that
the use of polarized negative muons provides rich infor-
mation on the interaction of acceptor centers (ACs) in
silicon. The implantation of µ– into Si leads to the for-
mation of a muonic atom µAl which models an acceptor
impurity of aluminum. Information on the charge state
of the electronic shell in the given muonic atom (AC)
and on its interaction with the medium is contained in
the polarization function P(t) of the muon located at the
1s level of the µAl atom.

In a magnetic field transverse to the muon spin, the
behavior of the muon polarization is described by the
system of differential equations [3]

(1)

where subscripts p and d denote the paramagnetic (neu-
tral) and diamagnetic (ionized) states of the AC, respec-
tively (µAl0 and µAl–); Pp and Pd are complex quantities
(the experimentally observable quantity is P = Re(Pp +
Pd); νi is the AC ionization rate; νc is the rate of hole
capture by µAl–; ωp and ωd are the muon spin precession
frequencies; and λp is the muon spin relaxation rate in
the paramagnetic state. In the approximation of isotro-
pic hyperfine interaction between the magnetic
moments of the muon and AC electronic shell, the para-

d
dt
-----Pp iωp λ p– ν i–( )Pp νcPd,+=

d
dt
-----Pd ν iPp iωd νc–( )Pd,+=
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magnetic shift of precession frequency and the muon
spin relaxation rate are [4],

(2)

(3)

where A is the hyperfine interaction constant, ν is the
relaxation rate of AC magnetic moment; " = h/2π; h is
the Planck’s constant; kB is the Boltzmann constant; µB

and  are the electron and muon Bohr magneton,
respectively; g is the AC g factor; ωe = gµBB/" is the
angular precession frequency of the magnetic moment
of AC electronic shell in magnetic field B; and T is tem-
perature. For a shallow AC in silicon, we have J = 3/2
[5] and g = –1.07 [6].

Under the conditions that only one of the AC charge
states is populated at the initial instant and there are no
transitions between states (νi = νc = 0), the solution to
system (1) has the form

(4)

where P0 is the muon polarization at the 1s level at t = 0,
λ = λp(0), ω = ωp(ωd) in the AC paramagnetic (diamag-
netic) state, and φ is the initial phase of the muon spin
precession.
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Our earlier studies [1, 2] show that the function of
type (4) describes experimental data for the samples of
nondegenerate n- and p-type silicon at T & 50 K. The
occurrence of muon spin relaxation and the form of the

Fig. 1. Temperature dependences of the muon spin relax-
ation rate. The dotted line is drawn for better visualization.

Fig. 2. Temperature dependences of the frequency shift in
the muon spin precession for silicon samples with (a) phos-
phorus and (b) boron impurity. Dotted curves correspond to
dependence (2) with A/h = 23.6 (a) and 25.3 MHz (b). The
solid curve in Fig. 2b is the result of approximation of the
experimental data by dependence (7) with A/h = 25.3 MHz
and Ei = 66.0 meV.

Si:P

Si:P

Si:P

Si:P
temperature dependence of ω indicate that an AC is ini-
tially formed in the paramagnetic state and its ioniza-
tion probability in time ~τµ (τµ = 760 ns is the lifetime
of µ– at the µAl 1s level [7]) is negligibly small.

However, analysis of a silicon sample containing a
phosphorus impurity with a concentration of 1.6 ×
1013 cm–3 [8] revealed that the ∆ω/ωd = f(T) depen-
dence (∆ω = ω – ωd, where ω is the precession fre-
quency at temperature T) is described by 1/T from (2)
only at T & 50 K, while the muon spin precession fre-
quency corresponds to the diamagnetic state of an AC
even at T > 52 K. It was concluded that the AC ioniza-
tion probability in this sample becomes significant at
T > 50 K in a time period on the order of τµ. However,
the available data on the rate of processes such as elec-
tron capture from the conduction band by an AC and
acceptor thermal ionization are not sufficient for deter-
mining the AC ionization mechanism. The scatter in the
experimental data on the coefficient of electron capture
by a neutral AC in silicon reaches five orders of magni-
tude [9]. The thermal ionization rate of a boron impu-
rity in silicon was determined, for example, in [10] and
amounts to ≈2 × 104 s–1 at T = 21 K. However, the tem-
perature dependence of the ionization rate (in the tem-
perature range 11–21 K) corresponded to a boron ion-
ization energy of 8.3 meV, which is considerably lower
than the calculated value of this quantity (45 meV [11]).
Note that the knowledge of the ionization rate for shal-
low impurity centers is highly important for estimating
the response speed of semiconducting devices operat-
ing at low temperatures [10, 12].

This study aims at determining the ionization mech-
anism for a µAl AC in Si and determining the ionization
rate of this center. For this purpose, we analyzed the
behavior of the polarization of negative muons in sili-
con samples with phosphorus (1.6 × 1013, 2.7 × 1013,
and 2.3 × 1015 cm–3) and boron (1.3 × 1015 cm–3) impu-
rities in the temperature range 10–300 K.

Measurements were made on the GPD spectrometer
[13] mounted in the muon channel µE1 of the proton
accelerator at the Paul Scherrer Institute (PSI, Switzer-
land). The samples were cut from silicon single crys-
tals, had the shape of disks (with a diameter of ~30 mm
and a height of ~12 mm), and were mounted so that the
disk axis coincided with the axis of the muon beam. A
magnetic field was produced by Helmholtz coils. The
field magnitude was 2.5 kG with a long-term stability
no worse than 10–4. The temperature of the samples was
maintained to within 0.1 K.

The muon polarization was measured by detecting
decay electrons from the reaction µ–  e– +  + νµ.
The time dependence of the number of detected elec-
trons has the shape of an exponential modulated by
function P(t). The measurement technique and the pro-
cedure for reconstructing the parameters of the muon
spin polarization from the recorded µ–SR spectra are
described in detail in [1, 3].

νe
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Figures 1 and 2 show the temperature dependences
of the relaxation rate λ and frequency shift ∆ω/ωd of
muon spin precession (for ωd, we took the room-tem-
perature precession frequency equal to 212.22 ±
0.05 rad/µs), which were obtained by the approximation
of experimental data using polarization function (4).

It can be seen from Fig. 1 that the muon spin relax-
ation rate for all samples increases with decreasing
temperature approximately in proportion to T–q (q ~ 3).
Such a behavior of λ agrees with our earlier results
obtained for nondegenerate samples and is associated
with the spin–lattice relaxation of the AC magnetic
moment (see [1, 2]).

The behavior of the muon spin precession frequency
shift in the n-type silicon with a phosphorus impurity
(Fig. 2a) at T & 45 K is described by 1/T dependence (2)
with the hyperfine interaction constant A/h = 23.6 ±
0.4 MHz. At T > 45 K, ∆ω/ωd deviates from depen-
dence (2); for T > 55 K, we have ω ≈ ωd. Thus, the pre-
dominant population of the AC paramagnetic (nonion-
ized) state gives way to the predominant population of
the diamagnetic (ionized) state in the temperature range
45–55 K. Evidently, this transition is associated with an
increase in the AC ionization rate νi with increasing
temperature. The rate νc of the reverse process (hole
capture by µAl–) in n-type silicon is negligibly small.
Indeed, from the detailed balancing principle, we have
νc/νi = W0/W–, where W0 (W– = 1 – W0) is the probability
of finding a µAl AC in the neutral (ionized) state (W0 = 0
in n-type silicon; see [8]). The solution to Eq. (1) for
νi ≠ 0, νc = 0, and λ ! δ = ωp – ωd (λ & 105 s–1 and
δ ≈ 3 × 10–3ωd ≈ 6 × 105 s–1 for 45 ≤ T ≤ 55 K; see
Figs. 1 and 2a) is the polarization function [3]

(5)

Function (5) was used for fitting the experimental
data for n-type silicon at temperatures 45–55 K. At each
temperature from this range, the value of δ was calcu-
lated using formula (2) (for A/h = 23.6 MHz and ωd =
212.22 rad/µs). Subsequently, in processing the experi-
mental data, the values of parameters ωd and δ were
fixed.

The values of the AC ionization rate obtained by the
approximation of the experimental data are shown in
Fig. 3. It can be seen that the ionization rate at T = 55 K
is approximately the same for all three samples and
amounts to ≈106 s–1. It is worth noting that the electron
concentration in the conduction band of silicon at T =
55 K increases by more than an order of magnitude
upon a change in the phosphorus concentration from

P t( ) P0
δ

δ2 ν i
2+

--------------------e
νi t–

ωd δ+( )t φ π/2–+( )cos=

+
ν i

δ2 ν i
2+

-------------------- ωdt φ+( )cos .
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1.6 × 1013 cm–3 to 2.3 × 1015 cm–3 (see [8]). This means
that the AC ionization at this temperature is determined
by the electron capture not from the conduction band
but from the valence band. In other words, the
µAl−-bound h+ hole undergoes transition to the valence
band; the energy necessary for this transition is
acquired due to the interaction with phonons.

The rate of hole thermal emission from neutral
acceptors is defined by the well-known expression [9]

(6)

where Nv = 2(m*kBT/2π"2)3/2 is the effective density of

states in the valence band; m* and v th =  are

the effective mass and thermal velocity of holes;  is
the cross section for hole capture by a negatively
charged AC; and Ei is the AC ionization energy.

Using relation (6), we can estimate the thermal ion-
ization rate of the Al acceptor impurity in Si. Using the
calculated values [14] for the capture cross section,

 [cm2] ≈ 3.8 × 10–8T–3 for 2.8 ! T < 100 K, for
Ei (Al) = 68 meV [11], we obtain νi(Al) ~ 106 s–1 at
T = 55 K. Thus, the ionization rate for µAl AC deter-
mined here is on the same order of magnitude as the
theoretical estimate of the thermal ionization rate for an
Al acceptor center in Si.

The value of ionization energy Ei of a µAl acceptor
obtained by fitting the function νi ~ T−1exp(–Ei/kBT) to
the data represented in Fig. 3, amounted to 74 ± 8 meV
and 50 ± 7 meV for samples with phosphorus concen-
trations of ~1013 cm–3 and 2.3 × 1015 cm–3, respectively.
The slightly smaller slope of the νi(T) dependence for
the sample with a higher phosphorus impurity concen-
tration (see Fig. 3) is probably due to an additional con-

ν i Nv σp
–v th Ei/kBT–( ),exp=

3kBT /m*

σp
–

σp
–

Fig. 3. Temperature dependences of the ionization rate for a
µAl AC in Si, obtained as a result of processing experimen-
tal data for Si samples with P impurity by using polarization
function (5). The solid and dotted curves describe depen-
dences of the form νi ~ T–1exp(–Ei/kBT) for Ei = 50 and
74 meV, respectively.

(1
06  s

–1
)

Si:P (1.6 × 1013 cm–3)

Si:P (2.7 × 1013 cm–3)

Si:P (2.3 × 1015 cm–3)
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tribution to the acceptor ionization rate due to the elec-
tron capture from the conduction band. Note that the
values obtained for νi and Ei may contain a systematic
error (~30 and ~5% in determining νi and Ei, respec-
tively) due to the fact that parameters ωd and δ were
fixed in data processing.

In silicon with a boron atom impurity of 1.3 ×
1015 cm–3 (see Fig. 2b), the deviation of the frequency
shift in the muon spin precession from the Curie law is
observed at a higher temperature (T > 80 K) than in
samples with a phosphorus impurity. In contrast to the
n-type silicon, the probability of the reverse process
(hole capture from the valence band by µAl–) in p-type
silicon is as high as the probability of acceptor thermal
ionization (the rate of this process for nondegenerate
silicon samples is independent of the impurity type).
For the given boron concentration in the sample, the
capture rate νc = νiW0/(1 – W0) is considerably higher
than the ionization rate νi at T & 80 K (W0 ≈ 1 [8]). At
T > 45 K, when the ionization probability of µAl0 in a
time period on the order of τµ becomes significant, the
condition λ, δ ! (νi + νc) also holds. The solution to the
system of differential equations (1) in this case leads to
a polarization function of the form (4) with λ = W0λp

and ω = W0ωp + W–ωd. Accordingly, for the frequency
shift in the muon spin precession, we obtain

(7)

The population W0 of state µAl0 was calculated as in
[15], to give

(8)

where Ei is the ionization energy of a µAl acceptor cen-
ter, β is the degeneracy factor (β = 4), and F is the Fermi
energy (analytic expressions for determining the posi-
tion of the Fermi level are given, for example, in [15]).

Function (7) was used for approximating the exper-
imental data represented in Fig. 2b. The values of the
hyperfine interaction constant and the AC ionization
energy obtained as a result of this approximation were
25.3 ± 0.4 MHz and 66.0 ± 3.4 meV, respectively.

Thus, the results obtained in this study demonstrate
that thermal ionization is the main ionization mecha-

∆ω
ωd

--------
ωp ωd–

ωd

------------------W0.=

W0 1 β 1– F Ei–
kBT

-------------- 
 exp+

1–

,=
nism for an Al acceptor impurity in both p-type and
n-type silicon with a donor impurity concentration of
&1015 cm–3 at T > 45 K. The thermal ionization rate for
an Al AC in Si in the temperature range 45–55 K varies
from ~105 to ~106 s–1.
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A design of an indirect-drive ignition target for the Iskra-6 laser facility is proposed. One-dimensional simu-
lations show that the 1.7-MJ fusion yield can be achieved at an energy absorbed by the target of about 30 kJ.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.57.Bc
At present, the NIF and LMJ high-power laser facil-
ities with the pulse energy as high as 2 MJ [1, 2] are
being created in the USA and France. In [1–3], it was
shown that the ignition of cryogenic thermonuclear tar-
gets can be achieved in these facilities. The implosion
of spherical indirect-drive targets will be provided by
blackbody X radiation with a temperature of up to
350 eV, which is generated when the laser radiation is
focused into a cylindrical gold cavity. In Russia, the
Iskra-6 laser facility on the basis of a solid-state laser
with a pulse energy of up to 300 kJ and a nanosecond
pulse duration is planned to be created at the Russian
Federal Nuclear Center All-Russia Research Institute
of Experimental Physics (RFNC VNIIEF) [4].

