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Abstract—This paper reports on NMR measurement of hyperfine fields, enhancement factors, and quadrupole
splitting for 45Sc nuclei in the ScFe2, Sc0.95Fe2.05, and ScFe1.97Al0.03 alloys at room temperature and 77 K. The
NMR spectra are studied, and the hyperfine-field shifts at 45Sc nucleus sites in the above alloys, caused by Fe
substituting for Sc and Al, for Fe in the nearest Sc coordination shells, are determined. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Intermetallic Laves compounds of RFe2 stoichio-
metric composition (where R stands for Sc, Y, Zr, and
other 3d, 4d, and 5d elements) have recently been a sub-
ject of intense investigation. These alloys are of consid-
erable interest from the standpoint both of the phenom-
ena responsible for their magnetic properties (for
instance, the existence of magnetic moments and the
magnitude of these moments for the R atoms) and of the
application potential involved. These alloys are usually
synthesized in one of the following crystalline states:
MgCu2-type cubic (C15) and MgNi2 (C36) and MgZn2
(C14) hexagonal [1]. The ScFe2 compounds exhibit
polymorphism and can exist in the three above crystal-
line states [1]. The magnetic properties of the ScFe2
alloys have been very poorly studied in comparison
with those of the other RFe2 alloys (R = Y, Zr, Nb, or a
rare-earth element). Some data exist on the hyperfine
interaction (HFI) parameters for 57Fe nuclei measured
using the Mössbauer technique in the ScFe2 hexagonal
alloy (C14-type structure) [2, 3] and for 57Fe and 45Sc
nuclei determined using the NMR method in the ScFe2
hexagonal alloy (C36 structure) [4–6] and cubic (C15)
alloy [4–6]. The NMR spectra of these Laves alloys
exhibit additional unresolved peaks and other features,
whose nature remains unclear [4–6]. Because single-
phase alloys of this compound are difficult to prepare,
the presence of other phases does not permit one to
study some fine effects in the spectra, which are due, for
instance, to small deviations from stoichiometry and to
the specific conditions in which samples of the alloys
under study are synthesized, as well as to the influence
of impurity s, p, or d atoms on the HFI parameters.

This paper reports on a measurement of the NMR
parameters for 45Sc nuclei in single-phase ScFe2,
Sc0.95Fe2.05, and ScFe1.97Al0.03 intermetallic alloys with
C14 hexagonal structure.
1063-7834/01/4311- $21.00 © 21999
2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

Samples of the Laves alloys ScFe2, Sc0.95Fe2.05, and
ScFe1.97Al0.03 were prepared by melting high-purity
metals in an arc furnace in a high-purity argon environ-
ment. The ingots were crushed and remelted several
times. Ingots of the ScFe2 and ScFe1.97Al0.03 alloys were
additionally remelted at a pressure of ~7 GPa, and an
ingot of Sc0.95Fe2.05 was annealed at 1273 K for 48 h and
quenched in water to preclude polymorphic transfor-
mations. X-ray diffraction measurements of powder
samples showed them to be single phase and to have a
MgZn2 hexagonal structure. The lattice constants of the
samples of the alloys studied were a = 4.964 Å and c =
8.106 Å.

The 45Sc NMR spectra were measured using the
pulsed technique at 293 and 77 K. The amplitudes of rf
pulses (exciting an echo) and of echo signals were cal-
ibrated to take into account the influence of their ampli-
fication in the transmitting and receiving spectrometer
units, as well as the diode regime of measurement at
each frequency. During the measurements, the rf pulse
amplitude was maintained constant (close to the echo
maximum within the frequency range covered). In
these conditions, the true NMR spectrum correspond-
ing to the hyperfine-field (resonant-frequency) distribu-
tion was obtained by normalizing the measured NMR
spectrum through the cubed measurement frequency f 3

[7]. When obtaining NMR spectra of the 45Sc nuclei in
ScFe2-based alloy samples, the exciting rf pulse dura-
tion was 1 µs and that for the 57Fe nuclei in iron was
10 µs. We also measured the rf magnetic field h1 in the
resonance coil used to obtain the 45Sc NMR spectra, for
which purpose proton resonance in an aqueous CuSO4
solution in a corresponding magnetic field and 90° and
180° rf pulses were employed.
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3. RESULTS AND DISCUSSION

Figure 1 presents the 45Sc NMR spectra of the sam-
ples under study. The NMR spectrum of the ScFe2 alloy
(Fig. 1a) measured at room temperature has a maxi-
mum at 63.0 MHz corresponding to a hyperfine field
B1 = 6.09 T. At 77 K, the maximum of the spectrum of
this alloy lies at 73.68 MHz, so that B1 = 7.125 T
(Fig. 1b). There are unresolved lines on the high-fre-
quency side of the spectrum of this alloy. The intensity
of these additional lines in the spectrum of the
Sc0.95Fe2.05 alloy with an excess of Fe increases
(Fig. 1c). The 45Sc NMR spectrum of the ScFe2 alloy
shifts toward lower frequencies in an external magnetic
field of 5 kOe, and, hence, the hyperfine field at the 45Sc
nucleus sites is negative (Fig. 1b).

Sc atoms occupy equivalent positions in the MgZn2
structure and are surrounded by 12 Fe and 4 Sc atoms,
which make up a 16-corner Laves polyhedron around
the scandium atom [8]. The Fe atoms sit at two inequiv-
alent crystallographic sites, Fe1 and Fe2, the occupan-
cies of these sites being in a 3 : 1 ratio. A Sc atom has
12 Fe atoms (9 Fe2 and 3 Fe1) in its first coordination
shell (CS), 4 Sc atoms in the second CS, 15 Fe
(12 Fe1 + 3 Fe2) atoms in the third, 13 Sc atoms in the
PH
fourth, 9 Fe (6 Fe1 + 3 Fe2) atoms in the fifth, and
9 Sc + 3 Fe2 atoms in the sixth CS. Although a sample
of the ScFe2 alloy with MgZn2 structure was prepared
as a stoichiometric sample (with due account of compo-
nent loss during melting), its composition was actually
Sc1 − xFe2(1 + x), where x is the Fe impurity content. In
[9], the resistivity of samples of the ScFe2 (MgZn2-
structure) alloy was measured. The results obtained
indicated the presence of excess Fe atoms in the sam-
ples with stoichiometric composition. 45Sc NMR data
obtained on the ScFe2 and Sc0.95Fe2.05 alloys suggest
that the additional peaks in these spectra may be due to
excess Fe atoms occupying the Sc sites in the second,
fourth, and sixth scandium CSs. It can be conjectured
that the peak at 77.86 MHz (in the Sc0.95Fe2.05 sample)
is due to one Fe atom being substituted for one Sc atom
in the second Sc coordination shell; the 82.57 MHz
peak, to two Fe atoms being substituted for two Sc
atoms in the same shell; and the peak at 75.27 MHz, to
one Fe atom substituting for one Sc atom in the fourth
Sc coordination shell. A similar situation is observed in
samples of the ZrFe2 alloy [10]. Assuming the excess
Fe atoms to be randomly distributed over the second CS
around Sc atoms (for 77.62 MHz), one can estimate the
number of such atoms in a ScFe2 sample. Using bino-
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Fig. 1. 45Sc NMR spectra of the samples studied (circles and squares are experimental data; dashed lines are spectra decomposed
into constituent Gaussian lines; solid lines are the sum of the Gaussians). (a) ScFe2 at room temperature; (b) ScFe2 at 77 K in an
external magnetic field B equal to (1) zero and (2) 5 kOe; (c) Sc0.95Fe2.05 at 77 K; and (d) ScFe1.97Al0.03 at 77 K.
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mial distribution, we obtain for the ratio of probabilities
of a Sc atom having no and one Fe atom in the second CS

(1)

where x is the concentration of excess Fe atoms. Fig-
ure 1b presents an experimental spectrum of the ScFe2
(MgZn2-structure) alloy decomposed into Gaussian
lines using the ORIGIN code. The solid line is the sum
of the resolved components. Decomposition of the
spectrum yielded constituent peaks at 73.68, 75.45, and
77.62 MHz. Taking the ratio of the peak areas at
73.68 MHz (the nearest Sc atom environment {12 Fe +
4 Sc}) and at 77.62 MHz {12 Fe + (1 Fe + 3 Sc)} and
comparing it with Eq. (1) yields x = 0.046. Substitution
of one Fe atom for one Sc atom in the second CS of an
Sc atom shifts the resonant frequency for the 45Sc
nuclei by +3.98 MHz or +0.386 T.

Figure 1d presents a 45Sc NMR spectrum for the
ScFe1.97Al0.03 alloy. In addition to the main peak at
~73.2 MHz and an unresolved peak on the high-fre-
quency side, the spectrum exhibits two additional peaks
at low frequencies. These two low-frequency peaks are
due to Al atoms appearing in the first CS around the Sc
atoms, with the peak at ~66.8 MHz originating from
one Al atom and that at ~61.1 MHz, from two Al atoms
occupying Fe sites in the first Sc coordination shell. The
NMR spectrum was decomposed; the results are shown
in Fig. 1d. The solid curve is the sum spectrum. The
maxima of these peaks (spectral components) and the
possible nearest environment configurations corre-
sponding to these peaks are 73.19 MHz {12 Fe + 4 Sc},
76.80 MHz {12 Fe + (1 Fe + 3 Sc)}, 66.76 MHz
{(11 Fe + 1 Al) + 4 Sc}, 61.10 MHz {(10 Fe + 2 Al) +
4 Sc}, and 70.41 MHz (this is possibly due to Al atoms
being present in the third CS around Sc atoms). Substi-
tution of one Al atom for one Fe atom in the first CS of
Sc shifts the resonant frequency by –6.4 MHz or
−0.619 T. The Al atom has a zero d-type magnetic
moment, and, therefore, the difference between the res-
onant frequencies for Sc atoms with 12 and 11 Fe near-
est neighbors characterizes the effect of the magnetic
moment of one Fe atom on the resonant frequency
(hyperfine field) for 45Sc nuclei.

Figure 2 plots the echo amplitude Ae vs. the rf mag-
netic field h1 acting on the 45Sc nuclei in our alloys at
77 K. Shown for comparison is an Ae(h1) dependence
measured at 77 K and a frequency of 46.54 MHz on
57Fe in iron powder samples enriched in this isotope.
The maxima of the Ae(h1) curves were found to lie at

different rf magnetic field amplitudes . In the alloys

under study, all values of  are smaller than those for
a pure Fe sample. In magnetically ordered substances,
the Ae(h1) dependence is due to a spread of the enhance-
ment factors η in the domain walls. This effect was con-
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sidered in detail for a domain wall modeled by a vibrat-
ing edge-fixed membrane, and an analytical expression
for the dependence of the echo amplitude on h1 was
obtained in [11]. The distribution of enhancement fac-
tors in a domain wall can be presented in the form [11]

(2)

where η0 is the maximum enhancement factor corre-
sponding to nuclei located at the wall center, x is the
position of the nucleus in the domain wall on the x axis
(measured in units of the wall thickness δ), r = ra/r0 (ra

is the radial position of the nucleus in the wall and r0 is
the membrane radius), and dm is the maximum relative
displacement of the wall (in units of the maximum wall
displacement for the sample under consideration). The
decrease in the echo amplitude at high excitation levels,
as seen from Eq. (2), is caused by low effective
enhancement factors for nuclei at domain wall edges.

Consider one more approach to estimating the
enhancement factor in magnetically ordered sub-
stances, that described in [12]. Studies of various
enhancement factor distributions across the domain
wall thickness have established that it is possible to
determine the average enhancement factor ηav for
nuclei in a domain wall. Because real samples feature a
variety of types of domain walls and enhancement fac-
tor distributions across the wall thickness, the expres-
sion given in [12] for the average enhancement factor
may provide a good estimate for this parameter in ferro-
or ferrimagnetic powders. The relation connecting ηav ,

the rf pulse duration ∆t, and the rf magnetic field 
corresponding to the maximum in the Ae(h1) depen-
dence can be written [12] as

(3)

η x( ) η0 x( ) 1 r2–( )dm,sech=

h1
m

ηav γn∆th1
m 1,=

0
0

Ae, arb. units

B, mG
50 100 150 200 250 300

20

40

60

80

100

1
2
3
4

Fig. 2. Echo amplitude Ae vs. rf magnetic field h1 for 45Sc
nuclei in (1) ScFe2, (2) Sc0.95Fe2.05, and (3) ScFe1.97Al0.03

and (4) for 57Fe nuclei in iron powder.
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where γn is the gyromagnetic ratio for the nucleus under
study. Let us estimate the average enhancement factors
ηav  for our alloys using the above relation and the
experimental data in Fig. 2. The values of ηav  obtained
are as follows: ηav (Fe) = 780, ηav (ScFe2) = 17500,
ηav (Sc0.95Fe2.05) = 2600, and ηav (ScFe1.97Al0.03) = 1650.
The average enhancement factors for 45Sc nuclei in
domain walls of the corresponding alloys are seen to be
considerably larger than that for 57Fe in iron. Note that
the value of ηav  for 57Fe in iron found in this work coin-
cides remarkably well with the value of ≈900 obtained
in [13] at 77 K for 57Fe in an isotopic-iron powder.
Because the enhancement factor ηav  is proportional to
the displacement susceptibility χ, ScFe2 samples are
seen to have larger displacement susceptibilities than
iron and an increase in the iron content or addition of Al
to ScFe2 sharply reduces χ.

We studied the dependence of the echo amplitude on
the time interval t12 between two rf pulses exciting an
echo at frequencies corresponding to the maxima of the
main lines in the alloys under study at 77 K in different
rf magnetic fields h1. These dependences are plotted in
Fig. 3 for the ScFe2 sample. At low excitation levels,
one observes weak oscillations in the Ae decay curves;
however, at high h1 levels, the echo decay exhibits a
clearly pronounced oscillation. According to Fig. 2, at
high excitation levels h1, an echo is observed for nuclei
located at the domain wall edge. A similar situation was
observed in hexagonal cobalt [14]. As shown in [15],
the oscillations in the echo amplitude Ae setting into the
Ae(t12) dependence are caused by electronic quadrupole

1000
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0 10 1009080706050403020
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Fig. 3. Echo amplitude Ae plotted as a function of the time
interval t12 between two echo-exciting rf pulses for different
values of the rf magnetic-field amplitude h1: (1) 16,
(2) 48 mG, (3) 1.34, and (4) 4.0 G.
PH
interaction. The oscillation period τ is related to the
quadrupole splitting ∆νq through the expression

(4)

As follows from Fig. 3, the modulation period τ is 15 ±
1 µs and, hence, ∆νq = 66.6 kHz. Similar dependences
of the echo amplitude decay on t12 and h1 were mea-
sured for the Sc0.95Fe2.05 and ScFe1.97Al0.03 alloys. The
modulation period τ of the echo amplitude in these
alloys was found to be 15 ± 1 µs at 77 K. Thus, we see
that the electron quadrupole splitting in the alloys under
study does not depend on the sample preparation tech-
nology, slight deviations from the alloy stoichiometry,
or small additions of Al atoms.
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Abstract—The formation and structure of the nanocrystalline phase in the Al86Ni11Yb3 alloy are investigated
using differential scanning calorimetry (DSC), transmission electron and high-resolution electron microscopy,
and x-ray diffraction. The nanocrystalline phase is formed upon controlled crystallization of the amorphous
alloy prepared by quenching of the melt on a rapidly moving substrate. It is revealed that the nanocrystalline
alloy consists of aluminum nanocrystals (5–12 nm in size) randomly distributed in the amorphous matrix. The
maximum fraction of the nanocrystalline phase does not exceed 25%. The nanocrystal size substantially
increases at the initial stage of isothermal treatment (at 473 K) and then changes insignificantly. It is found that
nanocrystals are usually free of defects. However, some nanocrystals have a more complex microstructure with
twins and dislocations. The size distributions of nanocrystals are determined at several durations of isothermal
treatment. It is demonstrated that the nucleation of nanocrystals predominantly occurs through the heteroge-
neous mechanism. The experimental distributions are compared with those obtained from a computer simula-
tion. The activation energy of crystallization, the time-lag, and the coefficient of ytterbium diffusion in the alloy
are estimated © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Light nanocrystalline alloys (based on Al and Mg)
were first produced by partial devitrification of amor-
phous alloys a few years ago [1, 2]. Among metallic
materials, these alloys possess record-high strength
characteristics (calculated per gram). Nanocrystalline
alloys usually contain 6–15 at. % of a transition metal
(Fe or Ni) and several percent of a rare-earth metal
(Y, Ce, Nd, or Sm). Although the yield point of these
alloys can reach 1.6 GPa [3], the alloy samples remain
plastic in a number of cases. The structure of these
materials consists of Al nanoparticles and the amor-
phous matrix. The volume fraction of particles, as a
rule, is equal to approximately 0.25. There exist differ-
ent opinions regarding the mechanism of enhancement
of strength properties upon primary crystallization of
these materials. According to the first point of view [4],
the strength properties are determined by the amor-
phous matrix. The chemical composition of the amor-
phous matrix changes upon precipitation of aluminum
crystals, which is attended by strengthening of the
matrix. The second view accounts for the presence of
nanocrystals in the matrix [3]. In this respect, it is
important to answer the following questions: Are the Al
particles deformable? Do these particles contain dislo-
cations or are they free of dislocations? How can these
particles be arranged in the amorphous matrix? One of
the purposes of the present work was to obtain answers
to these questions.

The second important purpose of this work was to
investigate the formation of nanocrystalline particles
1063-7834/01/4311- $21.00 © 22003
upon heating of amorphous alloys. The phase transfor-
mation under consideration occurs by the mechanism
of nucleation and growth. The growth of nanocrystals
upon primary crystallization has studied in a number of
works. In particular, Nakarato et al. [5] showed that the
growth of nanocrystals in alloys of the Al–Ni–Ce sys-
tem is controlled by diffusion. As regards the nanocrys-
tal nucleation, the available data on the mechanisms of
this process are rather contradictory. For example,
according to Greer [4], the nucleation of Al nanocrys-
tals is considered a homogeneous process, whereas
Foley et al. [6] treated the nanocrystal nucleation as a
heterogeneous process.

It is believed that the homogeneous process due to
fluctuation nucleation of particles of critical size can
proceed only at temperatures above the glass transition
point Tg. At T < Tg, the viscosity of the alloy is too high
for these fluctuations to occur and the nucleation can
proceed only through the heterogeneous mechanism
[7]. For light nanocrystalline alloys, it is difficult to
determine the temperature range of nucleation with
respect to the Tg temperature, because the value of Tg in
these alloys is unknown. Consequently, a correct con-
clusion regarding the nucleation mechanism cannot be
made as judged only from the temperature range of the
transformation.

In order to draw a reliable inference on the nucle-
ation mechanism responsible for nanocrystallization, it
is necessary to determine the size distributions of
nanocrystals at different durations of isothermal treat-
001 MAIK “Nauka/Interperiodica”
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ment and to carry out the appropriate analysis of these
distributions.

In this respect, one more purpose of the present
work was to elucidate the mechanism of nanocrystal
nucleation in light nanocrystalline alloys.

2. EXPERIMENTAL TECHNIQUE

The Al86Ni11Yb3 amorphous alloy was prepared in
the form of ribbons by quenching of the melt. The cool-
ing rate was equal to ~106 K/s. The ribbons were 3 mm
wide and ~30 µm thick. Measurements of the thermal
properties and isothermal treatment of the samples
were performed using a Perkin–Elmer DSC-7 differen-
tial scanning calorimeter. The x-ray structure investiga-
tion was carried out on a Siemens D-500 x-ray diffrac-
tometer. The microstructure was examined with a JEM-
4000EX high-resolution electron microscope at an
accelerating voltage of 400 kV. The direct image of the
nanocrystal lattice was obtained using a computer
recording of a series of images with different defocus-
ing. The micrographs presented in this work were taken
at the optimum defocusing value δ = –46 nm, which
corresponds to the Scherzer defocusing (δ =

0.286 λ1/2, where Cs = 1 mm is the spherical aberra-
tion constant and λ is the electron wavelength). Other
methodical aspects of this work will be described
below.

3. EXPERIMENTAL RESULTS

The as-prepared samples have an amorphous struc-
ture. The x-ray diffraction and electron diffraction pat-
terns exhibit only diffuse maxima without crystalline
phase peaks. The high-resolution images of the initial
alloy structure are characterized by a “mazy” contrast
typical of the amorphous structure. Figure 1 displays
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t f
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423 473 523 573
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Fig. 1. Thermogram of the alloy upon heating at a rate of
40 K/min.
PH
the thermogram obtained at a heating rate of 40 K/min.
Two peaks observed in the thermogram indicate exo-
thermic phase transformations upon heating. The first
broad peak with an initial temperature of 463 K is asso-
ciated with the first crystallization stage (primary crys-
tallization) of the amorphous alloy. At this stage, Al
crystals are formed in the amorphous matrix and the
reflections from the crystalline phase (Al) together with
a diffuse halo appear in the corresponding diffraction
patterns. The second (double) peak is attributed to the
subsequent crystallization stage (eutectic crystalliza-
tion), at which the residual amorphous phase undergoes
decomposition.

According to differential scanning calorimetry
(DSC), the total thermal effect of crystallization is
approximately equal to 116 J/g and the thermal effects
of the first and second crystallization stages are 36 and
80 J/g, respectively.

The structural evolution of the Al86Ni11Yb3 amor-
phous alloy was investigated under the conditions of
isothermal treatment at a temperature of 473 K, which
was determined from the DSC data. It can be expected
that, at this temperature, the formation and growth of
crystals at the first crystallization stage will occur at an
optimum rate for investigation.

The primary crystallization of the alloy leads to the
formation of Al face-centered cubic (fcc) crystals and a
change in the amorphous matrix composition. The
amorphous matrix becomes enriched in nickel and
ytterbium which are virtually insoluble in aluminum.
An increase in the treatment duration results in an
increase in the fraction of the crystalline phase. The dif-
fraction patterns of the samples after treatment at 473 K
for different times are shown in Fig. 2. It can be seen
that a peak of the Al fcc phase appears against the back-
ground of the diffuse halo, and the intensity of this peak
increases with an increase in treatment duration.

The fraction of the crystalline phase can be evalu-
ated from the DSC data with the use of the method
described in [8]. The results obtained are depicted in
Fig. 3. It is seen that, as the treatment time increases
from 5 to 60 min, the fraction of the crystalline phase
increases from 0.15 to 0.23. The highest rate of increase
in the fraction of the crystalline phase is observed at the
early treatment stage. The Al fcc crystals cease to grow
when the metastable equilibrium between the crystal-
line phase and the residual amorphous phase (differing
in composition from the initial phase) is attained.

The primary crystallization results in the formation
of a structure composed of the amorphous matrix
involving randomly distributed Al fcc crystals several
nanometers in size. This structure is displayed in Fig. 4.
As a rule, the Al nanocrystals are separated from each
other by the amorphous matrix. In certain cases, nanoc-
rystals are in direct contact with each other.

Figure 3 shows the dependence of the average
nanocrystal size determined from the dark-field elec-
tron microscope images. The average grain size varies
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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from 7 nm (at a treatment time of 5 min) to 13 nm (at a
treatment time of 60 min). As can be seen, the average
nanocrystal size most strongly changes at the early
transformation stages. The experimental size distribu-
tions of nanocrystals at treatment durations of 5 and
15 min are plotted in Fig. 5. It should be noted that the
fraction of crystals with the smallest sizes could be
underestimated due to the difficulty of their observa-
tion. This is especially essential for the size distribution
obtained at a treatment duration of 5 min, since the dis-
tribution is shifted toward the small-size range.

As a rule, nanocrystals are free of defects. However,
we observed particles with high-angle boundaries
whose misorientation corresponds to twin boundaries.
An example of these nanocrystals is depicted in Fig. 6.
By using the Fourier transform of the direct image of
the lattice of this nanocrystal, we obtained the image of
the reciprocal lattice cross section (corresponding to
the electron diffraction pattern), which is shown in
Fig. 6b. This “diffraction” pattern involves reflections
from parts 1 (type A) and 2 (type B) of the nanocrystal.

In this case, the  or  plane can be the twin
plane and the parts of the twinned crystal have the [110]
zone axis (the direction parallel to the incident electron
beam). A comparison between the boundary in the
image and two possible arrangements of the twin
boundary trace in the reciprocal lattice cross section

allows us to conclude that the  plane is the twin
plane in our case. The reflections from twinned part B
of the crystal can be determined from the reflections
from part A by using the orientation matrix:

The schematic representation of this diffraction pattern
is depicted in Fig. 6b.

The reciprocal lattice cross section under investiga-
tion has a characteristic feature that is typical of other
twinned crystals. This feature is a mutual position of
reflections from the nanocrystal parts at which the
shortest distance between the reflections of different
types A and B in the directions {111} is equal to 1/3 of
the shortest distance between the reflections of the
same type, A (AA) or B (BB), in the same direction.

In light alloys, nanocrystals are free of dislocations.
However, the particle shown in Fig. 6a contains two
closely spaced dislocations which are not typical of fcc
crystals. These dislocations (Fig. 6c) have oppositely

directed Burgers vectors b = 1/2[ ] and 1/2[ ]
(the dislocation lines are parallel to [110]) and can
move only with the formation of a stacking fault.
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4. DISCUSSION

Let us discuss the problems associated with the for-
mation of the nanocrystalline structure upon decompo-
sition of the amorphous phase in the Al86Ni11Yb3 alloy.
As was noted above, the dependence of the fraction of
the crystallized alloy on the treatment duration is plot-
ted in Fig. 3. This fraction was calculated by the for-
mula

(1)

where ∆h1 is the enthalpy of the first part of the peak
and the shoulder in the thermogram and ∆H0 is the total
enthalpy of crystallization. According to [8], the above
dependence can be calculated from the DSC data under
the following assumptions: (1) the volume fraction of
the crystallized part of the material is proportional to
the heat released upon this transformation (this can be

f ∆h1s/∆H0( )= ∆h1a/∆H0( ),–
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Fig. 2. Diffraction patterns of (a) the initial sample and sam-
ples annealed at 473 K for (b) 5, (c) 15, and (d) 30 min.
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Fig. 3. Dependences of (1) the fraction f of the crystalline
phase and (2) the average nanocrystal size D on the duration
of isothermal treatment.
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true when no processes in addition to crystallization
occur in the alloy) and (2) the heats of formation of dif-
ferent phases are identical. In order to make sufficiently
rough estimates, this approach seems to be justified,
because the heats of formation of different phases are
actually comparable.

The ratio (∆h1s/∆H0) gives the volume fraction of
the material crystallized upon primary reaction (the
precipitation of α-Al fcc crystals). In the sample sub-
jected to isothermal annealing, the primary reaction
took place in part, so that a smaller amount of crystals
was formed through the mechanism of the primary
crystallization upon repeated heating. Then, the value
of (∆h1a/∆H0) determines the volume fraction of α-Al
fcc crystals precipitated in the course of the repeated
heating and the fraction of the alloy crystallized during
the initial isothermal treatment can be estimated from
formula (1).

As was already noted, the nanocrystalline structure
consists of the amorphous matrix with incorporated
aluminum particles. By assuming that the maximum
fraction of aluminum particles is equal to 23%, that the
mean particle size, in this case, is equal to 12 nm, and
that the particles are uniformly distributed over the
amorphous matrix, the mean thickness of the amor-

100 nm

(a)

(b)

Fig. 4. Microstructure of the alloy annealed for 30 min: (a)
bright-field and (b) dark-field images.
PH
phous layer between particles can be estimated at
approximately 8 nm.

The experimental size distributions of nanocrystals
exhibit characteristic features. They can be analyzed by
comparing the theoretically possible and experimental
size distributions of crystals. Figure 7 shows all the pos-
sible size distributions of crystals formed according to
the nucleation and growth mechanism for homoge-
neous and heterogeneous nucleation processes.

Let us now compare the theoretical and experimen-
tal distributions. The size distributions obtained upon
treatment for 5 and 15 min are depicted in Figs. 5a and
5b, respectively. The experimental size distributions are
represented by columns. It is apparent that the hetero-
geneous nucleation with a time-lag proceeds in our
case. This is confirmed by the following facts.
(1) Small-sized crystals are absent in the distribution
obtained upon treatment for 15 min. (2) A sharply
descending portion in the small-size range is observed
in the distribution at a treatment time of 5 min, which is
impossible in the case of homogeneous nucleation.
(3) The fraction of large-sized particles (the right-hand
branch of the distribution) decreases gradually, which
is characteristic of the nonstationary rate of nanocrystal
nucleation (with the time-lag).
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Fig. 5. Size distributions of nanocrystals after isothermal
treatment at 473 K for (a) 5 and (b) 15 min. Columns repre-
sent the experimental data, and solid lines show the results
of calculations.
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Fig. 7. Histograms of the size distribution of grains for (a, b) homogeneous and (c–e) heterogeneous nucleation processes.
(b, e) Histograms for nonstationary nucleation.
Therefore, at the very early stage of annealing of
metallic glass, there exists a certain time interval in
which the stationary size distribution of subcritical
nuclei (corresponding to the classical theory) is
reached. In this case, the time-dependent rate I(t) of
crystal nucleation is defined by the equation [9]

(2)

where the summation is performed over n from 1 to ∞,
τ is the time-lag (which sharply increases with a
decrease in the temperature), and Ist is the nucleation
rate at stationary conditions. In turn, the Ist rate is
described by the relationship

(3)

where L is the Loschmidt number, QN is the activation
energy for the transfer of an atom through the crystalli-
zation front surface, and ∆Gc is the free energy neces-
sary for the nucleation.

Under strong supercooling, the value of ∆Gc is very
low and

(4)

We now dwell on the growth of nucleated nanocrys-
tals. Since the concentration gradient of nickel and

I t( ) Ist 1 2Σ 1–( )n+ n2 t/τ( )–[ ]exp{ } ,=

Ist I0 L∆Gc/RT–( ) QN– /RT( ),expexp=

Ist I0 QN– /RT( ).exp=
PH
ytterbium arises in the amorphous matrix near growing
aluminum crystals, the matrix is enriched in nickel and
ytterbium, whose atoms diffuse over large distances.
The growth rate of nucleated crystals decreases with an
increase in time. On the other hand, it is known that the
primary crystallization or nanocrystallization in amor-
phous alloys is accompanied by a parabolic variation in
the radius of growing crystals with an increase in the
isothermal treatment time [7]. In our case, the crystal
growth is governed by the bulk diffusion of Ni and Yb
in the amorphous matrix that is,

(5)

where D is the bulk diffusion coefficient, t is the time of
isothermal treatment, r is the radius of a growing crys-
tal, and α is the dimensionless parameter of an order of
unity. In the present work, we assume that the α param-
eter does not depend on the fraction of the crystalline
phase.

The dependence r(t) implies that the size distribu-
tion of nanocrystals in the case of heterogeneous nucle-
ation becomes narrower with time. Indeed, the disper-
sions of the distributions shown in Figs. 5a and 5b are
equal to 15.76 and 4.96 nm2, respectively. According to
the Lifshitz–Slyozov theory [10], the Ostwald ripening

r α Dt,=
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of nanocrystals can also bring about a narrowing and a
shift of the histograms of the size distribution of nanoc-
rystals with an increase in time. However, this process
does not noticeably contribute to our experimental data
and will be discussed below.

After revealing the most probable mechanism of the
nucleation and growth of nanocrystals during isother-
mal treatment of the Al86Ni11Yb3 alloy, the experimen-
tal data can be compared with the theoretical results.
For this purpose, we performed computer calculations
and constructed histograms of the size distribution of
nanocrystals for heterogeneous nucleation and diffu-
sion-controlled growth.

In order to carry out these calculations using formu-
las (2)–(5), it is necessary to determine the following
parameters: the number of nuclei N0 (which is limited
in the case of heterogeneous crystallization), the time-
lag τ (duration of the nonstationary stage), the nucle-
ation rate Ist at stationary conditions, the constant I0 in
the formula determining the stationary rate of crystal
nucleation, and the activation energy QN for the transfer
of an atom through the crystallization front surface.

In calculations, we assumed that I0 = 3 × 1030 m s–1,
which is typical of the nucleation of nanocrystalline
aluminum in alloys of aluminum–nickel–rare-earth
metal systems [4].

The value of N0 was determined from the experi-
mental data as follows. Treatment for a time longer than
30 min does not result in a substantial change in the
fraction of the crystalline phase (it is equal to approxi-
mately 0.23). The average nanocrystal size in this case
is approximately 12 nm. Therefore, the number of
nanocrystals, i.e., N0 (by assuming that the heteroge-
neous nucleation is accomplished and by ignoring the
possible Ostwald ripening of nanocrystals), is approxi-
mately equal to 2 × 1023 m–3. This estimate is in good
agreement with the data available in the literature. For
example, according to Greer [4], the value of N0 upon
nanocrystallization can be as large as 1025 m–3.

In order to calculate the size distribution of nanoc-
rystals, it is necessary to divide the isothermal treat-
ment time into short time intervals ∆t and then to deter-
mine the number of nanocrystals formed during each
interval ∆t [11]. For the heterogeneous crystallization
when the number N0 of active nuclei is limited, we have

(6)

where the summation is performed over j from 1 to i at
 ≤ N0, Ni = 0 for all the other values of i, and xi is

the volume fraction of the material crystallized during
the time interval ∆t. The fraction xi is given by

(7)

where the summation is made over j from 1 to i.
The shape and location of the theoretical size distri-

bution depend on the parameters substituted into the

Ni I t( ) 1 xi 1––( ) 1 N0
1– ΣN j–( )∆t,=

ΣN j

xi 4π/3( )D3/2ΣN j ∆t i 1 j–+( ){ } 3/2,=
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formulas. A variation in such parameters as QN, τ, and
diffusion coefficient D enables us to best fit the theoret-
ical curve to the experimental distribution.

Now, we compare the above-discussed two experi-
mental size distributions of nanocrystals in the
Al86Ni11Yb3 alloy subjected to isothermal treatment at
473 K for 5 and 15 min (Fig. 5) with the theoretical dis-
tributions.

The histograms for both times should be calculated
using the same crystallization parameters. Changes in
the shape and location of the distributions should only
be associated with different treatment durations (5 and
15 min). This requirement appears to be sufficiently
rigid. It was found that both theoretical curves can be
reasonably fitted to the experimental distributions at the
same parameters QN and τ but at different diffusion
coefficients D (Fig. 5). In order to achieve good agree-
ment between the distributions, the diffusion coeffi-
cient should decrease with an increase in the treatment
time (and, correspondingly, in the fraction of crystal-
line phase formed). Note that a decrease in the diffusion
coefficient with an increase in the fraction of the crys-
tallized material is quite typical of the primary crystal-
lization in amorphous alloys [7]. It seems likely that a
similar phenomenon would be observed in our case. A
comparison of the experimental and calculated data
demonstrates that, in the Al86Ni11Yb3 amorphous alloy
at 473 K, the effective diffusion coefficient of Ni and
Yb is equal to 1.4 × 10–19 m2 s–1 and the time-lag is
150 s. Since the diffusion coefficient of nickel is con-
siderably larger than that of ytterbium, it is assumed
that the nanocrystal growth is limited by the diffusion
rate of ytterbium. Then, it is this ytterbium diffusion
that is determined by the aforementioned diffusion
coefficient. It should be noted that Hono et al. [12] stud-
ied the crystallization of alloys in the Al–Ni–Ce system
and observed an increase in the Ce concentration near
growing Al nanocrystals and a uniform distribution of
Ni in the amorphous matrix. Taking into account that
the properties of Ce and Yb atoms are close to each
other, the above assumption as to the ratio between the
diffusion coefficients of Ni and Yb seems to be quite
correct.

As is clearly seen from Fig. 5, one more difference
between the calculated and experimental size distribu-
tions resides in the presence of a tail of large-sized par-
ticles in the experimental histograms. Most likely, the
occurrence of large-sized particles can be explained by
the presence of a small number of the so-called “frozen-
in crystal nuclei” in the initial alloy. The formation of
crystals from these nuclei is facilitated. As a result, par-
ticles begin to grow earlier (prior to the completion of
the time-lag of attaining the stationary size distribution
of subcritical nuclei) and reach larger sizes.

We now analyze the possible contribution of the
Ostwald ripening to the experimental histograms of the
size distributions of nanocrystals. Within the Lifshitz–
01
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Slyozov theory, the evolution of the crystal size is
described by the equation

(8)

where  is the average particle size,  is the initial
average size, Vm is the molar volume of precipitates, σ
is the particle–matrix interface energy, and C(∞) is the
equilibrium solubility of a component far from a parti-
cle. The maximum growth rate related to the Ostwald
ripening is given by

(9)

The maximum growth rate due to the Ostwald ripen-
ing can be estimated from Eq. (9) as approximately
0.2 nm/h (at 473 K, r ≈ 4 nm after the treatment for
5 min and D = 1.4 × 10–19 m2 s–1). At r ≈ 5.5 nm (after
treatment for 15 min), the maximum growth rate is less
than 0.03 nm/h. It is seen that these rates are immaterial
for the considered time interval of the formation and
evolution of the nanocrystalline structure (treatment
times shorter than 60 min). Ardell [13] introduced the
correction for the volume fraction of precipitates into
Eq. (8). He derived an equation that differs from the
Lifshitz–Slyozov equation in the parameter K, which
depends only on the volume fraction of precipitates,
that is,

(10)

Note that K = 1 at a zero volume fraction of precipitates,
K ≈ 4 at the fraction of the crystalline phase formed
upon treatment of the studied alloy for 5 min, and K =
7 at a fraction of 15%, which approximately corre-
sponds to the fraction obtained after treatment for
15 min in our case. Then, the maximum growth rates
due to the Ostwald ripening of nanocrystals in the alloy
after treatment for 5 and 15 min are less than 1 and
0.2 nm/h, respectively. It is worth noting that these esti-
mates are too large, because the diffusion coefficient
decreases with an increase in time [in the present work,
the dependence of the parameter α in the equation
dr/dt = (α/2)(D/t)1/2 on the fraction of the crystalline
phase is neglected and this parameter is taken to be con-
stant and equal to unity]. The above rates can be consid-
ered upper estimates (upon treatments for 5 and 15 min)
of the instantaneous growth rate, which decreases with
an increase in time. Therefore, even with due regard for
the K parameter related to the volume fraction of pre-
cipitates, these rates, in our case, do not affect the evo-
lution of the size distribution of nanocrystals.

Furthermore, in the framework of the Lifshitz–Sly-
ozov theory, it is assumed that the system is in equilib-
rium and the formation and growth of particles of the
second phase at the expense of the matrix do not occur.
Consequently, the change in the nanocrystal size due to
the Ostwald ripening within the Lifshitz–Slyozov the-
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ory can become substantial after completion of the
nanocrystal growth from the amorphous phase when
the nanocrystal–amorphous matrix system is in a meta-
stable equilibrium. In order for the Ostwald ripening to
proceed, this equilibrium should be retained for a suffi-
ciently long time and should not be accompanied by
further crystallization of the amorphous matrix. Note
that the size distribution of particles in our work was
obtained at the stages when the metastable equilibrium
between the nanocrystalline and amorphous phases was
not attained and the fraction of nanocrystals continued
to increase.

Therefore, nanocrystal nucleation during devitrifi-
cation of the Al86Ni11Yb3 amorphous alloy occurs
through the heterogeneous mechanism and from fro-
zen-in crystal nuclei. Since the nucleation occurs
through the heterogeneous mechanism, questions arise
as to the origin of the centers of the heterogeneous
nucleation and to the conditions and time of their for-
mation. In [4, 7], it was assume that a certain set of sub-
critical nuclei can be formed according to the heteroge-
neous mechanism (at higher temperatures) during the
preparation of an initial amorphous alloy (i.e., during
quenching of the melt). These nuclei can serve as cen-
ters of heterogeneous nanocrystal nucleation upon sub-
sequent heating. Certainly, the stationary distribution of
these nuclei can be attained only for a certain time
(time-lag).

