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Abstract—A study of the phonon spectra of Bi2Sr2Ca1 – xNdxCu2Oδ solid solutions (x = 0.1, 0.25, 0.75) by
inelastic neutron scattering on a DIN-2PI forward-scattering spectrometer is reported. As the Nd content
increases, the frequency of the Cu–O stretching vibrational modes increases (by about 70 meV), an effect
caused by a change in carrier concentration in the CuO2 sheet and not depending on the “internal pressure.” An
analysis of the displacement of the peak near 11 meV (assigned to cation vibrations in the SrO sheet of the
Bi2Sr2CaCu2O8 structure) suggests that a sizable part of the Nd atoms occupy Sr positions. © 2000 MAIK
“Nauka/Interperiodica”.
Bi2Sr2CaCu2O8-based high-temperature supercon-
ductors (Bi2212) belong to materials that are most
promising from the viewpoint of possible applications.
Investigations of the microscopic properties of such
superconductors with heterovalent substitution at vari-
ous sites greatly contribute to our understanding of the
mechanism of superconductivity and of the modifica-
tion of their electrophysical properties (such as Tc, Jc,
room-temperature electrical conductivity, etc.). Of con-
siderable interest is the substitution of various rare-
earth elements for Ca and Sr. This substitution can be
carried out within a very broad range and results in the
reduction of copper [1, 2], which is accompanied by a
decrease in the superconducting transition temperature
and the metal–semiconductor transition.

The part played by electron–phonon coupling in the
HTSC mechanism remains an open issue. Therefore, an
investigation of the variation of the phonon density of
states in HTSC compounds, more specifically, in
Bi2212, in the course of varying their electrophysical
properties appears to be promising. Presently, there are
very few studies of the changes in the phonon spectrum
incurred by heterovalent substitution in Bi2212 com-
pounds [3, 4]. Only Bi2Sr2Ca1 – xYxCu2Oδ solid solu-
tions have been investigated up until recently. The
observed changes in the phonon spectrum are associ-
ated [4] with the simultaneous action of the change in
carrier concentration caused by copper reduction and
the “internal pressure” arising from the difference
between the ionic radii of Ca and Y. We believe that an
attempt at separating the impacts of these two factors
on phonon spectrum modification would be of interest.
The “internal pressure” effect can be excluded by using
a RE element with an ionic radius close to that of cal-
1063-7834/00/4209- $20.00 © 21579
cium, for instance, Nd, for Ca replacement. Thus, the
purpose of this study is to reveal the key factor in the
phonon spectrum variation by investigating the lattice
dynamics of Bi2Sr2Ca1 – xNdxCu2Oδ solid solutions
while varying the Nd content.

1. EXPERIMENTAL TECHNIQUE 
AND DATA TREATMENT

Bi2Sr2Ca1 – xNdxCu2Oδ samples (x = 0.1, 0.25, 0.75)
were prepared from nitrate–oxynitrate mixtures
obtained by dissolving ChDA-grade Bi2O3, SrCO3, and
CuO, and OSCh-grade CaCO3 and Nd2O3 in 20% nitric
acid, with subsequent evaporation of the solution. The
sample preparation included decomposition of the salt
mixture at 750°C and several (two or three) subsequent
stages of annealing at 860°C for 24 h each, with inter-
mediate grinding. All the anneals were performed in
air.

X-ray diffraction analysis of the samples on a
DRON-3M diffractometer (CuKα radiation, with sili-
con used as the internal standard to determine the cell
parameters) showed that they are similar in composi-
tion to Bi2Sr2CaCu2O8-based solid solutions. The unit
cell parameters refined by least-squares fitting are listed
in Table 1. The figures demonstrate a monotonic varia-
tion of the parameters that is in accordance with the lit-
erature data [5, 6], which is evidence in favor of the for-
mation of solid solutions.

The inelastic neutron-scattering experiments were
performed on a DIN-2PI forward-scattering spectrom-
eter installed at the IBR-2 reactor (JINR, Dubna) [7].
The spectra were measured at room temperature in the
time-of-flight regime at energy E within a scattering
000 MAIK “Nauka/Interperiodica”



 

1580

        

KNOT’KO 

 

et al

 

.

                                                                                     
113.69°

123.94°

80.94°

42.78°

37.93°

33.08°

72

42
27 18

14

50 100 150 200 250 300 350 400
Channel

Intensity, arb. units
350

300

250

200

150

100

50

0

Fig. 1. Inelastic neutron scattering spectra obtained on a Bi2Sr2Ca0.9Nd0.1Cu2Oy sample for different scattering angles. The arrows
identify the main spectral features and the corresponding values of E (meV).
angle range of 10–134°, the initial neutron energy
being E0 = 8.15 meV. The spectrometer resolution in
the energy transfer region ε = E – E0 = 0–80 meV was
∆E/E ≈ 5–8%. The spectra were normalized against the
vanadium elastic peak.

Because the samples studied contained a paramag-
netic ion (Nd3+), an estimate was made of the contribu-
tions due to magnetic and phonon inelastic neutron
scattering from the angular dependence of the scattered
intensity. Figure 1 presents spectra of an x = 0.1 sample
obtained by detectors probing different scattering
angles. For scattering angles less than 42°, one
observes a considerable neutron flux with energies E =
65–1980 meV (channels 100–200), which corresponds
to the thermal background, and therefore, subsequent
analysis was done using data obtained at scattering
angles above 42°. For scattering angles θ from 42 to
134°, the momentum transferred to a neutron lies
within the range Q = 1.8–4.2 Å–1 for ε = 6 meV and Q =
5.2–8 Å–1 for ε = 80 meV. It can be expected that the
magnetic form factor is already small for Q ≈ 2 Å–1, so
that magnetic scattering should not noticeably contrib-

Table 1.  Parameters of the orthorhombic unit cell of
Bi2Sr2Ca1 – xNdxCu2Oδ solid solutions (x = 0.1, 0.25, 0.75) (Å)

Composition x = 0.1 x = 0.25 x = 0.75

a 5.418(3) 5.425(3) 5.465(3)

b 5.418(3) 5.425(3) 5.465(3)

c 30.75(4) 30.68(4) 30.46(2)
P

ute to the spectrum of inelastically scattered neutrons
(ISN) for θ > 40°. Indeed, as seen from Fig. 1, for
angles above 40°, one observes a monotonic growth of
the ISN intensity with an increasing scattering angle in
the energy transfer region ε = 1.5–100 meV (channels
175–400), which is evidence of the nonmagnetic char-
acter of the scattering. This angular dependence of the
inelastically scattered intensity shows that the spectra
obtained for θ > 40° are primarily due to scattering
from phonons.

After introducing standard corrections for detector
efficiency and neutron flux attenuation by the sample,
the ISN spectra taken in the 42–134° scattering-angle
range were treated to obtain a generalized frequency
spectrum G(ε) in the incoherent approximation [8]. The
generalized spectrum is the lattice frequency spectrum

weighted by the factor /mi, where σi, mi,

and  are the scattering cross section, mass,
and mean squared polarization vectors of the ith atom,
respectively. Multiphonon scattering was taken into
account in Sjolandar’s approximation [9]. Multiple
scattering was neglected, because sample transmission
for scattered neutrons did not exceed 10%.

The generalized frequency spectra averaged over
measurements on all detectors within the 42–134° scat-
tering angle range are shown in Fig. 2 for samples with
x = 0.1, 0.25, and 0.75; also presented for comparison
is a spectrum of unsubstituted Bi2212 obtained in [3].
To make a numerical estimation of the differences in
phonon density-of-states spectra among the samples
with different Nd concentrations, the low-frequency

σi ξ i ε( ) 2〈 〉∑
ξ i ε( ) 2〈 〉
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Fig. 2. Generalized frequency spectra G(ε) of the Bi2Sr2Ca1 – xNdxCu2Oδ solid solutions (x: 1—0.75, 2—0.25, 3—0.1) obtained for
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(ε < 50 meV) part of these spectra was approximated by
a superposition of Gaussians:

(1)

where I is the intensity; ε is the energy; and A, w, and εc

are the parameters. After subtraction of the sum of the
functions describing the low-frequency part, the func-
tions of Eq. (1) were used to fit the high-frequency part
of the spectra. The parameters of the Gaussians are
listed in Table 2 for all samples, and the functions
describing the generalized frequency spectrum of the
x = 0.75 sample are plotted in Fig. 2.

2. RESULTS AND DISCUSSION

A comparison of our spectra with the results
quoted in [3, 10–12] for the solid solutions of
Bi2Sr2Ca1 − xYxCu2Oδ and unsubstituted Bi2Sr2CaCu2O8
shows that peak 1 relates to vibrations of Bi atoms;
peak 4, to those of Cu and cations in the Ca sheet;
peak 5 is a superposition of Cu vibrations and several
types of oxygen vibrations; peak 6 is due to oxygen
vibrations in the SrO sheet; and peak 7 originates from
those in the CuO2 sheet (peaks 6 and 7 were assigned
according to [3]; the authors of [10] attributed the peak
near 60 meV to O vibrations in the CuO2 sheet and that
near 75 meV, to those in the SrO sheet). While peaks 2
and 3 are assigned in [3] to Sr and Cu vibrations, exper-
imental determination of the partial spectrum of Cu
vibrations [12] in Bi1.8Pb0.2Sr2Ca1.1Cu2.1Oδ made by the

I A w π 2⁄( )1/2( ) 2 ε εc–( ) w⁄–( )2,exp⁄=
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
isotope contrast technique (63Cu and 65Cu) showed that
copper vibrations lie higher in frequency (the two broad
peaks near 20 and 35 meV). One can conclude that
peaks 2 and 3 are related to the vibrations of cations (Sr,
Nd, and Ca) in the SrO sheet, while the Cu vibrations
contribute to peaks 4 and 5. As seen from Table 2, as the
Nd content increases from x = 0.1 to 0.75, peak 6
increases in integrated intensity compared to peak 7,
with the centroids of these peaks shifting toward higher
frequencies. Substitution of Y for Ca in this structure
was observed [3] to shift the 60-meV peak toward
lower energies and the 75-meV peak, toward higher
energies, with these changes happening due to a metal–
semiconductor transition occurring with increasing Y
concentration. Note that, in the case of Y being substi-
tuted for Ca, the observed shifts could be assigned to a
change in the charge of the CuO2 sheet, because both
the copper reduction and the internal pressure are due
to the difference between the ionic radii of Ca2+ and Y3+

[4] (1.26 and 1.10 Å, respectively [13]); but when Nd
substitutes for Ca (the ionic radius of Nd3+ is 1.25 Å),
there is practically a zero internal pressure effect and
hence, the observed changes in the spectrum are
accounted for by the change in the state of copper oxida-
tion, which is responsible for the metal–semiconductor
transition. A comparison of the changes in the phonon
spectrum observed with increasing Y [3] and Nd con-
tents suggests that the main reason for the change of the
part of the spectrum associated with O vibrations in the
CuO2 sheet in the case of Y being substituted for Ca is
0
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Table 2.  Parameters of the Gaussians of Eq. (1) whose superposition fits the generalized frequency spectra obtained for the
compounds under study

Composition Parameters 1 2 3 4 5 6 7

x = 0.1 εc (meV) 6.25 9.91 12.7 19.4 34.8 59.0 74.5

w (meV) 2.87 2.30 3.37 8.27 19.4 13.6 14.8

A (a.u.) 20.7 23.3 27.0 164 512 120 162

x = 0.25 εc (meV) 5.93 10.8 19.0 34.3 53.2 70.4

w (meV) 2.35 4.48 7.89 21.2 8.93 16.7

A (a.u.) 14.2 51.2 153 557 50.7 176

x = 0.75 εc (meV) 5.93 11.7 19.7 34.8 65.2 83.3

w (meV) 2.27 6.05 6.83 21.1 17.9 8.87

A (a.u.) 8.38 71.5 136 522 196 71.1

Table 3.  Estimates of the Sr, Ca, and Nd distributions over the sites of the alkaline-earth elements in the Bi2Sr2Ca1 – xNdxCu2Oδ
solid solutions [6]

Substitution Sr(1) Ca(1) Nd(1) Sr(2) Ca(2) Nd(2)

x = 0.1 1.66 0.26 0.08 0.34 0.64 0.02

x = 0.75 1.52 0.10 0.38 0.48 0.15 0.37

Note: E(1) corresponds to the occupancy of Sr sites, E(2) corresponds to that of Ca sites, and the data presented for the x = 0.75 composi-
tion were obtained based on the conclusion [6] that Nd is equally distributed over Ca and Sr sites at high Nd concentrations.
also the change in the copper oxidation state. The dif-
ferences in the shift of the peak responsible for the
O vibrations in the SrO sheet can be due to a sizable
amount of Nd being present in this sheet, while in the
case of Y substitution, it is observed to localize in the
Ca sheet, which is caused by the difference between
the Nd3+ and Y3+ ionic radii. The observed changes in
the relative peak intensities can be discussed using the
estimates of cation distribution over crystallographic
sites made in [6] from Rietveld analysis (Table 3) and
the values of σ/m for Ca, Sr, and Nd, namely, 0.073,
0.070, and 0.111 barn/amu, respectively. An increase in
the Nd content gives rise to a certain decrease (from 16
to 14% for x = 0.1 and 0.75) in the relative integrated
intensity of peak 4. At the same time, according to a
calculation, there is a slight increase in the scattering
intensity in the Ca sheet (by 3.0% for x = 0.1 and 3.5%
for x = 0.75), and one can conclude that the dominant
contribution to the observed effect comes from the
change in the state of copper oxidation.

A similar calculation made for peaks 2 and 3 yields
an increase in integrated intensity with increasing Nd
content (by 5.9% for x = 0.1, and 6.3% for x = 0.75);
this change in intensity agrees with the one observed
experimentally, although the latter is slightly larger in
magnitude than the calculated value. As the copper oxi-
dation state decreases without the occurrence of the
metal–semiconductor transition (with the Nd content
increasing from x = 0.1 to x = 0.25), the observed
changes in the positions of the peaks associated with
P

atomic vibrations in the CuO2 sheet are seen to be
opposite in sign to those obtained as x is increased from
0.1 to 0.75, which also suggests a change in the fraction
of metallic bonding with variation of the carrier con-
centration in the CuO2 sheet as the major reason for the
observed changes in the vibration frequencies of the
above atoms.

We also note with interest the change in the position
of peaks 2 and 3. With Y substituted for Ca, no change
in the position of this peak was observed [3], whereas
substitution of Nd for Ca in the x = 0.1 composition
produced two peaks, which merged with increasing Nd
content into one peak with a substantially larger width
(Table 2). Fitting the sum of peaks 2 and 3 with the
Gaussian of Eq. (1) for the x = 0.1 sample yields εc =
11.2 meV, w = 4.18 meV, and A = 50.3. The change in
the vibrational frequency in the SrO sheet can be asso-
ciated with the substantial replacement of Sr by Nd
here, whereas substitution of an RE for an alkaline-
earth element in the Bi2Sr2CaCu2O8 structure was
found in most publications to be crystallographically
selective (see, e.g., [5, 14]), with the actual location of
the RE ion in the structure being determined on the
basis of its ionic radius. The Rietveld refinement proce-
dure applied to x-ray diffraction profiles [6] provided a
qualitative estimate for the site distribution of Ca, Sr,
and Nd ions in these solid solutions, with Nd found in
considerable amounts in the SrO sheet. However, the
applicability of x-ray diffraction for this purpose is very
limited, because the atomic scattering factors for the
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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Sr atom and the 0.45Nd + 0.55Ca system are similar.
The cation distributions (Table 3) obtained in [6] were
used to make an approximate calculation of the vibra-
tion frequency ratio of cations in the SrO sheet for the
Nd contents x = 0.1 (ω1) and x = 0.75 (ω2) from the
expression

(2)

where ω is the vibration frequency; Z = Z(Nd)α +
Z(Sr)(1 – α), with Z(Nd) and Z(Sr) being the charges of
the Nd3+ and Sr2+ ions, respectively; µ = αm(Nd) +
βm(Ca) + (1 – α – β)m(Sr); α is the fraction of Nd
atoms occupying Sr sites; β is that of Ca atoms at the Sr
sites; and m(Nd), m(Sr), and m(Ca) are the atomic
masses of Nd, Sr, and Ca, respectively. This expression
was derived within the model of atoms vibrating in a
rigid-crystal field under the assumption that the inter-
atomic interaction force in a predominantly ionic crys-
tal is proportional to the average cation charge ((1 – α –
β)Sr2+ + βCa2+ + αNd3+) at a constant anion charge (O2–).
For x1 = 0.1 and x2 = 0.75, the ω1/ω2 ratio was calcu-
lated to be 0.967, while the value extracted from the
G(ε) spectra obtained is 0.951, which, considering the
inaccuracies present in both the calculational model
employed and the Nd distribution data, can be regarded
as a satisfactory agreement in support of the assump-
tion that a substantial fraction of Nd is present in the
SrO sheet.

To sum up, phonon spectra of the
Bi2Sr2Ca1 − xNdxCu2Oδ solid solutions have been mea-
sured by inelastic neutron scattering.

The neutron diffraction data were found not to contra-
dict the assumption that a considerable fraction of the Nd
introduced in large concentrations in Bi2Sr2CaCu2O8
occupies Sr sites.

It has been shown that the part of the phonon spec-
trum associated with Cu–O vibrations (ε ≥ 50 meV)
reveals a shift toward higher frequencies with increas-
ing Nd content accompanied by an increase in the spec-
trum cutoff (from 74 to 85 meV for the Nd content per
formula unit increasing from 0.1 to 0.75) because of the
ionic radii of Ca2+ and Nd3+ being similar. The observed
changes may be considered as being due to a change in
the copper oxidation state rather than resulting from the
internal pressure effect. Because there was a similar
change in the high-frequency part of the spectrum in
the case of Y substituted for Ca [3], the conclusion was
drawn that the observed changes are also accounted for
here by a change in the state of copper oxidation.

ω1 ω2⁄ Z1µ2( ) Z2µ1( )⁄( )1/2,=
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Abstract—The magnetic structure of a solitary oscillating Abrikosov vortex in a magnetic superconductor is
investigated. It is shown that the process of the vortex motion in the presence of the magnetic subsystem sub-
stantially modifies the shape of the vortex, with the result that there appears an “inverted forerunning” in
front of the vortex and an “inverted wake” behind it that is far from its center. © 2000 MAIK “Nauka/Inter-
periodica”.
1. There is a wide range of magnetic superconduc-
tors exhibiting new unique properties [1–3]. In addition
to triple compounds [4], magnetism and superconduc-
tivity were found to coexist in HTSC compounds such
as REBaCuO, RECuO, and others, where RE signifies
a rare-earth ion. A strong antiferromagnetic correlation
of copper spins in CuO2 planes in the superconducting
state is one of the main features of HTSC materials [5].

An external magnetic field penetrates into magnetic
superconductors of the second kind in the form of Abri-
kosov vortices [6] and causes the magnetic-subsystem
magnetization around the normal core of a vortex over
distances on the order of at least the London field-pen-
etration depth λ. A sufficiently large alternating current
flowing through a superconductor in the mixed state
provokes oscillations of Abrikosov vortices [7]. More-
over, microwave radiation of a sufficiently large power
can also cause harmonic oscillations of a set of Abriko-
sov vortices.

In [8], the magnetic structure of an isolated Abriko-
sov vortex moving slowly and uniformly in a bulk mag-
netic superconductor was investigated and the phenom-
enon of the “inverted wake” far behind the vortex was
predicted.

It is of interest to examine the magnetic field distri-
bution of a vortex for other kinds of motion that differ
from slow and uniform motions. We note that an anal-
ysis of the magnetic structure of a solitary Abrikosov
vortex that executes harmonic oscillations in a mag-
netic superconductor had not yet performed.

In this paper, we investigate the magnetic field of an
oscillating solitary Abrikosov vortex in a bulk magnetic
superconductor, whose thickness d0 in the direction of
the vortex magnetic field is much larger than the Lon-
don penetration depth λ It is shown that, within the
1063-7834/00/4209- $20.00 © 1584
thickness of the superconductor (far from its surface),
the process of oscillations in the presence of the mag-
netic subsystem substantially deforms the vortex, caus-
ing new effects—the “inverted forerunning” in front of
the vortex and (predicted in [8]) the “inverted wake”
behind it that is far from its center.

We note the essential difference in the behavior of
the magnetic field of the Abrikosov vortex in uniform
motion [8] and in harmonic oscillations. In the first
case, the field distribution, featured with the inverted
wake, is stationary and does not depend on time, while
in the second case the structure of both the inverted
forerunning and the inverted wake is nonstationary and
its variations during a period of oscillations are essen-
tial.

2. We will assume the interaction between conduc-
tion electrons and the magnetic subsystem to be of an
electromagnetic (dipole) nature and neglect the spin–
spin exchange interaction. In the London approxima-
tion, where the condition λ @ ξ is fulfilled (ξ is the
correlation length), the structure of the vortex core
can be ignored. We will consider the interval of mag-
netic fields Hc1 < B ! Hc2, where Hc1 and Hc2 are the
lower and upper critical fields of the superconductor,
respectively. Therefore, considering isolated vortices,
we actually assume that, in a very sparse mixed state,
the distance between them is subject to the inequality
d @ λ.

As in [9, 10], in order to describe an isolated vortex,
we will start from the Maxwell equations for the elec-
tric field E(r, t) and magnetic induction B(r, t) =
curl A(r, t) [A(r, t) is the vector potential]. The mag-
netic induction equals the sum of the magnetic field
H(r, t) produced by the persistent current j(r, t) and
2000 MAIK “Nauka/Interperiodica”



        

INVERTED FORERUNNING AND WAKE OF THE SOLITARY 1585

                                                                                                                 
of the magnetization M(r, t),

(1)

A relation between the current, potential, and the
phase of the order parameter Θ(r, t) (with London’s
gauge of the potential divA(r, t) = 0) is given by the
expression [9]

(2)

where Φ0 is the magnetic flux quantum. The phase of
the order parameter is subject to the condition

(3)

where z0 is the unit vector (along the Z axis) of the mag-
netic field of the vortex located at the point r0(t) and
δ(r) is the Dirac delta function. Using Eq. (2) for the
current and Eq. (3) for the source and eliminating the
electric field E(r, t) between Eqs. (1), we obtain the
specific equation describing the distribution of the
magnetic field of an isolated Abrikosov vortex in a
magnetic superconductor

(4)

where, for the oscillating vortex, we have taken r0(t) =
a0sinΩ0t, with a0 and Ω0 being the amplitude and fre-
quency of the harmonic oscillations, respectively.

The only difference in Eq. (4) from the correspond-
ing equation for an isotropic nonmagnetic supercon-
ductor [11, 12] lies in the substitution B(r, t) 
B(r, t) – 4πM(r, t) = H(r, t) for the curl argument. We
note that, for fields of the class H(r, t) = z0H(x, y, t), not
only does divB(r, t) = 0, but divH(r, t) = 0.

In the kinematic approach used here, it is assumed
that, for the Abrikosov vortex, the dynamic equations
have already been solved, and we deal with the class of
solutions that describe the forced harmonic oscillations
of the isolated vortex filament about the equilibrium
position.

As it was first noted in [13], the vortex motion is
caused by the Lorentz force exerted by the superfluid
component of the current. When studying the dynamics
of the moving vortex, account must be taken of dissipa-
tive processes such as (1) the mechanism of the Joule
heating of normal excitations near the filament center
[7]; (2) the mechanism associated with nonuniformity
of the order parameter of the vortex, namely, the mech-
anism of the parameter relaxation, when the vortex
passes a given point in the superconductor [7]; and (3)
the magnetic mechanism of dissipation due to magnetic
polarization of the medium by the field of the moving
vortex [14].

curlB r t,( ) 4πc 1– j r t,( )=

+ 4πcurlM r t,( ) c 1– ∂E r t,( ) ∂t,⁄+

curlE r t,( ) c1∂B r t,( ) ∂t.⁄–=

j r t,( ) c 4πλ2⁄( ) Φ0 2π⁄( )∇ Θ r t,( ) A r t,( )–[ ] ,=

curl∇ Θ r t,( ) 2πz0δ r r0 t( )–( ),=

λ2curlcurlH r t,( ) λ2c 2– ∂2 ∂t2⁄ 1+( )B r t,( )+

=  z0Φ0δ r a0 Ω0tsin–( ),
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In real superconductors, the situation is much more
complex due to pinning forces; therefore, pure har-
monic oscillations of the very sparse vortex lattice
would be realized only at a sufficiently large value of
the alternating (oscillating) current flowing through the
specimen, when the influence of pinning centers can be
neglected.

In the very sparse mixed state, the density of vorti-
ces is small and the spacing between them, as we have
already noted, satisfies the inequality d @ λ. In this
case, there is no transport current in the bulk of the
superconductor (due to the Meissner effect), and all
current flows only through skin layers near the bound-
aries. It is in these skin layers that the vortex experi-
ences the Lorentz force. Because of the continuity of
the vortex filament along the Z axis far from the bound-
aries in the bulk of the superconductor, the vortex will
oscillate harmonically and its motion can be considered
as two dimensional.

It should be noted that in principle, the vortex defor-
mation in the mixed state of the superconductor is also
of importance [15]. However, in the very sparse mixed
state under consideration, this deformation is small
because of a low vortex concentration and it will have
only slight effects, both qualitative and quantitative, on
the phenomena of the inverted forerunning and the
wake of the oscillating Abrikosov vortex.

3. Taking the two-dimensional Fourier transform in
the XY-plane, orthogonal to the vortex, Eq. (4) for the
magnetic field is reduced to the form

(5)

where k = (kx, ky) and k = (  + )
1/2

.

Using the expansion of the exponential function in
terms of the Bessel functions of the integer order Jn(x)
[16]

(6)

and taking the Fourier transform in time, Eq. (5) is
reduced to an algebraic equation which has the follow-
ing solution:

(7)

k2λ2H k t,( ) λ2c 2– ∂2 ∂t2⁄ 1+( )B k t,( )+

=  z0Φ0 ika0 Ω0tsin–( ),exp

kx
2 ky

2

ika0 Ω0tsin–( )exp  = ka0 Ω0tsin( ) i ka0Ω0t( )sin–cos

=  J0 ka0( ) 2 J2m ka0( ) 2mΩ0t( )cos
m 1=

∞

∑+

– i2 J2m 1+ ka0( ) 2m 1+( )Ω0t[ ]sin
m 0=

∞

∑

H r ω,( )
z0Φ0I k ω,( )

k2λ2 1  –  λ 2 ω 
2 c 

2– ( ) 1 4 πχ k ω,( ) + [ ] +
-------------------------------------------------------------------------------------------,=
0
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where the source spectral density has the form

(8)

and the magnetic susceptibility χ(k, ω) is defined by
the standard equation

(9)

Since λ @ a (a is the lattice constant of the crystal),
it is natural to describe the magnetic subsystem in the
hydrodynamic approximation. For the paramagnetic
temperature region, we have the following expression
for the susceptibility [17]:

(10)

where χ0 is the static magnetic susceptibility and the
spin diffusion coefficient for two-dimensional Heisen-
berg magnets is equal to D = (1/3)(2π)1/2Ja2[s(s + 1)]1/2

(J is the intralayer exchange parameter, s is the spin) [18].
In the strict sense, a superconducting current

screens the long-wavelength part of the exchange and
electromagnetic interactions, renormalizing the param-
eters of the magnetic subsystem [19]. However, we will
not take this circumstance into account, restricting our
consideration to the paramagnetic temperature interval
and making only order-of-magnitude estimates of the
phenomenon.

From Eqs. (7) and (8), taking the inverse Fourier
transform in frequency, we find the time dependence of
the Fourier components of the vortex magnetic field:

(11)

(12)

(13)

I k ω,( ) 2π J0 ka0( )δ ω( ) J2m ka0( )
m 1=

∞

∑+




=

× δ ω 2mΩ0+( ) δ ω 2mΩ0–( )+[ ]

– J2m 1+ ka0( )
m 0=

∞

∑

× δ ω 2m 1+( )Ω0+( ) δ ω 2m 1+( )Ω0–( )–[ ]




B k ω,( ) 1 4πχ k ω,( )+[ ]H k ω,( ).=

χ k ω,( ) χ1 k ω,( ) iχ2 k ω,( )+ i
χ0Dk2

ω iDk2+
----------------------,= =

H q t,( ) H0 q t,( ) H1 q t,( ),+=

H0 q t,( ) z0Φ0 1 4πχ0 q2+ +( ) 1–
=

× iqxa0λ
1– Ωτsin–( ),exp

H1 q t,( ) H1Re q t,( ) iH1Im q t,( ),–=

H1Re q t,( ) 2z0Φ0 J2m qxa0 λ⁄( )
m 1=

∞

∑=

×
F1 q τ m, ,( )
F2 q m,( )

-------------------------- 2mΩτ( )cos

1 4πχ0 q2+ +
---------------------------------– ,
P

                                           

(14)

where the functions F1, F2, F3, and F4 have the form

(15)

Here, the dimensionless quantities q = λk, Ω = Ω0λ/v0,
τ = tv0/λ, and β = (v0/c)2 have been introduced, with the
v0 = D/λ being the characteristic velocity; the X axis is
taken as the direction of the vortex oscillations.

Using Eqs. (11)–(15), we obtain an integral repre-
sentation for the distribution of the magnetic field of the
oscillating solitary Abrikosov vortex in the magnetic
superconductor

(16)

where K0 is the MacDonald function of the zeroth

order, λm = λ/  is the field penetration
depth renormalized by the magnetic subsystem, and
H1(r, t) is given by the expression

H1Im q t,( ) 2z0Φ0 J2m 1+ qxa0 λ⁄( )
m 1=

∞

∑=

×
F3 q τ m, ,( )
F4 q m,( )

-------------------------- 2m 1+( )Ωτ( )sin

1 4πχ0 q2+ +
------------------------------------------– ,

F1 q τ m, ,( ) 1 β 2mΩ( )2–[ ]{=

× 1 4πχ1 q 2mΩ,( )+[ ] q2+ } 2mΩτ( )cos

– 4π 1 β 2mΩ( )2–[ ]χ2 q 2mΩ,( ) 2mΩτ( ),sin

F2 q m,( )

=  1 β 2mΩ( )2–[ ] 1 4πχ1 q 2mΩ,( )+[ ] q2+{ } 2

+ 4π 1 β 2mΩ( )2–[ ]χ2 q 2mΩ,( ) } 2
,

F3 q τ m, ,( ) 1 β 2m 1+( )2Ω2–[ ]{=

× 1[ 4πχ1 q 2m 1+( )Ω,( ) ] q2 }+ + 2m 1+( )Ωτ( )sin

+ 4π 1 β 2m 1+( )2Ω2–[ ]χ2 q 2m 1+( )Ω,( )

× 2m 1+( )Ωτ( ),cos

F4 q m,( ) 1 β 2m 1+( )2Ω2–[ ]{=

× 1 4πχ1 q 2m 1+( )Ω,( )+[ ] q2+ } 2

+ 4π 1 β 2m 1+( )2Ω2–[ ]χ2 q 2m 1+( )Ω,( ){ } 2
.

H r t,( )
z0Φ0

2πλ2
------------K0 x a0 Ω0tsin–( )2 y2+ λm⁄( )=

+ H1 r t,( ),

1 4πχ0+( )

H1 r t,( ) H1S r t,( ) H1A r t,( )+=
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(17)

According to Eqs. (16) and (17), the dominant pos-
itive contribution to the magnetic field of the oscillating
Abrikosov vortex is determined by the MacDonald
function K0 centered at the variable point xC(t) =
a0sinΩ0t. However, the entire information about the
inverted forerunning and wake is contained in the
integrals of Eq. (17) H1S(r, t) and H1A(r, t), which are
centered at the origin of the XY plane. The function
H1S(r, t) is symmetrical with respect to both variables,
x and y, while the function H1A(r, t) is symmetrical with
respect to y and antisymmetrical with respect to x. We
are now in a position to elucidate how the inverted
regions of the magnetic field are formed on the X axis
(the direction of oscillations). This effect is most pro-

nounced at the time points tn ≈ ±nπ  (n = 0, 1, …),
when the centering point xC(tn) of the function K0 is
close to the origin. At these instants, the well-localized
function K0, being positive, falls off to zero rapidly. At
the same time, the functions H1S(r, t) and H1A(r, t),
being less localized than the function K0, can have both
positive and negative values. The inverted forerunning is
the superposition of the negative minimum of H1S(r, t)
and of the positive maximum of H1A(r, t), whereas the
inverted wake is the superposition of two negative min-
ima of these functions.

4. The typical value of χ0 for antiferromagnets is
10−3–10–5. The characteristic velocity v0 ∝  Jsa(a/λ) is
(λ/a) ∝  (102–103) times lower than the spin-wave veloc-
ity vs. For CuO2 layers, because of strong intralayer
exchange, the velocity of spin waves is rather high,
vs ∝  (0.5–1.3) × 107 cm/s [3], i.e., v0 ∝  104–105 cm/s.
We note that the experimentally observed maximal veloc-
ity of vortices is significantly lower, vA ≈ 6.6 × 103 cm/s
[20]. The maximum velocity of vortex oscillations V0 =
a0Ω0 is much lower than the relaxation rate of the mag-
netic subsystem, which is of the order of vs. Conse-
quently, in our case, the magnetic subsystem adjusts to
the field of the oscillating vortex instantaneously for all
practical purposes, with the result that the vortex field
is renormalized because of time and spatial dispersion
of the magnetic susceptibility, which leads to new phe-
nomena—the inverted foregoing in front of the vortex
and the inverted wake behind it far apart from its center.

Let us list the main features of the magnetic field of
the oscillating solitary Abrikosov vortex following
from the analytical and numerical calculations.

=  4
qx qydd

2πλ( )2
----------------- qxx λ⁄( ) qyy λ⁄( )H1Re q t,( )coscos

0

∞

∫
0

∞

∫

+ 4
qx qydd

2πλ( )2
----------------- qxx λ⁄( ) qyy λ⁄( )H1Im q t,( ).cossin

0

∞

∫
0

∞

∫

Ω0
1–
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(1) At a0 = 0 or Ω0 = 0, the field coincides with the
standard one with an accuracy to the “magnetic” renor-
malization of the penetration depth.

(2) At χ0 = 0, the field is similar to that of the oscil-
lating isolated vortex in a nonmagnetic superconductor,
where there is no forerunning or wake.

(3) As a rule, the vortex field is asymmetrical rela-
tive to the plane orthogonal to the direction of oscilla-
tions.

(4) The oscillating vortex has a shape flattened
along the Y axis.

(5) In the direction of the axis of oscillations X, there
is an inverted forerunning in front of the vortex and an
inverted wake behind it. Inside them, H < 0; i.e., the
magnetic field is oppositely directed to the total mag-
netic flux in the vortex z0Φ0.

(6) Inside the regions where H < 0, the field reaches
its minimal values.

(7) The value and the structure of the magnetic field
of the vortex as a whole and, particularly, of its inverted
forerunning and inverted wake vary markedly in time
during a period of oscillations.

(8) The stationary distribution of the vortex field
averaged over a period essentially differs from the stan-
dard one and is given by the integral

(18)

5. The numerical analysis showed that, at values of
χ0 ∝  10–3–10–4 (which is comparable to the susceptibil-
ity of the copper subsystem of HTSC materials), the
frequency Ω ∝  103, amplitude a0 = 5λ, and the param-
eter β ∝  10–10–10–12; the minima of the inverted-fore-
running and inverted-wake fields are symmetric about
the vortex center and are separated from it by the distance
r01, 2 ≈ 10λ at τ0 = π, with Hmin 1, 2 = H(r01, 2, τ0)2πλ2/Φ0 ∝
10−5−10–6. For χ0 ∝  10–2 (such values of the magnetic
susceptibility are typical of triple compounds, as well
as HTSC ones containing rare-earth ions, near the tem-
perature of the magnetic ordering TN ∝  1 K), Ω = 1,
a0 = 5λ, and τ = π; the distribution of the reduced
instantaneous magnetic vortex field H = 2πλ2H(x, 0,
τ = π)/Φ0 along the X axis (with respect to the variable
x/λ) has two minima at y = 0: at r01 ∝  7λ, we have the
field Hmin 1 ∝ − 2 × 10–3, which corresponds to the
inverted forerunning and, at r02 ∝  5λ, we have Hmin 2 ∝
–10–2, which corresponds to the inverted wake, as
shown in Fig.1. We note that, at Ω0τ = Ωτ = π, the vor-
tex moves to the left, and the maximum of its field

Hmean x y,( )
z0Φ0

2 πλ( )2
-----------------=

× ϕK0 x a0 ϕsin–( )2 y2+ /λm( ).d

π/2–

π/2

∫

0



1588 LOMTEV
–7 –5 –3 –1 1 3 5 7
0

2

4

6

8

10

1

2

3

4
5

x/λ

H

–3.0 –1.8 –0.6 0.6 1.8 3.0
0

2

4

6

8

10

1

2

3

4
5

y/λ

H

Fig. 2. Distribution of the reduced magnetic vortex field H =
2(πλ)2Hmean(x, 0)/Φ0, averaged over a period of oscilla-
tions, along the X axis with respect to the variable x/λ at y = 0
for five values of the amplitude of oscillations a0 = 0.1λ (1);
0.5λ (2); λ (3); 2λ (4); and 5λ (5).

Fig. 3. Distribution of the reduced magnetic vortex field H =
2(πλ)2Hmean(0, y)/Φ0, averaged over a period of oscilla-
tions, along Y axis with respect to the variable y/λ at x = 0 for
the same values of the amplitude of oscillations, as in Fig. 2.
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Fig. 1. Distribution of the reduced instantaneous magnetic
vortex field H = 2πλ2H(x, 0, τ = π)/Φ0 along the X axis with
respect to the variable x/λ at y = 0, with the minima corre-
sponding to the inverted forerunning on the left and to the
inverted wake on the right of its center.
passes the point x = 0 at this instant. The maximum
dimensionless field is of the order of 40 at this point.

According to Eq. (18), the distribution of the vortex
magnetic field, averaged over a period of oscillations,
depends on the amplitude a0; it is positive everywhere,
and essentially differs from the standard distribution of
the magnetic field of the motionless Abrikosov vortex.
Figures 2 and 3 show the stationary distribution of the
reduced magnetic vortex field Hmean(x, 0)2(πλ)2/Φ0
averaged over a period of oscillations along the X axis
(with respect to the variable x/λ) at y = 0, and Hmean(0,
y)2(πλ)2/Φ0 along the Y axis (with respect to the vari-
able y/λ) at x = 0, respectively, for five different values
of the amplitude of oscillations.

As is well known [21, 22], the inversion of the lon-
gitudinal component of the magnetic field results in the
attraction of the vortices to one another. Therefore,
because of the new phenomena of the inverted forerun-
ning and inverted wake, the oscillating vortices will be
aligned in chains, which can substantially affect the
operation of the memory devices based on the Abriko-
sov vortices.
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Abstract—Thin films of the Nd1 + xBa2 – xCu3Oy high-Tc superconductor (NBCO) with different neody-
mium/barium ratios have been obtained by laser ablative cosputtering of targets with different elemental com-
positions. The films with excess neodymium (x > 0) had a low surface particle density and were rough, but their
critical temperature decreased with increasing x. Conversely, barium-rich films (x < 0) exhibited independence
of the superconducting properties of the film composition, with an appreciable number of particles observed on
the surface. Substitution of Ba for Nd in NBCO thin films is apparently impeded, so that excess barium precip-
itates in the form of (Ba,Cu)Oz particles. The structure and superconducting properties of NBCO reveal a strong
dependence on the conditions of film saturation by oxygen. © 2000 MAIK “Nauka/Interperiodica”.
NdBa2Cu3Ox (NBCO) is a metal-oxide high-tem-
perature superconductor (HTSC) with a ReBa2Cu3Ox

structure (ReBCO), where Re stands for a rare-earth
element. This material has recently become a subject of
intensive studies as a substitute for the most widespread
compound of this structure, YBa2Cu3Ox (YBCO). The
critical temperature of NBCO is the highest recorded
among materials of the ReBCO structure and is 98 K
[1], with a value of 94 K having been reached in thin
films [2].

An essential role in the formation of the structure
in ReBCO materials is played by the ionic radius of
the rare-earth element, whose magnitude determines
the probability of Ba being replaced (ionic radius
0.142 nm) by a rare-earth element with the formation
of a Re1 + xBa2 – xCu3Oy solid solution or the exchange
of Ba and Re atoms giving rise to disorder in the Re/Ba
cation subsystem [3]. The yttrium ion, which has a rel-
atively small ionic radius (0.089 nm), does not form a
solid solution and disorder in the cation subsystem
becomes manifest only at high temperatures [4]. The
neodymium ion has the largest ionic radius among the
rare-earth elements forming ReBCO superconducting
compounds (0.0995 nm), which makes possible solid-
solution formation up to x = 0.7 [3].

Substitutions in the Nd/Ba cation subsystem have
been intensively studied from the time of the report on
the NBCO preparation [5–10]. Incorporation of a Nd3+

ion into the Ba2+ site results in the appearance in the
Cu–O chain plane of an additional oxygen ion, the
destruction of the chain order around it, and the forma-
tion of a tetragonal modification with an attendant
increase in the lattice constant c. The increase in the
1063-7834/00/4209- $20.00 © 21590
number of oxygen ions per unit cell reduces the hole
concentration and lowers the critical temperature.
These phenomena were observed to occur both in Nd
substitution for Ba [5–8] and in mutual rearrangement
(disorder) in the Nd/Ba cation subsystem [8–10]. How-
ever, optimization of the conditions of preparation of
Nd-rich films (x > 0) permitted a critical temperature
close to that obtained in films with x = 0 [11]. The
NBCO films had a remarkably smooth surface, which
is accounted for by the smaller effect of deviations from
stoichiometry, with the excess material becoming
incorporated into the solid solution rather than precipi-
tating in the form of foreign-phase particles. The crys-
tal structure of the films obtained also revealed an
extremely high quality, which is due to layer-by-layer
growth persisting up to thicknesses above 200 nm [11].
The effect of increasing the barium content in NBCO
thin films was studied [6–8], but the results obtained
were contradictory. This can apparently be attributed to
these studies not having been systematic enough; in
particular, no independent optimization of the deposi-
tion parameters for films of different elemental compo-
sition was carried out.

The purpose of this work was to investigate the
effect of substitutions in the Nd/Ba cation subsystem on
the properties of films with different neodymium and
barium contents obtained by laser ablation sputtering.

1. TECHNIQUES
Thin Nd1 + xBa2 – xCu3Oy films (x = –0.15,…, 0.15)

were prepared by pulsed laser ablation cosputtering (a
KrF excimer laser and an energy density at the target of
1.7 J/cm2) of two ceramic targets of different elemental
000 MAIK “Nauka/Interperiodica”
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composition [12]. The targets were mounted on a rotat-
ing holder, and a laser pulse was directed on the target
to be sputtered by a computer-controlled synchronizing
system. The number of sputtering pulses directed on
each target were in an integer ratio. The relative
amounts of the elements in the films thus prepared were
found from the compositions of the sputtered targets
using the measurements made with an x-ray micro-
probe analyzer.

The material was sputtered on LaAlO3(001) and
SrTiO3(001) substrates and on sapphire(1102) with a
250-Å thick CeO2(001) buffer layer, which were heated
to a high temperature TD (about 800°C) [13]. Silver
paste was used to improve the thermal contact of the
substrate with the heater. The pressure during the dep-
osition was 0.3–1.0 mbar. After the deposition, the
films were saturated with oxygen, a procedure includ-
ing rapid cooling to a temperature Ta, admission of oxy-
gen to atmospheric pressure, and cooling at a rate ra for
a time ta (inset in Fig. 2). Some samples were main-
tained after the completion of deposition at the deposi-
tion temperature and pressure for a time th. The param-
eters of this procedure were typically th = 0 min, Ta =
450°C, ra = 10°C/min, and ta = 1 h.

The superconducting properties (the critical transi-
tion temperature Tc and the transition width ∆Tc) were
derived from the measured dependences of the mag-
netic susceptibility of the films on temperature. The
crystal structure parameters of the films were deter-
mined by x-ray θ/2θ scanning. The lattice parameters
were calculated with due account of all diffraction
peaks of the (h00), (0k0), and (00l) families observed
[14], and the stresses in the films were estimated from
the dependence of peak broadening on the diffraction
angle [15]. The volume ratios of the domains with a, b,
and c orientation were estimated from integrated-inten-
sity ratios of the (200), (020), and (006) peaks, respec-
tively, taking into account the standard intensities
obtained by θ/2θ scanning of powder samples and
available from the literature. The particle density on the
surface was determined from photomicrographs made
with an optical microscope, which permitted one to
take into account particles greater than 0.3 µm in size.
The surface roughness Ra was calculated automatically
during surface profile measurements with an AlfaStep
profilometer as the arithmetic mean of the deviation
from the mean height of the relief. The needle advance
velocity was 2 µm/s; the measurement frequency,
50 Hz; the vertical resolution, better than 5 Å; and the
measured trace length, 50 µm. The substrate surface
roughness measured in these conditions before the film
deposition was 10–15 Å.

2. RESULTS AND DISCUSSION
The superconducting properties of the NBCO films

with x ≈ 0 depended strongly on the deposition regime;
and for films obtained on LaAlO3 substrates, Tc = 85–86 K
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
and ∆Tc was less than 2 K. Such films were oriented
with the c axis perpendicular to the substrate plane (c-
oriented films), the lattice parameter c varied from
11.740 to 11.755 Å, and the stresses in the films did not
exceed 0.15%. The lattice parameters of the films satu-
rated with oxygen by the standard procedure are listed
in Table 1, and typical diffraction patterns of the NBCO
films are presented in Fig. 1. In some films, besides the
c-oriented domains, a- and b-oriented domains were
also present (Figs. 1a, 1b). The lattice constants a and b
estimated from the θ/2θ x-ray scans of such films were
3.864–3.876 and 3.905–3.907 Å, respectively. The a or
b domain orientation perpendicular to the substrate
plane depended on the material of the substrate. On
LaAlO3 and the CeO2 buffer layer, one observed the
formation of a-oriented parts of NBCO films; however,
the films on SrTiO3 always contained domains oriented
with the b axis perpendicular to the substrate plane,
irrespective of the deposition conditions. This orienta-
tion is not typical of ReBCO-family materials,
although when NBCO films were deposited by laser
sputtering on a SrTiO3 film, one also observed [16] the
growth of a b-oriented film (peak 3 in the inset to Fig. 2
in [16]). This could be due to the parameter of the
SrTiO3 cubic lattice (3.905 Å) being close to the b
parameter of the NBCO films. The x-ray diffraction
peaks of a b-oriented NBCO film and a SrTiO3 film
practically coincide, which required the deconvolution
of the observed diffraction peak into the constituent
peaks (see inset to Fig. 1b). Lowering the deposition
temperature to 740°C produced films predominantly of
the a orientation with the lattice constants c* = 11.83 Å,
and a* = 3.91 ± 0.001 Å. Such films were not supercon-
ducting, which, besides the lattice constants, implies
the formation of a tetragonal NBCO structure.

The oxygen saturation regime strongly affected the
structure and properties of NdBa2Cu3Oy films. Increas-
ing Ta and ta compared to the standard procedure
resulted in an increase in the lattice constant c to 11.77–
11.81 Å and a decrease in Tc (Fig. 2). These phenomena
are probably associated with the disorder in the Nd/Ba
cation subsystem which sets in during oxygen satura-
tion at a high temperature [9, 10]. It was shown [9, 17]
that maintaining NBCO at a high temperature (800–
900°C) and low oxygen pressure favors ordering in the
Nd/Ba subsystem. Subsequent saturation with oxygen
at a low temperature (340°C) does not bring about sub-
stantial disorder and degradation of the superconduct-
ing properties [17]. The saturation of NBCO films with
oxygen in accordance with these recommendations
allowed us to reach Tc and ∆Tc on the level of the best
parameters attained with the standard oxygen-satura-
tion procedure (curve 1 in Fig. 2).

In order to systematically investigate the effect of
the composition of films on their properties, the oxygen
pressure during sputtering, in accordance with the liter-
ature data [2], was chosen equal to 0.3 mbar and the
films were deposited on LaAlO3(001) substrates. For
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Fig. 1. X-ray θ/2θ diffractograms of Nd1Ba2Cu3Oy films (a) of the mixed a and c orientations on CeO2(001)//Al2O3(1102) substrate,
(b) of the mixed b and c orientations on SrTiO3(001) substrate, and (c) of the c orientation on LaAlO3(001) substrate. Inset to (b):
decomposition of the x-ray diffraction peak into the constituent peaks due to SrTiO3(002) (46.467°, half-width 0.058°) and
NBCO(020) (46.44°, half-width 0.235°); dashed lines show calculated peaks, and the solid line is their sum.
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Table 1.  Lattice parameters of NdBa2Cu3Oy films deposited by laser ablation sputtering

 Substrate p02, mbar TD, °C

c orientation a(b) orientation

fraction, 
% lattice constant, Å stresses, % fraction, 

% lattice constant, Å stresses, %

LaAlO3
CeO2//Al2O3

0.6–1.0 770–790 100 c = 11.74–11.755 0.13–0.5 0 Not 
determined

Not 
determined

SrTiO3 0.75–1.0 760–830 37–54 c = 11.74–11.77 0.11–0.17 46–63 b = 3.906  Same

CeO2//Al2O3 0.4–0.6 780 17–50 c = 11.725–11.76 0.4–0.9 50–83 a = 3.867–3.876 0.5–1.0

SrTiO3 0.3–0.6 750–770 2–6 c = 11.76–11.765 Not 
determined

94–98 b = 3.906 0.34–0.74

LaAlO3, SrTiO3 0.4–0.75 680–730 <1 c = 11.83–11.85  Same 100 a = 3.91 0.36–0.42

1.0 750–790 65–100 c = 11.77–11.78 0.47–0.6 0–38 a = 3.872; b = 3.907 2.7–3.0

0.3–1.0 780 1–2 c = 11.80–11.805 0.8 98–99 a = 3.89–3.91 0.55

* Oxygen admitted at a high temperature.
** Prolonged oxidation.

LaAlO3
*

LaAlO3
**

Table 2.  Properties of Nd1 + xBa2 – xCu3Oy films with different elemental compositions deposited on LaAlO3(001) substrates
at a pressure of 0.3 mbar

x Deposition temperature 
providing the highest Tc, °C Critical temperature Tc, K Surface roughness, Å Surface particle density, 

106 cm–2

0.14 795 73 14 2

0.06 800 81 12 3

0 810 85.95 11 2

–0.06 No optimization 16 2.5

–0.08 810 85.5 52 20

–0.13 810 86.2 360 30

–0.14 No optimization 600 70
each elemental composition of NBCO films, the depo-
sition temperature providing the highest Tc was deter-
mined. The film parameters obtained at these tempera-
tures are listed in Table 2. The dependence of Tc on the
relative content of barium and neodymium is plotted in
Fig. 3. A decrease in the barium content below two
atoms per unit cell reduces the attainable critical tem-
perature, which agrees with the literature. At the same
time, an increase in the barium content does not entail
a further increase or decrease in Tc within the range
covered. The film surface morphology also underwent
changes as one crossed over from barium-deficient to
barium-rich films (Fig. 3). The former had a smooth
surface with a low particle density (less than 106 cm–2)
and a roughness comparable with that of the original
substrates (10–20 Å). An increase in the barium content
above the stoichiometric level produced fast growth of
both the particle density on the film surface and the film
roughness (Table 2). A similar effect was observed in
[6–8] for x < –0.10. X-ray diffractometric measure-
ments allowed one to identify the forming particles as
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
BaO and Ba2CuO3 [6, 7]. In contrast to the depen-
dences of Tc on the composition of the films under
study obtained by us, a maximum in Tc was observed at
x = –0.03 in [6, 7] and at x = 0 in [8]. This is possibly
due to the fact that in none of the works cited above
were the deposition conditions optimized for each ele-
mental composition studied.

The observed behavior of Tc and of the film mor-
phology under variation of the elemental composition
can be attributed to a different character of substitutions
in the Ba/Nd subsystem. The neodymium ion appar-
ently enters the barium site quite easily, and the defi-
ciency of barium in a film is compensated by neody-
mium. This results in the formation of a smooth film
with high lattice perfection, but Tc of such a film
decreases with increasing Nd content. The correspond-
ing chemical reaction of NBCO formation can be writ-
ten as (1 + x)NdO1.5 + (2 – x)BaO + 3CuO 
Nd1 + xBa2 – xCu3Oy for x > 0. In contrast, the excess bar-
ium is only incorporated into the lattice in small
0
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amounts and precipitates in the form of foreign phases.
Therefore, the NBCO film has a close-to-stoichiomet-
ric composition (x = 0) and exhibits the corresponding
superconducting properties, but particles appear on its
surface. The reaction of NBCO formation assumes the
form (1 + x)NdO1.5 + (2 – x)BaO + 3CuO  (1 +
x)Nd1Ba2Cu3Cu3Oy + (−3x)(Ba,Cu)Oz for x < 0. The
proposed mechanism finds support in the observation
that the optimum film deposition temperature remains
constant with increasing barium content, whereas when
x decreases, the optimum deposition temperature
decreases (Table 2). The optimum temperatures for the
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Fig. 2. Dependence of the magnetic susceptibility on tem-
perature for NdBa2Cu3Oy films deposited on a
LaAlO3(001) substrate at 780°C and subjected to various
oxygen saturation procedures: (1) th = 15 min, Ta = 350°C,
ra = 0, ta = 1 h; (2) th = 0, Ta = 450°C, ra = 0, ta = 1 h;
(3) th = 0, Ta = 750°C, ra = 10°C/min, ta = 1 h; and (4) th = 0,
Ta = 450°C, ra = 0, ta = 2.5 h. The critical temperatures are
identified by arrows. Inset: schematic of oxygen saturation
procedure. See text for explanation of the notation.

Fig. 3. Dependence of the critical temperature and particle
density on the surface of Nd1 + xBa2 – xCu3Oy films on a
LaAlO3(001) substrate on their elemental composition.
The deposition temperature was optimized for each ele-
mental composition (see Table 2). The lines are drawn to
aid the eye.

T, K
P

formation of phases with excess neodymium are known
to decrease with increasing Nd content [11].

The relatively low critical temperature of 86 K
reached in the optimization of the deposition process
may be due to one of two possible reasons. First, the
critical temperature of the films thus prepared can
decrease as a result of the destruction of the chain order
in the Cu–O sheets due to the disorder in the Nd/Ba
subsystem. However, an increase in disorder results in
an increase in the lattice parameter c, while the values
measured by us agree with those for standard films with
Tc > 90 K. A more probable reason is the presence of
impurities in the sputtered target; indeed, the high sen-
sitivity of NBCO to impurities [18, 19] can bring about
a sharp drop of Tc even at a very low impurity concen-
tration.

It should be pointed out that some authors ([16, 20–
23]), despite comprehensive optimization of the depo-
sition conditions, did not succeed in reaching critical
temperatures in NBCO films above 86–88.5 K,
whereas others ([6–8, 11]) report repeatedly obtaining
critical temperatures above 91 K. In both groups, the
same techniques and similar deposition parameters
were used. This discrepancy suggests the existence of
some overlooked factor, which results in a Tc drop by 5–
8 K. There is a report [20] of the formation of a “high-
temperature” NBCO phase with Tc = 95 K, which the
authors did not, however, succeed in isolating from the
“low-temperature” (Tc < 90 K) phase.

Thus, we have studied the effect of substitutions in
the Nd/Ba cation subsystem on the properties of
Nd1 + xBa2 – xCu3Oy films obtained by laser ablation
sputtering. NBCO films prepared on SrTiO3(001) sub-
strates exhibited the orientation of a substantial part of
the film with the b axis perpendicular to the substrate
plane. The structure and superconducting properties of
Nd1 + xBa2 – xCu3Oy reveal a strong dependence on the
conditions of film saturation with oxygen, which is
probably associated with disorder appearing in the
Nd/Ba subsystem during film saturation with oxygen.
The investigation of the deposition of NBCO films with
different barium and neodymium contents indicates the
incorporation of excess neodymium into the barium
sites on the superconductor lattice, whereas excess bar-
ium precipitates in the form of particles observed on the
film surface.
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Abstract—The effect of structural inhomogeneities in a superconductor on a vortex medium flow in weak mag-
netic fields at temperatures varying from 78 to 83 K for various bias current densities is investigated by using
transport measurements of Bi2Sr2CaCu2O8 + x thin-film microbridges. The results obtained are analyzed on the
basis of the theories of flux creep and the regular flow of vortices. It is shown that the current dependences of
the effective potential for vortex pinning can be satisfactorily described in the framework of two statistical mod-
els, one of which was proposed earlier by the authors. Both models cover the regimes of thermally activated
and regular flow of vortices as limiting cases. The wide transition region in which the creep and regular vortex
flow processes simultaneously occur due to a large dispersion in the pinning energy distribution. It is found that
when the magnetic field exceeds a certain value, the average value and dispersion of the pinning potential
decrease sharply, so that the conditions of regular flow set in even for small values of the bias current. This fact
is attributed to the destruction of vortex lines into two-dimensional segments. © 2000 MAIK “Nauka/Interpe-
riodica”.
The difference between high-temperature and tradi-
tional superconductors is most clearly pronounced in
the vicinity of the superconducting transition tempera-
ture Tc [1]. Transport measurements are among the
main tools of experimental investigations of HTSC
near Tc [2, 3]. In spite of their differences, numerous
theoretical models proposed for quantitative interpreta-
tion of the results of transport measurements [resistive
and current–voltage characteristics (IVC)] [4] are
based on analysis of the motion of the Abrikosov vortex
lattice. The mechanisms of motion of the vortex lattice
(VL) in a HTSC are found to be much more compli-
cated than in traditional superconductors in view of a
high degree of anisotropy, a layered structure, and large
values of Tc. “Static” disorder (e.g., large dispersion in
the pinning energy distribution) strongly affects the
H−T phase diagrams [5]. For example, the vortex
creep–flow crossover caused by “static” disorder [6–8]
leads to a strong broadening of the nonlinear segment
of the IVC.

Apart from elastic vibrations of the VL and trans-
port motion associated with the transport current, bends
(including kinks) and “twists” of vortex lines become
significant. Vortex filaments themselves in HTSC pos-
sess a structure owing to which two-dimensional vorti-
ces can be observed for certain magnetic fields H and
temperatures T (e.g., with the help of neutron diffrac-
tion [9]). Consequently, in the case of HTSC, we can
speak of a “vortex medium” rather than a vortex lattice.
High values of Tc combined with the layered structure
of HTSC lead to complex fluctuational movements of
vortices, which is manifested in the presence of a large
1063-7834/00/4209- $20.00 © 1596
number of phase transitions and crossovers in the vor-
tex medium reflected in the phase diagram. For exam-
ple, “melting” of the vortex lattice (i.e., a transition
from the state with a regular structure to the state of a
“vortex liquid”) takes place at a certain temperature

Tm(H) [4, 10]; at higher temperatures , the
destruction (“evaporation”) of vortex lines takes place:
2D segments of vortex lines start showing independent
fluctuational movement [4, 11].

The present work aims at studying the peculiarities
of the crossover from creep to a regular flux flow (RFF)
in thin HTSC films. We analyzed the experimental
dependences ρ(T, H, J) (ρ is the resistivity and J is the
current density) for Bi2Sr2CaCu2O8 + x thin-film
microbridges near the superconducting transition tem-
perature for low values of the applied magnetic field
(H ! Hc2).

Films of Bi2Sr2CaCu2O8 + x of thickness df = 0.1 µm
were formed by molecular beam epitaxy on a Riber
setup at Salerno University (Italy). The deposition tech-
nology is described in detail in [12]. The superconduct-
ing transition temperature Tc (R = 0) exceeded 85 K.
The films were highly textured, with the c axis perpen-
dicular to the MgO(100) substrate. Transport measure-
ments were made according to the standard four-probe
technique with a constant displacement current. The
data were recorded on a PC. The measuring procedure
was described in detail in [13]. A magnetic field up to
1100 Oe was created by a copper solenoid. All the mea-
surements were made using liquid nitrogen as a cool-
ant. The microbridges were formed by the standard

Tm* H( )
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependence of the resistivity (low-resistivity region) for various values of applied magnetic field for  J = 111 A/cm2.
photolithographic technique. The length of the bridges
was 50 µm, and the width was 30 µm.

We obtained the resistivity ρ(T) curves for a number
of values of H and J. By way of an example, Fig. 1
shows the ρ(T, H) dependences for the transport current
density J = 111 A/cm2. Obviously, the transition width
increases with the magnetic field. For HTSC, such a
broadening at temperatures not very close to Tc (the
meaning of this expression will be clarified below) is
attributed to the thermal activation of vortex motion in
the field of pinning centers. In this case [14], the resis-
tivity can be presented in the form

(1)

Here, ρ0 is the preexponential factor of the order of the
resistivity ρN in the normal state, kB is the Boltzmann
constant, and Uρ is the effective pinning potential. We
will henceforth analyze resistive characteristics
through the magnitude of the effective pinning poten-
tial:

(2)

Let us now clarify the meaning of the expression
“temperatures not very close to Tc.” Plotting the Uρ(T)
dependences in accordance with Eq. (2) (Fig. 2), we see
that they are linear at T ≤ T* ~ Tc (T* ~ 83–84 K in our

ρ T H J, ,( ) ρ0
Uρ T H J, ,( )

kBT
----------------------------– 

  .exp=

Uρ T H J, ,( ) kBT
ρ0

ρ T H J, ,( )
------------------------ 

  .ln=
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case). In the region of linearity of Uρ(T), we can state
with confidence that the main contribution to the resis-
tive characteristics comes from thermal excitations of
vortices in the field of pinning centers.

It should be noted that, since it is difficult to deter-
mine the exact value of the preexponential factor ρ0, the
value of Uρ(T) is also determined with a certain back-
ground ~kBT. For this reason, it is more convenient to
use, instead of Uρ(T), its linear extrapolation Uρ0 to zero
temperature.

Let us analyze the current dependences Uρ0( )
for various values of the magnetic field, which were
obtained from resistive characteristics (for the sake of
clarity of presentation, the values of current are plotted
on a logarithmic scale) (Fig. 3).

It can be seen that the dependence Uρ0( ) has
the shape of a step. The left and right “shelves” of the
dependence Uρ0( ) actually correspond to two
modes of the behavior of the vortex lattice with ρ =
const (linear, or ohmic IVC) divided by the crossover
region.

The interpretation of the right “shelf” of the depen-
dence Uρ0( ) in terms of RFF (for J > J* ~ (2–4) ×
104 A/cm2) is quite trivial [15]. Indeed, the work W*

done by the Lorentz force  on the extraction of a
vortex line with a length equal to the film thickness df

Jlog

Jlog

Jlog

Jlog

FL*
0
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Fig. 2. Dependence Uρ(T) obtained from the experimental data by using Eq. (3) for various values of J for H = 100 Oe.
from a potential well of width rp ≥ ξab (ξab = 15 Å is the
correlation length in the ab plane [16]) for J = J* is a

quantity of the order of rp ≈ J*Φ0dfξab (Φ0 is the
magnetic flux quantum). The substitution of the values
of J*, df, ξab, and Φ0 into the last equality gives a value
of W* ~ kBT of the order of the pinning energy Uρ(T, J*)
at T ~ 80 K.

The left “shelf” of the dependence Uρ0( ) (0 <
J < 103) A/cm2 ~ 0.1J*), which also corresponds to a
linear IVC, is not at all typical of superconductors and,
strictly speaking, contradicts the concept of the super-
conducting state: for superconductors, the condition
ρ(J  0)  0 (or, which is the same, Uρ(T, H, J) 
∞) holds. In our case, Uρ(T, H, J  0) is a finite quan-
tity: Uρ(T, H, J  0) ~ (5–6)kBT. It was noted in
[17, 18] that this is a typical value for a thermally acti-
vated flux flow (TAFF) regime for which the relatively
low potential barrier is overcome by a vortex with a
rather high probability in view of large thermal fluctu-
ations. This makes the mode observable. According to
Blatter et al. [4], the TAFF regime can exist if the vor-
tex lattice is in the “melted state” observed at tempera-
tures T > Tm(H). Glazman and Koshelev [11] obtained
the following estimate of the melting point Tm(H) of a
vortex lattice (which is also valid for small values of the
field H):

(3)

where ε0 = (Φ0/4πλab)2 is the energy per unit length of
a vortex line, γ is the anisotropy factor, cL is the Linde-

FL*

Jlog

Tm H( )
ε0cL

2

γ
---------- π

2
---

Hc2 T( )
H

---------------- 
 ln

1/2 Φ0

H
------ 

 
1/2

,=
P

mann number, λab is the magnetic field penetration
depth in the ab plane, and Hc2(T) is the upper critical
field. Substituting into Eq. (3) the values cL = 0.2,
Hc2(0) ≈ 23 T, γ ≈ 70, and λab(0) ≈ 0.21 µm typical of
Bi2Sr2CaCu2O8 + x [16], we obtain Tm ≤ 80 K for H *

(50–100) Oe. Thus, the relation Tm(H) ≤ T holds in the
ranges of fields and temperatures under investigation. It
is appropriate to note here the possibility of one more
“phase transition” following from the experimental
results. Figure 3 shows that the values of Uρ0(J) for
TAFF regimes and flux flows differ insignificantly for
H = 1100 Oe. One of the reasons for such a disappear-
ance of pinning is the destruction (“evaporation”) of
vortex lines [10]. The essence of this phenomenon is
that, as a result of thermal fluctuations, the coupling
between 2D-segments of a vortex lines becomes very
weak. Glazman and Koshelev [11] give the following
estimate of the temperature  corresponding to
the destruction of a vortex lines:

(4)

where Λ = γs is the Josephson length and s = 15 Å is the
separation between the superconducting layers. In
accordance with Eq. (4), the value of the field Hd corre-
sponding to the destruction of the lines at T ≈ 80 K is
approximately equal to 2000 Oe. The dependences

 and Tm(H) calculated from Eqs. (3) and (4) are
shown in the inset to Fig. 3. The experimentally obtained
values [9] are slightly lower: Hd ~ (600–1000) Oe. The
exaggerated value obtained in [11] can be explained

Tm* H( )

Tm* H( ) Tm H( )
πΦ0

HΛ2
----------- Λ

πξab

---------- 
 ln

1/2

,≈

Tm* H( )
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with a high degree of confidence by the fact that the
estimate of Eq. (4) was obtained disregarding the effect
of point defects in the CuO planes. However, point
defects enhance the bending deformations of vortex
lines, facilitating their destruction. As a result of the
decomposition of vortex lines into 2D segments, any
small transport current for H ≥ Hd causes a free flow of
two-dimensional vortices.

The most probable reason behind the relatively
broad current crossover region (0.1J* ≤ J ≤ J*) is the
large value of dispersion σ in the pinning energy distri-
bution: σ ~ U(T, H, J) ~ kBT. This means that creep and
RFF occur simultaneously in a vortex system for a cur-
rent density J ∈  (0.1J*, J*). In order to quantitatively
describe the experimental data and to demonstrate the
effect of statistical disorder on the vortex dynamics, let
us consider two theoretical models [19, 20]. In the
Griessen model [19] (known as the parallel resistor
model), a solitary vortex (or a “bundle,” “cluster” of
vortices) is considered, for which the average time of
residence in the creep state and the average time of set-
tlement in the state of regular flow are determined.
Then we use a certain averaging procedure to deter-
mine the mean velocity of a vortex, after which the
electric field strength induced by the transport current
is calculated. In the second model [20], we consider an
ensemble of vortices each of which overcomes a poten-
tial barrier whose height and width are random quanti-
ties. When the transport current is switched on, one part
of the vortices performs a motion over the barrier; i.e.,
it is in the state of flow, while the other part moves
through the barrier owing to thermal fluctuations; i.e., it
is in the state of creep. The common feature of these
two models is that they both contain TAFF for small J
and RFF for large J as limiting cases. It is interesting to
note that the experimental data are successfully
described by the simplest versions of these models.

We will not give the details of the Griessen model
here and only present the final formula of its “one-
domain” version for logarithmic resistive characteris-
tics:

(5)

Here, A(H, T) is the change in the energy of a vortex
line (bundle of vortices) associated with the Lorentz
force and Jl is the local critical current (the critical cur-
rent for the bundle of vortices). The parameter C(H, T)
can be expressed in terms of the characteristic lengths

Uρ J( ) kBT
ρN

ρ
------ 

 ln kBT
ρN

ρ ff

------- 
 ln= =

+ kBT 1 C H T,( )
J Jl⁄
A H T,( )

kBT
------------------- J

Jl

----sinh
----------------------------------------+

 
 
 
 
 

.ln
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of creep (Lc) and of free flow (Lf) and through the resis-
tivity ρff in the regular flow mode. It should be noted
that, in the limit of large J, we have

which means that the resistivity of the sample asymp-
totically approaches ρff for J @ Jl. The solid curves in
Fig. 3 correspond to the Uρ(J) dependences calculated
by Eq. (5) using A and C as fitting parameters.

According to the second model [20], the electric
field strength is given by

(6)

Here, nf(J) and ncr(J) = 1 – nf(J) are the fractions of
vortices participating in RFF and the creep of vorti-
ces, respectively; Ec is the preexponential factor,

exp(– /kBT) ≡ 〈exp(–U(J, Jc)/kBT) , where
U(J, Jc) is the height of the potential barrier overcome
by a vortex in creep; Jc is the local critical current (the
current for which the potential barrier for a vortex dis-
appears); and the symbol 〈…〉  indicates averaging over
the distribution of potential-barrier heights and widths
such that Jc ≥ J.

The simplest special case of the E(J) dependence
of Eq. (6) is realized for an exponential distribution
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of pinning potential and a linear dependence U(J) =
U0 – Ja ≡ U0(1 – J/Jc), where a is a constant and U0 ∈
[Umin, ∞) [20]:

(7a)

(7b)

For J ! Jmin, Eq. (7a) describes the TAFF mode with a
logarithmic characteristic:

For J @ Jmin, we obtain
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using the fitting procedure described by Eqs. (7).
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i.e., the IVC exponentially approaches the IVC of an
RFF in accordance with the experimentally observed
type of transition to this mode. The Uρ(J) dependences
plotted in accordance with Eq. (7) are presented in
Fig. 3 by dashed curves. While processing the experi-
mental data, we used Umin and σ as fitting parameters.
The values of Umin and σ obtained for various values of
H are presented in Fig. 4. The behavior of Umin and σ as
functions of the magnetic field is quite typical at H ∈
(50, 600 Oe). As the value of H increases from 50 to
600 Oe, the value of Umin(H) decreases, while σ(H)
increases, which is not surprising, since the “addi-
tional” vortices occupy “weaker” pinning centers. It
can be seen from Fig. 4 that the average value of the
pinning potential  = Umin(H) + σ(H) is a linear
function of ln(H) for H ∈  [50, 600] Oe, which confirms
the correctness of the choice of the exponential distri-
bution of the pinning energy [12]. As the value of H
increases from 600 to 850 Oe, the value of Umin(H)
decreases quite sharply down to the background value
of kBT and the dispersion σ also decreases. In this case,
the mode of regular flow of 2D vortices starts being
dominant. It should be noted that, for Umin = kBT, the
fraction of vortices settled into the state of regular flow
exist even for current densities close to zero.

Thus, we have obtained the following main results.
Transport measurements for thin-film microbridges of
Bi2Sr2CaCu2O8 + x have been made in weak magnetic
fields for various values of the bias current. It is shown
that the experimental data can be explained both quali-
tatively and quantitatively on the basis of statistical
models [19, 20] containing TAFF and RFF regimes as
limiting cases.

The magnetic-field dependences of the parameters
of the model of [20] are found, which characterize the
effect of microscopic inhomogeneities in the sample on
the motion of vortices, viz., the dispersion σ(H) of the
pinning potential distribution and the mean value of the
pinning potential  = Umin(H) + σ(H). It is shown
that the rapid decrease in σ(H) and U(H) for H > Hd ~
800 Oe is associated with the transition to a regular vor-
tex flow. In addition, the destruction of vortex lines into
2D segments can also affect the dynamics of vortices
for H ≥ 1000 Oe.
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Abstract—The ground state of an optical polaron has been analyzed for an arbitrary force of the electron–
phonon coupling. The eigenvalue differential equation is transformed into the Fredholm integral equation. With
the trace method applied to the kernel of integral equation, it is found that the first bound state of the optical
polaron appears only provided that the dimensionless coupling constant obeys the inequality αc ≥ 2.8. © 2000
MAIK “Nauka/Interperiodica”.
The dependence of polaron states on the electron–
phonon coupling constant (αc) was discussed repeat-
edly [1–6]. The extreme cases of strong and weak cou-
pling were investigated in detail. In the former case, the
polaron clusters had an inherent internal structure, and
the number of electronic eigenstates became infinite at
αc @ 1 [7]. In the latter case, the interaction between an
electron and crystal lattice vibrations was accounted for
by the methods of perturbation theory [8, 9]. However,
up to now, the exact electron–phonon coupling constant
at which the optical polaron occurs in the first quasi-
discrete bound state remains unknown. The perturba-
tion theory makes incorrect predictions for the varia-
tion in the effective mass of the slow electron even at αc

≈ 6 [2]. The resulting large changes in the mass are con-
tradictory to observations. The general problem of
determining the number of bound states for Hamilto-
nians with smooth potentials was treated repeatedly
[10–18].

In the present work, a mathematical approach based
on the analysis of solutions of the integral equation for
the polaron problem is applied to determine the critical
value of the coupling constant at which the first bound
state appears in the polaron potential well.

In order to determine the dependence of the polaron
potential on the electron–phonon coupling constant, let
us apply the Buœmistrov–Pekar method [1] describing
the quantum states of electrons, which interact with the
harmonically oscillating polarization field at arbitrary
αc. At αc  0, this approach duplicates the results of
the perturbation theory, and at αc @ 1, it reproduces the
extreme case of the strong electron autolocalization [7].
At intermediate values of the coupling constant (αc ≈ 1),
according to the method [1], the total energy of the
optical polaron is almost 5% less than that found within
the often used alternative Feynman approach based on
path integrals [4].
1063-7834/00/4209- $20.00 © 1602
In the continuous approximation, the Hamiltonian
for the electron–phonon system can be written as

(1)

Hamiltonian (1) holds for the spherical equipotential
surface and minimum energy at the point k = 0. Here,
m* is the effective mass of the band electron, r is the
radius vector of the electron, qk are the normal coordi-
nates for the longitudinal optical vibration with the fre-
quency ωk and the wave vector k, and ck is the coupling
coefficient for the kth lattice vibration and the electron.
For the longitudinal optical vibrations, the coupling
coefficient ck can be represented in the form

(2)

where ε∞ and εs are the high-frequency and static per-
mittivities of the medium. The functions

(3)

form the complete set of functions, which are orthonor-
malized to the cube of volume V. In the method [1], it is

assumed that the equilibrium positions  of harmonic
oscillators of the phonon field change in response to the
electron field, and this displacement depends on the
electron wave function ϕ(r) and, thus, on the electron
coordinates. Taking into account this dependence, let
us replace the variables r, qk in Hamiltonian (1) with
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new coordinates r,  and write the
Hamiltonian in the form

(4)

Within the adiabatic approximation, the full wave func-
tion of the system can be written as the product ψ =
ϕ(r) , where Φk is the wave eigenfunction of
lattice vibrations. The functional of the total energy of
the polaron is represented by

(5)

Extremalizing functional (5) for , we can derive the

Euler equation whose solutions define . However, it
was demonstrated [1] that this solution can be replaced

by the linear approximation  = akχ–k(r), where ak is
the variational parameter, which is determinable from
the minimum condition for functional (4). The extreme
value of the parameter ak obtained from functional (4)
is given by

(6)

It is assumed that the electron wave function of the
ground state is a Gaussian, ϕ(r) = (2β/π)3/4exp(–βr2),
and, consequently, the matrix element in relationship
(6) can be written as  = exp(–k2/8β),
where β is the variational parameter. In order to solve
the eigenvalue problem, let us vary functional (5) for
the function ϕ(r). As a result, we obtain the equation
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(7)

Retaining the terms in the differential equation (7),
which depend on the coordinate r, we derive the fol-
lowing eigenvalue differential equation:

(8)

We substitute the parameter ak in the form (6) and the
function χ–k(r) into Eq. (8) and pass on from the sum-
mation over k to integration. As a result, we have the
equation

(9)

Equation (9) was derived within the zero-variance
approximation ωk = ω.