The Hohlraum-type pellet proposed at the RFNC
VNIITF consists of a spherical gold shell with eight
holes through which laser radiation is introduced, eight
screens, and a multilayer spherical target at the center
[5]. Three-dimensional calculations of the radiation
propagation inside the Hohlraum, as well as 1D simu-
lations of the implosion and burning of the multilayer
spherical target, were performed. These calculations
and estimates indicate that the conditions necessary for
a thermonuclear burst with a neutron yield of 1016 per
pulse at a laser energy lower than 1 MJ [5] can be
achieved with this target.

The present study continues the investigations on
inertial confinement fusion (ICF) carried out at the
RFNC VNIITF. The aim of this work is to study the
possibility of igniting a thermonuclear target with a
beryllium ablator (which is similar to the NIF target
[6]) in the Iskra-6 facility. The NIF target, which was
proposed at the Los Alamos National Laboratory
(LANL), consists of a copper-doped (with a Cu atomic
fraction of 0.9%) beryllium ablator in the shape of a
0.155-mm-thick spherical shell, whose inner surface is
covered with a 0.08-mm-thick DT-ice layer with an
0021-3640/04/7901- $26.00 © 20025
inner radius of 0.87 mm. The central region of the target
is filled with a DT gas with an equilibrium density of
0.3 mg/cm3. In [7], the time dependence of the black-
body radiation temperature required for ignition is pre-
sented; the peak value of the radiation temperature is
330 eV. In 1D simulations of the LANL target by the
LASNEX code, the fusion energy yield was 18.1 MJ at
a thermal radiation energy absorbed by the target of
214 kJ [7].

The target parameters were chosen using the ERA
1D code [8, 9], which was developed for simulating
physical processes occurring in ICF targets. The energy
and momentum transport by nonequilibrium radiation
was taken into account in the multigroup diffusion
approximation. In simulations, we used the tabulated
spectral absorption coefficient calculated by the mean
atom model [10].

As a starting point for the target optimization, we
used the LANL target, which was decreased twofold.
The time dependence of the blackbody radiation tem-
perature on the target surface was scaled by reducing
the time scale by half.

The energy absorbed by the target is described by
the following approximate relationship:

where T is the peak radiation temperature, R is the outer
radius of the target, and ∆t is the temperature rise time.
The twofold decrease in the radius R and time ∆t should
lead to a decrease in the absorbed energy by a factor of
8: from 214 kJ for the LANL target to 25–30 kJ for the
scaled target.

The LANL target scaling does not provide exact
self-similarity. It was shown in [3] that the NIF target
starts to be ignited from a hot central spot with the tem-
perature Ti ~ 10 keV and ρR ~ 0.3 g/cm2. In the scaled

Eabs σT4 4π× R2∆t,=
004 MAIK “Nauka/Interperiodica”
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target, the required value of ρR in the hot spot is not
reached and the target is not ignited.

According to [3], the driver energy required for igni-
tion is inversely proportional to a certain power of the

implosion velocity: Elas ~ 1/ , α = 5–10. Conse-V imp
α

Fig. 1. Schematic of a thermonuclear target for the Iskra-6
facility.

Table

NIF Iskra-6

Target parameters

Outer shell radius, mm 1.105 0.5575

Beryllium shell thickness, µm 155 82.5

DT-ice thickness, µm 80 40

Cu atomic fraction in the ablator, % 0.9 2

Hohlraum temperature

Maximum radiation temperature, eV 330 360

Temperature rise time, ns 20 10

Calculation of the target implosion

Energy absorbed by the target, kJ 200 31

Velocity of the imploding shell, km/s 330 400

Mass fraction of the evaporated
material, %

84 90

Calculation of the target burning

Maximum ion temperature, keV 100 40

Maximum fuel density, g/cm3 490 700

Tritium burning-out, % 34 19

Fusion energy yield, MJ 24 1.7

Neutron yield, 1017 90 6

Required laser parameters

Energy, MJ 1.4 0.3
quently, the velocity of the imploding shell should be
increased as the laser energy decreases. The implosion
velocity is nearly proportional to the radiation temper-
ature on the target surface: Vimp ~ T0.9 [3]. Hence, for the
decreased target to be ignited, the temperature should
be increased.

The self-similarity in terms of the radiation mean-
free-path lengths is also absent. In the scaled target, the
mean-free-path lengths should be shorter, which may
be achieved by increasing the copper content in beryl-
lium.

The target optimization by the ERA code allowed us
to self-consistently determine the target parameters
(Fig. 1), the radiation temperature (Fig. 2), and the opti-
mum Cu fraction in the ablator. The thickness of the
beryllium shell was increased by 6% with respect to the
halved LANL target. The peak radiation temperature on
the target surface was 360 eV. When using an ablator
consisting of 98% beryllium atoms and 2% copper
atoms, the calculated energy yield was about 1.7 MJ.

The table presents the parameters of the implosion
and burning of thermonuclear targets calculated for the
NIF and Iskra-6 facilities by the ERA code. The fusion
energy yield calculated for the LANL target by the
ERA code coincides with that calculated by the
LASNEX code accurate to 30%. This confirms the reli-
ability of the methods used at the RFNC VNIITF and
LANL to calculate thermonuclear targets.

The energy absorbed by the scaled target was 31 kJ.
For a Hohlraum of the NIF type [3] (with a laser–target
energy conversion efficiency of η = Eabs/Elas = 0.12–
0.15), the ignition can be achieved at a laser energy of
200–300 kJ, which is on the order of the laser pulse
energy in the Iskra-6 facility.

The maximum fuel density achieved in the course of
implosion of the optimized target is 1.4 times higher

Fig. 2. Time dependence of the blackbody radiation temper-
ature on the target surface.
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than that achieved in the course of implosion of the
LANL target.

Figure 3 shows the spectra of X radiation emitted
from the LANL target and the scaled target. The X-ray

Fig. 3. Spectrum of radiation with a photon energy higher
than 5 keV for the NIF (solid curve) and Iskra-6 (dashed
curve) targets.

Fig. 4. The calculated fusion energy yield as a function of
the radiation absorption coefficient (normalized to the
fusion energy yield at a rated absorption coefficient) for the
NIF (closed circles) and Iskra-6 (open circles) targets. The
spectral absorption coefficient was varied by multiplying by
a constant factor.
JETP LETTERS      Vol. 79      No. 1      2004
energy yield was about 3 MJ for the NIF target and
150 kJ for the target proposed for the Iskra-6 facility.

Figure 4 shows the dependence of the fusion energy
yield on the spectral absorption coefficient, which was
varied by multiplying by a constant factor. The LANL
target admits 60% variations in the absorption coeffi-
cient. The target for the Iskra-6 facility is more sensitive
to the radiation mean-free-path length and admits 30%
variations in the absorption coefficient.

Besides the calculations of the spectra, we per-
formed three-temperature calculations for the NIF and
Iskra-6 targets by the ERA code. The results obtained
are in good agreement.

In this paper, we did not consider such important
issues as the influence of mixing, the asymmetry of
radiation on the target surface, and the roughness of the
shell surface. These problems will be the subject of our
further investigations.
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The Aharonov–Bohm effect in submicron rings with narrow electron channels was studied in the range of mag-
netic fields from 0 to 15 T and temperatures from 0.1 to 10 K. It is found that the temperature dependences of
the h/e-oscillation amplitude at low magnetic fields and in the situation of tunnel-coupled edge current states
are different. The obtained experimental data are explained by the influence of Fermi-system chirality on the
coherent transport in a ring interferometer. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.23.-b; 73.40.Gk
It is known that the coherent processes occurring in
a ring interferometer placed in a uniform external mag-
netic field B are governed not only by the flux through
the ring inner area but also by the flux through the elec-
tron channels of the interferometer. As a result, the
magnetoconductance of metallic rings operating in the
diffusion charge-carrier transport regime exhibits, apart
from Aharonov–Bohm oscillations, universal conduc-
tance fluctuations [1, 2]. The flux through the electron
channels in semiconductor ballistic interferometers
fabricated on the basis of a high-mobility two-dimen-
sional electron gas (2DEG) modifies the ring energy
spectrum and induces Aharonov–Bohm oscillation
beats [3, 4]. In a high magnetic field, the flux through
the channels of a ballistic ring gives rise to edge current
states, in which electrons can move only in one direc-
tion. In these conditions, the symmetry of charge-car-
rier transport breaks and the Fermi system becomes
chiral.

According to [5, 6], the influence of chirality on the
coherent processes in the interferometer is as follows.
The magnetic flux through the ring in a nonchiral sys-
tem (Fig. 1a) gives rise to both constructive and
destructive interference of electron waves, whereas the
chiral system allows only constructive interference
(Fig. 1b). This distinction in the transport through the
ring should primarily manifest itself in the temperature
dependence of the Aharonov–Bohm effect. This fol-
lows from the fact that h/e oscillations in the nonchiral
system are suppressed when the temperature length LT

becomes shorter than the circle half-length L/2,
whereas, in the chiral system, this occurs when LT is
shorter than L, where LT = "v /kBT and v  is the Fermi
velocity. The interval of magnetic fields where the Aha-
0021-3640/04/7901- $26.00 © 20028
ronov–Bohm oscillations appear in the ballistic rings is
determined by the width of electron channels; the nar-
rower the channels, the broader this interval [7, 8].

Fig. 1. (a) Scheme of charge-carrier motion in the ring in a
low magnetic field. (b) Scheme of charge-carrier transfer in
the ring in the presence of tunnel-coupled edge current
states. Dashes set off the regions of tunneling between the
edge states. The 2DEG regions are shaded grey.
004 MAIK “Nauka/Interperiodica”
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Because of this, ballistic rings with narrow electron
channels allow the transition from the nonchiral to
chiral system to be followed from its onset to its com-
pletion upon increasing B. The purpose of this work is
to study the temperature dependence of the Aharonov–
Bohm effect in such rings and to reveal experimentally
the role of chirality in the suppression of the h/e-oscil-
lation amplitude with increasing temperature.

Interferometers for study were fabricated on the
basis of 2DEG in single GaAs quantum wells with
AlAs/GaAs superlattice barriers [9]. Contrary to the
gas in a GaAs/AlGaAs heterojunction, two-dimen-
sional electron gas in our structures can simultaneously
be highly mobile and have high concentration, allowing
the fabrication, on its basis, of ballistic rings of submi-
cron sizes [10]. The 2DEG concentration and mobility
in the starting structure grown from molecular beam
epitaxy were, respectively, ns = 1.8 × 1012 cm–2 and µ =
4 × 105 cm2/(V s) at T = 4.2 K. The schematic view of
the interferometer is shown in Fig. 2a. Double bridges
with a width of 50 µm and a separation between the
potentiometric terminals of 100 µm were fabricated
using optical lithography and liquid etching. The ring
was placed between two pairs of potentiometric termi-
nals and fabricated using electron beam lithography
and dry etching. The ring effective radius determined
from the period of h/e oscillations was reff = 0.13–
0.15 µm and coincided, within this accuracy, with the
mean radius given by electron beam lithography.
Experiments were carried out in the range of magnetic
fields from 0 to 15 T and temperatures from 0.1 to 10 K.

In Fig. 2b, the magnetic-field dependences of the
interferometer longitudinal (R23) and transverse (R37)
resistances are presented for T = 1.4 K and B values
ranging from 0 to 15 T. It is seen from this figure that
the 2DEG transverse resistance (R37) in magnetic fields
above 5 T assumes quantized values. However, the
quantization is not seen in the four-terminal ring resis-
tance (R23) up to 15 T. This implies that, in a high mag-
netic field, the situation of tunnel-coupled edge current
states appears in the narrowest ring input/output
regions of the interferometer and in the conducting
channel waists [10–12]. A distinguishing feature of the
Aharonov– Bohm effect in the interferometers studied
is that the h/e oscillations (∆R23) are most pronounced
in the situation where the Fermi level in the two-dimen-
sional source (S) and drain (D) regions coincides with
the energy of the latter with the half-filled Landau level.
This is clearly seen in Fig. 3a, where it is shown that the
amplitude of Aharonov–Bohm oscillations correlates
with the Shubnikov–de Haas oscillations. The results of
fast Fourier transform in different intervals of magnetic
field are presented in Fig. 3b. It follows from the curves
that both the peak amplitude and its low-frequency shift
increase with an increase in the magnetic field.

The ∆G(B) dependence of the periodic component
of ring conductance is shown in Fig. 4a for two differ-
ent temperatures. One can see that the h/e-oscillation
JETP LETTERS      Vol. 79      No. 1      2004
amplitude decreases with increasing temperature faster
at high magnetic fields than at lower fields. Moreover,
the Aharonov–Bohm oscillations undergo a “shift”
upon changing temperature at high B values, whereas it
is absent in low magnetic fields. Figure 4b shows that
the temperature dependences of the relative amplitude
GAB/GAB0 of Aharonov–Bohm oscillations, where GAB0
is the h/e-oscillation amplitude at T = 0.1 K, become
steeper as the magnetic field increases.

It is pointed out above that one of the distinctive fea-
tures of the interferometers of interest is that the h/e-
oscillation amplitude correlates with the Shubnikov–de
Haas oscillations in the 2DEG regions adjacent to the
ring. The increase in the resistance R23 in the B intervals
where the Aharonov–Bohm oscillations are suppressed
(Fig. 3a), while the resistance R34 becomes zero, allows
the assumption to be drawn that this correlation is
caused by strengthening of the backscatter under the
conditions where the quantum Hall effect occurs in the
source and drain regions. An unambiguous interpreta-
tion of the experimentally observed correlation requires
the development of a model for this phenomenon,
although this is beyond the scope of this work.

As in [7, 8], the fact that the period of h/e oscilla-
tions increases with B (Fig. 3b) is related in this work

Fig. 2. (a) Schematic of the ring interferometer. (1, 5) Cur-
rent terminals; (2, 3, 4, 6, 7, 8) potentiometric terminals; and
(9) thin-film metallic gate. (b) Experimental R23(B) and
R37(B) curves and the differences ∆R23(B) between the
experimental and smoothed curves at T = 1.4 K.
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to the decrease in the effective radius of the closed ring
edge state through which electrons are tunneling. Such
a behavior is evidence for the formation of the edge
states and is indicative of a change in the chirality of
Fermi system with an increase in magnetic field. The
fact that the temperature dependences of the Aharonov–
Bohm effect are different in a low magnetic field and
under conditions of the tunnel-coupled edge current
states (Fig. 4b) is also related to the change in chirality.