5. CONCLUSION
Thus, it was demonstrated that the nanocrystalline

structure with nanocrystals 5–12 nm in size is formed
in the case of controlled crystallization of the
Al86Ni11Yb3 amorphous alloy. The nanocrystals are
aluminum particles which, as a rule, are free of defects.
However, some nanocrystals consist of twinned regions
and contain dislocations. The average nanocrystal size
and the fraction of the crystalline phase increase with
an increase in the isothermal treatment time. The
growth rate of nanocrystals is maximum at the early
treatment stage and then decreases. The nanocrystals
are formed according to the mechanism of the nonsta-
tionary heterogeneous nucleation and from frozen-in
crystal nuclei. The time-lag of attaining the stationary
size distribution of nuclei and the diffusion coefficient
of ytterbium in the amorphous alloy were determined
by comparing the experimental and calculated size dis-
tributions of nanocrystals.
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Abstract—The differential magnetic susceptibility χd(H) of YBa2Cu3O7 – x polycrystalline samples is studied
experimentally in fields H < 150 Oe. The empirical χd(H) dependence is determined. The results are explained
on the basis of the critical-state model of a Josephson medium with hypervortices. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The interest in the magnetic properties of granular
high-temperature superconductors (HTSC) has not
subsided [1–3]. This is due not only to their practical
importance but also to the fact that the microscopic pat-
tern of the magnetic field penetration into a granular
HTSC material is not completely clear at present. Poly-
crystalline granular HTSC materials with Josephson
(weak) links between granules display a number of
anomalous properties in weak magnetic fields of
strength H < 10–50 Oe; for example, nonlinearity and
the absence of magnetization hysteresis are simulta-
neously observed in experiments in this region [4–7].
This contradicts both the Meissner effect (linear mag-
netization) and various modifications of the model of
the critical state [8], because this model presumes the
existence of hysteresis. Other models of magnetic prop-
erties of polycrystalline HTSC materials, such as the
model of a superconducting glass [9, 10] and the
Josephson loop model [4, 11, 12], also fail to provide an
adequate description of experimental results and cannot
resolve the above-mentioned contradictions.

The drawbacks to the models are manifested most
clearly in the description of the spectrum of magnetiza-
tion harmonics, which can be obtained experimentally
by applying a modulated magnetic field to an HTSC
[11, 13, 14], as well as in the description of harmonics
in the current–voltage characteristics (IVC) of HTSC
materials [15, 16].

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The polycrystalline YBa2Cu3O7 – x (YBaCuO) sam-
ples were prepared in the form of pellets (nos. 1–3) d ≈
20 mm in diameter and l1 = 2.4, l2 = 3.4, and l3 = 2.1 mm
in thickness using conventional ceramic technology.
Annealing was carried out at a temperature of 950°C in
oxygen. The superconducting transition temperature Tc

of the prepared samples was 92 K. The samples were of
densities ρ1 = 4.34, ρ2 = 3.80, and ρ3 = 2.81 g/cm3. We
1063-7834/01/4311- $21.00 © 2012
used the two-coil compensation method of magnetic
susceptibility measurements [5]. A sinusoidal signal
from a GZ-118 generator (with the harmonics coeffi-
cient 0.005%) was fed into the input induction coil. The
output response signal was fed into the input of a selec-
tive voltmeter. The response signal can be written in the
form [11, 13]

(1)

Here, M = (1/V)  is the magnetization averaged

over the sample volume V, S is the average cross-sec-
tional area of the sample, N is the number of turns of the
compensation coil, and µ0 = 4π × 10–7 H/m. In the mea-
surements of the first harmonic in the response signals
of YBaCuO polycrystals in a constant magnetic field
H0, the amplitude of field modulation was h = 0.005 Oe
at a frequency of 2 kHz. For such a value of the field
modulation depth, the amplitudes of higher harmonics
were at the noise level; therefore, they could be disre-
garded. In this case, the in-phase component of the emf
of the first harmonic in the response signal from the
sample was proportional to the differential magnetic
susceptibility [13]:

(2)

where ω is the frequency of the varying magnetic field,
h is the amplitude of field modulation, and χd(H0) is the
differential magnetic susceptibility of the sample in the
field H0. The magnitude of the first-harmonic amplitude

ε1 = [  + ]
1/2

 of the response signal from an
HTSC sample was detected with the help of a V6–9
selective voltmeter. The separation of the in-phase ( )

and the 90°-out-of-phase ( ) components of the first
harmonic was carried out using the synchronous detec-
tion method with the help of a UPI-2 lock-in amplifier.

ε t( ) µ0NS
dM
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The dependences ε1(H0), (H0), and (H0) were
investigated at T ≈ 77 K in liquid nitrogen. The sample
was cooled in a zero magnetic field to liquid-nitrogen
temperature and exposed to a constant magnetic field
varied slowly from zero to +Hmax, then decreased to

−Hmax, and then increased again. The ε1(H0), (H0),

and (H0) dependences were measured with a step of
10 Oe in a constant magnetic field up to Hmax = 150 Oe
and with a step of 100 Oe in stronger fields. In all cases,
the varying, constant, and slowly varying fields were
parallel to the sample axis. The magnetic field of the
Earth was compensated for with the help of a system of
Hemlholtz coils. The error of the first-harmonic mea-
surements of the response signal was less than 3%.

3. EXPERIMENTAL RESULTS OF THE STUDY
OF THE DIFFERENTIAL MAGNETIC 

SUSCEPTIBILITY OF YBaCuO POLYCRYSTALS

The obtained results are presented in Figs. 1 and 2.
An analysis of  and  as functions of the constant
field proved that the values of these quantities decrease
rapidly upon an increase in the magnetic field from 0 to
30 Oe. Upon further increase in the field, ε1 and 

smoothly attain saturation. The value of  is equal, on
average, to less than one tenth of the corresponding in-
phase component . The irreversible behavior of the

dependences ε1(H0), (H0), and (H0) is observed
only when the maximum field exceeds a certain value
Hirr , which depends on the technological conditions of
sample preparation.

Taking into account the results obtained on the dif-
ferential magnetic susceptibility of YBaCuO polycrys-
tals for h = 0.005 Oe and the theoretical concepts devel-
oped in [4–6, 9–18], it was found that for the descrip-
tion of the magnetic properties of the investigated
samples, the most suitable expression for the amplitude
of the harmonic (t) = (H0, h)sin(ωt) is

(3)

where A, B, α, and H* are the parameters characterizing
the polycrystal. The quantity A is apparently responsi-
ble for the Meissner screening by granules of the poly-
crystal. Using the least square technique, we deter-
mined the values of these parameters for each sample.
The results are presented in the table.

The error in determining the parameters A, B, H*,
and α amounts to less than 5% (A and B are dimension-
less quantities). The average value 〈α〉 ≈  2.0. It follows
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from Eq. (3) that the initial magnetization curve can be
described by the expression

(4)

4. THEORETICAL MODEL

The model describing the penetration of a time-
dependent magnetic field into a weak-link system of a
granular HTSC material is based on the concept of the
critical state of a Josephson medium. It is assumed that
the carriers of supercurrent in the subsystem of weak
intergranular links of the polycrystal are in a coherent
state (Josephson medium; see, for example, [9–11, 17,
19]). This coherent state corresponds to the order

parameter (wave function) Ψ = eiΘ, where n is the
effective concentration of supercurrent carriers and Θ is
their phase. Let us consider an HTSC sample placed in
an external magnetic field of strength H. If H < Hc1J

(Hc1J is the lower critical field of weak links), then the
static magnetic field penetrates into the array of weak
links to the Josephson depth λJ ~ 0.01–10 mm for an
HTSC [9, 10, 17, 20–23] and no Josephson vortices are
formed. An exact estimate of the value of Hc1J has not
yet been obtained. The reported values range from
0.001 to 100 Oe (see, for example, [10, 17, 19]). The
magnetic flux trapping by the sample is possible in the
case of the pinning of formed vortices. If we take for
Hc1J the irreversible-magnetization field Hirr of the
HTSC material (table), we obtain the following results.
The values of λJ, Hc1J, and jc1J are connected through
the relation [20–23]

(5)

Assuming that jcJ ~ 0.1–10 A/cm2 [10], we obtain an
estimate of λJ ~ 1–103 cm, which contradicts the avail-
able data (λJ ~ 0.01–10 mm). We must assume that
either jcJ ~ 103–105 A/cm2 or Hc1J ~ 10–2–10–4 Oe. The
latter corresponds to the model of hypervortices [17,
19]. For Hc1J ~ 10–4 Oe, the hypervortex diameter
~0.5 mm corresponds to macroscopic sizes. The fol-
lowing analysis will be based on the model of hyper-
vortices.

In order to describe the penetration of a time-depen-
dent magnetic field into a subsystem of weak intergran-
ular links, we will use the concept of the critical state.
The varying magnetic field penetrates into the sample
in the form of hypervortices and, in accordance with
Maxwell’s equations, induces an electric field of
strength E in the system of weak links. This field pro-
duces a superconduction current of density j, which
screens the external magnetic field.

This effect can be described by Maxwell’s equation,
which is used in describing the critical state of type II

M AH BH*
H

H*
------- 

  .tanh+=

n

Hc1J
4
π
---λ J jcJ= λ J jcJ .∼
PH
superconductors with a large number of centers that pin
Abrikosov vortices (see, for example, [8, 18, 20, 21]):

(6)

According to models of the Josephson medium, the
screening supercurrent density j [see Eq. (6)] must be
proportional to the Josephson critical current IcJ, which is
defined by the Ambegaokar–Baratoff formula [20–23]

(7)

Here, ∆(T) is the superconducting energy gap at tem-
perature T, e is the electron charge, k is Boltzmann’s
constant, and Rn is the normal resistance of the junction
(Rn = ρn(l/S), with ρn being the resistivity and l and S
being the length and the cross-sectional area of the
junction, respectively).

The current j screening the magnetic field in a cylin-
drical sample is defined as

(8)

Here, the angle brackets denote averaging over all

Josephson junctions in the sample, Φ =  is the

magnetic flux penetrating into the sample in the form of
vortices (Josephson vortices or hypervortices), A is the
vector potential of the magnetic field (the magnetic
field is concentrated in a vortex), Φ0 = π"/e = 2.07 ×
10−7 G cm2 is the flux quantum, Θ is the phase of the
screening current, and ϕ is the polar angle of the cylin-
drical system of coordinates. In accordance with
Eq. (7), the Josephson critical current density is

(9)

where ρn is the resistivity of the Josephson medium in
the normal state and r is the radial coordinate in the
cylindrical sample. Indeed, an annular layer of radius r,
width a, and height b has a resistance R = ρ(2πr/ab).
The current in the ring is I ~ 1/R, and, accordingly, the
current density j = I/ab ~ 1/(2πρr). This gives the
following expression for the screening supercurrent
density:

(10)

Here, we assume that 〈|sin(πΦ/Φ0)|〉 ~ 1 and ∂Φ/∂ϕ =
Φ/Φ0 = ±N (N is the number of vortices formed in the

curlH j
E
E
----.=

IcJ
π∆ T( )
2eRn

---------------- ∆ T( )
2kT
------------ .tanh=

j jcJ
πΦ/Φ0( )sin

πΦ/Φ0
------------------------------

∂Θ
∂ϕ
-------.=

Adl∫°

jcJ
∆ T( )
4eρnr
-------------- ∆ T( )

2kT
------------ ,tanh=

j
∆

4eρnr
-------------- ∆

2kT
--------- 

  ∂Θ
∂ϕ
-------

πΦ
Φ0
------ 

 sin

πΦ
Φ0
------

-----------------------tanh=

≈ ∆
4πeρnr
------------------ ∆

2kT
--------- 

  .tanh
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001



MAGNETIC FIELD PENETRATION INTO THE WEAK-LINK SYSTEM 2015
sample). The sign of ∂Θ/∂ϕ depends on the direction of
variation of the external magnetic field, i.e., on ∂H/∂t.

In the vicinity of Tc (T < Tc), in accordance with

Eq. (10), we have j ∝  . Moreover, the Ambe-

gaokar–Baratoff formula (7) for Ic(T)is identical to the
Abrikosov–Gor’kov formula for the temperature
dependence of concentration n(T) of supercurrent carri-

ers [21, 23, 24]. Consequently, |Ψ|2 ∝   and the

screening current in Eq. (10) is given by

(11)

Here, Ψ =  and i2 = –1. In the cylindrical sys-
tem of coordinates, the ϕ component jϕ of the current in
Eq. (11) is given by

Equation (6) for the critical state in the case of a long
cylinder has the form

(12)

This equation is another form of Eq. (10). In contrast to
formula (10), we must put ∂Θ/∂ϕ = ±1 into Eq. (12).
This is due to the fact that ∂Θ/∂ϕ = ±N(~H) and n ~
1/N(~1/H), because the formed vortices involve a part
of the supercurrent carriers that participate in the for-
mation of the macroscopic screening current. As a
result, the right-hand side of Eq. (12) is independent of
H. Taking into account Eq. (10), we introduce the nota-
tion

In this model, the equation describing the penetra-
tion of the magnetic field into the array of weak links in
a long cylinder (L @ R, where L is the length of the cyl-
inder and R is its radius; the external magnetic field has
the axial direction), which uniformly fill the cylinder
volume, and an analogous equation for a large plate (the
magnetic field is directed along the z axis parallel to the
plane of the plate) have the form

(13)

(14)

respectively, where ∂Θ/∂ϕ = ±1 and ∂Θ/∂y ≅  ±π/l (l @
b, l is the length and width of the square plate and b is
its thickness).
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The solution to Eq. (13) with the boundary condi-
tion Hz(R) = H (the axial external magnetic field
strength H increases; i.e., ∂Θ/∂ϕ = +1) has the form

(15)

The magnetic field does not penetrate into the region of
the cylinder where r < ρ = Rexp(–|H |/Hs). Using solu-
tion (15), we can write the magnetization of the cylin-
der in the form

(16)

The solution to Eq. (14) with the boundary condition
Hz(±b/2) = H (the field also increases) has the form

(17)

Here, ρ = H/j* – b/2 and j* = Hs(∂Θ/∂y) =  is the

screening current density. It follows from solution (17)
that the magnetization of the plate is

(18)

Here, Hp = j*b and M0 = Hp. Expression (18) is

valid for H < Hp. For H > Hp, the magnetization is
M(H) = –M0.

5. DISCUSSION OF RESULTS

Let us estimate the field Hs and the current density
j*. We assume that the effective concentration of super-
current carriers in weak links (the concentration of tun-
neling pairs)1 is n ~ 1019–1020 cm–3, the length is l ~ 1–
10 cm, and the mass of a supercurrent carrier is 2m
(m is the mass of a free electron). The results of calcu-
lations are Hs ~ 1–20 Oe and  j* ~ 1–10 A/cm2. These
estimates are in accordance with our experimental
results (see Section 3) if we assume that H* = Hs, as
well as with the results obtained in [4, 10, 12]. Indeed,

1 The concentration of supercurrent carriers in YBa2Cu3O7 – x

granules is approximately equal to 1021–1022 cm–3 [10].

Hz r( )

H , r R>

H Hs R
r
---, r R≤ln–

0, r ρ.<








=

M Hse H /H
s– H

Hs
------ 

  .sinh–=

Hz x( )

H , x
b
2
---≥

H j* ±b
2
--- x– 

  , ρ x
b
2
---≤ ≤–

0, x ρ.≤










=

π
l
---Hs

M M0 2
H
H p

------- 
  H( ) H

H p

------- 
  2

sgn– .–=

1
2
--- 1

2
---
01



2016 KUZ’MICHEV
Parameters of the investigated YBaCuO samples

Sample number
Model parameters in Eq. (3)

Hirr , Oe
A B H*, Oe α

1 0.10 0.305 9.7 1.9 19

2 0.32 0.35 24.5 1.9 82

3 0.018 0.15 17 2.3 23
the nonlinear component of dependence in Eq. (4) is
very close to the dependence in Eq. (16), except for the
region near H = 0. It was mentioned above that the
right-hand side of Eqs. (13) and (14) is independent of
the external field strength H. This effect is similar to the
one described by the well-known Bean model of the
critical state [8], in which the critical current density is
independent of H. Our results, as well as the results of
many other experimental investigations [10, 12, 25–
27], confirm this conclusion. Bean’s model of the criti-
cal state [8] is successfully employed for describing the
magnetic properties of hard type II superconductors.
This model predicts the existence of a magnetization
hysteresis for these materials. Our experimental results
(Fig. 2 and table), as well as the results obtained by
other authors (see, for example, [4, 5, 12, 25]), point
towards the absence of magnetization hysteresis in
YBa2Cu3O7 – x polycrystalline samples for H < Hirr ~
20–80 Oe. In the model considered in Section 4 and in
the model of hypervortices [17, 19], this effect can be
explained as follows. It was mentioned by us earlier
that the theoretical model presented in Section 4 is
based on the concept of a Josephson medium in which
hypervortices are formed. According to the estimates
obtained at the beginning of Section 4, the hypervortex

100

0 50

R, µΩ

H, Oe

150

200

50

100 150 200

Fig. 3. Magnetic-field dependence of the resistance R of a
YBa2Cu3O7 – x ceramic sample carrying a dc current I =
100 mA at T ≈ 77 K. The arrows show the direction of mag-
netic field variation.
PH
diameter is of the order of ~10–500 µm and embraces a
large number of granules of the polycrystal, whose size
is ~0.1–10 µm. This means that continuous or netlike
hypervortices are formed. As the magnetic field
increases and attains a value Hirr , these vortices are
gradually transformed into conventional Josephson
vortices between granules; after the attainment of the
value Hc1g by the field, Abrikosov vortices are formed
in the granules. Hypervortices are low-mobility forma-
tions [17, 19]. With increasing magnetic field, the diam-
eter of hypervortices decreases and their number
increases so that they gradually fill the entire volume of
the sample. This process is accompanied by the emer-
gence of and increase in a macroscopic peripheral
screening supercurrent. In a decreasing field, the pro-
cess is reversed; therefore, there is no magnetic hyster-
esis in the sample.

The pinning and motion of Josephson vortices for
H > Hirr are described by the well-known models of the
critical state, magnetic flux creep, and the viscous flow
of vortices. The magnetic hysteresis and, accordingly,
the flux trapping for H > Hirr take place in the case of
pinning of Josephson vortices by nonsuperconducting
inclusions and by pores in YBa2Cu3O7 – x polycrystal-
line samples. This can be explained using the well-
known Kim model of the critical state (jc ~ 1/(H0 +
|H |)). The motion of Josephson vortices leads to the
emergence of a resistance, while their pinning leads to
magnetic-flux trapping and to hysteresis of magnetiza-
tion and magnetoresistance. This fact has been con-
firmed by experimental investigations of the magne-
toresistance of HTSC ceramics [28] (Fig. 3). It can be
seen from Fig. 3 that a dc resistance appearing for H ≈
20 Oe increases with the field and hysteresis is
observed when the field varies in the opposite direction
in the region of H ~ 30–70 Oe. As the field decreases to
zero, a residual resistance is preserved, which gradually
decreases to zero.

Let us estimate the size of a nonuniformity, assum-
ing that a vortex carries a magnetic flux quantum Φ0 ≈
2 × 10–7 Mx. For Hirr ~ 20 Oe, we obtain a ~ 1 µm.

The model considered by us here is basically close
to the models considered in [4–6, 12], in which a
ceramic material is regarded as an aggregate of micro-
scopic current loops containing Josephson junctions.
The only difference is that, in our model, a screening
current loop occupies the entire sample and is inter-
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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sected by a large number of Josephson junctions (weak
links). A magnetic field penetrates into the sample in
the form of hypervortices (in comparison to micro-
scopic current loops carrying a magnetic-flux quan-
tum). The magnetic response of the sample is formed
by this macroscopic screening current alone, as in the
models of the critical state. We assume here that the rea-
son for the emergence of this macroscopic current is
associated with the penetration of hypervortices into
the bulk of the sample and their transformation into
Josephson vortices.

As a result, analyzing the available data, preference
was given precisely to this reason, although other rea-
sons can also be applicable when describing the mag-
netic properties of granular HTSC materials on the
basis of Eqs. (6) and (10)–(12).

In the model presented by us here, the emergence of
magnetization harmonics (a consequence of the nonlin-
earity of the magnetization M(H) given by Eq. (16) or
Eq. (18)), as well as their temperature dependence [see
Eq. (10)], receives a natural explanation. The out-of-

phase component  of the magnetization harmonics
appears as a result of the magnetic moment relaxation
in the sample, M = M(H, t). This topic will be covered
in our next publication.
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Abstract—The effect of the surface barrier on the surface impedance Z of a type-II superconductor slab with
a finite thickness is investigated in dc magnetic fields H0, which are aligned parallel or perpendicular to the slab
plane. It is demonstrated that, in a perpendicular geometry, the surface resistivity ρs = ReZ has a maximum
when the depth of penetration of the ac magnetic field is of the order of the slab thickness (size effect). For a
parallel orientation of the magnetic field H0, the effect of the Bean–Livingston surface barrier manifests itself
as a decrease in the dissipative loss and a change in the field dependence of the surface resistivity characterized
by a magnetic hysteresis. It is shown for the first time that, under the conditions of persistent trapped magnetic
flux, the dependence ρs(H0) is a decreasing function, which is associated, in particular, with a nontrivial sup-
pression of the size effect. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation into the high-frequency properties of
type-II superconductors and, especially, the properties
of high-temperature superconductors has attracted the
particular attention of many researchers (see, for exam-
ple, [1–4]). The response of a superconductor sample to
an ac magnetic field in the presence of a dc magnetic
field is characterized by the surface impedance, which
depends on the temperature, the strength of the dc mag-
netic field, and the amplitude and frequency of the ac
magnetic field. Examination of these functional depen-
dences can provide important information on the prop-
erties of quasiparticle excitations, density of states, and
vortex-lattice dynamics. The problem of the linear
response of type-II superconductors has already been
considered in a number of works (see, for example, [5–
12]). In particular, it was established that, at ac field fre-
quencies ω higher than the depinning frequency ωd,
vortices move freely and the penetration of the ac mag-
netic field into the sample is governed by the skin depth
δ [5, 6]. Coffey and Clem [7–9] calculated the surface
impedance of a superconductor in the mixed state with
due regard for the vortex–vortex interaction, magnetic-
flux pinning, and the flux creep. Sonin et al. [10] dem-
onstrated that, in the case when allowance for the non-
local interaction between vortices is included in the
analysis, the penetration of the ac magnetic field into a
superconductor is determined not only by the skin-
layer width but also by another considerably smaller
scale on which the vortex lattice is strongly deformed.
The calculation of the impedance in a dc magnetic field
normal to the sample surface provided conclusive evi-
dence that the extra short-wavelength mode makes the
dominant contribution to the impedance of samples
1063-7834/01/4311- $21.00 © 22018
with a strong surface pinning. It turned out that the
energy of an incident wave corresponds to the short-
wavelength mode when the motion of the vortex ends is
suppressed by strong surface pinning. Consequently,
the decrease in the contribution of the long-wavelength
mode responsible for the energy dissipation results in a
substantial suppression of the ac losses in the range of
sufficiently low frequencies. The inferences drawn in
[10] were experimentally confirmed by Berezin et al.
[12], who examined the field and frequency depen-
dences of the real part of the surface impedance for a
bulk sample.

In the case when the dc magnetic field is aligned
with the sample surface, it is necessary to take into
account the Bean–Livingston surface barrier, which, as
is known, considerably affects the magnetic character-
istics of type-II superconductors (see, for example,
[13–15]). Recent studies [16–18] have revealed that the
behavior of the third harmonic of magnetic susceptibil-
ity is governed primarily by the mechanism of irrevers-
ibility, viz., bulk pinning or the surface barrier. The for-
mation of a vortex-free region near the superconductor
surface due to the Bean–Livingston barrier leads to a
partial screening of the vortex system and a drastic
decrease in the absorption in the ac magnetic field [11].

For the most part, the surface impedance in the cited
works has been calculated for semi-infinite samples,
which, in actual fact, correspond to bulk samples whose
sizes considerably exceed the depth of penetration of
the ac magnetic field. However, the investigation into
the nonlinear response of a hard superconductor slab
showed that the real part of the impedance has a char-
acteristic maximum when the wave penetration depth is
comparable to the sample thickness (see, for example,
001 MAIK “Nauka/Interperiodica”
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[19, 20]); i.e., there exists a size effect similar to the Fis-
cher–Kao effect for normal metals [21].

In the present work, we derived an expression for
the surface impedance of a superconducting slab of
arbitrary thickness without bulk inhomogeneities. In
the transverse geometry when the dc magnetic field is
perpendicular to the slab surface, the linear response
was determined using the equations of two-mode elec-
trodynamics. It was demonstrated that the dependence
of the real part of the surface impedance on the external
dc magnetic field exhibits a maximum due to the man-
ifestation of the size effect. The behavior of this maxi-
mum was examined at different slab thicknesses and ac
field frequencies. A similar calculation in the parallel
geometry showed that, in the case when the Bean–Liv-
ingston barrier prevents the penetration of vortices
through the sample surface and the number of these
vortices remains constant, the surface resistivity
decreases significantly and its dependence on the dc
magnetic field is changed.

2. SURFACE IMPEDANCE 
OF A SUPERCONDUCTING SLAB 

IN A PERPENDICULAR DC MAGNETIC FIELD

Let us consider a superconducting slab of thickness
d (0 ≤ x ≤ d) in a transverse dc magnetic field H0 =
(H0, 0, 0) (Hc1 ! H0 ! Hc2), which produces a vortex
lattice with the density n0 = H0/Φ0 (where Φ0 is the
magnetic flux quantum). The ac magnetic field aligned
parallel to the surface of the superconducting slab
brings about the displacement u(x, t) of the vortices
from their equilibrium positions and, consequently, dis-
tortion (tilting) of the vortex lines. The magnetic induc-
tion B1 due to this distortion is defined by the expres-
sion [7, 11]

(1)

It is assumed that the intervortex spacing a satisfies the
condition a ! λ, where λ is the London penetration
length. With this assumption and taking into account
expression (1), the set of equations for the determina-
tion of the mean magnetic field h(x, t) = h(x)exp(–iωt)
inside the slab [h(x = 0) = h(x = d) = H1, H1 ! H0] can
be written in the following form:

(2)

(3)

(4)

Here, c is the velocity of light, η = Φ0Hc2/c2ρn is the
coefficient of viscosity, ρn is the resistivity in the nor-

B1 H0 —⋅( )u= H0 ———— u◊( )– — H0 u⋅[ ]⋅[ ] .–=

h λ2∂2h

∂x2
--------– H0

∂u
∂x
------,=

η∂u
∂t
------ 1

c
--- jF0[ ]

Φ0

H0
------C44*

∂2u

∂x2
--------,+=

j
c

4π
------roth.=
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mal phase, and  is the renormalized tilt modulus
given by [10]

(5)

where ξ is the radius of the vortex core. It should be
noted that the tilt modulus thus determined is of the
local nature, whereas the long-range intervortex inter-
action responsible for the nonlocality is accounted for
in the Lorentz force acting on the vortex [the first term
on the right-hand side of Eqs. (3)] [22]. Under the
assumption that solutions to the set of equations (2)–(4)
are described by the exponential dependence u(x, t) ∝
h(x, t) ∝  exp(kx – iωt), we obtain the dispersion equa-
tion for determining the frequency dependence of the
wave vector k. The solutions to this equation for the
long-wavelength (k1) and short-wavelength (k2) modes
in the frequency range ω ! ωc are represented by the
relationships1 

(6)

(7)

(8)

By adopting the Maxwell equations for deducing the ac
electric field E(x, t) and solving the set of equations
(2)–(4), we determine the surface impedance of the slab
in the transverse magnetic field, that is,

(9)

Further analysis will be performed with due regard
for the boundary conditions for the vortex displacement
u(x), which characterize the surface quality.

(a) In the absence of surface defects, the vortex ends
can freely move along the slab surfaces. The appropri-
ate boundary condition has the form (∂u/∂x)|x = 0, d = 0,
which leads to the following formula for the surface
impedance:

(10)

1 Formulas (6) and (7) differ from the corresponding expressions
obtained in [10] in the sign ahead of the k2 quantity, because, in
[10], k is the wave vector.
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Specifically, the surface resistivity ρs = ReZ for a semi-
infinite sample (d  ∞) is determined by the flux-
flow resistivity ρf = Φ0H0/c2η [6]:

(11)

Here, µ = ωb/(ωc + ωb). For a sufficiently dense vortex
lattice [H0 @ Φ0ln(a/rc)/4πλ2], we obtain µ ≈ 1. This
implies that the last term in relationship (3) can be
ignored. In this case, the bulk losses are determined
only by the long-wavelength mode. As follows from
formula (10) for the surface impedance Z, the surface
resistivity of a superconducting slab of finite thickness
is a nonmonotonic function of the dc magnetic field H0,
which reaches a maximum in the dc field H0 = H* at a

thickness d ∝  (H*); i.e., the size effect takes place.
The size effect revealed in this case is similar to the Fis-
cher–Kao effect for normal metals [21]. Its analog was
also observed in hard superconductors (see, for exam-
ple, [19]).

Figure 1 displays the calculated field dependences
of the real and imaginary parts of the surface imped-
ance for a superconducting slab of thickness d = 200λ
(λ = 1300 Å) without surface pinning. The ac field fre-
quency ω is equal to 107 Hz. These conditions can be
realized, for example, in YBaCuO crystals at tempera-
tures close to the melting temperature of the vortex lat-
tice. Lütke-Entrup et al. [4] proved that, under these
conditions, the depinning frequency related to both
bulk and surface pinning of vortices does not exceed
107 Hz. The maximum surface resistance R = /χn

(where χn = 2πωd/c2 is the surface reactance in the nor-
mal state) depends on the slab thickness d/λ and the ac
field frequency. As the ratio d/λ increases, the maxi-

ρs

2πρf µω( )1/2

c
------------------------------.=

k1
1–

ρsmax

0 20

(ρs/ρ0) × 10–8

H/Hs

60 100 140

2

6

10

a

b

Fig. 1. Surface impedance of the superconducting slab of
thickness d in a perpendicular magnetic field: (a) real and
(b) imaginary parts. Conditions: d = 200λ, ρ0 = 4πω0λ/c2,
ω0 = 1 Hz, and Hs is determined according to formula (21).
PH
mum surface resistance R tends to a constant value that
is independent of the superconductor parameters and
the ω frequency (Fig. 2). Fisher et al. [19] obtained a
similar dependence of the surface resistance R for hard
superconductors in the framework of the nonlocal
model of the critical state; however, the maximum
value of R was approximately halved.

(b) We now dwell on a strong surface pinning of
vortex line ends. From the set of equations (2)–(4) with
the boundary condition u|x = 0, d = 0, we deduce the rela-
tionship

(12)

At d  ∞, the surface resistivity of a semi-infinite
sample [10] can be found from the real part of the
impedance Z in relationship (12) according to the for-
mula

(13)

As can be seen from this formula, the absorption in the
case of strong surface pinning decreases considerably
(owing to the smallness of the parameter ω/ωc ! 1).
This effect is explained by the fact that the amplitude
ratio of the long-wavelength and short-wavelength

modes is small: h1/h2 ∝   ! 1 [10]. Conse-
quently, the contribution of the long-wavelength mode
responsible for the energy dissipation in the supercon-
ductor bulk becomes small compared to that in the case
of weak surface pinning. The numerical calculations
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Fig. 2. Dependences of the maximum surface resistance R =
/χn (where χn = 2πωd/c2) on the slab thickness.ρsmax
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demonstrated that the ρs(H0)function for superconduct-
ing slabs of finite thickness also has a maximum. How-
ever, the width of this maximum (with respect to the dc
magnetic field H0) is rather large. As a result, the size
effect for superconducting slabs with strong surface
pinning is weakly pronounced.

3. STRUCTURE OF THE MIXED STATE
OF A SUPERCONDUCTING SLAB

IN A PARALLEL DC MAGNETIC FIELD

Now, we consider the case when the dc magnetic
field H0 = (0, 0, H0) is directed parallel to the slab sur-
face. In the continuous approximation, the mean mag-
netic field inside the slab is determined by the equa-
tion [9]

(14)

Here, n0(x) is the averaged vortex density, which is non-
zero in the region with a zero current density (j(x) = 0).
The solution of Eq. (14) yields

(15)

In this case, the vortices are located in the central region
of the film:

(16)

The parameter a, which corresponds to the half-width
of the region occupied by the vortices, is related to the
trapped magnetic flux Φ = NΦ0 (where N is the number
of vortices already entered the slab) by the expression

(17)

The distribution described by relationships (15)–(17) at
a specified Φ determines the set of metastable states in
the field range Hex(Φ) ≤ H0 ≤ Hen(Φ). The field Hen(Φ),
in which the barrier to the vortex penetration (entry)
becomes zero, can be found from the condition of the
equality between the current density at the slab surface
and the depairing current density: js =

H λ2d2H

dx2
----------– Φ0n0 x( ).=

H x( )
H0

d/2 a–( )/λ[ ]cosh
--------------------------------------------=

×
x d/2– a+( )/λ[ ]cosh , 0 x d/2 a–≤ ≤

1, d/2 a x d/2 a+≤ ≤–
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cΦ0/(12 π2ξλ2). In the implicit form, this field can be
determined using the equation

(18)

Here, Hs is the field attributed to the entry of the first
vortex, that is,

(19)

We assume that the vortices begin to leave the slab
when the distance between the boundary of the region
occupied by the vortices and the slab surface (a) is of
the order of the vortex core size ξ. In this case, the mag-
netic field which suppresses the barrier to the vortex
exit can be represented in the form

(20)

The intersection point of Hen(Φ) and Hex(Φ) specifies
(in our model) the field Hc2 ∝  Φ0/ξ2. For a semi-infinite
sample (d  ∞), formulas (18)–(20) take the form
[23]

(21)

where B = Φ/d is the induction.

4. A SUPERCONDUCTING SLAB
IN AC MAGNETIC FIELDS (A PARALLEL 

GEOMETRY)

Let us now consider a superconducting slab with a
fixed trapped magnetic flux Φ in a magnetic field H0,
which is aligned with the slab surface and satisfies the
condition

(22)

In the absence of bulk pinning, the vortices are distrib-
uted with the density n0(x), which is defined by formu-
las (16) and (17). In the case when a weak ac magnetic
field H1exp(–iωt) is applied parallel to the dc field H0
and the total field satisfies condition (22), the number of
vortices in the slab (and, correspondingly, the flux Φ)
remains unchanged. Under the action of an alternating
current, the vortices inside the slab begin to move,
which, in turn, brings about a change in their density
and, consequently, displacement of the vortex region
boundary. In the geometry under consideration, the
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equation for the coordination part of the ac magnetic
field h(x)exp(–iωt) inside the slab has the form

(23)

The change in the vortex density n1(x, t) = n1(x)exp(–
iωt) due to the response of the sample to the ac mag-
netic field can be obtained from the continuity equation
and the equation determining the vortex displacement
ux along the x axis:

(24)

(25)

It should be noted that the vortex motion equations (3)
and (25) involve the superconduction current density
j(x, t). This implies that the normal current component
jn is ignored, which is valid in the range of sufficiently
low frequencies. Coffey and Clem [7, 9] considered the
contribution from the normal component of the current
density in the framework of the two-fluid model.
Within this model, the Lorentz force acting on the vor-
tex is given by

(26)

However, as was shown by Placais et al. [22], expres-
sion (26) is incompatible with the Onsager equations
and the inclusion of jn in the interaction with vortices
would be more correctly performed in terms of the
microscopic theory.

The set of equations (23)–(25) can be easily reduced
to a sole equation for the field h(x) that is,

(27)

Note that the field distribution is symmetric with
respect to the midplane of the film. Therefore, Eq. (27)
should be solved in the vortex-free region 0 ≤ x ≤ d/2 –
a (I) and the vortex region d/2 – a ≤ x ≤ d/2 + a (II) with
the boundary condition hI(0) = H1 and the matching
conditions at the boundaries of these regions:2 

(28)

2 The second condition (28) is the condition for continuity of the
tangential components of the electric field, because the supercon-
ductor in an alternating field is characterized by the conductivity
σI = c2i/4πωλ2 in the Meissner state and σII = σI/(1 +

i n0/4πωηλ2) in the mixed state.
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The solution of Eq. (27) has the form

(29)

(30)

(31)

As was noted above, when the number of vortices is
constant, the boundary of the region occupied by the
vortices harmonically varies with time:

where a1 is determined from the condition Φ = const
according to the formula

From the above solution, we obtain the surface imped-
ance of the superconducting slab of thickness d in the
parallel geometry:

(32)

5. RESULTS AND DISCUSSION

Now, we analyze the behavior of the surface imped-
ance Z in different limiting cases.

(1) According to formula (32), the surface imped-
ance Z in the Meissner state (i.e., in the case when a =
0) has the form

(33)

At frequencies ω ≤ 1012 Hz under the condition λ/δn ! 1
(where δn is the skin depth in the normal state), the nor-
mal component jn of the current density can be ignored.
In this case, as follows from relationship (33), the
response of the slab to the ac magnetic field has a nearly
inductive nature [7].

(2) Let us now compare the expressions for the sur-
face impedance of the superconducting slab in the
mixed state for parallel [formula (32)] and perpendicu-
lar [formulas (10)–(12)] orientations of the dc magnetic
field. If the vortex-free region is absent (b = 0), the sur-
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face impedance defined by formula (32) coincides with
the corresponding expression for the perpendicular
geometry. Analysis of formula (32) at b ≠ 0 demon-
strates that the occurrence of the vortex-free regions
associated with the Bean–Livingston surface barrier
results in the following: (i) substantial suppression of
the dissipative loss [11] and (ii) changes in the fre-
quency and field dependences of the surface resistivity.
In particular, for thick slabs (d  ∞) and a small
width b(H0, B) of the vortex-free region when

(34)

the real part of the impedance ReZ is determined by the
expression 

(35)

In this expression, the surface resistivity is less than that
determined by relationship (11) for the perpendicular
geometry by a factor of λ2/l2b2 ! 1. For example, the
parameter λ2/l2b2 ≈ 1 is of the order of 10–3 for the
superconducting slab of thickness d = 104λ ≈ 1 mm at a
frequency ω = 107 Hz and H0 = Hs ≈ 0.4 T. As was noted
by Sonin and Traito [11], the frequency dependence of
the ρs function for a semi-infinite sample is transformed
from ρs ∝  ω1/2 in the perpendicular geometry to ρs ∝
ω3/2 in the parallel geometry.

(3) Another important feature of the surface barrier
manifests itself in the fact that the surface resistivity
depends not only on the ac field frequency ω and the dc
magnetic field H0 but also on the trapped magnetic flux
Φ. The last circumstance leads to magnetic hysteresis of
the resistivity ρs(H0). The characteristic hysteresis loop
ρs(H0) of the superconducting slab in a magnetic field
H0 varying in the range Hex2 ≤ H0 ≤ Hen1 (Φ1 > Φ2) is
displayed in Fig. 3. In the field ranges Hex1 ≤ H0 ≤ Hen1
and Hex2 ≤ H0 ≤ Hen2, the number of vortices in the slab
remains constant and the surface resistivity ρs(H0, Φ1)
reversibly varies according to formula (32). When the
magnetic field decreases from Hex1 to Hex2, the vortices
leave the slab. In this case, the vortex-free regions are
virtually absent and the dependence ρs(H0) is described
by formula (32) at b = 0 (the dashed line in Fig. 3). As
the magnetic field increases from Hen2 to Hen1, the vor-
tices enter the sample and the curve of the surface resis-
tivity in this range coincides with the envelope of the
family ρs(H0, Φ) at the points H0 = Hen(Φ) (Fig. 4). It
should also be noted that, at a fixed trapped magnetic
flux Φ, the surface resistivity ρs(H0) is a decreasing
function in the field range Hex(Φ) ≤ H0 ≤ Hen(Φ)
(Fig. 4). In this range, the function ρs(H0) for the per-
pendicular orientation of the magnetic field has a max-
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imum, whereas the interaction of vortices with the sur-
face (i.e., the Bean–Livingston surface barrier) in the
parallel geometry suppresses this effect.
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Abstract—An electrodynamic equation is derived for the magnetic field of an isolated Pearl vortex moving
along an arbitrary trajectory in an ultrathin film of a magnetic superconductor. This equation is valid for any
type of magnetic order in the magnetic subsystem. The magnetic structure of an isolated oscillating Pearl vortex
is investigated in a thin magnetic superconductor film. Oscillations of the vortex and the presence of the mag-
netic subsystem are shown to lead to a significant renormalization of the vortex field in comparison with the
Pearl solution. New phenomena of inverted satellites are predicted in which an inverted precursor appears in
front of the vortex and an inverted wake is formed behind the latter at a distance of the order of 10λeff from the
vortex center. These phenomena can be observed in magnetooptical experiments. © 2001 MAIK “Nauka/Inter-
periodica”.
1. There are many magnetic superconductors that
show surprising and nontrivial properties [1–3]. Super-
conductivity and magnetism have been found to exist in
ternary compounds [4] and high-temperature supercon-
ductors such as REBaCuO and RECuO (RE is a rare-
earth ion). One of the most important properties of
HTSC materials is the fairly strong antiferromagnetic
correlation of copper-ion spins exhibited by them in
CuO2 planes in the superconducting state [5].

An external magnetic field penetrates into a bulk
type II superconductor in the form of Abrikosov vorti-
ces [6] and magnetizes the magnetic subsystem at dis-
tances of the order of the London penetration depth λ
around the normal core of a flux vortex. A fairly heavy
dc or ac electric transport current flowing through a
superconductor in a rarefied mixed state suppresses flux
vortex pinning, with the result that the vortex array or
nearly isolated Abrikosov vortices are forced to move
uniformly or to oscillate [7]. High-power microwave
radiation can also give rise to harmonic oscillations of
the Abrikosov vortex array or isolated flux vortices.