Then, according to [11, 17], the differential equation
can be transformed to the integral equation. Let us pre-
liminarily replace the radial function of the ground
state ϕ(r) = u(r)/r. In this case, Eq. (9) can be rewritten
as

(10)

It is impossible to calculate the integral in Eq. (10) in a
closed form. However, its dependence on the radius
vector r for the ground electronic state can be approxi-
mated by the analytical form V0exp(–γr2) with a high
accuracy. The parameters of the potential V0 and γ can
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be found numerically at given values of the coupling
constant and the variational parameter β, which is
determined from the extreme properties of functional
(5). Taking into account the boundary conditions u(0) =
u(∞) = 0, we recast Eq. (10) into the Fredholm integral
equation

(11)

When deriving Eq. (11), we used the integral relation-
ship

(12)

and passed on to the new variable z = r . By using the
substitution u(z) = w(z)exp(z2/2) and taking into
account that the critical value of the αc parameter cor-
responds to the potential at which λ becomes zero, the
integral equation (11) can be rearranged to the form

(13)

where the equation kernel now has
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Dependence of the parameter µ on the dimensionless con-
stant of the electron–phonon coupling αc. T1, T2, and T3 are
the iterative values of the kernel trace of the integral equation.
P

According to the Mercer theorem [19], Eq. (13) with a
symmetric degenerate and continuous kernel has a lim-
ited number of nontrivial solutions. As the potential
increases, the first eigenvalue appears only when the

kernel trace Tj = , which is obtained in the

jth iteration cycle of the method of successive approxi-
mations, satisfies the inequality

(14)

For the jth iterated kernel Kj(z, t), the following rela-
tionship holds:

(15)

For the integrated kernel Kj(x, x) in the third-order iter-
ation, we have

(16)

Requirement (14) enables one to calculate the critical
value of αc at which it will be met. The transition from

the state  < µ to the state  > µ can be treated as
the formation region of the first bound state of the opti-
cal polaron. The trace method was applied earlier [17]
in order to determine the number of bound states for
different-type smooth potentials. The deviation from
the results of the direct numerical calculations [20]
does not exceed 4%.

The dependence of the parameter µ on the electron–
phonon coupling constant is shown in the figure. The

inequality for  holds at αc ≥ 2.8. This value corre-
sponds to the appearance of the first bound state. For
the coupling constant αc < 2.8, the optical polaron has
no inherent internal structure. The critical value of the
coupling constant is close to the approximate estimate
αc > 2 [2]. The iterative convergence for , as is seen
from the figure, is rather rapid and enables one to
restrict the estimation of µ to the third iteration cycle.
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Abstract—The structure of bulk GaN layers grown on (0001) sapphire substrates by vapor-phase epitaxy has
been studied by x-ray diffraction and transmission electron microscopy (TEM). It is found that these layers con-
tain grown-in and screw dislocations. The dislocation density decreases away from the interface. The effect of
an amorphous buffer layer on the formation of the initial GaN layer and, thus, on the degree of perfection of
gallium nitride layers is elucidated. A model of generating grown-in dislocations and the relaxation mechanism
of misfit stresses are proposed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Gallium nitride—a most abundant wide-gap semi-
conductor—has been extensively used in optoelectron-
ics in the short-wavelength range. It is known that the
efficiency and reliability of emitting GaN-based
devices depend on the type and the density of defects in
the material.

According to recent papers [1–4], the GaN layers
(from 0.5 to 5 µm thick) on sapphire and SiC substrates
can be prepared by different techniques, such as metal-
loorganic chemical vapor deposition (MOCVD),
molecular beam epitaxy (MBE), and CVP. The struc-
tural perfection of these layers was examined by differ-
ent diffraction methods: x-ray diffraction, transmission
electron microscopy (TEM), high-resolution electron
microscopy (HREM), and low-angle convergent beam
electron diffraction (LACBED). It was found the stud-
ied materials are characterized by a high density of dis-
locations, dislocation boundaries, and staking faults
[5–7]. The application of the vapor-phase epitaxy
method made possible growing “bulk” GaN layers of
thickness more than 100 µm [8–11], which can be used
as substrates for homoepitaxy. The microstructure of
these materials was investigated by the TEM technique
[10, 11]. Melnik et al. [10] studied a defect layer in the
immediate vicinity (within 3 µm) of the GaN/SiC inter-
face [10]. Defects in GaN deposited onto a sapphire
substrate preliminarily coated with a layer of zinc oxide
were described in [11].

In the present work, we studied the GaN layers
grown by vapor-phase epitaxy on the (0001) sapphire
substrates with a low-temperature amorphous GaN
buffer layer (note that the gallium nitride layers thus
prepared are easily separated from the substrates [12]).
1063-7834/00/4209- $20.00 © 1606
Moreover, consideration was given to the mechanisms
of formation of crystal defects in gallium nitride films.

2. SAMPLES 
AND EXPERIMENTAL TECHNIQUE

The gallium nitride layers 100–800 µm thick were
investigated by double-crystal x-ray diffractometry and
transmission electron microscopy (including different
diffraction techniques: electron diffraction, examina-
tion of diffraction contrast images of linear and planar
defects, and analysis of dislocations on the basis of
invisibility criterion).

Planar GaN(0001) and cross-sectional GaN
samples were prepared for the TEM investigations.
After mechanical grinding, the samples were thinned
(to a thickness transparent for electrons) by conven-
tional ion etching in an argon ion flow. The planar sam-
ples for the TEM observations were produced both on
the side of the interface and on the side of the surface.

3. RESULTS

A region of the planar sample near the interface is
displayed in Fig. 1a. This region is a buffer layer. The
diffraction pattern of this layer exhibits wide diffuse
rings, which are typical of an amorphous material
(Fig. 1b). Figure 2a shows the image of the layer at the
initial growth stage when a continuous layer starts to
grow from single nuclei. Particles have both curvilinear
contours and crystallographic faceting. The particle
size ranges from 10 to 30 nm. The coalescence texture,
which is formed in the presence of the azimuthal orien-
tation of nuclei, is clearly seen in the microdiffraction
pattern of this region (Fig. 2b). The texture axis is
directed along [0001]. It should be noted that nuclei

1010( )
2000 MAIK “Nauka/Interperiodica”
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already arise during the growth of the low-temperature
buffer layer. The TEM observation of the buffer layer
prior to the growth of the main layer of gallium nitride
has revealed that the upper part of the buffer layer con-
tains small particles whose size does not exceed 5 nm.
No coalescence texture is observed in this case.

A further growth of the layer is accompanied by the
formation of crystal defects due to a considerable dif-
ference in the lattice parameters of sapphire and GaN.

As can be seen from the TEM image of the GaN
layer cross-section near the interface (Fig. 3a), the dis-
location density in this region is rather high. Closer
examination of Fig. 3a reveals cross-sections of several

(‡)
(b)50 nm

Fig. 1. (a) Planar TEM image and (b) diffraction pattern of
an amorphous buffer layer.
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grains adjacent to each other by lateral faces. The
grains involve different dislocations, most of which
grow from the layer–substrate interface. The disloca-
tions can be conventionally separated into three types:
D1, D2, and D3. The D1 dislocations are located in the
grain boundaries in parallel to the growth axis. The
grown-in dislocations D2 are directed toward the sur-
face almost along the C axis. They often close on verti-
cal grain boundaries. These dislocations sometimes
form narrow half-loops whose branches lie in different
planes [13]. At the same time, the D2 dislocations gen-
erate a large number of the D3 dislocations, which are
aligned parallel to the interface in the (0001) basal

(‡)
(b)50 nm

Fig. 2. (a) Planar TEM image and (b) microdiffraction pat-
tern of the GaN layer near the interface (coalescence texture
is seen).
1 µm
(‡)

(b) (c) (d)
200 nm 200 nm 200 nm

D1 D2

D3

D2D3

D2
D1

D3

D3

D1

Dm
Dm

Fig. 3. TEM images of (a) the cross-section of the GaN layer near the interface and (b), (c), and (d) regions (marked by circles) at
the layer–substrate interface at a larger magnification. Designations: D1 = grown-in dislocations in the grain boundaries, D2 = dis-
locations growing from the interface within grains, and D3 = dislocations running parallel to the interface in the (0001) basal plane.
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planes. The highest concentration of D3 dislocations is
observed near the interface (Figs. 3b–3d). It is clearly
seen that the dislocations are formed at the layer–sub-
strate interface. A portion of dislocations lie in the
interface plane and can play the role of misfit disloca-
tions Dm.

In the GaN layer located at a distance of more than
100 µm from the interface, the dislocation density is
considerably less. The grains grown up to several tens
of microns contain single dislocations whose density is
estimated at 107 cm–2. The total density of dislocations
(including grain boundary dislocations) in the near-sur-
face layer of gallium nitride is of the order of 109 cm–2.

The Burgers vectors of the observed dislocations
were determined from the invisibility criterion gb = 0,
where g is the operating reflection for the image of dis-
locations with the Burgers vector b [13].

An analysis shows that the D1 dislocations arise on
the interface at points of contact between island nuclei
(crystallites) and, then, grow toward the film surface in
parallel to the growth axis. These dislocations form tilt
low-angle grain boundaries and are arranged in the

 prismatic planes. The Burgers vector of the

dislocations is equal to 1/3 and is directed
across the dislocation line; i.e., these are edge disloca-
tions.

The D2 dislocations, like the D1 dislocations, arise at
the interface (Fig. 3c). They are arranged in the

 prismatic and  pyramidal planes. The
Burgers vectors b of these dislocations are equal to

[0001] and 1/3 , respectively. For the most part,
the lines of dislocations with b = [0001] are parallel to
the C axis, and, hence, these are screw dislocations. The

1010( )
1120[ ]

1010{ } 1011{ }

1123[ ]

500 nm

Fig. 4. TEM image of the planar sample at a distance of
~1 µm from the interface. The D3 dislocations are seen.
P

dislocations with vector b = 1/3  also can pos-
sess the screw component. The lines of these disloca-

tions lie along the  and  directions.
They are seen for the reflections g = 0002 and are not

seen for the reflections g = .

The D3 dislocations in the planar image of the
region located at a distance of 1 µm from the interface
appear as curved lines (Fig. 4). The Burgers vector of

these dislocations is equal to 1/3 . A curvilinear
shape of dislocation lines suggests a mixed character of
the dislocations.

The Burgers vector of the Dm dislocations, most

likely, is also equal to 1/3 . As the distance from
the layer–substrate interface increases, these disloca-
tions undergo bending and are displaced into the low-
angle grain boundaries.

The dislocation structure described above was also
observed for the gallium nitride layers grown on silicon
substrates.

4. DISCUSSION

Under conditions of heteroepitaxial GaN growth,
there occurs bulk nucleation of dislocations, resulting
in their island-type growth. The nuclei coalesce to form
a continuous layer and often give rise to growth facets
in low-energy planes. These are the (0001) and

 planes in the case of wurtzite crystals, among
which is GaN. A perfect nucleus shape is a hexagonal-
base pyramid. When growing islands come in contact,
the dislocation walls (the D1 dislocations) are formed
between these islands from low-angle boundaries,
which relieve stresses arising from their azimuthal mis-
orientation. The boundaries comprise rows of edge-
type rectilinear dislocations. The distance between dis-
locations in the boundaries is inversely proportional to
the misorientation angle. In the case of island-type
growth, the misfit dislocations are generated within
each of the islands, which grow virtually independent
of one another to their coalescence upon the formation
of a continuous layer. If the layer–substrate interface
coincides with the glide plane, the generation of misfit
dislocations likely occurs through the mechanism of
gliding dislocations from island edges along the inter-
face [14]. In hexagonal crystals, the (0001) basal plane
is the most closely packed one. Therefore, the easiest
glide should proceed in the basal plane; however, when
the glide in the basal plane is hindered by stress fields
or other factors, the dislocation glide is of the prismatic

type in the   system and the pyramidal

type in the   system [15].

The relaxation of misfit stresses under growth con-
ditions can be retarded by different factors such as the
barrier to nucleation of misfit dislocation, high Peierls

1123[ ]

0112[ ] 0111[ ]

1100

1120[ ]

1120[ ]

1010{ }

1010( ) 1210[ ]
1011( ) 1210[ ]
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stresses hindering the dislocation glide, and the interac-
tion of dislocations with one another and other defects
that impede the motion and multiplication of disloca-
tions.

The Dm dislocations that are formed at the layer–
substrates interface glide in the (0001) basal plane and,
thus, bring about the relaxation of shear stresses. How-
ever, the motion and multiplication of dislocations in
the interface is likely hindered by vertical dislocation
boundaries, which are responsible for the formation of
a columnar structure in the GaN layer. Hence, the misfit
stresses do not relax completely, and the residual elastic
stresses arise in the layer. This results in the elastic
strain and the bending of the epitaxial layer (Fig. 3a).
The elastic stresses in the bulk of the layer are partially
compensated for by the D3 dislocations, which are gen-
erated by the D2 dislocations located in the prismatic
and pyramidal planes.

Therefore, already at the initial stage of growth, the
layers growing on the amorphous buffer layer form a
perfect coalescence texture with the texture axis along
the [0001] direction. The dislocation density in the
layer near the surface is of the order of 109 cm–2. In the
case when the buffer layer has a polycrystalline struc-
ture with crystallite sizes up to 300 nm, the defect den-
sity in the films grown on this layer is considerably
higher.

The x-ray diffraction analysis revealed that the half-
widths of the x-ray rocking curves are equal to 6–8 arc-
min for the layers grown on the amorphous buffer layer
and 45–90 arcmin for the layers on the polycrystalline
buffer layer.

5. CONCLUSION
Thus, it was found that the dislocation structure of

the bulk GaN layers is determined, for the most part, by
the formation of the initial nucleus layer. The initial
layer grown on the amorphous buffer layer exhibits a
perfect texture. The majority of the dislocations in the
layer are of the grow-in type. The edge-type disloca-
tions form the low-angle grain boundaries and cross the
layer from the interface to the surface. The density of
these dislocations varies only slightly with an increase
in the layer thickness and is equal to 109 cm–2. During
the growth, a portion of the grown-in dislocations of the
screw type undergo bending and close on the grain
boundaries. They generate the dislocations arranged in
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
the (0001) basal planes. These dislocations are predom-
inantly located near the layer–substrate interface and
very rarely occur near the surface. Consequently, the
grown-in dislocations of the edge type that arise from
the island coalescence at the initial growth stage make
a decisive contribution to the dislocation structure of
the GaN films grown on the amorphous buffer layer.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project no. 97-02-18088.

REFERENCES
1. T. Sasaki and S. Zembutsu, J. Appl. Phys. 61, 2533

(1987).
2. T. W. Weeks, Jr., M. D. Bremser, K. S. Ailey, et al., Appl.

Phys. Lett. 67, 401 (1995).
3. X. J. Ning, F. R. Chien, P. Pirouz, et al., J. Mater. Res.

11, 580 (1996).
4. R. Molnar, W. Goetz, L. T. Romano, and N. M. Johnson,

J. Cryst. Growth 178, 147 (1997).
5. P. Vermaut, P. Ruternana, G. Nouct, et al., Inst. Phys.

Conf. Ser. 146, 289 (1995).
6. W. Qian, M. Skowronski, M. de Graef, et al., Appl. Phys.

Lett. 66, 1252 (1995).
7. F. A. Ponce, MRS Bull. 23 (2), 51 (1997).
8. G. Jacob, M. Boulon, and M. Futado, J. Cryst. Growth

42, 136 (1977).
9. T. Detchprohm, K. Hiramatsu, H. Amano, and I. Aka-

saki, Appl. Phys. Lett. 61, 2688 (1992).
10. Y. V. Melnik, I. P. Nikitina, A. S. Zubrilov, et al., Inst.

Phys. Conf. Ser. 142, 863 (1996).
11. L. T. Romano, B. S. Krusor, and R. J. Molnar, Appl.

Phys. Lett. 71, 2283 (1997).
12. V. V. Bel’kov, V. M. Botnaryuk, L. M. Fedorov, et al., in

Proceedings of the MRS Fall Meeting, Boston, USA,
1996, Mater. Res. Soc. Symp. Proc. 449, 343 (1996).

13. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley,
and M. J. Whelan, Electron Microscopy of Thin Crystals
(Butterworths, London, 1965).

14. J. W. Matthews, in Epitaxial Growth, ed. by J. W. Mat-
thews (Academic, New York, 1975), Part B, p. 560.

15. J. P. Hirth and J. L. Dothe, Theory of Dislocations (John
Wiley & Sons, New York, 1970).

Translated by O. Borovik-Romanova
0



  

Physics of the Solid State, Vol. 42, No. 9, 2000, pp. 1610–1612. Translated from Fizika Tverdogo Tela, Vol. 42, No. 9, 2000, pp. 1567–1569.
Original Russian Text Copyright © 2000 by Titov, Dolgoshein, Bdikin, Titova.

                                                      

SEMICONDUCTORS
AND DIELECTRICS
Determination of the Polaron Shift 
in Titanium Diselenide-Based Intercalation Compounds

A. N. Titov*, A. V. Dolgoshein*, I. K. Bdikin**, and S. G. Titova***
*Ural State University, pr. Lenina 51, Yekaterinburg, 620083 Russia

e-mail: alexander.titov@usu.ru
**Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia

***Institute of Metallurgy, Ural Division of the Russian Academy of Sciences, Yekaterinburg, 620016 Russia
Received February 8, 2000

Abstract—A study is reported of the dependence of the TiSe2 lattice constants on the concentration of an inter-
calated metal in various valence states and external pressure. The strain energy and the polaron shift created in
the intercalation of TiSe2 with metals in various valence states have been determined. The position of the
polaron band is shown to decrease linearly with the increasing intercalant ionization potential. © 2000 MAIK
“Nauka/Interperiodica”.
In many cases, the intercalation of layered titanium
dichalcogenides results in carrier localization in the
form of small-radius polarons [1]. The effect of this fac-
tor on the phase diagram reduces to limiting the region
of single-phase stability to meeting the condition [2]
(Ed – µ) < 0, where Ed is the energy corresponding to
the center of the polaron band and µ is the electron
chemical potential (the Fermi level). In titanium dichal-
cogenides intercalated with silver, the single-phase
state forms only when the concentration of the donor
impurity reaches a certain critical level at which the
polaron-band center drops below the Fermi level. By
contrast, when the intercalants are metals with a higher
valence, the single-phase state is stable at arbitrarily
low intercalant concentrations. This implies that the
polaron band in such materials lies below the Fermi
level of the starting compound. This is corroborated by
x-ray spectroscopy data available for some of the above
compounds [3]. It can thus be suggested that the posi-
tion of the polaron band is determined by the Coulomb
interaction of conduction electrons with the ionized
impurity. Therefore, it appears reasonable to choose as
a parameter determining the polaron band position the
ionization potential of the impurity in the experimen-
tally established valence state for the same starting host
matrix. In this case, the polaron shift can be estimated
from the experimentally determined lattice distortions
induced by the polaron formation [4], provided the
elastic constants are known.

The TiSe2 structure belongs to the CdI2 type, the
space group is P3m1, and the unit cell contains one for-
mula unit. Titanium atoms make up plane hexagonal
networks and occupy one half of the octahedral voids in
the hcp array formed by selenium atoms. The interca-
lated atoms are located in free octahedral voids lying
midway between the two titanium atoms along the nor-
1063-7834/00/4209- $20.00 © 21610
mal to the titanium network plane. Intercalation of tran-
sition metals into titanium diselenide intercalant con-
centrations that [5, 6] are not too high corresponding to
the region of a dilute solid solution, where impurity
atoms can be considered as isolated, results in the unit
cell parameters becoming linearly dependent on the
impurity concentration, without any change in the
space group. Such a dependence may be treated as a
result of substitution of Ti–M–Ti (where M stands for
the intercalant) for Ti–V–Ti (V is the vacancy) centers,
which have different characteristic dimensions. The
deviation from linearity observed for x > 0.25, where x
is the intercalant concentration, is due to the strain
fields in the host matrix around the impurity-containing
centers reaching the percolation threshold [7]. Thus,
the size of a center strained by intercalation can be
derived from the concentration dependence of the lat-
tice constants within the intercalant content range 0 <
x < 0.25.

This work deals with the determination of the
polaron shift in titanium diselenide intercalated by dif-
ferent metals. Using the same starting material permits
one to reckon the position of the polaron band from its
Fermi level. To find the energy associated with the
intercalation-induced strain, we invoked the pressure
dependence of the lattice constants obtained by x-ray
diffraction.

The samples for the x-ray studies were prepared by
the standard technique of elemental synthesis in an
ampoule. The details of preparation and characteriza-
tion of the material can be found elsewhere [8]. After
the synthesis and the characterization, the MxTiSe2
materials (here M stands for Cr, Fe, Co) were quenched
from 850°C to prevent intercalant ordering and to elim-
inate a possible effect of this factor on the lattice con-
stants. The x-ray diffraction measurements were car-
000 MAIK “Nauka/Interperiodica”



        

DETERMINATION OF THE POLARON SHIFT 1611

                                                                                                                                                                                    
ried out on a DRON-3M setup with CuKαradiation. The
lattice parameters were calculated with an error ∆a0 =
0.001 Å and ∆c0 = 0.002 Å. The results are displayed in
Fig. 1 together with the available literature data. The
x-ray diffraction study of the compressibility of TiSe2

was performed in a quasi-hydrostatic regime in a dia-
mond-anvil high-pressure chamber (the diameter of the
working surface 0.6 mm) capable of delivering pres-
sures of up to 20 GPa [10]. The diffractometer used was
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5
6
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Fig. 1. Concentration dependences of the crystallographic
parameters a0 (1–3) and c0 (4–6) for (a) CoxTiSe2,
(b) FexTiSe2, and (c) CrxTiSe2. 1 and 4 are the data of this
work, 2 and 5 are the data from [6] and 3 and 6 are the data
from [9].
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RIGACU R200 (MoKα, graphite monochromator,
rotating-anode tube). Ruby and NaCl crystals were
employed for the calibration of the pressures applied to
a sample. The pressure was determined to within
±0.2 GPa, and the lattice constants, to within ∆a0 =
0.005 Å and ∆c0 = 0.01 Å.

The good agreement of our with literature data
(Fig. 1) on the CoxTiSe2 and FexTiSe2 systems appar-
ently implies that the impurity ordering affects the lat-
tice constant only insignificantly. The characteristic
dimensions of the centers calculated from the data in
Fig. 1 for the intercalant concentrations x < 0.25 are
listed in the table.

The pressure dependences of the TiSe2 lattice
parameters are displayed in Fig. 2. The compressibili-
ties in the a0 and c0 directions derived from these data
are 2.51 × 10–12 and 1.53 × 10–11 Pa–1, respectively.
These values are close to those calculated for the isos-
tructural TiS2, for which the corresponding quantities
calculated from the data of [12] are, respectively,
4.07 × 10–12 and 1.46 × 10–11 Pa–1in the semiconducting
pressure region, and 3.32 × 10–12 and 0.632 × 10–11 Pa–1

in the semimetallic region. A certain growth of the
compressibility in the direction normal to the basal
plane in TiSe2 compared to TiSe2 can apparently be
attributed to the increased width of the van der Waals
gap of the first material.

The lattice strain energy induced by polaron forma-
tion is γc(∆c0)2, where ∆c0 is the strain created in the
formation of the Ti–M–Ti center, and γc is the inverse
compressibility in the c0 direction. The strain energy
(polaron shift) calculated in this way for the case of var-
ious metals intercalated into TiSe2 is displayed in Fig. 3
as a function of the impurity ionization potential in the
experimentally established (for Ag, Cr, Fe, Co, Ti) or
the most probable (for Ni) valence state.

Intercalation with alkali metals, which do not form
covalent bonds with the host lattice, results in an
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Fig. 2. Pressure dependences of the TiSe2 lattice constants.
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increase in the lattice constant c0 through the increase
in the interlayer separation. It was shown [13] that an
increase in c0 is directly proportional to the ionic radius
of the intercalant ion for the given host lattice. This sug-
gests the conclusion that this effect is associated with
the interaction of the filled shells of the intercalant atom
and the host lattice. Obviously, in the case of intercala-
tion with transition metals and silver, this effect will be
masked by the observed decrease in c0. While consider-
ing this factor presently appears impossible due to the
lack of data on the effect of covalent bonding on the
intercalant coordination by chalcogen atoms, it is clear
that suppressing an increase in c0 should bring about an
increase in the real work expended in straining the lat-
tice. Thus, the numerical values of the polaron shift in
MxTiSe2 obtained in this work should be considered as
a lower estimate.

One can readily see that the dependence of the
polaron shift on the impurity ionization potential

1
2

Co2+

Co2+
Ni2+

Fe2+

Fe2+
Cr3+

Ti4+

Ag+

0 10 20 30 40 50 60 70 80

0

0.1

0.2

0.3

I, eV

∆E, eV

Fig. 3. Dependence of the polaron shift on the intercalant
ionization potential. 1 is the data calculated from [6], 2 is
this work, and solid line is the result of optimization by
model [2].

Characteristic dimensions of the Ti–M–Ti cluster calculated
from the linear portion (x < 0.25, where x is the intercalant
content) of the concentration dependence of the lattice
parameters

Clusters c0 a0

Ti–V–Ti (TiS2) 6.008 3.540

Ti–Ag–Ti (AgxTiSe2) [11] 6.008 3.540

Ti–Ti–Ti (TixTiSe2) [5] 5.953 3.552

Ti–Cr–Ti (CrxTiSe2) 5.875 3.598

Ti–Fe–Ti (FexTiSe2) [6] 5.876 3.663

Ti–Fe–Ti (FexTiSe2) 5.837 3.638

Ti–Ni–Ti (NixTiSe2) [6] 5.611 3.584

Ti–Co–Ti (CoxTiSe2) [6] 5.583 3.594

Ti–Co–Ti (CoxTiSe2) 5.608 3.579
P

(Fig. 3) coincides in shape with the one calculated in
[2]. This provides support for the starting assumption
that it is the Coulomb interaction of conduction elec-
trons with the intercalant that determines the position
of the polaron band relative to the Fermi level of the
starting material and, hence, the magnitude of the
polaron shift. Optimization of the obtained dependence
of the polaron shift on the ionization potential I with
respect to the theoretical relation [2] shows that a fit can
be reached if one replaces I with I/α, where α = 33 is
the proportionality coefficient which has the meaning
of the ionization-potential screening constant (the static
dielectric permittivity).

This model can be tested using information on the
MnxTiSe2 compound that has not been studied to date.
These data will be obtained by our group and published
in the near future.
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Abstract—The existence in CdS1 – xSex crystals (with x = 0.10–0.50) of crystalline regions with stacking faults
(SF) was first demonstrated by x-ray diffraction and optical methods. X-ray diffraction studies showed SF to
be present in all the samples investigated, but in different concentrations. The effect of SF present in CdS1 – xSex
solid solutions of different compositions on their exciton reflectance and photoluminescence (PL) spectra has been
studied. Crystals with high SF concentrations were found to exhibit new exciton bands, which are manifested in
reflectance and PL spectra. In the CdS1 – xSex phase with SF, resonant emission due to free excitons and the cor-
responding phonon replicas have been observed. The effect of reabsorption, which can bring about a change in
the zero-phonon emission line shape (doublet formation), as well as affect the intensity ratios of the zero-
phonon line to the phonon replicas, has been analyzed. It is pointed out that the variation with temperature of
the shape of the SF-induced PL exciton line indicates its complex structure, with the constituents of this struc-
ture varying in intensity with increasing temperature. © 2000 MAIK “Nauka/Interperiodica”.
Solid solutions (SS) of semiconductors enjoy wide
application, because their parameters, namely, the gap
width, effective carrier mass, crystal structure, and lat-
tice constant can be varied within a broad range by prop-
erly varying their composition. SS based on II–VI com-
pounds are employed to develop tunable lasers, light-
emitting diodes, photodiodes, and other optoelectronic
devices. At the same time, such SS as CdS1 − xSex,
ZnxCd1 – xSe, and Zn1 – xMgxS are model objects for
investigating the effect of structural and compositional
disorder on their properties.

CdS1 – xSex solid solutions were studied most com-
prehensively [1–6]. It was established that localized
states make up a smooth exciton-band tail, whose den-
sity of states decreases as one moves into the band gap
[3–6]. According to [1, 2], radiative recombination in
CdS1 – xSex at helium temperatures is dominated by exci-
tons localized at compositional fluctuations. The photo-
luminescence (PL) spectrum represents a system of equi-
distant lines due to exciton interaction with phonons. The
linewidth is determined by the involvement of excitons
with different localization energies. A mobility edge for
excitons [7] was experimentally found to exist in the
CdS1 − xSex system. Some authors found that the exciton
reflectance (ER) and PL spectra in CdS1 – xSex solid
solutions with a low concentration of one of the com-
ponents (x ~ 0.01) can have a completely different
shape. These changes originate from exciton localiza-
1063-7834/00/4209- $20.00 © 21613
tion processes in near-surface potential wells created in
SS with a band gap narrower than that in the bulk [8–10].

The II–VI compounds and their SS are known to
crystallize in two modifications, more specifically, the

cubic (ZB), with space group , and the hexagonal

(W), with space group . A characteristic feature of
II–VI compound crystals is their ability to form stack-
ing faults (SF). The effects of SF on the optical proper-
ties of II–VI compounds and of their SS were studied
for ZnS [11, 12] and ZnS : (Ag, Cu, Mg) [13]. In
CdS1 − xSex, no SF have yet been observed, and to our
knowledge, their contribution to the optical properties
has not been studied. This may possibly be attributed to
the fact that their constituent compounds CdS and
CdSe do not form bulk cubic single crystals in usual
conditions. The CdS1 – xSex solid solutions were always
assumed to form a hexagonal lattice.

This publication reports on a study of the effect of
SF in CdS1 – xSex solid solutions of various composi-
tions on their ER and PL spectra. X-ray diffraction
measurements showed the presence of SF in all the
samples studied, but in different concentrations
(Figs. 1, 2). Crystals with high SF contents have revealed
new exciton bands, which manifest themselves in reflec-
tance and PL spectra (Figs. 3–9). A brief account of
these results has already been given in [14, 15].
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Fig. 1. Dependence of the hexagonal-lattice parameter on
the Se content in CdS1 – xSex.
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Fig. 2. (220) reflection profiles obtained with CuKα radia-
tion on CdS1 – xSex samples. Se concentration (x): (a) 0.15,
(b) 0.30, (c) 0.50, and (d) 0.50.
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1. EXPERIMENTAL TECHNIQUES

For our study we grew CdS1 – xSex single crystals
with x ≈ 0.10, 0.15, 0.30, and 0.50 (0.51) by sublima-
tion at 950°C. The starting mixture was preliminarily
homogenized by multiple sublimation. The samples
were shaped like platelets and hexahedral pins (nee-
dles). The largest single-crystal faces were about 2 ×
5 mm at a sample thickness from 0.1 to 1 mm. The
crystals were not intentionally doped during growth.
ER and PL spectra were measured from both natural
faces and surfaces polished in an etch.

We studied the angular position and profiles of the
diffraction lines from (110) hexagonal planes, which
are natural faces of the needlelike single crystals. The
x-ray diffraction measurements were performed on a
Rigaku D/max RX diffractometer (St. Petersburg
United Research Center) with CuKβ radiation. The cal-
culated probing depth is ~10 µm for normal x-ray inci-
dence and is proportional to sinθ for other grazing-inci-
dence angles θ. The crystallographic axes of the
needlelike crystals were set parallel to the goniometer
axis. They were of sixfold symmetry in all samples, and
the sample surface thus coincided with a (110)-type
hexagonal plane.

The ER and PL spectra, as well as the temperature
dependences, were investigated on an automated setup
making possible coordinated measurements and per-
mitting one to obtain, in one measurement, enough
information to allow a comparative analysis. The setup
included a DFS-24 monochromator with a dispersion
of 0.45 nm/mm. When making polarization measure-
ments, a polarizer with a depolarizing wedge used to
eliminate the polarizing action of the monochromator
was set in front of the entrance slit of the latter. A sam-
ple was CW pumped in the fundamental absorption
region by a DRSh-250 mercury lamp provided by the
corresponding filters and an argon laser. A halogen
incandescent lamp was employed to obtain reflectance
spectra. To measure the temperature dependences, a
sample was immersed in liquid helium or maintained in
its vapor. To ensure a constant temperature, the thermo-
statted chamber with the samples was provided with a
thermal sensor and a controlled heater making up a
servo-drive. The temperature-setting accuracy was not
worse than ±1 K.

2. X-RAY DIFFRACTION STUDIES

Considered in terms of the closest packing model
[16], the sphalerite and wurtzite lattices differ only in
the way their atomic layers are stacked along the body
diagonal of the cubic unit cell. As a result of a change
in the atomic interaction energy, the ZB–W phase tran-
sition produces a small change in the internuclear dis-
tances and, accordingly, in the interplanar separations
d(hkl), where h, k, l are the crystallographic plane indi-
ces. This phase transition also gives rise to an angular
displacement of the x-ray diffraction peak or to its split-
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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ting if both phases are present. The relative peak dis-
placement is usually ~0.2–0.6%.

As follows from an analysis of the diffractograms,
all samples are single-phase SS without separate pre-
cipitation of the CdS or CdSe components. The sam-
ples studied are single crystals consisting of crystallites
differing in structure. There is no stress between the
crystallites, and the crystallographic axes of all crystal-
lites are oriented in the same direction. The misorienta-
tion of the crystallite crystallographic axes is ~0.1–2°.
The absence of a diffuse background indicates that the
samples have practically no point defects and an amor-
phous component. Figure 1 shows the variation of the a
parameter of the hexagonal cell of the samples under
study vs. Se content. One readily sees that this depen-
dence is practically linear, i.e., that the a parameter var-
ies proportionally to the compositional variation.

A comprehensive x-ray diffraction investigation of
CdS1 – xSex solid solutions of variable composition (x =
0.15, 0.30, 0.50) was carried out. The second-order dif-
fraction-line profiles obtained from the (110) planes,
which correspond to the (220) reflections, are com-
pared in Fig. 2, where the profiles are normalized to the
maximum intensity and matched horizontally. The pro-
files are decomposed into elementary constituents, shown
in Fig. 2 by dashed lines. Taking into account that each
crystallographic phase in a sample may contain coher-
ent-scattering regions of different size, the diffraction-
line profiles were fitted by Gaussian-based functions.
This fitting approach allowed us to attain an rms devia-
tion, no more than 1.5 × 10–3.

As seen from the asymmetry of the profiles, all of
them can be considered to consist of two or three peaks,
a, b, and c. A similar pattern of profile decomposition
in peaks a, b, and c was also found by us to be valid for
ZnS single crystals [13]. Peak a corresponding to large
internuclear distances was assigned [13] to the high-
temperature hexagonal phase; peak c, to the cubic
phase; and the intermediate peak b was due to crystal-
lites with SF, i.e., to crystallites made up of layers of
hexagonal and cubic phases. A conclusion was drawn
[13] that the existence of a separate peak b suggests that
the crystallites with SF can be considered an indepen-
dent crystalline phase. The position of peak b varied in
our samples within a certain range, depending on the
volume ratio of the cubic and hexagonal phases. For
example, in Fig. 2, peak b is displaced toward peak a
from the midpoint of the ac segment, which implies
that the crystallites with SF responsible for peak b are
enriched in hexagonal layers. It is also seen that the x =
0.50 sample, whose profile is depicted in Fig. 2d, con-
tains a large amount of pure hexagonal crystallites
compared with the sample of the same composition
(x = 0.50), whose profile is given in Fig. 2c. Because
peak b has the maximum intensity in each profile, it can
be maintained that most of the crystallites in all sam-
ples contain SF.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
3. REFLECTANCE SPECTRA

The CdS1 – xSex crystals with different compositions
studied here revealed three characteristic groups of
exciton reflectance spectra. The first group exhibits two
known features corresponding to the formation of A
and B excitons in the hexagonal modification of the SS
(Figs. 3a and 3d). The spectra shift to lower energies
with increasing Se concentration.

In the second group of crystals one can observe,
besides the above-mentioned A and B exciton lines,
additional long-wavelength features denoted by us as
ASF and BSF. They also have the shape of dispersion
curves, and their intensity is comparable to that of the
A and B lines (Figs. 3b and 3d). The ASF line is seen in
the E ⊥  C component, and BSF is in the E || C compo-
nent. The distance between the ASF and BSF lines varies
in samples of different compositions from 5 to 15 meV.
The A–ASF distance in crystals with x = 0.30 was found
to be ~35 meV. In some cases, spectra of the first or sec-
ond group could be observed in different parts of the
same sample.

Finally, some crystals exhibited only ASF and BSF
features, which were polarized as specified above.
Sometimes, one could see in the spectra of these sam-
ples weak, shorter wavelength features (Fig. 3c). The
reflectance spectra of crystals belonging to the third
group are also presented in Figs. 6–8. Note that spectra
of each type could be observed in the samples studied,
irrespective of the value of x.

Thus, the reflectance spectra of a number of single-
crystal CdS1 – xSex samples revealed a previously
unknown additional structure resembling a doublet
with oppositely polarized components. We associate
the formation of this structure (ASF, BSF) with the exist-
ence of SF in these samples. As shown in the specific
example of ZnS crystals [11, 12], it is the formation of
SF in the sphalerite structure that results in a polarized
splitting of the exciton ground state and a change in the
gap width. The magnitude of the splitting is directly
related to the anisotropic field parameter. The effect of
SF on the excitonic states was also studied in consider-
able detail in Zn1 – xMgxS solid solutions [17].

As already mentioned, a characteristic feature of the
II–VI compound crystals is their trend to SF formation.
By stacking faults, a wrong layer sequence is under-
stood. It gives rise to an intermediate structure with a
variable anisotropy. CdS and CdSe usually crystallize
in the wurtzite structure. However, epitaxial layers
grown on an oriented GaAs substrate may possess a
sphalerite structure. In these conditions, the exciton
resonance in the cubic CdS modification is downshifted
by 15 meV [18, 19]. In CdSe crystals, this shift is about

70 meV [17]. In other words,  <  for both CdS
and CdSe. An analysis of exciton reflectance spectra
gives one grounds to maintain that the appearance of
the additional long-wavelength doublet structure in
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Fig. 3. Reflectance spectra of CdS1 – xSex crystals. Se concentration (x): (a) 0.15, (b) 0.30, (c) 0.50, (d) 0.51.
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Fig. 7. Spectra of (a, b) reflectance and (c, d) photoluminescence of a CdS1 – xSex crystal (x = 0.10).
CdS1 – xSex samples is due to the formation of crystal-
lites with SF.

4. PHOTOLUMINESCENCE SPECTRA

As in the reflectance spectra, in the photolumines-
cence of the samples studied one can identify three
main types of spectra. One of them is the well-known
emission due to localized excitons in the hexagonal
phase (Fig. 4) and is observed at low temperatures. It is
shifted approximately by the A exciton localization
energy and has a series of phonon replicas. Spectra of
the second type are observed when crystals of the hex-
agonal phase have regions with SF. In this case, the PL
spectrum exhibits the well-known emission of the hex-
agonal phase, as well as a new emission line, which is
shifted to lower energies with respect to the hexagonal-
phase radiation and is resonant with the ASF reflectance
line (Figs. 5a and 5b). The PL line ASF also has a system
of replicas with a phonon of slightly lower energy. As
seen from Figs. 5a and 5b, in the E ⊥  C component,
both lines merge to form one maximum, while for E || C
they are well separated. It should be stressed that, in
crystals of this type, phonon replicas make up a doublet
in which the component intensity ratio can vary. The

intensity ratio of the zero-phonon components  and
ASF can also vary (Fig. 5b). We shall return to this point
later.

Aloc
0

P

In the third group of crystals, where the emission of
crystallites with SF dominates, only the ASF line and its
phonon replicas are observed (Figs. 6–8). The intensity
of the zero-phonon line in samples of this group may be
lower than that of the first phonon replica, which we
believe to be due to the resonant character of emission
in the ASF line.

As is well known, in crystals with a surface layer of
thickness d, where excitons annihilate mainly nonradi-
atively, one may observe a drop in emission intensity
and the formation of a doublet (the self-absorption
effect). This phenomenon was first observed experi-
mentally in CdS crystals [20], later on CdTe [21] and
ZnSe [22], and was described in considerable detail in
[23, 24]. Taking into account self-absorption yields the
following expression for the intensity of a zero-phonon
emission line [24, 25]:

where k(ν) is the absorption coefficient and d is the dif-
fusion length. Substituting the free-exciton diffusion

length in the expression for (ν), it can be shown
that, as d increases, one first observes a broadening of
the emission line accompanied by a drop in its intensity,
followed by the formation and deepening of a dip, i.e.,
the appearance of a doublet. Figure 5b demonstrates the
formation of a doublet structure in the E ⊥  C compo-
nent. The dip is particularly clearly pronounced in the

IPL IPL
0 ν( ) k ν( )d–[ ] ,exp=

IPL
0
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Fig. 8. Spectra of reflectance (a, b) and photoluminescence from a natural face (c) and after polishing with an etchant (d) of a
CdS1 − xSex crystal (x = 0.15).
sample illustrated by Fig. 8c. On polishing the sample
in an etch, a maximum appeared in place of the dip and
the PL intensity increased (Fig. 8d).

We believe that CdS1 – xSex crystals with SF exhibit
resonant emission of free excitons and their phonon
replicas. Reabsorption may change the shape of the
zero-phonon emission line (doublet formation), as well
as affect the intensity ratio of the zero-phonon line and
its replicas.

The self-absorption effect can manifest itself in a
peculiar way in samples of the second group, where
regions with SF and the W structure coexist. While PL
spectra from the regions with SF and the W structure
have a similar shape, the intensity ratio of the zero-
phonon line to its first phonon replica in the spectra are
different. It is natural to assume that this is due to the
existence in the near-surface region of a nonluminesc-

ing layer with SF. Because  < , the zero-phonon
line emission of localized excitons (in the region with
the W structure) is absorbed in this layer, which entails

a change of the /  ratio.

The spatial inhomogeneity of the distribution of
regions with SF and the W structure was confirmed
experimentally by etching the surface (curves c and d in

Fig. 5). After the treatment in a polishing etch, the 
PL line, associated with the W structure, disappeared in
both the E ⊥  C and E || C components. This proves that

Eg
ZB Eg

W

Aloc
0 Aloc

LO

Aloc
0
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the layer adjoining the surface was dominated by the
W structure before the etching.

Note that, after removal of the layer with the domi-

nant W structure and disappearance of the  line, its
phonon replica persisted, although its intensity fell
markedly. After the etching, the layer containing
mostly crystallites with SF became closest to the sur-

face. As a result, the  emission did not escape from
the crystal (due to absorption by the long-wavelength

edge of the SF layer). The phonon replica  lies on
the low-energy side of the absorption edge of the SF
crystallites and can be observed in the spectrum; its
low intensity is apparently associated with the low
intensity of localized-exciton emission in the bulk of
this sample.

5. TEMPERATURE DEPENDENCE

An analysis of the temperature dependences of the
PL spectra obtained on our samples shows that, as the
temperature increases, the intensity of the Aloc and ASF
lines decreases, their shape changes, and one also
observes a considerable decrease in the intensity of
phonon replicas of both the Aloc and ASF lines. The
phonon replicas in the spectrum disappear at 34 K.

In this communication, we first note specific fea-
tures in the behavior of the ASF line (Fig. 9). The varia-
tion of the shape of this line with temperature implies

Aloc
0

Aloc
0

Aloc
LO
0
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its complex structure. The constituents of this structure
vary in intensity with increasing temperature. As a
result, one can observe the ASF profile acquiring an
asymmetric shape with a distinct long-wavelength tail.
As the temperature is further increased, the emission
line shape again becomes practically symmetric.

We followed the temperature behavior of the Aloc
and ASF emission lines in different parts of the sample
whose Aloc line exhibited properties similar to those of
the ASF (the weakening of the phonon replicas and a
change in the shape). The temperature behavior of Aloc
and ASF will be considered in more detail in another
publication.

6. RESULTS AND DISCUSSION

The above results of x-ray-diffraction and optical
studies permit a conclusion that a crystalline phase with
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Fig. 9. Temperature dependence of the photoluminescence
spectra (E ⊥  C) of a CdS1 – xSex crystal (x = 0.50). Temper-
ature (K): (a) 4.2, (b) 11.5, (c) 18, (d) 27, (e) 34, ( f ) 43,
(g) 53, and (h) 63. The Aloc arrow specifies the localized-
exciton PL line for the W phase.
PH
SF has been detected in CdS1 – xSex crystals. The (220)
reflection profiles obtained for different compositions
are characteristic of crystals with SF. In all samples, the
strong peak b produced by crystallites with SF lies
between the positions of a and c corresponding to the
hexagonal and cubic phases, respectively. In different
crystals, the maximum of b may shift toward a or c.
This suggests that the regions formed predominantly in
all samples are those with the SF, as well as with hex-
agonal and cubic structures in various relative amounts.
The largest relative number of regions with SF is
observed for x = 0.30.

The CdS1 – xSex crystals studied revealed splitting
and polarization of exciton lines in reflectance spectra
differing from those in the hexagonal phase. This
observation can be compared with the theoretical [25,
26] and experimental [11, 12] data, by which the exist-
ence of SF in the cubic phase manifests itself as a split-
ting of the degenerate valence band, with the magnitude
of the splitting proportional to the disorder parameter α
[1, 12].

One can roughly estimate the extent of disorder in
the crystals studied. For α = 0.33, the “induced” crystal
field in ZnS crystals was found [11] to be ~11.7 meV
(~36% with respect to crystal-field splitting in the W
phase of ZnS). In the CdS1 – xSex crystals with x = 0.50
studied by us, the crystal-field splitting in the W phase
is ~30 meV and the “induced” splitting is ~8 meV; i.e.,
this ratio is about 25%. According to our data, in x =
0.30 crystals it is about 40%. Thus, the crystal-field
splitting effect in CdS1 – xSex crystals observed by us is
comparable with that in ZnS crystals, and the
“induced” splitting is comparable with the crystal-field
splitting in the W phase.

Exciton PL spectra of the phase with SF exhibit a
new line, which is resonant with the long-wavelength
reflectance line. Simultaneously, PL spectra may also
contain emission lines belonging to the phase with SF
and the W phase. This shows that each phase exists
independently and occupies definite geometrical regions.
This point is also stressed by the experiment on local
excitation of the surface and its treatment with a polish-
ing etchant.

In crystals, or parts of crystals, with SF, exciton
emission differs little from that in the W phase. It also
has a zero-phonon line and several phonon replicas,
which fall off in intensity toward lower energies. In
order to make a more accurate assignment of an emis-
sion line to a crystalline phase, one has to use both
reflectance spectra and x-ray diffraction measurements.

The observed self-reversal of the ASF line shows it to
be related to free excitons. It is hardly likely, however,
that only free excitons produce emission in solid solu-
tions with SF. Indeed, as seen from the temperature
dependences, the ASF line profile is made up of indepen-
dently varying components. The longer wavelength
component already disappears at approximately 34 K.
We relate this component to both exciton localization at
YSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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compositional fluctuations and that associated with
structural disorder. A further increase in temperature
delocalizes the excitons. Note the fairly quick disap-
pearance of the phonon replicas with increasing tem-
perature, a phenomenon possibly caused by a change in
the character of exciton–phonon interaction.

Although optical manifestation of SF in CdS1 – xSex

solid solutions has not yet been reported, these materi-
als had earlier exhibited features which we believe
could be associated with the SF. For instance, in some
CdS1 – xSex samples with x = 0.15, Agekyan et al.
observed [27] a doublet structure in the localized-exci-
ton emission line (O1 and O2) which was, however,
related [27] to specific features of exciton diffusion in
the density-of-states tail. The frequently observed dou-
blet structure in the phonon replicas of localized exci-
tons can also possibly be assigned to SF-related effects.

A manifestation of structural disorder was recently
observed in Zn1 – xMgxSe mixed crystals at the sphaler-
ite–wurtzite phase transition, which takes place in this
compound at x = 0.19. It was shown [28, 29] that at this
concentration one observes the coexistence of the ZB
and W structures, two polytypes (8H and 4H), and
stacking faults.

Thus, we have demonstrated by x-ray diffraction
and optical methods that CdS1 – xSex crystals (for x =
0.10–0.50) contain crystalline regions with stacking
faults.
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Abstract—Hyperbolic excitons have been detected in layered semiconductor BiI3. Their main parameters have
been evaluated. © 2000 MAIK “Nauka/Interperiodica”.
Excitons existing near van Hove critical saddle
points of the M1 type and called hyperbolic have been
predicted theoretically in [1, 2], and observed experi-
mentally in the optical spectra of single crystals of
GaSe [3–5], InSe [6], TlSe [7], and GaP [8]. The
absorption and photoluminescence bands correspond-
ing to them are located in an energy region far above the
forbidden gap EG. Due to the absence of detailed calcu-
lations of the energy band structure for most com-
pounds, a search for hyperbolic excitons presents diffi-
culties and, as a result, they are poorly studied.

The present work is dedicated to an investigation of
the temperature dependences of the reflection spectra
(RS) of layered BiI3 single crystals for photon energies
hν > EG with the aim of revealing hyperbolic excitons.

The single crystals of BiI3 were grown by the Bridg-
man technique. The samples were in the form of rect-
angular plates, with the optical C axis being perpendic-
ular to the plane of cleaving. An atomically clean sur-
face was used as a precautionary measure against the
influence of the surface condition. The surface was pro-
duced by cleaving the samples with a knife in liquid
helium or peeling them off with scotch tape in cold
helium gas. The surface was mirrorlike, and much care
was taken to prevent the samples from deforming.

The light of a stabilized filament lamp was directed
at a sample at an angle that was less than 5° with respect
to the C axis. The reflection spectra were recorded for
the polarization E ⊥  C by using a PSG-2 spectrometer
with a resolution of 0.15 meV at temperatures of 5–
300 K. The temperature was measured with a precision
of ±0.5 K.

The data on the dispersion of the indices of refrac-
tion n(hν) and absorption κ(hν) for the polarization
E ⊥  C at 4.2 K are derived by the classical Kramers–
Kronig relations, as the effects of spatial dispersion are
not essential in BiI3 [9, 10].

The typical reflection spectra of the BiI3 single crys-
tals with an atomically clean surface, as well as the
n(hν) and κ(hν) dependences, for the polarization E ⊥  C
and an energy range 1.5–5.5 eV at 5 K are shown in
Fig. 1. Alongside known bands at 2.098, 2.206, and at
1063-7834/00/4209- $20.00 © 21622
2.124 eV, caused by free [10, 11] and quasi-surface [10,
12] excitons, respectively, a clearly pronounced band
appears at 3.804 eV. The latter is also observed in the
RS of samples with a natural surface; therefore, it can-
not be associated with the surface condition. The max-
imum absorption coefficient in this band is 5 × 105 cm–1,
which is sufficiently large and cannot be caused by the
presence of an impurity or other defects of the crystal
lattice.

The influence of temperature on the band at 3.804 eV
is illustrated in Figs. 2 and 3. As can be seen, the band
undergoes essential variations with a temperature rise:
the maximum of reflection shifts to lower energies by
4.6 × 10–2 eV, the reflection coefficient decreases from
30 to 23%, and the half-width of the band more than
doubles. The temperature dependence of the last quan-
tity is described well by the empirical relationship:

(1)

where Γ0 = 85 meV and A = 150 meV2/T2 (curve 1 in
Fig. 3). It should be noted that the maximum of this
band remains steady to T ≈ 45 K, but it shifts to lower
energies with a rate of dEmax/dT = –3.6 × 10–4 eV/T at
temperatures T > 45 K (curve 2 in Fig. 3). The band
maximum obeys the empirically determined tempera-
ture dependence of the form

(2)

which was found to be valid for hyperbolic excitons in
GaSe [3].

Thus, the large value of the absorption coefficient,
together with its strong temperature dependence, con-
clusively indicates that the band at 3.804 eV is of exci-
tonic origin.

Taking EG = 2.242 eV for BiI3 at T = 4.2 K [10, 11],
we notice that the exciton level corresponding to this
band is 1.6 eV above the fundamental absorption edge.
This level can be associated with both parabolic exci-
tons of deeper subbands of the conduction and valence
bands and hyperbolic excitons. However, it is known

Γ T( ) Γ 0
2 AT2+( )1/2

,=

Emax T( ) 3.804=

– 6.2 10–4T2/ T 240 K+( ) eV( )× ,
000 MAIK “Nauka/Interperiodica”
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[1] that the variation of the density of states is of the
form dN/dE ~ (E – EG)1/2 for the interband transitions at
the van Hove M0 point, whereas it has the form of
dN/dE ~ [C – b(EC – E)]1/2 and dN/dE ~ C for the tran-
sitions near the critical saddle point of the M1 type for
E ≤ EC and E > EC, respectively (EC is the energy at the
van Hove M1 saddle point and C and b are constants).
On the other hand, we have K ~ κ ~ dN/dE; therefore,
the characteristic feature of the hyperbolic excitons,
distinct from the parabolic excitons, is, for example, the
existence of a plateau on a K(E) or a κ(E) curve on the
short-wave side of the exciton resonance. Such a pla-
teau was, in reality, observed earlier in the absorption
spectra of the hyperbolic excitons in a layered GaSe
[3]. A plateau is also on a κ(E) curve of the layered BiI3
at energy hν = 4.4 eV (curve 3 in Fig. 1). The validity
of the conclusion drawn is also supported by the fol-
lowing arguments.

(1) For all known semiconductors, the coefficient of
the temperature shift of deeper subbands of the valence
band and higher subbands of the conduction band is
less than that of the subbands responsible for the funda-
mental absorption edge. In the case of BiI3, we have
dEG/dT = +8 × 10–5 eV/T at T ≤ 45 K and –1.3 ×
10−4 eV/T at T > 45 K [10]. Therefore, the different
temperature behavior of Emax(T) and EG(T) at T ≤ 45 K
and the fact that the rate of the long-wave shift of Emax
is 1.7 times higher than that of EG at T > 45 K cannot be
explained by the involvement of the above-mentioned
subbands in the occurrence of the 3.804-eV band.

(2) The temperature broadening of the 3.804-eV
band is extremely strong at T = 270 K. It exceeds the

2
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Fig. 1. Reflection spectra (1) and dispersion of the indices of
refraction n(hν) (2) and absorption κ(hν) (3) in layered BiI3
single crystals with atomically clean surface at T = 4.2 K
and E ⊥  C.
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initial half-width at T = 5 K by 153 meV, which is con-
siderably greater than the corresponding broadening of
the exciton absorption band with n = 1 [10, 11].

(3) The temperature shift of the maximum of the
band in question is consistent with that for the hyper-
bolic excitons in GaSe [3].

Consequently, all of the above allows us to conclude
that the 3.804-eV band belongs to a van Hove singular-
ity of the M1 type rather than to that of the M0 type.

We have estimated the binding energy of the hyper-
bolic excitons by analogy with the binding energy of

the M0-point excitons, accepting that  = EM1 – Emax.Eex
hyp
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Fig. 2. Temperature dependence of the reflection band at
3.804 eV in layered BiI3 single crystals at E ⊥  C.
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Taking EM1 = 4.4 eV at T = 4.2 K, we have derived that

 = 0.6 eV.

(4) The half-width of the absorption band at 3.804 eV
is equal to 85 meV at 5 K, which is 2.4 times as large
as the half-width of the main exciton band with n = 1.
Accepting τ ~ 1/Γ, we find that, for BiI3, the lifetime of

the hyperbolic excitons  is 2.4 times shorter than

that of the parabolic excitons, . This seems likely to
be caused by the dynamical instability of the hyper-
bolic excitons near the critical saddle point of the M1
type. Unfortunately, the available calculation of the
energy band structure of BiI3 [13] does not allow this
point to be identified with a specific point of the Bril-
louin zone.

Thus, we conclude that hyperbolic excitons have
been detected in a layered semiconductor BiI3 by inves-
tigating the reflection spectra of samples with atomi-
cally clean and natural surface’s in the energy region
hν > EG .
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Fig. 3. Temperature dependence of the half-width (1) and
energy position of the maximum (2) of the reflection band at
3.804 eV in the layered BiI3 single crystals at E ⊥  C.
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Abstract—Quantitative investigations of the hydrogen-like exciton B series in the absorption spectra of the
β-ZnP2 crystal for various wave vector directions and polarization states of radiation are conducted. It is shown
that the B spectrum constitutes a single orthoexciton series with S-type envelope functions, and low-energy
components in doublet lines belong to the S-type for lines in the series with n ≥ 3. Polariton effects are clearly
manifested at the Bn = 1 exciton resonance, and Bouguer’s law is violated. The oscillator strength tensor com-
ponents are determined for transitions to the exciton states of the B series, and the polariton parameters at the
Bn = 1 exciton resonance are calculated. © 2000 MAIK “Nauka/Interperiodica”.
† An analysis of low-temperature absorption in crys-
tals near the n = 1 exciton resonances must include the
exciton–photon interaction (mixing) [1–3] not only for
electric dipole excitons [4–8], but also for dipole-for-
bidden (quadrupole) excitons with very low oscillator
strength, which lead to weak spatial dispersion [9, 10].

In addition to the hydrogen-like C series of a singlet
electric-dipole exciton [11–14] and its mixed mode
[15], the optical spectra of monoclinic zinc diphos-
phide  β-ZnP2 display at least two relatively weak
dipole-forbidden hydrogen-like exciton series, A and B
in the vicinity of the fundamental absorption band [11–
13, 15]. It is significant that, although the exciton Ryd-
berg constant Ry for each absorption series has differ-
ent values, all the series converge to virtually the same
limit E∞ = (1.6026 ± 0.0002) eV upon an increase in the
principal quantum number n [13, 15, 16]. This indicates
that the series C, B, and A are exciton states formed
from the wave functions of the same pair of electron
bands [15, 16].

It is generally accepted that the B series, whose
magnetic properties were investigated in [17, 18], is
due to the nS states of a triplet exciton split by the short-
range exchange interaction [11, 17–19]. It is assumed
that the doublet lines for the terms in this series with n ≥
3 emerge due to mixing the wave-function envelopes of

an orthoexciton in the nS states of symmetry  with
an appropriate, completely symmetric function from

the envelopes of the functions 3  + 2  of the nD
states. In this case, the low-energy components of the
doublet lines belong to D states [17–19]. It was

† Deceased.

Γ1
+

Γ1
+ Γ2

+
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assumed in [13, 16] that the B series starts from n ≥ 2
and is due to transitions to the nP states of a singlet
exciton. The origin of the principal line (the so-called B
line) of this series remained unclear. The properties of
the A series, which is also the exciton series of β-ZnP2
[15], will be described in our next publication.

In this paper, a quantitative analysis of exciton
absorption spectra taking into account polariton effects
is carried out for the first time for the B series with a
view to ascertaining its origin.

1. EXPERIMENT

The exciton absorption spectra of β-ZnP2 crystals at
temperatures of 1.7 K and above were determined from
the transmission spectra and investigated for various
directions of the radiation wave vector s = q/q and for
various polarization states of the vector E. The spectra
were measured with a spectral resolution of 0.05 meV
on a device described in [15, 20] with a ±0.00003 eV
error in measuring the photon energies (reduced to
wavelengths in vacuum). The samples were cut from
single crystals grown in our laboratory [15] by a dia-
mond cutting wheel along the normal to the principal
directions defined in crystallography or crystal physics.
The cut planes of the samples were disoriented by not
more than 0.5° relative to the crystallographic axes. We
also used the plates cut and ground parallel to the natu-
ral faces of the (100), (110), and (102) types. It should
be recalled that the crystallographic axes are arranged
in the standard manner for the monoclinic system: the
monoclinic axis C2 || b || Y, c || Z, and the axis a lies in
the XZ mirror plane at an angle β = 102.3° to the c axis
[15, 21]. In our experiments, we used 0.8 to 0.04 mm-
thick plates. After mechanical grinding by the diamond
2000 MAIK “Nauka/Interperiodica”



 

1626

        

GORBAN’ 

 

et al

 

.

                                                                                             
Bn = 1
Cn = 1

Bn = 2

Bn = 3

Bn = 4
Bn = 5

Bn = 6

Cn = 2

Cn = 3
Cn = 4

An = 1 Eg

ET EL

100

0
1.6001.550

0

0.8
R α,

 c
m

–
1

Fig. 1. Exciton absorption spectra of a β-ZnP2 crystal for
s ⊥  (100) and E || b (solid curve) and reflection spectra for
E || c (dashed curve) for T = 1.7 K and d = 0.445 mm.
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Fig. 2. (a) Dependence of the optical density D at the Bn = 1
and Bn = 2 lines for s ⊥  (100) and E || b on the sample thick-
ness. (b) Dependence of D on d in the region of band-to-
band transitions; T = 1.7 K.
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pastes ASM-100, the samples were subjected to a soft
chemical etching in a dilute solution of bromine in
methanol. We also studied the exciton reflection and
transmission spectra for β-ZnP2 crystals under uniaxial
compression. The force for axial deformation of the
samples was created in a special device with the help of
a lever.

2. DISCUSSION OF EXPERIMENTAL RESULTS

2.1. Spectroscopic Properties of the B Spectrum

Figure 1 shows the exciton spectrum of a high-qual-
ity [15] β-ZnP2 sample in a traditional geometry, i.e.,
for s ⊥  (100). For the E || b polarization, the absorption
spectra contain a hydrogen-like B series of lines clearly
manifested up to n = 6, while for E || e, the reflection
spectrum is the C spectrum of a singlet exciton. The
table presents the experimentally observed energies of
lines corresponding to the B spectrum, as well as the
energies calculated in the hydrogen-like approximation
from the terms of the series with n = 3 and 4 for both
low-energy and high-energy components of doublets
and their difference. It should be noted that the energies
for the B series are given only in [18] and agree with
our data.

It was mentioned in our previous publication [15]
that, at helium temperatures, the absorption coefficient
α at the peak of the Bn = 1 line, as well as its integrated
absorption (IA), varies for different crystals, with the α
value increasing markedly for thinner samples (see
Fig. 1 in [15]). For example, the value of α is as high as
685 cm–1 for a sample of thickness d = 0.038 mm. The
comparatively strong absorption (α ~ 700 cm–1)
observed for the Bn = 1 line in thin samples led the
authors of [17–19] to conclude that the B series is asso-
ciated with weak allowed dipole transitions. Figure 2a
shows the optical density at the transmission minimum
of the Bn = 1 and Bn = 2 lines as a function of the sample
thickness for 30 samples. The triangles in this figure
indicate the optical density of the same sample upon a
gradual decrease of its thickness. The nonexponential
dependence, 2.303D = lnT–1 = f(d), for the Bn = 1 line
indicates the violation of Bouguer’s law, which is typi-
cal of the absorption at the n = 1 exciton resonances [4–
8, 22]. The lnT–1(d) dependence for the Bn = 2 line, as
well as in the region of the band-to-band transitions
("ω = 1.609 eV), is found to be linear in accordance
with Bouguer’s law (Fig. 2b). Henceforth, we will
define the “absorption coefficient” for the Bn = 1 line at
low temperatures in the conventional manner and use
this term without inverted commas, bearing in mind
that only transmission has a physical meaning. It
should be observed that the transmission at the Bn = 1
line amounts to T ≤ 0.4% for the sample thickness d ≈
0.4 mm, and the error in the measurements of D thus
increases significantly with the sample thickness.
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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Energies of the lines of the B spectrum experimentally observed and calculated in the hydrogen-like approximation, as well
as their difference

n Eexp (eV)  (eV)  – Eexp (eV)  (eV)  – Eexp (eV)

1 1.55775 1.55388 –0.00388 1.55764 –0.00011

2 1.59108 1.59044 –0.00064 1.59143 0.00035

3 1.59721 1.59721 0 – – 

3 1.59768 – – 1.59768 0

4 1.59958 1.59958 0 – –

4 1.59987 – – 1.59987 0

5 1.60070 1.60068 –0.00002 – –

5 1.60090 – – 1.60089 –0.00001

6 1.60137 1.60128 –0.00009 1.60144 0.00007

E∞ = 1.60263 eV E∞ = 1.60269 eV

 = 0.04875 eV  = 0.04505 eV

Note: The energies of the lines in doublets were refined by separating contours.

EH
low EH

low EH
high EH

high

Ry
low Ry

high
The half-width of the Bn = 1 line varies with the direc-
tion of the wave vector and the polarization state of the
radiation. For s ⊥  (100) and E || b, it amounts to H ≤
0.2 meV for a sample thickness d ≈ 0.20 mm (when the
dependence of absorption on thickness is not mani-
fested strongly). For other directions of the wave vec-
tors and for polarizations with a nonzero component of
the vector E along the axis X || (100) || [b × c], the half-
width of the Bn = 1 line is larger. For example, H ≈
0.28 meV in the geometry s ⊥  (100) for E ⊥  c, when the
angle between the electric induction D and the X axis in
the XY plane ([b × c]b) is equal to ε = 40.1°, while H ≈
0.32 meV in the geometry s ⊥  (010) and E || X. When
the vector s is directed along the axis c || Z, H ≈
0.20 meV for the polarization E || b, and H ≈ 0.32 meV
for E || X. An increase in the half-width of the Bn = 1 line
can be explained by the fact that accidental spin degen-
eracy is preserved in the Abelian group (crystallo-
graphic class C2h) for the nS states of an orthoexciton in
zero external magnetic field, and only the states of the

orthoexciton of symmetry 2  are probably mani-
fested spectroscopically for E || b, while for E || X, the

state  is also manifested [15]. Such anisotropy
apparently reflects the manifestation of spatial disper-
sion at the Bn = 1 orthoexciton resonance.

The Bn = 2 line has a rather large half-width H ≅
0.82 meV with a weak negative asymmetry [23] δ =
(H+ – H−)/H = –0.02. However, the half-width of the
low-energy component of a doublet with n = 3 is H ≈
0.28 meV, while the half-width of the high-energy
component is H ≈ 0.32 meV without any noticeable
asymmetry. The components for terms with n ≥ 4 have
approximately the same half-widths. The considerable

Γ1
– y( )

Γ2
– x( )
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broadening and the low-energy asymmetry of the Bn = 2
line are probably associated with interband scattering
of an orthoexciton from the exciton band with n = 2 to
the ground state, accompanied by the emission of lon-
gitudinal optical phonons with a nonzero wave vector
[23, 24]. The energy difference between the n = 2 and
n = 1 bands of an orthoexciton for k = 0 is 34.33 meV,
which is slightly larger than the energy "Ω = 31.5 –
33.7 meV of an actual phonon [19, 25, 26]. The weak
negative asymmetry of the Bn = 2 line indicates the low
intensity of the exciton–phonon interaction. A similar
energy difference for the n = 3 band amounts to
39.5 meV. There are no suitable phonons for this
energy gap [25, 26] (or their density of states is quite
low), meaning that the lines remain relatively narrow
and symmetric. It should be noted that, in the geometry
s ⊥  (102) and E || b, all the lines of the B spectrum
become narrower by ≈0.06 meV, and the line resolution
in doublets increases accordingly.

The table shows that the series formed by high-
energy components of doublets obeys the hydrogen-
like regularities better than the series consisting of low-
energy components. This can be explained by assuming
that low-energy states from those with n ≥ 3 in the case
of the (s–d) splitting are the nS states, while high-

energy states are the nD states, for which  = 0
and, hence, the “central-cell corrections” are negligibly
small for them.

If the C and B series originate from the same pair of

electron and hole bands, being nS states of a  sin-

glet exciton and of a 2  +  triplet exciton
[15], these series must be shifted identically during
crystal deformation with increasing stress. The orthos-

Φ r( ) r 0=
2

Γ2
– z( )

Γ1
– y( ) Γ2

– y( )
0
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Fig. 3. Transformation of the B spectrum under uniaxial compression along the b axis of a β-ZnP2 crystal following its “quasiplastic”
deformation at room temperature. P, MPa: 0 (1), 120 (2), 240 (3), and 360 (4). s ⊥  (100) and E || b, T = 4.5 K. Spectra 2–4 are shifted
consecutively by 20 cm–1 along the ordinate axis.
tates with different symmetries must generally be
shifted with different rates as a result of the axial defor-
mation of the crystal. In the case of the axial compres-
sion of a β-ZnP2 crystal along the axes c(Z) and b(Y), it
was found that C and B series are shifted linearly
towards higher energies as the stress changes from
“zero”1 to ~300 MPa.2 For P || c and s ⊥  (010), the C series
for E || c and the B series for E || X are shifted at approxi-
mately the same “rate” ∂E/∂P ≈ 9.93 × 10–6 eV/MPa. For
P || b and s ⊥  (100), the bands the C series for E || c and
the lines of the B series for E || b are shifted at a higher
rate than for P || c. The rates of displacement for lines
with n = 1 are slightly different: Cn = 1—∂E/∂P ≈ 1.70 ×
10–5 eV/MPa for Cn = 1 and ∂E/∂P ≈ 1.48 × 10−5 eV/MPa
for Bn = 1.

For s ⊥  (010) and E || c, the  states of a singlet
exciton are observed, while for E || X, the nS states of a

 orthoexciton are probably manifested, and the
series are displaced at the same rate. For s ⊥  (100) and

E || c, the nS states of the  singlet exciton are

observed, while for E || b, only the states 2  are
likely to be manifested in the 1S orthoexciton. Conse-

1 “Zero” stress does not rule out low residual uniaxial stress due to
friction in the system of the lever and the punch, as well as that
due to possible quasi-plastic deformation emerging when the
sample is indented into a “pad” made of a POS-40 solder at room
temperature.

2 The positions of the bands in the C series were determined from
the minima in the dispersion contours of reflection spectra.

Γ2
– z( )

Γ2
– x( )

Γ 2
– z( )

Γ1
– y( )
P

quently, these lines are shifted at slightly different rates,
which obviously reflects the exchange–deformation
splitting of the orthoexciton [27].

While analyzing the effect of axial deformation
along the b axis on the exciton spectra of β-ZnP2, we
obtained one more relatively important result. As usual,
a sample having a size of 4.0 × 2.80 × 0.432 mm was
indented by a load P ≈ 240 MPa into the POS-40 solder
“pads” for ~1 min at room temperature prior to mea-
surements in order to deform the crystal uniformly
[28]. Then the device with the sample was unloaded,
placed in a cryostat, and cooled to 4.5 K. The recording
of transmission spectra revealed that under “zero” load-
ing, the transmission at the Bn = 2 line increased consid-
erably and amounted to T ≈ 5.85% as compared to T ≈
0.35% for the free sample. The transmission at the Bn = 3
line and at low-energy components of doublet lines
with n ≥ 3 (they will be denoted by the index s) also
increased (approximately twofold). As the stress
increases, apart from the shift of the spectrum to higher
energies, the absorption started increasing at Bn = 1 and
Bn = 2 lines, as well as at the “s” components of doublet
lines with n ≥ 3 (Fig. 3). At the stress σ ≈ 360 MPa, the
absorption spectrum of the B series again acquired the
usual ratio of intensities (cf. Fig. 1). Leaving aside the
mechanism of selective increase in the transparency at
the resonances of the B-exciton spectrum (following
the “quasiplastic” deformation of the crystal at room
temperature), we note the identical behavior of the Bn = 1
line and the low-energy components of doublet lines
for n ≥ 3. This indicates their genetic relationship; con-
sequently, the “s” lines for n ≥ 3 are due not to nD states
[18, 19], but, like the Bn = 1 line, to the nS states of an
orthoexciton [17]. The “accidental” orbital degeneracy
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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in the hydrogen-like system can be removed by violat-
ing the central symmetry of the Coulomb field and by
the spin–orbit interaction [29]. As the axial deforma-
tion of the crystal increases, the splitting in doublets
with n ≥ 3 does not change. Consequently, this splitting
is associated not with the crystal field, but with relativ-
istic effects. Considering that the spin–orbit splitting of
the valence band is insignificant [15, 17], the doublet
splitting is apparently associated with the j–j interac-
tion, since the orbital angular momenta and their com-
ponents in low-symmetry crystals are not conserved,
and the magnetic moments associated with the orbital
motion are equal to zero in the first approximation
(“quenching” of orbital angular momenta by the crystal
field [30]).

2.2. Energy Dissipation for Exciton Polaritons

Photoexcitons or exciton polaritons are absorbed in
a crystal if the dissipation of their mechanical energy
(characterized by the attenuation factor γ) occurs at the
dissipative subsystem (at phonons, crystal structure
defects, and also near the surface) [1]. The fraction of
the electromagnetic energy of an exciton polariton, or
the intensity of the exciton–photon interaction, is asso-
ciated with the “delay” effect and is characterized by
the magnitude of the longitudinal–transverse splitting,
which is directly determined by the oscillator strength
of the exciton transition. The attenuation factor γ can be
smoothly varied by increasing the temperature of the
crystal. At a certain temperature Tc, it attains the critical
value γ ≥ γc, for which the interaction between excitons
and photons is negligible, and the crystal loses spatial
dispersion. This is confirmed by the loss of transpar-
ency at n = 1 exciton resonances [4–7, 9]. The area
bounded by the curve becomes proportional to the
oscillator strength F of the exciton transition [31, 32]
and no longer depends on the temperature and thick-
ness of the sample in accordance with the semiclassical
theory of exciton absorption [33].

Figure 4 shows the temperature dependence of the
integrated absorption A in eV cm–1 at the Bn = 1 and Bn = 2
lines for s ⊥  (100) and E || b for two samples. In a sam-
ple of thickness d = 0.205 mm, the IA for the Bn = 1 line
increases with T by more than an order of magnitude
and attains saturation at Tc ≈ 110 K. For the n = 2 line,
the temperature increase of IA is insignificant. In a thin-
ner sample (d = 0.076 mm), the saturation for the Bn = 1
line is attained at a lower value of Tc ≈ 90 K in accor-
dance with the general tendency of IA variation at n = 1
exciton resonances in other semiconductors due to an
increase in absorption in the surface layers [5, 6].