The temperature dependence of the Aharonov–
Bohm effect in a chiral Fermi system was theoretically
analyzed in [5, 6]. The h/e-oscillation amplitude in such
a system is determined by the lengths L and LT. In our
case, L = 2πreff. If LT @ L, the h/e-oscillation amplitude
is maximal and independent of T. In the opposite case,
LT ! L, the coherent processes are fully suppressed and
the Aharonov–Bohm effect does not occur. The charac-
teristic temperature separating these limiting cases is

Fig. 3. (a) The R23(B), R34(B), and ∆R23(B) dependences at
T = 1.4 K. Arrows indicate maxima on the R23(B) curve in
the interval of fields where R34(B) = 0. (b) Lorentz-approx-
imated results of the fast Fourier transform of the ∆R23(B)
functions in different intervals of magnetic field: (1) 12.5–
13.5, (2) 9.5–10.5, (3) 7.2–8.2, and (4) 3.5–4.5 T.
given by the expression [6] T0 = "v /πkBL. The shorter
L, the higher the characteristic temperature, all things
being the same. It is pointed out above that, in contrast
to the situation with tunnel-coupled edge states, the
Fermi system is nonchiral in a low magnetic field, and
the value of T0 in this case will be determined not by the
full length L but by its half. This signifies that T0 should
change twofold upon the transition from low to high
fields. In [6], it was shown that the Aharonov–Bohm
oscillation amplitude normalized to its zero-tempera-
ture value is given by the relation GAB/GAB0 =
(T/T0)/sinh(T/T0). Curves 1, 2, and 3 in Fig. 4b are cal-
culated by this formula for different T0 values. One can
see that the experimental temperature dependences are
consistent with the theoretical curves. As the magnetic
field increases, the fitting parameter T0 decreases from
1.2 to 0.6 K; i.e., in the ring interferometers studied, T0

in a low magnetic field differs approximately twofold

Fig. 4. (a) The ∆G(B) dependences in two different intervals
of B at T = 0.1 and 1.4 K. (b) Temperature dependences of
the relative amplitude GAB/GAB0 (GAB0 = GAB(0.1 K)) of
Aharonov–Bohm oscillations in different intervals of B:
(squares) 2.8–3.3, (circles) 7.2–7.7, and (triangles) 12.7–
13.2 T. Calculations by formula GAB/GAB0 =
(T/T0)/sinh(T/T0) from [6]. T0 = (1) 0.6, (2) 0.9, and (3) 1.2 K.
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from its value in the regime of tunnel-coupled edge cur-
rent states, in compliance with the change in chirality of
the Fermi system.

Thus, the temperature dependences of the Aha-
ronov–Bohm effect in submicron rings with narrow
conducting channels have been studied experimentally
in the range of magnetic fields from 0 to 15 T. In the
interferometers studied, not only the suppression of the
Aharonov–Bohm oscillations but also their shift have
been observed upon increasing temperature in a high
magnetic field. It has been found that the slope of the
temperature curve for the h/e-oscillation amplitude in a
low magnetic field differs from that in the situation with
the tunnel-coupled edge current states. The obtained
experimental data are explained by the fact that the
chirality of the Fermi system changes with increasing
magnetic field. This is consistent with the theoretical
results obtained in [6].

We are grateful to M.V. Entin for discussion of the
results. This work was supported by the Russian Foun-
dation for Fundamental Research, project no. 01-02-
16892.
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It is shown that the introduction of heavy inert gas impurities into the condensed phase of a lighter inert gas can
significantly change the kinetic properties of the latter at high pressures. The electronic structure of the ordered
Ar15Xe solid solution is calculated. Doping of the condensed phase of a light inert gas with atoms of a heavier
inert gas may become a new convenient tool in high-pressure experiments. © 2004 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 71.30.+h; 71.55.-i; 62.50.+p
Metallization of condensed inert gases at high pres-
sures has attracted considerable attention for a long
time [1–11]. This is primarily due to the fact that inert
gas atoms have completely filled and spherically sym-
metric outer electronic shells. For this reason, the anal-
ysis of the electronic structure and the interpretation of
experimental results for these objects are considerably
simplified. Pressures in the megabar range required for
studying metallization can be created using several
experimental techniques: static (in diamond cells [1–
3]) and dynamic (isentropic [4] and quasi-isentropic [5]
compression). The transition to the metal phase at low
temperatures was studied in detail only for xenon. It
was proved that xenon exhibits a structural transition
from the face-centered cubic (fcc) to the hexagonal
closely packed (hcp) lattice at a pressure of 0.7–
0.9 Mbar; a transition to the metal phase occurs at
1.37 Mbar [1, 2]. The metallization pressure increases
with decreasing atomic number; for this reason, exper-
imental studies of krypton and argon are much more
complicated [4–6]. The comprehensive theoretical
analysis of the electronic structure of inert gases [7–11]
has proved, among other things, that the pressures cor-
responding to metallization of neon and helium notice-
ably exceed modern experimental potentialities
[10, 11].

Under low pressures, the Fermi level in Ne, Ar, Kr,
and Xe crystals lies in the energy gap between the
valence p band and the conduction s band. With
increasing pressure, the gap becomes narrower, and an
insulator becomes an intrinsic semiconductor and then
a metal (when the conduction band overlaps with the
valence band). It is well known that the introduction of
donor or acceptor impurities in an intrinsic supercon-
ductor can radically change its kinetic properties. Thus,
it would be interesting to analyze the effect of impuri-
0021-3640/04/7901- $26.00 © 20032
ties on the properties of condensed inert gases at high
pressures.

Doping impurities for elementary semiconductors
are usually elements of the neighboring groups in the
periodic table. For inert gases, Group I and II metals
could be donor impurities, while Group VI and VII ele-
ments could serve as acceptor impurities. However,
inert gases under normal pressure crystallize at cryo-
genic temperatures, and it is hardly possible to intro-
duce metallic impurities in atomic form into these
gases. It is also difficult to introduce Group VI and VII
elements in atomic form into such a crystal, since such
impurities in the liquid or solid phase of a inert gas will
be, in all probability, in molecular form with the filled
molecular shell (e.g., F2, Cl2, or O2).

At the same time, atoms of a different inert gas can
easily be introduced as an impurity into a condensed
inert gas. Let us consider a crystal formed by atoms of
a light inert gas with an impurity of atoms of a heavier
inert gas (e.g., an Ar crystal with a Xe impurity). With
increasing atomic number, the binding energy of outer
electrons with the ion core becomes lower; i.e., the first
ionization potential decreases. It is mainly for this rea-
son that the energy gap for light inert gases in the solid
phase is larger and the metallization pressure is higher.
Thus, at low pressures, the impurity states of heavy
inert gases must lie in the energy gap and have the form
of very deep donor levels (see Fig. 1a). Since Ed ≈ Eg,
the impurity level practically does not affect the electri-
cal conductivity. As the pressure increases and the gap
becomes narrower, this level approaches the conduc-
tion band bottom and the intrinsic semiconductor
becomes an n-type semiconductor when the energy gap
width becomes quite small (see Fig. 1b). From the
standpoint of physics, this situation means that an
increase in temperature first leads to thermal ionization
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Variation of the position of the impurity level upon an increase in pressure from (a) to (c).
of impurity atoms due to a comparatively weak cou-
pling of their outer electrons with the ion core. Finally,
a situation may arise where the impurity level enters the
conduction band. This means that the semiconductor
becomes degenerate; i.e., metallization of semiconduc-
tor takes place (Fig. 1c).

In order to verify the hypothesis described above, we
calculated the electronic structure of the solid inert gases
using the full-potential linearized augmented plane wave
(FPLAPW) method with software packages Wien2k
(version 02) [12] and XCrysDen (version 0.6.0) [13, 14].
We carried out precision calculations (5000 points in
the Brillouin zone) of the total crystal energy E, the
electronic structure, and the optical spectra for pure
inert gases at high pressures in the fcc and hcp phases
at T = 0 K. Calculations were made for various sizes of
the unit cell, i.e., for fixed values of volume V. To con-
struct the equation of state, we calculated the total
energy E(V) of the crystal as a function of its volume.
Then, we approximated the energy by a smooth func-
tion of the form [5]

where V0 is the volume at normal pressure. Coefficients
ai were determined by the least square method. The
pressure was calculated as P = –∂E/∂V. Good agree-
ment between the calculated and experimental results
was achieved (the results will be described in greater
detail in a separate publication).

We also studied the effect of Xe impurities on the
electronic structure of an Ar crystal in the hcp phase.
For this purpose, we took for a unit cell a supercell con-
sisting of eight (2 × 2 × 2) primitive hcp cells, which, in
turn, contained two Ar atoms each. One of the Ar atoms
in this supercell was replaced by an impurity (xenon)
atom. Thus, we actually studied an ordered solid substi-
tutional Ar15Xe solution. It should be borne in mind in
the calculations that a superlattice contains eight non-
equivalent positions of Ar atom. Calculations were
made on a mesh with 500 points in the Brillouin zone.
For the exchange correlation potential, we used the
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potential of the generalized gradient approximation
(PBE GGA) [15]. Since the compressibility of xenon is
smaller than that of argon, the pressure curve (in the
P−V plane) for Ar15Xe is slightly higher than for pure
Ar with the same cell volume.

Figure 2 shows the densities of states for pure Ar in
the hcp phase and for the ordered Ar15Xe solution at
various pressures. It can be clearly seen that, under low
pressure, an impurity state of Xe appears in the energy
gap of Ar15Xe. This state is concentrated almost com-
pletely at the Xe atom (dashed curve). The difference
between the total density of states and the density of
states at xenon corresponds to the density of states at
15Ar atoms. It should be noted that the smearing of the
impurity level into an impurity band is observed due to
the high concentration of impurity in our calculations.
As the pressure increases, the donor impurity band
approaches the conduction band and becomes broader
due to stronger overlap of atomic orbitals. At a pressure
of 4.4 Mbar, the gap in the density of states of the
ordered Ar15Xe solution is not observed, in contrast to
the situation with pure Ar.

The case of doping the condensed phase of heavy
inert gas with atoms of a lighter inert gas is less inter-
esting, since the impurity level lies deeply in the
valence band and does not noticeably affect the electri-
cal conductivity.

The results described above lead to the following
two conclusions, which are important for applications.
First, in the analysis of the conductivity of condensed
inert gases, it is necessary to make allowance for the
fact that even minor impurities of heavier inert gases
can noticeably change the electrical conductivity in the
semiconducting phase and introduce an error in the
measured value of the metallization pressure. Second,
the controllable introduction of impurities of heavy
inert gases into lighter inert gases may become a new
tool in their investigation under high pressures. For
example, the argon metallization pressure lies in the
range of 5–6 Mbar [7], which exceeds the values attain-
able with static methods of producing ultrahigh pres-
sures. It was noted above that the metallization pressure
for neon and, the more so, for helium can hardly be
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Fig. 2. Density of states (DOS) of (left) Ar15Xe and (right) Ar in the hcp phase at various pressures. The solid curve corresponds to
the total DOS, and the dashed curve describes the partial DOS at the Xe atom.
reached even using dynamic methods. However, when
an impurity is introduced, the transition to the state of a
degenerate semiconductor is mainly determined by the
electron binding energy with an impurity atom; conse-
quently, the introduction, for example, of a xenon
impurity into neon will probably reduce the metalliza-
tion pressure radically.

It was noted above that the broadening of the impu-
rity level is associated with a high concentration of
impurity in our calculations. Lowering of the impurity
concentration can reduce this effect. For instance, the
size of a superlattice could be increased up to 54 atoms
(3 × 3 × 3 of primitive cells). Such a problem is quite
solvable but requires a considerable increase in com-
puter power. In our computations, we disregarded the
distortions of the crystal lattice in the vicinity of an
impurity atom, which takes place due to the difference
in the atomic radii. This effect may lead to a certain dis-
placement and narrowing of the impurity band but does
not qualitatively affect the results described above,

We are grateful to G.V. Boriskov and V.V. Platonov
for fruitful discussions.
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An experimental study of the two-, three-, and four-terminal resistance of a ballistic wire is carried out. The
wire is fabricated on the basis of high-mobility 2D electron gas in an AlGaAs/GaAs heterojunction. Different
behavior of mesoscopic fluctuations of multiterminal resistances is observed depending on the gate voltage and
magnetic field. At B = 0.45 T, the four-terminal resistance drops almost to zero and features resembling a bal-
listic conductance quantization are observed. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.23.Ad
Over a period of more than ten years after the dis-
covery of conductance quantization in a ballistic wire,
no experimental data on the distribution of voltage
along the wire was available. In measuring this distribu-
tion by potentiometric probes, two problems arise. The
first problem consists in that the terminals connecting
the probes and the wire should not affect the properties
of the latter [1]. The second problem is related to the
fact that, generally speaking, the potential measured by
a probe is not equal to the local potential of the wire [2,
3]. The existing theories of ballistic transport give no
universal relationship between these quantities [3, 4].

Recently, three- and four-terminal resistances of a
long (~6 µm) ballistic wire were measured under the
conditions when the transparency of potentiometric
probes was much smaller than the transparency of the
wire itself [5]. The wire was fabricated by an unconven-
tional method on a cleaved surface of an AlGaAs/GaAs
heterostructure. The analysis of measurements sug-
gested the conclusion [5] that the voltage applied to the
wire equally drops in the near-terminal regions while
the voltage drop between the probes is equal to zero.
However, it is necessary to note that zero voltage
between the probes cannot be considered as proof of
quasi-neutrality (zero drop of potential) inside the bal-
listic wire [3]. In addition, in the structure studied in the
cited experiment, a nonadiabatic (nonplanar) connec-
tion of the wire with the terminals was used. Therefore,
the quantization steps of the two-terminal conductance
of a short part of the wire had a noticeably smaller
height than the quantum 2e2/h (the two-terminal con-
ductance of the whole multiterminal wire was not mea-
sured). The width of the contact of each probe with the
wire was close to the length of the free part of the wire,
so that the measured potential was averaged over a rel-
atively large length. Nevertheless, the results of this
experiment fit well the single-particle model of ballistic
0021-3640/04/7901- $26.00 © 20036
wires [1–4], and they caused a number of questions
concerning electron interactions. Calculations [6, 7]
showed that the interaction of electrons with the self-
consistent field of the charge arising in such a wire
leads to the situation when the major part of voltage
applied to the wire drops near the reservoirs while the
rest of the wire remains almost equipotential.