Krivoruchko [8] investigated the magnetic structure
of an isolated Abrikosov vortex moving uniformly and
slowly through a bulk magnetic superconductor with a
thickness along the magnetic field of d @ λ; he was the
first to predict the formation of an inverted wake at
large distances (of the order of 10λ) behind the vortex.
In [9], it was first predicted that if an isolated Abrikosov
vortex oscillates in a bulk magnetic superconductor, an
inverted precursor arises before this vortex, an inverted
wake is formed behind it, and they are located at a dis-
tance of the order of 10λ from the vortex center.

As was first pointed in [10], vortices move under the
action of the Lorentz force, which results from the
1063-7834/01/4311- $21.00 © 22025
superconduction current. In a highly rarefied mixed
state, the vortex density is low and the distance between
them is d0 @ λ. In this case, there is no electric transport
current in the bulk of the superconductor (because of
the Meissner effect) and the current flows only through
the skin depth near the interfaces. It is in the skin depth
that the Lorentz force acts on a flux vortex. Since a vor-
tex line is continuous along the z axis in the bulk of a
superconductor far from its surface, the vortex will
move uniformly or oscillate; therefore, its motion can
be considered two-dimensional.

The solutions to the relevant two-dimensional prob-
lems found in [8, 9] are valid only in the bulk of a super-
conductor or, more specifically, in the regions at dis-
tances L0 @ λ from the interfaces, where the system can
be assumed to be approximately two-dimensional. In
the vicinity of the air/superconductor surface, these
solutions should be modified and it is not clear whether
the inverted satellites will persist in rigorous solutions
to three-dimensional problems; this issue needs further
consideration. At the same time, it is very difficult, if at
all feasible, to observe inverted satellites formed near
an Abrikosov vortex in the bulk of a superconductor. As
we will see further on, this problem does not arise in the
case of a thin superconductor film.

It should be noted that the time dependence of the
magnetic field of an Abrikosov vortex is essentially dif-
ferent in the cases of its uniform motion [8] and har-
monic oscillation [9]. In the former case, the configura-
tion of a magnetic field with an inverted wake does not
vary in time, whereas in the latter, the structure of both
the inverted precursor and the inverted wake is radically
altered over an oscillation period.
001 MAIK “Nauka/Interperiodica”



 

2026

        

LOMTEV

                                                                                                                                                        
An external magnetic field penetrates in the form of
two-dimensional Pearl vortices [11–13] into a thin mag-
netic superconductor film (with a thickness of d ! λ)
and magnetizes the magnetic subsystem at distances of
the order of the effective Pearl penetration depth λeff =
λ2/d @ λ around the normal core of a vortex in the film.
When a fairly heavy dc or ac transport current flows
through a superconductor film in the rarefied mixed
state, virtually isolated Pearl vortices are forced to
move at a constant velocity v  or to oscillate with a time-
varying velocity v (t). The velocity of a vortex is pro-
portional to the transport current that produces the mag-
netic field. It should be noted that since Maxwell’s
equations are linear (in the case where the superposi-
tion principle holds), the corrections to the entire mag-
netic field of a Pearl vortex that are due to the transport
current and that are proportional to the vortex velocity
v  or v (t) do not affect the solutions obtained; these cor-
rections are negligibly small even in comparison with
the magnetic field of the inverted satellites of the Pearl
vortex (because v /c ! 1 and v (t)/c ! 1) and can be
ignored.

In [14], the magnetic structure of an isolated two-
dimensional Pearl vortex moving uniformly in a thin
magnetic superconductor film was investigated using
an equation derived for the vector potential A(r, t) and
it was shown that the vortex motion and the presence of
the magnetic subsystem give rise to a significant renor-
malization of the vortex field in comparison with the
Pearl solution. It was predicted that an inverted wake is
formed behind a moving vortex at a distance of the
order of 10λeff from its center and that this phenomenon
can be observed in magnetooptical experiments.

It is also of interest to investigate the magnetic field
of the Pearl vortex in a more intricate case where the
vortex motion is different from being slow and uniform.
The magnetic structure of an isolated Pearl vortex oscil-
lating harmonically in a thin film of a magnetic super-
conductor has not yet been analyzed. In this paper, we
perform this analysis in the case of an ultrathin film
whose thickness along the external magnetic field is
d ! λ. In the geometry in question, the problem is
reduced to the case of a Pearl vortex in an infinitely thin
two-dimensional film, where the physical vortex char-
acteristics, such as the field and the current, can be
assumed to be independent of the coordinate z along the
normal to the plane of the film.

We assume that the system under study is two-
dimensional with respect to both the superconducting
and magnetic properties; therefore, the magnetic per-
meability of the film can be written as µ(r – r', t – t ') =
µ(r – r', t – t ')δ(z – z '), where r = (x, y, z), r = (x, y),
and δ(z) is the Dirac δ function. In the coordinate sys-
tem chosen, the xy plane coincides with the film plane
and the magnetic field of the vortex is parallel to the
z axis.

The conduction electrons are assumed to interact
with the spin subsystem via the electromagnetic
PH
(dipole) field, while the spin–spin exchange interaction
is ignored. We use the London approximation, in which
the structure of the vortex core is of no importance,
because λ @ ξ and even λeff @ ξ (ξ is the correlation
length). When considering isolated vortices in a thin
film in a highly rarefied mixed state in the range of
magnetic fields Hc1 < B < Hc2 (Hc1 and Hc2 are the lower
and upper critical fields of the superconductor, respec-
tively), we actually suggest that the separation between
vortices is d0 @ λeff. However, since d ! λ, the transport
current flows through the entire thickness of the film.

We use a kinematic approach, in which it is assumed
that the dynamic equations for the Pearl vortex have
already been solved with allowance for pinning and
various processes of dissipation [7, 15] and only those
solutions are chosen that correspond to harmonic oscil-
lations of an isolated vortex line.

It should be noted that, in the general case, the
deformation of vortices in a superconductor in the
mixed state is of importance [16]. However, in the case
of a highly rarefied mixed state considered here, this
deformation is small because of the low vortex concen-
tration and does not affect the formation of inverted sat-
ellites (precursor and wake) of an oscillating Pearl
vortex.

2. As in [17–19], we start from Maxwell equations
in which the magnetic induction B(r, t) = curlA(r, t) is
determined by the persistent superconduction current
j(r, t), the magnetization M(r, t), and the displacement
current:

(1)

For simplicity, the electric displacement D(r, t) is
assumed to be related to the electric field E(r, t)
through the local constitutive equation D(r, t) =
ε0E(r, t), where the permittivity ε0 is considered to be
constant.

The displacement current is usually neglected in the
first equation of set (1). However, as we will see later,
the displacement current affects the dependence of the
renormalized magnetic field of the Pearl vortex on the
functional form of the permeability of the system.

From the London equation [in the London potential
gauge divA(r, t) = 0], one can derive the relation
between the current, the vector potential, and the phase
of the order parameter Θ(r, t):

(2)

where the vector function S(r, t) is determined by the
order parameter phase gradient:

(3)

curlB r t,( ) 4πc 1– j r t,( )=

+ 4πcurlM r t,( ) c 1– ∂D r t,( )/∂t,+

curlE r t,( ) c 1– ∂B r t,( )/∂t.–=

j r t,( ) c

4πλ2
------------ S r t,( ) A r t,( )–[ ] ,=

S r t,( )
Φ0

2π
------ ∇Θ r t,( ),=
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with Φ0 being the flux quantum.
The function S(r, t) satisfies the equation

(4)

where  is the unit vector (parallel to the z axis) along
the magnetic field of the vortex situated at the point
r0(t).

In the case of a thin film of a magnetic superconduc-
tor, Eq. (2) for the current density can be represented in
the form

(5)

From Eqs. (1)–(5), it follows that

(6)

Using the formula curl(ϕA) = ϕcurlA + ∇ϕ  × A and the
obvious equation {∇δ (z) × [S(r, t) – A(r, t)]}z = 0,
Eq. (6) can be reduced to a closed equation for the mag-
netic field of a Pearl vortex oscillating about its equilib-
rium position in a thin magnetic superconductor film:

(7)

Here, the time dependence of the position vector of the
oscillating vortex is taken to be r0(t) = a0sinω0t, where
a0 and ω0 are the amplitude and frequency of harmonic
oscillations, respectively. The magnetic induction is
related to the magnetic field through an integral consti-
tutive equation,

(8)

We note that for fields H(r, t) = H(r, t) and
B(r, t) = B(r, t), we have divB(r, t) = 0 and
divH(r, t) = 0.

Taking the spatial Fourier transform of Eq. (7), we
obtain an equation for the time-dependent Fourier com-
ponent of the magnetic field of the oscillating Pearl vor-
tex:

(9)

where q = (qx, qy) is a two-dimensional vector, q =

(  + )
1/2

 is its magnitude, and

(10)

curlS r t,( ) ẑΦ0δ r r0 t( )–( ),=

ẑ

j r t,( ) I r t,( )δ z( ) j r t,( )dδ z( )= =

=  
c

4πλeff
-------------- S r t,( ) A r t,( )–[ ]δ z( ).

curlcurlH r t,( ) λ eff
1– curl S r t,( ) A r t,( )–[ ]δ z( ){ }=

– ε0c 2– ∂2B r t,( )/∂t2.

curlcurlH r t,( ) λ eff
1– ẑΦ0δ r a0 ω0tsin–( )[=

– B r t,( ) ]δ z( ) ε0c 2– ∂2B r t,( )/∂t2.–

B r z t, ,( ) t ' r 'µ r r '– t t '–,( )H r ' z t ', ,( ).d

∞–

∞

∫d

∞–

t

∫=

ẑ
ẑ

q2 p2+( )H q p t, ,( ) ε0c 2– ∂2B q p t, ,( )/∂t2+

+ λ eff
1– B q t,( ) ẑΦ0λ eff

1– iqa0– ω0tsin( ),exp=

qx
2 qy

2

B q t,( ) pd
2π
------B q p t, ,( ).

∞–

∞

∫=
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By using the expansion of the exponential in terms
of Bessel functions of integral order Jn(x) [20],

(11)

and taking the temporal Fourier transform of Eq. (9)
after substitution of Eq. (8), one can obtain an algebraic
equation

(12)

whose solution is

(13)

Here, I(q, ω) is a spectral function given by

(14)

R(q, ω) is an additional renormalization function due to
the displacement current,

(15)

and we also define

(16)

The real and imaginary parts of the additional renor-
malization function (15) are

iqa0– ω0tsin( )exp  = qa0 ω0tsin( ) i qa0 ω0tsin( )sin–cos

=  J0 qa0( ) 2 J2m qa0( ) 2mω0t( )cos
m 1=

∞

∑+

– i2 J2m 1+

m 0=

∞

∑ qa0( ) 2m 1+( )ω0t[ ] ,sin

q2 p2 ε0ω
2c 2––+ µ q ω,( )[ ] H q p ω, ,( )

+ λ eff
1– µ q ω,( )H q ω,( ) ẑΦ0λ eff

1– I q ω,( )=

H q ω,( ) ẑΦ0
I q ω,( )

µ q ω,( ) R q ω,( )+
--------------------------------------------.=

I q ω,( ) 2π J0 qa0( )δ ω( ) ---




=

+ J2m qa0( ) δ ω 2mω0+( ) δ ω 2mω0–( )+[ ]
m 1=

∞

∑

– J2m 1+ qa0( ) δ ω 2m 1+( )ω0+( )[
m 0=

∞

∑

---– δ ω 2m 1+( )ω0–( ) ]




;

R q ω,( ) R1 q ω,( ) iR2 q ω,( )–=

=  λ eff
pd

2π
------ p2 q2 ε0ω

2c 2– µ q ω,( )–+[ ] 1–

∞–

∞

∫ 
 
 

1–

;

H q ω,( ) pd
2π
------H q p ω, ,( ).

∞–

∞

∫=

R1 q ω,( ) 2λ eff a{ q ω,( )/2=
01
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(17)

Here, the functions a(q, ω) and b(q, ω)are expressed
through the real and imaginary parts of the permeability
of the system as

(18)

3. Since λ @ a (a is the crystal lattice parameter),
one can use a hydrodynamic approximation for the
magnetic subsystem. In the paramagnetic temperature
range, the permeability of the two-dimensional film can
be written as [21]

(19)

where χ0 is the static magnetic susceptibility and the
spin diffusion coefficient for a two-dimensional
Heisenberg magnet is given by [22] D =
(1/3)(2π)1/2Ja2[s(s + 1)]1/2 (J is the intralayer exchange
constant and s is the spin).

Strictly speaking, superconduction currents screen
the long-wavelength part of the exchange and electro-
magnetic interactions, thereby renormalizing the
parameters of the magnetic subsystem [23]. However,
when considering the paramagnetic temperature range
and making only order-of-magnitude estimates, we can
ignore this circumstance.

Let us introduce dimensionless variables k = qλeff,
Ω = ωλeff /v 0, Ω0 = ω0λeff /v 0, τ = tv 0/λeff, and η = v 0/c,
where v 0 = D/λeff is the characteristic velocity.

Taking the inverse (frequency) Fourier transform,
we find from Eqs. (13)–(16) the time dependence of the
spatial Fourier component of the magnetic field of the
oscillating Pearl vortex:

(20)

where

(21)

(22)

(23)

+ a2 q ω,( ) b2 q ω,( )+[ ] 1/2
/2 }

1/2
,

R2 q ω,( ) 2 ω( )λ eff a q/ω( )/2–{sgn=

+ a2 q ω,( ) b2 q ω,( )+[ ] 1/2
/2 }

1/2
.

a q ω,( ) q2 ε0
ω2

c2
------µ1 q ω,( ),–=

b q ω,( ) ε0
ω2

c2
------µ2 q ω,( ).=

µ q ω,( ) µ1 q ω,( )= iµ2 q ω,( )+ 1
i4πχ0Dq2

ω iDq2+
------------------------,+=

H k τ,( ) H0 k τ,( ) H1 k τ,( ),+=

H0 k τ,( ) ẑΦ0

iκ x A0 Ω0τsin–( )exp
1 4πχ0 2κ+ +

-------------------------------------------------,=

H1 k τ,( ) H1Re k τ,( ) iH1Im k τ,( ),–=

H1Re k τ,( ) 2ẑΦ0 J2m κ x A0( )
m 1=

∞

∑=

×
F1 k τ m, ,( )
F2 k m,( )

---------------------------
2mΩ0τ( )cos

1 4πχ0 2κ++
----------------------------------– ,
PH
(24)

Here, the vortex is assumed to oscillate along the x axis,
A0 = a0/λeff is the dimensionless amplitude, and the
functions F1, F2, F3, and F4 are given by

(25)

According to Eqs. (15), (17), and (18), the renormal-
ization function is

(26)

(27)

where

(28)

and the real and imaginary parts of the permeability
take the form

(29)

Equations (20)–(28) are valid for any type of mag-
netic ordering in the magnetic subsystem, i.e., for any
character of dispersion of the permeability µ(q, ω).

We note that there are essential differences between
these expressions for the Fourier component of the
magnetic field of the oscillating Pearl vortex in a two-
dimensional superconductor and the corresponding

H1Im k τ,( ) 2ẑΦ0 J2m 1+ κ x A0( )
m 0=

∞

∑=

×
F3 k τ m, ,( )
F4 k m,( )

---------------------------
2m 1+( )Ω0τ( )sin

1 4πχ0 2κ++
--------------------------------------------– .

F1 k τ m, ,( ) µ[ 1 k 2mΩ0,( )=

+ R1 k 2mΩ0,( ) ] 2mΩ0τ( )cos

– µ[ 2 k 2mΩ0,( ) R2 k 2mΩ2,( ) ] 2mΩ0τ( ),sin–

F2 k m,( ) µ1 k 2mΩ0,( ) R1 k 2mΩ0,( )+[ ] 2=

+ µ[ 2 k 2mΩ0,( ) R2 k 2mΩ0,( ) ]2,–

F3 k τ m, ,( ) µ[ 2 k 2m 1+( )Ω0,( )=

– R2 k 2m 1+( )Ω0,( ) ]

× 2m 1+( )Ω0τ[ ] µ 1 k 2m 1+( )Ω0,( )[+cos

+ R1 k 2m 1+( )Ω0,( ) ] 2m 1+( )Ω0τ[ ] ,sin

F4 k m,( ) µ[ 1 k 2m 1+( )Ω0,( )=

+ R1 k 2m 1+( )Ω0,( ) ]2

+ µ[ 2 k 2m 1+( )Ω0,( ) R2 k 2m 1+( )Ω0,( ) ]2.–

R1 k Ω,( ) 2 α k Ω,( )/2{=

+ α2 k Ω,( ) β2 k Ω,( )+[ ] 1/2
/2 } 1/2,

R2 k Ω,( ) 2 Ω( ) α– k Ω,( )/2{sgn=

+ α2 k Ω,( ) β2 k Ω,( )+[ ] 1/2
/2 } 1/2,

α k Ω,( ) κ2 ε0η
2Ω2µ1 k Ω,( ),–=

β k Ω,( ) ε0η
2Ω2µ2 k Ω,( ),=

µ1 k Ω,( ) 1 4πχ0κ
4/ Ω2 κ4+( ),+=

µ2 k Ω,( ) 4πχ0Ωκ4/ Ω2 κ4+( ).=
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expression [9, Eq. (7)] for the same component of the
oscillating Abrikosov vortex in a three-dimensional
superconductor. First, the dependence on the two-
dimensional wave vector q is different, and, second, the
characteristic spatial scales of field variation are differ-
ent: in the three-dimensional case, this scale is λ,
whereas in a two-dimensional superconductor, it is
λeff @ λ.

Taking the inverse Fourier transform with respect to
the two-dimensional wave vector q, we obtain from
Eqs. (20)–(29) an integral representation for the mag-
netic field of the isolated oscillating two-dimensional
Pearl vortex in a thin magnetic superconductor film:

(30)

(31)

(32)

(33)

(34)

where we have introduced the dimensionless coordi-
nates X = x/λeff and Y = y/λeff.

According to Eqs. (30)–(34), the dominant positive
contribution to the magnetic field of the oscillating
Pearl vortex comes from the function H0(x, y, t) cen-
tered at the point xC(t) = a0sinω0t. Information on the
inverted satellites is contained in the integrals in
Eqs. (33) and (34), which are centered at the origin.
H1S(x, y, t) is a symmetric function of x and y, while
H1A(x, y, t) is symmetric in y and antisymmetric in x.
Let us discuss how the regions of the inverted magnetic
field arise along the direction of oscillations (the x
axis). This effect is most pronounced at the instants tn ≈
±nπ  (n = 0, 1, 2, …), where the point xC(tn), at
which the function H0(x, y, t) is centered, is close to the
origin. In this case, the strongly localized positive func-
tion H0(x, y, t) falls off steeply to zero. The functions
H1S(x, y, t) and H1A(x, y, t) are more weakly localized in
comparison with H0(x, y, t) and can take both positive

H x y t, ,( ) H0 x y t, ,( )= H1 x y t, ,( ),+

H0 x y t, ,( )
ẑΦ0

πλeff( )2
------------------=

× κx κ y

κ x X A0 Ω0τ( )sin–( )[ ]cos κ yY( )cos
1 4πχ0 2κ+ +

--------------------------------------------------------------------------------------,d

0

∞

∫d

0

∞

∫
H1 x y t, ,( ) H1S x y t, ,( )= H1A x y t, ,( ),+

H1S x y t, ,( ) 1

πλeff( )2
------------------=

× κx κ yH1Re k τ,( ) κ x X( ) κ yY( ),coscosd

0

∞

∫d

0

∞

∫

H1A x y t, ,( ) 1

πλeff( )2
------------------=

× κx κ yH1Im k τ,( ) κ x X( ) κ yY( ),cossind

0

∞

∫d

0

∞

∫

ω0
1–
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and negative values. The inverted precursor is the result
of superposition of a negative minimum of H1S(x, y, t)
and a positive maximum of H1A(x, y, t), whereas the
inverted wake is the sum of two negative minima of
these functions.

The typical values of χ0 for antiferromagnets are
10−3–10–5. The characteristic velocity v 0 ∝  Jsa(a/λeff) is
(λeff /a) ∝  103–104 times lower than the spin-wave
velocity v s ∝  Jsa. In the CuO2 planes, because of strong
intralayer exchange, the spin-wave velocity is fairly
high: v s ∝  (0.5–1.3) × 107 cm/s [3]; therefore, v 0 ∝  103–
104 cm/s. We note that the experimentally observed
maximum velocities of Abrikosov vortices in bulk
superconductors are of the same order of magnitude,
vA ≈ 6.6 × 103 cm/s [24].

The maximum velocity of the oscillating vortex
V0 = a0ω0 is much lower than the relaxation velocity of
the magnetic subsystem, which is of the order of v s.
Therefore, in our case, the magnetic subsystem closely
follows the changes in the magnetic field of the oscillat-
ing Pearl vortex, renormalizing this field because of
spatial and time dispersion of the permeability and
causing the formation of an inverted precursor in front
of the vortex and of an inverted wake behind it at large
distances from its center.

The stationary vortex field distribution, averaged
over an oscillation period, differs essentially from the
standard one and has the form

(35)

Numerical analysis shows that if we put χ0 ∝  10–3–
10–4 (which is comparable with the magnetic suscepti-
bility of the copper subsystem of HTSC materials), the
frequency Ω0 ∝  103, the amplitude a0 = 5λeff, ε0 = 30,
and the parameter η ∝  10–5–10–6, then at the instant τ0 =
π, the minima of the inverted-precursor and inverted-
wake fields will be situated symmetrically about the
vortex center at distances r01 =r02 ≈ 5λeff from it and will
be equal to Hmin1, 2 = H(r01, 2, τ0)(πλeff)2/Φ0 ∝  10–3–10–4.
For χ0 ∝  10–2 (such values of the magnetic susceptibil-
ity are typical of ternary and HTSC compounds with
rare-earth ions near the magnetic-ordering temperature
TN ∝  1 K), Ω0 = 1, a0 = 5λeff, τ = π, η = 10–5, and ε0 =
30, the distribution of the reduced magnetic field of the
vortex H = (πλeff)2H(X, 0, τ = π)/Φ0 along the x axis (as
a function of X at Y = 0) has two minima: Hmin1 ∝  –10–2

at r01 ∝  5λeff (inverted precursor) and Hmin2 ∝  –7 × 10–2

at r02 ∝  3λeff (inverted wake, see figure). We note that
when the oscillation phase is ω0t = Ω0τ = π, the vortex
moves to the left and the maximum of its magnetic field

Hav x y,( )
ẑΦ0

2π3λ eff
2

----------------=

× ϕ κ x κ y

κ x X A0– ϕsin( )[ ] κ yY( )coscos
1 4πχ0 2κ+ +

---------------------------------------------------------------------------.d

0

∞

∫d

0

∞

∫d

π–

π

∫

01
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goes through the point x = 0 at this instant (the maxi-
mum of the dimensionless magnetic field is roughly 8
at this point).

According to Eq. (35), the vortex field distribution
averaged over an oscillation period essentially depends
on the amplitude A0, is positive everywhere, and differs
significantly from the standard magnetic field distribu-
tion of a fixed Pearl vortex. The stationary distributions
of the reduced average magnetic field of a Pearl vortex

2π3 Hav(X, 0)/Φ0 along the x axis (as a function of X

at Y = 0) and of 2π3 Hav(0, Y)/Φ0 along the y axis (as
a function of Y at X = 0) are similar to those of the Abri-
kosov vortex presented in [9, Figs. 2, 3] for five differ-
ent values of the amplitude a0. These distributions dif-
fer only in that the spatial scale of the Abrikosov vortex
λ should be replaced by the characteristic spatial scale
λeff of the Pearl vortex and, in addition, the exponential
falloff of the field to zero in the case of the Abrikosov
vortex should be replaced by a power-law falloff of the
Pearl vortex.

4. We note that there is an essential difference in the
time dependence of the magnetic field distribution of
the Pearl vortex between the cases of uniform motion
[14] and harmonic oscillations. In the former case, the
configuration of the field distribution with an inverted
wake is time-independent, whereas in the latter, the
structure of both the inverted precursor and the inverted
wake essentially varies in time over an oscillation
period.

When the longitudinal component of the magnetic
field of a vortex is inverted, vortices are attracted to one
another [25, 26]. Therefore, moving vortices will be
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an oscillating Pearl vortex H = (πλeff)

2H(X, 0, τ = π)/Φ0
along the x axis (as a function of X at Y = 0), in which the
minima correspond to an inverted precursor in front of the
vortex and to an inverted wake behind it.

0

PH
aligned in chains in a thin film of a magnetic supercon-
ductor. This effect can be essential in switching and
memory devices based on Pearl vortices.

Stationary and nonstationary domain structures,
labyrinth patterns of bubble domains and Bloch lines,
moving vortex lattices, and isolated moving vortices
can be easily visualized and observed on the surface of
a sample in magnetooptical experiments. Therefore, in
contrast to the inverted wake of a uniformly moving
Abrikosov vortex [8] and the inverted precursor and
wake of an oscillating Abrikosov vortex [9] in a bulk
magnetic superconductor, the inverted precursor and
wake of an oscillating two-dimensional surface Pearl
vortex in a two-dimensional magnetic superconductor
can be observed in magnetooptical experiments on thin
magnetic superconductor films.

From the results of [14] and this paper, one can con-
clude that the more intricate the vortex motion and the
character of magnetic ordering dictated by the features
of the permeability µ(k, ω), the richer and more diver-
sified the pattern of inverted satellites that accompany a
moving Pearl vortex in a thin film of a magnetic super-
conductor.

ACKNOWLEDGMENTS

The author is grateful to Yu.E. Kuzovlev for permis-
sion to employ his computer-simulation code KGCP
and to Yu.V. Medvedev for his interest in this study and
encouragement.

REFERENCES
1. A. I. Buzdin, L. N. Bulaevskiœ, M. L. Kulich, and

S. V. Panyukov, Usp. Fiz. Nauk 144 (4), 597 (1984)
[Sov. Phys. Usp. 27, 927 (1984)].

2. A. I. Buzdin and L. N. Bulaevskiœ, Usp. Fiz. Nauk 149
(1), 45 (1986) [Sov. Phys. Usp. 29, 412 (1986)].

3. Yu. A. Izyumov, N. M. Plakida, and Yu. N. Skryabin,
Usp. Fiz. Nauk 159 (4), 621 (1989) [Sov. Phys. Usp. 32,
1060 (1989)].

4. Superconductivity in Ternary Compounds, Vol. 2: Super-
conductivity and Magnetism, Ed. by E. Fisher and
M. Maple (Springer, Heidelberg, 1982; Mir, Moscow,
1985).

5. Physical Properties of High Temperature Superconduc-
tors, Ed. by D. M. Ginsberg (World Scientific, Sin-
gapore, 1989; Mir, Moscow, 1990), Chaps. 4, 6.

6. A. A. Abrikosov, Zh. Éksp. Teor. Fiz. 32 (6), 1442 (1957)
[Sov. Phys. JETP 5, 1174 (1957)].

7. L. P. Gor’kov and N. B. Kopnin, Usp. Fiz. Nauk 116 (3),
413 (1975) [Sov. Phys. Usp. 18, 496 (1975)].

8. V. N. Krivoruchko, Pis’ma Zh. Éksp. Teor. Fiz. 55 (5),
285 (1992) [JETP Lett. 55, 284 (1992)].

9. A. I. Lomtev, Fiz. Tverd. Tela (St. Petersburg) 42 (9),
1542 (2000) [Phys. Solid State 42, 1584 (2000)].

10. P. G. de Gennes and J. Matrikon, Rev. Mod. Phys. 36 (1),
45 (1964).

11. J. Pearl, Appl. Phys. Lett. 5 (4), 65 (1964).
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001



INVERTED SATELLITES OF A SOLITARY OSCILLATING PEARL VORTEX 2031
12. P. G. de Gennes, Superconductivity of Metals and Alloys
(Benjamin, New York, 1966; Mir, Moscow, 1968), Chap. 3.

13. A. A. Abrikosov, Fundamentals of the Theory of Metals
(Nauka, Moscow, 1987; North-Holland, Amsterdam,
1988), Chap. 18.

14. A. I. Lomtev, Pis’ma Zh. Éksp. Teor. Fiz. 71 (10), 618
(2000) [JETP Lett. 71, 426 (2000)].

15. V. N. Krivoruchko and Yu. A. Dimashko, Sverkhprovodi-
most: Fiz., Khim., Tekh. 5 (6), 967 (1992).

16. E. B. Sonin, A. K. Tagantsev, and K. B. Traito, Phys.
Rev. B 46 (9), 5830 (1992).

17. E. M. Lifshitz and L. P. Pitaevskiœ, Course of Theoretical
Physics, Vol. 5: Statistical Physics (Nauka, Moscow,
1978; Pergamon, New York, 1980), Part 2, Chap. 5.

18. H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo-
Field Dynamics and Condensed States (North-Holland,
Amsterdam, 1982; Mir, Moscow, 1985), Chap. 11.

19. M. Tinkham, Introduction to Superconductivity
(McGraw-Hill, New York, 1975; Atomizdat, Moscow,
1980), Chap. 5.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
20. Handbook of Mathematical Functions, Ed. by M. Abra-
mowitz and I. A. Stegun (Dover, New York, 1964;
Nauka, Moscow, 1979), Chap. 9.

21. B. I. Halperin and P. C. Hohenberg, Phys. Rev. 188 (2),
898 (1969).

22. P. M. Richards and M. B. Salamon, Phys. Rev. B 9 (1),
32 (1974).

23. A. I. Buzdin, Pis’ma Zh. Éksp. Teor. Fiz. 40 (5), 193
(1984) [JETP Lett. 40, 956 (1984)].

24. A. N. Samus’, A. F. Popkov, V. I. Makhov, et al., Sverkh-
provodimost: Fiz., Khim., Tekh. 4 (7), 1324 (1991).

25. A. M. Grishin, A. Yu. Martynovich, and S. V. Yam-
pol’skiœ, Zh. Éksp. Teor. Fiz. 97 (6), 1930 (1990) [Sov.
Phys. JETP 70, 1089 (1990)].

26. A. I. Buzdin and A. Yu. Simonov, Zh. Éksp. Teor. Fiz. 98
(6), 2074 (1990) [Sov. Phys. JETP 71, 1165 (1990)].

Translated by Yu. Epifanov
01



  

Physics of the Solid State, Vol. 43, No. 11, 2001, pp. 2032–2036. Translated from Fizika Tverdogo Tela, Vol. 43, No. 11, 2001, pp. 1952–1956.
Original Russian Text Copyright © 2001 by Aliev, Alieva, Seleznev.

                                                               

SEMICONDUCTORS
AND DIELECTRICS
Features of Hole Scattering in Electroplastically Deformed 
Germanium Crystals

M. A. Aliev, Kh. O. Alieva, and V. V. Seleznev
Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala, 367003 Russia

Received January 30, 2001

Abstract—The effect of specific features of scattering center formation during electroplastic deformation on
the electric properties of germanium is investigated. © 2001 MAIK “Nauka/Interperiodica”.
An analysis of the influence of defect formation in
the course of electroplastic deformation of silicon crys-
tals on their electric properties revealed a number of
peculiarities in the behavior of the Hall mobility of
holes [1]. A comparative analysis of the observed fea-
tures and the results of earlier investigations [2–5]
devoted to the influence of deformation-produced
defects on the mobility of charge carriers and their
comparison with the modern concepts of the evolution
of defect structures [6, 7] led to certain assumptions
concerning the features of scattering mechanisms in
real crystals of elemental semiconductors. In this con-
nection, it is interesting to continue investigations of
related objects in order to better understand the nature
of carrier scattering and the mechanisms responsible
for it.

The experiments were made on plastically deformed
germanium samples with different structural parame-
ters, such as the density of defects, impurity composi-
tion, type of dislocation dynamics, and relative orienta-
tion of the directions of the current and dislocations.

Here, we present an investigation of the electric
properties of monocrystalline germanium samples cut
from crystals subjected to electroplastic (EPD) and
thermoplastic deformation (TPD). The deformation
was accompanied by diffusion of indium impurity
atoms along the preferred direction of dislocation
emergence.

We investigated p-germanium single crystals with
resistivity ρ = 43 Ω cm at room temperature, which
were initially doped with gallium to an uncompen-
sated-acceptor concentration NA – ND = 9 × 1013 cm–3.
The growth dislocation density did not exceed 102 cm–2.
Crystals in the form of prisms 12 × 10 × 5 mm in size
with edges coinciding with the [110], [111], and [112]
directions, respectively, were deformed along the [110]
axis in the stationary creep mode at a temperature T =
700°C for 30 minutes. The reference samples were sub-
jected to thermal treatment under deformation. Before
the deposition of the diffusing impurity, the sample sur-
1063-7834/01/4311- $21.00 © 22032
face was cleaned using the ion-plasma technique. The
electric properties were measured on three samples cut
from a deformed crystal in three different ways: from
the face subjected to impurity diffusion and along and
across the slip planes. After grinding and chemical pol-
ishing, indium contacts were fused in a high-vacuum
setup for 20 min at T = 350°C. The quality of the con-
tacts was verified on a curve tracer, and then samples
with ohmic contacts were selected. Measurements of
the dc electrical conductivity and the Hall effect were
made in the temperature range 4.2–400 K in a magnetic
field of 8 kOe with the help of the compensation tech-
nique in a metallic cryostat, which made it possible to
control and maintain the temperature to within ±0.1 K
in helium vapor and to within ±1 K in nitrogen vapor.

The nontraditional methodical and technological
approaches used by us for forming the structures
enriches the physical properties of a crystal but consid-
erably complicates its quantitative description. This is
due to the fact that as a result of deformation, the crystal
becomes similar to an open system which is far from
thermodynamic equilibrium and whose properties
change under shear stress. At the shear instability
points, self-organization of dissipative dislocation
structures takes place [8]. It can be expected that new
materials with controllable properties can be obtained
by using this method [9].

Figures 1 and 2 show the temperature dependences
of the Hall mobility of holes in the samples under inves-
tigation on the log–log scale. It follows from the curves
that a considerable difference in the scattering of charge
carriers in the reference and thermoplastically
deformed samples is observed in the temperature range
T < 100 K, while for electroplastically deformed sam-
ples, the difference begins to manifest itself at lower
temperatures T < 80 K.

It can be seen from curves 5–7 in Fig. 1 that the most
typical and distinguishing feature of samples corre-
sponding to the TPD mode and cut across the slip plane
is the presence of minima in the mobility µ(T) in the
vicinity of T ≈ 25 K, whose depth increases with the
001 MAIK “Nauka/Interperiodica”
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strain ε. The change in the mobility amounts to more
than four orders of magnitude for samples subjected to
TPD and to less than two orders of magnitude for sam-
ples subjected to EPD. It should be observed that,
according to electron-microscopic data, the density of
dislocations in samples subjected to TPD is two orders
of magnitude higher than in samples subjected to EPD
for the same strain. In the case of samples deformed in
the EPD mode, there are no distinct minima on the µ(T)
dependence but the steepness of the temperature
dependence of the mobility increases with the strain
(curves 5–7 in Fig. 2). The common features typical to
both deformation modes are the existence of anisotropy
in the mobility of the majority charge carriers (this is
manifested much more weakly for samples with EPD)
and the identical effect of indium impurity atoms, dif-
fusing to the bulk of the crystal simultaneously with the
generation of dislocations, on the carrier scattering.
For example, the impurity–dislocation interaction for
small strains considerably suppresses the scattering
(curves 2, 4 in Figs. 1, 2), while an increase in the strain
considerably enhances the scattering of charge carriers
(curves 5–7 in Figs. 1, 2); the latter is responsible for
anomalously low values of the mobility (especially for
the TPD mode).

The above comparative analysis suggests that, in
both modes of deformation of germanium crystals,
identical sources of scattering of charge carriers are
generated. It should be noted, however, that the struc-
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Fig. 1. Temperature dependence of the Hall mobility of
holes in p-germanium samples subjected to thermoplastic
deformation at T = 700°C: (1) initial sample; (2) ε = 1%
with indium diffusion; (3) ε = 1%, I || D; (4) ε = 1.5% with
indium diffusion; (5) ε = 1.5%, I || D; (6) ε = 1%, I ⊥ D, and
(7) ε = 1.5%, I ⊥ D.
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tural formation of new scattering centers generated in
the course of deformation, as well as their quantitative
characteristics, differs considerably for the two defor-
mation modes. We note, for example, that in contrast to
the TPD mode, all the structural particles participating
in the process in the case of the electroplastic mode of
deformation, namely, the impurity and intrinsic atoms,
as well as the charged carriers of the subsystem (holes)
and simultaneously generated dislocations, interact in
the dynamic flow and in a certain direction of motion.
Thus, the conditions for crystal deformation in the EPD
mode are facilitated by the presence of an additional
perturbation of the dislocation system in the form of a
directional current pulse [10, 11]. We can also assume
that the scattering centers formed as a result of the
structure evolution in the two deformation modes also
differ in such properties as thermal stability and electri-
cal and chemical activity. For this reason, a more
ordered structure of deformation-produced defects is
formed, in our opinion, in the EPD mode. It is well
known that dislocations can lead to a considerable
anisotropy of carrier scattering in the case of their non-
uniform orientation distribution [12].

Let us analyze the above-mentioned anisotropy in
the electric properties of samples subjected to both
regimes of deformation. It should be recalled that the
mobility µ⊥  was obtained while measuring the current
perpendicular to the slip planes {111}. Obviously, the
scattering properties of dislocations for such an orien-
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Fig. 2. Temperature dependence of the Hall mobility of
holes in p-germanium samples subjected to electroplastic
deformation at T = 700°C: (1) initial sample; (2) ε = 1%
with indium diffusion; (3) ε = 1%, I || D; (4) ε = 1.5% with
indium diffusion; (5) ε = 1.5%, I || D; (6) ε = 1%, I ⊥ D, and
(7) ε = 1.5%, I ⊥ D.
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tation are manifested most significantly. The mobility
µ|| corresponds to resistance measurements for a current
parallel to the slip planes. In the case of a small strain
and of the concentration of dislocation clusters in indi-
vidual planes being separated by large dislocation-free
regions, we can naturally expect that µ|| > µ⊥ ; the resis-
tance in the parallel direction is shunted by dislocation-
free regions between preferred slip planes.

In order to substantiate the above qualitative expla-
nation, we consider the following model of a deformed
crystal, which takes into account the nonuniformity in
the distribution of dislocation clusters in the crystal
(Fig. 3). We present the crystal in the form of alternat-
ing layers with different conductivities and different
carrier concentrations, which are perpendicular to the x
axis. Layers of thickness l1 have a conductivity σ1 and
a carrier concentration n1, while layers of thickness l2
distributed between them have parameters σ2 and n2.
We direct the magnetic field along the z axis and the
electric contacts along the x and y directions, alter-
nately.

The current is directed along the x axis, the magnetic
field along the z axis, and the value of VH is measured
along the y axis. The expressions for the current density
have the form

(1)

(2)

where i = 1, 2, …; τi is the relaxation time in the layers;

σi =  = eniµi is the conductivity in the layers; Ω =

jx

σi

1 Ω2τ i
2+

--------------------- Ex Ωτ iEy+( ),=

jy

σi

1 Ω2τ i
2+

--------------------- Ω– τ iEx Ey+( ),=

e2niτ
m

------------

z

x

y

l1

l1

l2

Fig. 3. Schematic diagram illustrating the model of a crystal
with dislocation tubes.
PH
 is the cyclotron frequency; and E is the electric

field.
From the condition jy = 0, it follows that

(3)

Then, expression (1) implies that

(4)

The voltage Vx applied along the x axis is distributed
among the layers. The voltage applied to a pair of layers
l1 and l2 is

(5)

Lx, Ly, and Lz are the crystal dimensions.

The distribution of ∆Vx is proportional to the resis-
tances of the layers:

(6)

This relation and the equality ∆V1x + ∆V2x = ∆Vx give

(7)

For the electric fields acting in layers l1 and l2, we
obtain from relations (7)

(8)

Using relations (3) and (4), we obtain the relation

(9)

for the Hall electric field, which leads to the following
relation for the Hall voltage:

(10)

In the measurements of the Hall potential differ-
ence, averaging is carried out over the length of a Hall
contact and along the x axis.