In the region of IA saturation, the values of Asat for
the Bn = 1 line are determined by the semiclassical for-
mula [33] for the tensor component of the oscillator
strength for the exciton transition to a molecule (the
unit cell of β-ZnP2 contains eight structural units [21])
for three crystallographic directions. For the direction
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
s || X || [b × c], or s ⊥  (100), it amounts to  = (8.2 ±
0.3) × 10–7 for εb = 10 in for the polarization E || b [18],

while  = 2.6 × 10–6 for s || Y || b when E || X and

εa = 7.8 [18]. For s || Z || c,  = 8.2 × 10–7 when E ||

b, and  = 2.3 × 10–6 when E || X. It was found that
the ratio of the oscillator strengths for the terms of the
B series in the direction s || X obeys the relation Fn ~ 1/n3

Fn = 1/Fn = 2 ≅  7.8; Fn = 2/Fn = 3 ≅  3.24, and Fn = 3/Fn = 4 ≅
2.35) if we assume that the doublet lines with n ≥ 3 are
due to the “s–d” splitting [17–19]. In this case, a frac-
tion of the oscillator strength is pumped from the nS
states to the nD states due to the mixing, by the aniso-
tropic component of the Hamiltonian, of the envelopes
of the functions of the nS states of an orthoexciton of

symmetry  with one of the three functions of the
nD states having the same symmetry [19, 34, 35]. The
above relationship is a typical feature of a S type exci-

ton series [36]. The obtained value of  proved to
be four orders of magnitude smaller than the oscillator

strength  = 6.0 × 10–3 for a 1S singlet exciton
(having the same direction). This oscillator strength
was calculated from the longitudinal–transverse split-
ting δLT = 4.56 × 10–3 eV that we obtained by analyzing
the mixed mode [15] for the background permittivity
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Fig. 4. Temperature dependence of integrated absorption at
Bn = 1 lines [d = 0.205 (curve 1) and 0.076 mm (curve 2)] and
at Bn = 2 lines (curve 3) and the half-width H of the Bn = 1 line
for a chemically polished sample with d = 0.076 mm (curve 4)
and a mechanically polished sample (curve 5).
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εc = 9.7 [18]. If the B series comprises the states of a
singlet exciton with envelope functions of the P type
[13, 16], in which dipole transitions are parity forbidden,
the oscillator strength must obey the law Fn ∝  (n2 – 1)/n5

and lead to other ratios of the lines in the series:
Fn = 1/Fn = 2 = 0; Fn = 2/Fn = 3 = 2.848, and Fn = 3/Fn = 4 ≅
2.247 [36]. In this case, the discrepancy between the
theory and the experiment can hardly be explained by
anisotropy of effective masses and permittivity. More-
over, transitions to the nP states are only allowed in the
quadrupole approximation [15] and must be character-
ized by an oscillator strength much smaller than the
obtained values,3 which follows from the results of
experiments on two-photon absorption [37].

The assumption concerning the surface origin of the
Bn = 1 line [16] was not confirmed in our experiments.
The IA for the Bn = 1 line remains constant within the
experimental error upon an order-of-magnitude change
in the area of the aperture of the calibrated diaphragm
limiting the radiation flux incident on the sample. It is
also virtually independent of the quality of the illumi-
nated surface (natural or mechanically polished).

Figure 4 also shows the temperature variation in the
half-width H for the Bn = 1 line. As the temperature T
increases from 1.7 to ~10 K, the half-width of the Bn = 1
line remains virtually unchanged (curves 4 and 5). The
dashed curve corresponds to the value of H0 including
the constant components γ0 and γs associated with the
scattering of polaritons from crystal structure defects
and in the surface layers, respectively. A further
increase in T leads to a superlinear dependence H(T),
which reflects the polariton scattering first from acous-
tic phonons and then from longitudinal optical phonons
[7]. Curve 5 describes the variation o H for the Bn = 1 line
in a sample with a mechanically polished face (d =
0.205 mm), the opposite face remaining natural. The
γ(T) dependence for the given sample has an inflection
in the polariton temperature region T ≤ Tc. The same
dependence γ(T) was also observed for thinner mechan-
ically polished samples. The deviation of the γ(T)
dependence from the smooth curve 4 observed for
chemically polished samples in the form of the inflec-
tion in the temperature range T ≤ Tc can be explained by
surface effects. Chemical etching removes the mechan-
ically damaged surface layer, along with the oxide layer
and the adsorbed molecular ions. These results agree
with the assumption made by Aliev et al. [7] concern-
ing the effect of the field of the surface charge on a sim-
ilar behavior of the γ(T) curve observed for ZnTe.

In [15], we assumed that the broadening and asym-
metry on the high-energy wing of the Bn = 1 line contour
in low-quality β-ZnP2 crystals at helium temperatures
are mainly due to the scattering of exciton polaritons
from lattice defects, rather than due to intraband scat-

3 For example, F2y = 2.8 × 10–6 for a line with n = 2 in the dipole-
allowed P series for Cu2O [33].
P

tering of excitons from phonons [18]. This assumption
is confirmed by our present studies. The broadening
and asymmetry of the Bn = 1 line contour agree with the
theoretical predictions for the exciton absorption in the
presence of exciton scattering from charged defects
(without regard for the screening effects) [38, 39].
According to Skaitys et al. [39], the scattering of exci-
ton polaritons from positively charged defects will be
more intense.

The experimental data described above indicate that
the B spectrum is a single series of an orthopolariton
split off by the exchange interaction. It is well known
that the exchange splitting of a degenerate exciton state
is equal to the doubled exchange integral, which is
approximately proportional to A ∝  (e2/d)(d/aex)3 for nS
states, where d is the atomic spacing in the lattice and
aex is the Bohr radius of the exciton. The separation d
between the nearest P and Zn atoms in β-ZnP2 is equal
to 0.239 nm [21], while the Bohr radius aex of a 1S sin-
glet exciton is ~1.8 nm; consequently, 2A ~ 2.8 × 10–3 eV.
The difference between the energy of a Bn = 1 exciton
and the energy ET = 1.5603 eV of a transverse Cn = 1

exciton [12, 15] is 2.6 × 10–3 eV, which almost coin-
cides with the theoretical estimate. Moreover, the short-
range exchange interaction leads to an exciton energy
that is independent of the direction of the wave vector
[40], which is observed in actual practice for the B
series [15].

When photoexcitons are the eigenstates of a crystal,
Bouguer’s law is violated at n = 1 exciton resonances at
low temperatures: the absorption coefficient increases
when the sample thickness decreases below a certain
value of d [4–8]. This is associated with an increase in
γ due to an increase in the scattering of exciton polari-
tons in the surface layers of thickness ds as compared to
the interior region di of the crystals, in which γ = γ0 and
is determined only by the dissipation of photoexciton
energy at crystal structure defects [1, 5, 7, 8]. The atten-
uation of exciton polaritons depends considerably on
the quality of the surface. For example, the half-width
H of the Bn = 1 line of a mechanically polished sample
with d = 0.077 mm at T = 1.7 K is approximately equal
to 0.35 meV, whereas after polishing etching of this
sample in a dilute solution of bromine in methanol (d =
0.076 mm), its value decreases by half (H ≅  0.18 meV).
The decrease in polariton attenuation also reduces the
integrated absorption approximately twofold.

Aliev et al. [8] analyzed the thickness dependence
of absorption at the n = 1 resonance of a dipole exciton
in GaAs and proposed the following empirical formula
describing the IA variation as a function of the sample
thickness:

(1)

where Ai is the IA in the interior layer of thickness di,
which is not perturbed by surface effects, ds is the thick-

A d( ) Ai 2
ds

d
----As 1

Ai

As

-----– 
  ,+=
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ness of the surface layer, and As is the absorption in the
surface layer. We assume that, as the crystal thickness
decreases to d ≤ 2ds (the conditions at both surfaces are
identical), IA attains saturation determined by the crit-

ical attenuation  of polaritons in the surface layers.

We also assume that the values of As and  must coin-
cide with the values of Asat and γc determining the loss
of polariton properties and of spatial dispersion of the
crystal at an exciton resonance at T ≥ Tc. Aliev et al. [8]
also assume that the thickness ds in GaAs is determined
by the nonuniform field Fs of the surface charge.

The fitting of the A(d) dependence to the experimen-
tal data obtained for the Bn = 1 line by using Eq. (1)
(Fig. 5) gives the following fitting parameters: ds =
9.2 µm, As = 0.46 eV cm–1, and Ai= 0.024 eV cm–1. The
latter virtually coincide with the experimental data
(Asat = 0.48 eV cm–1, as well as with A = 0.0025 eV cm–1

for thick samples. If we replace d by d = di + 2ds in
Eq. (1) and calculate A(di), saturation A(d ≤ 2ds) = As

also takes place for di = 0, in accordance with formula
(14) for IA for γ = γs obtained in [32]. It should be noted
that the obtained estimate of the value of ds at a Bn = 1-
orthoexciton resonance in β-ZnP2 is two orders of mag-
nitude higher than the value of ds = 0.11 µm obtained
for an n = 1 dipole exciton in GaAs [8]. Consequently,
such a large value of ds in β-ZnP2 can hardly be
explained only by the field Fs of the surface charge and
by the band bending associated with it, since the back-
ground permittivity εb = 10 in β-ZnP2 [18] is compara-
ble with ε0 = 12.6 in GaAs [41]. If we assume that the
concentration of the majority carriers (holes) in the β-
ZnP2 crystals under investigation is two orders of mag-
nitude higher than n < 5 × 1014 cm–3 in epitaxial GaAs
[8], this will lead to values of the field F0s at the surface
that are only one order of magnitude higher than in
GaAs. However, the increase in the screening length
(radius) with the charge carrier concentration will
exponentially decrease the surface field Fs(d) ~
F0sexp(–z/rD) [42]. It appears that the thickness ds is
mainly determined by polariton effects or, to be more
precise, by the conversion rate f of the electromagnetic
fraction of the photoexciton energy into the mechanical
energy, which is determined by the oscillator strength F
of the exciton transition or by the longitudinal–trans-
verse splitting ∆LT [1, 31].

It was found that the absorption increases signifi-
cantly when the sample thickness becomes smaller than
a definite value typical of a given crystal. It was men-
tioned above that this characteristic dimensional thick-
ness for a Bn = 1 orthoexciton in β-ZnP2 is ddim ~ 0.2mm,
while ddim for an orthoexciton (Γ6) in GaSe is approxi-
mately equal to 0.02 mm [22]. However, ddim ~ 0.002 mm
for a dipole exciton in GaAs [8]. The latter value is also
two orders of magnitude smaller than that for β-ZnP2.

γs
c

γs
c
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It is essential that the oscillator strengths for the transi-
tions in question also consecutively differ by approxi-

mately one order of magnitude:  = 8.2 × 10–7 in
β-ZnP2, Fm = 1.9 × 10–5 in GaSe, and F = 4.98 × 10–4 in
GaAs.4 The frequencies of the corresponding photoex-
citon oscillations for β-ZnP2 and GaSe amount to 6.6 ×
1012 and 4.9 × 1013 s–1 (these values were obtained from

IA by the formula Asat = π"f 2/2c  [31]), while the
frequency for GaAs is 9.4 × 1013 s–1 (it was calculated
from ∆LT = 0.1 meV). If IA attains saturation in the
region of ds [8], this thickness can be estimated as ds ≈
vg/2f (vg is the group velocity) since a photoexciton
performing an oscillation is transformed into a mechan-

ical exciton in the surface layer, where γ =  ≥ f. Con-
sequently, the smaller the value of F for an exciton tran-
sition, the larger is ds, and vice versa. The inverse pro-
portionality cannot be strictly observed (especially for
larger values of F), since the refractive index of the
additional wave increases manifold in the exciton reso-
nance region, and the group velocity of the photoexci-
ton will decrease. For a large oscillator strength, the
field of the surface charge can only increase ds if its

4 The values of Fm for GaSe were calculated using Asat =

29.8 eV cm–1 [5] and ε0 = 7.6 [36], while the value of F for GaAs
was calculated using ∆LT = 0.1 meV [41], which is the average of
the experimental values 0.08 and 0.13 meV [42].
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Fig. 5. Dependence of integrated absorption in the Bn = 1 line
on the sample thickness (symbols correspond to experimen-
tal results obtained at T = 1.7 K). The solid curve was
obtained theoretically by formula (1) with the fitting param-
eters As = 0.46, Ai = 0.024 eV cm–1, and d = 0.092 mm.
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penetration depth zs > ds. If we assume that the refrac-
tive index for the ordinary and the additional waves in
β-ZnP2 for s ⊥  (100) and E || b at the resonance of a

Bn = 1 orthoexciton differs insignificantly from  and

roughly put vg ≈ c/ , we obtain ds ≈ vg/2f = 7.2 µm,
which agrees with the value obtained from the thick-
ness dependence. Such an estimate for a dipole exciton
in GaAs gives the value of ds ≈ 0.45 µm, which is four
times as high as that obtained in [8]. This is not surpris-
ing, given that the value of n increases considerably at
a dipole resonance for the additional wave.

The available experimental data can be used to esti-
mate the characteristic, or dimensional thickness ddim
(below which a strong thickness dependence is
observed) from the relation 2ds/di ≈ 0.1 (under identical
conditions at the two surfaces). This gives ddim ≈ 2ds +
di = 22ds = 0.202 mm for β-ZnP2 and ddim ≈ 22ds =
2.42 µm for GaAs, which virtually coincides with the
experimental estimates.5 For 2ds/di ! 0.1, the inte-
grated absorption tends to the absorption in an infi-
nitely large crystal and is determined only by the atten-

uation γ0. Obviously, γ0 ≤ γ ≤  in the region di ≤ 20ds,
where a strong thickness dependence A(d) is observed.

Thus, it was found that the “nonclassical” behavior
of absorption upon a decrease in temperature and thick-
ness of the crystal at the resonance of an n = 1 orthoex-
citon in β-ZnP2 is similar in all respects to the effects
observed for dipole and quadrupole resonances in
many semiconductors. All of these phenomena are due
to polariton effects and spatial dispersion [5–10]. Con-
sequently, the polariton effects observed for a triplet
n = 1 exciton in β-ZnP2 are common for excitons in
semiconductors and indicate that the photoexciton
interaction at the lowermost n = 1 exciton resonances in
crystals cannot be disregarded even for transitions with
a low oscillator strength.
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Abstract—Configuration vibronic mixing is considered for a fully symmetric Jahn–Teller electronic term with
orientation-degenerate terms (due to the distortion direction) including a correlation correction in a single-
open-shell approximation. The approach is nonempirical and involves only linear vibronic coupling. The adia-
batic potential is a multiwell one, because the different configurations involved in the exact Jahn–Teller term
have different vibronic coupling with a lattice distortion. The stabilization energy, the frequencies of local lat-
tice vibrations, the vibronic coupling parameter, and the energy barriers to migration and to distortion-axis
reorientation are estimated for a neutral vacancy in silicon and diamond with allowance made for configuration
vibronic coupling. The estimates agree with the results obtained by different experimental and theoretical
methods for a wide range of properties associated with the Jahn–Teller effect. © 2000 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

An adequate description of properties of a vacancy
in silicon, diamond, and other covalent semiconductors
should be based on calculations of multiplet structures
of high-symmetry atomic configurations with an open
electron shell, because electron correlation and the
vibronic coupling are of critical importance in these
systems [1, 2].

At the present time, there are two competing meth-
ods for treating the electron correlation in a defect crys-
tal: the local approximation to the electron density
functional (LDA) and the configuration interaction
approximation based on the molecular-orbital method.
Although the LDA has been used very successfully in
the theory of defect crystals [2], it is not universal,
because the results obtained by this method depend
heavily on the model employed and the computational
procedure. As an illustration, we refer to the analysis of
the convergence of the LDA performed in [3] with
respect to the size of the supercell (characterizing the
model) and the discretization cell size of the Brillouin
zone (which specifies the computational procedure) for
different crystalline systems, specifically, for a vacancy
in silicon. As the convergence was reached in the calcu-
lations, the energy for the vacancy formation rose to
10 eV, which is much higher than the experimental
value 3.6 ± 0.2 eV [4].

Even if the electronic structure of a defect, including
electron correlation corrections, is supposed to be
exactly calculated for a given configuration of the
nuclei, it is questionable whether the vibronic-effect
problem for this defect becomes less difficult to solve.
In this paper, we also suppose that the electron state is
1063-7834/00/4209- $20.00 © 21634
adiabatic and that its wave function can be represented
by its expansion due to configuration interaction and
that the different molecular-orbitals determinants of
this expansion have different linear vibronic coupling
with the Jahn–Teller (JT) mode.

In [5], the multiplet structure of a neutral vacancy in
silicon and diamond was calculated for different distor-
tions, as well as for the saddle point of a barrier to
migration, by using the restricted open-shell Hartree–
Fock–Roothaan molecular orbital (ROHF) method.
This method leads to an intraconfiguration interaction
correction to an electron correlation when a self-consis-
tent determinant combination is found. Therefore, the
correlation energies and other energy parameters char-
acterizing the JT effect and determined by the ROHF
method can be referred to as the single-open-shell
approximation values; these values agree with a great
deal of theoretical and experimental data for silicon and
diamond [5].

The ROHF correlation corrections for the intracon-
figuration interaction are of a different order of magni-
tude, depending on the filling of the molecular orbitals
of the open shell. If the JT effect leads to the splitting
of a high-symmetry term and an electron configuration
arises whose filling is different in character, then there
appears a discontinuity in the behavior of the ROHF
multiplet structure: the adiabatic energy of a split-off
term does not tend to the energy of the full-symmetry
term as the lattice distortion vanishes. The amount of
the discontinuity equals the correlation energy in the
single-open-shell approximation [5] (the method can
also be extended to the case of a larger number of open
shells). The objective of this paper is to treat the
vibronic mixing problem for the JT effect by a quan-
000 MAIK “Nauka/Interperiodica”
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tum-chemical method that does not involve any empir-
ical vibronic coupling parameters. In this treatment, the
standard quadratic vibronic coupling arises due to the
configuration mixing in the full-symmetry electron
state.

1. RESULTS OBTAINED BY THE OPEN-SHELL 
METHOD

The method of molecular orbitals (MOs), as applied
to a neutral vacancy, came under criticism. The config-
uration interaction corrections to the Hartree–Fock
MOs were found [6] to be so large that the valence bond
method is more adequate. However, this result was
obtained in a cluster model of a fully symmetric mono-
vacancy, with a cluster not being large enough for the
model to be realistic. Furthermore, it is overlooked that,
if a lattice distortion is taken into account in the MO
scheme, there will appear terms for which the correla-
tion corrections can be smaller than for fully symmetric
states (of course, one should apply the open-shell
method in order to see this). The terms with different
correlation corrections arise, for example, in the case of
a tetragonally distorted neutral monovacancy.

In this case, the displacements of atoms (distortions)
lowering the symmetry of an atomic configuration
belong to representations of the Td group for a mono-
vacancy and to representations of the D3d group for a
semivacancy (which is a vacancy situated at the saddle
point of a barrier to migration). An arbitrary shift of
the vacancy nearest neighbor with a position vector

of  can be expanded in terms of the normal

modes [2]

(1)

where the dimensionless (not normalized) distortions
are indicated in parentheses. The first distortion in Eq.
(1) is relaxation, i.e., the normal mode that does not
lower the symmetry and in which all the nearest neigh-
bor atoms are shifted along the 〈111〉  directions by the
same amount. In modeling, we represented the relax-
ation (A1) of a monovacancy as a shift of its four nearest
neighbors toward the empty lattice site, while the relax-
ation (A1g) of a semivacancy was represented by a
shift of the six nearest neighbors toward the two
empty sites [5].

According to the theory of vibronic coupling of the
orbital triplet of electronic MOs with modes belonging
to the twofold irreducible representation [2], the adia-

1
4
---1

4
---1

4
---

A1( ) 111[ ] E 1,( ) 112[ ] E 2,( ) 110[ ]+ +

+ T2 1,( ) 101[ ] T2 2,( ) 011[ ] T2 3,( ) 110[ ] ,+ +
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batic electron energy is minimal for any of the three tet-
ragonal distortions along an axis of the 〈001〉  type,

(2)

Figure 1a schematically shows the “true” adiabatic
energies of the JT many-electron terms as if they could
be calculated with all correlation corrections, while
Fig. 1b (also schematically) presents these terms as cal-
culated by the ROHF method [5]. When stabilized, the
degenerate 1E term of a fully symmetric monovacancy

reduces to the  configuration with a closed shell and
a single 1A1 term. This term is represented by the solid

adiabatic parabola, which tends to the  energy
level as the distortion vanishes. However, in the ROHF
approximation, the adiabatic parabola of the 1B1 term of
the e2 configuration with an open shell (dashed line) is

shifted downward with respect to its JT partner (1A1)

and does not tend to the  energy level as the dis-
tortion vanishes.

This discontinuous behavior of the energies of the
terms into which the 1E doublet is split is a many-elec-
tron effect (revealed by the ROHF method), rather than
the result of an inexact calculation. Indeed, in the inde-
pendent-electron approximation, the amount of split-
ting-off of the e doublet of MOs from the t2 triplet is
half that of the b2 singlet and both vary continuously

q E 1,( ) 0,≠=

E 2,( ) T2 1,( ) T2 2,( ) T2 3,( ) 0,= = = =

Td D2d, t2 e b2.+

b2
2

t2
2 E1( )

b2
2

t2
2 E1( )

1B1
1E

Eχ

EJT
1A1

q

e2(1B1)

Ecorr

Eψ

b2(1A1)

e2(1E)

t2 e

b2
q < 0 q > 0

(a)

q

Eχ

EJT

(b)

(c)

Fig. 1. Scheme of configuration vibronic mixing for a neu-
tral vacancy with tetragonal distortion: (a) “true” many-
electron adiabatic terms, (b) adiabatic terms in the single-
open-shell approximation calculated by the ROHF method
[5], and (c) splitting and filling of molecular orbitals of a
vacancy at different amounts of tetragonal distortion defined
by Eq. (2). Correlation corrections differ in value, depend-
ing on the term type: Eχ is the correction for terms with
covalent filling of molecular orbitals (by pairs), Eψ is that
for terms with exchange filling, and Ecorr is the correction in
the single-open-shell approximation.
0
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with distortion. Hence, the  configuration is energet-
ically more favorable [2], and the distortion will have a
direction at which the b2 level is lower than e. This is
illustrated in Fig. 1c, which also describes many-elec-
tron states; in this case, the levels represent not the con-
tributions to the total energy of the system, but the
orbital energies (the eigenvalues of the Fock matrices,
the physical interpretation of which is given by Koop-
man’s and Brillouin’s theorems), and the filling of these
levels shows that the terms are of the covalent (χ) and
exchange (ψ) types. The discontinuous behavior of the
splitting-off amount signifies that the correlation ener-

gies Eχ of the  and (1A1) covalent terms are
approximately equal, but they are higher than the corre-
lation energy Eψ of the e2(1B1) exchange term. In addi-

tion to the ground-state configuration , the “true,”
fully symmetric ground state 1E contains other electron
configurations (they are indicated by another dashed
line in Fig. 1b). These configurations have two or more
open shells and are no longer of a pure covalent charac-
ter, as is the ground-state configuration. If the configu-
ration interaction with them were taken into account,
this would lead to a correlation correction such that the
JT splitting would vary continuously with distortion.
Thus, the difference in energy between the covalent
full-symmetry term and its JT exchange component at
zero distortion is, in the ROHF approximation, the cor-
relation energy Ecorr calculated in the single-open-shell
approximation.

In the ROHF approximation, the exchange terms,
both triplets and singlets (similar to e2(1B1) in the case
of a neutral monovacancy), have smaller correlation
energies than the terms of a covalent character have.
Therefore, the ROHF approximation allows one not
only to self-consistently calculate individual terms of a
multiplet structure, but also to evaluate the correlation
corrections from the response of the terms to a lowering
of symmetry. Using the difference in energy of the
covalent and exchange JT partners, the correlation
energy of the 1E ground state of a fully symmetric neu-
tral monovacancy in the single-open-shell approxima-
tion was found to be [5] Ecorr ≈ 0.5 eV (in silicon) and
0.7 eV (in diamond). For diamond, this estimate agrees
with the configuration interaction correction experi-
mentally found to be [7] 0.63 eV for the 1E term.

2. CONFIGURATION VIBRONIC MIXING

Usually, when the JT effect is considered, the exact
adiabatic electron states (including electron correla-
tions) of a fully symmetric nuclear configuration are
assumed to be known [2]. In the case of a monova-
cancy, these are two degenerate 1(E, i) states, i = 1, 2. In
order to obtain them by the configuration interaction
(CI) method, for example, in the defect molecule

b2
2

t2
2 E1( ) b2

2

t2
2

P

approximation [1], the ground-state  electron

configuration is mixed with configurations 
(i.e., the wave function is represented as the sum of
determinants with unknown coefficients), where m = 1
and 2 correspond to one- and two-electron excitations,
respectively. Calculations show [5] that Ecorr is not
small in comparison to the JT stabilization energy EJT;
on the other hand, the MOs of the a1 type all lie deep in
the valence band and, hence, cannot be responsible for
a CI correction as large as this. Therefore, the defect
molecule model is inadequate, and the CI predomi-
nantly involves configurations corresponding to the
excitation of shallow triplet and doublet levels,

 and , associated with the crystal-
line surrounding. Calculations of the mixing with these
configurations should be based on group-theoretical
analysis and present a considerable problem. In this
paper, a configuration vibronic mixing (CVM) method
is proposed in which we do not perform the CI proce-
dure for the fully symmetric electron state, which, in
itself, is of no importance and is auxiliary in construct-
ing the wave function of the system of electrons and
nuclei. Instead, in order to include the CI, the Born–
Oppenheimer adiabatic electronic function is expanded
in terms of the five Hartree–Fock functions of the

ROHF approximation: two of the covalent, 
type, belonging to the full-symmetry orbital doublet,
and three of the exchange, e2[1(B1, j)] type, where the
index j = x, y, z specifies the axis of tetragonal distor-
tion.

A standard procedure, which is formulated as a
“vibronic E × e problem” for determining an adia-
batic multiwell potential corresponding to the exper-
imental data, involves empirical vibronic coupling
parameters [2]: I = 〈E, 1|(E, 2)|E, 2〉 for linear coupling and
〈E, 1|(E, 1)(E, 2)|E, 2〉  for quadratic coupling. These
parameters are matrix elements of the derivatives of the
adiabatic electron Hamiltonian with respect to distor-
tion normal modes, where, for brevity, the derivatives
are denoted by the index specifying the variable with
respect to which the derivative is taken. In the CVM
approximation, the quadratic coupling parameters turn
out to be unnecessary, because in the problem with a
dimensionality as large as five the adiabatic potential
automatically becomes a multiwell one, depending on
two distortion modes (E, i). Group-theoretical analysis
shows that, in addition to I, there are six independent
linear vibronic coupling parameters

t2
2 E1( )

a1
2 m– t2

2 m+

t6 m– t2
2 m+ e4 m– t2

2 m+

t2
2 E i,( )1[ ]

Ji z E i,( ) z〈 〉 ,=

Fi z E i,( ) x〈 〉 z E i,( ) y〈 〉 , i 1 2,=( ),= =

G1 E 1 E 1,( ) z,〈 〉 E 2 E 2,( ) z,〈 〉 ,–= =

G2 E 1 E 2,( ) z,〈 〉 E 2 E 1,( ) z,〈 〉 ,= =
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where, instead of the notation e2[1(B1, j)] denoting a
state, we have written, for brevity, only the index j = x,
y, z, specifying the axis of tetragonal distortion. The
parameters indicated above are divided into pairs; the
other pairs of the matrix elements are obtained from
them by the cyclic permutation of x, y, and z and are not
independent, but are related to those presented above
by 2 × 2 matrices of the irreducible representation E of
the Td group. All independent vibronic parameters can
be calculated by a quantum-chemical method in the
ROHF approximation. Therefore, the method we pro-
pose here for calculating the JT effect is totally nonem-
pirical, and the adiabatic multiwell potential as
obtained by this method is not expressed in terms of the
empirical quadratic vibronic coupling, but is deter-
mined by linear couplings (of different strengths) with
different electron configurations forming a fully sym-
metric orbital doublet. The JT problem being treated in
the CVM approximation can be referred to as a (E +

) × e problem by analogy with the standard notation.

On the whole, the quantum-chemical modeling of
the JT effect in the CVM approximation holds much
promise. This statement can be supported by a compar-
ison, made below, between the parameters of the

(1A1) and e2(1B1) adiabatic terms as calculated by this
method (their behavior is shown schematically in
Fig. 1b, while the numerical results are presented in
[5]) and those obtained from a wide range of vacancy
properties associated with the JT effect and investi-
gated by various experimental and theoretical methods.

From the adiabatic parabola of the former term
(solid curve), an upper estimate can be obtained for the
JT stabilization energy of a neutral vacancy; from the
normalized amounts of the equilibrium distortion for
both terms ||(E, 1)|| and their stabilization energies, one
can immediately determine the linear vibronic parame-
ters I and J1 and make an upper estimate of the fre-
quency characterizing the lattice elastic energy near the
vacancy [2],

For diamond, we obtain EJT ≤ 0.40 eV. This agrees
with nonempirical [8] and empirical [7] calculations of
the electronic structure, which give 0.25 eV, with an
empirical estimate of 0.2 eV [9] from the optical spec-
tra, as well as with two independent empirical theories
of the JT effect for a vacancy that are believed to be the
most adequate (630 and 270 meV [10]; these values of
the stabilization energy of a monovacancy in diamond
are empirically fitted to the frequency and the vibronic
coupling parameter, which are indicated below in
parentheses after the values obtained in this paper):
"ω ≤ 160 meV (81, 131 [10]; the optical phonon fre-
quency in diamond is 165 meV), I = 7.6 (3.2, 7.9 [10]),
and J1 = 3.5 eV Å–1.

B1'

b2
2

I J1,
2EJT

E 1,( )
-------------------, ω2 2EJT

M E 1,( ) 2
--------------------------.= =
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In silicon, we have EJT ≤ 0.27 eV, which agrees with
a nonempirical calculation (0.2 eV [11]) in a model
(consistent with the experimental data) of a vacancy as
a negative-U center [2]. The other quantities are found
to be "ω ≤ 60 meV (the optical phonon frequency in sil-
icon is 64 meV), I = 3.7 (1.12 [11]), and J1 = 2.2 eV Å–1.

3. BARRIERS TO MIGRATION
AND REORIENTATION

The height of a barrier to migration can be estimated
from the energy of the singlet state at the full-symmetry
saddle point, i.e., from the energy of the 1Eg term of a
semivacancy [5]. This term is of an exchange–covalent
character; hence, the correlation correction to it is of the
same order of magnitude as those to the 3T1(Td),
3A2(D2d), and 3A2(C3v) terms of a monovacancy, and an
indirect comparison can be drawn. The true energy of
the singlet state of a monovacancy with tetragonal dis-
tortion (including the configuration vibronic mixing)
should be lower than that of the lowest triplet term cal-
culated in the ROHF approximation, which is the
3A2(C3v) state, stabilized by a trigonal distortion, accord-
ing to calculations in [5]. Thus, we obtain a lower ROHF
estimate to be

Em[V0] ≥ 1Eg(D3d) – 3A2(C3v). (3)

Because the 1Eg term is orbitally degenerate, the
state of a vacancy at the saddle point to migration is sta-
bilized by the JT effect, which is interpreted in [12] as
the migrating atom switching from its covalent bonding
to the pair of neighbors of the vacancy at the initial site
to its bonding to the pair of neighbors of the vacancy at
the final site. (The notion of a migrating vacancy is self-
contradictory; the vacancy is best considered as being
at lattice sites, whereas the atom continuously transfers
or migrates. At the saddle point of the barrier to migra-
tion, the atom is between two empty sites, the initial
and the final one, and it is this atomic configuration that
is called a semivacancy, or a split vacancy.) Let an atom

migrate from site , to which a monovacancy

hops, to site [000], where the monovacancy was before.
The lowering of symmetry (stabilization due to the JT
effect) occurs when the migrating atom at the saddle

point is displaced along the [11 ] direction from the
center of the D3d symmetry, i.e., from the full-symme-

try saddle point . The symmetry of the stabilized

semivacancy is lowered to C1h, and the orbital degener-
acy is completely lifted; therefore, the restricted Har-
tree–Fock–Roothaan approximation to a closed elec-
tron shell (RHF method) can be used to calculate the
adiabatic parabola, i.e., the displacement dependence
of the total energy. This refinement of the ROHF esti-
mate given by Eq. (3) is worth making after a calcula-

1
4
---1

4
---1

4
---

2

1
8
---1

8
---1

8
---
0
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tion by the CVM method for a monovacancy. Without
the correction for the JT effect, Eq. (3) gives [5]

The experimental values are indicated in parenthe-
ses. For diamond, the results that agree with the exper-
iment best of all have been obtained to date by the elec-
tron density functional method: 2.8 = (3.3 – 0.5JT) eV
for the cluster model [12] and 1.7–1.9 eV for the super-
cell model [8].

The height of the barrier to the reorientation of the
axis of tetragonal distortion of a monovacancy Er can
be determined in the same way as that of the barrier to
migration, namely, by comparing adiabatic parabolas
of two closed-shell terms calculated by the RHF
method. One of them, represented by the solid curve in
Fig. 1b, was discussed above. In the RHF approxima-
tion, this term gives the energy of the atomic monova-
cancy configuration with tetragonal distortion. The sad-
dle point of a barrier to the reorientation of the axis of
this distortion arises because of atomic displacements
corresponding to the (E, 2) normal mode of tetragonal
distortion in Eq. (1). The symmetry of such a monova-
cancy is lowered to D2, the degeneracy is completely
lifted, and the corresponding closed-electron-shell cal-
culation [5] gives the following results.

For silicon, we obtain Er[V0] = 0.09 eV, which is far
less than an experimental value of 0.23 eV [13] and,
hence, should be refined by the CVM method. At the
same time, in the cluster model, the height of a barrier
to reorientation calculated even by the nonempirical
Hartree–Fock method with correlation corrections is
found to be 0.33 eV [15], which exceeds the experi-
mental values of both the height of a barrier to reorien-
tation and the stabilization energy EJT. Because the
agreement between the barrier to migration calculated
in the same paper [15], 1.1 eV, and the experimental
value (0.45 ± 0.04 eV) is still poorer, the conclusion
suggests itself that the quasi-molecular large-unit-cell
model [5] is more adequate than the cluster model to
describe the effect of the crystalline surrounding on low
energy barriers in silicon.

For diamond, we have Er[V0] = 0.14 eV. Although
there are no direct experimental data on the height of a
barrier to reorientation in diamond, this quantity is
known to be small, because in diamond, unlike silicon,
the JT effect for a monovacancy is of a dynamical,
rather than static, nature [2]. An “empirical” theory of
the dynamical JT effect allows one to relate the barrier
to reorientation to the experimentally measured split-
ting (8 meV) of the optical spectrum band GR1, but the
relation involves the linear and quadratic vibronic cou-
pling parameters, and, hence, the quantities are not
uniquely determined (for example, the equilibrium dis-
tortion and relaxation are not determined at all). There

Em V0[ ]
0.4 eV 0.45 0.04 [13]±( ) in silicon

1.3 eV 2.3 0.3 [14]±( ) in diamond.



≥

P

are two best sets of values of adjustable parameters, and
the values of Er[V0] for them are approximately the
same (24 and 26 meV [10]). Using the CVM method,
which involves only linear vibronic coupling, will
refine the large value of the barrier to reorientation
given by the RHF method and allow one to relate it to
the ground-state vibronic splitting of 8 meV for a neu-
tral vacancy in diamond.

CONCLUSION

Thus, the open-shell molecular-orbital method
(ROHF) allows one to calculate the multiplet structures
of high-symmetry atomic configurations of a neutral
vacancy in silicon and diamond [5] and to analyze the
relationship between electron correlation and vibronic
coupling in terms of the configuration interaction. If a
high-symmetry term is split because of the JT effect
and an electron configuration arises whose filling is of
a different type than that of the original configuration,
a discontinuity appears in the behavior of the ROHF
multiplet structure: the adiabatic energy of the split-off
term does not tend to the energy of the full-symmetry
term as the lattice distortion vanishes. The amount of
the discontinuity equals the correlation energy in the
single-open-shell approximation.

The energy barriers to relevant processes can be
estimated on the basis of adiabatic energy curves for the
states with closed shells. For this purpose, a method is
proposed in which configuration vibronic mixing of the
fully symmetric Jahn–Teller term in the ROHF approx-
imation is introduced with orientation-degenerate
terms (due to the distortion direction) including a cor-
relation correction in the single-open-shell approxima-
tion. This method is nonempirical and involves only
linear vibronic coupling. The adiabatic potential is a
multiwell one in this method, because different config-
urations involved in the exact Jahn–Teller term have
different vibronic coupling with a lattice distortion.

Estimates including configuration vibronic mixing
are made of the stabilization energy, the frequency of
local lattice vibrations, the vibronic coupling parame-
ter, the energy of a phononless dipole-allowed optical
electron transition [5], and the energy barriers to migra-
tion and to distortion-axis reorientation. The calcula-
tions agree with the results obtained by different exper-
imental and theoretical methods for a wide range of
vacancy properties associated with the Jahn–Teller
effect.
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Abstract— –  impurity centers in a KTaO3 sample to which a dc electric field E = 75 kV/cm is applied
are shown to be oriented at temperatures T ≥ 120 K. In these conditions, the effective local field acting on the
electric dipole moment of a center exceeds the applied field by a factor 7.6. © 2000 MAIK “Nauka/Interperi-
odica”.

FeK
3+ Oi

2–
1. The orientation of defect centers in a lattice can
be ordered by exerting an anisotropic action on the

crystal. The alignment of –  tetragonal centers
in a KTaO3 cubic crystal by polarized light was discov-
ered [1] and studied in considerable detail [2]. The
mechanism of this alignment was shown [2] to consist
in anisotropic recharging of the centers by polarized
light, which does not involve their real reorientation.

By a universally accepted model [3, 4], the center
being discussed here represents a complex of an impu-
rity ion Fe3+ at a K+ site and an O2– ion occupying an

interstitial site located near  along one of the 〈100〉
crystallographic directions. Thus, the KTaO3 lattice
allows six possible center orientations (Fig. 1).

Because the center being discussed has an electric
dipole moment (Fig. 1), one may attempt to order the

orientation of the –  centers by a method differ-
ent from the one employed in [1, 2], namely, by apply-
ing a dc electric field to the sample. It is known that, for
a dipole center to be oriented by an external electric
field, it must have a possibility to undergo spontaneous
(thermal) reorientation at the temperature of the exper-
iment. Recent publications [5] suggested the existence
of such reorientations of this center at the temperature
T = 117–120 K and reported determination of the bar-

rier separating the interstitial positions of the  ion
(0.34 ± 0.02 eV).

This work reports on the orientation of the –

 complexes in KTaO3 by an external electric field.

2. The study was made on KTaO3 : Fe single crystals
grown from a batch containing 20000 ppm iron at the
Physical Department of the Osnabrück University, Ger-
many. Rectangular samples with the edges aligned with
〈100〉  and measuring typically 0.7 × 2 × 3 mm were cut

FeK
3+ Oi

2–

FeK
3+

FeK
3+ Oi

2–

Oi
2–

FeK
3+

Oi
2–
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from a single-crystal boule and studied in the as-grown
state. Silver-paste electrodes were applied to 2 × 3-mm
faces.

EPR spectra were measured with a standard SE/X
2544 X-range spectrometer, with the samples held in
liquid nitrogen or in a jet of its vapor. In the latter case,
the temperature was stabilized to within ±1 K.

The electric fields used in experiments in both liquid
and gaseous nitrogen were up to 150 kV/cm.

3. The optical alignment of –  centers by
polarized light was observed to set in at T = 78 K [1, 2].
This method of ordering of the center orientation is
obviously more efficient, the lower the probability of
thermal reorientation of the center at the temperature of

FeK
3+ Oi

2–

θ1θ2

Ta5+

O2–

Fe3+at K+site
interstitial O2–

Y

Z

X

Fig. 1. –  center in a KTaO3 lattice (in one of its six

possible orientations). In Figs. 2 and 3, the field E is applied
along [010], and the field H is canted from [010] by angles
θ1 and θ2, respectively.

FeK
3+

Oi
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2450
Magnetic field, Oe

2500 2550 2600240023502300

[010]

[010]
–

Fig. 2. Electric-field-induced splitting of the EPR line at T = 78 K. The two components correspond to centers with dipole moments
along and counter to the field, respectively. E || [010], E = 92 kV/cm. H ⊥  [001], ∠ (H, E) = θ1 = 18°.
the experiment. At T = 78 K, the degree of the light-
induced center alignment persists indefinitely in the
dark; that is, thermal reorientation does not occur at this
temperature at all. On the other hand, as already men-
tioned, in order for an external electric field to be capa-
ble of orienting a center, thermal reorientation must be
allowed. It thus becomes clear that no orientation of the

–  centers in an external electric field should
take place at T = 78 K, and that higher temperatures are
required for it to be observable.

The experiments carried out confirmed these argu-
ments. Figure 2 shows an EPR line corresponding to
centers with the tetragonal axis aligned with 〈010〉; the
line was obtained at T = 78 K in a field E = 92 kV/cm
applied along the axis of the above centers. (The H field
made an angle θ1 = 18° with the tetragonal axis of the
centers, an orientation corresponding to the maximum
line splitting of this center [6].) The line is seen to split
in two equal components, with the splitting (19 Oe)
being as large as twice the original linewidth. Thus, at
T = 78 K, the number of the centers with the dipole
moment directed along the field is equal to that of the
centers with the dipole moment oriented opposite to the
field, and it persists indefinitely. This means that, at T =
78 K, an external electric field does not orient the cen-
ters (although, as this will be shown in Section 4, in
these conditions pEloc/kT > 4, where Eloc is the effective
local field acting on the center dipole); i.e., the centers

FeK
3+ Oi

2–
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do not undergo thermal reorientation at this tempera-
ture.

Experiments with an electric field performed at
higher temperatures revealed reorientation of the cen-
ters starting from T ≈ 120 K. It was found that quanti-
tative measurements of the extent of orientation can be
more conveniently carried out by comparing the inten-
sities not of the components of the field-split line, but
rather those of the lines corresponding to the center ori-
entation along different 〈100〉  axes. We used the mag-
netic-field orientation with H canted by 1–2° in the
(001) plane from the 〈110〉  direction; in this case, one
observes two lines near H = 1500 Oe (Fig. 3a): one of
the lines corresponds to two centers with the tetragonal
axis along 〈110〉 , parallel to E, and the other is associ-
ated with two other centers with their axis along 〈100〉 ,
perpendicular to E.

Figure 3 shows characteristic recordings of these
two lines obtained at T = 122 K in zero field and in
fields of 47 and 75 kV/cm after having kept the sample
in the field for a long time. The integrated-intensity
ratio of these two lines obtained at 75 kV/cm differs by
about four times from that measured in zero field. Esti-
mation of the degree of alignment as η = (I|| – I⊥ )/(I|| + I⊥ ),
where I|| and I⊥  are the intensities of the two lines, yields
η = 0.6. Thus, the existence of thermal reorientation of
the center under study at T = 122 K cannot be ques-
tioned.
0
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4. The experimental data obtained permit the deter-
mination of the product peffE (peff is the effective dipole
moment corresponding to the observed degree of
dipole orientation in an external electric field E) and,
hence, of peff ,

peff = 30.4 eÅ = 146D.

On the other hand, the known structure of the center
under study makes it possible to directly estimate its
dipole moment pc (assuming, in accordance with theo-
retical calculations [7], that the distance between the

 and  ions is close to 2 Å):

pc ≅  2e × 2 Å = 4 eÅ = 19.2D.

A comparison of the values of peff and pc shows that the
effective local field Eloc acting on the center dipole is
substantially in excess of the applied field E

Eloc = (7.6 ± 0.8)E.

The dipole of the center cannot obviously be consid-
ered as a point type (its arm is one half the lattice con-

FeK
3+ Oi

2–

160015001400
Magnetic field, Oe

[010], [010]
–

[100], [100]
–

a

b

c

Fig. 3. Variation with electric field E || [010] of the intensity
of the two EPR lines corresponding to different orientations

of the –  center measured at T = 122 K. E (kV/cm):

(a) 0, (b) 47, and (c) 75. ∠ (H, E) = θ2 = 43.5°. Adjoining the
lines are the center orientations contributing to the given
line (see Fig. 1).

FeK
3+
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stant), and therefore, it does not appear strange that the
Eloc found here significantly differs from the calculated
local field at a point in the KTaO3 lattice with a cubic
environment [8] 

(the dielectric constant ε is about 500 for KTaO3 at T =
122 K).

Thus, it is clear that the experimentally observed
high degree of center orientation in a comparatively
weak external field is due to both the large Eloc/E ratio
and the appreciable dipole moment of the center.
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Abstract—A molecular static model of a CuInSe2 crystal is constructed, and the energies of formation of iso-
lated defects are calculated. An analysis of the interaction between defects shows that, for a high defect con-
centration (exceeding 1%), the energies of interaction between defects can considerably exceed the values
obtained in the continuous medium approximation. It is found that the role of interaction between defects in
quantum-chemistry calculations using the model of supercells (periodic defect) is considerably underestimated.
© 2000 MAIK “Nauka/Interperiodica”.
CuInSe2 (CIS) is one of the most promising materi-
als used as the absorbing layer of solar batteries [1].
The efficiency and radiation stability of this material
makes it a leader among thin-film transducers of solar
energy. The efficiency of transformation attained under
laboratory conditions is as high as 18.8% [2]. In recent
years, considerable attention was paid to an analysis of
the relation of defect formation to the observed proper-
ties of CuInSe2 [3–6]. The main problems encountered
in investigations include the clarification of the mecha-
nisms of defect passivation during the implantation of
ions and the determination of the origin of radiation sta-
bility of CuInSe2 crystals. The essential stage in the
solution of such problems is the determination of the
energies of formation Ef and interaction Eint of the main
defects. The knowledge of these energies makes it pos-
sible to determine the concentration of defects in the
initial crystal (if the crystal growth conditions are
known). The values of Ef and Eint also determine the
crystal state as a result of defect redistribution, such as
during the thermal annealing following irradiation.

1. MOLECULAR STATIC QUASI-IONIC MODEL 
OF CuInSe2 CRYSTAL

The molecular static model of the CuInSe2 crystal is
based on the concept of pairwise ion–ion interactions
(potentials). The CuInSe2 crystal is a semiconductor,
and hence, the description of its properties using ionic
potentials is approximate. The accuracy of the descrip-
tion is different for different properties of the crystal. It
was proven in a number of publications that the quasi-
ionic model can be used for estimating the energies of
1063-7834/00/4209- $20.00 © 21643
formation and interaction of defects in semiconducting
materials [7].

The pair potential is constructed from the Coulomb
and short-range components. The Coulomb component
is determined by ionic charges, which are chosen to be
+1 for the copper ion, +3 for the indium ion, and –2 for
the selenium ion (in electron charge units). These val-
ues of the charges have been confirmed both theoreti-
cally and experimentally [8].

When concurrence on the magnitudes of ionic
charges is reached, the construction of the molecular
static model boils down to determining the parameters
of the short-range component Φsh of the pair potential,
which is usually presented in the Born–Mayer–Van der
Waals form

The required parameters B, r0, and C for the
CuInSe2 crystal must ensure

(1) the reproducibility of the structure of a perfect
crystal (ionic coordinates in a unit cell);

(2) zero pressure in the crystal (or the minimum
total energy of the crystal for a given size of a unit cell);

(3) the reproducibility of experimental values of the
bulk compression modulus and dielectric constants of
the crystal; and

(4) the reproducibility of the changes in the total
energy of the crystal upon a change in the parameter ∆
(displacement of selenium ions from the symmetric
position), which are obtained by the total-potential
band method of linear combination of muffin-tin orbit-
als (LMTO); we used the version of the method
described in [9].

Φsh r( ) B r– r0⁄( )exp C r6.⁄–=
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When parametrizing the molecular static model, we
assumed that the interaction potentials between cations
(Cu–Cu, Cu–In, and In–In) are equal to zero in view of
the large separation between them (which is much
larger than the separation between the unlike ions Se–
Cu and Se–In) and that these potentials abruptly
decrease with increasing distance between the ions
(much more sharply than for Se–Cu and Se–In). The
van der Waals component of the Se–Se interaction
potential was borrowed from research [10] carried out
for a ZnSe crystal. In this way, the Se–Se, Se–Cu, and
Se–In potentials were fitted to satisfy the requirements
formulated above. The results are presented in Table 1.

These parameters of pair potentials ensure the sta-
bility of the structure for a perfect crystal; satisfy the
condition of zero pressure; give the value of the bulk
compression modulus G = 0.69 × 10+12 erg/cm3, which is
close to the experimental value (G = 0.71 × 10+12 erg/cm3

[3]); and make it possible to reproduce the LMTO data
in the molecular static model to a high degree of accu-
racy (the error is below 2% for all values of the param-
eter ∆).

The dielectric properties of the crystal were repro-
duced by using the Dick–Overhauser shell model of an
ion. Using the shell parameters for a selenium ion that

Table 1.  Parameters of the short-range component of the
pair potential

Ion pairs B, eV r0, Å C, eV Å6

Se–Se 0.0 0.0 341.0

Se–Cu 1.078 × 104 0.220 0.0

Se–In 1.848 × 103 0.390 0.0

Table 2.  Energies of formation of solitary defects in
CuInSe2

Defect

Energy of formation, eV

our 
results

data obtained 
in [11]

data obtained 
in [5]

Cu vacancy 2.3 2.9 0.63

Se vacancy 4.6 2.6 –

In vacancy 7.4 2.8 4.29

Cu–Frenkel defect 3.1 7.3* 2.67*

Se–Frenkel defect 10.1 25.0* –

In–Frenkel defect 10.9 11.9* –

In–Cu antisite defect 3.6 2.9* 4.26*

2V(Cu) + In(Cu) –9.63 – –

Cu–Frenkel pair 1.24 – –

In–Cu antisite pair 0.25 – –

* These values were obtained by the summation of energies of for-
mation of components constituting the given defect, presented in
[11] and [5].
P

were obtained by Harding [10] for the ZnSe crystal (the
shell charge qs equal to –3.0 and the “core–shell” cou-
pling constant Ksc = 11.3 eV/Å2), we obtain the fol-
lowing values for the dielectric constants: ε0 = 8.6 and
ε∞ = 4.6.

We can easily reproduce in our calculations the
experimental values of ε0 of the order of 13.6 and of ε∞
of the order of 8 by varying the shell parameters of the
indium ion (the copper ions are usually assumed to be
nonpolarizable). For example, for the shell charge qs of
the indium ion equal to –1.0 and for the “core–shell”
coupling constant equal to 45.0 eV/Å2, we obtain ε0 =
16.1 and ε∞ = 8.0.

It turns out, however, that the shell parameters of the
indium ion reproducing the experimental values of
dielectric constants lead to a “polarization catastro-
phe”: the cores of indium ions are “torn” from the shells
when a charged defect (e.g., a vacancy) is formed in the
crystal. Thus, the copper and indium ions in the pro-
posed model are assumed to be nonpolarizable; the val-
ues of dielectric constants are underestimated and the
calculated values of the energy of the defect formation
are exaggerated in this case.

2. ENERGY OF FORMATION 
OF ISOLATED DEFECTS

Using the parameters given in Table 1, we calcu-
lated the energies of formation of isolated (solitary)
structural defects in CuInSe2 (Table 2). We considered
traditional defects such as vacancies and Frenkel
defects, as well as the In–Cu antisite defect (in which
the indium and copper ions have changed places, and
the separation between them is equal to infinity) and the
defect 2V(Cu) + In(Cu) proposed in [4, 5], which is a
compact group of two copper vacancies and an indium
ion at a copper site. The term “Cu–Frenkel pair” in
Table 2 denotes the complex formed by a copper
vacancy and an interstitial copper ion being at the dis-
tance of next-to-nearest neighbors (at the nearest neigh-
bor distance, the Frenkel pair is unstable and is annihi-
lated), while the term “In–Cu antisite pair” stands for
an In–Cu antisite defect at the nearest distance between
In and Cu. In view of the interaction between the com-
ponents of a defect complex, the energy of formation of
a Cu–Frenkel pair is considerably lower than the
energy of formation of a Cu–Frenkel defect (the same
is true of an In–Cu antisite pair).

A comparison of the results of our calculations
made by the molecular static method (the Mott–Little-
ton approach) using the MOLSTAT program [12] with
the results of Neumann’s calculations [11] made in the
two-band dielectric model of the crystal shows a satis-
factory coincidence for defects with a low energy of
formation, such as a copper vacancy and an In–Cu anti-
site defect. The energy of formation of a Frenkel defect
in a copper sublattice in the scheme of [11] appears to
be unexpectedly high.
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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The negative value of the energy of formation of the
defect 2V(Cu) + In(Cu) obtained by the molecular
static (MS) method is worth noting. In the MS method,
this is the energy required for the removal of three cop-
per ions to infinity plus the gain in energy in the case
when a trivalent indium ion occupies the copper site. In
actual practice, the energy of formation of such a defect
must also include the energy of ionization of an indium
atom to a trivalent ion, which cannot be calculated by
the MS method. Thus, the value of the energy of the for-
mation of the defect 2V(Cu) + In(Cu) given in Table 2 is
conditional and will be used only for estimating the
interaction between defects (see below).

It is interesting to compare the energies of defect
formation as calculated in the molecular static model
with the results of quantum-chemistry calculations [4–6].
A good agreement is observed for electrically neutral
defect complexes (Cu–Frenkel defect and In–Cu-anti-
site defect). For charged defects (copper and indium
vacancies), a quantitative agreement is not observed,
but quantum-chemistry calculations confirm a much
higher energy of formation of an indium vacancy as
compared to a copper vacancy (for example, the ener-
gies of formation of all vacancies in the model of [11]
are approximately equal).

Table 2 provides an answer to the question concern-
ing the dominating type of defects in CuInSe2 crystal.
According to our results, an In–Cu antisite pair pos-
sessing the lowest energy of formation and preserving
the stoichiometry of the crystal must be the main defect
in the case of thermally activated disordering. Accord-
ing to the results obtained in [4, 5], a 2V(Cu) + In(Cu)
complex can be another defect with a low energy of for-
mation; however, it violates the crystal stoichiometry
(the absolute value of the energy of formation of this
defect cannot be calculated by the MS method; see
above).

The results described above lead to the conclusion
that the parametrization of the molecular static model
carried out by us is successful. We will apply this
parametrization to solve the problem of the interaction
between defects in CuInSe2.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
3. INTERACTION BETWEEN DEFECTS

In order to estimate the interaction between defects
in the molecular static method, we used the model of a
periodic defect, in which a defect is placed in a large
unit cell (LUC) containing N ions of the lattice and is
translated periodically in space. The calculations were
made for N = 16, 32, 64, and 128 ions. For large values
of N, such calculations can be made only by the molec-
ular static method.

Since a LUC in the MS method must be electrically
neutral, the calculations were made for three types of
defects: a Cu–Frenkel pair, 2V(Cu) + In(Cu), and an
In−Cu antisite pair. Table 3 contains the results of cal-
culation of the interaction energy between defects
located in different LUCs, i.e., the variation of energy
of defect formation with the number N. As N  ∞,
the interaction energy between defect complexes tends
to zero, while the energy of formation of a defect com-
plex calculated in the model of a periodic defect tends
to the energy of the formation of a solitary defect (see
Table 2).

Columns 2, 4, and 6 of Table 3 contain the energies
of interaction between periodically repeated defects
calculated by Eq. (1) in the continuous-medium approx-
imation:

(1)

where Qi and Qj are the charges of the defect complex
components, ε0 = 13.6 is the static permittivity of
CuInSe2, and Rij is the separation between the compo-
nents of the defect complex in different calculated cells.
Since all of the defects are neutral complexes, the
energy of their interaction is small (does not exceed
0.17 eV). The negative values of Eint of Eq. (1) indicate
that the energy of formation of a periodic defect in the
continuous-medium approximation is lower than the
energy of formation of a solitary defect.

However, the calculation of the energies by the
molecular static method (columns 1, 3, and 5 in Table 3)
with an exact microscopic inclusion of all the interac-
tions leads to a different result: as a result of the over-

Eint QiQ j ε0Rij,⁄
ij

∑=
Table 3.  Variation of the energy of formation (eV) of defect complexes in CuInSe2 upon a change in the number N of ions in
the large unit cell

Number N of 
ions in LUC

Cu–Frenkel pair 2V(Cu) + In(Cu) In–Cu antisite pair

MS method Coulomb for-
mula of Eq. (1) MS method Coulomb for-

mula of Eq. (1) MS method Coulomb for-
mula of Eq. (1)

1 2 3 4 5 6

16 +0.36 –0.0476 +1.04 –0.0884 +0.01 –0.1670

32 +0.04 –0.0213 +0.13 –0.0531 +0.04 –0.0562

64 +0.07 –0.0315 +0.07 –0.0330 +0.02 –0.0239

128 –0.06 –0.0142 –0.06 –0.0122 –0.02 –0.0048
0
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lapping of the deformation fields for neighboring
defects, the energy of their interaction is positive and
quite significant as compared to the energy of forma-
tion of a solitary defect. For example, the energy of
interaction Eint = + 0.36 eV for a Cu–Frenkel pair for
N = 16 (the minimum size of a LUC) is not negligibly
small as compared to the energy of formation of a soli-
tary defect (1.24 eV). The energy of interaction calcu-
lated by the MS method is negative and close to the
value given by Eq. (1) only for a very large unit cell
(N = 128 ions). Approximately the same situation is
observed for the defect 2V(Cu)  +  In(Cu), the increase in
the energy of formation upon a decrease in the separa-
tion between the defects being still stronger (+1.04 eV
for N = 16; see column 3 in Table 3).

The situation with an In–Cu antisite pair is quite dif-
ferent. Even the results presented in Table 2 for the
energy of the formation of solitary defects indicate a
sharp decrease (by 3.35 eV) in the formation energy
upon a transition from an In–Cu antisite defect (Ef =
3.60 eV) to an In–Cu antisite pair (Ef = 0.25 eV). Note
for comparison that the change in the energy upon a
transition from a Cu–Frenkel defect to a Cu–Frenkel
pair amounts to only 1.86 eV (from Ef = 3.10 to 1.24 eV).
In principle, the physical reason behind such a differ-
ence is clear: the components of a Frenkel pair are sin-
gly charged against the background of a perfect lattice,
while, in the case of an antisite pair, the components are
doubly charged. At the same time, the separation
between the components in an antisite pair is consider-
ably smaller than for a Frenkel pair. Consequently, the
interaction “within” an In–Cu antisite pair is much
stronger than in a Cu–Frenkel pair, which explains such
a low energy of formation of an In–Cu antisite pair.

Table 3 also illustrates the peculiar behavior of an
In–Cu antisite pair in the formation of a periodic defect.
For example, for the minimum size N = 16 of the large
unit cell, i.e., for the maximum overlapping of defor-
mation fields for neighboring defects, the energy of for-
mation of a given defect increases only by 0.01 eV;
note for comparison that the corresponding increase in
the energy is 0.36 eV for a Cu–Frenkel pair and 1.04 eV
for a 2V(Cu) + In(Cu) defect. The change in the energy
of formation of an In–Cu antisite pair for other values
of N is also insignificant (column 5 in Table 3).

According to the data contained in Table 3, we can
conclude that the interaction between the defects under
investigation does not facilitate the formation of defects
with a concentration higher than 1% (one defect in a
large unit cell comprised of 100 ions) since the energy
of interaction between defects for N < 100 becomes
positive and increases with the defect concentration.

The results obtained in this section also allow us to
make the following remarks concerning the quantum-
chemistry analysis of the properties of defects in
CuInSe2. In quantum-chemistry approaches [4–6], cal-
culations were made for a unit cell of a fixed size,
which makes it impossible to estimate the contribution
P

of interaction to the energy of the defect formation.
Moreover, computational difficulties encountered in
quantum-chemistry methods only permit an analysis of
small-size unit cells (as a rule, 32 ions for a CuInSe2
crystal in the model with periodic boundary conditions
[4–6]), whereas the interaction between defects can be
estimated only by varying the separation between them
(e.g., by changing the unit cell size), preferably over a
wide range. In the quantum-chemistry approach, the
energy of interaction Eint is usually estimated on the
basis of the Coulomb formula of Eq. (1), which gives
low values of the energy Eint. Our results show that this
is not always the case: if the theoretical unit cell is
small, the effects of interaction can be strong and can
vary significantly upon a transition from one type of
defect to another.

Thus, we have constructed the molecular static
quasi-ionic model of the CuInSe2 crystal. The analysis
of the energies of formation of solitary defects carried
out in this model and their comparison with the results
obtained by other authors (with the results of calcula-
tions by other methods) substantiate the constructed
model.

The model was used for an analysis of the interac-
tion between defects in CuInSe2. The results show that,
when the defect concentration exceeds 1%, the interac-
tion energies between defects become positive and can
considerably exceed the values obtained in the contin-
uous-medium approximation. It was noted that the
authors of quantum-chemistry calculations of the prop-
erties of defects in crystals (calculations, which are the
most correct at the moment) considerably underesti-
mate the role of the interactions between defects. Our
results show that a symbiosis of quantum-chemistry
and molecular static models is possible: some quan-
tum-chemistry results (e.g., the data on the variation of
the crystal energy upon a change in the lattice geome-
try) are used in the parametrization of the molecular
static model, after which the model can be used for ana-
lyzing those properties of defects that cannot be calcu-
lated using the quantum-chemistry method as of yet
(e.g., for calculating the interaction energies between
defects for various defect concentrations).
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Effect of Cascade Gamma-Radiation Summation Processes 
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of Three-Photon Annihilation of Positronium
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Abstract—The processes of cascade gamma-quanta summation, disregarded when measuring the energy spec-
trum of 22Na in samples by a one-detector spectrometer, are studied, along with the effect of these processes on
the change in the area bounded by the 511-keV annihilation line in the calculation of the probability P3γ of
three-photon annihilation of positronium. An increase in the number of annihilation quanta in “positronium-
forming” samples and their redistribution to the low-energy spectral region are responsible for the difference
between the areas of the photopeak of the accompanying nuclear quantum, with respect to which the spectra
are normalized, and of the corresponding peak in the aluminum standard. The departure of the real value of P3γ
from its value, determined without taking into account the summation processes on a highly effective scintilla-
tion NaI(T1) detector and a semiconducting Ge detector, amounts to 56 and 25%, respectively, for a distance
of 3 cm between the positronium source and the detector surface. © 2000 MAIK “Nauka/Interperiodica”.
The positron diagnostic methods are widely used in
contactless and nondestructive control, as well as for
investigating physicochemical and technological prop-
erties of various materials and media.

It is well known (see, for example, [1]) that positro-
nium has two ground states: a triplet, or orthopositron-
ium o-Ps [tPs(3S1)] with parallel spins of the electron
and the positron, and a singlet, or parapositronium p-Ps
[sPs(1S0)], in which the electron and positron spins are
antiparallel. The total angular momentum of orthop-
ositronium is Jt = 1, and three substates differing in the
magnetic quantum number (m = +1, 0, –1) are possible
in this case. For parapositronium, Js = 0 and m = 0. Con-
sequently, the statistical weight of the triplet state is
three times as great as that of the singlet state: the
ortho-state is formed in 75% and the parastate occurs in
25% of the cases involving the formation of positron-
ium. The o-Ps experiences 3γ annihilation (the energy
spectrum of gamma quanta is continuous from 0 to
511 keV), while p-Ps experiences 2γ annihilation (dis-
crete quanta with an energy of 511 keV flying apart at

an angle of 180°). The lifetime  of a p-Ps atom equals

1.25 × 10–10 s, while the lifetime  of a free o-Ps atom
prior to annihilation is 1.4 × 10–7 s.

As a rule, the quenching processes (pick-off annihi-
lation, ortho–para conversion, and chemical interac-
tion) lead to a considerable decrease (by an order of
magnitude or even larger) in the lifetime τt of o-Ps in
condensed matter.

τ s
0

τ t
0
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The three-photon annihilation probability P3γ is one
of the important parameters characterizing the decay of
positronium atoms in a substance; the knowledge of the
exact value of this probability is essential for ultimately
obtaining information on the structure and features of
the substances under investigation [1, 2].

1. EXISTING METHODS OF DETERMINING P3γ

The positronium formation probability P is con-
nected with the probability P3γ of 3γ annihilation
through the familiar expression [1]

(1)

The value of P3γ can be obtained directly by compar-
ing the experimental energy spectra measured in the
sample under investigation and in a substance in which
positronium is definitely not formed (e.g., aluminum),
and the three-photon decay during the annihilation of a
free positronium occurs with the probability P3γ =
1/372. This phenomenon forms the basis of one of the
existing methods of determining P3γ, which is
described in [1] and in greater detail, for example, in [2]
and widely used in experimental investigations.

This method can be briefly described as follows.
The emission of a positron during the decay of the
nucleus of the 22Na isotope is accompanied by the
emission of a nuclear gamma quantum with an energy
of 1275 keV. Let ε1 be the efficiency of detection of a
511-keV annihilation quantum in a photopeak and ε2 be
the efficiency of detection of a nuclear quantum in the

P3γ 0.75Pτ t τ t
0 1 P–( ) 372.⁄+⁄≅
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corresponding photopeak. Considering that the proba-
bility of the three-photon annihilation of a free positron
is negligible (1/372), we can write the following
expressions in the case of aluminum as a reference:

(2)

(3)

where (S511)Al and (S1275)Al are the count rates for anni-
hilation and nuclear gamma-quanta, respectively, and
Q is the activity of the positron source. The analogous
quantities for the sample under investigation are related
through the formula

(4)

while the intensity of the 1275-keV line remains
unchanged, since it does not depend on the structure of
the sample, i.e.,

(5)

In order to determine the probability of the three-
phonon annihilation experimentally, one must compare
two energy spectra—for the aluminum reference sam-
ple and for the sample under investigation—under the
assumption that the number of positrons emitted in the
two cases is the same. Since we cannot ensure exactly
the same geometry of measurements for the two sam-
ples and since the positron sources used in the experi-
ments have different activities, the following normal-
ization procedure is usually employed: after the sub-
traction of the background count rate, the energy
spectra must contain the peaks of nuclear gamma radi-
ation of the same area, i.e.,

(6)

Accordingly, the spectra are normalized to equal
areas of the nuclear radiation peak, and the experimen-
tally observed quantity in this case is given by

(7)

whence

(8)

Another method used for determining the three-
photon annihilation probability, which is similar to the
above method, involves the application of strong mag-
netic fields (>2.5 T) in which magnetic quenching of
positronium takes place; as a result, the probability of
three-phonon annihilation in the sample becomes two-
thirds of its value in zero magnetic field [1].

It should be noted that, while presenting the results
of investigations of elastomer samples of various grade
using the above-described technique, the authors of
monograph [2] noted that the absolute values of the
three-photon annihilation probability are much larger
than those calculated by Eq. (1) using data on the
positronium lifetime in these samples. The noted differ-
ence in the absolute values is attributed by the authors

S511( )Al 2ε1Q,=

S1275( )Al ε2Q,=

S511( )Ps 2ε1 1 P3γ–( )Q,=

S1275( )Ps ε2Q.=

S1275( )Al S1275( )Ps.=

∆ S511( )Al S511( )Ps– 2ε3γQ,= =

P3γ ∆ 2ε1Q.⁄=
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of [2] to a lack of precision in the procedure of deter-
mining the level of external background radiation,
although, in our opinion, the factors described below
can be responsible for this difference.

2. INCLUSION OF SUMMATION PROCESSES
OF CASCADE GAMMA RADIATION 

IN DETERMINING THE PROBABILITY P3γ

We will not discuss the processes relevant to an
incorrect determination of the background nor the
events corresponding to the accidental coincidence of
quanta from different decays (which have different ori-
gins) and their contributions to the energy spectra under
investigation. We will consider the physical effects
emerging during the detection of the cascade gamma
radiation emitted upon the decays described above.

Let  be the efficiency of the detection of a Comp-
ton-scattered 511-keV annihilation gamma quantum by

the detector, d  be the efficiency of detection of the

Compton-scattered 1275-keV nuclear quantum, and 
be the total efficiency of detection of a quantum emitted
as a result of the decay of an orthopositronium atom.

In this case, taking into account that a positron and
a 1275-keV gamma quantum are emitted in a cascade
in the case of an aluminum reference, the following
processes, which are associated with the summation of
quanta emitted in the same decay of a nucleus and
simultaneously reaching the sensing element, occur in
the detector, in addition to the processes considered
above:

(1) the detection of a Compton-scattered annihila-
tion quantum coinciding with the Compton-scattered
nuclear quantum (the count rate of this process is

2 Q);

(2) the detection of a Compton-scattered annihila-
tion quantum together with the completely absorbed

nuclear quantum (2 ε2Q);

(3) the detection of a completely absorbed annihila-
tion quantum together with the Compton-scattered

nuclear quantum (2ε1 Q);

(4) the detection of a completely absorbed annihila-
tion quantum with the completely absorbed nuclear
quantum (2ε1ε2Q).

In principle, the sum of the Compton-scattered anni-
hilation and nuclear quanta can fall within the region of
the photopeaks under investigation. However, process (1)
barely affects the areas of the 511- and 1275-keV pho-
topeaks, since it contributes to the continuous Compton
distribution in all regions of the energy spectrum,
which is subtracted during line processing by conven-
tional spectroscopic methods (e.g., the “trapezoid”
method). Apart from this, one of the consequences of
the high energy resolution of a semiconducting detector

ε1
c

ε2
c

ε3
t

ε1
c ε2

c

ε1
c

ε2
c

0
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Table 1.  Values of detection efficiency and coefficient κ for scintillation and semiconducting detectors as functions of the
separation R of the positronium source and sample from the detector surface

NaI(Tl) [150 × 100 mm

R, cm ε1 ε2 κ

3 0.11 0.046 0.07 0.083 0.16 1.56

10 0.037 0.015 0.023 0.028 0.052 1.12

20 0.013 0.005 0.008 0.0095 0.017 1.035

Ge 200 cm3

3 0.036 0.072 0.019 0.069 0.103 1.25

10 0.009 0.017 0.005 0.015 0.026 1.05

20 0.0025 0.0065 0.0016 0.006 1.010 1.02

ε1
t ε2

c ε3
t

is that the probability of the sum of two Compton-scat-
tered quanta falling within the region of the photopeaks
under investigation is negligible as compared to the
probability of all possible combinations of quanta sum-
mation processes.

Processes (3) and (4) lead to a change in the area of
the 511-keV photopeak, while processes (2) and (4)
lead to a change in the area of the 1275-keV photopeak.
It should also be noted that, in contrast to processes (2)
and (3) leading to a change in the area of only one (cor-
responding) photopeak, process (4) lowers both the
annihilation photopeak and the nuclear photopeak
simultaneously. Taking the above arguments into
account, we can write for the 511-keV line

(9)

where  = (ε2 + ) is the total efficiency of detecting
the nuclear quantum and

(10)

where  = (ε1 + ) is the total efficiency of detecting
a 511-keV annihilation quantum.

In the case of the “positronium-forming” sample
under investigation, annihilation quanta of ortho-
positronium have an energy lower than 511 keV and are
detected not in the photopeak, but in the Compton
region of the spectrum. Also considering the fact that
three gamma quanta are emitted simultaneously during
the decay of an orthopositronium atom, we have the
following processes of the same origin as those listed
above:

(1) [2 (1 – P3γ) + 3 P3γ] Q,

(2) [2 (1 – P3γ) + 3 P3γ] Q,

(3) 2ε1(1 – P3γ) Q,

(4) 2ε1(1 – P3γ)ε2Q.

S511( )Al* 2ε1Q 1 ε2
t–( ),=

ε2* ε2
c

S1275( )Al
* ε2Q 1 2ε1

t–( ),=

ε1
t ε1

c

ε1
c ε3

t ε2
c

ε1
c ε3

t ε2

ε2
c

P

This gives

(11)

(12)

Let us analyze the consequences of the requirement
of the equality for the areas of the photopeaks corre-
sponding to the nuclear gamma-quantum, which is
used as a criterion for the comparison of spectra. For
this purpose, we multiply the spectrum of the alumi-
num reference sample by the normalization coefficient

(13)

This gives

(14)

Thus, the probability P3γ determined in this way dif-
fers from that calculated by Eq. (8) by a factor of

. (15)

The values of the coefficient κ for some types of the
detector used are given in Table 1. In our calculations,
we used the experimental data obtained with a Na(T1)
detector with a size of ∅ 150 × 100 mm and a high
efficiency Ge detector GC8021 having a volume of
200 cm3 [3] in the energy range 0.03–2.0 MeV.

It should be noted that we did not seek to obtain an
exact analytical expression for the correction coeffi-
cient, since this procedure requires a meticulous inclu-
sion of the energy dependence of the efficiency of
detecting the three-photon annihilation quanta, as well
as the angular distribution of the quanta emitted as a
result of the decay of o-Ps. The aim of this publication
is to attract the attention of experimenters to the exist-
ing processes of summation of cascade gamma radia-
tion, to estimate these processes, and to propose mea-

S511( )Ps
* 2ε1Q 1 ε2

t–( ) 1 P3γ–( ),=

S1275( )Ps
* ε2Q 1 2ε1

t– P3γ 2ε1
t 3ε3

t–( )+[ ] .=

S1275( )Ps
* S1275( )Al

*⁄

=  1 2ε1
t P3γ 2ε1

t 3ε3
t–( )+–[ ] 1 2ε1

t–( )⁄ .

P3γ
* ∆∗ 1 2ε1

t–( ) 2Qε1⁄ 1 ε2
t–( ) 1 3ε3

t–( ).=

κ 1 2ε1
t–( ) 1 ε2

t–( ) 1 3ε3
t–( )⁄=
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sures for eliminating their effect on the results of mea-
surements.

In order to simplify the estimation, we assumed that

the value of  is equal to the total efficiency of detect-
ing a 392-keV quantum. According to Vartanov and
Samoilov [4], the deviation of the value of the total effi-
ciency of gamma-quantum detection from the average
value in the energy range 0.1–0.5 MeV does not exceed
12% for a scintillation detector based on a ∅ 150 ×
100 mm Na(T1) crystal.

Table 1 shows that disregarding the summation pro-
cesses described above leads to a considerable overes-
timation of the true P3γ at a distance ≤10 cm to the
detector surface. It should be noted that the investigated
summation processes are manifested irrespective of the
lower energy threshold (whose maximum value cannot
obviously exceed 0.5 MeV) set for the detection of the
spectra.

The results of calculations made here were verified
by us experimentally. For this purpose, we investigated
the probability P3γ in the initial silica gel using a scin-
tillation spectrometer with a detector based on a 150 ×
100 mm Na(T1) crystal and a 22Na positron source with
an activity of 3.2 × 105 Bq by the technique described
in Section 1 (disregarding the processes of summation
described in this work). The results of the investigation
are presented in Table 2, which shows, among other
things, that the value of the three-photon annihilation
probability for positronium with the positron source
and the samples in the immediate vicinity of the detec-
tor is about four times as high as the true value of P3γ.

The results presented in Table 2 confirm the consid-
erable effect of the summation of cascade gamma radi-
ation on the value of the three-photon annihilation
probability being determined and agree with the data in
Table 1.

Thus, in order to determine the exact value of the
three-photon annihilation probability for positronium
using the method described in [2], one must take into
account the processes of summation of cascade gamma
radiation considered in this work. It should be observed

ε3
t
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that the error in determining the probability P of the
positron formation and the three-photon annihilation
probability P3γ by magnetic quenching can lead to con-
siderable errors caused by a disregard of the processes
of summation of cascade radiation.