In this paper, we present the results of studying the
problem described above by using a ballistic wire that
was fabricated in a standard way on the basis of an
AlGaAs/GaAs heterojunction with 2D electron gas and
with probe terminals that were much narrower than in
[5]. The mobility of 2D electron gas in the initial struc-
tures was equal to µ = 106 cm2/(V s), the electron con-
centration was Ns = 4 × 1011 cm–2, and the correspond-
ing mean free path was l = 10 µm. The fabrication pro-
cedure was as follows. First, electron lithography and
plasma chemical etching were used to fabricate the
wires with a lithographic length of L = 1.2–1.4 µm and
width of WL = 0.4–0.5 µm and with two potentiometric
probes of width Wp = 0.3–0.4 µm. The presence of the
probes made it possible to measure two-, three-, and
four-terminal resistances of the wire with the transpar-
ency of the probes being much lower than the transpar-
ency of the wire. The last stage of the fabrication pro-
cedure was the deposition of a TiAu metal gate on top
of the structure. The topology and dimensions of the
wires are shown in Fig. 1.

To determine the effective width and length of the
wire and the terminals, as well as the number of modes
transmitted through them, we performed a numerical
simulation of the electrostatic potential and energy
spectrum of the wire with allowance for the real tech-
nological parameters (the structure of the initial hetero-
junction, the etch depth, the presence of the upper metal
layer, etc.). Methods and examples of such a simulation
004 MAIK “Nauka/Interperiodica”
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were described in [8, 9] in application to other semicon-
ductor devices. Figure 1 shows one of the results of
simulation for the wire under study. One can see that,
already at zero gate voltage, electrons are present in the
wire (calculations show that, at Vg = 0, the transmission
through the wire is open for two modes, while the
potentiometric terminals represent an impenetrable
barrier). Only when the third mode becomes open in the
wire, the barrier in the terminal region is lowered so as
to allow one mode to penetrate to the potentiometric
terminal. This property of the structure under study
means that the potentiometric terminals become suit-
able for multiterminal resistance measurements when
three or more modes are transmitted through the wire.

Measurements of two- (R1212), three- (R1213 and
R1242), and four-terminal (R1234) resistances were car-
ried out in a temperature range of 0.2–1.5 K, in a linear
regime, at gate voltages corresponding to the transmis-
sion of several (three to six) modes through the wire.
The resistances are expressed in terms of the terminal
potentials and the current I12 through the wire: R1212 =
V12/I12, R1213 = V13/I12, R1242 = V42/I12, and R1234 = V34/I12.
Figure 2a shows the dependence of the two-terminal
resistance R1212 on the gate voltage Vg at a temperature
of 0.2 K in the interval of Vg from –60 to 150 mV. The
dependence exhibits weak features corresponding to
the quantization of the first two modes and no such fea-
tures for higher-order modes. The features are most
pronounced in the derivative R' = –dR1212/dVg. For com-
parison, Fig. 2b shows the dependences of the two-ter-
minal resistances of the probes: R1313(Vg) and R4242(Vg).
From the position of the first step, one can see that the
probes are slightly different and that they become open
at Vg ≈ 60 mV, i.e., when three modes have already been
transmitted through the wire. The height of the step
noticeably exceeds the resistance quantum h/2e2 =
12.9 kΩ , because the measured values of R1313 and
R4242 contain the contribution of the series resistances
of the probe leads, whose values exceed 10 kΩ . When
Vg < 40 mV, the resistance of the probes becomes too
large to allow a correct measurement of potential differ-
ence and, hence, three- and four-terminal resistances of
the wire.

Figure 3 presents the dependences of two-, three-,
and four-terminal resistances on the gate voltage for the
same sample in the interval of Vg from 40 to 200 mV.
From this figure, one can see that (i) the dependence of
the two-terminal resistance R1212(Vg) is smooth and
contains no features, (ii) the four-terminal resistance
R1234(Vg) is five times smaller than R1212(Vg) but far
from zero, and (iii) the three- and four-terminal resis-
tances exhibit mesoscopic oscillations within Vg = 40–
60 mV. Thus, in zero magnetic field, the wire under
study exhibits a weak quantization step of the two-ter-
minal conductance, which corresponds to the propaga-
tion of the principle mode, and barely noticeable fea-
tures, which correspond to the propagation of two or
JETP LETTERS      Vol. 79      No. 1      2004
more modes. In addition, the wire has a noticeable
value of four-terminal resistance, which is only
1.7 times smaller than that in the case of a diffuse wire
(lw ! L, where lw is the mean path length of electrons
in the wire). Presumably, this situation is caused by the
fact that the transmission of electrons through the wire
is not ballistic but accompanied by their considerable
scattering. The sources of this scattering may be indi-
vidual impurities that occur inside the wire because of
the insufficiently high mobility of electrons in the ini-
tial heterojunction, as well as quantum cavities formed
at the points of contact of the wire with potentiometric
probes. From Fig. 1, one can clearly see that the wire is
not homogeneous along its length but represents a
series connection of three constrictions and two poten-
tial wells, i.e., triangular quantum dots formed at the
points of contact of the wire with the probes. Theoreti-
cal [8] and experimental [10] studies of triangular

Fig. 1. Two-dimensional distribution of electron density in
the wire (a half-tone image); the numbers of terminals are
indicated in parentheses and the etch areas are shown by
rectangles.

Fig. 2. Two-terminal resistances of (a) the wire and (b) the
probes versus the gate voltage; R' = –dR/dVg.
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quantum dots in other structures suggest that these
quantum cavities are the source of nonadiabaticity
(strong intermode mixing), scattering, and inelastic
processes, which suppress the quantization of the two-
terminal resistance [11]. Therefore, potentiometric ter-
minals positioned within the inner part of the wire
strongly affect the ballistic transport regime character-
istic of two-terminal wires. Most likely, the coherent
resonance scattering by the triangular dots [8] is
responsible for the mesoscopic oscillations observed
for multiterminal resistances in the interval of Vg = 40–
60 mV (Fig. 3). Evidence of coherence is the nonlocal
character of the resistance, i.e., the large difference

Fig. 4. (a) Two- and four-terminal resistances of the wire
versus the magnetic field and (b) the multiterminal resis-
tances of the wire versus the gate voltage at B = 0.45 T; the
notation is the same as in Fig. 3.

Fig. 3. Two- (R1212), three- (R1213, R1242), and four-termi-
nal (R1234) resistances of the wire versus the gate voltage in
zero magnetic field; R' = –dR1212/dVg and RΣ = R1213 +
R1242 + R1234.
between RΣ = R1213 + R1242 + R1234 and R1212, which
means that the total voltage drop in the wire is not equal
to the sum of voltage drops in three series-connected
elements of the wire (two triangular dots and the barrier
between them). When Vg > 70 mV, the mesoscopic fluc-
tuations disappear and the equality RΣ = R1212 is satis-
fied to a high accuracy.

Figure 4a shows the dependences of the two-termi-
nal and four-terminal resistances of the wire on mag-
netic field at Vg = 70 mV. One can see that the resistance
R1212 weakly depends on magnetic field except for the
small-amplitude mesoscopic fluctuations. This sug-
gests that, in the wire, the scattering from its lateral
walls, which should lead to a high positive magnetore-
sistance, is absent. Unlike the small-amplitude mesos-
copic fluctuations observed in the two-terminal resis-
tance (δR/R < 0.1), the relative amplitude of the fluctu-
ations observed in R1234 is much greater: δR/R ~ 1. This
fluctuation behavior results in that, in a magnetic field
of 0.45 T, the value of R1234 becomes four times smaller
than its value in zero magnetic field. Figure 4b shows
the dependences R1212(Vg), R1234(Vg), R1213(Vg), and
R1242(Vg) measured precisely in the magnetic field of
0.45 T. One can see that the value of the four-terminal
resistance R1234 remains small for all values of the gate
voltage. In contrast to Fig. 3, the dependence R1212
exhibits small features in the form of inclined steps. For
clarity, we also present the derivative R' = –dR1212/dVg.
From this figure, one can see that the steps correspond
to the transmission of three to five modes through the
wire, although it should be noted that the step corre-
sponding to the fourth mode is split into two steps.

Now, let us discuss the results described above. The
main result is the observation of the magnetic field–
controlled correlation in the behavior of R1212 and R1234,
which shows that, the smaller the value of the four-ter-
minal resistance, the more pronounced the features
resembling the conductance quantization. This result
complements the experiment [5] in which the two-ter-
minal conductance of a multiterminal wire was not
measured. Our observation testifies that both the value
of the four-terminal resistance and the presence of fea-
tures in the two-terminal conductance are determined
by the scattering of electrons in the wire–probe contact
region. Another important result consists in that the val-
ues of the three-terminal resistances of the wire proved
to be different. This points to a considerable difference
between the perturbations introduced by the left and
right probes into the electron transport through the
wire. Presumably, it is this difference that gives rise to
noticeable mesoscopic fluctuations of the three- and
four-terminal resistances. The behavior of these fluctu-
ations has a specific feature: they exist (see Figs. 3 and
4b) only when the probes and the wire are weakly cou-
pled (the probe resistance is Rp @ h/2e2). As soon as a
strong coupling (Rp < h/2e2) arises between the probe
and the wire, the fluctuations practically disappear. This
JETP LETTERS      Vol. 79      No. 1      2004
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means that the opening of the probes leads to a strong
relaxation of the phase of the wave function and, hence,
to the suppression of mesoscopic fluctuations. A possi-
ble source of the relaxation is the outflow of electrons
into the probe and then into the 2D sea. Since the cur-
rent through the voltmeter is close to zero, the electrons
returning to the wire have a phase independent of the
phase of electrons in the wire [11].

Thus, the study described in this paper shows that a
multiterminal wire represents a more complex object
than expected. One of the main problems in studying
such a wire is related to the quantum cavities formed in
the wire–probe contact regions. These cavities cause an
electron scattering (including inelastic one) accompa-
nied by changes in charge and potential. As a result,
both the electron scattering matrix and the potential of
the probes vary in a complex way. The effect is evi-
denced by the absence of clearly pronounced quantiza-
tion of conductance and by the large variations of mul-
titerminal resistances. In addition, the behavior of
mesoscopic fluctuations shows that, in a real wire, the
phase relaxation time of the wave function changes in a
jumplike manner. An analysis of these processes is an
important problem which requires further investigation.

We are grateful to O.A. Tkachenko for the possibil-
ity to calculate the three-dimensional electrostatics and
the energy spectrum of the wire. This work was sup-
ported by the Russian Foundation for Basic Research
(project no. 16516), the INTAS (project no. 01-0014),
the Ministry of Science (the FOKVT, FTNS, and
JETP LETTERS      Vol. 79      No. 1      2004
NMKS programs), and the Russian Academy of Sci-
ences (the programs “Quantum Macrophysics” and
“Low-Dimensional Quantum Structures”).
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The Lindemann equation was used to calculate the melting of metallic hydrogen. It is shown that, after transi-
tion from the molecular dielectric phase to the atomic metallic phase, hydrogen becomes a quantum liquid
because of the atomic zero-point vibrations. The phase diagram of hydrogen is unique in that the molecular
phase is the only solid phase of hydrogen. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.70.Dv; 62.50.+p; 67.20.+k
The question of whether atomic metallic hydrogen
will be solid or liquid is one of the main problems of
high-pressure physics, planetary physics, and astro-
physics. The relevant theoretical calculations are con-
tradictory [1]. Some of them assume that metallic
hydrogen will have anisotropic (or quasi-liquid) struc-
ture with a low packing density [2–5], and the others
consider metallic hydrogen as having close-packed
structure [6, 7]. It is assumed in some works that metal-
lic hydrogen should undergo phase transitions under
pressure [8, 9]. Finally, it is assumed that metallic
hydrogen should be a quantum liquid [10, 11].

The dependence of the melting temperature Tm of
metallic hydrogen on its volume V was calculated by
different methods; the Bernal geometric theory [12],
the defect theory [13], the theory of one-component
plasma [14, 15], and the Lindemann theory [16, 17]
were used (Fig. 1). To convert the Tm(V) dependence
into the Tm(P) dependence, the equation of state
obtained for metallic hydrogen by Kagan et al. [18] is
used in Fig. 1 (the corrections for thermal pressure were
not taken into account). The calculations devoted to
melting of metallic hydrogen cover a period from 1966
to 1980; more recent calculations are lacking in the lit-
erature. Figure 1 also presents the melting curve of
molecular hydrogen [19]. This curve was obtained by
extrapolating the results of experimental measurements
below 0.15 Mbar (1 Mbar = 100 GPa) using the melting
equation recently published in [20]. This equation was
used to predict the presence of a maximum on the melt-
ing curve of molecular hydrogen [19].

The melting curves of metallic hydrogen (Fig. 1) are
inconsistent with the shock-wave experiments and
ab initio simulations. From the shock experiments it
follows that hydrogen is a liquid up to 1.8 Mbar in the
temperature range 1600–3100 K and that it undergoes,
under pressure, a continuous transition from semicon-
ducting molecular liquid to molecular metal [21]. The
ab initio simulation of hydrogen by the molecular
0021-3640/04/7901- $26.00 © 20040
dynamics method has shown that hydrogen is a liquid
at a temperature of 1000 K over the pressure range of
0.3–3.0 Mbar [22]. Analogous studies have shown that,
at 1.5 Mbar and 1100 K, liquid hydrogen undergoes
transition from the molecular to the atomic metallic
state, and it becomes a metallic liquid at pressures of
3.8 and 24 Mbar in the temperature range 800–3000 K
[23]; i.e., the melting temperature Tm of metallic hydro-
gen should be lower than 800 K at pressures of P ≥
3.8 Mbar.