Equation (10) gives

(11)

Using the definition of the Hall coefficient, we can
write
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Using relation (4) with the field values (8) in the lay-
ers and taking into account relations (5), we obtain

(13)

which leads to the following expression for the effec-

tive conductivity :

(14)

In accordance with relations (14) and (12), the effec-
tive mobility is given by

(15)

Now, we consider the case where the current is
passed along the y axis. From the condition jx = 0, the
Hall electric field is found to be

(16)

The current density along the y axis is different in
layers l1 and l2:

(17)

The preset total current is

(18)

This leads to the following expression for the effec-

tive conductivity :

(19)

Using relations (16) and (17), we derive an expres-
sion for the Hall voltage:

(20)

In accordance with relations (20) and (18), the Hall
coefficient is given by

(21)

Ultimately, we obtain from relations (19) and (21)
the following expression for the effective mobility:

(22)
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Comparing Eq. (12) for R⊥  and Eq. (21) for R||, we
note that the Hall coefficient becomes isotropic (R⊥  =
R||) when the concentrations n1 and n2 are equal. Thus,
in order to relate our model to the results obtained on
the mobility anisotropy, we must put n1 ≠ n2.

A comparison of Eqs. (15) and (22) for the mobility
shows that

Thus, in order to fit the model to the experimental
data, we must put n1 ≠ n2 and τ1 ≠ τ2. We will assume
that the carrier scattering in the layer l1 is more effective
and that τ1 < τ2. The layer simulates the slip plane with
a dislocation pile-up if the value of l1 is comparable to
the radius of the Read cylinders or to the effective dis-
tance over which the dislocation-induced deformation
is acting. The carrier concentration in this layer is lower
than the concentration in the bulk because of electro-
static expulsion from the region occupied by charged
dislocations; consequently, it is natural to assume that
n1 < n2. For a small deformation, when the slip planes
filled with dislocation clusters are scarce, we can
assume that l1 < l2. Let us consider the limiting case
when the inequalities between these parameters are
strong. In this case, the characteristics for the direction
parallel to the slip planes become

(23)

they involve the parameters of an intermediate layer,
which is natural under the assumption concerning the
shunting of the current by high-conductivity regions.
The characteristics for the direction perpendicular to
the slip planes are determined by the relationship
between the quantities l1/n1 and l2/n2.

Assuming that

(24)

we obtain

(25)

This case (24) corresponds to the experimental situ-

ation, i.e., to inequalities  < , R⊥  > R||, and  <

.

In the case of the opposite inequality

, (26)

we arrive at the relations

(27)
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In accordance with relations (27) and (23), the dif-
ference between µ⊥  and µ|| disappears in this case.This
can easily be verified by selecting the limiting numeri-
cal values of the parameters l, n, and τ and substituting
them into the corresponding formulas.

Let us now consider the physical pattern of manifes-
tation of the scattering properties of defects upon the
introduction of impurity atoms into a plastically
deformed crystal. For small deformations, when a
strong anisotropy of mobility exists in the absence of
impurity diffusion, the value of µ increases both in the
TPD and in the EPD mode in the presence of diffused
indium acceptor impurities. This fact can be interpreted
as follows. Doping with indium noticeably increases
the concentration of ionized impurities. Since the
mobility increases instead of decreases, this can be due
to the mutual suppression of two scattering mecha-
nisms associated with dislocations and impurities. Such
a situation can be realized if the electric interaction
between dislocations and carriers, associated with the
charge of dislocation lines, is significant in the disloca-
tion scattering.

It should be noted that, for small deformations,
when the number of dislocations is small and they are
arranged in the form of planar clusters, their limiting
charging can be attained because the electrostatic bar-
rier prevents the further trapping of holes. It is well
known that, in p-Ge, dislocations behave as donors
which acquire a positive charge after capturing holes.
The introduced negatively charged indium acceptor
atoms must pile up on dislocation lines in noticeable
numbers. In this case, the combined (dislocation and
impurity) electrostatic interaction with carriers can be
compensated to a considerable extent. Only in this case
can an increase in the mobility µ be expected in crystals
with either deformation mode. Thus, we assume that,
for the most part, the indium ions do not become effec-
tive scatterers but they noticeably reduce the scattering
ability of dislocations.

Such an interpretation is also supported by the fact
that the ionic radius of indium differs significantly from
the radius of the host atoms. Consequently, it can be
expected that indium ions are “replaced” by disloca-
tions more easily than gallium atoms, which are the ini-
tial dopant in germanium crystals. As a result, a signif-
icant component of the electrostatic scattering potential
is suppressed, thereby causing an increase in the effec-
tive mobility.

The considerably smaller anisotropy of the mobility
for samples with EPD with transverse and longitudinal
orientations of the current lines relative to the slip
planes is probably associated with the involvement of a
larger number of slip planes even at early stages of
deformation in view of the localization of the thermal
effect of the current, which was presumed in [13]. This
assumption correlates with the well-known fact of the
absence of mobility anisotropy in samples subjected to
thermoplastic deformation at high temperatures [14].
PH
As regards the minimum of thermal mobility in the
TPD mode, its dislocation origin is indisputable; this
minimum can be associated with a manifestation of res-
onance scattering at a shallow dislocation level. A min-
imum for the transverse orientation can also be
observed in formula (15) if we assume that, as the tem-
perature decreases, a transition from inequality (25) to
inequality (27) and further to inequality (24) takes
place. In this case, µ⊥  attains the value eτ2/m, which
coincides with µ||. Thus, a tendency to nonmonotonic
behavior of µ⊥  is present in the model considered by us
here, but the magnitude of the effect cannot be matched
easily with experimental data. Detailed experiments are
required in order to draw more exact conclusions.
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Abstract—Exact selection rules for matrix elements of the generalized momentum operator p at the Γ point in
semiconductors of the GaAs-type without an inversion center are deduced for the first time with thorough
account of spin–orbit interaction, which manifests itself in both splitting and mixing of orbital states. In partic-
ular, selection rules are obtained for forbidden optical transitions Γ7  Γ8 in the valence band. The selection
rules are formulated in terms of Clebsch–Gordan coefficients and reduced matrix elements. The relation
between the reduced matrix elements and the mixing parameters of the wave functions is derived. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Matrix elements of the momentum operator at the Γ
point play an extremely important role in the III–V
semiconductors. These matrix elements characterize
optical transitions in direct bandgap materials and
determine the mass spectrum and g-factors of charge
carriers. Various multiband versions of the kp method
of the perturbation theory constructed on the basis of
these matrix elements are constantly being improved
upon and are widely used in investigations of electronic
and optical properties of three-dimensional and low-
dimensional semiconductor structures (see, for exam-
ple, [1–3]). Usually, the matrix elements involved in
Kane’s model [4], which takes into account tetrahedral
symmetry and spin–orbit splitting of bands, are used in
calculations. According to Kane’s model, the spectrum
of charge carriers at the Γ point has a simple structure:
the electrons are described by s-type wave functions in
the Γ6 conduction band and by p-type wave functions in
the Γ7 and Γ8 valence bands. However, while Kane’s
model is satisfactory in many cases, it is not a general
model, because it does not take into account the spin–
orbit interaction in full measure. According to [4], the
spin–orbit interaction gives rise only to splitting of
orbital states at the center of the Brillouin zone, while
the theory of symmetry [5] leaves room not only for
splitting but also for spin–orbit mixing of space func-
tions of various symmetries at the Γ point. This circum-
stance is usually disregarded, because it is seemingly
believed to be of little importance. However, there are
situations in which the mixing of wave functions plays
a decisive role. The splitting of the Γ8 valence band in
the linear approximation in k (k is the quasi-momen-
tum) and the optical transitions Γ7  Γ8 inside the
valence band are examples of such situations. It is cus-
1063-7834/01/4311- $21.00 © 22037
tomary to consider these intraband transitions to be for-
bidden [6], but the theory of symmetry allows them.
The possible important role of the forbidden transitions
Γ7  Γ8 was suggested by the experiments performed
in [7] on the absorption of radiation by free holes in p-
GaSb. Preliminary calculations carried out in the three-
band model [8] count in favor of this conclusion.

The mixing of wave functions at the Γ point means
that the spectrum of charge carriers has a complicated
structure because of the correlation between their
orbital motion and spin; this structure is more compli-
cated than that assumed in Kane’s model. The fine
details of the electronic states may prove to be essential
in studying the polarization properties of charge carri-
ers in both three-dimensional and low-dimensional
materials. Recent research on the transverse g-factor
(g⊥ ) of heavy holes in a GaAs/AlGaAs (001) quantum
well [9] has shown that the measured quantity g⊥  is
directly connected to the Luttinger parameter q [10],
which characterizes the three-dimensional properties of
GaAs and has a relativistic nature [11]. When calculat-
ing the parameter q, satisfactory agreement with exper-
imental data was achieved in [9] only by going beyond
Kane’s model and allowing for spin–orbit mixing.
Comprehensive study of the polarization properties of
charge carriers is also of interest because of the practi-
cal use of III–V semiconductors and structures made on
their basis as sources of polarized electrons [12].

The above-mentioned examples indicate that Kane’s
model is of limited usefulness for a number of problems
and that it needs to be generalized taking the spin–orbit
interaction into complete account. In the present work,
the general expressions for spin–orbit harmonics are
derived for all bands at the Γ point with due regard for
the spin–orbit mixing and selection rules for the matrix
001 MAIK “Nauka/Interperiodica”
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elements of the generalized momentum operator p
between all states at the center of the Brillouin zone are
established. The results are represented in terms of
Clebsch–Gordan coefficients and reduced matrix ele-
ments. The reduced matrix elements are written using
the mixing parameters of the wave functions; therefore,
they are convenient for use in practical calculations of
concrete models of mixing.

The results obtained in this paper allow one to study,
in particular, the forbidden optical transitions Γ7  Γ8
and to obtain information on the space symmetry of
excited states at the Γ point using optical methods. The
energies and symmetry of excited states are also
extremely important in researching the Γ8 valence band
splitting that is linear in k, which has been poorly inves-
tigated to date. In addition, the selection rules estab-
lished allow one to develop a new version of the kp
method in which the spin–orbit interaction is accurately
taken into account and, within this approach, to obtain
the most general expressions for the effective masses
and g-factors of charge carriers allowed by tetrahedral
symmetry at the Γ point for all bands in the III–V semi-
conductors.

2. WAVE FUNCTIONS

The states of electrons in crystals of tetrahedral
symmetry at the Γ point are described by wave func-
tions Ψn(r) that satisfy the Schrödinger equation:

(1)

(2)

(3)

Here, m is the electron mass, V(r) is the periodic poten-
tial, s are the Pauli matrices, p = –i"∇ , the index n enu-
merates the energy bands, and En is the energy of an
electron in the nth band. The Hamiltonian H in Eq. (1)
is written in the relativistic approximation, which is
correct to the first order in the parameter c–2 [13]. The
relativistic term Hrel in Eq. (3) is the sum of three terms.
The first two terms produce a shift in the levels of the
Hamiltonian H0 given by Eq. (2) and intermixing of
wave functions related to the same type of coordinate
representation. The third term in Eq. (3) is spin-depen-
dent and is responsible for spin–orbit splitting and mix-
ing of the wave functions at the Γ point that belong to
different types of representations according to which
the eigenfunctions of the operator H0 are transformed.
Hereafter, the Dirac notation is used for the wave func-
tions at the Γ point:

(4)

HΨn H0 Hrel+( )Ψn EnΨn,= =

H0
p2

2m
------- V r( ),+=

Hrel
p4

8m3c2
--------------

"
2

8m2c2
--------------∆V

"

4m2c2
--------------s —V p×( ).+ +–=

Ψn r( ) Γn| 〉 .≡
PH
Disregarding the spin, the energy levels of the
Hamiltonian H0 in III–V semiconductors are related to
five types of states, the wave functions of which are
transformed according to the irreducible representa-
tions Γ1, Γ2, Γ3, Γ4, and Γ5 [5]. The Γ1 and Γ2 states are
nondegenerate, the Γ3 state is doubly degenerate, and
the Γ4 and Γ5 states are triply degenerate. The basis
functions |Γα〉  (α = 1, 2, 3, 4, 5) for the irreducible rep-
resentations at the Γ point are written as [5]

(5)

(6)

(7)

(8)

(9)

where

(10)

In formulas (5)–(10), s is the tetrahedral-group invari-
ant and x, y, and z are coordinate functions which are
transformed under tetrahedral symmetry operations as
coordinates of the position vector x, y, and z. All basis
functions in Eqs. (5)–(10) are assumed to be real and
normalized to unity. Here and henceforth, the coordi-
nate axes are taken to be along the directions [100],
[010], and [001]. The z axis is along [001] and taken to
be the axis of quantization.

The eigenfunctions of the Hamiltonian (1) belong to
the spinor representations Γn (n = 6, 7, 8) [5, 14]. They
are formed from orbital functions similar to those in

Eqs. (5)–(9) and from the spin functions α =  and

β =  by using multiplication rules for representa-

tions Γα ×  (α = 1, 2, 3, 4, 5), where  is the rep-

resentation according to which the spin functions are
transformed. The multiplication table for representa-
tions is given in [5]. The final results for all spinor states
at the Γ point in a III–V semiconductor are presented
below. The Γ6 states are doubly degenerate, and their
basis functions |Γ6;M〉  (M = ±1/2) can be written as

(11)

Γ1| 〉 s,=

Γ2| 〉 s1 x4 y2 z2–( ) y4 z2 x2–( )+= = z4 x2 y2–( ),+

Γ3| 〉 1

2
------- 2z2 x2– y2–( ), 3

2
--- x2 y2–( ),=

Γ4| 〉 x y z,, ,=

Γ5| 〉 e1 e2 e3,, ,=

e1 x y2 z2–( ), e2 y z2 x2–( ),==

e3 z x2 y2–( ).=

1

0 
 

0

1 
 

$1
2
---

$1
2
---

Γ6;M| 〉 CΓ6Γ1
Γ6 Γ1( ); M| 〉

Γ1

∑=

+ CΓ6Γ5
Γ6 Γ5( ); M| 〉 ,

Γ5

∑
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where

(12)

(13)

The states in the Γ7 band are also doubly degenerate,
and the basis functions |Γ7; M〉  (M = ±1/2) can be writ-
ten as

(14)

where

(15)

(16)

The Γ8 states in a III–V semiconductor are fourfold
degenerate. Their wave functions |Γ8; M〉  (M = 3/2, 1/2)
can be represented as

(17)

where

(18)

 Γ6 Γ1( );
1
2
--- isα ,=  Γ6 Γ1( ); 1

2
---– isβ,=

Γ6 Γ5( );
1
2
--- 1

3
------- e1 ie2+( )β e3α+[ ]–=

Γ6 Γ5( );–
1
2
--- 1

3
------- e3β e1 ie2–( )α–[ ] .=









Γ7; M| 〉 CΓ7Γ2
Γ7 Γ2( ); M| 〉

Γ2

∑=

+ CΓ7Γ4

Γ4

∑ Γ7 Γ4( ); M| 〉 ,

 Γ7 Γ2( );
1
2
--- is1α ,=  Γ7 Γ2( ); 1

2
---– is1β,=

Γ7 Γ4( );
1
2
--- 1

3
------- x iy+( )β zα+[ ]–=

Γ7 Γ4( );–
1
2
--- 1

3
-------– zβ x iy–( )α–[ ] .=









Γ8; M| 〉 CΓ8Γ3
Γ8 Γ3( ); M| 〉 CΓ8Γ4

Γ8 Γ4( ); M| 〉
Γ4

∑+
Γ3

∑=

+ CΓ8Γ5

Γ5

∑ Γ8 Γ5( ); M| 〉 ,

Γ8 Γ3( );
3
2
--- i

2
------- 2z2 x2– y2–( )β=

Γ8 Γ3( );
1
2
--- i

3
2
--- x2 y2–( )α=

Γ8 Γ3( ); –
1
2
--- i– 3

2
--- x2 y2–( )β=

Γ8 Γ3( ); 3
2
---– i

2
-------– 2z2 x–

2
y2–( )α ,=















PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
(19)

(20)

The summations in formulas (11), (14), and (17) are
carried out over all indicated representations of the
operator H0. The phase factors of the spin–orbit har-
monics in Eqs. (12), (13), (15), (16), and (18)–(20) are
chosen such that the coefficients  in Eqs. (11),
(14), and (17) are real.

The general character of mixing described by
Eqs. (11), (14), and (17) indicates that charge carriers
in the III–V semiconductors are in relatively compli-
cated states which cannot be described by Kane’s
model. For example, the admixture of the Γ5 to Γ1 state
in the Γ6 conduction band means that the electron can-
not be generally described by a wave function of the s
type; therefore, it possesses not only a spin but also,
because of the Γ5 admixture, a nonzero orbital angular
momentum per unit cell, which can basically influence
the polarization properties of the electron. This fact was
not noted earlier.

3. SELECTION RULES

In this section, we present selection rules for the
operator kp, where k is the quasi-momentum and p is
the generalized momentum operator:

(21)

The matrix elements are calculated between all wave
functions at the Γ point. The selection rules are formu-
lated in terms of Clebsch–Gordan coefficients and
reduced matrix elements. The reduced matrix elements
are expressed through the mixing coefficients of the

Γ8 Γ4( );
3
2
--- x iy+( )–

α
2

-------=

Γ8 Γ4( );
1
2
--- 1

3
------- x iy+( )–

β
2

------- 2zα+=

Γ8 Γ4( );–
1
2
--- 1

3
------- x iy–( ) α

2
------- 2zβ+=

Γ8 Γ4( ); 3
2
---– x iy–( ) β

2
-------,=















Γ8 Γ5( );
3
2
--- 1

3
------- e1 ie2–( ) α

2
------- 2e3β+=

Γ8 Γ5( );
1
2
--- e1 ie2–( ) β

2
-------–=

Γ8 Γ5( );–
1
2
--- e1 ie2+( ) α

2
-------=

Γ8 Γ5( ); 3
2
---–

1

3
------- e1 ie2+( )–

β
2

------- 2e3α+ .=














CΓnΓα

p p µ s ∇ V×( ), µ+
"

4mc2
------------.= =
01
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wave functions. This approach seems to be the most
convenient for use in practice.1 

Calculations carried out with the help of the wave
functions (11) and (17) give the following selection
rules for the Γ6  Γ8 transitions:

(22)

(23)

In formula (22), kα (α = 1, 0, –1) are cyclic components

of the vector k [16] and  are the Clebsch–Gor-
dan coefficients.

The selection rules for the Γ6  Γ7 transitions fol-
low from relations (11) and (14):

(24)

(25)

1 The formal selection rules formulated in a number of mono-
graphs (see, for example, [14, 15]) do not allow one to trace the
relation of the matrix elements to the character of the spin–orbit
mixing.

Γ6; M kp Γ8; M '〈 〉 kM ' M– C
1M ' M

1
2
---M–

3
2
---M '

A
Γ6Γ8,=

M
1
2
---, M '± 3

2
---± 1

2
---,±,= =

A
Γ6Γ8 CΓ6Γ1

CΓ8Γ4
i s px x〈 〉– µ s ∂V

∂x
------- x–

Γ1Γ4

∑=

+ 3 CΓ6Γ5
CΓ8Γ3

i e1 px x2 y2– µ e1
∂V
∂x
------- x2 y2––

Γ3Γ5

∑

+
1

3
------- CΓ6Γ5

CΓ8Γ4
i e3 py x〈 〉 3µ e3

∂V
∂x
------- x+

Γ5Γ4

∑

+ CΓ6Γ5
CΓ8Γ5'

i– e3 py e1'〈 〉 µ e3
∂V
∂y
------- e1'+ .

Γ5Γ5'

∑

C j1m1 j2m2

JM

Γ6; M kp Γ7; M '〈 〉 kM ' M– C
1M ' M

1
2
---M–

1
2
---M '

B
Γ6Γ7,=

M
1
2
---, M '± 1

2
---,±= =

B
Γ6Γ7 CΓ6Γ1

CΓ7Γ4
i s px x〈 〉 2µ s ∂V

∂x
------- x+–

Γ1Γ4

∑=

+ CΓ6Γ5
CΓ7Γ2

i e1 px s1〈 〉 2µ e1
∂V
∂x
------- s1+

Γ5Γ2

∑

+ CΓ6Γ5
CΓ7Γ4

2

3
-------i e3 py x〈 〉– .

Γ5Γ4

∑

PH
The selection rules for the Γ7  Γ8 transitions are for-
mulated with the help of relations (14) and (17):

(26)

(27)

Each of the selection rules in Eqs. (22), (24), and (26)
is characterized by one parameter, namely, by the
reduced matrix element. This follows from the formu-
las for multiplication of the representations [5]:

(28)

The reduced matrix elements (23), (25), and (27) are
real, because the mixing coefficients  are real.
The derivation of the selection rules in Eqs. (22), (24),
and (26) is given in the Appendix.

The Γ8  Γ8' transitions, in contrast to the transi-
tions considered above, are characterized by two
parameters. This follows from the relation

(29)

Using wave functions (17), one can derive the follow-
ing selection rules for the Γ8  Γ8' transitions:

(30)

Here, Is is a Hermitian 4 × 4 matrix and IA is an anti-
Hermitian 4 × 4 matrix. These matrices can be
expressed in terms of the matrices Jx, Jy, and Jz of the
angular momentum J = 3/2 as

(31)

Γ7; M1 kp Γ8; M2〈 〉 10
3
------k+1C3

2
---M221

1
2
---M1

–=

+ 5
3
---k0 C3

2
---M22 2–

1
2
---M1

C3
2
---M222

1
2
---M1

–
 
 
 

 + 10
3
------k 1– C3

2
---M22 1–

1
2
---M1

C
Γ7Γ8,

M1
1
2
---, M2± 3

2
--- 1

2
---,±,±= =

C
Γ7Γ8 CΓ7Γ2

CΓ8Γ5
–i s1 px e1〈 〉 µ s1

∂V
∂x
------- e1–

Γ2Γ5

∑=

+ CΓ7Γ4
CΓ8Γ3

i x px x2 y2–〈 〉 µ x ∂V
∂x
------- x2 y2––

Γ4Γ3

∑

+ CΓ7Γ4
CΓ8Γ4'

i x py z '〈 〉 µ x ∂V
∂y
------- z '–

Γ4Γ4'

∑

+ CΓ7Γ4
CΓ8Γ5

i

3
------- x py e3〈 〉 3µ x ∂V

∂y
------- e3– .

Γ4Γ5

∑

Γ6 Γ4× Γ8 Γ7, Γ7 Γ4×+ Γ6 Γ8.+= =

CΓnΓα

Γ8 Γ4× 2Γ8= Γ6 Γ7.+ +

Γ8; M kp Γ8; M '〈 〉

=  
1
3
---$s

Γ8Γ8' Is( )MM '
1
3
---$A

Γ8Γ8' IA( )MM ' .+

Is kx Jx Jy
2, Jz

2–{ }=

+ ky Jy Jz
2, Jx

2–{ } kz Jz Jx
2, Jy

2–{ } ,+
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(32)

where

(33)

The symbol {…} in formulas (31) and (32) denotes the
anticommutator, {A, B} = AB + BA.

The reduced matrix elements  and  in
Eq. (30) are written as

(34)

IA i kx Jy Jz,{ } ky Jz Jx,{ } kz Jx Jy,{ }+ +( ),=

Jx

0
3

2
------- 0 0

3
2

------- 0 1 0

0 1 0
3

2
-------

0 0
3

2
------- 0 

 
 
 
 
 
 
 
 
 
 
 
 

,=

Jy

0 i
3

2
-------– 0 0

i
3

2
------- 0 i– 0

0 i 0 i
3

2
-------–

0 0 i
3

2
------- 0 

 
 
 
 
 
 
 
 
 
 
 
 

,=

Jz

3
2
--- 0 0 0

0
1
2
--- 0 0

0 0 1
2
---– 0

0 0 0
3
2
---

 
 
 
 
 
 
 
 
 
 
 
 

.=

$s
Γ8Γ8' $A

Γ8Γ8'

$s
Γ8Γ8' CΓ8Γ3

CΓ8'Γ4
CΓ8'Γ3

CΓ8Γ4
+( )

Γ3Γ4

∑–=

× i x2 y2– px x〈 〉 µ x2 y2– ∂V
∂x
------- x+

– CΓ8Γ4
CΓ8'Γ4'

CΓ8'Γ4
CΓ8Γ4'

+( )µ x ∂V
∂y
------- z '

Γ4Γ4'

∑

+ CΓ8Γ5
CΓ8'Γ5'

CΓ8'Γ5
CΓ8Γ5'

+( )µ e3
∂V
∂y
------- e1'

Γ5Γ5'

∑
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(35)

The real quantities  and  are symmetric
and antisymmetric, respectively, with respect to the
permutation of symbols Γ8 and Γ8':

(36)

From relations (36), it follows that the intraband transi-

tions are characterized by one parameter, ,

because  = 0.

With reference to the conduction band Γ6 and the
valence bands Γ8 and Γ7, the following reduced matrix

elements connecting these bands are of interest: ,

, , and . From formulas (23), (25),
(27), and (34), it follows that if we suppose the wave
functions in the band Γ6 to be s-type functions and
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those in the bands Γ8 and Γ7 to be p-type functions, then
in the absence of mixing, we have

(37)

i.e., the situation postulated in Kane’s model takes
place [5]. The spin–orbit mixing results in the inequal-

ity of quantities  and  and in nonzero matrix

elements  and .
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APPENDIX

Let us derive expressions (22), (24), and (26). Since
the dependence of matrix elements upon the projec-
tions M and M ' of the angular momentum is invariant
with respect to the specific form of the reduced matrix
elements, it is convenient to use wave functions in the
simplest form when deriving the selection rules. We
assume that the wave functions in bands Γ6, Γ7, and Γ8
have a concrete space symmetry and are given by Eqs.
(12), (16), and (18).

We introduce the notation for the spin functions

(A1)

and for the functions of the Γ4 representation

(A2)

Then, wave functions (16) and (18) in bands Γ7 and Γ8
can be written as

(A3)

(A4)

Here, the quantities  are the Clebsch–Gordan
coefficients.

By expressing the operator kp in terms of the cova-
riant and contravariant components of vectors in the

A
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C
Γ7Γ8 0, $s

Γ8Γ8 0;= =
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1
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3
2
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2
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.
M1M2
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C j1M1 j2M2
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PH
cyclic basis [16], we obtain

(A5)

(A6)

and, similarly,

(A7)

(A8)

When deriving expressions (A5) and (A7), the follow-
ing relations were used [16]:

Here, δαβ is the Kronecker delta and  is a 6j

symbol. The reduced matrix elements  in Eq. (A6)

and  in Eq. (A8) correspond to a concrete space
symmetry of wave functions (12), (16), and (18). Gen-
erally, when the functions |Γ6; M〉 , |Γ7; M〉 , and |Γ8; M〉
have the form of Eqs. (11), (14), and (17), the quantities

 and  should be replaced by expressions (23)
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and (25). This can be verified directly by calculating
any one matrix element in Eqs. (22) and (24).

Let us now verify formulas (26). For this pur-
pose, we first calculate the matrix elements
〈Γ 7(Γ4);M|kp|Γ8(Γ4');M '〉 ≡ (kp)MM'. The result is

(A9)

(A10)

In order to write relations (A9) in terms of Clebsch–
Gordan coefficients, it is sufficient to express the matrix
elements 〈Γ 7(Γ4);M|kp|Γ8(Γ4');M'〉 ≡ (kp)MM' through
these coefficients, because the quantities (kp)MM' and
(kp)MM' differ only in their reduced matrix elements.
From Eqs. (A3) and (A4), it follows that

(A11)

The matrix elements in Eq. (A11) can be related to the
3 × 3 matrix I:

(A12)

where

(A13)

The matrix I in Eq. (A13) can be expressed through the
polarization operators T2s (s = 0, 1, 2) [16]:

(A14)

Taking into account that, in the cyclic basis, the matrix
elements of the operators T2s are given by the formulas
[16]

(A15)

and using the relation [16]
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one can obtain an expression for the matrix element
(kp)MM' from Eqs. (A14), (A12), and (A11). If we
replace the matrix element i〈x |py|z'〉  in that expression

by  given by Eq. (A10), then, in accordance with
Eq. (A9), we obtain

(A17)

In the general case of spin–orbit mixing, where the
wave functions have the form of Eqs. (14) and (17),
expression (A17) is transformed into Eq. (26) with the
reduced matrix element given by Eq. (27). This can be
verified by calculating any one matrix element in the
left-hand side of Eq. (26).

REFERENCES
1. M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev.

B 38 (3), 1806 (1988).
2. C. Pryor, Phys. Rev. B 57 (11), 7190 (1998).
3. O. Stier, M. Grundman, and D. Bimberg, Phys. Rev. B 59

(8), 5688 (1999).
4. E. O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
5. G. Dresselhaus, Phys. Rev. 100 (2), 580 (1955).
6. Semiconductors and Semimetals, Vol. 3: Optical Proper-

ties of III–V Compounds, Ed. by R. K. Willardson and
A. C. Beer (Academic, New York, 1967; Mir, Moscow,
1970).

7. G. N. Iluridze, A. N. Titkov, and E. M. Chaœkina, Fiz.
Tekh. Poluprovodn. (Leningrad) 21 (1), 80 (1987) [Sov.
Phys. Semicond. 21, 48 (1987)].

8. V. D. Dymnikov, in Proceedings of the III All-Russia
Conference on Physics of Semiconductors, Moscow,
1997, p. 211.

9. X. Marie, T. Amand, P. Le Jeune, et al., Phys. Rev. B 60
(8), 5811 (1999).

10. J. M. Luttinger, Phys. Rev. 102 (4), 1030 (1956).
11. J. C. Hensel and K. Suzuki, Phys. Rev. Lett. 22, 838

(1969).
12. A. V. Subashiev, Yu. A. Mamaev, Yu. P. Yashin, and

J. E. Clendenin, Phys. Low-Dimens. Struct., No. 1/2, 1
(1999).

13. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, in
Course of Theoretical Physics, Vol. 4: Quantum Electro-
dynamics (Nauka, Moscow, 1989; Pergamon, New York,
1982).

14. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced
Effects in Semiconductors (Nauka, Moscow, 1972;
Wiley, New York, 1975).

15. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and
H. Statz, Properties of the Thirty-Two Point Groups
(MII Press, Cambridge, 1963).

16. D. A. Varshalovich, A. N. Moskalev, and V. K. Kherson-
skii, Quantum Theory of Angular Momentum (Nauka,
Leningrad, 1975; World Scientific, Singapore, 1988). 

Translated by O. Ivanov

C
Γ7Γ8

Γ7 Γ4( ); M k p⋅ Γ8 Γ4'( ); M '〈 〉 10
3
------k+1C3

2
---M221

1
2
---M1

–=

+ 5
3
---k0 C3

2
---M22 2–

1
2
---M1

C3
2
---M222

1
2
---M1

–
 
 
  10

3
------k 1– C3

2
---M22 1–

1
2
---M1

C
Γ7Γ8.+
1



  

Physics of the Solid State, Vol. 43, No. 11, 2001, pp. 2044–2047. Translated from Fizika Tverdogo Tela, Vol. 43, No. 11, 2001, pp. 1963–1965.
Original Russian Text Copyright © 2001 by Gorban’, Okhrimenko.

                                                                                               

SEMICONDUCTORS 
AND DIELECTRICS
Exciton Absorption Parameters in TlGaS2 Crystals
I. S. Gorban’†* and O. B. Okhrimenko**

*Shevchenko National University, Vladimirskaya ul. 64, Kiev, 03127 Ukraine
**Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kiev, 03028 Ukraine

Received October 17, 2000; in final form, April 2, 2001

Abstract—It is shown that, because the shape of the exciton absorption curve in crystalline TlGaS2 is described
by the Fano antiresonance profile, the experimentally observed exciton peak corresponds to a modified state
which is the result of the configuration interaction of a discrete state (exciton) with the quasi-continuum of con-
duction-band states. The oscillator strength for the transition to the discrete (“pure”) exciton state is calculated
as F0 = 1.22 × 10–2. The exciton transition selection rules are calculated for two assumed symmetry groups, D2h
and D4h. An analysis of the selection rules for the dipole-allowed exciton transition permits one to conclude that
the symmetry group for the TlGaS2 crystal is D2h. © 2001 MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION

The TlGaS2 crystal is classified with the ternary lay-
ered semiconductors. Literature data suggest that the
narrow peak observed at the fundamental absorption
edge is due to direct-exciton formation at the Brillouin
zone center [1].

The symmetry group of the TlGaS2 crystal remains
to be completely ascertained. The symmetry factor
group which is most frequently used for describing the
properties of this crystal is C2h; however, the number of
Raman- and IR-active modes calculated using this
group of symmetry far exceeds that of Raman scatter-
ing (RS) and IR lines observed in experimental spectra
[2, 3].

In [2], the structure of the TlGaS2 layer is symme-
trized by slightly displacing the intralayer atoms until

they form a tetragonal structure with space group .
By introducing an interlayer inversion operation and
retaining the layer symmetry elements, the authors of
[2] obtained a hypothetical structure with space group

 and a double-layer unit cell. With this approxima-
tion, the mode number allowed by the theory agrees
better with the one obtained experimentally [2]. In this
case, one can assume D2d, D2h, and D4h as possible layer
symmetry groups. Analysis of the polarization depen-
dences and study of the structure of the RS and IR spec-
tra suggested two possible symmetry groups for the
TlGaS2 crystal, namely, D2h [2] and D4h [3].

Comparison of the selection rules for exciton transi-
tions with experimental data may permit one to pin-
point the preferable group from the above two. To do
this, one has to establish whether the observed excitons
are allowed in the dipole approximation. This question

† Deceased.

D2d
5

D4h
15
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can be answered by calculating the oscillator strength
for the transition to the exciton state.

The present communication reports on the determi-
nation of the exciton-band symmetry and on a calcula-
tion of the oscillator strength for the exciton transition
from optical absorption spectra obtained at 1.8 K. At
this temperature, the exciton–phonon coupling is
weaker than the exciton–photon coupling and, there-
fore, the exciton absorption line profile is only weakly
distorted.

2. EXPERIMENT

The samples for the measurements were prepared by
cleaving. The samples used in the measurements were
thin platelets with a thickness d = 0.0020–0.0070 cm.
The crystal purity was verified according to the absence
of impurity- or defect-induced luminescence; the sur-
face parallelism, according to the perfection of the
interference pattern in the transmission region. We
studied absorption spectra in both the E || z and E ⊥  z
polarizations (z is the optical crystal axis perpendicular
to the layer plane).

The figure presents an absorption spectrum of the
TlGaS2 crystal (d = 21 µm) obtained at 1.8 K.

3. CALCULATION OF THE OSCILLATOR 
STRENGTH

In calculating the oscillator strength, one usually
makes use of the integrated absorption coefficient
derived from the area bounded by the transmission
curve. However, at low temperatures (about 1.8 K), this
calculation yields incorrect values [4]. Therefore, cal-
culation of the oscillator strength for transitions to the
exciton state at low temperatures must take polariton
effects into account. We calculated [5] the oscillator
strength for the transition to the exciton state in TlGaS2
2001 MAIK “Nauka/Interperiodica”
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with due account of the polariton effects, F = 1.33 × 10–2;
this corresponds to a dipole-allowed transition.

4. EXCITON ABSORPTION LINE SHAPE

A line shape analysis for exciton absorption in
TlGaS2 [6] showed the exciton absorption peak in crys-
talline TlGaS2 to be best fitted by the Fano antireso-
nance profile [7]:

(1)

where

(2)

Eex is the energy corresponding to the discrete state
(exciton), E '' is the correction to the discrete state
energy due to the configuration interaction, Eex + E''
determines the experimentally measured position of the
resonance line, and Γa is the half-width of the antireso-
nance profile.

The best fit parameters were found to be Eex =
2.605 eV, Γa = 0.011 eV, and the Fano antiresonance
parameter q = 3.5. In accordance with [7], the quantity
q2 is determined by the intensity ratio (i.e., in effect, the
ratio of the corresponding oscillator strengths) for the
optical transition to the modified discrete state Φ and to
an unperturbed continuum state ψE:

(3)

where p is the dipole moment operator and Γa is the
half-width of the antiresonance profile. Because the
experimentally measured absorption line position cor-
responds to a modified state arising as a result of con-
figuration interaction between a discrete state (in our
case, of the exciton) and the continuum (electronic
states in the conduction band), the oscillator strength of
the transition to the exciton state in TlGaS2 determined
in [5] actually corresponds to a transition to the modi-
fied state. The oscillator strength for a transition to the
pure exciton state can be determined from the expres-
sion [7]

(4)

where ϕ is the discrete-state wave function.
Because the oscillator strength for the modified state

calculated earlier is F = 1.33 × 10–2, that for the transi-
tion to the pure exciton state, according to Eq. (4), is

f ε q,( ) q ε+( )2

1 ε2+
------------------,=

ε
E Eex E '––

1
2
---Γa

----------------------------,=

1
2
---πq2 Φ p i( ) 2

ψE p i( ) 2Γa

-------------------------------,=

ϕ p i( ) 2 1
2
---π q2 1–( )Γa ψE p i( ) 2=
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F0 = 1.22 × 10–2. Thus, the transition to a pure exciton
state is dipole-allowed.

5. EXCITON BAND SYMMETRY

Analysis of the selection rules for an exciton transi-
tion using group theory should also yield a dipole-
allowed transition.

The valence band in TlGaS2 is believed to be derived
from single-electron states of the sulfur ions; the con-
duction band, from those of the gallium ions [8].

According to the LCAO method, the electron wave
functions in the valence band are represented as a linear
combination of wave functions of the outer filled elec-
tronic shells of the ions that make up the crystal.
Because only the highest valence-band and the lowest
conduction-band levels are considered, the bands
should be derived only from those shells which are the
first to undergo changes in the cases where an ion loses
or acquires an electron.

According to [9, 10], the formula of the TlGaS2

compound can be presented as Tl+(Ga3+ )
1–

. Taking
into account the configurational changes that the S2–

and Ga3+ ions undergo in losing or acquiring an elec-
tron, we come to the conclusion that the valence-band
top is derived from the p states of the 3p5 sulfur ion (the
2P1/2 term) and that the conduction band originates from
the s states of the 3d104s gallium ion (the 2S1/2 term).

Consider the classification of the valence- and con-
duction-band levels according to the irreducible repre-
sentations of the two possible symmetry groups, D2h [2]
and D4h [3].

According to [11], the site symmetry of the S and
Ga atoms in a layer with symmetry D4h is described by
the following groups: C2v for S and D2d for Ga. To find
the symmetry of the valence and conduction bands, we
use the correlation diagram method. According to this
method, the states of these bands should be induced by
irreducible representations of the corresponding site-
symmetry groups.
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Absorption spectrum of TlGaS2 obtained at 1.8 K.
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Because the valence band of TlGaS2 is derived from
the p states of sulfur (2P1/2 term), the states of the
valence band are induced by local functions, whose
symmetry is described by the E' representation of the
double group , and the states of the conduction
band, which are derived from the Ga s states, are
induced by local functions, with their symmetry being
described by irreducible representations  of the dou-

ble group . We shall use the correlation diagrams
for the two possible factor groups of the crystal, D2h and
D4h, to analyze the selection rules for the excitonic tran-

sitions. This shall be done assuming  to be the layer
symmetry group in both cases, so that the site symme-
try of the gallium and sulfur atoms will be retained in
both cases.

(1) We assume D4h to be the factor group of the crys-
tal. According to the correlation diagram, the E' repre-
sentation of group  is formally compatible with

four representations of the  group, more specifi-

cally, , , , and . The representation cor-
responding to the 2p1/2 state should formally be a two-

fold representation of the  group. Because the elec-
tronic configuration under study contains 5 p electrons,
the 2P1/2 state has odd parity and the  and  rep-
resentations should be excluded from the consider-
ation. Of the two remaining representations,  and

, preference should be given to , because it can
be derived directly from the expressions used in deter-
mining the representation corresponding to the original
level 2P1/2 in symmetry group .

Consider, in the same manner, the 2S1/2 state for the
s electron bound to a Ga3+ ion. The electronic configu-
ration forming in this case corresponds to an even-par-
ity state; therefore, of the two representations of the

 group,  and , specified in the correlation

diagram, one should choose . We thus obtain

(5)

For the S state of the exciton, we come to

(6)

and for the exciton P state,

(7)

(8)

Because the ground state of the crystal is totally
symmetric, the dipole-allowed components of the S

C2v'

E2'

D2d'

D4h

C2v'

D4h'

E1g' E1u' E2g' E2u'

D4h'

E1g' E2g'

E1u'

E2u' E1u'

D4h'

D2h' E2g' E2u'

E2g'

Γv E1u' , Γ c E2g' .= =

Γ ex B1u B2u Eu,+ +=

Γ ex px y,( ) A1g A2g B1g B2g 2Eg,+ + + +=

Γ ex pz( ) B1g B2g Eg.+ +=
PH
exciton are Eu in the E || y and E || x polarizations, while
for the P exciton, all components are dipole-forbidden.

