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Abstract—A simple and effective self-consistent scheme is proposed for the determination of the average
potentials which allows thermodynamic functions and other characteristics of lattice systems in equilibrium to
be calculated with high accuracy and short computing time. This scheme has been used for analysis of the
expressions for the coefficients of diffusion and electrical conductivity obtained on the basis of the modern sta-
tistical theory of nonequilibrium processes. Results of the simulations are correlated with the data of Monte
Carlo simulations obtained using parallel vector algorithms on a Cray TZE computer of the Max Plank Society
(Germany). © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Mass transfer and the associated electrical conduc-
tivity in crystals and at their surfaces plays a crucial
role in numerous phenomena, examples of which are
ionic conductivity, chemical reactions, crystal growth,
intercalation, phase transitions in nonequilibrium con-
ditions, etc. [1–9]. However, a theoretical description of
the mass transfer processes in solids meets with essen-
tial difficulties associated with the very different char-
acteristic time scales. The lattice models turn out to be
useful for studying phenomena at time scales consider-
ably exceeding the oscillation period of particles near
their stationary sites.

For the description of the equilibrium properties of
the lattice systems, different mean-field approxima-
tions are widely used [10, 11]; however, they are able,
at best, to provide semiquantitative results. The more
complex mean-field versions [12] and the Kikuchi
approximation [13], while being more accurate com-
pared with the molecular field method (or quasi-chem-
ical approximation), nevertheless are not accurate
enough and are considerably more complicated in
applications [14].

The mass transfer processes in lattice systems were
considered mainly as applied to two-dimensional sys-
tems [4, 6, 14–17]. Zhdanov [18] was able to express
the coefficient of chemical diffusion through equilib-
rium characteristics of the lattice system, namely, the
chemical potential and the probability that two neigh-
boring sites of the two-dimensional lattice would not be
occupied by particles. However, the accuracy and
application limits were unknown.
1063-7842/00/4511- $20.00 © 21375
SELF-CONSISTENT DIAGRAMMATICAL 
APPROXIMATION

Consider a system of n particles distributed over
N ≥ n lattice sites. The state of the system is given by a
set of occupation numbers ni (i = 1, 2, …, N), which
take the value of 1, if the site i is occupied by a particle,
and 0 otherwise. Occupation of a site by more than one
particle is forbidden, so the normalization condition is
fulfilled:

(1)

The energy of the system is determined in the pair
interaction approximation

(2)

where Φij is the interaction energy of the particles occu-
pying sites i and j.

The number of independent interaction constants
can be considerably reduced if the symmetry of the lat-
tice is taken into account and the notation Jk = Φij is
introduced for the sites i and j, which are neighbors of
the kth order; that is, they belong to the kth coordination
sphere with respect to each other.

Consider also the basic system described by the
potentials ϕj(ni) of interaction between a particle (ni = 1)
or a vacancy (ni = 0) located at the ith site and the jth
site of the lattice. Its energy is

(3)
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These potentials are in fact average ones, since they
are independent of the state of site j; that is, it can be
said that the averaging is done over these states. It is
supposed that there is no interaction between a particle
or vacancy and its own site, ϕj(ni) = 0.

The equilibrium properties of the system are deter-
mined by its free energy per site

(4)

where T is the temperature, kB is the Boltzmann con-
stant, and QN is the partition function.

The latter can be written as

(5)

where β = (kBT)–1,  denotes summation over
all possible sets of the occupation numbers correspond-
ing to normalization condition (1); the angle brackets
〈…〉0 denote averaging over the states of the basic sys-
tem, while the partition function of the latter can be eas-
ily factorized due to the single-particle character of its
potential energy (3):

(6)

(7)

The partition function per lattice site

(8)

is determined for two site states (ni = 0 or 1).

Introducing renormalized Meier functions

(9)

we represent the partition function of the starting sys-
tem in the form

(10)
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Relationship (10) enables the free energy of the sys-
tem to be written in a diagrammatical form,

(11)

where bj depict a set of diagrams specified at jth sites of
the lattice. In particular,

(12)

The summation over k and l is done up to a certain
limiting value kmax, which is determined by the
assumed interaction radius of the particles, while the
averaging over the states of the basic system can to a
first approximation, be reduced to multiplying by the
concentrations of the particles and vacancies (Θ0 and
Θ1) and summation over these site states.

If all terms of the expansion are taken into account,
expression (11) is identical to relationship (4) for an
arbitrary form of the potentials ϕj(ni). Therefore, the
principle of self-consistent determination of the latter
can be formulated by requiring that the sum of a num-
ber of first terms in (11), which is considered as an
approximate value of the free energy, also be indepen-
dent of the choice of average potentials. This require-
ment is tantamount to the condition that the held part of
the series be extremal with respect to average potential
variation.

Hereafter, we consider only the interaction between
nearest neighbors. Taking into consideration only two-
site diagrams, we obtain the usual quasi-chemical
approximation, in which the average potentials are non-
zero only for the nearest neighbor sites. They are
defined by the equations

(13)

(14)

Here, a shorthand system of notations is introduced, in
which indices i and j denote both site indices and indi-
ces denoting the state of these sites (0 or 1). Therefore,
if the interaction between nearest neighbors is taken
into account, then Φ00 = Φ01 = 0, Φ11 = J, where J is the
potential of the nearest neighbor interaction. The poten-
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tials ϕ(0) and ϕ1 are also defined for the nearest neigh-
bors. Equation (13) is tantamount to the expression

(15)

which means that the renormalized Meier function
averaged over the states of one of the sites is equal to
zero. As a result, we obtain a new interpretation of the
quasi-chemical approximation; namely, for self-consis-
tent choice of the average potentials, according to
Eqs. (13) and (14), all diagrams occurring in expansion
(11) and having at least one peak from which only one
bond emerges go to zero. In other words, the quasi-
chemical approximation, through self-consistent con-
ditions, takes into account a wide range of diagrams in
the free energy expansion in terms of the Meier func-
tions.

In the quasi-chemical approximation, the radii of
action of the average and starting potentials coincide.
Therefore, in the nearest neighbor interaction, the aver-
age potentials are nonzero only for nearest neighbors as
well.

In the next step, diagrams plotted on three and four
sites are taken into account. The average potentials for
neighboring sites can conveniently be taken equal to
their quasi-chemical values determined according to
Eqs. (13) and (14), while for the average potentials
ϕ(2)(i) of the second neighbors, we obtain a system of
equations similar to the quasi-chemical approximation:

(16)

where

(17)

The solution of the system of Eqs. (16), (17) takes
the form

(18)
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(20)

(21)

which is applicable to the quasi-chemical approxima-
tion as well if η2 is replaced by η1 at V00 = V01 = 1 and
V11 = W = exp(–βJ).

After calculation of the average potentials of inter-
action with the nearest ϕ(i) and the next-nearest ϕ(2)(i)
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neighbor sites, the contribution to the free energy (11)
of the unaccounted diagrams can be evaluated and the
following expression will be obtained:

(22)

The probability that two nearest neighbor lattice
sites are occupied by particles can be determined by
differentiating the free energy with respect to the inter-
action parameter:

(23)

The probabilities that these sites are occupied by a
particle and a vacancy (F(1, 0)) or by two vacancies
(F(1, 0)) can be found using the normalization condi-
tion

(24)

Using relationships (13), (14) and (16)–(24), both
the thermodynamic properties of a lattice gas of arbi-
trary density and its correlation properties described by
the distribution functions of particles and vacancies
F(i, j) can be studied.

ELECTRICAL CONDUCTIVITY 
AND DIFFUSION COEFFICIENTS

To consider processes associated with the migration
of the lattice gas particles (diffusion and electrical con-
ductivity), we take as a dynamic variable a set of the
occupation numbers ni of the lattice sites, which deter-
mine the charge distribution in the system as if it were
supposed that every particle had a charge q. The electric
neutrality of the system is provided by the uniformly
distributed lattice charge.

In a weak electric field Ei, the dynamics of small
deviations δni of the particle density from its equilib-
rium value Θ = Θ1 is described by a linear equation,
which, using the method of nonequlibrium statistical
ensembles proposed by Zubarev [19, 20], can be writ-
ten in the form

(25)

where δµj is the chemical potential deviation at the jth
site from its equilibrium value µ, Ωij and Θij(τ) are the
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static correlation matrix and the memory matrix,
respectively, defined as

(26)

(27)

The angle brackets 〈…〉  denote averaging over the
equilibrium distribution, dots above the symbols
denote time derivatives, and the operator Q corresponds
to projection onto the space orthogonal to the basic
dynamic variable ni . Equation (25) takes into account
effects of memory (due to the integral over time) and
spatial dispersion (due to summation over lattice sites).

Unlike the Hamiltonian systems usually considered
in statistical mechanics, the dynamics of a lattice gas is
described by an irreversible basic equation [5, 6, and
14–18]

(28)

where wij is the probability of particle transition from
site j to site i in a unit time (the transition frequency)
and the summation is carried out over z nearest neigh-
bors of the site i; the transition probabilities satisfy the
detailed balance principle.

The chemical potential and the electric field appear
in the expression of the particle density evolution sym-
metrically. This means that the particle flux density is
proportional to the thermodynamic force (the gradient
of the chemical potential) and to the gradient of the
electric field, with equal proportionality factors in both
cases. In the first Fick’s law for the particle flux density,
either the coefficient of chemical diffusion multiplied
by the concentration gradient or the kinetic diffusion
coefficient Dk multiplied by the gradient of the chemi-
cal potential appear [4–6, 14, 17, 18]. In terms of the
latter, the electrical conductivity coefficient is
expressed as

(29)

where ρ is the particle density and ω and k are the fre-
quency and wave vector, respectively.

It is seen from (25) that relationship (29) is valid for
arbitrary values of the frequency and the wave vector
and, thus, represents an extension of Einstein’s rela-
tionship, which relates electrical conductivity to parti-
cle mobility.

To calculate the diffusion coefficient, we exclude
the external electric field from Eq. (25) by setting it
equal to zero and, after Laplace and Fourier transforms,
write the solution as

(30)

where χk is determined by the Fourier transform of the
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iω Ωkχk Θk ω( )χk+–
-----------------------------------------------------,=
reverse matrix of the density fluctuations

(31)

and emerges as a result of the transition from the chem-
ical potential to density in the second and third terms of
Eq. (25).

The memory matrix Θij has a fairly complex struc-
ture. In the first approximation, its contribution can be
neglected. Then, from (30), an expression for the low
frequency limit of the kinetic diffusion coefficient fol-
lows, which depends on the wave vector:

(32)

(33)

Here rij is a vector connecting sites i and j. Using the
known diffusion coefficient Dk(k), the electrical con-
ductivity coefficient σ(k) can be calculated. Let us
dwell on the calculation of the matrix Ωk. Substituting
(28) into (26) and using the detailed balance principle
and symmetry properties, we obtain

(34)

where

(35)

is the average frequency of the particle hops.
Assuming a value corresponding to the trap model

for the hopping frequency,

(36)

where w0 is the hopping frequency of the particle not
interacting with other particles and εi is the energy of its
interaction with the surroundings.

In this case, the averaging in (35) results in the rela-
tionship

(37)

In the hydrodynamic (long-wavelength) limit
(k  0), we obtain

(38)

(39)

where D0 is the coefficient of chemical diffusion of the
Langmuir (noninteracting) lattice gas, a is the lattice
constant, and d is the space dimension.

Relationship (38) represents Zhdanov’s formula
[6, 18]. Thus, it can be suggested that this formula
ignores memory effects resulting from the collective

χ ij
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behavior of the particles. Therefore, it is important to
find out how accurately this relationship describes the
diffusion in lattice systems.

CORRELATION FACTORS

In investigations of the diffusion and electrical con-
ductivity in the lattice systems, various correlation fac-
tors are often introduced and relationships between
them are discussed. In particular, the Haven ratio fH

[21–23] is often identified with the self-diffusion corre-
lation factor f *. The expressions obtained for different
diffusion coefficients and the electrical conductivity
coefficient enable the relationship between correlation
factors of this sort to be unambiguously determined.

For the kinetic diffusion coefficient and the self-dif-
fusion coefficient D*, expressions of the Kubo–Green
type formulas can be written in terms of displacements
of the system particles [4, 5]:

(40)

(41)

where ∆ri determines the displacement of the ith parti-
cle in a time t.

Expression (40) differs from (41) by nondiagonal
terms, which are of a two-particle character, i.e.,
directly accounting for correlations between particles.
Let us introduce the many-particle correlation factor fm,
which also accounts for the correlations

(42)

The self-diffusion correlation factor [24] accounts
for an enhanced probability of the repeated exchange of
places between a given particle and a vacancy in the
course of particle migration by the vacancy mecha-
nism. This correlation factor can be determined from
the relationship

(43)

In the general case, there is no direct relationship
between f * and fm but for the Langmuir gas, it can be
shown that

(44)

The Haven ratios [21–23]

(45)

are determined from the relationship between the self-
diffusion coefficient and the particle mobility ξ that is
related to the electrical conductivity as

(46)
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Using relationship (29) between the diffusion and
electrical conductivity coefficients, we obtain

(47)

Therefore, the coefficient fH is directly related to the
many-particle correlation factor rather than to f *.

RESULTS OF THE CALCULATIONS 
AND MONTE CARLO SIMULATIONS

Relationships for the chemical potential and distri-
bution functions obtained using the self-consistent dia-
grammatical approximation (SDA) are only slightly
more involved than similar relationships in the quasi-

f H D*/Dk f m.= =
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Fig. 1. Dependence of the chemical potential on concentra-
tion. T/Tc: (a) 0.95 and (b) 1.05; (1) results of Monte Carlo
simulation, (2) SDA, (3) QCA, and (4) µ = –2J line.
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chemical approximation (QCA) and can easily be cal-
culated on a personal computer in minimal time.

To check the accuracy of the suggested approach, a
Monte Carlo simulation of the lattice systems was car-
ried out. The methodology of the simulation was
described in [25, 26].

In Fig. 1, the chemical potential isotherms are pre-
sented as functions of the particle density obtained
using different techniques for a system of particles in a
planar two-dimensional square lattice with the nearest-
neighbor attraction. This figure demonstrates that SDA,
as opposed to QCA, reproduces the data of Monte

0
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0.4 0.6 0.8 1.0
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Fig. 2. The distribution functions. (1–3) F(1, 1)/Θ2; (2, 4, 6)
F(1, 0)/Θ(1 – Θ); T/Tc: (1, 2) 0.95; (3, 4) 1.2; (5, 6) 2.0.

–4

0 0.2

log(Dk/D0)

Θ

–3

–2

–1

0

0.4 0.6 0.8 1.0

1 3

5

2

4

Fig. 3. Dependence of the kinetic diffusion coefficient on
concentration. T/Tc: (1) 0.95, (2) 1.05, (3) 1.20, (4) 2.00, and
(5) 6.00.
Carlo simulations with the same accuracy. It should be
emphasized that, to compare these data, normalized
temperatures T/Tc were used. For the Ising model, the
exact value of the critical temperature kBTc = 0.567J is
known [10, 11] (here a rounded-off value is given),
which should be compared with the value 0.565J
obtained using SDA and 0.721J by QCA. It is seen that,
in absolute temperature units, the QCA results in sub-
stantial errors.

According to the Maxwell rule, at T < Tc the inter-
section of the chemical potential isotherm with the hor-
izontal line µ = –2J determines the points of the lattice
gas–lattice liquid phase transition. The proposed
approximation reproduces the line of phase transition
to within 2–3%, while QCA gives a considerably more
narrow coexistence region of the two phases.

Figure 2 shows that SDA also reproduces the corre-
lation properties of the lattice gas described by the dis-
tribution functions with a high accuracy. In this figure,
ratios of the distribution functions to their values (ΘiΘj)
for the noninteracting gas are given that underline the
high accuracy of SDA, since the distribution functions
themselves are close to zero in the low concentration
range.

The dependence of the kinetic diffusion coefficient
on concentration along several isotherms is shown in
Fig. 3. The curves represent the results of calculations
using relationship (38), with SDA used for the calcula-
tion of thermodynamic characteristics. It can be stated
that Zhdanov’s relationship reproduces the results of
Monte Carlo simulations well in a wide range of ther-
modynamic parameter variation.

Attraction between the particles increases the depth
of the traps, which results in a considerable decrease in
the diffusion coefficient with increasing particle con-
centration. Since the model is based on the activation
mechanism of particle transfer, the temperature
decrease results in a decrease in the diffusion coeffi-
cient.

In the logarithmic scale in Fig. 3, small distinctions
between the data of Monte Carlo simulations and the
results of calculations using Zhdanov’s formula are not
evident. These distinctions are analyzed in Fig. 4,
which shows the ratios of the diffusion coefficient DZh
as calculated by (38) with the use of Monte Carlo com-
putations of the chemical potential and the distribution
function F(0,0) and the diffusion coefficient DKG,
which was also obtained from computer simulations,
but with the use of Eq. (40).

For systems with attraction (Fig. 4a), the error of
Eq. (38) does not exceed 20% even in the range of low
temperatures and high concentrations. In comparison
with the variation by 3–4 orders of magnitude of the
diffusion coefficient (Fig. 3), this error should be con-
sidered insignificant.

For systems with nearest neighbor repulsion
(Fig. 4b) in the existence range of the ordered 2 × 2
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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phase (T < Tc, Θ ≈ 0.5), the above ratio of the diffusion
coefficients can reach a few units, increasing with
decreasing temperatures. This means that, in this range,
relationship (38) cannot be used. Since Zhdanov’s
expression follows from the exact relationships for the
diffusion coefficient, neglecting the memory effects, it
can be stated that the role of these effects in the ordered
phase is essential.

CONCLUSION

From the general equation of the particle density
evolution written in the framework of the method of
nonequilibrium ensembles proposed by D.N. Zubarev,
rigorous expressions have been obtained for the coeffi-
cients of diffusion and electrical conductivity of lattice
systems, which take into account the effects of spatial
dispersion and memory. It has been found that, in the

0 0.2 0.4 0.6 0.8 1.0
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4

5
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1.1
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(a)

1

2
3

5

4

0.9

DZh /DKG

Fig. 4. Results of the simulations using Zhdanov’s formula
(DZh) and the Kubo–Green relationship (DKG) of the kinetic
diffusion coefficient of the lattice gas with attraction (a) and
repulsion (b) of the nearest neighbors. (a) T/Tc: (1) 0.95,
(2) 1.05, (3) 1.20, (4) 2.00, and (5) 6.00; (b) T/Tc: (1) 0.50,
(2) 0.80, (3) 1.20, (4) 2.00, and (5) 6.00.
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general case, the electrical conductivity coefficient is
proportional to the kinetic diffusion coefficient.

In the hydrodynamic limit (long wavelengths, low
frequencies) ignoring the memory effects, it has been
shown that, from the general expression for the diffu-
sion coefficient, Zhdanov’s relationship follows, which
expresses the diffusion coefficient using equilibrium
characteristics of the lattice system.

To calculate thermodynamic characteristics and dis-
tribution functions, the self-consistent diagrammatical
approximation has been proposed. It provides simple
expressions for the average potentials similar to those
of the quasi-chemical approximation, while, in contrast
to the latter, ensuring that the system with the nearest-
neighbor attraction has an accuracy of thermodynamic
calculations within the error of Monte Carlo simula-
tions. The use of equilibrium values obtained by SDA
in Zhdanov’s relationship makes it possible to repro-
duce with good accuracy the kinetic diffusion coeffi-
cient values obtained by computer simulations. It has
been shown that for a lattice gas with the nearest neigh-
bor interaction, the Zhdanov’s relationship reproduces
the kinetic diffusion coefficient well throughout the
range of thermodynamic variables, with the exception
of the region of the ordered phase of the system with
repulsion.

The relationship between the correlation factors of
the self-diffusion, many-particle, and Haven factors is
discussed.
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Abstract—The problem of calculating the heat flux between coaxial cylinders is considered. A procedure that
is analogous to the method of half-spatial moments is applied to solving the kinetic equation. The calculation
results for the Bhatnagar–Gross–Krook model (BGK) of the collision integral for the case of purely diffuse
reflection are presented. © 2000 MAIK “Nauka/Interperiodica”.
The description of gas properties for arbitrary
Knudsen numbers is one of the classic problems in the
kinetic theory of gases. A sufficiently complete review
of publications on this problem is given in [1, 2]. It
should be noted that most of the experimental data and
results of numerical solution are presented as a ratio in
comparison with the corresponding data from the gas-
dynamic solution. In the case of a rarefied gas, the
results being compared differ appreciably from each
other, which indicates that the range of intermediate
and large Knudsen numbers is far from being studied.
The analytical results known at present were obtained
using the Lees method [1]. The authors here confine
themselves to a consideration of only the simplest func-
tion, which does not give a correct description of the
distribution of the gas molecules as the distance from
the inner cylinder increases and does not allow one to
correctly formulate the boundary conditions at the sur-
face of the outer cylinder.

Thus, let us consider two coaxial cylinders of radii
R1 < R2 between which a constant temperature differ-
ence ∆T = T1 – T2 is maintained. The temperature dif-
ference is assumed to be small enough to linearize the
problem.

Let us introduce a cylindrical coordinate system
with the z-axis coinciding with the cylinder axis. The
gas state between the cylinders is described by the Boltz-
mann kinetic equations (see, for instance, [3]). Confin-
ing ourselves to the BGK model of the collision inte-
gral [4] and taking into account the linearity and axial
symmetry of the problem, let us write

(1)

Cr
∂Φ
∂r
-------

Cϕ
2

r
------ ∂Φ

∂Cr

---------+

=  ν δn
n0
------ C2 3/2–( )∆T

T0
------- 2CG Φ–+ + 

  .
1063-7842/00/4511- $20.00 © 1383
Here,

(2)

where Φ is a correction to the equilibrium distribution

function; C = V  is the nondimensional veloc-
ity of the gas molecules; λ is the mean free path length
of the gas molecules; κ is the thermal conductivity of
the gas; T0 and n0 are certain values of the gas temper-
ature and the concentration of the gas molecules,
respectively, that are assumed to be equilibrium values
that, without loss of generality, can be taken to be equal
to the temperature and the concentration of the mole-
cules reflected from the surface of the outer cylinder.

The correction sought for must satisfy the boundary
conditions for the interaction between the gas mole-
cules and the surfaces of both the inner and outer cylin-
ders. These boundary conditions, in the very general
form (see, for instance, [3]), can be written as follows:

(3)

where  and  are functions describing the velocity
distributions of the molecules incident on, and reflected
from, the surface of the corresponding cylinder and Ωk

is the integral operator governed by the character of the
gas–surface interaction.

In the conventional approach [1], the two-stream
distribution function is used, one stream being that of
molecules with velocity vectors inside the wedgelike

δn
n0
------ π 3/2– Φ C2–( )exp C,d∫=

δT
T0
------ π 3/2– Φ 2

3
---C2 1– 

  C2–( ) C,dexp∫=

G π 3/2– ΦC C2–( ) C,dexp∫=

ν π
3λ
-------

5n
κ
------

k2T0

8m
----------,= =

m/2kT0

Φk
r ΩkΦk

i at r Rk k 1 2,=( ),= =

Φk
i Φk

r
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area affected by the inner cylinder and the other stream
being that of molecules with velocity vectors outside
this area, so that the boundary condition at r = R1 can be
satisfied. To satisfy the boundary conditions at the sur-
face of the outer cylinder, let us distinguish the mole-
cules with positive and negative velocity projections
Cr; that is, represent and write the distribution function
sought for in the form

(4)

where

is the conventional Heaviside function.

The use of such a distribution function allows one to
write conditions (3) in the form

(5)

We shall seek function Φi in a form which is analo-
gous to the Chapman–Enskog distribution

(6)

Let us note that, in the conventional approach, only
the moments defining the temperature field and the
concentration of the gas molecules are considered. The
moments describing the heat and mass fluxes are not
taken into account, which prevents one (in the case R2 –
R1 @ λ) from obtaining the correct description of the
gas state within the gas-dynamic region, that is, at suf-
ficiently large distances from the cylinder surfaces in
comparison with the free path length.

Coefficients , which depend only on r, are deter-
mined from the solution of the moment equations. To
derive the moment equations, let us multiply kinetic
Eq. (1) with distribution functions (4), (6) successively
by exp(–C 2)Hj, C 2exp(–C 2)Hj, Crexp(–C 2)Hj, and
Cr(5/2 – C 2)exp(–C 2)Hj and integrate with regard to
the velocity. Introducing a new variable x = r/R1, we
obtain

Φ Φ1H1 Φ2H2 Φ3H3,+ +=

H1 H Cr Cp 1 R1
2/r2––( ),=

H2 H Cr( ) H1, H3– H Cr–( ),= =

Cp C2 Cz
2– , H x( )

1 at x 0>
0 at x 0<




= =

Φ1 Ω1Φ3 at r R1 and= =

Φ3 Ω2 Φ1H1 Φ2H2+( ) at r R2.= =

Φi a1
i a2

i 3/2 C2–( ) a3
i Cr a4

i Cr 5/2 C2–( ).+ + +=

a j
i

π
4x
------ d

dx
------ 2a1

1 a2
1–( ) π

2
------- φ γ

x
--+ 

  da3
1

dx
-------- π

2
------- φ γ

x
--– 

  a3
1

x
-----+ +

=  R1ν π 1

2x2
-------- φ2

π
----- φ–+ 

  a1
1 π

4x2
--------a2

1–




(7)

(8)

(9)

+ γ
x
-- 2φ π–+ 

  a3
1

2x
------ φ π–( )

a4
1

4x
------+

+
π

2
------- φ 2

π
---φ2– x 1–

x2
-----------+ 

  a1
2 π

4
-------x 1–

x2
-----------a2

2–

+ π
2x
------ φx 2–

x
----------- γ

x2
-----–+ 

  a3
2

2
----- φ

4
--- x 1–

x
-----------a4

2+

+
π

2
------- φ 1

x
---– 

  a1
3 π

4x
-------a2

3 π
4x
------ φ

2
---– 

  a3
3 φ

4
---a4

3–+ +




,

π
2x
------ d

dx
------ 2a1

1 3a2
1–( ) 5 π

4
---------- φ γ

x
--+ 

  d
dx
------ a3

1 a4
1–( )+

+
5 π

4
---------- φ γ

x
--– 

  a3
1 a4

1–
x

----------------

=  R1ν
π

2
------- 2

x2
----- 3φ2

π
-------- 3φ–+ 

  a1
1





–
π

2
------- 1

x2
----- 3φ3

π
-------- 3φ–+ 

  a2
1 γ

x
-- 3φ π–+ 

  a3
1

x
-----+

+
π φ–

2x
------------a4

1 π 3φ
4

------ 3φ2

2π
-------- x 1–

x2
-----------+– 

  a1
2+

– π 3φ
4

------ 3φ2

2π
--------– x 1–

2x2
-----------+ 

  a2
2

+ π
2x
------ γ

x
2

-----– φx 2–
x

-----------+ 
  a3

2 φ
2
--- x 1–

x
-----------a4

2–

+ π 3
4
---φ 1

x
---– 

  a1
3 π

4
------- 2

x
--- 3φ– 

  a2
3+

+ π
2x
------ φ– 

  a3
3 φ

2
---a4

3+




,

π
2

------- φ γ
x
--+ 

  d a1
1 a2

1–( )
dx

------------------------

+ π3x2 1–

8x3
-----------------

d 2a3
1 a4

1–( )
dx

--------------------------- π
2a3

1 a4
1–

8x4
-------------------+

=  R1ν
γ
x
-- 2φ π–+ 

  2a1
1 a2

1–
4x

-------------------




+
π

2
------- 2γφ

πx
--------- γ

x
--– φ– φ2

π
----- x2 1–

πx4
------------- 7

12x2
-----------+ + + 

  a3
1

–
πa4

1

48x2
------------ γ γ

x
--– φx 2φ– π

2
---+ + 

  2a1
2 a2

2–
4x

-------------------+
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(10)

(11)

+ π γ
4x
------ γφ

πx
------– φ

4
--- φ2

2π
------– x2 1–

2πx4
-------------– 7 x 1–( )

24x2
-------------------+ + 

  a3
2

– πx 1–

48x2
-----------a4

2 π
2x
------ γ

x
--– φ– 

  2a1
3 a2

3–
4

-------------------+

+ π γ
4x
------ φ

2
--- 7

24x
---------–+ 

  a3
3 a4

3 π
48x

------------+




,

5 π
4

---------- φ γ
x
--+ 

  da2
1

dx
-------- π3x2 1–

16x3
-----------------

d 2a3
1 13a4

1–( )
dx

----------------------------------–

– π
2a3

1 13a4
1–

16x4
------------------------- R1ν

φ π–
8x

------------ 2a1
1 7a2

1+( )




=

–
a3

1 π
48x2
------------

5 x
4

---------- 11

24x2
----------- γ

x
--– φ– 

  a4
1+

+
π 2φ–

16x
--------------- 2a1

2 7a2
2+( ) πx 1–

96x2
----------- 2a3

2 55a4
2–( )–

+ π
2a1

3 7a2
3+

16x
----------------------- π

2a3
3 55a4

3–
96x

-------------------------+




,

πx 1–
4x

----------- d
dx
------ 2a1

2 a2
2–( ) π

2
------- π

2
--- φ– γ

x
--– 

  da3
2

dx
--------+

+
π

2
------- π

2
--- φ– γ

x
--+ 

  a3
2

x
----- π

8x
------ 2a1

2 a2
2– 2a1

3– a2
3+( )+

=  R1ν
π

2
------- φ 2φ2

π
--------– x 1–

x2
-----------+ 

  a1
1 π x 1–( )

4x2
------------------------a2

1–




+ γ γ
x
--– π

2
--- φx 2φ–+ + 

  a3
1

2x
------ π 2φ–( )

a4
1

8x
------+

+
π

2
------- 2φ2

π
-------- π

2
---– x 1–( )2

x2
------------------+ 

  a1
2 π

4
------- x 1–( )2

x2
------------------a2

2–

– γ
2x
------ φ+ 

  x 1–
x

-----------a3
2 2φ π+( )x 1–

8x
-----------a4

2–

+
π

2
------- π

2
--- φ– 1– 1

x
---+ 

  a1
3 πx 1–

4x
-----------a3

2+

+
2φx π–

4x
------------------a3

3 2φ π–
8

---------------a4
3+




,
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(12)

(13)

πx 1–
2x

----------- d
dx
------ 2a1

2 3a2
2–( ) 5 π

4
---------- π

2
--- φ– γ

x
--– 

  d
dx
------ a3

2 a4
2–( )+

+
5 π

4
---------- π

2
--- φ– γ

x
--+ 

  a3
2 a4

2–
x

---------------- π
4x
------ 2a1

2 3a2
2–(+

– 2a1
3 3a2

3 )+ R1ν π 3φπ 2φ–
4π

--------------- x 1–

x2
-----------+ 

  a1
1





=

– π 3φπ 2φ–
4π

--------------- x 1–

2x2
-----------+ 

  a2
1

+ γ γ
x
--– π

2
--- φx 2φ–+ + 

  a3
1

x
----- 2φ π–( )

a4
1

4x
------+

+ π 3φ2

2π
-------- 3π

8
------– x 1–( )2

x2
------------------+ 

  a1
2

+ π 3π
8

------ x 1–( )2

2x2
------------------– 3φ2

2π
--------– 

  a2
2 γ

x
-- 2φ+ 

  x 1–
x

-----------a3
2–

+ 2φ π+( )x 1–
4x

-----------a4
2 π 3

8
--- π 2φ–( ) 1– 1

x
---+ 

  a1
3+

+ π 3
8
--- 2φ π–( ) x 1–

2x
-----------+ 

  a2
3

– π
2x
------ φ– 

  a3
3 φ

2
--- π

4
---– 

  a4
3–




,

π
2

------- π
2
--- φ– γ

x
--– 

  d a1
2 a2

2–( )
dx

------------------------ π
8
--- 2 3

x
---– 1

x3
-----+ 

 +

×
d 2a3

2 a4
2–( )

dx
--------------------------- πx3 1–

8x4
------------- 2a3

2 a4
2–( )+

=  R1ν xφ 2φ– π
2
--- γ

x
--–+ 

  2a1
1 a2

1–
4x

-------------------




+ π φ
4
--- φ2

2π
------– γφ

πx
------– γ

4x
------ x2 1–

2πx4
------------- 7 x 1–( )

24x2
-------------------+ + + 

  a3
1

– πx 1–

48x2
-----------a4

1 γ
2x
------ φ+ 

  x 1–
2x

----------- 2a1
2 a2

2–( )–

+ π γφ
πx
------ φ2

2π
------ π

8
---– x2 1–

2πx4
------------- 7 x 1–( )2

24x2
----------------------+ + + 

  a3
2

–
π

48x2
----------- x 1–( )2a4

2 γ
x
-- φ π

2x
------–+ 

  2a1
3 a2

3–
4

-------------------+

+ π π
8
--- γ

4x
------ φ

4
---– 7 x 1–( )

24x
-------------------–– 

  a3
3 πx 1–

48x
-----------a4

3+




,
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(14)

(15)

(16)

π5
4
--- π

2
--- φ– γ

x
--– 

  da2
2

dx
-------- π

16
------ 3

x
--- 2– 1

x3
-----– 

 +

×
d 2a3

2 13a4
2–( )

dx
---------------------------------- πx3 1–

16x4
------------- 2a3

2 13a4
2–( )–

=  R1ν φx 1–
8x

----------- 2a1
1 7a2

1+( 
  πx 1–

96x2
----------- 2a3

1 55a4
1–( )–





–
x 1–
16x
----------- 2φ π+( ) 2a1

2 7a2
2+( ) π x 1–( )2

48x2
------------------a3

2–

+ π5
4
--- γ

x
-- φ π

2
---– 11 x 1–( )2

24x2
-------------------------+ + 

  a4
2

+ πx 1–
16x
----------- 2a1

3 7a2
3+( ) πx 1–

96x
----------- 2a3

3 55a4
3–( )+





,

π
4
--- d

dx
------ a2

3 2a1
3–( ) π

8x
------ 2a1

2 a2
2– 2a1

3– a2
3+( )+

+
π3/2

4
--------

da3
3

dx
-------- π3/2

4x
--------a3

3+

=  R1ν πφx 1–
2x

---------------a1
1 π

4x
-------a2

1 π
2x
------ γ

x
--– φ– 

  a3
1

2
-----+ +





+
πa4

1

8x
-------- π π

2
--- φ– 1– 1

x
---+ 

  a1
2

2
----- πx 1–

4x
-----------a2

2+ +

+ φ π
2x
------ γ

x
--+– 

  a3
2

2
----- π

8
--- x 1–

x
-----------a4

2+

+ π2 π–
4

------------a1
3 π

a2
3

4
-----–

a4
3π
8

--------+




,+

π
2
--- d

dx
------ 3a2

3 2a1
3–( ) π

4x
------ 2a1

2 3a2
2– 2a1

3– 3a2
3+( )+

+
5π3/2

8
-----------

d a3
3 a4

3–( )
dx

------------------------ 5π3/2

8x
----------- a3

3 a4
3–( )+

= R1ν π3φx 4–
4x

------------------a1
1 π2 3φx–

4x
------------------a2

1 π
2x
------ γ

x
--– φ– 

  a3
1+ +





–
πa4

1

4x
-------- π 3π 6φ–

8
------------------- 1– 1

x
---+ 

  a1
2

+

+ π 6φ 3π–
8

------------------- x 1–
2x

-----------+ 
  a2

2 φ γ
x
-- π

2x
------–+ 

  a3
2+

–
π x 1–( )

4x
--------------------a4

2 π8 3π–
8

---------------a1
3 π3π 4–

8
---------------a2

3 a4
3π
4

--------–+ +




,

(17)

(18)

where φ = arcsinx–1 and γ = cosφ = .

Summing up Eqs. (7), (11), and (15), as well as (8),
(12), and (16), we obtain the mass and energy conser-
vation laws

respectively, which can be integrated in explicit form.
Here,

(19)

and

π3/2

4
-------- d

dx
------ a1
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d 2a3
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


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π

48x
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+ π πx 2φx– 2γ–
7
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8x
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48x
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24
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3 π
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



,

5π3/2

8
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3

dx
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8
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d 2a3
3 13a4

3–( )
dx

---------------------------------- π
16x
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3 13a4
3–( )+ +

=  R1ν
φ
8
--- 2a1

1 7a2
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π
96x
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1 55a4
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

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+
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16
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+
π
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3+




,
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d
dx
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d
dx
------Qx 0,= =
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2a1

1 a2
1–

4x π
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x
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1

2π
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x 1–

4 πx
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+ π
2
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x
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2
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4 π
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(20)

are the nondimensional mass and heat fluxes, respec-
tively. In a similar way, the summation of Eqs. (9), (13),
and (17) gives the momentum conservation law.

The solution of Eqs. (7)–(18) must satisfy condi-
tions (5). The suggested approach being proposed
allows one to use arbitrary forms of the reflection law
(see, for instance, [5]). For a concrete numerical analy-
sis, let us confine ourselves to a model of purely diffuse
reflection; that is, we shall assume a Maxwellian distri-
bution for the molecules reflected from the surfaces of
each of the cylinders according to the Maxwell distri-
bution function corresponding to their surface charac-
teristics. Assuming that the distribution function for the
molecules reflected from the outer cylinder is at equi-
librium, we write

(21)

Comparing (21) with (6), we obtain

(22)

and

(23)

In this case, the concentration difference ∆n = n1 –
n2 of the gas molecules should be determined from the
conditions of zero mass flux between the cylinders
(J = 0). Therefore, instead of the first conditions in
(22), it is necessary to use the equality

(24)

following from (19) at x = 1.
Moreover, it is necessary to take into account that

the set of moment equations has a singularity at the sur-
face of the inner cylinder, conditioned by the region due
to the collapse of an area in the velocity space, which
corresponds to function Φ2. Expanding the sought for
solution into a series in powers of ξ = x – 1 and allowing
for the requirement that the distribution function should
be finite, we obtain four more conditions:

(25)

=  
2a1

1 32
1–

2x π
------------------- 5

4π
------ γ

x
-- φ+ 

  a3
1 a4

1–( )+

+
x 1–

2 πx
-------------- 2a1

2 3a2
2–( ) 5

4π
------ π

2
--- γ

x
--– φ– 

  a3
2 a4

2–( )+

–
2a1

3 3a2
3–

2 π
----------------------

5
8
--- a3

2 a4
2–( )+

Φ1
∆n
n2
------- C2 3

2
---– 

  ∆T
T2
------- at x+ 1 and= =

Φ3 0 at x
R2

R1
-----.= =

a1
1 ∆n

n2
-------, a2

1 ∆T
T2
-------, a3

1–  = a4
1 = 0 at x = 1= =

a1
3 a2

3 a3
3 a4

3 0 at x R2/R1.= = = = =

2a1
1 a2

1– 2a1
3– a2

3 πa3
3+ + 0=

A1 A2 A3 A4 0 at x 1.= = = = =
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Here, A1, 2 = (x – 1)  and A3, 4 = (π/2 – φx – γ/x) .

Thus, the boundary conditions are determined by
the distribution functions of the molecules reflected
from the surfaces of the inner and outer cylinders, i.e.,
by the values of Φ1 at r = R1 and Φ3 at r = R2, respec-
tively, as well as by the requirement that function Φ2 be
finite at r = R2.

The results of numerical solution of the set of equa-
tions (7)–(18) under conditions (22)–(25) may be rep-
resented in the form

(26)

Parameter α describes the difference of the heat flux
from that obtained in the gas-dynamic solution. Figu-
res 1–3 show the variation of this parameter with
changing ratio of the radii of the cylinders, as well as
with the degree of gas rarefaction.

It should be noted that the linear character of the
dependence of α on the ratio R1/R2 is observed in Fig. 1
when the distance between the cylinders is much
greater than the mean path length of the gas molecules,
i.e., at (R2 – R1) @ 1. In this case, expression (26) can
be written in the form

(27)

where α* = .

The variation of α* with R1ν is approximated by the
expression

to an accuracy of up to 0.3%.

a1 2,
2 a3 4,

2

Q
∆T
T2
-------

R1

r
----- 4

5
---R1ν R2/R1( )ln α+ 

 
1–

.=

Q
∆T
T2
-------

R1

r
----- 4

5
---R1ν R2/R1( )ln α* 1 R1/R2+( )+ 

 
1–

,=

α
R2 ∞→
lim

α*
π 2.4624 R1ν( )0.9+

1 2.3474 R1ν( )0.9+
--------------------------------------------------=

0.2 0.4 0.6 0.8 1.0
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1.2

1.4

1.6

1.8
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α
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1
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9
8

7

Fig. 1. Variation of parameter α with ratio R1/R2 at various
R1ν: (1) 0.01, (2) 0.1, (3) 0.2, (4) 0.5, (5) 1, (6) 2, (7) 5,
(8) 10, and (9) 100.
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It is obvious that the plot of function α*(R1ν) prac-
tically coincides with curves 1 (R1/R2 = 0.01) in Figs. 2
and 3.

The consideration of cylinders of relatively large
radii, when R1ν @ 1 and (R2 – R1)ν @ 1, is of particular
interest. In this case, α* ceases to depend on the degree
of gas rarefaction and tends to the value

(28)

On the other hand, the set of moment equations per-
mits an analytical solution in the limit considered, and
the heat flux, to an accuracy up to the terms which are
linear in the Knudsen number (Kni = λ/Ri), can be pre-
sented in the form

(29)

where Ct is the temperature change ramp coefficient.

Comparing (27) and (29) with allowance for (28)
and the definition of ν in (2), we find

which differs by less than 1% from Ct = 2.2049, which
was the value obtained by a numerical method in
paper [6].

Note also the case R2/R1  1, when, in the velocity
space, the region determining the contribution of the
function Φ2 is absent. As is seen from the plots pre-
sented, the value of parameter α in the regime consid-
ered varies from 2α∞ = 2.0978 at (R2 – R1)ν @ 1, which

α∞ 1.0489.=

q n 2k3T3/m( )1/2
Q=

=  
κ
r
---∆T R2/R1( )ln Ct Kn1 Kn2+( )+( ) 1– ,

Ct

5α∞

4νλ
---------- 2.2193,= =

–3 –2 –1 0 1 2 3 ln R1ν

1.0

1.2

2.0

1.8

1.6

1.4

α

10

9

8

7

6
5

4

3

2
1

Fig. 2. Variation of parameter α with R1ν at various ratios
R1/R2: (1) 0.01. (2) 0.1, (3) 0.2, (4) 0.3, (5) 0.4, (6) 0.5,
(7) 0.6, (8) 0.7, (9) 0.8, and (10) 0.9.
corresponds to expression (29), to  at (R2 – R1)ν ! 1.
This is explained by the fact that the gas molecules
travel the distance between the cylinders practically
without collisions. Consequently, the function Φ3
remains equal to zero throughout the gas volume.
Therefore, as is seen from conditions (22) and (24) and
relation (20),

A similar situation also takes place at R1ν ! 1. In
this case, one can neglect the influence of the inner
cylinder and assume that the distribution function
coincides with the distribution of the molecules
reflected from the surface of the outer cylinder. The dif-
ference between functions Φ3 and Φ2 thus vanishes

(i.e.,  =  = 0) and parameter α is equal to .

The conventional Lees method leads to an analo-
gous relation

(30)

where the part of the parameter corresponding to α is

assigned to , which is independent of the system
characteristics.

The coincidence of expressions (26) and (30) takes
place only in a collisionless regime when the radius of
the inner cylinder or the distance between the cylinders
is negligible in comparison with the free path length of
the gas molecules. It has been shown that in these cases,
the heat flux is exclusively governed by the conserva-
tion laws and the problem can be solved by simple
qualitative reasoning.

π

2a1
1 a2

1 ∆T
T2
-------, Q–

∆T
T2
-------

R1

r
----- 1

π
-------.= = =

ai
2 ai

3 π

Qs
∆T
T2
-------

R1

r
----- 4

5
---R1ν R2/R1( )ln π+ 

 
1–

,=

π

0.2 0.4 0.6 0.8 R1/R2

1.4

1.6

1.8

1.2

2
4

6
8

R1ν

α

Fig. 3. The total profile of parameter α vs. the ratio between
the radii of the cylinders and the degree of gas rarefaction.
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The formal coincidence of the results is also
observed in the gas-dynamic regime. However, in this
case, the conventional Lees method gives a correction
to the gas-dynamic solution that does not depend on the
ratio of the cylinder radii and, in the limiting case when
R2 @ R1, corresponds to the greatly overvalued temper-
ature change coefficient Ct = 3.75.

In an intermediate range of the ratio between the
radii of the cylinders and the free path length of the gas
molecules, parameter α varies in quite a wide interval,
changing almost twofold. The value of α turns out to be
close to the conventional one at the ratio R1/R2, which
is about 0.7. In the case of R2 > 1.5R1, the conventional
Lees method underestimates the heat flux. The maxi-
mum difference between Q and Qs reaches 15% in the
range R1ν ~ 1 at R2 ~ 10R1. When the gap between the
cylinders is less than 0.5R1, the conventional method
gives an overvalued result. In that case, the maximum
difference between Q an Qs reaches 10% in the region
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
of the maxima of the curves in Fig. 1; i.e., at R1ν @ 1
and R2 it changes from approximately 1.1R1 to 1.2R1.
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Abstract—A layer of a viscoelastic liquid was found to exhibit two types of instabilities, aperiodic and vibra-
tional, when its free surface was subjected to an external force. For the aperiodic instability, the critical condi-
tion and increment value were derived analytically. If the angle between the force direction and external normal
to the free surface of the liquid is smaller than 45 degrees, only the vibrational instability sets up in the system;
if the angle is larger, the aperiodic one alone is observed. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that, when a very viscous medium is sub-
jected to an external force that generates both normal and
tangential stresses, a wavy relief forms on the its initially
planar surface. Such effects take place during percussion
(explosion) welding or when a silicon solid surface is
irradiated by a high-energy atomic beam (see [1, 2] and
refs. therein). There are still no appropriate theoretical
explanations of these experimental data; therefore, the
problem stated below is of interest.

(1) Consider a plane liquid film with a density ρ,
kinematic viscosity ν0, viscosity relaxation time τ, and
thickness d on a solid substrate. The system is under the
gravity field g. Let the momentum flux of a material
beam falling at an angle to the normal to the film exert
a constant force action on the film surface. The spec-
trum of capillary motions in the liquid layer is to be
determined.

Let Πjk = δVjVk be the momentum flux density ten-
sor of the external force in a domain over the liquid sur-
face (Vj are the beam velocity components, and δ is the
beam density) [3]. For the sake of simplicity, we will
solve the two-dimensional problem in the Cartesian
coordinate system XOZ with the OZ-axis directed ver-
1063-7842/00/4511- $20.00 © 21390
tically up (nz || –g). The equations for the perturbed and
unperturbed free surfaces of the liquid have the form
z = ξ(x, t) and z = 0, respectively, and the solid bottom
is situated at z = –d. The matter flux into the liquid is
neglected. In the small-amplitude-wave approximation,
the full mathematical statement of the problem is given by

(1)

(2)

(3)

(4)

∂U
∂t
------- — U×[ ]+ U× 1

ρ
--- P

U2

2
------+ 

 – ν∆U g,+ +=

divU 0,=

z ξ : 
∂ξ
∂t
------ Uz Ux

∂ξ
∂x
------,–= =

σ jknk* Π jknk+ Pγn j,=

Pγ γ∂2ξ
∂x2
--------, n j–

∂ξ
∂x
------–

1

, n j*
∂ξ
∂x
------

1–

= = = ,

Π jk
δV x

2 δV xVz

δV xVz δVz
2

= ,
σ jk

ρUx
2 P 2ρν

∂Ux

∂x
---------–+ ρUxUz ρν

∂Ux

∂z
---------

∂Uz

∂x
---------+ 

 –

ρUxUz ρν
∂Ux

∂z
---------

∂Uz

∂x
---------+ 

 – ρUz
2 P 2ρν

∂Uz

∂z
---------–+

,=
(5)

(6)

(7)

z d: U– 0,= =

ξ ξ 0 st ikx–( ),exp=

ν
ν0

1 sτ+
--------------,=
where

Pγ γ∂2ξ
∂x2
--------–=
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is the Laplacian pressure under the perturbed free sur-
face of the liquid [3, 4], γ is the surface tension coeffi-
cient, nj is the column of the outer normal coordinates,
and  is the column vector of the inner normal. The
square matrices Πjk and σjk contain the components of
the momentum flux density tensor over and under the
perturbed surface [3], respectively. Let a perturbation
of the initially planar surface be traveling wave (6) with
the wave number k = 2π/λ and complex frequency s. As
in [5], we assume that the viscosity ν depends on fre-
quency according to Maxwell’s formula (7).