Melting calculation. In this work, the melting of
metallic hydrogen at high pressure is calculated using
the Lindemann equation [24]. Earlier, this method was
used by Inoue and Ariyasu [17] (curve 3 in Fig. 1) and

Fig. 1. Hydrogen melting curves under pressure. The solid
lines correspond to atomic metallic hydrogen [12–17] and
the dashed line corresponds to molecular hydrogen [19]:
(1) theory of one-component plasma [14]; (2) Bernal geo-
metric theory [12]; (3) Lindemann’s melting theory [17];
(4) defect theory [13]; (5) theory of one-component plasma
[15]; (6) Lindemann’s melting theory [16]; and
(7) extrapolation of the experimental data on melting of
molecular hydrogen [19].
004 MAIK “Nauka/Interperiodica”
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Stevenson and Ashcroft [16] (curve 6 in Fig. 1) for cal-
culating the melting of metallic hydrogen. In those
works, the Debye temperature was taken from the Tru-
bitsyn expression [25] that was based on a simple
method suggested by Abrikosov in [26]. Trubitsyn
pointed out that the transverse waves caused by the
Coulomb forces make the main contribution to the
Debye temperature. Contrary to Inoue and Ariyasu
[17], Stevenson and Ashcroft [16] distinguished
between the transverse and longitudinal modes. The
latter are mainly caused by the volume compressibility
of electron gas. The Debye temperatures calculated by
this method for metallic hydrogen were overestimated,
and, hence, the obtained pressure dependence of the
melting temperature proved to be incorrect.

The main distinction of this work is that the expres-
sion for the Debye temperature is derived using the
phonon spectrum. In all variants of calculation of the
structure of metallic hydrogen, it is assumed that the
FCC lattice is most stable for metallic hydrogen at
extremely high pressures. Caron [13] and Kagan et al.
[18] calculated the phonon spectrum for the FCC lattice
of metallic hydrogen. In the self-consistent harmonic
approximation, Caron obtained the following expres-
sion for the Debye temperature [13]:

(1)

Kagan et al. [18] derived the interpolation relation for
the energy of zero-point vibrations, from which it fol-
lows that the expression for the Debye temperature of
the FCC lattice has the form

(2)

According to the Lindemann’s melting criterion, the
ratio γ of the average vibrational amplitude to the clos-
est interatomic distance Rmin in a solid is constant along
the melting curve. One often uses the Lindemann con-
stant CL instead of the Lindemann ratio γ. In the low-
temperature limit of interest (Tm ! ΘD ≈ 2000 K), the
Lindemann’s melting equation has the form

(3)

where M is the atomic weight and V is the molecular
volume. The factor 1/4 in Eq. (3) appears due to the
atomic zero-point vibrations. If the expression on the
right-hand side of Eq. (3) turns to zero, the melting tem-
perature becomes Tm = 0. For example, the melting
curves of Inoue and Ariyasu [17] and Stevenson and
Ashcroft [16] (curves 3 and 6 in Fig. 1, respectively)
predict that melting at Tm = 0 (so-called “cold” melting)
induced by the zero-point vibrations occurs in hydro-
gen at a very high density of 21.9 g/cm3 (≈1.2 ×
103 Mbar) and 4.6 × 103 g/cm3 (≈1.2 × 107 Mbar),
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respectively (it will be shown below that this is not the
case).

The Lindemann ratio γ is related to the Lindemann
constant CL by the expression γCL = βη–1/3, where β =
61/6π–2/3hN5/6k–1/2, h is the Planck’s constant and N is
Avogadro’s number; i.e.,

(4)

where η is the packing density

(5)

and Vat is the atomic volume. The packing density is η =
0.74, 0.74, 0.68, 0.52, and 0.32 for the FCC, HCP (see
Appendix), BCC, simple cubic, and diamond structure,
respectively.

The melting temperature strongly depends on the

value of CL, because it enters as  in the Lindemann
equation. It follows from the Lindemann equation that
the smaller the Lindemann constant (the higher the
packing density), the higher the melting temperature.
Experiments suggest that the Lindemann empirical
parameter CL is the smallest for the cubic close-packed
structures, and it is these structures that have melting
temperatures higher as compared to the anisotropic
low-packed structures [27, 28].

The average value of CL is 218 for the HCP lattice,
148 for the FCC lattice, and 124 for the BCC lattice.
Atomic hydrogen is alkali metal. For alkali metals, the
average value is CL = 119 (CL = 124 for Li and CL = 114
for Na). The hydrogen quantum Monte Carlo calcula-
tions suggest that the Lindemann ratio γ is 0.15 (CL =
102) and 0.13 (CL = 114) for the BCC and FCC lattices,
respectively [7]. The analogous more recent studies [9]
showed that γ = 0.12 (CL = 127) for the BCC lattice, in
good agreement with the experiment.

In this work, the Lindemann equation (3), expres-
sions (1) and (2) for the Debye temperature, and various
values of CL were used to calculate the melting of
metallic hydrogen. The computational results proved to
be surprising. The right-hand side of Eq. (3) is imagi-
nary for all values of CL up to pressures of 3 × 105 Mbar.
This signifies that metallic hydrogen has no melting
curve and that hydrogen is a quantum liquid (due to the
zero-point vibrations) at all pressures and temperatures.

Earlier, MacDonald and Burgess [10] showed that
metallic hydrogen is a liquid at all pressures. Since the
electron screening is essential only in the solid state and
is of no importance in the liquid state, the latter is ener-
getically lower than the solid state for all densities.
Recently, Ashcroft also arrived at the conclusion that
the metallic phase should be a liquid [29]. Liquid
metallic phase represents the new class of quantum liq-
uids [30] and the new matter state, namely, the state of
a superconducting liquid [31].

γCL 13.41η–1/3,=

η 4
3
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In summary, it has been shown that, due to the
atomic quantum zero-point vibrations, hydrogen
should be a quantum liquid after the transition from the
molecular dielectric to the atomic metallic phase.
Metallic hydrogen remains a liquid at all pressures and
temperatures. The hydrogen phase diagram is unusual,
because the molecular phase is the only solid phase of
hydrogen (Fig. 2). When constructing Fig. 2, the experi-
mental data obtained by Diatchenko et al. on melting
under pressure (0 ≤ P ≤ 7.7 GPa) [32] and by Datchi et al.
(6.4 ≤ P ≤ 15.2 GPa) [19], as well as the recent data on
melting in diamond cells (6.5 ≤ P ≤ 44 GPa) [33] were
used. These data were used to extrapolate the hydrogen
melting curve to 250 GPa using the melting equation
Tm = 14.025(1 + P/0.02655)0.58665exp(–0.00637)
obtained in [20]. At 300 K, the transition pressure to the
metallic phase is equal to 350 GPa (Fig. 2). The highest
pressure presently achieved in diamond cells at 300 K
is 342 GPa [36], which is very close to this transition
pressure.

The melting curve of the molecular phase is unique.
It is simultaneously the interface between the solid and
liquid phases, dielectric and metallic phases, and the
molecular and atomic phases.

Fig. 2. Hydrogen phase diagram. Dark circles, dark squares,
and light triangles are the experimental data obtained,
respectively, in [32], [19], and [33] for the melting of molec-
ular hydrogen. Solid line corresponds to the extrapolation of
experimental data to 250 GPa using the melting equation
from [20]. Dashed line is the assumed melting curve of
molecular hydrogen at pressures P > 250 GPa. Point 1 cor-
responds to the discontinuity in the temperature dependence
of vibronic frequency [33], presumably because of the first-
order dielectric–metal phase transition in liquid hydrogen
near the maximum on the melting curve, as predicted by the
molecular dynamic ab initio simulation [34]; point 2 corre-
sponds to the liquid phase according to this method [35];
points 3 and 4 correspond to the highest pressures achieved
in diamond cells in [36] and [37], respectively; and II and
III are the low-temperature phases of molecular hydrogen
[38].
I am grateful to Prof. N.V. Ashcroft for fruitful dis-
cussion of the hydrogen phase diagram and to
A.F. Goncharov for providing the numerical data on
hydrogen melting. This work was supported in part by
the Russian Foundation for Basic Research, project
no. 02-02-17112.

APPENDIX

The HCP structure has two branches in the depen-
dence of packing density on the axes ratio δ = c/a:

Cho [28] considered the role of lattice structure in
the Lindemann’s melting theory. For the HCP structure,
he considered only one branch δ ≥ δid. For this reason,
his tables and drawings for the HCP metals with δ < δid

(Ru, Os, Re, Mg) are erroneous (otherwise, the packing
densities of these metals would be higher than the pack-
ing density of an ideal HCP structure).
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Frequencies of phonon–plasmon coupled modes in a strong magnetic field were calculated. The calculations
were performed in the long-wave approximation with regard to the electron damping and intrinsic lifetime of
optical phonons. The dependence of the Raman scattering cross section on the carrier concentration and the
magnetic field intensity was calculated. © 2004 MAIK “Nauka/Interperiodica”.
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Coupled phonon–plasmon modes arise as a result of
the interaction of optical phonons with charge carriers
in semiconductors. These modes are observed, for
example, in Raman scattering. Interest in these modes
is associated not only with applications in optics but
also with the possibility of elucidating certain principal
questions in condensed-state physics, in particular, the
possibility of determining the magnitude of electron–
phonon interaction with their help. In this connection,
noteworthy is the study [1] of phonon–plasmon modes
in the presence of a magnetic field, which represents an
additional free parameter along with the carrier concen-
tration.

Consider estimates of the corresponding parameters
of an electron–phonon system. The frequency of an
emitted or absorbed optical phonon ω is usually equal
to several hundred degrees; for example, it is 35 mV in
GaAs. The magnetic field in which the cyclotron fre-
quency of carriers is of the same order of magnitude
must reach 20 T for an effective carrier mass of 0.063m0
in the same GaAs. If scattering is excited by the laser
frequency ωi = 1.5 eV, the wave vector k of incident
radiation equals ωi/c ~ 105 cm–1. Then, the condition
ω/c ! k ! ω/vF is fulfilled, where the Fermi velocity is
vF ~ 0.5 × 108 cm/s in the case when the statistics of
carriers is degenerate. The left-hand side of the above
inequality means that the electric field associated with
the phonon vibration is static, that is, longitudinal with
respect to the wave vector k. The right-hand side of the
inequality allows the conductivity to be calculated
using an expansion in terms of the parameter kv /ω,
retaining at least the first-order correction, which
proves to be important, because it has a resonant char-
acter.

Two circumstances should be noted. First, both the
frequency of the coupled modes and the width of the
corresponding resonance are of interest, for example, in
Raman light scattering. Therefore, the contribution of
carriers to the dielectric function must be calculated
0021-3640/04/7901- $26.00 © 20044
with regard to their damping. The spatial dispersion of
the dielectric function in a magnetic field under these
conditions has not been calculated so far. Second, in
addition to the electrodynamic interaction of carriers
with phonon vibrations, which is taken into account by
the dielectric function, the deformation interaction
exists which bears the name Fröhlich in theoretical
works. It arises because of the nonadiabaticity of the
electron–phonon system and leads to a certain (as small
as the nonadiabaticity parameter) renormalization of
phonon frequencies. In the absence of a magnetic field,
this renormalization has been considered recently in
[2–4], and it will not be taken into account here.

Consider the geometry when the magnetic-field
effect is most important: the magnetic field H is
directed along the z axis, whereas the wave vector k and
the corresponding electric field E are directed in the
perpendicular direction x. The dielectric function will
be calculated using the kinetic equation in the τ approx-
imation

(1)

where the factor eEδ(ε – εF), which contains the charge,
the electric field, and the Dirac function, is separated
out of the distribution function f; ε is the energy vari-
able; ωc = eH/mc is the cyclotron frequency; and ϕ is
the angle of rotation in the momentum space around the
magnetic field, on which the velocity v depends. For a
quadratic electron spectrum, it may be considered, for
example, that v x = v ⊥ (pz)sinϕ. Broken brackets desig-
nate averaging over the Fermi surface

where the element of phase volume equals mdεdpzdϕ.
Taking into account the term with averaging in the
kinetic equation is necessary for the fulfillment of the
conservation law for the electric current.

i ω kv x–( ) f– ωc
df
dϕ
------+ v x f f〈 〉–( )/τ ,= =

…〈 〉 …( )m pz ϕ / m pz ϕ ,dd∫dd∫=
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The transverse (with respect to the magnetic field)
conductivity in the direction x equals

(2)

The solution to Eq. (1) will be expanded to the sec-
ond order in terms of the parameter kv /ω f = f0 + f1 + f2.
Because 〈v x〉  vanishes upon integration over ϕ, it is seen
from Eq. (1) that 〈 f0〉  = 0. Therefore, the system of
equations for f0, f1, and f2 takes the form

where j = 1, 2 and ω* = ω + i/τ. The zeroth- and first-
order approximations are readily found

(3)

(4)

which are periodic in the angle ϕ. First, 〈 f1〉  and, then,
f1 can be found by averaging both sides of the last equa-
tion. We get

(5)

For the second-order approximation, an expression
similar to f1 (Eq. (4)) is obtained. The difference is con-
nected with the fact that f2 is an odd function of veloc-
ity, and, therefore, the mean value 〈 f2〉  vanishes. It can
be found that

(6)

σ e2 v x fm
2 ϕ pzdd

2π( )3
------------------.∫=

iω* f 0– ωc

f 0d
dϕ
--------+ v x,=

iω*– f j ωc

d f j
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---------- ikv x f j 1– ,–=

f 0 v x iω* ϕ ϕ '–( )/ωc–[ ]exp

∞–

ϕ
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=  
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2
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Because the first-order approximation f1 (Eq. (5)) is
even with respect to velocity, it makes no contribution
to the conductivity. Using the zeroth- (Eq. (3)) and sec-
ond-order (Eq. (6)) approximations, the contribution of
carriers to the conductivity (Eq. (2)) and the dielectric
function 4πiσ/ω can be calculated. With regard to the
lattice contribution, the dielectric function can be writ-
ten as

(7)

where the plasma frequency of ions is determined by
the relationship between the frequencies of the longitu-

dinal and transverse modes  =  + . The
equation obtained remains valid both in the absence of
a magnetic field (ωc = 0) and in the collisionless limit
(τ = ∞). If both these conditions are fulfilled, Eq. (7)
converts to the known expression with the true coeffi-
cient 3/5. This coefficient, as well as the others in
Eq. (7), was calculated here for the quadratic electron
spectrum; however, the dependence itself on the fre-
quency ω, magnetic field, and damping is also retained
in the general case.