It should be noted, in conclusion, that the correction
of the spectra taking into account the processes of sum-
mation is not required when the solid angle of inci-
dence on the detector is ≤2% of 4π steradians.
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Abstract—The solution of the boundary-value problem on a rectilinear screw dislocation parallel to the inter-
face between phases with different elastic moduli and gradient coefficients is obtained in one of the versions of
the gradient theory of elasticity. The stress field of the dislocation and the force of its interaction with the inter-
face (image force) are presented in integral form. Peculiarities of the short-range interaction between the dislo-
cation and the interface are described, which is impossible in the classical linear theory of elasticity. It is shown
that neither component of the stress field has singularities on the dislocation line and remains continuous at the
interface in contrast to the classical solution, which has a singularity on the dislocation line and permits a dis-
continuity of one of the stress components at the interface. This results in the removal of the classical singularity
of the image force for the dislocation at the interface. An additional elastic image force associated with the dif-
ference in the gradient coefficients of contacting phases is also determined. It is found that this force, which has
a short range and a maximum value at the interface, expels a screw dislocation into the material with a larger
gradient coefficient. At the same time, new gradient solutions for the stress field and the image force coincide
with the classical solutions at distances from the dislocation line and the interface, which exceed several atomic
spacings. © 2000 MAIK “Nauka/Interperiodica”.
1. The description of the elastic interaction of dislo-
cations with interfaces is one of the main problems in
the theory of defects in heterogeneous materials. The
models of such an interaction are widely used in the
physics of strength and plasticity of poly- and nanoc-
rystals, composites, and thin-film solid-state structures
[1–4]. The traditional description of the behavior of dis-
locations at interfaces is based on solving the bound-
ary-value problems in the classical linear theory of
elasticity. The corresponding solutions successfully
describe the elastic field of dislocations at distances of
several atomic spacings from the interfaces or disloca-
tion lines. Consequently, these solutions are valid in the
cases where the long-range interaction between dislo-
cations and interfaces plays the leading role. However,
classical solutions do not apply when the inclusion of
short-range interactions is essential. This mainly con-
cerns the singularity of elastic fields of the dislocation
on its line and the singularity of the force of interaction
between the dislocation and the interface (image force)
in the case where the dislocation is at the interface. In
addition, some components of the elastic stress field of
the dislocation have discontinuities at the interfaces.
This is admissible in a classical macroscopic descrip-
tion, but is physically unsubstantiated in the case of a
nano- or microscopic analysis. In order to avoid the
above difficulties in the theoretical description of the
1063-7834/00/4209- $20.00 © 21652
behavior of dislocations at the interfaces, we will
henceforth apply the gradient theory of elasticity to for-
mulate and solve the boundary-value problem on a lin-
ear screw dislocation parallel to the phase boundary.

This work is a natural continuation of our systematic
investigations [5–10] of defects (dislocations [5–10] and
disclinations [8–10]) in the gradient theory of elasticity.
The main results of such a description are the removal
of singularities in the fields of displacements [5–8, 10],
deformations [5–10], and stresses [7, 9, 10] and in the
energies [7, 8, 10] on the lines of defects. Using a sim-
ple gradient modification [5, 6, 8] of the linear theory
of elasticity proposed in [11] and tested in problems on
cracks [11–15], we obtained new nonsingular solutions
for fields of displacements and deformations from dis-
locations, for the energies of dislocations, and fields of
deformations from disclinations. However, the solu-
tions for elastic stresses in this gradient theory
remained singular as in the classical theory of elasticity.
In order to obtain new nonsingular solutions, a more
general gradient theory proposed in [16, 17] was used
in [7, 9, 10]. The basic equation in this theory has the
form

(1)1 c1∇
2–( )σ 1 c2∇

2–( ) λ tre( )I 2µe+[ ] ,=
000 MAIK “Nauka/Interperiodica”
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where λ and µ are the Lamé elastic constants; σ and e
are the tensors of elastic stresses and strains, respec-
tively; I is a unit tensor; ∇ 2 denotes the Laplacian; and
c1 nd c2 are two different gradient coefficients. Follow-
ing the simple procedure of solution of Eq. (1) pro-
posed in [16] in analogy with that presented earlier in
[12], we obtained solutions for rectilinear dislocations
[7, 10] and disclinations [9, 10] in an infinite isotropic
elastic medium. These new solutions lead to nonsingu-
lar expressions for strains, as well as for stresses.

For example, the field of stresses for a rectilinear
screw dislocation whose line coincides with the z axis
of the Cartesian system of coordinates has the form
[7, 10]

(2)

where bz is the Burgers vector of the dislocation, r2 =

x2 + y2, and Kn(r/  is an nth-order modified Bessel
function of the second kind (MacDonalds function),
n = 0, 1, … . The first terms in the brackets are the clas-
sical solution [18], while the second terms are additional
gradient terms. Such a structure of the solution, which
is also typical for other elastic fields and defects in
[7, 9, 10], perfectly agrees with the Ru–Aifantis theo-
rem [12], which states that the solution of the bound-
ary-value problem in the gradient elasticity theory can
be written as the sum of the classical solution of the
same boundary-value problem and additional gradient
terms defined by the solution of the corresponding
Helmholtz equation. It is interesting to note that the
field of stresses of Eq. (2) exactly coincides with the
solution obtained by Eringen [19–21] in his version of
the nonlocal theory of elasticity. For r  0, we have

K1(r/ )  /r and σiz  0 (i = x, y). The same
result was obtained in [16] from the asymptotic solu-
tion for a screw dislocation, as well as for the tip of an
antiplane shear crack. It was proved in [7] that the elas-
tic stresses of Eq. (2) attain their peak values ≈µ/4 at a

distance ≈  (which can be estimated as ≈a/4 [11],
where a is the lattice constant) from the dislocation
line.

All the results described above were obtained for
defects in an infinite isotropic elastic medium charac-
terized by the Lamé elastic constants λ and µ, as well
as the gradient coefficients c1 and c2 (or by only one
gradient coefficient c in the special gradient theory of
elasticity [11]). In the present work, we consider a
screw dislocation parallel to the planar interface
between two elastic isotropic media with different
Lamé constants and gradient coefficients. We will
derive, in an integral form, the stress field of a disloca-

σxz

µbz

2π
-------- y

r2
----–

y

c1r
-----------K1

r

c1

-------- 
 + ,=

σyz

µbz

2π
-------- x

r2
----

x

c1r
-----------K1

r

c1

-------- 
 – ,=

c1

c1 c1

c1
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tion and the force of its interaction with the interface
(image force), and describe the peculiarities of the
short-range interaction of the dislocation with the inter-
face at the nanoscopic level.

2. Let us consider plane interface between two elas-
tic isotropic media 1 (x > 0) and 2 (x < 0) with shear
moduli µi and the gradient coefficients c1i and c2i, where
i = 1, 2, respectively (Fig. 1). Let us suppose that the
line of a rectilinear screw dislocation with the Burgers
vector bz passes through the point (x = x', y = 0) parallel
to the z axis of the Cartesian system of coordinates.

2.1. Classical Solution

In the classical theory of elasticity (c1i = c2i ≡ 0) for
x' ≥ 0, the stress field of the dislocation is determined
(in the units of µ1bz/(2π) by the expressions [22]

(3)

for medium 1 and by the expressions

(4)

for medium 2, where  = (x ± x')2 + y2 and Γ = µ2/µ1.

It can be easily verified that the component  is
continuous at the interface (x = 0), while the component

 experiences a jump,

(5)

in this region. In the classical theory of elasticity, such
a jump can be easily explained from the macroscopic
point of view since this yz component does not make
any contribution to the x component of the elastic force,
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Fig. 1. Screw dislocation at a planar interface.
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which must be balanced at the interface. On the other
hand, if we consider the stressed state at a perfectly
conjugate interface from the nanoscopic point of view,
the origin of this jump becomes unclear. Indeed, atomic
forces on both sides of the interface elastically interact
not only with atoms of their own medium, but also with
atoms from the other medium. Consequently, we must
assume the existence of a transient region of a thickness
of several atomic layers, in which elastic interactions
between atoms vary smoothly from a strong interaction
in a more rigid medium to a weak interaction in the
softer medium. Such an assumption immediately leads
to the conclusion that the stress jump of Eq. (5) is just
a consequence of the approximation of the classical
model of a continuous medium, whose properties often
differ from reality in the description of nanoscopic phe-
nomena.

In order to illustrate what has been said above, note
that the magnitude of the stress jump of Eq. (5) tends to
infinity in the xz plane when the dislocation comes in
contact with the interface. Thus, the stress jump at the
interface should obviously be eliminated if possible
while solving the given problem in any generalized the-
ory of elasticity aimed at describing phenomena on a
nanoscopic level.

2.2. Gradient Solution

Let us now consider the same problem in the gradi-
ent theory of elasticity with the basic relation (1). It was
proposed in [16] and also described in [7, 9, 10] that the
solution of Eq. (1) boils down to the independent solu-
tion of the following nonhomogeneous Helmholtz
equations for the fields of stresses σ and strains e:

(6)

where the fields of stresses σ0 and strains ε0 are solu-
tions of the same boundary-value problem in the classi-
cal theory of elasticity. We will consider here only the
solution of the first of Eqs. (6) for the field of stresses
since it is most interesting for various applications.

The first of Eqs. (6) can be solved by the Fourier
integral transformation method [6–10]. We first write
this equation in the form

(7)

where σ0(i) are defined by the equalities (3) and (4). For
the sake of simplicity, we will henceforth omit the first
index “1” in the notation of the gradient coefficients c1i,
so that c1 now belongs to material 1 and c2, to material 2.
On the basis of conclusions drawn in Sec. 2.1, as well
as the results obtained in [12, 16], we use the classical
boundary conditions

(8)

1 c1∇
2–( )σ σ0, 1 c2∇

2–( )e e
0,= =

1 c1i∇
2–( )σ i( ) σ0 i( ),=

σxz[ ] x 0= σxz
1( ) x 0=( ) σxz

2( ) x 0=( )– 0= =
P

and three additional boundary conditions

(9)

The first of Eqs. (9) eliminates the jump of the yz com-
ponent of the stress field at the interface, while the sec-
ond ensures the smooth variation of both components
upon a transition through the boundary.

Omitting cumbersome intermediate calculations,
we give only the final results here. The gradient solu-
tion can be presented (in the units of µ1bz/2π) in the
form

(10)

(11)

for medium 1, where λi = , i = 1, 2, and

(12)

(13)

for medium 2.
Let us briefly consider the structure of the gradient

solution of Eqs. (10)–(13). First, all the stress field
components contain the classical solution of Eqs. (3),
(4), as well as the additional gradient terms, in accor-
dance with the Ru–Aifantis theorem [12, 16] (see
Sec. 2.1). Second, they contain the gradient solution of
Eqs. (2) obtained in [7] for an infinite homogeneous
medium (Γ = 1, c1 = c2 = c), which is presented in
Eqs. (10), (11) in an explicit analytic form and in
Eqs. (10)–(13) in an integral form. For Γ = 1 and c1 =
c2 = c, expressions (10)–(13) are transformed into Eq. (2).
Third, the stress field components of Eqs. (10)–(13)
contain specific terms that are only due to the differ-
ence in the gradient coefficients c1 and c2. These terms
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are presented in an integral form by the last terms in
Eqs. (10)–(13) for Γ = 1.

3. The structure of the gradient solution of Eqs.
(10)–(13) allows us to consider the following three typ-
ical situations separately: a “purely elastic” interface
(Γ ≠ 1, c1 = c2 = c), a “purely gradient” interface (Γ = 1,
c1 ≠ c2), and a general “mixed gradient–elastic” inter-
face (Γ ≠ 1, c1 ≠ c2).

3.1. Purely Elastic Interface (Γ ≠ 1, c1 = c2 = c)

In this case, the gradient solution (in the units of
m1bz/2π) has the form

(14)

(15)

where  are defined by equalities (3) and (4) and

λ = . Unlike the classical solution of Eqs. (3)

and (4), in which the component suffers the discon-
tinuity of Eq. (5) at the interface, both components are
continuous at the interface. This difference is clearly
seen in Figs. 2 and 3. The magnitude of the classical
jump increases as the dislocation approaches the inter-
face. Figure 3 also shows clearly that the gradient solu-
tion gives finite values of stresses on the dislocation
line, while the classical solution has a singularity in this
region. The classical and gradient solutions coincide

away from the interface (r > 5 ) and from the dislo-
cation line, but differ considerably at nanoscopic dis-

tances (r < 5 ) from them.
When the dislocation is just at the interface (x' = 0),

the integrals in Eqs. (14) and (15) can be evaluated
explicitly, which gives (in the units of µ1µ2bz/[π(µ1 +
µ2)])

(16)

where r2 = x2 + y2. It should be noted that the gradient
solutions of Eq. (16) for such an interface dislocation
differ from the gradient solutions of Eq. (2) for a dislo-
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cation in an infinite homogeneous medium only in the
constant factor 2µ2/(µ1 + µ2). The same also applies to
the classical solutions.

Let us now consider the image force  exerted by
the interface per unit length of the dislocation {see

Fig. 1). The gradient solution (in the units of µ1 /2π
has the form

(17)

where the first term in the braces is the classical singu-
lar solution, and the second is the additional gradient
term. A numerical analysis of this expression is pre-
sented in Fig. 4, which also shows a similar solution for
a dislocation located in medium 2 (x' < 0). It can be seen
that a classical singularity can be eliminated from gra-
dient solutions for the image force attaining its maxi-
mum values at distances c from the interface and van-
ishes at it.

This result is of special importance for a dislocation
at the free surface, when Γ = 0 (see the solid and dashed
curves in Fig. 4 in the regions of negative values of the

force ). Indeed, it is natural to assume that, as long
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µ2 = 2µ1 and c1 = c2 = c. The stresses are given in the units

of µ1bz/(2π ). The dashed curves are isolines for the clas-

sical solution .
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Fig. 3. Distribution of the stress component σyz (x, y = 0) near the screw dislocation line located at a distance x'/  = 10 (a), 5 (b),

2 (c), and 0 (d) from the interface (x = 0) for µ2 = 10µ1 and c1 = c2 = c. The stresses are given in the units of µ1 /(2π ). The

dashed curves describe distributions for the classical solution .
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as a dislocation is at the free surface, it does not expe-
rience the action of any force. The image force appears
and increases as the dislocation core starts penetrating
the material (the core radius naturally appears in the
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x
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Fig. 4. Dependence of the image force  on the position

x'/  of a dislocation at a “purely elastic” interface (x' = 0)
for c1 = c2 = c and µ2/µ1 = 10, 7, 5, 3, and 0 (from top to
bottom). The values of force are in the units of

µ1 /(2π ). The dashed curves describe the dependences
for the classical solution.

Fx
el

c

bz
2

c

P

gradient theory and is estimated as ≈4  [5]), attains
its peak value, and then decreases with increasing dis-
tance from the free surface towards the bulk of the
material. This last stage is correctly described by the
classical solution {see Fig. 4}, which, however, cannot
explain the previous stages. The maximum cleavage

stress τmax = /bz that must be overcome by a
screw dislocation penetrating the material can be esti-
mated in the gradient theory of elasticity with the basic
relation (1). The curve in Fig. 4 gives an estimate τmax ≈
µ/2π, i.e., the value of the order of the theoretical shear
strength [18].

As regards the interior phase boundary, the vanish-
ing of the image force at the interface (the existence of
an unstable equilibrium) has not yet been explained.

3.2. Purely Gradient Interface (Γ = 1, c1 ≠ c2)

In this case, the gradient solution is defined by for-
mulas (10)–(13) for Γ = 1. We only consider the corre-

sponding image force  exerted on a dislocation by
the interface due to the difference in the gradient coef-

c

Fx
el

max

Fx
gr
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Fig. 5. Dependence of the image force  on the position x'/  of a dislocation at a “purely gradient” interface (x' = 0) for µ2 = µ1 and

c2/c1 = 0.5, 0.7, 0.9, 1.1, 1.5, and 2 (from top to bottom) (a) and dependence of the image force  at the interface (x' = 0) on the

ratio c2/c1 (b). The values of the force are in the units of µ1 /(2π ).

Fx
gr

c1

Fx
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bz
2

c1
ficients c1 and c2. This force is defined (in the units of

µ1 /2π as

(18)

For c1 > c2, i.e., for λ1 < λ2, the integral in Eq. (18) is

negative, and the force  is positive. This means that
the dislocation is repelled from the interface to the bulk
of material 1, which has a larger gradient coefficient.
This effect agrees with the gradient solution for the

elastic energy W = µ /(4π){γ + ln(R/2 )}of a
screw dislocation [7, 8, 10], where γ = 0.577 … is the
Euler constant and R is the characteristic size of the
solid. Obviously, the greater the value of c1, the smaller

the energy W. The curves in Fig. 5 show that (x') is
a short-range force that differs from zero only in the
immediate vicinity of the interface. At the interface
itself, the force assumes a maximum value which
strongly depends on the ratio c2/c1 (see Fig. 5).

3.3. Mixed Gradient–Elastic Interface (Γ ≠ 1, c1 ≠ c2)

In this case, the gradient solution is given by rela-
tions (10)–(13), and the image force Fx assumes the

form [in the units of µ1 /2π

(19)
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ds.
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It should be noted that the force Fx is not just a super-

position of the forces  and  defined by formulas
(17) and (18), respectively. Nevertheless, it possesses

some typical features of these forces (Fig. 6). Like ,
the image force of Eq. (19) is a long-range nonsingular
force coinciding with the classical image force away

from the interface (|x ' | > 5 ). In analogy with the

force , at the interface, it assumes finite values
which depend on the ratios µ2/µ1 and c2/c1. The sign
and the qualitative behavior of the force Fx near the

Fx
el Fx

gr

Fx
el

c1

Fx
gr

1.5

1.0

0.5

–0.5

–1.0

0

–1.5 –1 –0.5 0 0.5 1 1.5 2

Fx

x' c1( )⁄

Fig. 6. Dependence of the image force Fx on the position

x'/  of a dislocation at a “mixed gradient–elastic” inter-
face (x' = 0) for µ2 = 3µ1 and c1/c2 = 0.3, 0.5, 0.7, 0.9, 1, 2,
3, and 5 (from top to bottom). The values of the force are in

the units of µ1 /(2π ). The dashed curves describe the
dependences for the classical solution.

c1

bz
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interface is completely determined by the ratio of the
gradient coefficients c2/c1. For example, for µ2 > µ1,
three different modes of the behavior of Fx are observed
(Fig. 6). If c2 < c1, Fx > 0 for any x' and it attains its max-

imum value at or near the interface. For c2 = c1, Fx ≡ 
and it vanishes at the interface (see Subsection 3.1). If
c2 > c1, we have Fx > 0 for any x' except the small region
near the interface. The size of this region, which

depends on the ratio c2/c1, is approximately equal to ,
and Fx < 0 within this region, attaining its minimum
value at the interface. Accordingly, we can single out
three typical modes of the behavior of a dislocation at
the interface for µ2 > µ1. If c2 < c1, the dislocation is
expelled from material 2 into material 1 and has no
equilibrium positions near the interface. For c2 = c1, the
dislocation behaves similarly, but has an unstable equi-
librium position at the interface. For c2 > c1, a disloca-
tion located in material 2 is drawn towards the interface
and is “trapped” near the interface in a position of sta-

ble equilibrium x' ≈ –(0.2–0.8) . In turn, a disloca-
tion located in material 1 has a position of unstable

equilibrium x' ≈ (0.4–0.7)  near the interface. It is

attracted to it within a small region x' < (0.4–0.7)
and repelled from it outside this region.

4. Thus, we have obtained a solution of the bound-
ary-value problem on a rectilinear screw dislocation
parallel to the planar interface between two elastic iso-
tropic media with different elastic constants and differ-
ent gradient coefficients in the gradient theory of elas-
ticity with the basic relation (1). The elastic stress field
of the dislocation and the image force exerted on it by
the interface are presented in a general integral form. It
is shown that both components of the stress field have
no singularities on the dislocation line and remain con-
tinuous at the interface in contrast to the classical solu-
tion [22] having a singularity on the dislocation line
and permitting a jump in one of the two components at
the interface. The gradient and the classical solution
coincide away from the interface and from the disloca-

tion line (at distances much greater than 10 ). The
continuity of stresses at the interface made it possible to
eliminate the classical singularity [22] of the image
force for a dislocation emerging at the interface. An
additional elastic image force that emerges due to the
difference in the gradient coefficients of the contacting
phases is also determined. It is shown that this force,
which has a short range and attains its maximum value
at the interface, expels a screw dislocation to the mate-
rial with a larger gradient coefficient. In the general
case, when the shear moduli µ1 and the gradient coeffi-
cients ci for the contacting phases are different, the
overall image force may act differently at the interface,
depending on the ratios µ2/µ1 and c2/c1, although its
long-range component remains the same as in the clas-
sical theory of elasticity.

Fx
el

c1

c1

c1

c1

c1
P
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Abstract—A solution of the boundary-value problem in the gradient theory of elasticity concerning a rectilin-
ear edge dislocation parallel to the interface between phases with different elastic moduli and gradient coeffi-
cients is obtained. The interaction between the dislocation and the interface is considered on a nanoscopic level.
It is shown that the stress field has no singularities on the dislocation line and remains continuous at the inter-
face, unlike the classical solution, which is singular at the dislocation line and allows a discontinuity of two
stress components at the interface. The gradient solution also removes the classical singularity of the image
force for the dislocation on the interface. An additional elastic image force associated with the difference in the
gradient coefficients of contacting phases is also determined. It is found that this force, which has a short range
and a maximum at the interface, expels the edge dislocation into the material with a smaller gradient coefficient.
© 2000 MAIK “Nauka/Interperiodica”.
1. In our previous publication [1], we analyzed the
behavior of a rectilinear screw dislocation at the inter-
face by using a version of the gradient theory of elastic-
ity proposed earlier for an analysis of asymptotic elas-
tic fields at the mouth of an antiplanar shear crack and
on a screw dislocation line [2, 3]. The basic equation in
the gradient theory has the form

(1)

where λ and µ are Lamé elastic constants, σ and e are
the tensors of elastic stresses and strains, I is a unit ten-
sor, ∇ 2 denotes the Laplacian, and c1 and c2 are two dif-
ferent gradient coefficients. This theory is a generaliza-
tion of the special theory of gradient elasticity with c1 ≡ 0
and c2 ≡ c proposed in [4] and subsequently used for
eliminating singularities in the fields of displacements
and strains at the mouths of cracks [4–8] and on dislo-
cation lines [9–11], as well as in the deformation fields
on disclination lines [11]. Solving the same problems
on the basis of the relation (1) also enabled us to get rid
of singularities in the fields of elastic stresses of cracks
[2], dislocations [2, 12, 13], and disclinations [13, 14].

For example, the field of stresses for a rectilinear
edge dislocation whose line coincides with the z axis
and whose Burgers vector bx is directed along the x axis
of the Cartesian reference frame can be presented (in
the units of µbx/[2π(1 – ν)]) in the form [12, 13]

(2)

1 c1∇
2–( )σ 1 c2∇

2–( ) λ tre( )I 2µe+[ ] ,=

σxx = y r2 2x2+( )/r4 2y y2Φ1 3x2 y2–( )Φ2+[ ] ,+–
1063-7834/00/4209- $20.00 ©1659
(3)

(4)

(5)

where ν is the Poisson ratio, r2 = x2 + y2, Φ1 =

K1(r/ )/( r3), Φ2 = [2c1/r2 – K2(r/ )]/r4, and

Kn(r/ ) is an nth-order modified Bessel function of
the second type (a MacDonald function), n = 0, 1, … .
The first terms in Eqs. (2)–(4) are the classic solution
[15], while the remaining terms are additional gradient
terms. Such a division of the total solution into the clas-
sical and gradient components corresponds to the Ru–
Aifantis theorem [5], which proved that the solution of
the boundary-value problem in the gradient theory of
elasticity can be written as the sum of the classical solu-
tion of the same boundary-value problem and addi-
tional gradient terms defined by the solution of the cor-
responding Helmholtz equation. It should be noted that
the field of stresses of Eqs. (2)–(5) was obtained in an
explicit analytic form, in contrast to the analogous solu-
tion in the Eringen nonlocal theory of elasticity [16],
which is presented exclusively in the integral form. For

r  0, we have K1(r/ )  /r, K2(r/ ) 
2c1/r2 – 1/2, and σij  0 (i, j = x, y). It was proved in
[12] that the stresses of Eqs. (2)–(5) attain their peak

σyy = y r2 2x2–( )/r4 2y x2Φ1 3x2 y2–( )Φ2–[ ] ,+–

σxy = x r2 2y2–( )/r4 2x y2Φ1 x2 3y2–( )Φ2+[ ] ,+

σzz ν σxx σyy+( ),=

c1 c1 c1

c1

c1 c1 c1
 2000 MAIK “Nauka/Interperiodica”
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values (|σxx| ≈ 0.45µ and |σyy| ≈ |σxy| ≈ 0.27µ for bx = a =

4  and ν = 0.3) at distances ≈a/4 (where a is the lat-
tice constant) from the dislocation line. Beyond the

limits of the dislocation core (r ≥ r0 ≈ 4  [10]), the
gradient solution coincides with the classical solution.

Taking advantage of the possibility of eliminating
singularities from the stress fields of defects [12–14] by
using the gradient theory of elasticity with the basic
relation (1), we analyzed the behavior of dislocations at
the interface. In [1], we used relation (1) to solve the
problem on a rectilinear screw dislocation near a planar
interface between elastically isotropic media with dif-
ferent elastic constants and gradient coefficients. We
obtained the gradient solutions for the stress field of the
dislocation and the force of its interaction with the
interface (image force) in integral form. It was proved
that neither one of the components of the stress field has
singularities at the dislocation line, and they remain
continuous at the interface, unlike the classical solution
[17], which has a singularity on the dislocation line and
permits a jump of one of the components at the inter-
face. Away from the boundary and from the dislocation

line (at distances @10 ), the gradient and classical
solutions coincided. The continuity of stresses at the
interface led to the removal of the classical singularity
[17] of the image force on the emergence of a disloca-
tion at the interface. Also, we obtained an additional
elastic image force associated with the difference in the
gradient coefficients of the phases in contact. It was
found that this force, which has a short range and a
maximum at the interface, expels a screw dislocation to
the material with a larger gradient coefficient. In the
general case, when the elastic moduli µi and the gradi-
ent coefficients ci of the contacting phases were differ-
ent (we used the simplified notation c1i ≡ ci, where the
index i = 1, 2 indicates phase 1 or 2), the overall image
force demonstrated different behavior at the interface,
depending on the ratio µ2/µ1 and c2/c1, although its
long-range component remained the same as in the
classical theory of elasticity.

In the present work, we consider a similar problem
for an edge dislocation. The integral form of gradient

c1

ck

c1

x

y

z

b

µ1, v1, c1µ2, v2, c2

x'

Fig. 1. Edge dislocation at a planar interface.
PH
solutions is obtained for the field of elastic stresses of
the dislocation and for the image force acting on it. The
behavior of the dislocation at the interface is considered
in detail.

2. Let us consider the plane interface between two
elastic isotropic media 1 (x > 0) and 2 (x < 0) with shear
moduli µi, the Poisson ratios νi, and the gradient coeffi-
cients c1i and c2i, where i = 1, 2, respectively (Fig. 1).
Let us suppose that the line of a rectilinear edge dislo-
cation with the Burgers vector b = bxex + byey passes
through the point (x = x', y = 0) parallel to the z axis of
the Cartesian system of coordinates.

2.1. Classical Solution

In the classical theory of elasticity (c1i = c2i ≡ 0) for
x' ≥ 0, the stress field of dislocations is determined (in
the units of µ1/[π(k1 + 1)]) by the expressions [17]

(6)
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(8)

(9)

for medium 1 and by the expressions
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(12)

(13)

for medium 2, where x± = x ± x', , A = (1 –
Γ)/(1 + k1Γ), B = (k2 – k1Γ)/(k2 + Γ), Γ = µ2/µ1, ki = 3 –
4νi, i = 1, 2.

It can easily be verified that the components  and

 are continuous at the interface (x = 0), while the

components  and  experience jumps  =

 –  in this region, which are given by
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(in the units of µ1/[π(1 – ν1)]). It was discussed in detail
in [1] that, in the classical theory of elasticity, such
jumps are quite natural from macroscopic point of
view, but cannot be explained by nanoscopic analysis.
They are just consequences of the approximation of the
classical model of a continuous medium, whose prop-
erties often differ from reality in describing nanoscopic
phenomena.

2.2. Gradient Solution

Let us now consider the same problem in the gradi-
ent theory of elasticity with the basic relation (1). It was
proposed in [2] and also mentioned in [1, 12–14] that
the solution of Eq. (1) boils down to the independent
solution of the following nonhomogeneous Helmholtz
equations for the fields of stresses σ and strains e:

(16)

where the fields of stresses s0 and strains e0 are solu-
tions of the same boundary-value problem in the classi-
cal theory of elasticity. We will consider here only the
solution of the first of Eqs. (16) for the field of stresses,
since it is most interesting for various applications.

Equation (16) can be solved by the Fourier integral
transformation method [1, 10–14]. We first write this
equation in the form

(17)

1 c1∇
2–( )s s0, 1 c2∇

2–( )e e0,= =

1 c1i∇
2–( )s i( ) s0 i( ),=
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where s0(i) are defined by the equalities (6)–(13). For
the sake of simplicity, we omit the first index “1” in the
notation of the gradient coefficients c1i, so that c1 now
belongs to material 1 and c2, to material 2. On the basis
of the conclusions drawn in Sec. 2.1, as well as the
results obtained in [2, 5], we use the classical boundary
conditions

(18)

and six additional boundary conditions

(19)

The last four of Eqs. (19) ensure a smooth variation of
all components of the stress field upon a transition
through the boundary in analogy with [1].

Omitting cumbersome intermediate calculations,
we give only the final results here. The gradient solu-

tion can be presented as the sum  =  + ,

where the classical solution  is defined by expres-
sions (6)–(13), while the additional gradient terms

 can be presented (in the units of µ1/[π(k1 + 1)]) in
the form

(20)

σxx[ ] x 0= σxy[ ] x 0= 0= =

σyy[ ] x 0= σzz[ ] x 0=

∂σxx

∂x
----------

x 0=

∂σyy

∂x
----------

x 0=
= = =

=  
∂σxy

∂x
----------

x 0=

∂σzz

∂x
----------

x 0=
0.= =

σkl
i( ) σkl

0 i( ) σkl
gr i( )

σkl
0 i( )

σkl
gr i( )

σxx
gr 1( ) 4bx y3Φ1 r–( ) y 3x–

2 y2–( )Φ2 r–( )+




=

–
2Ac1y

r+
6

--------------- 3x+
2 y2– 24x'x+

x+
2 y2–

r+
2

----------------+

+
s2 sy( )sin
λ1 λ2+

----------------------e
xλ1–

c1s
λ2 λ1–

λ1
----------------e

x'λ1–

0

∞

∫

+ Ac1 λ2 s+( ) 1 2x's+( ) c' λ2 s–( )–{ } e x's– ds




+ 4by x–y2Φ1 r–( )– x– x–
2 3y2–( )Φ2 r–( ) ---–





+
2Ac1

r+
6

------------ x+ x+
2 3y2–( ) 6x'

x+
4 6x+

2 y2– y4+

r+
2

------------------------------------–

+
s2 sy( )cos

λ1 λ2+
-----------------------e

xλ1–
c1 λ2 λ1–( )e

x'λ1–
[

0

∞

∫

PH
                                   

(21)

(22)

– Ac1 λ2 s+( ) 1 2x's–( ) c' λ2 s–( )+{ } e x's– ]ds




,

σyy
gr 1( ) 4bx x–

3yΦ1 r–( ) y 3x–
2 y2–( )Φ2 r–( )–





=

+
2Ac1y

r+
6

--------------- 3x+
2 y2– 24x'x+

x+
2 y2–

r+
2

----------------+

–
λ1

2 sy( )sin
λ1 λ2+

-----------------------e
xλ1–

c1s
λ2 λ1–

λ1
----------------e

x'λ1–

0

∞

∫

+ Ac1 λ2 s+( ) 1 2x's+( ) c'' λ2 s–( )–{ } e x's– ds




+ 4by x–
3Φ1 r–( )– x– x–

2 3y2–( )Φ2 r–( )+




– 
2Ac1

r+
6

------------ x+ x+
2 3y2–( ) 6x'

x+
4 6x+

2 y2– y4+

r+
2

------------------------------------–

– 
λ1

2 sy( )cos
λ1 λ2+

------------------------e
xλ1–

c1 λ2 λ1–( )e
x'λ1–

[
0

∞

∫

– Ac1 λ2 s+( ) 1 2x's–( ){

+ B c's2+( ) λ2 s–( ) λ1
2⁄ } e x's– ]ds





,

σxy
gr 1( ) 4bx x– –y2Φ1 r–( ) x– x–

2 3y2–( )Φ2 r–( )–




=

+
2Ac1

r+
6

------------ x+ x+
2 3y2–( ) 6x'

x+
4 6x+

2 y2– y2+

r+
2

------------------------------------+

+ 
s sy( )cos
λ1 λ2+

---------------------e
xλ1–

c1s λ2 λ1–( )e
x'λ1–

[
0

∞

∫

+ B Ac1 λ1
2 λ2s+( ) 1 2x's+( )– c's λ2 s–( )–{ } e x's– ]ds





+ 4by x–
2yΦ1 r–( ) y 3x–

2 y2–( )Φ2 r–( ) ---–




YSICS OF THE SOLID STATE      Vol. 42      No. 9      2000



EDGE DISLOCATIONS NEAR PHASE BOUNDARIES 1663
(23)

for medium 1 and

(24)
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(25)

(26)

(27)

for medium 2, where the functions Φj(r–) are defined in
the remarks to formulas (2)–(4), c' = c1 + c2(B – 1), c'' =

c1 + c2(B – 1) / , and λi = , i = 1, 2.

The stress field components  obtained in the
form of a superposition of classical expressions (6)–
(13) and the additional gradient components (20)–(27)
are continuous at the interface (x = 0). For µ1 = µ2 = µ,
ν1 = ν2 = ν, and c1 = c2 = c (the limiting transition to the
case of a homogeneous medium), these expressions are
transformed into Eqs. (2)–(5). As c1 = c2  0 (the lim-
iting transition to the classical theory of elasticity), the
additional gradient components in Eqs. (20)–(27) van-
ish. It should be noted that, as in the case of a screw dis-
location [1], expressions (20)–(27) contain specific
terms that are due only to the difference in the gradient
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coefficients c1 and c2 (e.g., the first terms in the inte-
grand).

3. Let us consider separately the following three
typical situations: a purely elastic interface (µ1 ≠ µ2,
ν1 ≠ ν2, c1 = c2 = c), a purely gradient interface (µ1 = µ2,
ν1 = ν2, c1 ≠ c2), and a general mixed gradient–elastic
interface (µ1 ≠ µ2, ν1 ≠ ν2, c1 ≠ c2).

3.1. Purely Elastic Interface
(µ1 ≠ µ2, ν1 ≠ ν2, c1 = c2 = c)

In this case, we consider only the effects associated
with the difference in the elastic constants of contacting
media. Two big advantages in the gradient theory of
elasticity over the classical theory are worth noting
here: first, the absence of singularities in the stress

fields  on the dislocation line, and second, the

absence of nonphysical jumps in the stresses  and

 of the type of Eqs. (14), (15) at the interface. This
allows us to consider nanoscopic short-range elastic
interactions between dislocations and phase bound-
aries, which is impossible in the classical theory of
elasticity leading to the singular solution of Eqs. (6)–

(13) with the components  and  discontinuous
at the interface. Figure 2 shows, by way of an example,

σkl
i( )

σyy
i( )

σzz
i( )

σyy
0 i( ) σzz

0 i( )
P

the distribution of the stress field (x, 0) of a disloca-
tion with the Burgers vector by near the interface. It can
be seen that the classical and gradient solutions coin-

cide away from the boundary (r > 10 ) and from the
dislocation line, but these solutions are quite different

in their vicinity (in the nanoscopic region r < 10 ).

Let us now consider the image force  exerted per
unit length of a dislocation by the interface (see Fig. 1).
For the dislocation with the Burgers vector bx, the gra-

dient solution (x') = bx (x = x', 0) (in the units of

µ1 /[π(k1 + 1)]) has the form

(28)

where λ = . The first term in Eq. (28) is a
classical singular solution [17], while the remaining are
additional gradient terms. The results of a numerical
analysis of Eq. (28) are presented in Fig. 3, which also
shows analogous solutions for a dislocation in medium
2 (x' < 0). It can be seen that the gradient solution has
lost the classical singularity and that it is continuous at
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Fig. 2. Distribution of the stress component σxy(x, y = 0) near the edge dislocation line with the Burgers vector by, located at a dis-

tance x'/  = 10 (a), 5 (b), 2 (c), and 0 (d) from the interface (x = 0) for µ2 = 10µ1, ν1 = ν2 = 0.3, and c1 = c2 = c. The stresses are

given in the units of µ1by /[π(k1 + 1) ]. The dashed curves describe distributions for the classical solution .
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the interface and attains its maximum value at a dis-

tance ≈  from it.

In the special case of a free surface (µ2 = ν2 = 0; see
the curves in Fig. 3 in the region of negative values of

), the image force vanishes at the interface. This
force emerges and grows as the dislocation core pene-
trates the material (the core radius naturally emerges in
the gradient theory of elasticity and is estimated as

≈4  [9, 10]), attains its maximum value, and then
decreases as the dislocation moves from the free sur-
face to the bulk of the material. This last stage (for x' >

5 ) is correctly described by a classical solution (see
Fig. 3) which, however, cannot describe the previous
stages. Using the gradient solution of Eq. (28), we can
estimate the maximum cleavage stress τmax =

/bx, which must be overcome by an edge dislo-
cation penetrating the material. The curve in Fig. 3
leads to the estimate τmax ≈ µ/2.8π (for ν = 0.3), i.e., the
value of the order of the theoretical shear strength [15].

3.2. Purely Gradient Interface (µ1 = µ2, ν1 = ν2, c1 ≠ c2)

In this case, we only consider the effects associated
with the difference in the gradient coefficients of con-
tacting media. We confine our analysis to the image

force  exerted on a dislocation by the interface due
to the difference c1 and c2. For a dislocation with the
Burgers vector bx, this force is defined (in the units of

µ1 /[π(k1 + 1)]) as

(29)

A numerical analysis of this integral proved that  is
positive for c2 > c1 and negative for c2 < c1 (Fig. 4). This
means that the edge dislocation is repelled by the inter-
face to the bulk of the material with a smaller gradient
coefficient. Such edge dislocation behavior differs
qualitatively from the behavior of a screw dislocation,
which is expelled to the material with a larger gradient
coefficient [1]. The reasons behind such a difference

remain unclear. Figure 4 shows that  is a short-range
force and is manifested in the immediate vicinity of the
interface. At the interface itself, the force assumes a
maximum value that depends heavily on the ratio c2/c1.

c

Fx
el

c

c

Fx
el

max

Fx
gr

bx
2

Fx
gr x'( ) 4

s2

λ1 λ2+
----------------- c1 λ2 λ1–( )e

2x'λ1–
{

0

+∞

∫=

+ c2 c1–( ) λ2 s–( )e
x' λ1 s+( )–

} ds.

Fx
gr

Fx
gr
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3.3. Mixed Gradient–Elastic Interface
(µ1 ≠ µ2, ν1 ≠ ν2, c1 ≠ c2)

In this case, the image force Fx assumes the form (in

the units of µ1 /[π(k1 + 1)])

(30)

bx
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Fig. 3. Dependence of the image force  on the position

x'/  of an edge dislocation with the Burgers vector bx at a
“purely elastic” interface (x' = 0) for c1 = c2 = c, ν1 = ν2 =
0.3, and µ2/µ1 = 10, 7, 5, 3, and 0 (from top to bottom). The

values of force are in the units of µ1 /[π(k1 + 1) ]. The

dashed curves describe the dependences for the classical
solution.
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It should be noted that the force Fx is not just a super-

position of the forces  and  defined by formulas
(28) and (29), respectively. This can be seen clearly
from Fig. 5. The image force of Eq. (30) is a long-range
nonsingular force coinciding with the classical image

force away from the interface (|x'| > 5 ). Its magni-
tude at the interface depends heavily on the ratios µ2/µ1

and c2/c1. The sign and the qualitative behavior of the
force Fx near the interface is determined to a consider-
able extent by the ratio of the gradient coefficients c2/c1.
For example, for µ2/µ1 = 3, three different modes of the
behavior of Fx are observed (Fig. 5). If c2 > c1, we have
Fx > 0 for any x' and it attains its maximum value at the

interface or near it. If c2 = c1, we have Fx ≡  (see
Sec. 3.1). If c2 < c1, we have Fx > 0 for any x' except in
the small region near the interface. The size of this
region is determined by the ratio c2/c1. For c2/c1 = 0.3,

it is approximately equal to 0.3 , and Fx < 0 within
this region, attaining the minimum value at the inter-
face. Accordingly, we can single out three typical
modes of the behavior of a dislocation at the interface
for µ2/µ1 = 3. If c2 ≥ c2, the dislocation is expelled from
material 2 into material 1 and has no equilibrium posi-
tions near the interface. For c2 < c1 (e.g., for c2/c1 = 0.3),
a dislocation located in material 2 is drawn towards the
interface and can be “trapped” near it in the stable equi-

librium position x' ≈ –0.1 . In turn, a dislocation
located in material 1 has a position of unstable equilib-

rium x' ≈ 0.2  near the interface. It is attracted to it

Fx
el Fx

gr
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Fig. 5. Dependence of the image force Fx on the position

x'/  of an edge dislocation with the Burgers vector bx at

a “mixed gradient–elastic” interface (x' = 0) for µ2 = µ1,
ν1 = ν2 = 0.3, and c2/c1 = 5, 3, 2, 1, 0.9, 0.7, 0.5 and 0.3
(from top to bottom). The values of force are in the units of

µ1 /[π(k1 + 1) ]. The dashed curves describe the

dependences for the classical solution.

c1

bx
2

c1
P

within a small region x' < 0.2  and repelled from it
outside this region.

4. Thus, we have obtained a solution of the bound-
ary-value problem on a rectilinear edge dislocation par-
allel to the planar interface between two elastic isotro-
pic media with different elastic constants and different
gradient coefficients in the gradient theory of elasticity
with the basic relation (1). The elastic stress field of the
dislocation and the image force exerted on it by the
interface are presented in a general integral form. It is
shown that all the components of the stress field have
no singularities on the dislocation line and remain con-
tinuous at the interface in contrast to the classical solu-
tion [17] having a singularity on the dislocation line
and permitting a jump in the two normal components at
the interface. The gradient and the classical solution
coincide away from the interface and from the disloca-

tion line (at distances much longer than @10 ). The
classical singularity [17] of the image force for a dislo-
cation emerging at the interface is eliminated in the gra-
dient solution. In this case, the force remains finite and
continuous everywhere. Besides, an additional elastic
image force emerging due to the difference in the gra-
dient coefficients of the contacting media is deter-
mined. It is shown that this force, which has a short
range and attains the maximum value at the interface,
expels an edge dislocation to the material with a
smaller gradient coefficient. In the general case, when
the shear moduli µi and the gradient coefficients ci are
different for the contacting media, the overall image
force may behave at the interface in different ways,
depending on the ratios µ2/µ1 and c2/c1, although its
long-range component remains the same as in the clas-
sical theory of elasticity.
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Abstract—Activation energies for the conventional hot and superplastic deformations of Bi2O3 ceramics have
been determined. It is shown that different deformation mechanisms are responsible for significant changes in
the activation energy of plastic flow. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known [1–3] that the transition of different
materials into the superplasticity state actuates specific
deformation mechanisms which provide the attainment
of large plastic strains without fracture. As a rule, a partic-
ular mechanism of deformation can be elucidated using a
combination of investigation techniques: microstructural
observations, studies of the deformation relief and fine
structure of the material, and a number of integral
methods (e.g., on the change in the crystallographic
texture). In some cases, the thermal activation analysis
of plastic deformation has considerable advantages.
This method is widely applied in analyzing plastic
deformations of ceramic materials [4–8], since the
complex microstructural studies, especially with the
use of transmission electron microscopy, usually
involve considerable difficulties. Therefore, the experi-
mental determination of the activation energy for plas-
tic deformation can provide important information on
the atomic mechanisms and processes responsible for
the diffusion of ions in ceramic materials.

However, comparitive studies of the actual deforma-
tion mechanisms determined for any ceramic materials
by direct methods and from the results of thermal acti-
vation analysis are absent in the literature. The experi-
mental revelation of a pronounced correlation between
the mechanisms and the activation energy of plastic
deformation would allow us to restrict ourselves, in
many cases, only to the analysis of mechanical proper-
ties for treating the actual deformation mechanisms.

The present paper reports the results of the evalua-
tion of the apparent activation energy for conventional
hot and superplastic deformations of Bi2O3 ceramics
and their correlation with the experimentally deter-
mined deformation mechanisms.

Earlier [9, 10], it was shown that the model Bi2O3
ceramics exhibits all indications of superplastic flow
under certain temperature–rate conditions. It was
1063-7834/00/4209- $20.00 © 21668
experimentally found that, under conditions of super-
plasticity, the grain boundary sliding is a dominating
deformation mechanism whose contribution to the total
strain is about 80% [9]. Such a specific mechanism of
deformation should result in substantial changes in the
thermal activation parameters; however, up to date,
these data for Bi2O3 ceramics are unavailable.

2. MATERIALS AND EXPERIMENTAL 
TECHNIQUES

The samples were obtained from the polycrystalline
Bi2O3 powder with a particle size of 10–100 µm by hot
pressing at a temperature of 650°C and a pressure of
500 MPa. Compression mechanical experiments were
carried out at temperatures of 600, 625, and 650°C in
the strain rate range 10–2–10–5 s–1. The phase composi-
tion was determined by the differential thermal and
x-ray diffraction analyses in the temperature range 20–
800°C.

The apparent activation energy was determined
from the analysis of phenomenological equations of
superplastic strain. As a rule, the rate of superplastic
strain  at the steady-state stage of flow is described by
the known equation [1–4]

(1)

where σ is the applied stress; G is the shear modulus;
D0 is the preexponential factor of the diffusion coeffi-
cient; Q is the apparent activation energy; b is the Burg-
ers vector; d is the grain size; and A, p, and n are the
constant dimensionless coefficients. If one assumes
that, in a considerably narrow temperature range, the
shear modulus changes within very restricted limits and
the ceramic materials have a stable grain size, the equa-
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tion of strain rate is simplified and has the form

(2)

where K is the coefficient accounting for the constant
parameters. From this equation, the apparent activation
energy for the constant applied load (in the case of
creep) can be determined as follows:

(3)

Under conditions of active loading for the identical
strain rates, the formula takes the form

(4)

Thus, the experimental determination of the appar-
ent activation energy under the above assumptions can
be carried out according to the following formula:

(5)

3. RESULTS AND DISCUSSION

The microstructure of the Bi2O3 ceramics in the ini-
tial hot-pressed state consists of equiaxial grains with a
mean size of 8–10 µm. After deformation under condi-
tions of superplasticity (T = 650°C,  = 10–4 s–1) [9],
when the rate sensitivity of flow stress m reaches a
value of 0.4, even at ε > 75%, the grains virtually retain
their equiaxiality, and their size does not change sub-
stantially (Fig. 1). This allows us to put the coefficient
p = 1 in Eq. (1) and describe the strain process by Eq. (2).

Differential thermal and high-temperature x-ray
powder diffraction analyses have shown that, upon
heating up to the melting temperature and cooling, the
Bi2O3 ceramics undergoes several phase transforma-
tions. However, upon heating and cooling in the tem-
perature range 20–715°C (below the melting point and
the α  δ transition temperature), only a single-
phase region occurs (the low-temperature monoclinic α
modification [9]). Thus, the temperature range of the
performance of the experiments corresponds to only
one region.

The dependence of the flow stress on the degree of
strain (the σ−ε curves) of the Bi2O3 ceramics at T =
650°C strongly depends on the strain rate. As is seen
from Fig. 2, the peak flow stress decreases with a
decrease in the strain rate. At strain rates higher than
10–4 s–1, the flow stress passes through a peak, abruptly
decreases, and reaches the steady-state stage of defor-
mation at which the flow stress is virtually independent
of the degree of strain. At strain rates of 10–4 s–1 and
less, the initial peak of the flow stress disappears, the
σ−ε curves have the shape characteristic of superplastic
deformations of metals and intermetallides [2, 3]. In
general, the degree of strain ε = 25–30% (practically for
all the strain rates) can be taken as the onset of the

ε̇ Kσn Q
kT
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  ,exp=

Q kn∂ ε̇ ∂ 1 T⁄( ).⁄ln–=
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steady-state stage, and the flow stresses for all these
degrees of strain can be used to determine the activation
energy.

The rate dependence of the flow stress at the steady-
state stage (at ε > 30%) exhibits different behavior
depending on temperature (Fig. 3). It is seen that, at
temperatures of 600 and 652°C in the entire range of
strain rates studied, the index of flow stress n is nearly
constant and equal to four or five. As the temperature
increases up to 650°C in the range of strain rates  =
5 × 10–5–2 × 10–4 s–1, the coefficient n decreases down
to 2.5 (i.e., coefficient m = 1/n increases up to 0.4);
however, at higher rates (  = 10–3–10–2 s–1), its value
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Fig. 2. Stress–strain curves for Bi2O3 ceramics at different
strain rates (T = 650°C).
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remains also high (n ≅  4). The activation energy Q,
which is determined from the slopes of the lnσ–1/T
curves (Fig. 4), significantly differs for superplastic and
hot deformations. For the superplastic deformation, the
activation energy is 228 kJ/mol, and for the hot defor-
mation, its value is 415 kJ/mol.
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Fig. 3. Curves of the strain rate plotted against the flow
stress for Bi2O3 ceramics.

Fig. 4. The lnσ–1/T curves for Bi2O3 ceramics at different
strain rates.
P

The difference in the activation energies can be
associated with the difference in the mechanisms oper-
ating under the conditions of conventional hot and
superplastic deformations. The conventional hot defor-
mation [high strain rates and (or) low temperatures]
mainly occurs by means of transcrystalline dislocation
slip. This is evidenced by the microstructural studies
and investigations into the fine structure of ceramics
[10]. At these strain rates, the formation of the subgrain
structure and dislocation walls takes place, and the
refinement of a microstructure occurs.

Under conditions of superplastic deformation, the
grain boundary sliding is the main mechanism of defor-
mation [1–3, 9, 10]. In this case, even at the strain ε >
75%, the grains retain their equiaxiality, the grain sizes
virtually do not change, the preliminary drawn marks at
the grain boundaries are displaced, and a low density of
dislocations is observed.

Thus, the large differences between the activation
energies for the conventional hot and superplastic
deformations can be connected with different mecha-
nisms of deformation in the Bi2O3 ceramics. The pro-
cesses responsible for the deformation can be reliably
established with the available data on the diffusion
parameters of the elements.
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Abstract—The hardness, elastic modulus, and elastic recovery of nanostructured boride/nitride films 1–2 µm
thick have been investigated by the nanoindentation technique under the maximum loads over a wide range
(from 5 to 100 mN). It is demonstrated that only the hardness parameters remain constant at small loads
(5−30 mN). The data obtained are discussed and compared with the parameters determined by other methods.
© 2000 MAIK “Nauka/Interperiodica”.
The basic ideas of investigating strain characteris-
tics upon continuous indentation of an indenter were
formulated in the mid-1970s (see, for example, [1–5]).
This method has been extensively used in studies of
films and surface layers, specifically upon nanoindenta-
tion under small loads (see, for example, [6–9]). A great
body of data on the hardness H and the elastic modulus
E was obtained by the indentation technique. In partic-
ular, valuable information on films based on interstitial
phases (transition metal carbides, nitrides, and borides)
was generalized in the review [10]. Interesting tech-
niques of examining the microindentation kinetics
were proposed by Golovin and Tyurin [11]. However,
the observed dependences of H and E on the indenta-
tion load P have yet to be unambiguously interpreted,
and the reliability of the strain parameters is not univer-
sally obvious and is not necessarily discussed. The sole
exception is the work of Menchik et al. [9], who
attempted to unify the techniques of determining E in
nanoindentation experiments with ball diamond indent-
ers. From general considerations and in relation to the
study of size effects in nanostructured materials (spe-
cifically in films) [12], it is important to reveal the
degree of absolute reliability of the data obtained from
nanoindentation measurements.

As a continuation of our earlier work concerned
with the determination of the hardness and elastic prop-
erties of Ti(B,N) films by conventional methods [13], it
was of interest to investigate the same films by the
nanoindentation method. The conditions of magnetron
sputtering and the characteristics of the
Ti(B0.73N0.2O0.05C0.02)1.56 film (I) with a hexagonal
structure of the AlB2 type and the
Ti(N0.49B0.34O0.12C0.05)1.49 film (II) with a cubic struc-
1063-7834/00/4209- $20.00 © 1671
ture of the NaCl type were given in [13]. Single-crystal
silicon wafers were used as substrates. The film thick-
nesses were δI = 1.7–1.8 µm and δII = 1.2–1.3 µm.

The structural features were examined by the high-
resolution transmission electron microscopy (JEM-
3010). The crystallite sizes (L) were estimated on the
basis of dark-field images as LI = 4–8 nm for film I and
LII = 3–6 nm for film II. Figure 1 shows a micrograph
obtained in the direct resolution mode. One can clearly
see a characteristic fringe structure and the crystalline
character of intercrystalline boundaries. These features
were described in detail in our previous work [14].

5 nm

101

00
1

Fig. 1. An image of the structure of film I in the direct reso-
lution mode.
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PH
The nanoindentation measurements were carried
out on a Nano Indentor TM II instrument [15] with the
use of Berkovich trihedral diamond indenters. The
maximum loads Pmax were equal to 5, 10, 30, and
100 mN. As before (see, for example, [16]), the load-
ing–unloading procedure consisted in loading up to
Pmax, unloading down to 0.1Pmax, holding for 50 s,
repeated loading to Pmax, holding for 200 s, and final
unloading. At least ten indentations were made for each
Pmax load.

Figure 2 illustrates the loading–unloading scheme
and the estimation with the use of the measured param-
eters. According to the known technique [7], these
parameters were used to evaluate H = Pmax/A, S =
dP/dh, the elastic modulus of the “film + indenter” sys-
tem E* = S/2(π/A)0.5, and the so-called elastic recovery
R = (hmax – hf)/hmax, where A is the indenter projection
area determined from the maximum depth of indenter
penetration hmax. In turn, the elastic modulus of the film
Efilm was calculated from the relationship 1/E* = (1 –

)/Eind + (1 – )/Efilm, where νind and νfilm are the

Poisson ratios of the indenter and the film (νfilm ~ 0.2),
respectively; and Eind is the elastic modulus of the
indenter (for diamond, E = 1141 GPa and ν = 0.07 [7]).

The experimental loading–unloading curves for the
studied films are depicted in Fig. 3. The dependences of
the strain characteristics on P are displayed in Fig. 4. As
follows from the results obtained, only the hardness H
is independent of P at small loads (P = 5–30 mN). The
R and E quantities in the studied P range increase with
a decrease in the load. Note that brittle films I and II are
almost identical in the elastic recovery, i.e., the very
conventional parameter of brittleness (the perfect plas-
ticity and the perfect elastic recovery correspond to R =
0 and 1, respectively), whereas the hardnesses H and
the elastic moduli E of the films differ considerably.

In this respect, it is of interest to compare the H and
E quantities determined from the nanoindentation mea-
surements with the experimental data obtained by con-
ventional methods. According to [13], HI ~ 49 and EI =
460 ± 50 GPa for film I and HII ~ 49 and EII = 480 ±
100 GPa for film II. The data on the hardness were
obtained with a PMT-3 microhardness tester at a load of
0.3 N and were processed according to the procedure
described in [17], which made it possible to eliminate
the effect of a softer substrate and differences in film
thicknesses on the results of measurements. The Young
moduli were determined by the contactless technique
of measuring the elastic properties. A comparison of
these data with the results demonstrated in Fig. 4 led to
the conclusion that different techniques of determining
H and E furnish the comparable results for film I,
whereas the nanoindentation measurements for film II
give the smaller parameters.

However, this inference requires certain comments.
It should be kept in mind that the hardness characteris-
tics obtained in traditional measurements can be larger

ν
ind2 ν

film2
YSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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than those determined by the nanoindentation tech-
nique due to the known relaxation effect (the so-called
recovered and unrecovered hardnesses). Moreover, it is
worth noting that the thicknesses of the studied samples
differ, and, hence, the relative depths of indenter pene-
tration h/δ are also different. For example, this ratio at
P = 5 mN is equal to 0.034 for film I and 0.057 for film
II. At larger loads, this difference becomes all the more
evident, and the effect of the substrate should be taken
into account. In the general case, the scale effect, i.e.,
the effect of the indentation load on the strain charac-
teristics, can be due to the scaling violation [18] and the
inhomogeneity of the surface layers in the studied
objects. As follows from recent publications (see, for
example, [19–21]), the surface topography also plays
an important part at very small loads (~10 mN and
less). The investigation of the Ti(B,N) film surface by
the atomic-force microscopy [20] revealed that the
relief of films II is more developed than that of films I,
which can be partly responsible for a decrease in the
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Fig. 4. Effect of the maximum load on (a) hardness, (b) elas-
tic modulus, and (c) elastic recovery.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
estimates of H and E. Finally, the elastic modulus E
evaluated from the nanoindentation data characterizes
the strained state under conditions of nonuniform bulk
compression. All these factors can affect the measured
parameters, but this effect is difficult, if not impossible,
to consider them quantitatively

It should be noted that, unlike the results shown in
Fig. 4, our earlier nanoindentation experiments [22]
made on films I with the use of the first nanoindenter
model [6] demonstrated a drastic increase in the hard-
ness with a decrease in the load Pmax from 50 to 10 mN.
On the other hand, the errors in measurements of the
parameters, specifically of the hardness, sharply
increased at small loads (less than 10–20 mN) [20, 23].
On this basis, it is clear that the reliability of strain
parameters obtained from the nanoindentation data is
rather conventional, and the contribution of possible
effects should be considered in detail in each particular
case.
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Abstract—The numerical simulation of two-pulse echo signals at times 2τ, 4τ, and 6τ for the I = 5/2 spin and
at time 2τ, 4τ, and 8τ for the I = 7/2 spin (τ is the time interval between exciting pulses) is carried out. It is shown
that a delay by 2τ in the moment of formation of the echo results in the disappearance of extreme quadrupole sat-
ellites in the NMR spectrum obtained by recording the frequency dependence of the echo amplitude. The ech-
oes at the maximum possible time of formation (2I + 1)τ are only observed at the frequency of the purely mag-

netic spectroscopic transition ±   ; no such echoes are observed at the quadrupole satellite frequencies.

The computations are compared with the experimental results obtained for the 55Mn nuclei (spin I = 5/2) in the
perovskite GdCu3Mn4O12 and the spinel Li0.5Fe2.5O4 : Mn. © 2000 MAIK “Nauka/Interperiodica”.
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The main peculiarities of NMR in magnetically
ordered materials are determined by the hyperfine
interactions between the exchange-coupled electronic
spin subsystem and the nuclear spin subsystem in the
paramagnetic state [1, 2]. Moreover, the NMR in mag-
netically ordered materials is characterized by the inho-
mogeneous broadening of spectral lines, which ensures
the formation of nuclear-spin echoes [1, 2]. Quadrupole
electric interactions in a spin system with inhomoge-
neous broadening of spectral lines lead to the formation
of additional responses that are known as multiquan-
tum echoes [3].

Multiquantum signals of a nuclear-spin echo from
quadrupole nuclei in magnetically ordered materials
were first observed in the case of NMR for 53Cr nuclei
having a spin I = 3/2 [4]. In order to generate echo sig-
nals, Abelyashev et al. [4] used a sequence of two excit-
ing pulses separated by a time interval τ. A multiquan-
tum echo was observed at the instant of time 4τ. The
main peculiarity of the 4τ echo is that this signal is
formed only at frequencies corresponding to purely

magnetic spectroscopic transitions (   ),

and no such signals are observed at the quadrupole sat-
ellite frequencies. On the other hand, the ordinary 2τ
echo from the quadrupole nuclei is observed at the fre-
quencies of all spectral lines. Thus, the quadrupole
electric interactions are suppressed completely in NMR
spectra recorded from the frequency dependence of the
amplitude of multiquantum echo 4τ.

1
2
---±

 1
2
---

+−
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Experimental and theoretical studies of the peculiar-
ities of the formation of multiquantum echo signals
were undertaken in [5] by considering the example of
the NMR for 53Cr nuclei in a single crystal of ferromag-
netic CdCr2Se4. In particular, it was shown [5] that the
peak of the multiquantum 4τ echo signal is formed
when the amplitude of the varying magnetic field1 dur-
ing the action of the exciting pulses is comparable with
the quadrupole splitting of the NMR spectrum.
Besides, the duration of the first exciting pulse must be
about double the duration of the second pulse. Such a
ratio of the durations of exciting pulses ensuring the
optimal formation of the multiquantum echo is inverse
to the ratio of durations of pulses ensuring the maximal
amplitude of the ordinary 2τ echo.

Multiquantum 4τ echoes were also observed exper-
imentally in the case of NMR for 63Cu and 65Cu nuclei
in ferromagnetic copper sulfochromite [6]. Each cop-
per isotope has a spin of I = 3/2. However, ordinary
echo signals from nuclei with a larger spin are also
observed experimentally in magnetically ordered mate-
rials. Among others, the nuclei 55Mn (spin I = 5/2) and
59Co (spin I = 7/2) belong to this category.

The aim of the present work is to study the condi-
tions of formation and the frequency spectra of multi-
channel echo signals from quadrupole nuclei with the
half-integral spin I > 3/2.

1  The amplitude is measured in the frequency units.
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1. THEORY

In the absence of a varying magnetic field, the
Hamiltonian of the nuclear quadrupole spin system in a
rotating system of coordinates can be presented in the
form [2]

(1)

where ∆ω is the detuning, I is the nuclear spin, and ωq

is the quadrupole interaction energy. During the action
of the exciting pulses, we must take the interaction with
the varying magnetic field into account in the Hamilto-
nian:

(2)

While writing this expression, we assumed that the
x axis of the rotating system of coordinates is chosen
along the varying magnetic field.

In the case of inhomogeneous broadening of the
spectral line, the detuning ∆ω and the quadrupole inter-
action energy ωq can be presented in the form

(3)

(4)

Here, the quantities ∆ω0 and ωq0 characterize the spin
system as a whole, while δω and δωq describe an indi-
vidual isochromatic group of spins [7].

In order to calculate the transverse component M+ =
Mx + iMy of the nuclear magnetization, we use the den-
sity matrix operator. Following [3, 7, 8], we obtain an
expression for the time at which the echo signal is
formed in the case of two exciting pulses separated by
the time interval τ:

(5)

H ∆ωIz– ωq Iz
2 I I 1+( )

3
-------------------– 

  ,+=

H1 H ω1Ix.–=

∆ω ∆ω0 δω,+=

ωq ωq0 δωq.+=

t 1
δω m' m''–( ) δωq m'2 m''2–( )–

δω δωq 2m 1+( )–
-------------------------------------------------------------------------+ 

  τ .=

Moments of formation of echo signals for quadrupole nuclei
with spin I = 5/2

Serial no.
Magnetic quantum number Moment of 

formationm m' m''

1 3/2 5/2 3/2 t = 2τ
2 1/2 3/2 1/2

3 –1/2 1/2 –1/2

4 –3/2 –1/2 –3/2

5 –5/2 –3/2 –5/2

6 1/2 5/2 –1/2 t = 4τ
7 –3/2 1/2 –5/2

8 –1/2 3/2 –3/2

9 –1/2 5/2 –5/2 t = 6τ
P

Here, m, m' and m" are the magnetic quantum numbers.
Formula (5) only determines the moment of formation
of the echo signal for values of the magnetic quantum
numbers for which t depends neither on δω nor on δωq.
The amplitude of the corresponding echo signal is
described by the expression

(6)

Here, t1 and t2 are the durations of the first and second
exciting pulses, |ϕj〉  are the eigenfunctions, and εj are
the eigenvalues of the Hamiltonian H1, given by
Eq. (2), of the spin system during the action of the vary-
ing magnetic field

(7)

In accordance with Eq. (6), the main problem in cal-
culating the echo signal amplitude is in evaluating the
eigenfunctions and eigenvalues of the Hamiltonian H1.
A numerical procedure was used in [5] for solving this
problem. The eigenfunctions of the Hamiltonian H1
were presented there in the form of a linear combina-
tion of the eigenfunctions of the operator Iz:

(8)

The constant coefficients Cjm and the eigenvalues εj

were obtained by the numerical diagonalization of the
matrix 〈m|H1|m'〉 .

2. NUMERICAL SIMULATION
We consider multiquantum echoes whose moments

of formation do not depend on the nature of inhomoge-
neous broadening of the spectral line [7, 8]. In other
words, we consider signals whose moments of forma-
tion, given by Eq. (5), are independent of δω and δωq.

For the I = 5/2 spin, the sets of magnetic quantum
numbers describing the formation of echoes are pre-
sented in the table. Signals 1–5 are ordinary echoes,
while 6–9 are multiquantum echo signals. In order to
study the spectral properties of each echo, we calcu-
lated the dependence of the amplitude of Eq. (6) on the
detuning δω for the corresponding values of the mag-
netic quantum numbers. The matrix 〈m|H1|m'〉  was con-
structed under the assumption that the quantities δω
and δωq are equal to zero [5].

It was found as a result of computations that the
maxima of multiquantum echo signals 8 and 9 (see
table) are observed for a detuning δω = 0, while the
maxima of echo signals 6 and 7 correspond to δω =
2ωq0 and ∆ω = –2ωq0, respectively. It was also found
that the theoretical dependences V = V(∆ω) are
expanded by an amount determined by the amplitude of
the varying field ωI in the same way as for nonquadru-

V+ m''' I I 1+( ) m m 1+( )+ m ϕ j1〈 〉 ϕ j1 m'〈 〉=

× m' ϕ j2〈 〉 ϕ j2 m'''〈 〉 m''' ϕ j3〈 〉 ϕ j3 m''〈 〉 m'' ϕ j4〈 〉

× ϕ j4 m 1+〈 〉 it1 ε j3 ε j2–( ) it2 ε j4 ε j1–( )+( ).exp

H1 ϕ j| 〉 ε j ϕ j| 〉 .=

ϕ j| 〉 C jm m| 〉 .=
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pole nuclei (see Chapter 2 in [9]) and quadrupole nuclei
with spin I = 3/2 [5]. Omitting the detailed analysis of
such a broadening, which is beyond the scope of the
present work, we note that the broadening determined
by ω1 is considerably suppressed in the NMR experi-
ments on magnetic materials. The departure of the
shape of real exciting pulses from squareness may be
one of the possible reasons behind the suppression of
the broadening.

The detuning ∆ω = 0 in the rotating system of coor-
dinates corresponds to the frequency of the spectro-

scopic transition   , i.e., to the frequency

ω0 = γB in the laboratory reference frame (here, γ is the
gyromagnetic ratio and B is the induction of the con-
stant magnetic field). Figure 1 schematically shows the
frequency position of the theoretical maxima of echo
signals formed at different instants of time for quadru-
pole nuclei with half-integral spins.

It follows from the data presented in Fig. 1 that a
delay in the moment of formation of the signal by 2τ
leads to the disappearance of two extreme quadrupole
satellites in the spectrum of this signal. The quadrupole
satellites are suppressed completely for the spectra of
multiquantum echo signals with the largest possible
time of formation t = (2I + 1)τ. In particular, the com-
plete suppression of the quadrupole satellites for qua-
drupole nuclei with spin I = 3/2 is observed for the 4τ
echo.

In order to analyze the optimal conditions for the
formation of multiquantum echoes, we calculated the
dependences of the echo signal amplitudes on the
parameters of the exciting pulses. The theoretical
dependences of the echo signal amplitude V on the vari-
able field ω1 are shown in Fig. 2 for a fixed value of
ωq0 = 1 in the case of the spin I = 5/2. The values pre-
sented in Fig. 2 were obtained as follows: the durations
t1 and t2 of the first and second exciting pulse, respec-
tively, were varied for each fixed value of ω1. Each of
the values presented in Fig. 2 corresponds to the first
maximum of the relevant echo signal amplitude.

It follows from the data presented in Fig. 2 that the
peaks of the amplitudes of multiquantum echo signals
are formed when the amplitude of the varying magnetic
field is comparable with the magnitude of the quadru-
pole interaction. Supplementary computations carried
out by us show that condition ω1 ≈ ωq0 is also observed
when the multiquantum echo signals are excited for the
spin I = 7/2. The peak of the multiquantum echo ampli-
tude was formed under the condition that the duration
of the first exciting pulse exceeded the duration of the
second pulse: t1 = (2.25 ± 0.75)t2. Man [10] carried out
a more detailed theoretical analysis of the dependences
of the echo signal amplitudes on the durations of the
exciting pulses.

1
2
---±

 1
2
---

+−
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3. EXPERIMENT

In order to experimentally verify the theoretical
results, we investigated the multiquantum echo signals
from the quadrupole nuclei 55Mn (spin I = 5/2) in mag-
netically ordered materials. Experiments were carried
out on an incoherent pulse NMR spectrometer. The
spectra were recorded by registering the dependence of
the echo signal amplitude on the frequency of oscilla-
tions of the varying magnetic field during the action of
the exciting pulses.

The experiments were carried out on a polycrystal-
line sample of GdCu3Mn4O12. According to the data of
the x-ray diffraction analysis, this compound is a cubic
perovskite (space group Im3) [11]. Figure 3 shows the
experimentally recorded NMR spectra of the 55Mn
nuclei of Mn4+ ions at a temperature T = 77 K. Curve 1
in Fig. 3 is the NMR spectrum recorded from the 2τ

V2τ(I = 5/2)
V4τ(I = 7/2)

V2τ(I = 7/2)

V2τ(I = 3/2)
V4τ(I = 5/2)
V6τ(I = 7/2)

V4τ(I = 3/2)
V6τ(I = 5/2)
V8τ(I = 7/2)

ω0–6ωq ω0–4ωq ω0–2ωq ω0 ω0+2ωq ω0+4ωq ω0+6ωq

Fig. 1. Theoretical values of the frequencies corresponding
to the maxima of the amplitudes Vnτ of the echo signals at
times nτ (n = 2, 4, 6, 8) for quadrupole nuclei with half-inte-
gral spin I.

Fig. 2. Theoretical dependences of the amplitudes V of the
multiquantum echo signals on the varying magnetic field ω1
for nuclei with spin I = 5/2 for ωq = 1. Curve 1 is the 6τ echo
for ∆ω0 = 0; curve 2 is the 4τ echo for ∆ω0 = 0, and curve 3
is the 4τ echo for ∆ω0 = ±2ωq0.

1
2
3

1.0

0.5

0
0.1 1 10

|V |, arb. units

ω1, arb. units
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echo signal at t1 = t2 = 0.7 µs. In addition to the ordinary
2τ echo signal, echo signals 4τ and 6τ were also
observed experimentally. The formation of additional
echo signals was observed for t1 > t2, which agrees with
the theoretical peculiarities of the formation of multi-
quantum echoes. Curves 2 and 3 in Fig. 3 are the NMR
spectra recorded from the 4τ and 6τ echo signals at t1 =
1.1 µs and t2 = 0.6 µs. Each of the spectra presented in
Fig. 3 was normalized to the maximum value of its
amplitude.

At present, data on the local symmetry of the sur-
roundings of the Mn4+ ions in the perovskite
GdCu3Mn4O12 are not available in the literature. The
presence of experimentally observed multichannel
echo signals is an indication of the quadrupole splitting
of the NMR specturm and, by extension, of the local
symmetry of the positions of Mn4+ ions being lower

280 300 320 340
ν, MHz

1

2

3

Fig. 3. NMR spectra of 55Mn nuclei of Mn4+ ions in
GdCu3Mn4O12 at T = 77 K, recorded from the 2τ (curve 1),
4τ (curve 2), and 6τ (curve 3) echo signals.

400 420 440
ν, MHz

1

2

Fig. 4. NMR spectra of 55Mn nuclei of Mn3+ ions in
Li0.5Fe2.5O12 : Mn at T = 77 K, recorded from the 2τ (curve 1)
and 4τ (curve 2) echo signals.
P

than cubic. A possible interpretation of the experimen-
tally observed NMR spectra may be based on the facts
that (i) the local fields are anisotropic on the 55Mn
nuclei, i.e., the magnetic field B and the quadrupole
interaction energy ωq are functions of the angle θ
between the electron magnetization vector and the local
crystallographic axis;2 (ii) the sample is inhomoge-
neous in angle θ.

According to the theoretical results (Fig. 1), the 4τ
echo spectrum must not contain extreme quadrupole
satellites. This is manifested experimentally in the form
of a decrease in the relative intensity of the spectrum in
the high-frequency region and in the formation of a
resolved spectral structure (curve 2 in Fig. 3). The 6τ
echo spectrum must not contain any quadrupole satel-
lites. This is observed experimentally as a narrowing of
the spectral line with an increase in the time at which
the echo signal is formed (Fig. 3). Thus, the experimen-
tally observed properties of multiquantum echo signals
on 55Mn nuclei in GdCu3Mn4O12 qualitatively confirm
the theoretical results.

Experiments on the formation of spin echo signals
from the 55Mn nuclei were also carried out on a sample
of the spinel Li0.5Fe2.5O4 : Mn at a temperature T =
77 K. The NMR spectra presented in Fig. 4 correspond
to the resonance of the 55Mn nuclei of Jahn–Teller ions
Mn3+ occupying B positions in the investigated
spinel. The NMR spectrum recorded from the 2τ
echo reflects the inhomogeneous broadening of the
spectral line caused by the anisotropy of local fields
at Mn nuclei [12].

In addition to the 2τ echo signal, we also observed
experimentally an additional 4τ echo signal. A compar-
ison of the conditions of formation of this signal with
the theoretical results (dependence of the echo ampli-
tude on the duration of exciting pulses and the ampli-
tude of the varying magnetic field) indicates that the 4τ
echo is a multiquantum echo signal from a quadrupole
nucleus. In the NMR spectrum recorded from the 4τ
echo, a narrowing of the spectral lines caused by the
disappearance of extreme quadrupole satellites is
observed experimentally (Fig. 4). This agrees with the
theoretical results. Experiments aimed at recording the
NMR spectra from the 6τ echo in Li0.5Fe2.5O4 : Mn
were not successful, apparently due to a more rapid
attenuation of this signal compared to the 2τ and 4τ
echo signals.