(2) We assume D2h to be the factor group of the crys-
tal. In this case, the correlation diagram is constructed
following the scenario typical of layered crystals.
Namely, one considers, sequentially, the change in the
local state symmetry in the transition from the atom site
symmetry group in a layer (C2v for sulfur and D2d for
gallium) through the layer symmetry group (D4h) to the
crystal symmetry group (D2h). On making assumptions
similar to those introduced when considering the D4h

symmetry group, we obtain

(9)

For the exciton states, this yields

(10)

In this case, the selection rules yield the following
dipole-allowed transitions for the S-exciton compo-
nents: B1u in the E || z polarization, B2u for E || y, and B3u

for the E || x polarization. The P exciton is forbidden by
the selection rules in the dipole approximation.

The above selection rules for the exciton transitions
permit determination of the crystal symmetry group.
Because the experiment shows the exciton transition to
be allowed in the dipole approximation and the absorp-
tion peak is seen in both the E || z and E ⊥  z polariza-
tions, one should consider D2h to be the crystal symme-
try group.

6. CONCLUSION

Thus, the results obtained in this work permit one to
conclude that the symmetry of the valence and conduc-
tion bands is described by the E– and E+ irreducible
representations of the  group, respectively; the S-
exciton symmetry, by the B1u + B2u + B3u representa-
tions of the D2h group. The oscillator strength of the
pure exciton state calculated under the assumption that
the exciton absorption curve is best fitted by the Fano
antiresonance profile is F0 = 1.22 × 10–2.
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Abstract—The dynamic conduction of bismuth-containing oxide layered ceramics of the composition
Sr2Bi2TiNb2O12 is investigated in a weak alternating field at frequencies of 0.5–500 kHz in the temperature
range 300–700 K. It is demonstrated that the high-temperature conduction can be adequately described in terms
of theoretical concepts using the effective medium method and corresponds to two-dimensional hopping trans-
fer. The concentration of nodes in the system through which charge-carrier hopping occurs is estimated. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although ceramic materials are widely used in var-
ious electrical devices owing to their unique properties,
the exact mechanisms of their conduction are not yet
completely understood. This is explained by the fact
that ceramics are a rather complex object of investiga-
tion primarily due to their inhomogeneous polycrystal-
line structure, which possesses a high concentration of
pores. In this structure, charge transfer can occur
through several different mechanisms simultaneously,
so that the overall picture of electrical conduction is
rather intricate. In this case, it is important to answer
the question as to whether the charge transport due to
carrier transitions through potential barriers at grain
boundaries prevails or if the conduction along the inter-
crystallite boundaries plays a dominant role and the
properties of the crystallites by themselves are of no
significance.

The purpose of this work was to investigate ac the
conduction in Sr2Bi2TiNb2O12 ceramics. This com-
pound belongs to the family of layered bismuth-con-
taining perovskite-like oxides with the general formula
Am − 1Bi2BmO3m + 3 [1]. In our case, m = 3, A = Sr, and the
element B3 is replaced by the isovalent combination
B2B' where B2 = Ti2 and B' = Nb.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The samples were prepared in the form of pellets
approximately 2 mm thick according to the standard
ceramic technology. The sample density was 6.9 g/cm3.
The electrodes were fabricated by firing in a silver
paste. Measurements were performed on a BM-507
impedometer in the temperature range 300–700 K at
frequencies of 0.5–500 kHz according to the procedure
described in [2]. The maximum error in determining the
1063-7834/01/4311- $21.00 © 22048
impedance modulus and the phase shift did not exceed
±6%. The measuring field strength was less than
10 V/cm. The experimental data were processed on a
computer using a smoothing procedure.

3. RESULTS AND DISCUSSION

3.1. The temperature dependences of the conduction
G for the sample at different frequencies of the measur-
ing field are depicted in Fig. 1a. It is seen that the G
conduction decreases only slightly with an increase in
the temperature, which is especially pronounced at low
frequencies. At T > 450 K, the temperature dependence
of G has a shape characteristic of semiconductor mate-
rials. For this reason, we focused our attention on the
temperature range above 450 K. It was found that the
electrical conductivity at these temperatures is gov-
erned by a relationship typical of hopping charge trans-
fer: Reσ(ω) ~ ωs, where σ is the effective conductivity,
ω is the cyclic frequency of an alternating electric field
(ω = 2πf, where f  is the frequency expressed in Hz), and
s is a parameter (s = 0.65 at 700 K). However, judging
only from this dependence, it is impossible to deter-
mine the particular mechanism of electrical conduc-
tion. Moreover, in the case of systems such as the
ceramics under investigation, the dispersion can be
associated with mobile carriers and dipoles. As is seen
from Figs. 1b and 1c, the conduction dispersion is sub-
stantially more pronounced compared to the capaci-
tance dispersion. Therefore, it would be more correct to
represent the results in terms of the complex impedance
Z* and the complex dielectric modulus M*, as was
done by Macdonald [3]. In order to analyze the mecha-
nisms of hopping conduction, we used the theoretical
approach developed in the framework of the effective
medium method, which was described by Bryksin et al.
[4, 5]. Within this approach, the theoretical treatment is
001 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Dependences of the electrical conduction of the sample on the reciprocal of temperature at frequencies of (1) 1, (2) 10,
and (3) 100 kHz. Dependences of (b) the electrical conduction and (c) the capacitance on the frequency of the measuring field at
temperatures of (1) 500 and (2) 700 K.
carried out in terms of the dimensionless function,
which is the reciprocal of the dielectric loss tangent:

(1)

(2)

Here, ε' and ε'' are the real and imaginary parts of the
complex permittivity, respectively; G(ω) and G(0) are
the real parts of the ac and dc admittances, respectively;
C0 is the capacitance of the measuring cell; and ε∞ is the
real part of the permittivity at ω  ∞.

δcot ε' ε∞–( )/ε'',=

ε'' G ω( ) G 0( )–[ ] /ωC0.=
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
In order to analyze the experimental results in accor-
dance with expressions (1) and (2), it is necessary to
determine the dc resistance R0 = 1/G(0) and ε∞. The lat-
ter quantity can be determined from the formula C∞ =
ε∞C0, where C∞ is the electrical capacitance of the sam-
ple at ω  ∞.

For the samples under investigation, the shape of the
hodograph curves for Z* and M* permitted us to per-
form extrapolation only at temperatures of approxi-
mately 700 K for ω  0 and ω  ∞ and to deter-
mine the values of R0 = 106 Ω and ε∞ = 235 (Fig. 2). The
01
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dielectric loss cotangent as a function of the logarithm
of the measuring field frequency at 700 K is shown in
Fig. 3. It can be seen from Fig. 3 that the experimental
curve has a linear portion in the low-frequency range.
Brykcin and Kleinert [5] proved that this behavior is a
characteristic feature of hopping transfer in two-dimen-
sional systems. Therefore, according to the data
obtained in [5], we can write the following relation-
ships:

(3)δcot 2/π( ) 32Wc/ω( ),ln=
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Fig. 2. Hodographs of (a) the impedance and (b) the dielec-
tric modulus at 700 K.
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Fig. 3. (1) Dependence of the dielectric loss cotangent on
the measuring field frequency at a temperature of 700 K and
(2) a straight line with slope 2/π .elog
PH
(4)

where Wc is the critical hopping probability, which cor-
responds to the probability of forming an infinite clus-
ter in the percolation theory; α is the reciprocal of the
localization length; N is the node concentration in the
system; and νph is the phonon frequency.

It is also seen from Fig. 3 that the slope of the low-
frequency portion is equal to 2/π (or 2/π when
changing over to the decimal logarithm); i.e., this value
is in agreement with the coefficient theoretically pre-
dicted in [5]. It was demonstrated [5] that this coeffi-
cient is independent of the disorder parameter αN–1/2

and is characteristic of the frequency dependence of the
conduction in two-dimensional systems for the hopping
mechanism of charge transfer. From the aforesaid it fol-
lows that, in our case, this mechanism corresponds to
charge transfer over the intercrystallite boundaries and
pore surfaces in the studied samples.

3.2. Using expressions (3) and (4), we can estimate
the node concentration N. To accomplish this, we
extrapolate the low-frequency portion of the frequency
dependence of  (see Fig. 3) until it intersects the
vertical axis at the point corresponding to  = 0. As
a result, we obtain  = 6.6. Setting νph = 1012 Hz and
α = 0.8 nm, as was done in [6], we determine the value
of N ≈ 1017 m–2, which falls within the permissible lim-
its.

It is of interest to evaluate one more parameter of the
theory, namely, the ratio of the mean distance between

the nodes to the localization length: κ = 4αN–1/2/ . In
our case, this quantity is equal to 9 and falls in the range
of possible values considered in [5].
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Abstract—Nonlinear propagation of longitudinal–transverse acoustic pulses down to a length of one cycle
(video pulses) in a low-temperature paramagnetic crystal in the direction parallel to an external magnetic field
is investigated theoretically. The case of a crystal with paramagnetic impurity ions with effective S = 1/2 spin
is considered. It is shown that, due to spin–phonon interaction, two-component acoustic pulses can propagate
in the form of high-power quasi-solitons. Conditions are determined for the formation of exponentially local-
ized subsonic rational solitons which propagate with a velocity higher than the velocity of transverse sound
and which have a transverse component with a rotating plane of polarization. © 2001 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Over the last decade and a half, several reports on
the generation of laser pulses roughly one cycle long
(electromagnetic video pulses) have been published [1–
3]; this initiated theoretical studies into the interaction
of such pulses and matter (see, e.g., review [4]). Non-
stationary coherent effects (such as photon echo and
self-induced transparency) produced by video pulses
have specific features [5, 6] in comparison with the cor-
responding effects caused by resonant quasi-mono-
chromatic pulses with a well-defined carrier frequency.
Since such a frequency is absent in electromagnetic
video pulses, one cannot use the slowly varying ampli-
tude (and phase) approximation in studying the interac-
tion of these pulses and matter.

Acoustic picosecond video pulses have also been
generated in many laboratories [7–9], and their propa-
gation in various media has been studied theoretically.
Different solitonic modes were considered [10–13]
separately for longitudinal and transverse acoustic
pulses. It was shown in [14] that when paramagnetic
impurity ions in a crystal are excited by a series of
transverse acoustic video pulses, acoustic echoes with
both transverse and longitudinal structure can arise. In
a solid, an acoustic pulse can have two components,
longitudinal and transverse, which may lead to specific
features unique to two-component acoustic solitons.

In this paper, we investigate quasi-solitonic propa-
gation modes of longitudinal–transverse (two-compo-
nent) acoustic video pulses in crystals with paramag-
netic impurities. Solitons in the form of localized trav-
eling video pulses will be referred to upon occasion as
solitons, but they will not be assumed to have to interact
elastically with one another.
1063-7834/01/4311- $21.00 © 22051
Paramagnetic impurity ions are assumed to have an
effective spin S = 1/2 (Kramers doublets) and to be
placed in an external magnetic field B. As an example,
we refer to paramagnetic Co2+ ions being in a cubic
MgO crystal [15].

Following [6, 14, 16], we assume that

(1)

where ω0 is the frequency characterizing the Kramers
doublet splitting and τp is the video-pulse duration.

We note that in [17] the interaction of paramagnetic
ions and nonresonant longitudinal–transverse soliton-
like acoustic pulses was considered under the assump-
tion that the pulse duration τp was such that ω0τp @ 1,
which is opposite to inequality (1).

Inequality (1) can be called the condition for spec-
tral overlap, because, according to Eq. (1), the band-

width of a video pulse is δω ~  @ ω0. Therefore, the
spectrum of a pulse contains Fourier components that
can induce resonant quantum transitions between the
Zeeman sublevels of paramagnetic ions; these transi-
tions can be fairly strong if condition (1) is fulfilled.

2. SELF-CONSISTENT SET OF CONSTITUTIVE 
AND WAVE EQUATIONS

Condition (1) will be fulfilled if, for example, the
Zeeman splitting is ω0 ~ 1010 s–1 and the duration of an
acoustic video pulse is τp ~ 10–11 s. The characteristic
spatial length of such pulses is l . aτp , where a is the
sound velocity in a solid. For a ~ 5 × 105 cm/s [18], we
have l ~ 5 × 10–6 cm, which is two orders of magnitude
larger than the lattice parameter h ~ 5 × 10–8 cm. There-

ω0τ p ! 1,

τ p
1–
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fore, we can ignore acoustic spatial dispersion (which
is significant for shorter pulses [9, 10, 12, 13, 17]). For
the interaction between acoustic pulses and the spin
subsystem (Kramers doublets) to be significant, the ini-
tial difference in population of the levels must be
noticeable. This imposes a restriction on the tempera-
ture of the paramagnetic crystal [13] T < "ω0/kB, where
" is Planck’s constant and kB is the Boltzmann constant.
At ω0 ~ 1010 s–1, we have T < 0.1 K, which corresponds
to ultralow temperatures.

Let an acoustic pulse travel in a cubic crystal along
an external magnetic field B applied parallel to one of
the fourfold axes (z axis). The Hamiltonian of the spin
subsystem interacting with lattice deformations can be
written as [12, 18]

(2)

where

(3)

Here,  ≡ (rj) are spin operators of the jth paramag-
netic ion, which are proportional to the Pauli matrices

;  = /2 (α = x, y, z); rj is the position vector of
the jth paramagnetic ion; %ij = (∂Ui/∂xj + ∂Uj/∂xi)/2 are
the components of the strain tensor (in our case, %zz =
∂Uz/∂z, %xz = 0.5∂Ux /∂z, %yz = 0.5∂Uy/∂z); Ui (i = x, y, z)
are the components of the displacement vector U of lat-
tice sites; and F11 and F44 are the longitudinal and trans-
verse spin–phonon coupling coefficients, respectively
(in the Voigt notation [18]: xx  1, yy  2, zz  3,
yz  4, xz  5, xy  6). The Zeeman splitting
frequency ω0 is expressed through the Landé g factor,
the Bohr magneton µB, and the external magnetic field
as ω0 = gµBB/"; the summation in Eq. (3) is carried out
over all paramagnetic impurity ions in the crystal.

In the case of the spin S = 1/2 under study, spin–
phonon interaction is due to modulation of the Landé g
factors effected by the strain field of an acoustic pulse [10,

12, 18]. At t  –t, we have    (α = x, y, z)
and B  –B (ω0  –ω0); therefore, Hamiltonian (3)
is invariant under time reversal. In Eq. (3), this invari-
ance is due to the fact that the spin–phonon coupling
coefficients are multiplied by ~ω0.

In what follows, we employ a semiclassical
approach in which the dynamics of the spin subsystem
is described quantum-mechanically, while the strain is
considered to be a classical field. Therefore, in addition

Ĥ Ĥs= Ĥ+ int,

Ĥs "ω0Ŝz
j
,

j

∑=

Ĥ int
"ω0

g
--------- F11%zzŜz

j
F44 %xzŜx

j
%yzŜy

j
+( )+{ } .

j

∑=

Ŝα
j

Ŝα

σ̂α Ŝα
j σ̂α

Sα
j Sα

j–
PH
to Eqs. (2) and (3), we should write the classical Hamil-
tonian of the acoustic field:

(4)

where pj (j = x, y, z) are the components of the momen-
tum density of the lattice, ρ is the mean density of the
crystal, and λ11 and λ44 are the elastic moduli of the sec-
ond order; integration in Eq. (4) is performed over the
entire volume of the crystal.

In the semiclassical approach [12, 17], the dynamic
variables of the elastic field obey Hamilton’s equations,

(5)

where  = Ha +  and 〈…〉  denotes the quantum-
mechanical average.

It is convenient to represent  in Eq. (5) in the
form

(6)

Here, n = (r – rj) is the concentration of paramag-
netic impurity ions, δ(r – rj) is the Dirac δ function,

 = Tr , and  is the density operator of
the spin subsystem, which obeys the quantum Liouville
equation

(7)

Using Eqs. (2)–(7), we find

(8)

(9)

(10a)

(10b)

where Ω⊥  = (ω0F44/g)(%xz + i%yz); Ω|| = (ω0F11/g)%zz;

a⊥  =  and a|| =  are the velocities of
transverse and longitudinal sound, respectively; and the
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i"
∂ρ̂
∂t
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dynamic variables S⊥  and W are the transverse magnetic
moment and the negative of the longitudinal magnetic
moment (or the inverse population), respectively, which
are expressed in terms of the density matrix elements as
S⊥  = ρ12 and W = (ρ22 – ρ11)/2 (–1/2 ≤ W ≤ 1/2).

As is obvious from Eq. (10), in the case of an acous-
tic pulse traveling along the direction of the external
magnetic field, the transverse strain induces quantum
transitions between the Kramers doublet components,
while the longitudinal strain modulates the frequency
of these transitions.

In what follows, we analyze the self-consistent set
of wave and constitutive equations (7)–(10).

3. REDUCED WAVE EQUATIONS

It follows from Eq. (10a) that S⊥  ~ Ω⊥ τp. Therefore,
the ratio of the right-hand side of Eq. (8) to one of the
two terms on the left-hand side is ε ~

(n"ω0 /g2ρa2)(ω0τp). Putting n ~ 1019 cm–3, ω0 ~
1010 s–1, F44/g ~ 102 [18], ρ ~ 5 g/cm3, and a ~ 3 ×
105 cm/s, we obtain ε ~ 10–7ω0τp ! 1 [see also Eq. (1)].
A similar conclusion can also be arrived at for Eq. (9).
Therefore, one can employ the single-propagation-
direction approximation to Eqs. (8) and (9); that is, the
pulse shape can be assumed to vary slowly in the co-
moving frame of reference [19]. This will be taken into
account in what follows.

To solve Eqs. (10), we rewrite them in the matrix
form:

(11)

(12)

It follows from Eqs. (10)–(12) that the square of the
Bloch vector R2 = |S⊥ |2 + W2 is an integral of motion.

It can be seen from Eq. (10a) that, when Eq. (1) is
true, one of the two following inequalities or both of
them hold (since |S⊥ | and W are finite):

. (13)

(We will consider all possible cases in the next section.)
Therefore, one can solve Eqs. (10) using the method of
successive approximations, with ω0 being a small
parameter. Furthermore, it follows from Eqs. (12) and

F44
2

∂R
∂t
------- i ÂR,=

R

S⊥ / 2

S⊥*/ 2
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 
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 
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 
 
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(13) that Eq. (11) is a linear equation with large variable
coefficients; hence, it can be approximately solved
using the WKB method [20, 21]. In this paper, how-
ever, we will apply another method, which leads to the
same final results but is more efficient than the WKB
method [22].

It is easy to verify that the condition [23]

(14)

is not fulfilled and, therefore, a solution to Eq. (11) can-
not be represented in the form of a matrix exponential
acting on the initial vector R(t0) [23]. However, ine-
quality (1) allows one to consider the limiting case

t  t0. During the time ∆t = t – t0  0, the matrix 

is changed only slightly, (t) ≈ (t ') for (t0 ≤ t ' ≤ t).
Therefore, Eq. (14) is approximately valid and we can
write

(15)

where the evolution operator has the form [22]

(16)

with  being the norm of the matrix .

If the eigenvalues of the matrix  ≡  are

all different, the exponential in Eq. (16) can be calcu-
lated using the Sylvester identity [24]:

(17)

where  is the unit matrix and {λk} is the set of eigen-

values of the matrix , which are determined from the

equation det(  – λ ) = 0. In the limit as ∆t  0, we

have  =  ≈ ∆t, λ ≈ p∆t ≈ , and

det(  – λ ) = (∆t)3det(  – p ) = 0. Therefore, if {pj}

is the set of eigenvalues of the matrix , then in the

limit as ∆t  0 and   ∞, the set {λj} =

 forms the eigenvalue spectrum of the matrix

 = .

Â t( ) Â t '( ),[ ] t 'd

t0

t

∫ 0=

Â
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It follows from the above discussion that, using
Eq. (17), we can represent the evolution operator (16)
in the form

(18)

where summation is carried out over all eigenvalues of

the matrix .

In our case, the matrix  is Hermitian, because its

eigenvalues are real: p1 = 0 and p2 = –p3 = 
(we have neglected ω0 in the zeroth approximation).
Therefore, Eq. (18) takes the form

(19)

where

(20)

Here, we have formally put t0 = –∞, assuming that the
fundamental change in R (due to Ω⊥  and Ω||) occurs
during a short time ∆t ~ τp and, hence, Ω|| and Ω⊥  vanish
as t0  –∞.

Taking into account that, at t = –∞ (before the acous-
tical action), W = W∞ and S⊥  =  = 0 and using Eqs.
(15) and (19), we obtain

(21)

(22)

Putting Ω|| = 0 in Eqs. (21) and (22), we arrive at the
results obtained in [25] for the case of transverse elec-
tromagnetic pulses.

We represent Ω⊥  in the form

(23)

where F is the real amplitude and φ is the phase which
defines the rotation of polarization plane of the trans-
verse pulse component. Then, we substitute Eq. (21)
into Eq. (10a) and insert the result, as well as Eq. (22),
into the right-hand sides of Eqs. (8) and (9). Then,
inserting Eq. (23) and using the single-propagation-
direction approximation, we arrive at a set of reduced
equations for the dynamical parameters of the acoustic
pulse:

(24)
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Ω
---- θ,sin=
PH
(25)

(26)

where τ = t – z/a⊥ , µ⊥  = n" /(2g2ρ , µ|| =

n" /(2g2ρ a⊥ ), and α = (a⊥ /2)(1/  – 1/ ).
When deriving Eq. (23), it was taken into account that
ω0Ω||/Ω2 ! 1 because of Eq. (13). In the absence of the
longitudinal component (Ω|| = µ|| = 0), we have Ω = F =
∂θ/∂τ [see Eq. (20)]; substituting this into Eq. (24), we
obtain the sine–Gordon equation for the transverse
component of the pulse:

The corresponding solitons with a rotating polarization
plane were considered in [25, 26]. Here, we investigate
a more general set of equations, (23) and (24) [or
Eqs. (24)–(26)], which also take into account the
dynamics of the longitudinal component of the acoustic
video pulse.

4. TRANSVERSE–LONGITUDINAL SOLITONS

We seek solutions Ω|| and F in the form of stationary
traveling pulses Ω||(ξ) and F(ξ), where ξ = t – z/v  = τ –
(1/v  – 1/a⊥ )z and v  has the meaning of the velocity of
the pulse. Assuming that Ω||, F, and all their derivatives
vanish at ξ  ±∞, we obtain from Eqs. (24) and (26) 

(27a)

(27b)

where β⊥  = –µ⊥ W∞(1/v  – 1/a⊥ )–1, β|| = –2µ||W∞(1/v  –
1/a⊥  + α)–1, and the superscript dot on F indicates the
derivative with respect to ξ.

Let us first consider the case where only the first

condition in Eqs. (13) is met, i.e., ,  ! |Ω⊥ |2 = F2.
This is not to say that Ω|| can be neglected altogether,
because Ω|| and ω0 can be comparable in magnitude and
Ω|| can markedly affect the dynamics of propagation of
the acoustic video pulse [see Eqs. (24), (27a)]. In view
of the inequality |Ω⊥ | @ Ω||, the solitons considered in
this section can be called transverse–longitudinal video

pulses. Under the assumptions made, we have Ω =  ≈
F and Ω|| ≈ –β||sin2(θ/2) and Eq. (27a) takes the form

(28)

Here, σ = β⊥ (ω0 – β||/2) and ν = β⊥ β||/4.
We assume that the spin subsystem was at thermo-

dynamic equilibrium before the acoustical action; i.e.,

∂φ
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W∞ = – |W∞| = –0.5 . In this case,
Eq. (28) [see Eqs. (25), (27b)] has two possible solu-
tions in the form of solitary traveling pulses. We con-
sider these solutions separately.

(1) σ > 0 and β⊥  > 0. In this case,

(29a)

(29b)

(30)

Here, ξ = (t – z/v)τp, λ = Ω⊥ mτp/2 < 1 [see Eq. (29b)],
and κ = –µ⊥ W∞ = µ⊥ |W∞|; the velocity v  and the charac-
teristic amplitudes of the transverse (Ω⊥ m) and longitu-
dinal (Ω||m) components are expressed in terms of the
pulse duration τp as

(31)

(32)

It can be seen from Eqs. (23) and (30) that the
parameter κ characterizes the rotation angle (per unit
length) of the polarization plane of the transverse pulse
component. Under the condition defined by Eq. (1), this
parameter does not depend on the pulse length (as is the
case with an electromagnetic video pulse [22, 26]) but
it is sensitive to changes in the initial inverse population
|W∞| and in the external magnetic field (see expressions
for µ⊥  and W∞). If we look along the direction of prop-
agation of the video pulse (along B or the opposite
direction), the polarization plane of the transverse com-
ponent rotates counterclockwise because κ > 0 (Fig. 1).
This component has a double-humped profile with a
local minimum at the center, and it propagates in com-
bination with a negative longitudinal component whose
intensity has a minimum at the center. As can be seen
from Eq. (29a), the entire area of the video pulse is θ∞ ≡

 ≈  = 2π.

(2) σ < 0 and β⊥  > 0. Under these conditions, we
have

(33)
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(34)

where  = τp/2,  = Ω||m/(1 + ), and

(35)

while the dependence of the velocity of the pulse on its
length is given by Eq. (31).

The rotation angle (per unit length) of the polariza-
tion plane of the transverse component κ given by
Eq. (33) is similar to that for the soliton described by
Eq. (29a). They differ only in the shape of the profile of
the corresponding transverse components. In the case
of the soliton described by Eq. (29a), the transverse
component has a double-humped profile (as indicated
above), while in the case of Eq. (33), this component
has the shape of a bipolar pulse (Fig. 1b). In the latter
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case, the area of the transverse component is equal to
zero.

From Eqs. (32) and (35), it follows that there are
limitations on the length of the solitons described by
Eqs. (29) and (33), respectively:

(36)

where q = g2ρ /(2n|W∞|"ω0 ). It should be
remembered that the condition in Eq. (1) is also

assumed to be fulfilled. Putting g = 2, ρ = 2 g/cm3,  –

 ~ 1011 cm2/s2, n ~ 1019 cm–3, ω0 ~ 1010 s–1, F11 ~ 102,
and |W∞| = 1/2 (for kBT ! "ω0), we obtain q ~ 106.
Therefore, if the velocities of longitudinal and trans-
verse sound are different, only solitons described by
Eqs. (29) can arise in actual crystals. A MgO host crys-
tal with Co2+ impurity ions is an example of this. In the
case where the velocities of longitudinal and transverse
sound are exactly equal (a|| = a⊥ ), we have q = 0. At the
same time, typically, F11 > F44 [18, 27]; therefore, the
inequalities in Eqs. (1) and (36) can be simultaneously
true only for solitons described by Eq. (33). The condi-
tion a|| = a⊥  is more closely fulfilled in ionic crystals of
alkali halides with central interatomic forces [28]. For
example, solitons with a rotating polarization plane of
the transverse component described by Eq. (33) can be
observed in NaBr crystals with Co2+ impurity ions. As
seen from the estimates made above, the condition a|| =
a⊥  must be fulfilled with a relative accuracy of ~10–6,
which is a challenging task. If the difference between
the velocities a|| and a⊥  is larger, the formation of soli-
tons of the Eq. (33) type is open to question but solitons
described by Eqs. (29) can be observed.

For the material parameters indicated above, it fol-
lows from Eq. (32) that (Ω||m/Ω⊥ m)2 ! 1 if ω0τp ! q ~
106. This limitation is much less severe than Eq. (1) and
can be easily met. At the same time, for solitons

described by Eq. (33) at α = 0, we have  ~

(ω0τp)2 . Therefore, the condition  ! 1

is fulfilled if (ω0τp)2 !  = F11/F44. This condi-
tion is not inconsistent with Eq. (1), because usually
F11 > F44, as indicated above.

From Eqs. (22), (23), (29), and (33), it follows that,
in the case of solitons of both types, the population
inversion is not full due to the presence of the longitu-
dinal component.

Let us estimate the dynamical parameters of the
solitonlike pulses considered above. According to
Eq. (13), |Ω⊥ |/ω0 ~ F44|%⊥ | @ 1. Putting F44 ~ 102, we
obtain |%⊥ | ~ 0.1. For ω0 ~ 1010 s–1, the pulse duration is
τp ~ |Ω⊥ |–1 ~ (ω0F44|%⊥ |)–1 ~ 10 ps. At ρ . 2 g/cm3 and
a⊥  ~ 3 × 105 cm/s, we find that the intensity of the

ω0τ p( )2
 _ 2

F11a⊥

F44a||
------------- 
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2
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a||
2 a⊥
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2
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2

a⊥
2

Ω̃||m/Ω̃⊥ m

µ⊥ /µ|| Ω̃||m/Ω̃⊥ m

µ||/µ⊥
PH
                                    

acoustic soliton is I ~ ρ |%⊥ |2 ~ 107 W/cm2 and the

pressure within the soliton is P ~ ρ |%⊥ | ~ 10 kbar.
Acoustic pulses with such parameters can be realized
experimentally [9].

5. RATIONAL SOLITONS

Now, we consider the case where both inequalities
in Eq. (13) are true; therefore, the components Ω|| and
|Ω⊥ | (or F) of the acoustic pulse are comparable in
value. In accordance with Eq. (13), we neglect ω0 in
comparison with Ω|| in Eq. (27a). Putting F = AΩ||,

where A is a constant to be determined, we have  =

Ω =  =  [see
Eq. (27b)]. Substituting these expressions into
Eqs. (27) and differentiating Eq. (27b), one can find
that the compatibility condition is A2 = (µ⊥ /µ||)(a|| –
v )/(v  – a⊥ ). Here, it has been assumed that the differ-
ence between a⊥  and a|| is small, i.e., (a|| – a⊥ )/a|| ! 1,
and, as is usually the case in a solid, a|| ≥ a⊥  (α ≥ 0) [28].
Further, we integrate Eq. (27b) and obtain

(37)

(38)

where Ω||m = 2/(τp ) and Ω⊥ m = 2A/(τp ).
The relation between the pulse duration τp and the

velocity of the soliton described by Eq. (37) is given by

(39)

From Eqs. (38) and (23), it follows that the polarization
plane of the transverse component of the soliton
described by Eq. (37) rotates counterclockwise (if we
look along the propagation direction of the pulse) in a
thermodynamically equilibrium medium (W∞ < 0) and
rotates clockwise in a nonequilibrium medium (W∞ > 0)
(Fig. 2).

A two-component video pulse from Eq. (37) falls
off according to a power law rather than exponentially,
in contrast to solitons of Eqs. (29) and (33). Therefore,
it can be referred to as a rational soliton [29]. From the
expression for A2, it is seen that the velocity of the ratio-
nal soliton lies within the range between a⊥  and a||
(regardless of the sign of W∞), while for the velocity of
solitons considered in the preceding section, we have
v  < a⊥  for W∞ < 0.

The approximation |Ω||| @ ω0 corresponds to the
case where the dynamic transition frequency ωd ≡ ω0 +
Ω|| [see Eq. (10a)] in the region of the video pulse dif-
fers significantly from ω0. In a thermodynamically

a⊥
3

a⊥
2

θ̇

1 A2+ Ω|| Ω||sgn 1 A2+ Ω|| β||sgn–

Ω||
Ω||m β||sgn

1 ξ2+
------------------------, F–

Ω⊥ m

1 ξ2+
--------------,= =

φ κz 2κv τ p ξ ,arctan+=

1 A2+ 1 A2+

v a⊥–( )2 µ⊥ /µ||( ) a|| v–( ) v a⊥–( )+

=  µ⊥ W∞a⊥ a||τ p( )2.
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equilibrium medium (W∞ < 0, β|| > 0), we have Ω|| < 0,
as seen from Eq. (37). Therefore, ωd < 0, which corre-
sponds to dynamic population inversion of the quantum
levels: the ground level becomes an excited one, and
vice versa. A similar effect takes place in the case of
electromagnetic video pulses propagating in isotropic
para- and ferromagnets [30]: the population is inverted
in the medium which was initially at equilibrium. It is
well known that in a nonequilibrium medium with an
inverse population, the velocity of solitons is higher
than that of the corresponding linear waves that induce
quantum transitions in this medium [31]. In our case,
the transitions are caused by the transverse component
of the pulse; hence, v  > a⊥ .

If a medium initially possesses an inverse popula-
tion (W∞ > 0, β|| < 0), then Ω|| > 0 [see Eq. (37)]. In this
case, ωd > 0 and the dynamic population inversion of
the quantum levels does not occur. Therefore, in the
presence of the longitudinal component of an acoustic
video pulse, the population remains inverted and v  > a⊥
as before.

In the approximation |Ω||| @ ω0 discussed here, we
have ωd ≈ Ω||; that is, the dynamic transition frequency
virtually does not depend on the frequency ω0 for the
initial Zeeman splitting but is instead determined fun-
damentally by the longitudinal component of the
acoustic video pulse (ωd ≈ –|Ω||| in the medium that was
initially at equilibrium and ωd ≈ |Ω||| in the medium that
initially possessed an inverse population). For this rea-
son, the velocity v   is independent of the sign of W∞
[see Eq. (39)]. On the other hand, the presence of a
magnetic field is a necessary condition. First, there is no
spin–phonon interaction in the absence of B in the case
of S = 1/2 (see Section 3), and, second, the initial
inverse population W∞ becomes zero at B = 0 (ω0 = 0)
with the consequence that the spin–phonon coupling
responsible for the soliton formation also vanishes [see
Eqs. (8), (9), (23), (24)].

It follows from Eqs. (20) and (37) that the entire area
of the longitudinal–transverse rational soliton is θ∞ =

 = 2π. Figure 3 shows the dependence of the

duration of the rational soliton on its velocity as calcu-
lated from Eq. (39). It can be seen that the pulse dura-
tion τp increases monotonically with velocity v  in the
case of η ≡ µ⊥ /µ|| = (F44a||/F11a⊥ )2 < 2. If η > 2, τp has a
maximum in the range between a⊥  and a||. In both cases,
τp  0 as v  a⊥  and τp tends to a finite value as
v   a||τp.

The amplitude of the longitudinal component Ω||m
decreases with increasing velocity for η < 1 and
increases for η > 1 (Fig. 4).

The Ω⊥ m(v) dependence is more intricate. At η < 9,
Ω⊥ m decreases monotonically with increasing velocity;
at η > 9, the Ω⊥ m(v) dependence has two extrema at v 1
and v 2 between which Ω⊥ m increases; however, it

Ω t 'd
∞–

+∞∫
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decreases outside of this velocity interval with increas-
ing velocity (Fig. 4). In addition, Ω⊥ m  ∞ as v  
a⊥  and Ω⊥ m  0 as v   a||.

For a rational soliton to be formed, the amplitudes of
both the transverse and longitudinal components of an

a||vma⊥

τp

v
0

τp
max

Fig. 3. Dependence of the rational-soliton length τp on
its velocity v. The solid curve corresponds to the case of
η  < 2, where τp increases monotonically with v. The
dashed curve describes the velocity dependence in the
case of η > 2; here, τp has a maximum in the range
between a⊥  and a|| at vm = [η(a|| + a⊥ ) – 2a⊥ ]/2(η – 1);

 = (a|| – a⊥ )/(2|W∞|µ||a⊥ a|| ).τ p
max η 1–

(a)

(b)

z – v t

z – v t

0

0

Fig. 2. Profiles of rational solitons (a⊥  < v  < a||) propagating
in (a) an equilibrium medium and (b) a medium with an
inverse population. The notation is the same as in Fig. 1.

Ω⊥ , Ω||

Ω⊥ , Ω||
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acoustic pulse generated at the entrance of a medium
must satisfy inequalities (13). Therefore, the intensity
of rational solitons is several times larger than that of
exponentially localized acoustic video pulses (for
which only one of inequalities (13), namely, that for the
transverse component, is satisfied) and is of the order of
108 W/cm2.

6. CONCLUSIONS

Thus, we investigated [in the spectral-overlap
approximation defined by Eq. (1)] quasi-solitonic prop-
agation modes of two-component acoustic video pulses
traveling along an external magnetic field in paramag-
netic crystals. It was found that in order to avoid the
effects of acoustic spatial dispersion and of nonlocality
of spin–phonon interaction on the formation of soliton-
like pulses, one should use ultralow temperatures (T .
0.1 K) and magnetic fields in which the Zeeman split-

(a)

(b)

v1 v2 va||

a|| va⊥

a⊥

0

0

Ω||m

Fig. 4. (a) Dependence of the amplitude of the longitudinal
component of the rational soliton Ω||m on the velocity v ; the
solid and dashed curves correspond to the cases of η < 1 and
η > 1, respectively. (b) Dependence of the amplitude of the
transverse component of the rational soliton Ω⊥ m on the
velocity v ; the solid and dashed curves correspond to the
cases of η < 9 and η > 9, respectively; in the latter case,
there are two extrema at v1 and v2 (Ω⊥ m increases with v
in the range between them), v1, 2 = (a|| + a⊥ )/2 + [(a|| –

a⊥ )/4][1 ± ].η 9–( )/ η 1–( )

Ω⊥ m
PH
ting is ω0 ~ 1010 s–1. An increase in temperature as large
as a few kelvins should be accompanied by an increase
in magnetic-field strength by an order of magnitude,
because the initial inverse population of the spin sub-
system decreases markedly, which leads to a decrease
in the strength of spin–phonon interaction. On the other
hand, if B (or ω0) is increased, the video-pulse length
should be taken to be shorter (down to 1 ps) in order to
satisfy inequality (1). For such pulse lengths, one
should take spatial dispersion into account.

It is well known that dynamic coupling with crystal
lattice vibrations is strongest when the effective spin of
paramagnetic ions is equal to S = 1 [18]. Mathemati-
cally, study of the propagation of acoustic video pulses
in a system of S = 1 spins is more intricate than that per-
formed in this paper for the case of S = 1/2 spins; nev-
ertheless, this study is of great practical importance.
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Abstract—The temperature dependence of the proton spin-lattice relaxation time (T1) is investigated for chan-
nel urea clathrates with paraffin molecules. The results obtained are interpreted within the reorientational model
of paraffin molecules and their fragments in clathrate channels. The specific features of the dynamics of normal
paraffins in urea clathrates are associated with incommensurate regions in the structure of these compounds.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intercalation compounds belong to an interesting
class of solids with a high mobility of guest molecules
and ions. The crystal structure of these compounds
involves cavities, channels, and layers occupied by
molecules or ions. As a rule, the guest molecules and
ions possess a rather high mobility. Another important
property inherent in intercalation compounds is the
occurrence of incommensurate regions in their struc-
ture over a wide range of temperatures. This feature is
associated with the differences in the host lattice spac-
ing along the channel axis and the mean distance
between intercalated guest molecules or ions [1–3] and
clearly manifests itself in channel-type intercalation
compounds [4]. In our recent works, we demonstrated
that the incommensurate structure in intercalation com-
pounds can be formed either through variations in the
ion concentration [5, 6], or by properly choosing guest
molecules whose length is not a multiple of the host lat-
tice spacing. The latter variant can be easily accom-
plished in urea clathrates with normal paraffins of dif-
ferent lengths.

Urea clathrates with different organic molecules are
representative of a wide class of intercalation com-
pounds [7]. Parsonage and Pemberton [8] proved that
urea clathrates crystallize in a hexagonal lattice with
the space group P612. In these structures, the urea mol-
ecules are linked to one another through hydrogen
bonds and form one-dimensional channels filled with
guest molecules (Fig. 1). Figure 2 shows variations in
the difference between the length of a guest molecule in
a clathrate channel [9] and the nearest multiple of the
host (urea) lattice spacing along the channel for differ-
ent guest n-paraffins. The multiple ratios between the
lattice parameters of the guest and host subsystems are
1063-7834/01/4311- $21.00 © 2060
observed in the urea clathrates with N = 7 and 16. For
the other clathrates, the guest-to-host spacing ratio has
a nonintegral value. Unfortunately, this essential fea-
ture was disregarded in earlier studies concerned with
the mobility of paraffin molecules in urea clathrates
[10, 11].

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

In this work, we thoroughly investigated the mobil-
ity of different n-paraffin molecules in urea clathrates,

Fig. 1. A structure of channel urea clathrates with paraffin
molecules.
2001 MAIK “Nauka/Interperiodica”
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namely, the normal CNH2N + 2 paraffin molecules of dif-
ferent lengths (N = 7, 10, 16, 17, 20, 21, and 24) and
n-paraffins with N = 16 and 20 in channels of urea-d4.
The samples with a nondeuterated host matrix were
synthesized according to the procedure described in
[12]. The urea used in the deuterated samples was pre-
pared by fourfold or fivefold recrystallization from a
D2O solution. All the operations were performed in a
dry chamber. The main properties of the samples were
in good agreement with the data available in the litera-
ture [13].

The nuclear spin-lattice relaxation times T1 were
measured at a resonance frequency of 26 MHz. The use
of a pulse sequence with highly efficient rectangular
pulses [14] and signal integration make it possible to
measure the nuclear spin-lattice relaxation time T1 with
an accuracy better than 5%. The heating and cooling of
the samples were carried out in a gaseous nitrogen
stream whose temperature was specified accurate to
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N

Fig. 2. Variations in the mismatch between the host lattice
spacing and the length of the guest paraffin molecule
CNH2N + 2 in urea clathrates.
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Fig. 3. Temperature dependences of the time of proton spin-
lattice relaxation in urea clathrates with paraffin molecules:
(1) N = 16 and (2) N = 20.
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within 1–3 K. The temperature variations were per-
formed as follows: the sample temperature was first
decreased monotonically from room temperature, then
increased monotonically to room temperature, main-
tained constant (at room temperature) within at least
half a day, and again increased.