(2) Problem (1)–(7) will be solved by expanding in
the small amplitude ξ0 of the wave perturbation. We
assume that, for a given force, the velocity field in the
liquid has only the horizontal component in the zero-
order approximation and both the horizontal and verti-
cal components in higher order approximations. Under
this assumption, by applying the standard linearization
procedure to (1)–(5), we obtain the problems of the
zero- and first-order approximations with respect to ξ0.

To find the zero-order approximation for the station-
ary component p = p0(z) of the pressure inside the liquid
and for the horizontal component u0 = u0(z) of the
velocity, we have to solve the problem given by

The solution is easily obtained as

(8)

(9)

The additions of the first order of smallness to the
pressure p = p(x, z, t) and velocity field u = uxnx + uznz,
where ux = ux(x, z, t) and uz = uz(x, z, t), are given by the
equations

n j*

d
dz
-----

p0

ρ
----- gz+ 

  0,
d2u0

dz2
---------- 0,= =

z 0: δV xVz– ρν
du0

dz
--------– 0,= =

δVz
2– p0+ 0,=

z d: u0– 0.= =

u0 U0 1 z
d
---+ 

  , U0

δV xVz

ρν
---------------d ,–= =

P ρgz– δVz
2.+=

∂u
∂t
------  +  — u 0 n x ×[ ] u — u ×[ ] u 0 n x × + × 

=  

 

—

 

p

 

ρ

 

---

 

u

 

0

 

u
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 
 
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ν∆
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,+

div u( ) 0,=

z 0: uz
∂ξ
∂t
------ u0

∂ξ
∂x
------,+= =

∂ξ
∂x
------ δV x

2 δVz
2–( ) ρu0

∂ξ
∂t
------+ ρν

∂ux

∂z
--------

∂uz

∂x
--------+ 

  ,=
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With the Helmholtz theorem on the decomposition
of an arbitrary vector field into the potential and rota-
tional components, the first-order problem can be for-
mulated in the scalar form

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

The solution to (10)–(19) is sought in the form

(20)

(21)

It immediately follows from Laplace equation (14)
that

(22)

p ρgξ 2ρν
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It is shown in Appendix A that Eq. (15) can be trans-
formed to the following system of two ordinary differ-
ential equations for the unknown function Λ(z):

(23)

(3) The problem under study becomes simpler if the
speed u0 of the stationary flow along the horizontal axis
is much smaller than, or comparable to, that of liquid
wave motions. According to (8), the related condition
can be written as follows:

or

(24)

where β is the angle between the external force direc-
tion and the normal to the free surface. We will seek
solutions to (10)–(19) that satisfy condition (24). This
means that the terms either containing ϕ, ψ, ξ, p, and u
or proportional to u0 or du0/dz can be omitted in all the
equations and boundary conditions, because they have
orders of smallness higher than one. Then, condition
(13) takes the integrable form

It follows from the second equation of system (23)
that the function F(z) has the first order of smallness
with respect to ξ0. Therefore, the action of the part of
the operator proportional to U0 in the first equation in
(23) on F(z) results in a term of the second order of
smallness. Thus, (23) transforms to a system of second-
order differential equations with constant coefficients:

(25)

The general solution of (25) is considered in Appen-
dix B. It is also shown there that, in view of (22) and
(11), the integration constants in the general expres-
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q2 k2 s

ν
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-----.= =
sions for ϕ and ψ may be redefined so that the scalar
problem for the first-order terms takes the form

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(4) It is easy to transform (26)–(32) to the following
system of four homogeneous linear equations for con-
stants a, b, A, and B:

This system has a unique solution only if the deter-
minant of the matrix containing the coefficients multi-
plying the unknown variables equals zero. This condi-
tion specifies the dispersion equation for the problem
subject to approximation (24). Introducing dimension-
less variables by setting ρ = γ = g = 1 and taking the fol-
lowing characteristic scales for k, s, ν, and d,

ϕ A kz( )cosh B kz( )sinh+( ) st ikx–( ),exp=

ψ a qz( )cosh b qz( )sinh+( ) st ikx–( ),exp=

p ρ∂ϕ
∂t
------,–=

z 0: ∂ϕ
∂z
------ ∂ψ

∂x
-------+

∂ξ
∂t
------,= =

∂ξ
∂x
------W ρν 2

∂2ϕ
∂x∂z
----------- ∂2ψ

∂x2
--------- ∂2ψ

∂z2
---------–+ 

  ,=

W δ Vx
2 Vz

2–( ),≡

p ρgξ– 2ρν ∂2ϕ
∂z2
--------- ∂2ψ

∂x∂z
-----------+ 

 – γ∂2ξ
∂x2
--------,–=

z d: ∂ϕ
∂x
------ ∂ψ

∂z
-------–– 0,= =

∂ϕ
∂z
------ ∂ψ

∂x
-------+ 0.=

sν k2 q2+( )A ω0
2B iω0

2a– i2νkqb–+ 0,=

ik2 2ρνs W–( )B ρνs k2 q2+( ) k2W–( )a+ 0,=

ik kd( )A ik kd( )Bsinh+cosh–

+ q qd( )a q qd( )bcosh–sinh 0,=

kd( )sinh– A kd( )Bcosh+

– i qd( )a i qd( )bsinh+cosh 0.=

k* ρg/γ, s* ρg3/γ4≡ , ν0*≡ γ3/ gρ3( )4 ,=

d* γ/ρg, τ γ/ρg34 ,= =

k2q 4s k2 q2+( ) 3k q+( )W
ν
-----– 

 

+
sω0

2

ν2
-------- k kd( ) qd( )sinhcosh q kd( ) qd( )coshsinh–( )
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we obtain the dispersion equation in the form

(33)

The function ω0 represents the frequency of gravita-
tional capillary waves for an infinitely thick layer of
perfect liquid. The dimensionless parameter W depends
on the dimensionless momentum flux density in the
beam and angle of incidence β.

(5) Consider an inelastic medium with τ = 0. The
general solutions to the dispersion equation are shown
in Fig. 1, where the real and imaginary parts of the fre-
quency s are plotted as functions of the dimensionless
parameter W for k = 1, kd = 1, and ν = 0.5.

The most interesting curves (1–3) of Eq. (33) have
common branching point. The coordinates of this point
are s ≈ –1.2 and W ≈ –0.8. Curve 2, associated with cap-
illary wave motions, goes to the left of the branching
point, i.e., to the domain of negative W values. The
wave frequency increases as W decreases. Two curves
of aperiodic motion go to the right of the branching
point: curve 1 increases with W, and curve 3 decreases
as W grows. Curve 3 and the part of curve 1 where
Res < 0 describe exponentially damped motions. At
W ≈ 1.6, curve 1 enters into the domain where Res > 0,
i.e., where the motion is unstable.

Also shown in Fig. 1 are curve 4 of wave motions
and curves 5–8, which describe aperiodically damped
motions. The extension of the domain of calculation
with respect to the magnitude of s revealed other real
curves that are similar to curves 5–8 and lie below
them. It was also shown that Eq. (33) has an infinite
number of aperiodically damped solutions related to
the reflection of the moving liquid from the bottom (for
details, see [6]). Curve 4 of wave motions appears as a
result of interaction between curves 3 and 5. It is inter-
esting that the frequency of wave motion 4 increases
with W.

In analysis which follows, we will consider the first
three solutions of the dispersion equation, which
emerge from the branching point (1–3). This point is a
starting point of unstable curves. The curves with num-
bers larger than 3 are not of interest (when τ = 0) for
studying free surface stability and are discarded. The
viscosity dependence of the increment of the aperiodic
instability associated with curve 1 is shown in Fig. 2.

– 2k3q 2s
W
ν
-----– 

  k kd( ) qd( )coshcosh(

– q kd( ) qd( )sinhsinh ) k2 q2+( ) s k2 q2+( ) k2W
ν
-----– 

 +

× k kd( )sinh dq( )sinh q kd( )cosh qd( )cosh–( ) 0,=

ω0
2 k 1 k2+( ), ν

ν0

1 sτ+
--------------,≡≡

W δ/ρ( ) ρ/ gγ( ) Vx
2 Vz

2–( )≡

≡ δ/ρ( ) ρ/ gγ( )V2 2β( ).cos–
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For larger wave numbers, the patterns are qualita-
tively similar but both the branching point (1–3) and the
critical value of W ≡ Wc at which instability occurs shift
to the right. For example, at k = 10, the branching point
coordinates are s ≈ –1.4 and W ≈ –0.7 and the critical W
value increases to Wc ≈ 8.2. The instability increment is
shown in Fig. 3 as a function of W for k = 10 and vari-
ous viscosity values.

(a) According to [4], the highly viscous liquid
approximation is defined by the condition

(34)

It is clear that condition (24) remains valid in this
case. Moreover, it follows from [4] that inequality |s|2 >

 holds when the viscosity is high, so that (24) trans-

α  ! 1, α s

νk2
--------.≡

ω0
2

3
5

2

6

7

8

2

2

4

4

4

1
0

–40

–80

4

45 60

–30

Res

2

Ims

–2

–4

0 15 45 W

W

Fig. 1. Real and imaginary parts of the complex frequency s
as functions of W for k = 1, ν = 0.5, kd = 1, and τ = 0.
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forms to the strict inequality

(35)

where Uk is the phase velocity of a gravitational capil-
lary wave. It can be shown that a nontrivial asymptotic
approximation of the dispersion equation at α  0
can be obtained by expanding the functions involved in
(33) in integral powers of α and omitting the terms of
order O(α4) or higher. The result is the approximate dis-
persion equation for a high-viscosity liquid,

(36)

which is valid only for small values of the variable kd.

This quadratic equation has an instability-related
root with a positive real part only if

(37)

This formula represents the critical condition for
instability occurrence. When (37) holds, the positive
root of (36), which defines the instability increment,
satisfies condition (34) and has the form

(38)

δ
ρ
---V2 2β( )sin

2Uk
2

----------------------------kd α 1, Uk<
ω0

2

k2
------,=

ω0
2 k 1 k2+( ),=

ηs2 κs µ k2 kd( )2W–( )+ + 0,=

η kd( )2 kd( ) kd( )kd   –  kd ( ) cosh 
2

 ,coshsinh+  ≡

κ

 

2

 

ν

 

k

 

2

 

kd

 

( )

 

cosh

 

2
  –  kd ( ) 

2 ( ) , ≡

µ ω

 

0
2

 

kd

 

( )

 

kd

 

( )

 

coshsinh

 

kd

 

–

 

( )

 

,

 

≡

W k
1
k
---+ 

  kd( ) kd( )coshsinh

kd( )2
--------------------------------------------- 1

kd
------– 

  .>

s
1

2η
------ κ2 4η µ k2 kd( )2W–( )– κ–( ).=

1

2

3
4

0 1.5 1.9 2.3 W

0.4

0.8

Res

Fig. 2. Real part of the complex frequency (increment of
aperiodic instability) as a function of W in the domain
Res > 0 for k = 1, kd = 1, τ = 0, and ν = (1) 0.01, (2) 0.1,
(3) 1, and (4) 10.
 

When the condition

(39)

is valid, 

 

|α|

 

 < 1 and (38) adequately describes at least
one solution to (33); this solution represents the aperi-
odic instability increment if condition (37) holds or the
aperiodic damping decrement otherwise.

The aforesaid is illustrated in Fig. 4, where curve 

 

1

 

has the same meaning as before, while curve 

 

1a

 

 was
calculated from (38). The vertical dashed lines separate
out the domain of 

 

W

 

 values that satisfy (39). Here,
curve 

 

1a

 

 approximates curve 

 

1

 

 of dispersion Eq. (33)
well. The accuracy of this approximation improves as
the domain shrinks to the threshold value 

 

W

 

 = 

 

W

 

c

 

,
which is the point of tangency of curves

 

 1 

 

and 

 

1a

 

. It is
seen that  W

 c   does not depend on viscosity.

Note that the above reasoning is valid only for a thin
liquid layer, because the expansion of Eq. (33) in pow-
ers of a small parameter implies the power series expan-
sion of the hyperbolic functions whose argument 

 

kd

 

O(

 

α

 

)
has the first order of smallness with respect to 

 

α

 

.
It follows from (37) that a wave with 

 

k

 

 = 1 is the
most unstable and the critical 

 

W

 

 value for it is

(40)

The critical 

 

W

 

 values are positive due to 

 

kd

 

 > 0,
which takes place only if the angle of incidence is
greater than 

 

π

 

/4.
(b) Consider the approximation of a very thin highly

viscous layer without taking into account the disjoining
pressure [7]. With possible fluctuation forces neglected,

4µη κ2–
4η

---------------------- k kd( )2W µ νk2 κ ηνk2+( ),+<<

kd 10<

Wc 2 kd( )sinh kd( )cosh

kd( )2
--------------------------------------------- 1

kd
------– 

     k 1=( ).=

3
4

2

1

~ ~

Res

10

5

1.5 1.9 2.30 W

Fig. 3. The same as in Fig. 2 for k = 10.
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expressions (37) and (40) take the following forms in
the limit of small kd:

(41)

(42)

When kd  0, Wc tends to zero on the side of pos-
itive values and the critical angle of incidence tends to
π/4 on the side of larger angles.

To conclude this section, we note that, physically,
the aperiodic instability may arise when the energy of
tangential stresses on the free surface of the layer is
transferred to that of normal stresses.

(6) Let us return to the viscoelastic liquid. Curves
similar to those given in Fig. 1 but calculated for the
nonzero viscosity relaxation time are shown in Figs. 5
and 6. The curves that are not associated with the
branching points (1–3) and (3–5) from Fig. 1 change
slightly. For this reason, they are not shown in Figs. 5
and 6, and the scale is chosen in such a way as to make
clearer the behavior of curves 1–5 and new curves 6–8.
The latter are related to liquid elasticity and have noth-
ing in common with the identically numbered curves in
Fig. 1.

Comparing Fig. 1 with Figs. 5 and 6, we can con-
clude that, if the liquid is elastic, the branching points
(1–3) and (3–5) merge together, curve 3 disappears, and
a single branching point (1–2–4–5) arises. Curves 1 and
2 change only slightly. In particular, the condition for
aperiodic instability (see the previous section) does not
change when τ ≠ 0 (elastic liquid).

W 2/3( )kd k 1/k+( ), kd  ! 1( ),>

Wc 4/3( )kd kd  ! 1 k 1=,( ).=

W420

0.5

1.0

–0.5

1a

1

1

1a

Res

Fig. 4. Real parts of the solutions to (1) full dispersion
Eq. (33) and (1a) asymptotic dispersion Eq. (36) for aperi-
odic instability at k = 1, kd = 1, and ν = 0.5.
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As τ increases, the curves forming the branching
point (1–2–4–5) are rearranged so that curves 1 and 5,
associated with aperiodic motions, join. For designa-
tions to be consistent, the unstable part of the resulted
curve (Res > 0) is marked by number 1 in Fig. 6 and the
stable one (Res < 0), by number 5.

Figures 5 and 6 depict the same curves as in Fig. 1
but for W < 0 at τ = 0.1 and 0.4, respectively. It follows
from the calculations that, as the dimensionless relax-
ation time increases to τ = 0.3, the maximum of the real
part of curve 2 in Fig. 5 shifts up to the right and
touches the horizontal axis. When τ = 0.4, the hump
enters into the domain Res > 0 and shifts still further to
the right as shown in Fig. 6. At τ > 0.3, there is a set
(segment) of negative W values at which high-fre-
quency vibrational instability occurs. Nearly at its cen-
ter, the instability increment peaks. The segment
appears when τ > 0.3 and covers the value W ≈ – 40. For

1
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–50–150
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8
7
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2
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Ims
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6
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2 4

4
8

2
–50–150

8

W

8
7

6

Fig. 5. Real and imaginary parts of the complex frequency
as functions of W for k = 1, ν = 0.5, kd = 1, and τ = 0.1.
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greater τ’s, the center shifts to the right and the segment
extends: at τ = 0.4, its width is ∆W ≈ 20 and its center
is at W ≈ –30. We believe that this instability is due to
capillary waves excited by the elastic waves. When τ
and the wave number k grow, the right border of the
vibrational instability domain tends to W = 0.

A similar analysis can be performed for the evolu-
tion of curves 6 and 7. These curves have the same
properties as curve 2. However, related instabilities
exist at negative W values much larger in magnitude; at
the same time, they are observed at smaller relaxation
times τ. In addition, these curves are associated with
viscoelastic wave motions, rather than with capillary
ones.

It seems likely that the shift of the W range, associ-
ated with the vibrational instability, toward negative
values at large viscosity relaxation times is caused by
passing alternating stability and vibrational instability
domains. The capillary waves are unstable in the insta-
bility domain nearest to the point W = 0; the viscoelas-

8
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7

7

2

8

5

–200 –100 0

1

W

–1

–2

Res
6

W

8

8

2

2

2
8

8
2

6

6

7

7

–150 –50

10

20

–10

Ims

Fig. 6. The same as in Fig. 5 for τ = 0.4.
tic waves, in the others. At small relaxation times, only
the latter are unstable.

Numerical calculations with W > 0 revealed only the
instability discussed in the previous section. The criti-
cal condition for its occurrence remained unchanged at
nonzero τ values, while the increment increased with τ
(for details, see [8]).

It is interesting that, in contrast to other capillary
instabilities of the liquid free surface, such as the
Tonks–Frenkel, Kelvin–Helmholtz, and Rayleigh–Tay-
lor instabilities [9–12], both instabilities observed are
generated by the tangent, rather than by normal, com-
ponent of the dynamic boundary condition.

A possible physical reason for vibrational instability
is the mutual exciting of capillary and relaxation waves
in the presence of external energy.

CONCLUSIONS

Forces acting constantly on the free surface of a vis-
coelastic liquid may result in both vibrational and ape-
riodic instabilities. The vibrational instability occurs
only if the liquid is elastic and the double angle
between the force direction and external normal to the
free surface is smaller than 90°. The condition for ape-
riodic instability does not depend on the elasticity prop-
erties of the liquid. It takes place only when the tangent
(to the free surface) component of the momentum flux
density exceeds the normal one.

APPENDIX A

Derivation of the Equation for the Stream Function

If the solution to Eq. (13) is sought for in traveling
wave form (21), we can write

Hence,

where Λ(z) is the amplitude of the stream function.
Substituting the last two expressions into Eq. (16) and

∂ψ
∂x
------- ikψ,

∂ψ
∂t
-------– sψ,= =

∆ψ D2 k2–( )Λ z( )( ) st ikx–( ),exp=

∂ψ
∂t
------- ν∆ψ– = ν D2 k2 s/ν+( )–( )Λ z( )( ) st ikx–( ),exp–

D2 d2

dz2
-------.≡

∆ ∂ψ
∂t
------- ν∆ψ– 

 

=  ν D2 k2–( ) D2 k2 s/ν+( )–( )Λ z( )( ) st ikx–( ),exp–

u0∆
∂ψ
∂x
------- 

  iku0 D2 k2–( )Λ z( )( ) st ikx–( ),exp–=
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omitting the preexponential, one obtains the ordinary
differential equation for Λ(z)

Since the differential operators (D2 – k2) and (D2 – (k2 +
s/ν)) are commutative, this equation can be written as

Taking (D2 – k2)Λ(z) as a new function and using the
definition of u0, we can write the last equation in the
form of the system

Separating out the differential operator acting on
F(z) in the left of the first equation of this system, one
comes to system (23).

APPENDIX B

Derivation of the Velocity Field Potential 
and the Stream Function

(1) General expression for the stream function in
(24). In approximation (24), the amplitude value Λ(z)
of the stream function in the form (21) satisfies system
(25), in which the first equation has the solution

Then, the second equation transforms into the inho-
mogeneous problem

(B.1)

Excluding the case s = 0 (k = q), we will arrive at the
following particular solution to (B.1):

If L and M are taken as new integration constants,
the general solution of (B.1) equals the sum of the par-
ticular solution found and the general solution of the
related homogeneous equation:

ν D2 k2–( )– D2 k2 s/ν+( )–( )Λ iku0 D2 k2–( )Λ( )–  = 0,

u0

U0

ν
------ 1 z

d
---+ 

  .=

D2 k2 s/ν+( )–( ) D2 k2–( )Λ z( )

– ik
u0

ν
----- D2 k2–( )Λ z( ) 0.=

D2 q2–( )F z( ) i
U0

ν
------ 1 z

d
---+ 

  F z( )– 0,=

q2 k2 s
ν
---,+=

D2 k2–( )Λ z( ) F z( ).=

F C qz( )exp G qz–( ); C G  are constants.,exp+=

D2 k2–( )Λ C qz( )exp G qz–( ).exp+=

Λ̃ C qz( )exp

q2 k2–
------------------------

G qz( )exp

q2 k2–
------------------------+=

=  L qz( ) M qz–( ).exp+exp

Λ L qz( )exp M qz–( )exp+=

+ η kz( )exp χ kz–( ).exp+
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Redefining the constants and using (21), we can
write the general solution for ψ in terms of hyperbolic
functions:

(B.2)

Note the following properties of ψ2:

(B.3)

(B.4)

(2) Redefining the potential and the stream function.
In view of (B.2) and (B.3), (11) takes the form

(B.5)

Property (B.5) of the initial potential ϕ, which
served to scalarize the equations and boundary condi-
tions of the problem, is also valid for the new function Φ.
There is no need to perform this procedure again using
the new function Φ, since only the name of the potential
would change. Therefore, we will keep the same sym-
bol ϕ for the potential and, according to (22), (B.2), and
(B.4), use the following expressions for the general
solution to the hydrodynamics equations:

For the sake of brevity, we denote the constants
(A − ic) and (B – ir) by A and B, respectively, and even-
tually obtain

(B.6)

(B.7)
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Abstract—The electron velocity distribution function (EVDF) in an anisotropic plasma is investigated using
both the probe method and the magnetic–polarization Hanle techniques. In a helium beam–plasma discharge,
the moments of the anisotropic EVDF are measured and the rate constant is determined for the disalignment of
helium atoms in the 41D2 state due to collisions with charged particles. A new method for investigating aniso-
tropic properties of distant plasma objects unavailable for contact diagnostics is tested experimentally. The
EVDF, the cross sections for the alignment of the total angular moments of the excited helium atoms by electron
impact, and the degree of the electron pressure anisotropy are measured. An advantage of the method proposed
is the possibility of directly measuring the EVDF anisotropy in distant plasma objects, which until now has been
estimated only theoretically. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION
At present, investigations of an anisotropic plasma

are stimulated by new areas for its application in mod-
ern plasma technologies; power engineering; and
designing high-power lasers, novel plasma light
sources, and radiation-resistant plasma electronic
devices, as well as by the necessity of developing new
methods for investigating distant astrophysical and
geophysical plasma objects.

In this study, anisotropic electron velocity distribu-
tion functions (EVDFs) are measured in various plasma
objects using the probe technique [1–13] combined
with the polarization spectroscopy method [14–16].

The depolarization of the 41D2–21P1 spectral line of
helium atoms is analyzed at a density of charged parti-
cles of about 1011 cm–3, and the rate constant is deter-
mined for the disalignment of helium atoms in the 41D2
state due to collisions with charged particles.

A method for investigating the anisotropic proper-
ties of distant plasma objects is proposed. The moments
of the anisotropic EVDF, the cross sections for the
alignment of the total angular moments of the excited
helium atoms by electron impact, and the degree of
electron pressure anisotropy are measured.

The EVDF moments describe different ordering
degrees of the electron velocity vectors and determine
the anisotropic properties of the plasma. Therefore,
most attention is paid to measuring the moments of the
anisotropic EVDF.

REPRESENTATION OF THE EVDF 
IN AN ANISOTROPIC PLASMA

An EVDF in an axisymmetric anisotropic plasma in
spherical coordinates with an axis oriented along the
1063-7842/00/4511- $20.00 © 21399
local axis of plasma symmetry can be expanded in the
orthogonal Legendre polynomials [17]:

(1)

where ε = mϑ2/2 is the electron energy, ϑ  is the absolute
value of the electron velocity, Θ is the polar angle, and
Lj(cosΘ) is the Legendre polynomial.

The coefficients fj(ε) determine a number of the
main plasma parameters. The first three expansion
coefficients are the most important. Except for a factor,
the coefficient f0 determines the electron distribution in
the absolute value of velocity, the plasma density n, and
the rate Γ of excitation and ionization of the plasma-
forming component

(2)

Here,  are the cross sections for the corresponding
processes and Na is the gas atom density. The coeffi-
cient f1 is uniquely related to the electron hydrody-
namic velocity and the electron current density

(3)
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The electron pressure in a plasma is related to the
diagonal elements Πij of the tensor of the electron
momentum flux density [18]

(4)

where the scalar electron pressure p is determined by
the isotropic part f0 of the EVDF:

(5)

The anisotropic part p1 of the tensor of the electron
momentum flux density is determined by the coeffi-
cient f2:

(6)

The remaining EVDF expansion coefficients,
together with the first three, determine the angular
structure of the EVDF and play an important role in
investigating both the populations of the Zeeman
atomic sublevels and the diagram of the collisional
electron scattering.

INVESTIGATION METHODS

The orthogonal expansion coefficients fj(eU) of the
anisotropic EVDF were determined by the method of a
flat single-sided probe from the second derivative

(eU, α) of the probe current density with respect to
the probe potential [1, 6, 9, 13] for different orienta-
tions of the probe with respect to the plasma symmetry
axis (Fig. 1):

(7)

where x = cosα, α is the angle between the normal to
the probe surface and the plasma symmetry axis, and
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) is the known resolvent of the integral equation
for the Legendre components of the EVDF [13]

(8)

Thus, the method of a flat single-sided probe con-
sists in measuring (

 

eU

 

, 

 
α

 

) and subsequent calcula-
tions of  f  j  (  eU  ) (Fig. 2) using expressions (1) and (7).
Note that this method does not require any 

 
a priori

 

information about the shape of the EVDF in a plasma,
because the basic relationship (7) is valid for any
degree of anisotropy.

Noncontact optical measurements were carried out
using a polarization spectroscopy method based on the
relation between the polarization of the line emission
and the EVDF quadrupole moment 

 

f

 

2

 

(

 

ϑ

 

) [14, 15, 19,
20]. Polarization measurements were conducted using
the magnetic–polarization Hanle technique [16], which
is based on examining the dependence of the polariza-
tion of spontaneous emission from the atom ensemble
on the magnetic field 

 

H

 

 applied to the discharge. The
magnetic field was chosen to be low enough for the
kinetic characteristics of particles in the discharge
plasma to remain unchanged. However, it was suffi-
ciently high to disalign the transverse components of
the atomic levels. As a result, in the line emission spec-
trum, the Hanle effect manifested itself as a character-
istic dependence of the degree of polarization of spon-
taneous emission along the external magnetic field on
the magnetic field strength (Fig. 3). The shape of the
Hanle signal provides information about the anisotro-
pic properties of a plasma object [14–16].

INVESTIGATIONS OF DEPOLARIZATION 
OF THE HELIUM 4
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 ATOMIC STATE 
BY CHARGED PARTICLES: PROBE 

MEASUREMENTS

The depolarization of excited helium atoms due to
collisions with charged particles was studied in a
helium beam–plasma discharge (BPD) excited between
two plane circular electrodes. The distance between the
electrodes was varied from 0.1 to 2 cm [1, 11]. The
cathode was a 0.15-cm-thick porous tungsten tablet
impregnated with barium–calcium aluminate. The
cathode temperature was varied from 1000 to 1500 K
(to within an accuracy of 

 

±

 

10 K). The plasma column
in the discharge gap was axisymmetric and had the
shape of a 1.1-cm-diameter cylinder. The preliminary
thermal and vacuum treatment of the device provided
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varied from 10

 

–1

 

 to 1 torr. The cathode emission current
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Investigations of the anisotropic plasma were car-
ried out using the method of a flat single-sided probe
and the magnetic–polarization Hanle technique [16].
A plane single-sided probe was inserted into the device
through its side wall. The probe was installed on a
three-coordinate micrometer positioning system,

H

n

z

α

1

2

3

4

Fig. 1. Schematic of measurements in a BPD: (1) discharge
plasma, (2) rotating flat single-sided probe, (3) Hanle polar-
ization spectrometer, and (4) EVDF detector. The z-axis is
directed from the cathode to the anode; n is the normal to the
probe surface.

28 29 30 31
0

2

4

6

8

–2

Electron energy, eV

f0
f1
f2
f3

fj, 10–5(s3 cm–6)

Fig. 2. The EVDF Legendre coefficients vs. the electron
energy for the discharge parameters Ip = 0.1 A and pHe =
0.25 torr.
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which enabled us to place the probe at a chosen point
between the electrodes to within an accuracy of about
0.05 mm. EVDF anisotropy was investigated not only
along the axis, but also at different angles to the axis
(from 0° to 180° to within an accuracy of ±0.5°).
Simultaneously with the probe measurements, the
degree of polarization of spontaneous emission from
excited helium atoms was recorded at the same dis-
charge point (Fig. 1). The line of sight coincided with
the direction of the external magnetic field H, whose
strength determined the polarization of the observed
emission.

The range of helium pressures under study corre-
sponded to the collisionless regime of a BPD: l0 > d,
where l0 is the mean free path of the beam electrons and
d is the distance between the electrodes. In this regime,
at low discharge currents, the beam electrons do not
have enough time to relax, either in momentum or in
energy, due to pair collisions [10]. As a result, the
EVDF is substantially nonequilibrium and is character-
ized by strong anisotropy, due to which the plasma is
unstable against the excitation of plasma oscillations
[5, 10–12]. The function f0(ε) (Fig. 4) has maxima at
both low (2 eV) and high (30 eV) energies. These max-
ima correspond to two separate groups of electrons.
One group consists of slow electrons with the density n1

and an almost isotropic distribution function. The sec-
ond group consists of fast beam electrons with the den-

6

–5

P, arb. units

H, Oe

5

4

3

2

1

–3 –1
0

1 3 5

Fig. 3. The contour of the Hanle signal for the He 4922-Å
line in a BPD at the charged particle density nch = 1.6 ×
1011 cm–3 and the pressure pHe = 0.25 torr.
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sity n2; these electrons move from the cathode toward
the anode and excite helium atoms, simultaneously
aligning their angular moments. In a collisionless
helium BPD, the beam electrons have a low energy dis-
persion and their density is usually on the order of the
density of slow electrons [10]. Figure 5 displays the
diagrams of the electron distributions in velocity direc-
tions for the above groups of electrons.

Probe measurements demonstrate that, in the colli-
sionless regime, mechanisms for the relaxation of an
anisotropic EVDF have a wave nature and come into
play when the discharge current reaches the threshold
value. There are two stages in EVDF relaxation. In the

40

0 5

f0, arb. units

Electron energy, eV
10 3015 20 25 35

20

60

80

100

120

140

Fig. 4. Electron distribution function f0 in the BPD for pHe =
0.25 torr and Ip = 0.1 A.
first stage, EVDF isotropization is accompanied by an
insignificant electron energy loss at small distances
from the cathode z ! l0 (Fig. 6). In the second stage, the
weakly anisotropic beam does not reach the anode, rap-
idly relaxes in energy, and approaches the state with the
plateau-shaped EVDF at distances z < d.

MAGNETIC–POLARIZATION 
MEASUREMENTS

Measurements of the contours of Hanle signals for
the helium lines λR = 4922 Å and λT = 6678 Å demon-
strate their relative broadening as the discharge current
and, correspondingly, the charged particle density,
increase. Both the contribution of charged particles to
the collisional depolarization and the width of the
Hanle signal increase with the density. This width is
related to the alignment constant γ2, which mainly
depends on the emission lifetime of a given atomic state
and the frequency of pair collisions. There are two
types of these collisions: electron–atom (n) and elec-
tron–electron (ch). Hence, we have

(9)

Here, γ0 is the natural decay constant related to the
depopulation of the helium 41D2 state and [16]

(10)

where  is the relative velocity of colliding particles,
σch( ) is the effective cross section for collisional
depolarization, and nch is the total charged particle den-
sity in a quasineutral plasma

(11)

ne being the electron density.

γ2 γ0 γn γch.+ +=
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ṽ
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Fig. 5. Diagrams of the electron distribution in velocity directions for Ip = 0.1 A and pHe = 0.25 torr: (a) slow electrons (ε = 2 eV)
and (b) beam electrons (ε = 30 eV). Zero angle corresponds to the probe normal oriented from the cathode to the anode.
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Relationship (10) shows that, by extrapolating the
width of the Hanle signal as a function of nch to nch = 0,
one can find the component (γ0 + γn) of the alignment
relaxation constant (Fig. 7). In the BPD regimes under
study, the depolarization rate constant for the helium
41D2 atomic state is found to be 〈 σch( )〉  = γch/nch =
(1.27 ± 0.38) × 10–5 cm3 s–1, which, within the measure-
ment accuracy, is in good agreement with estimates
[16] obtained from the theory of collisional relaxation
of atom polarization moments, assuming that the tra-
jectories of charged particles are straight and the colli-
sion process is isotropic.

A METHOD FOR RECONSTRUCTING 
THE EVDF AND ANISOTROPIC PARAMETERS 

OF DISTANT PLASMA OBJECTS

According to [19, 20], the degree of linear polariza-
tion of a spectral line P corresponding to a local group
of atoms is a function of the population ρ0 of the main
level and the determinant ρ2 of the alignment tensor:

(12)

The tensor components characterize the anisotropy
of electron-impact excitation of an atom from the main
level. The quantity ρ2 is determined by the anisotropic
part f2 of the EVDF [15]:

(13)

where γ2 is the alignment relaxation constant deter-
mined by relationships (9) and (10), εlim is the threshold
energy for the excitation of a given spectral line, Q2 is

ṽ ṽ
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Fig. 6. Profiles of the second derivative of the probe current
vs. the probe potential in a BPD for α = 0, pHe = 0.25 torr,

l0 = 2.0 cm, d = 1.2 cm, Ip = 0.5 A, n1 = 2.8 × 1011 cm–3,

and n2 = 6 × 1010 cm–3.
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the alignment cross section, and f2 is the quadrupole
Legendre coefficient of the EVDF determined by
expression (7).

The population of the main level is related to the
EVDF by a relationship similar to expression (13):

(14)

where Q0 is the excitation cross section and γ0 is the
natural decay constant [see (9)].

If f0 and f2 are known and the degree of polarization
of the Rth and Tth spectral lines is P ≈ ρ2/ρ0, then, for a
plasma object with a certain atomic composition, we
obtain the set of equations

(15)

Solving this system yields the atomic constants Q0
and Q2, which are invariant with respect to the condi-
tions under which the plasma is produced.

In order to analyze the EVDF in a distant plasma
object with identical atomic composition, it is neces-
sary to measure the degrees of polarization PR and PT of
spontaneous emission and, using the invariant atomic
constants Q0 and Q2, find the isotropic (f0) and aniso-
tropic (f2) parts of the EVDF from Eqs. (15). Thus, the
method proposed for determining the EVDF and the
electron pressure anisotropy in distant plasma objects
consists in the following. Under laboratory conditions,
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Fig. 7. The width of the Hanle signal vs. the total density of
charged particles in a BPD for λ = 4922 Å.
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a model plasma object is created that contains atoms of
the same chemical element as in a distant object. The
moments f0 and f2 and the degrees of polarization of two
lines of spontaneous emission are measured simulta-
neously. Solving Eqs. (15), the alignment (Q2) and
excitation (Q0) cross sections are calculated. Then, the
degrees of linear polarization of these two spectral lines
of the atoms contained in the distant plasma object are
substituted into Eqs. (15). Finally, from the known val-
ues of Q0 and Q2, one can calculate f0, f2, and the rela-
tive anisotropy of the electron pressure in the distant
plasma object.

The method proposed was tested experimentally. In
the laboratory, we created a low-pressure helium BPD
as a model object. In this discharge, we measured the
EVDF moments f0 and f2 using the method of a flat sin-
gle-sided probe. Simultaneously, we carried out spec-
troscopic measurements of the degrees of polarization
of the He lines described above. As a result, we recon-
structed the energy dependence of the cross section for
the alignment of the total angular moments of the
excited helium atoms by electron impact (Fig. 8).

In our experiment, a distant plasma object was mod-
eled by a positive column of a helium electric dis-
charge, whose EVDF differed significantly from the
EVDF in a BPD. The degree of polarization of sponta-
neous emission from the plasma object was measured.
The EVDF in the plasma object was determined using
Q0 and Q2 (Fig. 9).

20 40 60 80 100 120 140
0

5

10

15

Q2, 10–17 cm2

Energy of electrons, eV

Fig. 8. Energy dependence of the cross section for the align-
ment of the total angular moments of the excited electrons
by electron impact for λ = 4922 Å.
The reliability of the experimental results obtained
by the proposed method was confirmed by independent
probe measurements.

Finally, the relative anisotropy of the electron pres-
sure in the “distant” plasma object was found to be
p1/p = 2.74 × 10–2.

CONCLUSION

A hybrid electronic–polarization method is pro-
posed for analyzing anisotropic EVDFs in distant
plasma objects.

The moments of the anisotropic EVDF are mea-
sured. The depolarization of the helium 41D2–21P1
atomic spectral line is investigated for a charged parti-
cle density of about 1011 cm–3. The rate constant of the
disalignment of helium atoms in the 41D2 state due to
collisions with charged particles is determined. The
cross sections for the alignment of the total angular
moments of helium atoms by electron impact and the
degree of electron pressure anisotropy are measured.

An important advantage of the proposed method is
the possibility of direct measurements of an anisotropic
EVDF in distant plasma objects in the case when a pri-
ori information about the EVDF anisotropy is lacking.
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Abstract—Results are reported from experiments aimed at investigating how the structure of a microwave
streamer discharge depends on the gas pressure. The formation of a bright core in the streamer channel is shown
to be of a threshold nature: in discharges initiated in the field of a standing electromagnetic wave of an open
two-mirror cavity, a bright core forms in air and hydrogen in the pressure ranges p0 ≥ 540 ± 50 torr and p0 ≥
740 ± 70 torr, respectively. Estimates are presented, according to which the appearance of a bright core can be
attributed to the onset of a local microwave pinch effect. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In a gas at a high pressure p0 and at the natural level
of initial ionization, an electrodeless discharge in a lin-
early polarized electromagnetic (EM) microwave field
of a TEM wave originates from an individual back-
ground electron and rapidly evolves into a thin plasma
channel (streamer) stretched out in both directions
along the vector of the electric component E0 of the EM
field. As the streamer length 2L approaches its maxi-
mum (resonant) value, the effective absorption cross
section of the discharge channel becomes several
orders of magnitude larger than the area of the visible
transverse (with respect to the propagation direction of
the EM wave) cross section of the discharge and the
electric current in the streamer channel rapidly
increases. In a gas at a comparatively low pressure, this
phenomenon is observed as a bright flash extending
almost over the entire streamer, which indicates that the
microwave energy is absorbed essentially uniformly
over the streamer length. As the gas pressure increases,
the streamer starts to behave in a radically different
manner: a very bright core appears in the central region
of the streamer, and the microwave energy is largely
deposited in this core [1, 2].

Figure 1 illustrates the pressure ranges in which
these states of a resonant microwave streamer dis-
charge in an EM field with the angular frequency ω ≅
2 × 1010 cm–1 are observed in air and hydrogen [1, 2].
On the pressure scales, the ranges in which the dis-
charge can be initiated at a fixed amplitude E0 =
6.5 kV/cm of the field of a running wave are hatched
[2]. At E0 = 30 kV/cm, a discharge in air at the pressure
p0 = 760 torr was excited in the field of a standing wave
of an open two-mirror cavity [1]. The pressure ranges
1063-7842/00/4511- $20.00 © 21406
in which discharges with a bright core (cumulative dis-
charges) were observed in experiments are marked with
arrows.

The data illustrated in Fig. 1 indicate that, in the
pressure range 130 < p0 < 760 torr, the structure of dis-
charges in air does not change in time, so that it remains
unclear whether the evolution of a discharge into a
cumulative state is continuous or threshold in nature.
Continuous evolution implies that, at low pressures, the
microwave energy is deposited relatively uniformly
over the streamer length. As the gas pressure increases,
the region where the microwave energy is absorbed
becomes progressively shorter; at very high pressures,
the microwave energy is deposited in an extremely
short (pointlike) region. A threshold nature of the dis-
charge evolution implies that the core in the streamer
channel can only form when certain experimental con-
ditions are met, the first of these being certain ratios of
the microwave field amplitude E0 to the gas pressure p0.
According to Fig. 1, these conditions are satisfied in
streamer discharges in hydrogen: at a fixed amplitude
E0 = 6.5 kV/cm, the EM energy is deposited in the
streamer core in the pressure range p0 ≥ 250 torr.

Grachev et al. [2] supposed that the bright core
peculiar to cumulative streamer discharges stems from
the local microwave pinch effect—plasma compression
under the action of the magnetic field of the microwave
current in the channel region where this current is the
highest. It is clear that the pinch effect in electrodeless
microwave discharges is a new physical phenomenon
that requires further investigation.

In this paper, we report the results of experiments
with microwave streamer discharges in air and hydro-
gen. We studied the evolution of discharges initiated in
000 MAIK “Nauka/Interperiodica”
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130 760 p0, torr
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2

Fig. 1. Ranges of (1) air and (2) hydrogen pressures in which electrodeless microwave discharges with different structures can be
excited (according to the experimental data of [1, 2]).
the focal region of a high-quality open two-mirror cav-
ity by gradually changing the initial gas pressure p0.

It is well known [3] that the pinch effect occurs
when the magnetic-field pressure pm (which is propor-
tional to the squared ratio of the electric current I0 in the
channel to the channel diameter 2a) at the surface of the
current channel becomes higher than the gas-kinetic
pressure p inside the channel. In experiments with an
open cavity, regardless of the sort of gas, the electric
current I0 flowing in the central region of the streamer
increases with p0, because it is proportional to the ini-
tial field strength E0, which cannot be lower than the
breakdown field Ebr, which in turn increases with p0.
On the other hand, the higher the pressure p0, the
smaller the diameter 2a of the streamer. Additionally, if
the streamer current rapidly increases, then, by the time
the “constriction” develops, the gas-kinetic pressure p
in the channel can exceed the initial pressure p0 only
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
slightly. These considerations show that, in a streamer
discharge in an open cavity, the higher the pressure p0,
the more favorable the conditions for the onset of the
microwave pinch effect. Consequently, we can con-
clude that there exists a threshold pressure p0th above
which a streamer discharge should evolve into the
cumulative state. Our experimental investigations were
aimed precisely at determining the pressure thresholds
p0th for cumulative streamer discharges in air and
hydrogen.

EXPERIMENTAL DEVICE

A schematic of the experimental setup is shown in
Fig. 2. A microwave oscillator is capable of producing
rectangular microwave pulses with the duration tpul =
40 µs and a power of several megawatts, the angular
frequency of the EM field being ω ≅  2 × 1010 s–1. A spe-
cially designed matching transmission line feeds
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microwave pulses from the oscillator into a high-qual-
ity open two-mirror cavity formed by two coaxial
spherical concave mirrors 55 cm in diameter, with a
radius of curvature of 35 cm. One of the mirrors is fixed
and serves to couple pulses from the oscillator to the
cavity, the power coupling coefficient being αcon ≅  10–3.

In the cavity, a microwave-transparent cell—a
50-cm-long quartz tube with an inner diameter of 8 cm
and a 0.5-cm-thick wall—is installed. The cell is posi-
tioned symmetrically with respect to the center of the
cavity and is oriented perpendicular to the cavity axis.
The cell ends are sealed hermetically with 2-cm-thick
plane glass. The cell is preevacuated to pressures p < 1
torr and then filled with the required gas at the desired
pressure p0. Note that, in experiments, the pressure in
the cell was varied from 300 torr (at which pressure the
streamer structure of a discharge was already pro-
nounced [1]) to a maximum pressure above which we
failed to achieve gas breakdown. The remaining vol-
ume of the cavity is filled with air at atmospheric pres-
sure.

The cell–cavity system is tuned to resonance by
gradually moving the cell and one of the mirrors in the
axial direction. A small hole at the center of the fixed
mirror serves to transmit the control signal to the oscil-
lograph input through a linear amplitude detector. The
cell–cavity system is tuned until the control signal
becomes most intense. Calibrating the measurement
line makes it possible to determine the amplitude E0 of
the EM field at the center of the cell by the amplitude
of the control signal on the oscillograph screen.

The discharges can be photographed through the
end glasses of the cell with an exposure time longer
than the discharge duration.

EXPERIMENTAL RESULTS

Increasing the distance 2H between the mirrors
from 45 to 61 cm along the cavity axis, we found that
the amplitude E0 of the EM field focused at the center
of the cavity (and, accordingly, of the cell) was maxi-
mum for 2H = 50.4 cm. Along the cavity axis, the EM
field has the form of a linearly polarized standing TEM

1 2

3

4

5

6

Fig. 2. Schematic of the experimental device for investigat-
ing microwave streamer discharges in an open two-mirror
cavity: (1) microwave oscillator, (2) circulator, (3) matching
transmission line, (4) open two-mirror cavity with spherical
mirrors, (5) gas-filled cell, and (6) connection to an oscillo-
graph.
wave. The maximum of the wave occurs at the cavity
center, the distance between the nodes being λres/2 =
4.7 cm. The vector of the electric component E0 is per-
pendicular to the cavity axis. In the directions trans-
verse to the cavity axis, the EM field is azimuthally
symmetric and obeys a nearly Gaussian distribution
function, which decreases by a factor of e on the char-
acteristic spatial scale F = 6 cm.

After the microwave pulse is switched on, the total
microwave energy Wres is fed into the cavity during a
characteristic period of several microseconds. On this
time scale, the field amplitude at the cell center reaches
its maximum value E0max = 30 kV/cm. In our experi-
ments, the highest air pressure at which the breakdown
can occur in such a field was p0max = 1 atm and the rel-
evant hydrogen pressure was p0max = 1.2 atm.

When the cell is initially filled with a gas at a pres-
sure p0 < p0max, then the field amplitude E0 does not
reach its maximum value: a field E0 stronger than the
breakdown field Ebr produces gas breakdown and gives
rise to a microwave streamer. After a significant frac-
tion of the microwave energy has been deposited in the
streamer channel, the coupling between the microwave
oscillator and the cavity is violated and, according to
the oscilloscope trace of the control signal, the micro-
wave energy is no longer fed into the cavity.

Discharges initiated in gases at different pressures
p0 were observed to evolve into plasma channels
(streamers) stretched out in both directions along the
vector of the electric component E0 of the EM field.
Regardless of the shape of the discharge, the visible
diameter of the plasma channels in both air and nitro-
gen was about 2a ≅ 0.07 cm, the channel length being
2L = 2.5 ± 0.3 cm. These discharge parameters were
found to depend weakly on p0.

The experimentally established pressure thresholds
for cumulative streamer discharges are as follows:
p0th = 540 ± 50 torr for cumulative discharges in air at
E0 = 22 kV/cm and p0th = 740 ± 70 torr for cumulative
discharges in hydrogen at E0 = 21 kV/cm. The stream-
ers in air have, as a rule, one bright core in the central
part, while those in hydrogen have two cores (some-
times, for p0 close to p0max, we observed one core at the
center of a streamer in hydrogen, as is the case with
streamers in air).