Thus, numerical simulation of the processes of for-
mation of multiquantum echo signals from quadrupole
nuclei with half-integral spin in spin systems with non-
uniform broadening of the spectral line shows that the
formation of multiquantum echo signals is only possi-
ble in the case of a nonzero quadrupole interaction ωq.
For the optimal formation of two-pulse multiquantum

2 In the general case, when the local symmetry of a position is
lower than the uniaxial symmetry, the description of the anisot-
ropy under consideration requires two angles, viz., θ and ϕ [2].
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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echo signals, the first exciting pulse must be longer than
the second: t1 = (2.25 ± 0.75)t2. In contrast to the ordi-
nary 2τ echo signal, the amplitude of the multiquantum
echo signals depends not only on the duration of the
exciting pulses, but also on the ratio of the amplitude ω1
of the varying magnetic field to the quadrupole interac-
tion ωq. The maximum amplitude of the multiquantum
echo signals is realized under the condition ω1 ≈ ωq.

For nuclei with a half-integral spin, echo signals are
formed at the instants of time t = nτ, where n = 2, 4, …,
(2I + 1), irrespective of the nature of inhomogeneous
broadening. Spectral lines corresponding to the fre-
quency ω0 of a purely magnetic spectroscopic transi-
tion, as well as the frequencies ω0 ± kωq [k = 2, 4, …,
(2I – 1)] of quadrupole satellites, are recorded in the 2τ
echo spectrum. A delay of 2τ in the formation of the
echo signal leads to the disappearance of two extreme
quadrupole satellites in the spectrum of this echo sig-
nal. A complete disappearance of quadrupole satellites
takes place in the spectra of multiquantum echo signals
formed at the instant of time t = (2I + 1)τ.

The theoretical results for quadrupole nuclei with
spins I = 5/2 and 7/2 agree with the results obtained ear-
lier for quadrupole nuclei with spin I = 3/2 [5]. The
experimental data on multiquantum echoes from 55Mn
nuclei with spin I = 5/2 in the perovskite GdCu3Mn4O12
and the spinel Li0.5Fe2.5O4 : Mn qualitatively confirm
the theoretical results. Supplementary echo signals in
the NMR of quadrupole nuclei 59Co with spin I = 7/2 in
magnetically ordered materials were also observed in
experiments [13]. However, the authors of [13] focused
on the kinetics of echo attenuation, rather than the spec-
tral properties of the echo signals.
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Abstract—The magnetic field H produced by a spatially periodic distribution of point magnetic dipoles is
expanded in a Fourier series. Because of a rapid (exponential) falloff of its harmonic amplitudes, the field
H at an arbitrary point is the sum of the fields of only several nearest layers (or chains) of dipoles. The
method is applied to calculate the magnetic fields at interstitial sites of Sm in different antiferromagnetic
states. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The problem of calculating the magnetic field at dif-
ferent points of a unit cell of a crystalline magnet arises
rather frequently in solid state physics. In particular,
this problem is central in interpreting the results of
muon experiments, which allow one to determine local
magnetic fields at interstitial sites. There are several
contributions to the local field in a crystal: the demag-
netizing field, the Lorentz field, the Fermi field, and the
field of the lattice of point magnetic dipoles. The meth-
ods of calculating the first three contributions and some
of the problems that arise in this case are discussed in
[1–3]. The last contribution, i.e., the field produced at
an arbitrary point r by the system of dipoles mν local-
ized at points Rν, is given by the expression

(1)

and usually no problems arise in calculating this field.
The only complication is posed by the fact that the
terms in Eq. (1) decrease slowly with increasing 5 and,
therefore, the summation should be performed over a
very large number of coordination shells.

The situation becomes far less clear when one not
only calculates the field of a lattice of point dipoles by
Eq. (1) at a specific point, but also analyzes the contri-
butions to this field from different groups of dipoles.
This analysis is too difficult to be practical, especially
in the case of complex magnetic structures, because
only in exceptional cases may the contribution from the
nearest dipoles be dominant over that from distant
coordination shells. In this regard, the experimental
data reported in [4] are suggestive. According to those
data, the field acting on a muon in a sample was virtu-
ally unaffected when the sample underwent the phase
transition from the ferromagnetic to an antiferromag-
netic state. To our knowledge, this result still remains

Hdip r( )
35ν 5νmν( ) mν5ν

2
–

5ν
5

----------------------------------------------------,
ν
∑=

5ν r Rν,–=
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unexplained. In general, when the dipole fields are ana-
lyzed, the situation is clear only for points of a high
(cubic or higher) symmetry; according to a well-known
theorem, the field equals zero at these points.

Thus, it is of interest to separate a few parts of the
lattice that make dominant contributions to the field at
a given point. Of course, there are virtually an infinitely
large number of ways in which a variety of terms in the
sum in Eq. (1) can be grouped together so that the fields
produced by some groups cancel each other. However,
it seems natural to consider the partitions for which the
parts of the lattice producing dominant contributions to
the field have a rather simple geometrical form and are
closer to the point at which the field is calculated than
for other partitions.

The objective of this paper is to develop a technique
that allows one to reduce the problem of calculating the
dipole field at an arbitrary point to a calculation of the
field produced at this point by a few atomic planes or
chains nearest to the point. The contributions from the
remaining atoms of the lattice are determined in the
continuum approximation with any preset degree of
accuracy. It is important that the calculation of the field
of atomic planes or chains does not also involve sums
of a large number of terms. In order to calculate
Hdip(r)to the required precision, it is sufficient to take
into account only several Fourier harmonics of the field
of an atomic plane or a chain (the number of these har-
monics depends on the position of the point r).

The existence of such a convenient representation of
the dipole field is due to the fact that the field of a one-
dimensional (chain) or a two-dimensional (atomic
plane) periodic dipole array falls off rapidly (exponen-
tially) with distance from it. At a distance equal to three
or four lattice parameters, the field of an atomic plane
virtually vanishes, while the field of a chain becomes
identical to that of a uniformly magnetized line. The
corresponding formulas and estimates of their accuracy
are presented in Section 1.
000 MAIK “Nauka/Interperiodica”
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Usually, Eq. (1) is used to calculate Hdip(r) in a finite
volume (sphere, as a rule). Outside this volume, the
magnetization distribution is assumed to be continuous,
which leads to an additional contribution, namely, the
Lorentz field. The distinctive feature of the technique
proposed in this paper is that the volume in which the
discrete structure of the lattice is explicitly taken into
account is infinite in one or two dimensions. The prob-
lem of calculating the Lorentz field in this case is dis-
cussed in Section 2. The results obtained are illustrated
in Section 3 by the example of calculating the magnetic
field at interstitial sites of different types in samarium
in two different antiferromagnetic states.

1. FOURIER TRANSFORM OF THE FIELD
OF SIMPLEST LATTICES

The Fourier transform is given by the standard for-
mulas

(2)

In the case of a periodic function of two or more vari-
ables, these formulas are written for each of its argu-
ments.

1.1. Linear Chain

Let us consider a chain of identical dipoles m(m||, 0, m⊥ )
located along the x axis at regular intervals equal to a
(Fig. 1). The field of this chain is given by

(3)

This field is a periodic function of x with a period a and
can be expanded in a Fourier series of Eq. (2). The inte-
gral over a period in Eq. (2) and the sum over sites in
Eq. (3) are combined to give an integral with respect to
x between infinite limits, which is easily reduced to
MacDonald functions. As a result, the components of
the field of Eq. (3) are found to be
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(4)

Here, q = 2π/a; m|| and m⊥  are the components of m
parallel to the x axis and to the yz plane, respectively; ρ
is the projection of r onto the yz plane; and ϕ is the
angle between m⊥  and ρ. In Fig. 1, which illustrates this
notation, and in Eq. (4), the vector m⊥  is assumed to be
parallel to the z axis.

The theory of Bessel functions gives the following
expression for the Macdonald functions for large values
of u:

(5)

In particular, at µ= 0, 1, and 2, the values u > 10 can be
considered to be large. In this case, we have Kµ(2π) ≈
10–3, Kµ(4π) ≈ 10–6, and Kµ(8π) ≈ 10–12. Therefore, if
the distance of the point r from the chain is ρ > 3–4a,
the contributions from higher Fourier harmonics virtu-
ally vanish and the field of the chain becomes identical
to the field of a uniformly magnetized line with a linear
magnetic moment density m/a,

(6)

Thus, the field of a chain magnetized along its axis is
practically zero at distances larger than 2–3 times its
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Fig. 1. Chain of magnetic dipoles m(m||, 0, m⊥ ): ϕ is the
angle that the projection ρ of the position vector r onto the
yz plane makes with the z axis.
0
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period. From Eq. (6), it also follows that, if the lateral
surface of a cylinder is uniformly covered with magne-
tized chains, the magnetic field on the axis of the cylin-
der is also zero.

At small ρ, however, higher harmonics become
more important. The reason for this will become clear
if we consider the x dependence of the field of the chain
at a distance ρ ≈ a from its axis. According to Eq. (3),
the field near any site is produced, for the most part, by
the magnetic moment localized on this site. Therefore,
the x dependence of the field is a set of peaks localized
near each site. The peaks become progressively nar-
rower and higher with decreasing ρ, and their shape is
adequately described by the function ((x – na)2 + ρ2)–3/2;
hence, their width is of the order of ρ and their height
is proportional to ρ–3. This “comb” can be adequately
represented by a Fourier series with a finite number of
terms if the wavelength of the Fourier harmonic with
the maximum index kmax is fairly small in comparison
to the peak width. For instance, if kmax = 5a/ρ, the rela-
tive accuracy of the approximation in the region ρ >
a/1000 will be δ < 10–5, quite sufficient for practical
purposes.

1.2. Planar Rectangular and Hexagonal Lattices

Let the xy plane be uniformly covered with such
chains, with the separation between them being b. If
there is no shift of the chains along the x axis, this sys-
tem can be considered as a set of chains with a period
b, which are parallel to the y axis and spaced at regular
intervals equal to a. Using the expansion into a Fourier
series in x and y as in Eq. (2), we obtain1 

(7)

where the term with k = l = 0 is absent and the following
notation has been introduced:

1 At first glance, it may appear that the part of Eq. (7) that is an odd
function of z does not vanish when z  0. However, this is not
the case, which can be shown using identities such as
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It is seen that the field falls off exponentially with dis-
tance from the plane. In fact, this means that the field at
any point is determined fundamentally by the two or
three atomic planes nearest to this point and the contri-
butions from the other atomic planes can be neglected.

As in the case of a linear chain, at small |z|, there are
peaks in the x and y dependences of the field given by
Eq. (7); the peaks are positioned at sites, and their width
is of the order of |z|. Hence, in this case, too, the maxi-
mum indices kmax and lmax of the harmonics kept in the
Fourier series are determined by the value of |z| and the
required precision.

The field of a planar hexagonal lattice is also easily
calculated using Eqs. (7) and (8). This lattice with an
interatomic spacing a can be considered as a combina-
tion of two identical planar rectangular sublattices with

unit-cell parameters a and a  along the x and y axes,
respectively. The sublattices are shifted relative to each
other in such a way that the sites of one of them are at
the centers of unit cells of the other. Therefore, the x
and y coordinates of an arbitrary point defined relative
to the central sites (origins of coordinates) of the sub-
lattices differ by exactly half the periods along the x and
y axes, respectively. Furthermore, in the sum of the con-
tributions with arbitrary indices l and k to the field pro-
duced by these two sublattices, the factor [1 + (−1)k + l]
appears, and we obtain formulas identical to Eqs. (7)
and (8) with the following two changes: (i) the param-

eter b is replaced by a , and (ii) only the terms with
l + k even are kept in the sum in Eq. (7), and the sum is
doubled.
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1.3. Three-Dimensional Lattices

The formulas obtained above are very convenient
for computations and analysis of contributions to the
field. Equation (7) for H can be transformed into a
translationally invariant expression when needed (say,
when calculating the electronic spectrum). For this pur-
pose, Eq. (7) should also be expanded into a Fourier
series in z, which is easily performed using the well-
known identities

(9)

If all the magnetized planes perpendicular to the z axis
are identical and located at regular intervals c along z,
Eq. (9) can be applied immediately to the field in
Eq. (7) by putting Q = 2π/c. In the case of more com-
plex lattices, these can always be represented as a com-
bination of the simplest sublattices and the total field
can be obtained by adding the fields of the sublattices.

For reasons of space, we do not present here the
simple, but rather cumbersome, formulas for three-
dimensional lattices. We merely note that those expres-
sions appear asymmetrical with respect to x, y, and z, as
well as to a, b, and c, although the symmetry actually
takes place. The reason for this is the order of priority
of expansions into a Fourier series in x, y, and z, but the
symmetrization can be easily performed when needed
(see also footnote 1).

2. THE LORENTZ FIELD

Local fields in crystals are generally calculated by
the Lorentz method. According to this method, a rela-
tively large volume 9 is separated around the point at
which the field is to be found, and the contribution to
the field from this volume is calculated with regard to
the discrete structure of the lattice. Outside this volume,
the continuum approximation is used and the magnetic
dipoles are assumed to be uniformly “smeared” over
their unit cell rather than localized at the lattice sites.
The contribution from the continuous dipole distribu-
tion to the field at a point r is [1]

(10)

Here, I(r) is the magnetization (total magnetic moment
density) at the point r and δI(r) is the discontinuous
change in magnetization at the point r on the interface
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S of two magnetic media (1 and 2), specifically, on the
surface of the body. The field is produced both by inho-
mogeneities of the magnetization inside the body (their
contribution is proportional to the volume magnetic
charge density ρm) and by the discontinuity in magneti-
zation δI, giving rise to a surface magnetic charge den-
sity proportional to it.

The field arising from the discontinuity in magneti-
zation on the surface S(9) of the volume 9 is the
Lorentz field HL. Assuming the magnetization to be the
same everywhere over this surface and equal to I(r), we
obtain that the Lorentz field is proportional to I(r), with
the coefficient of proportionality being dependent only
on the shape of the surface S(9),

(11)

Here, n is the unit vector along the direction of I(r) and
1 is the demagnetizing factor of the volume 9. Specif-
ically, if the surface S(9) is a sphere, 1 = 1/3 and we
obtain a standard expression HL = 4πI(r)/3. The contri-
bution H' from other inhomogeneities and discontinui-
ties in magnetization is generally called the demagne-
tizing field.

Formulas (10) are obtained immediately from
Eq. (1) by converting the sum to an integral (for more
details, see [2, 3]). The surface integrals in Eqs. (10)
arise when the space integral over the region outside the
volume 9 is transformed using standard formulas of
vector analysis, specifically, the Ostrogradskiœ–Gauss
theorem. Therefore, the surface integrals of this type,
proportional to the normal component of the magneti-
zation, have no physical interpretation. This is an expla-
nation of why, in the continuum approximation, there
appear additional contributions from discontinuities in
magnetization at surfaces that are absent in the sum of
the fields of point dipoles.

With the expressions for Fourier series derived in
the preceding section, the field at an arbitrary point in
the crystal can be written as

(12)

Here, H(F) is the contribution from dipoles whose field
is included in the Fourier series and Hcont is the contri-
bution from the remainder of the dipole lattice whose
magnetization is considered as being continuously dis-
tributed. It remains to be seen why the lattice sites can-
not all be taken into account in the field H(F) and how
the Lorentz field can be calculated in the case where the
volume 9 is infinite in one or two dimensions.

Let us first consider the simplest case where H(F) is
the sum of the fields produced by several nearest atomic
planes and described by Eq. (7). This sum can include
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more distant planes, but the result will be virtually the
same, because the field of a plane falls off exponen-
tially with distance from the plane. However, only the
total field of the entire infinite plane falls off exponen-
tially; this is due to the fact that the contributions from
the “central” (nearest to the point of observation) and
the “peripheral” parts of the plane almost completely
cancel each other. If a body of an arbitrary shape is
divided into plane-parallel layers, only the layers that
are nearest to the point of observation can be consid-
ered “infinite.” For layers more distant from this point,
the peripheral parts are smaller and the contribution
from such a layer to the field at the point of observation
becomes nonzero.

In this case, the “Lorentz volume” is a planar, infi-
nitely thin (macroscopically) layer parallel to a chosen
atomic plane. If the component of the magnetization at
the point r along the direction perpendicular to this
plane is I⊥ (r), then the Lorentz field is HL(r) = 4πI⊥ (r),
because the demagnetizing factor of a planar disk in the
direction perpendicular to its plane equals unity.

The case where H(F) is the sum of the fields of sev-
eral parallel atomic chains described by Eq. (4) can be
treated in much the same way. It is convenient to con-
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Fig. 2. Ordering of magnetic moments in hexagonal layers
in Sm (the figure is taken from [5]): (a) at high temperatures
T2 < T < T1, the magnetic moments are ordered (in the direc-
tions indicated by arrows) in h layers, in which the first
coordination shell of an atom has hexagonal symmetry, but
the moments are disordered in c layers, in which the coordi-
nation shells have cubic symmetry; and (b) at low tempera-
tures T < T2, the moments are ordered in c layers (only these
layers are shown at the top of the figure, while at the bottom,
the distribution of magnetic moments is presented for atoms
in a c layer).
P

sider the chains that lie within a cylinder of a radius R
whose axis passes through the point r. As was indicated
above, the sum of the fields of chains evenly distributed
over the surface of a cylinder equals zero at its axis [see
Eqs. (4), (6)]. Because the distribution of chains over
the cylinder becomes much more uniform as its radius
increases, it will suffice to take into account only the
chains within an infinitely thin (macroscopically) cyl-
inder. Again, this is true only for infinitely long chains,
for which the contributions from the central and periph-
eral regions cancel each other. Therefore, the Lorentz
field equals the field of the cylinder, and we obtain
HL(r) = 2πI⊥ (r), where I⊥ (r) is the projection of I(r)
onto the plane perpendicular to the chains.

In both cases, according to Eq. (12), the demagne-
tizing field must be added to the Lorentz field. In a sam-
ple in the form of a thin planar disk, the fields HL and
H' cancel each other if H(F) is calculated for the planes
parallel to the disk plane. For a thin cylindrical sample,
we have Hcont = 0, if H(F) is calculated as the sum of the
fields of chains parallel to the axis of the cylinder. Thus,
the contributions can be redistributed between the dif-
ferent terms in Eq. (12), but the final result is, naturally,
independent of the way of calculating H(F).

3. LOCAL FIELDS IN SAMARIUM

A rhombohedral lattice of samarium consists of nine
periodically repeated hexagonal layers ABABCBCAC…
(see Fig. 2 taken from [5]). Within a period, the pairs of
atomic layers in which the symmetry of the first coor-
dination shell of an atom is identical to that of an hcp
lattice are separated by layers of atoms whose first
coordination shell has cubic symmetry. In Fig. 2a, these
layers are marked with indices h and c, respectively.
The lattice parameters are a = 3.631 and c = 26.035 Å and,
hence, the separation d between hexagonal layers is
2.893 Å.

Studies by different methods revealed (see [5, 6] and
the references therein) that samarium undergoes two
antiferromagnetic phase transitions at temperatures
T1 ≈ 106 and T2 ≈ 14 K. The high-temperature phase
transition is accompanied by ferromagnetic ordering of
magnetic moments in h layers along the z axis. In this
case, in a pair of adjacent h layers, the ordering is fer-
romagnetic, while pairs of h layers separated by a
c layer are ordered antiferromagnetically (Fig. 2a). The
magnetic moments in c layers are not ordered at high
temperatures T2 < T < T1. In these layers, the chains of
atomic dipoles parallel to the a axis are ordered ferro-
magnetically along the z axis only at T < T2. In this case,
the chains, as well as the layers, are divided into pairs,
in each of which the moments of dipoles are parallel to
each other, while the moments in adjacent pairs of
chains, as well as in pairs of h layers, are antiparallel to
each other, but there is no nonmagnetic spacer between
the pairs of chains (Fig. 2b). The magnetic moment at
any site is m = (5/7)µB [5].
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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Muon experiments revealed [6] that, in the T2 < T <
T1 temperature range, the magnitude of the magnetic
field acting on a muon in a Sm crystal can have two dif-
ferent values. Figure 3 shows the temperature depen-
dences of the magnetic inductions of these fields, B1
and B2, taken from [6]. The presence of only two mag-
netically nonequivalent positions was interpreted in [6]
as the presence of only two crystallographic positions,
and the inference was drawn that muons occupy only
octahedral, but not tetrahedral, interstitial sites. The
authors of [6] also pointed out that the ratio between the
magnitudes of the magnetic field acting on muons at
these two nonequivalent positions was indirect evi-
dence in favor of this conclusion. The fields in octahe-
dral interstices between two h layers and between h and
c layers (hh and hc interstices, respectively) as calcu-
lated in [6] are 1.75 and 0.88 kOe, respectively; that is,
they differ by a factor of two. The experimental values
of the ratio between these fields are also about two at
temperatures in the vicinity of T1. However, it should be
noted that, when B2 reaches saturation (Fig. 3), its
experimental value is about three times larger than the
calculated one.

The growth in the field B1 with decreasing tempera-
ture is explained in [6] by the magnetization of itinerant
electrons in the regions between h and c layers, which
is heavily temperature-dependent. Assuming that the
field acting on these electrons is proportional to B2 and
that the temperature dependence of their paramagnetic
susceptibility follows the Curie–Weiss law, the authors
of [6] arrived at the formula

(13)

which is in excellent agreement with the experimental
data (Fig. 3). However, this explanation assumes the
presence of antiferromagnetic exchange characterized
by a Néel temperature that is of the same order of mag-
nitude as the paramagnetic temperature in Eq. (13),
namely, 6.7 K. The exchange with TN = T2 does exist in
c layers (as pointed out in [6]), but the physical mean-
ing of this exchange is not clear in the case of itinerant
electrons. At the same time, it is obvious that the total
field (no matter whether it is magnetic or molecular)
exerted on c layers by h layers is zero. For this reason,
the possible ordering of atomic moments in c layers at
T > T2 was not considered in [6].

In our opinion, the discussion of experimental data
in [6] did not answer the following three critical ques-
tions: (a) Why do the experiment and calculations give
the same value for the ratio between the fields at hh
and hc interstitial sites but essentially different values
for the magnitudes of these fields? (b) Does the fact
that the experimentally measured field acting on
muons in a crystal has only two different values sig-
nify that the muons cannot occupy tetrahedral intersti-
tial sites? (c) Which are the precise magnetic moments

B1 T( ) 47 1 18
T 6.7+
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  B2 T( ),=
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when the ordering causes B1 to sharply increase with
decreasing temperature?

In order to answer these questions, we calculated the
field at interstitial sites of different types in Sm. Assum-
ing that the atomic moments in c layers are disordered
in the temperature range T2 < T < T1, these fields can be
found by adding up the fields Hferro of the ferromagnetic
h layers (see table).2 From the table, it is seen that the
field of an h layer very sharply decreases with distance
from it. Therefore, when calculating the field at hc
interstices, it suffices to take into account only one, the
nearest h layer, and the two nearest layers should be
considered in the case of hh interstices. That is why the
fields at nonequivalent octahedral interstitial sites differ
by a factor of two. It is also seen that, in the plane z =
const ≈ d, parallel to the h layer, the field of this layer
rapidly oscillates in both magnitude and direction. For
instance, near the sites, at points with (x, y) coordinates

equal to (0, 0), (a/2, ±(a )/2), etc., the direction of
the field coincides with that of the magnetic moments
of the sites, whereas between the sites, at the points

(a/2, ±(a )/6), etc., the magnetic field reverses its
direction.

The calculated fields listed in the table coincide with
the experimental values obtained in [6] for octahedral
interstices, but significantly differ from those for tetra-
hedral interstices. At either of the two hh interstices, the
field equals –1.60 kOe, while at two hc interstices, the
field is –2.23 and +0.63 kOe, respectively.3 The three
fields are all parallel to the z axis, and the sign indicates

2 The origin of the coordinates can coincide with any atom of the
layer.

3 In [6], the fields were found to be 2.27, 1.72, and 0.60 kOe,
respectively.
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Fig. 3. Experimental values of the fields acting on a muon in
Sm (the figure is taken from [6]); the smooth curve is a plot
of Eq. (13).
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their orientation with respect to the magnetization of
the nearest h layers.

In this situation, without additional experimental
data, it is impossible to decisively answer the first two
of the questions formulated above. Indeed, it is reason-
able to suppose that, in the T2 < T < T1 range, the mag-

Fields produced by a ferromagnetically ordered h layer (Hferro)
and by a c layer ordered as shown in Fig. 2b (Hantiferro) at octa-
hedral and tetrahedral interstitial sites whose (x, y, z) coordi-
nates are listed in the first column

Coordinates Hferro Hantiferro

oct (0, 0, –.88) (0, –.12, .02)

oct (0, 0, 0) (0, –.07, .27)

oct (0, 0, 0) (0, –.02, .07)

oct (0, 0, 0) (0, 0, .0.2)

oct (0, 0, –.88) (0, 1.34, .0.2)

oct (0, 0, 0) (0, .29, .0.8)

oct (0, 0, 0) (0, .07, .0.2)

oct (0, 0, 0) (0, .02, 0)

tet (0, 0, –2.23) (0, –.11, –1.11)

tet (0, 0, 0) (0, –.05, .2)

tet (0, 0, –2.23) (0, –1.28, –.44)

tet (0, 0, 0) (0, –.2, .05)

tet (0, 0, .63) (0, ± .42, ±1.32)

tet (0, 0, .03) (0, ± .27, ± .34)

Note: The origin of the coordinates coincides with the center of the
hexagon shown at the bottom of Fig. 2b, the y axis is along the b1
axis in Fig. 2b, the z axis is normal to the plane of the layer, and
(x, y, z) are the components of the magnetic field in kOe (or kG).
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netization of itinerant electrons vanishes in c layers but
reaches its maxima and minima in the middle between
h layers. Then, the field exerted on a muon at different
interstitial sites by itinerant electrons should be of a
similar nature.4 For the sake of simplicity, let us assume
that this dependence is sinusoidal,

(14)

where the z = 0 plane coincides with the c layer. Putting
the amplitude H0 equal to 6.5 kOe, we obtain the total
field Hhc ≈ 2.4 kOe in both tetrahedral hc interstices and
Hhh ≈ 4.7 kOe in tetrahedral hh interstices (Fig. 3).
However, we by no means advocate that this explana-
tion of the existence of two different fields acting on a
muon in Sm is preferable to that proposed in [6]. In
Eq. (14), one can put H0 = –2.9 kOe and obtain the
same values, close to the experimental ones, Hhc ≈ –2.4
and Hhh ≈ –4.7 kOe, for octahedral hc and hh inter-
stices, respectively. It should be emphasized that now
the fields Hhc and Hhh, as well as H0, are opposite in
direction to the magnetization of the nearest h layers.

Thus, the situation is rather complicated and is
determined fundamentally by the spin density distribu-
tion function ms(r) of itinerant electrons in a unit cell.
Furthermore, one should take into account that muons
can cause a redistribution of the charge and, hence, spin
density of these electrons [7] and distortions of the ini-
tial magnetic lattice [8]. For this reason, it is very likely
that none of the interpretations given above will prove
to be true.

An even more complicated situation occurs in the
low temperature range T < T2, where the magnetic
moments of c layers are ordered. The fields Hantiferro
produced by a c layer at different points are listed in the
last column of the table. Dipoles with m > 0 are
assumed to be at the origin of coordinates and at points

(±a/2, (a )/2, 0), while dipoles with m < 0 are at

points (±a/2, –(a )/2, 0). It is seen that the field gen-
erated by a c layer at an octahedral interstitial site is
weak when the three c-layer atoms nearest to the site
are magnetized in one direction. However, if the inter-
stitial site is between chains whose magnetic moments
are oppositely directed, the field increases sharply and
its y component reaches a value of 1.34 kOe. Adding up
this field and the field produced at an hc interstice by
the nearest h layer (directed along the z axis and equal
to 0.88 kOe), we obtain 1.6 kOe, a value that is insig-
nificantly different from the value of the field at an octa-
hedral hh interstice (1.75 kOe).

Clearly, the presence of a muon at an hc interstitial
site somewhat upsets the balance of the fields exerted
on a c layer by its neighbor h layers. The field arising

4 We do not identify this field with the Fermi field for reasons
pointed out in [2, 3].

H z( ) H0
πz
3d
------ 
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3
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because of this is most likely to be of an exchange
nature, and if this field is high enough, it can lead to a
partial ordering in the c layer in accordance with
Eq. (13). Of course, the ordering will not occur at large
distances at T > T2, but even if the three atoms nearest
to the hc interstice are ordered (two atoms having a
magnetic moment up and one atom, down), the field
component perpendicular to the z axis will be equal
to 1.13 kOe. Therefore, the total field at the octahedral
hc interstitial site will be 1.43 kOe (cf. 1.75 kOe at an
hh interstice). However, this explanation of the growth
in B1 with decreasing temperature is not infallible. It
would be valid if the atoms of the c layer were antifer-
romagnetically ordered near the muon; that is, if the
exchange integral for nearest neighbor atoms were neg-
ative. However, this is inconsistent with the results of
[5], according to which this integral is positive, and it is
not clear how a muon can affect the magnitudes and
signs of the exchange integrals.

As is seen from the table, the fields produced by the
ordered magnetic moments of a c layer at tetrahedral
interstitial sites have an even wider spread in magnitude
and direction than at octahedral interstices. This offers
strong possibilities for constructing an analogous
scheme to explain the temperature dependence of B1
under the assumption that muons occupy only tetrahe-
dral interstitial sites. However, the emergence of a non-
zero magnetization in c layers leads to a change in the
polarization of itinerant electrons. Because this polar-
ization is of crucial importance [see Eq. (14)], the pos-
sibilities for speculations are almost limitless in this
case. For this reason, the simplest qualitative estimates
similar to those made above are invalid here. In order to
solve the problem of the two fields acting on a muon in
Sm, it seems likely that one should calculate ms(r) in
the initial lattice and consider the distortions caused by
the presence of the muon. Further experimental investi-
gations are also of considerable interest especially the
measurements of the directions of local fields at low
temperatures.

4. CONCLUSIONS

The formulas derived in Section 1 show that the
Fourier harmonics of the field of a chain or an atomic
plane composed of identical magnetic dipoles fall off
very rapidly (exponentially) with distance from them.
Therefore, in actuality, the field at any point of a mag-
net is produced only by two or three atomic planes
nearest to the point. This explains, in particular, the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
absence of any change in the field acting on a muon
when the ferromagnet–spiral-antiferromagnet phase
transition occurs [4].

This fact also makes the much-simplified analysis of
the contributions to the field at interstitial sites of a fer-
romagnet possible. Such analysis performed for samar-
ium allows the following inferences to be drawn:

(1) If the field exerted on a muon by itinerant elec-
trons is taken into account, the fields at two of the three
inequivalent tetrahedral interstitial sites can be approx-
imately the same. For this reason, it is not improbable
that muons occupy tetrahedral, rather than octahedral,
interstitial sites in Sm.

(2) The presence of a muon at any of the hc intersti-
tial sites causes a change in the electron density distri-
bution and, hence, in the exchange integral between h
and c layers. As a result, the total exchange field acting
on a c layer becomes nonzero. Therefore, the growth in
one of the two fields acting on a muon [6] can be due to
the local ordering of magnetic moments in the c layer.
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Abstract—An anomalous temperature dependence of magnetoresistance (MR) of Co/Cu multilayer films with
a ~3 Å thick magnetic layer has been established experimentally. The temperature of the MR maximum Tmax is
shown to coincide with the Néel temperature. The variation of Tmax with the Cu layer thickness follows an oscil-
latory pattern. © 2000 MAIK “Nauka/Interperiodica”.
Multilayer films with alternating ferromagnetic and
nonmagnetic layers have been among the most
intensely studied magnetic systems in recent years. The
mounting interest in magnetic multilayers stems prima-
rily from the application potential of these systems (in
particular, the possibility of using them in magnetic
information storage devices). At the same time, such
structures represent a good model system for studying
fundamental physical relations.

We have studied magnetic and magnetoresistance
properties of Co/Cu multilayer films with ultrathin
(about 3 Å-thick) Co layers. As was shown earlier [1,
2], this thickness of a magnetic layer is a limit at which
magnetic ordering is still possible. We studied the tem-
perature dependences of the magnetoresistance of
Co/Cu multilayered films. All the samples were pre-
pared by magnetron sputtering with the successive dep-
osition of Co and Cu layers on glass substrates at room
temperature in an argon environment. Each sample was
made up of 120 Co/Cu bilayers. The Co layer thickness
and the Cu modulation period of the multilayer system
were calculated from x-ray fluorescence data. All the
samples had a polycrystalline structure.

The temperature dependence of the MR was studied
by the technique described in [2]; a dc current I was
passed through the sample whose magnetization was
reversed by a varying magnetic field H = Hacos(ωt)
normal to the film plane with a frequency f = ω/2π =
37 Hz. The magnetization M generated in this way is
proportional to H within a broad range of fields, and the
domain structure of the sample does not affect the value
of being MR measured. It was shown earlier that ∆R ~
M2 [2], and therefore,

Since the current through the sample is constant, an ac
voltage of frequency 2f = 74 Hz is induced across the

∆R Ha
2 ωt( )cos

2∼ 1
2
---Ha

2 1 2ωt( )cos+( ).=
1063-7834/00/4209- $20.00 © 21688
sample with an amplitude proportional to the MR: Ua =
∆RI/2, where ∆R = R0 – Rmin, R0 being the sample resis-
tance in zero field, and Rmin, in a field Ha. The voltage
was amplified by a selective amplifier. The temperature
dependence of R0 was measured separately. The mag-
netoresistance was determined from the relation MR =
∆R/R0. The investigation was carried out in the 77–
300 K temperature range under heating and in mag-
netic fields of up to 500 kOe.

We found that the temperature dependences of the
magnetoresistance of films with ultrathin Co layers
behave anomalously; namely, each curve exhibits a
clearly pronounced maximum (a magnetoresistance
peak) below room temperature (Fig. 1). The absence of
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Fig. 1. Typical temperature dependences of the MR of
Co/Cu multilayer films obtained for various thicknesses of
the Cu layer in a field of 500 Oe. dCu (Å): (1) 14, (2) 15,
(3) 18.5, and (4) 21.5.
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an MR peak for some samples is apparently due to a
shift in the temperature Tmax of the peak towards a
region below 77 K.

This method of magnetoresistance determination
was proposed by us [2] to estimate the Curie tempera-
ture ΘC directly from magnetoresistance measure-
ments. The magnetoresistance curve for Co/Cu multi-
layer films contains a linear segment at temperatures
above Tmax. Within this region, the M ~ (ΘC – T)1/2 rela-
tion holds, because ∆R ~ M2 [3]. Extrapolation of the
linear segment makes it possible to determine the Curie
temperature ΘC of the film for a given applied magnetic
field H (Fig. 2). Knowing the dependence of ΘC on H,
one can determine the zero-field value of ΘC.

70 170 270ΘC
T, K

0

0.6

1.2

1.8
MR × 103

130 150 170
0.4

1.2

Fig. 2. Determination of the Curie temperature ΘC (for the
sample with dCu = 16 Å).
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Fig. 3. Dependences of the Curie temperature ΘC (1) and
Tmax (2) on dCu.
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Fig. 4. Dependences of the Curie (a) and Néel (b) tempera-
tures on the applied magnetic field H obtained for the sam-
ple with dCu = 12 Å; and (c) magnetoresistance curves mea-
sured in different fields. The arrows identify the MR peak.
H (Oe): (1) 490, (2) 420, (3) 280, and (4) 140.
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Thus, there exists a critical temperature Tmax for
multilayer Co/Cu films, at which the magnetoresistance
is maximal. This temperature depends substantially on
the thickness of the Cu nonmagnetic layer, and this
dependence, as well as the dependence of ΘC on dCu,
exhibits an oscillatory character (Fig. 3).

The magnitude of the applied magnetic field also
noticeably affects the measured values of ΘC and Tmax;
namely, an increase of the field amplitude generally
brings about a decrease of Tmax and an increase of ΘC

(Fig. 4).
The interaction of magnetic atoms through a non-

magnetic layer in the multilayer films studied may be
both ferromagnetic and antiferromagnetic [2]. The
observed experimental results can be interpreted if we
take into account the existence of antiferromagnetic
coupling in these films.

It is known that the existence of a susceptibility
maximum at the Néel point ΘN is a feature of antiferro-
magnetic ordering [3]. The film structure can be repre-
sented in the following way: the Co magnetic layer con-
sists of a large number of ferromagnetic spin clusters
ordered antiferromagnetically or in a mixed manner,
part of the clusters ordered ferromagnetically, and the
remainder, antiferromagnetically. The magnetoresis-
tance peak corresponds to the maximum in the film sus-
ceptibility at Tmax = ΘN. Such a temperature depen-
dence of susceptibility was theoretically considered by
Landau in 1933 [4] for materials made up of ferromag-
netically ordered layers.

This model finds confirmation in the character of ΘC

and ΘN variation with an increasing external magnetic
field. The magnetic field orients the spins in one direc-
tion, which favors the ferromagnetic and hinders the
antiferromagnetic ordering. Therefore, the destruction
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Fig. 5. Dependence of the temperature coefficient of resis-
tivity α for a sample with dCu = 14 Å on temperature T. The
inset shows the temperature behavior of the resistivity ρ.
The arrow identifies Tmax for this sample.
P

of antiferromagnetic order in the presence of a field
occurs at lower, and that of the ferromagnetic order, at
higher temperatures.

Antiferromagnetic systems exhibit anomalies of
nonmagnetic properties, for instance, the conductivity,
at the Néel point. Figure 5 presents the dependence of
the temperature coefficient of resistivity α on tempera-
ture (for a sample with dCu = 14 Å). Within the temper-
ature interval from 180 to 190 K, α undergoes a jump.
The Néel temperature ΘN for a given sample, which is
determined by extrapolating the Tmax to a zero field, is
~180 K. This observation can be treated as an indirect
confirmation of the proposed model.

The temperature dependences of magnetoresistance
of the films with dCu varying from 8 to 12 Å have a more
complex pattern and contain two or three peaks, which
can be attributed to the more complex structure of these
samples. Most likely, they represent a multi-phase sys-
tem, with each phase having its own Curie and Néel
temperatures.

Such temperature anomalies characterized by a
magnetoresistance peak were observed earlier in Ni/Cu
films with thicker magnetic layers (~15 Å) in an in-
plane magnetic field [4, 5]. This effect, however, is less
clearly pronounced in them with the MR varying
smoothly, and the peak not observed in all samples. We
believe that the anomalies in the temperature depen-
dence of MR are due to a substantial increase in the
magnetic anisotropy at lower (below Tmax) tempera-
tures.

Thus, we have experimentally discovered an anom-
alous peak in the magnetoresistance of Co/Cu multi-
layer films with ultrathin Co layers, which is due to the
existence of an antiferromagnetic ordering and corre-
sponds to the Néel point. The dependence of the posi-
tion of the peak on dCu exhibits an oscillatory character.
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Abstract—First measurements of the effective magnetic fields as a function of the depth at which the iron ions
are in the surface layer of α-Fe2O3 and FeBO3 single crystals are reported. The method used is the depth-selec-
tive conversion-electron Mössbauer spectroscopy. An analysis of experimental spectra revealed that the mag-
netic properties of the crystal surface vary smoothly from the bulk to surface characteristics within a layer
~100 nm thick. The layers lying below ~100 nm from the surface are similar in properties to the bulk of the
crystal, and their spectra consist of narrow lines. The spectral linewidths increase smoothly as one approaches
the crystal surface. The spectra obtained from a ~10-nm thick surface layer consist of broad lines indicating a
broad distribution of effective magnetic fields. Calculations show that the field distribution width in this layer
is δ = 2.1(3) T, for an average value Heff = 32.2(4) T. It has been experimentally established that, at room tem-
perature (291 K), the effective magnetic fields smoothly decrease as one approaches the crystal surface. The
effective fields in a 2.4(9)-nm surface layer of α-Fe2O3 crystals are lower by 0.7(2)% than the fields at the ion
nuclei in the bulk of the sample. In the case of FeBO3, the effective fields decrease by 1.2(3)% in a surface layer
4.9(9) nm thick. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The development of new experimental methods to
study the properties of thin surface layers, which made
a comparison of the results of an experiment with pre-
dictions of current theories of surface magnetism pos-
sible, has stimulated an explosive growth of publica-
tions reporting on investigations of the magnetic prop-
erties of surfaces.

An important parameter characterizing the mag-
netic properties of a surface is the magnetic moment
both in the ground state (at T = 0 K) and at nonzero tem-
peratures. Theoretical calculations showed that, at zero
temperature, the average magnetic moment is larger in
the outermost layer of Ni(001) by 20%, and in that of
Fe(001), by 34% compared to its bulk value, at a depth
of four monolayers from the surface [1].

The data obtained by Mössbauer spectroscopy (MS)
stand out amongst the other experimental results. The
broad use of MS in studies of both bulk and surface
magnetic properties is due to the fact that it permits one
to carry out investigations on the microscopic or local
scale, because the effective magnetic field at iron ion
nuclei (Heff) measured by MS is directly related to the
local moment and is determined without the application
of an external magnetic field and irrespective of the ori-
entation of the local spin moment. For instance, the MS
was employed to obtain the dependence of the effective
magnetic field on the distance of Fe57 atoms from the
1063-7834/00/4209- $20.00 © 1691
surface [2, 3]. These studies were performed on films
made up of a certain number of Fe56 layers and a layer
of Fe57 atoms, the latter being deposited at a distance d
from the surface. Using a series of such films in which
d varied within the 0 < d < dn interval, where n is the
number of layers in the sample, it was found [2, 3] that,
at T ≈ 0 K, the effective magnetic field increases as one
approaches the surface. At room temperature, a reverse
effect was observed, namely, the magnitude of Heff

decreases as one comes closer to the surface. Studies of
a thin α-Fe2O3 film by the depth-selective conversion-
electron Mössbauer spectroscopy (DSCEMS) showed
that, at room temperature, the magnitude of Heff in a
thin surface layer is less by 2% than that in the bulk of
a sample [3]. Heff at the surface at T = 4.2 K was exper-
imentally found to be less than that in the bulk [4].
Assuming the Heff(T) relation to be proportional to
Ms(T) both in the bulk and at the sample surface, the
results of [4] agree with theory [5]. At the same time,
the experimental data obtained for other materials are
in a much poorer agreement with the theory.

Measurements of the spin moment of polarized
electrons scattered from the Fe(100) surface showed
that, at room temperature, the magnetic moment at the
surface of a sample is larger by 30% than that in the
bulk [6]. These data are in substantial disagreement
with the theoretical predictions that the room tempera-
2000 MAIK “Nauka/Interperiodica”
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ture magnetization should decrease as one approaches
the surface because of the surface spin waves.

Thus, by far, not all experimental and theoretical
data are in agreement, and, therefore, further studies of
the effect of the surface on the magnetic properties of
the surface layer are needed. The most efficient meth-
ods in this respect are those that permit a direct compar-
ison of experimental data on the surface and the bulk
properties, as is possible, for instance, with Mössbauer
spectroscopy. Besides, practically all surface property
studies were performed on metallic films, whose sur-
faces may readily become oxidized, and this introduces
errors in experimental data. Therefore, one should
make measurements on samples whose surface is not
subject to oxidation.

These considerations stimulated the present experi-
mental study of the surface properties of α-Fe2O3 and
FeBO3 single crystals using the DSCEMS method. The
layer-by-layer investigation of the surface layer was
performed by the DSCEMS method, first proposed and
developed in [7]. This method is based on measuring
Mössbauer spectra by detecting electrons escaping
from the crystal under study within a narrow interval of
their energy spread. To improve the precision of elec-
tron selection in energy and to increase the spectrome-
ter collecting power, a magnetostatic electron analyzer
was calculated by computer simulation. The spectrom-
eter thus constructed had the following characteristics:
transmission 21% of 4π and energy resolution 0.2–2%,
depending on sample size [8, 9]. As shown on calibra-
tion samples representing films deposited in Fe56–Fe57–
Fe56 layers, such spectrometers permit an investigation
of a surface layer 5–10 Å thick [3]. The thickness of the
layer under study and its distance from the surface were
calculated by the Monte Carlo method [9, 10].

1. EXPERIMENTAL

Figure 2 presents an electron energy spectrum
obtained from a Fe57 film ten monolayers thick by the
DSCEMS method. In order to perform layer-by-layer
analysis of the surface properties of a layer up to
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Fig. 1. Energy spectrum of electrons emerging from the sur-
face of a 10-monolayer thick Fe57 film obtained with a
DSCEMS spectrometer.
P

200 nm thick, a narrow part of the K line has to be iso-
lated with the magnetostatic analyzer. The thickness of
the layer under study is determined by the width of the
isolated K-line part. The higher the analyzer resolution,
the thinner is the layer from which the information can
be extracted. The distance of the layer to be studied
from the sample surface is determined by the position
of the discriminator window within the K line. When
detecting electrons in the 6.7-keV energy region, one
obtains information on the layers lying at ~100 nm
from the crystal surface. If the energy of the detected
electrons is 7.29 keV, one studies the properties of a
surface layer not more than 2–4 nm thick. By further
increasing the energy of the detected electrons, one
obtains data on layers lying deeper than 100 nm from
the surface. The reason for this lies in that, in this case,
one also detects the L electrons, which were produced
with an initial energy of ~14 keV (Fig. 1) and, hence,
escaped from larger depths, because their range in the
material is larger than that of the K electrons.

2. RESULTS OF THE EXPERIMENTS
AND DISCUSSION

We chose to study α-Fe2O3 and FeBO3 crystals,
which are ordered antiferromagnetically below the
Néel temperatures of ~961 and ~348 K, respectively,
and possess a weak ferromagnetic moment. The choice
of these compounds was stimulated by the following
considerations. Iron ions in α-Fe2O3 and FeBO3 occupy
the same crystallographic position, and their room-tem-
perature Mössbauer spectra consist of one well–
resolved Zeeman sextuplet with close-to-natural line-
widths. Besides, the bulk properties of these crystals
are studied fairly well (see [11, 12] and references
therein), thus permitting a comparison between our
experimental data on the bulk properties and the pub-
lished figures. Finally, the surface of these crystals is
not subject to corrosion or any other changes in its
properties. This is evidenced by the absence of visible
changes in the Mössbauer spectra measured from a thin
surface layer with an interval of one year.

The α-Fe2O3 and FeBO3 single crystals were pre-
pared from a melt solution. The Fe57 isotope content in
the compounds was 100%. Plates ~5 mm in diameter
were cut from the single crystals. X-ray diffraction
measurements showed the C crystallographic axis to be
perpendicular to the plate plane. In the course of crystal
preparation, particular attention was directed at the
quality of the surface to be studied. Previous experi-
ments [12] demonstrated that a high-quality surface is
obtained when chemically etched in orthophosphoric
acid at 90°C for one minute. It should be pointed out
that, in order to check the quality of crystal surface
preparation, Mössbauer spectra were measured of a
layer ~3 nm thick at temperatures above the Néel point.
The spectra obtained consisted only of quadrupole
splitting lines, and an analysis showed them to be fully
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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Fig. 2. Mössbauer spectra of (a) FeBO3 and (b) α-Fe2O3 single crystals obtained at 291 K by detecting electrons 6.71 and 6.82 keV
in energy, respectively. The gamma-ray wave vector is parallel to the C crystallographic axis. The experimental spectra are shown
with dots, while the theoretical ones are represented by solid lines. Displayed above the spectra are the difference curves between
the bulk spectra and those measured with electrons of energy 7.29 and 6.71 keV for α-Fe2O3, and of 7.29 and 6.82 keV for FeBO3.
identical to those from the layers lying deeper than
200 nm from the surface.

The DSCEMS method was employed to obtain
room-temperature experimental spectra of α-Fe2O3 and
FeBO3 in the 6.6–7.8-keV energy interval. The gamma-
ray beam was parallel to the C crystallographic axis.
The experimental spectra of FeBO3 and α-Fe2O3 mea-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
sured by detecting electrons with energies of 6.71 and
6.82 keV are shown in Fig. 2 by dots. Also shown there
are the results of a mathematical treatment of these data
in the form of a theoretical spectrum (solid line) and
difference curves. The widths of the spectral lines pre-
sented in Fig. 2 coincide within experimental error with
the natural widths of spectral lines for Fe57. This indi-
0
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cates a high quality of the spectrometer employed and
of the crystals under study, as well as permits a high-
precision calculation of the hyperfine interaction
parameters.

A mathematical analysis of the spectra obtained by
detecting 6.71-keV electrons showed that they fit the
parameters obtained for the bulk of the sample well.
This is displayed by the difference curve in Fig. 2a.
However, when one uses the same parameters for the
mathematical description of the spectrum obtained
with 7.29-keV electrons, the difference between the
theoretical and experimental spectra becomes clearly
visible. This manifests itself clearly in the difference
curve derived for the 7.29-keV energy in FeBO3. As
evident from the difference curves presented in Fig. 2b,
similar results were obtained for α-Fe2O3. As the
energy of detected electrons increases, i.e., as one
approaches the crystal surface, the spectral lines
smoothly broaden. The spectra measured from a
~10-nm thick surface layer of FeBO3 consist of broad
lines, which implies a broad distribution of the effective
magnetic fields. As follows from calculations, the field
distribution width in this layer is δ = 2.1(3) T for an
average value Heff = 32.2(4) T.
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Fig. 3. Effective magnetic fields in (a) α-Fe2O3 and
(b) FeBO3 vs. the energy of the electrons being detected.
The change in the position from 6.71 to 7.29 keV corre-
sponds to a change in depth of the layer under study from
100 to 2.4(9) nm in α-Fe2O3 and from 100 to 4.9(9) nm in
FeBO3.
P

Note a specific feature of the experimental spectra
of the α-Fe2O3 and FeBO3 crystals studied here,
namely, the spectral lines of these crystals are not
strictly symmetrical relative to zero velocity (Fig. 2).
The intensities of the outer and inner line pairs corre-
sponding to the transitions with ∆m = 1 are noticeably
asymmetric. Similar spectra of α-Fe2O3 and FeBO3 sin-
gle crystals were also obtained by other authors, but the
nature of this line asymmetry was not discussed by
them. Our analysis of this phenomenon has led us to the
following conclusion. The principal axis of the electric-
field gradient in the crystals studied is directed along
the C axis, whereas the effective magnetic field is per-
pendicular to the latter. We believe [13] that, when
these hyperfine fields interact, the absorption line inten-
sities depend on the angle of their mutual orientation.
When they are orthogonal, as is the case with α-Fe2O3
and FeBO3, the resonance lines are asymmetric, exactly
as in the spectra of Fig. 2. Note that the total line inten-
sity ratio remains unchanged.

The experimental spectra were used to calculate the
intensity ratio of the Zeeman sextuplet lines, which was
found to be 3 : 4 : 1. This is an additional argument in
favor of the x-ray diffraction measurements, which
indicate that the magnetic moments of Fe atoms are ori-
ented parallel to the crystal surface plane and perpen-
dicular to the C axis. The effective magnetic fields
derived from experimental spectra, which were
obtained by detecting electrons with energies from 6.6
to 7.8 keV, are displayed in Fig. 3 as a function of the
electron energy.

To interpret the effective magnetic field relations in
Fig. 3, the electron escape functions were analyzed. It
was found that electrons with energies below 6.9 keV
emerge from layers located further than 100 nm from
the surface, whereas the 7.25-keV electrons carry infor-
mation from a surface layer 2–4 nm thick. Mössbauer
spectra measured with electrons having energies from
6.9 to 7.25 keV provide data on the properties of layers
lying from 100 to ~2 nm from the sample surface.

An analysis of Mössbauer spectra obtained by
detecting electrons with energies above 7.3 keV
showed the spectral lines to be substantially broader
than those measured with electrons below 7.21 keV in
energy. The effective magnetic fields derived from a
mathematical treatment of the spectra are plotted in
Fig. 3; one readily sees that, as the electron energy
increases above 7.3 keV, the effective magnetic fields
increase and the accuracy of their determination
decreases. The reason for this, as already pointed out,
lies in that this region also includes L electrons, which
have lost most of their energy because they escape from
depths substantially in excess of 100 nm.

As seen from Fig. 3, the effective magnetic fields at
iron nuclei located further than 100 nm from the crystal
surface (in Fig. 3, this corresponds to electron energies
of 6.9 keV and less) are 518.3 kOe for α-Fe2O3 and
347.2 kOe for FeBO3. These values coincide with the
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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figures obtained in studies of the bulk properties [11,
12]. As seen from Fig. 3, the effective magnetic fields
decrease as the energy of the detected electrons
increases (i.e., as one approaches the crystal surface).
For the electron energy of 7.29 keV, the effective mag-
netic fields assume the values of 516.9 kOe for α-Fe2O3
and 344.2 kOe for FeBO3. Thus, the effective fields at
the iron nuclei located in a surface layer 2.4(9) nm thick
decrease compared to those in the bulk of the sample by
1.4 kOe in the case of α-Fe2O3. For FeBO3, as shown
by the calculations of the electron escape functions, the
effective fields decrease by 3.0 kOe as the surface layer
becomes 4.9(9) nm thick. Considered on a percentage
basis, the decrease of the effective fields is 0.7% in the
surface layers of α-Fe2O3 and 1.2% in those of FeBO3.
The difference between the magnitudes of this effective
magnetic-field decrease may be accounted for by the
measurements that were performed at T = 291 K. This
corresponds to reduced temperatures (T/TN) of 0.30 for
α-Fe2O3 and 0.84 for FeBO3. It may be conjectured that
the effective magnetic fields determined at the surface
of α-Fe2O3 crystals are less subject to thermal perturba-
tions because the corresponding measurements are per-
formed further away from the Néel point on the temper-
ature scale.

For comparison, we present experimental data on
the properties of a surface layer of an epitaxial α-Fe2O3
film [3] and of a film produced by depositing iron ions
[4]. In the case of α-Fe2O3, the effective magnetic fields
decrease at room temperature from 51.761 ± 0.008 to
50.6 ± 0.8 T within a surface layer 18 ± 3 Å thick [3].
Measurements performed on a film consisting of
30 monolayers of Fe ions showed that the effective
fields fall off from 33.2 ± 1 to 32.8 ± 1 T as one
approaches the film surface from its bulk [4].

The surfaces of α-Fe2O3 and FeBO3 crystals were
also studied by conversion-electron Mössbauer spec-
troscopy. In this case, one detects both the conversion
and Auger electrons escaping from the sample, and the
spectra can be used to derive information on the state of
a surface layer ~200 nm thick. As follows from calcu-
lations, the best fit to experimental data for α-Fe2O3 and
FeBO3 crystals can be attained only within a model rep-
resenting a set of spectra with the effective fields taken
from the plots in Fig. 3.

Thus, we have reported on the first experimental
studies of the effect of the surface on the properties of
a near-surface layer in macroscopic crystals. It has been
found that the effective magnetic fields at iron ion
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
nuclei in a surface layer ~100 nm thick (and the mag-
netization) decrease smoothly as one approaches the
sample surface.
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Abstract—A phenomenological analysis of the magnetic and structural phase states observed in the manga-
nese arsenide–based alloys over a wide range of temperatures and pressures has been performed. The unique
first-order phase transitions from the paramagnetic and metamagnetic states to the ferromagnetic state are stud-
ied experimentally. It is found that these transitions exhibit characteristic features associated with the magne-
tostriction suppression of nucleation when the lability boundary of the paramagnetic phase is absent and the
transition from the metamagnetic state is not thermodynamically “forbidden.” The phase behavior of manga-
nese arsenide–based alloys is interpreted within the proposed model. This model accounts for the interrelation
of the magnetic, structural, and elastic properties of alloys and also the specific features of phase transforma-
tions in real crystals. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The results obtained in numerous experimental
investigations of manganese arsenide MnAs over a
wide range of temperatures T and pressures P [1–4] are
generalized in the P–T phase diagram shown in Fig. 1.
As is seen from the figure, three phases with different
magnetic and structural characteristics are observed at
atmospheric pressure: the paramagnetic hexagonal
phase PM(B81), the paramagnetic orthorhombic phase
PM(B31), and the hexagonal ferromagnetic phase
FM(B81). The hydrostatic pressure considerably affects
the stability of these phases, and its increase gives rise
to three new states with an orthorhombic symmetry of
crystal lattice: the ferromagnetic phase FM(B31) and
two metamagnetic modulated long-period structures
MMS(B31) and MMS '(B31).

A number of theoretical models were proposed for
interpreting magnetic and structural transformations
realized in MnAs [5–9]. The concept of the decisive role
of competing interaction between two order parame-
ters—the magnetic parameter describing the appearance
of ferromagnetic ordering and the structure parameter
characterizing orthorhombic distortions of the crystal
lattice—turned out to be most consistent and fruitful [9].
The concept proposed in [9] and advanced in subsequent
publications [10, 11] provided answers to three very
important (from the viewpoint of the physics of magnetic
phenomena) questions regarding the unique behavior of
MnAs upon the FM(B81)  PM(B31) phase transi-
tion. First, why is the order–disorder magnetic transi-
tion treated as the first-order phase transition? Second,
why is a rise in the magnetic symmetry from ferromag-
1063-7834/00/4209- $20.00 © 21696
netic to paramagnetic upon this transition, contrary to
the reasons for the relativistic magnetostriction, accom-
panied by a lowering in the symmetry of the crystal lat-
tice from hexagonal to orthorhombic? Finally, why do
the lines of this phase transition in the P–T diagram
(Fig. 1, lines cdf, klm) have a specific shape? However,
the possibility of forming phases with a different mag-
netic ordering in MnAs was not discussed.

The aim of the present work was to perform a thermo-
dynamic analysis of all phases (including the phases
with a modulated long-period magnetic structure MMS)
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Fig. 1. Experimental P–T phase diagram of magnetic and
structural states for manganese arsenide.
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observed in manganese arsenide. The generalized phase
diagram of magnetic and structural equilibrium states
was constructed; moreover, the specific features of the
phase transitions due to the occurrence of metastable
states were revealed experimentally. The results of the
thermodynamic analysis were compared with the exper-
imental data. On this basis, we proposed the consistent
model of phase transitions observed in MnAs.

2. MODEL
Let us give a phenomenological description of the

observed structural and magnetic states and the phase
transitions between these states. According to [9–11],
the thermodynamic potential of the MnAs system can
be constructed with two (structural and magnetic) order
parameters. These parameters describe the appearance
of orthorhombic distortions and magnetic ordering,
respectively. The nonzero component of the three-
dimensional order parameter  ϕ, which corresponds to
one out of three prongs of the star of wave vector k =
b1/2, is chosen as the parameter of structural distor-
tions. This is explained by the fact that, upon the
PM(B81)  PM(B31) second-order phase transition,
the change in the space symmetry P63/mmc  Pnma as a
result of the displacement of Mn and As ions from sym-
metric positions [3, 12] is realized through one out of three
branches of the irreducible representation i4 (k = b1/2) of
the P63/mmc group [13]. The lowering in the symmetry
is attended by the formation of domains, which are
rotated with respect to each other through an angle of
120° in the plane of a hexagonal basis [3] and differ in
the sign of the ϕ parameter. Consequently, there exist
the transition regions between domains, i.e., the
domain boundaries in which the ϕ parameter varies.

Considering the possible description of a nonuni-
form spatial distribution of the ϕ parameter (the case of
small gradients), the density of the thermodynamic
potential of structural distortions is given by

(1)

Here, αϕ, , and  are the phenomenological param-
eters of the theory.

The irreducible magnetic vectors m = M1 + M2 +
M3 + M4 and l = M1 – M2 – M3 + M4 (where Mi are the
magnetizations of four sublattices) can be used as the
magnetic order parameter. In this case, the expression
for the total densities of thermodynamic potentials of
the magnetic subsystem Φm and the interaction of mag-
netic characteristics with the structural distortions Φmϕ
takes the form

(2)

(3)

Φϕ
1
2
---αϕ ∂ϕ ∂xi⁄( )2 1

2
---aϕ''ϕ

2 1
4
---bϕ''ϕ

4.+ +=

aϕ'' bϕ''

Φm
1
2
---αm ∂m ∂xi⁄( )2 1

2
---amm2 1

4
---bmm4–

1
6
---dm6+ +=

+
1
2
---α1 ∂l ∂xi⁄( )2 δ1l mH,+ +

Φmϕ ρϕ m ∂l ∂xi⁄( ) l ∂m ∂xi⁄( )+[ ] 1
2
---δ''m2ϕ2.+=
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[The gradient terms with respect to m and l are intro-
duced for the same reasons as in Eq. (1)]. All the phe-
nomenological constants in Eqs. (2) and (3) have the
exchange origin: am, bm, d, αm, δ1, and δ'' are positive,
and the sign of the parameter ρ is insignificant. The last
term in Eq. (2) determines the Zeeman energy (H is the
external magnetic field strength, and the demagnetizing
fields are ignored.)

In the general case, the expression for the total den-
sity of the nonequilibrium thermodynamic potential
Φtot of the MnAs system should also include the density
of elastic energy Φu, the term Φuϕ accounting for the
relation of elastic deformations to the structural distor-
tions, and the density of the magnetostriction energy
Φmu. The term Φu takes the form

(4)

Here, uik are the components of the elastic deformation
tensor of the lattice; k0, kz, k1, and k0z are the elastic
moduli; and P is the external hydrostatic pressure. The
last term characterizes thermal expansion.

The term Φuϕ can be constructed from the so-called
mixed invariants, which contain ϕ and the uik compo-
nents

(5)

Here, Λ0, Λ1, and Λz are the parameters characterizing
the relation of elastic deformations to the structural dis-
tortions.

Finally, the density of the magnetostriction energy is
written as

(6)

where λ0 and λz are the magnetostriction constants
composed of the mixed invariants describing the rela-
tion between the magnetic subsystem and the crystal
lattice.

Therefore, the relationship

(7)

represents the total density of the nonequilibrium ther-
modynamic potential, which allows descriptions of all
the possible phase states in the MnAs system and the
phase transitions between these states.

Since the temperatures of the PM(B81) 
PM(B31) structural phase transition (Tt = 400 K) and
the PM(B31)  FM(B81) structural–magnetic phase
transition (Tc = 303 K) differ considerably, the question
arises as to the legitimacy of expanding Φtot simulta-
neously in terms of m and ϕ in the vicinity of Tc, where
the ϕ parameter can often be rather large. The experi-
mental data on the temperature dependence of the
inverse magnetic susceptibility χ–1(T) for MnAs indi-
cate a linear function. According to [9], χ–1 ~ am + δϕ2;

Φu
1
2
---k0u11

2 1
2
---kzuzz

2 1
2
---k1 uxx uyy–( )2+ +=

+ k0zu11uzz Pu11 T ν0u11 ν2uzz+( ).–+

Φuϕ ϕ2 Λ0u11 Λzuzz Λ1 uxx uyy–( )+ +[ ] .=

Φmu m2 λ0u11 λ zuzz+( ),=

Φtot Φϕ Φm Φmϕ Φu Φmu Φuϕ+ + + + +=
0
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therefore, the coefficient am and the quantity ϕ2 linearly
depend on temperature. This implies that ϕ2 ! 1,
because, otherwise, the higher-order terms in the
expansion in terms of ϕ should play a leading part,
which would lead to a nonlinear temperature depen-
dence of ϕ2. Since ϕ2 ~ |aϕ|/(bϕ), the smallness of ϕ2

suggests the smallness of the |aϕ| coefficient over the
entire temperature range from Tt to Tc. Physically, this
result can be explained by the structural changes in
MnAs being governed by the electronic structure of the
crystal (the geometry of the Fermi surface), which var-
ies rather slowly at these temperatures.

The generalized model of structural and magnetic
equilibrium states and the corresponding phase transi-
tions should account for the presence of the modulated
magnetic structures. In order to construct this model,
we use the thermodynamic potential represented by
expression (7). As mentioned above, the inhomoge-
neous structural distortions arise from the separation of
the crystal into crystallographic domains upon the low-
ering of the lattice symmetry P63/mmc  Pnma. These
distortions are localized within the domain boundaries.
It is clear that the domain boundaries virtually do not
affect the equilibrium phase states within domains, and,
hence, the terms containing ∂ϕ/∂xi can be omitted in
analyzing Eq. (7). For the equilibrium uik values, we
rewrite Eq. (7) in the following form:

(8)

The phenomenological coefficients , , α1, αm,
am, bm, dm, δ1, δ', and ρ in relationship (8) result from
the renormalization of the corresponding coefficients
entering into Eqs. (1)–(6). The Φ0 value is the reference
point for the thermodynamic potential. The x, y, and z
axes of the Cartesian coordinate system coincide with
the a, b, and c orthorhombic axes, respectively.

Now, we consider the last term in expression (8). As
will be shown below, the invariants linear in the first
spatial derivatives of the irreducible magnetic vectors
of the system and their competition with the quadratic
invariants at certain ratios between the phenomenolog-
ical parameters of the theory lead to the formation of
modulated magnetic structures with the crystal symme-
try Pnma (the so-called double helix) with the structure
wavevector q along the a axis.

The solution to the problem on the structural and
magnetic equilibrium states of the potential described

Φtot Φ0 aϕ' T P,( )ϕ2 bϕ' ϕ4 αm ∂m ∂xi⁄( )2+ + +=

+
1
2
---am T P,( )m2 1

4
---bmm4–

1
6
---dmm6 δ1l2+ +

+ α1 ∂l xi⁄( )2 1
2
---δ'ϕ2m2+

+ ρϕ m ∂l ∂xi⁄( ) l ∂m ∂xi⁄( )–[ ] .

aϕ' bϕ'
P

by Eq. (8) is sought in the form

(9)

(10)

The above invariant in Eq. (8) with allowance made for
relationships (10) leads to the formation of modulated
magnetic structures of the simple double helix type and
also specifies the mutual orthogonality of m and l (i.e.,
ψ = ± π/2), which is the consequence of the exchange
approximation we used.

By introducing the new variables

(11)

and minimizing with respect to the incidental parame-
ter l at Q2 ! 1 (recall that we consider only the case of
small-scale spatial inhomogeneities), we obtain the fol-
lowing final expression for the density of the nonequi-
librium thermodynamic potential in the MnAs system:

(12)

Here, the phenomenological parameters aϕ(T, P), bϕ, δ,
and β are combinations of the parameters of the initial
potential (8), that is,

(13)

The conventional treatment of the thermodynamic
potential defined by Eq. (12) with the aim of determin-
ing its equilibrium states and regions of their stability
demonstrates that only five types of states are realized
in the system with the following combinations of the m,
ϕ, and Q parameters:

(14)

It is evident that the first, second, third, fourth, and fifth
types of states correspond to the PM(B81), PM(B31),
FM(B81), FM(B31), and MMS(B31) phases, respec-
tively. The mutual arrangement of states in the phase
diagram on the aϕ–am coordinates for the MnAs system
is displayed in Fig. 2.

It should be emphasized that the MMS(B31) phase
can occur only at the structural distortions ϕ2 ≥ 1,
whereas the PM(B31) phase exists at any ϕ of the initial

ϕ const,=

my m qx( ); mzsin m qx( );cos= =

ly l qx ψ–( ); lzsin l qx ψ–( ); ψcos const.= = =

Q2 q2 α1 δ1⁄( ), τ2 ϕ2ρ2 αmδ1( )⁄= =

Φ 1
2
---aϕ T P,( )τ2 1

4
---bϕτ4 1

2
---am T P,( )m2 1

4
---bmm4–+ +=

+
1
6
---dmm6 1

2
---δτ2m2 1

2
---βQ2m2 1 τ2 1 Q2–( )–[ ] .+ +

aϕ T P,( ) aϕ' T P,( )αmδ1 ρ2⁄ , bϕ bϕ' αmδ1 ρ2⁄( )2
,= =

δ δ' αmδ1 ρ2⁄( ), β 2 αmδ1 α1⁄( ).= =

m = 0; ϕ  = 0; Q = 0.

m = 0; ϕ  ≠ 0; Q = 0.

m 0; ϕ≠  = 0; Q = 0.

m 0; ϕ  ≠ 0; Q≠  = 0.

m 0; ϕ  ≠ 0; Q ≠ 0.≠
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RELATION OF MAGNETIC AND STRUCTURAL FACTORS 1699
phase, and the FM(B31) phase is observed in the range
0 ≤ ϕ2 ≤ 1.

From the phase diagram (Fig. 2), we can draw the
conclusions concerning the possible phase transitions
in the MnAs system and their character.

The 1–2 phase transition, i.e., PM(B81)–PM(B31),

occurs along the line aϕ = 0 at am ≥ 3/16( /dm) in the
region beginning at the point K and represents the sec-
ond-order phase transition.

The 1–3 phase transition, i.e., PM(B81)–FM(B81),

takes place along the line aϕ ≥ 0 at am = 3/16( /dm) in
the region beginning at the point K and represents the
first-order phase transition.

The 1–4 phase transition, i.e., PM(B81)–FM(B31),
and the 1–5 phase transition, i.e., PM(B81)–MMS(B31),
are not observed.

The 2–3 phase transition, i.e., PM(B31)–FM(B81),

occurs along the line 3  = bm  in the

region between points K and F and represents the first-

order phase transition. Here, m3 = {(1/2dm)[bm + (  –
4amdm)1/2]}1/2 is the equilibrium magnetic order param-
eter for the FM(B81) phase.

The 2–4 phase transition, i.e., PM(B31)–FM(B31),

is observed along the line am = γaϕ + 3 (1 +
γ2bϕ/bm)216dm in the region between points F and G and
represents the first-order phase transition. Here, γ =
δ/bϕ.

The 2–5 phase transition, i.e., PM(B31)–MMS(B31),

takes place along the line am = γaϕ + 3 (1 +
γ22bϕ/bm)216dm in the region beginning at the point G
and is the first-order phase transition.

The 3–4 phase transition, i.e., FM(B81)–FM(B31),

occurs along the line am = –γbϕ  in the region below
point F and represents the second-order phase transi-
tion.

The 3–5 phase transition, i.e., FM(B81)–MMS(B31),
is absent.

The 4–5 phase transition, i.e., FM(B31)–
MMS(B31), takes place along the line aϕ = –bϕ{1 +

(1/2dm)γ[bm + (  – 4dmam + 4dmaϕγ)1/2]} in the region
below point D and represents the second-order phase
transition.

Among all the above results, the inference that the
MMS(B31) and FM(B81) states have no common
boundary is inconsistent with the available experimen-
tal data. At first glance, the theoretical prediction that
the boundary is absent contradicts the experimental P–
T diagram for MnAs, according to which the
MMS(B31)  FM(B81) phase transition is observed
along the df line (Fig. 1). However, it should kept in

bm
2

bm
2

aϕ
2 m3

2 bmm3
2 4am–( )

bm
2

bm
2

bm
2

m3
2

bm
2
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mind that the theoretical P–T diagram was constructed
without regard for the constraint ϕ ≠ const in the crys-
tallographic domain boundaries, which is quite justified
in the treatment of equilibrium phase states (if for no
other reason than the small volume occupied by the
domain boundaries in the crystal) and cannot be toler-
ated in analyzing mechanisms of phase transitions. It
turned out that even the qualitative consideration of the
domain boundaries in the above theoretical treatment
led to the consistent scheme of phase transitions, which
accounts for both the MMS(B31)–FM(B81) phase tran-
sition and the suppression of the FM(B81) state.

According to this scheme, the MMS(B31) 
FM(B81) phase transition along the df line in the P–T
diagram (Fig. 1) occurs through the intermediate state
PM(B31), which, in this region of the P–T diagram, is
metastable with respect to the FM(B81) phase. The bulk
of the sample is penetrated by a network of twin bound-
aries in which the structure parameter ϕ is equal to
zero. It is these domain boundaries that are crystal
nuclei of the FM(B81) phase [11]. Therefore, the inter-
action between nuclei of the FM(B81) phase and the
PM(B31) matrix results either in the suppression of the
nucleus growth, or in the formation of the magnetic (as
more stable) phase throughout the crystal bulk.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Let us consider the case when the PM(B31) state is
retained as metastable; i.e., the FM(B81) state is sup-

am

PM(B81)

PM(B31)

FM(B81)

B
P

K

O

F

EC

G

D

FM(B31)

MMS(B31)

A

Fig. 2. Generalized theoretical phase diagram of magnetic
and structural states for manganese arsenide.
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1700 ASADOV et al.
pressed. This phenomenon can be illustrated by the
experimental temperature dependence of the unit cell
parameters for the Mn0.99Fe0.01As compound (Fig. 3a).
It is known that, in manganese arsenide, the replace-
ment of Mn atoms by Fe or Ni atoms in small amounts
does not bring about a qualitative change in the P–T
phase diagram of the initial sample, but only leads to a
shift of the phase boundaries toward the low-pressure
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Fig. 3. Temperature dependences of the unit cell parameters
for the Mn0.99Fe0.01As alloy at different treatment stages.
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Fig. 4. Temperature dependences of the unit cell parameters
for the Mn0.95Ni0.05As alloy.
P

region [14, 15] and, thus, simplifies the technical prob-
lem of reaching the line of the MMS(B31)  FM(B81)
phase transition.

At the first experimental stage, the Mn0.99Fe0.01As
single-crystal sample at T = 300 K was subjected to
hydrostatic compression up to P > Pcr = 0.1 kbar [Pcr is
the critical pressure above which the FM(B81) modifi-
cation is not formed upon subsequent cooling of the
sample] and, then, was cooled down to T = 160 K at
constant pressure. After releasing the pressure under
isothermal conditions, the single crystal appeared in the
initial state in the MMS(B31) phase (the scheme of
transformation is similar to that shown by the ABCD
line in Fig. 1). As follows from the unit cell parameters
measured upon subsequent heating of the sample at
atmospheric pressure, the crystal over the entire tem-
perature range remains in the orthorhombic modifica-

tion (c0/  ≠ b0); i.e., the FM(B81) state is not formed

(Fig. 3a). Anomalies in the curves b0(T) and c0/ (T) at
about T = 190 K indicate that only the MMS(B31) 
PM(B31) phase transition occurs in the crystal.

For the MMS(B31)  PM(B31) phase transition
to change to the PM(B31)  FM(B81) phase transi-
tion and the ferromagnetic phase to be formed near the
temperature of the initial MMS(B31)  PM(B31)
transition, the studied sample should be preliminarily
transformed, at least once, into the FM(B81) state (for
example, by cooling at P = 0 and then by heating to
room temperature). Upon heating, the hexagonal sym-
metry is retained up to 290 K and then, upon the first-
order phase transition, changes to the orthorhombic
symmetry, which is typical of the PM(B31) state
(Fig. 3b). After repeating the first experimental stage,
i.e., the transformation of the sample into the
MMS(B31) state along the trajectory similar to the
ABCD line in Fig. 1, the temperature was increased,
and two structural first-order phase transitions
MMS(B31)  FM(B81) and FM(B81)  PM(B31)
were observed at 190 and 290 K, respectively. The tem-
perature dependences of the unit cell parameters upon
these transformations are depicted in Fig. 3c. There-
fore, the known P–T diagram for Mn0.99Fe0.01As [14] is
in agreement with the results obtained for the sample
which at least once intersected the line of the
PM(B31)  FM(B81) phase transition in the high-
temperature range. Otherwise, the FM(B81) phase is
suppressed, the ferromagnetic state is not formed, and
the MMS(B31)  PM(B31) phase transition occurs at
T = 190 K.

The suppression of the FM(B81) state more clearly
manifests itself in the Mn0.95Ni0.05As compound. In this
case, the PM(B31)  MMS(B31) phase transition is
observed even at atmospheric pressure, and the ferro-
magnetic ordering is not realized at all [15]. An analysis
of the temperature dependences of the unit cell param-

eters (Fig. 4, curves a0, b0, c0/ ) and χ–1(T) (Fig. 5)

3

3

3
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for this alloy shows that the crystal lattice remains
orthorhombic over the entire temperature range cov-
ered, and the PM  MMS magnetic phase transition
occurs near the temperature T = 190 K, at which the
dependence of the unit cell parameters exhibits anoma-
lous behavior.