The dielectric function of a nondegenerate electron
plasma was obtained in [5]

(8)

where λ = (kv th/ωc)2, and v th is the thermal velocity of
electrons. At τ = ∞ and λ = (kvF/ωc)2/5, it coincides
with the electronic term in Eq. (7).

The zeros of the dielectric function (7) determine
the spectrum of longitudinal vibrations of the electron–
phonon system in a magnetic field. With the neglect of
electron τ–1 and phonon Γ damping, dielectric func-
tion (7) is real and the frequencies of the corresponding
vibrations are also real. In order to determine these fre-
quencies, one has to solve a cubic equation. Instead of
doing that, one can first omit the small term with k2 and
obtain two eigenfrequencies ω± by solving a quadratic
equation. The third frequency lies in the vicinity of the
pole ω = 2ωc of the omitted term. This is shown in a
dash-and-dot line in Figs. 1 and 2.

Figures 3 and 4, in which the intensity of Raman
scattering is depicted as a function of the frequency
transfer for several values of the magnetic field and two
carrier concentrations, are more informative. This func-

–
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tion is the imaginary part of the generalized susceptibil-
ity

(9)

obtained in [6] for the case of a zero magnetic field;
εe(ω, k) is the dielectric function without the lattice con-

tribution, and ∆ =  – ω2 – iωΓ. All the difference
here is only in the expression for the dielectric function,
which is given now by Eq. (7). In Eq. (9), gE is the elec-
trooptic constant in Raman scattering and C is the
Faust–Henry coefficient, which is commonly taken
equal to C = –0.5 in the case of comparison with exper-
iment in the absence of a magnetic field. It is natural
that the poles of the second term in Eq. (9) coincide
with the zeros of the dielectric function (7).

The first term in Eq. (9), which corresponds to the
contribution to scattering due to the excitation of elec-
tron–hole pairs, is not taken into account in the figures.
It was calculated in [7] and, at k = 0, was found to be

(10)

where γ(n) is the Fourier component (with respect to the
angle ϕ) of the electron-optic constant in Raman scat-
tering and ν is the electron density of states.

The electron–hole contribution given by Eq. (10), as
well as the dielectric function (7), has singularities at
cyclotron and multiple frequencies. An essential differ-
ence is in the fact that the second term in Eq. (9)

χ ω k,( ) χe ω k,( )=

+ 4πgE
2 εe ω k,( )C2ωTO

4 /ε∞ωpi
2 ∆– 2CωTO

2–

εe ω k,( )∆ ε∞ωpi
2+

------------------------------------------------------------------------------------

ωTO
2

χe ω 0,( ) ν ω γ n( ) 2

ω nωc– i/τ+
-------------------------------- ,

n

∑–=

Fig. 1. Dependence of the frequencies (in the ωTO units) of
the phonon–plasmon coupled modes on the magnetic field
(the cyclotron frequency is in the ωTO units) for the carrier
concentration ωpe = 1.4; the plasma frequency of carriers
ωpe is in the ωTO units.
depends only on the frequency transfer ω, while the
electron–hole contribution (10) depends via γ(n) on the
frequencies of incident and scattered light separately
(resonant scattering). Moreover, the cyclotron reso-
nances in the second term strongly interfere with the
phonon singularities at ωTO or ωLO. Actually, it is seen
in Fig. 3 how the weak resonance at ω = 2ωc and the
phonon peak at ω = ωTO are “pushed apart” in the case
when they turn out to be close, see the curve for ωc =
0.5. The same figure (see, also, Fig. 1) clearly demon-
strates the result of screening in the case of a relatively

Fig. 2. The same as in Fig. 1 but for ωpe = 0.7.

Fig. 3. Calculated Raman spectra for the carrier concentra-
tion, momentum transfer, and cyclotron frequency indicated
in the figure. All the frequencies and kvF are in the ωTO

units; the phonon width Γ = 3 × 10–2 ωTO, the carrier relax-

ation rate τ–1 = 2 × 10–2 ωTO, and the plasma frequency of
ions ωpi = 0.4ωTO.
JETP LETTERS      Vol. 79      No. 1      2004



PHONON–PLASMON MODES IN A STRONG MAGNETIC FIELD 47
high concentration of carriers: the frequency ω–, which
equals the frequency of the longitudinal mode in the
absence of carriers (at the particular choice of parame-
ters, ωLO = 1.1ωTO), turns out to be close to the fre-
quency of the transverse mode ωTO.

Fig. 4. The same as in Fig. 3 but for τ–1 = 10–2 ωTO.
JETP LETTERS      Vol. 79      No. 1      2004
The case of a relatively small carrier concentration
is illustrated by Figs. 2 and 4. It is seen in Fig. 4 that, in
a weak field (ωc = 0.25), the frequency of the longitudi-
nal mode is close (as it must be) to ωLO = 1.1ωTO.
Besides the weak resonance at ω = 2ωc, a phonon–plas-
mon crossover is seen in the curves for ωc = 0.75 and
1.0: as the magnetic field increases, the weaker plas-
mon peak, after passing through the phonon one,
becomes more intense.

I am grateful to W. Knap and J. Camassel for discus-
sion of the work. This work was supported by the Rus-
sian Foundation for Basic Research.

REFERENCES
1. A. Wysmolek, M. Potemski, and T. Slupinski, Physica B

(Amsterdam) 298, 216 (2001).
2. A. S. Alexandrov and J. R. Schrieffer, Phys. Rev. B 56,

13731 (1997).
3. M. Reiser, Phys. Rev. B 61, 40 (2000).
4. L. A. Falkovsky, Phys. Rev. B 66, 020302 (2002).
5. P. M. Platzman, P. A. Wolf, and N. Tzoar, Phys. Rev. 174,

489 (1968).
6. L. A. Falkovsky, Zh. Éksp. Teor. Fiz. 124, 886 (2003)

[JETP 97, 794 (2003)].
7. E. G. Mishchenko, Phys. Rev. B 53, 2083 (1996).

Translated by A. Bagatur’yants



  

JETP Letters, Vol. 79, No. 1, 2004, pp. 48–52. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 79, No. 1, 2004, pp. 54–58.
Original Russian Text Copyright © 2004 by Tovstonog, Kulik, Kirpichev, Kukushkin, Dietsche, von Klitzing.

                                        
Collective Excitations in Double Quantum Wells
with Strong Tunnel Coupling

S. V. Tovstonog1, 2, *, L. V. Kulik1, 2, V. E. Kirpichev1, I. V. Kukushkin1, 2, 
W. Dietsche2, and K. von Klitzing2

1 Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
2 Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany

*e-mail: tovstons@issp.ac.ru
Received December 2, 2003

Spectra of collective and magnetic excitations in symmetric double quantum wells with strong tunnel coupling
were studied by inelastic scattering. Gaps in the spectrum of collective and single-particle excitations associated
with tunnel interwell splitting were measured. New excitation modes, namely, tunnel Bernstein modes, were
detected in a magnetic field. Based on the dispersion and magnetic-field dependences of the energies of inelastic
light scattering lines, a classification of excitations and magnetic excitations was given. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 73.21.Fg, 75.75.+a; 78.67.De
By physical properties, symmetrically doped double
quantum wells (DQWs) can be divided into two groups:
DQWs with Coulomb coupling and DQWs with tunnel
coupling between the wells. DQWs with Coulomb cou-
pling are primarily objects of basic research, because
Coulomb correlations between electrons of different
wells can lead to such physical phenomena as super-
conductivity [1] and Wigner crystallization [2]. In turn,
double quantum wells with tunnel coupling are of con-
siderable interest to technical applications. At the
moment, it is DQWs with spatially modulated tunnel
coupling that are probable candidates for creating basic
elements of quantum computing—qubits and quantum
logic gates—integrated into standard electronic cir-
cuits. An electron wave packet of such a circuit is
injected into one of the quantum wells in the weak-cou-
pling state and propagates into the region with strong
tunnel coupling, where the electron density is redistrib-
uted between the wells, after which the packet passes
again into the region of weak coupling and is detected.
By varying the number and distribution of surface gates
to the DQW, one can in principle organize any quantum
computing [3]. However, the main problem of the
experimental implementation of such quantum circuits
is the dephasing of the electron wave packet in the
course of quantum computing. Improving the growth
technology of double quantum wells has led to the fact
that the channels of scattering by impurities and heter-
ogeneities of the structure make no significant contribu-
tion to dephasing. Nevertheless, there exists a princi-
pally irremovable dephasing channel, namely, elec-
tron–electron scattering. The probability of electron–
electron scattering is determined by the excitation spec-
0021-3640/04/7901- $26.00 © 20048
trum in the DQW, which can be effectively changed by
an external quantizing magnetic field. In this work, the
spectrum of collective excitations in symmetric double
quantum wells with strong tunnel coupling and its mod-
ification in a transverse magnetic field were studied by
inelastic light scattering.

Inelastic light scattering (ILS) spectra were mea-
sured using a tunable Ti–sapphire laser with a photon
energy of 1.545–1.570 eV and the characteristic power
density W = 0.1–1 W/cm2. The measurements were per-
formed in a cryostat with a superconducting solenoid at
a temperature of 4.2 K in the back-scattering geometry.
A triple monochromator in combination with a semi-
conductor detector with charge coupling served as the
spectral instrument, which provided a spectral resolu-
tion of 0.02 meV. The quasi-momentum of excitations
(in a magnetic field, pseudomomentum [4]) was deter-
mined by the difference in the momenta of the pumping
and scattered photons, which were specified by the
mutual configuration of the directions of the exciting
radiation and the scattered ILS signal with respect to
the normal to the sample surface. By varying the exper-
imental configuration, the quasi-momentum (pseudo-
momentum) of excitations can be varied in the range
from 0 to 1.5 × 105 cm–1. Some measurements were car-
ried out in an optical cryostat.

The studies were carried out with two high-quality
heterostructures grown by molecular-beam epitaxy
(MBE). Each of the heterostructures consisted of two
symmetrically doped Al0.3Ga0.7As/GaAs/Al0.3Ga0.7As
quantum wells 120 Å in width separated by a narrow
potential barrier 25 Å in width (Fig. 1). In spite of the
004 MAIK “Nauka/Interperiodica”
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fact the total electron concentrations and mobilities in
the two structures were approximately equal (3.3 ×
1011 cm–2 and ~6 × 105 cm2 V–1 s–1), their ILS spectra
were different. This was primarily due to the specific
features of the growth of heterostructures with narrow
(~100 Å) quantum wells. Fluctuations of one mono-
layer in the well and barrier thicknesses allowable in
the growth led to a noticeable change in the band struc-
ture and, as a consequence, to a change in the energy
spectrum of the input and output resonances for inelas-
tic light scattering. Therefore, the experimental spectra
obtained from the two structures differed in the ener-
gies and intensities of the ILS lines. The lines less
intense in the spectra of one structure can be more
intense in the spectra of the other. The total intensity of
the ILS signal from the narrow quantum wells was on
the threshold of the sensitivity of the experimental sys-
tem (a small effective optical path for narrow quantum
wells), and even a small gain in the intensity of partic-
ular lines substantially simplified their study. The
majority of the results presented in this paper were
obtained with one structure; in the case when the results
for the second heterostructure were used, this is spe-
cially indicated.

The energy parameters of the DQW—the tunnel gap
and the Fermi energy of electrons—were determined
by the spectroscopic method developed in [5]. Reso-
nances associated with single-particle excitations from
the Fermi level of electrons in the lower tunnel subband
to the upper one are observed in the ILS spectra of dou-
ble quantum wells with tunnel coupling (SPE1 and
SPE2 lines, Fig. 2a). At a zero quasi-momentum, the
energy levels of all such excitations are degenerate and
equal to the tunnel gap (∆SAS). With increasing quasi-
momentum, the energies of excitations from the elec-
tron states with the Fermi quasi-momentum parallel
(antiparallel) to the quasi-momentum of excitations
increase (decrease); this is demonstrated by the sche-
matic diagram in Fig. 1a (transitions 0–1 and 0–2) and
in Fig. 2. The slope of the dependences of the resonance
energies of single-particle excitations on the transferred
momentum gives the Fermi velocity of electrons in the
lower tunnel subband (vF). Taking into account that
tunnel-coupled quantum wells possess a common
Fermi level, one can find electron concentrations in
each of the tunnel subbands (n1 and n2)

(1)

where m* is the effective electron mass in GaAs. The
electron concentrations were found to be 2 × 1011 cm–2

and 1.3 × 1011 cm–2 in the lower and upper tunnel sub-
bands, respectively.

Besides the lines of tunnel single-particle excita-
tions, two additional spectral features (TCDE and ISPE
lines) are observed in the ILS spectrum. In order to

n1

m*v F( )2

2π"
2

---------------------, n2 n1

m*∆SAS

π"
2

-------------------,–= =
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determine the nature of these lines, the ILS spectra
were recorded in two different polarization configura-
tions of the pumping and scattered radiation. The polar-

Fig. 1. (a) Illustration of the spectrum of electrons in the two
tunnel subbands of a double quantum wells. The arrows
indicate single-particle intraband and tunnel excitations
with the quasi-momentum k. The inset shows the potential
profile of the quantum well and wave functions in the tunnel
subbands. (b) Schematic diagram of possible collective
excitations in a double quantum well with tunnel coupling
in a magnetic field. The designations are explained in the
text.

Fig. 2. (a) Inelastic light scattering spectra of the first het-
erostructure under study at various transferred momenta.
The inset shows spectra measured in two configurations of
polarizers for the second structure at k = 5.5 × 104 cm–1.
(b) Dependence of the energies of ILS lines on the trans-
ferred momentum. Light dots correspond to unpolarized
lines; black dots indicate the ILS line observed only in the
parallel polarization configuration. Solid lines correspond
to the energies of collective excitations calculated in the
RPA approximation. The optical plasmon (OP) is slightly
active in inelastic light scattering spectra, see, for example,
[17]. Hatched regions indicate the energies of single-parti-
cle excitations.
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ization planes were parallel in one configuration and
perpendicular in the other. The ILS signals from elec-
tron excitations of different types (excitations of the
charge and spin densities) were detected in the parallel
and perpendicular configurations, respectively [6]. The
ISPE line was observed in both polarization configura-
tions; therefore, we associated it with single-particle
excitations inside one tunnel subband represented by
transitions 0–3 and 0–3' in the schematic diagram in
Fig. 1a (the energies of single-particle excitations with
and without spin flip are equal to each other). The
dependence of the energy of the ISPE line on the trans-
ferred momentum is described sufficiently well by the
dispersion of the boundary energy of the single-particle
continuum kvF, where k is the momentum passed to the
electron system in the process of inelastic light scatter-
ing (transferred momentum).