As an example, Fig. 3 shows photographs of dis-
charges in air at the pressures p0 = 480 torr < p0th and
p0 = 760 torr > p0th. Figure 4 displays photographs of
discharges in hydrogen at p0 = 480 and 1000 torr. We
can see that, for p0 < p0th, the brightness of discharges
in both air and hydrogen is comparatively uniform
along the streamer channel, whereas, for p0 > p0th, the
discharges are seen to have bright cores in the central
regions.
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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DISCUSSION

The energy flux Pres through the central cross sec-
tion of the cavity per unit time just before the break-
down can be estimated from the geometric dimensions
of the cavity and the parameters of the EM field:

(1)

where Z0 = 120πΩ is the wave impedance of free
space. The estimate for the microwave energy stored in
the cavity just before the breakdown can be obtained in
a similar way:

(2)

where c is the speed of light and 2H/c is the shortest
time after which the microwave energy is no longer fed
into the cavity.

For example, at E0 = E0max, we have Pres ≅  7 × 107 W
(which is higher than the power of the supply micro-
wave oscillator by a factor of several tens), Wres ≅
0.12 J, and 2H/c ≅  1.7 ns.

Under the condition νc @ ω (where νc = 4 ×
109 p [torr] s–1 is the rate of collisions between plasma
electrons and air molecules), which is satisfied in our
experiments, the amplitude of a spatially uniform,
quasi-continuous, microwave breakdown field can be
estimated from the formula Ebr = 40 p [torr] V/cm [4].
For example, for p0max = 1 atm, we have Ebr = 30 kV/cm,
and, at the threshold pressure p0th, we obtain Ebr ~
22 kV/cm. These field amplitudes coincide with the
experimentally measured amplitudes. Thus, we can
conclude that, in our experiments, the spatial nonuni-
formity of the microwave field and its unsteady nature
do not affect air breakdown.

For hydrogen, for which we have νc = 5 ×
109p [torr] s–1, the breakdown field amplitude under the
same experimental conditions is calculated to be Ebr =
14p [torr] V/cm [4]. Consequently, at the maximum
field amplitude E0max, the breakdown in nitrogen should
occur at a pressure of 3 atm. However, the experimen-
tally obtained value is equal to p0max = 2.1 atm, which cor-
responds to the ratio Ebr/p = 19 V/(cm torr); at the
threshold pressure p0th, this ratio is even higher at
30 V/(cm torr). Hence, experiments on breakdown in
hydrogen should be prepared with allowance for the
spatial nonuniformity and unsteady nature of the
microwave field in the breakdown region. The experi-
mentally observed increase in the ratio Ebr /p with
decreasing p0 provides evidence that the breakdown
process can be affected by electron diffusion, because a
similar dependence of Ebr /p on p0 was also revealed in
experiments reported in [5], in which the amplitude of
the microwave field remained unchanged after the
microwave field was switched on.

Pres

E0
2

2Z0
---------πF2

2
---------,=

W res Pres 2H/c( ),=
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Our experiments provide clear evidence that the
structure of the microwave streamer changes only when
the initial gas pressure becomes higher than a certain
threshold pressure. Let us show that the conditions in a
resonant streamer can be favorable for the onset of the
pinch effect, which may be responsible for such an evo-
lution of the streamer discharge.

Recall that the pinch effect occurs when the mag-
netic-field pressure at the surface of the current channel
is higher than the gas-kinetic pressure inside the chan-
nel, i.e., pm > p. To estimate the ratio of magnetic-field
to gas-kinetic pressure in the range p0 ≥ p0th, we assume
that an experimentally observed streamer with the max-
imum length 2L behaves as a resonant vibrator, i.e., that
its equivalent reactance is equal to zero and the main

1 cm

(a) (b)

Fig. 3. Electrodeless microwave discharges in air at p0 =
(a) 480 and (b) 760 torr.

1 cm

(a) (b)

Fig. 4. Electrodeless microwave discharges in hydrogen at
p0 = (a) 480 and (b) 1000 torr.
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contribution to its equivalent resistance comes from the
radiation resistance RΣ.

We consider a discharge in air at the pressure p0 =
p0th. Along the entire streamer, the current flowing in
the central region has the form

(3)

where RΣ ≅  20 Ω for the maximum streamer length
2L [6].

In this case, the magnetic-field pressure is equal to

(4)

where µ0 = 4π × 10–7 H/m.

We can see that pm is higher than p0 by a factor of 7,
so that the pinch effect is likely to occur. Such a high
magnetic-field pressure pm (in comparison with the ini-
tial gas pressure p0) at the threshold for cumulative
streamer discharges may stem from the fact that the
estimates were made without consideration of the resis-
tance of the plasma channel (in which case the actual
electric current I0 may turn out to be lower) and of the
intense deposition of the microwave energy in the
plasma (in which case the plasma pressure inside the
channel increases).

In [2], the time scale on which the length of a
streamer in air approaches its maximum (resonant)
value was estimated to be several tens of nanoseconds.
From the experimentally observed maximum streamer
length 2L ≅ 2.5 cm, we can estimate the mean rate at
which the streamer develops and the mean rise time of
the microwave current as 107 cm/s and ∂I0/∂t > 1010 A/s,
respectively. The latter estimate usually refers to con-
ventional dynamic pinches [3].

Similar estimates for a streamer in hydrogen (at the
relevant threshold pressure p0th give I0 = 1.3 × 103 A and
pm = 4.5 × 105 N/m2 = 4.5 atm. In this case, the mag-
netic-field pressure also exceeds the initial gas-kinetic

I0 E0L/RΣ 1.4 103 A,×≅=

pm

µ0I0
2

2πa( )2
---------------- 5 105 N/m2× 5 atm,= = =
pressure; however, the estimated ratio pm/p0th = 4.5 is
somewhat smaller than that obtained for air.

Finally, we emphasize that the experimentally
observed significant difference between the threshold
pressures p0th for streamers in the fields of standing and
running waves in hydrogen (Fig. 1) requires a separate
analysis [1].

CONCLUSION
Our experiments provide direct evidence for the

existence of a pressure threshold for electrodeless
cumulative resonant microwave streamer discharges in
both hydrogen and air. To answer the question of
whether the threshold nature of cumulative streamer
discharges can be explained as being due to a local
microwave pinch effect requires further experimental
and theoretical investigations.
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Abstract—Results are presented from studies on plasma catalysis of the decomposition of methane into hydro-
gen and carbon in a repetitive microwave discharge. The dependence of the propagation velocity of a plasma
channel on the sort of gas is determined; from this dependence, a preliminary conclusion can be drawn about
both the mechanism for the development of the discharge and the ion composition of the discharge plasma. The
measurements of the electron temperature in the discharge show that the rate at which active particles are pro-
duced is high enough to explain the acceleration of a chemical reaction by chain processes with the participation
of these particles. © 2000 MAIK “Nauka/Interperiodica”.
Electric discharges are widely used to accelerate
chemical processes. The energy of an equilibrium dis-
charge is used, in particular, to efficiently heat the
plasma, thus stimulating a chemical reaction due to the
high temperature of the reagents. The energy of a non-
equilibrium discharge can be used more selectively;
however, in any case, a significant portion of the elec-
tromagnetic-field energy is converted into useless heat.

This seemingly inevitable loss of electric power can
be reduced, e.g., by acting on preliminarily heated (in
some ordinary way) reagents with a low-power electric
discharge. In this case, the heat content of the reagents
is chosen to be high enough for the chemical process to
occur; however, because of kinetic limitations, the reac-
tion rate is low. In such a situation, the electric dis-
charge acts as a catalyst for the endoergic chemical pro-
cess, whereas the energy necessary for this process is
taken from the heat storage.

This paper is devoted to the study of the chemical
decomposition of methane into hydrogen and carbon

, (1)

when a plasma produced by a repetitive microwave
pseudocorona discharge at atmospheric pressure acts
on preliminarily heated methane.

Figure 1 shows a schematic of the experimental
device [1, 2]. The device consisted of a methane heater
and a plasmocatalytic reactor, which included a dis-
charge chamber and a system for the input of micro-
wave power. The duration of the microwave pulses
could be varied within the range 0.1–1 µs at a repetition
rate of 1kHz. A modulator allowed us to obtain differ-
ent regimes of magnetron operation (with a pulse
power of up to 50 kW). Microwave pulses with a fre-
quency of 9.04 GHz were launched into a 20-mm-
diameter cylindrical discharge chamber through a fer-

CH4 2H2 CT+
1063-7842/00/4511- $20.00 © 21411
rite circulator and mode converter, which converted
microwaves into the H11 mode of a circular waveguide.
A short-circuited piston with small-diameter holes was
mounted in front of a quartz window at the end of the
discharge chamber; this allowed us to observe visible
emission from the discharge and prevented microwaves
from leaving the chamber. At a distance of one-fourth
of the microwave wavelength from the piston, a tung-
sten needle could be inserted into the chamber. The
electric field near the needle point was higher than the
breakdown field. When the needle was removed from
the chamber, breakdown did not occur and the micro-
wave power was completely reflected from the piston
into a matched load, which enabled calorimetric mea-
surements of the magnetron radiation power. The dif-
ference between the calorimeter data in the presence
and absence of a discharge gave the average microwave
power Wav absorbed in the discharge.

The parameters of the electron component in a
hydrogen discharge were measured from the relative
intensities of the Hα, Hβ, and Hγ spectral lines. The line
spectrum was obtained with an ISP-51 prism spec-
trograph and recorded with two photomultipliers. Sig-
nals from the multipliers were fed through pulsed
amplifiers to a two-channel fast analog-to-digital con-
verter (8 bit, 50 MHz) and were processed by a com-
puter. With this diagnostic module, we could simulta-
neously measure the time dependences of two spectral
lines with a 20-ns time step.

Visually, microwave pseudocorona discharges at
atmospheric pressure in different gases (air, methane,
hydrogen carbon dioxide, or argon) seem to be identi-
cal. The discharge is seen as a bunch of thin plasma fil-
aments emerging from the needle point. Up to ten such
filaments can exist in each pulse. Figure 2 shows the
photos of individual pulsed discharges for different
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of the device: (1) modulator, (2) magne-
tron, (3) waveguides, (4) ferrite circulator, (5) matched load,
(6) mode converter, (7) discharge chamber, (8) heater, (9)
discharge, (10) tungsten needle, and (11) quartz window.
magnetron powers and pulse durations; the photos
illustrate the spatiotemporal dynamics of the non-
steady-state discharge plasma.

At the same time, the propagation velocity of the
head of the plasma channel is different for gases with
different molecular weights. This velocity was mea-
sured by recording the front of the pulsed radiation
emitted from a small (0.1 mm in diameter) discharge
region selected with the help of a diaphragm. The dis-
charge emission was recorded with a photomultiplier
and digital oscillograph with 20-ns resolution; the
oscillograph was synchronized to the modulator pulses.
First, we chose the tungsten-needle point for the obser-
vation region and determined the instant at which the
leading edge of the emission pulse appeared; then, the
observation region was displaced by a certain distance
along the propagation direction of the plasma channels.
In this case, the leading edge of the emission pulse
(which corresponded to the instant at which the channel
head reached the observation region) appeared with a
delay. The propagation velocity was calculated from
the ratio of the distance of the observation region from
the needle to the delay time. Results of the velocity
measurements in hydrogen, air, carbon dioxide, and
methane discharges are presented in Fig. 3. An analysis
of the dependence of the propagation velocity of the
plasma channel on the sort of gas allows us to draw a
preliminary conclusion about both the mechanism for
the development of the discharge and the ion composi-
tion of the discharge plasma.
(a)

(b)

50 kW30 kW20 kWW = 15 kW

0.5 µs 1 µs0.3 µsτ = 0.1 µs

5 mm

Fig. 2. Photos of a discharge in air (a) for different pulse powers W and a constant pulse duration τ = 1 µs and (b) for different pulse
durations τ and a constant pulse power W = 50 kW. The spatial scale is shown in Fig. 2b for a duration of 0.5 µs. The position of the
needle point is schematically depicted.
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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Near the needle point, where the microwave electric
field can attain a value of E ≈ 105 V/cm, seed plasma
regions arise. Electrons of this plasma efficiently
absorb the field energy; as a result, the average electron
kinetic energy T reaches a value on the order of the ion-
ization energy I0 (see Fig. 5 and its discussion). Since
the formation of streamers is impossible because of the
high frequency of the microwave field, the ionization
front propagates along the force lines of the charge-sep-
aration field Ep maintained by the pressure gradient ∇ pe

of the electrons heated by microwaves to the tempera-
ture Te ≈ I0. The relations between the main field and
plasma parameters can be written in the form

(2)

Under the action of the field Ep, the plasma ions at
the discharge boundary acquire a drift velocity, which
governs the propagation of the ionization front. It is
important, however, that the electric field generated by
the electron-pressure gradient is so high that the ion
drift can be described by the relation [3]

(3)

where Mi is the ion mass, Vion is the ionization-front
velocity, N0 is the neutral density, and σia is the ion–
neutral collision cross section.

Substituting expression (2) for the electric field Ep

into relation (3) and taking into account that the plasma
density increases along the ionization length li ≈
(N0σion)–1 (with σion being the ionization cross section),
we obtain the front velocity

(4)

where ne0 is the electron density outside the ionization
region.

The ratio of the cross sections σion and σia in the
region where Te ≈ I0 is about 10–1–10–2; we also have
ln(ne /ne0) ≈ 20–40. Hence, to a high accuracy, the prop-
agation velocity of the discharge is

(5)

which coincides with the critical Alfvén velocity.
An analysis of heating and ionization processes in

the microwave field shows that singly ionized ions pre-
vail at the head of the plasma channel. As for the mass
composition of positive ions at the head of the plasma
channel, a consideration of the kinetics of ion–mole-
cule reactions at atmospheric pressure reveals a stable
tendency toward the formation of heavy ion complexes
in both bimolecular and trimolecular processes [4]:

(6)

eneE ∇ pe I0∇ ne.≈≈

MiV ion
2 eE

N0σia
-------------,=

V ion
I0

Mi

------
σion

σia
--------

ne

ne0
-------ln ,=

V ion
I ion

Mi

-------,≈

N2
+ 2N2 N4

+ N2,+ +
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(7)

(8)

Hence, we can expect that, at atmospheric pressure
and a microwave pulse duration of ~1 µs, the most

abundant positive ions in air will be  ions. In carbon

dioxide, these are C2  ions; and, in hydrogen, these

are  ions.

CO2
+ 2CO2 C2O4

+ CO2,+ +

H2
+ H2 H3

+ H.+ +

N4
+

O4
+

H3
+
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Fig. 3. Dependence of the propagation velocity of the
plasma channels V on the ion molecular weight Mi. Each
experimentally measured velocity value is presented by two
points corresponding to different possible ion compositions:

(1, 5) discharge in CO2, (1) C , and (5) C2 ; (2, 6) dis-

charge in air, (2) , and (6) ; (3, 7) discharge in CH4,

(3) C , and (7) C2 ; and (4, 8) discharge in H2, (4) ,

and (8) .

O2
+

O4
+

N2
+

N4
+

H4
+

H6
+

H2
+

H3
+

4

5
8

7

2
6

3

1

1.4 1.6 1.8 2.0
0.00

0.06

0.12

0.18

0.24

0.30

ε, J/cm3

α

550°C

T = 475°C

Fig. 4. Results of experiments and calculations in degree of
conversion–energy input coordinates: (1) thermodynamic
calculation, (2) experiment with the heat energy input, (3)
experiment with the combined energy input, and (4, 5) cal-
culated straight lines of the parametric set α(εT) for T = 550
and 475°C. Experimental points 6–8 correspond to Wav =
10, 20, and 30 W, respectively.
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When analyzing the propagation of the plasma
channels in methane, one should take into account the
formation of complex hydrocarbons like ethane ions,

(9)

which can form ethylene molecules in the recombina-
tion reaction

(10)

and also propane ions in the trimolecular process

(11)

The propane ions form cyclopropane in the recom-
bination reaction

(12)

However, the rates of these reactions may be insuf-
ficiently high because of the complicated conversion of
the molecular orbitals in them and the number of heavy

C2  and C3  ions may be small. At the same time,
at electron energies of Te ≥ 15 eV, the dissociative ion-
ization in methane

(13)

in which lighter ions are produced, begins to play an
important role.

The presence of a significant amount of N+, CO+,

O+, and C  ions at the ionization front might be evi-
dence that the contribution from vibrational kinetics to
the chemical processes at the ionization front is sub-
stantial, which is typical of steady-state conditions.

The measured dependences of the propagation
velocity of the plasma channel shows that heavy ions
prevail for hydrogen and carbon dioxide (points 2, 3, 5,
and 8 in Fig. 3 are more closely fitted by a straight line
than points 1–4), which agrees with the data on the
rates and directions of the ion–molecule reactions at the
gas pressures and degrees of ionization under study. For

CH4
+ CH4 C2H6

+ H2,+ +

C2H6
+ e C2H4 H2,+ +

CH4
+ 2CH4 C3H8

+ 2H2.+ +

C3H8
+ e C3H6 H2.+ +

H6
+ H8

+

CH4 e CH2
+ H2,+ +

H2
+
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10

1
2

3

Te, eV

Fig. 5. Time dependences of the average electron energy Te
for different values of the microwave power W: (1) 10,
(2) 20, and (3) 30 W.

t, ns
air and methane, the contribution from vibrational
kinetics to the chemical processes presumably provides
a much more varied ion composition at the front of the
ionization region.

The time evolution of the discharge (Fig. 2b) allows
us to distinguish two characteristic phases. At t <
100 ns, the discharge is seen as a weakly luminous, fan-
like quasicorona structure. At t > 100 ns, a series of
bright plasma channels grows from the initial plasma
structure. As will be shown below (Fig. 5), the parame-
ters of the electron component in these two different
spatiotemporal phases of the discharge are also differ-
ent.

Before proceeding to the experiments on determin-
ing the electron temperature Te, we cite one result from
studies of the effect of plasma catalysis [1, 2], which
then will be compared with the results of Te measure-
ments.

Experiments on the decomposition of preliminarily
heated methane under the action of a pulsed microwave
discharge were conducted in the following way. Meth-
ane was heated to 400–600°C in a heater (Fig. 1) and
injected at atmospheric pressure into a discharge cham-
ber with the flow rate Q = 30–250 cm3/s. The methane
temperature T was measured in the discharge chamber
with the help of a movable thermocouple. In the dis-
charge, the gas acquired an additional energy εP, which
was no more than 15% of the thermal energy εT

acquired in the heater.
With the help of a chromatograph, we analyzed the

gas-fraction composition at the outlet of the device in
the presence and absence of a discharge and determined
how the degree of methane conversion α increased
under the action of the discharge. The experimental and
calculated data are shown in Fig. 4. The degree of meth-
ane conversion α into hydrogen and carbon via reaction
(1) is plotted on the ordinate. The specific energy dep-
osition into methane ε is plotted on the abscissa. It con-
sists of the thermal energy εT acquired in the heater plus
the energy contributed by the discharge εP (in the pres-
ence of a discharge):

(14)

Here, εP = Wav/Q, Wav is the average microwave power,
and the energy εT is a function of the temperature T and
the degree of methane conversion α [1, 2]:

(15)

The first term in expression (15) is the heat energy
needed to heat an unreacted portion of methane from
the room temperature T0 to the temperature T, the sec-
ond term describes the energy needed to heat the reac-
tion products from T0 to T, and the third term describes
the heat effect from converting methane into the reac-
tion products at a given degree of conversion α.

Curve 1 in Fig. 4 shows the result of equilibrium
thermodynamic calculations in α and εT coordinates,

ε εT εP.+=

εT 1 α–( )εm T( ) αΣεr T( ) αH T0( ).+ +=
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and curve 2 shows the experimental results obtained in
the absence of a discharge (with only heat energy input
into the system). The zero point corresponds to a heat-
ing temperature of 550°C and heating power of 190 W.
Curve 3 describes the experiment with the preliminary
heating of methane to 550°C and different discharge
powers W [the input energy ε was determined accord-
ing to relation (14)]. A comparison of curves 1–3
clearly demonstrates the effect of plasma catalysis,
which manifests itself in the fact that the degree of
methane conversion approaches the equilibrium value
(curve 1).

Note that curve 4 in Fig. 4 corresponds to the case
of a conventional thermocatalytic endoergic process at
a constant temperature (T = 550°C in this case). This
curve was obtained by inverting dependence (15) with
respect to the quantity α: α = F(εT, T), where the degree
of conversion α depends on the input energy εT and the
temperature T plays the role of a fixed parameter.
Curve 5 in Fig. 4 presents the same dependence, but for
the temperature T = 475°C. An analysis of the data in
Fig. 4 shows that plasma catalysis increases the gas
temperature (from 550 to 475°C in the experiment
under consideration) due to the energy consumption in
endoergic reaction (1). It is important that the decrease
in the temperature of the system due to plasma catalysis
does not affect the efficiency of catalysis, because the
latter depends on the electron temperature, rather than
on the gas temperature.

The acceleration of the process of methane conver-
sion (1) may be attributed to the following effects.
Either the discharge nonuniformly heats the gas to a
high temperature and methane is rapidly decomposed
in these hot regions or active particles are generated in
the plasma, which favors the decomposition of methane
in chain reactions [1, 2]. The first reason should be dis-
carded, because the experimental curve 3 cannot lie
over curve 4 in the case of thermal acceleration. Indeed,
isotherm 4 is a limiting case for the thermal mecha-
nism, in which all the additional energy that the dis-
charge contributes to the system is used for dissociation
only (without additional heating of the gas). Radicals,
ions, carbon clusters, or excited particles may be active
particles. It is shown in [2] that the effect of plasma
catalysis can be explained with a high degree of cer-
tainty by the Winchester ion–molecular mechanism. In
this mechanism, the role of active particles is played by
positive ions that aid the decomposition of methane
molecules and, thus, the formation of carbon clusters.

For the experiment to be explained by the processes
involving active particles, the rate at which such parti-
cles are produced should be rather high. This rate is
largely dependent on the electron energy distribution in
the discharge. The average electron energy in the dis-
charge was measured from the relative intensity of
hydrogen spectral lines emitted from a 1 × 1-mm region
near the needle point. The spectral response of the pho-
tomultipliers was calibrated by an incandescent band
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
lamp emitting as a black body at a known temperature.
The lamp temperature was measured with a pyrometer.
For a given ratio between the intensities of two lines,
the excitation temperature TH of hydrogen atoms was
determined from the following relation:

(16)

where T is the lamp temperature; Ei and Ej are the ener-
gies of the emitting levels; Cij is a constant obtained
from calibration, which accounts for the dependences
of the spectrograph dispersion and the photomultiplier
response on the emission wavelength; and n is the mea-
sured ratio of the line intensities.

In order to find the relation between the average
energy of free plasma electrons and the experimentally
determined excitation temperature of hydrogen atoms,
a model of the discharge emission was developed. We
solved the set of equations describing the population of
excited states,

(17)

for different values of the average electron density. In
Eq. (17), the summands Sin = nine〈σ inV〉  (i < n) account
for electron-impact excitation, Iin = ginni Ain (i > n)
account for spontaneous emission, Tin = nine〈 V〉 (i > n)
account for the quenching by superelastic collisions,

and Rn = δ 〈σnV〉  account for the capture of an elec-
tron during recombination emission. Here, gin is the
escaping factor [5] introduced to allow for the absorp-
tion of radiation in the plasma channel, Ain is the Ein-
stein coefficient, and δ is the fraction of H atoms in the
discharge. One of the equations in (17) is a dependent
equation; hence, the set of equations was supplemented
by the equation Σnn = const.

The electron energy distribution function in the ini-
tial phase of the discharge (t < 100 ns) was determined
by solving the kinetic Boltzmann equation in the two-
term approximation. We used a model similar to the dc
discharge model, because the ratio of the electron-
energy relaxation rate to the field frequency is much
higher than unity over a wide range of electron energies
under the given conditions. The necessary cross sec-
tions for elementary processes in methane (i.e., for
vibrational and electronic excitation, ionization, and
dissociation) were taken from [6, 7]; for hydrogen, we
used the cross sections from [8]. In the later phase of
the discharge, when the plasma in the channel is almost
completely thermalized, the electron energy distribu-
tion function was assumed to be Maxwellian.

Besides the population level nn, two additional
parameters, namely, the electron density ne and the
hydrogen atom density nH, enter set (17) through δ

1
TH

------ 1
T
---

1
Ei E j–
---------------- Cijn( ),ln–=

dnn

dt
-------- ΣSin ΣI in ΣT in Rn+ + +=

– ΣSni ΣIni– ΣTni– 0,=

σin*

ne
2
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and gin. The dependence of ne on the average electron
energy ε (i.e., on the discharge phases with different
values of ε) was chosen so as to fit the experimental

data on the radiation intensity I ~ exp(–∆E/ε); the
proportionality factor was found from the condition
that the maximum density ne is equal to the critical
electron density: nemax = ncr = 6 × 1015 cm–3. For a given
ne, the nH density can be determined from the equation
describing the electron-impact dissociation of H2 mol-
ecules. For electron energies that are not too high (ε ≤
10 eV), a good approximation is nH = const ≈ 1018 cm–3

and δ ≈ 0.04.
By solving set (17), we determined the populations

nn, which were then used to calculate the intensities of
spectral lines and the excitation temperature corre-
sponding to the average electron energy. This also
allowed us to solve the inverse problem—to determine
the average electron energy from the experimentally
measured excitation temperature.

The calculated time dependences of the electron
temperature are shown in Fig. 5. The measurements
were carried out for three values of the microwave
power absorbed in the discharge: 10, 20, and 30 W,
which correspond to the experimental points 6–8 in
Fig. 4. For all these regimes, the temperature in the sec-
ond discharge phase (Fig. 2, t > 100 ns), in which a set
of bright plasma channels is formed, is almost the same
and is equal to 0.6 eV. In the first (pseudocorona) phase
of the discharge, a detectable discharge emission
appears by the end of the leading edge of the micro-
wave pulse (this instant corresponds to the zero time in
Fig. 5). In this discharge phase, the temperature is sig-
nificantly higher and reaches nearly 10 eV at t = 20 ns.
The excitation temperature Tex at t = 0 was determined
with a large error due to the low radiation intensity.
This fact prevented us from determining the electron
temperature with a reasonable accuracy when solving
set (17). It may be only suggested that, within the time
interval 0–20 ns, the electron temperature exceeds
10 eV. Note that, in all three regimes, the temperatures
deduced from the Hβ to Hα and Hγ to Hα ratios coin-
cided.

A preliminary analysis shows that the observed high
electron temperature in the initial discharge phase (t <
50 ns) can provide high efficiency of the production of
positive ions (with a cost of 100 eV). In the early phase
of the discharge (before thermalization of the channel,
which occurs in a time on the order of 100 ns), while
the ion density is relatively low (on the order of
1014 cm–3), the ion–molecular mechanism of plasma
catalysis [2] can provide methane conversion with an
energy cost of nearly 0.1–1 eV. Let us recall that the
corresponding energy expenditure in experiment [1]
was equal to 0.2 eV. The influence of recombination for
a given ion density is still unimportant at this stage.
During recombination decay, it might be possible to
lower the cited cost of conversion by nearly one order

ne
2

of magnitude. However, thermalization of the plasma
channel is accompanied by a substantial increase in the
ion density (up to 5 × 1016 cm–3). This, on the one hand,
increases the energy deposition during the second
(thermalized) discharge phase and, on the other hand,
sharply decreases the efficiency of plasma catalysis
because of recombination processes. At a sufficiently
high temperature, the usual thermal mechanism gov-
erns the decomposition of methane inside the channel
and the conversion cost approaches the thermal value.
However, the ions produced inside the thermalized
channel may be used for methane conversion during
diffusive decay of the plasma channel after the pulse,
when the ion density falls because of diffusion and the
contribution from the recombination mechanism is
reduced. A preliminary analysis of the discharge after-
glow shows that, in principle, the cost of methane con-
version may be lowered due to plasma catalysis to a
value of about 0.2 eV.

In summary, acceleration of the thermal decomposi-
tion of methane under the action of a repetitive micro-
wave discharge has been demonstrated experimentally.
The electric power of the discharge is no more than
15% of the heat power expended for preliminary heat-
ing of methane. The reaction acceleration results from
the production of chemically active particles in the dis-
charge. The electron temperature in the discharge, at
least in its initial phase, is high enough to ensure the
necessary rate for producing such particles. Theoretical
estimates of the possible influence of various active
particles on the decomposition of methane can be
found in [1, 2].
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Abstract—The ferroelectric and dielectric properties of Pb0.99[(Zr1 – xSnx)1 – yTiy]0.98Nb0.02O3 ceramic of com-
position (I) x = 0.5, y = 0.04–0.12 and (II) x = 0.4, y = 0.06–0.09 were studied, and the T–x and E–T diagrams
were constructed. When zinc is substituted for tin, the range of coexistence of the ferroelectric and antiferro-
electric phases extends. The range of the nonpolar phase shrinks when the titanium content is increased. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Lead zirconate–based solid solutions are widely
used in electronic engineering, instrument building,
and other branches of industry. However, the behavior
of these oxides near the phase transitions has not been
adequately understood. Research in this field continues
to be topical from both scientific and applied view-
points.

At room temperature, PbZrO3 has a rhombic unit
cell and antiferroelectric (AFE) properties. At ~510 K,
it undergoes the phase transition to the rhombohedral
ferroelectric (FE) phase, which exists between 0 and
26°C, and then to the paraelectric (PE) phase [1]. When
zirconium is partially replaced by titanium, the stability
range of the high-temperature rhombohedral FE phase
extends. When the titanium content exceeds 5 at.%, the
solid solution exhibits FE properties even at room tem-
perature [2]. The incorporation of tin cations into octa-
hedral sites decreases the distortion of the rhombohe-
dral perovskite cell of the FE phase and bridges the gap
between the AFE and FE phase volumes. This makes it
possible to vary the temperature and concentration
ranges of existence of these phases in wider limits [3].
It has been established that the temperature interval
where the free energies of the AFE and FE phases are
close extends when tin is incorporated into the compo-
sition [4]. With this in mind, one can expect the induced
AFE-to-FE state transition at relatively low electric
field strengths and in a wide temperature range. At such
transitions, the electromechanical and thermodynamic
characteristics exhibit steps, which can be used for
energy conversion [5], specifically in cryogenic
devices. These devices use the so-called electrocaloric
effect (ECE): cooling of a working substance by
induced passing to the FE state under adiabatic condi-
tions [6]. As follows from thermodynamic consider-
ations, the ECE is the most pronounced at phase transi-
tions [7]. To date, the greatest experimental ECE value
1063-7842/00/4511- $20.00 © 1417
has been found to be ∆T = 2.6 K, which is quite suffi-
cient for applications. This value was obtained in the
Pb(Zr, Sn, Ti)O3 system at 425 K [8]. Ceramics
intended for electrocaloric applications must have com-
positions that undergo the induced phase transition at
electric field strengths E < 20 kV/cm, with the transi-
tion temperature in an interval of ~50 K around room
temperature.

In this work, we studied the phase states, as well as
the dielectric and FE properties, of the
Pb0.99[(Zr1 − xSnx)1 − yTiy]0.98Nb0.02O3 solid solutions
with (I) x = 0.5, y = 0.04–0.12 and (II) x = 0.4, y = 0.06–
0.09. Our aim was to estimate the ECE in these compo-
sitions.

EXPERIMENTAL

Sample preparation. Ceramic samples were
obtained by solid-phase synthesis from associated
oxides and carbonates. Niobium (2 at. %) was intro-
duced in order to raise the resistivity and decrease the
coercive field of the samples [9, 10]. Synthesis was car-
ried out at T1 = 850°C for 6 h. The sintering tempera-
tures of the ceramics were T2 = 1300°C (samples I),
1300°C and 1380°C (samples with y = 0.085–0.095),
and 1380°C (samples II). The sintering duration was
1 h in each of the cases.

Measuring techniques. The phase composition of
the samples was studied by X-ray phase analysis
(XPA). The dielectric parameters (permittivity ε, con-
ductivity σ, and dielectric loss tangent ) were
measured with an automatic setup at temperatures
between 300 and 900 K and frequencies of 100 Hz–
100 kHz. Dielectric hysteresis loops were observed
with a Soyer–Tower installation between 300 and
600 K. The voltage applied to the samples was up to
2 kV, and the applied field frequency was 50 Hz.

δtan
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EXPERIMENTAL RESULTS

In all the samples, the phase with the perovskite-like
structure prevails, as follows from XPA data. Diffracto-
grams taken from the samples with x = 0.5 have extra
lines that indicate the presence of impurity phases in
small amounts. Type-I samples with y ≤ 0.08 have a tet-
ragonal unit cell; and those with y ≥ 0.085, rhombohe-
dral. All type-II samples have a rhombohedral unit cell.
As y grows, the unit cell volume decreases in samples
of both types (Fig. 1). For type-I samples, the unit cell
volume grows stepwise at the concentration morpho-
tropic transition from tetragonal to rhombohedral sym-
metry.

At room temperature, type-II samples are ferroelec-
tric. The spontaneous polarization Ps determined from
the hysteresis loops rises from 7 to 12.5 µC/cm2 as y
grows. The coercive field strength Ec was ~4.5 kV/cm.

Type-I samples obtained at T2 = 1300°C are of low
dielectric strength and are inappropriate for dielectric

4.11
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4.08

4 6 8 10 Y, %

a, c, A

. . . . . . . . .
. . . . . . .. .

1

2

3

4

5

Fig. 1. Concentration dependences of the cell parameters for
the Pb0.99[(Zr1 – xSnx)1 – yTiy]0.98Nb0.02O3 samples. (1) ct,
(2) at, (3) at, (4) akh (type-I) and (5) akh (type II).
 hysteresis loop observation. The phase states in these

samples were identified by the second-harmonic-gener-
ation (SHG) method [11]. In the tetragonal samples
(y ≤ 0.08), the intensity of the SHG signal is low (q < 5),
which is typical of centrally symmetric materials
(AFEs). For the samples with y ≥ 0.085, q > 20, which
means that they are centrally asymmetric (FE proper-
ties). The observation of saturated hysteresis loops at
room temperature for the samples with y = 0.085–0.095
obtained at T2 = 1380°C is consistent with the SHG
data. For these compositions, the spontaneous polariza-
tion rises from 13 (y = 0.085) to 15.5 µC/cm2 (y =
0.095) and Ec is ~4.8 kV/cm.

The samples that are ferroelectric at room tempera-
ture pass to the AFE state when heated. This state is
identified by the occurrence of double hysteresis loops.
Between the temperature at which the saturated loops
disappear and the one above which the loops are
observed, there exist intervals, ~10–25 K for type-II
samples and ~20–40 K for type-I ones, where unsatur-
ated FE loops are observed at low field intensities. On
a further increase in the field, these loops become dis-
torted, showing a waist, and take the form of double

E, kV/cm

12

8

4

0

FE

FE1
+
AFE

c

b'

AFE

NP

1

2

b

300 350 400 T, K

Fig. 2. Temperature–field phase diagram for the
Pb0.99[(Zr0.6Sn0.4)0.94Ti0.06]0.98Nb0.02O3 sample. (1) Tem-
perature dependence of the field E1(T), which induces the
AFE-to-FE transition, and (2) temperature dependence of
the field E2(T), at which the reverse transition to the AFE
phase takes place.

I

Room-temperature spontaneous polarizations Ps and coercive fields Ec, fields E1 inducing the AFE-to-FE transition, and fields
E2 of the reverse (FE-to-AFE) transition

Composition P, µC/cm2 Ec, kV/cm E1, kV/cm E2, kV/cm

x = 0.5, y = 0.085 12.9 4.8 11 (T = 390 K) 8.4 (T = 390 K)

x = 0.5, y = 0.09 13.5 4.8 7.3 (T = 390 K) 2.4 (T = 390 K)

x = 0.5, y = 0.095 15.5 4.8 5.8 (T = 390 K) 2 (T = 390 K)

x = 0.4, y = 0.06 7.2 4.5 13 (T = 400 K) 8 (T = 400 K)

x = 0.4, y = 0.08 10.1 4.6 7 (T = 400 K) 3 (T = 400 K)

x = 0.4, y = 0.09 12.5 4.5 4.3 (T = 400 K) 0.6 (T = 400 K)
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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Fig. 3. Permittivity ε and dielectric loss tangent tanδ vs. temperature for Pb0.99[(Zr1 – xSnx)1 – yTiy]0.98Nb0.02O3 ceramics. (1–4)
Samples sintered at T2 = 1380°C with y = (1) 0.085, (2) 0.090, (3) 0.095 (measuring field frequency f = 100 kHz), and (4) 0.095 (f =
1 kHz). (5) Type-I sample (T2 = 1300°C) with y = 0.09.
AFE loops. As y grows, the AFE-to-FE transition tem-
perature determined from the appearance of saturated
hysteresis loops upon cooling rises from 300 to 380 K
(x = 0.4) and from 320 to 350 K (x = 0.5).

In samples of both types, an increase in y is accom-
panied by a decrease in the field that induces the AFE-
to-FE transition (E1) and in the field at which the
reverse transition takes place (E2) (see table). For type-I
samples, the values of E1 are greater.

Figure 2 shows the T–E diagram for the samples
with y = 0.06 (II). When the electric field is switched on
and then off, the states change following the phase
trajectory a(AFE)  b(AFE)  c(FE) 
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
b'(FE)  a(AFE). In the shaded region (I), the sam-
ples that passed into the FE state when the field was
applied retained this state when the field was subse-
quently decreased to E2.

Temperature dependences of the permittivity ε(T)
peak at Tm for all the samples (Figs. 3, 4). The temper-
ature of the maximum Tm is 10–30 K (I) and 20–40 K
(II) higher than that at which the double hysteresis
loops disappear. For the type-II samples, Tm shifts from
446 (y = 0.06) to 420 K (y = 0.09); and for the samples
of type I, from 446 (y = 0.06) to 416 K (y = 0.12). For
the samples of both types, the ε(T) curve has a plateau
near the peak. The plateau narrows with increasing tita-
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Fig. 4. Permittivity ε and dielectric loss tangent  vs. temperature for the type-II samples (T2 = 1380°C) with y = (1) 0.06, (2)
0.08, (3) 0.09 (measuring field frequency f = 100 kHz), and (4) 0.06 ( f = 1 kHz).

δtan
nium concentration. The peak value of ε, εm, grows
with y.

The AFE-to-FE transition is accompanied by low-
temperature anomalies like steps in the (T),

(T), and 1/ε(T) curves. Their smearing increases
as y diminishes. The low-temperature anomalies show
a hysteresis loop, which tends to shrink with growing y.

For the type-I samples sintered at T2 = 1300°C, the
smearing of the anomalies is greater and the value of εm

is lower than for those obtained at T2 = 1380°C.

The temperatures at which the dielectric anomalies
are observed do not depend on the frequency of the
field at which the measurements are taken.

δtan
σlog
DISCUSSION

Figure 5 shows a concentration–temperature dia-
gram that is constructed from the data for the dielectric
hysteresis loops, temperature dependences of the
dielectric characteristics, and SHG signal intensities. A
distinct demarcation line between the FE and AFE
states is seen to be absent for the composition studied.
Instead, an intermediate region where these phases
coexist is observed. For the solid solutions of type I,
this region is much wider than for those of type II. In
the intermediate region, the solid solutions are AFE +
FE mixtures. This is corroborated by the form of the
hysteresis loops: as the field strength E grows, the
unsaturated ferroelectric loop becomes distorted, trans-
forming into a double loop with a broad waist. The
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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mixed phase composition in the intermediate region
also follows from the fact that the smearing of the
dielectric anomalies observed at the FE-to-AFE transi-
tion changes. As the concentration moves away from
the morphotropic boundary between the tetragonal
AFE and rhombohedral FE phases, the two-phase
region narrows (as follows from the dielectric measure-
ments and hysteresis data).

As was noted, the temperature Tm of the ε(T) maxi-
mum exceeds the one at which the double hysteresis
loop disappears. The latter coincides with the tempera-
ture at which dε/dT peaks. Similar behavior of ε(T) was
also observed in Pb0.99[(Zr1 – xSnx)1 – yTiy]0.98Nb0.02O3
[12], (Pb, Sr)ZrO3 [13], and Pb(Zn, Sn)O3 [14, 15] solid
solutions. It can be explained by the presence of the
region where the AFE and FE phases coexist. In [12],
such behavior is associated with an intermediate cubic
phase having a multiplet unit cell. In [13], the smearing
of the ε(T) peak is attributed to transition nonpolar
phases emerging between the tetragonal AFE and PE
phases. Such a conclusion was made from anomalies in
the temperature dependence of the specific elongation.
The nature of these nonpolar phases still remains
unclear. The transitions between them were suggested
to be treated as “crumpling” transitions rather than
transitions between two AFE phases [16]. Our data for
the hysteresis loops, as well as the lowering of Tm and
narrowing of the transition region when the titanium
content increases, are consistent with this treatment.

Thus, in the studied solid solutions, one can induce
the AFE-to-FE phase transition by applying electric
fields in the range of E = 8–14 kV/cm. This transition is
identified by the presence of double dielectric hystere-
sis loops. In samples of both types, an increase in the
titanium content makes the FE state more stable. When
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Fig. 5. Composition–temperature phase diagram for the
Pb0.99[(Zr1 – xSnx)1 – yTiy]0.98Nb0.02O3 samples with x = (a)
0.5 (type I) and (b) 0.4 (type II).
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the tin content is raised, the range of coexistence of the
AFE and FE phases extends; moreover, the AFE phase
becomes more stable. The greater the tin concentration,
the higher the field inducing the AFE-to-FE transition
(provided that the titanium concentration is the same).

To conclude, our data demonstrate that the electro-
caloric effect calls for further investigation in samples
of type I (y = 0.085–0.095) and type II (y = 0.06–0.08).
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Abstract—According to the theoretical concepts, the set of compositions of amorphizable metal alloys can be
extended by increasing the cooling rate. This approach can be tested by quenching nanometer second-phase
precipitates in a metal matrix. The precipitates are melted by the action of fast heavy ions or femtosecond laser
pulses initiating thermal flares. The cooling rate of the precipitates as a function of their parameters, as well as
the parameters of the matrix and thermal flares, was studied. With these parameters optimized, the cooling rate
may greatly exceed those typical of conventional techniques for metal glass production. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The production and study of disordered metals
(metal glasses) are of interest for both applications and
fundamental research of metastable materials. Rapid
quenching of the melt is widely used in the production
of metal glasses. With the cooling rates currently avail-
able, the set of compositions of alloys to be amorphized
is limited by those close to deep eutectics. However,
according to present-day concepts [1], the set of com-
positions can be greatly extended if the cooling rate is
enhanced. Moreover, under conditions of superfast
cooling, even pure metals can vitrify, which has not
been observed so far.

The time of cooling of molten material by heat
removal to the environment depends largely on the
sample size; therefore, one could expect superhigh
cooling rates for small low-melting metal precipitates.
These precipitates are melted by the action of thermal
flares of a size comparable to that of the precipitates
and are cooled by heat removal to a surrounding cold
solid matrix of high heat conductivity.

Today, such experiments are a real possibility, since
there exist metallic materials with nanometer second-
phase precipitates [2] and various ways of producing a
short rapid rise in temperature within regions on the
order of 10 nm in size. Examples are irradiation by
femtosecond laser pulses [3] or by fast heavy ions [4].
The advantage of these irradiations is the absence of
elastic interaction with the ion subsystem of the target.
The time of such thermal flares is sufficient for melting
the precipitates (they melt within several periods of
atomic oscillations). A local rise in temperature may
reach several hundred to several thousand degrees
(according to various estimates) [5–9]; hence, the flares
can melt a variety of chemical compositions. Finally,
one more advantage of this technique is that a frozen
metastable structure (metal glass) is fairly stable to
external effects and can readily be identified.
1063-7842/00/4511- $20.00 © 21422
The melting points for most of materials are well
known (corrections due to small precipitate sizes are
insignificant and can be directly measured [2]). There-
fore, amorphous precipitates can be used for experi-
mentally estimating the thermal spike. In fact, analytic
evaluations are currently the single source of informa-
tion on local heating in thermal spikes [5–9]. In the
above ways of producing thermal flares, the energy is
first absorbed by the electron subsystem and only a
small part of it is then spent on heating the ion sub-
system of the matrix. Therefore, predictions are
strongly dependent on applied models of electron–ion
interaction and may differ by one order of magnitude.

In the nanometer size range, the rate of cooling by
heat removal into the cold metal matrix may reach
1014–1016 K/s, as follows from estimates. However, the
achievement of such values in experiments requires
optimization of the precipitate and matrix parameters.
In this work, we investigated the solidification kinetics
of a molten precipitate in a cold matrix. Also, the effect
of the system parameters (matrix and precipitate mate-
rials, initial temperature profile, temperature of experi-
ment, etc.) on the solidification time was studied.

STATEMENT OF THE PROBLEM

Consider the solidification of individual precipitates
of radius R in a solid infinite matrix. The precipitates
are melted by locally heating in the thermal spike. It is
assumed that the melting point of the matrix is much
higher than that of the precipitates Tm and exceeds the
maximum (peak) temperature Tmax of the flare. Next,
the volume density of the precipitates is assumed to be
relatively low in order that cooling of one precipitate
can be considered independently of the others. To sim-
plify the calculations, we will assume that the tempera-
ture T distribution within the precipitate and in the sur-
rounding matrix is symmetric about the precipitate cen-
ter, which is taken as the origin.
000 MAIK “Nauka/Interperiodica”
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The solidification kinetics of a completely molten
precipitate is represented as follows. The thermal spike
heats up the precipitate to a temperatures above Tm. Due
to heat removal into the matrix, the precipitate temper-
ature drops with time. At the instant the precipitate sur-
face cools down to the temperature of liquid–solid
phase transition, the precipitate starts to solidify. Since
we are interested in the solidification process itself, it is
convenient to take the time instant when T(R, 0) = Tm

for the zero time t = 0. If the cooling rate is high, the
disordered atomic structure of the melt supercools
(below Tm) and is fixed in the amorphous state at some
temperature known as the glass-transition temperature
Tg [1]. Since the precipitate cools down from the sur-
face, an interface between the supercooled liquid and
metastable solid (amorphization front) arises when the
surface temperature of the precipitate drops to Tg. Upon
subsequent cooling, the interface shifts toward the cen-
ter of the precipitate. At any time t instant, the position
Rs of the amorphization front is defined by the relation-
ship T(Rs, t) = Tg. At the time instant t0 when the front
reaches the center of the precipitate [Rs(t0) = 0], the
solidification of the precipitate in the amorphous state
is complete.

From the above, the mean cooling rate  upon
quenching to the amorphous state is given by

(1)

Relationship (1) is a conservative estimate of the
quenching rate, since the real time of passing the tem-
perature interval Tm – Tg is less than t0 at any point of
the precipitate. Since the melting point and glass-tran-
sition temperature are intrinsic characteristics of the
precipitate material, t0 is the only parameter in (1) that
can be varied by changing the matrix and precipitate
parameters.

In analyzing the solidification kinetics, we subdi-
vide the space into three regions (Fig. 1). The central
part of the precipitate (region I) contains the melt with
a temperature higher than Tg, whereas the outer part of
the precipitate (region II) and the matrix (region III) are
solid. Before the amorphization front emerges, region
II is absent, and at t = t0, region I disappears.

The cooling of a precipitate in an infinite matrix is
described by the heat conduction equation

(2)

where the thermal diffusivity a2 takes the values of ,

, and  according to the region number.

In the calculations, we ignore the temperature

dependences of  and , since the precipitation tem-
perature changes little during amorphization; therefore,

Ṫ

Ṫ  . 
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∂T
∂t
------ a2∆T ,=
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aII
2 aIII

2
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2 aII
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the temperature dependences of the specific heat and
heat conductivity are insignificant (see Fig. 2).