The FM(B81) state in Mn0.95Ni0.05As can be induced
by the magnetic field H, which exceeds the critical
value Hcr. The effect of the magnetic field is most pro-
nounced near the PM(B31)  MMS(B31) phase tran-
sition point. This is confirmed by a sharp minimum in
the Hcr(T) curve (Fig. 6). The transition observed in the
magnetic field is characterized by the ferromagnetic
ordering with the saturation moment µ = 2.8µB at T =
195 K (Fig. 5, curve M), an abrupt volume jump result-
ing in the fracture of the initial monolithic crystal, and
a change in the crystal structure from orthorhombic to
hexagonal (Fig. 4, curve ah). The induced FM(B81)
phase is irreversible, because it persists after removal of
the magnetic field. However, upon heating the sample
above the FM(B81)  PM(B31) phase transition tem-
perature, the FM(B81) state disappears through the
first-order phase transition and does not arise at H < Hcr.
It should be noted that the critical fields of inducing the
ferromagnetic phase decrease in subsequent magneti-
zation cycles. The boundaries of the existence of the
FM(B81) phase (metastable for this compound) on the
P–T coordinates were determined by extrapolating the
isothermal dependences Hcr(P) to zero field [16]. It was
found that the boundary of the spontaneous appearance
of the magnetically ordered state is located in the
region of “negative” pressures, whereas the boundary
of the disappearance of this state lies in the region of
positive pressures.

With the aim of revealing the reasons for the priority
of either of the two above mechanisms of the
MMS(B31)  PM(B31) phase transition, let us ana-
lyze the interaction between the FM(B81) crystal nuclei
and the PM(B31) matrix. This interaction is governed
by a number of factors whose combination determines
the final result of the phase transitions under consider-
ation.

3.1. Factor of striction suppression of nuclei [17].
Upon the first-order phase transition, the crystal nucle-
ation is attended by the appearance of inhomogeneous
deformations due to the difference in the parameters
and the symmetry of crystal lattices of the initial and
final phases. An increase in the elastic energy of the
crystal leads to the fact that the energy of the initial
phase remains less than that of the sample containing
crystal nuclei of energetically more favorable phase.
Therefore, depending on the properties of the crystal,
the nuclei of a new phase either arise at a considerable
distance from the energy equilibrium of the phases or
do not appear at all (i.e., remain suppressed).

3.2. Factor of dislocation unlocking of nuclei [18].
In real crystals, the stresses arisen upon nucleation par-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
tially relax through the dislocation motion. The disloca-
tions decrease the elastic energy of the mixed state,
moderate the striction effects, and, thus, narrow the
range of locking the nuclei.

3.3. Factor of dislocation immobilization. The
appearance of crystal nuclei of the new phase brings
about the motion of dislocations. These dislocations
pile up near nuclei due to their pinning at crystal inho-
mogeneities. The interaction of dislocations at points of
their pile-up leads to a strengthening of the material (a
peculiar kind of “self-hardening”). The formation of a
locking layer of dislocations around nuclei prevents
their further motion. As a first approximation, it is rea-
sonable to assume that the piled-up dislocations form a
spherical frustum of diameter dc. The degree of stress
relaxation depends on the ratio between dc and the lin-
ear sizes d of the sample. At d > dc, the stresses around
a nucleus partially relax, and the mechanism of nucleus
locking is predominant in these samples. At d < dc, the
dislocations leave the sample without formation of a
locking layer. The initial size d of the Mn0.99Fe0.01As
sample was equal to approximately 2 mm, which
apparently exceeded the diameter of the locking layer
of piled-up dislocations. As a result, the growth of the
FM(B81) crystal nuclei in this sample was hindered at
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Fig. 5. Temperature dependence of the inverse magnetic
susceptibility χ–1 in the initial state and the temperature
dependence of the magnetization M in the induced state of
the Mn0.95Ni0.05As alloy.

Fig. 6. Experimental H–T phase diagram of magnetic and
structural states for the Mn0.95Ni0.05As alloy.
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1702 ASADOV et al.
the first experimental stage. In the case when the sam-
ple in the FM(B81) state is cooled at least once, or this
state is induced by the magnetic field, the subsequent
transition to the hexagonal phase is accompanied by a
jumpwise change in both the symmetry and the specific
volume of the crystal lattice. The mechanical stresses
thus arisen bring about the fracture of the sample into
fragments whose sizes are likely less than the charac-
teristic size of the locking dislocation layer. These frag-
ments are characterized by dislocation unlocking of
nuclei. Therefore, the dislocation locking of the
FM(B81) crystal nuclei is absent in the subsequent
experimental cycles.

The x-ray diffraction investigations demonstrate
that the above transition occurs through the first-order
phase transition close to the second-order transition.
This is confirmed by a jumpwise change in the unit cell
parameters (Fig. 3a) and also by the coexistence of dif-
fraction maxima for both phases near the phase transi-
tion temperature, which was observed in the x-ray dif-
fraction patterns of the (440) planes. Since the specific
volume of the PM(B31) phase is larger than that of the
MMS(B31) phase, the transition between these phases
is associated with the manifestation of the following
factor.

3.4. Factor of asymmetric change in crystal
strength. Essentially, this factor is as follows. Upon the
MMS(B31)  PM(B31) phase transition, the growth
of the PM(B31) crystal nuclei with a larger specific vol-
ume brings about the strengthening of the sample due
to the dislocation immobilization. Upon the reverse
transition, the nuclei of the MMS(B31) phase with a
smaller specific volume separate from the matrix,
which results in an increase in the dislocation concen-
tration and a “softening” of the sample. As was noted in
[18], this factor should lead to a radical difference
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Fig. 7. A fragment of the experimental P–T phase diagram
for manganese arsenide.
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between the direct and reverse transitions. Conse-
quently, this factor prevents the growth of the FM(B81)
crystal nuclei in the vicinity of the MMS(B31) 
PM(B31) phase transition and, vice versa, favors their
growth upon reverse transition.

The x-ray diffraction patterns recorded along the
hexagonal basis of the Mn0.95Ni0.05As crystal show that,
at temperatures of the MMS(B31)  PM(B31) phase
transition, the contrast of the (040)0 and (026)0 diffrac-
tion lines disappears owing to their broadening. This
indicates a nonuniform distribution of deformations in
the crystal. As already mentioned, the deformations pri-
marily accumulate in the boundaries between crystallo-
graphic domains. In this case, the sizes of inhomogene-
ities can be as large as those of orthorhombic distor-
tions. The high contrast of the (040)0 and (026)0
diffraction lines well apart from the temperature of this
phase transition shows that the inhomogeneous defor-
mations comparable in magnitude to the orthorhombic
distortions, if any, are localized in the small volume of
the crystal. The loss of contrast in the x-ray diffraction
patterns near the phase transition temperature indicates
that these deformations occur throughout the bulk of
the crystal. Note that the sample volume with zero
structural order parameter increases, and, hence, the
probability of the formation of the FM(B81) crystal
nuclei in the PM(B31) matrix increases drastically. This
feature of the MMS(B31)  PM(B31) phase transi-
tion is a further contributing factor for the
MMS(B31)  FM(B81) phase transition.

Thus, we considered several factors, which, in our
opinion, determine the directions of the processes of
formation and growth of the FM(B81) crystal nuclei in
the PM(B31) matrix in the vicinity of the
MMS(B31)  PM(B31) phase transition. Unfortu-
nately, the combined effect of the aforementioned fac-
tors cannot be quantitatively evaluated because of the
complexity of the appropriate mathematical apparatus
and the lack of experimental data.

In this respect, the MnAs compound was further
investigated by differential thermal analysis (DTA).
The DTA data confirmed the possibility of the
MMS(B31)  FM(B81) phase transition occurring
through the intermediate PM(B31) state. For clarity, the
experimental data are shown in the P–T diagram at P ≥
1.5 kbar (Fig. 7). In this figure, the points of thermal
anomalies are denoted by open and closed squares, and
the arrows near the squares indicate the directions of
the change in T or P, at which the anomalies were
observed. The symbols ∧ and ∨  designate that the phase
transformation occurs either with heat release or with
heat absorption, respectively.

First and foremost, we note that the phase transition
PM(B31)  MMS(B31) is the first-order phase tran-
sition with a temperature hysteresis of ~7 K. The tran-
sition temperature, at least below P = 2.6 kbar, is virtu-
ally independent of pressure. As can be seen, the phase
transition is accompanied by the heat release upon
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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cooling (line dl) and the heat absorption upon heating
(line ck). The experimental amplitudes of the peaks
associated with the heat release and the heat absorption
are equal in magnitude and slightly decrease with an
increase in P in the pressure range studied.

The PM(B31)  FM(B81) phase transition occur-
ring in the abc portion of the P–T diagram is univer-
sally accompanied by the heat release without regard to
the sequence of changes in the thermodynamic parame-
ters P and T in the course of the experiment. The heat
absorption is observed upon the MMS(B31) 
FM(B81) phase transition, which takes place in the df
portion of the phase diagram. Finally, both the
PM(B31)  FM(B81) and MMS(B31)  FM(B81)
phase transitions can occur in the dc portion, depending
on the particular thermodynamic trajectory along
which the sample is transformed into the FM(B81)
state. For example, when passing along the ABCD tra-
jectory, the PM(B31)  FM(B81) phase transition
attended by the heat release is observed at point D. At
the same time, the MMS(B31)  FM(B81) transition
with the heat absorption is realized when going to the
same point D along the ABCEFD trajectory. Therefore,
the triple point of the first-order phase transitions is
located at about T ≈ 215 K and P ≈ 2.0 kbar.

Let us now elucidate how the pressure affects the
amplitude of thermal effects observed upon phase
transformations in MnAs. An increase in the pressure
leads to a decrease in the amplitude of the exothermic
peaks upon the PM(B31)  FM(B81) phase transition
in the abcd portion of the P–T diagram. This is a typical
phenomenon; it is explained by an increase in the rate
of thermal energy dissipation due to an increase in the
density of a pressure transmitting medium. However,
the amplitude of the endothermic peaks for the
MMS(B31)  FM(B81) phase transition increases
with an increase in the pressure. Note that, near the tri-
ple point (at which P and T for all the phase transforma-
tions are virtually identical), the amplitudes of the
peaks for the PM(B31)  MMS(B31) phase transi-
tion only slightly exceed those for the MMS(B31) 
FM(B81) phase transition, whereas the amplitudes of
the peaks for the PM(B31)  FM(B81) phase transi-
tion are approximately three times smaller than the
former amplitudes.

An anomalous increase in the amplitude of the
endothermic peaks upon the MMS(B31)  FM(B81)
phase transition with an increase in P can be explained
under the assumption that this transition occurs through
the intermediate PM(B31) state. This can be schemati-
cally represented in the following way. The
MMS(B31)  PM(B31) phase transition accompa-
nied by the heat absorption occurs at the first stage.
Then, the PM(B31) phase transforms to the FM(B81)
phase with the heat release. Therefore, the combined
effect of these thermal processes is recorded in the
experimental DTA curves. Since the amplitudes of the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
peaks differ in magnitude and sign, and, moreover, the
thermal effects are likely also different in the rates of
energy dissipation, the observed anomalous situation
can arise when the amplitude of the combined thermal
effect decreases upon the two-stage phase transition
MMS(B31)  PM(B31)  FM(B81) with a
decrease in the pressure.

4. CONCLUSION

Thus, an attempt was made to represent the specific
features of the phase transitions in manganese arsenide
and alloys on its base as the result of interaction
between the magnetic and structure parameters. We
proposed the new model for nucleation of the FM(B81)
phase upon the PM(B31)  FM(B81) first-order
phase transition when the PM(B31) state is metastable.
It was demonstrated that the nucleation of the FM(B81)
phase within the boundaries separating the crystallo-
graphic domains is thermodynamically favorable.

Within these boundaries, which are formed upon
lowering the symmetry of crystal lattice from B81 to
B31, the structural order parameter becomes zero and
does not affect the magnetic processes, including the
formation of the ferromagnetic state. Not all of the
inferences and statements of our concepts were proven
conclusively. In particular, the energy aspects of the
MMS(B31)  FM(B81) two-stage phase transition
remain unclear. However, the general conclusion drawn
in this work is beyond question: there is a close corre-
lation between the magnetic and structural properties.
In many respects, this relation determines the quantita-
tive characteristics of the material and also brings about
qualitatively new properties and phenomena, which
cannot be manifestations either only of the magnetic or
only of the structural subsystem. This is the main result
obtained in our work. Note also that the consistent
inclusion of interactions between the magnetic and
structural subsystems is an important and fruitful direc-
tion in the development of the phase transition concepts
in solids.

Owing to the specific features of manganese ars-
enide and alloys on its base, the structural properties
substantially affect the phase transformations. How-
ever, there is no need to prove the universal character of
this effect and the necessity of its inclusion in the treat-
ment of a large number of phenomena outside the prov-
ince of magnetism.
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Abstract—A study has been made of the electrical resistivity ρ, magnetoresistance ∆ρ/ρ, and magnetization of
La0.35Nd0.35Sr0.3MnO3 epitaxial films on ZrO2(Y2O3), SrTiO3, LaAlO3, and MgO substrates. The first film can
exist in four equivalent crystallographic orientations in the sample plane, while the other three have only one ori-
entation. The maxima of ρ and ∆ρ/ρ of the first film are broadened considerably in the vicinity of the Curie point
TC compared to the three others, the magnitude of ρ itself being larger by 1.5 orders of magnitude, and a large
negative magnetoresistance (|∆ρ/ρ| ~ 10% in a field of 8.4 kOe) is observed at temperatures 80 ≤ T ≤ 200 K. In all
films, the magnetic moment per molecule at 5 K is ~46% smaller than the pure spin value, due to the existence
of magnetically disordered regions. The larger value of ρ of the film deposited on ZrO2(Y2O3) is due to the elec-
trical resistance of the boundaries separating regions with different crystallographic orientations, and the mag-
netoresistance is associated with polarized carriers tunneling through the boundaries coinciding with domain
walls. The low-temperature magnetoresistance in fields above technical saturation is caused by the strong p–d
exchange coupling within spin-ordered regions. © 2000 MAIK “Nauka/Interperiodica”.
Although manganites with a perovskite structure
have long been known [1, 2], interest in them has been
growing since 1995. It is due to the discovery of a
colossal room-temperature magnetoresistance (MR) in
thin films of some compositions, an extremely impor-
tant finding for device applications. The colossal MR is
observed in these compounds near the Curie point TC
within a narrow temperature interval and lies mostly in
the suppression of the resistivity peak in the region of
TC. Increasing the temperature range where colossal
MR exists would be important from an application
standpoint.

The highest Curie point of 370 K was observed for
the La0.35Nd0.35Sr0.3MnO3 composition [1], but it has a
metallic conduction, and its MR is much lower than
that of the semiconducting manganites. It is of interest
to find out how a partial replacement of La by other
rare-earth ions in this composition would affect the
Curie temperature and the magnitude of MR.

The aim of this work is to study the effect of a partial
substitution of Nd for La on the electrical and magnetic
properties of the above composition and to broaden the
temperature region of existence of colossal MR by
properly choosing the substrate. It was found earlier
that La0.85Sr0.15MnO3 films on (001)ZrO2(Y2O3) single-
crystal substrates possess colossal MR within a broader
temperature interval than those grown on (001)LaAlO3
single-crystal plates [2, 3].
1063-7834/00/4209- $20.00 © 21705
1. PREPARATION OF THIN FILMS 
AND EXPERIMENTAL TECHNIQUES

The films were prepared by the method of metal
organic chemical deposition (MOCVD) with an aerosol
source of metal-organic (La, Nd, Sr, and Mn dipivaloyl
methanates) vapors [4].

The substrates were 1-mm thick plates cut from
ZrO2(Y2O3), LaAlO3, SrTiO3, and MgO crystals so that
their surface coincided with the (001) crystal plane.

The films were deposited in a vertical reactor on
inductively heated substrates. After deposition, the
films were additionally annealed in oxygen at the dep-
osition temperature (750°C) for 0.5 h.

The x-ray diffraction analysis of the films, including
the determination of the phase composition, orienta-
tion, and lattice parameters, was carried out on a Sie-
mens D5000 four-circle diffractometer with a second-
ary graphite monochromator (CuKα radiation). The
film composition was determined by x-ray microprobe
analysis (using a CASCAN scanning electron micro-
scope equipped with the EDAX system).

The magnetization of thin films was determined
with a SQUID magnetometer, and the electrical resis-
tivity, by the four-probe method. The MR was mea-
sured in the film plane, with the current through the film
parallel to the magnetic field H.
000 MAIK “Nauka/Interperiodica”
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Magnetic, electrical, and crystallographic characteristics of La0.35Nd0.35Sr0.3MnO3 films

Substrate MgO LaAlO3 SrTiO3 ZrO2(Y2O3)

TC, K (H = 10 Oe) 242 231 219

TC, K (H = 100 Oe) 241 223 245

Magnetic moment per formula unit, µB 1.7 1.6 2 1.9

Temperature of the maximum in ρ, Tm (K) 252 252 252 225

Temperature of the maximum in |∆ρ/ρ|, Tmax (K) (H = 8.4 kOe) 228 223 213 225

Maximum value of ρ, ρmax (Ω cm) 0.085 0.13 0.084 0.63

Value of ρ at 82 K, ρ82 K (Ω cm) 0.0089 0.0059 0.0040 0.19

Maximum value of |∆ρ/ρ|, |∆ρ/ρ|max, in a field H = 8.4 kOe 0.34 0.23 0.22 0.13

Value of |∆ρ/ρ| at 82 K in a field H = 8.4 kOe, |∆ρ/ρ|82 K 0.04 0.03 0.03 0.11

Film thickness, Å 4100 5500 5500 5500

Interplanar parameter, Å 3.882 ± 0.001 3.880 ± 0.002 3.872 ± 0.001 3.874 ± 0.001

Intraplanar parameter, Å 3.876 ± 0.002 3.875 ± 0.002 3.878 ± 0.001 3.881 ± 0.002

Perovskite cell volume, Å3 58.32 ± 0.08 58.26 ± 0.09 58.23 ± 0.05 58.25 ± 0.06
2. RESULTS OF THE EXPERIMENT 
AND THEIR DISCUSSION

2.1. Crystallographic Properties

The results of θ–2θ scanning showed that the films
on LaAlO3, SrTiO3, and MgO have a (001) orientation,
and that on ZrO2(Y2O3), a (110) orientation. The planar
orientation was achieved by ϕ scanning. The films on
LaAlO3, SrTiO3, and MgO were found to be in cube-
on-cube epitaxial growth registry with the substrate.
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H || film surface
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T = 5 K
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Fig. 1. Magnetization M (µB/f.u.) vs magnetic field H in
La0.35Nd0.35Sr0.3MnO3 thin films on various substrates.
The film composition in the subsequent figures is the
same. Substrate: (1) MgO; (2) SrTiO3; (3) LaAlO3; and
(4) ZrO2(Y2O3).

4

P

The film on ZrO2(Y2O3) also exhibits a planar orienta-
tion, but a more complex one. The body diagonals of its
perovskite cubes are parallel to the fluorite cube-face
diagonals of the ZrO2(Y2O3) structure, with four equiv-
alent orientations available: (i) [1–11] f || [110]s, [–112]f ||
[–110]s, (ii) [1–11]f || [110]s, [–112]f || [–1–10]s, (iii) [1–
11]f || [–110]s, [–112]f || [110]s, and (iv) [1–11]f || [–110]s,
[–112]f || [–1–10]s, where the f and s subscripts denote
the film and the substrate, respectively. As a result, angles
of 19.5, 70.5, and 90° are formed in the Mn–O–Mn–O
chains at the contacts of the above regions with differ-
ent orientations. Such an orientation was observed ear-
lier in La1 – xSrxMnO3 films on the ZrO2(Y2O3) sub-
strate [3].

It can be seen from the table presenting the lattice
parameters of the films, they are close to the pseudocu-
bic crystalline structure; indeed, their interplanar dis-
tance is close to the intraplanar parameter. These
parameters are the same for films grown on different
substrates. No reflections other than the ones character-
istic of the simple perovskite structure were observed.
This is due to the fact that the La0.35Nd0.35Sr0.3MnO3
composition under study here with the mean ionic
radius of the A cation of 1.225 Å (a tolerance factor of
0.922) lies nearly at the morphotropic boundary
between the orthorhombic Pnma and rhombohedral
R3c structures. This is apparently why the distortions of
the perovskite structure are so small as to be below the
experimental accuracy. For this reason, the lattice
stresses typical of manganite films obviously relax
almost completely in the films under study.

2.2. Magnetic Properties

The film magnetization M was measured on an in-
plane magnetic field, with corrections for the substrate
magnetization being introduced properly. Figure 1 pre-
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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sents the M(H) dependences for all the films obtained at
T = 5 K. We readily see that the magnetization of all
films, except that on MgO, saturates rapidly in a field of
a few kOe. After saturation within the 7–25 kOe region,
the film on MgO exhibits a close-to-linear growth of M
as the field continues to increase (the maximum field
used in the measurements was H = 50 kOe), with the
magnetic moment per formula unit increasing from
1.9 µB to 2.6 µB.

Figure 2 shows the hysteresis loops of all the films
studied, which were obtained at the maximum field of
1 kOe. As seen from the figure, the loops are fairly nar-
row, and the coercive force does not exceed 300 Oe.
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Fig. 2. Hysteresis loops for thin films deposited on various
substrates: (a) (1) SrTiO3, (2) ZrO2(Y2O3) and (b) (3) MgO
and (4) LaAlO3.
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Displayed in Fig. 3 is the temperature dependence of
the initial magnetic susceptibility of all the films. Their
Curie points TC listed in the table were determined by
extrapolating the steepest part of the M/H(T) curves to
intersect with the temperature axis.

2.3. Electrical Properties

Figure 4 presents the temperature dependences of
the electrical resistivity ρ of all the films studied, and
Fig. 5, those of the MR, ∆ρ/ρ, for films on SrTiO3 and
ZrO2(Y2O3). Here ∆ρ = ρH – ρH = 0. Figure 6 shows the
∆ρ/ρ(H) dependence obtained at several temperatures
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Fig. 3. Temperature dependence of the initial magnetic sus-
ceptibility of thin films on various substrates measured in
fields H: (a) 10 and (b) 100 Oe. Substrates: (a) (1) MgO,
(2) LaAlO3, (3) SrTiO3 and (b) (1) LaAlO3, (2) ZrO2(Y2O3),
and (3) SrTiO3.
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on the same films. The ∆ρ/ρ(T) and ∆ρ/ρ(H) curves
measured on films deposited on MgO and LaAlO3 are
similar to those presented in Figs. 5a and 6a for the film
on SrTiO3. The temperatures of the maxima in the
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Fig. 4. Temperature dependence of electrical resistivity ρ of thin
films on various substrates: (1) ZrO2(Y2O3), (2) SrTiO3,
(3) MgO, and (4) LaAlO3.
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Fig. 5. Temperature dependence of magnetoresistance
∆ρ/ρ: (a) thin film on the (001) SrTiO3 substrate; (b) thin
film on the (001) ZrO2(Y2O3) substrate.
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|∆ρ/ρ|(T) and ρ(T) curves are listed in the table for all
the films studied.

2.4. Discussion of Results

It can be seen from Fig. 4, the ρ(T) curves have a
maximum, its position Tm for the film on ZrO2(Y2O3)
being lower than TC by 20 K, and that for the films on
SrTiO3, MgO, and LaAlO3, higher than TC by about
20 K. The MR is negative, and the |∆ρ/ρ|(T) curves also
pass through a maximum near TC (see Fig. 5). The MR
isotherms do not saturate throughout the temperature
region covered (see Fig. 6). The MR reaches as high as
34% at H = 8.4 kOe in the film on MgO, while for the
other films it is lower: 23, 22, and 13% for the films on
LaAlO3, SrTiO3, and ZrO2(Y2O3), respectively (see
table). Thus, the films studied in this work exhibit
colossal MR near TC, just as this is observed in manga-
nites of other compositions [5–7].

A comparison of the ρ(T) curves of the film on
ZrO2(Y2O3) with the three other films on the perovskite
and MgO substrates (Fig. 4) shows the magnitude of ρ
of the first film to be substantially larger than that of the
others. It follows from the table that at 82 K it is larger
by more than an order of magnitude, and at the maxi-
mum in ρ, by a factor of four–eight. The shapes of the
curves are different as well. For instance, the strong
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Fig. 6. Isotherms of magnetoresistance ∆ρ/ρ: (a) thin film
on the (001) SrTiO3 substrate; (b) thin film on the (001)
ZrO2(Y2O3) substrate.
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000



EFFECT OF THE SUBSTRATE CRYSTALLINE STRUCTURE 1709
growth of ρ with increasing temperature in films on
SrTiO3, LaAlO3, and MgO starts at T ~ 180 K, whereas
ρ of the film on ZrO2(Y2O3) already starts to increase
monotonically at 80 K, which is the lowest measure-
ment temperature, i.e., the maximum in the ρ(T) curve
is broadened considerably. The difference between the
|∆ρ/ρ|(T) curves is larger still; indeed, the first three
films exhibit a sharp maximum at the temperature Tmax
which is slightly lower than TC, while in the film on
ZrO2(Y2O3) this peak, which also lies slightly below
TC, is diffuse and barely noticeable on the low-temper-
ature side (Fig. 5). The latter film has a high |∆ρ/ρ| at
low temperatures; namely, it reaches ~10% in a field of
8.4 kOe and grows slowly starting from 100 K as the
temperature is further lowered. The |∆ρ/ρ|(H) curves of
the first three films and of the last one also differ
strongly (see Fig. 6); indeed, the first three exhibit a
nearly linear increase in |∆ρ/ρ| with the field at temper-
atures below that corresponding to the maximum on the
|∆ρ/ρ|(T) curve, whereas the latter film reveals a sharp
growth of |∆ρ/ρ| in weak fields up to ~ 2 kOe, which is
replaced by a close-to-linear increase of |∆ρ/ρ| at
higher fields.

Behavior of ρ and ∆ρ/ρ similar to that observed in
the film on ZrO2(Y2O3) was seen earlier in the poly-
crystalline bulk and in thin-film samples of manganites
[8–22]. At the same time, the variation of ρ and ∆ρ/ρ in
single-crystal samples of the same composition resem-
bled that observed by us in films on SrTiO3, LaAlO3,
and MgO. It was assigned to spin-polarized tunneling
among grains [14], or to carrier scattering within
domain walls, which coincide, as a rule, with grain
boundaries [9]. It was shown [23] that NMR data
obtained on a La0.67Ca0.33MnO3 film indicate the hole
concentration to be lower inside domains.

However, all the films studied in this work are single
crystals, including the film on ZrO2(Y2O3). The latter
differs from the other films investigated here in that it
consists, as pointed out in 2.1, of microregions with
four different crystallographic orientations. This results
in the existence in it of magnetic domains having at
least four different easy-magnetization axes, whose
boundaries make different angles with the magnetiza-
tion directions in the domains. The easy-magnetization
axes in different parts of the films on the perovskite and
MgO substrates are parallel to one another, and such
films should therefore be largely made up of 180° mag-
netic domains.

The magnitude of ρ of the films on the perovskite
and MgO substrates measured at T < TC (see table) indi-
cates that their conduction is metallic. It follows that
the carrier-mediated exchange coupling is dominant in
this compound. The Curie temperature is given in this
case by [24]

(1)

where t is the transfer integral (the conduction-band
width W is proportional to t), z is the coordination num-

TC ztν ,∼
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ber of the magnetic ion (Mn in the present case), and ν
is the number of carriers per magnetic ion. As seen
from the table, the film on ZrO2(Y2O3) has approxi-
mately the same Curie temperature as the three others.
This means that the exchange interaction in this film is
likewise mediated by carriers, and that the increase of
its electrical resistivity by more than an order of mag-
nitude compared to the three other films is due to the
boundaries separating regions with different crystallo-
graphic orientations. It was already pointed out that
there are no such boundaries in the other three films
studied in this work. Obviously enough, the electrical
resistivity of a film on ZrO2(Y2O3), as that of polycrys-
talline samples, consists of two parts, more specifically,
of the resistivity ρ1 inside the crystallographic regions
with an average linear size L described in Section 2.1
(or the resistivity inside individual grains in the case of
a polycrystal), i.e., the intrinsic electrical resistivity of
the material, and of the electrical resistivity ρ2 inside
the boundaries separating regions with different crys-
tallographic orientations, which have an average thick-
ness L' (or the electrical resistivity of the grain bound-
aries). The quantity ρ can be written in the form [25]

. (2)

Regions with different crystallographic orientations in
a film on ZrO2(Y2O3) are separated by special large-
angle boundaries (9.5, 70.5, and 90°). This means that
the angles θ in the –Mn–O–Mn–O–Mn– chains
between the lines connecting two manganese ions with
the oxygen ion, which are close to 180° within the crys-
tallographic regions, abruptly change to the above val-
ues inside the boundaries separating these regions.

It is known that the width of the conduction band in
manganites (in the one-electron approximation) is pro-
portional to cos2θ [7], and the sharp change of θ inside
a boundary separating regions with different crystallo-
graphic orientations thus leads to a strong decrease of
the conductivity inside it. It is shown by an electron
microscope image of this film that the thickness of the
boundary is close to the lattice constant [26]. At the
same time, all regions of the films on SrTiO3, LaAlO3,
and MgO have the same crystallographic orientation,
and they have no such boundaries. Therefore, the
higher value of ρ or the film on ZrO2(Y2O3) is only due
to the second term in (2). Assuming ρ1 to have the same
magnitude in all four films and to be approximately 6 ×
10–3 Ω cm (see table), and substituting this value, as
well as the values L' ≅  4 Å and L ≅  400 Å [26] into (2),
we obtain ρ2 ≅  18.4 Ω cm at 82 K. Thus, the electrical
resistivity within a boundary separating microregions
with different crystallographic orientations is more
than three times that in these microregions and, in order
of magnitude, is of the semiconducting nature.

The small thickness of this layer and the large mag-
nitude of ρ2 suggest that the conduction is realized here
by tunneling through such a boundary. As will be
shown below, part of these boundaries coincide with the

ρ ρ1 L'/L( )ρ2+≅
0



1710 ABRAMOVICH et al.
domain walls. In this case, tunneling follows a specific
pattern associated with the fact that the tunneling electrons
are almost fully spin-polarized. This situation was
described for polycrystalline bulk manganite samples
[14]. In the case when the electron spins are conserved
during tunneling, and when the magnetic moments of
neighboring grains are not parallel to one another, the fol-
lowing expression was derived for the MR [14]:

(3)

where J is the intergranular exchange-coupling con-
stant, P is the electron polarization, and m is the mag-
netization normalized to the saturation value. This
expression can apparently be applied to the film on
ZrO2(Y2O3) as well. As seen from (3), after reaching
technical saturation of magnetization, the absolute
magnitude of MR saturates too.

Figure 6 shows, however, that the MR isotherms of
the film on ZrO2(Y2O3) do not exhibit saturation in the
low-temperature domain, although the magnetization
has already saturated (Fig. 1). It can be seen from Fig. 6
that the MR isotherms first reveal a strong growth of
|∆ρ/ρ| in fields of up to 2 kOe at low temperatures, fol-
lowed by a slower, nearly linear-in-field increase as H
continues to grow. It can therefore be conjectured that
the low-temperature MR above the technical saturation
field is accounted for, in addition to the above-men-
tioned spin-polarized tunneling, by some other pro-
cesses as well.

It was mentioned above that the high low-tempera-
ture electrical resistivity and the MR in polycrystalline
samples was also related to carrier scattering from spin
system disorders within domain walls. This explana-
tion is, however, hardly applicable to the manganites,
which are characterized by a strong p–d exchange cou-
pling and thick domain walls. It is well known that
manganites are magnetically soft materials, because the
magnetocrystalline anisotropy energy in them does not
exceed 2 × 104 erg/cm3 [27], and therefore, the domain-
wall thickness is here large; estimates [28] suggest that
it may be as high as 103 lattice constants a in bulk sam-
ples. In thin-film samples, where the film thickness is of
the order of the domain wall thickness specified for a
bulk sample (the films considered in this work are
~5500 Å thick), the domain structure is more complex.
No consensus has yet emerged about it [28]. Therefore,
as a rough approximation, one can consider the domain
wall thickness in thin films to be the same as in a bulk
sample. As mentioned above, the size of the crystallo-
graphic microregions in a film on ZrO2(Y2O3) ~ 400 Å,
or a × 102, which is an order of magnitude less than the
possible domain wall thickness. Since this film pre-
serves the long-range magnetic order, each domain
should contain more than ten crystallographic microre-
gions. In some regions of the film, however, the domain
wall thickness is greater than the size of the crystallo-
graphic microregions and of the order of the film thick-
ness; thus, there might not be long-range magnetic

∆ρ/ρ JP 4kBT( ) m2 H T,( ) m2 0 T,( )–[ ] ,–=
P

order. Indeed, as seen from Fig. 1 and the table, the
magnetic moment per formula unit in this film is sub-
stantially less than that expected under complete ferro-
magnetic ordering of all ions (including the magnetic sub-
lattice of the Nd3+ ions), and this constitutes ~54% of the
latter. Within such a wide domain wall, the spins rotate
gradually, and because of the strong p–d exchange cou-
pling, the carrier spin is aligned parallel to the spin of the
ion at which the carrier is at the given instant, a situation
in which no carrier scattering occurs at all [24].

As seen from Fig. 5, the |∆ρ/ρ|(T) curves have a
maximum near TC for all four films studied. The value
of |∆ρ/ρ|max is large, 34% for the film on MgO, and 13%
for the film on ZrO2(Y2O3); for the two remaining
films, it is 22.5% in a field of 8.4 kOe (see table). We
recall for comparison that in conventional magnets, for
instance, in ferrites, |∆ρ/ρ|max near TC is lower by two to
three orders of magnitude. La0.35Nd0.35Sr0.3MnO3 is an
antiferromagnetic semiconductor La0.35Nd0.35MnO3
doped heavily with strontium, which exhibits metallic
conduction below TC, and a transition to semiconduct-
ing behavior near TC (see Fig. 4). It was shown [29] that
in such manganites with a strong p–d exchange interac-
tion, there are two mechanisms by which impurity-
induced magnetic interaction affects resistance: namely,
the scattering of carriers, which reduces their mobility, and
band tailing that involves localized states. In the vicin-
ity of TC, the mobility of carriers drops sharply, and
they are localized partially in the band tail. The mag-
netic field reduces the impurity-induced carrier scatter-
ing, and the carriers delocalize from the band tail.

It can be seen from Fig. 4 that the value of ρ for the
film on ZrO2(Y2O3) increases monotonically starting
from the lowest measurement temperature, whereas the
film on SrTiO3, as well as those on LaAlO3 and MgO,
exhibit a substantially more pronounced growth start-
ing from T > 200 K. The MR behaves in an identical
manner, the only difference being that the sharp
increase of |∆ρ/ρ| for the film on SrTiO3 starts from T >
160 K, whereas the maximum of |∆ρ/ρ| lies here at a
lower temperature than for ρ. At the same time, the
peak of |∆ρ/ρ|(T) for the film on ZrO2(Y2O3) is barely
discernible, and the magnitude of |∆ρ/ρ| in the low-
temperature region is only 2–3% lower than that in the
vicinity of TC. This suggests that the MR at low temper-
atures occurring in fields above those producing techni-
cal saturation has the same origin as near TC (see
above). At low temperatures, the carriers in spin-disor-
dered microregions, which, as was mentioned above,
occupy ~54% of the film area, are roughly in the same
conditions as near TC, namely, the spins are strongly
disordered, and a strong p–d exchange coupling pre-
vails. This is only possible, however, when the spin-dis-
ordered regions exist in fields above technical satura-
tion. In the same manner, one can explain the low-tem-
perature MR above technical-saturation fields in films
on SrTiO3, LaAlO3, and MgO, because they also appar-
ently contain spin-disordered microregions. This is
indicated by a lower level of magnetization in films on
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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SrTiO3, LaAlO3, and MgO as compared to the pure spin
value for ferromagnetic ordering of all ions (see table
and Fig. 1). It can be seen from Fig. 1 that after satura-
tion in fields from 10 to 25 kOe, the film on MgO again
exhibits a nearly linear-in-field increase in the magnetic
moment.

It is known that the stresses created in manganite
films by the lattice mismatch between the material and
the substrate increase the magnetic anisotropy. How-
ever, the stresses in films on MgO substrates relax rap-
idly. It was pointed out in Section 2.1 that the stresses
in films of the composition used here are very small
because this composition is close to the morphotropic
boundary separating the orthorhombic from the rhom-
bohedral structure, which further enhances the relax-
ation in films on MgO. This film is apparently the least
stressed of all those studied here, and this accounts for
the spin ordering in magnetically disordered microre-
gions that we observed.

By substituting La for Nd in Nd0.7Sr0.3MnO3, we
wanted to increase the Curie temperature of the films.
The considerations are as follows. It is known that the
Mn–O–Mn bond angle in an undistorted perovskite struc-
ture is 180°. Replacement of Nd ions by the smaller Sr
ions results in a lattice distortion. It could be expected that
a partial replacement of Nd ions by the larger La ions
would bring the bond angle closer to 180°, as a result of
which the conduction band would become wider, and
therefore, the transfer integral t would increase, and the
carrier-mediated exchange coupling would become stron-
ger. In accordance with (1), this would also bring about
an increase of the Curie temperature. As seen from the
table, however, the replacement of half of the Nd ions
by La did not produce the expected result; indeed, TC,
which is 240 K for Nd0.7Sr0.3MnO3 [30], did not change
for the La0.35Nd0.35Sr0.3MnO3 composition. This is
apparently accounted for by crystallographic disorder-
ing of the A sites in the ABO3 perovskite, which is
described, for example, in [31]. Due to this disorder, the
orthorhombic distortion of the perovskite lattice in the
latter composition is the same as in the former one.
Thus the transfer integrals t in both compositions are
equal, as a result of which their Curie points are also
equal, in accordance with (1).
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Abstract—A study is reported of the optical transmission and small-angle light scattering (SAS) in ordered
and disordered stoichiometric single crystals of lead scandoniobate (PSN) with a zero and a dc electric field
applied. It is shown that the spontaneous phase transition occurring in both crystals is accompanied by a sharp
peak in SAS intensity, which implies the percolation nature of this transition. A field–temperature phase dia-
gram has been constructed for the PSN single crystals studied in the work. © 2000 MAIK “Nauka/Interperiod-
ica”.
INTRODUCTION

Lead scandotantalate PbSc1/2Ta1/2O3 (PST) and
scandoniobate PbSc1/2Nb1/2O3 (PSN) occupy a specific
place among the large class of relaxor materials. In con-
trast to such a classical relaxor as lead magnoniobate
(PMN) and similar ferroelectric relaxors, which do not
exhibit ferroelectric behavior in the absence of an elec-
tric field, these compounds, besides revealing relaxor
properties within a certain temperature interval,
undergo a spontaneous phase transition to a ferroelec-
tric phase even with no electric field applied [1–3].
These materials are a very good subject not only for
investigating the spontaneous ferroelectric phase tran-
sition, but also for studying the relaxor properties. As a
result of a high-temperature order–disorder transition
in the distribution of different ions in crystallographic
positions of the same type [4], the order (or disorder) in
the arrangement of the B' and B" cations can be differ-
ent, depending on the heat treatment that a sample was
subjected to. By varying the extent of ion ordering and
monitoring it by x-ray diffraction, one can vary the
relaxor properties of a material and study the relation
between the relaxor and normal ferroelectric behavior
in the same material. Before the discovery of these
materials, the relation between the ferroelectric and
relaxor properties could only be studied experimentally
on different samples.

Despite a number of common features in the behav-
ior of the PST and PSN compounds, there are, however,
substantial differences. Indeed, the ferroelectric phase-
transition temperature of ordered PST crystals (T ~
40°C) is higher than that of disordered ones (T ~ 0°C),
whereas for the PSN crystals the reverse is true. The
change in the unit-cell volume at the ferroelectric–
paraelectric phase transition in these compounds like-
wise has opposite signs. The reasons for these differ-
ences remain unclear. One possible reason could per-
haps be the different order–disorder transition temper-
1063-7834/00/4209- $20.00 © 21712
atures (Tord). In PST crystals, this quantity is higher
(Tord ~ 1450°C) than in PSN (Tord ~ 1280°C). At the
same time, the sintering temperature of ceramic sam-
ples and the growth temperature of PST single crystals
is always lower than Tord, and the extent of order in as-
grown PST compounds is therefore close to unity. The
synthesis temperature of PSN ceramics and single crys-
tals ~1100–1300°C; i.e., it is close to or higher than
Tord, and the extent of order in as-grown samples is, as
a rule, close to zero. It was suggested [5, 6] that the
nature of the difference in the relation between the fer-
roelectric phase-transition temperatures in ordered and
disordered samples of PST and PSN could be associ-
ated with the larger nonlinearity of the Nb–O than Ta–
O octahedra and with the smaller size of ordered
regions in PSN compared to PST compounds. These
effects were shown to shift the temperature of the max-
imum in ε to higher temperatures in disordered PSN
samples.

Heat treatment, which is usually employed to
change the extent of ordering in a sample [7] results in
a lowering of the extent of ionic order s in PST, but in
its increase in PSN. In both cases, however, the ferro-
electric phase-transition temperature decreases. At the
same time, annealing of a sample may give rise not only
to a change in the extent of ion ordering, but also in lead
losses. It is known [3, 8–10] that a large lead loss shifts
the ferroelectric phase-transition point toward lower
temperatures and hinders the spontaneous ferroelectric
transition, making the material a conventional relaxor.
At the same time, mere disorder in the ion arrangement
is not a serious obstacle to a spontaneous ferroelectric
transition in these materials. Thus, a straightforward
comparison of the physical properties of PST and PSN
compounds is impossible because of different initial
conditions of ordering.

Application of a dc electric field should differently
affect the relaxor properties and the character of the
000 MAIK “Nauka/Interperiodica”
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spontaneous ferroelectric phase transition. The effect
of an external field on the dielectric properties of PST
ceramics with a different extent of ion ordering was
studied comprehensively in [2]. However, optical meth-
ods, more specifically, optical transmission and small-
angle light scattering (SAS), possess a higher sensitiv-
ity to the variation of inhomogeneities in size at phase
transitions [11, 12]. If a phase transition is of the perco-
lation type, the average size of a new-phase cluster at
the percolation threshold tends to the size of the sam-
ple, a large-scale inhomogeneous structure forms, and
the phase transition should be accompanied by the for-
mation of anomalously narrow SAS intensity peaks
and, hence, by a minimum in optical transmission. We
showed by SAS measurements that the spontaneous
phase transition occurring in PST single crystals with a
different extent of ion ordering is of the first order, of a
percolation nature, and accompanied by the appearance
of an anomalously narrow peak in SAS intensity [12–
15]. An external electric field reduces the region of
existence of the relaxor phase and increases the stabil-
ity of the ferroelectric phase.

No study on the effect of an electric field on the
behavior of the relaxor and normal ferroelectric states
in PSN crystals has been made before this experiment.
This problem is of interest in itself, because a direct
comparison of the effect of an electric field on the
dielectric and optical properties of PST and PSN crys-
tals is impossible to carry out due to the different initial
conditions of ordering.

Thus, this work aimed to study the effect of an elec-
tric field on the spontaneous and relaxor phase transi-
tions in ordered and disordered stoichiometric PSN sin-
gle crystals by means of optical and dielectric measure-
ments.

1. GROWTH OF SINGLE CRYSTALS 
AND EXPERIMENTAL TECHNIQUES

Before the initiation of this work, information on the
properties of stoichiometrically ordered PSN com-
pounds was lacking, with the exception of structural
studies [10] and our publications [12–15]. Using the
method proposed in [16], we succeeded in growing
both disordered and ordered stoichiometric PSN single
crystals. The different extent of ordering was reached
by properly varying the sample preparation tempera-
ture, because heat treatment, usually employed for this
purpose, entails lead losses and optical degradation of
samples. The grown ordered crystals measured 3 × 2 ×
2 mm and were practically colorless, while the disor-
dered ones were brownish and measured 2 × 1 × 1 mm.
The temperature of the maximum in ε was 80°C for the
ordered samples and +112°C for the disordered ones,
which agrees with [4].

We studied optical transmission and SAS measured
in the transmission geometry [17]. A He–Ne laser was
used for optical measurements. The electric field was
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
applied along the [001] direction at room temperature,
and the light was propagated along [100]. The dielec-
tric measurements were carried out at a frequency of
1 kHz. The rate of sample temperature variation was
varied from 1.5 to 4.5°C/min. On application of an
electric field, the samples were depolarized before each
measurement by heating them above Tmax ε.

2. EXPERIMENTAL RESULTS AND DISCUSSION
Figure 1 presents the temperature dependences of

the SAS intensity measured in a heating run in zero
field (curve 1) and a dc electric field applied (curve 2),
as well as of the dielectric permittivity (curve 3) of an
ordered PSN crystal. One clearly sees an SAS peak at
the temperature Td, which confirms the existence of a
percolation-type spontaneous transition, whereas the ε
curve exhibits only a quick rise of ε at this temperature.
The nonrelaxation character of this spontaneous transi-
tion is corroborated by the coincidence in temperature
of the SAS intensity peak measured at a zero field fre-
quency, with the anomaly in the permittivity curve
taken at 1 kHz. The maximum in ε lies ~2°C above the
transition temperature Td, which implies that a very
small part of the crystal volume is occupied by the dis-
ordered phase. As the electric field increases, the Td
temperature also increases.

Figure 2 displays the temperature dependences of the
dielectric permittivity (curve 1) and of the optical trans-
mission obtained in a heating (curve 2) and a cooling
(curve 3) run on a disordered PSN crystal. The minimum
in the optical transmission curve observed at ~100°C
agrees in position with the SAS intensity maximum
(see the inset in Fig. 2) and coincides with the Td tem-
perature derived from curve 1. As seen from the trans-
mission curves obtained in the heating and cooling
runs (curves 2 and 3, respectively), the difference in
position between the optical transmission minima is
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Fig. 4. Electric-field dependence of the temperature of the
spontaneous ferroelectric phase transition obtained on (1)
an ordered and (2) a disordered PSN crystal.
P

~13°C. The existence of a temperature hysteresis is a
major signature of a first-order phase transition. Apply-
ing an electric field to the disordered sample shifts the
spontaneous ferroelectric transition point toward higher
temperatures (Fig. 3), as is also the case with the ordered
sample (curve 2 in Fig. 1).

The measurements of the SAS intensity and of the
optical transmission made on the ordered and disor-
dered PSN samples under the application of dc electric
fields were used to construct the electric-field depen-
dences of the spontaneous ferroelectric phase transition
temperature (curves 1 and 2 in Fig. 4). In a practically
ordered crystal, the Td temperature depends linearly on
the electric field, which is typical of a first-order phase
transition (curve 1 in Fig. 4). In a disordered crystal,
this dependence differs slightly from a linear relation
(curve 2 in Fig. 4), although the presence of a SAS peak
and the observed temperature hysteresis suggest a first-
order phase transition. This may be due to the existence
of locally polarized regions in the disordered crystal
above Td.

The above data on the effect of an electric field on
the behavior of the spontaneous ferroelectric transition
in disordered and ordered PSN crystals agree with the
results of [2] obtained on ceramic PST samples and
with our data on PST single crystals [14].

CONCLUSION

Thus, we have succeeded in growing both ordered
and disordered stoichiometric PSN single crystals. It
has been shown that, despite the different initial condi-
tions of ordering in PSN and PST crystals, an electric
field acts on the spontaneous phase transition in the
same way in both crystals, namely, the transition tem-
perature grows with increasing field; the growth is lin-
ear in ordered crystals, while deviating from the linear
relation in disordered ones. Similar to PST crystals, the
spontaneous phase transition in ordered and disordered
stoichiometric PSN crystals is of the first order, of a
percolation nature, and accompanied by the formation
of an anomalously narrow SAS peak. Applying an elec-
tric field to the sample reduces the temperature interval
of existence of the relaxor phase.
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Abstract—The structure of the Sr0.75Ba0.25Nb2O6 single crystal has been investigated by x-ray diffraction. The
occupancies of the Ba and Sr sites in two structural channels are determined. It is found that these sites are split
in the large (pentagonal) channel. A qualitative correlation is revealed between the smearing of the phase tran-
sition and the displacement of the Sr atom from the m symmetry plane in the pentagonal channel at different
[Sr]/[Ba] ratios. The degree of acentricity of the NbO6 octahedra is analyzed as a function of the [Sr]/[Ba] ratio.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Ferroelectric crystals of SrxBa1 – xNb2O6 (SBN-x)
solid solutions have unique properties from the view-
point of practical (pyroelectric, piezoelectric, elec-
trooptical, and holographic [1, 2]) applications and
basic investigations. These materials belong to the
extensively studied class of relaxor ferroelectrics [3, 4],
for which the characteristics of the ferroelectric phase
transition (its smearing and temperature) and, hence, all
the parameters are governed by the composition, i.e.,
the [Sr]/[Ba] concentration ratio. The SBN compounds
have a structure of the unfilled tungsten bronze type [5–
8] and exhibit a random disordering of Sr and Ba cat-
ions over two crystallographic positions. In this
respect, it is of interest to trace a qualitative correlation
between the characteristics of the phase transition in
crystals of different compositions and the change in the
structural disordering that accompanies the change in
the composition. The revelation of this correlation is
one of the purposes of the present work.

The structure of SBN crystals was investigated in a
number of works [5–8]. Figure 1 shows the projection
of the SBN model atomic structure onto the ab plane,
which was proposed by Jamieson et al. [5]. The SBN
structure is built up of two types of crystallographically
independent NbO6 octahedra joined via oxygen corners
into a three-dimensional network. In this network, there
are three types of structural channels running along the
polar c axis. As follows from all the structural investi-
gations [5–8], in the SBN structure, the narrowest chan-
nels with a triangle cross-section (channels C in terms
of [5]) are empty, the tetragonal channels A1 with an
intermediate diameter are occupied only by the Sr
atoms, and the largest channels A2 with a pentagonal
1063-7834/00/4209- $20.00 © 1716
cross-section are filled by Ba and Sr atoms. All the
channels are occupied in a random way.

Before proceeding to the discussion of our results,
let us briefly summarize the findings of investigations
into the SBN structure of different compositions [5–8].
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Fig. 1. Projection of the (Sr,Ba)Nb2O6 structure onto the ab
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Table 1.  Coordinates and effective isotropic thermal parameters of the basis atoms in the Sr0.746Ba0.247Nb2O6 structure

Atom Site multiplicity Site occu-
pancy, % Symmetry x/a y/b z/c Beff, Å

2

Nb(1) 2 100 mm 0 0.5 0.0 1.49

Nb(2) 8 100 1 0.0746(1) 0.2114(1) 0.0029(8) 1.11

Sr(1) 2 71.5(2) 4 0 0 0.5023(10) 0.81

Sr(2) 8 28.6(2) 1 0.1558(3) 0.6848(5) 0.5026(13) 1.73

Ba 4 30.9(3) m 0.1738(3) 0.6738(3) 0.4992(14) 1.47

O(1) 8 100 1 0.3438(2) 0.0055(2) 0.0567(13) 2.22

O(2) 8 100 1 0.1396(2) 0.0682(2) 0.0397(22) 2.52

O(3) 4 100 m 0.2805(2) 0.7805(2) 0.0257(33) 2.01

O(4) 4 50 m 0.0165(4) 0.5165(4) 0.5166(32) 3.49

O(5A) 8 50 1 0.3072(3) 0.4012(3) 0.4995(35) 1.59

O(5B) 8 50 1 0.2830(4) 0.4458(4) 0.4812(36) 1.94
According to the phase diagram [9] and the data obtained
in [5–8], the SBN crystals of the structural type under con-
sideration exist in the composition region from
Sr0.2Ba0.8Nb2O6 to Sr0.8Ba0.2Nb2O6 and show a tetragonal
symmetry with the space group P4bm. The pioneering
work by Jamieson et al. [5] was devoted to the struc-
tural analysis of the Sr0.75Ba0.27Nb2O5.78 compound. It
was demonstrated that the Ba atoms located only in
large channels occupy their own fourfold sites with an
occupancy factor of 34.4%. The same sites are 50.3%
filled by the Sr atoms. Therefore, each of these crys-
tallographic sites is randomly occupied by the Ba and
Sr atoms with a total occupancy factor of 84.7%. The
remaining Sr atoms occupy twofold sites in the tetrag-
onal channels with an occupancy of 82.2%. Consider-
ing the joint occupation of the general crystallo-
graphic position by the Ba and Sr atoms in the pentag-
onal channels, the authors of [5] proposed the model
according to which the coordinates of the Ba and Sr
atoms coincide and lie in the m mirror plane. It should
be noted that these authors considered the possibility
of splitting the barium–strontium site; however, they
preferred the model with the general position of the
Ba and Sr atoms and a substantial anisotropy of their
thermal motion [5].

More recently, Andreœchuk et al. [6] carried out the
x-ray structure investigation of the SBN-0.33 com-
pound, which is close to the limiting composition for
the tetragonal structure [9]. The radical difference
between this structure and the structure described
above resides in the fact that the Ba and Sr atoms
occupy different sites. All the Ba atoms occupy their
sites only in large channels with an occupancy factor of
84.0%, and all the Sr atoms are located in the medium-
sized channels with a site occupancy of 70.5%.

In our earlier work [7], we studied the structure of
the SBN-0.61 compound whose composition corre-
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sponded to the congruent melt.1 In the medium-sized
channels of the structure, the Sr atoms occupy their
twofold sites with an occupancy of 72.5%. The
remaining Sr atoms and the Ba atoms are located in
large channels in the structure. The Ba atoms occupy
fourfold sites in the m mirror plane with an occu-
pancy of 48.7%. The Sr atoms located in the same
channels are displaced from the symmetry planes to the
eightfold general positions by 0.292(1) Å. These
positions are 20.2% filled by the Sr atoms on either
side of the plane. In this case, the Ba–Sr distances
are equal to 0.305(1) Å. The total occupancy factor
for the Sr sites above and below the plane and the Ba
sites in the plane is 89.1%. Thus, the fundamental
difference between these results and those consid-
ered above lies in the splitting of the Sr and Ba sites
in the pentagonal channels.

Trubelja et al. [8] investigated the crystal structure
of the SBN-0.71, SBN-0.61, and SBN-0.51 compounds
by x-ray powder diffraction. Methodically, this work
casts some doubt. The distributions determined for the
atomic site occupancies in [8] considerably differ from
the results of other structural investigations. However,
these authors obtained the important result that can be
considered methodically reliable: relatively soft ther-
mal annealing of the SBN-0.51 powder brought about a
substantial redistribution of the Sr atoms over the sites.
After the annealing, the occupancy factor for the Sr
sites increased from 54.1 to 61.9% in the tetragonal
channels and decreased from 36.5 to 32.6% in the pen-
tagonal channels. The occupancy of the large channels
by the Ba atoms remained unchanged upon annealing.
This suggests that the frequently observed irreproduc-
ibility of the properties of SBN crystals having the

1 The compound was doped by cerium at very small concentration
(0.1 at. %), which did not substantially affect the structure param-
eters.
0



 

1718

        

CHERNAYA 

 

et al

 

.

                                                                  
O(4A) O(5A)O(4B) O(5B)

O(2)

O(2)O(1)

M(1)

O(4B) O(5B)

M(2)

O(1) O(1)

O(1) O(3)

O(4A) O(5A)

O(1)

(a) (b)

Fig. 2. Oxygen environment of (a) Nb(1) and (b) Nb(2) atoms in the (Sr,Ba)Nb2O6 structure. Disordering in the O(4) and O(5) sites
is shown.
same composition is caused by different distributions
of the Sr atoms over the sites, depending on the sample
prehistory: the growth conditions and subsequent heat
treatment.

2. EXPERIMENTAL TECHNIQUE

The SBN-0.75 single crystals to be studied were
grown by the Czochralski method. Their composition
was determined with a Camebax microanalyzer and
agreed well with the composition of the initial batch. A
spherical sample 0.22(1) mm in diameter was prepared
for the x-ray diffraction experiment. The integrated

Table 2.  Selected interatomic distances in the structures
Sr0.282Ba0.672Nb2O6 [6], Sr0.613Ba0.39Nb2O6 [7],
Sr0.75Ba0.27Nb2O5.78 [5], and Sr0.746Ba0.247Nb2O6 (this work)

Nb(1) octahedron Sr282 Sr613 Sr0.75 Sr746

–O(4) × 1/2 1.82(2) 1.83(1) 1.92(3) 1.92(1)

–O(4) × 1/2 1.82(2) 1.83(1) 1.92(3) 1.92(1)

–O(1) × 4 1.96(2) 1.95(1) 1.95(8) 1.96(1)

–O(4) × 1/2 2.17(2) 2.13(1) 2.03(4) 2.05(1)

–O(4) × 1/2 2.17(2) 2.13(1) 2.03(4) 2.05(1)

Nb(2) octahedron

Nb(2)–O(5A) × 1/2 1.87(2) 1.90(1) 1.93(2) 1.99(1)

–O(5B) × 1/2 1.87(2) 1.89(1) 1.88(3) 1.90(1)

–O(1) 1.945(5) 1.93(1) 1.949(9) 1.94(1)

–O(2) 1.961(5) 1.96(1) 1.958(8) 1.96(1)

–O(3) 1.99(1) 2.00(1) 2.004(8) 2.00(1)

–O(2) 2.016(5) 2.00(1) 2.013(8) 2.00(1)

–O(5B) × 1/2 2.13(2) 2.09(1) 2.11(3) 2.07(1)

–O(5A) × 1/2 2.16(2) 2.08(1) 2.00(3) 2.02(1)
P

intensities of x-ray diffraction reflections were col-
lected on an Enraf–Nonius CAD 4F diffractometer
(MoKα radiation, ω scan mode, λ = 0.7106 Å, graphite
monochromator) within a full sphere of the reciprocal
space at sinΘ/λ ≤ 1.2 Å–1. A total of 14 008 reflections
were measured. After the rejection of weak reflections
with I < 4σ1 and the averaging over symmetrically
equivalent reflections (Raver = 2.5%), the data set
included 1891 unique reflections. The unit cell param-
eters were refined by the least-squares procedure: a =
12.445(4) Å and c = 3.935(2) Å. Analysis of the struc-
ture amplitude array confirmed the tetragonal space
group P4bm of the crystal. The absence of symmetry
center is ensured by the properties of these crystals. All
the calculations were performed according to the
PROMETHEUS software package [10]. The x-ray
scattering curves for neutral atoms were used in the cal-
culations [11]. The structural model was refined by the
full-matrix least-squares method to a discrepancy of
1.82% (between the experimental structure amplitude
magnitudes and those calculated from the model).

3. RESULTS

Table 1 lists the basis atoms in the structure, multi-
plicities of their sites, occupancy factors, symmetries,
atomic coordinates, and the effective thermal parame-
ters. It is evident from Table 1 that the chemical for-
mula obtained from the x-ray diffraction data on the
atomic site occupancies is in reasonable agreement
with the initial formula.

The structure of crystals with the composition under
study can be characterized as follows. All the Ba atoms
are located in large channels with an occupancy factor
of 30.9%, which agrees with the results reported in [5–8].
The Sr atoms in the large channels deviate from the
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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Table 3.  Acentric distortions of Nb(1) and Nb(2) octahedra and the optical properties at different SBN compositions

Composition ∆[Nb(1)–O], Å ∆[Nb(2)–O], Å d33, 109, CGSE ne ∆n

SBN-0.33 0.35 0.28 38 2.303 0.54

SBN-0.61 0.3 0.19 22 2.324 0.3

SBN-0.75 0.13 0.1 17 2.343 0.13

SBN-0.73 [5] 0.11 0.15

Note: d33 is the component of the quadratic optical susceptibility tensor for the SHG radiation at 1.06 µm, ne and ∆n are the extraordinary
refractive index and the birefringence at λ = 0.53 µm. The values of d33, ne, and ∆n are taken from [6].
m symmetry plane by 0.255(1) Å and occupy each site
above and below the plane with an occupancy of
28.6%. The other Sr atoms are located in the medium-
sized channels with a site occupancy of 71.5%. The
crystal studied in the present work is very close in
chemical composition to the material described in [5].
The new result obtained in our work is that the Sr atoms
in the large channels in the SBN-0.75 crystals, as in the
SBN-0.61 compound [7], are shifted relative to the Ba
atoms, and the point symmetries of the Sr sites differ.

Based on the results of this work and the data
obtained in [5–7], we elucidated how the chemical
composition of solid solutions affects the acentric dis-
tortion of the NbO6 octahedra comprising a three-
dimensional network of the SBN structure; moreover,
we evaluated the deviations of the Nb sites from the
center of oxygen coordination octahedra for com-
pounds of different compositions. Recall that the SBN
structure involves two types of chains running along the
crystal axis c, which are formed by two crystallograph-
ically independent octahedra Nb(1) and Nb(2) (Fig. 1).
In the solid solutions of all compositions, the O(4) and
O(5) atoms that join respectively the Nb(1) and Nb(2)
octahedra into the chains running along the c axis are
disordered. Each oxygen atom occupies two sites with
an occupancy of 50 % (Fig. 2). The Nb–O distances in
the Nb(1) and Nb(2) octahedra in the SBN structures of
different compositions are given in Table 2. The Nb(1)
atoms are located in the line of intersection of the m
symmetry planes, and their four equatorial (with
respect to the c axis) oxygen atoms O(1)equat occupy the
general positions and are related by the symmetry
planes, which provides the equality of the Nb(1)–
O(1)equat distances. The distances from the Nb(1) atom
to the upper and lower oxygen atoms along the c axis in
the chain differ from each other.

A different situation arises with the Nb(2) atoms.
These atoms occupy the general positions, and their
distances to all the surrounding O atoms are crystallo-
graphically independent. In order to simplify our anal-
ysis, the Nb(2)–O(5) distances to the splitting of oxy-
gen positions and also the distances to four equatorial
atoms Oequat in the Nb(2) octahedra can be replaced by
the mean distances.

As can be seen from Table 2, the Nb(1)–Oequat dis-
tances to four equatorial oxygen atoms in the more sym-
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metric Nb(1) octahedra virtually coincide for all the
SBN compositions and fall in the range 1.95–1.96 Å.
The Nb(1)–O distances to the upper and lower O(4)
atoms, which form the chains running parallel to the c
axis, differ considerably for different compositions and
lie in the range 1.82–2.17 Å. In the Nb(2) octahedra,
whose structure has no symmetry constraints, the cor-
responding distances are somewhat different. The
Nb(2)–Oequat equatorial (mean) distances fall in the
range 1.97–1.98 Å (Table 2), even though the particular
Nb(2)–Oequat distances in all the structures range from
1.93 to 2.02 Å. The distances in the Nb(2)–O chains, as
in the Nb(1)–O chains, vary substantially and fall in the
range 1.87–2.15 Å.

The displacement of the Nb atom from the center of
an octahedron (acentric distortion of the octahedron) is
characterized by the difference in the Nb–O distances
to the upper and lower oxygen atoms forming the chain.
These quantities for the Nb(1)–O and Nb(2)–O dis-
tances in different SBN structures are presented in
Table 3. The important conclusion is that the acentric
distortion of both octahedra decreases with an increase
in the strontium content in the solid solution. The
observed regularities characterize variations in the
chemical bonds in crystals and reflect the transforma-
tion of the electronic structure in single crystals of the
solid solutions under study.

4. DISCUSSION

Let us now analyze the correlation between the
composition, structure, and physical properties of crys-
tals on the basis of our results and the data available in
the literature. (Here, we do not present the large tables
containing interatomic distances in the Sr and Ba poly-
hedra. These data are available from the authors of this
work or can be easily calculated from the atomic coor-
dinates and the unit cell parameters given in Table 1 and
the tables from [5–7].)

First, we compare our results with the data obtained
by Jamieson et al. [5], who studied single crystals with
the very close composition Sr0.75Ba0.27Nb2O5.78. The
site occupancies of the barium atoms in pentagonal
channels are close to 30.9% (this work) and 34.4% [5].
However, our data on the distribution of the Sr atoms
over two structural channels substantially differ from
0
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those found in [5]. It should be emphasized once again
that, unlike the data [5], the strontium atoms in large
channels in our case are displaced from the m symme-
try planes by 0.255(1) Å. In our work, the total occu-
pancy factor for two Sr sites (above and below the m
plane) in large channels is equal to 57.2%, and the site
occupancy of the Sr atoms in the medium-sized chan-
nels is 71.5%. According to [5], the site occupancy of
the Sr atoms in the large and medium-sized channels
are equal to 50.3 and 82.2%, respectively. The reliabil-
ity of our results and the data obtained in [5] is beyond
question. The inferences made by Trubelja et al. [8]
suggest that the difference in the distributions of the Sr
atoms over structural channels of two types can stem
from different prehistory of samples due to different
annealing conditions upon crystal growth or effects of
the external field used in [5] for preparing single-
domain samples. This is supported by the following
fact. The phase transition temperature Tc found in [5]
for the Sr0.75Ba0.27Nb2O5.78 compound is equal to 348 ±
5 K. This value is considerably higher than the phase
transition temperature of our crystal Tc ≈ 320 K, which
agrees well with the available data for this composition
Tc ≈ 315–330 K [1–4, 12].

In analysis of the relation between the properties of
the SBN crystals and their atomic structure, we have
restricted ourselves to comparison of the results
obtained in the present work and the data taken from
[6, 7], because the single crystals studied in all these
works were grown under identical conditions. The reg-
ularities observed for these compounds can be reliably
related to the structure of the corresponding solid solu-
tions without regard for the redistribution of the Sr
atoms due to the prehistory of samples.

Now, we compare the results obtained in the study
of the SBN-0.33 [6], SBN-0.61 [7], and SBN-0.75 (this
work) solid solutions. The most important result of the
variation in the composition is the change in the splitting
of the Ba and Sr sites in the large channels (Table 1). The
displacement of Sr atoms from the m symmetry plane
is equal to 0.255(1) Å in SBN-0.75 and 0.292(1) Å in
SBN-0.61. The “limiting nonequivalence” of the Ba
and Sr sites is observed in SBN-0.33, because the pen-
tagonal channel is occupied only by the Ba atoms and
the tetragonal channel is filled only by the Sr atoms. A
decrease in the Sr concentration in the crystals is
accompanied by changes in the site occupancy of the
large channel (an increase in the occupancy of the Ba
sites and a decrease in the occupancy of the Sr sites),
whereas the occupancy of the medium-sized channel
by the Sr atoms remains virtually unchanged.

The change in the SBN composition in the same
order (an increase in the [Sr]/[Ba] ratio) is attended by
a decrease in the temperature of the phase transition
and its smearing; the relaxor properties become more
pronounced [1–4]. As is known, the relaxor properties
are associated with the microscopic structural disorder-
ing, which for the SBN crystals was attributed to the
P

disordering of the Sr and Ba cations over two crystallo-
graphic positions [3, 4]. However, as follows from our
analysis, the site occupancy of the medium-sized chan-
nel by Sr atoms only slightly depends on the composi-
tion. Therefore, we can assume that the relaxor proper-
ties of the SBN crystals are primarily determined by the
character of site occupation of the large (pentagonal)
channels by the Ba and Sr atoms. A decrease in the Sr
concentration leads to an increase in the splitting of the
Ba and Sr sites (i.e., in their nonequivalence); in other
words, the ordering increases, which qualitatively cor-
relates with the composition dependence of the relaxor
properties and a decrease in the smearing of the phase
transition.

Let us now discuss the qualitative relation between
the properties of the SBN crystals and the degree of
acentricity of the NbO6 octahedra, which depends on
the composition (Table 3). It is known that the optical
properties of ABO6 perovskite-type crystals are gov-
erned by the parameters of BO6 octahedra [13]. In this
case, it is expedient, in our opinion, to use the data
obtained in [5], since the structural unit BO6 is stable
and does not depend on external effects in contrast with
a random occupation of sites in the large and medium-
sized channels. Indeed, the calculated acentric distor-
tions of the Nb(1) and Nb(2) octahedra in the
Sr0.746Ba0.247Nb2O6 compound (this work) are close to
those for the Sr0.75Ba0.27Nb2O5.78 compound studied in
[5] (Table 3), even with the difference in the occupan-
cies of cationic sites. It is seen from Table 3 that the dis-
tortions of the Nb(1) and Nb(2) octahedra are close to
each other for different compositions.

Within the approximation of polarized Nb–O bond
model for niobates [14], Andreœchuk et al. [6] evaluated
the components of the quadratic optical susceptibility
tensor dij and, in particular, showed that the d33 compo-
nent is determined by the difference in the Nb–O dis-
tances to the upper and lower oxygen atoms in the
NbO6 octahedra. As can be seen from Table 3, there is
a qualitative correlation between the dependence of the
acentric distortion of the Nb(1) and Nb(2) octahedra
and the dependence of the d33 component on the SBN
composition. A similar situation was observed for solid
solutions with the KTiOPO4-type structure [15]. The
isomorphous substitution leads to a change in the
degree of deviation of the TiO6 octahedra from cen-
trosymmetry, which brings about considerable varia-
tions in the nonlinear susceptibility. 

5. CONCLUSION

Thus, we carried out the x-ray structure investiga-
tion of the Sr0.75Ba0.25Nb2O6 (SBN-0.75) single crys-
tals. The composition–structure–property relation for
several SBN compositions was analyzed using our
results and the data available in the literature. It was
demonstrated that the change in the SBN composition
brings about structural effects of the following two
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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types: (1) A decrease in the [Sr]/[Ba] ratio leads to a
decrease in the occupancy of only large (pentagonal)
structural channels and an increase in the splitting of
the Ba and Sr sites in these channels. It is believed that
this ordering in the arrangement of the Ba and Sr atoms
is responsible for the observed decrease in the smearing
of the phase transition and a weakening in the relaxor
properties of the SBN compounds. (2) A decrease in the
[Sr]/[Ba] ratio results in an increase in the acentric dis-
tortion of the Nb(1)O6 and Nb(2)O6 octahedra; i.e., the
displacement of the Nb ions from the octahedron cen-
ters increases, which is likely responsible for the
observed increase in the quadratic optical susceptibility
d33.
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Abstract—A method for calculating the anisotropy of the electronic polarizability of O2– ions in oxygen octa-
hedral ferroelectrics has been proposed. It is shown that, in the case of mixed ion-covalent bonds in the crystal,
the calculation of the polarizability within the approximation of isolated ions gives incorrect results. The prin-
cipal components of the polarizability tensor for the O2– ions and the electronic polarizability of the Nb5+ ions
are calculated for the LiNbO3 ferroelectric. Analysis of the stability of the LiNbO3 structure confirms the results
obtained. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, computer simulation of the structure and
physical properties of single-crystal materials on the
basis of the electrostatic interactions has found wide
application [1]. This method is efficient only with com-
plete information on the effective charges of ions, their
electronic polarizability, and the parameters of interi-
onic repulsion due to the overlap of electron shells. The
correctness of these data is especially important in the
study of materials with partially covalent bonds, for
example, displacement-type ferroelectrics. The classi-
cal representative of these materials is lithium niobate
LiNbO3.

Ramesh and Ethiraj [2] calculated the polarizabili-
ties of Li+ ions and (NbO3)– clusters in the LiNbO3
crystals. More recently, Kinase et al. [3] determined the
polarizabilities of all ions in the LiNbO3 structure:
αLi = 0.03 × 10–3 nm3, αNb = 0.945 × 10–3 nm3, and
αO = 1.976 × 10–3 nm3. The calculations were per-
formed within the approximation of isotropic ion polar-
izability. However, it is known that the polarizability of
the Nb–O bonds in lithium niobate single crystals (in
the optical range) is nonlinear [4]. The electron shells
of the Nb5+ ions and their nearest neighbors O2– overlap
considerably, which results in a nonspherical symmetry
of the outer electron shells of the O2– ions. Conse-
quently, the electronic polarizability of the O2– ions
should be described by the second-rank tensor. Below,
we will consider the technique for calculating the
anisotropy of the electronic ion polarizability in single-
crystal compounds and analyze the stability of the
LiNbO3 crystal structure.
1063-7834/00/4209- $20.00 © 21722
2. COMPUTATIONAL TECHNIQUE

Let us consider the effect of a linearly polarized
electromagnetic wave in the optical range on a ferro-
electric crystal. If the amplitude of the electric compo-
nent is sufficiently small, the relation between the elec-
tric field strength E of the optical wave and the polar-
ization increment ∆P of the crystal is defined by the
linear approximation

(1)

where Ek and Pk are the components of the correspond-
ing vectors along the direction k, and εk is the permit-
tivity of the crystal. On the other hand, the polarization
increment can be written as

(2)

where S is the number of sorts of structurally nonequiv-
alent ions, Ni is the volume concentration of ions of the
ith sort, and ∆pi is the light-induced change in the elec-
tric dipole moment of the ion of the ith sort.

The induced dipole moments of ions in the crystal
lattice are usually calculated by an iteration method.
The equation of the first iteration for the isotropic ion
polarizability has the form

(3)

where E' = E + ∆P/3ε0 is the strength of the macro-
scopic component of the crystal field induced by the
optical wave, αi is the polarizability of the ion of the ith
sort, and Eij is the local field induced at the ion of the

∆Pk ε0 εk 1–( )Ek,=

∆P Ni∆pi,
i 1=

S

∑=

∆pi α1 E' Eij α jE'( )
j 1=

S

∑+ ,=
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ith sort by the jth dipole subsystem. For the ions located
on a threefold axis of symmetry, E' || Eij, and the Eij

components in the Cartesian coordinate system can be
represented as

(4)

where k = x, y, z; Rijm is the distance between the chosen
ion of the ith sort and the mth ion of the jth sort; Kijm is
the kth component of Rijm; Mj is the number of ions of
the jth sort in the chosen region of summation; and Dijk

is the corresponding structure sum.
In the case when the calculation of ∆pi is restricted

to the first iteration, it is possible to divide each term of
Eq. (3) by  and to derive the expression for the effec-
tive polarizabilities (αeff)ik of the ion of the ith sort with
allowance made for the local environment, that is,

(5)

By combining Eqs. (1)–(5), we obtain the Lorentz–
Lorenz formula with the correction for the nearest
dipole environment

(6)

where nk is the refractive index of the crystal at E || K.
A similar approach to the calculation of the polarizabil-
ity was used in [2].

For the anisotropic polarizability of ions of the jth
sort, the components of the contribution from the jth
dipole subsystem to the local field at the ion of the ith
sort (the external field E is directed along the x axis) are
written as follows:

where θlfj are the angles between the lth principal axis
of the polarizability tensor and the f direction; (αll)j are
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the polarizability tensor components for the ions of the
jth sort in the system of proper axes; and f = x, y, and z.
The structure sums Dijkf and Dijkk can be obtained in the
form

(7)

where Fijm is determined in the same manner as Kijm,
and δkf is the Kronecker symbol.