Unlike the ISPE line, the TCDE line is observed
only in the parallel configuration (Fig. 2), and its dis-
persion is of the gap type. This allows the TCDE line to
be associated with a collective excitation of the charge
density, namely, with a tunnel plasmon [7]. The energy
of the tunnel plasmon at k = 0 can be obtained analyti-
cally within the random phase approximation (RPA) [8]

(2)

where L is the parameter characterizing the nonlocality
of the wave function of electrons in the growth direc-
tion of the heterostructure. The second term in Eq. (2)
is called depolarization shift and is determined by the
effects of the dynamic screening of an excited electron
by the electron system. Substituting in Eq. (2) the quan-
tum-well width for L, we obtain 4.3 meV. This virtually
coincides with the TCDE line energy at k = 0. The com-
plete calculation of the dispersion of collective excita-
tions within the RPA is shown in Fig. 2b. The electron
wave functions in the growth direction and the tunnel-
ing subband energies were found as the self-consistent
solutions to the Schrödingen and Poisson equations.
The widths of the barrier and quantum wells were var-
ied within the limits of the technological errors of the
MBE growth in such a way that the equality of the cal-
culated and experimental tunnel gaps would be guaran-
teed.

The characteristic feature of both the experimental
data and the theoretical calculation is that the gapless
mode with linear dispersion, that is, the acoustic plas-
mon, which represents an antiphase oscillation of the
charge density localized in the two quantum wells [9],
is absent in the excitation spectrum. Because the well
number is a bad quantum number in double wells with
tunnel coupling, it is more appropriate to speak about
the acoustic phonon as an antiphase oscillation of the
electron density in the two tunnel subbands. Such
plasma excitations were discussed theoretically for sin-
gle quantum wells with two occupied dimensional-

ω2 ∆SAS
2 2 2πe2L

e
----------------------- n1 n2–( )∆SAS,+=
quantization subbands [10, 11]. The principle differ-
ence of symmetric DQWs with tunnel coupling from
single quantum wells is in the fact that the electron den-
sity is distributed uniformly in the two tunnel subbands
(the squares of the wave functions virtually coincide,
Fig. 1). Note that the energy of the acoustic plasmon is
determined by the difference in the Coulomb interac-
tion of electrons located in one and in different tunnel
subbands. For symmetric DQWs, this difference is
small; therefore, the acoustic plasmon mode softens
and falls into the continuum of single-particle excita-
tions.

In a magnetic field oriented along the heterostruc-
ture growth direction, the energy spectrum of each tun-
nel subband is divided into a series of discrete Landau
levels. In this case, the spectrum of neutral excitations
changes qualitatively. The continua of the intraband
and the tunnel single-particle excitations are split into
a number of spectral components, among which
groups of lines with energies multiple of cyclotron fre-
quencies ("ωC, where ωC = eB/m*) can be distin-
guished. Two such groups are observed in the spec-
trum. The energies in these groups at B  0 either
(1) tend to zero (BM2) or (2) equal the tunnel gap
(TBM+2, TBM+1, TBM–1, and TBM–2). The first group
consists of Bernstein modes, that is, collective excita-
tions composed of excited electrons on empty Landau
levels and holes in occupied Landau levels in one tun-
nel subband. These excitations differ from each other
by the difference in the Landau level numbers of
excited electrons and holes (∆n), and ∆n ≥ 2 [12, 13].
The second group represents a new type of excitations
associated with electron transitions accompanied by a
simultaneous change in the indices of the tunnel sub-
band and the Landau level. In the subsequent discus-
sion, these excitations will be referred to as tunnel
excitations in order to distinguish them from the other
types of Bernstein modes [14]. The energies of the tun-
nel Bernstein modes in the region of magnetic fields
under study can be described to a good accuracy by the
dependence of the form

(3)

where ∆n ≥ 1. Unlike the usual Bernstein modes, the
energies of tunnel Bernstein modes can either increase
or decrease in a magnetic field. This corresponds to
electron transitions with an increase or a decrease in the
Landau level number (Fig. 3 and the schematic diagram
in Fig. 1). In a finite magnetic field, a situation when the
energy of one of the tunnel Bernstein modes equals
zero can be accomplished. In this field, the energies of
the two upper occupied Landau levels of the two tunnel
subbands are degenerate, which can lead to the decay of
the quantum Hall effect states in the DQW.

Another class of collective magnetic excitations is
associated with electron transitions that are accompa-
nied by the retention of the Landau level number and a
change in the index of the tunnel subband. The energies

EB n±
∆SAS ∆n"ωC± ,=
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of such transitions are independent of the magnetic
field strength; therefore, we assign the TCDE and
TACDE lines (Fig. 3) to this class. The TCDE line cor-
responds to in-phase transitions of electrons from occu-
pied Landau levels of the lower tunnel subband to
empty or partially occupied Landau levels of the upper
subband. The energy of the TCDE mode is determined
by the tunnel gap and the depolarization shift, whereas
it is expressed by Eq. (2) at a zero pseudomomentum.
The TACDE line corresponds to antiphase electron
excitations from the lower tunnel subband to the upper
one. The energy of such excitations does not include the
depolarization shift, and their energy tends to the tunnel
gap at B  0. Lines similar to TCDE and TACDE
were observed previously in the spectrum of intersub-
band excitations of single quantum wells in which elec-
trons occupied one dimensional-quantization subband
[6, 15]. In a sense, these excitations are similar to the
acoustic and the optical phonons in crystals. Here, the
magnetic flux quantum corresponds to the unit cell, and
the occupation factor (ν) corresponds to the number of
atoms in the unit cell. In a single quantum well, the nat-
ural restriction on the domain of existence of excita-
tions of the optical type was the condition ν > 2, that is,
the occupation of more than one Landau level of elec-
trons. In double quantum wells, both the tunnel sub-
bands are occupied by electrons; therefore, the condi-
tion ∆ν > 2 is the restriction on the domain of existence
of excitations of the optical type in this case, where ∆ν
is the difference in the occupation factors of the lower
and upper tunnel subbands. It is evident that this condi-
tion cannot be fulfilled at "ωC > ∆SAS; this is in agree-
ment with the experimental results (Fig. 3).

In Fig. 3, it is seen that the ILS spectra of the quan-
tum wells under study contain a line with an energy of
"ωC (CSW). This line is predominant in the region of
low magnetic fields. Such a line was observed in the
ILS spectra of single and double quantum wells without
tunnel coupling and was associated with excitations of
the spin rather than charge density, namely, a cyclotron
spin wave [16]. However, the intensity of the cyclotron-
spin-wave line was considerably lower than that in the
DQWs under study. It may be suggested that the ILS
line of the cyclotron spin wave coincides in our case
with an intense line of an unknown charge-density exci-
tation. This excitation can correspond to the acoustic
plasmon. There is an analogy between spin waves in
two-dimensional systems and the acoustic plasmon in
symmetric double quantum wells with tunnel coupling.
In the absence of a magnetic field, both modes are gap-
less and their energies fall into the continuum of single-
particle excitations. The discretization of the electron
spectrum by a magnetic field leads to the stabilization
of spin waves. It may be suggested that an analogous
effect also arises for the acoustic plasmon. Because the
energy of the acoustic plasmon (AP) in the absence of
a magnetic field is small, the energy of the hybrid mag-
JETP LETTERS      Vol. 79      No. 1      2004
netoacoustic plasmon (MAP) in a magnetic field only
slightly differs from the cyclotron energy [17]

(4)
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The ground state of a two-dimensional antiferromagnet with S = 1/2 interacting with acoustic phonons in a mag-
netic field was studied by the quantum Monte Carlo method in the nonadiabatic approximation. Oscillations of
the amplitude of the root-mean-square displacement of ions and the average phonon occupation number in a
magnetic field were found. Local maxima were revealed in the distribution functions of site magnetic moments
and ion displacements. The saturation magnetization was calculated as a function of the spin–phonon coupling
constant. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.Jm; 75.30.Cr; 75.80.+q
Phase separation in manganites and the formation of
strips in undoped cuprate superconductors are bright
effects in condensed state physics. Such effects associ-
ated with strip structures are also observed in the spin
system with four-spin interaction on a square lattice [1].
The model with four-spin interaction is a particular
case of a more general model of spin interaction with
acoustic phonons.

Additional incommensurable maxima in the mag-
netic and nuclear structural factors were calculated for
a ferromagnet with spin–phonon interaction on a
square lattice [2]. Several maxima were also found in
the density of states of bound spin–phonon quasiparti-
cles. Under the action of an external magnetic field, the
bound state of spins and phonons decays, resulting in
an increase in the average number of phonons. This
communication is devoted to the determination of the
behavior of the amplitude of the root-mean-square dis-
placement of ions in a magnetic field and the saturation
magnetization, which has the constant value ms = 1 for
systems with spin–phonon interaction within the adia-
batic approximation [3, 4].

Consider the ground state of a quasi-two-dimen-
sional magnet with the interplane exchange interaction
that is several orders of magnitude smaller than the
intraplane exchange interaction. Therefore, the consid-
eration will be restricted to the spin interaction between
the nearest neighbors and with the acoustic modes of
in-plane lattice vibrations. The Hamiltonian for a
0021-3640/04/7901- $26.00 © 20053
bound spin–phonon system in the harmonic approxi-
mation takes the form

(1)

where Sz, ± are the components of the spin operator S =
1/2 on a lattice site, ui, j is the ion displacement along
the lattice translation vectors, M is the ion mass, and K
is the elastic lattice constant; J > 0. Using the canonical
transformation

(2)

the variables ui, j will be converted to the phonon cre-
ation and annihilation operators b+ and b with the
momenta qβ = 2πn/L, n = 1, 2, …, L; β = x, y; and the
lattice constant a = 1. The transformed Hamiltonian has
the form

H J α ui j, ui 1 j,+–( )+[ ]
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z Si j 1+,
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2 /2+
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∑=
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(3)

The calculations involve the spin–phonon coupling
constant α normalized to the exchange interaction and
the distance r normalized to the lattice constant. As the
computational method, a quantum Monte Carlo method
was selected. The method combined the worldline
algorithm and the continuous time algorithm [5] on a
plane with the size N = 32 × 32 with periodic boundary
conditions at the temperature β = J/T= 10. The compu-
tational method was described in detail in [2].

The root-mean-square displacement of an ion is
determined as

In the ground state of a harmonic oscillator with α  0,
the number of phonons equals zero. Therefore, it is
important to calculate the variation of zero-point vibra-
tions due to the action of the magnetic system on the

+ α "
2MΩ q( )
--------------------- iqr( ) bq b q–

++( )exp
n m,
∑

qx qy,
∑

× 1 qxcos– i qxsin–( )[ Sn m, Sn 1+ m,

+ 1 qycos– i qysin–( )Sn m, Sn m, 1+ ] "Ω q( )bq
+bq,

q

∑+

Ω q( ) ω0 2 qx( )cos– qy( )cos– ; ω0
2K
M
-------.= =

u2〈 〉 "
2MN
-------------

2nq 1+
Ω q( )

-----------------.
q

∑=

Fig. 1. Field dependence of the magnetization in an AFM
and in a spin liquid for ω0 = J and α/αc2 = (1) 0, (2) 1, and
(3) 1.5. The inset displays the dependence of the saturation
magnetization on the normalized spin–phonon coupling
constant for ω0/J = (1) 1 and (2) 6.

α/αc2

1
2

elastic subsystem; that is,  = 〈u2(α)〉  – 〈u2(α = 0)〉 .
Below, the normalized value

will be used. 
In this work, two characteristic cases of the interac-

tion of the spin and elastic subsystems are considered.
These are the case when the threshold of the band of
magnon excitations Wtm exceeds the threshold of the
band of phonon excitations Wtph, which corresponds to
the crossing of the dispersion curves of magnons and
phonons, for example, at ω0/J = 1, and the opposite case
when Wtph > Wtm for ω0/J = 6. Typical dependences of
the magnetization on the external magnetic field are
presented in Fig. 1 for the magnetically ordered state
and the magnetically disordered singlet state. The criti-
cal field of magnetic saturation for an antiferromagnet

Un
2〈 〉

U2〈 〉 Un
2 r( )〈 〉 /

"
2NMω0
-------------------

r

∑=

Fig. 2. Distribution functions of site ion displacements nor-
malized to the maximum displacement um at H = 0 for ω0 = J,
α/αc2 = 1, and H/J = (a) 0.5, (b) 2, and (c) 5.
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(AFM) is in good agreement with the known result
Hc = 2zSJ. If the spin–phonon coupling parameter
exceeds the critical value αc1, at which the isotropy of
spin–spin correlation functions becomes broken [2],
the saturation field increases and the saturation magne-
tization ms decreases. The corresponding values of ms

determined in the range of fields Hc < H < 2Hc are dis-
played in the inset in Fig. 1. Here, the spin–phonon cou-
pling parameters are normalized to the critical value
αc2, at which the long order disappears and a quantum
spin liquid is formed. In the region of low fields, the
magnetization grows linearly with increasing field even
in the spin liquid state but with a smaller slope of m(H).
This dependence qualitatively differs from the depen-
dence of the magnetization in the spin liquid with dimer
ordering, for which m(H)  0 at H < ∆, where ∆ is the
energy gap in the spectrum of triplet excitations [6].