3. RESULTS AND DISCUSSION

Figure 3 displays typical temperature dependences
of the proton spin-lattice relaxation time for urea clath-
rates with paraffin molecules at integral (N = 16) and
obviously nonintegral (N = 20) ratios between the lat-
tice parameters of the guest and host subsystems.
According to Cope and Parsonage [15], all the studied
compounds undergo phase transitions, which this is
also confirmed by our results.

The dependence of the activation energies observed
at temperatures above minima of the relaxation curves
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Fig. 4. Activation energies of the motion of normal paraffins
in urea clathrates at (a) low and (b) high temperatures.
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on the number of carbon chain links N in the interca-
lated paraffin molecules is shown in Fig. 4a. A similar
dependence of the activation energies at lower temper-
atures is depicted in Fig. 4b. Analysis of these depen-
dences allowed us to conclude that the spin-lattice
relaxation at temperatures above the minima of the
relaxation curves can be associated with the rotation of
paraffin molecules about their own axes of symmetry,
which structurally coincide with the axis of a hexagonal
channel of the urea clathrate. An increase in the length
of the guest molecule should be accompanied by a pro-
portional increase in the rotation barrier; this was
observed in the experiment.

At the same time, the activation energy of the motion
of normal paraffin molecules in urea clathrates at tem-
peratures below the minima of the relaxation curves is
virtually independent of the length of the intercalated
guest molecule for all the studied paraffins (except, pos-
sibly, for the shortest paraffin molecule). This suggests
that the low-temperature relaxation of all protons in urea
clathrates is determined only by the rotation of terminal
methyl groups of the guest molecules. This inference is
in qualitative agreement with the behavior of the spin-
lattice relaxation time T1min at the minima of the temper-
ature dependences: the T1min time increases monotoni-
cally with an increase in the length of the paraffin mole-
cule for all the studied systems almost without exception.
However, the numerical values of T1 at these minima are
inconsistent with the experimental data, as was the case
in our recent work [3]. In [3], we proposed different
models of motion for guest molecules or ions in order to
explain the above discrepancy. In our opinion, the spread
in the activation energies of reorientation of the methyl
groups due to the difference in their mutual arrangement
with respect to the host matrix is the decisive factor that
affects the behavior of the spin-lattice relaxation time T1.
We believe that this difference is quite evident in the case
of a lattice mismatch between the guest and host sub-
systems. This assumption is confirmed by the data on T1

at integral (N = 16) and obviously nonintegral (N = 20)
ratios between the lattice spacings of the guest and host
compounds (Fig. 3). The difference in the mutual
arrangement of the methyl groups and, consequently, the
spread in their activation energies lead not only to a
change in the T1 time at the minimum of the temperature
dependence but also to a change in the shape of the tem-
perature dependence of the spin-lattice relaxation time,
which already defies description by the appropriate for-
mulas with a unique correlation time. The data on T1 for
the deuterated samples also indicate an inhomogeneity
of the system and a spread in the correlation times of
reorientation of the methyl groups. The drastic decrease
in relaxation time at high temperatures is associated with
the well-understood 180° reorientation of the NH2

groups involved in urea molecules. The activation
parameters of this motion are identical for all the studied
clathrates and agree well with the available data [3].
PH
4. CONCLUSION

Thus, the above investigation has demonstrated that
the nuclear spin-lattice relaxation in the studied com-
pounds of urea clathrates with n-paraffins is caused by
two main types of motion of intercalated guest mole-
cules: (1) at high temperatures, it is the rotation of the
guest molecule as a whole; and (2) at temperatures cor-
responding to the minimum relaxation time T1 and
below, it is the rotation of the methyl groups, which
cannot be described by the formulas with the same cor-
relation time. Unfortunately, more detailed information
on the correlation time distribution and mutual arrange-
ment of the methyl groups cannot be obtained from the
currently available methods of nuclear magnetic reso-
nance relaxation spectroscopy.
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Abstract—The spectra of elementary oscillators of optical transitions in corundum in the region of 8–30 eV
are determined for the first time. The parameters of the oscillators are calculated using experimental reflection
spectra taken from four different papers. The main features of the spectra are established. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Aluminum oxide (corundum, α-Al2O3) is a radia-
tion-resistant and chemically inert insulator with high
optical transparency in a wide range of wavelengths [1].
Due to the complex nature of interatomic interactions,
its structure is usually considered rhombohedral or trig-
onal for the sake of simplicity. Various experimental
studies indicate that corundum has a very complicated
electronic structure [1–8]. According to theoretical
considerations, the valence and conduction bands con-
sist of a very large number of closely situated bands [9–
13]. Therefore, one should expect measured optical
spectra of corundum to be composed of many transition
bands, among them strongly overlapping ones which
can even be hidden in an integral curve. At present, the
available experimental and theoretical information on
the electronic structure of corundum is rather ambigu-
ous and incomplete.

The aim of the present work is to obtain new infor-
mation regarding the structure of elementary transitions
in corundum in the most important range of fundamen-
tal absorption (8–30 eV). Of special interest are the
probabilities of transitions, which cannot be easily
determined experimentally and are very tedious to cal-
culate theoretically.

2. CALCULATION METHODS

To accomplish these tasks, first, we calculated sets
of optical fundamental functions of corundum (ε2, ε1,
etc.) using the integral Kramers–Kronig relations and
analytical formulas. Next, the calculated spectra of the
dielectric functions were decomposed into elementary
constituent bands and their main parameters—the
energy positions of peaks Ei, half-widths Hi, and their
areas Si proportional to the transition probabilities—
were determined. The calculation methods used to
determine the set of optical functions and to decompose
the dielectric function spectrum into components have
1063-7834/01/4311- $21.00 © 22063
been described in detail and repeatedly applied [14–
17].

3. RESULTS OF CALCULATIONS 
AND DISCUSSION

The reflection spectra R(E) measured with polariza-
tion E ⊥  C and E || C for α-Al2O3 were obtained in
some works in the regions (2–110 eV) [7] and (5–
30 eV) [6] and also in the regions (5–43 eV) [8] and (7–
20 eV) [5] most likely for E ⊥  C. Using the R(E) spec-
tra from these four papers, we calculated four sets of
fundamental optical functions of corundum, including
ε2(E) and ε1(E). Next, the ε2(E) spectra were decom-
posed into components and the parameters Ei, Hi, and Si

and the band heights ε2max were determined, which are
represented in Fig. 1 by vertical lengths of four types, I
[7], II [6], III [8], and IV [5], plotted from zero up
(down) for the polarization of light E ⊥  C (E || C).
These four sets of optical functions were then analyzed
in detail taking into account the particular method of
recording the reflection spectra used in [5–8]. As a
result, some distinctive features of the spectra of the
four groups were established.

The experimental reflection spectrum measured in
[7], as well as other functions calculated on its basis,
seems to be the most reliable. The ε2(E) spectrum cal-
culated on the basis of R(E) [7] in the region 8–30 eV
was decomposed by us into 15 components for E ⊥  C
and E || C, indicated by the first and second numbers in
parentheses, respectively: 1 (9.22, 9.22), 2 (10.8, 10.9),
3 (12.0, 12.2), 4 (13.1, 12.8), 5 (14.0, 13.7), 6 (15.0,
14.8), 7 (16.0, 16.2), 8 (17.4, 17.7), 9 (18.7, 19.0),
10 (20.7, 20.8), 11 (22.9, –), 12 (–, 23.65), 13 (24.6, –),
14 (26.6, 26.65), and 15 (29.15, 29.25) eV; the compo-
nent numbers are shown in Fig. 1. From the 15 compo-
nents, only three (11–13) are fully polarized. The areas
of the component bands determine their intensities and
transition probabilities up to a constant factor. An anal-
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Spectra of transition parameters of corundum (a) S, (b) H, and (c) ε2max resulting from four types of calculations (I–IV).
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ysis of the areas of the components showed that the
transition probabilities for the polarization E ⊥  C are
higher by factors of approximately 2 (2), 1.6 (7, 14),
and 1.3 (15), than those for E || C. At the same time, for
components 6, 3, 10, and 9, the transition probabilities
for the polarization E ⊥  C are ~4, 3, 2, and 1.5 times
lower, respectively, than those for E || C. For compo-
nents 1, 4, 5, and 8, the transition probabilities depend
on the polarization only slightly. The splitting energies
of the components ∆EP for E ⊥  C and E || C related to
the half-widths at half maximum Hi are equal to 0.6 (3),
0.4 (4–6), 0.3 (8, 9), 0.16 (7), 0.10 (2, 10, 15), 0.04 (14),
and 0.00 (1). According to theoretical considerations,
the valence and conduction bands of corundum are
closely situated in a wide energy range with only small
gaps between them. Therefore, it is natural to suggest
that the comparatively large differences noticed
between the energies Ei and the areas Si for the bands
making up the fine doublet structure of the components
with E ⊥  C and E || C could be due to an accidental
coincidence in energies of two transitions differently
polarized and occurring between different pairs of
bands at different points of the Brillouin zone. The
parameters Hi and ε2max were also found to be apprecia-
bly dependent on light polarization.

We now discuss, in short, the results of calculations
of the ε2(E) components performed by us on the basis
of the R(E) spectra from papers [5, 6, 8]. The large dif-
ferences between the R(E) spectra from these papers
and the R(E) spectrum from [7] and the discrepancies
between the results of [5, 6, 8] are naturally manifested
in the parameters of the bands of ε2(E) spectra calcu-
lated by us. In our calculations of group II performed on
the basis of the R(E) data from [6] (5–30 eV), we deter-
mined the components 1, 2, 4, 5, 7–10, 12, and 14
(E ⊥ C); that is, the components 3, 6, 13, and 14 (2, 5,
6, 11, 12, and 15) did not appear for the polarization
E || C (E ⊥ C). The reflection spectra in [5] were stud-
ied only for E ⊥  C and in a smaller energy range, 7–
20 eV. Due to a large decrease in R(E) [8] in the energy
range E > 20 eV, the calculated values of ε2(E) proved
too small to fulfill decomposition into components.
Therefore, we determined a smaller number of compo-
nents for them and only for E ⊥  C, namely, 1–10 and
1–7, 9 for the calculations of groups III and IV, respec-
tively.

For the polarization E || C, the spectrum bands of
group II, when compared with the data of group I, are
strongly shifted in energy, as a rule, and the ε2max are
several times overestimated but have the same half-
width Hi. Bands 3, 6, 13, and 15 were not observed at
all, and the intensities of the other bands—5, 8, 10, 12,
and 14 (2, 4, 7, and 9)—proved strongly overestimated
(underestimated). With the other polarization (E ⊥ C),
the data for the parameters Si, Hi, and ε2max in calcula-
tions of groups II, III, and IV, as a rule, are noticeably
different from each other and from the data for group I.
For this polarization in calculations of groups II, III,
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
and IV, we identified 8, 10, and 8 bands, respectively. In
this case, we did not detect components 3, 5, 6, 11–13,
15 (group II), 11–15 (group III), and 8, 10–15
(group IV).

We now discuss, in short, possible reasons for the
occurrence of noticeable discrepancies between the
experimental spectra from [5–8]. We suggest that the
Al2O3 samples studied in [7] are of the best quality,
because (1) intensive impurity bands near the long-
wavelength absorption edge are observed only in [5, 6,
8] and (2) special attention was given to the preparation
of the perfect surface used in [7], whereas the employed
surface treatment was not described in [5, 6, 8]. It is
generally recognized that the use of synchrotron radia-
tion allows one to measure reflection spectra with
higher precision in comparison to techniques that use a
glow discharge of gases. Synchrotron radiation was
used in [6, 7], and glow discharge of gases was used in
[5, 8]. Taking into account the above-mentioned, we
suggest that the most correct measurements of the
reflection spectra were performed in [7]; therefore, the
most correct parameters of the ε2(E) components were
determined using these spectra.

The reflection spectra obtained in different works,
as well as the spectra of dielectric functions, are notice-
ably distinguishable one from another in a wide energy
range. Therefore, how changes in R(E) will affect
changes in ε2(E) is unclear. It was interesting to inves-
tigate this issue using, as an example, four reflection
spectra of sapphire crystals measured on various sam-
ples using different methods.

4. CONCLUSION

Thus, the parameters of the most intensive optical
transitions of corundum have been established for the
first time in the region of 8–30 eV, including their ener-
gies, intensities, and polarization dependences. We
have demonstrated a strong dependence of these results
on the experimental technique of reflectance spectra
measurement employed. Analyzing the features of the
sets of fundamental optical functions of corundum, we
have selected the most reliable from the four known,
and using it, we have determined the most correct
parameters of the transitions.

Detection of a large number of components hidden
in the integral curves of the spectra of the optical func-
tions and determination of the probabilities and ener-
gies of the transition components allow one to explain
many of the properties of corundum in a new way and
provide a closer approach to constructing theoretical
models of the electronic structure and optical spectra of
corundum and oxides of the M2O3 group.
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Abstract—Self-consistent valence electron densities of a MgCO3 crystal and of its constituent sublattices are
calculated on the basis of the local-density functional theory. The coupling between the sublattices is charac-
terized by the density difference, introduced as the difference between the total electron density and the densi-
ties of individual sublattices. Intra- and interlattice hybridization effects are considered. It is shown that the den-
sity difference is in qualitative agreement with the experimental deformational density. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The experimental potentialities that permit determi-
nation of the electron density distribution function and
potential in crystals at varying but comparatively high
accuracy have been extended considerably. The change
in the total electron density upon the introduction of an
atom into a crystal (the so-called deformation density),
rather than the total electron density itself, is important
for practical applications. Theoretical calculations of
the deformation density on the basis of various methods
of the band theory have also been perfected to a certain
degree mainly due to the development of self-consis-
tent Hartree–Fock methods and the theory of the local
density functional (TLDF).

The deformation density characterizes the resultant
effect of the redistribution of electrons among various
atoms and of the electron transitions from atomic sites
to interstices. The redistribution effect is traditionally
explained in terms of a local approach in the language
of hybridization of orbitals of neighboring atoms, as is
usually done in molecular quantum chemistry. The role
of the long-range order in the formation of chemical
bonds in crystalline solids remains unclear in this case.
In order to investigate this role, we propose an approach
based on introducing the concepts of sublattices and
density difference for describing the change in the elec-
tron density of atoms undergone during combination
into a crystal lattice. The application of this approach to
MgO crystals [1] made it possible to establish the fact
that the main peculiarities in the valence density distri-
bution in rare-earth oxides are determined by the oxy-
gen sublattice, while the electron density of the magne-
sium sublattice is smeared quite uniformly over the unit
cell. In this work, we apply the sublattice technique to
a MgCO3 crystal, in which the covalent component of
the chemical bond exists along with the ionic compo-
nent in the CO3 molecular complex, for determining the
1063-7834/01/4311- $21.00 © 2067
role played by sublattices in the formation of the
valence electron density.

2. METHOD AND OBJECT
OF INVESTIGATION

We consider a crystal consisting of s sublattices
formed by identical atoms. In order to single out a sub-
lattice, it is expedient to assume an electron distribution
which ensures its electrical neutrality. Then, we will
carry out self-consistent calculations of the electron
structure of the crystal and of all the sublattices using a
unified model. In all cases, the structural parameters are
defined in accordance with the actual geometrical
structure of the lattice. The results of self-consistent
calculations include the hybridization effects between
all atoms for the crystal and only between atoms of the
same species for the sublattices. In order to calculate
the hybridization effects between the sublattices, we
introduce the density difference ∆ρ(r):

(1)

If the electron densities are normalized to the number of
electrons, then the integral of the density difference
over a unit cell is equal to zero and, hence, the maps of
∆ρ(r) contain regions of both positive and negative val-
ues, which gives a visual impression of the charge
transfer between the sublattices. In this approach, the
effects of hybridization between identical atoms consti-
tuting sublattices and between sublattices constituting a
crystal are separated.

The method described above was applied by us for
calculating the electron density of magnesium carbon-

ate MgCO3 (space group ; Z = 2 [2]). Magnesite is
an abundant technological material used, for example,

∆ρ r( ) ρcrys= r( ) ρs
sub r( ).

s

∑–

D3d
6
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for obtaining refractory materials and magnesium
oxide, which is used widely in optics. The electron
structure of this compound is not only interesting in
itself but also from the point of view of model concepts
on the nature of cation–oxygen interactions and of the
order–disorder phase transition associated with the
rotation of the carbonate group and its possible pyrami-
dal deformation, which is in contrast to the planar struc-
ture required by the symmetry [3, 4].

We calculated the electron density in the framework
of the TLDF using pseudopotentials [5] on the basis of
numerical atomic s1p3d5 pseudoorbitals determined
from atomic calculations with the same pseudopoten-
tials fit to the known energy-level diagrams [6] by vary-
ing the occupation numbers. In order to calculate the
overlap integrals and the pseudo-Hamiltonian matrix,
the basis functions were expanded into a series in 2500
plane waves. The details of the numerical realization of
the method are described in [7].

3. RESULTS OF CALCULATIONS

The distributions of the total valence density of
MgCO3 and the densities of the sublattices in an anion
plane are presented in Fig. 1. The numerical values of
the electron density are given in units of e · Å–3 (e is the
PH
electron charge), and the distances are given in ang-
ströms.

The maximum electron density (r) is concen-
trated in the vicinity of the positions of oxygen atoms
and embraces them from the outer side relative to the
carbon atoms. The density has a minimum at the posi-
tion of the carbon atom; then, the value of (r)
increases towards oxygen atoms with small peaks at
0.45 and 1.02 Å and finally attains its principal peak at
1.46 Å (the length of the C–O bond is equal to 1.2857 Å).
The low peak existing at the middle of the O–O bonds
amounts to 20% of the value of (r) on the oxy-

gen atom. The last closed loop of (r), which
embraces a complex anion, has a shape close to a
sphere of radius ~2 Å. It should be noted that the thick-
ness of the anion layer in the direction of the C3 axis,
which was also estimated from the last closed density
loop, was also found to be ~2 Å.

Let us now consider the electron density ρO(r) of the
oxygen sublattice. It can be seen from Fig. 1 that the
loops of (r) and ρO(r) beyond the anion virtually
coincide and differ only in numerical value. Thus, the
electron density of the crystal in this region is formed

ρMgCO3

ρMgCO3

ρMgCO3

ρMgCO3

ρMgCO3
ρMgCO3
(r) ρC(r)
C
O

ρMg(r)ρO(r)

0.80

0.61
0.65

0.500.55

0.70

0.80

1.10

0.65

0.41

0.46

0.10 0.24

0.09

4

0

–4
–4 0 4

0.
10

Fig. 1. Total valence density (r) and the densities ρO(r), ρC(r), and ρMg(r) of the oxygen, carbon, and magnesium sublat-

tices, respectively, in the anion plane.

ρMgCO3
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mainly due to oxygen states. Within the anion, charges
between the oxygen atoms are formed and a density
peak of height ~1 e ·Å–3 appears on the C–O bond
behind the position of the oxygen nucleus. The mini-
mum value ~0.5 e ·Å–3 of the density corresponds to the
middle of the bond between neighboring anions. The
oxygen atoms of neighboring anions have no common
loops on the plane. The common loop with ρO(r) =
0.5 e ·Å–3 encloses each individual anion. A low density
peak of 0.55 e ·Å–3 lies in a position between the three
anions under and above which magnesium atoms are
located.

The electron density ρC(r) of the carbon sublattice
has a sixfold symmetry axis, and the density associated
with carbon atoms is almost spherically symmetric rel-
ative to their positions in the lattice. In this distribution,
there exists a peak ~0.26 e ·Å–3 corresponding approxi-
mately to the middle of the C–O bond. The density
ρC(r) has a minimum (~0.09 e ·Å–3) at points above and
below which magnesium atoms are located. There exist
low paired peaks of height ~0.1 e ·Å–3 at the anion–
anion bond, which serve as bridges between carbon
positions.

The electron density ρMg(r) of the magnesium sub-
lattice is also symmetric relative to the sixfold axis.
Magnesium atoms transfer a considerable part of their
valence charge to the anionic plane, which is facilitated
by the hybridization of their s orbitals with virtual p and
d orbitals. A density ρMg(r) has a minimum at the center
of an anion, and its value increases towards the anion
periphery. The peaks of the density of the metal lie at
six positions between the exact same anions at which
low density peaks of the oxygen sublattice are located.
Thus, the two sublattices synchronously form the fea-
tures of the total density.

The absence of a rigid covalent bond between
molecular groups and the fact that the symmetry of the
carbon and magnesium sublattices is higher than the
crystal symmetry are factors that facilitate the orienta-
tional disorder of the CO3 carbonate group; this has
been observed experimentally [3, 4].

Figure 2 shows the density difference ∆ρ(r) calcu-
lated by using formula (1) in the anionic plane and in
the plane containing nearest C, O, and Mg atoms. The
density difference has negative values (in e units) only
in a very small region in the vicinity of an oxygen atom
in the direction towards the carbon atom. Two peaks of
∆ρ(r) with a height of 0.05 e ·Å–3 lie in the anionic
plane symmetrical relative to the C–O bond at a dis-
tance 0.45 Å from an oxygen atom. The principal peak
of ∆ρ(r) lies on the C–O bond at a distance of ~0.5 Å
from a carbon atom. At this atom, the value of the den-
sity is positive and increases from the center to the
periphery. Thus, the interaction of sublattices, which is
strongest between the oxygen and carbon sublattices,
leads to a complex redistribution of the electron charge,
which can be characterized as a covalent type of chem-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
ical bond. The density difference in the vicinity of a Mg
atom has negative values over a fairly wide region.
Thus, an ionic bond is formed between the cation and
anion planes due to the charge transfer from the cation
to the anion plane.

4. COMPARISON WITH EXPERIMENT
AND DISCUSSION

The deformation density of CaCO3, MgCO3, and
MnCO3 was investigated in [3] using the method of
synchrotron x-ray diffraction. The experimental data
obtained in [3] for MgCO3 were meticulously pro-
cessed in [4], and the deformation density of this com-
pound was calculated theoretically using the Hartree–
Fock method. It was proved that the results of theoreti-
cal calculations are in good agreement with the experi-
mental data. A slight discrepancy was observed for
positions near oxygen atoms, for which the theory pre-
dicts nearly spherically symmetric density peaks on
lines perpendicular to the C–O bonds, while in experi-
ments, these peaks have elliptic cross sections. More-
over, in the experimental density maps, the centers of
these peaks are displaced insignificantly relative to the
oxygen position as compared to the theoretical peaks.

Let us now compare the results of our calculations
of the density difference in the anion plane (see Fig. 2)
with the theoretical and experimental deformation den-
sity maps presented in Figs. 2a and 2b in [4]. The
arrangements and the profiles of the peaks and minima
for the density difference calculated by us were found
to be closer to those for the experimental deformation
density. The most significant distinction is that both
theoretical and experimental deformation densities are
negative in the vicinity of oxygen and carbon atoms,
while the density difference has funnel-shaped minima
in this region and only a small part of the minimum in
the vicinity of an oxygen atom corresponds to negative
values. This distinction is due to the fact that, while cal-
culating the deformation density, we subtract from the
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Fig. 2. Density difference ∆ρ in the anion plane and in a
plane containing nearest neighbor Mg, C, and O atoms.
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total density the densities of free atoms and not the den-
sities of sublattices in which intralattice hybridization
has already taken place.

The pronounced similarity observed by us for
MgCO3 between the density difference defined by
Eq. (1) and the deformation density is due to the fact
that the strongest hybridization effects in this com-
pound take place between the atoms of the CO3 carbon-
ate group, while the hybridization between other sub-
lattices is much weaker. It should be borne in mind,
however, that the density difference and the deforma-
tion density are essentially different quantities. The dif-
ference between them is especially large in the case
when hybridization effects in the sublattices are stron-
ger than those between them. Such cases are presently
being investigated by us.
PHY
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Abstract—The radiation-stimulated pulse conductivity of CsBr crystals is investigated upon picosecond exci-
tation with electron beams (0.2 MeV, 50 ps, 0.1–10 kA/cm2). The time resolution of the measuring technique
is ~150 ps. It is shown that the lifetime of conduction band electrons is limited by their bimolecular recombi-
nation with autolocalized holes (Vk centers). A delay in the conduction current pulse build-up is revealed. This
effect is explained within the proposed model, according to which the Auger recombination of valence band
electrons and holes of the upper core band substantially contributes to the generation of conduction band elec-
trons. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of dielectric crystals under excitation
with electron beams of picosecond duration and mea-
surements of the relaxation kinetics of the conduction
current induced by an exciting pulse can provide the
most direct information on the possible mechanism of
generation, transfer, recombination, and trapping of
band charge carriers in these materials.

In our previous works [1–8], we investigated the
radiation-stimulated conductivity of NaCl, KCl, KBr,
and CsI crystals upon excitation with an electron beam
(0.2 MeV, 50 ps, 0.1–10 kA/cm2). The present work is
a continuation of these investigations.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The CsBr crystals were grown from the high-purity
salt by the Stockbarger technique. The samples were
10 × 10 mm in size and 2 mm thick. A cylindrical hole
2 mm in diameter was drilled at the center of the sample
so that the bottom thickness was equal to 50 µm. This
value is considerably less than the mean path of
0.2-MeV electrons in CsBr. The latter circumstance
provided uniformity of the excitation produced. Plati-
num electrodes ≤1 µm thick were deposited into the
hole and onto the opposite face of the sample through
cathodic sputtering deposition. In order to prevent edge
effects, the sample was irradiated through a collimator
1 mm in diameter. The time resolution of the measuring
channel was 150 ps. The measuring technique was
described in detail in [9].
1063-7834/01/4311- $21.00 © 22071
3. RESULTS AND DISCUSSION
The normalized oscillograms of conduction current

pulses for a CsBr crystal at a temperature of 300 K and
different excitation current densities are displayed in
Fig. 1. For comparison, Fig. 1 shows the oscillogram of
a conduction current pulse for a KCl crystal, which
coincides with the pulse characteristic of the measuring
channel.

It can be seen from Fig. 1 that the kinetics of con-
duction in CsBr exhibits a number of specific features
as compared to NaCl and CsI crystals. Unlike the case
of crystals with a NaCl-type lattice, the inertialess com-
ponent that repeats the pulse characteristics of the mea-
suring channel is absent. The data processing of oscil-
logram 1 (Fig. 1), which was measured at the lowest
excitation current density, showed that the decay of the
conduction current pulse is described by the second-

0.5

0 0.4

I, arb. units

t, ns

1.0

0.8 1.2

1

2

3

4

Fig. 1. Normalized oscillograms of the conduction current
pulses for (1–3) CsBr and (4) KCl. The dashed line shows
the results of calculations according to formula (10). Exci-
tation current density j, A/cm2: (1) 190, (2) 1100, and
(3) higher than 4500.
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order kinetics, as is the case in CsI crystals [1–3]. This
suggests that, under the experimental conditions, the
lifetime of conduction band electrons in CsBr is limited
by their recombination with autolocalized holes (Vk

centers), as was proved earlier for CsI [1–3].

As the excitation density increases, the duration of
the conduction current pulse decreases and reaches a
certain limit: the half-amplitude duration for CsBr is
twice that for KCl (Fig. 1, oscillograms 3, 4). The
experimental conditions were identical for both sam-
ples, and their capacitances were comparable.

The current–voltage characteristics in the studied
range of excitation current densities are linear in fields
up to 5 × 104 V/cm. From the current–voltage charac-
teristics, we calculated the electrical resistance R and
the conductivity of the sample:

(1)

where l is the sample thickness and S is the diameter of
the collimator.

Figure 2 shows the conductivity σ as a function of
the excitation current density j at 300 K on the logarith-
mic scale. This dependence is well approximated by the
power law

(2)

with the exponent δ = 0.5 ± 0.02. This result allows us
to conclude that, as in crystals with a NaCl-type lattice
[5], the quasi-stationary mode of excitation is realized
at relatively high current densities of the electron beam,
whereas the exponent δ = 0.5 in relationship (2) and the
results of kinetic measurements at relatively low exci-
tation densities indicate a dominant bimolecular e–Vk

recombination [2, 5].

In these experiments, the constant duration of the
conduction current pulse over a wide range of excita-
tion densities is of particular interest, because the elec-

σ 1
R
--- l

S
---,=

σ jδ∼

1

0.1 1

σ × 103, Ω–1 cm–1

j × 10–3, A/cm2
10

10

Fig. 2. Dependence of the conductivity for the CsBr crystal
on the excitation current density at T = 300 K.
PH
tron lifetime in terms of the bimolecular recombination
model is represented as

, (3)

where ν is the thermal velocity, n is the band electron
concentration, and S is the effective cross section of the
e–Vk recombination. It should be expected that an
increase in the excitation current density be accompa-
nied by a decrease in the duration of the conduction
current pulse up to the width of the pulse characteristic
of the measuring channel.

Note that the instability of the exciting pulse shape
and the error in measurement of the pulse duration do
not exceed 10% and cannot affect the above result.
Therefore, we can assume that the mechanism of gen-
eration of band electrons in CsBr is characterized by a
certain delay with respect to the exciting pulse duration.

Let us consider a possible model of this process. As
a rule, conduction band electrons and valence band
holes are involved in processes associated with band
charge carriers. However, ionization of the crystal
matrix by high-energy particles occurs with the forma-
tion of holes attributed to the lower-lying core band
rather than to the valence band. In this case, a hole from
the lower-lying band recombines with a valence band
electron. This process is accompanied by the emission
of an x-ray photon. However, it was found that a num-
ber of wide-gap ionic crystals exhibit emission in the
visible and ultraviolet spectral ranges [10]. This emis-
sion was identified as transitions between the valence
band and the upper core band of the crystal. The atten-
dant luminescence was referred to as the core–valence
band luminescence or the cross luminescence. The con-
dition for the occurrence of cross luminescence is spec-
ified by the relationship [10]

(4)

Here, Eq1 and Eq2 are the first and second band gaps,
respectively, and Ev is the width of the valence band of
the crystal. Note that the bandwidth of the cross lumi-
nescence corresponds to the valence band width.

In the case when Eq1 > Eq2 and (Eq1 + Ev) > Eq1, con-
dition (4) is satisfied only partly and the bandwidth of
the cross luminescence is substantially less than Ev .
This situation is actually observed in the CsBr crystal
[10]. It seems likely that, in this case, both radiative
valence-band-to-core transitions and Auger transitions
with the generation of an electron–hole pair become
possible. The aforesaid is illustrated in Fig. 3. Transi-
tions of type 1 from the valence band bottom to the top
of the upper core band correspond to radiative transi-
tions. Transitions of type 2 from the valence band top
that do not obey condition (4) are the Auger transitions
with the generation of a conduction band electron and a
valence band hole. It is reasonable to assume that the
rate constant of the Auger transitions α = τ–1 is compa-
rable to the rate constant α for the radiative transitions,

τ 1
νSn
--------- σ 1–∼= j 0.5–∼

Eq1 Eq2> Ev .+
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which were observed during the cross luminescence.
For the CsBr crystal, the duration τ of the radiation
transition at 300 K is equal to 70 ps [10].

Now, we make quantitative estimations in terms of
the proposed model. The balance equation for the hole
concentration nv in the valence band can be written in
the following form:

(5)

where G(t) is the rate of hole generation in the first core
band. It is assumed that G(t) coincides with the excita-
tion function and can be described by the formula [4]

(6)

where ω = 150 ps is the Gaussian parameter, which
characterizes the excitation pulse duration, and τ is the
characteristic time of the Auger transition, which coin-
cides with the lifetime of cross luminescence.

The balance equation for the electron concentration
in the conduction band is represented as

(7)

Here, the first term describes the generation of elec-
trons due to Auger transitions between the core band
and the valence band and the second term accounts for
the bimolecular recombination of electrons and holes.

Let us now consider the case of high excitation cur-
rent densities when the quasi-stationary approximation
is applied to conduction band electrons. From Eq. (7),
we obtain the expression

(8)

The solution of Eq. (7) has the form

(9)

By substituting solution (9) into expression (8), we
derive the following formula for processing of the
experimental oscillograms:

(10)

Here, j(t) is the experimentally measured shape of the
conduction current pulse.

The dashed line in Fig. 1 represents the results of
calculations according to formula (10) at τ = 50 ps.
Both curves obtained at the τ value, which is close to
that measured from the cross luminescence [10], virtu-
ally coincide with each other. This indicates that the
above model is quite reasonable.

dnv

dt
--------- G t( )=

nv

τ
-----,–

G t( ) 2t2

ω2
-------– 

  ,exp=

dn
dt
------

nv

τ
----- αn2.–=

n
nv

ατ
------ 

 
1/2

.=

nv G t '( )e
t t '–( )

τ
---------------–

t '.d

∞–

t

∫=

n t( ) j t( ) 1
τ
--- G t '( )e

t t '–( )
τ

---------------–

t 'd

∞–

t

∫
1/2

.∼ ∼
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
Thus, the proposed model explains the delay of
increase in the concentration of band electrons contrib-
uting to conduction.
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Fig. 3. A schematic representation of valence-band-to-core
transitions: (1) radiative transitions and (2) nonradiative
Auger transitions. Designation: Eq1 and Eq2 are the first and
second band gaps, respectively; Ev  and Eb are the widths of
the valence band and the upper core band, respectively; and
I and II are an electron and a hole, respectively.
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Abstract—Structural relaxation of mesodefect networks in amorphous Co–Ni–P films during low-temperature
isothermal annealing (T = 175°C) is studied. A mathematical model in which network structures are presented
in the form of stochastic flows of intersections of network boundaries is used. The two-stage nature of the
annealing process, which is also reflected in the correlation radius, is established in terms of the first two
moments of the empirical distributions. It is found that the flow statistics is of the Weibull class. In the identified
Weibull statistics, two scale components are distinguished at a 98% confidence level. The short-wavelength
(SW) component is characterized by an extremal form of behavior of the α dimension, while the corresponding
dependence of the long-wavelength component of the network hierarchy is linear and the values of the dimen-
sion do not exceed unity. The entropy of the zero spectrum of correlation functions of intersection flows of net-
work boundaries for an annealing time ~1 h indicates considerable ordering of the SW component of the net-
work mesostructure. Different spatial scales of the network hierarchy of mesodefects of the amorphous state
evolve along different channels, which could ensure high structural stability under the appropriate influences.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The network concept of the amorphous state
received wide recognition in the 1980s [1–13]. In this
approach, amorphous planar media, including metallic
glasses of the transition-metal–metalloid (TM–MD)
and the rare-earth metal–transition metal (REM–TM)
type, can be treated as structurally continuous hierar-
chic systems consisting of network-type mesodefects.
In general, the topology of such mesostructures can be
interpreted as fluctuating fields of the material density.
The electron-microscopic images of mesodefect net-
works were transformed into the sign-representation by
using standard sign-procedures, which made it possible
to obtain patterns of the network boundaries proper.
The topology of such network structures can be diverse.
Some of them [10–12] possess a clearly manifested
mesh-type morphology, while others [7, 9, 10] (includ-
ing the amorphous Co–Ni–P films (AFs) under investi-
gation) possess a complex tree-fragmentary topology.
The latter mesostructures cannot be described using
standard statistical methods of representation in terms
of the mesh-size distribution function. For this reason,
a more general method of presentation and processing
of such network structures with a “torn” topology was
employed. This method is based on the model of sto-
chastic flows of network boundaries intersected (NBIF)
by a scanning line [11, 12, 14]. The stochastic flow
model [14–16] will make it possible to analyze various
kinetic aspects of the amorphous state [10, 12], e.g., for
comparatively soft thermal effects for long holding
times. The main problem in which we are interested is
1063-7834/01/4311- $21.00 © 22074
associated with the search for mechanisms that ensure
the stability of the amorphous state during structural
relaxation processes. It has been emphasized by us
more than once [10, 16] that metallic glasses of the
TM–MD and the REM–TM type, as well as ultradis-
perse films, possess an elevated stability in conservative
ageing if the network hierarchy of mesodefects pos-
sesses a potential of sufficiently high order. A certain
“prolongation” (slowness) of the disintegration of the
amorphous state was observed. The latter peculiarity
should be reflected in the corresponding class of the
NBIF distribution functions. Consequently, one of the
main goals of the present work is the identification of
the statistics of the distances between neighboring
intersections of network boundaries with a scanning
line. We expect that the processes of thermal structural
relaxation of amorphous films will be manifested selec-
tively on different spatial scales of the network hierar-
chy [1–13]. We consider the processes of thermal struc-
tural relaxation under the assumption that the amor-
phous ordering on the atomic level persists [13], which
is usually manifested in typical halo diffraction pat-
terns. In this case, the delayed decay of the amorphous
state can probably be explained in terms of the com-
bined effect of the mesoscopic hierarchy of the subnet-
works [10, 16]. During structural relaxation, a number
of perturbing factors that are usually present because of
the nonequilibrium conditions of obtaining metallic
glasses are removed. Such a relaxed amorphous state
should be attributed to the ideal amorphous state. The
approach to the relaxation kinetics of the amorphous
001 MAIK “Nauka/Interperiodica”
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state at a mesoscopic level, which is proposed by us
here, will make it possible to work out the appropriate
developments in technology.

2. EXPERIMENTAL TECHNIQUE 
AND THE PROCESSING ALGORITHMS

The AFs of Co–Ni–P (9–13 at. % P, h ~ 300 nm)
were obtained through electrochemical deposition (at
the Kirenskiœ Institute of Physics, Krasnoyarsk).
Annealing was carried out in situ on a JEM-1000 elec-
tron microscope (at the Baœkov Institute of Metallurgy,
Russian Academy of Sciences) at a temperature of
175°C. The isothermal annealing time was 1.5 h. The
electron microscope photography of the AFs was car-
ried out at 5-min intervals. It was found in [1–13] that
AFs exhibited a multiscale network structure of meso-
defects, which was handled using special computa-
tional processors [16, 17] for obtaining sign networks.

Figure 1 shows the light-field electron-microscopic
image of one of the amorphous Co–Ni–P films under
investigation with the corresponding microscopic dif-
fraction pattern. Thin AFs are characterized by a phase
contrast under a transmission electron microscope,
whose origin is associated with the electron density
fluctuations of the material [4, 7, 8, 18, 19].

In the general case, multicomponent films in the
fluctuating field representation can be considered at
three levels. The first (and most universal) level com-
prises material density fluctuation fields, which exist in
single-phase media. The next level is formed by con-
centration fields whose part in the spinodal decay is sig-
nificant [20]. Although the spinodal decay has some-
thing in common with the processes of structural relax-
ation in AFs, this concerns, in all probability, the last
stages of the space–time evolution of fluctuation fields
[21–24]. It was stated in [23] that structural relaxation
in rapidly quenched multicomponent alloys is accom-
panied by spinodal decay with respect to the free vol-
ume (density) and by concentration stratification. The
most complete correlation theory of decay phenomena
and ordering in solids far from equilibrium was devel-
oped by Stefanovich [24], who studied the diffusion
stage of relaxation of a large-scale glass structure fol-
lowed by binodal heterophase evolution. It was empha-
sized in [24, Chapter 1] that a spatially inhomogeneous
stochastic distribution of concentration and density sets
in at nonequilibrium stages of glass formation. The spa-
tial scale of the corresponding inhomogeneities is
larger than the characteristic atomic scales. In our opin-
ion, this is merely a manifestation of an implicit form
of the network mesostructural hierarchy of blurred spa-
tial inhomogeneities of amorphous media, including
metallic and quartz glasses [1–13, 16, 21].

Finally, the third level corresponds to the chemical-
composition fluctuation fields. It follows from [22,
Subsections 3.3, 3.4] that the late stage of the space–
time evolution of amorphous alloys is characterized by
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
the formation of a foam polydomain structure whose
size is inversely proportional to the degree of nonsta-
tionarity (the cooling rate). Increases in the macro-
scopic order parameter in amorphous alloys are due to
the synchronization of atomic-density distribution
waves in the chemical-potential field averaged over the
component contents. Variations in the concentration
and in the chemical composition of amorphous media
also contribute to other types of electron-microscopic
contrast [18, 19, 25]; this was not observed in our dark-
field electron-microscopic images [10].

As a result of high-temperature annealing, the
meshes form an ensemble of grains or crystallites of the
corresponding scale, while the regions of changes in
density are transformed into large-angle boundaries in
polycrystalline films and small-angle boundaries in
ultradispersed films [16]. The electron-microscopic
contrast at such deep stages of structural relaxation
becomes an ordinary diffraction contrast [18, 25, 26].