Away from the precipitate, boundary conditions for
Eq. (2) depend on the matrix temperature T∞:

(3)

At the center of the precipitate, we must put

(4)

because of the spherical symmetry of the problem.

T r ∞ t,( ) T∞.=

∂T
∂r
------

r 0=

0.=

R

Matrix

I

II

III

Solid

Liquid

Precipitate

0 Rs
0

Fig. 1. Geometry of the problem.
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Fig. 2. Specific heat and heat conductivity vs. temperature.
Data points for lead are taken from [11].
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In our case, solidification means the liquid–glass
phase transition; therefore, the latent heat of melting is
not released [1]. We will also assume that the tempera-
ture and flux are continuous at the boundaries between
regions I and II and regions II and III.

Finally, the spatial temperature distribution at the
time instant t = 0 has the form

(5)

where T0 depends on the heating and cooling history of
the precipitate and is a variable parameter in our case
(with regard for the restriction T0(R) = Tm).

ANALYSIS AND CALCULATION

To analytically find the solidification time t0, we
will proceed from the simplest approximation. In this
case, the heat conductivity of the matrix is infinitely
large and the initial temperature profile is a step: T(r ≤
R, 0) = Tm and T(r > R, 0) = T∞. This corresponds to the
case of a uniformly heated precipitate in a cold matrix.

To perform analytic calculations and computer sim-
ulations, we introduce the following dimensionless
parameters: temperature Θ = T/Tm, melting point Θm ≡ 1,
glass-transition temperature Θg = Tg /Tm, matrix tem-
perature Θ∞ = T∞ /Tm, and distance to the precipitate
center ξ = r/R. The diffusivities of the three regions are
normalized by that of region II. The dimensionless time
τ is given by τ = t/tII, where

(6)

is the characteristic cooling time.

T r 0,( ) T0 r( ),=

tII
R2

aII
2

------=

0.2

0
0.2

Solidification time τ0

T∞/Tm

0.4 0.6 0.8

0.4

0.6

0.8

1.0

Fig. 3. Solidification time vs. matrix temperature. Computer
simulation results for (j) limited and (d) infinitely large
thermal diffusivity of the matrix. The curve is an analytic
estimate according to (11).
Using the general method for analytically solving
heat conduction problems of this class [10], we arrive
at the space–time temperature distribution in the pre-
cipitate

(7)

where

(8)

and αn is the nth root in ascending order of the roots of
the equation

(9)

The implicit expression for solidification time τ0 can
readily be derived from (7) if one takes into account
that the amorphization time reaches the center of the
precipitate (r = 0) at τ0:

(10)

When the first term of the sum on the right of (10) is
dominant, we have

(11)

To estimate the applicability range of (11), we con-
trast the dependence of the solidification time on the
matrix temperature Θ∞ with numerical solutions of
Eq. (2). In the calculations, the parameters of the prob-

lem were [11]  = 1.41 × 105 (m/s)2,  = 2.30 ×

105 (m/s)2,  = 9.38 × 105 (m/s)2, Tm = 600 K, and
T∞ = 150 K. Hereafter, the same values will be used
unless otherwise stated.

A comparison of the τ0 vs. Θ∞ dependences
obtained by numerically solving Eq. (2) with expres-
sion (11) shows that the latter is a good approximation
of τ0 everywhere but in a narrow range of matrix temper-
atures near the glass-transition temperature Θg (Fig. 3).

As follows from Fig. 3, for low temperatures of a
matrix with an infinitely large heat conductivity, the
solidification rate of a nanometer precipitate reaches
~1014 K/s, which is close to the theoretical limit. In this
case, the characteristic cooling time becomes compara-
ble to several periods of atomic oscillations. Clearly,
the simplifications made in deriving relationship (11)
tend to decrease the solidification duration. Therefore,
it is of interest to see how much t0 would increase if the
matrix and precipitate properties were more realistic. In
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this case, analysis is rather difficult, and we simulated
the solidification kinetics by numerically solving the
heat conduction problem. Space–time variations of the
temperature in the track are demonstrated in Fig. 4.

The calculations show that the solidification time is
essentially dependent on the relative glass-transition
temperature of the precipitate Θg and the temperature
of the surrounding matrix. As is seen in Fig. 5, a
decrease in Θg extends the solidification period, which
is especially noticeable when Θg approaches the matrix
temperature Θ∞. Conversely, as long as Θ∞ is much
lower than Θg, τ0 varies insignificantly.

The effect of the matrix and precipitate parameters
also depends on the difference between Θg and Θ∞. For
example, for finite values of the matrix thermal diffu-
sivity, the solidification time grows with decreasing

 (Fig. 3, j). If, however, Θ∞ are much less than Θg,
relationship (11) is a fairly good approximation of τ0,
even if the thermal diffusivities of the matrix and pre-
cipitate are comparable to each other (Fig. 6). In con-
trast, at “high” (comparable to Θg) matrix temperatures,
the solidification interval remains close to that pre-
dicted by (11) only if heat transfer in the matrix pro-
ceeds with a relatively high rate. The demarcation line
between “low”- and “high”-temperature regions is

defined by the ratio / . For example, for the case
depicted in Fig. 3, relationship (11) reasonably approx-
imates τ0 if T∞ < 0.6Tg. Similarly, the solidification time

is weakly dependent on the thermal diffusivity  of
the molten precipitate at low matrix temperatures
(Fig. 7).

One more factor that significantly influences the
solidification time is the initial temperature traverse in
the thermal flare. The step profile (Fig. 8), used in the
analytic estimations, implies instantaneous heat dissi-

pation in the matrix (  @ ) and rapid equalizing
of the temperature in the melt. We also considered two
other initial profiles (Fig. 8), namely, mixed and Gaus-
sian. In the former case, the initial matrix temperature
remains constant near the precipitate (T∞) and follows
the Gaussian curve inside the precipitate, with the max-
imum Tmax at its center. The temperature is normalized
so that the condition T(R, 0) = Tm is met on the precip-
itate surface. In the latter case, the Gaussian profile
(with the parameters as in the previous case) also cov-
ers the matrix (this makes it possible to estimate the
effect of limited thermal diffusivity).

Numerical results on the solidification time as a
function of the maximum temperature at the precipitate
center Θmax = Tmax/Tm for these profiles are given in
Fig. 9. The solidification time depends on the profile
shape. For the mixed profile, τ0 grows with Θmax mono-
tonically; this seems to be quite natural, since the
amount of heat accumulated in the precipitate also
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grows monotonically with Θmax. For the Gaussian pro-
file, the situation is more intricate. At small overheat-
ings, Θmax – 1 ! 1, the temperature “tail” in the matrix
markedly slows down heat transfer from the precipitate
and increases τ0. However, even at Θmax ≥ 1.5, the effect
of the initial matrix temperature nonuniformity on τ0

weakens and the solidification time curves tend to those
for the mixed profile (Fig. 9).

Thus, it follows from the aforesaid that the dimen-
sionless solidification time can be maintained at a level
of 1013–1015 K/s by properly choosing the matrix
and/or precipitate parameters and process conditions
(the use of low matrix temperatures, Θ∞ ! Θg, and
matrixes with high thermal diffusivity). Since τ0 and t0

are related as

t0
R2

aII
2

------τ0,=

2

0
0.4

Solidification time τ0

Temperature T∞/Tm

0.2 0.6 0.8

1

3

Fig. 7. Solidification time vs. thermal diffusivity of the mol-
ten material. aI/aII = (m) 5, (d) 1, and (j) 0.1.
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Fig. 9. Solidification time vs. relative maximum tempera-
ture of the precipitate for T∞/Tm = (h, j) 0.25, (s, d) 0.5,
and (n, m) 0.75. Dotted line, Gaussian profile; continuous
line, mixed profile.
one can effectively control the solidification process by
varying the radius R and thermal diffusivity of the pre-
cipitates (note that τ0 depends neither on R nor on aII).

Figure 10 demonstrates numerical results on the
solidification time for precipitates of different compo-
sition (Pb, Bi, In, Tl, and Cd) and size (0 < R < 15 nm)
in the aluminum matrix. The metals listed are hardly
soluble in aluminum, so that their nanometer precipi-
tates can be obtained [2]. The shortest solidification
time, t0 ≈ 0.7 × 10–12 s, is observed for lead precipitates;
according to (1), this corresponds to the cooling rate

 ~ 1.7 × 1014 K/s. Such high cooling rates (several
orders of magnitude higher than those attainable upon
cooling massive amorphous metals) make possible the
use of thermal spikes (occurring, for example, when the
material is irradiated by fast heavy ions or femtosecond
laser pulses) for superfast quenching of precipitates in
metals and checking theoretical predictions on pure
metal amorphization [12].
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Fig. 8. Initial temperature profile inside and around the pre-
cipitate.
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Fig. 10. Solidification time of the precipitates in the alumi-
num matrix as a function of precipitate radius. (1) Pb, (2) In,
(3) Tl, (4) Co, and (5) Bi.
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One should bear in mind that cooling rate is not the
only factor that governs crystallization during solidifi-
cation. For example, heterogeneous crystallization
and/or epitaxial growth that starts from the surface may
substantially facilitate bulk crystallization. These unde-
sirable processes must be avoided in experiments on
pure metal vitrification through superfast quenching.
They can effectively be suppressed by appropriately
selecting the matrix and precipitate materials (for
example, with various types and parameters of the crys-
tal lattice) [12]. Materials used in [2] are well suited for
such experiments.

CONCLUSIONS

We investigated the effect of the precipitate, matrix,
and flare parameters on the precipitate solidification
time. With the system parameters optimized, a cooling
rate close to the theoretical limit (five or six orders of
magnitude higher than those typical of conventional
techniques for metal glass production) can be attained.
Our results indicate that the use of metal matrixes with
nanometer precipitates is promising for experimentally
checking the possibility of producing pure amorphous
metals by quenching from the melt.
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Abstract—In water-molecule-doped barium peroxide and barium oxide, a step increase in the dynamic con-
ductivity to ~10–3 Ω–1 cm–1 was found. The increase is observed when water molecules are present in two non-
equivalent states in the lattice, with concentrations of the molecules nt of ≥ 2.2 × 1021 cm–3. At n > nt, the con-
ductivity does not depend on the number of molecules in the lattice but is temperature-dependent, obeying the
law σ(T) = C1exp(–E1/kT) + C2exp(–E2/kT). The run of the σ(n, T) curve is explained by trapping electrons that
result from H2O dissociation and by two sorts of carrier jumps between localized and delocalized states. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Water molecules absorb electromagnetic radiation
in a wide frequency range. It is therefore natural to
assume that H2O molecules introduced into the crystal
lattice of polar insulators, such as barium peroxide or
barium oxide, will encourage the absorption of micro-
wave radiation. Several mechanisms that enhance
absorption are known. In one of them, conduction is
due to energy absorption by H2O dipoles localized in
the lattice [1],

(1)

(where n is the dipole concentration, D is the dipole
moment, T is temperature, ω is the frequency, τ is the
relaxation time, and W is the energy difference for the
dipole transition) and grows with dipole concentration.
Two other mechanisms are possible if water molecules
dissociate in the crystal field of the insulator as

(2), (3)

to form hydrogen, hydroxyl, and hydroxonium ions.
These ions may act as charge carriers and possess, like
OH–, a dipole moment. In this case, microwave absorp-
tion can be related to ion transitions both in the lattice
and in the ion dipoles. In addition, the formation of
donor and acceptor centers in the crystal lattice may
lead to the appearance of charge carriers in the electron
spectrum if, for example, Ba2+ cations capture one or

two electrons or  or O2– anions capture holes. H2O
molecules and products of their dissociation are local-
ized randomly and seem to polarize the lattice. This
may cause carrier localization, on the one hand, and
polaron formation, on the other. Also, if free or local-
ized carriers appear as a result of H2O dissociation,
insulators may pass to the metal state as the number of
water molecules in the lattice grows.

σ ω( ) nD2

3kT
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1 W /kT( )exp+
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1 ω2τ2+
--------------------,=
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2–
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In this work, we studied the water-stimulated
dynamic conductivity of barium peroxide and barium
oxide. The compounds were doped by water vapor
adsorption. In the lattice, H2O molecules occupy inter-
stices, forming two bound states that may variously add
to the conductivity. Therefore, water adsorption and the
evolution of the bound states are considered first. Then,
temperature and concentration dependences of the con-
ductivity and the effect of the bound states are dis-
cussed. Measurements were made by the thermogravi-
metric (TG) method, differential thermal analysis
(DTA), and the method of dynamic conductivity.

SAMPLES AND EXPERIMENT

Samples used were extra-pure-grade powders of
barium peroxide and barium oxide with the mean grain
size ~10 µm and specific surface area ~10 m2/g. Prior
to water adsorption, BaO2 and BaO were dehydrated
and annealed at a pressure of ~10–3 torr at 150–180°C
for ~2 h. Adsorption was carried out at 21°C and a sat-
uration pressure of 18.7 torr. The water concentration in
the samples depended on adsorption time.

The amount of adsorbed water was measured with a
McBain balance, and the concentration of bound H2O
molecules was determined with a Q-1500 derivato-
graph from water thermal desorption data. The bound
states of crystallization water were annealed off by
heating the samples to 120 and 145°C at a rate of
5°C/min.

The dynamic conductivity was measured using the
method of a short-circuited line at 10 GHz using a
Ya2R-67 VSWR indicator [2]. The bulk density of the
samples was 1.3–2.1 g/cm3.

RESULTS AND DISCUSSION

Temperature dependences of the weight loss ∆m and
DTA signals from the BaO2 samples exposed to water
000 MAIK “Nauka/Interperiodica”
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vapor are shown in Fig. 1. On the BaO samples, adsorp-
tion proceeds in a similar way. Upon heating, dehy-
drated samples do not change their mass (Fig. 1a). For
short adsorption times (t ≤ 15 min), a layer of physi-
cally bonded water molecules appears on the grain sur-
face. A decrease in the weight and endothermic DTA
signals between 60 and 105°C indicate the evaporation
of the polylayer from the grain surface, the heat of des-
orption of the layer being Qd = 15–18 kJ/mol (Fig. 1b).
The thickness of the polylayer h can be estimated from
the relationship

(4)

where m, µp, and M are the weight of adsorbed water,
sample weight, and gram-molecular weight of water,
respectively; s is the specific sample surface; ρ is the
water density;  is the surface area occupied by an

H2O molecule; and NA is Avogadro’s number. If  =

10.2 Å [3] and ρ = 1 g/cm3, h . 20 Å.

With increasing adsorption time, H2O molecules
diffuse from the polylayer into the crystal lattice,
occupy nonequivalent interstices, and form two bound
states. They are observed under desorption in the TG
and DTA curves in the intervals Td1 = 80–120°C (Qd1 =
25 and 21 kJ/mol for BaO2 and BaO, respectively) and
Td2 = 125–140°C (Qd2 = 18 and 31 kJ/mol for BaO2 and
BaO, respectively) (Fig. 1c). The states are independent
of each other, since upon heating to 120°C, the first
state is annealed off, with Qd2 remaining unchanged
(Fig. 1d). At 145°C, the samples are dehydrated. The
number of water molecules in each of the states grows
with adsorption time (Fig. 2). The molecules are
weakly bonded to the atomic environment, since the
heats of desorption for physically bonded and crystalli-
zation waters diverge insignificantly.

It should be noted that, when H2O molecules are
incorporated into the lattice, the DTA curves exhibit
two signals (at ~240 and 360–395°C) that are not
accompanied by a weight change (Fig. 1d) and are
likely to be associated with structure transformations.
Thus, water adsorption on the surface of BaO2 and BaO
grains forms a polylayer of physically bonded water
and two nonequivalent states of H2O molecules in the
lattice.

The conductivity of BaO2 and BaO varies nonmono-
tonically with adsorbed water amount (Fig. 3). When
the amount of the adsorbate reaches the threshold value
mt ≈ 0.8 and 4 mmol/g for BaO2 and BaO, respectively,
σ increases stepwise, the value of the jump growing
with temperature by a factor of ~5 × 102 (BaO2) and
~33 (BaO) at T . 70°C. With a further rise in the
amount of adsorbed water (m > mt), σ remains practi-
cally unaffected, although the number of molecules in
the first, n1, and second, n2, states grows (Fig. 2). The
threshold amount of the H2O molecules in the first

h m µps( ) 1– ωH2ONA
2/3M 2/3– ρ 1/3– ,=

ωH2O

ωH2O
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bound state, which corresponds to the jump in the
σ(m, T ) curve, was found to be n1t . 1.4 × 1021 cm–3; in
the second state, the threshold amount was n2t . 7.5–
9.0 × 1020 cm–3. This corresponds to the mean distance
between the water molecules t = (n1t + n2t)–1/3 = 8 Å,
which slightly exceeds the lattice constants (4–5 Å) of
BaO2 and BaO [4].

Figure 4 shows temperature dependences of BaO2
and BaO conductivities in the dehydrated and doped
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Fig. 1. (1) Weight loss vs. temperature and (2) DTA curves
for the BaO2 samples (a) before and after water desorption
for (b) 10, (c) 60, and (d) 60 min with subsequent heating to
120°C.
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Fig. 2. Number of H2O molecules in the crystal lattice of (a)
BaO2 and (b) BaO in the two states (1, 2) vs. adsorbed water
amount.
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(m > mt) states. In the latter state at T < Td1, the conduc-
tivity of both compounds obeys the temperature law

(5)

For BaO2, E1 = 1.13 eV, C1 = 5.5 × 106 Ω–1 cm–1 at
T > 325 K and E2 = 0.18 eV, C2 . 5.5 × 10–2 Ω–1 cm–1

at T < 325 K; for BaO, E1 = 1.01 eV, C1 . 2.4 ×
107 Ω−1 cm–1 at T > 303 K and E2 = 0.22–0.25 eV, C2 .
1.4 Ω–1 cm–1 at T < 303 K. The compounds pass into the
conductive state in the temperature range where the
first bound state of water molecules exists. If, for exam-
ple, T < Td1, the behavior of σ(T) changes reversibly
with temperature. If, however, Td1 ≤ T < Td2, σ suddenly
drops to the value typical of dehydrated samples as the
n1 molecules are annealed off and is independent of the

σ ω T,( ) C1 E1/kT–( )exp C2 E2/kT–( ).exp+=

σ, Ω–1cm–1

10–3

10–5

(a) (b)

12
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2 4 8 16
m, mmol/g

Fig. 3. Concentration dependences of the conductivity of (a)
BaO2 at T = (1) 285, (2) 292, (3) 301, (4) 335, and (5) 347 K
and (b) BaO at T = (6) 291, (7) 305, (8) 319, and (9) 328 K.
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Fig. 4. Temperature dependences of the conductivity of
(1, 1') BaO2 and (2, 2') BaO before and after doping by H2O
molecules.
number n2 of the molecules in the BaO2 and BaO lat-
tices. In addition to this, at T < Td1, σ starts to grow
when T ≥ 285 K for BaO2 and T ≥ 293 K for BaO. At
lower temperatures, the values of σ in the doped and
undoped states are the same.

It should be emphasized that the dynamic conduc-
tivities of the dehydrated samples and doped samples
that contain water molecules in the second bound state
with the concentration n2 ≥ n2t after annealing and do
not contain H2O in the first bound state (n1 = 0) are the
same and nearly temperature-independent.

Thus, doping of BaO2 and BaO by water molecules
with a concentration of no less than ~2.2 × 1021 cm–3

causes a step increase in the conductivity. The conduc-
tivity is governed by two nonequivalent states of the
molecules in the lattice, does not depend on the number
of the molecules, and has two components that expo-
nentially depend on temperature.

It is worth noting that the nonmonotonic behavior of
σ(m) can be related to proton conductivity in the poly-
layer of physically bonded water. This conductivity is
characterized by the threshold dependence on the thick-
ness h, since it becomes noticeable once a continuous
water layer has been formed on the grain surface. It is
due to proton tunneling through the network of hydro-
gen bonds [5–7]. The conductivity of proton gas in the
polylayer [5] σp = σs/h = (lvF2)/3RT (where l is the free
path, v is the velocity, F is the Faraday constant, and R
is the gas constant) equals ~3 × 10–4 (Ω cm)–1 (provided
that the network of hydrogen bonds entirely covers the
film and the surface conductivity σs . 6 × 10–11 Ω–1

[7]). This value exceeds σ at T ≤ 337 K in BaO2 and at
T ≤ 316 K in BaO. However, proton conductivity, in our
case, is unlikely. When, with increasing m, islands on
the grain surface tend to coalesce to produce the contin-
uous polylayer (T = 285 K for BaO2 and 293 K for
BaO), no step of σp is observed (Fig. 3; curves 1, 6).
Consequently, the behavior of σ(m) is due to crystalli-
zation water.

A step increase in σ(n, T) with a growing number of
dipoles in the lattice, the independence of σ from n at
n > (n1t + n2t), and the equality of the conductivities of
as-prepared and doped samples [i.e., σ(n, T) = σ(0, T)
at T ≤ 285 K for BaO2 and T ≤ 293 K for BaO when n >
(n1t + n2t) and also at T < Td2 if n1 = 0 and n2 ≥ nt]
exclude microwave losses due to dipole transitions and
orientation dipole relaxation. In these cases, an electron
may pass over a barrier U when the conductivity has the
form [1]

(6)

where N(W) and B(U) are the energy distributions of
the number of dipoles and barriers when σ ~ n.

Hence, conduction cannot be related to energy
losses in H2O dipoles or OH– and H3O+ ionic dipoles.

σ ω( ) . 0.3nN W( )B U( )D2kTω,
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Note again that σ lies in the range 10–5–10–3 Ω–1 cm–1

(which is much less than the associated values for met-
als), obeys the temperature law σ ~ Cexp(–E/kT)
(dσ/dT > 0), and at n > (n1t + n2t), does not depend on
the concentration of H2O molecules or products of their
dissociation (hence, on the charge carrier density). This
means the absence of free carriers in the electron spec-
trum and excludes microwave losses due to OH–, H+, or
H3O+ ion transfer in the lattice.

The run of the σ(m) and σ(T) curves indicates that
conduction is due to absorption of the microwave
energy by carriers, which then leave the localized
states. The carriers are generated by H2O dissociation.
Since conduction occurs in the presence of the two non-
equivalent states of the molecules, two molecules from
the different states are involved in the dissociation reac-
tion to form H3O+ and OH– ions. Reaction (3) proceeds
at T ≥ 285–293 K. A possible reason for this is an
increase in the dissociation rate. Another reason that
seems likely is that the formation of hydroxonium ions
is facilitated under conditions of enhanced thermal
motion of molecules as T rises (because they are
loosely bonded to the atomic environment in the lat-
tice). In this case, electrons trapped by Ba2+ ions from
OH– centers and localized near the conduction band
bottom can serve as charge carriers. These local levels
are produced by the 6s orbitals of the Ba atoms. Since
Ba2+ ions can capture one or two electrons, three types
of localized states can exist in the energy spectrum:
two-electron and one-electron states, which are sepa-
rated by the Coulomb gap, at the conduction band tails
and free states. The carriers may be localized because
of polarization-induced lattice distortions. The polar-
ization may be a result of electron capture or be induced
by the random potential of the H2O molecules and ions
produced by dissociation.

Within the model of electrons localized in potential
wells, conduction is due to transitions between the
localized and delocalized states. The independence of
σ(ω, T) of carrier concentration suggests that the
behavior of σ(T) in the doped state is governed by the
temperature dependence of mobility, which rises step-
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
wise in going from the component C2exp(–E2/kT) to
C1exp(–E1/kT). Since dependences like σ(ω, T) ~
C(ω)exp(–E/kT) are typical of carrier transitions
between localized, bound, and delocalized states [8],
the components of σ(T) can be assigned to a change in
transition type with growing T. The transitions with the
energy E2 take place between the localized one-elec-
tron states at the Fermi level in the energy gap and free
states at the tails of the conduction band or at its bot-
tom. Those with the energy E1 are associated with elec-
trons that leave the one-electron states for delocalized
states in the conduction band. In this case, the mobility
of the delocalized electrons sharply increases; hence, a
step in the σ(m, T) curve (Fig. 3). In this model, the car-
riers localized on the two-electron states, which are
below the Fermi level, do not add to the conductivity.
Therefore, when the electrons occupy these states, σ
does not depend on n if n > (nt1 + nt2).
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Abstract—An additional study of solid solutions in the (Na, Li, Sr0.5)NbO3 ternary system was performed.
More detailed information concerning its phase diagram and physical parameters in a wide range of component
concentrations is obtained. The compositions obtained are of interest for application in highly sensitive and
high-frequency transducers. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The phase diagram and main electrical properties of
the (Na, Li, Sr0.5)NbO3 system are briefly outlined in
[1]. In this study, which continues the phase diagram
investigation, new phases and morphotropic regions
(MRs) were found. Furthermore, concentration depen-
dences of the electrical parameters of the solid solu-
tions (SS) in the system are studied in detail, and their
relation with the structure parameters, specifically,
homogeneous strain parameter δ, is revealed [2].

We considered six quasi-binary cross sections
where the content of the z component of the Sr0.5NbO3
system ranged from 2 to 50 mol %. In each of the cross
sections, compositions with 2–15 mol % of LiNbO3 y
sections were synthesized. Synthesis and sintering con-
ditions are presented in [1].

RESULTS AND DISCUSSION

The studied region of the NaNbO3–LiNbO3–
Sr0.5NbO3 phase diagram was adjacent to the NaNbO3
vertex of the Gibbs triangle (Fig. 1). Thin lines depict y
and z sections, and heavy lines represent boundaries
between single- and two-phase regions with different
symmetry.

The phase diagram of the ternary system was deter-
mined by the binary phase diagrams. We found that
solid solutions in (100 – z)NaNbO3–zSr0.5NbO3 have
rhombic symmetry (similar to NaNbO3) with the unit
cell parameter quadrupled along the b axis (M4 phase)
in a narrow range of concentrations (z ≤ 2). At 2 < z <
30, the cell multiplicity decreases: it becomes doubled
along b-axis (M2 phase). The range 30 ≤ z ≤ 50 corre-
sponds to SS having cubic symmetry with doubled
1063-7842/00/4511- $20.00 © 21432
parameter (K2 phase). These results differ from earlier
data of other authors. Specifically, according to [3], in
the ranges 0 < z ≤ 30 and 30 ≤ z ≤ 50, SS have mono-
clinic and tetragonal symmetries, respectively. Phase tran-
sitions in the (100 – y)NaNbO3–yLiNbO3 system were
investigated in [4] and refined in [5].

Note that the phase diagram under study is less com-
plicated than, for example, that described in [6] for the
(Na, Li, Pb0.5)NbO3 system.

In the (Na, Li, Sr0.5)NbO3 system, one can separate
the wide MR1 (M2 + Rh) (Rh means rhombic phase) and
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Fig. 1. Phase diagram of the (Na, Li, Sr0.5)NbO3 ternary
system (1, heterogeneous region).
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Fig. 2. Structure and electrical parameters of the (Na, Li, Sr 0.5)NbO3 solid solutions vs. LiNbO3 content for the section z = 15 mol %
of Sr0.5NbO3 (1, the same as in Fig. 1).
narrow MR2 (Rh + M2) regions, in which neighborhood
the extremal structure and electrical parameters can be
expected. Other narrow, MR3 (M4 + M2) and MR4 (K2 +
M2) regions, are beyond the SS being studied; there-
fore, their influence is not taken into account.

Let us consider the z and y sections that are most
typical of our system. Figure 2 depicts concentration
dependences of the structure and electrical parameters

for z = 15. δ, /ε0, ε/ε0, Kp, d31, and g31 are shown in

Fig. 2a; , QM, VR, and , in Fig. 2b.1 Dashed
lines mark the wide MR1 and narrow MR2. The permit-
tivities and parameter g31 pass through a maximum near
the opposite boundaries of the MR1, which is typical of

ferroelectrics. The peaks of Kp, d31, and /ε0 coin-

1 /ε0 and ε/ε0 are the relative permittivities, Kp is the electrome-

chanical coupling coefficient, d31 and g31 are the piezoelectric
parameters,  is the dielectric loss tangent, Q-factor, QM is

the mechanical Q-factor, VR is the sound velocity, and  is

Young’s modulus.

ε33
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δtan Y11
E

ε33
T

δtan
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E

ε33
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cide. To these peaks, there correspond the minimal δ’s
within the MR1. As to the other parameters (Fig. 2b),
the run of some of them correlates with changes in the

SS ferroelectric elastance. In particular, VR and 

vary in opposition to /ε0. However, the behavior of

 and QM cannot be explained through elastance
variation. Unlike the other parameters, they exhibit a
kink at the MR1–Rh interface.

In contrast to the considered case, in other z sec-
tions, the characteristics are much more irregular, since
some of the parameters also have extrema at a distance
well away from the above MRs. This irregularity can
hardly be attributed to MR location only. The depen-
dences of the parameters for z = 10 are plotted in Fig. 3.

It is seen that /ε0, Kp, d31, and g31 have two maxima:
the first maximum is in the vicinity of the MR1 bound-
ary, and the second is far beyond it, at 3–6 mol % of
LiNbO3. At approximately the same LiNbO3 concen-
trations, Raman spectra from the corresponding SS
revealed effects associated with the presence of sub-
systems with different composition ordering of unlike

Y11
E

ε33
T

δtan

ε33
T
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ions in the A sublattices. To discover the influence of
composition ordering of the ions on the electrical
parameters of the SS, we analyzed the reasons [7] for
the high permittivity of complex oxides A( )O3B1/2' B1/2''
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Sr0.5)NbO3 solid solutions vs. LiNbO3 content for the sec-
tion z = 10 mol % of Sr0.5NbO3 (1, the same as in Fig. 1).
with the disordered structure. According to [7], the free
space where the small B ions regularly surrounded by
the larger ions can move is considerably less in ordered
structures than in disordered ones. Therefore, when
exposed to an electric field, the disordered structure is
more favorable for small ion motion without damaging
the oxygen framework than the ordered one. This
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Parameters of some (Na, Li, Sr0.5)NbO3 compositions

Composition no. Tc , °C /ε0 Kp g31, mV m/N QM VR , km/s

1 320 127 0.193 10.0 650 5.7

2 338 107 0.215 13.7 40 4.9

3 287 110 0.296 15.8 295 5.4

ε33
T
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increases the polarization per unit field and, hence, the
permittivity. The same growth mechanism of the per-
mittivity and related electrical parameters is likely to be
responsible for the above extrema at the interfaces
between the subsystems with different degrees of com-
position ordering.

The y sections can also be subdivided into those
with irregular and smoothed dependences of the param-
eters. An example of the former case is shown in Fig. 4
(y = 3). Here, g31, d31, and Kp peak within the MR1 (at

its left boundary), whereas /ε0 peaks beyond the
right boundary of the MR1. In addition, away from the
MR1, at about 10 mol % of LiNbO3, there are the sec-
ond maxima of Kp and g31, which may result from an
increase in  combined with a sharp fall of the den-
sity ρ (Fig. 4).

Figure 5 gives an example of smoother dependences
of the parameters for y = 6 mol % of LiNbO3. It is seen

that the incomplete maximum of /ε0 is shifted
beyond the MR1 right boundary, while the g31 and Kp
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maxima are approximately at the center of the MR1,
where δ is minimal. A further increase in g31 and Kp in
the M2 phase is accompanied by the growth of δ.

One of the most interesting properties of the consid-

ered SS is the combination of low permittivity ( /ε0 ≈
105–125) and high electromechanical coupling coeffi-
cient (Kp ≈ 0.2–0.3). This results in high g31, which
characterizes material sensitivity to mechanical stress.
Such materials are known to be effective in accelerom-
eters, flaw detectors, and diagnostic medical devices
[8, 9]. Moreover, low permittivity of materials is favor-
able for their application in high-frequency transducers
[10]. The parameters of such compositions are pre-
sented in the table in order of increasing g31.

Some compositions of the system are characterized
by enhanced anisotropy of the electromechanical cou-
pling coefficients (Kt /Kp ≥ 3), which makes them suit-
able for selectively sensitive accelerometers. In addi-
tion, high Curie temperatures (Tc ≥ 300°C) enable the
extension of the SS operating temperature range.
Finally, like most niobates [9], the considered SS offer
a high velocity of sound, which simplifies the produc-
tion of rf transducers and ensures good matching with
external circuits, and low density, which permits their
use in devices where weight is a key issue.

CONCLUSION

A precision X-ray diffraction study of the solid solu-
tions made it possible to refine the data for phase tran-
sitions in the (Na, Li, Sr0.5)NbO3 ternary system. The
relationship between the structural and electrical prop-
erties of the solid solutions was determined in wide
range of component concentrations. The electrical fea-
tures of these solutions were interpreted in more detail.
Compositions combining low permittivity and high
sensitivity to mechanical stress were obtained. They are
promising for applications in highly sensitive high-fre-
quency transducers.
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Abstract—The ferroelectric elastance of (Na, Li, )NbO3 solid solutions was found to vary directly with
the total electronegativity of elements A (ENΣA), that is, with the A–O bond covalence at B = const. Using ENΣA
values and the position on the phase diagram, one can determine the solid solution parameters optimum for
use in high-frequency (A' = Sr, Pb), medium-frequency (A' = Cd), and elevated-temperature (A' = Cd) devices.
© 2000 MAIK “Nauka/Interperiodica”.

A0.5'
INTRODUCTION

In this paper, we summarize the results of investigat-
ing solid solutions (SS) in xNaNbO3–yLiNbO3–
z NbO3 ternary systems, where A' stands for Sr, Pb,
Cd [hereafter, systems (1)]. Their phase diagrams and
electrical properties are outlined in [1–3]. From six to
seven z sections with compositions varying between
(2–5) and (20–45) mol % of NbO3 at 2.5–5 mol %
intervals were studied for each system. In each section,
compositions with the LiNbO3 content from 1–2.5 to
15–25 mol % were synthesized (y sections). Two-stage
solid-phase reactions were used for SS synthesis; and
hot pressing, for their sintering. Synthesis and sintering
conditions are presented in [1–3]. This study is aimed
at generalizing data obtained for systems (1).

RESULTS AND DISCUSSION

The parts of the phase diagram that are adjacent to
NaNbO3 are presented in [1–3]. Refined diagrams for
these systems are shown in Figs. 1–3. They contain
both monophase regions, namely, monoclinic (M1, M2,
and M4), rhombohedral (Rh), tetragonal (T), and cubic
(K2), and morphotropic regions (MRs) of various
widths where the phases coexist. Near the MRs, the
electrical parameters exhibit extrema correlating with
changes in the structural parameters (for more detailed
properties of various ferroelectrics, see [4, 5]). As was
pointed out above, systems (1) differ by their third ele-
ment A'(Sr, Pb, or Cd), i.e., by type of A–O bond.

Electronegativity (EN) is known to indicate the state
of a chemical bond. Together with other factors, EN to
a large extent defines most physical and physicochem-
ical properties [6]. The chemical bond type is judged by
the difference in the ENs of the components: the less

A0.5'

A0.5'
1063-7842/00/4511- $20.00 © 21437
the difference, the higher the bond covalence [6, 7]. As
to the A–O bond, its covalence increases with increas-
ing EN of the A element, since the gap between the ENs
of the A element and O narrows in this case (the EN of
oxygen is always higher than that of the A element in
the corresponding valence states). In other words, the
EN of the A element is indicative of the A−O bond
covalence. The ENs of the A components in system (1)
and covalence of the A–O bond are listed in Table 1 in
increasing order.

In our previous studies of Pb(Ti, Zr)O3–

Pb O3)n (PZT) solid solutions [4, 5],
we found that their ferroelectric elastance varies
directly with the EN of the B" element in the corre-

(
n 1=
3∑ B1 α–' Bα''
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Fig. 1. Phase diagram of the ternary (Na, Li, Sr0.5)NbO3
system (1, heterogeneous region).
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Fig. 2. Phase diagram of the ternary (Na, Li, Pb0.5)NbO3 system (1, the same as in Fig. 1).

M2 + Rh
sponding oxidation state and, hence, with the B"–O
bond covalence at A = const. This is supported by EN
dependences of the electrical parameters: an increase in

the EN leads to a decrease in /ε0, , Kp, and d31

and an increase in VR, QM, and δ.1 These data were
obtained for compositions with the optimum character-
istics within the tetragonal region near the MR bound-
ary. In addition, the component concentrations were
roughly equal.

1 /ε0 is the relative permittivity, tanδ is the dielectric loss tan-

gent, Kp is the electromechanical coupling coefficient, d31 is the
piezoelectric modulus, VR is the sound velocity, QM is the mechan-
ical Q-factor, and δ is the homogeneous strain parameter [8].

ε33
T δtan

ε33
T
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Fig. 3. Phase diagram of the ternary (Na, Li, Cd 0.5)NbO3
system (1, the same as in Fig. 1).

T

In the niobate SS of system (1), the element A var-
ies, whereas B = const. In contrast to the PZT systems,
the niobate systems have much more complex phase
diagrams. As was mentioned above, they have a large
number of phases and MRs and their characteristics are
irregular. Because of this, correct relationships between
the SS parameters and EN of the SS components must
include the total EN of all the A components with
regard to their concentrations. Moreover, the SS to be
compared should be of the same phase and away from
MR boundaries in order to eliminate their influence.
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Fig. 4. Dependences of (1) /ε0, (2) d31, (3) tanδ, (4) QM,

and (5) δ on the total EN of the A elements and A–O bond
covalence for the (Nax, Liy , )MbO3 solid solutions

belonging to the M2 phase.
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Figure 4 shows the dependences of /ε0, d31, tanδ,
QM, and δ on the total EN of the A elements (ENΣA) with
account of their concentrations in the (Nax, Liy ,

)NbO3 SS and on the A–O bond covalence. Empty,
filled, and half-filled circles mark the SS containing Sr,
Pb, and Cd, respectively. These SS lie in the M2 region,
appearing in all the (Na, Li, A'0.5)NbO3 systems. In
Figs. 1–3, these SS are marked with the corresponding
circles. The selected SS compositions, related ENΣA’s,
and A–O bond covalences are presented in Table 2.

The dependences shown in Fig. 4 are qualitatively
the same as those for the SS in the PZT system. They
indicate that the ferroelectric elastance of the niobate
SS grows with ENΣA and, hence, with A–O bond cova-
lence.

Figure 5 shows the dependences of /ε0, d31, Kp,
QM, and δ on ENΣA and A–O bond covalence for the
(Nax, Liy, Cd0.5z)NbO3 SS belonging to the region of
coexistence of the M2 and T phases (half-filled circles
in Fig. 3). Note the particular complexity of this phase
diagram and the small size of the M2 phase region, from
which only one SS can be presented in Fig. 4. Data in
Fig. 5 also support a direct proportion between the SS
ferroelectric elastance and A–O bond covalence.

Let us now trace how the crystallochemical param-
eter EN influences the areas of niobate SS application.
Niobates are known [9] to have a set of unique param-

eters (low /ε0, low density ρ, and high VR), which
makes them promising for high-frequency and micro-
wave devices. Some of the parameters of system (1) can
be judged by data presented in Fig. 4. It suggests that
the location of the Sr0.5- and Pb0.5-containing SS in the
phase diagram (within the M2 phase), along with the
ENΣA values, strongly affects the parameters of these
SS: they approach each other at close ENΣA’s. When

ENΣA = 482–490 kJ/g-at., these SS exhibit low /ε0

(125–170) but comparatively high piezoelectric param-
eters; hence, high g31 [>10 (mV m)N]. Therefore, these
materials are of potential use in high-frequency accel-
erometers, flaw detectors, and diagnostic medical
devices.

ε33
T

A0.5z'

ε33
T

ε33
T

ε33
T
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The Cd0.5-containing SS provide a somewhat differ-
ent combination of parameters, as follows from Fig. 5.
Here, two compositions in the region where the M2 and
T phases coexist have significantly differing parame-
ters. Along with the SS having properties approaching
those represented in Fig. 4, there is another SS with

considerably higher /ε0 (>1000), d31, and Kp. This
composition is located in the region of extreme param-
eters within the MR (M2 +T). Moreover, this SS has an
elevated Curie temperature Tc = 400°C (in the Sr0.5- and
Pb0.5-containing systems, such MRs and corresponding
properties are absent). The Cd0.5-containing system
includes several additional SS with high Tc (400–430°C)
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and (5) δ on the total EN of the A elements and A–O bond
covalence for the (Nax, Liy , Cd0.5)NbO3 solid solutions
belonging to the morphotropic region M2 + T.
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Table 1.  EN of the (Na, Li, )NbO3 solid solutions and A–O bond covalence

Elements Valence EN, kJ/g-at. A–O bond 
covalence, %

Na 1+ 494 ~22.4

Li 1+ 523 ~22.1

Sr 2+ 523 ~22.1

Pb 2+ 712 ~33.7

Cd 2+ 816 ~40.3

A0.5
'
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Table 2.  Compositions of the selected (Nax, Liy, )NbO3 solid solutions, ENΣA, and A–O bond covalence 

A'
Composition

ENΣA, kJ/g-at. A–O bond 
covalence, %z y x

Sr 0.025 0.055 0.92 490.0 ~20.2

0.05 0.06 0.89 484.0 ~19.8

0.1 0.06 0.84 472.7 ~19.3

0.1 0.07 0.83 473.0 ~19.3

Pb 0.05 0.075 0.875 489.0 ~20.1

0.1 0.075 0.825 481.7 ~19.7

0.1 0.08 0.82 482.4 ~19.8

Cd 0.05 0.06 0.89 491.4 ~20.2

A0.5z
'

and /ε0 = 300–700. These combinations permit the
use of these SS in high-temperature transducers operat-
ing at high and medium frequencies.

CONCLUSION

The ferroelectric elastance of the sodium niobate–
lithium niobate solid solutions depends on the A–O
bond covalence. The latter can be expressed in terms of
the total electronegativity of the elements in the A sub-
lattice (ENΣA), since these values are directly propor-
tional to each other. The position of the solid solution
in the phase diagram and its total electronegativity
specify parameter combinations optimum for the use in
various transducers (flaw detectors, accelerometers,
and high-temperature sensors).
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Abstract—The effect of a magnetic field on the stability of null domain walls is considered in terms of a vari-
ational model. The walls are localized near defects in a (001)-oriented plate. The critical fields at which the
inhomogeneities exist are found, and their role in magnetization processes taking place in the crystals under
study is considered. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that structure defects result in the nonuni-
formity of crystal parameters and strongly affect its static
and dynamic properties. In particular, defects serve as
pinning centers for magnetic inhomogeneities, which, as
a rule, have a nontrivial configuration [1, 2]. They play
an essential role in the formation and rearrangement of
the domain structure and influence crystal magnetization
processes [3]. Therefore, the study of the structure and
properties of magnetic inhomogeneities localized on
defects in applied materials seems to be topical.

MODEL OF NULL DOMAIN WALL

A number of materials, such as garnet ferrite films,
feature the presence of two anisotropies of different
natures: induced uniaxial anisotropy (IUA) and natural
cubic anisotropy (NCA). In these materials, specific
magnetic inhomogeneities [null domain walls (DWs), or
static solitons (SS)] may exist [4]. These are magnetic
inhomogeneities that separate two domains with the
same magnetization orientation M. Different types of
null DWs are known. Their structure and properties
depend on the IUA (Ku) and NCA (K1) constants, as well
as on the film surface orientation. To be specific, con-
sider a (001)-oriented plate where the IUA easy axis is
aligned with the normal n to its surface, n || OZ || [001].
Then, within the model that includes exchange interac-
tion, combined anisotropy, and demagnetizing fields of
space charges localized on DWs [5], the energy of the
magnetic inhomogeneities can be written in the form

(1)

E A ∂Θ/∂y( )2 Θ ∂ϕ/∂y( )2sin
2

+[ ]{∫=

+ Ku Θ K1 Θ ϕ ϕ0–( )sin
2

sin
4[+sin

2

× ϕ ϕ0–( ) Θ Θ]cos
2

sin
2

+cos
2

+ 2πMs
2 Θ ϕ Θm ϕmsinsin–sinsin( )2 } dV ,
1063-7842/00/4511- $20.00 © 21441
where A is an exchange parameter, Ms is the saturation
magnetization, Θ and ϕ are, respectively, polar and azi-
muth angles of the vector M, ϕ0 is the angle between
the [100] direction and the 0X-axis that lies in the DW
plane, Θm and ϕm are angles that define the magnetiza-
tion orientation in the domains, y is the coordinate
along which the magnet is inhomogeneous, and V is the
plate volume.

We assume that the plate thickness D is large and the
contribution from the demagnetizing fields of nonuni-
formly distributed surface charges to energy (1) can be
neglected (idealized model).

From the phase portrait of Lagrange–Euler equa-
tions minimizing (1), it follows that, at κ > 1 (where κ =
K1/Ku), there may exist solutions that correspond to a
null Bloch wall (ϕ = 0, π) and have the form

(2)

where ∆0 =  is the DW width in a uniaxial
crystal.

From (2), such solutions are associated with solitons
of four types. They differ by sense of spin rotation in
the transition polarization layer and deviation of the
vector M from the (001) plane (up- or downward). The
solitons are characterized by an energy Es, effective
width ∆s, and maximum angle Θs (amplitude) of devia-
tion of the vector M from the uniform state. The last
two parameters define the soliton size and are given by

(3)

Θtan a ξ , ϕ0cosh± πn/2, n Z ,∈= =

a κ 1–( ) 1/2– , b κ 1–( )1/2, ξ by/∆0,= = =

A/Ku

∆s 2∆0 π 2 1 2a2+arctan–[ ] 1 a2+{=

+ 1 a2+ 1 2a2++( )/2[ ] } /b,ln

Θs π/2 a( )arctan– .=
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Stability analysis applied to solution (2) (the check
that the condition δ2Ec > 0 is fulfilled [4]) shows that an
SS is an unstable formation.

In [6], conditions for the generation of null DWs in
a (001) plate with combined anisotropy and the proper-
ties of null walls were considered. Specifically, it was
shown that the inclusion of the factors that locally
change the values of the K1 and Ku constants (demagne-
tizing fields of the sample and the presence of defects)
makes the SS stable. The profile of a “defect” was sim-
ulated as

(4)

where l is the width of the defect and the contribution
from the demagnetizing fields to energy (1) is described
by the term

(5)

where Lx is the plate size in the 0X direction.
As follows from the calculations, SS are stable only

if existing defects make a negative contribution to the
energy and the material parameters vary in a certain
range. The upper stability limit (if any) means soliton
diffusion and was predicted even in the idealized model
[4]. However, this model gives ranges of SS stability
(for example, in terms of the parameter κ) that differ
markedly from our results. The lower stability limit is
associated with SS collapse and specifies the least
defect energy necessary for soliton generation. The
lower limit arises mainly because of the competition
between SS–defect interaction forces and magneto-
static forces. It was not discovered earlier.

THE EFFECT OF A MAGNETIC FIELD 
ON SURFACE SOLITON STABILITY

To study magnetization reversal in plates with
defects like (4), it is necessary to take into account the
interaction of the magnetization with an external mag-
netic field H. The contribution from this interaction to
the total SS energy is given by the term

(6)

which is the Zeeman energy of interaction.
It is clear that the effect of Zeeman interaction on

the structure and stable states of SS depends on the field

K1 y( )
K1 ∆K1 for y l/2<–

K1 for y l/2,>



=

Ku y( )
Ku ∆Ku for y l/2<+

Ku for y l/2,>



=

Ems Ms
2Lx Θ y( ) Θ y'( )coscos

∞–

∞

∫
∞–

∞

∫=

× 1 D2/ y y'–( )2+( )dydy',ln

Eh HM V ,d

V

∫–=
orientation relative to the crystallographic axes. There-
fore, we will consider two typical directions of the field
H: H || [100] and H || [001].

(1) H || [100]. In this case, the range of SS stability
is found by the variational method where magnetiza-
tion distribution (2) is taken as the trial function and the
parameters a and b are treated as variational parame-
ters. Such an approach is valid, because, within the ide-
alized model including Zeeman interaction (6) (for H ||
[100]), the phase portrait of the associated Lagrange–
Euler equations gives a magnetization trajectory in the
form of closed loops (Fig. 1a, curve 1). To these loops,
there correspond magnetic inhomogeneities like SS
with a distribution of the vector M in the form of (2).