The elastic stresses induced by the spin subsystem
have a hierarchical structure. The distribution function
of ion displacements depicted in Fig. 2a exhibits sev-
eral local maxima. In the region of local stresses, spins
form singlet states. The existence of states is confirmed
by the distribution function of the site magnetic
moment P(Sz  0) ≠ 0 (Fig. 3) and by the calculation
of the four-spin correlation function of parallel spin
pairs

(4)

The minima in the distance dependence of the four-spin
correlation function presented in Fig. 4 correspond to
the characteristic distance between the square-lattice
sites with either zero values of the magnetic moment or
an antiparallel arrangement of spins on the sites. Two
such distances are observed in a magnetic field H < Hc,

R r( ) σi σi 1++( )Si
zSi 1+

z〈 〉=

× σi r+ σi r 1+ ++( )Si r+
z Si r 1+ +

z〈 〉 ,

σi Si
z( ).sgn=

Fig. 3. Distribution functions of site magnetic moments for
ω0 = J, α/αc2 = 1, and H/J = (1) 0.5, (2) 3, and (3) 5.
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and one minimum in R(r) exists in the saturation field.
The wave function of this state can be represented as a
linear combination of the singlet and triplet states of
dimers ψ ~ u(|↑↓〉  – |↓↑〉 ) – v |↑↑〉 , where the coeffi-
cients u and v  depend on the field and the spin–phonon
coupling parameter u2 ~ (1 + δ/J), v 2 ~ (1 – δ/J), and
δ = α(ui – ui + 1).

The local singlet state decays in the magnetic field
through the formation of two antiferromagnetic domain
boundaries in which the loss in the Zeeman energy of
the triplet with the effective exchange interaction J – δ
is compensated by the gain in the exchange energy of
the boundaries J + δ. Estimations of the energy with
regard to the exchange energy only for the longitudinal
spin components lead to the critical magnetization mc =

/2 , above which the local
stresses disappear.

4 3δ 1.5K δ/α( )2–+ 2( )

Fig. 4. Four-spin correlation functions for pairs of parallel
spins calculated according to Eq. (4) for ω0 = J, α/αc2 = 1,
and H/J = (a) 0.5, (b) 2, and (c) 5 in the (1) [100] and
(2) [010] directions.
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The field dependences of the average occupation
number of phonons and the root-mean-square displace-
ment of ions are displayed in Fig. 5. The oscillations in
the dependences Nph(H) and 〈U2(H)〉 are due to the decay
of the bound spin–phonon state 〈Sα … Sβbγ … bν〉 
〈Sα … Sβ〉〈 bγ … bν〉  in the magnetic field corresponding
to the effective bond energy. The resulting phonons
give rise to new local maxima in the distribution func-

Fig. 5. (a) Average occupation numbers of phonons and
(b) amplitudes of root-mean-square ion displacements

/  normalized to the maximum zero-

field value for (1) ω0/J = 1 and α/αc2 = 1 and (2) ω0/J = 6
and α/αc2 = 1.35 calculated as a function of the magnetic
field.

Uav
2〈 〉 Uav

2
H 0=( )〈 〉
tion of ion displacements (Fig. 2b). In the saturation
field, the dispersion of the distribution function
P(ui/umax) decreases. In this case, it can be approxi-
mated by a double-peaked Gaussian function; this can
also be done for the distribution function of site mag-
netic moments P(Sz) depicted in Fig. 3. Thus, in fields
H > Hc, the nonuniformity of the interrelated spin-den-
sity and elastic-stress distributions is retained.

In conclusion, the main results will be emphasized.
Interaction between the elastic and magnetic sub-
systems leads to a disordered single state with a hierar-
chical structure of ion displacements. The decay of
bound spin–phonon particles in magnetic fields induces
phonons, which are pinned at domain boundaries. As a
result, the field dependence of the amplitude of the
root-mean-square displacement has an oscillating
shape. In the saturation field, the nonuniformity of the
distributions of site magnetic moments and ion dis-
placements is retained, and the saturation magnetiza-
tion monotonically decreases with increasing spin–
phonon coupling constant.
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The intensity of optical radiation and resistance of a hydrogen–helium layer with He mass fraction Y = mHe/(mHe +
mH) ≅  0.24, which corresponds to the composition of the outer layers of Jupiter’s atmosphere [2], were simul-
taneously measured under multiple shock compression up to 164 GPa in plane geometry. The initial pressure
and temperature of the mixture were equal to 8 MPa and 77.4 K, respectively, and the velocity of steel strikers
was equal to 6.2 km/s. These conditions allowed the generation of the final compressed curve close to the adi-
abatic states of Jupiter’s atmosphere according to the models proposed in [2, 3]. The conditions for the appear-
ance of the conducting phase in the compression process and the achieved level of electrical conductivity were
determined. The experimental data were compared with the one-dimensional fluid-dynamic simulation of the
compression process using the equation of state for the mixture in a model similar to the one proposed in [3, 8].
The experimental data were also compared with the behavior of pure components having the same initial den-
sity as in the mixture and compressed to the same final pressure. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 96.30.Kf; 96.35.Kx; 96.35.Hv
The Galileo sounder data obtained for the structure
and composition of the outer layers of Jupiter’s atmo-
sphere up to 1 MPa and 200 K [1] corroborated the
applicability of the adiabatic approximation [2, 3] to
the description of the pressure dependence of its tem-
perature for P > 0.1 MPa. The measured helium frac-
tion in the atmosphere proved to be close to its fraction
inside the Sun, Y = mHe/(mHe + mH) ≅  0.234 ± 0.005. In
the near future, the studied pressure range can hardly be
extended by using spacecrafts. Therefore, the physical
conditions for the transition of the atmosphere to the
conducting state have not yet been determined.

The current models of Jupiter’s atmosphere are
based on the assumption that the hydrogen transition to
the conducting state occurs at 150 [2] and 100 GPa [3].

The dynamic experiments on strong single and mul-
tiple compression of the initially liquid and gaseous
hydrogen [4–6] show that its transition to the conduct-
ing state occurs at 40–140 GPa for a density of 0.4–
0.7 g/cm3 and testify to the strong influence of temper-
ature on this process. Consideration of this transition of
Jupiter’s atmosphere in [2, 4], where the presence of
helium was ignored, overestimated the transition pres-
sure, because helium is a source of additional heat in
the mixture, as compared to pure hydrogen under adia-
batic compression.

Experimental study of the condition for pressure-
induced helium ionization under multiple shock com-
pression [7] shows that helium undergoes transition to
the conducting state at a pressure above 0.7 g/cm3 at
temperatures of 15–40 kK realized in these experi-
0021-3640/04/7901- $26.00 © 20006
ments. This circumstance enables one to assume that,
with allowance for the additional helium-induced heat-
ing of the mixture, compared to pure hydrogen, the
behavior of Jupiter’s atmosphere at lower densities and
temperatures is primarily determined by hydrogen.
Calculations [5, 7] show that multiple shock compres-
sion is isentropic within the experimental accuracy
when the third and the sequential waves pass through
the compressed layer. In this case, at most two discrete
matter states are realized in the compressed layer, and
only a single state exists at times of reflection from the
layer boundaries. By the action of two passing waves,
the initial mixture can be carried to a state on Jupiter’s
isentrope, after which the behavior diagnostics
becomes possible for higher discrete compression
parameters.

In this paper, we report the experimental results on
the conduction transition of a hydrogen–helium mix-
ture with Y = 0.245 ± 0.015 (for the mixture supplied by
the AGA-BKZ firm), which is close to the value mea-
sured by Galileo, under multiple shock compression up
to 130–160 GPa in the plane geometry. Figure 1 shows
the P–T diagrams obtained by the thermodynamic sim-
ulation of the behavior of Jupiter’s atmosphere, helium,
and hydrogen according to [3, 4], together with the cal-
culations of state trajectories for multiple shock com-
pression in the experiments.

The fluid-dynamic simulation was carried out using
the equation of state constructed for the mixture simi-
larly to [8]. The interaction potential for hydrogen and
helium atoms was taken from [8, 9]. The H2–He inter-
004 MAIK “Nauka/Interperiodica”
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action potential was experimentally determined in [10].
The parameters of the H2–He interaction potential were
taken as averages of the respective parameters of the
H2–H2 and He–He interaction potentials according to
[11]. The interaction potentials were taken in the fol-
lowing form modified with respect to the standard
exp-6 potential:

In contrast to the standard exp-6 potential, this formula
includes the parameter θ. It is necessary because the
interaction potential for helium does not include long-
range attraction. Table 1 presents the parameters of the
interaction potentials used in this work.

The calculated interaction potentials and their com-
parison with the corresponding experimental data are
shown in Fig. 2.

The dissociation of hydrogen atoms was taken into
account according to the model proposed in [12] by the
formula

According to the known cold curves for molecular and
atomic hydrogen, the decrease in the ionization poten-
tial as a function of density can be described by the
parameters a0 = 4.735, a1 = 0.013, a2 = 0.00732, and V0

= 11.13055 cm3/mol. The degree of hydrogen dissocia-
tion in the mixture was calculated under the assumption
that the dissociation potential depends not on the den-
sity but on the average number of atoms per unit vol-
ume.

Figure 1 shows that Jupiter’s isentrope determined
here agrees well with similar calculations by Hubbard
et al. [13] and that the calculations according to [4]
show no decrease in temperature in the dissociation
process.

The experimental procedure for simultaneous mea-
surement of the compression parameters and resistance
of the compressed layer was similar to [7]. To initiate
the compression process, 1.5-mm-thick 321-H-steel
plates 30 mm in diameter were accelerated to 5.6 km/s
by the detonation products of cylindrical condensed
explosive charges in the process of face throwing. To
accelerate a 1.5-mm-thick steel plate to a velocity of
6.2 km/s, a 4.5-mm-thick steel plate 40 mm in diameter
was accelerated to 4.7 km/s by the detonation products
and a 6-mm-thick PMMA layer was placed ahead of the
thin steel plate. The initial temperature of the mixture
was controlled by a platinum resistance thermometer
and was equal, within an accuracy of 2 K, to 77.4 K,
i.e., to the temperature of liquid nitrogen used for cool-
ing. Based on the preliminary one-dimensional fluid-
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dynamic simulation of the experiment, the initial pres-
sure was taken to be 4 and 5.6 MPa for the low plate
velocity and 8.1 MPa for the high velocity. Resistance
was measured by the schemes with one and two mea-
suring electrodes [7, 14]. In a 5-mm-thick optical-qual-
ity sapphire disk 20 mm in diameter (produced at the
Monokristal synthetic-corundum factory in Stavropol),
holes 0.45–0.8 mm in diameter were drilled at the ver-
tices of an equilateral triangle with a side of 3.8 mm and
were filled with indium. The measuring electrodes were
situated on the disk axis. A diaphragmed quartz–quartz
optical fiber with a diameter of 0.4 mm was situated on
the outer side of the sapphire window between elec-
trodes 2–3 mm from its axis. A silver-plated steel wire,

Fig. 1. The adiabat P–T diagrams of Jupiter’s atmosphere
beginning from a pressure of 0.1 MPa and a temperature of
165 K, as calculated according to (1) [3], (2) [4], and (3) this
work; the corresponding diagrams for (4) hydrogen and
(5) helium; and (6, 7) the state trajectories of multiple shock
compression.

Table 1

α ra (Å) W (Å) θ

H2–He 24.53 11.05 3.19865 1.137827 0.5

He–He 16.53 11 2.9673 0 0

H2–H2 36.4 11.1 3.43 1.45855 1
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which had a diameter of 0.3 mm and jutted out of the
internal sapphire surface by 1.2 mm, was pressed into
the indium ground electrode with a diameter of
0.8 mm. Such a construction of the measuring cell
reduces its inductance to 5–10 nH.

Figure 3 shows the experimental records of the
resistance of the compressed layer, level of conduc-
tance, and brightness temperature measured by the
three-electrode scheme for a striker velocity of 6.2 km/s
and the straight lines indicate the times of shock wave
reflection from the layer boundaries. The measured
temperature is compared with the calculations of the
temperatures of generated states by a one-dimensional
fluid-dynamic code using the equation of state for the
mixture. We took 200 cells for the compressed layer.
The shown time dependence of temperature for the
10th and 190th points of the compressed layer shows a
good agreement between the observed and calculated
times of shock wave reflection from the layer bound-
aries. The calculated parameters of states behind the
shock waves are presented in Table 2.

Fig. 2. Effective pair potentials of the (1) He–He, (2) H2–H2,
(3) H2–He, and (4) H2–He interaction according to [10].

r (Å)
Using three electrodes to measure the resistance of
the compressed layer, we were able to determine the
final conductance (Σ) of the mixture at high pressures
and find the boundary of atmosphere transition to the
conducting state using only electrical measurements.
Even after the third shock wave, the detected conduc-
tance was equal to 0.41 Ω–1 cm–1 (P = 26.5 GPa, ρ =
0.365 g/cm3, T = 4380 K, Fig. 3). After the passage of
the fourth shock wave, the conductance increases by
two orders of magnitude to 55 Ω–1 cm–1 (P = 51.7 GPa,
ρ = 0.494 g/cm3, T = 4940 K). Taking account of the
inductance effect increases this value threefold. Further
compression to 0.8 g/cm3 only doubles the conduc-
tance.

Thus, the above measurements show that the transi-
tion of Jupiter’s atmosphere to the conducting state
occurs at pressures of 25–50 GPa. This value agrees
with the previously determined transition boundary for
the initially gaseous hydrogen to the conducting state
under multiple shock compression [5]. In future exper-
iments, we plan to extend the ranges of the initial mix-

Fig. 3. Experimental records and simulations for the exper-
iment with the mixture (mHe/  = 0.24): (1, 2) voltage at

the electrodes, (3) the resulting voltage at the sample,
(4) recalculation of the mixture conductance (right axis),
(5) measured temperature (right axis), and calculation of the
mixture temperature in the (6) first and (7) last cells.

mH2

r (Å)
Table 2

No. 0 1 2 3 4 5 6 7 12

ρ, g/cm3 0.0291 0.110 0.23 0.365 0.494 0.603 0.68 0.737 0.831

P, GPa 0.0081 1.57 9.03 26.5 51.7 80 104.4 124.6 164

T, K 77.4 1845 3320 4380 4940 5020 5205 5380 5690

U, mV 1025.2 1013 336.9 208.9 168.9 128.9 104.9

R, Ω 43 0.254 0.133 0.102 0.0756 0.059

L, mm 4.938 0.394 0.291 0.238 0.211 0.195 0.173

ρ, Ω cm 2.577 0.018 0.010 0.0084 0.0063 0.0052

Σ, Ω–1 cm–1 0.388 55.05 96.87 118.9 158.5 194
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ture densities and velocities of incident strikers to more
accurately determine the Σ–p dependence in Jupiter’s
isentrope.
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