Mesodefect networks in the AFs were investigated
using the concept of stochastic flows [11, 12, 14]. These

150 nm

(a)

(b)

Fig. 1. (a) Light-field electron-microscopic image and elec-
tron diffraction pattern of a Co–Ni–P amorphous film after
55-min of low-temperature isothermal annealing at T =
175°C and (b) its sign network representation.
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flows are constructed in an oblique-angled line raster
with the help of an automated microphotometer. The
ensemble of realizations of quasi-stochastic flows is
formed by 4 × 4 cross sections separated from one
another by 40 nm; this enabled us to assume that this
raster is formed by independent cross sections. The
total sampling size for reference annealing times of 35,
55, and 70 min was 207, 186, and 217 readings, respec-
tively. We fixed the points of intersection of the scan-
ning lines and the sign network and then measured the
distance between neighboring intersections.

(1) Let us consider the probabilistic formalism of
the description of stochastic flows. The statistical anal-
ysis of NBIF will be based on the theory of stochastic
flows [14, 15]. As is usually the case in probability the-
ory [27], it is natural to introduce the integral [F(x)] and
differential [ f(x)] probability distribution functions, in
terms of which the so-called reliability function is
defined as [14] 

(1)

where R(0) = 1 and R(∞) = 0. Obviously, f(x) = –R'(x).
In our problem, the reliability is the probability of
occurrence of an additional event consisting in move-
ment along the scanning line over the mesh without
encountering the next network boundary. Another use-
ful characteristic is the entropy functional, which is
defined as

(2)

where it is assumed that α > 0 and β > 0 (α = β = 1 in
our case). Obviously, H11[ f(x)] has the properties of
entropy [28]; namely, it is a nondecreasing, monotonic,
and convex function approaching its asymptotic form.
For small values of the argument (zero-asymptotic
form), it is convenient to introduce the derivative of the
entropy with respect to the spatial size,

 = rH(x), which determines the sto-

chasticity radius.
In an elementary statistical analysis, at the initial

stage, the moments of empirical distributions (µ and σ2

are the first and second moments) are normally used.
The kinetic dependences of these moments are the main
characteristics of structural relaxation. We can also
construct an analog of the phase space or correlation
field [29, 30]. Another useful characteristic is the ratio
µ/σ(tT), which is especially convenient for studying
modulated processes and structures. This quantity char-
acterizes the width of the size distribution of inhomoge-
neities.

(2) The next level of a statistical analysis of stochas-
tic flows involves identification of the one-dimensional
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----------------------------
x 0≈
PH
flow statistics. In the { [R–1(x)]; } coordi-
nates, the plots become linear for empirical statistics,
which indicates that the distributions under investiga-
tion belong to the Weibull class: 

(3)

where λ is the scale parameter. The main parameter of
the Weibull statistics (W statistics) is the exponent α =

, which characterizes the dimensionality

of the inhomogeneity (or mesh-size) space [31, 32].
Modern mathematical statistics [33] makes it possi-

ble to solve the identification problem for the distribu-
tion function in the m-alternative version. For this pur-
pose, we must consider the space of empirical statistics
and introduce a certain probabilistic or information dis-
tance and (if possible) a metric into this space [28, 33].
Then, the corresponding criteria for the verification of
hypotheses which solve the problem of statistics classi-
fication are formulated [11]. The adequacy criterion is
based on the closeness of the linear approximation in
the above-indicated coordinates. If we manage to iden-
tify the class of statistics at the corresponding confi-
dence level, we can further use the standard moments
method of parametrization of the W statistics [11, 27].

(3) A higher level of statistical treatment of NBIF
corresponds to correlation analysis of the stochastic
flows [14, 16, 29, 30]. Stochastic flows are treated in
terms of amplitudes, and the sign interpolation is con-
structed. The obtained NBIF realizations are subjected
to correlation analysis. Subsequently, the autocorrelo-
grams themselves are subjected to consecutive adaptive
Hilbert filtration (CAHF) [7, 10, 16]. The obtained
spectrum of the NBIF correlation function zeros is the
final result of the processing.

3. RESULTS AND DISCUSSION

(1) In the statistical kinetics of processes of struc-
tural relaxation of AFs, the establishment of depen-
dences at the level of first and second moments of the
NBIF empirical distribution is a simple procedure
(Fig. 2a). In order to identify the mesostructural relax-
ation of the network structure of an AF, it is convenient
to go over to the reduced µ/σ(tT) representation
(Fig. 2b) of the (µ, σ) phase plane (Fig. 2d). The sto-
chasticity radius rH(tT) is shown in Fig. 2c. The results
of statistical analysis (Figs. 2a, 2b) will be considered
simultaneously. At tT <  ~ 1 h (T = 175°C), the one-
dimensional distribution is slightly displaced into the
long-wavelength (LW) region; the variance of the NBIF
distribution does not change in this case. This is the
effect produced by the low-temperature isothermal
annealing on the network mesostructures of Co–Ni–P
AFs at the first stage, which preserves the electron halo
diffraction pattern typical of the amorphous state [4, 5,
10]. From the point of view of a mesostructural network

Hlog xlog

f x( ) αλ xα 1– λ xα–{ } ,exp=

d H R x( )[ ]log
d xlog

---------------------------------
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level, the meshes slightly grow (by 13% on the average)
at the first stage of low-temperature annealing but the
degree of stochasticity remains unchanged. The dis-
placement of the global mode towards the LW region is
comparatively small, because the network, which is an
integral object of the system, suppresses the processes
of mesh-size differentiation. Figure 2c confirms our
interpretation, because rH(tT) ≅  8 nm remains com-
pletely unchanged. The first stage of low-temperature
annealing does not change the degree of ordering, i.e.,
the stochasticity of the network hierarchy [34]. The
meshes have grown only slightly on the average, and
the network mesostructure has not been destroyed.

Let us now consider the second stage of low-temper-
ature annealing at the same level of description. Appar-
ently, the mechanisms of network kinetics change for
tT ≥  ~ 1 h at T = 175°C. The results (Figs. 2a, 2b, 2d)
indicate that the one-dimensional NBIF distribution
function is now displaced towards the short-wavelength
(SW) region and |∆σ| ~ 20%. The NBIF distribution is
displaced to the SW region and becomes narrower: its
variance decreases considerably. An important feature
of this annealing stage is that the translation of the
NBIF distribution to the SW region is isomorphous.
The integrity of the network system and the amorphous
nature of the halo diffraction pattern are preserved in
this case [5, 10].

The correlation field (Fig. 2d) is characterized on
the average by a linear regression, but its fine structure
also displays the two-stage mode of annealing of Co–
Ni–P AFs. The first stage indicates that the NBIF distri-
bution is displaced to the LW region and the correlation
field is slightly blurred. The second stage is character-
ized by a hard linear regression with a synchronous
decrease in moments µ and σ2. This stage of thermal
kinetics obeys the similarity principle [22, 24].

The network structure of a Co–Ni–P AF subjected to
low-temperature annealing behaves concertedly (coop-
eratively), its organization being not only preserved but
even improved (Figs. 2c, 2d). This is a purely syner-
getic effect [31, 32, 35].

(2) The central aspect in problems of statistical
kinetics of mesostructural relaxation in AFs is the iden-
tification of the analytical form of the one-dimensional
distribution function over empirical data. We solved the
multialternative problem of identification of the NBIF
distribution function by proposing four feasible statis-
tics classes (Norm, χ, Γ, and Weibull). For this purpose,
a space of statistics was formed into which information
or divergence measures of closeness (similarity) were
introduced [10, 11, 16, 33]. In these terms, the criteria
for verifying statistical hypotheses in the m-alternative
situation were formulated [33]. As in [11], we had to
disregard the Norm, χ, and Γ hypotheses. It was found
that the W distribution in Eq. (3) is the closest to the
empirical statistics [11, 32]. Figure 3 presents the lin-
earized dependence of the NBIF statistics in the

tT*
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{ , [R–1(x)]} coordinates, where H[R–1(x)] =
 and R(x) is the reliability defined by Eq. (1).

The two-component nature of the W statistics can be
seen clearly in Fig. 3: two different (SW and LW) spa-
tial scales are well pronounced. The kink between the
two W-components corresponds to the region of the
global mode in the empirical distributions (Fig. 3) that
forms a 63% quantile (λ* ≤ 5 nm). The SW range cor-
responds to a stochastic wave structure (SWS) with a
modulation labyrinth topology [10, 16]. According to
our estimates [10], SWS corresponds to the region
2 nm ≤ λ ≤ 5.5 nm. The LW scale belongs to conven-
tional network structures (5 nm ≤ λ ≤ 30–40 nm) for the
wavelength range covered in our experiments [7, 9].

In the problems of statistical kinetics (especially in
the flow representation [11, 12, 14, 32]), the space of
sizes (mesh cross sections of the general form) plays
the major role. Histograms as sampling estimates of the
W statistics are strongly asymmetric (Fig. 3); they are
extended on the right-hand side of the global mode and
fall off according to a power (hyperbolic) law with frac-
tional exponents. This is indicative of the long range of
network mesostructures in Co–Ni–P AFs [4, 7, 8, 22,
36].

The parametrization of the W representation in
Eq. (3) was carried out using the moments method [27],
which makes it possible to estimate two parameters (α
and λ). The dimensionality α is defined as the deriva-

x( )log Hlog
R x( )log–
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Fig. 2. (a) First two moments of the empirical NBIF statis-
tics [the mathematical expectation µ(tT) and the standard
deviation σ(tT) of a Co–Ni–P amorphous film subjected to
isothermal annealing (T = 175°C)]; (b) kinetic dependence
of the normalized first moment; (c) kinetic dependence of
the stochasticity radius of the NBIF statistics entropy as a
function of the upper limit, and (d) the correlation field of
the NBIF statistics at the level of the first two moments.
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Fig. 3. Linearized Weibull statistics in the log–log coordinates for the one-dimensional NBIF statistics of Co–Ni–P amorphous
films: (a–c) Weibull statistics for three different values of the annealing time tT = 35, 55, and 70 min, respectively. Histograms of
the distributions of network boundary intersections are given for the same values of the annealing parameters.
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tive of the logarithm of the NBIF reliability entropy in
the R(q) space of inhomogeneities (the sizes of mesh
cross sections). The ratio of the entropy action to the
geometrical entropy for the size space is the fractal
dimension in itself [35–38]. This is precisely the theo-
retical informative meaning of the parameter α for the
W statistics in Eq. (3) [11, 31].

Figure 4 illustrates the thermal kinetics of the
dimension α for each component of the network struc-
ture. The LW component is a weak linear function of tT

and αLW(tT) ~ 1 on the average, while the SW compo-
nent is characterized by a much higher dimension:
2.3 ≤ αSW(tT) ≤ 3.1, the peak being attained for  ~ 1 h
as in the (µ, σ) approximation.

(3) A deeper level of statistical kinetic investigation
corresponds to a spectral or correlation representation
[16, 29, 30, 32]. One of the selected NBIF correlation
functions is presented in Fig. 5a. As usual, the stochas-
tic component prevails in the zero-asymptotic form
(Fig. 5b), while the oscillatory component is mani-

tT*
PH
fested for large spatial displacements [29, 30]. The
operation that separates these components is known as
filtration [10, 16, 29, 30, 39] and will be used by us here
not for flow realizations but for the correlation func-
tions. The stochastic NBIF component in the correla-
tion function (Fig. 5b) is nearly linear: it exhibits a
weak quadratic dependence. Usually, the correlation
radius of spatial stochasticity is introduced; its kinetic
dependence rcor(tT) is shown in Fig. 5c. It can be seen
from this figure that in the case of 30-min isothermal
annealing (T = 175°C), rcor(tT ≅  30 min) = 20 nm; this is
followed by a clearly manifested minimum for rcor(tT ~
1 h) = 13 nm and then by an insignificant increase in the

value of rcor. It can be concluded that  ~ 1 h is the
characteristic time over which the extent of ordering
[34] of the network mesostructure of Co–Ni–P AFs
increases. Figures 6a–6c display the spectra of the cor-
relation function zeros for the annealing times indi-
cated above after the CAHF procedure [10, 13, 16, 39].

tT*
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It is convenient to carry out the subsequent analysis
using the entropy functionals [28] of the zero spectrum.
Figure 6 shows the estimates of the entropy functionals
[28] for the three annealing times indicated above in the
case when the components are not separated, as well as
for the high-frequency and low-frequency components.
It can be seen that the behavior of the entropy in the
case with unseparated components has a minimum at
tT ~ 1 h. The structural relaxation over the zero spec-
trum apparently improves the organization of the net-
work hierarchy on the whole over such periods of time
at T = 175°C [32]. The application of CAHF consider-
ably enhances the difference between the components.
The entropy has a clearly manifested minimum on the
SW scale in the range of tT ≤ 1 h, while on the LW scale
of network kinetics, the entropy increases monotoni-
cally, remaining, on the average, close to the value cor-
responding to a uniform distribution [29, 30]. This
means that the first stage of low-temperature isothermal
annealing facilitates the formation of a higher degree of
ordering only on the SW scale. The LW components
possess a stable white-spectral disorder at both anneal-
ing stages [29, 30, 34]. It can be stated that the con-
ditions of isothermal annealing chosen by us for
Co−Ni–P AFs lead to uniform (on the average) size
spectra, which emphasize the conservative nature of the
LW range of the network hierarchy in structural relax-
ation processes. The estimates indicative of the white
spectrum [34] for LW-scale networks rule out the sub-
sequent evolution of such networks. In fact, strongly
frustrated network structures were obtained even dur-
ing the preparation of Co–Ni–P AFs.

In our research, we can single out three main results
which significantly change the classical concepts of
structural relaxation processes in amorphous media
[20]. Usually, the concept of the relaxation time spec-
trum is employed, which naturally presumes exponen-
tial dependences, for example, for the diffusion coeffi-
cient in amorphous media. In [20, Chapter 24], the role
of diffusion in amorphous media is considered and the
generally accepted idea of the “corresponding forms of
cooperative motion of a group of neighboring atoms” is
formulated. On the basis of the data presented in [20,
Table 24.1], Savchuk [12] constructed a correlation
dependence between the preexponential factor D0 =
exp(S0/k) and the activation energy Q. It turns out that
linear regression holds at a sufficiently high confidence
level. This means that diffusion-controlled structural
relaxation processes have the invariant S0/kQ = inv,
indicating a certain thermodynamic similarity [22, 24].
The residual configurational entropy of glasses is con-
sidered in [40]. The problem of the preexponential fac-
tor, which varies, according to Cantor and Cahn [20],
over 20 orders of magnitude, is also worth mentioning.
The amorphous state which is obtained using various
nonstationary techniques (e.g., fast cooling) is strongly
degenerate in the configuration space of atomic clusters
of various dimensionalities [22, 31, 40]. The entropy
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
invariant indicates that the structure of the configura-
tional space possesses a fractal property [31, 35, 38]. In
one of our results on the classification of NBIF statis-
tics, precisely the Weibull statistics was identified. This
statistics is a more general version of the exponential
distribution and is known as the Kohlrausch–Williams–
Watts distribution [36]. Even this result shows that the
early stages of structural relaxation processes in AFs
are characterized by a certain long-range interaction [4,
10]. In all probability, the concept of the relaxation time
spectrum in this case has to be extended to cover time
scales that correspond to various spatial scales [4, 6].
According to [35, 36, 38], fractality is estimated from
different types of dimensionality, among which correla-
tion information dimensionalities play a certain role. In
our case [11, 31], such characteristics are α dimension-
alities for separated scales of LW and SW mesostruc-
tures (Fig. 4). Thus, the structural relaxation in AFs in
the initial mild form should be attributed to fractal
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Fig. 4. Kinetic dependences of the dimensionalities αSW, LW
for Weibull statistics on two spatial scales (2–5 nm for the
SW scale and 5–40 nm for LW) of the network structures of
Co–Ni–P amorphous films.
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kinetic processes. Structural relaxation occurs simulta-
neously on the SW and LW scales in spaces with differ-
ent dimensionalities. From this point of view, destruc-
tion and amorphization should be regarded as processes
occurring in spaces with continuously varying dimen-
sionality [22, 35]. Another specific feature of thermal
structural relaxation in Co–Ni–P AFs on the mesos-
copic scale is the emergence of ordering in the SWS at
least at the early stages of structural evolution in AFs
(Figs. 2, 5c, 6). This is a typically synergetic feature
[35, 38], indicating that structural relaxation is not
merely the process of transition to the equilibrium state
[22]. In this respect, the concept of space–time evolu-
tion [22] is more appropriate to the kinetic description.
This evolution is not confined to the degradation branch
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ferent annealing times: tT = (a) 35, (b) 55, and (c) 70 min.
HΣ, HSW, and HLW are the total entropy without separation
of components and the entropies of the correlation function
zeros for the SW and LW scales, respectively.
PH
in the structural morphology. Finally, it should be
emphasized that the synergetic nature of structural evo-
lution is manifested only on the mesoscopic level,
while physical kinetics on the atomic level remains tra-
ditional (Brownian movement, diffusion, etc.).

Thus, the network relaxation of Co–Ni–P AFs under
thermal actions used by us is structurally selective on
various scales of spatial inhomogeneities [10, 13, 16,
32]. An amorphous film is, on the whole, a system that
is stable to thermal effects up until the entropy of zeros
of the correlation function attains the value Hmax ~ 0.9.
It should also be noted that mesostructures on SW
scales are more dynamic, which ensures a compara-
tively high thermal stability. The network structures of
the Co–Ni–P AFs under investigation form a hierarchic
system in which interaction between its different levels
may be a source of AF stability [6, 10, 12, 13, 16, 32].
This result leads to the hypothesis that the evolution of
a Co–Ni–P amorphous film without disruption of its
amorphous structure and macroscopic continuity
occurs as long as the film can compensate for the
changes on the SWS level. When the zero spectrum
attains the entropy maximum on the SW scale and,
accordingly, the entropy of the LW component attains
its maximum value, the degradation processes associ-
ated with the disruption of the amorphous structure and
macroscopic continuity of the AF start to dominate in
the medium on the whole [6–10, 16, 32]. If low-entropy
network structures could be obtained using the corre-
sponding technology of obtaining AFs with a mature
hierarchy of networks, the stability of such AFs would
be quite high on the macroscopic level. Such AFs with
low-entropy networks would also be stabler against the
effects of nonthermal origin.

4. CONCLUSIONS

We can now formulate the following conclusions.
(1) The kinetics of the network structure of a Co–

Ni–P AF subjected to low-temperature isothermal
annealing at T = 175°C at the level of the first and sec-
ond moments of the NBIF distribution function indi-
cates that the network is adaptable and that its organi-
zation does not deteriorate but actually improves. The
process of structural relaxation can be divided into two
stages even from an analysis of the behavior of µ and σ.
For tT ~  ~ 1 h, the network meshes slightly grow;
their size distribution is slightly displaced towards
larger sizes, but the variance remains virtually
unchanged. The second stage is characterized by a con-
certed decrease in µ and σ, which ensures isomorphic
translation of the NBIF distribution to the SW region.

(2) It was found that the network structure of a
Co−Ni–P AF has SW and LW components belonging to
the reciprocal R(q) space with completely different
dimensionalities. The DW component of the network
structure is a weak function of tT, while the exponent
αLW(tT) ~ 1 on the average. On the other hand, the SW

tT*
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component is characterized by a much higher dimen-
sionality, 2.3 ≤ αSW(tT) ≤ 3.1, the exponent α being
maximum for an annealing time of ~1 h.

(3) The stochastic components of the NBIF correla-
tion functions of network mesodefects in a Co–Ni–P
AF have a weak nonlinearity in the region of 3–20 nm.
The kinetic dependence of the correlation radius of the
stochastic component in the vicinity of tT ~ 1 h also has
a minimum (~13 nm). This indicates a reduction of the
stochasticity region in the relaxed amorphous state.

(4) An AF should be regarded at the mesoscopic
level as a hierarchic system whose spatial levels (LW
and SW components) exhibit completely different
behavior in structural relaxation processes. It was
noted, for example, that Co–Ni–P AFs have stable
amorphous ordering on the atomic scale (halo diffrac-
tion patterns) for the annealing parameters at hand.
Such an amorphous stability can be ensured only by the
ordering of the network hierarchy on the mesoscopic
level.

(5) The results of physical and numerical experi-
ments proved that the network component of the system
of mesodefects in an AF exhibit a white spectrum of the
correlation function zeros. Obviously, structural inho-
mogeneities cannot evolve in the structural relaxation
processes in any other statistics of stationary states in
view of the equal probabilities of zero spectra. The
equally probable distribution in the zero spectrum of
the correlation function only becomes more dominant
during annealing. Thus, the structure at the network
level (10–60 nm) cannot compensate for the changes
that occur during dissipative processes, because it has
exhausted its potentialities at the stage of preparation of
the Co–Ni–P AF.

(6) The SWS component (2–5 nm) manifests itself
in a completely different way in the process of struc-
tural relaxation of the amorphous state. It is character-
ized by a narrow distribution with a low entropy of the
zero spectrum. However, the main point here is that the
SW component even experiences ordering for tT ≤ 1 h,
which gradually dissipates at later stages. In our opin-
ion, it is the SWS level that preserves, to a certain
extent, the amorphous disorder on the atomic scale.
Until the zero spectrum of the correlation function of
subnetworks becomes white on the whole, the entire
film will preserve its amorphous state.
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Abstract—Interaction between a point defect and an edge dislocation is studied in the framework of the gra-
dient theory of elasticity. The change in the energy of the system caused by a displacement of the point defect
relative to the dislocation line is calculated. The results of the theoretical analysis are used to describe edge dis-
location pinning by impurity atoms. © 2001 MAIK “Nauka/Interperiodica”.
According to the classical theory of elasticity, the
interaction potential of an impurity atom with an edge
dislocation has the form [1, 2]

(1)

where r and θ are the polar coordinates (0 ≤ θ ≤ 2π), µ
is the shear modulus, ν is Poisson’s ratio, b is the mag-
nitude of the Burgers vector of the dislocation, and δv
is the crystal volume change introduced by the impurity
atom. If δv  > 0 (the impurity atom increases the crystal
volume), then the potential V is positive for π ≤ θ ≤ 2π.
In this case, the impurity atom is attracted to the dislo-
cation region in which the dilatation is positive. In order
to get rid of the divergence of the potential V at r  0,
it is usually assumed that the dislocation has a core a
few interatomic distances in diameter. The contribution
from the cores to the elastic energy in the vicinity of
dislocations (for reasonable values of their density) is
no more than 10%. Such models are adequate for use in
solving various problems in solid state physics. It is
inviting to apply the gradient theory of elasticity (GTE)
to calculating the stress fields of structural imperfec-
tions. In the framework of this theory, simple expres-
sions having clear physical interpretations have been
derived for the stress fields of some structural defects
[3–5]. The virtue of these expressions is that they have
no singularities at the dislocation lines. The interaction
potential between an impurity atom and a crystal
imperfection also changes. Therefore, it is interesting to
investigate how the modified interaction potential will
affect the pinning of an edge dislocation by impurity
atoms.

Using the stress tensor of an edge dislocation
derived in the GTE [3–5], we can easily find the inter-

V β θsin
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--------------------------------,= =
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action potential:

(2)

where K1(x) is the modified first-order Bessel function

of the second kind and  is the gradient coefficient.
The value of this coefficient is chosen using physical

arguments; for example, for an edge dislocation,  ≈

, where a is the lattice parameter. At r  0,

K1    and, therefore, the potential V has no

singularity at the origin. Mathematically, one should
find a function which tends to 1/r as r  0 and van-
ishes at infinity; in this case, the potential V will not be
singular as r  0. The virtue of the modified interac-
tion potential is that the function mentioned above is
derived in the GTE (which takes into account the sec-
ond derivatives of the strain tensor in Hooke’s law). It
is necessary to stress that the model in which the inter-
action between an impurity atom and an edge disloca-
tion is described in terms of the GTE does not involve
the atomic crystal structure; the crystal is considered to
be a continuum, a dislocation is represented as a dislo-
cation line, and point defects (substitutional or intersti-
tial impurity atoms) are treated as dilatation centers.
This model consistently describes the interaction of
impurity atoms with an edge dislocation in the region

0 ≤ r ≤ . Microscopic models based on the crystal lat-

tice theory have nothing to do with this approach and
will not be discussed here.
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Let a point defect be situated below the extra plane

of an edge dislocation . In this case, the

dimensionless interaction potential is given by (for an
arbitrary value of the gradient coefficient)

(3)

The point at which the potential  has a maxi-

mum is given by a root to the transcendental equation:

(4)

where K0(x) and K1(x) are modified zero- and first-order
Bessel functions of the second kind, respectively; these
functions are tabulated in [6]. The root x0 of Eq. (4) is

roughly equal to 1.115. If  = , the V has a maxi-

mum at  ≈ 0.278 and, therefore, the energy of the dis-

location–point defect system is minimum. As the point
defect is displaced toward or away from the dislocation,
the energy of the system increases. Its increase (per unit
length) due to a displacement of the point defect from
its equilibrium position is given by

(5)

Here, L indicates that the energy increase relates to a
unit length along the dislocation line. If x > x0, the
energy of the system is increased and the point defect
experiences a force directed toward its equilibrium
position. In the case of x < x0, the increase in energy and
the restoring force are greater (for the same displace-
ment of the defect). Mathematically, this occurs
because the behavior of the Bessel function is different
at large and small values of the argument. For x > x0, the
function K1(x) falls off exponentially and tends to zero

at infinity, whereas for x < x0, K1(x)  . In both

cases (x  0 and x  ∞), the overall increase in the

energy of the system is the same and equals  – K1(x0).

However, the rate of increase in energy is different in
these two limiting cases. Therefore, the restoring-force
field is also asymmetric relative to the equilibrium posi-
tion of the point defect near a dislocation line; more
specifically, the point defect situated in the equilibrium
position is much easier to move away from the disloca-
tion than toward it. The restoring force acting on the
point defect can be found as the derivative of the energy
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of the system (per unit length) with respect to the defect
displacement:

(6)

At x = x0, this expression vanishes, because x0 is a solu-
tion to the transcendental equation (4). It can be shown

that  passes through a maximum as x increases

from x0 to ∞ but  increases indefinitely as x

decreases from x0 to zero, because K0(x) has a logarith-
mic singularity at x  0. Therefore, the point defect
can be moved away from the dislocation line (if one
applies a force strong enough to overcome the maxi-
mum restoring force), but it cannot be moved up to the
dislocation line because the restoring force increases
indefinitely (by a logarithmic law) as x  0. These
results were obtained using the GTE to calculate the
stress field of the edge dislocation. The distance x0 cor-
responds to the energy parameter of the dislocation
core in the classical elasticity theory, which lies in the
range between b/3 and b/4 (b is the magnitude of the
dislocation Burgers vector) [7]. In the core, the binding
energy between the point defect and the dislocation is
significantly smaller than its maximum value. There-
fore, point defects will move to the region of maximum
interaction potential.

The expressions derived are illustrated in Fig. 1. The
mutual arrangement of the point defect and the edge
dislocation is shown in Fig. 1a. This configuration cor-
responds to the maximum value of the interaction
potential (Fig. 1b). The dashed curve in Fig. 1b is the
interaction potential in the classical elasticity theory
(which corresponds to Eq. (3) with the function K1(x)
discarded). It is seen that both dependences in Fig. 1b
coincide for x > 4; this is because the Bessel functions
exponentially decrease as their argument becomes
large. A different situation takes place for small values
of the dimensionless distance. As r  0, the interac-
tion potential tends to zero in the GTE but increases
indefinitely in the classical theory. The energy of the
system as a function of the position of the point defect
is shown in Fig. 1c. This energy tends to the same value
as x  0 and x  ∞, so that the curve is asymmetric
relative to the equilibrium position of the point defect.
The variation of the restoring force acting on the defect
is shown in Fig. 1d. The curve in Fig. 1d is highly asym-
metric relative to the point x = x0, and its behavior is
qualitatively different in the regions x > x0 and x < x0. In
the region x > x0, the restoring force passes through a
maximum, which corresponds to the inflection point on
the curve of the energy of the system. In the range x <
x0, there is no maximum and the restoring force
increases indefinitely as x  0. The restoring force in
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the region x > x0reaches its maximum value at  ≈ 2.4,

whereas in the region x < x0, it reaches the same value

at  ≈ 0.85. Therefore, a small displacement of the

point defect from its equilibrium position toward the
dislocation line is sufficient for the restoring force to
become as large as its maximum value in the range x >
x0. This means that point defects cannot reach a dislo-
cation line, because interaction with it will drive them
back to their equilibrium positions. It is reasonable to
suggest that clusters of impurity atoms will be arranged
in the region x ≥ x0 near an edge dislocation. Thus, the
GTE supports the validity of the physical model of an
edge dislocation with a core a few interatomic distances
in diameter, which allows one to get rid of the singular-
ity in the interaction potential. This model has been
used to investigate edge dislocation pinning by an
impurity atmosphere [8, 9].
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Fig. 1. Interaction between an edge dislocation and a point
defect in the gradient theory of elasticity: (a) the mutual
arrangement of the point defect and the edge dislocation, (b)
the interaction potential between the point defect and the
edge dislocation, (c) the dependence of the energy of the
system on the point defect position, and (d) the restoring
force acting on the point defect.
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Now, we consider pinning of an edge dislocation by
impurity atoms in the framework of the GTE. An impu-
rity atom (point defect) is assumed to be in its equilib-
rium position below the extra plane of an edge disloca-
tion (Fig. 2a). If the dislocation moves, but the point
defect is at rest, the energy of the system will increase.
Its increase (per unit length) as a function of the dimen-
sionless dislocation displacement is given by

(7)

where ρ = , |sinθ| = 1, |sinϕ| = , and x0 =

. Using simple algebra, we obtain

(8)

The dependence of the dimensionless energy of the
system on the displacement of the edge dislocation is
shown in Fig. 2b. At the initial point, the defect was in
equilibrium at the distance x0 from the dislocation. As
the dislocation moves, with the point defect being at
rest, a restoring force will act on it. Therefore, the point
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Fig. 2. Edge dislocation pinning by a point defect:
(a) mutual arrangement of the point defect and the disloca-
tion displaced from its equilibrium position, (b) energy of
the system as a function of the dislocation displacement,
and (c) pinning force exerted on the edge dislocation by the
point defect; (1) is the gradient theory of elasticity and (2) is
the classical elasticity theory.
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defect pins the edge dislocation. The pinning force
equals the derivative of the energy of the system (per
unit length) with respect to the dislocation displace-
ment:

(9)

This dependence is shown in Fig. 2c. For compari-
son, Figs. 2b and 2c (dashed lines) show the corre-
sponding dependences given in accordance with the
classical elasticity theory [Eqs. (8), (9) without the
terms involving the Bessel functions]. It is seen that the
curves differ quantitatively rather than qualitatively.
This is also obvious from Eqs. (8) and (9). In the GTE,
the increase in energy with dislocation displacement
and the strength of dislocation pinning by an impurity
atom are smaller than those in the classical elasticity
theory. Therefore, the analysis of edge dislocation pin-
ning by an impurity atom in terms of the GTE does not
yield fundamentally new results. In essence, applica-
tion of the GTE to the description of an edge disloca-
tion is equivalent to the assumption that the dislocation
has a core whose characteristic diameter depends on the
gradient coefficient. This conclusion can be drawn
immediately from the main result of the analysis per-
formed in this paper: a point defect cannot make a close
approach to a dislocation line, because the repulsive
force increases indefinitely. For this reason, point
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defects are situated, as a rule, at a distance from a dis-
location line (in their equilibrium positions). This dis-
tance corresponds to the energy parameter of the edge
dislocation core in the classical elasticity theory.
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Abstract—A study is reported on the effect of ultrasound vibrations of an approximate frequency of 100 kHz
on the radiation-induced luminescence generated in pyrolytic boron nitride by proton irradiation (8 MeV
energy, 1.6 × 1012 p/cm2 s flux). The influence of ultrasound vibrations manifests itself at large strain amplitudes
(~10–4), where nonlinear, amplitude-dependent absorption of ultrasound is observed to occur. The data obtained
are assigned to a radiation-induced change in the recrystallization kinetics, where low-angle boundaries disap-
pear (radiation annealing). © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Radiation-induced luminescence (RIL) of ceramic
dielectric materials is generated as a result of the relax-
ation of carriers formed by radiation in the conduction
band. This results, as shown in [1, 2], in selective stim-
ulation of diffusion at grain boundaries. The free elec-
trons and holes produced under irradiation relax at
structural defects (grain boundaries), thus increasing
the diffusion hopping frequency of a lattice atom and an
impurity atom by

(1)

where ν0 is the natural atomic vibration frequency
(~1013 s); n is the number of atom excitation events at a
boundary per unit time or, in other words, the relaxation
frequency of the radiation-produced carriers (this quan-
tity is directly proportional to the irradiation dose rate

); and τ is the characteristic atomic-vibration ther-
malization time (10–11–10–12 s). This was verified for
the case of partial recrystallization of pyrolytic boron
nitride observed to occur under proton irradiation [2].

Pyrolytic boron nitride (BN) prepared through
chemical vapor deposition is characterized by a well-
developed system of grain boundaries [3, 4]. Aggre-
gates up to 2000 nm in size are present and made up of
grains with dimensions R ~ 120–180 nm and with wide
boundaries. Inside the grains, there is a network of
small cells with narrow boundaries (weakly misori-
ented crystallites) r ~ 20–40 nm in size. Irradiation with
protons at a dose rate of ~104 Gy/s (8 MeV energy, 3 ×
1012 p/cm2 s flux level) gives rise to partial recrystalli-
zation, which involves the disappearance of the net-
work of small cells representing low-angle boundaries.
The frequency of diffusion hopping given by Eq. (1)

∆ν ν0nτ ,=

Ḋ

1063-7834/01/4311- $21.00 © 22087
was shown [2] to correspond to effective temperatures
of 1450–1540 K. It is in this temperature interval that
boron nitride-based materials recrystallize.

As pointed out in [2], the kinetics of radiation-
induced BN recrystallization can be studied directly in
the course of irradiation using the RIL method. This is
made possible by the fact that the luminescence centers
in materials based on graphitelike boron nitride form a
quasi-continuous band in the band gap and are local-
ized at low-angle boundaries [5]. As the irradiation
dose increases, the RIL intensity undergoes an irrevers-
ible decrease caused by the decreasing density of the
low-angle boundaries.

It is known, however, that radiation-induced
changes in the microstructure can also affect other
properties of materials, including acoustic properties.
Such parameters as the elastic-vibration decrement and
the elastic modulus measured in an acoustic experiment
may increase noticeably or decrease with changing
microstructure of the sample. The present study made
use of an experimental technique based on simulta-
neous measurement of the RIL intensity and of the
acoustomechanical properties (Young’s modulus and
the acoustic vibration decrement) of pyrolytic BN in
the course of proton irradiation at different strain
amplitudes. The experiment was motivated by the fact
that large-amplitude ultrasound vibrations can notice-
ably affect recrystallization kinetics under conditions
where the external vibrational load is comparable to the
internal stress, whose level is known to depend on the
presence of various defects, including grain bound-
aries, in the material.

The study was aimed primarily at revealing specific
features in the recrystallization kinetics of boron nitride
001 MAIK “Nauka/Interperiodica”
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acted upon simultaneously by proton irradiation and an
oscillating mechanical load.

2. EXPERIMENTAL

This study was made on samples of pyrolytic boron
nitride measuring 15 × 3 × 0.5 mm with a total impurity
content of no more than 5 × 10–3 wt %. The irradiation
was accomplished using protons (8 MeV energy, flux
level up to 1.6 × 1012 p/cm2 s, dose rate up to 3 ×
104 Gy/s) on an ÉGP-10M accelerator (RF SRC, PPI,
Obninsk). The experiments were carried out in air
under atmospheric pressure.

A resonant composite piezoelectric-oscillator tech-
nique was employed to measure the acoustomechanical
properties (Young’s modulus and the acoustical vibra-
tion decrement) and to produce an ultrasound strain in
the sample. A quartz transducer was used to excite and
gauge ultrasound vibrations in the sample under study.
Boron nitride samples shaped as rectangular plates
were pasted onto a transducer connected to a measuring
circuit. The sample and the transducer make up a com-
posite oscillator in which a standing acoustic wave is
excited. The principle of operation of the composite
oscillator and the block diagram of the setup are
described in detail in [6]. The automated setup allows
prompt and high-precision measurement of the reso-
nant frequency and decrement of the composite oscilla-
tor. Knowing these parameters, the resonant frequency
and the decrement of the quartz transducer, one can
readily calculate Young’s modulus E and the decrement
δ of acoustic vibrations of the sample under study. The
relevant relations can be found in [6].

The RIL kinetics was measured at a wavelength of
400 nm, which corresponds to the maximum of the RIL
intensity in boron nitride [2]. A proton beam 1 cm in
diameter hit the sample center at the standing-wave
antinode (the amplitude maximum). The luminescence
was focused by a condenser lens onto the entrance slit
of a monochromator and was detected by a PM tube.
The RIL and acoustic characteristics were measured at
1 s intervals during the whole experiment. A new sam-
ple was used in each measurement at a given amplitude,
because irradiation changed the sample structure irre-
versibly. The measurements were performed at fixed (to
within 2%) relative strain amplitudes ranging from 10−6

to 2.5 × 10–4.

3. RESULTS OF THE MEASUREMENTS 
AND DISCUSSION

Figure 1 presents, as an illustrated example, the
variation of the RIL intensity, vibration decrement δ,
and Young’s modulus E with time obtained for one of
the BN samples in the course of irradiation. During the
first ~100 s of irradiation, the Young’s modulus and the
acoustic vibration decrement are seen to change sub-
stantially. This is due primarily to the increase in sam-
PH
ple temperature. Estimates of the temperature under
proton irradiation based on the energy dissipation of
~1 W/cm2, as well as temperature measurements made
with attached thermocouples, showed that the sample
temperature can increase up to 200°C. However, even
after the temperature has stabilized, one observes, as a
rule, a further smooth increase in the Young’s modulus
and a noticeable decrease in the acoustic vibration dec-
rement. As the irradiation dose is increased, the RIL
intensity also decreases irreversibly; this was men-
tioned previously.

Similar measurements were performed at various
strain amplitudes ε: 10–6, 2 × 10–6, 5 × 10–5, and 2.5 ×
10–4. An increase in ε entails, as a rule, an increase in
the modulus and in the decrement variation rate. This is
illustrated in Fig. 2, which presents, graphically, the rel-
ative variation of E and δ with increasing irradiation
dose. The reference points E0 and δ0 are the values of
the sample modulus and decrement at the start of the
irradiation. As ε exceeds 5 × 10–5, the slope of the
curves measured at doses above 2 × 1015 p/cm2 is seen
to increase noticeably. At large ε, the rate of RIL inten-
sity variation is also seen to increase. The properly
treated RIL data are presented in Fig. 3.

The growth of the variation rate of the modulus and
acoustic vibration decrement and the corresponding
growth of the luminescence decay rate with increasing
strain amplitude can apparently be related to the effect
of acoustic vibrations on the rate of radiation-induced
recrystallization. This effect can be caused by two fac-
tors. First, absorption of the acoustic vibration energy
by structural defects (for instance, by grain boundaries)
can increase atomic mobility and boundary migration
velocity (similar to the selective increase in atomic dif-
fusion initiated by the electron–hole relaxation of radi-
ation-induced carriers at the boundaries). Second,
strain is known to substantially affect the thermody-
namic potential of grain boundaries, so that the recrys-
tallization rate may grow under the application of an
external load, i.e., as a result of an increasing driving
force of recrystallization.

As for the first effect, a noticeable increase in the
boundary mobility (compared to the radiation-induced
process) can occur only in the case where the acoustic
vibration energy dissipated in the volume of a boron
nitride sample is comparable to the ionizing contribu-
tion of the proton irradiation. The specific absorbed
energy of mechanical vibrations (per unit mass and unit
time) is given by the expression

(2)

where ν is the vibration frequency (105 Hz), l is the
sample length (~10–2 m), δ is the acoustic vibration dec-
rement (~10–3), and ε is the strain amplitude (~10–4).
The value W* ~ 1 Gy/s estimated from Eq. (2) turns out
to be much less than the dose rate ~3 × 103 Gy/s of the
absorbed proton irradiation. A comparison shows that

W* ν2l2δε2,=
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Fig. 1. Evolution of the RIL intensity I, acoustic vibration decrement δ, and Young’s modulus E of boron nitride with time under
proton irradiation (8 MeV energy, dose rate 1.6 × 1012 p/cm2 s) at a relative strain amplitude ε = 2.5 × 10–4.
absorption of the acoustic vibration energy cannot
bring about a noticeable rise in the recrystallization
rate.

The force that drives the recrystallization is appar-
ently the free energy excess associated with the exist-
ence of grain boundaries. The rate of recrystallization,
i.e., the rate of increase in the area S of individual crys-
tallites, is proportional to the surface density of the
boundary energy [7]:

(3)

where ∆Z = Gb, G is the shear modulus, and b is the
Burgers vector.