This variational problem is solved by numerically
minimizing energy (1) in terms of a and b with regard
for (4)–(6). Calculations show that, if H || [100], SS
with different polarizations become nonequivalent; that
is, the polarization degeneracy of SS is removed. A
soliton with ϕ = π (the range of negative h’s in Fig. 2)
is energetically more favorable than that with ϕ = 0
(positive h’s in Fig. 2). The size of a null DW with ϕ =
π grows with increasing h (h = HMs/2Ku) but decreases
for solitons of the other types. This can be explained by
the fact that the magnetic field tends to align the spins
of a null wall with ϕ = π with the field, which increases
its size. The spins of an SS with ϕ = 0 also tend to be
aligned with the field. However, since the angle
between them and the field is less than π/2, the size of
these solitons will decrease. Such a consideration
agrees well with experiments on magnetization reversal
in imperfect magnetic films [7, 8].

It should be noted that, at a certain critical field Hc,
solitons of both types become collapse-unstable and, at
H > Hc, disappear. However, their critical (collapse)

fields depend on the quality factor Q (Q = Ku/2π ) of
the material in a different way: As Q increases, the col-
lapse field of a null DW with ϕ = 0 increases and that
of an SS with ϕ = π diminishes (Fig. 2). This is
explained by the reduced effect of the demagnetizing
fields (Q  ∞) on magnetization reversal.

The dependence of the collapse fields of a null DW
on the defect width l (Fig. 3) has an interesting feature.
When l increases, the collapse field for an SS with ϕ = 0
grows and that for an SS with ϕ = π drops. The reason
is that, as l grows, the effect of NCA on magnetization
reversal becomes more pronounced [9]; conversely,
IUA begins to play a minor role (for ∆κu = –1). Hence,
the magnetic phases with M || [100] become more
stable.

(2) H || [001]. In this case, the variational model of
SS is somewhat more complicated, because homoge-
neous magnetic states with M || [100] are lacking in the
field of the given orientation [9]. Their presence is the
necessary condition for solutions in the form of (2) to
exist. The Lagrange–Euler equations for energy (1)

Ms
2
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with regard for Zeeman interaction (6) at ϕ = 0, π have
a first integral in the form of

(7)

where V(Θ) = [(1 – 1/Q)sin2Θ + κsin2Θcos2Θ –
hcosΘ].

The phase portrait of Eq. (7) is shown in Fig. 1b
(curve 2). It is seen that soliton solutions exist in the
form of separatrixes of closed loops, which intersect at
the point Θ = Θm near π/2. The point Θm corresponds to
the polar angle of the equilibrium direction of M in the
domains and is found from the minimum condition for
energy density E0 = AV(Θ) of a uniformly magnetized
plate. The found values of Θm can be treated as bound-
ary conditions for the soliton solutions of Eq. (7); i.e.,
at y  ±∞, Θ'(y)  0, and Θ  Θm. However,
with these boundary conditions, the solutions cannot be
found in known functions. Therefore, we approximate
them by a trial function in the form

(8)

The SS sizes for the given magnetization distribu-
tion in the transition layer are given by

(9)
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is found from a solution
of the reduced cubic equation

(10)

Note that, if the constant of integration in (7) is
taken to be zero (which is the case at 

 

h

 

 = 0), magnetiza-
tion distribution (8) in the transition layer is trans-
formed into (2). This indicates the validity of the
selected SS model.

The related variational problem for the magnetiza-
tion distribution (8) is solved as in the previous case. As
follows from the calculations, SS differing by the devi-
ation of 
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from the uniform state become nonequiva-
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Q = (1) 1, (2) 10, and (3) 30. ∆κu = ∆Ku/Ku; ∆κ1 = ∆K1/Ku.
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(3) 10.
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Fig. 4. (a) Energy, (b) amplitude, (c) width, and (d) angle Θ0 vs. external field h || [001]. ∆0 = 0.15, D = 12, Q = 5, ∆κ1 = 5.7, ∆κu = 1,
ξ = 0, and l = 0.4. κ = (1) 3.7, (2) 4.2, and (3) 4.7.
lent when the field is applied (Fig. 4). SS in which the
magnetization deviates from the (001) plane toward the
field (SS of the first kind) are energetically more favor-
able than those where the magnetization deviates in the
opposite direction (SS of the second kind). The latter,
which are of two types differing by polarization, are
essentially reversed domains and represent their sim-
plest model.

In Fig. 4, the deviation of the magnetization vector
from the (001) plane increases with the field in the
homogeneous state. The deviation is defined by the
angle Θ0 = π/2 – Θ∞. Because of this, the soliton ampli-
tude also grows. With increasing hz, the SS spins tend
to be aligned with the field, causing the SS of the first
kind to extend. When a critical value of hz is attained,
the first-kind SS begin to diffuse. In this case, ∆s  ∞
and Θs  π/2, which means complete magnetization
reversal with respect to the field. At the same time, the
width and amplitude of the second-kind SS decrease as
h grows. At some value of h, they collapse. However, at
the collapse values of h, the SS energy becomes posi-
tive (i.e., the SS become metastable); hence, SS of this
kind may collapse or transform into another localized
state somewhat earlier, for example, when E > 0.
It is worth noting that the demagnetizing fields of
the plate variously affect the stability range of the SS.
Since magnetostatic energy (5) adds to the total energy
of magnetic inhomogeneities, taking into consideration
the magnetostatic interaction between charges uni-
formly distributed over the plate surface shrinks the SS
stability range. The application of the magnetic field
somewhat extends the stability range for the SS aligned
with the field and narrows this range for those oriented
oppositely. As Q decreases [the contribution of the
demagnetizing fields to energy (1) grows], the collapse
fields rise for the SS of the first kind (Fig. 5) and decline
for the SS of the second kind. This results from the fact
that the demagnetizing fields and the external magnetic
field variously influence the spins in different SS
regions. In the central part of the second-kind SS, these
fields add up and the total field tends to align the spins,
which here make an obtuse angle with the H field, with
the [100] direction. Other spins of these SS (and also
those of the SS of the first kind), which make an acute
angle with H, are subjected to the oppositely acting
fields. Consequently, as Q decreases, the critical field
for the first-kind SS rises and that for the SS of the sec-
ond kind drops. At the critical values of h, the SS of the
first kind diffuse and those of the second kind collapse.
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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and ∆κ1 = (1) 2.7, (2) 2.8, and (3) 2.9.
In both cases, the magnet passes to the homogeneous state
with M making an angle Θ = π/2 – Θ0 with the field.

DISCUSSION

Based on the obtained results, we can conclude that
magnetic inhomogeneities with various polarizations
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
or deviations of the vector M from the (001) plane
behave in a different manner when the external field is
applied. In this sense, they can be thought of as nuclei
of magnetization reversal [10], which correspond to
various magnetization distributions near a defect with
respect to the magnetic field. Static solitons, all spins of
which (or the spins in their central region) make an
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obtuse angle with the H direction, represent reversed
domains originating at defects [11] when the field
diminishes from the saturation state.

The critical (collapse or diffusion) fields of SS cor-
respond to the fields of nucleation of reversed domains
in our case. This is readily illustrated in Fig. 6, where
the plots constructed for various values of the material
parameters are straight lines. Analytically, they can be
represented as

(11)

where α and β are constants related to the material
parameters.

With regard for the field sense and using the explicit
form for h, one can rewrite expression (11) as

(12)

Thus, we have obtained the empirical formula for
critical fields that coincides with the expression for
coercive force obtained in [11]. It should be noted that
a similar expression for coercive force was derived
within the linear theory [12] that includes nucleation at
defects. Specifically, it follows from this theory that the
coefficient α varies in direct proportion with ∆Ku and
∆K1 and is inversely proportional to the defect width.
This is consistent with the results shown in Fig. 6. The
empirical coefficient α decreases with increasing l
(Fig. 6a) and grows with ∆κ1 (Fig. 6b). Also, the coef-
ficient β is virtually independent of the material param-
eters and defect characteristics, being also equal to ≈1.1.
It was noted [12] that empirical expression (12) for Hc

can to some extent resolve “Brown’s paradox” [11],
since α can be arbitrarily small. Using appropriate
averaging over defect sizes, ∆Ku, and ∆K1, one can
obtain coercive force values that agree with experimen-
tal data.

In this respect, [12, 13], where nucleation fields in
uniaxial ferromagnets are studied in terms of the linear
theory, are of interest works. The adopted model con-
siders solitary magnetic inhomogeneities localized on
defects. Their magnetization distribution coincides
with that in null DWs. The relationships for Hc obtained
in these articles correlate with ours and agree well with
experimental data for Ni–Fe–B and Sm–Co uniaxial
ferromagnets. Although these materials are magneti-

cally hard (Ku @ 2π ), the model of [12, 13] does not
include the demagnetizing fields. In this respect, it dif-

hc α β/Q,+=

Hc α
2Ku

Ms

--------- 4πβMs+ 
  .–=

Ms
2

fers substantially from the model in [14] and our
model.

CONCLUSION

Magnetic inhomogeneities originating at defects are
responsible for the magnetization of real crystals to the
greatest extent. Their properties essentially depend on
the material parameters, defect properties, and the
strength and direction of the magnetic field. Our varia-
tional model, while somewhat limited, shows that SS
whose spins (or some of the spins) make an obtuse
angle with the field may be thought of as reversed
domains. The critical (collapse or diffusion) fields of
these SS define the coercive force of magnetic materi-
als. This parameter specifies the magnetic performance
of magnets and is very important for applications.
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Abstract—The effect of pressure on the ionic conductivity of hydrated A-zeolites containing Li, Na, and K cat-
ions was investigated. Room-temperature experiments at pressures to 4.8 GPa show an increase in the conduc-
tivity, which attains its maximum value in the range of 1.7–1.8 GPa for the three zeolites. Further compression
leads to a drastic decrease in the conductivity at 2.5–3.5 GPa. The decrease in the conductivity is associated
with the pressure-induced transition to the amorphous state, as follows from previously reported IR spectros-
copy data. It is believed that the increase in the conductivity with pressure and the subsequent transition to the
amorphous state follow one or several of the following mechanisms: (1) cation conductivity involving hydrox-
yls, (2) hydroxyl–proton conductivity, and (3) enhanced cation mobility due to pressure-induced change in the
degree of hydration. With decreasing pressure, the conductivity does not follow the compression curve. For
pressure-cycled samples, the low-pressure conductivity during decompression is two orders of magnitude
higher than its value at the same pressure during compression. Compression provides a new way for conduc-
tivity optimization in hydrated A-zeolites. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Zeolites belong to the class of framework alumino-
silicates with the structure composed of TO4 (T = Si,
Al) units [1]. The TO4 units form a three-dimensional
spatial network consisting of interconnected channels
and cavities. Such a structure with open channels and
cavities allow zeolites to be used in the industry as ion
exchangers, molecular sieves, and catalysts. The Al tet-
rahedra have negative charge, and cations provide the
electroneutrality of the structure. The ability of the cat-
ions to diffuse through the open zeolite structure makes
possible the high conductivity of the material and its
use as solid electrolytes in electrochemical devices.
Much effort has been made in the past three decades to
reveal factors that control ion transport in an external
electric field [2]. The studies were concentrated mainly
on the insulating properties of the material and the
effect of temperature, water content, and cation nature
on the conductivity and dielectric properties. However,
little is known about the influence of high pressure on
the zeolite structure and ion transport. Recently, we
have investigated the conductivity of hydrated Na
A-zeolite as a function of pressure [3] and showed evi-
dence for its pressure-induced amorphization. In this
work, the effect of pressure on the room-temperature
ionic conductivity in hydrated A-zeolites containing
Li+, Na+, and K+ cations is reported.
1063-7842/00/4511- $20.00 © 21447
EXPERIMENT

Na A-zeolite was prepared by hydrothermal synthe-
sis from a SiO2 : Al2O3 : Na2O : H2O = 2 : 1 : 5 : 15 mix-
ture at 80°C for 3.5 h. Li and K A-zeolites were
obtained by the conventional ion exchange processes.
The zeolites were thoroughly rinsed in distilled water to
remove nonstoichiometric cation. The crystallinity and
composition of the samples were confirmed by X-ray
diffraction analysis (Philips PW1050 and Rigaku Gei-
gerflex CN2029 diffractometers, CuKα and CoKα radi-
ations, respectively) and X-ray fluorescence analysis
(Philips PW1450). In the obtained zeolites, the concen-
tration ratio was M : Si : Al (M = Na, Li, or K) = 1 : 1 : 1.
Prior to experiments, every zeolite powder was kept
over a saturated NH4Cl solution at room temperature
for several days to provide complete hydration. High-
pressure experiments were carried out in a 200-t cubic
anvil–press [4], and pressure was calibrated using the
known transition points of the Bi, Ti, and Ba standards.
Each compacted powder sample was contained in a
cylindrical boron nitride container with platinum elec-
trodes at each of the sample ends (the electrode diame-
ter and thickness were 1 and 0.4 mm, respectively). The
container was placed in a pyrophyllite cell. To elimi-
nate surface conductivity, the samples were surrounded
by a grounded platinum guard ring. The conductivity
was measured at the frequency 1 kHz with an LCR
meter (Stanford Research SR720). Diffraction analysis
000 MAIK “Nauka/Interperiodica”
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of samples exposed to high pressures was performed at
a pressure of 1 atm and 22°C.

RESULTS AND DISCUSSION

Figures 1–3 demonstrate the pressure dependence
of conductivity for the Li, Na, and K A-zeolites. The
data are reduced to the conductivity value at 1 atm
obtained by extrapolation. Since the aim of this work
was to appreciate the effect of pressure on the structure
(the very fact of this effect was confirmed macroscopi-
cally by in situ measurements of the conductivity), the
samples were ground for X-ray diffraction analysis
immediately after the high-pressure experiments. The
conductivity of the samples at 1 atm was not measured.
The insert in Fig. 1 shows the run of the initial conduc-
tivity value for the Li A-zeolites. The behavior of the
curves is similar for all three zeolites. At low pressures,
the conductivity grows with pressure, reaching the
maximum. The peaks lie in the range of 1.7–1.8 GPa
for all the curves, that for the Na A-zeolite being the
broadest. At intermediate pressures, the conductivity
declines and tends to a constant value at high pressures.
When the pressure decreases, conductivity exhibits
hysteresis; its value starts to recover roughly at the
pressure of maximum conductivity. As the pressure
drops further, the conductivity continues to grow and,
at the least (initial) pressure, always exceeds its value at
the beginning of the experiment. As follows from the
conductivity values extrapolated to 1 atm, the samples
subjected to high pressure improve their conductivity.

From the standpoint of simple models, using the
concept of free volume, an increase in the conductivity
of ionic conductors with pressure looks unusual. Con-
duction in zeolites is an ionic process and is associated
primarily with the mobility of groups of exchangeable
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Fig. 1. Relative (normalized by the 1-atm value) ionic con-
ductivity of the hydrated Li A-zeolite vs. pressure. The
insert shows absolute conductivity.
cations, which provide electroneutrality within struc-
ture cavities [2]. In A-zeolites, extra-framework cations
are mobile; it was shown, however, that OH groups and
protons produced by hydration add to the conductivity
and decrease the energy of activation of conduction due
to reduced cation–lattice attraction because of water–
cation interaction [5]. It can be expected that the effect
of pressure on the conductivity of ionic conductors is
similar to its effect on volume. Many previous experi-
ments showed that the conductivity drops with increas-
ing pressure in many ionic conductors [6]. Therefore, it
could be predicted that, in zeolites, applied pressure
will decrease the volume and ionic mobility. As a
result, the conductivity will be reduced due to the first-
order effect. For hydrated zeolite samples, the second-
order effects (pressure-induced conductivity changes
such as in cation–lattice and cation–water bonding)
may also be significant. The pressure of amorphization
of the Li A-zeolite is observed at the same pressure of
maximum conductivity. Therefore, an increase in the
conductivity with pressure in hydrated Na A-zeolite
was discussed with regard to the pressure-induced tran-
sition to the amorphous state of Li A-zeolite at 1.8 GPa
[3, 7]. Although the water content after the high-pres-
sure experiments was not checked, we do not suspect
water losses during the experiments, relying on the
conductivity behavior described below. In water-con-
taining zeolites, conduction is positively correlated
with water content (because of the reasons discussed
above) and also to an additional contribution from
hydroxyl and proton conduction [8]. We suggest that
mechanisms underlying conductivity increase are one
or several of the following: (1) increase in cation mobil-
ity due to OH conductance by the “vehicle” mechanism
[8], (2) increase in hydroxyl–proton conductivity, and
(3) enhanced mobility of hydrated cations due to pres-
sure-induced change in the degree of hydration. In the
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Fig. 2. The same as in Fig. 1 for the Na A-zeolite. The insert
shows the low pressure range to illustrate that the conductiv-
ity increases when the pressure is reduced.
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recent theoretical work [9], considering the molecular
dynamics of hydrated Na A-zeolite with the flexible lat-
tice, it was shown that, at 1 atm, a Na+ ion is bonded to
two or three water molecules on average. In general,
applied pressure increases the coordination number of
ions, which suggests a rise in the cation hydration with
pressure. This leads to the formation of larger and pos-
sibly less mobile cation complexes (such as
[M(H2O)4]+), which can be compensated for by stron-
ger screening between the cation M+ and lattice. Con-
versely, a decrease in the cation hydration would result
in smaller cation complexes (e.g., [M(H2O)]+) and
enhanced cation–lattice interaction.

To verify such considerations, we performed two
series of experiments. In the first, high-pressure cycling
was applied to the K A-zeolite to see how repeat pres-
sure cycles affect the conductivity. In Fig. 4a, a monot-
onous drop in the conductivity at the second compres-
sion cycle is the expected effect for the case when the
free volume of ion transport is controllably changed in
a material with unaffected crystal structure. That no
sign of the pressure-induced transition to the amor-
phous state is seen at this stage means incomplete
recovery of the crystal structure after the first return to
1 GPa. This interpretation is supported by IR spectra
[7] and X-ray diffraction data for the samples subjected
to high pressure. However, at the second decrease in
pressure, the conductivity enhancement factor (CEF)
attains ~90; in other words, the conductivity rises
roughly by two orders of magnitude in comparison
with the initial value. The higher CEF after the second
cycle is also seen in Fig. 3. This may mean that the
pressure-induced change in the cation hydration is irre-
versible. The retention of high-mobility species in the
material that partially returned to the crystalline state
with decreasing pressure locks in the high conductivity
characteristics of the high-pressure preamorphous
state. If the samples exposed to high pressure do retain
high conductivity (which must be checked by measur-
ing the conductivity at 1 atm), this means that compres-
sion opens a new way to optimize the conductivity of
hydrated A-zeolites. This may be useful for applica-
tions.

In the other series of experiments, the maximum
pressure of the first cycle was lower than that at the con-
ductivity peak. The conductivity increases during the
first compression and decreases more slowly when the
pressure drops for the first time (Fig. 4b). At the second
pressure rise, the conductivity continues to tend to its
maximum, as was observed in the one-cycle experi-
ments. At the second pressure drop, the conductivity
also behaves as in the one-cycle experiments.

The fact that the pressure of maximum conductivity
coincides with that of transition to the amorphous state
poses the question as to whether water strengthens the
zeolite network. In this context, it is of interest to con-
sider the position of H2O molecules that was deter-
mined by molecular dynamics simulation [9] for 1 atm.
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
Molecular water is contained in wide α cavities and can
move inside and between them. α cavities of each unit
cell contain more 20 water molecules. In [9], the mean
population of water molecules per unit cell was esti-
mated at 24.25, while in [10], the value obtained by
X-ray diffraction analysis was found to be 22.9. Molec-
ular dynamics simulation demonstrates that hydrogen
atoms are, in general, closer to the cavity walls than
oxygen atoms of the water. Water molecules can
migrate not only between the α cavities but also
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Fig. 3. The same as in Fig. 1 for the K A-zeolite.
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Fig. 4. The same as in Fig. 3 on pressure cycling K A-zeo-
lite. The maximum pressure on the first cycle is (a) 4.6 and
(b) 1.3 GPa.
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between characteristic regions within a cavity. The
regions in which 90% of water molecules stay most of
the time lie at a distance of 3 to 6 Å from the cavity cen-
ter. Hence, within a cavity there exists an approxi-
mately spherical space of radius 3 Å where the water
content is low. This means that water molecules in the
α cavities are “arranged” in such a way that most of the
oxygen atoms are close to the center of a cavity. Under
low pressure, such an orientation (with a negative space
charge present at the cavity center) results in electro-
static repulsion, which improves the resistance of the
zeolite network to compression. A decrease in the vol-
ume with growing pressure causes stronger repulsion
(the electrostatic repulsive force varies as the inverse
square of distance). However, at high pressures, the
cavity begins to shrink possibly because of the dynamic
nature of water molecule arrangement and unstable
(asymmetric) charge distribution. If this strengthening
mechanism is valid, the networks of all the totally
hydrated A-zeolites studied in this work must shrink at
similar pressures [9], which is the case. This hypothesis
will be verified further in experiments with water-free
A-zeolites, and the simulation of molecular dynamics
in high-density hydrated A-zeolite would provide a
clear idea of the issue in question.

The conductivity gain at 1 atm vs. pressure is shown
in Fig. 5 as the dependence of CEF on the cation
charge-to-radius ratio and cation size. If the CEF
depended on the ion size only, the CEF vs. ion radius
curve would run inversely to that shown in the insert in
Fig. 5. The observed dependence of CEF on ion radius
in the series of isovalent cations can be explained only
if cation–lattice interaction is taken into account. The
larger K+ cation interacts with the zeolite network more
weakly than the smaller Li+ cation because of the lower
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Fig. 5. Conductivity enhancement factor (CEF) vs. cation
charge-to-radius ratio for the Li, Na, and K A-zeolites. The
CEF values are obtained from the first cycle results (as for
the data in Figs. 1–3, 5). The insert shows the CEF vs. cation
radius dependence.
polarization energy of the former. This follows from the
data in Fig. 5, which shows the expected change in the
CEF slope with decreasing polarizability. This is con-
sistent with the above assumption that applied pressure
increases the degree of hydration. Further experiments
with extra-framework cations Rb+ and Cs+ will have to
answer the question as to whether higher values of CEF
can be attained. The trend observed for the three cations
studied in this work may however not be followed by
Rb+ and Cs+ because of steric hindrances.

CONCLUSION

The effect of pressure on the ionic conductivity of
hydrated zeolites that contain Li, K, and Na cations to
conserve electroneutrality is complicated because of
the presence of water. At pressures to ~1.7 GPa, the ele-
vated conductivity may be associated with the
hydroxyl-related cationic conductivity, hydroxyl–pro-
ton conductivity, and/or a change (possibly increase) in
the cation hydration with the formation of more mobile
species. At high pressures, the conductivity drops
because of the pressure-induced transition to the amor-
phous state and, hence, the disappearance of cavities
and channels where the cations can move. When the
pressure is reduced, the conductivity trend on compres-
sion is not recovered. After several compres-
sion/decompression cycles, the low-pressure conduc-
tivity is two orders of magnitude higher than its initial
value, as follows from the pressure cycling data. The
obtained results indicate that the conductivity of
hydrated A-zeolites can be optimized by applying pres-
sure in the appropriate range. This can be useful for
applications.
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Abstract—Thermal degradation of Au/Mo/TiBx/AuGe multilayer ohmic contacts with Mo and TiBx diffusion
barriers was studied. The contacts were employed in Gunn-effect diodes. Depth profiling of the components in
the contacts was performed using Auger electron spectroscopy. The microrelief of the metal/semiconductor
interface and contact surface morphology were examined with atomic force microscopy and scanning electron
microscopy, respectively. The measurements were taken before and after argon annealing at T = 400, 600, or
800°C for 60 s. The resistance of the Gunn diode mesa was also measured. Annealing at 400°C is shown not to
affect the sandwich structure of the contacts. Annealing at 600°C causes structure rearrangement in the layers
up to cracking. It is found that the thermal threshold of degradation of the Au/Mo/TiBx /AuGe/GaAs structure
depends on the resistance of the TiBx layer to thermal effects. Reasons for the degradation of Mo and TiBx antid-
iffusion properties are discussed. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that the performance of GaAs
devices (frequency range, noise level, gain, etc.)
depends essentially on the properties of ohmic contacts
to the semiconductor (junction resistance as well as
structure and phase homogeneity at the interfaces).
Therefore, the effect of various process factors on the
properties of ohmic contact systems on GaAs has been
the subject of much investigation [1–6]. Yet, the pro-
duction of low-resistance thermally stable ohmic con-
tacts (OCs) to n-GaAs that offer linear current–voltage
characteristic remains a challenge. Reasons for the
structural inhomogeneity and, hence, thermal degrada-
tion of OCs are as follows: (1) The formation of high-
resistivity (often unstable) intermetallic compounds at
the interface, (2) diffusion mixing of contact materials
at the interface, which causes the extension of the tran-
sition layer and compensation of the near-contact GaAs
region, and (3) the formation of extended (on the order
of the active layer thickness) alloying regions (irregular
protrusions) at the metal/semiconductor (M/S) inter-
face [7].

The first and partly third reasons can be eliminated
by using transition metals and their high-temperature
alloys for the metallization layers. The validity of such
an approach was indicated in [8]. Mo/Ge, Ta/Ge, and
TiW/Ge contact structures were found to retain their
composition and microstructure at annealing tempera-
tures of up to 350°C. Ge/Mo/Ge/W multilayer compo-
sitions subjected to special heat treatment in the InAs
vapors offer still higher thermal stability [9].
1063-7842/00/4511- $20.00 © 21452
However, the disadvantage of the above metalliza-
tion systems is metal–arsenic solid-phase reactions,
which reduce the thermal stability of the contacts (rea-
sons 1 and 2). Reason 2 can be avoided if an additional
layer of a thermally stable inactive compound is intro-
duced into the metallization. As such layers, films of
transition metal borides can be employed. Along with
antidiffusion properties, they have a low resistivity
[10], which is essential for OC metallization.

The aim of this work is to study the thermal degra-
dation of multilayer OC metallizations with a TiBx dif-
fusion barrier.

EXPERIMENTAL TECHNIQUE

Ge, Au, TiBx, and Mo were successively magnetron-
sputtered in argon (5 × 10–3 torr) to form (1800 Å)Au/
(200 Å)Ge/(1000 Å)TiBx/(200 Å)Mo/(3000 Å)Au
OCs. Prior to sputtering, the GaAs surface was sub-
jected to photon cleaning. To make the contacts ohmic,
the metal structure was annealed at 500°C in a hydro-
gen flow. To study the thermal stability of the contacts,
they were subjected to additional short-term (60 s) heat
treatment at 400, 600, or 800°C.

Processes taking place during the formation and
thermal degradation of the contacts were analyzed with
layer-by-layer Auger electron spectroscopy (AES),
scanning electron microscopy (SEM), and atomic force
microscopy (AFM) [11, 12].
000 MAIK “Nauka/Interperiodica”
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RESULTS AND DISCUSSION

The table lists the measured resistances of the
Gunn-effect diode mesa having contacts prepared
according to the above technique at various tempera-
tures and times of hydrogen annealing.

It is seen that the contacts form at temperatures near
500°C and annealing times ≥30 s. Electron microscopy
studies of the contact cross sections showed that OCs
formed under these conditions have a continuous and
relatively uniform alloying front at a depth of ≅ 2000 Å.

Figure 1 shows profiles of the contact components
before and after the heat treatments. Since profile “dis-
tortions” depend on the character of interlayer interac-
tion, we can separate factors that govern the OC behav-
ior upon varying heat treatment conditions.

At annealing temperatures ≤400°C, the layered
structure of the contacts is retained. No marked redis-
tribution of the contact components and formation of
intermetallic compounds at the interfaces are observed.
The properties of the contacts depend largely on the
completeness of the reaction between Au–Ge and
GaAs, which is due to short-term annealing at ~500°C
for 60 s.

With regard for the fact that the weight percentages
of Au and Ge were taken in such a way as to prevent
eutectic formation, metal–semiconductor interaction is
limited by interdiffusion of the GaAs constituents and
gold. At the annealing temperature, the contact metalli-
zation melts in areas where the Au–Ga(As) composi-
tion is eutectic. Upon cooling, Au–Ga, Au–Ge, and Au–
GaAs phases precipitate in the transition layer of the
contact [3, 6] and the interface attains granular struc-
ture (Fig. 2). The amounts and structures of the precip-
itated phases depend on annealing temperature, cooling
rate, and contact preparation conditions [3, 4].

The selective absorption of Ga by the metallization
makes possible its substitution by Ge atoms in the
GaAs near-surface region. In this case, an n+-layer
formed on the GaAs surface provides low contact resis-
tance.

During subsequent annealing (400°C) of the contact
thus formed, the reactions at the interface with the
semiconductor are completed and Au and Ge penetrate
deeper into the GaAs lattice. The layered structure of
the contact is retained, and the M/S interface morphol-
ogy is further modified due to melting of the contact
metallization in microareas where the reactions have
not come to an end after short-term annealing (Fig. 2).

The persisting surface roughness (Fig. 2) substanti-
ates this supposition. Annealing at 600°C does not
result in the breakdown of the layered structure of the
contact, but the antidiffusion properties of Mo and TiBx

are adversely affected. As a result, the Au atoms from
the metallization reach the M/S interface and the Ga
and As atoms penetrate deeply into the metallization.
However, the electrical parameters of the contacts
change insignificantly (see table). With the resistance
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
of the contacts remained unchanged and general lay-
ered structure being retained, such redistributions of the
Au, Ga, and As atoms can be associated with local rear-
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Fig. 1. Component profiles in the Au/Mo/TiBx/Au–
Ge/GaAs structure: (a) initial and (b) after annealing at 400,
(c) 600, and (d) 800°C in argon for 60 s.
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rangements in the contact structure. Indeed, SEM data
shown in Fig. 3 imply that the contact structure under-
goes marked modifications after annealing at 600°C.
The basic feature of this structure rearrangement is
local cracking of the metal overlayers. As a result,
channels arise in the film coating, and the GaAs constit-
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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Fig. 3. SEM image of the Au/Mo/TiBx/AuGe/GaAs contact structure (×500 magnification) for various annealing conditions (see the
caption to Fig. 1).
uents can penetrate deeply into the metallization
(Fig. 1). The thermal decomposition of GaAs favors
this process. Intense interaction of Ga with the Au
atoms, as well as the buffer properties of the molybde-
num film, slows down the migration of the Au atoms
toward the interface.

Annealing at 800°C causes dramatic transformation
of the layered structure of the contacts. In this case, as
follows from Fig. 1, the TiBx layer totally loses its bar-
rier properties, and the concentration of gold coming to
the M/S interface sharply increases. This, in turn,
enhances phase formation in the contacts. The domi-
nant phases here may be Au2Ga, Au7Ga2 [3], and possi-
bly stable Ga, Ti, and B oxides [13]. Resulting crystal-
lization microdefects make the interface rough and
irregular, as evident from Fig. 2. The topographic inho-
mogeneity of the surface does not obey the Gaussian
distribution. This means that activation processes at the
interfaces play an essential role. Under such conditions,
chemical reactions between the contact components
and thermal decomposition of the semiconductor sub-
strate are responsible for the interface microrelief.
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
The presence of various phases and resulting inter-
face roughness adversely affect the electrophysical
properties of the contacts. The reasons are increasing
doping inhomogeneity of the semiconductor surface
and the extended layer of complex composition that
forms between the contact layers. In addition, AES data
did not detect Ge atoms in both the metallization and
near-contact region of the semiconductor. Sinks
responsible for Ge atom localization have remained
unclear. All the above factors cause the contact resis-
tance to grow sharply (see table).

Thus, the thermal threshold of OC degradation
depends on the TiBx resistance to temperature effects. A
low activation energy of Ga diffusion (≤0.3 eV) that
was calculated with experimental data in Fig. 1 also
favors the mechanism of contact degradation. As was
mentioned (Fig. 3), contact degradation starts locally
and appears as pores and cracks. We will note three
sources of TiBx local breakdown.

(1) Microcracks in the contact metallization due to
structure relaxation during annealing. It is known that
magnetron-sputtered films possess high internal com-
pression stresses [14]. Nanometer grains and the disor-
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dered atomic structure of the intergranular space, which
is much larger than the grain volume, may substantially
change the elastic properties of a material and structure
relaxation mechanisms. Currently available informa-
tion on the mechanical properties of TiBx layers and the
effect process factors have on them is scarce and con-
tradictory. Therefore, there is no consensus of opinion
regarding structure relaxation mechanisms in the
objects under study. Only a qualitative correlation
between the microstructure and strained state of the
film has been found.

(2) Reactions between the contact metals and TiBx.
These may proceed primarily on disordered grain
boundaries. Locally proceeding elevated-temperature
reactions may promote pore formation in the TiBx

films, thus initiating cracking.

(3) A decrease in the corrosion resistance of the lay-
ers with increasing annealing temperatures. At moder-
ate temperatures, amorphous films of titanium boride
react with oxygen to form TiO2 and B2O3 [15]. The
former compound is volatile and leaves the contact.
The formation of the heterogeneous TiBx + TiO2 com-
position violates the continuity of the film.

By varying conditions for TiBx preparation, one can
greatly suppress the effect of these sources and obtain
contacts with enhanced thermal stability.

In conclusion, note one more interesting feature of
the contacts. The case in point is the interface geometry
in the structures subjected to various heat treatments.
AFM data show that the M/S interface is a fractal [16]
with the dimension D = 2.54. The surface roughness
and irregularity does not change after annealing at
400°C (D = 2.56). After heat treatment at 600°C, D
sharply drops to 2.25 and remains the same after
annealing at 800°C. We failed to relate this parameter
to physicochemical processes. Yet, it is noteworthy that
the jump of fractal dimension coincides with the onset
of contact degradation.

The effect of temperature and annealing time on the diode
resistance

T °, C (60 s) R, Ω Time, s 
(T = 500°C) R, Ω

460 47 6 19.6

500 2.3 30 2.8

550 2.6 60 2.8

600 2.8 120 2.8

650 7.3 1800 2.8
CONCLUSIONS

It was shown that TiBx layers incorporated into the
contact structure make the contacts more resistant to
thermal effects. Physicochemical reasons responsible
for the degradation of the OCs to GaAs during high-
temperature annealings were analyzed. The degrada-
tion model for the contacts with TiBx as a diffusion bar-
rier was suggested.
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Self-reflection in a Naive Model of Nonlinear Media
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Abstract—The optical self-reflection in a naive model of a semi-infinite nonlinear medium is studied theoret-
ically. It is demonstrated that a Fabry–Perot resonator is induced by a propagating wave in the medium if the
incident intensity exceeds a critical value. Hysteresis dependences of the reflectivity and the resonator length
on the incident intensity are predicted. © 2000 MAIK “Nauka/Interperiodica”.
In passing through a nonlinear medium, laser radia-
tion may considerably change its propagation condi-
tion. Recent studies on nonlinear optics have predicted
a new phenomenon, namely, self-reflection in a dense
medium with saturable absorption under the action of
laser radiation, the medium being modeled by a homo-
geneous system of two-level atoms [1–6]. The spatial
distributions of a propagating wave, the refractive
index, and the absorption coefficient were numerically
analyzed in relation to the incident amplitude and a
detuning parameter [1]. It was demonstrated for a semi-
infinite medium that a self-reflected wave arises in the
region where the nonlinear refractive index exhibits
sharp nonuniformity. In [3], the multivalued nature of
the reflectivity was predicted. As regards experiments,
self-reflection was first observed in a ZnSe crystal [7].

The conventional theory of a stationary self-reflec-
tion effect rests on solving the wave equation in which
the complex-valued nonlinear permittivity is deter-
mined by constitutive relations. The problem is that the
slowly-varying-envelope approximation (SVEA) can-
not reveal self-reflection, as highlighted in [1–6]. To see
this, look at a semiinfinite absorbing nonlinear medium
and assume that a forward and a backward wave prop-
agate in it. With the SVEA, the wave equation yields an
integral of motion for the wave amplitudes and this
integral directly implies that one of the waves must be
zero. The forward wave must exist, since it represents
the excitation of the medium. Thus, the zero wave is the
backward wave, which relates to self-reflection. On the
other hand, the nonlinear wave equation defies analyti-
cal treatment beyond the SVEA [1–6]. Fundamental
difficulties with the second-order nonlinear equation
for a complex field amplitude are aggravated by condi-
tions on the crystal front face [1–7]. For this reason, it
is wise to consider a nonlinear model of the medium
that would both allow for an analytical solution and
include self-reflection. In the simplest case, optical
properties of the medium are assumed to be step func-
tions of the wave amplitude. This naive practice has
been followed using bright and dark solitons [8–11]
and surface nonlinear waves [12, 13]. The approach
1063-7842/00/4511- $20.00 © 21457
was substantiated for the excitonic spectral region at
high excitation levels [14].

Let us investigate self-reflection in terms of the
naive model of a semiinfinite nonlinear medium, the
complex permittivity being defined as

(1)

where  and  are the real and the imaginary part of

 (i = 1, 2), respectively, and Es(Is) is the amplitude
(intensity) of a propagating wave at which the permit-
tivity switches from one value to the other.

Let a monochromatic electromagnetic wave of
amplitude E0 and frequency ω be normally incident on
a plane boundary between a vacuum and the medium.
The wave penetrates the medium and propagates there
along the x-axis, being partly reflected from the bound-
ary. In the medium, the amplitude distribution E(x)
obeys the wave equation

(2)

Let E0c(I0c) denote a critical incident amplitude
(intensity) that corresponds to E(z = 0) = Es I(z = 0) = Is

in the medium. If E0 > E0c (I0 < I0c), the solution of (2)
includes only a forward wave. No backward wave
exists because E(x  ∞)  0, the medium being
absorbing and semi-infinite. The amplitude of a
reflected wave can be found from the condition that the
tangential field components are continuous at z = 0.
Accordingly, the respective intensities of the waves at
E0 < E0c are expressed as

(3), (4)

ε E( )
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where

(5)

Formula (3) shows that the intensity decreases expo-
nentially in the medium and that the real and the imag-
inary field components are oscillating functions of the
coordinate and have exponentially falling envelopes
and a spatial frequency p1.

Note that, if 0 < I0 < I0c, then the reflectivity R = 
is independent of the incident intensity I0 and is gov-

erned by  and . Thus, we deal with the Fresnel
reflection from the surface.

As the excitation grows, so does the wave amplitude
in the medium. If I0 = I0c, we have I = Is for z = 0.
Together with (3), this yields

(6)

It follows from (6) and (5) that I0c depends solely on

Is, , and .

If I0 ≥ I0c, a region with I ≥ Is forms in the medium.

Consequently, ε =  + i  throughout the region,

whereas the other part of the medium still has ε =  +

i . The region extends from z = 0 to z = zs, where zs is
the point at which I = Is, the value of zs rising with I0.
Thus, an originally uniform medium takes on a domain
that is adjacent to the surface and differs from the other
part in optical properties. The domain-interface posi-
tion z = zs varies with the excitation level. Both a for-
ward and a backward wave exist in the domain, having
stationary field distributions, but only a forward wave
exists for z ≥ zs. On the other hand, the domain can be
regarded as an optically induced Fabry–Perot (FP) res-
onator with an externally controlled length zs.

Let us solve equation (2) for the regions 0 ≤ z ≤ zs

and z ≥ zs subject to the condition of tangential-compo-
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nent continuity at z = zs. We thus obtain expressions

(7)

(8)

for the spatial distribution of the field intensity in the
medium.

The reflected intensity is expressed as

(9)

(10)

For zs at I0 ≥ I0c, we have a transcendental equation
depending on the excitation level and the parameters of
the medium:

(11)

where

(12)

are the respective phase steps of the amplitude reflectiv-
ities ρ2 and ρ21 for the two interfaces of the domain.
Furthermore,

(13)
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Expressions (7)–(13) constitute an analytical solu-
tion to the self-reflection problem.

Let us discuss the above results. Figure 1 shows the
dependence of zs on I0 /Is, when I0 ≥ I0c. In the absorp-
tion limit (  > ) zs rises monotonically with I0.

By contrast, in the dispersion limit (  < ), zs

increases in an oscillatory fashion and zs(I0) may be a
multivalued function in certain regions. In other words,
zs(I0) may be bistable and even multistable so that zs

changes abruptly at certain values of I0. This indicates
radical restructuring of the field distribution in the
medium: constructive nonlinear interference of the for-
ward and the backward wave alternates with destructive
interference as the length of the induced FP resonator is
varied. A change in the excitation level leads to a new
field distribution corresponding to a new resonator
length. It can also be seen that the multistability in zs(I0)
is more noticeable and the hysteresis loops are wider
for low intensities (near I0c) at fixed  and . If
I0 @ I0c, absorption outweighs dispersion so that the
multistability gradually disappears and the resonator
length begins increasing monotonically. If I0 goes
down, monotonic decrease in zs(I0) alternates with
steps. At the final stage of its changes, zs monotonically
decreases and, starting from I0 = I0c, the resonator
length is identically zero (Fig. 1a). Compared with
increasing I0, the steps lie at other values of I0.

Figure 1 depicts zs(I0) for r1 > r2. It is seen that zs(I0)
may change abruptly just as I0 ≥ I0c. Still more interest-
ing is the fact that the last step is at I0 < I0c, when I0
decreases. This is because the reflectivity phase Φ1 +
Φ2 is almost π/2, so that an induced FP resonator of an
appreciable length arises at once if I0 is as low as I0c.
The phenomenon is pronounced with infinitesimal
absorption (  ! ). In that case, the third sum

term in (9) is proportional to (  – )sin2( ), so

that the reflection phase step is zero if  >  and is π
if  < , resulting in an anomalous behavior of zs(I0)
near I0c. Thus, the reflectivity phases play a very impor-
tant role in the formation of the field distribution and
the interface in the medium. As I0 decreases, zs first
decreases monotonically, then changes abruptly, and
finally the induced FP resonator abruptly disappears at

r2 = 
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I0 ≤ I0c. Thus, if r1 > r2, the resonator is created at I0 =
I0c (as I0 increases) and disappears at I0 < I0c (as I0
decreases). The latter can be seen from Fig. 1b.

The above-investigated dynamics of the domain
interface essentially indicates that its position may
change at an unsteady rate even if the excitation level is
varied steadily. Remarkably, this result is obtained by
qualitative reasoning in the context of a rudimentary
model of the nonlinearity. In experiments, the motion
of the domain interface can be examined with the help
of the Doppler effect, following pioneering work [7].
This may provide more detailed information on the
self-reflection dynamics in optically uniform media.

Since Ir depends on zs (although in a complicated
manner), the behavior of zs(I0) governs that of Ir(I0).
Figure 2 shows the reflectivity R = Ir /I0 as a function of
I0 for different values of the permittivity parameters. It
is seen that, for I0 < I0c, linear (Fresnel) reflection

occurs with R = , whereas, for I0 > I0c, the reflection
becomes substantially nonlinear and even multistable.
The multistability of R(I0) is pronounced in the disper-
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Fig. 1. Length of an optically induced FP resonator vs. nor-
malized incident intensity. Panel (a) is computed for r1 < r2;

 = 6;  = 0.7;  = 11; and  = (1) 0.5, (2) 1, (3) 1.5,

(4) 2.5, (5) 3.5, or (6) 5. Panel (b) is computed for r1 > r2;
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(4) 13, or (5) 15.
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sion limit, where zs(I0) is a multivalued function. At
higher excitation levels, R(I0) becomes smoother and
the multistability gradually gives way to oscillatory

behavior. If I0 @ I0c, then R(I0) tends to  asymptoti-
cally. The suppression of the multistability at I0 @ I0c

stems from the fact that the domain interface goes deep
into the medium, so that a significantly attenuated
backward wave comes to the surface and cannot pro-
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Fig. 2. Reflectivity vs. normalized incident intensity. Panel
(a) is computed for  = 6,  = 0.7,  = 11, and  = 0.5.

Panel (b) is computed for  = 11,  = 6,   = 0.7, and

 = (1) 0.5 or (2) 0.7. Panel (c) is computed for  = 6;

 = 3;  = (1, 4–6) 11, (2) 9, or (3) 7; and  = (1–3) 10,

(4) 8, (5) 6, or (6) 4.

ε1' ε1'' ε2' ε2''

ε1' ε2' ε1''

ε2'' ε1'

ε1'' ε2' ε2''
duce adequate constructive interference with the for-
ward wave.

Figure 2a presents the dependence R(I0) for r2 > r1

in the dispersion limit (  ! ). It is seen that once
I0 has crossed the critical level I0c, the reflectivity rap-
idly and continuously grows to a maximum value 2–3

times larger than  or . A further increase in I0 leads
to multistability in R(I0). Specifically, we see the transi-
tion from a five- to a three-value region and then I0
enters a single-value region, where R(I0) varies in a
nonlinear (oscillatory) fashion and asymptotically

approaches  for I0 @ I0c. The envelopes tend to the
same level. Note that the oscillation rate of R(I0) is gov-
erned by p2, whereas the number of spatial periods is
limited by q2. Figure 2 shows that decreasing , the
other permittivity parameters being fixed, reduces the

oscillation amplitude of R and the limit value R = .

Figure 2b depicts R(I0) for two values of . Notice

the high sensitivity to this parameter: as  goes up, the
multistability quickly disappears and the number of
spatial periods markedly decreases. The reason is that
increasing  is equivalent to increasing the absorption
coefficient and q2, which ultimately suppresses the
effect of the backward wave on the nonlinear interfer-
ence. The graphs in Fig. 2b are plotted for r1 > r2. It is
seen that, once I0 has crossed the critical level I0c, the
reflectivity falls abruptly, which is equivalent to the for-
mation of an induced FP resonator with a nonzero
length.

Figure 2c displays the behavior of R(I0) in the strong
absorption limit. The reflectivity now rises (or falls)
monotonically, with no oscillation, due to the rapid
decay of the backward wave and the consequent
absence of interference.

The multivalued nature of R(I0) manifests itself in
I(z). The intensity distribution can easily be constructed
from (7), (8), and the five computed values of R(I0) for
I0/Is = 4.24 (see points 1–5 in Fig. 2a), the results being
shown in Fig. 3. It turns out that I(z) and its derivatives
are multivalued on the surface, eventually determining
different values of the reflectivity for the same I0. The
field distributions also differ in the number of spatial
periods and in zs. Thus, if I0 ≥ I0c, then I(z) is an oscil-
lating function with an exponentially decreasing enve-
lope for 0 ≤ z ≤ zs and is an exponentially decaying
function for z > zs. Note that (7) is a self-similar solu-
tion: variations in I0 and zs result in nothing more than
shifts of the origin.

In summary, we have investigated the self-reflection
effect in the context of a naive model of a medium with
a steplike dependence of the permittivity on the wave
intensity. The extreme simplicity of the model allowed
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us to obtain exact analytical solutions and to elucidate
their physical meaning. It has been demonstrated for an
optically uniform nonlinear medium exposed to radia-
tion that an induced FP resonator arises in the medium
if the incident intensity exceeds a critical value, the res-
onator length being determined by the incident inten-
sity. Hysteresis has been found in the behavior of sur-
face reflectivity and resonator length as functions of the
incident intensity. Intensity distributions in the medium
have been computed.