In the general case, the local field differs from E in
direction; hence, the general relationship for the effec-
tive polarizability of ions of the ith sort takes the fol-
lowing form:

(8)

A similar expression for (αeff)iz (the E vector is
directed along the z axis) can be obtained from Eq. (8)
by the permutation of subscripts (x  z). Thus, the
substitution of the obtained relationships into Eq. (6)
makes it possible to extend the applicability of the
Lorentz–Lorenz formula to the case of the anisotropic
electronic polarizability of ions involved in the crystal
composition.

3. CALCULATION OF POLARIZABILITY 
OF O2– IONS IN LiNbO3 CRYSTAL

It should be noted that the approaches used in [2, 3]
to the calculation of the polarizability differ essentially.
According to Kinase et al. [3], all ions in the structure
are considered to be independent, and the overlap
between the electron shells of O2– and Nb5+ ions is
ignored. Ramesh and Ethiraj [2] calculated the polariz-
ability of the (NbO3)– cluster, which was treated as a
point charge. The latter approach is likely to be more
correct, but is less informative. Alternatively, the polar-
izability of short Nb–O bonds (0.1878 nm) can be con-
sidered the sum of the polarizabilities of Nb5+ and O2–

ions, which are determined independently from one
another. Of fundamental importance in this case is that
the dipole–dipole interactions between the ions in the
short Nb–O bonds should be disregarded in the calcu-
lation of the structure sums.

In the subsequent calculations, it was assumed that
the polarizability of the Li+ ions is isotropic and equal
to 0.032 × 10–3 nm3 [2]. The polarizability αNb of the
Nb5+ ions was also taken to be isotropic and varied over
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a wide range with respect to the tabulated value of
0.22 × 10–3 nm3 [5].

From symmetry considerations, it is clear that one
of the principal axes of the polarizability tensor for the
O2– ions (3) should coincide with the direction of the

1
2α33

α11

0 0.2 0.4 0.6 0.8

1

2

3

αNb, 10–3 nm3

α, 10–3 nm3

Fig. 1. Dependences of the principal components α11 and
α33 of the electronic polarizability tensor for O2– ions on the
polarizability αNb of the Nb5+ ions in the LiNbO3 structure.
Calculations are performed in (1) the isolated ion polariz-
ability and (2) bond polarizability approximations.

1
2

Li+

O2–

0 0.1 0.2 0.3 0.4
–0.5

0

0.5

1.0

αNb, 10–3 nm3

Ez, 1010 V m–1

Fig. 2. Dependences of the z component of the local electric
field Ez at the Li+ and O2– ions on αNb. Calculations are per-
formed in (1) the isolated ion polarizability and (2) bond
polarizability approximations.
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Nb–O bond, and the polarizability tensor likely has an
axial symmetry, so that 
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. Hence, it is
assumed that the second principal axis (2) lie in the
oxygen plane. All the further calculations were per-
formed using the structural data obtained by Iyi et al.
[6] for the LiNbO3 crystals of stoichiometric composi-
tion. The structure sums (6) were calculated with due
regard for the dipole moments in a sphere of radius
12 nm with the center at the point occupied by the ion
under consideration, which provided the convergence
with an accuracy better than 1%.

The calculations were performed with the refractive
indices for the LiNbO3 crystals of stoichiometric com-
position in the far-IR range: nx = 2.2032 and nz = 2.1187
[7]. Figure 1 depicts the dependences of the principal
components α11 = α22 and α33 of the electronic polariz-
ability tensor for the O2– ions on the polarizability αNb.
The dependences were calculated within the isolated
ion polarizability and bond polarizability approxima-
tions. As can be seen from Fig. 1, the anisotropic polar-
izability of the O2– ions is observed for both approxi-
mations. However, the results obtained differ substan-
tially and call further analysis.

4. ANALYSIS OF STABILITY 
OF LiNbO3 STRUCTURE

A possible method for verifying these results is to
use the obtained data in the calculation of the local elec-
tric fields Eloc at the structurally nonequivalent ions in
the LiNbO3 lattice and to analyze the stability of the
structure.

In addition to the α11(αNb) and α33(αNb) depen-
dences, the local fields Eloc were determined using the
following effective charges of the ions in the lattice:
qLi = 0.98|e|, qNb = 3.67|e|, and qO = –1.55|e| (|e| is the
magnitude of the electron charge), which were obtained
by the LCAO method in [8]. The dipole contribution to
Eloc was calculated by the iteration method (four itera-
tions), and the ion contribution was determined by the
procedure proposed in [9].

Figures 2 and 3 demonstrate the dependences of the
z component of the local electric field Ez at the O2–, Li+,
and Nb5+ ions and the component of the electric field
gradient tensor Vzz(Nb) at the Nb5+ ion on the polariz-
ability αNb.

Since the Nb5+ ion, to a first approximation, can be
treated as spherically symmetric, the force balance
equation for this ion is written as

(9)

where Ez(Nb) is the z component of Eloc at the Nb5+ ion,
pz(Nb) is the z component of its dipole moment, and
Fz(Nb) is the resultant repulsive force in the NbO6 octa-
hedron. The force balance equation for the Li+ ion has
a similar form.

When calculating the stability of the crystal struc-
ture, it is usually assumed that the repulsive force

qNbEz Nb( ) pz Nb( )Vzz Nb( ) Fz Nb( )+ + 0,=
HYSICS OF THE SOLID STATE      Vol. 42      No. 9      2000
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caused by the distortion and the overlap of electron
shells of two ions is described by the Born–Mayer
potential

(10)

where A and ρ are the parameters characterizing the
given interaction, and r is the distance between the ions.
Equations (9) and (10) furnishes a means for determin-
ing the relation between the parameters A and ρ for the
Nb5+–O2– and Li+–O2– interactions at different αNb val-
ues. The known parameters of the pair interactions
under consideration are listed in the table.

The dependences A(ρ) for the Nb5+–O2– and Li+–O2–

interactions were calculated according to the described
scheme with the obtained data on Eloc. It was found that
the A parameters determined for any above sets of
polarizabilities (αNb, α11, and α33) are anomalously
large compared to the parameters given in the table. It
should be emphasized that the induced electric dipole

Fr Aρ 1– rρ 1––( ),exp–=

0 0.1 0.2 0.3 0.4

8.5

9.0

9.5

5.0

4.5

4.0

1
2

αNb, 10–3 nm3

Ez, 1010 V m–1 Vzz, 1020 V m–2

Ez

Vzz

Fig. 3. Dependences of the z component of the local electric
field Ez at the Nb5+ ions and the Vzz(Nb) component on αNb.
Calculations are performed in (1) the isolated ion polariz-
ability and (2) bond polarizability approximations.
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moment pO of oxygen ions in the LiNbO3 structure is
rather large (|pO| ≅  0.11|e| nm). Since the moment pO is
primarily determined by the shift in the center of the
outer electron shells of the O2– ion with respect to the
nucleus center, this shift for a dipole-forming charge of
6|e| is equal to 0.018 nm, i.e., 0.1 of the short Nb5+–O2–

bond length. The repulsive force Fr is associated with
the overlap of the outer electron shells of ions, and,
hence, r in Eq. (10) should mean the distance between
the center of the metal ion and the “center” of the outer
electron shells of the O2– ion.

Within this approximation, the A(ρ) dependences
for the Nb5+–O2– and Li+–O2– interactions were recal-
culated at different αNb values. The calculated depen-
dences, together with the tabulated data, are displayed
in Figs. 4 and 5. Despite the fact that the above
approach is rather simplified, the calculation at αNb =
0.05 × 10–3 nm3 in the bond polarizability approxima-
tion is in reasonable agreement with the parameters
determined from first principles [10, 11].

1
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3

0.030 0.035 0.040

1000

1500

2000

ρ, nm

A, eV

Fig. 4. Calculated dependences A(ρ) for the Nb5+–O2–

interaction at αNb = (1) 0, (2) 0.10, and (3) 0.20 × 10–3 nm3

in the isolated ion polarizability approximation. The depen-
dences calculated within the bond polarizability approxima-
tion at αNb = 0.05 and 0.10 × 10–3 nm3 are identical to curve 1.
Open circles indicate the tabulated data.
Parameters of repulsive potentials

Interaction
A, eV ρ, nm

I II III I II III

Li+–O2– 262 862 0.0347 0.0260

Nb5+–O2– 1796 1113 1333 0.0346 0.0388 0.0364

O2––O2– 22 764 22 764 22 764 0.0149 0.0149 0.0149

Note: Columns I refer to the empirical calculations in the Li2O and Nb2O5 structures [10]; columns II, to the “ab initio” calculations in
the LiNbO3 structure [10]; and columns III contain the results of the “ab initio” calculations in the KNbO3 structure [1].
0
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For the O2––O2– interaction, similar calculations
cannot be carried out, because the outer electron shells
of the O2– ions are not spherically symmetric.

Note that the spontaneous polarization Ps calculated
with the use of the data obtained within the bond polar-
izability approximation at αNb = 0.05 × 10–3 nm3 is
equal to 0.77 C m–2, which is close to the experimental
value of Ps for the LiNbO3 crystal.

Therefore, the electronic polarizability of the O2–

ions in the oxygen octahedral ferroelectrics should be
calculated with due regard for the character of the
metal–oxygen bonds and, as a consequence, the possi-
ble anisotropy of the polarizability.

1
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0.025 0.027 0.029

300
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900

ρ, nm

A, eV

Fig. 5. Calculated dependences A(ρ) for the Li+–O2– inter-
action at αNb = (1) 0, (2) 0.10, and (3) 0.20 × 10–3 nm3 in
the isolated ion polarizability approximation and at αNb =

(4) 0.05 and (5) 0.10 × 10–3 nm3 in the bond polarizability
approximation. Open circles indicate the tabulated data.
P

From the above results, it can be concluded that the
electronic polarizability of the Nb5+ ions in the LiNbO3
structure is equal to 0.05 × 10–3 nm3, and the components
of the electronic polarizability tensor for the O2– ions are
α11 = α22 = 1.97 × 10–3 nm3 and α33 = 2.86 × 10–3 nm3.

In closing, it should be noted that the components of
the electronic polarizability tensor for the O2– ions can
be refined taking into account the possible anisotropy
of the polarizability of the Nb5+ ions and the next itera-
tions in the calculation of the field induced by the opti-
cal wave.
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Abstract—A study is reported of the correlation between the impurity distribution and the ferroelectric domain
structure in a periodically polarized LiNbO3 : Y crystal grown by the Czochralski method. The domain walls forming
near the impurity concentration modulation extrema are shown to be shifted by the temperature gradient below the

Curie point. A new positive domain was observed to form near the trace of an electron beam scanning the 
crystal surface in the course of x-ray microprobe analysis. © 2000 MAIK “Nauka/Interperiodica”.
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1. Periodically polarized LiNbO3 : Y bulk ferroelec-
tric crystals are a promising material for application in
nonlinear optics making use of quasi-phase matching
[1]. The periodic reversals of the spontaneous polariza-
tion Ps in neighboring domains correlate with those of
the sign of the nonlinear coefficient (optical nonlinear
superlattice).

The regular domain structure (RDS) in Czochralski-
grown lithium niobate single crystals is related to the
growth bands induced by crystal rotation [2]. The peri-
odic temperature oscillations at the crystal–melt inter-
face give rise to a modulation of the instantaneous
growth rate, and the dependence of the effective impu-
rity-distribution coefficient (keff ≠ 1) on the growth rate
governs the impurity concentration modulation along
the growth direction. It is these rotation bands that
account for the formation of periodic antiparallel ferro-
electric domains with a period determined by the pull-
ing-to-rotation rate ratio (Λ = Vpull /Vrot).

We observed, however, that domains of opposite
sign present in periodically polarized lithium niobate
crystals within one period λ were sometimes of
unequal thickness, with this inequality increasing from
the bottom to the top end of the crystal. The difference
in thickness between domains of the same period
results in a reduced efficiency of nonlinear optical
transformations in the crystal.

2. This work was aimed at studying the correlation
between the impurity distribution and the ferroelectric
domain structure in an LiNbO3 : Y crystal, as well as at
revealing the reasons for the unequal thickness of the
domains making up the RDS period.

A periodically polarized LiNbO3 : Y crystal was

grown along the  crystallographic direction
(the X axis) by the Czochralski method from a melt
close to a congruent composition (Li/Nb = 0.942) with
an Y2O3 impurity (1 wt.%). The Vpull = 10 mm/h and

2110〈 〉
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Vrot = 6 min–1 rates corresponded to the calculated
period λ = 27.8 µm. On completion of the growth pro-
cess, the crystal was raised rapidly out of the melt to be
cooled subsequently in the growth setup with a rate of
60°C/h.

The yttrium impurity introduced in the crystal mod-
ulates the periodic domain structure in LiNbO3 : Y,
while at the same time leaving the crystal optically

transparent in the 0.35–4.5 µm region. The 
growth direction was chosen as the most favorable for
using (because of the largest nonlinear coefficient d33)
in quasi-phase-matched nonlinear optical converters.

3. The yttrium concentration in the crystal under
study was measured by x-ray microprobe analysis in a
scanning electron microscope (JSM-840), with the pol-
ished sample surface scanned across the domain
boundaries, while Camebax SX-50 was employed to
measure the impurity concentration. To shield the sam-
ple charge, the surface to be studied was coated with a
thin (100-Å) gold film. The electron beam diameter did
not exceed 0.1 µm, the current was 5000 nA, the scan-
ning range was 2 µm, and the time per one analysis
point was 20 s (100 points altogether, 200 µm). The x-
ray microprobe analysis of the yttrium impurity was
complicated by the overlap of the YLα and NbLl spec-
tral lines (Fig. 1), which resulted in a decrease of the
peak/background intensity ratio and an apparent
decrease of the impurity-concentration modulation
depth. The yttrium concentration was recorded by two
spectrographs simultaneously to eliminate random
errors of either instrument.

The ferroelectric domain structure on the 
surface of the LiNbO3 : Y crystal was studied by selec-
tive chemical etching. The crystal was cut by a diamond
saw, and the surface to be studied was ground and pol-
ished. The samples were etched with an 1 : 2 (by vol-
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ume) HF + HNO3 acid mixture in a platinum crucible
for 20 min at the boiling temperature. Because the etch-

ing of the  surface proceeds faster than that of

, it is possible to discriminate between the
boundaries of domains of opposite sign.

4. The precise matching of domain walls to the mea-
sured impurity distribution curves is difficult. Direct x-
ray microprobe investigation of a crystal surface with
domain walls made visible by selective chemical etch-
ing is impossible, because the chemical composition of
the surface varies under etching. Besides, the surface
relief may distort the results of an analysis. In order to
avoid inaccuracies in matching domain wall positions
to the impurity distribution curves, the following
sequence of operations was chosen:

(i) Chemical etching of the sample, observation of
the domain structure in a metallurgical microscope,
choosing regions free of growth defects, marking with
a sapphire needle;

(ii) Polishing the sample, x-ray microprobe analy-
sis, entering the impurity distribution curve and the
image of persisting marks into the computer;

(iii) Re-etching, entering the electron-microscope
image of the domain structure into the computer; and

(iv) Computer matching of the impurity concentra-
tion variation curves to the domain wall image using
the marks and the electron beam trace.

Figures 2a and 2b present yttrium-impurity distribu-
tion curves on the  surface of the LiNbO3 : Y
crystal. Because the electron beam was scanned not

0110( )
0110( )
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Fig. 1. Overlap of the YLα and NbLl spectral lines.
P

exactly perpendicular to the domain walls, the values of
the impurity concentration are connected with the cor-
responding analysis spots by vertical lines. Two regions
in the same main domain were chosen for x-ray micro-
probe analysis [3]. In the bottom part of the sample, two
analyses were made (curves 1 and 2 in Fig. 2a). The
upper and lower scans correspond to the upper (1) and
lower (2) curves of the yttrium concentration distribu-
tion, respectively.

The measured RDS period in the lower part of the
crystal (Λ = 28.4 µm) is larger than the calculated one
(27.8 µm) because of the melt level lowering in the
course of crystal growth. Figure 2b shows the impurity
distribution in the top part of the crystal.

In both regions studied, domain walls are located
near the extrema in the impurity distribution. While in
the upper and lower parts of the crystal, the domain
walls are located approximately in the same way rela-
tive to the maxima; the walls associated with the min-
ima in the upper part are shifted with respect to the min-
ima by a few microns as compared to their positions in
the lower part of the crystal. This may be attributed to
domain wall motion in the course of crystal growth and
cooling. The motion of the domain walls associated
with the concentration minima, i.e., of those least
pinned by the impurity, is more pronounced. The
domain wall motion is driven by an internal field E
(thermopower) created by the temperature gradient,
which is fairly large in the Czochralski method. When

grown by this method along the  direction, the
crystal breaks down in two antiparallel main domains
and a series of internal domains [3]. We believe that the
radial temperature gradient affects the formation of a
domain structure in a crystal of such orientation not
only near the Curie isotherm, but also at lower temper-
atures through motion of the walls of the internal
domains, i.e., of the RDS domain walls in our case.
This motion accounts for the unequal domain thick-
nesses within the same period and the observed
increase in the margin of this inequality in the upper
part of the crystal, which formed before the lower one
and, hence, was acted upon by the temperature gradient
for a longer time. One can estimate the domain-wall
motion velocity from the crystal pulling rate, the dis-
tance between the regions under study, and the
observed wall displacement.

The value thus obtained (≈5 µm/h) reflects the
domain-wall velocity for the crystal regions under
study. Generally speaking, the velocity should depend
on the temperature, the temperature gradient, and the
concentration of the wall-stabilizing impurities.

5. A study of the correlation between the yttrium
distribution and the positions of the ferroelectric
domain walls showed that the impurity concentration
modulation period is in agreement with the RDS
period. The maxima are typically broader than the min-
ima and are asymmetric in shape. One domain wall
forms near a maximum and another arises near a mini-

2110〈 〉
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Fig. 2. Domain structure patterns matched to the curves of yttrium concentration distribution on the LiNbO3 : Y  surface
(a) in the lower part of the crystal and (b) in the upper crystal part.
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(b)
mum of the yttrium concentration. A similar result
was obtained by the present authors in a study of an
LiNbO3 : Nd : Mg crystal [4–6]. The asymmetric shape
of the Nd impurity distribution curve corresponded to
the unequal thicknesses of the positive and negative
domains within one RDS period.
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Our results are comparable with those quoted in
[2, 7, 8] where Czochralski-grown LiNbO3 : Y crystals
(1–0.5 wt %) were investigated. The domain structure
and the impurity distribution also had the same period
determined by the actual growth parameters, and the
narrow minima and broad maxima in the Y distribution
0



 

1730

        

 EVLANOVA 

 

et al

 

.

                           
likewise were associated with domain wall positions.
The impurity distribution curves obtained by us are less
symmetrical; the more symmetric shape of these curves
in [2, 7] is probably connected with the transmission
electron microscope technique [8] used in the measure-
ments.

In contrast to [7], however, we believe that the
unequal domain widths within the same period cannot
be accounted for solely in terms of the mechanism [7]
of critical impurity concentration gradient and of the
unequal widths of crystal layers grown during the half-
periods of their rotation differing in temperature [8].
We followed the increase in domain width difference
over the crystal and believe that domain walls move in
the course of crystal growth. Nevertheless, a proper
comparison with our results cannot be carried out,
because the publication in question lacks the necessary
information; in particular, the part of the crystal from
which the sample was cut is not specified in [7].

6. Scanning of the  lithium niobate surface
parallel to the Ps vector revealed for the first time the
formation of a new positive domain around the electron
beam trace.

It is known that an electron beam is capable of repo-
larizing the {0001} surface of an LiNbO3 crystal per-
pendicular to Ps. The scanning electron beam was used
to produce a periodic domain structure in lithium nio-
bate at room temperature [9]. The authors attribute this
effect to the polarization switching action of the local

electric field along Ps. Illumination of the  and

 surfaces and of X and Y cuts of LiNbO3 : Fe
crystals created microdomain regions at a nonzero light
intensity gradient [10]. The formation of the micro-
domains is attributed [10] to a generation of an internal,
high-strength electric field as a result of spatial charge
separation in the photogalvanic effect. Besides, local
polarization switching in the surface layer of a lithium
niobate crystal with the Z axis parallel to the surface
was observed to occur during the motion of a pointed
electrode to which an electric potential was applied [11].

We attribute the formation of a new domain of oppo-
site sign on the  surface to the formation near
the crystal surface of a space charge gradient as the sur-
face is scanned by an electron beam. Besides, we
believe that a local temperature gradient may also affect
Ps, because the electron beam heats the crystal fairly
strongly and leaves an indented trace on the polished
crystal surface.

While the x-ray microprobe analyses (Figs. 2a and 2b)
were performed in identical conditions, in one case
(Fig. 2a), where a new positive domain formed, the
electron beam was focused to a smaller spot.

7. To sum up:
(i) We have developed a new method of studying the

correlation between the impurity distribution and the
domain wall positions in a periodically polarized lith-
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ium-niobate crystal. The domain wall images revealed
by selective chemical etching were matched to the
impurity distribution curves by means of marks and
x-ray microprobe analysis traces on the LiNbO3 : Y

 surface. The ferroelectric domain boundaries
were found to coincide with the impurity modulation
extrema;

(ii) We have shown for the first time that, below the
Curie temperature, domain walls displace with respect
to the corresponding yttrium concentration minima (by
5 µm/h) in the course of lithium-niobate crystal growth;
and 

(iii) A new positive domain has been observed to
form around the electron beam trace on the 
surface of the LiNbO3 : Y crystal. This opens new pos-
sibilities for RDS generation.
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Abstract—The a, b, c, and β crystallographic parameters of the (CH3)2NH2Al(SO4)2 · 6H2O crystal (DMAAS)
have been measured by x-ray diffraction in the 90–300-K temperature range. The thermal expansion coeffi-
cients along the principal crystallographic axes αa, αb, and αc have been determined. It was shown that, as the
temperature is increased, the parameter α decreases and b increases, whereas c decreases for T < Tc (where Tc
is the transition temperature) and increases for T > Tc, so that one observes a minimum in the c = f(T) curve in
the region of the phase transition (PT) temperature Tc ~ 152 K. The thermal expansion coefficients αa, αb, and
αc vary in a complicated manner with increasing temperature, more specifically, αa and αc assume negative val-
ues at low temperatures, and the αa = f(T), αb = f(T), and αc = f(T) curves exhibit anomalies at the PT point. The
crystal has been found to be substantially anisotropic in thermal expansion. © 2000 MAIK “Nauka/Interperi-
odica”.
Dimethylammonium-aluminum sulfate (DMAAS)
(CH3)2NH2Al(SO4)2 · 6H2O crystals have been synthe-
sized fairly recently [1] and, similar to their gallium-
containing analog DMAGS, belong to a new class of
ferroelectrics–ferroelastics. DMAAS crystallizes in a
monoclinic structure of a space group P21/n with room-
temperature unit-cell parameters a = 6.403 Å, b =
10.747 Å, c = 11.128 Å, and β = 100.47° [2]. The
paraelectric phase of DMAAS exhibits ferroelastic
properties, and when cooled to Tc ~ 152 K, the crystal
undergoes a proper second-order transition from the
ferroelastic to ferroelectric phase involving a change in
symmetry 2m  m [1]. Measurements of the optical
and electrooptical properties [3, 4] do not exclude the pos-
sibility of a phase transition (PT) in DMAAS at T ~ 110.5
and 390 K. A study of the plastic properties of DMAAS
crystals [5] revealed a break in the σ0.2 = f(T) curve at
T = 110 K. Besides, a low-temperature phase transition
was observed in the region of T ~ 75 K [6, 7], whose
nature remains unclear, with the symmetry of the low-
temperature phase being unknown.

This work reports an x-ray diffraction study of the
lattice parameters a, b, c, and β and of thermal expan-
sion of DMAAS crystals made in the temperature range
from 90 to 300 K.

1. EXPERIMENTAL TECHNIQUES 
AND RESULTS OF THE STUDY

The x-ray diffraction studies were carried out on a
diffractometer with CuKα radiation using a Rigaku
low-temperature x-ray camera. The subjects for the
1063-7834/00/4209- $20.00 © 21731
study were single-crystal plates 4 × 4 × 2 mm in size,
whose surfaces were set parallel to the (h00), (0k0), and
(001) crystallographic planes to within ~3–5′. Besides,
the angles of some reflections were also measured on
powder samples in the same temperature range. The
diffraction spectra were obtained by θ = 2θ scanning,
with the reflection intensity profile recorded on perfo-
rated tape. The sample temperature was set by a control
unit based on a VRT-3 temperature controller. The tem-
perature was monitored with a copper–constantan ther-
mocouple. This system permitted one to set and main-
tain a temperature to 0.1 K within the 90–300-K range
covered. Before each exposure, the sample was kept at
the given temperature for 10–15 min. The diffraction
angles were measured in 2–4 K steps. The accuracy of
determination of the parameters was ±0.0004 Å. The
room-temperature crystallographic parameters of
DMAAS were found to be a = 6.3939 ± (4) Å, b =
10.7450 ± (4) Å, c = 11.0686 ± (4) Å, and β = 99.53°.

Figure 1 presents temperature dependences of the
lattice parameters a, b, and c of single-crystal
DMAAS. One readily sees that the a parameter
decreases with increasing temperature, to increase
slightly only in the 270–300 K region. Near the PT
temperature (Tc ~ 152 K), the a = f(T) curve changes
slope. The b parameter grows with increasing tempera-
ture throughout the 90–300 K range covered, and only
in the PT region (150–155 K) the b = f(T) curve exhibits
an anomaly in the form of a plateau (the invar effect).
Parameter c decreases with increasing temperature for
T < Tc and increases for T > Tc; that is, at the PT point,
the c = f(T) curve passes through a minimum. The tem-
000 MAIK “Nauka/Interperiodica”



1732 SHELEG et al.
perature dependence of the β angle calculated from
interplanar distances d600 = f(T), d080 = f(T), d0012 = f(T),
and d132 = f(T) is displayed in Fig. 2 (curve 1). One
readily sees that, as the temperature increases, the β
angle remains nearly unchanged in the 100–150-K
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Fig. 1. Temperature dependences of the lattice parameters
(1) a, (2) b, and (3) c of a DMAAS crystal.

Fig. 2. Temperature dependences of the β angle (1) and unit-
cell volume V (2) of the DMAAS crystal.
P

region, to grow slightly afterwards. In the vicinity of
the PT point (Tc ~ 152 K), a sharp increase of the β
angle is observed to occur. The same figure (curve 2)
shows the variation of the unit-cell volume V of the
DMAAS crystal with temperature. We see that, as the
temperature approaches the PT point, V increases only
slightly, but near the PT point at T = 152 K the volume
V drops sharply. As the temperature continues to
increase, V changes insignificantly, and only at T = 260 K,
the volume V increases rapidly.

Temperature dependences of the crystallographic
parameters of DDMAAS, i.e., deuterated DMAAS, can
be found in [8]. Note that the temperature behavior of
the crystallographic parameters of DDMAAS and of
our data on DMAAS follows the same pattern. A
detailed comparison is, however, impossible to make
because the measurements in [8] were performed with
a larger temperature step.

Figure 3 presents the temperature dependences of
the thermal expansion coefficients (TEC) αa, αb, and αc
along the principal crystallographic axes of the
DMAAS crystal. The values of αa are negative in the
90–270 K region, and in the PT region (Tc ~ 152 K) the
αa = f(T) curve passes through a minimum. The sign of
the αb = f(T) TEC remains positive throughout the
temperature range covered, while at the PT point (Tc ~
152 K) αb = 0. The αc TEC is negative at temperatures
from 90 to 152 K, with αc = f(T) reversing sign at the
PT point. The complex pattern of the temperature
behavior of the crystallographic parameters and the sig-
nificant anisotropy of thermal expansion are due to the
specific features of the structure of this crystal.

2. RESULTS AND DISCUSSION

The crystal structure of DMAAS has a complex sys-
tem of hydrogen bonds, which play a decisive role in
the formation of the three-dimensional lattice frame-
work. X-ray and neutron diffraction studies [2, 9–12]
showed the DMAAS structure to be made up of nearly

100 150 200 250 300
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α, 10–5 K–1

Fig. 3. Temperature dependences of the thermal expansion
coefficients along the principal crystallographic axes a, b,
and c: (1) αa (2) αb, and (3) αc of the DMAAS crystal.
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regular (SO4)2– tetrahedra connected by strong hydro-
gen bonds O–…–H–O with water molecules contained
in the (Al(H2O)6]3+ complex cation. This system consti-
tutes a rigid three-dimensional framework. The molec-
ular cations of dimethylammonium (DMA)
[(CH3)2NH2]+ occupy large voids in this framework and
play a decisive role in the mechanism of the ferroelec-
tric PT at Tc = 152 K. The PT is considered [9–14] to be
associated with the ordering of the DMA molecular
cations with decreasing temperature, because orienta-
tional ordering of these cations results in a loss of the
inversion center at the ferroelectric transition and the
dipole-moment formation. There is, however, another
viewpoint, which is that the PT at Tc = 152 K is caused
by orientational ordering of H2O molecules at the Al–
OH–…–OS bonds [15]. The [Al(H2O)6]3+ and DMA
complex cations lie in layers parallel to the (100) plane,
which sandwich an (SO4)2– anion layer. The
[Al(H2O)6]3+ and DMA complexes form arrays parallel
to the c axis and alternating in the b direction within the
same cation layer [9]. A change in the temperature
brings about not only a change in the distance between
the complexes, but their rotation as well. This is why
one observes such a complex pattern of crystal-lattice
parameter and TEC variation along the principal crys-
tallographic directions. It should be pointed out that
this involves not a rupture of interatomic chemical
bonds, but only their deformation, which is evidenced
by the absence of a jump in the unit-cell volume V in
the PT region; only a strong decrease in V is observed
with increasing temperature, so that the crystal does not
break down under repeated thermal cycling through the
PT, unlike the DMAGS, where one observes a jump in
V at the low-temperature PT (Tc2) to result in crystal
breakdown [16]. The three-dimensional framework of
the DMAAS structure formed by the rigid [Al(H2O)6]3+

and (SO4)2– complexes changes little with temperature.
The PT at T = 152 K is a result of the response of the
framework to orientational ordering of the DMA com-
plex dipoles. By [16], the DMA ions can be conceived
as rigid molecular dipoles with a certain dipole moment m.
The major part of the structural evolution occurring
with variation of temperature and, in particular, in the
vicinity of the PT, is associated with a reorientation of
the m vector in the plane where the Ps polarization vec-
tor and the b axis lie. The compression of the DMAAS
cell in the ferroelectric phase induced by decreasing
temperature deforms the main void occupied by the
DMA ions. Similar to DMAGS [16], DMAAS under-
goes orientational ordering of the DMA cations at the
PT, and the dipole-moment vectors m tend to assume an
orientation close to the [101] direction [16], i.e., nearly
perpendicular to [010]. Thus, as the temperature is
decreased below Tc, the voids occupied by DMA cat-
ions in the crystal will most likely be compressed along
the [010] crystallographic direction, whereas the lack
of free volume along [100] and [001] also allows
expansion, exactly what is observed experimentally.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
Besides, the character of variation of the β angle also
plays its part in the lattice distortion.
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in a Magnetic Field
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Abstract—Interband luminescence in a parabolic quantum well is studied in applied electric and magnetic
fields. It is shown that the luminescence peak is displaced towards higher frequencies with increasing magnetic
field strength, while an increase in the electric field strength causes a displacement of the emission peak towards
the long-wave region and a decrease in its amplitude. The theoretical results are compared with the experimen-
tal data. The existence of a new electromagnetic-wave emission channel (electrically induced luminescence)
associated with indirect optical transitions is predicted. The frequency dependence of the electrically induced
radiation is computed, taking into account the interaction of an electron with acoustic and optical phonons. It
is found that the half-width of the luminescence peak increases with the electric field strength. © 2000 MAIK
“Nauka/Interperiodica”.
1. Modern technology using computer control of
the molecular beam shutters makes it possible to
obtain various profiles of the quantum well (QW)
potential. Gossard [1] was the first to obtain an artifi-
cial parabolic quantum well in a small-size structure
GaAs–AlxGa1 – xAs. Luminescence in parabolic quan-
tum wells from high size-quantized levels was clearly
observed by Wang et al. [2]. The size-quantized levels
are formed in relatively wide quantum wells with d >
1000 Å (d is the width of the small-size system). It is
this circumstance that makes such systems promising
for application in optoelectronic instruments. For typi-
cal parameters of the parabolic quantum well in GaAs–
AlxGa1 – xAs, the space quantization step "ω (eV) for
electrons is equal to 14.6/d (Å), i.e., "ω = 14.6 meV for
d = 1000 Å. Consequently, for T < 100 K, the size-
quantized levels can determine the kinetic properties of
such systems to a considerable extent. Hence, it is not
surprising that the optical properties of parabolic QW
(e.g., interband luminescence [3, 4] and inelastic reso-
nance scattering of light [5]) are studied for d > 1000 Å.

If the magnetic field H is directed parallel to the sur-
face of a parabolic QW and the electric field F is
directed along the space quantization axis, the wave
functions and eigenvalues for the electron are known
[6]. In particular, the electron energies Ei in the conduc-
tion band and Ef in the valence band are defined by the
relations
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Here, we have used the notation

ωc and Ωc are the cyclotron frequencies for an electron
with an effective mass mc and a hole with an effective
mass mν, respectively; Eg is the band gap; Kx and Ky are
the components of the wave vector of a charged parti-
cle; and "Ω is the space quantization energy in the
valence band.

It follows directly from Eq. (1) that the dispersion
relation for band carriers changes significantly in exter-
nal fields. While the dependence of the energy on Ky in
a zero electric field (F = 0) is described by a quadratic
relation (dashed curves in Fig. 1), the band extrema are
displaced towards the forbidden energy region for F ≠ 0
(solid curves in Fig. 1). Consequently, direct optical
transitions I for F ≠ 0 are supplemented by additional
luminescence channels associated with indirect optical
transitions (transition II in Fig. 1). Thus, indirect-band
quantum systems can be created in external fields of the
configuration under consideration (H ⊥  F). Techniques
for producing indirect-band quasi-two-dimensional
systems have been developed in recent years. For
example, it was shown [7] that a considerable enhance-
ment of radiative recombination is observed in a quan-
tum well of GaxIn1 – xAs–InP for x > x0 (x0 = 0.52 for a
QW width of 60 Å). This is due to the fact that the
valence band top of GaInAs is displaced in K space and
the system becomes an indirect-band system. The
energy of an optical phonon could be determined from
the experimental data on photoluminescence [7]. Mag-
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netically induced optical transitions in the system
Al0.23Ga0.77As–In0.11Ga0.89As–GaAs were studied by
Whittaker et al. [8]. In the complex system under con-
sideration, the bottom of the conduction band is dis-
placed in Ky-space in the presence of a magnetic field
in the QW plane and an indirect-band quantum system
is created.

2. In the following analysis, we shall disregard exci-
ton effects while studying band-to-band luminescence
processes. This approximation is quite justified, as we
are considering strong magnetic fields, in which the
Coulomb interaction of an electron with a hole is small
compared to the separation between size-quantized
states [9]. The overlapping of the electron and hole
wave functions decreases in an electric field, and there-
fore, the exciton effects are considerably suppressed [10].
The spectral intensity of radiation associated with a transi-
tion of an electron from the initial state i to a final state f
is simply connected with the transition probability per
unit time [11] and is defined by the relation

(2)

where V stands for the volume of the small-size system,
m0 is the mass of a free electron having a charge e, Pcν
is the matrix element of the momentum operator
involving the Bloch amplitudes of band carriers, ν is
the frequency of the emitted electromagnetic wave of
polarization e0, ε0 is the dielectric constant of the quan-

tum system, and  is the electron distribution func-
tion in the conduction band, which can be presented in
the form

for a nondegenerate semiconductor, and ne is the num-
ber density of electrons. The hole distribution function

 in the valence band can be expressed in an analo-
gous form.

In the following, we shall consider the luminescence
processes associated with a transition of an electron
from the lowest size-quantized conduction band (n = 0)
to the zeroth size-quantized state in the valence band
(transition I in Fig. 1). This is fully justified if we con-
sider that all electrons occupy the lowest conduction
band for "ω @ k0T. As a result, the final expression for
the spectral intensity of radiation assumes the form
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(3)

Here, we have used the notation

Ip(z) is the modified Bessel function of the pth order,
and nh is the hole concentration.
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Fig. 1. Band-to-band radiative transitions in a solitary para-
bolic quantum well in the presence of uniform external elec-
tric and magnetic fields.
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In the absence of a magnetic field, Eq. (3) coincides
exactly with the results of investigations carried out by
Hou et al. [12], who studied the effect of an electric
field on the optical properties of parabolic QWs. In the
case of zero electric field (F = 0), Eq. (3) directly leads
to the expression

(4)

This expression describes the frequency dependence of
the spectral intensity of radiation (transition III in
Fig. 1) in parabolic QWs in the presence of a magnetic
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Fig. 2. Frequency dependence of the spectral intensity of
radiation for direct optical transitions in relative units in a
zero electric field. Curve 1 corresponds to δ = 1, and curve
2 to δ = 2.

Fig. 3. Frequency dependence of the spectral intensity of
radiation for direct optical transitions in relative units in a
constant magnetic field (δ = 1). Curve 1 corresponds to F0 =
0.5 and curve 2 to F0 = 1.
P

field directed along the surface of the size-confined sys-
tem.

Figure 2 shows the frequency dependence of the
spectral intensity of radiation in relative units. Calcula-
tions were made for typical QWs of GaAs–AlGaAs
with mc = 0.06m0 and mν = 0.4m0 for d = 1000 Å and

. Curve 1 was
obtained for δ = (ωc/ω)2 = 1, while curve 2 corresponds
to δ = 2. The half-width δ0 of the luminescence peak is
≈ 0.7 meV and increases with decreasing QW thickness
(δ0 ≈ 7 meV for d = 100 Å). It can be seen from Fig. 2
that the peak of the luminescence line is displaced
towards higher frequencies upon an increase in the
magnetic field strength. This is due to an increase in the
width of the band gap as a result of quantization in the
magnetic field. Hou et al. [12] experimentally studied
the photoluminescence in narrow (d = 30 Å) rectangu-
lar QWs in InGaAs–GaAs and showed that the lumi-
nescence peak is displaced towards the short-wave
region, the peak half-width being δ0 ≈ 8 meV. Since the
shape of the emission line peaks is not very sensitive to
the form of the potential well (for wells of nearly iden-
tical width), the theoretical results obtained are in qual-
itative agreement with the experiment.

Figure 3 shows the dependence of the spectral inten-
sity of radiation in relative units for δ = 1, calculated by
using Eq. (3). The first peak was calculated for F0 =

 = 0.5, and the second for F0 = 1. Conse-

quently, the luminescence peak is displaced towards the
long-wave region for a fixed value of the magnetic field
and its intensity decreases. This is due to the fact that
the band gap decreases by an amount ∆c + ∆ν, and the
overlapping of the wave functions of band carriers
decreases. Such a behavior of the luminescence inten-
sity is typical of small-size systems and is confirmed
experimentally (in zero magnetic field) for both square
[13–15] and parabolic QWs [16], as well as for inver-
sion parabolic QW [17].

A distinguishing feature of the system under consid-
eration is the dependence of the half-width of the lumi-
nescence peak on the electric field strength. The half-
width increases with an increasing field.

3. Let us now consider the electrically induced lumi-
nescence (transition II in Fig. 1), which is determined
by the interaction of electrons with phonons. Subse-
quent calculations for indirect optical transitions are
carried out in the conventional manner as described in
[18]. Considering the scattering of electrons by acous-
tic vibrations in the elastic scattering approximation

and for Nq ≈  > 1 (Nq is the equilibrium distribu-

tion of phonons with the energy "wq and the wave vec-
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tor q), we can define the spectral intensity of radiation
at the emission band edge as follows:

(5)

Here, we have used the notation

E1 is deformation potential constant for electrons, ρ is
the matter density of the small-size systems, and w is
the velocity of sound in the medium.

The spectral intensity of radiation taking into con-
sideration an optical phonon with energy "ωop can be
calculated in a similar manner:

(6)

where

,

n is the refractive index, and ε0 is the dielectric constant.
The frequency dependence of the spectral intensity

of radiation taking into account the interaction of an
electron with acoustic vibrations (in relative units) is
shown in Fig. 4. The shape of the emission line is
described by a curve whose peak is displaced relative to
the edge of the optical transition (transition I in Fig. 1)

towards lower frequencies by an amount ∆ν = 
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Fig. 4. Frequency dependence (in relative units) of the spec-
tral intensity of radiation, taking into account the interaction
of an electron with acoustic vibrations (F0 = 0.5, δ = 1).
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and moves towards the long-wave region with increas-
ing electric field strength. If the half-width of the lumi-
nescence curve δ1 > "∆ν, electrically induced lumines-
cence must be observed in the long-wave spectral
region. This luminescence is manifested most clearly in
the case of electron interaction with optical vibrations.
This is due to the fact that, first and foremost, the inter-
action of an electron with optical phonons in typical
parabolic QWs in GaAs–AlGaAs is stronger than with
acoustic phonons. Second, the electrically induced
luminescence peak is additionally displaced towards
the long-wave region by an amount "ωop/"ω. While
deriving Eqs. (5) and (6), we took into account the fact
that an indirect optical transition initially involves the
scattering of an electron from phonons followed by the
emission of a photon. This process has a higher proba-
bility than the process of photon emission, followed by
the scattering of carriers from photons.
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Abstract—The kinetics of the formation and thermal destruction of color centers in CuCl and AgCl nanocrys-
tals (NCs) distributed in a glass matrix is described on the basis of the band model of an NC with colloidal color
centers and with hole traps of one species. The possibility of experimentally determining the relative depth dis-
tribution of hole states in light-sensitive NCs in glass is demonstrated. The observed energy dispersion of local-
ized hole states and its variation in NCs are associated, in accordance with Dexter’s idea, with large-scale ther-
mal fluctuations of the crystal field. The presence of an excess charge on a colloidal particle and its influence
on localized hole states are presumed. © 2000 MAIK “Nauka/Interperiodica”.
Detailed studies of the relaxation kinetics of color
centers in light-sensitive CuHal and AgHal nanocrys-
tals (NCs) distributed in a glass matrix proved [1] that
the kinetic curve of the absorption relaxation for Cun

colloidal particles becomes linear in lnt coordinates (t
is the time). The specific relaxation mechanism of color
centers in these systems remains unclear. The diffusion
models proposed earlier for the electron–hole recombi-
nation kinetics of such systems [2–4] are unable to
explain the “termination” of the decay of color centers,
which is observed in these systems [5–8]. We propose
here a mechanism and a kinetic model of electron–hole
processes occurring during the formation and destruc-
tion of color centers (copper Cun or silver Agn colloidal
particles) that appear as a result of the optical excitation
of CuHal and AgHal NCs.

1. KINETIC MODEL

Proceeding from the results obtained in [9–11], we
can present the mechanism of formation (destruction)
of Cun or Agn particles in the first approximation as the
combination of processes demonstrated in the band
model of CuCl NCs (Fig. 1) with colloidal particles and
hole traps of the same species under conditions of UV
excitation.

In the case of UV excitation, electron–hole pairs are
formed in the region of fundamental absorption of the
NC. In this scheme, two processes facilitate the growth
of colloidal particles. Electrons trapped by interstitial
cations Cu+ facilitate the formation and growth of Cun

particles, thereby leading to an increase in the optical
absorption associated with these particles. Holes are
captured at hole trapping centers, thus facilitating the
stabilization of colloidal particles.
1063-7834/00/4209- $20.00 © 21738
On the other hand, these two processes decrease the
size of colloidal particles. The trapping of a hole by a
colloidal particle, followed by the tearing of a Cu+ cat-
ion from it, leads to the destruction of the colloidal par-
ticle and to a decrease in the observed optical absorp-
tion. On the other hand, the electrons formed as a result
of UV excitation can recombine with a trapped hole,
which decelerates the growth of colloidal particles. It
turned out [9–11] that the limiting stage of all these pro-
cesses is the capture of holes and their liberation from
the traps.

The peculiarities of the kinetic regularities observed
in such systems [1] can be explained by assuming the
existence of dispersion over the depth of hole-trapping
centers. The emergence of the energy dispersion of
localized states in an NC can be due to energy fluctua-
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E0
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Cu0
χI0

σ+
R
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L
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R

v(E)

VN+

ω

C

Fig. 1. Band model of a CuCl NC with Cun colloidal parti-
cles and hole traps of one species under UV excitation. The
valence band is denoted by V and the conduction band by C.
The rest of the notation is given in the text.
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tions of the crystal lattice in the surface layer of the NC
[12, 13], in which the impurity atoms forming hole
traps can be embedded.

This model of electron–hole processes using the
concepts of the classical kinetic theory of crystals [14]
not only provides a description for the kinetics of
absorption relaxation (destruction) of colloidal parti-
cles in the systems under investigation, but also (which
is equally important) allows us, for the first time, to
describe the kinetics of formation of colloidal color
centers.

In the first approximation, we can assume that the
energy dispersion of hole traps has a normal Gaussian
distribution

(1)

where ν0 is the total number of hole traps in all NCs
being excited; E and E0 are the energy depth of a trap
and the energy of the distribution peak, respectively;
and s is the distribution width. The probability of ther-
mally activated expulsion from a trap is determined by
its depth E and temperature T:

(2)

where p is the rate factor. In accordance with the pro-
posed model, the time-dependent total number n(t) of
holes trapped in all NCs is equal to the total number
N(t) of atoms in the colloidal particles of all NCs:

(3)

In this case, the process of formation and destruc-
tion of colloidal particles determining the optical
absorption can be described by kinetic equations spec-
ifying the time variation of hole distribution among
traps:

(4)

(5)

(6)

where , , , and  are the effective cross sec-
tions of localization and recombination for an electron
and a hole, respectively; u– and u+ are the average elec-
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tron and hole velocities; N– and N+ are the numbers of
free electrons and holes, respectively; χ is the optical
absorption at the UV radiation wavelength; I0 is the
intensity of excitation; and A+ is the number of intersti-
tial Cu+ cations contained in all the crystals. The value
of A+ is generally a function of temperature [15].

The first term on the right-hand side of Eq. (4) deter-
mines the decrease in the number of holes at traps with
the energy E due to thermally activated expulsion,
while the second term determines the decrease in the
number of trapped holes as a result of recombination
with free electrons. The third term determines the cap-
ture of holes by empty traps with energy E. (A detailed
substantiation of these relations is given in [14].)

The kinetics of variation of the total number of holes
in traps can be determined from Eq. (4) by the numeri-
cal calculation of n(E, t) and by the integration with
respect to dE:

(7)

According to Eq. (3), the optical absorption D(t) is pro-
portional to n(t):

(8)

where γ is the effective oscillator strength determining
the optical absorption of atoms in colloidal particles.

2. EXPERIMENTAL RESULTS

Figure 2 shows the results of experiments on record-
ing the buildup of absorption of Cun centers under UV
excitation, as well as the absorption relaxation after the
termination of excitation, for CuCl NCs with an aver-
age radius of 2 to 8 nm. The experiments were made on
a glass sample with a continuous variation of the aver-
age radius of CuCl NCs along the sample, which was
investigated earlier in [12, 13]. Figure 2b separately
shows the relaxation segments of the curves describing
the variation of absorption Dr(t) in ln [(t + a1)/b1] coor-
dinates. Most of the relaxation curves are straightened
for a1 = 0.05 and b1 = 10. The small value of a1 corre-
sponds to a strong excitation [1].

Figure 2 shows the theoretical curves describing the
kinetics of the absorption variation for NCs with an
average radius of 8 and 2 nm (curves 1', 5'). The
value of D(t) was calculated after analyzing the distri-
bution n(E, t) in accordance with Eqs. (3)–(8). The
complete coincidence of the theoretical curve 1' with
the experimental curve 1 for the NC of radius 8 nm was
attained for a rate factor p = 106, energy E0 = 0.47 eV,
and distribution width s = 0.23 eV. The kinetic parame-

ters were ν0/ A+ = 0.05 and /  = 0.06. The
relative intensity of UV excitation was χI0/ν0 = 0.04.
The product γν0 was 0.46. While choosing the parame-
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Fig. 2. Kinetics of Cun center absorption build-up during UV excitation and the absorption relaxation after the termination of exci-
tation for CuCl NCs of different size in glass: (a) absorption build-up and relaxation and (b) absorption relaxation; the NC radius
R, nm: (1) 8.3, (2) 6.2, (3) 4.5, (4) 3.2, and (5) 2.1; curves 1' and 5' are calculated by Eqs. (3)–(8).
ters for our calculations, we found that the UV excita-
tion heats the NCs by 20–30 K, and the temperature
immediately returns to room temperature T = 300 K
after the termination of excitation. The parameters of
the theoretical curve describing the buildup of absorp-
tion and its relaxation (after the termination of UV
excitation) coincide only under this condition.

An analysis of the obtained parameters of the kinet-

ics shows that the probability A+ of electron local-
ization at interstitial ions is much higher than the prob-

ability ν0 of recombination with localized holes (in
the case of their complete filling), and the effective

cross section  of hole trapping by a colloidal particle

is 17 times as large as the cross section  of hole
localization at a trap. Such a ratio of cross sections is
possible if the size of the impurity center forming the
hole trap equals the lattice constant, and a colloidal par-
ticle in the ground state carries a certain negative
charge.

σL
–
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–

σR
+
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+

P

For a 2 nm-long NC (curves 5 and 5'), the theoretical
half-width of the distribution decreases to s = 0.045
(almost by a factor of 5), while E0 = 0.45 eV (if we
assume that the rate factor remains unchanged) and
χI0/ν0 = 0.03. The remaining parameters are the same.

It was found that the slope of the absorption relax-
ation curves Dr(t) in the ln(t) coordinates in Fig. 2b is
mainly determined by the distribution width s and by

the ratio / . A decrease in the intensity of UV
excitation complicates the curve describing the
increase in the absorption of colloidal particles, which
can be due to the possible formation of UV-induced
radiation defects facilitating the formation of new hole
traps in NCs and the possible superimposition of the
effect of optical sensitization [16] facilitating the for-
mation of additional electron–hole pairs during the
optical excitation of the Cun colloidal particles them-
selves.

Carrying out the change of the variables dT = cdt
(c is the heating rate) in Eqs. (3)–(8), we can derive the
temperature dependence n(E, T) of the hole distribution
over the traps and, accordingly, the optical absorption

σL
+ σR

+
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D(T). According to calculations, the derivative
dD(T)/dT in the case of UV excitation to the equilib-
rium state gives the curve proportional to the energy
density distribution ν(E) for traps. Presenting the theo-
retical curve in the dD(T)/dT and ET = kl, kT coordi-
nates (the parameter kl is slightly larger than the value
of ln(p)), we find that it perfectly coincides with the
distribution curve of Eq. (1). Consequently, the D(T)
curve that can be obtained during the heating of a sam-
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Fig. 3. Curves D(t, T) describing the build-up of absorption
of Cun and Agn centers during the excitation of CuCl and
AgCl NCs to saturation, followed by a linear heating under
the excitation. Curves 1 and 1' correspond to CuCl NCs free
of defects (annealed for 30 min at 300°C), curves 2 and 2'
correspond to CuCl NCs with frozen intrinsic defects,
curves 3 and 3', to AgCl NCs; the heating rate c = 5 K/min.
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ple excited to saturation presents the energy scanning
of the distribution of hole traps in energy ET in a real
experiment. The derivative dD(T)/dT is proportional to
the distribution ν(E) only if other temperature-depen-
dent mechanisms disregarded in the calculations are
not activated during the sample heating.

The results of such an experiment are presented in
Figs. 3 and 4. Figure 3 shows the increase in the absorp-
tion D(t) (curve 1) under UV excitation and the
decrease in absorption D(T) due to the increasing tem-
perature of a sample with CuCl NCs of radius 10 nm in
the presence of excitation (curve 1'). Curves 2 and 2'
correspond to D(t) and D(T) for quenched CuCl NCs in
the same sample. The quenching of NCs was carried
out during the short-term holding of the sample at
500°C, followed by rapid cooling to room temperature.
A similar experiment was carried out for AgCl NCs in
glass (curves 3 and 3').

Curves 1–3 in Fig. 4 correspond to the derivatives
dD(T)/dT obtained from the data presented in Fig. 3
(curves 1'–3'); their approximation is also carried out.
The temperature scale is presented in the energy units
ET = 18.5 kT.

Curve 1 in Fig. 4 for CuCl NCs is approximated by
the descending wing of the Gaussian distribution hav-
ing a peak at ET = 0.5 and a width 0.095 eV. The energy
ET is close to the energy E0 obtained from the analysis
of the kinetics for NCs of radius 8 nm (see above), but
the experimental width of the distribution is twice as
small as the theoretical value (s = 0.23 eV). This indi-
cates a stronger temperature dependence of the kinetics
of the NCs under investigation than that predicted by
Eq. (2). Further investigations are required to clarify
this situation.
1—CuCl
2—CuCl(d)
3—AgCl
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Fig. 4. Derivatives dD(T)/dT for the corresponding temperature regions of D(T) curves (from Fig. 3), reflecting the relative energy
distribution of localized hole states for CuCl and AgCl NCs in glass and their interpolation by Gaussians. Curve 1 corresponds to a
CuCl NC without defects, curves 2, 2', and 2'', to NCs with frozen intrinsic defects; and curve 3 corresponds to AgCl NCs.
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For quenched CuCl NCs, the dD(T)/dT curve has a
more intricate shape (curve 2 in Fig. 4). Its decomposi-
tion proved that the quenching of NCs increases the
number of hole traps of the second type (stabilized,
thermally activated defects, viz., cation vacancies or
their aggregates) with the distribution peak in the
energy range ET = 0.70 eV and the distribution width
0.055 eV. Consequently, the efficiency of the formation
of colloidal particles is twice as high (cf. curves 1 and
2 in Fig. 3).

The energy scanning of glass samples with light-
sensitive AgCl NCs gives a peak on the dD(T)/dT curve
(curve 3 in Fig. 4) for a still higher energy ET = 0.77 eV
for a distribution width of 0.073 eV. The large depth of
the hole center in an AgCl NC is responsible for the
weak relaxation of absorption of Agn particles at room
temperature, which is observed in experiments.

Thus, the regularities in the kinetics of formation
and destruction of colloidal particles of copper and sil-
ver in light-sensitive CuHal or AgHal NCs are associ-
ated with the energy dispersion of localized hole states.
The decrease in the NC radius from 8 to 2 nm leads to
a decrease in the depth of hole centers and to a gradual,
but significant decrease in the width of the energy dis-
tribution for hole traps.

3. DISCUSSION OF RESULTS

The energy dispersion of localized states in NCs can
be explained using, in the first place, Dexter’s idea [17]
concerning the presence of large-scale crystal-field
fluctuations emerging due to thermal vibrations of the
lattice. As a result of lattice deformation ∆, the energy
of the localized state changes:

(9)

The width of the dispersion of the localized state is
determined by the random quantity P(∆) = const ×
exp(–B∆2/2kT), which is equal to the probability of the
emergence of deformation ∆ in NCs (B is a certain aver-
age value of the elastic constant).

We can calculate the elastic constant from the data
on the Young modulus for CuCl [18] and assume that its
average value is B = 1.0 (at T = 300 K). Then distribu-
tion curve 1 in Fig. 4 corresponds to the coefficient E1 =
0.6 eV, which determines the amplitude of crystal field
oscillations. For distribution curve 2'' in Fig. 4, which
is connected with the thermally activated Frenkel
defects in CuCl NCs, the value of B is equal to 3. Thus,
the elastic constant in the vicinity of thermally acti-
vated defects is higher (if we assume that the value of
E1 remains unchanged), and the crystal field fluctua-
tions decrease. As the radius of CuCl NC falls to 2 nm, the
dispersion width for hole states decreases to 0.045 eV,
which corresponds to B = 4.5. The considerable
decrease in the elastic constant is probably associated
with the cutoff of the phonon spectrum on the side of

E ∆( ) E0 E1∆.–=
P

long wavelengths, which cannot exceed the size of
NCs.

The dispersion width of localized hole states in
AgCl NCs amounts to 0.077 eV (see distribution curve 3
in Fig. 4), which corresponds to B = 1.7 (for the con-
stant E1 = 0.6 eV).

Due to the presence of an excess negative charge at
a colloidal particle (see above), we must take into
account the possible effect of an electric field on photo-
electronic processes in the NCs under investigation.
The mechanisms of the effect of the external electric
field on photoelectronic processes are considered in
detail in [19–21] for activated KCl–In ionic crystals.
The probability of the decay of an excited state of an
impurity increases in an electric field [19]. As applied
to the NCs under investigation, the field of a charged
Cun center may increase the probability of exciton
decay under UV excitation in the vicinity of this center.
In this connection, the localization of a hole can take
place close to the site of exciton decay in the range of
action of the electric field of a Cun center. Under the
action of the field, not only the depth of a hole trap, but
also the rate factor can decrease [20]. If the localization
of holes is characterized by a certain distribution P(r) in
a distance to a charged center, the depth E(r) of hole
traps has a dispersion due to different values of the elec-
tric field strength F(r) and is determined by the rela-
tion [20]

(10)

where E0 is the depth of a localized state in a zero field and
b is the proportionality factor (b = 3.4 × 10–6 eV m V–1 in
the case of a Coulomb center [20]).

If a hole is captured at traps nearest to a Cun center,
the P(r) distribution corresponds to the probability of
capture at the nearest trap [21]:

(11)

where N is the concentration of traps.
Indeed, the dispersion of the depth of electron states

localized near a charged center was observed earlier by
the thermoluminescence method [22]. The average dis-
tance to the nearest trap is defined from Eq. (11) as rc =
0.55N–1/3, which amounts to 3.2 nm for the concentra-
tion indicated in [22].

For the field of a Cun center to be responsible for a
dispersion width 0.1 eV of localized states (distribution
curve 1 in Fig. 4), holes must be trapped at a distance
rc, where the field must be equal to 6 × 107 V/m in

accordance with Eq. (10). This distance  = 1.13 nm
for an excess charge q = 0.5e at a colloidal particle (e is
the electron charge) and for the permittivity ε = 10 (for
CuCl). Such a short-range trapping of holes is possible
only for a very large concentration of traps, which is
highly improbable.

E r( ) E0 bF r( )0.5,–=

P r( )dr 4πr2N
4
3
---πr3N– 

  dr,exp=

rc
–
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In all probability, the energy dispersion of localized
states is due to thermal fluctuations of the crystal field,
and the field of a charged center shifts the entire distri-
bution towards lower energies upon a decrease in the
size of NCs. The experimentally observed decrease in
E0 by 0.02 eV upon a decrease in the NC radius from 8
to 2 nm is possible if, in accordance with Eq. (10), the
field strength amounts to 4 × 105 V/m. Such a field may
create a charge q = 0.07e on a Cun center at a distance
of 4 nm (the distance along the particle diameter).

The total number of atoms in a CuCl NC of radius
2 nm is approximately equal to 1500, and only 7 lattice
constants a can be accommodated in the diameter (a =
0.54 nm for CuCl with the lattice of a zinc blende). It is
impossible to determine the fraction of Cu atoms
involved in the formation of a Cun colloidal particle,
since the existing theoretical calculations based on the
Mie theory [23, 24] were made for Cun particles having
a size comparable with that of the entire NC. Carrying
out gauge measurements of the absorbed energy of UV
radiation and evaluating the number of NCs in the sam-
ple under investigation, we can determine the number
of traps in an individual crystal and the number of
atoms in a colloidal particle from the kinetics parame-
ters. Such studies will be carried out in the future.

The magnitude of the effective excess charge on a
Cun colloidal particle in a mobile Cu+ cation (which
moves mainly over tetrahedral voids of the NC lattice
[25]) and the configuration of the potential of localized
hole states remain unclear. When the model of forma-
tion of colloidal particles is constructed for small crys-
tals, the possible manifestation of tunnel capture effects
and charge localization at low temperatures should also
be taken into account [21].

In accordance with Eq. (8), the number of atoms in
a Cun particle in the CuCl crystal can be determined
experimentally if we find the total number ν0 of hole
traps from the data on the kinetics parameter and then
determine the number of hole traps corresponding to an
individual NC. For this purpose, we must carry out
gauge measurements of the absorbed energy of UV
radiation and determine the number of NCs of a partic-
ular size in the sample under investigation. Such mea-
surements will be made at a later stage.
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Abstract—A wide class of experimental data on luminescence in doped two-dimensional systems is explained
in terms of multiphonon optical transitions. A zero-radius-potential model is employed to describe localized
states in square quantum wells. Specifically, it is shown that the luminescence intensity varies nonmonotoni-
cally with the acceptor-impurity position, whereas the half-width of the luminescence peak decreases with the
impurity distance from the center of the size-confined system. The features of luminescence in a longitudinal
magnetic field are investigated. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, considerable study has been devoted
to the processes of luminescence caused by electron
transitions from the lowest size-quantized conduction
band to bound states in size-confined structures (het-
erostructures, solitary quantum wells, and superlat-
tices). Band-to-band transitions are characterized by
narrow photoluminescence (PL) lines observed at low
temperatures. For example, in GaAs–AlxGa1 – xAs at
T = 2 K (the quantum-well thickness is a = 20 Å), the
half-width of PL lines ∆0 is about 7 meV [1], and at
T = 4 K (a = 50 Å), ∆0 ≈ 2.7 meV [2]; in InxGaAs–GaAs
at 5 K (a = 37 Å), ∆0 ≈ 1.4 meV [3].

In doped size-confined systems, radiative electron
transitions to acceptor states can occur. In GaAs–
AlGaAs solitary quantum wells (QWs), broad PL lines
were observed at high temperatures (∆0 ≈ 70 meV [1] at
T = 180 K); these lines are broadened and their inten-
sity decreases with the increasing temperature. A simi-
lar picture was observed for PL lines from
Ga0.47In0.53As–Al0.48In0.52As quantum wells [4] (accep-
tor atoms of Be were located at the centers of QWs; the
half-width of emission lines was ∆0 ≈ 96 meV at T =
110 K). These features of PL lines suggest that optical
transitions involve many vibrational quanta. Possible
multiphonon optical electron transitions from the con-
duction band to acceptor states in GaAs–AlxGa1 – xAs
quantum wells (with a ≅  30 Å and C atoms as accep-
tors) were discussed in [5]. Luminescence associated
with an electron gas of a high density and acceptor
states of Si in GaAs–Al0.3Ga0.7As (the Fermi energy
EF = 37.5 meV, a = 200 Å) was studied in [6]. It was
found that PL peaks decrease in intensity and become
broader with increasing temperature in a range of T =
4.2–110 K. Detailed experimental investigations of the
radiative recombination on acceptors of a two-dimen-
sional electron gas were performed in [7–10] for simple
GaAs−AlxGa1 – xAs heterostructures, in [11–15] for
structures with QW clusters, and in [15] for doped
1063-7834/00/4209- $20.00 © 21744
InGaAs–GaAs solitary QWs. Theoretical investiga-
tions of PL involving acceptor states in QWs were per-
formed in [16–18] under the assumption that hydrogen-
like acceptor impurities are distributed uniformly
over the size-confined system. At the present time,
advanced technology allows detailed investigations to
be made of the dependence of optical transitions to
bound states on the distance of the impurity center from
the surface of the size-quantized system. It was shown
in [7] that the variation of the PL intensity with the dis-
tance of zero-radius (δ-) acceptor impurity centers from
the surface is highly nonmonotonic. The half-width of
emission lines associated with electron transitions from
higher energy bands of the size-quantized system to
acceptor states decreases as the impurity approaches
the boundary of the heterostructure. Radiative recombi-
nation becomes more intense in QWs when acceptor
impurity atoms are located at their centers [19]. The
optical properties associated with impurity states were
investigated in promising GaN–AlGaN quantum wells
in [20]. These quantum systems are of interest for opti-
cal instruments operating in the blue and ultraviolet
region. In particular, it was shown in [20] that the half-
width of impurity luminescence lines due to electron
transitions from a donor state to the valence band ∆0
(equal to about 44 meV at T = 10 K, a = 50 Å) and the
radiation intensity decrease with increasing tempera-
ture and the luminescence virtually disappears at T =
200 K. The last circumstance suggests that nonradiative
(multiphonon) transitions become important at high
temperatures.

The effect of an external magnetic field on optical
characteristics of doped QWs is of critical importance.
The point is that the energy of a free electron is com-
pletely quantized when a magnetic field is perpendicu-
lar to the QW surface. Therefore, the absorption and
emission of electromagnetic radiation involve transi-
tions of carriers between bound states and discrete
states of the quantum system. Experimental investiga-
tions of luminescence associated with electron transi-
tions to localized states in the case where the quantum
000 MAIK “Nauka/Interperiodica”
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system is placed in an external magnetic field showed
that, as the magnetic field is increased, the lumines-
cence peak shifts to higher frequencies (in simple het-
erostructures [21] and superlattices [22, 23]) and its
half-width is ∆0 ≈ 2.7 meV [7] at low temperatures.

In this paper, we provide an interpretation of some
experimental data on optical properties of doped size-
confined systems in terms of multiphonon optical tran-
sitions.

1. STATEMENT OF THE PROBLEM 
AND BASIC EQUATIONS

Let us consider a square QW with infinitely high
walls, doped with an acceptor of a binding energy EA,
which is measured from the top of the valence band of
the three-dimensional (bulk) material. The wave func-
tion and energy eigenvalues of an electron moving in a
magnetic field H applied along the size-quantization
axis z are

(1)

Here, Lx is the length of the QW along the x axis, Kx is
the component of the electron wave vector, α = (N, ν, Kx)
are the quantum numbers specifying the electron state,
ωc is the electron cyclotron frequency, ε0 is the spacing
between space-quantized energy levels, a is the QW
thickness, me is the effective mass of an electron, and
HN(z) are the Hermite polynomials.

The normalized wave function of an electron local-
ized on the acceptor is given by the following expres-
sion in the zero-radius-potential model [24]:

(2)

where mν is the effective mass of a hole and ων is the
hole cyclotron mass.

In Eq. (2), it is assumed that the impurity is local-
ized at the point r0(0, 0, z0). We will consider deep
acceptor states, "ων/FA < 1, in what follows. In this
case,

Ψα r( ) LxaR πN!2N 1–[ ]–1/2 πνz
a

--------- 
  iKxx( )expsin=

× 1

2R2
--------- y R2Kx+( )2

– HN

y R2Kx+
R

--------------------- ,exp

Eα "ωc N 1/2+( ) ε0ν
2,+=

ε0
π2

"
2

2mea
2

---------------, R2 "
mcωc

------------.= =

ΨA r( ) A
Ψα r( )Ψα* z0( )

EA "ων N 1/2+( ) εν2+ +
-------------------------------------------------------------,

α
∑=

ε π2
"

2

2mνa2
---------------,=
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
The spectral radiation intensity associated with a tran-
sition of an electron from a state of Eq. (1) to the accep-
tor level is related to the transition probability rate [25]
and can be written as

(3)

Here, Pcν is the matrix element of the momentum oper-
ator involving the Bloch amplitudes, e0 is the polariza-
tion vector of the emitted electromagnetic wave of a
frequency Ω , V is the QW volume, m0 is the mass of a
free electron, c is the velocity of light, Eg is the band
gap width of the size-confined system, n0 is the refrac-
tive index, and nα is the electron distribution function.
For a nondegenerate gas, we have

(4)

where ne is the electron concentration.

The overlap integral for the initial state of Eq. (1)
and the final state of Eq. (2) is easily calculated and has
the form

(5)

According to the theory of multiphonon optical transi-
tions [26, 27], the spectral radiation intensity, with
allowance made for lattice vibrations, can be obtained
from Eq. (3) by replacing

(6)
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(7)

where Cq is the coefficient of the electron–phonon
interaction and "ωq is the energy of a phonon with a
wave vector q. We consider the temperature range for
which 4ε0 @ k0T; in this case, optical transitions from
the lowest size-quantized level (ν = 1) are dominant.
With Eqs. (4)–(6), the spectral radiation intensity of
Eq. (3) becomes

(8)

Here, I(Ω , N) is a characteristic function, which occurs
in the theory of optical multiphonon transitions,

(9)

and nA is the concentration of acceptors in the QW.

In the absence of a magnetic field, we obtain the fol-
lowing expression for the spectral radiation intensity in
the case of multiphonon transitions:

(10)

Here, I(Ω , 0) is given by Eq. (9) with "ωc = 0. Equa-
tion (10) has been derived under the assumption that
EA @ k0T and that the electron transitions to bound
states occur from the lowest size-quantized level of the
conduction band (ν = 1).
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2. DISCUSSION AND COMPARISON 
WITH THE EXPERIMENT

In the case of the interaction of a localized electron
with optical lattice vibrations with the energy "ω0 (ω0
is the limiting optical-phonon frequency), Eq. (7) takes
the form

(11)

where N is the equilibrium distribution function of opti-
cal phonons. Using the relation [28]

[In(z) is the modified Bessel function] and Eq. (11), the
spectral radiation intensity of Eq. (10) can be written as

(12)

From Eq. (12), it immediately follows that the fre-
quency dependence of Φ(0) is a set of sharp δ-shaped
peaks (at z < 1), the spacing between them beeng equal
to the limiting optical-phonon energy.

Let us now take into account the interaction of an
electron with acoustic phonons and use the quasi-clas-
sical description of long-wavelength vibrations (the
corresponding criteria are discussed in detail in [29]).
Expanding g(t) in a power series in t and keeping only
quadratic terms, we obtain

(13)

Substituting Eq. (13) to Eq. (10) leads to the following
expression for the spectral radiation intensity:

(14)

From Eq. (14), it is seen that the frequency dependence
of Φ(0)(Ω) is described by a Gaussian curve with a half-
width of
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Thus, in the case of electron transitions involving many
optical and acoustic phonons, as is seen from Eqs. (12)
and (14) at z ≤ 1, the radiation intensity as a function of
frequency is described by a set of Gaussian curves with
the half-width ∆0. The spacing between the peaks of
these curves equals the limiting optical-phonon energy
"ω0. Such phonon satellites were observed [20] in
GaN–AlGaN quantum wells (a = 25 Å).

In order to estimate the half-width ∆0, we employ
the model of a zero-radius potential [24] (widely used
in current calculations in the solid state physics) for
deep acceptor states. In the model of a square QW with
infinitely high walls, the wave function of a bound state
has the form

(16)

This expression corresponds to the case where the
impurity center is situated at the point r(0, 0, z0). Per-
forming the summation over K⊥ , we obtain

In this expression, the argument of the Macdonald
function K0(z) increases with increasing ν, meaning
that we can restrict ourselves to the case of ν = 1 for
qualitative estimations. This last approximation is rea-
sonable for narrow QWs, for which EA/ε0 < 1. When
normalized, the wave function becomes

(17)

This wave function is the product of the wave function
for one-dimensional motion along the size-quantization
axis and the wave function of the bound state in the zero-
radius potential of impurity centers in a two-dimensional
system [30]. The function of Eq. (17) is close to the wave
function for an acceptor center, which is commonly used
to estimate the hot-electron scattering cross section by
neutral acceptors in structures with QWs [31]. For tem-
peratures at which Nq ≈ k0T/("wq) > 1 ("wq is the energy
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of an acoustic phonon), the calculation of the constant
B in Eq. (13) is straightforward. The result is

(18)

Here, E1 is the deformation-potential constant for a
hole, ρ0 is the crystal density, and w is the velocity of
sound. Thus, the spectral line half-width of Eq. (15)
takes the form

(19)

For typical GaAs–AlGaAs quantum wells (E1 = 10 eV,
ρ0 = 5.4 g/cm3, w = 3 × 105 cm/s) with EA = 60 meV and

a = 20 Å (ε0 ≈ 200 meV), we have ∆0 ≈ 5.3 . There-
fore, at T = 180 K, we have ∆0 ≈ 70 meV, which is close
to the experimental values presented in [1]. The half-
width increases with temperature and, hence, the radia-
tion intensity of Eq. (14) decreases, which is consistent
with the experimental data [1, 2, 20]. The function F(z0)
determines the dependence of the radiation intensity on
the position of the δ-impurity center in the QW. A plot
of F(z0) versus z0/a is presented in the figure (for Ka = 1).
The form of the F(z0) function varies only slightly with
varying Ka over a wide range (from 1 to 0.1). From the
figure, it is seen that the impurity radiation intensity
peaks when the acceptor is at the QW center; as the
acceptor approaches the boundary of the size-confined
system, the radiation intensity decreases. This is
because the overlap of the band-state and localized-
state wave functions of the electron decreases with the
increasing distance of the acceptor from the QW center.
Such a nonmonotonic dependence of Φ(0)(Ω) on the
position of the impurity was observed experimentally
in simple heterostructures GaAs–AlxGa1 – xAs with
δ-acceptor impurities [7]. We note that, as the impurity
nears the QW surface, EA approaches the valence band
top, which leads to a decrease in ξ and, hence, in ∆0.

B
3π
2

------
k0TE1

2

r0w2
"

2a3
-----------------------ξ2.≈

∆0 4ξ
3πk0TE1

2

r0w2a3
----------------------.=

T

0 0.2 0.4 0.6 0.8 1.0
z0/a

F
(z

0)

Dependence of F(z0) on the position of the impurity center
in the quantum well.
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Such a dependence of the half-width of luminescence
lines on z0 was experimentally observed in [7] and,
therefore, the multiphonon broadening of lumines-
cence lines, considered in this paper, is a possible
mechanism of this dependence.

In the presence of a longitudinal magnetic field, the
spectral radiation intensity calculated from Eq. (8) in
the quasi-classical approximation to crystal lattice
vibrations has the form

(20)

Therefore, in the approximations considered above,
the luminescence line is described by a Gaussian curve
with the half-width given by Eq. (15). As the magnetic
field increases, the position of the luminescence maxi-
mum is shifted to shorter wavelengths, which is due
to the energy quantization in the magnetic field. This
is observed in various quasi-two-dimensional sys-
tems [21–23].
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Abstract—The limitations of the classical description of static deformations in crystals in nanometric regions
are demonstrated. The problem is formulated on the basis of the phonon Hamiltonian supplemented with point
force sources of the monopole and dipole types. It is found that the quantization of Fourier amplitudes of the
total energy for steady deformation states leads to an energy spectrum with the Fermi-type energy level distri-
bution and that the stationary response of nanocrystals to the force action is determined by the discreteness of
variation in the number of displaced ions in the region of the force nonuniformity. The conditions for the gen-
eration of ionic displacement waves are determined, and the possibility of creating new solid-state elements for
information storage and transmission by controlling the collective properties of deformation-induced excita-
tions is envisaged. © 2000 MAIK “Nauka/Interperiodica”.
The response of the electron–ion system of a crystal
to the action of an external static electric field is known
to be in the form of a static deformation (e.g., in metals)
or a static polarization (like in polar crystals). This
effect has been studied in detail both experimentally
and theoretically [1– 3]. However, the objects of appli-
cation of the developed theoretical models for polariza-
tion or deformation phenomena are macroscopic-sized
crystals, although these models have a microscopic
substantiation. In the case of macrocrystals, the mech-
anisms of static polarization or deformation are more or
less clear. On the contrary, numerous investigations [4, 5]
indicate the existence of microstructural deformation-
induced peculiarities in nanocrystals and nanocrystal-
line materials. The presence of such peculiarities was
confirmed, among others, by experimental data on
structural instability [6, 7], large elastic stresses [8, 9],
local deformations of the lattice of crystallites near
their boundaries [10], as well as anomalous strength
[11, 12] and damping properties [8, 13]. This necessi-
tates the formulation of the new problem on force
action exerted on nanocrystals or individual nanocrys-
tallites of compact materials.