We strongly believe that the properties of optical
self-reflection predicted in this paper will show up in
more realistic models of nonlinear media in which the
permittivity function is derived from solutions of con-
stitutive relations with regard for specific quantum tran-
sitions. On the other hand, sophisticated models allow
for no analytical solutions that give an intricate picture
of self-reflection. In the case of two light beams, the
results would be difficult to explain even in qualitative

0 2 4 z
0.5

0.8

1.0

1.3

I(z)

1
2

3

4

5

Fig. 3. Intensity distributions in the medium at I0 /Is = 4.24
for R = (1) 0.383, (2) 0.359, (3) 0.3, (4) 0.23, and (5) 0.21.
The curves are labeled as the corresponding points in
Fig. 2a.
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terms. For these reasons, the complete analysis of the
naive model performed in this study seems to be most
useful. We think that our approach will yield many
valuable insights.
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Abstract—The structure of the distribution of plasma parameters over the interelectrode space of a thermoelec-
tronic converter of laser energy into electrical energy was analyzed. Processes occurring in the near-electrode
discharge regions were studied. Equations describing the equilibrium core of a continuous optical discharge
were derived, and boundary conditions were imposed on these equations. A method of numerical solution and
a software package for simulating the energy converter operation were developed. © 2000 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

Power beaming is a promising technology for power
transmission [1–6]. It is based on the conversion of
energy produced by a primary energy source into
energy of electromagnetic radiation. This energy is
transmitted by a microwave or laser beam and con-
verted into electrical or other forms of energy for fur-
ther use. One of the main advantages of laser power
beaming is that it allows the size of transmitting and
receiving devices to be reduced by several orders of
magnitude. The conversion of laser energy into electri-
cal energy is one of the most important stages of laser
power beaming. There are several approaches to the
implementation of this stage of power beaming. These
approaches are based on various methods of direct
energy conversion. Thermoelectronic conversion of
laser energy into electrical energy [7] holds much
promise for high-power space-qualified hardware with
limited weight and dimensions. This method does not
impose strict requirements on the wavelength and
monochromaticity of laser radiation. Thermoelectronic
laser energy converters (TELEC) are used for convert-
ing high-intensity laser beams (~104–105 V cm–2) at
high temperatures of the cooler (more than 1 kK). This
provides effective dissipation of unused energy in a
vacuum. High upper temperature of the energy conver-
sion cycle (15–20 kK) allows the energy converter effi-
ciency to be significantly increased.

The method of thermoelectronic conversion of laser
energy into electrical energy was put forward in [7].
The method is based on the conversion of energy of hot
electrons produced by RF-discharge into direct current
energy [8]. Although the fundamental principles of this
method are relatively simple, a number of experimental
1063-7842/00/4511- $20.00 © 21462
attempts at its implementation failed [9, 10]. Presum-
ably, these failures slowed the development of the the-
ory of the method. As a result, an adequate theory of
thermoelectronic laser energy conversion has not yet
been accomplished. At present, theoretical studies of
thermoelectronic laser energy conversion are encour-
aged by the results of experimental studies of the first
TELEC [11].

In this work, thermoelectronic laser energy conver-
sion and physical processes determining its efficiency
were subjected to theoretical study. Particular emphasis
was placed on the study of continuous optical discharge
(COD) in the interelectrode space of the energy con-
verter. Continuous optical discharge of this type is
characterized by a small cross section (~1 mm), direct
contact of the electrodes with the high-temperature
(≈10 kK) regions of the discharge, and an electric cur-
rent through the discharge. In conventional COD-based
devices [12, 13], the processes occurring in the COD
regions adjacent to the wall are often of subordinate
importance. In this case, a rough description of these
processes is quite sufficient. In TELEC, however, the
processes occurring in the near-electrode discharge
regions are of primary importance [8]. That is why par-
ticular emphasis in this work was placed on the near-
electrode regions. Equations describing the equilibrium
core of COD were derived, and boundary conditions
were imposed on these equations.

BASIC EQUATIONS

A thermoelectronic laser energy converter is imple-
mented as a gas-filled diode with a hot electron emitter
and a relatively cold collector. Continuous optical dis-
000 MAIK “Nauka/Interperiodica”
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charge in the interelectrode space of the diode is main-
tained by laser radiation. Plasma in the interelectrode
space is dense and for the most part strongly ionized
[11]. Thus, it can be described using equations of three-
fluid hydrodynamics [14, 15]. In this work, we restrict
our consideration to the steady-state case:

(1)

(2)

(3)

Equations (1) are the continuity equations; Eqs. (2)
are the motion equations for electrons, ions, and atoms,
respectively; Eqs. (3) are the equations of energy con-
servation for electrons and heavy components of
plasma (HCP), respectively; J, ji, and ja are the elec-
tron, ion, and atom flux densities, respectively; Γi =
nveσina[1 – (naeq /na)(n/neq)2] is the ion production rate
in plasma; n and na are the electron (ion) and atom con-

centrations, respectively;  =  is the ther-
mal velocity of electrons; σi is the effective cross sec-
tion of atom ionization by electrons; neq and naeq = [P –
neq(Te + T)]/T are the equilibrium (quasi-equilibrium)
electron (ion) and atom concentrations, respectively; Te

and T are the electron and atom (ion) temperatures,
respectively; Pe, Pi, Pa, and P are the electron, ion,
atom, and total plasma pressures, respectively; e is the
elementary charge; ϕ is the electric potential; Rei +

Rea = –eJ/ue – n∇ Te and Ria = –(e/ui)[ji – (n/na)ja] –

n∇ T are the forces of electron friction on ions and
atoms (at J @ ji and J @ (n/na)ja, which is usually true
for interelectrode plasma in TELEC) and the friction

force between ions and atoms, respectively; ue, ui, ,

and  are the electron and ion mobilities and thermal
diffusion ratios, respectively;

(4)

are the total electron energy flux and the heat energy
flux for HCP (ions and atoms), respectively; βe = 5/2 +

; λe and λH are the thermal conductivity coefficients
for electrons and HCP, respectively; Ei is the atom ion-
ization potential; ∆Sei = (3m/M)m(Te – T)/τei and ∆Sea =
(3m/M)n(Te – T)/τea are the electron gas energy losses
caused by electron–ion and electron–atom collisions,
respectively; m and M are the electronic and ionic
(atomic) masses, respectively; τei and τea are the elec-
tron–ion and electron–atom intercollision times; and
∆Srad is the specific power of radiation contribution to
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the plasma electron energy. The transfer coefficients
that are not given in this work can be found in [14, 15].
Equations for ∆Srad are given below.

The set of simultaneous Eqs. (1)–(4) is subject to
boundary conditions at the interface between quasi-
neutral plasma and near-electrode space charge regions
[14, 15]. The solution of this set of simultaneous equa-
tions (taking into account equations for ∆Srad) allows
the distribution of plasma parameters over the inter-
electrode space and the converter characteristics to be
determined. However, this method of solving is too
cumbersome. The analysis of the distribution of plasma
parameters over the interelectrode space of TELEC
facilitates solving of the problem and allows the meth-
ods used for studying COD in gases and slow combus-
tion modes [16, 17] to be applied to TELEC.

Analysis of typical TELEC [11] showed that the
plasma temperature at the center (core) of the optical
discharge (i.e., at the site where the greatest part of the
laser radiation energy is absorbed) is rather high (T ≈
Te). Plasma in the discharge core is strongly ionized and
virtually equilibrium (n ≈ neq). However, outside the
core, there is a trend toward a decrease in the plasma
temperature and density: at a distance LT =
{[M/(3m)]λHτeH/n}1/2 from the electrodes, the tempera-
ture T becomes lower than Te (τeH is the electron-HCP

intercollision time); at a distance Li = 
from the electrodes, the density n becomes lower than
neq (Da is the ambipolar diffusion coefficient).

If the electron temperature in the near-electrode
plasma regions is about 10 kK (which is typical of
TELEC), LT far exceeds Li, but these two values are
considerably smaller than the interelectrode distance L.
This allows the description of plasma in TELEC to be
simplified in a manner similar to the description of
plasma in the thermionic converter of heat energy into
electrical energy (TIC) at strong currents through a
diode [14]. Let the interelectrode space be divided into
seven regions: (1) equilibrium core of the optical dis-
charge, where all plasma components have equilibrium
concentrations and virtually identical temperatures; the
greatest part of the laser radiation energy is absorbed in
this region; (2) two regions of quasi-equilibrium
plasma at the COD periphery, where T < Te, but elec-
tron, ion, and atom concentrations are related by the
Saha equation at the electron temperature n = neq(Te);
(3) two regions of nonequilibrium plasma adjacent to
the quasi-equilibrium regions on the electrode sides,
where T < Te and n < neq(Te); in these regions, most of
the ions transferred to the electrodes are produced; and
(4) near-electrode space charge regions (Langmuir lay-
ers), where particles move almost without collisions.

Assuming that in the COD core Te = T and n = neq,
we obtain on rearrangement the following set of simul-

Da/ naσiv e( )
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taneous equations describing the COD core plasma in
TELEC without a gas flow (P = P0):

(5)

(6)

The atom concentrations and the atom and ion flux
densities are determined by the following equations:

(7)

(8)

where n = neq = N(  – 1); N =
(gi /ga)2(2πmT/h2)3/2exp(–Ei/T); P0 is the gas pressure
in the converter chamber; gi and ga are the statistical
ionic and atomic weights, respectively; h is the Planck
constant; λ = λH + λe is the heat conductivity of plasma;
and Di is the ionic diffusion coefficient. Equation (5)
describes the energy balance of the COD core plasma
with respect to the electric current through the con-
verter. The physical meaning of the other equations is
obvious.

Equations (5)–(8) were derived under the assump-
tion that the ion production rate in plasma Γi was zero
(n ≈ neq). To make an estimate of the ion production
rate, ji should be calculated in the zeroth-order approx-
imation using Eq. (8); then, Γi can be determined from
the obtained value of ji using the continuity Eq. (1) for
ions.

Consider radiation processes in the COD core: inter-
action between laser radiation and plasma and radiative
heat exchange induced by intrinsic plasma radiation.
The specific power of the radiation contribution to the
plasma energy was found to be ∆Srad = WL – Q, where
WL is the specific power of the energy release in plasma
caused by laser radiation absorption and Q is the spe-
cific power loss due to intrinsic radiation of plasma.
Special boundary conditions are imposed on the
obtained set of simultaneous equations to take into
account radiation processes at the electrodes and in the
near-electrode discharge regions.
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Consider a weakly focused laser beam propagating
in the positive direction z. In the quasi-optical approxi-
mation [18–20], its interaction with plasma can be
described by the equation

(9)

where E(r) is the complex amplitude of laser radiation
field intensity; εδ = (ε – ε0)/ε0; ε = εR + iεIm is the com-
plex permittivity of the equilibrium plasma at the pres-
sure P and temperature T; ε0 is the real part of complex
permittivity at the pressure P and temperature T0 =
(TE + TC)/2; TE and TC  are the emitter and collector

temperatures, respectively; k = ω /c is the wave
number; ω is the circular frequency of laser radiation;
and c is the velocity of light in vacuum. If ω @ ωp (ωp =

 is the plasma frequency), the permittivity
can be determined using the following equations:

(10)

where µ is the laser radiation absorption coefficient
(see, e.g., [19]).

The specific power of the energy release in plasma
caused by laser radiation absorption is related to the
complex amplitude E(r) by the equation

(11)

The intrinsic plasma radiation transfer in the dis-
charge core is described by the equation

(12)

where Jν(r, W) is the spectral intensity of radiation in
the direction W; Jbν(T) is the spectral intensity of black-
body radiation at the temperature T; and kν(T) is the
coefficient of absorption of optical radiation at the fre-
quency ν by plasma at the temperature T. Spectral den-
sity of radiant energy Uν is

(13)

Mathematical simulation of COD in the slow com-
bustion mode [12, 13] showed that the equation for
intrinsic plasma radiation transfer in the discharge core
can be solved in the multigroup diffusion approxima-
tion or even in the multigroup bulk-luminescence
approximation. For this purpose, let us divide the spec-

2ik
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tral range of heat radiation into S unequal subranges.
Averaging over the sth subrange, we obtain

(14)

where Us are the group densities of radiation energy;
Ubν is the spectral density of the blackbody radiation
energy; and ks are the group spectral coefficients of
radiation absorption (these coefficients can be calcu-
lated using the MONSTR system [13]). In the multi-
group diffusion approximation, the radiation transfer
equation takes the form

(15)

In the multigroup diffusion approximation, the spe-
cific power loss due to intrinsic plasma radiation is
determined by the equation

(16)

In the multigroup bulk-luminescence approxima-
tion, radiation reabsorption is disregarded. Thus, we
obtain

(17)

If necessary, the transfer Eq. (12) can be solved
using other methods, such as the method of quadrupole
moments [13] or higher approximations of the method
of spherical harmonics.

NEAR-ELECTRODE REGIONS 
AND BOUNDARY CONDITIONS

Consider now the near-electrode nonequilibrium
and quasi-equilibrium regions in order to obtain the
boundary conditions for Eqs. (5) and (6). The analysis
of the near-electrode regions is based on the fact that
the values of Li and LT are small. Under standard condi-
tions of TELEC operation, LT is higher than Li. There-
fore, let us assume that, for both the emitter and collec-
tor, Li ! LT. In the case under consideration, both LT and
Li are considerably smaller than the interelectrode dis-
tance and the characteristic size of the electrodes.
Therefore, the near-electrode regions can be considered
as planar. Only the flux components normal to the elec-
trode surface are considered in further discussion.
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If the electron emission currents from the emitter
are not too high, potential jumps across the Langmuir
layers retard electron transfer from plasma. Under
these conditions, nonequilibrium near-electrode
regions of TELEC behave in the same manner as non-
equilibrium near-electrode regions of TIC at high cur-
rent densities, in which plasma is transformed into the
quasi-equilibrium state throughout the majority of the
interelectrode space. These TIC regions and boundary
conditions at the interface between nonequilibrium and
quasi-equilibrium plasma are given in [14]. The elec-
tron flux at the near-emitter interface between these
regions is [14]

(18)

where the quantities at the interface are denoted by the
subscript i1. The total electron energy flux is

(19)

where JE is the emitted electron flux density; ∆ϕi1 is the
potential jump between the interface of the nonequilib-
rium and quasi-equilibrium regions and the emitter sur-
face; Te1 is the electron temperature in the nonequilib-
rium region (this temperature is assumed to be invari-
able along the direction perpendicular to the electrode
surface);  = (Te1); and δ(∆Sei + ∆Sea) is the
energy transferred by electrons to HCP in the nonequi-
librium region;

(20)

where (ji)1 is the ion flux produced in the nonequilib-
rium region and transferred to the emitter; η1 =

P0/(ni1Te1); and Li1 = , Da1, na1,
and (σi)1 are the ionization length, ambipolar diffusion
coefficient, atomic concentration, and cross section of
atom ionization by electrons in the near-emitter plasma,
respectively. In the case of weakly ionized plasma in
the nonequilibrium region (1/η ! 1), the following
equation is valid:

Equations (18)–(20) were obtained under the
assumption that the HCP temperature in the nonequi-
librium region is constant and equal to the electrode
temperature, whereas the ionization length far exceeds
the ion–atom intercollision mean free path (Li1 @ Lea).
Therefore, plasma at the near-electrode interface is
assumed to be weakly ionized.
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Consider now the near-emitter quasi-equilibrium
region. This region is small in width. Therefore, taking
into account the high heat conduction of electron gas,
the electron temperature variations along the direction
perpendicular to the electrode surface can be neglected.
The electron temperature is taken to be equal to the
plasma temperature TT1 at the interface between the
equilibrium and quasi-equilibrium regions (parameters
relevant to this interface are denoted by the subscript
T1). Ion production in this region is also negligible,
because atom ionization is virtually completely com-
pensated by ion recombination. According to our esti-
mations, in the cases of practical interest (i.e., if eJ <
103 A/cm3), the contribution of friction forces (see the
motion equations for electrons (2)) to the potential vari-
ation in the quasi-equilibrium region is less than
10−1 /e. This contribution can be neglected. Thus,
the electron concentration distribution over the region
under consideration takes the Boltzmann form:

(21)

Taking into account that J is maintained at an invari-
able level within the quasi-equilibrium region and Te1 =
TT1, Eq. (18) is recast as

(22)

where ∆ϕT1 is the potential jump between the interface
between equilibrium and quasi-equilibrium regions and
the emitter surface.

Disregarding weak heating of ions by ion current,
and taking into account that electron–ion collisions are
the main cause of the energy transfer from electrons to
HCP, we obtain the following equation for the ion and
atom temperature T:

(23)

This equation is subject to the following boundary
conditions:

(24)

where the x-axis is normal to the emitter surface. The
HCP thermal conductivity can be approximated using
equation [20]

(25)

where λa and λi are the temperature-dependent thermal
conductivities of atoms and ions, respectively, and

, , , and  are the effective scattering
cross-sections.
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Quasi-equilibrium electron (ion) concentration is
determined by the equation

(26)

where NT1 = (gi/ga)2(2πmTT1/h2)3/2exp(–Ei/TT1). At
given P0 and TT1, the concentrations n and na and, there-
fore, the thermal conductivity λH, depend only on T in
the quasi-equilibrium region. Therefore, Eq. (23) is a
second-order nonlinear equation with coefficients. The
right-hand side of the equation depends only on T. The
first integral is equal to

(27)

The HCP-transferred heat energy flux at the inter-
face between quasi-equilibrium and nonequilibrium
regions is determined by Eqs. (27) and (4):

(28)

where LT1 = {[M/(3m)]λHT1(τeiT1nT1)/ }1/2.

If plasma in the quasi-equilibrium region is weakly
ionized (nTT1 ! P0), the main contribution to the HCP
heat conduction is made by atoms. However, atom scat-
tering by ions may also be of considerable importance.
In this case, both the numerator and denominator of the
first term of Eq. (25) vary slightly with temperature

(approximately, as ). Disregarding the weak depen-
dence of λH on T, we obtain from Eq. (28)

(29)

An equation for the flux of the total electron energy
and HCP heat energy at the interface between quasi-
equilibrium and nonequilibrium regions is obtained by
the summation of Eqs. (19) and (28): Si1 = (Se)i1 +
(SH)i1. Taking into account that Li1 ! LT1, the term
δ(∆Sei + ∆Sea) in the equation for Si1 is found to be neg-
ligible as compared to (SH)i1. As shown above, ion pro-
duction in the quasi-equilibrium region, as well as the
heating of ions by ion current and variations in the elec-
tron gas energy due to absorption and emission can also
be disregarded. Thus, on summing Eqs. (3), we find that
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the total energy flux variation in the quasi-equilibrium
region is zero, i.e.,

(30)

The plasma energy balance at the near-emitter
boundary of the equilibrium COD core is obtained by
summing Eqs. (4), assuming that the right-hand side of
the obtained equation at the interface between the equi-
librium and quasi-equilibrium regions is equal to the
right-hand side of Eq. (30), and taking into account
Eq. (21):

(31)

where (SH)i1 is determined by Eqs. (28) and (29); (ji)1,
by Eq. (20); and ni1, by Eq. (26). The potential jump
∆ϕT1 is determined by Eq. (22):

(32)

The plasma energy balance at the near-collector
boundary of the equilibrium COD core is described by
a similar equation. The physical meaning of Eq. (31) is
clear. The left-hand side of this equation is the energy
flux through the boundary caused by heat transfer in the
plasma. The first term on the right-hand side is the
energy expended for heating emitted electrons from the
emitter temperature TE to the temperature TT1. The sec-
ond term is the energy transferred to the emitter in the
process of heat transfer by ions and atoms. The third
term is the energy expended for producing ions in the
nonequilibrium region (these ions are then transferred
to the emitter). The last term is the energy transferred
from the boundary by the electron current.

The set of simultaneous equations for the COD core
plasma (5) and (6) subject to the boundary conditions
(31), (32), and similar conditions at the near-collector
boundary of the core can be relatively easily solved in
the one-dimensional (planar and cylindrically symmet-
rical) case if ∆Srad depends explicitly only on the
plasma temperature T, which is usually the case. Spec-
ifying the electron flux density near, for example, the
emitter, we can derive the distribution of J over the
interelectrode space from the equation ∇ J = 0. Substi-
tuting the expression obtained into Eq. (5), we obtain
the equation for temperature T. The coefficients of the
equation obtained depend only on T and the coordinate
normal to the electrodes. Solving this equation as sub-
ject to the boundary condition (31) and a similar condi-
tion at the near-collector boundary of the discharge
core, we obtain T. Then, the distributions of n, na, ϕ, ji,
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and ja over the interelectrode space and the total poten-
tial drop in the interelectrode gap

(33)

are calculated from Eqs. (6)–(8). Thus, we actually
obtain the voltage–current characteristic of TELEC.
The same approach can be applied to the case of a dis-
charge that is slightly nonuniform along the direction of
laser beam propagation. This case is of particular
importance for TELEC.

The distribution of the incident laser beam intensity
and the conditions for radiation reflection from the
electrodes are imposed as boundary conditions on
Eq. (9) of laser radiation propagation through the inter-
electrode space of TELEC. The equation of intrinsic
plasma radiation propagation is subject to the boundary
conditions for radiation reflection from the electrodes.
These conditions are specified below in the discussion
of the calculation results.

Equations (5) and (6) subject to the given boundary
conditions are valid in the majority of the interelectrode
space of TELEC. It should be noted, however, that in
the frontal regions of COD, in which the plasma tem-
perature decreases, while the distances Li and LT

increase and at a certain temperature become compara-
ble to the interelectrode distance L, the distinction
between the equilibrium plasma region and near-elec-
trode regions loses its meaning. However, the volume
of the frontal regions of COD is small in comparison
with the total volume of COD in the interelectrode
space of TELEC, so that the frontal regions have little
effect on the process of laser energy conversion into
electrical energy. Therefore, a rough description of the
frontal regions of COD without regard for deviations
from equilibrium is quite sufficient. Equations (5) and
(6) are used for this purpose. At the electrodes and laser
beam input windows, the plasma temperature is
assumed to be equal to the temperature of these sur-
faces.

METHOD OF NUMERICAL SOLUTION 
AND RESULTS OF CALCULATIONS

The method of solution is similar to that used for
mathematical simulation of steady-state motion of an
optical discharge along the CO2 laser beam in the slow
combustion mode. The method was developed in
[16, 17]. The steady-state solution of the set of simulta-
neous Eqs. (5), (6), (9), and (12) was sought. For this
purpose, the time derivative of the plasma temperature
T was added to the left-hand side of Eq. (5). The itera-
tive solution of the problem consisted of two stages.
At the first stage, the laser radiation field and group
spectral densities of radiant energy at a given instant of
time were determined on the basis of a given tempera-
ture field. The values of Q and WL were calculated.
These values were then used for solving the evolution-
ary problem of the temperature T calculation.

V ∆ϕT1 ϕT2 ϕT1–( ) ∆ϕT2,+ +=
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Then, the laser and heat radiation fields were recalcu-
lated and the evolutionary equation for T was solved
again. This process was iterated until a steady-state
solution was obtained. The iterative method is
described in more detail in [21].

The electrode temperature for argon-filled TELEC
was ~103 K at argon pressure P ~ 1 atm. A tubular laser
beam (wavelength 5.3 µm) directed along the z-axis
was focused on a ring in the middle of the emitter–col-
lector gap at a distance F from the TELEC input (z = 0).
Both emitter and collector were implemented as two
coaxial cylinders of radius r1 and r2, respectively. The
axially symmetrical geometry was selected to make the
mathematical simulation of TELEC less sophisticated.
Besides, it was taken into account that the emitter area
should far exceed the collector area to provide effective
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Fig. 1. Isotherms and laser beam paths through the COD
core plasma in the interelectrode space of TELEC under no-
load conditions: x1 = 0.2 cm; r2 = 0.5 cm; laser radiation
power, 100 kW; TE = 2000 K; TC = 1000 K; JE = 500 A/cm2;
P = 1 atm; and F = 15 cm. The temperature values (kK) are
given near isotherms.
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Fig. 3. Plasma temperature distribution along the z-axis
under no-load conditions: r1 = 0.2 cm; r2 = 0.5 cm; laser
radiation power, 169 kW; TE = 2000 K; TC = 1000 K; JE =

500 A/cm2; P = 0.5 atm; and F = 15 cm.
operation of TELEC. The laser beam was assumed to
be totally reflected from the electrodes, whereas the
plasma radiation was assumed to be totally absorbed by
the electrodes. The value of eJE was taken to be suffi-
ciently high (hundreds of A/cm2) to attain a high effi-
ciency of TELEC operation. Such values of JE can be
achieved using a packed tungsten emitter consisting of
a great number of small tungsten wires. It is necessary
to provide diffusion of cesium vapors through the emit-
ter [11]. According to the experimental data [11], the
electron emission current density increased with
increasing temperature TR of the cesium tank incorpo-
rated in the emitter. At TE = 2000 K and TR = 693 K, the
electron emission current density exceeded 200 A/cm2.
It should be noted, however, that the operation of
packed emitters is as yet imperfectly understood.
Experimental studies [11] showed that the injection of
small amounts of cesium (≈103 Pa) into the interelec-
trode space had no effect on the COD characteristics.
Thus, emitters based on refractory metals with equilib-
rium films of adsorbed cesium seem to be appropriate
for TELEC (such emitters are commonly used in TIC).
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Fig. 2. Radial distribution of laser radiation intensity (rela-
tive units) under the same conditions as in Fig. 1: (0) z =
0 cm; (1) z = 2 cm; and (2) z = 6 cm.
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Fig. 4. Radial distribution of the plasma temperature
(in kK), electron concentration (normalized to 1016 cm–3),
and the electric field potential (in V) under the same condi-
tions as in Fig. 3.
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Typical distribution of the COD core plasma tem-
perature over the interelectrode space of TELEC is
shown in Fig. 1. The longitudinal (along the z-axis) size
of the high-temperature region of COD is approxi-
mately 2 cm, which far exceeds the interelectrode dis-
tance (0.3 cm). The plasma temperature in the middle
of the interelectrode gap reaches 20 kK; near the inter-
face between the discharge core and nonequilibrium
near-electrode regions, the plasma temperature is about
10 kK. Thus, the electron temperature in the nonequi-
librium near-electrode regions is rather high (the
TELEC output voltage depends on this temperature
[8]). The laser beam trajectories calculated in the geo-
metrical optics approximation are shown in Fig. 1.
Refraction and absorption of laser radiation causes sig-
nificant variations in the laser radiation intensity distri-
bution over the beam cross section (Fig. 2). The laser
radiation intensity distribution at a distance z = 6 cm,
calculated without regard for the laser beam interaction
with the plasma, is shown in Fig. 2 for comparison
(dashed-line curve). It is seen that despite the absorp-
tion of laser radiation by plasma, its intensity can
exceed that of laser radiation not interacting with
plasma due to the laser beam self-focusing. The plasma
temperature distribution along the z-axis at P = 0.5 atm
is shown in Fig. 3. The discharge length increases with
decreasing pressure, while the discharge becomes more
uniform along the z-axis. A decrease in the pressure
also causes a decrease in the density of the energy flux
transferred from the discharge to the electrodes by
intrinsic plasma radiation. Radial distributions of the
plasma temperature, electron concentration, and elec-
tric field potential in the middle cross section of the dis-
charge (z = 2.5 cm) are shown in Fig. 4. A significant
temperature drop across thin (~10–3–10–2 cm) near-
electrode regions causes a considerable heat energy
flux (~102–103 W/cm2) transferred by HCP from the
discharge core to the electrodes. A great deal of energy
is spent producing ions in the nonequilibrium regions
because of the high temperature of the near-electrode
plasma. The main energy losses, however, are due to
intrinsic plasma radiation (103–104 W/cm2). In the mid-
dle of the interelectrode gap, plasma is almost fully ion-
ized and slightly overheated (a slight minimum of the
electron concentration n in the middle of the gap),
whereas the near-electrode plasma is weakly ionized.
The electric field potential distribution over the inter-
electrode space exhibits a significant jump (~10 V) near
the electrodes and a relatively small drop across the dis-
charge core (~1 V).

Thus, a set of simultaneous equations describing the
equilibrium COD core in TELEC, as well as the bound-
ary conditions for the set and a method for its numerical
solution were developed in this work. The solution of
this set of simultaneous equations allows the distribu-
tion of plasma parameters over the interelectrode space
and the energy characteristics of the converter to be
determined. The results of mathematical simulation
will be considered in detail in a separate work.
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Abstract—The thermal-lens and phase-shift (interferometric) techniques of photothermal spectroscopy are
studied theoretically for the coaxial and mutually orthogonal propagations of probing and pumping beams.
Respective expressions for the amplitude of detected signals are derived for the case of the volume absorption
of pumping radiation. The sensitivities of the two techniques are numerically analyzed for different parameter
values. It is demonstrated that the phase technique offers higher sensitivity especially if the size of the region
with a perturbed temperature field is much larger than the probing beam radius. © 2000 MAIK “Nauka/Inter-
periodica”.
During the last decade, methods of photothermal
(thermal wave) spectroscopy have gained acceptance in
microscopy, nondestructive testing characterization of
thermal properties of objects and media, impurity or
contamination control, etc. Focus is placed on optical
methods, since they are contactless and offer high sen-
sitivity and spatial resolution. The photothermal deflec-
tion technique (PDT) and the thermal-lens technique
(TLT) remain the most popular in this field, owing to
their simplicity. The principal features of the two
approaches are well understood, especially in the ray-
optics approximation [1, 2]. Less frequently used and
hence less explored is the interferometric (or phase-
shift) technique (IT). Too little effort, however, has
been put into comparing the capabilities of the PDT,
TLT, and IT. One could cite only a few studies on this
subject. For example, [3] presents a comparative ray-
optics analysis of the ultimate sensitivity for the three
techniques in certain limiting cases of volume optical
absorption in the test object, whereas [4] compares
photothermal signals for the PDT and IT in the case of
surface absorption.

This study analyzes photothermal signals detected
with the IT and TLT in the case of volume absorption.
We compute them according to the approach suggested
in [4]. It consists in solving a diffraction problem and
amounts to computing the Fresnel–Kirchhoff integral.
Thus, it works beyond the ray-optics approximation.

We start with the coaxial-beam configuration
(Fig. 1). The temperature distribution is cylindrically
symmetric, so that we can write the heat diffusion equa-
tion in cylindrical coordinates. Consider sinusoidally
modulated continuous pumping with a Gaussian inten-
sity distribution. Consequently, the heat equation reads
1063-7842/00/4511- $20.00 © 21470
as

(1)

where

(2)

rpump is the pumping beam radius; Ppump is the average
pump power; K is the thermal conductivity; χ = K/(ρc)
is the thermal diffusivity; and ρ and c are the density
and heat capacity, respectively.

Neglecting heat transfer along the z axis, we express
temperature oscillation at a pump-modulation angular
frequency Ω as

(3)

Let l denote the length of the heated region. Having
passed through it, a probing light wave of wavelength
λprobe acquires an additional phase shift. If the thermal
lens is thin, the phase shift is

(4)
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Now, let us find the amplitude distribution of the
probing beam in the far-field zone, where a photodetec-
tor is situated. In the cylindrical coordinates, the
Fresnel–Kirchhoff integral has the form

(5)

where L is the distance from the heated region to the
photodetector, k is the probing beam wavenumber, and
U(r, z = 0, ϕ) is the probing beam amplitude in the
heated region.

We are interested in thermal perturbations small
enough to satisfy the approximation

(6)

Here, U0 is the probing beam amplitude in the absence
of the thermal perturbations. Following [5], we adopt a
Gaussian distribution for the amplitude:

Consequently, the intensity distribution of the prob-
ing beam in the far-field zone has the form

(7)

Here, I0(r', ϕ') is the unperturbed intensity distribution
and

(8)

With the TLT, thermal perturbations are usually
sensed by a photodetector with a circular diaphragm
placed in front of it. Then the TLT signal is proportional
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to a change in the probing beam intensity after the dia-
phragm, ∆IT1, which is expressed as

(9)

where η is the quantum yield of the photodetector and
d is the diaphragm radius.

Inserting (8) into (9), we obtain

(10)

where J0(ξr) is the Bessel function of the first kind.

Inserting the expression for Φ(r, ϕ, t) into (10), we
finally arrive at the formula for the TLT signal ampli-
tude normalized to the probing beam intensity:

(11)

where I0(ξr) is the modified Bessel function of the first
kind.
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sample is shorter than that of the pumping beam waist.
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Formula (11) describes the TLT signal in general
terms. To maximize the amplitude, one should find the
optimal values of kd/L and z1.

Now, let us proceed to IT detection. According to
this technique, the additional phase shift of the probing
light wave is detected with an interferometer: one of its
beams passes through the heated region, whereas the
other beam goes outside it. Several types of optical
interferometer can detect thermal waves [6–8]. We pre-
fer polarization interferometers [9]. They enjoy high
stability, high sensitivity, and small overall dimensions
[10]. Moreover, they are free from optical loss. In the
IT, the intensity distribution at the photodetector aper-
ture is given by

(12)

where δ is the constant phase difference between the
interferometer beams,

(13)

(14)

Integrating the last term in (14) over the primed
variables, we obtain the magnitude of the photothermal
signal:

(15)

As one would expect, the signal is maximum if δ =
π/2. In what follows, we assume δ to equal this value.
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Fig. 2. Orthogonal-beam configuration. The two beams
intersect inside the test sample.
Inserting the expression for Φ(r, ϕ, t) into (15), we
arrive at the formula for the IT signal amplitude nor-
malized to the probing beam intensity:

(16)

where

is the exponential integral.
Now, let us look at the orthogonal configuration

(Fig. 2). The corresponding temperature distribution at
the angular frequency Ω is

(17)

where x, y, and z are the Cartesian coordinates.
Assuming the length of the cell to be much larger

than the size of the region with the perturbed tempera-
ture distribution, we express the probing beam phase as

(18)

Applying the above computing procedure, we
obtain expressions for the IT and TLT signal ampli-
tudes normalized to the probing beam intensity:
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To compare the sensitivities of the two techniques,
let us evaluate the sensitivity ratio

We will take into account only probing beam shot
noise. Then,

(21)

For the two configurations, the sensitivity ratios
behave similarly except that the slope of the curves
is somewhat larger for the orthogonal configuration.
We therefore restrict our investigation to the depen-
dences of

on f = 2πΩ and rpump for the coaxial configuration and
on K and probing beam radius for the orthogonal con-
figuration.

Figure 3 shows the sensitivity ratio plotted against
rpump for three values of f. If rpump is so small that the
thermal diffusion length is much greater than r0, the
sensitivity ratio is independent of r0, since the heat
source can be considered as a point. If the thermal dif-
fusion length is much less than r0, the sensitivity ratio
rises steeply and is no longer dependent on Ω, since the
shape of the thermal perturbation approaches that of the
pumping beam.

Figure 4 shows the sensitivity ratio plotted against
the modulation frequency for three values of the prob-
ing beam radius w0. It is seen that the IT signal grows
faster than the TLT signal as the frequency decreases,
especially at small w0,s. Qualitatively, this stems from
the fact that a decrease in f leads to the expansion of the
heated region, so that the absolute values of the temper-
ature rise faster than its coordinate derivatives govern-
ing the generation of the TLT signal.

The above explanation also applies to the faster
growth of the IT signal as a function of K for the
orthogonal configuration (Fig. 5).

Figure 6 displays the sensitivity ratio versus the
probing beam radius at three values of f for the orthog-
onal configuration. Notice that the IT signal increases
faster as the radius decreases. In qualitative terms, this
is due to the facts that the edge of the thermal lens, like
that of any other lens, has a stronger effect and that the
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2 J/(g deg), and w0 = 3 µm.
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2 J/(g deg), and r0 = 10 µm.
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Fig. 5. Orthogonal-beam configuration: the sensitivity ratio
vs. the thermal conductivity at ρ = 0.9 g/cm3, c = 2 J/(g deg),
ω0 = 3 µm, and f = 10 Hz.

Fig. 6. Orthogonal-beam configuration: the sensitivity ratio
vs. the probing beam radius at K = 1.5 × 10–3 W/(cm deg),
ρ = 0.9 g/cm3, c = 2 J/(g deg), and r0 = 10 µm.
phase shift of the probing light is maximum at the cen-
ter of the heated region.

If technical noise, whose magnitude is proportional
to the probing light intensity, dominates, then the ratio

and the associated dependences are basically the same
as in the above.

In summary, the interferometric approach has been
found to offer higher sensitivity than the thermal-lens
one in all of the cases concerned, especially if the size
of the perturbed-temperature region is larger than the
probing beam radius.
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Energy Extraction from an Oversized Cavity 
through a Package of Interference Switches with Summation 

of the Output Signals
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Abstract—It was shown experimentally that the pulse power output of a resonant microwave compressor with
an oversized cavity and an interference switch used for energy extraction could be increased using a package
of interference switches with summation of the output signals instead of a single switch. The use of two
switches for energy extraction provided an almost twofold increase in the output signal power and a correspond-
ing (almost twofold) decrease in the signal duration. It is shown that energy extraction through four switches
with signal summation is possible. © 2000 MAIK “Nauka/Interperiodica”.
1. It is well known [1] that the density of electromag-
netic wave power flux through waveguide transmission
lines with gas insulation can reach 1–5 MW/cm2. There-
fore, the traveling wave power in oversized cavities
with gas insulation and a cross section of ~102–103 cm2

can reach 0.1–1 GW. The use of such cavities in reso-
nant microwave compressors holds much promise. In
addition to the high power of the traveling wave in the
oversized cavity, resonant microwave compressors
have advantages such as simple design, rather low
weight, small dimensions, and the possibility of opera-
tion at a pulse repetition rate exceeding 1 kHz [2].

However, the lack of effective methods and devices
for rapid energy extraction from a capacious energy
storage is one of the main obstacles to the development
of compressors on the basis of oversized cavities. The
best known device for energy extraction (an interfer-
ence switch based on rectangular waveguide tees [3])
does not provide sufficiently rapid energy extraction
because of rather loose coupling between the tees and a
capacious energy storage. So far, the search for more
effective methods and devices for energy extraction has
not met with any considerable success [4, 5].

The results of the well-known parallel compression
experiment should be noted in this context [6]. In this
experiment, energy was extracted from two synchro-
nously excited resonant microwave compressors. Then,
the output signals from the two compressors were
summed up. The results of this experiment thus provide
hope that the problem of rapid energy extraction from
oversized cavities can be solved through the use of sev-
eral identical switches for synchronous extraction of
energy. It can be easily shown that the total peak power
P of the output signal is determined in this case by the
1063-7842/00/4511- $20.00 © 21475
equation

(1)

while the signal duration τ is

(2)

where n is the number of switches; P1 and τ1 are the
peak power and duration of the output signal for a sin-
gle switch, respectively; β1 is the switch–cavity cou-

pling factor for a single switch; and P2 and  are the
traveling wave power and power gain provided by the
cavity, respectively.

As seen from Eq. (2), the number of switches pro-
viding maximum rate of energy extraction (i.e., extrac-
tion within the time interval comparable to the cavity
round-trip time T) is determined by the expression

(3)

The typical power gain  provided by oversized
resonators is approximately 103, whereas the attainable
switch–cavity coupling factor β1 is about 102. Thus,
approximately ten switches are required to provide the
maximum rate of energy extraction. According to
Eq. (1), the total output signal power P is comparable
in this case to the power of the traveling wave in the
cavity.

The goal of this work was to describe the results of
experimental study of synchronous energy extraction
from an oversized 3-cm-range cavity through two and
four switches with further summation of the output
signals.

P nP1 nβ1P2/M0
2,= =

τ τ 1/n T M0
2/β1n,≈=

M0
2

n M0
2/β1.≈

M0
2
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2. A cylindrical cavity 90 mm in diameter and
200 mm in length was used in the experiment. A cavity
operating at a frequency of 9.28 GHz was tuned to the
H01(11) oscillation mode. To decrease the effect of inter-
modal interference at the coupling windows, the cavity
was excited through two windows in one of the cavity
lids. The windows were arranged on the same diameter
at a half-radius distance from the center of the lid. The
power from a microwave generator was delivered to the
cavity through rectangular waveguides via a matched
E-tee (Fig. 1). The intrinsic Q-factor of the cavity with-
out switches was about 105.

The connection of two more waveguide switches to
the other lid of the cavity through coupling windows
with diameters of 10 mm (these windows were also
arranged on the same diameter at a half-radius distance
from the center of the lid) reduced the Q-factor of the
system. The reduction in the Q-factor depended on the
mutual arrangement of the input and output windows
and the reach of the arm of the switches. To minimize
the reduction in the Q-factor, the optimum reach of the
arm was selected, and the windows were placed in the
same longitudinal cross section of the cavity. Thus, a
Q-factor value of ~7 × 104 was attained. Optimization
of the reach of the arm also provided the identical
action of the separately opened switches and additive
action of the switches during their synchronous open-
ing. In tuning the system with two switches, the basic
challenge was to select an optimum reach of the input
arm and ensure equal field intensities in the switches.
To assess the accuracy of the field intensity equaliza-
tion, the signals at the output of switches with known
coupling losses were compared in the amplitude accu-
mulation mode. It was found that the field intensities in
the switches were equal to each other with an accuracy
of ~25%.

3. In the high-power operation mode, the system
was powered by a magnetron generator with an output
pulse power of ~60 kW and a pulse duration of ~1 µs.
The diagram of the experimental setup used for study-
ing synchronous energy extraction through two
switches with further summation of the output signals
is shown in Fig. 1: (1) microwave generator, (2) circu-
lator, (3) directional couplers, (4) phase shifters,

9
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Fig. 1. Diagram of the experimental setup used for studying
synchronous energy extraction from an oversized cavity
through two interference switches.

6

(5) matched waveguide E-tee, (6) input coupling win-
dows, (7) oversized storage cavity, (8) output coupling
windows, (9) interference switches, (10) spark gaps,
(11) summing waveguide H-tee, (12) matched load, and
(13) detector heads.

Synchronous operation of the switches was pro-
vided by applying high-voltage pulses from the same
source to the gas-filled spark gaps of the switches. This
induced microwave breakdowns in the switches. The
output signals were summed up using the waveguide
H-tee.

Oscillograms of the output pulse envelopes,
obtained in the cases of separate energy extraction
through each switch and synchronous energy extraction
through the two switches with summation of the output
signals, are shown in Figs. 2a–2c, respectively. As seen
from Fig. 2, the output pulse duration in the case of
energy extraction through one of the switches, the other
one being turned off, was 60 and 80 ns for the first and
second switches, respectively; in the case of synchro-
nous energy extraction through two switches with fur-
ther summation, the output pulse duration was ~35 ns,
while the time spread of the signals to be summed up
did not exceed 10 ns. The gain in the cases under con-
sideration was 8, 7, and 10 ± 1 dB, respectively. Thus,
synchronous extraction of energy provided almost a
twofold decrease in the output pulse duration and a cor-
responding (almost twofold) increase in the summed up
signal power.

4. The results of experimental study of energy
extraction from the cavity through a package of four
switches are similar to those considered above. As in
the case of two switches, tuning of the system with four
switches consisted in selecting an optimum reach of the
arm, equalizing the field intensities in the switches, and
determining optimum mutual arrangement of the input
and output windows. In the cases with both two and
four switches, the optimum reach of the arm was found
to be approximately a quarter-wavelength. The output
windows were arranged on two mutually orthogonal
diameters at angles of 45° with respect to the diameter
parallel to the line passing through the centers of the
input windows. Upon tuning, the intrinsic Q-factor of
the system with four switches was ~6 × 104.

(a) (b) (c)

20 ns

Fig. 2. Output pulse envelopes in the cases of (a, b) separate
energy extraction through each of the switches, and (c) syn-
chronous energy extraction through the two switches with
further summation of the output signals.
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It should be noted that synchronous energy extrac-
tion through four switches with a further summation of
signals could be performed even in the case of a consid-
erable (two- to threefold) difference between the field
intensities in the switches. In this case, however, an
increase in the time spread of the summed up pulses
was observed, while the amplitude and duration of
pulses at the output of the switch with minimum field
intensity varied with time. This was due to the fact that
this switch came into action last, when the majority of
energy had already been extracted through the other
switches. Summation was performed separately for two
pairs of the switches. The fact that the signal duration
at the output of a given switch decreased as the other
switches were sequentially turned on was used for
monitoring the extraction synchronism.

It should also be noted that the process of energy
extraction from the compressor through four switches
was not completely additive. The signal amplitudes at
the output of synchronously operating switches dif-
fered from the output signal amplitudes obtained in the
case of the isolated operation of the switches. Presum-
ably, this was caused by the switching-induced distur-
bance of the field in the cavity and corresponding
changes in the switch–cavity coupling factor. There-
fore, in contrast to energy extraction systems with a sin-
gle switch [7], the optimum reach of the arm for sys-
tems with energy extraction through a package of
switches is a quarter-wavelength. In this case, the sym-
metric arrangement of the switches about the cavity
axis allows strong intermodal interference near the cou-
pling windows to be compensated, whereas the invari-
ability of the field structure in the cavity in changing
from the storage mode to the extraction mode provides
stability of the switch–cavity coupling.

5. Thus, it was shown that synchronous energy
extraction from an oversized cavity through a package
of interference switches allowed the energy extraction
rate to be increased. Synchronous energy extraction
with further summation of the output signals provided
an increase in the total output signal power proportional
to the number of switches, whereas the total output sig-
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
nal duration was found to be inversely proportional to
the number of switches. In our opinion, this method for
increasing the extraction rate can be used not only in
conventional microwave compressors, but also in self-
excited oscillators with pulse compression in the oscil-
latory system. These oscillators have relatively low
Q-factors. Therefore, to provide effective operation of
an oscillator in the compression mode, the extraction
time should be comparable to the oscillatory-system
round-trip time. It is also our opinion that compressors
with energy extraction through a package of switches
can be used in phased arrays.
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Abstract—The unstable axial mass-selective extraction of ions from a three-dimensional quadrupole ion trap
is studied theoretically. A method for mapping the ion coordinates over the period of the RF power-supply volt-
age is developed with allowance for nonlinear distortions of the quadrupole potential. Equations for the enve-
lope of ion oscillations are derived in the form of the equation of motion of a material point in the field of effec-
tive forces. The effect of the “delayed extraction” of ions in the presence of negative even field harmonics is
explained. The positive even harmonics of the distorted quadrupole potential are shown to be favorable for ion
extraction. The dynamics of the extracted ions is investigated. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The operation of Paul three-dimensional quadrupole
ion traps in modern-day commercial mass spectrome-
ters is based on the method of displacing the working
point out of the stability domain. In the literature, this
method is known as unstable axial mass-selective
extraction (UAMSE) [1]. Investigation of the UAMSE
revealed that, in a three-dimensional trap with hyper-
bolically shaped electrodes (Fig. 1a), the ion extraction
is delayed; as a result, the neighboring spectral lines
(emitted by ions with the closest masses) overlap and
the mass resolution of the device worsens [2]. This
effect stems from the fact that the quadrupole potential
in a Paul trap is inevitably distorted because of the finite
dimensions of the hyperbolic electrodes [3].

Numerical calculations [2] showed that, in the pres-
ence of positive even field harmonics, there is no delay
of ion extraction. For this reason, the quadrupole field
in actual mass spectrometers is nonlinearly distorted on
purpose. One of the ways of distorting the quadrupole
field in the desired manner is to increase the distance
between the end electrodes and the center of the trap

(Fig. 1b) up to z0 = r0/ , in which case the electrode
surfaces are equipotential surfaces of the quadrupole
field. This method of “extending” the electrode system
of a three-dimensional trap was implemented for the
first time by the Finigan MAT Company in fabricating
an ITD –700 apparatus and was a company secret for
a long time, until it was disclosed in [4]. Another
method, specifically that of decreasing the asymptotic
angle Θ of the electrode system (Fig. 1c), was imple-
mented by the Bruker–Franzen Analytic GMbH Com-
pany in fabricating an ESQUIRE  apparatus [5]. In
both cases, the relative distortion of the geometry of the

2

1063-7842/00/4511- $20.00 © 21478
electrode system (∆z0/z0 or 2∆Θ0/Θ0) amounted to
approximately 10%. This gives rise to distortions of the
quadrupole field in the form of even harmonics with
positive amplitudes. Devices with such electrode sys-
tems are referred to as nonlinear ion traps [3].

Our study is aimed at constructing an analytic the-
ory of the mass-selective extraction of ions from a non-
linear trap. For this purpose, we develop a method for
mapping the ion coordinates over the period of the RF
field. This new method makes it possible to thoroughly
investigate ion motion during the UAMSE and to study
the effect of nonlinear distortions of the quadrupole
field.

EQUATIONS OF ION MOTION 
IN A NONLINEAR TRAP

In an axisymmetric ion trap, the electric field poten-
tial can be expanded in the field harmonics [3]

(1)

where (ρ, Θ, z) are cylindrical coordinates, r0 is the
inner radius of a ring electrode (the “field radius”), Pk

is the kth order Legendre polynomial, Ak are the ampli-
tudes of the field harmonic, and the time-dependent
periodic function V(t + T) = V(t) describes the supply
voltage.

In actual traps, the end electrodes are usually
grounded and the supply voltage is applied to the ring
electrode. Consequently, the function –2V(t) is equal to
the potential of the ring electrode with respect to the

ϕ ρ Θ z t, , ,( ) V t( ) AkPk Θcos( )ρ
k

r0
k

-----,
k 1>
∑=
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end electrodes. Let the origin of the coordinates be at
the point at which the potential is minimum. Then,
we have A1 = 0 and the remaining harmonics can be
written as

(2)

(3)

(4)

(5)

(6)

For a trap with an ideal hyperbolic electrode system,
we have A2 = 2, and the higher field harmonics vanish.
However, in real traps, the amplitude A2 is somewhat
different from 2 and the higher harmonics in potential
(1) are nonzero. The motion of an ion with mass num-
ber M and positive charge e along the z-axis is
described by the equation

In studies of the UAMSE, the ion motion in direc-
tions perpendicular to the axis of the trap is usually
neglected [2] because, in industrial-scale devices, the
ions move in a light buffer gas (helium at a pressure of
10–3 torr [1]). Collisions between ions and molecules of
a buffer gas force ion oscillations in both the transverse
and axial directions to damp. However, we cannot
ignore ion oscillations in the axial direction, because,
despite collisional damping, they grow and become
unstable during the axial extraction. Under these
assumptions, the above equation of motion reduces to
the following equation describing ion motion in the
axial direction:

(7)

If the supply voltage varies harmonically in time,
V(t) = U + Vcos(ω0t), it is convenient to introduce the

k 2: ρ2P2 Θcos( ) 1
2
--- 2z2 r2–( )–= =

quadrupole harmonic( ),

k 3: ρ3P3 Θcos( ) 1
2
--- 2z3 3zr2–( )–= =

hexapole harmonic( ),

k 4: ρ4P4 Θcos( )=

=  
1
8
--- 8z4 24z2r2– 3r4+( ) octopole harmonic( ),–

k 5: ρ5P5 Θcos( )=

=  
1
8
--- 8z5 40z3r2– 15zr4+( ) decapole harmonic( ),–

k 6: ρ6P6 Θcos( )=

=  
1
16
------ 16z6 120z4r2– 90z2r4 5r6–+( )–

dodecapole harmonic( ).

M
d2z

dt2
------- 2e

A2

r0
2

------V t( )z+ eV t( ) ∂
∂z
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e
M
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2
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e
M
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Fig. 1. Cross sections along the axis of rotation of the elec-
trode system of the three most widely used three-dimen-
sional traps. (a) A Paul trap in which the surfaces of all of
the three electrodes—two end (caplike) electrodes and a
ring electrode—are equipotential surfaces (hyperboloids of
revolution) of the quadrupole field. The equipotential sur-
faces have a common asymptotic in the form of a cylindrical

surface with an opening angle Θ0 = 54.37° (  = ).

The dashed lines show the cross section of this cylindrical
surface. The distance 2z0 between the apexes of the end
electrodes is related to the inner radius r0 of the ring elec-

trode by z0/r0 = 1/ . (b) The trap fabricated by the Finigan
MAT Company. (c) The trap fabricated by the Bruker–Fran-
zen Analytic GMbH Company.
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following dimensionless Mathieu parameters:

(8)

where U is a constant potential difference between the
end and ring electrodes, V is the amplitude of the har-
monic part of the supply voltage, and z0 is the distance
from the center of the trap to the end electrodes (under
the assumption that the electric field deviates from
being quadrupole only slightly). Below, we will express
the coordinates of an ion in units of z0; in other words,
in Eq. (7), we make the replacement z(t)  z(ξ)z0.
Also, the ion velocity will be expressed in units of
ω0z0/2, which corresponds to the replacement dz/dt 
z'(ω0z0/2). Thus, the basic dimensionless equation of
ion motion in the axial direction has the form

(9)

where αk = Ak /  is the ratio of the amplitudes of
the nonlinear field harmonics to the amplitude of the
quadrupole harmonic.

METHOD OF MATRIX MAPPINGS

In the absence of nonlinear distortions, Eq. (9)
reduces to the Mathieu equation, which is widely used
in the theory of parametric resonances and whose prop-
erties have been studied very well [6]. In the (a, q)
plane, we can plot the boundaries of the regions corre-
sponding to the parametric resonance of ion oscilla-
tions (unstable ion motion). The ions with nonresonant
values of a and q can be trapped in the quadrupole
potential. As a result, we arrive at the stability diagram
[6] of axial ion motion in the quadrupole field (Fig. 2).
In the RF field regime (a = 0), the first stability domain
lies between zero and q0 = 0.908047. It is this domain
that is used in the UAMSE method. For a prescribed
initial amplitude Vini of the supply voltage, the ions with

masses larger than Mb = 4eA2Vini/q0 ω2 are trapped in
the quadrupole potential. As the voltage amplitude is
gradually increased, the ions from each group with the
same mass M leave the first stability domain (and,
accordingly, the working volume of the trap) in increas-
ing order of their masses (because the parameter q is
inversely proportional to the ion mass). The escaping
ions move toward the end electrodes and enter the
detector system after passing through the holes in the
end electrodes.

ξ
ω0t
2

--------, a
8eA2U

Mr0
2ω0

2
-----------------= = , q

4eA2V

Mr0
2ω0

2
----------------,=

z0

r0

A2

----------,=

z'' a 2q 2ξ( )cos+[ ]z+

=  
1
2
--- a 2q 2ξ( )cos+[ ] kα kz

k 1– ,
k 2>
∑–

A2
k 2–

r0
2

To describe the UAMSE theoretically requires a
mathematical apparatus that would allow us to solve
the Mathieu equation with the slowly varying parame-
ters a and q and with nonlinear distortions (which
strongly affect the ion extraction process) on the right-
hand side. To do this, we develop the method of nonlin-
ear mappings, which is based on the properties of non-
linear equations with periodically varying coefficients.

In the absence of nonlinear distortions and at con-
stant values of a and q, the solution can be written as

(10a)

(10b)

where xn and vn are the coordinate and velocity of an
ion at the beginning of the nth period of the RF field, the
phase τ is assumed to be zero at the beginning of each
period, and u1 and u2 are two solutions to the linear
Mathieu equation with the initial conditions

(11)

We write Eqs. (10) at the end of a period of the RF
field (τ = π) in matrix form:

with

(12)

Here, xn + 1 = z(π) and vn + 1 = z0(π) are the coordinate
and velocity of an ion (the ion state vector) at the begin-
ning of the next period. Under the above assumption
that the phase τ vanishes at the beginning of each
period, the periodicity properties of the problem imply
that the solutions u1 and u2 of the linear equation do not
differ between the periods. This allows us to write the
relationship between the state vectors at the beginning
and at the end of each period in the form of (12), with
the same matrix U(π). We continue to proceed in this
manner in order to arrive at the following relationship
between the state vectors at the beginning of every two
successive periods:

(13)

In [7–9], the matrix approach to describing ion
motion in a quadrupole field was developed through an
analysis of mapping (13). The main results obtained in
this way can be summarized as follows.

z nπ τ+( ) xnu1 τ( ) v nu2 τ( ),+=

z' nπ τ+( ) xnu1' τ( ) v nu2' τ( ), 0 τ π,< <+ +

u1 0( ) = 1, u1' 0( ) = 0, u2 0( ) = 0, u2' 0( ) = 1.

xn 1+

v n 1+ 
 
 

U π( ) xn

v n 
 
 

,=

U τ( ) u1 τ( ) u2 τ( )
u1' τ( ) u2' τ( )

.=

x

v 
 
 

n 1+

M x

v 
 
 

n

,=

with   M U π( )≡ m11 m12

m21 m22

.=
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1. An analysis of the matrix mapping (13) makes it
possible to find the condition for the ion motion to be
stable: |m11 + m22| < 2 [10]. Geometrically, this condi-
tion determines the stability diagram of ion motion in
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
the plane of the parameters a and q of the supply volt-
age (Fig. 2).

2. The matrix approach makes it possible to solve
Eqs. (13) for arbitrary initial state vectors:
(14)x

v 
 
 

n

nπβ( )cos A nπβ( )sin+ B nπβ( )sin

Γ nπβ( )sin– nπβ( )cos A nπβ( )sin–

x

v 
 
 

0

,=
where

3. An analysis of solution (14) shows that, in the
phase plane (z, z'), the coordinates of the state vectors
of stable ion trajectories lie on the “trapping ellipses”

(15)

The area Σ of the trapping ellipse is determined by
the initial conditions (x0, v0) and is conserved by virtue
of the Liouville theorem.

4. Relationships (10), together with solution (14),
make it possible to calculate the ion trajectory x(ξ) at
each instant ξ = nT = τ. To construct an exact complete
solution to the problem, it is sufficient to obtain a pair
of solutions u1(τ) and u2(τ) over one period. This can be
done by applying approximate methods for solving dif-
ferential equations or, for a harmonically varying sup-
ply voltage, by turning to the analytic methods used in
the theory of Mathieu equations.

The essence of the proposed method of nonlinear
mappings consists in constructing and studying a
matrix mapping in the form of (13) for an inhomoge-
neous Mathieu (Hill) equation whose right-hand side
should incorporate nonlinear distortions of the quadru-
pole field, as is done, e.g., in (9). Note that this method
of mappings is widely used in the theory of nonlinear
periodic oscillations and self-oscillatory processes
[11]. Here, we apply these methods to study parametric
ion oscillations in a nonlinearly distorted quadrupole
field near the marginal stability for ion motion.

MATHEMATICAL APPARATUS 
FOR THE METHOD OF NONLINEAR MAPPINGS

Let us construct a nonlinear mapping for Eq. (9). In
the stability diagram, we choose a reference point
(a0, q0) at which we obtain a pair of solutions (u1, u2) to
the Mathieu equation with the initial conditions (11).

πβ( )cos
m11 m22+

2
-----------------------, A

m11 m22–
πβ( )sin

----------------------,= =

B
m12

πβ( )sin
-------------------, Γ

m21–
πβ( )sin

-------------------.= =

Ax2 2Γxv Bv 2+ + Σ.=
We describe the supply voltage at the reference and cur-
rent points by the functions

(16)

The reference point should be sufficiently close to
the current point (a, q) in order for the difference f0 – f
to be small in comparison with f0. We rewrite Eq. (9) as

(17)

In this equation, we move all of the terms that
describe nonlinear distortions to the right-hand side.
The characteristic solutions (u1, u2) satisfy the homoge-
neous equation (17). Consequently, over each period

f 0 ξ( ) a0 2q0 2ξ( ),cos+=

f ξ( ) a 2q 2ξ( ).cos+=

z'' f 0 ξ( )z+ f 0 ξ( ) f ξ( )–[ ]z=

–
1
2
--- f ξ( ) kα kz

k 1– .
k 2>
∑

2 4 6 108
0

–2

–4

2

4

6
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10

q0

q

a

Fig. 2. Stability diagram of the axial ion motion. The param-
eter a is proportional to the constant potential difference U
between the electrodes in the trap, and the parameter q is a
measure of the amplitude V of the alternating voltage. For
ions with different masses, the parameters a and q lie on the
same line, which passes through the origin of the coordi-
nates of the diagram and has a slope angle such that  =
2U/V.

αtan
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[nπ, (n + 1)π], the inhomogeneous equation (17) can be
solved by the method of unknown Lagrange multipli-
ers:

(18a)

(18b)

These formulas give the first equation relating the
functions c1(τ) and c2(τ),

(19a)

The second equation follows from Eq. (17):

(19b)

In resolving Eqs. (19) with respect to the derivatives
of c1(τ) and c2(τ), we must keep in mind that the Wron-
skian for the linear homogeneous equation is equal to
unity: u1(τ) (τ) – u2(τ) (τ) = 1, so that we obtain

(20)

According to formulas (18), the initial conditions
for the matrix equation (20) are the coordinates of the
state vector at the beginning of each period:

(21)

Solving Eqs. (20) over the period 0 < τ < π, we use
formulas (18) to construct the following mapping with
a time-varying mapping matrix:

(22)

The matrix equation (22) describes the desired map-
ping between the state vectors of an ion over every two
successive periods of the supply voltage. This equation
is generally nonlinear, because, in the presence of non-
linear distortions of the quadrupole potential, the
matrix Mn depends on the state vector at the beginning
of each period.

Let us transform mapping (22) to the equation for an
integer-valued variable. We apply this mapping to the

z nπ τ+( ) c1 τ( )u1 τ( ) c2 τ( )u2 τ( ),+=

z nπ τ+( ) c1 τ( )u1' τ( ) c2 τ( )u2' τ( ),+=

0 τ π.< <

c1' τ( )u1 τ( ) c2' τ( )u2 τ( )+ 0.=

c1' τ( )u1' τ( ) c2' τ( )u2' τ( )+ f 0 f–( ) c1u1 c2u2+( )=
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1
2
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.
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x
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n

.= =
state vector two times and eliminate the variable vn to
arrive at the following recurrence relation for xn:

(23)

According to the Liouville theorem, the determinant
of Eq. (17) should satisfy the condition det(Mn) = 1.
With this condition, we obtain

(24)

Generally, it might be more convenient to analyze
Eq. (24) rather than Eq. (22).

The exact mapping matrix Mn is impossible to cal-
culate analytically [this is equivalent to solving the
basic Eq. (9) exactly]. However, the nonlinear distor-
tions, which strongly affect oscillatory ion motion over
many oscillation periods, perturb the ion trajectories
over one oscillation period only slightly. This circum-
stance allows us to determine the mapping matrix over
each oscillation period by approximate analytic meth-
ods and to employ the exact mapping (22) for an ade-
quate description of the ion motion. Solving the recur-
rence relation (22) or (24), we obtain the state vectors
of an ion at the same fixed times in each period of the
RF field. The ion trajectory between the points deter-
mined by the state vectors found in such a manner can
be traced using relationships (10), or, more precisely,
formulas (18). We thus can follow the entire ion trajec-
tory, even though Eqs. (22) are discrete in character.
Moreover, we can also choose the initial phase of the
RF voltage so that the ion oscillation amplitude is max-
imum at the fixed times at which the state vectors were
calculated. This choice ensures that the difference
Eq. (24) describes the envelope of ion oscillations,
thereby substantially simplifying the theoretical analy-
sis of the ion motion.

In the next section, we will apply this method to
describe ion motion during the UAMSE.

ION MOTION DURING THE SCANNING 
OF THE MASS SPECTRUM

Near the marginal stability for the axial ion motion
in a trap supplied by applying an RF voltage, the work-
ing point (a = 0, q) for ions with a given mass crosses
the boundary of the first stability domain at the point
(a0 = 0, q0 = 0.90804671). It is this point that will be
used as a reference, in which case the solutions u1(τ)
and u2(τ) are Mathieu functions of integer order. The
plots of these solutions are shown in Fig. 3. By virtue
of the symmetry of the harmonically varying supply

xn 1+ m11
n( )xn m12

n( )v n+ m11
n( )xn m12

n( )+= =

× m21
n 1–( )xn 1– m22

n 1–( )v n 1–+[ ]

=  m11
n( )xn m12

n( )m21
n 1–( )xn 1– m12

n( )+ +

×
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n 1–( )

m12
n 1–( )--------------- xn m11
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n 1– xn 1+ m12
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voltage, we have βz = 1 at the boundary of the stability
domain and, accordingly, we obtain u1(π) = (π) = –1,

u2(π) = D = 5.59366, and (π) = 0, the solution u1(ξ)
being an even periodic function.

In the Appendix, we calculate the mapping matrix
using an approximate method that is valid under the
condition that corrections to the undistorted solution
are small over a period of the RF field. This condition
can be written as

(25)

where q(n) is the current position of the working point.
The characteristic dimensionless amplitude A of the ion
oscillations in the working volume over the period at
hand should be smaller than unity. We consider the ion
motion near marginal stability under the condition that
the difference q – q0 is smaller than 0.01, in which case
the amplitude α0 of the relative nonlinear distortions
does not exceed 2%. Hence, conditions (25) are satis-
fied with a high accuracy.

We assume that, during the scanning of the mass
spectrum, the current working point q(n) for ions with
a given mass crosses the boundary of the first stability
domain. As the working point approaches this bound-
ary, the envelope of ion oscillations changes at a pro-
gressively slower rate. Consequently, in the case at
hand, Eq. (24) contains a small parameter—the rate of
change of the function |xn|. This enables us to transform
the difference Eq. (24) into differential form.

For definiteness, we assume that the derivative
d(ln|xn|)/dn is on the order of ε ! 1. Since the diagonal
elements of the matrix Mn are close to unity, the quan-
tity xn is an alternating-sign function, so that, to within
terms on the order of ε2, we obtain

(26)

where X(n) is a continuous function of time expressed
in terms of the period of the RF field: n = t/T.

Under the assumption that the quantities q0 – q(n),
α3xn, and α4  are on the order of ε2, we can also

assume that  ≈  and  ≈ , in which
case the recurrence relation (24) reduces to the follow-
ing differential equation for the function X(n):

(27)

The trace of the matrix Mn, Spur(Mn), is calculated

u2'

u1'

q0 @ q n( ) q0– , α3A, α4A2 …,,

xn 1–( )nX n( ).=

xn 1± 1–( )n 1± X
dX
dn
-------

1
2
---d2X

dn2
---------–± ,≈

xn
2

m12
n 1– m12

n m22
n 1– m22

n

d2X

dn2
--------- 2 Spur Mn( )+[ ] X+ 0.=
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in the Appendix:

(28)

where Pk is a polynomial of degree k and

For further analysis, we must determine the velocity
vn. In approximation (26), the first equation in (22)
gives

(29)

Since the derived function X(n) is on the order of ε,
we can treat Eq. (27) with vn = 0, in which case we
obtain

(30)

where

(31)

Note that the function u1(ξ)cos(2ξ) is an odd func-
tion with respect to the point ξ = π/2. Consequently, for
odd values of k, we have Qk0 = 0, so that, in this approx-
imation, the odd harmonics of the distorted quadrupole
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Fig. 3. Plots of the solutions to the Mathieu equation with
the initial conditions (11).
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potential do not contribute to Eq. (27), which thus
reduces to

(32)

In the linear approximation (αk = 0), Eq. (32) with
q(n) = const describes harmonic oscillations with the
frequency

(33)

Since the function X(n) is the envelope of high-fre-
quency ion oscillations, expression (33) is obviously
nothing more than the ion bounce frequency. On the
other hand, the period Tb of the ion bounces is deter-
mined by the stability parameter βz [6]: Tb = 1/(1 – βz) =
π/Ω (in units of the period of the RF field). This yields
the following relationship between the stability param-
eter βz and the parameter q near the marginal stability:

(34)

In Fig. 4, we show the results of the exact calcula-
tion of the dependence q(β) by integrating the Mathieu
equation along the line a = 0. For comparison, we also
plot the approximate dependence (34). In accordance
with Fig. 4, formula (34) is an expansion of the exact
dependence q(β) in powers of (1 – β) correct to second-
order terms. For |q – q0| < 0.01, formula (34) is accurate
to within an error of less than 0.2%. For this reason, ion
motion near the marginal stability is very accurately
described by Eq. (32).

1
D
----d2X

dn2
--------- 2Q20 q0 q n( )–[ ] X q n( )4α4Q40X3–+

– q n( )6α6Q60X5 …– 0.=

Ω 2DQ20 q0 q–( ).=

q β( ) q0
π2

2DQ20
---------------- 1 β–( )2–=

=  0.908047 1.139869 1 β–( )2.–

0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

β

q

Fig. 4. Dependence q(β) along the line a = 0, characterizing
the RF field regime. The solid curve is obtained by directly
solving the Mathieu equation on a grid with 2000 mesh
points on the RF field period. The dotted curve is obtained
from formula (34), which approximates the exact depen-
dence.
Now, we turn to the analysis of Eq. (32) with the
nonlinear distortions of the quadrupole field. At fixed
q(n) = const, Eq. (32) is the equation of motion of a
material point with an effective mass D–1 in the force
field described by the potential

(35)

Analyzing the ion motion in this potential promotes
a deeper understanding of the effect of the nonlinear
distortions of the quadrupole field. Figure 5a shows the
distorted potential (35) with a negative relative ampli-
tude α4 of the octopole harmonic for different values of
q0 – q. If this difference is positive (the working point
is inside the stability domain), then the effective elec-
tric field provides a potential well with infinitely high
slopes (Fig. 5a, curve 1), in which case Eq. (32)
describes nonlinear oscillations with an amplitude-
dependent frequency. Small-amplitude oscillations are
almost harmonic with the frequency

(36)

The oscillation amplitude A can be assumed to be
small if the second term in expression (36) is negligible
compared to the first term, 3Q40α4A2 ! 4Q40(q0 – q).

According to the linear Mathieu equation, the
bounce frequency tends to zero when the working point
approaches the boundary of the first stability domain.
According to expression (36), the bounce frequency
increases with oscillation amplitude. Consequently, an
increase in the amplitude of the ion bounces in a dis-
torted electric field with negative even harmonics
forces the working point to displace deeper into the sta-
bility domain and prevents the energy transfer from the
field to the ions. The amplitude of the parametric oscil-
lations of the ions in the z-direction stops increasing
because of the nonlinear processes; as a result, the ions
experience nonlinear bounces near the marginal stabil-
ity. These considerations explain the effect of the
delayed ion extraction in a Paul trap with finite-sized
electrodes [2]. Qualitatively, the delayed extraction
effect is described by Eq. (32), which implies that the
potential well should also exist outside the first stability
domain. For a working point lying outside this domain,
we have q0 – q < 0, in which case the effective electric
field provides a potential well with two dips (Fig. 5a,
curve 3). Since Eq. (32) describes a conservative sys-
tem, the total effective energy of the ion bounces is con-
served:

(37)
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For Eeff < 0, the ions oscillate around one of the
equilibrium positions:

(38)

For Eeff > 0, the ion oscillations are symmetric. For
α4 < 0, the ion oscillations are on the whole stable (of
course, provided that the oscillation amplitude is
smaller than the sizes of the trap).

Due to the presence of a potential well outside the
stability domain, some of the ions experience stable
motion inside the working volume of the trap even
when the working point lies outside the stability
domain. As a result, we can see that the negative even
harmonics of the distorted quadrupole potential act to
delay the UAMSE of the ions in a Paul trap with finite-
size electrodes.

The situation is radically different in industrial-scale
nonlinear traps, which satisfy the condition α4 > 0. In the
stability domain q0 – q > 0, the effective potential
Ueff(X) provides a well with slopes of finite height
(Fig. 5b, curve 1). The half-width of the potential well
can be deduced from formula (38), and the well depth
is equal to

(39)

Small-amplitude oscillations of an ion around the
center of the trap are anharmonic. According to expres-
sion (36), the frequency of small anharmonic oscilla-
tions decreases as their amplitude increases, in which
case the working point is displaced toward the bound-
ary of the stability domain. If the oscillation amplitude
becomes larger than the width of the potential well,
then the oscillations become absolutely unstable,
because the oscillation energy Eeff exceeds the well
depth Um.

As the working point approaches the stability
boundary, the phase difference decreases and, accord-
ingly, the width and depth of the potential well both
become smaller. As a result, the ion trapping region is
reduced. In the stability domain q0 – q < 0, the effective
potential provides a hump (Fig. 5b, curve 3), in which
case the motion of the ions is unstable regardless of
their initial positions. This indicates the onset of the
“explosive ejection” of ions [2]: the flow of ions with a
given mass becomes progressively more intense and is
rapidly damped when the ions cross the boundary of the
stability domain.

DISCUSSION OF THE RESULTS

The results obtained in the previous section show
that the method of nonlinear mappings is very efficient
in describing ion motion near the marginal stability.
The proposed method is capable of explaining the

Xm

q q0–( )Q20

2qα4Q40
---------------------------.±=

Um q0 q–( )Q20

Xm
2

2
-------.=
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effect of delayed ion extraction in the presence of neg-
ative even harmonics of the distorted quadrupole poten-
tial as well as the effect of the explosive ejection of ions
in the presence of positive even harmonics. Both of
these effects, which were analyzed numerically by
Franzen [2], can be described analytically by introduc-
ing the notion of the effective potential.

Let us discuss a number of factors that were
neglected for simplicity but may nevertheless play an
important role. First, Eq. (7) and, accordingly, Eq. (32)
contain no terms describing collisional damping. In
collisions between ions and molecules of a light buffer
gas, the direction of the ion velocity remains essentially
unchanged and the ion kinetic energy decreases by an
amount governed by the molecule-to-ion mass ratio. As
a result, the oscillatory ion motion is damped and the
conservative oscillations described by Eq. (32) become
dissipative. Ion oscillations around the equilibrium
position (the bottom of the potential well) are damped
on a sufficiently long time scale. However, the conclu-

X/z0

321

0.5 1.00–0.5–1.0

1

–1

Ueff × 103

–1.0 –0.5 0 0.5 1.0

23

–1

1
Ueff × 103

(b)

(a)

X/z0

1

Fig. 5. Profiles of the effective potential (35) in which the
ions experience a bounce motion for α4 = (a) –0.02 and (b)
+0.02 at q = q0 – 0.008 (inside the stability domain), (2) q0
(at the marginal stability), and (3) q0 + 0.008 (outside the
stability domain).
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sions of the previous section apply also to nonlinear
traps with damped ion oscillations. In the presence of a
negative octopole harmonic of the distorted quadrupole
field, the delay of ion extraction becomes even more
appreciable due to the damping of ion bounces near the
bottom of the potential well. In the presence of a posi-
tive octopole harmonic, the potential well exists only in
the stability domain and disappears when away from
the stability boundary.

Second, in analyzing Eq. (32), we assumed that the
parameter q(n) is constant. However, this parameter
increases during the scanning of the mass spectrum.
The standard scanning speed in industrial-scale devices
[1] is dM/dt = 5555 u/s. From (8), we obtain

(40)

For the supply voltage frequency ω0/2π = 1 MHz
and the mass M = 500 u, the rate at which the parameter
q changes over a period of the RF field is 10–5. Conse-
quently, we are justified in assuming that, during ion
extraction, the working point is displaced in a quasi-
static fashion, the more so because, in Eq. (32), we
restrict ourselves to considering q(n) values for which
the difference q(n) – q0 is a small quantity on the order
of the amplitude of the nonlinear distortions or even
smaller. A faster scanning of the spectrum may neces-
sitate the inclusion of the change in the parameter q(n),
which is inevitably accompanied by a degradation of
the spatial resolution. In contrast, scanning the mass
spectra at a lower speed (0.025 u/s) makes it possible to
achieve a mass resolution of 3.1 × 10–7 in each scanning
cycle [1].

And finally, in Eq. (32), we neglected nonlinear dis-
tortions described by the odd field harmonics. The rea-
son for this is as follows. Near the marginal stability,
the ion oscillations have the form of beatings during
which the ion coordinate runs through negative and
positive values in the entire range determined by the
current amplitude. In this case, nonlinear distortions are
averaged and, in the first approximation, the contribu-
tion of odd harmonics vanish. However, in practice,
odd harmonics make a nonvanishing contribution,
which can be incorporated into the proposed method by
using the second-order perturbation theory. It is well
known [2] that the contribution of odd harmonics is
analogous to the contribution of negative even harmon-
ics and is unfavorable for the axial mass-selective ion
extraction. This is likely the reason for substantial (up
to 10%) distortions of the geometry of nonlinear Paul
traps in industrial-scale devices. Such distortions stem
from the necessity of producing positive even field
harmonics in order to suppress the effect of odd har-
monics.

dq
dt
------

q0

M
-----dM

dt
--------.–=
CONCLUSION
We have constructed a nonlinear mapping for the

equation of ion motion along the axis of the trap for
parameters of the supply voltage that are near the mar-
ginal stability (βz = 1) for the axial motion. This map-
ping can be reduced to the difference equation for the
envelope of the ion oscillations. With allowance for the
change in the parameters a and q during the scanning of
the mass spectrum, this difference equation can in turn
be reduced to a differential equation with a nonlinear
right-hand side. This differential equation makes it pos-
sible to interpret ion oscillations as the motion of a
material point in a force field whose effective potential
contains nonzero even harmonics.

Depending on the sign of the amplitude of the octo-
pole harmonic, we can distinguish between two possi-
ble cases. For α4 < 0, the bounce frequency near the
marginal stability increases with the bounce amplitude
due to the nonlinear distortions, or, equivalently, the
working point is displaced deeper into the stability
domain. In terms of the effective potential, this can be
explained by the fact that, for α4 < 0, the potential well
is outside the stability domain. Such distortions, which
are typical of a Paul trap, are responsible for the delay
in ion extraction.

For α4 > 0, the effective potential provides a well
with finite-height slopes inside the stability domain,
whereas, outside the stability domain, the potential well
is absent. As a result, ions with a given mass are
extracted from the working volume when passing
through the stability boundary. Thus, a regime of ion
selection occurs.

The results obtained imply that it is expedient to
develop an electrode system capable of creating a qua-
drupole field with the desired odd harmonics in the
trapping region and to use the UAMSE method in
designing and fabricating present-day compact high-
resolution spectrometers.
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APPENDIX

Calculation of the Mapping Matrix

In order to construct the matrix mapping, it is neces-
sary to find an approximate solution to the exact set of
Eqs. (20). For this purpose, we can apply an approxi-
mate method in which the functions on the right-hand
sides of Eqs. (20) are assumed to be constant. We are
justified in applying this approach because we only
need to solve Eqs. (20) for one period 0 < ξ < π of the
RF field rather than to look for asymptotic solutions on
long time scales, on which the approximate method
fails.

Treating the quantities c1 and c2 on the right-hand
side of the matrix Eq. (20) as constants equal to their
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values at the beginning of the period of the RF field, we
obtain the solution of (20) in the form

(A.1)

For ξ = π, Eqs. (18) generate the matrix mapping
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where

(A.4)

(A.5)

(A.6)

We calculate the nonlinear part of the mapping
matrix (24) to obtain
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where D = u2(π) = 5.59366 and

(A.8)

Calculating the nonlinear part of the mapping
matrix yields

(A.9)

for the hexapole distortions (k = 3) and
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for the octopole distortions (

 

k

 

 = 4).

The nonlinear parts of the mapping matrix for
higher order distortions can be evaluated in a similar
way.

In order to examine the recurrence relation (24), we
need to calculate the trace of the mapping matrix:

(A.11)

For the solutions 

 

u

 

1

 

 and 

 

u

 

2

 

 at the marginal stability,
the constants in the above formulas are calculated to be

 

Q

 

20

 

 = 0.77396, 

 

Q

 

30

 

 = 0, 

 

Q

 

21

 

 = 2.23778, 

 

Q

 

40

 

 = 0.707862,

 

Q

 

31

 

 = 1.97977, and 

 

Q

 

22

 

 = 11.9614.

REFERENCES

 

1. R. E. March, in 

 

Advances in Mass Spectrometry

 

 (Elsevier,
Amsterdam, 1998), Vol. 14, Chap. II, p. 241.

2. J. Franzen, Int. J. Mass Spectrom. Ion Processes 

 

125

 

,
165 (1993).

3. Y. Wang and J. Franzen, Int. J. Mass Spectrom. Ion Pro-
cesses 

 

132

 

, 155 (1994).

 

Spur

 

L

 

n

 

( )

 

2– 2

 

q

 

0

 

q n

 

( )

 

–

 

[ ]

 

DQ

 

20

 

,+=

Spur

 

G

 

n

 

3

 

( )

 

( )

 

3

 

α

 

3

 

Dq n

 

( )

 

x

 

n

 

Q

 

30

 

v

 

n

 

Q

 

21

 

+

 

[ ]

 

,–=

Spur

 

G

 

n

 

4

 

( )

 

( )

 =  4α4Dq n( ) xn
2Q40 2xnv nQ31 v n

2Q22+ +[ ] .–



1488 SUDAKOV
4. J. Louris, J. Schwartz, G. Stafford, et al., in Proceedings
of the 40th ASMS Conference on Mass Spectrometry and
Allied Topics, Washington, DC, 1992, p. 1003.

5. J. Wang and J. Franzen, Int. J. Mass Spectrom. Ion Pro-
cesses 112, 167 (1992).

6. N. W. McLachlan, Theory and Application of Mathieu
Functions (Clarendon Press, Oxford, 1947; Inostrannaya
Literatura, Moscow, 1963).

7. A. Pipes Louis, J. Appl. Phys. 24, 902 (1953).
8. P. H. Dawson, Quadrupole Mass Spectrometry and Its

Applications (Elsevier, Amsterdam, 1976), Chap. IV,
p. 79.
9. R. M. Waldren and J. F. J. Todd, in Dynamic Mass
Spectrometry (Heyden, London, 1978), Vol. 5, Chap. 2,
p. 14.

10. M. Yu. Sudakov, Zh. Tekh. Fiz. 64, 170 (1994) [Tech.
Phys. 39 (1), 96 (1994)].

11. I. V. Butenin, Yu. I. Neœmark, and N. A. Fufaev, Introduc-
tion to the Theory of Nonlinear Oscillations (Nauka,
Moscow, 1987).

Translated by O. Khadin
  

TECHNICAL PHYSICS

 

      

 

Vol. 45

 

      

 

No. 11

 

      

 

2000

  



  

Technical Physics, Vol. 45, No. 11, 2000, pp. 1489–1495. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 70, No. 11, 2000, pp. 118–125.
Original Russian Text Copyright © 2000 by Gorelik, Dyuzhev, Novikov, O

 

œ

 

chenko, Furse

 

œ

 

.

                      

EXPERIMENTAL INSTRUMENTS AND TECHNIQUES

                         
Cluster Structure of Fullerene-Containing Soot 
and C60 Fullerene Powder

O. P. Gorelik*, G. A. Dyuzhev**, D. V. Novikov***, V. M. Oœchenko***, and G. N. Furseœ***
* FOMA Company, Houston, USA

** Ioffe Physicotechnical Institute, RAN, St. Petersburg, 194021 Russia
E-mail: dgan@hm.csa.ru

*** Bonch-Bruevich State University of Telecommunications, St. Petersburg, 191065 Russia
Received July 8, 1999

Abstract—Electron microscopy and electron diffraction methods were employed in a study of the structure of
a fullerene-containing soot produced in gas discharge and of a C60 fullerene powder. The data obtained were
analyzed with the use of fractal geometry concepts. It has been shown that, in the structure of the objects stud-
ied, several spatial scales can be identified. The effective radius of the structure’s “elementary particles” calcu-
lated using scaling relationships is equal to 6 Å for the soot and 4.5 Å for the C60 fullerene. The “elementary
particles” combine into associates. The number of particles in an associate in both the soot and the C60 powder
is not large (about 10). The associates form fractal nanoclusters 30-80 nm in size having a fractal dimension of
1.60 ± 0.05 in the soot and of 1.8 ± 0.05 in the C60 fullerene. The structure of the soot nanocluster is unstable
and can be significantly modified by externally applied factors (e.g., as a result of treatment with toluene). The
nanoclusters combine into aggregates having the form of branching cross-linked filaments. Eventually, these
aggregates combine to form macroparticles of soot. © 2000 MAIK “Nauka/Interperiodica”.
The “exponential” growth of scientific interest in
fullerenes, which persisted until recently and culmi-
nated in the award of the Nobel Prize in 1996, is now
gradually subsiding because the unrestrained optimism
regarding the spread of fullerenes as a new material in
various fields of technology has not so far been justi-
fied. In our view, one of the main reasons is that
fullerenes are not readily available because of their
high cost in the world market.

At present the only method of preparing fullerene-
containing soot in commercial quantities is the Huff-
man-Kretschmer method [1] by which the soot is pro-
duced in an electric arc with graphite electrodes in an
atmosphere of helium gas. A mixture of fullerenes is
extracted from the soot with organic solvents and pure
fullerenes are separated using liquid chromatography.
The greatest cost of fullerene products is introduced by
the fullerene-containing soot. However, it is obvious
that the present scale of experimental studies, which
could have contributed to the improvement of the soot
production and, consequently, to the reduction of
fullerene production costs, is still insufficient [1–6].

The purpose of this work is to study the structure of
fullerene-containing soot and C60 fullerene powder
using electron microscopy and electron diffraction.

EXPERIMENTAL
The fullerene-containing soot was prepared in pilot

plants equipped with cylindrical plasma reactors. The
arc discharge was fired between a movable cylindrical
1063-7842/00/4511- $20.00 © 21489
cathode 8 mm in diameter and a fixed anode of a square
cross-section of an area 9 × 9 mm. The arc current was
180 Å, the distance between electrodes 6 mm, and
helium pressure 70 torr. The percentage of fullerenes in
the soot produced was typically α ~ 10–12%. The soot
collected in the reactor was ground and thoroughly
mixed in a mechanical mixer. Fullerenes were extracted
from the soot with 0-xylene. The solvent was then fil-
tered and evaporated. Separation of the fullerenes into
fractions was carried out in chromatographic columns
with toluene as the eluent. After chromatography, C60

fullerene powder was extracted from the solution by
vacuum evaporation of the solvent at a temperature of
200°C.

The morphology of soot particles was studied in a
EMV-100L electron microscope at an accelerating
voltage of 75 kV and a magnification of 105. Samples
for the electron microscopy were prepared by dispers-
ing the soot ultrasonically in collodion. The thin disper-
sion film formed on the water was placed on supporting
netting and examined under the electron microscope.

Electron diffraction patterns of the samples were
obtained in a microdiffraction regime with an acceler-
ating voltage of 75 kV. Computer processing of the
micrographs was done at 3 × 106 magnification with the
use of a cluster–lattice model [7] following a method
[8] proposed for the analysis of network topology of
polymer surfaces. The scanned area of the image was
about 5 × 103 nm.
000 MAIK “Nauka/Interperiodica”
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3 µm

200 nm

Fig. 1. Electron micrographs of the fullerene-containing soot.
OBTAINED RESULTS 
AND THEIR PROCESSING

Analysis of numerous micrographs has shown that
the outward appearance and structure of fullerene-con-
taining soot and C60 powder depend markedly on the
magnification value chosen. At low magnifications
(Fig. 1a), the fullerene-containing soot looks like an
ordinary soot produced by the thermal evaporation of
graphite [9]. As a result of ultrasonic dispersion, soot
particles disintegrate into aggregates having the form of
branching cross-linked filaments (Fig. 1b). The cross-
linking elements of these aggregates are nanoclusters
with an average diameter of 30–80 nm and a near-
spherical form. Photographs of isolated nanoclusters of
fullerene-containing soot could not be obtained (Fig. 2)
as they were used in the dispersed powder of C60

(Fig. 3). The purpose of this work was to study the nan-
ocluster structure in both the soot and the C60 powder.

20 nm

Fig. 2. Nanoclusters of the fullerene-containing soot.
A nanocluster is obviously a spatial structure that
has to be reconstructed using its plane projections. In
principle, such a procedure can be accomplished with
the use of stereographic methods [10], although these
methods are rather complicated.

As seen in Figs. 2 and 3, the nanoclusters of
fullerene-containing soot and C60 powder have a non-
uniform density. Regions of higher density form a spa-
tial network and represent associates of elementary
structural units which, in particular, include fullerene
molecules.

In the analysis of the spatial distribution of the ele-
ments constituting a nanocluster, the following proce-
dure was used. On the picture of a nanocluster, a planar
square lattice was superimposed with the distance
between sites being r = 0.8–1 nm, and the sites topolog-
ically corresponding to the regions of higher density in
the image were marked. The spatial distribution of the
density was described by a radial distribution function
g(R) of the marked lattice sites

(1)

where ρ(R, δ) is the density distribution of marked sites
in a layer of thickness δ at a distance R from an arbi-
trarily chosen site and  is the density of marked sites
averaged over the entire image. In order to eliminate the
effect on the form of function g(R) of the periodicity of
the lattice itself, the value of δ was taken as 2r [11]. The
function g(R) was obtained by averaging over 2000 or
more centers. The standard error of function values did
not exceed 0.5%.

Figure 4 shows the form of the correlation function
g(R) for density distributions in the nanoclusters of
fullerene-containing soot and C60 powder. The distance
between function maxima determines the period L of
the spatial alternation of the associates in a nanocluster.
The position of the first function minimum corresponds
to the associate correlation radius ξ [12]. L and ξ values
are given in the table.

g R( ) ρ R δ,( )/ρ,=

ρ
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50 nm

50 nm

(b)(‡)

Fig. 3. Nanoclusters of the C60 powder.
The lattice density of nanoclusters ρΠ correspond-
ing to the fraction of regions of higher density was
determined from the formula

(2)

where ρ' is the specified density of lattice sites equal
to 1/r2.

To characterize the spatial structure of a nanoclus-
ter, an average lattice density ρΠ(R) of the marked lat-
tice sites over radius R [7] was used

(3)

where ρ(R) = (1 + 2πρ (R)RdR)/πR2.

Figure 5 shows in logarithmic coordinates the
dependence of the average lattice density ρΠ(R) of the
nanocluster samples studied on the radius R. It is seen
that at R < R* these dependences are straight lines, i.e.,
the density decreases as

(4)

where D is the fractal dimension of a nanocluster. The
values of D are given in table.

Assuming self-similarity of the nanocluster struc-
ture at R < R* and self-similarity of the internal struc-
ture of its elements at R < ξ, with the use of scaling rela-
tionships, some conclusions concerning the nature of
the nanocluster elements can be attempted. It is evident
that for the C60 powder these elements should represent
associates of C60 molecules. For the number s of parti-
cles in an associate, relationships given in [7] hold:

(5)

ρΠ ρ/ρ',=

ρΠ R( ) ρ R( )/ρ',=

g
o

R∫

ρΠ R( ) RD 2– ,∼

s ω ξ /R0( )D,=
YSICS      Vol. 45      No. 11      2000
where R0 is the radius of “elementary” particles com-
prising the associate, ω is the degree of filling of the
associate with the “elementary” particles

(6)

where 〈S〉  is an average area of the associate projection
and Ω its average density. Quantities ω and Ω are

related by formula ω/Ω = π . For randomly packed
hard spheres we have ω = 0.637 [13].

s Ω S〈 〉 ,=

R0
2

0.9

1.0

1.1

0.9

1.0

1.1

0.9

1.0

1.1

0.9

1.0

1.1

0 5 10 15 20 25
R, nm

g(R) L

ξ
1

2

3

4

Fig. 4. Correlation functions for different samples: (1) C60
nanoclusters of porous structure; (2) C60 nanoclusters of
usual structure; (3) fullerene-containing soot; (4) fullerene-
containing soot briefly treated with toluene.
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The area 〈S〉  of a projection is given by the relation-
ship [14]

(7)

It follows from (5), (6), and (7) that

(8)

Expression (8) was derived for a planar surface (E = 2).
To obtain the R0 value in the bulk (E = 3), the relation-
ship R0(E = 3) = 4/πR0(E = 2) should be used [10].

The number s of “elementary particles” in the asso-
ciates and their radii R0 are given in the table.

Figure 6 shows electron diffraction patterns of the
samples of initial fullerene-containing soot as well as
of the soot treated with toluene for 5 min and 24 h. The
treatment with toluene consisted in placing the support
net with the preparation in a glass filled with toluene for

S〈 〉 2ρΠξL.=

R0 2/πρΠ Lξ1 D–( )1/ 2 D–( )
.=

–1.0

40

lnρΠ

R, Å20 100 200 400

–0.5

0

lnR, Å3 4 5 6

1

3

2

Fig. 5. Dependence of the average lattice density ρΠ on the
scaling radius R. (1) C60 nanoclusters; (2) fullerene-contain-
ing soot; (3) fullerene-containing soot briefly treated with
toluene.
a preset time, and then the preparation was dried in air
and analyzed.

DISCUSSION OF RESULTS

We would like to begin the discussion with the
results obtained for samples of the C60 fullerene powder
because it is a considerably simpler and more compre-
hensible object. It is known [15] that in the crystalliza-
tion of pure fullerenes and, in particular, C60, a perfect
crystal lattice is rarely formed. Various distortions seen
in X-ray diffraction patterns are usually explained as
being due to crystallization defects.

In the C60 fullerene powders studied, two types of
nanocluster structures were identified. Nanoclusters
which could be considered as belonging to an amor-
phous type (type I) have a porous structure (Fig. 3a).
The pores have a clearly discernible period of spatial
alternation equal to ~3.5 nm (Fig. 4, curve 1). The aver-
age pore size determined from the halfwidth of dips of
the function g(R) is equal to ~2 nm. It should be noted
that this nanocluster type is very unstable. Under the
impact of an electron beam in a microscope, the pores
“overgrow” within a few seconds.

The structure of type II nanoclusters is formed by
spatially ordered associates of rather high density.
These nanoclusters often have a hexagonal habit
(Fig. 3b). Analysis of the function g(R) (Fig. 4, curve 2)
shows that associates with a correlation radius ξ = 2.5 ±
0.5 nm have an alternation period L = 3.5 nm. It should
be noted that the alternation periods of associates of C60
molecules in type II nanoclusters coincide with those in
type I clusters.

Type II nanoclusters have a net-like fractal structure
[7] because, as a result of increasing R, their average
density decreases as ρΠ(R) ~ RD – 2 and in logarithmic
coordinates the function ρΠ(R) is a straight line (Fig. 5,
curve 1). The fractal dimension is D = 1.80 ± 0.05.

The radius R0 of “elementary” particles forming the
associates in nanoclusters of the C60 powder calculated
(‡) (b) (c)

Fig. 6. Diffraction patterns of samples of fullerene-containing soot. (a) Starting soot sample; (b) brief treatment with toluene; and
(c) prolonged treatment with toluene.
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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Plasma reactor wall

Macroparticles

Nanocluster
aggregates

Nanocluster
Distance from

the discharge center

Associates

Fullerenes
and carbon

“elementary”
particles

Average radius
of the structures

Multiple-ring
systems

Rings

Chains

C C+ Carbon atoms and ions
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3r0

10r01 nm
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30 nm

300 nm
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Fig. 7. Formation of the fullerene-containing soot.

r0 = 3 mm
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Parameters of nanoclusters’ structure

Sample ρΠ(ξ) ±10% ξ, nm ±10% L, nm ±10% D ±10% R0, nm s

Fullerene C60 0.8 2.5 3.5 1.80 0.45 14

Fullerene-containing soot 0.55 3.0 4.5 1.60 0.6 8

Fullerene-containing soot 
briefly treated with toluene

0.8 1.5 2.5 1.80 – –
by Eq. (8) is equal to 0.45 nm and the degree of aggre-
gation s = 14. The results obtained appear quite reason-
able since the radius of the C60 fullerene is 0.35 nm and
the fullerene powder was produced using a supersatu-
rated toluene solution in which associates of fullerene
molecules with s ~ 8 [16] have been observed.

At R > R* = 5 nm, the fractal dimension of the nan-
ocluster changes from D = 1.8 to D = 2, and the network
becomes continuous with both the correlation radius R*
and the period Ls of about 10 nm. Note that the maxi-
mum of g(R) is most pronounced at R = 8 nm (Fig. 4,
curve 2). Spatial structures with Ls = 2R* are typical of
hexagonal honeycomb-type networks [8].

Let us now analyze the experimental data on
fullerene-containing soot. The function g(R) for the
soot nanoclusters (Fig. 4, curve 3) corresponds to a cor-
relation radius of associates equal to ξ = 3 nm. The
alternation period of the associates L is about 4 nm. In
the range R < R* = 7 ± 0.5 nm, the lattice density
decreases according to the law described by formula (4)
(Fig. 5, curve 2) and the fractal dimension is D = 1.60 ±
0.05.This value of D is more typical of the cluster-clus-
ter than cluster-particle aggregation [17].