It may not be possible to describe the force action on
a small crystal using the classical concept of its mono-
pole and dipole deformation. The monopole and dipole
types of deformation in a macroscopic crystal are sep-
arated by a scale factor. A decrease in the crystal size,
which removes this division, must lead to the emer-
gence of new deformation states. This can be substanti-
ated as follows.

In a finite-size crystal, the response to an external
force must have the form of a bounded field of defor-
mation. Such a situation can be described using cyclic
boundary conditions. For this purpose, the space is
divided into cells having a volume V corresponding to
1063-7834/00/4209- $20.00 © 21749
the size of the crystal, and a finite force is applied to
each cell. Such a problem was solved for a finite crystal
deformed by point defects (i.e., static force dipoles) by
the method of lattice statics [14] in which atomic dis-
placements are determined by combinations of normal
modes with identical wave vectors. The boundedness of
the deformation field in such a solution is manifested in
the increment ±∆V of the volume of a 3D cell, which
appears as a result of the displacement of the medium
under the action of force. This means that the deforma-
tion field is bounded but extends to the crystal bound-
aries. The crystal size is not limited in the lattice statics
method, and hence, it might have a macroscopic size, as
well as the deformation field. As a result, the deforma-
tion field remains infinite, as in the problem on a con-
tinuous infinite medium, and the calculation of ∆V still
leads to an estimate which can hardly be compared to
the experimental data and (which is most important),
has nothing in common with the quantum properties of
the material. The situation remains essentially the same
when atomic interaction potentials calculated from first
principles are used to estimate the value of ∆V.

On the contrary, the quantization of atomic vibra-
tions in a crystal deformed by the superposition of the
monopole and dipole forces leads to the occupation of
a region with a characteristic size in the nanometer
range by the deformation field in the vicinity of the
point of application of an extraneous point force [15].
As a result of such a boundedness of the deformation
field, the sizes of the 3 D cells describing the deformed
crystals become smaller than the period of the cells in a
perfect crystal, and the vibrations at a frequency that is
lower than a certain threshold frequency determined by
the parameters of the force source become forbidden in
the crystal. This is associated with the cutoff of long-
wavelength harmonics of zero-point vibrations, deter-
mining the region ∆V of force nonuniformity in the
000 MAIK “Nauka/Interperiodica”
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crystal. The mode of harmonics cutoff leads to a value
of ∆V which turns out to be independent of the sign of
the deformation field (in contrast to the method of lat-
tice statics) and differs only quantitatively for the
sources of dipole and monopole types (the latter is dis-
regarded in statics). The results correspond to the case
when the crystal temperature T = 0. It can be easily
assumed further that the initiation of thermal vibrations
of the lattice may transform the forbidden harmonics
(i.e., those cut off by the field of force nonuniformity)
into excited states, which can be observed in experi-
ments.

The present work aims at demonstrating the possi-
bility of emergence of dynamic objects associated with
the structure of the deformation field in a statically
deformed nanocrystal. For this purpose, we use a lin-
early elastic model of a homogeneous two-component
system of charges. The explicit form of the Coulomb
interaction or a screened Coulomb interaction is absent.
For this reason, the dynamic stability of the electron–
ion system under investigation, which is ensured by the
Fermi type of the electron statistics, is postulated by
defining its parameters. It should also be noted that
since such a model is within the adiabatic approxima-
tion and does not permit the separation of purely acous-
tic vibrational branches from polarization branches, we
will also use in the subsequent analysis the term “defor-
mation” along with the term “polarization” in equiva-
lent situations.

1. PHONON HAMILTONIAN 
WITH POINT-LIKE SOURCES

Let us find the mechanism of crystal response to the
action of an external electrostatic source whose force
field is specified by the electric field density vector with
the component

(1)

In this formula, the quantity E1α defines the component
of the external electric field strength vector leading to a
unidirectional (i.e., monopole) deformation of the ionic
lattice in the vicinity of the source under the action of
the force F1 = neE1 displacing n elementary charges e.
The dipole deformation tensor

(2)

is defined by the components E2α of the external elec-
tric field strength vector, which lead to an oppositely
directed (i.e., dipole) deformation of the lattice. In
order to create an ionic inhomogeneity of this type, we
must define the arm vector R(X, Y, Z) of the dipole force
F2 = neE2. Some features of the force action on the

Eα r( ) E1αδ r( ) Eαβ xβ∂
∂ δ r( ).–=

Eαβ

E2x X   E2xY   E2xZ

E2yX   E2yY   E2yZ

E2zX   E2zY   E2zZ

=

P

crystal described by a multipole decomposition of the
type (1) are given in [15–17]. It should be noted here
that a stable static deformation of the crystal requires
that the values of forces F1 and F2 be bounded by
atomic forces. This is attained for arbitrary static force
actions on the crystal, excluding the diffusion transport
of atoms, the structural transformations, or the plastic
flow of the material. The force action described by the
decomposition (1) can be realized in an elementary
form in the monatomic contacts used, for example, in
atomic-force microscopy.

In order to describe the behavior of a crystal in the
field Eα(r), we will use the model of a continuous iso-
tropic dynamic medium formed by a uniform distribu-
tion of positive and negative charges. In this connec-
tion, we will associate the mechanism of polarization or
deformation of the medium with an arbitrary displace-
ment of crystal charges, leading to a nonhomogeneous
distribution. Introducing the polarization vector P(r, t)
characterizing the displacement of ne charges and spec-
ifying the density ρ = m/Ω of the medium, where m is
the mass of an atomic cell of volume Ω , as well as the
coupling constant χ, we can describe the motion of a
linearly elastic charged medium under the action of an
external field by the Lagrangian function of the form

(3)

where Lα is the crystal length in the direction α = x, y, z.
The quadratic form for the potential energy appearing
in the function L presumes the small value of polariza-
tion of a point of the medium relative to the charge den-
sity in a unit cell. Formally, this is associated with small
displacements ∆q ≈ ξΩ1/3 of the medium relative to the
linear dimension Ω1/3 of an atomic cell. In this case, the
polarization of the medium is P ≈ ne∆q ≈ neΩ1/3ξ,
where the small parameter ξ ! 1. Thus, the Lagrangian
function (3) presumes a phenomenological description
of the variation in the polarization of the electron–ion
system, which is associated with the action of the extra-
neous electrostatic field.

For the quantization of oscillations of the contin-
uum, we use the Legendre transformation to go over
from the function L to the Hamiltonian function

(4)

L = 
1
2
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Defining the canonically conjugate variables in the
form of expansions in plane monochromatic waves, we
transform the Hamiltonian function (4) containing the
force nonuniformity in the form (1), to the function

(5)

in which the amplitudes

are expressed in terms of the force variables

the crystal mass M = ρV, and the frequency of oscilla-
tions described by the dispersion equation

where ν = ne(χ/ρ)1/2 is the velocity of propagation of
elastic displacements of the medium; kα = 2πnα/Lα is
the wave vector component; and nα is an integer.

The standard quantization procedure for Hamilto-
nian (5) leads to the total energy operator

(6)

where the first term describes the variation of the
energy of normal modes of the harmonically vibrating
lattice in the second-quantization representation. The
application of permutation relations for the renormal-

ized operators  and  makes it possible to con-
struct the eigenstates and to find the energy eigenvalues

(7)

where εfα = "ωknkα is the energy of nkα phonons in a
state with the wave vector k; ε0 = "ωk/2 is the energy of
the kth zero-point vibration,

is the Fourier component of the energy of monopole
deformation of the crystal and

is the same for dipole deformation. While calculating
ε2α we took into account the dispersion equation and
introduced the polar angle θ between the directions of

H
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the plane wave vector k and the arm R of the dipole
force.

The second term of operator (6) is a numerical func-
tion defining the displacements of the phonon energy
spectrum depending on the peculiarities of the force
nonuniformity region formed by the applied field. A
distinguishing feature of this function is that, as a result
of application of the multipole expansion (1), it
acquired a form that was similar to the Hamiltonian
function of the superposition of classical harmonic
oscillators. The condition that the displacements and
momenta of the points of the medium are real-valued,
which was imposed at the beginning with the help of a
superposition of waves, requires positive definiteness
of the squares of displacements and momenta; the func-

tions  and –  do not satisfy this require-
ment. It is possible to find a transformation for which
the given numerical function assumes the form of a
superposition of harmonic oscillators. This will subse-
quently help in finding new peculiarities of the collec-
tive behavior of a deformed charged medium.

The above-mentioned transformation has the form

(8)

where a and b are indeterminate constant coefficients
satisfying the condition a + b = 1. Using relations (8),
we transform (6) to the operator

(9)

in which the second sum has the form of a superposi-
tion of noninteracting classical oscillators.

Transformations (8) do not change the eigenvalue
spectrum (7) and hence, do not lead to any new results
from the phonon problem view point. Nevertheless, the
appearance in the Hamiltonian of a numerical function
having the form of a sum over wave vectors and
describing the system of oscillators make it possible to
obtain a more comprehensive physical interpretation of
the second term in Hamiltonian (9) than the well-
known displacement of the phonon spectrum. The
essence of this interpretation is that the oscillators pre-
sented by this term might correspond to new quantum
states of the crystal lattice deformed by a static force
field.

2. QUANTIZED DEFORMATION MODES
IN A DISTORTED LATTICE

The second sum in operator (9) corresponds to the dif-
ference of the Fourier components of the energy of
zero-point vibrations of the crystal and to the energy of
formation of a force nonuniformity. The coordinates qkα
and the momenta pkα determine the actual displace-

q0kα
2– p– 0kω
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2 M2ωk
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ments and momenta of points of the medium only if we
take into consideration the zero-point energy of the
crystal vibrations, which is of quantum origin. For
E1α = E2α = 0, the product pkαkkα = "/2 satisfies the
uncertainty relation according to which the motion of
the points of the medium for the kth vibrational mode
cannot have definite values of the coordinate and the
momentum simultaneously. This means that the sta-
tionary states of the force nonuniformity are basically
related to the collective motion of the medium. This
relation can be found as follows. Instead of the standard
classification of the spectrum of operator (9) in the

eigenvalues of the operators bkα and , we will pro-
ceed from the sum over wave vectors. Let us try to
interpret each term of this sum as an energy eigenvalue
not of the phonon Hamiltonian (9) describing excited
states of the Bose type, but of another Hamiltonian. A
method of correct construction of such a Hamiltonian
can be established only after appropriate theoretical
and experimental investigations. Proceeding from the
eigenvalue spectrum (7) and assuming that the kth
oscillation corresponds to the momentum p = "k, we
obtain a new spectrum

(10)

where εfα = νpnα is the energy of nα phonons; ε0 = νp/2

is the zero-point energy; and ε1α = –αν /2p2 is the
momentum component of the energy of monopole
deformation of the crystal, which is a function of the
limiting momentum

defined by the conditions of real-valuedness of the dis-

placement field  ≥ 0.

Spectrum (10) presumes the independence of the
dipole term ε2α of the momentum. Dipole steady-state
displacements of ions in the crystal are manifested in
the displacement of the phonon band without its distor-
tion, which agrees with the known results [1].

The peculiarities in the phonon displacement by a
monopole source can be determined if we assume that
a = 1, which eliminates the dipole source, and express
p0α in terms of the crystal volume V, the number of
atoms N = V/Ω , and the Debye momentum pD =
π"/Ω1/3. This gives p0α = pD(mα/N)1/3, where

(11)

is the dimensionless quantity depending on the external
force and the parameters of the medium. According to
the definition of p0α, the quantity mα by nature must be
proportional to the number of monopole-shifted ions
and must determine the volume of the nonuniformity
region.

The displacements of the bottom of the phonon
band can be found from the condition nα = 0. The

bkα
+

εα p θ,( ) ε fα p( ) ε0 p( ) ε1α p( ) ε2α θ( ),+ + +=

p0α
3

p0α "
2n2e2E1α

2
aMν3⁄( )

1/3
,=

qkα
2

mα E1α
2 π3

"νχ⁄=
P

region of monopole displacements of ions in this case
is presented by a quasi-continuous set of harmonics
with the wavelengths

where αD is the Debye wavelength. These are zero-
point oscillations, i.e., the set of harmonics determined
by spectrum (10), which form the field of steady-state
variation of the charge density of the medium. The
value of mα determines the number of half-waves λ0α
that can be accommodated in the crystal length L =
(ΩN)1/3. As the value of E1α increases, the number of
ions involved in the displacements of lattice sites
becomes larger, while the wavelength λ0α of the thresh-
old wave decreases, which corresponds to the cutoff of
long-wave harmonics.

The above arguments prove that for nα = 0, the func-
tion (10) describes states of the crystal with energies
εα(p < p0α) < 0, which characterize the stationary defor-
mation field of the medium, as well as energies εα(p <
p0α) > 0, which may correspond to its collective motion.
The values of εα(p > p0α) can be described by the posi-
tive-definite component of spectrum (10),

(12)

which permits the emergence of excited states. The
inclusion of phonons, which corresponds to the condi-
tion nα ≥ 1, displaces the point  = p0α/(2nα)1/3

defined by the condition  = 0, towards smaller

momenta. The condition  ≥ 0 can be satisfied again
for a certain occupancy of phonon states. This must
lead to the emergence of a new (nonphonon) type of
collective motion of the atomic lattice, whose excited
states can be constructed by using the definition of .
For example, the wavelength of a new excitation for the
excited phonon state nα = 1 is

where l = 1, 2, …, mα/2 are the integers whose upper

value is defined by the condition  =  = N . It
follows that the value of mα must determine the number
of vibrational states λαl. Indeed, the definition of the
boundary momentum leads to the expression

(13)

where  = 8  is the volume of the cubic momen-
tum space (due to quantization in the well), including

the modes belonging to the admissible region  ≥ 0
(the coefficient 8 appeared from the definition of
momenta in spherical coordinates).

Relation (13) defines the number of states of parti-
cles with the Fermi type of energy level filling [18]. In

λ λ0α< λD N mα⁄( )1/3,=

ε̃a p( ) ν p mα pD
3 2N p2⁄– ,=

p̃0α

ε̃α p̃0α( )

qkα
2

p̃0α

λα l λD 2Nl mα⁄( )1/3,=

λα lm

3 λL
2 λD

3

p̃0α

mα 2Ṽ0αV 2π"( )3,⁄=

Ṽ0α p0α
3

qkα
2
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other words, in a crystal with a preset value of mα,
modes with groups of atomic states differing in number
and direction have different energy values from the
quasi-continuous set ε(p), and hence, a deformed crys-
tal cannot have two identical groups of displaced
atomic states.

The number of states of the mα mode must depend
on the number Nα of monopole-displaced atoms in the
region of force nonuniformity of the crystal. The com-
putation of the energies of excited states for (p ≤

) and (p ≥ ) gives

(14)

respectively. For Nα = mα/2 = 1 and Nα = mα/2 = N,
which corresponds either to the absence of the ionic
displacement field or to a complete covering of the
crystal by the deformation field, the number of states of
the mα mode varies from 2 to 2Nα, leading to the values

 = 0 and  = 0. This confirms the definition of the
quantity mα as the total number of various states and the
quantity Nα = mα/2 as the number of monopole-dis-
placed ions.

Thus, the quantity εF = 0 plays the role of the Fermi
energy of deformed oscillators. Deformed states with a
negative energy must be manifested in experiments in
the form of bounded regions of static displacements of
ions from the points of a regular lattice. As the mono-
pole force changes in the range

where Fαc is the upper critical value of the force, corre-
sponding to the rupture of an atomic bond, the structure
of the deformation field undergoes jumplike changes
depending on Nα, reflecting the fact that the change in
the number of displaced ions upon an increase in F1α is
of a discrete nature. In this case, the monopole force
F1α loses the initial representation in the form of a con-
tinuous quantity and acquires the form of a discrete
quantity. Figure 1 shows the Fα(Nα) dependence in a
typical case. The jumps in the force indicate that, for
arbitrary force interactions in discrete media, it is expe-
dient to determine the value of force only to within the
difference in the force amplitudes before and after a
transition of an ion to a displaced state. The amplitude
of the jumps decreases with increasing the number Nα
of displaced ions. Assuming that the value of Nα
changes by unity and defining the amplitude of the cor-
responding jump in force by the difference

we obtain

(15)

ε̃α

p̃0α ε̃α p̃0α

ε̃D εD 1 mα–( ) 2N , ε̃L⁄ εL mα 2 1–⁄( ),= =

ε̃V ε̃A

ne 2π3
"νχNα F1α Fαc,≤ ≤

∆F1α Nα 1–( ) F1α Nα( ) F1α Nα 1–( ),–=

∆F1α ne 2π3
"νχ Nα Nα 1––( ).=
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For example, by assuming that the deformation region
is formed by the number of ions Nα equal to 10, 103, and
105, we can estimate the amplitude of the last jump
∆F1α(Nα) of the force relative to the force amplitude
F1α(1), bringing only one ion to a displaced state. The
values of the force constants n2e2χ ≈ 1012 dyn cm–2 and
density ρ ≈ 10 g/cm3 typical of solids lead to the esti-
mates

Thus, the discrete nature of force interaction becomes
less and less pronounced with an increasing number of
ions in the deformed region of the crystal. This agrees
with the generally accepted ideas concerning the point-
like deformation of the crystal, and in particular, with
the assumption that ionic displacement at large dis-
tances from the center of dipole perturbation must sat-
isfy the continual limit [1]. 

The range of spectrum (12) is determined by the
boundary values of the momenta pL and pD, and there-
fore, depends on the size of the crystal and an atomic
cell. The nature of variation of the spectrum is deter-
mined by the boundary momentum , and therefore,
by the magnitude of the external force. Figure 2 shows
possible versions of spectrum (12) for various numbers
N of atoms in the crystal for the same number Nα of atoms
in its deformed region. The curves in Figs. 2a–2f illustrate
the emergence and vanishing of the spectrum of excited

states upon a change in N from N >  to N < .

If we assume the parity of quasiparticles with a
given energy, i.e., if we put that the number of particles
is equal to the number of antiparticles, Eq. (14) implies
that the momentum pD on the branch of the particle
spectrum must correspond to the momentum pV on the

∆F1α 10( ) 10 1– F1α 1( ), ∆F1α 103( ) 10 2– F1α 1( ),≡≈

∆F1α 105( ) 10 3– F1α 1( ).≈

p̃0α

Nα
3

Nα
3

Fαc

0.004

0.003

0.002

0.001

0 1 2 3 4 5 6 7 8 9 10
Nα

F1α, dyn

Fig. 1. Dependence of the amplitude of the monopole force
on the number of displaced ions in the deformed region of
the crystal. The quantity Fαc shows the upper critical value
of the force corresponding to the rupture of an atomic bond.
0
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Fig. 2. Spectra of vibrational states of a deformed nanocrystal with the total number of ions N = var; the number of ion Nα = 10 in

the deformed region; and the Debye energy εD = 10–2 eV. The shaded regions of the spectra show excited states. The characteristic

points of the spectra correspond to the values of L = pL/pD, V = pV/pD, A = pA/pD; and  = /pD. As the crystal size decreases,

i.e., as the point  shifts to the right, the energy of the uppermost excited state is determined by the value of  which increases

(a, b) and attains its peak value equal to  (c). As the point  is further displaced to the right, the energy of the uppermost excited

state is determined by the value of  which decreases (d, e) and vanishes (f) for  = 1, which corresponds to the disappearance

of excited states.
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Õ ε̃L
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A

A

A
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quasiparticle branch, which is a solution of the cubic
equation

For pA < pD, which corresponds to the condition N > 
(see Fig. 2b), the uppermost excited state of a mode is
determined by the value of , while for pV > pL (N <

, Figs. 2d and 2e), it is determined by the value of

pV
3 1

Nα

N
-------– 

  pD pV
2 Nα

N
------- pD

3–+ 0.=

Nα
3

ε̃L

Nα
3

P

. For pV = pL and pA = pD (see Fig. 2c), the quasipar-
ticle energy becomes equal to the energy of a Debye
phonon (  =  ≈ εD, and, according to Eq. (14), the
number of particle–antiparticle pairs (the number of
monopole-displaced ions) is given by

For  = pD (Fig. 2f), when all the atoms of the crystal
are involved in steady-state displacements from the
points of the perfect lattice, the energy of the excited

ε̃D

ε̃D ε̃L

Nα N N2/3+( ) 1 N2/3+( )⁄ N1/3.≈=

p̃0α
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state   0, i.e., deformation-induced excitations
do not emerge in a completely distorted lattice.

Deformation-induced excitations in a distorted lat-
tice can be sought in two directions. One of them is
associated with the attempt to detect a mode of natural
origin, i.e., natural deformation-induced vibrations,
e.g., in individual crystallites of nanocrystalline materi-
als. The other direction is dictated by the possibility to
obtain an artificially generated deformation mode, e.g.,
with the help of an atomic-force microscope. In any
case, the size of the crystal or of its individual crystal-
lite in which deformation-induced vibrations can be
generated must be in the limits

While choosing an external radiation with a wavelength

λD < λ < λD, the mode should be manifested in the
absorption in the emission spectrum.

However, the model (3) used in the above analysis
does not allow us to judge on the charge state of nanoc-
rystal vibrations under the action of an external static
force or on the charge structure of the corresponding
quasiparticle excitations. Consequently, the type of
external radiation remains indeterminate. Nevertheless,
by assuming a certain type of atomic interactions in a
nanocrystal, we can envisage the corresponding struc-
ture of excitations. For example, for small metallic par-
ticles under the conditions when longitudinal branches
of ionic plasma oscillations become acoustic due to
electron shielding, excitations must also be of the
acoustic type. In ionic crystals in which the displace-
ments of ions from their equilibrium positions lead to
the emergence of electric dipole moments, these excita-
tions can be in the form of electric multipoles. The
same applies to crystals with a strongly manifested
nonadiabaticity of oscillations in the electron–ion sys-
tem, e.g., in narrow-band semiconductors or in sub-
stances with strong electron correlations. In this case,
the retardation of electron coordinates during ionic
vibrations, and therefore, for oscillations and transla-
tion of displaced ionic states over the crystal, might
also generate a certain charge structure of a deforma-
tion-induced excitation. Consequently, while selecting
the external radiation, we must bear in mind that defor-
mation-induced excitations of acoustic origin must
effectively interact with superhyperacoustic elastic
vibrations, while polarization-induced excitation of the
multipole type must interact with an external electro-
magnetic field.

The above analysis suggests the possibility of creat-
ing solid-state elements for the storage and transmis-
sion of information on a basically new foundation. The
Fermi nature of excitations in the distorted lattice of a
nanocrystal makes it possible to control the dynamics
of acoustic or electric multipoles with the help of an
external elastic or electromagnetic field and their gradi-

ε̃D

Nα( )Ω1/3 L NαΩ1/3.< <

Nα
2/3
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ents. This forms the basis for constructing closed cir-
cuits conducting ordered force actions or electric mul-
tipole moments, and therefore, permits the develop-
ment of devices and appliances of the new type.
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Abstract—We present a theory of the photonic band structure of three-dimensional arrays of quantum dots
(QDs). A system of Maxwell’s and material equations is solved and the dispersion equation for exciton–polari-
tons is derived making allowance for a nonlocal dielectric response of quasi-zero-dimensional excitons con-
fined in QDs. The reflection and transmission coefficients are calculated for a single plane, a pair of planes and
a stack of equidistant planes of QDs. Two different approaches are proposed to perform a calculation. One of
them is based on recurrent equations relating the reflection coefficients for N + 1 and N planes, while in the
other approach the Bloch solutions for an infinite QD lattice are used. © 2000 MAIK “Nauka/Interperiodica”.
I. INTRODUCTION

In bulk crystals, a photon and an exciton mix in the
dispersion-crossover region, losing their identity in a
combined quasi-particle called the exciton–polariton.
Exciton–polaritons were intensively studied in the
1960s and 1970s, their manifestation in various optical
phenomena, including light reflection and transmis-
sion, photoluminescence and resonant light scattering,
are well established and documented (see, e.g., the con-
tributed volume [1] and references therein). Renewed
interest and recent important developments in this field
[2–7] were stimulated by technological achievements
in the fabrication of high-quality multi-layered hetero-
structures, multiple quantum wells (MQWs) and super-
lattices (SLs). Moreover, the concept of exciton–polari-
ton has undergone a substantial modification, in partic-
ular with respect to long-period MQW structures
containing a finite number of wells [8–18]. The present
paper outlines the framework for similar studies of
structures containing regular arrays of quantum dots
(QDs). The shift from long-period MQWs to 3D lat-
tices of quantum dots allows to bridge the gap between
multilayered structures and photonic crystals. The lat-
ter are defined as periodic dielectric structures with the
period being comparable to the wavelength of the visi-
ble-range electromagnetic waves. In the simplest real-
ization, a photonic crystal is thought of as a periodic
lattice of dielectric spheres of dielectric constant εa
embedded in a uniform dielectric background εb (see
reviews [19, 20]). Other potential realizations are a
three-dimensional (3D) lattice of resonant two-level
atoms [21] or semiconductor microcrystals embedded
into the pores of periodic porous materials [22] (see
also [23]).

1 This article was submitted by the authors in English.
1063-7834/00/4209- $20.00 © 1756
Here, we study the photonic (or, more precisely,
exciton–polaritonic) band structure of 3D periodic
arrays of QDs or simply QD lattices and the light reflec-
tion from a finite number of QD planes. The excitonic
states in a single QD are quasi-zero-dimensional due to
the quantum-confinement effect and we consider a nar-
row frequency region near a particular exciton size-
quantization level. In the resonant frequency region, the
dielectric response to an electromagnetic wave is non-
local and the main goal of the work is to develop a the-
ory which makes allowance for such a nonlocality.

In Section II, we derive the dispersion equation for
exciton–polaritons in a 3D QD lattice. The reflection
from and transmission through a single plane contain-
ing square QD lattice are considered in Section III. The
relation between the exciton–polariton dispersion
equation and single-plane reflection and transmission
coefficients is established in Section IV. The reflection
from a pair of QD planes and from a stack of QD planes
is considered in Sections V and VI, respectively. The
derived theory can also be used for the description of
nuclear resonant scattering of γ quanta by artificial
nuclear multilayers (see [24–26]).

II. BLOCH SOLUTIONS 
IN THREE-DIMENSIONAL 

QUANTUM-DOT LATTICES

We start from the Maxwell equations

(1)

for the electric field E and the displacement vector D.
The nonlocal material equation relating D and E is

∆E graddivE–
ω
c
---- 

 
2

D,–=

divD 0=
2000 MAIK “Nauka/Interperiodica”
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taken in the form (see [27])

(2)

(3)

Here, a are the lattice translation vectors enumerating
quantum dots, Φa(r) = Φ0(r – a) is the envelope func-
tion Ψexc(re – a, rh – a) of an exciton excited in the ath
QD at coinciding electron and hole coordinates:
Φa(r) = Ψexc, a(r, r). The other notations are

(4)

ωLT and aB are the exciton longitudinal–transverse split-
ting and Bohr radius, respectively, in the corresponding
bulk semiconductor; ω0 is the QD-exciton resonance
frequency; and εb is the background dielectric constant,
which is assumed to coincide with the dielectric con-
stant of the barrier material. In the following, we
neglect the overlap of exciton envelope functions Ψa
and Ψa' with a ≠ a', so that excitons excited in different
dots are assumed to be coupled only via electromag-
netic field.

It follows from Eq. (2) that divE = –(4π/εb)divPexc,
which allows one to rewrite the first of Eqs. (1) as

(5)

where k0 = ω/c, k = k0nb = ωnb/c, and nb = . We seek
for Bloch-like solutions of Eq. (8) satisfying the trans-
lational symmetry

(6)

where the wave vector q is defined within the first Bril-
louin zone. The exciton–polariton dispersion ω(q) can
be shown to satisfy the equation

(7)

where α, β = x, y, z; δαβ is the Kronecker symbol; and,
for QD lattices,

(8)

(9)

g are the reciprocal lattice vectors and v0(r) is the vol-
ume of the lattice primitive cell.

Equations (7) and (8) can be derived by using the
two equivalent approaches: (a) to express the exciton
dielectric polarization Φ0(r) in terms of the electric
field, E(r), and find solutions to the wave equation for

D r( ) εbE r( ) 4πPexc r( ),+=

4πPexc r( ) T ω( ) Φa r( ) Φa r'( )E r'( ) r'.d∫
a

∑=

T ω( ) 2π
εbωLTω0aB

3

ω0
2 ω2–

--------------------------
εbωLTπaB

3

ω0 ω–
-----------------------,≈=

∆E r( ) k2E r( )+ 4πk0
2 1 k2graddiv+( )Pexc r( ),–=

εb

Eq r a+( ) iqa( )exp Eq r( ),=

Pexc q, r a+( ) iqa( )Pexc q, r( ),exp=

Det δαβ Rαβ ω q,( )– 0,=

Rαβ ω q,( )
k0

2T ω( )
v 0

----------------
Iq g+

2 Sαβ q g+( )

q g+( )2 k2–
-----------------------------------,

g

∑=

IQ Φ0 r( )eiQr r, Sαβd∫ δαβ
QαQβ

k2
-------------,–= =
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E(r); or, (b) by using the Green’s function of the wave
equation, to express the electric field in terms of the
exciton polarization and write a system of self-consis-
tent equations describing electric-field-mediated cou-
pling between the excitons excited in different quantum
dots. In the first approach, we substitute Eq. (3) into
Eq. (5) and expand the vector function Eq(r) in the Fou-
rier series as follows:

(10)

The integral in Eq. (2) can be transformed into

(11)

The sum eiqa satisfies the translational sym-
metry similar to Eq. (6) and can be presented as

(12)

The system of linear equations for the space harmonics
Eq + g can be written in the form

(13)

where the vector L is introduced in Eq. (11) and 
is a vector with components Sαβ(Q)Λβ. Dividing both
parts of Eq. (13) by (q + g)2 – k2, multiplying them by
Iq + g, and summing over g, we arrive at a vector equa-

tion L = L, where the matrix  is defined by
Eq. (8), and therefore, at the dispersion equation (7).

In the second approach, we use the Green’s function

(14)

satisfying the differential equation

(15)

Here, V is the lattice volume. The Green’s function
allows one to express E(r) via the polarization as

(16)

Eq r( ) ei q g+( )rEq g+ .
g

∑=

Φa r( )E r( ) rd∫ eiqa Iq g+ Eq g+ eiqaL.≡
g

∑=

Φa r( )a∑

Φa r( )eiqa

a

∑ ei q g+( )r Iq g+
*

v 0
----------.

g

∑=

q g+( )2 k2–[ ]Eq g+ T ω( )k0
2 Iq g+

*

v 0
----------Ŝ q g+( )L,=

Ŝ Q( )L

R̂ ω q,( ) R̂

G r r'–( ) ik r r'–( )exp
4π r r'–

----------------------------------=

=  
1
V
--- iQ r r'–( )[ ]exp

Q2 k2–
-------------------------------------,

Q

∑

∆ k2+( )G r r'–( ) δ r r'–( ).–=

E r( ) 4πk0
2T ω( )=

× r'G r r'–( ) 1 k 2– graddiv+( )Pexc r'( ).d∫

0
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Dispersion equations written in terms of Rαβ for different K points in the Brillouin zone of a face-centered-cubic QD lattice

K (2π/a) Nonzero components of Rαβ Dispersion equations

Γ (0, 0, 0) Rxx = Ryy = Rzz Rxx = 1

X (0, 0, 1) Rxx = Ryy , Rzz Rxx = 1, Rzz = 1

L (1/2, 1/2, 1/2) Rαα = Rxx, Rαβ = Rxy(α ≠ β) Rxx  – Rxy = 1, Rxx + 2Rxy = 1

W (1/2, 0, 1) Rxx , Ryy = Rzz Rxx = 1, Ryy = 1

K (3/4, 0, 3/4) Rxx  = Rzz, Ryy , Rxz = Rzx Rxx ± Rxz = 1, Ryy = 1

U (1/4, 1/4, 1) Rxx  = Ryy, Rzz , Rxy = Ryx Rxx ± Rxy = 1, Rzz = 1
Now, Eq. (3) is presented in the form

(17)

where

(18)

For the Bloch solutions (6) one has pa = eiqap0. Taking
a = 0 in Eq. (18) and using Eqs. (16) and (17) we obtain

(19)

If we now use Eqs. (9) and (12) and the integral presen-
tation of the Green’s function, we will finally come to

the equation p0 = (ω, q)p0 and re-derive Eq. (7).

A numerical calculation is performed for spherical
QDs with the radius R exceeding the Bohr radius aB, in

4πPexc r( ) paΦa r( ),
a

∑=

pa T ω( ) Φa r'( )E r'( ) r'.d∫=

p0 T ω( ) r'Φ0 r'( )d∫=

× rd G r' r–( ) 1 k 2– graddiv+( ) p0Φa' r( )eiqa' .
a'

∑∫

R̂

P

which case we have

(20)

Then, Eq. (8) can be transformed into

(21)

(22)

(23)

Ω(Q) = cQ/ω0nb. Equation (7) is equivalent to the three
separate equations Rj(Ω , K) = 1, where Rj (j = 1, 2, 3)
are eigenvalues of the matrix Rαβ. Further simplifica-
tion follows taking into account a small value of the
parameter ξ in Eq. (21) since, in semiconductors, the

IQ π 2R
aB

------- 
  3/2 QRsin

QR π2 QR( )2–[ ]
----------------------------------------.=

Rαβ Ω K,( ) ξ Ω2

Ω2 1–
---------------σαβ Ω K,( ),=

σαβ Ω K,( )
f K b+ R( )Sαβ K b+( )

Ω2 Ω2 K b+( )–
--------------------------------------------------------,

b

∑=

Ω ω
ω0
------, ξ 64

π
------

ωLT

ω0
--------- R

a
--- 

 
3

,= =

f x( )
π2 xsin

x π2 x2–( )
-----------------------

2

,=
X U L X W KΛ Γ–5

–4

–3

–2

–1

0

1

2

3

(ω
 –

 ω
0)

/ω
LT

Fig. 1. Exciton–polariton dispersion near the exciton resonance frequency ω0 in a face-centered-cubic lattice of spherical QDs char-
acterized by the following set of parameters: P = 1.1, R/a = 1/4, and ωLT/ω0 = 5 × 10–4. The dashed lines show the photon dispersion
in the empty lattice, i.e., for ωLT = 0, the dotted horizontal line indicates the value ω = ω0.
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ratio ωLT/ω0 typically lies between 10–4 and 10–3. Then
one can change the factor Ω/(Ω + 1) in Eq. (21) by 1/2.

Figure 1 shows the photonic band structure for face-
centered-cubic QD lattices with the radius R = a/4,

ωLT/ω0 = 5 × 10–4, and P = (π c/aω0nb)3 = 1.1.

Note that, in this case, the lattice constant a and the
unit-cell volume v0 are related by v0 = a3/4. For high-
symmetry points of the Brillouin zone, the symmetry
imposes certain relations between the Rαβ components
and the eigenvalues Rj can be readily expressed via
these components as illustrated in the Table 1 for the
points Γ, X, L, W, K, and U. According to Fig. 1, the dis-
persion on the Λ line is characterized by a giant anti-
crossing between the branches of bare transverse pho-
ton and exciton modes. At the X point, the gap is deter-
mined by the separation between the longitudinal and
lower transverse branches, it is still remarkable and
exceeds 0.5ωLT. However, near the points U and W, the
exciton-polariton branches converge and the gap
almost disappears. Note that the anticrossing can be
described with a high accuracy by retaining in the sum
over b in Eq. (22) the two terms due to b = 0 and
−(4π/a)(0, 0, 1) for the ∆ points and b = 0 and
−(2π/a)(1, 1, 1) for the Λ points.

III. REFLECTION FROM AND TRANSMISSION 
THROUGH A PLANAR ARRAY 

OF QUANTUM DOTS

We start analysis of the resonant light reflection
from an array of dots regularly packed in one plane. For
simplicity, we consider here a square lattice of spheri-
cal or cubic quantum dots and normal incidence of
light. In this case, the integral of Eq. (9) can be reduced
to

(24)

it is real if Q is a purely real or a pure imaginary vector.
First, we consider the normal incidence of light on a
planar array of quantum dots. The electric field can be
written in the form

(25)

where b = lb1 + mb2 are the two-dimensional recipro-
cal-lattice vectors.

3

IQ Φ0 r( ) Qrcos rd∫=

=  Φ0 r( ) Qxx Qyy Qzzcoscoscos r;d∫

E r( ) Eb z( ) ibr( ),exp
b

∑=
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The integral in Eq. (3) can be transformed into

(26)

where

(27)

and we have used the identity exp(iba) = 1. We will also
use the expansion

(28)

where a2 is the unit-cell area.
The function Eb(z) satisfies the equation

(29)

where

(30)

A solution can be presented as

(31)

where E(0) is the amplitude of the initial wave. Multi-
plying both parts of Eq. (31) by ϕb(z) and integrating
over z, we obtain

(32)

where

(33)

Let us denote by β the star of the vector b. If b = lb1 + mb2,
the star β contains the vectors ±lb1 ± mb2, ±mb1 ± lb2 of
equal moduli. For l ≠ m ≠ 0, the star consists of eight
vectors, otherwise, it has four vectors (l = m ≠ 0 or l = 0,

Φa r( )E r( ) rd∫  = eiba Eb z( )Φ r z,( ) ibr( )exp rd zd∫
b

∑

=  ϕb z( )Eb z( ) zd∫
b

∑ L1,≡

ϕb z( ) Φ r z,( ) ibr( )exp rd∫=

Φa r( )
a

∑ 1

a2
----- ϕb z( ) ibr( ),exp

b

∑=

z2

2

d

d
kb

2+ 
  Eb z( )

=  
k0

2

a2
-----T ω( )– 1 k 2– graddiv+( )bϕb z( )L1,

kb k2 b2– ,
∂2

∂rα∂rβ
---------------- 

 
b

KαKβ,–= =

Kx bx, Ky by, Kz i
z∂

∂
.–= = =

Eb z( ) E 0( )eikzδb 0,
ik0

2

2kba2
-------------T ω( )+=

× z'e
ikb z z'–

1 k 2– graddiv+( )bϕb z'( )L1,d∫

L1 L1
0 ik0

2

2kba2
-------------T ω( ) z z'e

ikb z z'–
ϕb z( )dd∫

b

∑+=

× 1 k 2– graddiv+( )bϕb z'( )L1,

L1
0 E 0( ) ϕ0 z( )eikz zd∫ E 0( ) ϕ0 z( ) kzdz.cos∫= =
0
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m ≠ 0 or l ≠ 0, m = 0), or one vector in the particular case
l = m = 0. Then, the second term in the right-hand side
of Eq. (32) can be rewritten as 

where L1, || and L1, ⊥  are vectors with components
(Λ1, x, Λ1, y, 0) and (0, 0, Λ1, z), respectively; nβ is the
number of vectors in the star β; and β2 = |b|2. Taking

into account that  = ( , , 0), we obtain

(34)

Here,  is the normalized exciton resonance fre-

quency, the difference between  and ω0 consists of
two terms

(35)

B1 and B2 represent stars β with real and imaginary kβ,
respectively; and κβ = Imkβ. The exciton radiative
damping rate is given by

(36)

(37)

T ω( )
ik0

2nβ

2kβa2
------------- zd z'e

ikβ z z'–
ϕβ z( )d∫∫

β
∑

× 1 β2

2k2
--------– 

  L1 ||, 1
1

k2
---- ∂2

∂z'2
--------– 

  L1 ⊥,+ ϕβ z'( ),

L1
0 Λ1 x,

0 Λ1 y,
0

L1 L1
0 1 T ω( )

ik0
2nβ

2kβa2
------------- 1 β2

2k2
--------– 

 
β
∑–=

× z z'e
ikβ z z'–

ϕβ z( )ϕβ z'( )dd∫
1–

=  L1
0 ω0 ω– iΓ–
ω̃0 ω– i Γ Γ0+( )–
--------------------------------------------.

ω̃0

ω̃0

δω1 ωLT

k2πaB
3

2a2
--------------

nβ

kβ
----- 1 β2

2k2
--------– 

 
β B1∈
∑=

× z z' kβ z z'– ϕβ z( )ϕβ z'( ),sindd∫
δω2 ω– LT

k2πaB
3

2a2
--------------

nβ

κβ
----- 1 β2

2k2
--------– 

 
β B2∈
∑=

× z z'e
–κβ z z'–

ϕβ z( )ϕβ z'( ),dd∫

Γ0 ωLT

k2πaB
2

2a2
--------------

nβ

kβ
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  λβ
2 ,

β B1∈
∑=

λβ ϕβ z( ) kβzcos zd∫=
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P

The reflected and transmitted light waves are written as

(38)

The amplitudes ,  are given by

(39)

where (K^KE)i = KiΣjKjEj, Kr = (bx, by, –kb), and Kt =
(bx, by, kb). While deriving Eq. (39), we took into

account that  = 0 and

One can check that Eq. (39) satisfies the energy-flux
conservation law. Indeed, for zero dissipation, i.e., for
Γ = 0, we have

(40)

Equations (35)–(39) are original; previously, analytical
results for the reflectivity of a planar QD array were
obtained only for particular limiting cases [27].

Note that

It follows then that, in a more general case  ≠ 0 for
b ≠ 0 but

the vector 

(41)

Eb
r( ) i br kbz–( )[ ]exp

b

∑
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t( ) i br kbz+( )[ ] .exp

b

∑
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is oriented along E(0) and Eq. (34) is also valid. As a
result, we obtain

(42)

with

(43)

Since , , and  are parallel to E(0), one can
omit the vector notation for these quantities.

In the following, it is convenient to have the
reflection and transmission referred to the planes
shifted by some distance d/2 to the left and to the
right with respect to the quantum-dot plane, i.e., the
field on the left-hand side is written as Eβ, +exp[ikβ(z +
d/2)] + Eβ, –exp[–ikβ(z + d/2)] and the field on the right-
hand side is written as exp[ikβ(z – d/2)] +

exp[–ikβ(z – d/2)]. The corresponding reflection
and transmission coefficients are related to Eq. (43) by

(44)

IV. EXCITON–POLARITON DISPERSION 
IN TERMS OF  AND 

We show here that the dispersion equation (7) for
exciton–polaritons with q = (0, 0, q) can be derived
independently by using the reflection and transmission
coefficients for a single plane of quantum dots. Taking
into account that, for polaritons in an infinite primitive
cubic (PC) lattice, the amplitudes Eβ, ± and  at the
planes z = –a/2 and z = a/2 are related by the Bloch con-
dition  = exp(iqa)Eβ, ± and using the definition of

 and , for d = a we can write

(45)

The latter equations can be rewritten as

or

(46)

where

Eβ
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Note that the β' dependence of  is governed by the
product λβ'sβ' and one can present this amplitude coeffi-
cient in the form

(47)

where Uβ is β'-independent. Now, we multiply Eq. (46)
by λβsβ, sum over β, and eventually come to the equa-
tion

which can be reduced to

(48)

The equivalence between Eqs. (7) and (48) follows
immediately if we observe that

(49)

and, for a PC lattice and for q || [001],

(50)

where

(51)

V. OPTICAL REFLECTION FROM A PAIR 
OF (001) QUANTUM-DOT PLANES

For two d-spaced quantum-dot planes (001), the nor-
mal-incidence reflection coefficient can be expanded as
follows:

(52)
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Taking into account the representation (47), we obtain

It follows then that

(53)

In a similar way, one can show that

(54)

where V = . Thus, we finally obtain

(55)

In particular, it follows then that

(56)

Hereafter, we use the parameter aBr defined by the res-
onant Bragg condition

(57)

According to Eqs. (43) and (44), for a < 2aBr, we have

(58)
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and κβ = . From Eqs. (56) and (58), we obtain

(59)

For the resonant Bragg double-plane structure with d =
a = aBr, this equation reduces to

(60)

We see that the reflection coefficient  (d = aBr) dif-
fers from that for the single-plane case by the replace-
ment of Γ0 by 2Γ0, similarly to the resonant Bragg dou-
ble QWs [8], and of  by  – A.

VI. OPTICAL REFLECTION 
FROM A STACK OF QUANTUM-DOT PLANES

Here, we consider the reflection from a system of N
parallel (001) planes, which is nothing more than a
layer of the PC lattice of quantum dots. The first
approach can be based on recurrent equations relating
the reflection coefficients for N + 1 and N planes:

(61)

where the matrix  satisfies the equation

I is the unit matrix: Iβ'β = δβ'β, and, for the sake of brev-
ity, we omit the indices β, β'. The similar equations for
a semiinfinite lattice can be presented in the form

(62)

In fact, this approach was used in the previous section
to calculate the reflectivity from two QD planes.
In an alternative approach, we divide the space into the
following three parts: (I) z < zL, (II) zL < z < zR, and (III)
zR < z, where the planes z = zL = –a/2 and z = zR = Na –
a/2 are shifted by the half-period from the leftmost and
rightmost quantum dots, respectively. The secondary
electric field appearing as a result of the diffraction
from the quantum dot lattice allows the expansion

(63)
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Here, E0 is the amplitude of the primary wave, rL =
(0,  0, zL), rR = (0, 0, zR),

In region II, the field is a superposition of two Bloch
solutions

(64)

where q = (0, 0, q) satisfies the dispersion equation (7).
In region I, in addition to the primary wave, E0, and
specularly reflected wave, Er =  with g– = (0, 0, –k),
there are space harmonics oscillating in the (x, y) plane.
Among the latter, those which satisfy the condition k >

(2π/a)  are diffracted waves propagating in
region I without decay. The harmonics with k <

(2π/a)  decay with increasing distance from
the left-hand side interface. In region III, in addition to
the transmitted wave Et with g+ = (0, 0, k), there exist
free and decaying diffracted waves with l2 + m2 ≠ 0.
From the field continuity at z = zL and z = zR, we obtain
the boundary conditions

g , x± bx
2πl
a

--------, g , y± by
2πm

a
-----------,= = = =

g , z± kb± k2 bx
2– by

2– .±= =

E r; zL z zR≤ ≤( ) Eq r( ) E q– r( ),+=

Eg–

l2 m2+

l2 m2+
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Fig. 2. The reflectance from single (dotted) and double, d = a,
(solid) planes containing the square QD lattice with two dif-
ferent periods, a = 0.96aBr (a) and a = 1.10aBr (b). The spec-
tra are calculated by using Eqs. (59) and (68). For the sake
of convenience, the latter are vertically shifted by 0.2.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
(65)

(66)

where we have introduced the projection operators

Note that Eqs. (66) mean that, under the normal inci-
dence, there are no incoming waves with b ≠ 0.

We expand Eq(r), E–q(r) in the Fourier series (10)
and take into account the boundary conditions (65) and
(66) for b = 0. The latter can be rearranged and written
as

(67)
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Fig. 3. The dispersion of exciton–polaritons propagating in
the infinite QD lattice along the [001] direction (upper
graph) and the reflectance from a stack of N QD planes with
the spacing d = a and the period a = 0.96aBr for N = 1, 3, 5,
7, and 9 (lower graph).
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where bn = 2πn/a and, for b = 0, one can use the scalar
form for representing the field amplitudes. Solving
Eqs. (67), we come to

(68)
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Fig. 4. The reflectance from a stack of N QD planes with
the spacing d = a and the period a = 1.01aBr for N = 1, 3,
5, 7, and 9.
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P

where

and the function F(ζ, q, k) is defined by Eq. (51). One
can show in a straightforward manner that

Efficiency of the both approaches is demonstrated in
Fig. 2, which shows reflection spectra from a single
plane and double planes containing a square lattice of
spherical QDs. In the case of the double-plane struc-
tures, the interplane spacing, d, is taken to coincide
with the in-plane period a = 0.96aBr (Fig. 2a) and a =
1.10aBr (Fig. 2b). The chosen values of the QD radius
and the bulk longitudinal–transverse splitting are R =
a/4.001 and ωLT/ω0 = 5 × 10–4, respectively; and the
nonradiative exciton damping is neglected: Γ = 0. For
convenience, the spectra calculated by using Eqs. (59)
and (68) are shifted by 0.2 along the vertical axis. One
can see that the two approaches give identical results.
The spectral dips reflect the fact that the numerator in
Eq. (59) vanishes at the frequency ω =  + A – Γ0sinkd.

Figures 3, 4, and 5 show the dependence of the
reflection spectra on the N number of QD planes. The
parameters R and ωLT/ω0 are the same as in Fig. 2, the
interface spacing d equals the in-plane period a =
0.96aBr, 1.01aBr, and 1.10aBr, respectively. The upper
panels of Figs. 3 and 5 present the dispersion curves of
exciton polaritons propagating along the [001] princi-
pal axis of the corresponding 3D primitive-cubic QD
lattice. Note that, within forbidden gap, the polariton
wavevector is imaginary, q1 = 0, q2 ≠ 0. The period d =
a = 1.01aBr is almost satisfying the Bragg condition at
the exciton resonance frequency ω0. One can see from
Fig. 4 that, in this case, the half-width of the reflection
spectrum is almost linearly increasing as a function of
N, similarly to the enhancement by a factor of N of the
radiative damping of the superradiant mode in resonant
Bragg MQW structures [8].

VII. CONCLUSION
In conclusion, we have developed a theory of exci-

ton polaritons in QD regular structures and calculated
the resonant reflection spectra from a stack of N planes
containing quadratic-lattice arrays of spherical QDs.
The theory fills the gap existing between long-period
multiple quantum well structures and photonic crystals.
It can also be used to generalize the theory of resonant
diffraction of γ radiation by nuclei from bulk crystals
[28] to synthesized multilayers like the nuclear multi-
layer [57Fe(22 Å)/Sc(11 Å)/Fe(22 Å)/Sc(11 Å)] × 25
studied by Chumakov et al. [26].

The developed theory takes into account a contribu-
tion of only one confined-exciton resonance which is

A± F
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2
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2
---– q k, , 
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valid if the separation between the exciton size-quanti-
zation levels is much larger than the bulk value of the
exciton longitudinal–transverse splitting, ωLT. In the
opposite limit of extremely large bulk-exciton transla-
tional effective mass, one can use the local material
relation D(r) = ε(r, ω)E(r) as it was done by Sigalas et al.
[29] for phonon–polaritons in a two-dimensional lattice
consisting of semiconductor cylinders.
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Abstract—The thermodynamic transition in the C60 crystals subjected to uniaxial compression at different
temperatures and heat treatment has been investigated by differential scanning calorimetry (DSC). The kinetic
parameters of the irreversible endothermic “quenching” effect are determined. It is revealed that the process is
accompanied by the cooperative molecular motion, which is characteristic of the high-elasticity state of organic
glasses. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Earlier [1], we studied C60 crystals by the calorimetric
technique and found the change in the characteristics of
the orientational phase transition (at temperatures of
250–260 K) under mechanical action. It was revealed
that the distortions observed in λ-shaped endothermic
peaks in the differential scanning calorimetric (DSC)
curves of strained crystals substantially depend on the
temperature of mechanical loading. In particular, the
deformation at room temperature suppressed the peak,
whereas the changes in the intensity and the temperature
location of the peak turned out to be insignificant upon
deformation at a temperature of 77 K at which the C60
crystals occur in the state of orientational glass [2]. In the
latter case, the DSC curves showed an additional endot-
hermic effect in the form of a low-temperature shoulder
or a smeared peak against the background of the main
λ peak. More recently, it was shown that this effect is
metastable and is directly unrelated to the deformation,
but depends on the cooling kinetics or holding at low
temperatures [3]. This means that the nonequilibrium
state in the C60 crystals stems from the thermal effect
rather than from the mechanical action.

The “quenching” effect is associated with the pres-
ence of a nonequilibrium orientational order in the
quenched fullerene crystals [3]. As is known [4–6], the
orientational order in the equilibrium state is character-
ized by a specific ratio between the concentrations of C60
molecules with two different (pentagonal and hexago-
nal) orientations in tetrahedral formations. Upon rapid
cooling (quenching) down to a low temperature, the non-
equilibrium state that corresponds to a higher tempera-
ture becomes frozen, so that the ratio (balance) between
the pentagonal and hexagonal configurations is disturbed
toward the high-energy hexagonal configurations.

The purpose of the present work was to investigate
the kinetics of the quenching effect in the fullerene
crystals preliminarily subjected to thermal and
mechanical action.
1063-7834/00/4209- $20.00 © 21766
2. EXPERIMENTAL TECHNIQUE

Single crystals of C60 were prepared according to
the procedure described in [3].

The calorimetric measurements were performed on
a Perkin–Elmer DSC-2 differential scanning calorime-
ter according to the technique given in [7, 8]. The DSC
data on the mechanical action at temperatures of 77 and
293 K were taken from our earlier work [3]. The
fullerene samples were rapidly cooled (quenched) from
room temperature in liquid nitrogen. Then, the samples
in a vessel with liquid nitrogen were carried into a cal-
orimeter cell (preliminarily cooled down to 100 K) and
were heated up to 300 K, during which the DSC curves
with thermal effects were recorded. The heating rate
was varied from 0.6 to 20 K/min.

3. RESULTS AND DISCUSSION

Figure 1 depicts the DSC curves for the quenched
and strained samples. It is seen that the quenching peak
disappears upon repeat heating (dashed lines) for both
unstrained (curve 1) and strained (curve 2) C60 samples.
With the relatively simple DSC technique [9], it is pos-
sible to determine the activation energy of heat absorp-
tion from the shift of the temperature Tmax at a maxi-
mum of the peak in the DSC curve (Fig. 1) at different
heating rates V. In this work, we measured a series of
the identically prepared (quenched) C60 crystal sam-
ples. The experimental data on Tmax obtained for both
peaks (main and quenching) were used to construct the
dependences on a semilog scale (Fig. 2). As can be seen
from Fig. 2, these dependences are nearly linear, which
allows one to determine the activation energies of pro-
cesses from the relationship Q = –RdlnV/d(1/Tmax)
(where R is the gas constant) [9]. Note that the depen-
dence lnV(1/Tmax) for the main peak is close to a verti-
cal line, which corresponds to the activation energy of
the equilibrium thermodynamic transition Q  ∞.
Now, we take into account the systematic error ∆T in
000 MAIK “Nauka/Interperiodica”
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the determination of temperature, which arises from the
thermal lag of an operating cell of the calorimeter [10],
and subtract ∆T from the experimental values of Tmax
(the experimental values of ∆T for the C60 fullerene
crystals at each heating rate were obtained in [7]). As a
result, the dependence lnV(1/Tmax) for the main peak
becomes vertical to within the other systematic errors,
and the slope of the straight line for the quenching peak
changes only slightly. The activation energy is deter-
mined from this slope as Q = 0.6 ± 0.2 eV.

The nature of the above effect was explained in [3]
by the annealing of quenching defects in the C60 crys-
tals, in which the ratio between the equilibrium concen-
trations of the pentagonal (np) and hexagonal (nh) con-
figurations of C60 molecules is disturbed. In this case,
the quenching defects were differentiated from the
deformation defects. Note that the quenching defects
occur in a primitive cubic lattice of fullerene and are
annealed even below the temperature of the transition
to the face-centered cubic lattice, whereas the deforma-
tion defects predominantly arise in the face-centered
cubic lattice and bring about a smooth smearing of the
λ peak. According to [11, 12], the structure of the latter
defects can be associated with the formation of dimers
and more complex polymerized structures.

In the quenched crystals, a C60 molecule changed
from one metastable orientation to another one (hexag-
onal or pentagonal) due to an abrupt temperature drop
upon quenching can be treated as the simplest defective
structure. However, according to [4, 5, 13], the activa-
tion energy for transition from one configurational
modification of C60 molecules to another modification
is equal to 0.3 eV. Moreover, the period of librations or
the time for which the molecule occurs at each equilib-
rium position is equal to ~4 × 10–14 s. Therefore, the
activation energy for the irreversible quenching process
is more than twice as large as that for the elementary act
of change in the orientation of one C60 molecule. This
can be caused by a more complex cooperative process
of redistributing the concentrations of the pentagonal
(np) and hexagonal (nh) configurations of C60 molecules
in the quenched fullerene crystal. For example, Natsik
et al. [14] noted that the orientation states and the tran-
sitions in a system of C60 molecules are cooperative in
character. Nonetheless, the model, which treats one C60
molecules as an elementary kinetic unit, appears to be
fruitful and, in the authors' opinion, provides an ade-
quate description of a number of experimental proper-
ties of the primitive cubic phase in the C60 crystals.
Apparently, the quenched crystal of fullerene can be
characterized by both processes that involve kinetically
simple quasi-independent acts of motion of kinetic
units and obey the Arrhenius relation with the preexpo-
nential factor A ~ 1013 and the concurrent process of
annealing the quenching defects with the characteristic
cooperative motion of kinetic units.

Similar processes are observed in organic and inor-
ganic glasses in a specific aggregate state that exists in
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
the range from the glass transition temperature Tg to the
temperature of a transition to the liquid-flow state Tlf (or
to the melting temperature of the crystalline phase for
partially crystallized glasses). This state in organic
glasses is referred to as the “high-elasticity” state. The
kinetic parameters of relaxation processes (including
the enthalpy relaxation) in this temperature range are
not constant: the activation energy of cooperative

230 250 270 290

Tmax

Tmax

1

2

3
3'

2'

1'

dH/dt = 0.5 mW

T, K

1

2

0.0038 0.0040 0.0042 0.0044
–1

0

1

2

3

1/Tmax

ln(V, K/min)

Fig. 1. DSC curves (changes in enthalpy per unit time
dH/dt) for (1) the initial C60 sample and (2, 3) the C60 sam-
ples subjected to uniaxial compression at T = 77 K and σ =
460 MPa after the preliminary quenching in liquid nitrogen.
(3) Heating of the initial sample up to 253 K. Dashed lines
1'–3' correspond to repeat heating after cooling down to
220 K. Heating rate is 5 K/min.

Fig. 2. Experimental (solid lines) and corrected (dashed
lines) dependences of the cooling rate on Tmax for the
(1) main and (2) quenching endothermic effects in the C60
fullerene.
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motion Qcoop increases many times as the temperature
decreases from the temperature of the liquid-flow state
(characterized by the Arrhenius activation energy Q) to
the glass transition temperature. The relationship
Qcoop/Q = z = 4 ± 1 [where z is the so-called cooperativ-
ity factor (parameter)] holds true near the Tg tempera-
ture for a wide variety of glass-forming materials [15].
In a number of works [16–19], it was demonstrated that
the high (non-Arrhenius) activation energies Qcoop cor-
respond to the potential barriers to the motion of z mol-
ecules or segments (for organic glasses). The mecha-
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Fig. 3. Schematic representation of the DSC curve with the
endothermic effect for calculation of the kinetic parameters
for heat absorption [15].

Fig. 4. Temperature dependences of the rate constant K(T)
for the irreversible quenching endothermic process in
(1) unstrained and (2) strained quenched C60 fullerene crys-
tals.
P

nism of a particular act of the cooperative motion is dif-
ferently interpreted by different authors. In our opinion,
the most descriptive model was proposed by Gotlib
[17], who treated the overcoming of the potential bar-
rier Qcoop as a correlated overcoming of several poten-
tial barriers Q.

The above technique for determining the activation
energy gives no way of obtaining the other kinetic
parameters of the relaxation process, which could clar-
ify the physical nature of the quenching effect
observed. A deeper insight into the nature of this effect
can be gained with the technique used in analysis of a
wide variety of kinetic phenomena, including the con-
current multistage thermal processes [15]. This tech-
nique makes it possible to determine the kinetic param-
eters for each of stages of the process provided that
these stages can be separated experimentally or theoret-
ically on the basis of particular model concepts. As fol-
lows from the data shown in Fig. 1 (curve 3), in our
case, the quenching and dominant λ-shaped endother-
mic effect can be separately observed in the C60 sample.
It is seen that the heating up to a temperature of 253 K
makes possible recording only the quenching effect,
and the main λ peak alone is observed upon repeat heat-
ing of this sample (Fig. 1, solid curve 3 and dashed
curve 3').

The kinetic parameters of the two-stage endother-
mic process were determined from the DSC curve
obtained at a heating rate of 5 K/min, when the over-
lapping of peaks is small. By analogy with the chemical
reaction, the kinetic equation for the thermal process
can be written in the general form as follows:

(1)

where α is the degree of conversion, n is the order of
reaction, and the K(T) is the rate constant. The rate con-
stant is defined by the Arrhenius equation

(2)

where A is the preexponential factor, Q is the activation
energy of the process, and R is the gas constant.

In the case of DSC, the variable α is represented by
the ratio ∆Ht/∆H0, where ∆Ht is the reaction heat
evolved for time t in the temperature range from T0 to
Tt (which corresponds to the area of the hatched part of
the peak in Fig. 3), and ∆H0 is the total endothermic
effect of the process (the area of the whole peak). The
rate of conversion dα/dt in the kinetic equation (1) is
equivalent to the heat flux dH/dt normalized to the
overall heat of the process ∆H0; that is,

(3)

By using the experimental DSC curve (the known
dH/dt, ∆Ht, and ∆H0 quantities) and fitting the n value,
this relationship permits one to determine the depen-
dence K(T), which is linear on the Arrhenius coordi-
nates lnK–1/T. Then, this dependence is used to calcu-

dα dt⁄ K T( ) 1 α–( )n,=

K T( ) A Q– RT⁄( ),exp=

1 ∆H0⁄( )dH dt⁄ K T( ) 1 ∆Ht ∆H0⁄–( )n.=
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late the activation energy Q from the expression Q =
−RdlnK/d(1/T). In this case, the portion A is intercepted
on the ordinate axis by the straight line lnK(1/T). The
above technique for calculating the kinetic parameters is
appropriate in the case of describing a multistage process
whose stages each are governed by relationship (2).

It turns out that the endothermic effect of the λ peak
observed for both strained and quenched C60 samples
makes it impossible to obtain the parameter n at which
the dependence lnK(1/T) would be linear over the
entire temperature range of the thermal effect. This
result agrees well with the above data, because the
λ peak corresponds to the equilibrium thermodynamic
transition. At the same time, in the case of the quench-
ing effect (see Fig. 4), it has become possible to fit the
corresponding parameters for the quenched unstrained
(n1 = 1.26) and strained (n2 = 1.12) C60 samples, at
which the dependences lnK(1/T) are linear over the
entire temperature range of the thermal effects. The
other parameters of these linear dependences are as fol-
lows: lnA1 = 36.9 and Q1 = 0.85 eV for the quenched
samples and lnA2 = 68.9 and Q2 = 1.52 eV for the
strained samples.

The activation energy Q = 0.6 ± 0.2 eV (determined
above with other experimental technique and computa-
tional procedure) is comparable with the activation
energy Q1 for the quenched sample but is considerably
less than the activation energy Q2 for the strained sam-
ple. The cooperativity factor z is equal to the ratio
between the found activation energy and the activation
energy of the Arrhenius process (Q = 0.3 eV): z = 2–2.8
for the quenched C60 sample and z = 5 for the strained
sample. This result is in reasonable agreement with the
above factor z = 4 ± 1, which is typical of organic and
inorganic glasses.

It is known that the order of reaction or the parame-
ter n characterizes the mechanism of the chemical reac-
tion or the process [20]. For example, the one-stage
reaction of radioactive decay is the reaction with the
order close to unity (n ~ 1). In more complex cases
when the reaction or process involves several stages,
the order of reaction can be close to unity if the initial
stage is the first-order reaction. For the quenched and
strained C60 samples, the order of reaction or the pro-
cess of enthalpy relaxation is also close to unity (n1 =
1.26 and n2 = 1.12). In this case, the transition of the C60
molecule from one metastable equilibrium position to
another metastable equilibrium, i.e., the hexagonal–
pentagonal orientational transition, can be treated as
the initial stage of the cooperative process. This ele-
mentary act leads to the next stages involving several
orientational transitions of the adjacent molecules. The
number of the events is determined by the cooperativity
factor z.

The cooperativity factor is associated with structural
formations in glasses. In organic and inorganic glasses,
the factor z is governed by the coordination number of
chain packing in the first coordination sphere of the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 9      200
intermolecular “lattice” and also by the size of short-
range order regions [15]. In the fullerene crystals, each
site in the primitive cubic lattice is matched by the tet-
rahedron formed by four C60 molecules with particular
orientations [2, 21]. This implies that the cooperativity
factor for C60 is close to the number of C60 molecules in
the tetrahedron. This fact permits us to assume that the
quenching defects represent local formations contain-
ing from three to five C60 molecules, which occur in the
metastable orientation equilibrium state and belong to
one or several contacting tetrahedra.

Thus, the data obtained in the present work led to
the conclusion that the kinetics of the quenching effect
is cooperative in character. The kinetic units involved in
this cooperative process or quenching defects represent
local formations comparable in size to the tetrahedra in
the primitive cubic lattice of fullerene crystals.
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Abstract—The rate spectrum of small inelastic strains of the C60 single crystal in the temperature range 80–300 K
has been obtained with a precision laser interferometer. It is revealed that the spectrum exhibits two large peaks in
the glass formation (90–100 K) and phase transition (250–260 K) ranges. A small strain acceleration is also
observed at ~220 and 240 K. The first two maxima are attributed to the changes in strain resistance upon transi-
tions, and the strain acceleration at 220 and 240 K is associated with the annealing of the defects formed upon
rapid cooling of the crystal. It is demonstrated that the peak at 250–260 K broadens with an increase in the stress.
The spectrum of strain rates is compared with the calorimetric curve for the same single crystal. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

A correlation between orientational transforma-
tions in the C60 crystals and their microplasticity has
been observed in a number of works [1–6]. For exam-
ple, the temperature dependence of the Vickers micro-
hardness exhibits kinks at 150 K [1, 2] and in the
range 240–260 K [1–3]. The presence of the kinks is
explained by the glass transition, which supposedly
proceeds from 150 [1, 2] to 85 K [7] during cooling the
crystal, and also by the phase transition from the prim-
itive cubic (pc) lattice to the face-centered cubic (fcc)
lattice. The reverse effect—the influence of the
mechanical action on the characteristics of the pc–fcc
phase transition—is also known. It has been demon-
strated that the compression of the C60 single crystals at
temperatures above and below the transition point var-
iously affects their energy characteristics, which were
determined by differential scanning calorimetry (DSC)
[4, 5]. The distortions observed in the peak upon defor-
mation at 77 K are substantially smaller than those
caused by the compression at room temperature when
the peak is almost completely smeared even at rela-
tively low pressures. Earlier [5], it was assumed that
this effect is due to larger possibilities for local defor-
mation (preceding the destruction) in the high-symme-
try fcc lattice as compared to the pc lattice or the glassy
state of the C60 fullerites. In [6], the microplasticity was
found upon uniform loading (compression of the crys-
tal). It was shown that the rate spectrum of small inelas-
tic deformations, which was obtained for the C60 single
crystal by the high-resolution laser interferometry,
exhibited a peak at T = 250–260 K. The presence of this
1063-7834/00/4209- $20.00 © 21771
peak indicated the microstrain acceleration during the
pc–fcc transition.

In the present work, we continued the investigations
of the spectra of inelastic deformations for the C60 single
crystals in an extended temperature range (80–300 K),
which also covered the glass transition range. The laser
interferometry was used for measuring the rates from
small strain increments [6]. The spectra obtained were
compared with the calorimetric curves for the same
crystals.

2. EXPERIMENTAL TECHNIQUE

The C60 single crystals were grown from the vapor
phase. Fine C60 crystals, which were preliminary puri-
fied by multistage vacuum sublimation [5, 7], served as
the starting material. The preparation procedure of the
starting material and single crystal growth were
described in [5, 8]. The crystals were obtained at the
following conditions: sublimation temperature, 873 K;
crystallization temperature, 813 K; and crystal growth
duration, 8–12 h. The well-faceted C60 single crystals
prepared by this procedure weighed as much as 30 mg
and reached several millimeters in size.

The interferometric technique of recording the
deformation in time in the form of sequential oscilla-
tions [9, 10], which was used in the present work,
enables one to measure the strain rate  from small
changes in the sample length with an error of no more
than 5%. One oscillation in the interferogram is equal
to the strain increment |∆l0| = 0.3 µm. In order to con-
struct the rate spectrum, the strain interferogram was
obtained after loading the sample in a creep mode for
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approximately 1 min; then, the sample was unloaded,
heated by 3–10 K, loaded repeatedly, etc. The experi-
ment was started at low temperatures, and the creep
strain was several hundredth of percent. The rate mea-
surements were carried out at the same stress and equal
intervals after loading. To obtain the spectrum, the C60
single crystal was placed in a test chamber [9, 10] and
rapidly cooled down to ~77 K. Then, the sample was
slowly heated and loaded with a compressive force of
2 N at gradually increasing temperatures. The average
heating rate was 1 K/min, and the isothermal loading
pulse length was 2 min. The error in determining and
controlling the temperature at the instant of loading was
±0.5 K, and the strain rate was measured at intervals of
1 min after the onset of loading at each temperature.

The DSC data were also used in analysis of the
results. The calorimetric measurements were carried
out on a Perkin–Elmer DSC-2 calorimeter according to
the procedure described in [4–6]. In order to provide
the similarity of temperature conditions for both meth-
ods, the C60 sample was preliminary rapidly cooled
with liquid nitrogen and placed in a calorimeter cham-
ber. Measurements were carried out at a heating rate of
5 K/min in the temperature range 170–300 K. The DSC
curves showed the thermal effects, which were
observed in the sample during the pc–fcc phase transi-
tion, and the “quenching” effects found earlier [4–6].

3. RESULTS AND DISCUSSION

The rate spectrum of the inelastic strain for the C60
single crystal under a load of 2 N in the temperature
range 80–290 K is shown in Fig. 1. Two sharp peaks are
clearly seen at ~100 and 260 K, i.e., in the region of
structural phase transitions. Several small peaks are

0 100 200 300

2

4

6

T, K

ε⋅ , 10–6 s–1

1

2

Fig. 1. Spectra of the rates of small inelastic strains for the
C60 single crystals under loads of (1) 2 and (2) 20 N.

ε̇

P

also observed in the range 150–240 K. It was demon-
strated earlier for a large variety of materials [10] that
the peaks, which were obtained at stresses far below the
yield point and fracture stresses, correspond to the acti-
vation of a rapidly damping local deformation. No peak
near the glass transition temperature was observed ear-
lier when studying the mechanical properties of fuller-
ites. In our opinion, its appearance in our experiments
is caused by a very high sensitivity of the method and
very small loads. On the one hand, this enables one to
reveal the earliest stages of deformation, and on the
other hand, to avoid the crystal fracture. It seems likely
that a small peak at 150 K correlates with a kink in the
temperature dependence of the microhardness of the
C60 single crystals, which was found in [1]. However, a
similar dependence for polycrystals has no specific fea-
tures [11]. The difference in temperatures that corre-
spond to the glassy state has also been revealed in [1].
This difference can stem either from the difference in
stresses or from the specific features of the crystals.

For comparison, the spectrum for another C60 single
crystal, which was grown by the same technique, is also
shown in Fig. 1 [5]. This spectrum was recorded at a
larger load (20 N) in the temperature range 200–300 K.
It is seen that both spectra exhibit the same characteris-
tic peaks that are attributed to the phase transition and
the rapid cooling of the sample. These are the main
peaks at 260 K and the so-called “quenching” peaks at
240 K, respectively. However, there are some differ-
ences. First, the strain rates are higher at a larger load.
Second, the main peak is considerably broader in this
case, and this broadening is conditioned primarily by
its low-temperature branch. This means that the micro-
deformation is more sensitive to the phase transition at
a larger load. The shift of the low-temperature branch
of the peak at  = (2–4) × 10–6 s–1 is ∆T = 12 K. If we
consider the microdeformation as a thermally activated
process and assign this shift exclusively to the load
change, the efficient activation volume of deformation
can be estimated as Veff = k(  – )∆T/∆σ, where

k is the Boltzmann constant;  ≈ 1013 s–1; and ∆σ is
calculated with the constraint that the mean cross-sec-
tion of the single crystal is equal to ~3 mm2. The calcu-
lations give Veff ≈ 7 × 10–22 cm–3, which is close to the
unit cell volume. If we consider the microdeformation
as governed by the dislocation mechanism, the last cir-
cumstance indicates that the microdeformation in C60
in the pc–fcc phase transition region can be realized
through very short segments of dislocations only.

Figure 2 depicts the calorimetric curves for two dif-
ferent C60 single crystals. The measurements were per-
formed with small pieces of the samples subjected to
compression in the above experiments at 2 and 20 N,
respectively. As is seen from Fig. 2, the peak corre-
sponding to the phase transition is virtually identical
for two samples, while the small peaks at 220–250 K
differ in both the magnitude and the location of the
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maximum. A comparison of Figs. 1 and 2 demonstrates
that the calorimetric and deformation curves are similar
in the temperature range covered. Unfortunately, we
failed to perform the calorimetric measurements with a
DSC-2 calorimeter at lower temperatures near the glass
transition point. For this reason, the comparison
between the calorimetric and deformation curves was
made only in the range 170–300 K.

Note that the width of the strain maximum at small
stresses approaches that of the calorimetric peak in the
phase transition range. It can be assumed that large
stresses can give rise to defects in the pc lattice, which
promote the phase transition and bring about the broad-
ening of the peak primarily at the sacrifice of its low-
temperature branch.

One or several peaks of relatively small amplitude
are observed in each curve (Figs. 1, 2) in the tempera-
ture range 190–250 K. These peaks were termed the
“quenching” peaks [5], since they manifested them-
selves in the rapidly cooled samples. The “quenching”
effect was associated with the presence of the nonequi-
librium orientational order in the quenched fullerene
crystals [5]. The orientational order is determined by
the occupancy ratio for pentagonal (np) and hexagonal
(nh) configurations np/nh, whose equilibrium value
depends on temperature. For example, at room temper-
ature, when the C60 molecules rotate almost freely, we
can assume that np/nh ≈ 1. In the temperature range
85 < T < 260 K, we have np/nh ≈ 4, while at T < 85 K,
i.e., in the state of “orientational glass”, np/nh ≈ 5 [7].
Upon rapid cooling (quenching), the low-temperature
nonequilibrium state that corresponds to a higher tem-
perature becomes frozen, so that the ratio np/nh is vio-
lated toward the high-energy hexagonal (h) configura-
tion. Thus, the quenching defects in the pc lattice of
fullerene are annealed below the pc–fcc transition tem-
perature. This is reflected in the DSC curves and in the
deformation curve, which is sensitive to mobility of the
defects during annealing. The presence of several max-
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Fig. 2. DSC curves (changes in the specific heat capacity
∆Cp) for two quenched C60 single crystals. Heating rate is
5 K/min.
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ima in the deformation spectra in the range 190–240 K
can be attributed to multiple transitions, which are
often observed in complex systems [12]. Positions and
magnitudes of “quenching” maxima are governed by
individual specific features of the crystal and its prehis-
tory. The difference between calorimetric and deforma-
tion curves for two different crystals is apparently asso-
ciated with these circumstances.

Thus, the rate spectrum of small inelastic deforma-
tions makes it possible to investigate the transition to
the state of orientational glass, phase transition, and
other structural transformations in the C60 single crys-
tals reasoning from their correlation with microplastic-
ity. This spectrum is similar to the DSC curve for the
single crystal. Some differences are observed only in
the range of annealing the quenching defects.
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