If scaling relationships are used for the nanoclusters
as well, then the radius of “elementary” particles
comprising an associate, as calculated by Eq. (8), is
R0 ~ 0.6 nm and the degree of aggregation s ~ 8. In the
case of soot, the associates will naturally contain, apart
from fullerenes, carbon particles that failed to incorpo-
rate into the fullerenes during the growth process
because of some “architectural” error. The size of such
carbon particles is close to that of the fullerene.

The small number of “elementary” particles in the
associate (s ~ 8) explains the effect of aging of the
fullerene soot first observed in [18]. This effect is
observed in soot with high fullerene content (α > 12%),
in which the value of α drops after a few days of storage
to α ~ 8% and then remains without change for a long
time. The following explanation can be suggested: if α
is large and there are associates containing at least two
fullerene molecules, then dimers that are insoluble in
organic solvents can be formed. On the other hand, the
formation of dimers in associates containing just one
fullerene molecule is unlikely.

At R > R* an unusual phenomenon is observed in
the nanoclusters of fullerene-containing soot when the
lattice density ρΠ(R) begins to rise. Only at R > 25 nm,
i.e., when their radius becomes comparable to the size
of a single nanocluster, does the transition to the contin-
uous network of a percolation cluster with ρΠ(R) =
const. = 0.6 occur. The reason for the growth of ρΠ(R)
is not yet quite clear. Maybe the spatial structure of the
soot nanoclusters is rather unstable and can be modified
by some external factors.

Figure 6 shows electron diffraction patterns of three
soot samples. It is seen that even after a brief treatment
with toluene, which is too short for the fullerene mole-
cules to pass into the solution, the width of diffraction
maxima increases for the same interplanar distances
d1 = 1.26 Å and d2 = 2.2 Å. Brief treatment with toluene
significantly affects the correlation function g(R) and
the lattice density ρΠ of the nanoclusters (Fig. 4, curve 4
and table), decreasing their correlation radius ξ and the
alternation period L and increasing the fractal dimen-
sion D. After brief treatment with toluene, the structure
of fullerene-containing soot becomes similar to that of
the nanoclusters of C60 powder (Fig. 5, curve 3).

Although not all the experimental facts have been
interpreted yet, there is no doubt that the structure of
nanoclusters in fullerene-contain soot is intrinsically
unstable and can be changed by treatment not only in
organic solvents but, apparently, in gases as well.

CONCLUSION

The experimental results obtained add up to a qual-
itative picture of fullerene soot formation in arc dis-
charge. Of course, this picture will be in many respects
disputable, but we think that it has a right to exist.

Soot formation is a multistage process, both spa-
tially and as regards the particle size (Fig. 7).

In the active zone of discharge, where the electric
current is flowing, the plasma temperature is so high
that only carbon atoms and ions are present there [19].

Away from the discharge axis and towards the
chamber walls, the plasma temperature decreases, and
the formation of C2 molecules occurs, followed by that
of chains, rings and multiple-ring systems.

The transformation of the multiple-ring systems
into fullerenes and soot particles is now being actively
studied theoretically, but the picture is still far from
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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clear. Among the experimental results relating to this
field, the determination in [20] of the spatial position of
the fullerene formation zone and the exposure in [21] of
the important role of charged particles in the fullerene
formation process should be noted. At the next stage,
the aggregation of fullerenes and small carbon particles
into associates (“failed” fullerenes) takes place. As
shown above, the number of particles in an associate is
not large (less than 10). Limited associate size is possi-
bly due to the fact that, in the particle formation zone,
the plasma concentration is still appreciable and the
electric charge residing on associates prevents their
aggregation. The situation in this case is probably sim-
ilar to the plasma crystal in a dust plasma [22].

It is to be noted that the above steps in the ladder of
fullerene formation are spatially well defined, because
they proceed within a zone of the fan plasma jet flowing
out of the interelectrode gap. Subsequent steps take
place in the zone of gas convection, so their spatial
boundaries are apparently more diffuse.

Interaction between the associates gives rise to the
fractal structure of the nanoclusters studied in this
work. The nanoclusters combine into aggregates that
also have a fractal structure [9]. And, finally, the aggre-
gates stick together to form macroparticles one micron
and larger in size. It is possible that the formation of
macroparticles takes place not in the gas medium but on
the reactor walls.
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Abstract—The design of an ionizer for gas analyzers using the gas discharge instead of a radioactive source is
considered. A high-frequency discharge between isolated electrodes is used as an ionizer in an argon ionization
detector for gas chromatography. It is shown that the replacement of a radioactive source by the gas discharge
improves the detector performance. An analytical model for the argon ionization detector is proposed. Model
results are in good agreement with experiment. © 2000 MAIK “Nauka/Interperiodica”.
Most of modern gas analyzers convert the concen-
tration of a substance to be analyzed into electric cur-
rent. Thus, the process of ionization, i.e., the formation
of charged particles in a gas, is of primary importance
in gas analysis. Radioactive sources of β particles (63Ni
or 3H) are most often used for the ionization of micro-
impurities in the gas. In spite of the well-known advan-
tages of such ionizers (stability, long service time, and
much operating experience), they have a common
drawback: danger of radioactive environmental pollu-
tion. Therefore, designing a radiation-free ionizer is
becoming more and more topical. Below, we shall dis-
cuss the application of an electric gas discharge as a
source of charged particles in gas analysis.

GAS DISCHARGE

Gas discharges differ in a number of characteristics:
plasma properties (equilibrium or nonequilibrium), the
effect of near-cathode processes (electrode or elec-
trodeless discharge), etc. [1]. Requirements imposed on
the ionizer for gas analysis considerably restrict the
number of acceptable types of gas discharge. Note first
of all that an equilibrium plasma, i.e., the plasma with
similar temperatures of electrons and gas molecules,
cannot be used because of high gas temperatures and
high energy needed to generate the plasma. The use of
a dc discharge is also limited due to its instability. In
this case, charged particles fast leave the discharge
region by the action of the field. Thus, the field strength
should be raised to sustain the discharge, which leads to
instabilities due to ionization overheating [1]. As a
result, the ion current also becomes unstable, and the
use of the dc gas discharge (corona discharge) as an
ionizer is made difficult.

One way of preventing the dc discharge instability is
based on the fact that a finite time interval is required
for the instability to reach the macrolevel. Therefore, if
the energy is delivered to the discharge by short high-
intensity pulses, the instability does not develop. How-
1063-7842/00/4511- $20.00 © 21496
ever, a sufficiently dense plasma is formed in this case,
since the ionization strongly depends on the pump
energy. Once a pump pulse is switched off, dissipative
processes suppress the development of the instability.
If the pulse repetition period is comparable to the
energy relaxation time in the plasma, its period-aver-
aged parameters, including the degree of ionization,
will be stable. Such a pulsed discharge can be used as
an ionizer [2, 3].

However, an rf gas discharge seems to be the most
promising in this respect. If its frequency is high
enough, charged particles are lost only through neutral-
ization and diffusion processes. Weaker fields insuffi-
cient for the development of the instability are required
to generate and maintain the plasma in this case. If,
however, the field strength is raised to increase the effi-
ciency of ionization, the above reasoning concerning
pulse energy delivery remains valid here, too.

An rf capacitive discharge between the isolated
electrodes, in our opinion, is the best compromise for
the contradictory requirements imposed on a source of
charged particles in gas analyzers. In what follows, we
shall consider physical and technological principles
behind the use of a gas-discharge source in argon ion-
ization detectors designed for an Ekho field gas chro-
matograph [4].

AN ARGON IONIZATION DETECTOR (AID)

Design 

An AID version being considered (Fig. 1) consists
of two, ionization and reaction, chambers. An ionizer
(β source or gas-discharge ionizer) is placed in the ion-
ization chamber. An active agent (metastable excited
particles and/or electrons) is transported to the reaction
chamber by means of a carrier gas and/or a constant
electric field produced by an extra electrode. A high-
voltage electrode (anode) is located near the gas inlet in
the reaction chamber. The gas to be analyzed and active
000 MAIK “Nauka/Interperiodica”
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particles coming from the ionization chamber interact
in the reaction chamber in the presence of a high-inten-
sity electric field, causing microimpurities to be ion-
ized. The ion current, being the response of the detec-
tor, is measured with the cathode.

Processes in the Reaction Chamber 

The following reactions proceeding in the reaction
chamber, specify the AID response and should be taken
into account in calculations.

Collision ionization of a carrier gas (Ka is the equi-
librium constant of the reaction):

where G is a gas particle, e(V) is an electron whose
energy (imparted by the field) is higher than the ioniza-
tion energy of the particle, G* is an ionized particle,
and et is a thermalized electron.

Generation of excited particles G* (Ke is the equilib-
rium constant):

where e(V) is an electron whose energy (imparted by
the field) is higher than that of an excited particle.

Collision ionization of an impurity molecule A (Fi is
the equilibrium constant):

Penning ionization of an impurity molecule A
whose ionization energy is less than the energy of the
excited particle G* (Kp is the equilibrium constant):

The annihilation of excited particles may follow
various paths and is characterized by the general reac-
tion constant Kd.

AID Design 

Let us write a system of charge balance equations

The designations used correspond to those intro-
duced above, but the letters now refer to the concentra-
tions of the related particles normalized to the gas den-
sity N, n is the density of free electrons, and subscript 0
marks particles coming from the ionization chamber.
The system has a solution relative to n:

and γ = Kd /Kp = 10– 4–10–5 [5]; the detector response,
i.e., the current being measured, I = eNn (e is the elec-
tron charge).

e V( ) G G+ 2et,+ +

e V( ) G G* et,+ +

e V( ) G G+ 2et.+ +

A G* A+ et.+ +

G0* Ken+ G* Kd K pA+( ),=

A+ K pAG* KinA, G++ Kan,= =

n A+ G+ n0.+ +=

n
βG0* n0+

1 Ka– KuA– βKb–
------------------------------------------------, where    β A

γ A+
-------------,= =
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This formula describes the detector current as a
function of the concentration of the material being ana-
lyzed, electric field strength, and characteristics of the
detector. The concentration A enters into the formula
through the coefficient β. The field dependence appears
through the reaction constants Ki, Ke, and Ka, which
essentially depend on the field. At the zero field, they
are equal to zero; when the strength E grows to some
value, the constants increase drastically. The parame-
ters  and n0, appearing in the formula, depend on the
detector design.

Asymptotic Behavior 

Let us analyze the formula for the limiting values of
A and E.

(1) First, it should be mentioned that, as A increases,
the coefficient β approaches 1 and the detector current
approaches a constant value. The upper limit of the lin-
ear range lies at A ~ γ ~ 10–4–10–5. Therefore, there is
no point in analyzing the system for A > γ, and the equa-
tion can be simplified by using the condition A ! β and
neglecting the terms of the second order of smallness
with respect to A:

(2) Range of small concentrations. In this case, β ≈
A/γ, and

Note the fundamental difference between the detec-
tors considered. The linear range of an AID with a β
source (free electrons as active particles) is limited

G0*

n
βG0* n0+

1 βKe– Ka–
-------------------------------= .

n
AG0* n0γ+

γ 1 Ka–( ) AKe–
---------------------------------------.=

8

76
9

3

2

1 54

I U1U

Fig. 1. Argon ionization detector with a gas-discharge ion-
izer: U, high-voltage power source; I, electrometric ampli-
fier; U1, constant voltage source applied to the additional
electrode (β source can be used instead of the discharger and
discharge initiator); 1, inlet of gas to be analyzed Qk; 2, vent
Qk – Qn, 3, carrier gas Qn; 4, reaction chamber; 5, ionization
chamber; 6, measuring electrode; 7, additional electrode; 8,
discharger; and 9, discharge initiator.
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below by the value I = eNn0 /(1 – Ka). This so-called
background current is caused by the flow of electrons
from the ionization chamber. The response of an AID
with a capacitive discharge (excited atoms as active
particles) is due to the flow of excited atoms from the
ionization chamber and ideally can remain linear up to
vanishingly small impurity concentrations. The condi-
tion n0 = 0 can easily be realized in practice by applying
a small blocking voltage to the extra electrode.

(3) Low fields. The reaction constants Ki, Ke, and Ka

approach zero; hence,

(1)

(4) High fields. For this case, the detector current is
determined by the denominator. At some field, it
approaches zero (the current tends to infinity), and the
high-voltage electrode breaks down.

Calculations of the Reaction Constants 

For further analysis, we must know the dependence
of the reaction constants Ki, Ke, and Ka on the electric
field strength E. The plasma processes characterized by
these constants are of the same physical nature: they
transfer energy from an electron accelerated by the field
to a neutral particle. Thus, we can determine one con-
stant and then obtain the others, substituting the corre-
sponding initial data, namely, the energy and cross sec-
tion of the interaction.

We will calculate the constant of some generalized
reaction in argon. The dependence of the cross section
of this process on the collision energy σ(ε), as well as
the distribution of electrons over velocity f0(u) and
energy n(ε), are assumed to be given [5, 6]. Then, a
number of effective collisions ν is given by

where ε0 is the characteristic energy of the process and
n is the electron concentration.

Due to the nonlocal character of the process, the
spatial characteristic of ν, α = ν/µE, seems to describe
the situation more adequately than the time characteris-
tic. Here, µ is the electron mobility:

where νm is the number of transport collisions [6].
Given α(E), one can write the differential equation

for the number of ions (Ni) or excited atoms (Ne),

Separating the variables and integrating, we obtain
the formula for the number of particles generated by

e
AG0*

γ A+
------------- e0.+=

ν N
n
---- n ε( )uσ ε( ) ε,d

ε0

∞

∫=

µ 4πe
3mn
-----------

∂ f 0

∂u
--------– 

  u3

νm

------ u,d

0

∞

∫=

dNi α iNidr, dNe α edr.= =
one electron when it moves from a point r1 to the anode
(point r0):

Finally, integrating N(r) over the volume of the
dividing chamber and normalizing the result to the den-
sity of seed electrons n(r), we obtain the reaction con-
stant K:

A rigorous calculation with the use of the above for-
mulas faces a number of serious problems. The system
of gas flows and electric fields causes the inhomoge-
neous distribution of the active particles inside the reac-
tion chamber. The physical properties of the object
being analyzed (electrons in the gas), which serve as
the initial data, are known only from experiments, i.e.,
are given in the tabulated, rather than in the analytical,
form. Therefore, the rigorous analysis of the system
must use only numerical methods. However, from the
above formulas, one can make several general conclu-
sions. First, from the definition of the coefficient α, it
follows that αi/αe = νi/νe. Second, the number of effec-
tive collisions depends on the number of electrons
whose energy exceeds the characteristic energy of the
process; hence, νi > νe > νa.

After these remarks, we proceed to the AID design
in simpler terms. Let us divide the reaction chamber
into two areas with a sharp boundary between them.
First comes the ionization area in the immediate vicin-
ity of the anode, where electrons subjected to the elec-
tric field ionize neutral particles of the carrier gas. Its
boundary is at a distance of da from the anode surface.
Next is the excitation area, where excited particles are
generated. Its boundary is at a distance of de from the
anode surface. The electric field E and the correspond-
ing coefficient α are assumed to be constant in either
area. With increasing the anode voltage U, only the
boundary position changes:

where r0 is the anode radius.
Let us justify this assumption. First, the dependence

α(E) is of a well-defined threshold character. This fact,
together with the sharp spatial inhomogeneity of the

Ni r1( ) α i E r( )( ) rd

r0

r1

∫
 
 
 
 
 

,exp=

Ne r1( ) α e E r( )( ) r.d

r0

r1

∫=

K

N r( )n r( )dr

ν
∫

n r( ) rd
ν
∫

--------------------------------.=

d U/E r0,–=
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near-anode field, allows one to treat the boundary
between the areas as a line on one side of which α = 0
and α ≠ 0 on the other. Under this assumption, the AID
response takes the simpler form

Since we consider the range of moderate fields, the
boundaries lie close to the anode. This allows the lin-
earization of the integrals with respect to the small
parameter d:

To estimate the coefficient α, one can use the exper-
imental dependence of the Townsend coefficient on the
field strength α(E) [7]. The same dependence is suitable
for the estimation of αe = αeνe /νa. The relationship
between νa and νe is considered in the general case in [8].

EXPERIMENT

When an rf discharge between isolated electrodes is
used for gas ionization, the physical processes and
design concepts differ essentially from the conven-
tional case [9]. The main distinction is that the ionizer
must maintain the discharge in an open, rather than in a
closed, space. This results in substantial electron
losses; hence, the energy needed to initiate and main-
tain the discharge is high. The field strength can be
increased by either increasing the voltage applied to the
gap or decreasing the distance between the electrodes
and insulator thickness. The first way complicates the
design of a pump oscillator and deteriorates its weight–
size and power characteristics. The second way also
suffers from drawbacks. If the amplitude of electron
oscillations becomes larger than the interelectrode dis-
tance, the discharge initiation voltage decreases in a
much lesser degree with decreasing the distance. The
tendency to decrease the insulator thickness also has
the natural limit—breakdown of the insulator. Note that
the application of a thin layer with high thermal and
electric strength and a high permittivity on the elec-
trode is considered to be a key problem in designing
effective gas-discharge ionizers of such type. The best
solution today is the use of a quartz capillary (outer
diameter is 0.2 mm; inner, 0.1 mm) for electrode isola-
tion. One electrode is placed inside the capillary, and
the other, outside. The discharge develops over the
electrode surface and in its immediate vicinity. Such a
design [10] was used in all the experiments performed.

Even if the design of the gap is optimal, a high-fre-
quency voltage with an amplitude of several hundred
volts is required to initiate and maintain the discharge.
It is easy to show that the reactive power in the mega-
hertz frequency range will be tens of watts for a capac-
itive load of several tens of picofarad. This means that
the design of a pump oscillator in the form of an ampli-
fier combined with a step-up transformer is inappropri-

I nN Ka 1+( )
βG0* e0+
1 βKe–

----------------------.=

Ka αa Ea( )da( ) 1, Ke–exp α e Ee( )de.= =
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ate because of its cost inefficiency. An acceptable way
to reach the required parameters is to use a resonant
oscillator with a capacitive load as a component of the
output LC-circuit [11]. The best combination of service
characteristics (high efficiency of ionization, stability,
and cost efficiency) is attained when the pump energy
is delivered to the discharge by pulses. Our version had
the following characteristics: supply voltage 30–75 V,
pulse repetition period 0.1–0.5 ms, pulse duration
20 µs, frequency 13.7 MHz, discharge maintenance
voltage 430 V, discharge initiation voltage 630 V, and
power consumption 0.12–1.2 W.

The amplitude of the AID signal depends linearly
(with an accuracy of 7%) on the supply voltage of the
discharge initiator. In our opinion, this is due to an
increase in the flow of excited atoms with increasing
pump energy. To correctly compare the AIDs with the
rf discharge and the β source, the supply voltage was
chosen such that the signals from both detectors were
equal. A negative voltage of 20 V was applied to the
additional electrode. This is sufficient to fully suppress
the flow of charged particles from the discharge and to
minimize the ion flow from the reaction chamber. The
flow rate of the carrier gas was varied.

In the experiments with the AIDs having the β
source, a foil of 63Ni with an activity of 10 µCi replaced
the gap in the ionization chamber. A positive voltage of
20 V was applied to the additional electrode (the carrier
gas was not used, since the detector signal in this case
depends only slightly on its flow rate).

RESULTS AND DISCUSSION

The AIDs with the rf discharge and those with the β
source were tested as a part of the Ekho field gas chro-
matograph. Concentration dependences of the detector
response (Fig. 2) were measured as a dependence of the
chromatogram peak amplitude on the sample volume.
The sample was introduce by a gas syringe that con-
tained a certain amount of saturated toluene vapor.
Knowing the concentration of the saturated vapor at
room temperature, one can estimate the upper limit of
the sample concentration (in the maximum of a chro-
matogram) from the ratio between the introduced and
peak volumes. This estimation does not take into
account material losses in the analytical path and input
errors. Therefore, experimentally found characteristics
of the detectors in the range of small concentrations are
rough.

As one would expect, the linear range of the detector
is limited from above by concentrations of about
100 ppm for both types of the ionizers. The lower limit
is determined by the value and stability of the back-
ground current, i.e., the current in the absence of the
chromatographic signal. The background peak for the
AIDs with the β source is due to the electron flow from
the ionization chamber and equals about 10–9 A. An
impurity concentration of 0.1 ppm caused a valid signal
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Fig. 2. Concentration dependence of the argon ionization
detector.
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Fig. 3. Argon detector with a radioactive source. (a) Exper-
imental voltage dependence of the background current (data
points) and calculated dependence of the detector current on
the anode voltage for an impurity concentration of 30 ppb
(curve); (b) experimental voltage dependence of the peak
amplitude (0.2 µl) (data points) and calculated dependence
of the detector current on the anode voltage for an impurity
concentration of 4 ppm (curve).
of the same value (Fig. 3). Electrons are dragged out of
the ionization chamber by the constant field, as follows
from the diode-type shape of the current–voltage char-
acteristic of the additional electrode.

For the AIDs with the capacitive gas discharge, the
background current is almost 100 times less. One can
suggest several reasons for its origin. It may result from
the interaction between excited and neutral atoms of the
carrier gas. The reaction may proceed by the Horn-
back–Molnar mechanism:

or Büttner–Chadet mechanism:

However, it was shown [12] that the former reaction
in argon has an insignificant effect. The latter reaction

G G* G2
+ e+ +

G* G* G+ G e.+ + +

0 0.2 0.4 0.6 0.8 1.0 1.2

10

20

30

40

50 (a)
I, nA

0 0.5 1.0 1.5

50

100

150
(b)

I, nA

U, kV

Fig. 4. Argon detector with the capacitive gas discharge. (a)
Experimental voltage dependence of the background cur-
rent (data points) and calculated dependence of the detector
current on the anode voltage for an impurity concentration
of 30 ppb (curve); (b) experimental voltage dependence of
the peak amplitude (1 µl) (data points) and calculated
dependence of the detector current on the anode voltage for
an impurity concentration of 20 ppm (curve).
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is essential only at high concentrations of excited parti-
cles. Moreover, this reaction implies a quadratic depen-
dence of the detector response on the concentration of
excited particles. This does not agree with the linear
dependence of the background current on the voltage
across the discharger.

Uncontrollable impurities in the carrier gas that
have an ionization energy smaller than the excitation
energy of an argon atom seems to be a more probable
reason for the background current in the AIDs with the
capacitive discharge. This impurity (contamination)
ionizes by the Penning mechanism and gives the same
AID response as the material being analyzed (in this
case, background current would be more properly
termed background signal). The impurity concentration
extrapolated from the concentration dependence falls
into the range of 10–100 ppb. The value 30 ppb, used in
the calculations, gives the best agreement with the
experiment (Fig. 4).

For the AIDs with the capacitive discharge, the
active particles  are transferred into the reaction
chamber by means of the carrier gas. Hence, the detec-
tor response depends on the carrier gas flow rate Qn.
This dependence can be estimated if it is assumed that
the annihilation of the active particles (when they are
transported from the ionization chamber to the reaction
chamber within a time ttr ~ 1/Qn) follows an exponential
law with a characteristic time τ. Moreover, one should
take into account that the active particles are dragged
out of the reaction chamber by the carrier gas. Then,

G0*

G0*
1

1 Qn/Q+
----------------------

ttr

τ
----– 

  ,exp∼
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Fig. 5. Background current vs. carrier gas flow rate: data
points, experiment; curve, calculation.
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where Q is the gas flow from the chromatographic col-
umn.

As we have shown, for small concentrations of the
gas being analyzed, the detector response I ~ . The
constancy of the background signal allows one to check
the proposed dependence of the concentration of
excited particles on the carrier gas flow rate with a good
accuracy (Fig. 5).

CONCLUSIONS

(1) The analytical model of an argon ionization
detector with an additional high-voltage electrode is
proposed. The model is in satisfactory agreement with
the experiment.

(2) A laboratory prototype of the ionizer was tested
as a part of the detector.

(3) The use of the rf capacitive discharge in the
detector allows one to improve its characteristics in
comparison with the β source detector.
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Abstract—It is shown that, in semiconductors with temperature-tunable optical absorption, a macroscopic self-
localization of temperature domains is possible due to deformation-thermal interaction. This phenomenon can
be considered as a large-scale analog of the well-known self-capture effects. © 2000 MAIK “Nauka/Interperi-
odica”.
(1) Under fairly strong electron–phonon interaction,
self-localization of quasi-particles (electrons and
phonons) occurs in crystals in regions having the size of
the order of the lattice is constant. The quasi-particles
in this case are variously called small-radius polarons,
condensons, and polarizing or deforming excitons [1].
We show below that, on the surface of semiconductors
with tunable electronic spectrums, a macroscopic self-
localization of temperature domains is possible due to
deformation-thermal interaction. This phenomenon,
despite being quite unusual, represents a large-scale
analog of the known self-capture effects.

This effect is closely related to the formation on the
surfaces of solids of periodic structures as a result of
irradiation with power laser light [2]. The periodic
modulation of the surface relief is invariably produced
when the intensity of the laser source exceeds a thresh-
old value. Observed in experiments (on Si, Ge, GaAs,
and InSb) were both irreversible lattices (persisting
after the laser pulse time) and reversible lattices (exist-
ing only for the duration of the laser pulse). The forma-
tion in p-CdTe, n-CdS, and p-ZnTe of structures having
a nonlinear conductivity dependence due to the gener-
ation of defects [3, 4] is possibly of a similar nature.
The formation on a semiconductor surface of periodic
defect structures under laser irradiation was studied
in [5]. Under localized pulsed laser irradiation, ang-
strom-scale quasi-static deformation profiles were
studied in [6].

(2) When fluctuations of temperature T about its
average value modulate the semiconductor band gap

(1)

where the coefficient

characterizes the rate of these variations, the optical

Eg* Eg 1 bT–( ),=

b
1
Eg

----- ∂Eg

∂T
---------=
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absorption coefficient is

(2)

Here, α = α0 at T = 0. Under irradiation, the transverse
fluctuations of temperature contribute additional forces
to the equation of elastic medium vibrations on its sur-
face (optical-acoustic effect):

(3)

where u is the medium displacement vector; ν is the
sound velocity in the medium; K is the uniform pres-
sure modulus; β is the coefficient of volume expansion;
∇  and ∆ are differential operators specified on the semi-
conductor surface.

Modulation of the optical absorption in the medium,
in turn, causes additional modulation of the tempera-
ture T in accordance with the thermal conductivity
equation

(4)

where χ is the temperature conductivity of the medium;
ρ is the medium density; cp is the thermal capacity of a
material at constant pressure; P is the incident power
density; H is the heat emission coefficient; l is the wafer
thickness; and T0 is a thermostat temperature.

The thermal conductivity equation is written assum-
ing that the temperature distribution is maintained con-
stant with a continuous laser heat source. A more easily
tractable form of equation (4) is

(5)

where τ is the temperature relaxation time.
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In dimensionless variables r' = α0r, t' = α0νt, u' =
α0u, and T' = bT, equations (3) and (5) take the respec-
tive forms

(6)

(7)

Below, the prime will be omitted from symbols for
the sake of simplicity. Equations (6) and (7) describe an
extremal action

(8)

The Eulerian equation in dimensionless variables is

obtained by minimizing S = (T, u)drdt with respect

to T and u:

(9)

(10)

where

(11)

Taking account of the self-action in (10) makes the
current functionally dependent on lattice vibrations
and, as a result, the equation becomes nonlinear.

To be able to apply the field theory, we introduce a
minimum time τ = it and consider the minimum action
S  iS. The dimensionless density of the Lagrangian
in this case has the form

(12)

and the energy conservation law is

(13)
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The Lagrangian contains only quadratic and linear
vibrational terms; therefore, the problem can be analyt-
ically solved with respect to vibrational modes and the
corresponding variables eliminated. This reduces the
problem to varying the action, which depends exclu-
sively on T(r, τ) as is shown below.

(3) We are interested in those trajectories with
energy E = 0 (on the localization line), which at τ = –∞
begin at the point u = 0 and at τ = 0 terminate on the sur-
face U(u, T) = 0. From the conservation of the energy
E = 0, it follows that, at the trajectory end point,
∂u/∂τ = 0 (localized states). Thus, the macroscopic
problem considered is formally analogous to that of
penetration by tunneling of an autolocalized barrier in
the quantum case [1]. Minimization of L with respect to
u yields the Eulerian equation

(14)

which is to be solved under conditions

(15)

The solution meeting conditions (15) has the form

(16)

where the Green’s function is

(17)

and the function T(r, τ) is extrapolated by parity to the
region τ > 0.

Substituting (16) into (12) and using the δ function,
the density of the Lagrangian is obtained:

(18)

From (18) follows the Eulerian equation for the tem-
perature
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The minima corresponding to the free and self-
localized states are separated by a self-localized barrier.
Its height is determined by the position of a saddle point
of the adiabatic potential surface [1], the role of which
in this case is played by the Lagrangian (18). The nor-
malized value of the self-localized barrier according to
(18) is

(20)

The barrier transparency can be characterized by a
quantity D = exp(–2W). An estimate made using
parameter values typical of A2B6 semiconductor com-
pounds (CdS, ZnS, and others), namely, K = 1011 N/m2,
β = 10–5 deg–1, ν = 105 m/s, ρ = 5 g/cm3, and b = 5 ×
10−3 deg–1, yields  ≈ –4.

4. The above calculation procedure reveals an anal-
ogy between the formation of domains with the subse-
quent spatial localization of the temperature at the sur-
face of tunable electronic spectrum semiconductors
heated by band-to-band absorption of light with quan-
tum effects of self-localization. The calculation method
used corresponds to penetration of the self-localization
barrier by tunneling [1]. The dependence of the band
width on temperature provides a mechanism of feed-
back between the equations of thermal conductivity
and elastic medium vibrations. Moreover, temperature
fluctuations produce additional forces causing vibra-
tions of the elastic medium. The system becomes spa-
tially nonhomogeneous. Thus, the process of develop-
ment of deformation–thermal instability in the semi-
conductors in question has the character of a large-scale

W
Kβ

ν2ρb
------------.=

Dlog
self-localization. Of course, states corresponding to the
concerted propagation of a temperature domain and its
accompanying diffusion are also possible.

As a function of the emergence of stable tempera-
ture nonuniformities, defect structures will form on the
semiconductor surface. Moreover, on the actual surface
there are always some roughness and inoculation
defects present, which enhance the photoinduced
destruction process. The technique and the problems of
the experimental optical-acoustic spectroscopy of con-
densed matter have been described in detail in [7].
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Abstract—Nonlinearity of optical parameters of semiconductor and dielectric films for a 0.63-nm-wavelength
light with intensity lower than 100 mW/cm2 is discovered and studied. © 2000 MAIK “Nauka/Interperiodica”.
Optical signal processors use materials whose
refractive indices and absorption factors depend on
light intensity. Semiconductors feature the greatest
refractive index n2. Therefore, researchers focus on
developing and searching for semiconductor materials
or structures with giant optical nonlinearity. The optical
nonlinearity in semiconductor materials, regardless of
the mechanism behind it, is usually observed at the
light power density of no less than ~10–100 W/cm2.

In this paper, we report that variations in the refrac-
tive index and absorption factor are observed at the
incident light intensity of a few milliwatts with n2 and
nonlinear absorption factor k2 reaching values as high
as ~10–3 cm2/W.

Properties of amorphous films of arsenic sulfide,
gallium selenide, and tin dioxide (SnO2), as well as
those of polycrystalline zinc selenide (ZnSe) films, and
of color and quartz glass films, are studied. The amor-
phous and polycrystalline films were produced by vac-
uum deposition. The substrate was made of fused
quartz or K8 optical glass. The substrate temperature
during the deposition process was no higher than
250°C. Spectral optical parameters of the film material
(refractive index n and absorption factor k) were stud-
ied by the waveguide method at the wavelength of the
He–Ne laser [1] and in the improper absorption spectral
band of the semiconductor material. In the experiment,
we recorded the Fourier spectrum of the light beam
reflected from the base of a prism coupling element and
processed it to determine the real h' and imaginary h"
parts of the propagation constant h of the waveguide
mode. The nonlinear refractive index n2 and the absorp-
tion factor k2 were determined under the self-action
conditions at a wavelength of 0.633 µm [2]. The inten-
sity of the incident light ranged from 0.5 µW to
1.0 mW. The light beam radius at the prism base was
within 150 µm.

When studying optical properties of thin vitreous
arsenic sulfide films, we measured nonlinear optical
1063-7842/00/4511- $20.00 © 21505
constants n2 and k2 for the light intensity ranging from
10 to 100 W/cm2 at 0.63 µm. Quartz glass was used as
a substrate. Our result, n2 = 1.5 × 10–5 cm2/W, was in
satisfactory agreement with results available in the lit-
erature [3]. However, we discovered a strong nonlinear
dependence of the thin-film spectral optical parameters
on the incident-light intensity in the range below
0.1 W/cm2 [2]. The measured nonlinear constant was
n2 = 2.65 × 10–3 cm2/W. Variations in the films optical
parameters caused by a rise in its temperature due to
light absorption were several orders of magnitude
lower than the measured values [4], which testified to
the fact that the origin of the observed optical nonlin-
earity is nonthermal.

This feature of arsenic sulfide films indicates that
there exist several mechanisms of optical nonlinearity
with different saturation energies. Similar measure-
ments in polycrystalline zinc selenide films also
revealed significant nonlinear variations in the spectral
optical properties of thin films [5]. Figure 1 shows the
increment ∆h' versus incident light power, where ∆h' =
h' – , and  is the value taken by h' at the minimal
light intensity. The scatter in the obtained h' was signif-
icantly higher than the measurement error (δh' = 5 × 10–6),
which required more thorough studies of zinc selenide
film parameters versus light intensity. The dependen-
cies obtained were nonmonotonic and had a serrated
structure. The character of the nonlinear dependence
and the values of n2 of the deposited film material were
determined by the crystalline quality of the deposited
film. Curves 1–3 in Fig. 1 show ∆h'(I) for films depos-
ited at substrate temperatures of 140, 180, and 250°C,
respectively. The corresponding estimates of average
crystallite dimensions in these films obtained from
spectrophotometric measurements were 19, 7, and
12 nm.

h0' h0'
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Fig. 1. ∆h'(I) (a) for ZnSe films deposited at the substrate temperature of (1) 140, (2) 180, and (3) 250°C; (b) for color-glass films
deposited at the substrate temperature of (1) 140 and (2) 190°C (1) before and (3) after thermal annealing.
Similar variations in the spectral optical properties
versus incident light intensity were also observed in
GaSe, ZnO, SnO2, LiNb2O3, and other films.

Thin-film structures in which size-quantization
effects are observed are often produced from glass
doped with semiconductors. Therefore, we studied
nonlinear optical properties of thin-film structures fab-
ricated by sputtering color glasses (OS12) and ceramic
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3

Fig. 2. h' versus incident light intensity for SiOx films at the
film material absorption factor of (1) 3 × 10–5, (2) 9 × 10–6,
and (3) 3 × 10–6.
targets that contained SiO2, ZnSe, or CdSe. In this case,
a similar nonmonotonic dependence h'(I) was
observed. Properties of these films differed only in that,
in contrast to polycrystalline ZnSe films, which exhib-
ited a reduced absorption, the absorption factor of the
films based on color glasses increased with light inten-
sity. In these materials, the optical nonlinearity is gov-
erned by the size of semiconductor crystallites infused
into the glass matrix [6]. The size of semiconductor
crystallites can be changed through thermal annealing
or by changing film deposition conditions. Figure 1b
shows h'(I) for OS12 glass films before and after ther-
mal annealing at 400°C for 6 h. Increasing the substrate
temperature in the course of the film deposition also
changed the character of the nonmonotonic depen-
dence h(I) (Fig. 1b, curves 1 and 3).

It should be noted that optical nonlinearity at low
light intensities was also observed in films produced
by  sputtering fused quartz. In this case, n2 was
~10−7 cm2/W, which is lower than that for semiconduc-
tor films or for films produced from color glasses. The
nonlinear behavior of the spectral optical parameters
versus incident light intensity was reliably recorded in
films with distorted stoichiometry. When the optical
loss in the waveguiding film was ~2 dB/cm, the effect
was almost absent (Fig. 2).

The experimental studies of nonlinear optical prop-
erties of thin-film structures in which size quantization
effects are observed allow us to assume that the optical
nonlinearity in these structures is caused by electron
processes evolving on the semiconductor–dielectric
interface. In this regard, we tried to create such a non-
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
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linear medium by producing a mulilayer structure. It
was fabricated by the alternate deposition of conduct-
ing material SnO2 and dielectric SiO2. This structure
with ~10-nm-thick layers modeled a small-sized non-
linear medium. Figure 3 presents plots h'(I) for a struc-
ture containing three layers of tin oxide separated by
silicon dioxide layers. The conducting films were 12-,
24-, and 36-nm-thick. Three peaks of various widths
are also clearly seen in the h'(I) plot. In this kind of
structure, the optical nonlinearity also depends on the
optical quality of the dielectric layers. Figure 3 displays
h'(I) for three SnO2 films fabricated in the course of a
single deposition process on various substrates. Pure
quartz glass was used as the substrate; the structure was
a quartz glass–SiOx film. The absorption factor for the
SiOx film was (curve 3) 1.5 × 10–5 and (curve 4) 5 × 10–6,
and the film thickness was 1 µm. The high values of n2
and k2 indicate that light can be controlled by light in
these structures at an intensity of ~10 mW/cm2.

As follows from the results presented above, the
nonlinear properties are most pronounced in structures
that use a defective SiOx film as a substrate. This allows
us to suppose that the surface state is the factor that
governs the nonlinear behavior of the spectral optical
parameters of thin films in this case. In the polycrystal-
line films and size-quantization structures based on
glasses doped with semiconductors, the surface of indi-
vidual semiconductor crystallites additionally contrib-
utes to the optical nonlinearity.

The analysis of the above results shows that pro-
cesses that evolve in multilayer structures, polycrystal-
line films, and films of glasses doped with semiconduc-
tors and that cause nonmonotonic behavior of their
optical properties versus light intensity are similar. Pre-
sumably, generation and recombination of charge carri-
ers at the surface-state energy levels play a vital role
here. Certainly, not all surface states take part in the
recombination. For part of the states, only band–level
transitions are feasible; then, the surface state is a trap.
These states are more typical of semiconductor–dielec-
tric interfaces.

In our experiments, the refractive index and absorp-
tion factor of the film material were independent of
exposure, while an additional illumination by the sec-
ond laser beam at λ = 0.63 nm also changed the spectral
absorption factor of the film material. Figure 4 shows
absorption spectra of the SnO2 film before and in the
process of additional illumination by a light beam at
λ = 0.63 nm. The spectra were measured by the wave
guide Fourier-spectroscopy technique. Curve 3 in
Fig. 4 shows the absorption spectrum of this film in
water vapor. The analysis of these results indicates that
there also exist empty surface-state energy levels in the
transmission band of the film material. Presumably, the
existence of the surface states is the factor that deter-
mines the significant nonlinearity in spectral optical
properties of thin films at low light intensities.
TECHNICAL PHYSICS      Vol. 45      No. 11      2000
A significant nonlinearity in optical properties of
thin films illuminated by 0.63-nm-wavelength light
with intensity below 100 mW/cm2 was discovered. The
nonlinear refractive index reached values as high as
n2 × 10–3 cm2/W. Presumably, the thin-film optical non-
linearity is caused by the surface-state energy levels
within the forbidden band. For small-sized structures,
the character of the nonlinearity is determined by the
quality of the semiconductor–dielectric matrix inter-
face; for polycrystalline films, it is determined by the
crystal quality of the film material and by the size of
individual crystallites.
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Abstract—The kinetic problem of intensive diatomic gas evaporation from the surface of a spherical particle
in a vacuum is solved. The analytical expressions for the parameters of a vapor gas at the hydrodynamic evap-
oration boundary are obtained, and their dependences on the Knudsen number in the range 0 < Kn ≤ 0.1 are
studied. © 2000 MAIK “Nauka/Interperiodica”.
Interest in the problem of intensive evaporation
from the surface of a spherical particle in a vacuum is
caused not only by its theoretical significance but also
by its important practical applications [1–3]. The
results of numerical simulations [2, 3] imply that, for
Kn ! 1 (Kn = λ/r0, where λ is the mean free path of
molecules close to the evaporation surface and r0 is the
particle radius), the size of the flow-forming region in
the vicinity of a particle in the expanding gas flow is
much greater than λ. This case (Kn ! 1) corresponds to
the hydrodynamic flow in which the Navier–Stokes
description corrected for the kinetic boundary condi-
tions is valid. The relations between parameters of con-
densed and gas phases, i.e., the jumps of parameters in
the Knudsen layer, can be found only in the framework
of the kinetic theory.

In [4], it was shown that three regions of a steady
flow may be distinguished in the case of gas flow from
a point source for the Reynolds number Re @ 1 and the
Prandtl number Pr = 3/4. Far from the particle, there is
a region of a nonviscous radial flow described by the
Euler equations. As the source is approached, this
region goes into a so-called intermediate region where
the Mach number M ~ 1 corresponds to the crossing of
the sonic point. As the Mach number decreases, i.e., as
the source is neared, one more region is distinguished.
In this internal region, the gas flow is considered to be
planar and one-dimensional.

In [1] it is assumed that an evaporating surface is
adjacent to a gas-dynamic region where the gas flow is
planar and one-dimensional [4]. In [1], the hydrody-
namic boundary conditions for evaporating mono- and
diatomic gases in the limiting case Kn  0 are
obtained.

In the aforementioned papers, except for [1], mona-
tomic gases were considered. However, most gases are
polyatomic, and, hence, the study of the aforemen-
1063-7842/00/4511- $20.00 © 21509
tioned processes, as applied to molecular gases, is of
considerable interest.

The aim of this paper is to describe the intensive
molecular (diatomic) gas evaporation from a spherical
surface in a vacuum at small Knudsen numbers (0 <
Kn ≤ 0, 1).

It is well known that, in a wide temperature range,
the rotational degrees of freedom may be described
semiclassically for most molecular gases [5, 6]. We
assume that the parameters describing a particle are
given: Ts is the temperature of the particle surface, and
ns is the density of the saturated vapor of the particle
material at temperature Ts. We consider a spherically
symmetric steady flow of evaporated substance. Taking
into account the small value of the Knudsen number,
we describe the velocity distribution function in the gas
by the Chapman–Ensky function, which after lineariza-
tion takes the form [5, 7]

(1)

where Φη and ΦT are the viscosity and heat-conduction;
m and J, the mass and moment of inertia of the mole-
cule; v and ω, the velocities of the translational and
rotational motions of the molecule; u and c = v – u, the
mean and thermal velocities of molecules; k, the Boltz-
mann constant; p, n, and T, the pressure, density, and
temperature of the gas; η and κ, the coefficients of vis-
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cosity and heat conductivity; and cp, the specific heat at
p = const.

We represent the boundary condition on the surface
r = r0 under the assumption that the molecules leaving
the surface constitute a Maxwellian distribution with
the temperature equal to the surface temperature Ts. For
the sake of simplicity, the coefficients of evaporation
and energy accommodation are considered to be equal
to unity:

(2)

The motion of evaporated substance in an expand-
ing flow is described by the Navier–Stokes equations
involving coefficients of viscosity η and thermal con-
ductivity κ.

Far from the particle, in the region of nonviscous
flow (η = 0, κ = 0), the Navier–Stokes equations go
over to the Euler equations. The solution of the latter is
well known and presented in [4]. In the intermediate
region, close to the sonic point r = r1, the solution of the
Navier–Stokes equations is expressed in terms of mod-
ified Hankel functions [4].

In the internal region, which is adjacent to the evap-
orating surface [1], the hydrodynamic equations for
Pr = 3/4 and Kn ! 1 are reduced to the following
form [4]:

(3)

(4)

where

Here, w = u/c1; θ = T/T1; γ is the adiabatic exponent; ,
the mass flux from the particles (  = const); c1 =

 and T1, the mean values of speed u and tem-
perature T at the sonic point r = r1, respectively (i.e.,
w = 1 and θ = 1 at r = r1); a, a small quantity; and a–1 ~

f s v ω,( )

=  ns
m

2πkTs

--------------- 
  3/2 J

kTs

-------- 
  mv 2
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-----------– Jω2
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 
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,exp

v r 0.>
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1
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θ γ 1–
2

-----------w2 γ 1+
2

------------–+ 0,=

ξ
x x1'–

a
-------------, x1'
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r
----, a

8γ
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ṁ
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β γ 1–
γ 1+
------------= , x1' 1 1 1 β–( )[ ] 1/3– a2/3ξ1,+=

k1
4

γ 1+
------------ 

  ξ1
3/2.=

ṁ
ṁ

γRµT1
Re. The solution of equation (3) is given by

(5)

Here R = 1/x = r/r1 is the dimensionless radius vector,
and the quantity ξ1 = 2.3381 is defined by asymptoti-
cally matching the solution of (3) with the solution in
the intermediate region where w ~ 1. We use expres-
sions (3)–(5) to find the gradients of the quantities
dT/dr, du/dr, appearing in the distribution function (1).
After performing the corresponding transformations,
taking into account the relation η = λp0(2m/πkT0)1/2, the
distribution function (1) takes the form:

(6)

Here, the subscript 0 denotes the values of quantities at
the hydrodynamic evaporation boundary. We will
assume the Knudsen layer to be infinitesimally thin and
consider it as a surface of gas-dynamic discontinuity
where the conservation equations for fluxes of mass,
momentum, and energy are valid, i.e., the quantities C0,
C1, and C2 are constant:

(7)

These conditions make it possible to obtain the rela-
tionship between surface parameters Ts and ns, on the
one hand, and the vapor gas parameters T0 and n0, on
the other hand, on the external surface of the Knudsen
layer without solving the Boltzmann equation. The
integration of (7), taking (6) into account, yields a set
of three equations in four variables: M0, Kn, T0/Ts, and
n0/ns. It is convenient to choose M0 as a free parameter.

1
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Then, the dimensionless temperature T0/Ts and density
n0/ns are defined by the following expressions:

(8)

and the Knudsen number Kn is found from the solution
of the equation

. (9)

The following notation is used above:

The calculation results for the boundary values of
the macroscopic parameters of a diatomic gas are listed
in the table. For Kn  0, the Mach number M0, tem-
perature T0/Ts, and density n0/ns tend to the limiting
values that are in satisfactory agreement with the
results of [1] for Kn  0: M0 = 0.415, T0/Ts = 0.913,
and n0/ns = 0.661. The table shows that the Mach num-
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ber M0 increases with increasing Knudsen number Kn,
whereas the limiting values of dimensionless tempera-
ture T0/Ts and gas density n0 /ns decrease, i.e., the tem-
perature and density jumps increase in the Knudsen
layer.

The comparison of the results with the data obtained
by numerical simulations [2] for the case of monatomic
gas makes it possible to conclude that, for small values
of the Knudsen number, the inclusion of rotational
degrees of freedom for a diatomic gas yields a decrease
in temperature and density jumps in the Knudsen layer
in comparison with those for a monatomic gas.
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Table

Kn M0 w0 T0/Ts n0/ns

Kn  0 0.404 0.436 0.942 0.663

0.0025 0.430 0.463 0.936 0.647

0.005 0.447 0.481 0.932 0.637

0.01 0.477 0.511 0.924 0.620

0.02 0.528 0.563 0.911 0.593

0.03 0.577 0.612 0.897 0.568

0.04 0.622 0.657 0.884 0.547

0.05 0.665 0.698 0.871 0.529

0.06 0.703 0.735 0.858 0.513

0.07 0.735 0.765 0.848 0.501

0.08 0.762 0.790 0.838 0.491

0.09 0.782 0.809 0.830 0.484

0.10 0.798 0.823 0.824 0.479
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