Equation (3) yields the well-known square root
dependence of grain size variation with time. In the
case of deformation, the external force (load per unit
area) exerted on the boundary is σ = Eε; for the corre-
sponding term added to the surface energy density, we
obtain

(4)

∆Zε is the work expended in displacing the boundary
through a distance R. Thus, in the presence of an exter-

Ṡ ∆Z ,∼

∆Zε EεR.=
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nal load, the recrystallization kinetics is described by
the relation

(5)

If one considers the process of partial recrystalliza-
tion as a decrease in the density of low-angle bound-
aries absorbed by high-angle boundaries of larger
grains, then R in Eq. (5) is the size of the largest grains
inside which the area of small crystallites can be varied
as S ~ r2. Equation (5) can be used to derive a relation
for the RIL intensity I, which is proportional to the den-
sity of grain boundaries (l/r). Because the recrystalliza-
tion rate is proportional to the diffusion hopping fre-

quency of atoms (  ~ ∆ν) and, in accordance with

Eq. (1), to the irradiation dose rate , integration of
Eq. (5) yields the variation of RIL intensity with irradi-
ation dose:

(6)

Equation (6) was derived with due account of the fact
that the RIL intensity is also proportional to the irradi-
ation dose rate. Figure 3 presents the results of the RIL
measurements at different strain amplitudes plotted as

Ṡ Gb EεR+( ).∼

Ṡ

Ḋ

Ḋ
2

I2
------ Gb EεR+( ) Ḋ t.d∫∼
01
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Fig. 2. Relative variations of the acoustic vibration decrement δ and Young’s modulus E under proton irradiation measured at dif-
ferent values of the strain amplitude ε: (1) 1.0 × 10–6, (2) 2.0 × 10–6, (3) 5.0 × 10–5, and (4) 2.5 × 10–4.
( /I)2 – D. The experimental relations are seen to be
linear; this is in agreement with Eq. (6) (except for the
data obtained at ε = 5 × 10–5). At a strain amplitude ε =
2.5 × 10–4, the slope is twice that seen in the absence of
vibrations or at small strain amplitudes. According to
Eq. (6), this increase occurs for ε ~ b/R, which is in
agreement with the parameters of the real BN micro-
structure, for which R ~ 102–103 nm (b ~ 10–1 nm). Our
analysis shows that the effect of acoustic vibrations (the
strain ε or stress σ = Eε) on the kinetics of radiation-
induced recrystallization is indeed related to an

Ḋ

PH
increase in the thermodynamic potential of low-angle
boundaries (provided their mobility is high).

However, the thermodynamic approach cannot take
into account all the conditions under which an external
oscillating mechanical load can affect the radiation-
stimulated recrystallization kinetics. A careful analysis
of the plots in Fig. 3 shows that, contrary to Eq. (6),
there is no proportionality to ε; indeed, the relations
measured at ε = 0, 1.0 × 10–6, and 2.0 × 10–6 are practi-
cally indistinguishable from one another. Moreover, at
ε = 5.0 × 10–5, the relation plotted in the coordinates of
Fig. 3 is nonlinear: the luminescence intensity variation
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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Ḋ

rate is high only at the very beginning of irradiation
(almost as for ε = 2.5 × 10–4); as the dose continues to
increase, it drops to the level corresponding to zero
mechanical load or small strain amplitudes. Only for
ε = 2.5 × 10–4 does the slope of the straight line in Fig. 3
increase by a factor of two, to remain constant thereaf-
ter up to high irradiation doses.

It is significant that the amplitude ε = 2.5 × 10–4 is in
the region of nonlinear amplitude-dependent internal
friction (ADIF), which is clearly seen from Fig. 4.
According to Fig. 4, ε = 5 × 10–5 in the very beginning
of the nonlinear region of ADIF. A large amplitude of
mechanical stress (strain) in the ADIF region, at which
linear defects (dislocations) making up low-angle
boundaries are capable of moving considerable dis-
tances away from their equilibrium positions, is appar-
ently an additional condition for mechanical vibrations
to act efficiently on boron nitride recrystallization.
Only under these conditions can mechanical vibrations
favor annihilation of the low-angle boundaries formed
from dislocations opposite in sign or assist their fast
migration (during the vibration half-period ~10–5 s)
toward the wide boundaries of larger grains.

Variations in the vibration decrement and in the
Young’s modulus do not lend themselves to description
in terms of simple relations of the type of Eq. (6).
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      200
Unlike the RIL, acoustomechanical properties may
depend not only on the presence of low-angle bound-
aries in a material but also on other microstructural ele-
ments (slip planes [8] along (001), grain boundaries,
growth cones, etc. [3, 4]), whose state and density may
vary in the course of irradiation. This accounts for the
more complex behavior of δ and E with irradiation
dose. Figure 2 reveals the tendency of the δ and E vari-
ation rate to increase with increasing strain amplitude ε.
However, this pattern also exhibits exclusions. For
instance, after the decrement in a sample subjected to a
strain of ε = 2 × 10–6 is decreased at the start of irradia-
tion, it undergoes an increase at large doses. The pattern
of the curves may obviously depend on specific fea-
tures of the microstructure of each sample.

As with the decrease in the RIL intensity, the irre-
versible decrease in the amplitude-independent acous-
tic-vibration decrement (for small amplitudes) and the
noticeable growth in the Young’s modulus (Fig. 4) can
be related to the irradiation-induced decrease in the
concentration of low-angle boundaries, although one
cannot exclude the possibility that other components of
the microstructure on which the energy of the acoustic
wave can be dissipated also play a certain role. The
effect of low-angle boundaries on the absorption of
acoustic vibration energy at a frequency of about
1



2092 KARDASHEV et al.
8

100
ε, 10–7

10

6

14.50

14.55

14.60

14.65

100010

δ,
 1

0–
4

E
, G

Pa

1

2

2

1

Fig. 4. Amplitude dependences of Young’s modulus E and decrement δ (1) before and (2) after proton irradiation (to a dose of 1.2 ×
1016 p/cm2). The measurements were made at room temperature successively under increasing and decreasing vibration strain
amplitude ε.
105 Hz was first observed in [9], where internal friction
in elastically bent aluminum single crystals subjected
to quasi-static deformation was studied. It was shown
that internal friction in a sample containing low-angle
boundaries passes through a peak under some external
load. We observed a clear correlation between the
behavior of the acoustic characteristics of boron nitride
and RIL, which suggests a possible contribution of
low-angle boundaries to the vibration energy absorp-
tion. This contribution can originate from a change in
internal stresses in the sample. As for the Young’s mod-
ulus, its variation can also be connected with a change
in the internal stresses because of the anharmonicity of
lattice vibrations (through higher order elastic con-
stants). Indeed, internal stresses can vary when low-
angle boundaries disappear as a result of radiation-
stimulated recrystallization of the material.

Interestingly, after the irradiation, the nonlinear
ADIF and Young’s modulus defect change only insig-
nificantly. This is well illustrated in Fig. 4. Obviously
enough, the amplitude-dependent damping of mechan-
PH
ical vibrations in pyrolytic BN is not associated with
the presence of low-angle boundaries and other struc-
tural defects, whose concentration variations would
entail, in this case, a change in the pattern of the ampli-
tude dependences. The ADIF also, apparently, does not
depend on the level of internal stresses in a sample. If
we assume that the origin of the ADIF is connected, for
instance, with individual dislocations (which are not
contained in low-angle boundaries), then it may be con-
cluded that irradiation does not affect the quantity of
these dislocations. The barriers which have to be over-
come by dislocations in their motion also do not
change.

4. CONCLUSIONS
Thus, our study showed that the rate of radiation-

induced recrystallization of pyrolytic boron nitride
undergoing mechanical vibrations can increase as a
result of the external mechanical stresses increasing the
thermodynamic potential of low-angle boundaries. An
essential condition for this effect to be observable is a
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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sufficiently high amplitude of these vibrations; more
specifically, it should lie within the region of nonlinear
amplitude-dependent ultrasound damping.
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Abstract—A study is reported on the effect of temperature and elastic vibration amplitude on Young’s modulus
E and internal friction in Si3N4 and BN ceramic samples and Si3N4/BN monoliths obtained by hot pressing of
BN-coated Si3N4 fibers. The fibers were arranged along, across, or both along and across the specimen axis.
The E measurements were carried out under thermal cycling within the 20–600°C range. It was found that high-
modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heat-
ing and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hyster-
esis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Mono-
liths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is pos-
sible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the
materials studied is supported by the character of the amplitude dependences of internal friction and the Young’s
modulus. The experimental data obtained are discussed in terms of a model in which the temperature depen-
dences of the elastic modulus and their features are accounted for by both microplastic deformation and non-
linear lattice-atom vibrations, which depend on internal stresses. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the physical-mechanical properties
of ceramic-based composites is of considerable scien-
tific and applied interest. This is due primarily to their
exhibiting, in addition to large high-temperature creep
resistance, high strength [1, 2]. On the other hand, they
are characterized by catastrophic brittle fracture associ-
ated with fast propagation of nuclear cracks. This has
stimulated repeated attempts at fabricating ceramic
materials with a structure that would preclude cata-
strophic crack development, for instance, through par-
tial exfoliation of the material itself, which gives rise to
crack deflection [3]. The most successful approach
seems to be the development of fibrous monoliths (FM)
obtained through compression of ceramic fibers coated
by a special binder [4]. The most promising among the
various FMs was found to be the Si3N4/BN fibrous
monolith [4–8].

This paper reports on the first integrated investiga-
tion of the Young’s modulus and internal friction of
both the constituents of this monolith (Si3N4 and BN)
and the monolith itself, Si3N4/BN, with differently ori-
ented filaments. The results obtained are compared
with the FM structural information.
1063-7834/01/4311- $21.00 © 22094
2. SPECIMENS AND EXPERIMENTAL 
TECHNIQUE

The fibrous monoliths were fabricated in the USA
(Advanced Research, Tucson, AZ) from Si3N4/BN fila-
ments ≈325 µm in diameter containing a polymer
binder and representing Si3N4 cores (85 vol %) coated
by a layer of BN (15 vol %). In addition to commercial
Si3N4 (92 wt %), the cores contained oxides, namely,
Y2O3 (6 wt %) and Al2O3 (2 wt %), added for material
densification.

In the first stage of fabrication, monolayer sheets of
parallel-oriented filaments were obtained. To produce
plates, these sheets were stacked sequentially one upon
another and maintained under pressure at 160°C. The
adjacent sheets could be aligned either uniaxially or at
right angles to one another ([0°/90°] architecture).

In the next stage, the rectangular plates thus pre-
pared were subjected to pyrolysis under slow heating
up to 600°C for 42 h in a nitrogen flow. After this, the
plates were maintained under a uniaxial pressure of
≈28 MPa at 1740°C for 1 h, in the course of which part
of the oxides diffused from the Si3N4 into the BN [9,
10]. This procedure produced fibrous monoliths with a
density of more than 98% of the theoretical value. The
final structure of the uniaxial fibrous monoliths is
shown in Fig. 1; its SEM micrograph, in Fig. 2. After
001 MAIK “Nauka/Interperiodica”
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pressing, the filaments are seen to be ≈100 µm thick
and ≈220 µm wide.

For subsequent comparison, Si3N4 and BN mono-
lithic ceramics were prepared using the same technol-
ogy; they contained Y2O3 and Al2O3 oxides in about the
same concentrations as the corresponding phases of the
Si3N4/BN fibrous monoliths [9].

The specimens prepared for acoustic measurements
were rods of a rectangular 10–20 mm2 cross section l ≈
25 mm long. This length provided a resonant vibration
frequency f of about 100 kHz. Young’s modulus E was
determined using a resonance method under electro-
static excitation of longitudinal vibrations of the speci-
men [11] from the relation E = 4ρl2f 2n–2, where n is the
number of the excited harmonic (in our case, n = 1) and
ρ is the specimen density. The electrodes necessary for
the acoustic measurements were prepared by pasting
10-µm-thick aluminum foil to the specimen side and
end faces. The density ρ was determined by hydrostatic
weighing at room temperature. The experiments were
carried out within the temperature range T = 20–600°C

Si3N4 cell
BN cell boundary

Fig. 1. Schematic of the fibrous monolith structure.
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in a helium-filled chamber. The average heating rate
was ≈2°C per minute. The composite oscillator method
[12] was also used, which, in addition to data on the
Young’s modulus, permits investigation of ultrasound
absorption (internal friction) and of the inelastic
(microplastic) properties of a specimen. Data on the
microplasticity are derived from measurements of the E
modulus and the elastic vibration decrement δ within a
broad range of vibrational strain amplitudes ε, where
nonlinear, amplitude-dependent absorption δh forms in
the specimen material at sufficiently large ε. Similar
integrated studies of E and δ were carried out earlier on
boron nitride ceramics fabricated using various tech-
nologies [13].

Acoustic measurements on fibrous monoliths were
made using specimens with different architectures,
namely, Si3N4/BN[0] (with filaments aligned with the
specimen axis), Si3N4/BN[90] (with filaments perpen-
dicular to the specimen axis), and Si3N4/BN[0/90]
(alternating filament alignment).

3. RESULTS OF THE STUDIES AND DISCUSSION
Data on the density ρ of the various materials and

the values of Young’s modulus E and of the amplitude-
independent decrement δi measured at room tempera-
ture are presented in the table. The values of E were
obtained by averaging over the two measurement meth-
ods (electrostatic and composite oscillator). The mag-
nitude of E is seen to decrease and that of δi to increase
in the order Si3N4, Si3N4/BN[0], Si3N4/BN[0/90],
Si3N4/BN[90], and BN.

Figure 3 displays the temperature dependences E(T)
obtained for Si3N4 and BN specimens under heating
and cooling within the 20–600°C range. In Si3N4, the
elasticity modulus is seen to decrease gradually with
increasing temperature, with the E(T) curves obtained
in the heating and cooling runs coinciding. Such a
behavior of E is characteristic of many materials, both
100 µm

(a) (b)

Fig. 2. SEM images of the Si3N4/BN[0] structure (a) across and (b) along the filament axis.
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single- and polycrystals. At the same time, in BN, as
already pointed out in [13], the Young’s modulus varies
with temperature in an unusual manner; more specifi-
cally, under heating, it first (up to ≈200°C) decreases
and then starts to increase, until it exceeds its original
room-temperature value for T > 400°C. When cooled,
the material exhibits hysteresis and E falls off continu-
ously. A repeated experiment carried out 36 days later
revealed a similar hysteresis, although prolonged room-
temperature storage after the first experiment brought
about a slight increase in E.
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Fig. 3. Temperature dependences of the Young’s modulus of
Si3N4 and BN specimens measured under heating and sub-
sequent cooling; the arrows identify the direction of temper-
ature variation; the numbers on the curves refer to the order
in which the experiments with a given specimen were per-
formed; the repeated experiment for BN was carried out
36 days later.
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Figure 4 plots the temperature dependences of the
Young’s modulus for fibrous monoliths of different
architecture. We readily see that Si3N4/BN[0] (Fig. 4a)
and BN (Fig. 3) subjected to heating exhibit a decrease
followed by an increase in E. At the same time, in the
cooling run, the magnitude of E, while revealing a hys-
teresis, increases rather than decreases, as is the case
with Si3N4. Also, the room-temperature value of E
somewhat increases after the heating–cooling cycle. In
a repeated experiment, the E(T) dependence becomes
fully reversible.
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Fig. 4. Temperature dependences of the Young’s modulus
obtained for Si3N4/BN specimens with the filament align-
ment (a) [0], (b) [0/90], and (c) [90] under heating and sub-
sequent cooling; the arrows identify the direction of temper-
ature variation and the numbers on the curves refer to the
order in which experiments with a given specimen were per-
formed.
Density ρ, Young’s modulus E, amplitude-independent vibration decrement δi (room-temperature data) and temperature coef-
ficients ∆E/∆T of the materials studied

Material ρ, g/cm3 E, GPa ∆E/∆T, MPa/K δi , 10–5

Si3N4 3.30 314 –10.31 9.5

BN 2.25 36 3.66 902

Si3N4/BN[0] 3.09 290 (272) –4.70 (–8.21) 93 (143)

Si3N4/BN[0/90] 3.10 228 –5.39 204 (143)

Si3N4/BN[90] 3.08 131 (181*) –5.96 680 (143)

Note: Given in parentheses are the values calculated using the mechanical rule of mixtures or (*) the brick model [4].
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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Similar scenarios are observed for Si3N4/BN with
the [0/90] and [90] architectures, the only exclusion
being that, in the former case, the hysteresis in the E(T)
dependence decreases gradually to disappear only in
the third thermocycle (Fig. 4b), whereas in the latter, it
vanishes in the fourth cycle (Fig. 4c). At the same time,
the room-temperature value of E for these specimens
increases slightly only after the first cycle.

Interestingly, the values of the modulus E measured
in a cooling run vary practically linearly for all materi-
als, at least at temperatures below 400°C. The tempera-
ture coefficients ∆E/∆T for this case are given in the
table.

The table also presents the values of the modulus E,
temperature coefficient ∆E/∆T, and decrement δi calcu-
lated in accordance with the mechanical rule of mix-
tures by using the experimental data for Si3N4 and BN.
The values of E were obtained using the relations pre-
sented in [4]. The Young’s modulus for the Si3N4/BN[0]
monolith was calculated from

Here, the indices BN and SN refer to BN and Si3N4,
respectively, and VBN is the volume fraction of the
boron nitride (15%). The expressions for ∆E/∆T ([0]
architecture) and δi (for all materials) are similar:

The Young’s modulus for the Si3N4/BN[90] monolith
was calculated in accordance with the brick model [4].

A comparison of calculated and experimental values
reveals disagreement and a large influence of the low-
modulus component (BN) on most of the parameters
(particularly on the decrement δi and the temperature
coefficient ∆E/∆T). This is seen particularly clearly in
the case of Si3N4/BN[90]. A similar conclusion that BN
plays an important role can be drawn from a compari-
son of the plots in Figs. 3 and 4. The contribution of the
softer, low-modulus component BN is here fairly large
even for the Si3N4/BN[0] monolith, whose E is only
slightly inferior in absolute value to that of the pure
Si3N4 ceramic. Obviously enough, the initial variation
of the E modulus occurring under heating is dominated
for all specimens by the behavior of the modulus of
boron nitride.

The E modulus can behave in this way in the pres-
ence of internal stresses and microplastic deformation
of the soft monolith component. Internal stresses can be
created in a monolith under elastic loading, as well as
because of different thermal expansion coefficients of
the constituent materials or of the anisotropy of these
coefficients in one of the materials. In particular, the
expansion coefficients in hexagonal boron nitride along
the a and c axes are even opposite in sign (see review
[14]). These internal stresses can affect the Young’s

E 0[ ] EBNVBN= ESN+ 1 VBN–( ).

∆E/∆T( ) 0[ ] ∆E/∆T( )BNVBN= ∆E/∆T( )SN 1 VBN–( ),+

δi δi( )BNVBN= δi( )SN+ 1 VBN–( ).
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modulus through higher order elastic constants. Micro-
plastic deformation can affect the Young’s modulus
either directly (additional vibrational inelastic strain
reduces the modulus) or through the local internal
stresses forming in these conditions. At the same time,
microdeformation (both irreversible and, possibly,
reversible) may bring about relaxation of the internal
stresses, which may grow or decrease in a specimen
depending on the temperature and specimen prehistory
(both thermal and mechanical). A combination of these
factors produces the observed effects in the measured
elasticity modulus.

The ability of the boron nitride prepared using the
technology described above to undergo inelastic
(microplastic) deformation revealed itself clearly in a
study of the amplitude dependences of the Young’s
modulus and decrement [13]. The relations obtained for
this material had practically the same pattern as those
characteristic of plastic metals and alloys. The ampli-
tude-dependent Young’s modulus defect, (∆E/E)h and
the vibrational decrement δh = δ – δi obtained in this
work as functions of the vibrational strain amplitude ε
for various specimens at room temperature are dis-
played in Fig. 5. We readily see that as the amplitude ε
increases, all materials exhibit a certain manifestation
of the inelastic components δh and (∆E/E)h. The
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Fig. 5. Amplitude-dependent Young’s modulus defect
(∆E/E)h and elastic vibrational decrement δh = (δ – δi) plot-
ted vs. vibrational strain amplitude ε for (1) Si3N4, (2)
Si3N4/BN[0], (3) Si3N4/BN[0/90], (4) Si3N4/BN[90], and
(5) BN. The measurements were carried out at room tem-
perature.
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increase in δh and (∆E/E)h with amplitude grows in the
order Si3N4, Si3N4/BN[0], BN, and Si3N4/BN[0/90],
Si3N4/BN[90], which differs from the order in which E
and δi vary. This is seen particularly clearly when one
compares curves 4 and 5 for the Si3N4/BN[90] mono-
lith and the BN ceramic, respectively; namely, the dec-
rement δh and the modulus defect in the monolith are in
considerable excess of those in BN, although the BN
content in the monolith is only 15%. This situation is
easy to understand if one takes into account the archi-
tecture of the fibrous monolith under consideration and
the above-mentioned ability of boron nitride to undergo
microplasticity. This most likely originates from the
fact that the real strain amplitude in the component BN
of Si3N4/BN[90] at the given average amplitude ε is
εBN @ ε.

The level of inelastic strain in the materials studied
in this work can be deduced from Fig. 6. Acoustic mea-
surements carried out within a broad range of vibra-
tional strain amplitudes permit one to estimate the
mechanical properties of the materials also in the
stress–strain coordinates, which are more appropriate
for use in mechanical testing. Figure 6 presents such
deformation diagrams for the materials studied in this
work. Plotted along the vertical axis is the amplitude of
the vibrational stress σ = Eε, and along the horizontal
axis, the inelastic strain εin ≈ ε(∆E/E)h is plotted (the
graphs were plotted using the data in Fig. 5). One
readily sees that the level of stresses required for the
same microplastic strain to become revealed decreases
in the order Si3N4, Si3N4/BN[0], Si3N4/BN[0/90],
Si3N4/BN[90], and BN. The same order, as already
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Fig. 6. Stress–inelastic strain diagrams derived from room-
temperature acoustic data for (1) Si3N4, (2) Si3N4/BN[0],
(3) Si3N4/BN[0/90], (4) Si3N4/BN[90], and (5) BN.
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mentioned, is characteristic of the Young’s modulus
and of the amplitude-independent decrement (table).

4. CONCLUSION

Thus, we have shown that the acoustic method per-
mits one to monitor not only the elastic properties of
such macroscopically brittle objects as the Si3N4/BN
fibrous monoliths but also their microplastic character-
istics. The hypothesis on the presence of microplastic
shear in the above monoliths of different architecture is
supported by the character of the amplitude depen-
dences of internal friction and of the Young’s modulus
and by the temperature dependence of the latter.
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Abstract—The constant-rate tensile deformation and creep of aluminum–lithium alloy 1420 with a grain size
of 3 µm (obtained by equal-channel angular extrusion) exhibiting superplasticity at temperatures of 600–670 K
and relative-deformation rates of 10–2–10–3 s–1 are considered. It is shown that, upon tension at a constant rate
Vm, a steady-state segment appears in the true stress σt–true strain εt dependence, which is described by the

expression  ~ exp(–U/kT) with constant coefficients, and that the rate of deformation  is close to the
creep rate at comparable stresses and strains. The conclusion is made that, upon deformation under superplas-
ticity conditions, an equilibrium structure is formed, which remains unaltered in the process of further defor-
mation until the sample goes over (because of geometrical conditions) to a prefracture state. © 2001 MAIK
“Nauka/Interperiodica”.

ε̇t σt
n ε̇t
INTRODUCTION

At present, there exist numerous examples of defor-
mation-related self-organization on both microscopic
and macroscopic levels. For dislocation structures, this
is the appearance, from a chaos of dislocations, of
structures with modulated dislocation densities [1, 2],
fragmented and block structures with dislocations
mainly located in the block boundaries [3–7], and the
occurrence of various collective effects in dislocation
ensembles, especially upon large deformations [8–11].
In an analysis of the macroscopic characteristics of
deformation, the self-organization and the multistage
nature manifest themselves most clearly in creep phe-
nomena, i.e., in the deformation processes that develop
under equilibrium external conditions at constant
stresses σ and temperatures T. In many materials, in
very wide ranges of σ and T, there is observed, after a
nonsteady and, as a rule, short first stage, an extended
stage of steady-state creep occurring at a constant rate

, which passes then into a stage of accelerated creep
and terminates in fracture. It is the steady-state stage
that is considered as the stage with an unaltered struc-
ture, which appears as a result of the action of constant
σ and T. Contrary to creep, the deformation at constant
T and  (active uniaxial deformation) is always consid-
ered to be a non-steady-state occurring under changing
stress and structure. The stages of such deformation are

ε̇

ε̇

1063-7834/01/4311- $21.00 © 2099
usually considered in terms of the strain-hardening
coefficient dσ/dε.

In this paper, we show that such a contraposition of
creep and active loading is by no means always justi-
fied. There exist conditions under which the develop-
ment of deformation at  = const leads to a dependence
of the true-deformation rate  on the true stress σt that
is identical to the well-known power dependence of the
steady-state creep rate on stress with temperature-inde-
pendent parameters. This effect can be treated as a con-
sequence of the establishment of a certain characteristic
structure that does not change with the degree of defor-
mation at a definite stage of deformation despite the
fact that its rate and the magnitude of the operative
stresses change continuously. Another problem that is
discussed in this paper is a multistage nature of active
deformation under superplasticity conditions. The large
extension of the deformation permits one to clearly elu-
cidate the specific features of this stage and their
changes upon transitions from one stage to another.

1. EXPERIMENTAL

The experiments were carried out on a polycrystal-
line alloy of Al with 5.5% Mg, 2.1% Li, and 0.1% Zr
developed recently in Russia and known as aluminum–
lithium alloy 1420 [12–14]. The superplastic behavior
of this alloy in the temperature range of 600–800 K was

ε̇
ε̇t
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reported in [15–17]; that of the alloy with an ultrafine-
grained structure, in [18–22]. The ultrafine-grained
structure was obtained through repeated equichannel
angular (ECA) extrusion with a 90° rotation of the rod
after each passage [23, 24]. The initial rods for ECA
extrusion were cut from a hot-rolled plate with a recrys-
tallized structure with grains of about 20 µm. The rods
were quenched in water from 743 K and then subjected
to tenfold ECA extrusion in air at 643 K. The resultant
rods were 20 mm in diameter and 70–80 mm long. The
quenching and ECA extrusion were performed in the
Ufa State Technical University of Aviation (UGATU).
The structural state of the rods was qualitatively similar
to that observed in [21, 22]. The structure was charac-
terized by an average grain size of about 3 µm (some-
times, grains 10–15 µm in size were encountered) and
a developed substructure consisting of subgrains, dislo-
cation cells, and dislocation tangles, containing precip-
itates of Al2LiMg and particles of the δ (Al3Zr) and δ'
(Al3Li) phases.

The ECA-extruded rods were used to prepare flat
dumbbell-shaped samples for mechanical tests. The
gage portion of samples had a cross section of 2 × 0.85
mm and a length of 5 mm. The front and lateral sides of
the samples were carefully polished. The surface layers
were removed to eliminate damage due to mechanical
treatment. The differences in both the thickness and the
width of the gage portion of the samples did not exceed
0.01 mm. The samples were prepared in such a way that
the symmetry axis of a sample was parallel to the rod
axis. X-ray diffraction showed that the broadening was
caused by both the small size of coherent domains
(210 nm) and lattice distortions (the relative change in
the lattice parameter ∆a/a due to internal stresses was
1.3 × 10–3).

The samples were deformed in an Instron testing
machine under conditions of uniaxial tension at a con-
stant rate of 0.5–50 mm/min at a specified temperature
within the range 593–668 K. The errors of measuring
the applied load and sample elongation were no more
than 0.25 and 1%, respectively. In the course of testing,
the temperature was maintained constant to within
±3 K. To determine deformation and creep rate, the
setup described in [25] was used. A distinctive feature
of this setup is the use of a shaped lever to maintain a
constant stress upon continuous elongation of the sam-
ple. The method of the calculation of the lever shape is
described in [25, 26] and is based on two assumptions:
the uniformity of deformation along the sample and the
constancy of volume upon plastic deformation. Note
that this method has not been used previously for test-
ing samples under superplasticity conditions. The large
elongations (up to 1800–1900%, which corresponds to
an almost 20-fold decrease in the load at the sample in
the course of a test) required high accuracy in designing
the lever and allowance for all factors that could affect
the deformation of the sample (e.g., its shape, tempera-
ture gradient, etc.). The errors of determining the rate of
PH
deformation at large deformations in the case of creep
appear to be greater than those in experiments at a con-
stant rate of tension because of the inaccuracy of main-
taining a required stress with the help of a shaped lever.
This hinders the traditional analysis of creep using the
known dependences of the creep rate on stress and tem-
perature.

Below, we consider the process of structural self-
organization due to deformation and compare two most
common regimes of loading (tension at a constant rate
and creep); the very phenomenon of superplasticity of
microcrystalline aluminum alloy 1420, as well as its
characteristics and the possible mechanisms of defor-
mation, are described in [22].

2. RESULTS AND DISCUSSION

Figure 1a displays a typical tensile test diagram in
the load P–elongation ∆l coordinates obtained at a tem-
perature of 643 K and a rate of motion of the mobile
grip of the testing machine of Vm = 5 mm/min, which
corresponds to a rate of relative deformation of the
sample of 1.7 × 10–2 s–1; Fig. 1b shows a creep curve
taken at a deformation rate close to this value. The
creep stress was in this case σ = 19 MPa. The initial
portion of the diagram (the first 80% of the total defor-
mation) is shown separately in the inset in Fig. 1a. It is
seen that after ~20% deformation, the load begins to
fall. In the case of creep, the initial portion of the tran-
sient creep at a rate decreasing in time usually occupies
(in the elongation ∆l–time t coordinates) no more than
10% of the total time of creep (Fig. 1b). As follows
from Fig. 1a, the long descending branch of the tensile
curve continues up to the moment of the division of the
sample into two halves, i.e., almost to 2000%. It is
clearly seen that, at such large deformations, the
method of tests at a constant rate Vm and the construct-
ing of P(∆l) dependences or σ(ε) dependence, which
differs from the former dependences only in scale
(here, σ = P/s0 and ε = ∆l/l0 are the conventional stress
and strain and s0 and l0 are the initial cross-sectional
area and length of the gage portion of the sample,
respectively) are inconvenient and possess low infor-
mative capability. In Fig. 2, the dependences shown in
Fig. 1 are reconstructed in the true stress σt–true strain
εt coordinates (σt = P/s = Pl/s0l0 and εt = lnl/l0, where l
and s are the current length and cross-sectional area of
the gage portion of the sample, respectively) and in the
true strain εt–time t coordinates. The main difference of
these curves from those plotted in conventional coordi-
nates is a significant (by more than an order of magni-
tude) extension of the segments corresponding to hard-
ening (to εt ≈ 150–200%, Fig. 2a) and transient creep
(to εt ≈ 200–250%, Fig. 2b).

The data shown in Figs. 1a and 2a permit us to sug-
gest some considerations on the relation between the
particular sections of the tensile curve and the shape of
a sample deformed under superplasticity conditions. In
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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contrast to conventional (not superplastic) deformation,
for which it is assumed that the maximum of the dia-
gram in conventional coordinates corresponds to the
moment of loss of stability by the sample, i.e., to the
onset of necking, in our case, the sample is deformed
more or less uniformly to εt ~ 200%, which exceeds the
abscissa of the maximum not only in conventional but
even in true coordinates (Fig. 3). Therefore, we may
suppose that the loss of stability of the sample shape
leading, in the final end, to fracture under superplastic-
ity conditions is not related to any special point in the
tensile curve.

Figure 4 (curves 1, 2) displays the dependences of
the true strain rate  = dεt /dt = d(ln(l/l0))/dt on the
magnitude of true strain for conventional tensile tests at
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Fig. 1. (a) Load–elongation curve upon tension at a constant
rate of 1.7 × 10–2 mm/s and (b) creep curve at σ = 19 MPa
for aluminum–lithium alloy 1420. T = 643 K.
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a constant rate and for creep. It is seen that the (εt)
dependences are similar for different regimes of load-
ing.1 Note that in spite of the constant rate of tension in
the course of the test (constant velocity of motion of the
mobile grip of the testing machine), the rate of true
deformation changes by a factor of 20. However, this is
one more advantage of the diagrams of this type: the
results of a single test permit one to construct the
dependence of the rate of deformation on stress (Fig. 5).

As follows from the data shown in Fig. 5, we can
separate two regions in the tensile diagram. The first
region corresponds to the initial stage of deformation,
in which the rate of deformation is approximately con-

1 The spike at the end of curve 2 in Fig. 4 is likely due to a short
stage of accelerated creep having been fixed in this case.
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Fig. 2. The same dependences as displayed in Fig. 1 but
replotted in true stress–true strain coordinates.
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Fig. 3. The appearance of (a) the initial test sample and
(b) deformed sample at the stationary stage of deformation.
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stant (at small deformations) or decreases with increas-
ing stress but remains sufficiently high. In Fig. 2a, the
ascending branch (material hardening) corresponds to
this region. The apparent anomalous dependence of the
deformation rate on the stress can be explained by pre-
cisely these changes in the material structure. To the
second region, in which the rate of deformation
decreases with decreasing stress, there corresponds a

power dependence of the type  ~ , where n = 2.3.
This value of n coincides with that obtained in various
works concerning the investigation of superplasticity
[16, 27–29]; therefore, we can suppose that this is the
region of an equilibrium structure, where deformation
is developed without hardening. The falloff of the flow
stresses (“apparent softening”) observed in Fig. 2a is a
consequence of the chosen method of deformation, in
which the parameter is the constant velocity of motion
of the mobile grip of the testing machine. In order to
maintain this velocity constant when the structure
remains unaltered, the sample “is forced” to simulta-
neously change both the rate of true deformation and
stress. This region begins almost directly after the max-
imum of the σt–εt diagram and occupies (under some
test conditions) up to 200% of the region of true defor-
mation. A comparison of the rate of deformation in this
region with that in the region close to the steady-state
stage shows that these rates are virtually coincident
(inset in Fig. 5). Except for the points corresponding to
the creep rate in the clearly non-steady-state region, the
other points are located near the point of the tensile
curve that corresponds to the chosen magnitude of the
creep stress σ = 19 MPa. This confirms the concept of
the second stage of the tensile curve as a certain suffi-
ciently extended special stage caused by the preliminar-
ily developed deformation and in which no substantial
structural rearrangements occurs.

The last point in Fig. 5 is an outlier; it corresponds
to a sharp softening, which terminates in the sample
fracture. Sometimes, this region was longer; in other
cases, especially at low temperatures and low loading
rates, it was entirely absent. At large loading rates, the
diagram was similar to that shown in Fig. 2a; however,
the stresses and strains corresponding to the maximum
and the deformation at fracture could strongly differ
even for the same test conditions. At medium rates of
deformation, the scatter of the maximum stresses and
strains was small but the diagram could terminate at
quite various deformations. Figure 6 displays the ten-
sile diagrams for three samples that were tested under
the same conditions. The slopes of the regions of hard-
ening and the magnitudes of the fracture stresses is seen
to differ only slightly. These features appear to be due
to the fact that, for such an extended (in terms of defor-
mation) region of hardening, the deformation paths can
differ somewhat (especially, at large rates of loading
and high stresses), which can lead to the formation of
similar but slightly quantitatively different structure
characteristics. Nevertheless, the deformation in the

ε̇t σt
n
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second region for all samples tested develops in a sim-
ilar manner. This was shown in [22], where data were
given for six samples tested at three different tempera-
tures and three velocities of motion of the mobile grip
of the testing machine, which were satisfactorily
described in double logarithmic coordinates –lnσt

by three parallel straight lines in terms of T. Thus, the
experimental data can be described using the well-
known formula

(1)

where U is the activation energy of the deformation
process, k is the Boltzmann constant, σ0 = 1 MPa, and
A is a constant determined by the characteristics of the
process on a microscopic level.

In analyzing the steady-state portion of the deforma-
tion curve, we obtained U = 0.98 eV and n = 2.23 ± 0.10
from the slopes of the T (1/T) and (lnσt)
dependences, respectively, and n = 2.05 ± 0.05 by using
the differential method of sudden change in the rate of
deformation.

In this paper, we also used the differential technique
for estimating the activation energy of creep and the
exponential n. The temperature jumps were ∆T =
±25 K and the load jumps were ∆P = ±1 N, which cor-
responded to the change in the true stress ∆σt =
±3 MPa. At the moment of the beginning of a jump, the
conditions were as follows: T = 643 K, σt = 19 MPa, and

 = 5 × 10–3 s–1. The estimations of n and U were per-
formed using the formulas

(2)

(3)

Here, indices 1 and 2 refer to the magnitudes of the cor-
responding parameters before and after a jump in stress
or temperature. The measurements showed that n =
2.24 and U = 0.95 eV for the selected point of the creep
curve; these values are close to the magnitudes calcu-
lated from the measurements of deformation at a con-
stant tensile rate. Thus, we may assume that for both
regimes of loading there exists a stage of deformation
that is close to the steady-state one, is described by
Eq. (1) with the same parameters, and, consequently, is
controlled, as was shown in [22], by self-diffusion
along grain boundaries, which is typical of superplastic
deformation of fine-grained materials caused by grain-
boundary sliding.

As to the portion of the curve of deformation at a
constant tensile rate preceding fracture, it is obvious
that it correlates with the analogous section of the creep
curve. As in the latter, this portion is very short, so that
special experimental techniques should be used to ana-
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lyze it. Its origin is likely to be purely geometric: the
cross section of the sample becomes so small that its
further decrease leads to a fast division of the sample
into parts with a 100% reduction of area at the interface.
An attempt to relate it to deformation-induced soften-
ing and to describe it using Eq. (1) resulted in very
small values of n and U and in a dependence of the
coefficient A on the initial rate of deformation. It turned
out that the main contribution to the change in the strain
rate came from the change in the preexponential. This
means that either Eq. (1) cannot be applied to describe
the final portion of the deformation curve or the gradi-
ent of deformation along the sample length distorts the
dependence of the average rate of deformation on the
average stress and the need arises to pass to local stress
and strain.
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Abstract—A modified setup and a method of dynamic indentation with a triangular symmetric force pulse of
controllable amplitude and duration are employed for analyzing the time-dependent elastic properties of ZrO2-
based ceramics in a contact time range of 20 ms–4 s. It is shown that the duration of the loading–unloading
cycle considerably affects the dynamic hardness: the variation of the contact time from 20 ms to 4 s leads to a
20% change in the dynamic hardness for Pmax = 25 mN. The variation of the hardness sensitivity m to the strain
rate upon a transition from the initial stage of indenter intrusion to the next stages from m1 = 1.56 to m2 = 0.49
may point to the difference in the mechanisms of mass transfer of a material under an indenter at these stages.
© 2001 MAIK “Nauka/Interperiodica”.
Until the mid-1970s, ZrO2-based ceramics did not
arouse any special interest as structural or technological
materials and the only property which found practical
application was their high melting point. The potential-
ities of practical applications of these ceramics were
considerable extended after the discovery of a control-
lable transition of the tetragonal structure of ZrO2 into
a monoclinic structure with the help of stabilizing
impurities (Y2O3, CeO2, MgO, CaO). Zirconia-based
ceramics are unique materials in that they are character-
ized by a very high value of fracture toughness K1C

comparable to that of steel. The combination of high
fracture toughness and hardness H with chemical inert-
ness and the low friction factor make it possible to use
these ceramics as a promising wear-resistant material,
although the reasons for their high wear resistance have
not yet been unambiguously determined. It is widely
believed that it is sufficient to ensure high values of K1C

for this purpose [1]. However, a material with a high
fracture toughness but with an insufficiently high hard-
ness (and vice versa) can exhibit a tendency to rapid
wear [2]; consequently, a certain optimal combination
of the values of K1C and H is required. In this case, we
obviously speak of dynamic and not static hardness.
The operational conditions for materials of friction
pairs, ball mills, etc. can be simulated to a fairly high
degree of accuracy using rapid local deformation under

an indenter at a strain rate  =  of the order of 103–

105 s–1, i.e., high-rate dynamic micro- and nanoindenta-
tion. For small values of the indenter penetration depth
h, such high values of  can be easily attained for mod-

ε̇ 1
h
---dh

dt
------

ε̇
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erate linear rates of indentation. For example, for h ≈

0.1–1 µm, the required rates are  ≈ 0.1–1 cm/s.

Pressing an indenter continuously into a material to
a depth h of the order of tens or hundreds of manome-
ters has been widely used in investigations over the last
two decades, including in the study of ceramic materi-
als [3–6]. This method is suitable for studying both
static and time-dependent properties of materials, but
most attention has been paid to the slow stage of indent-
ing, viz., creep at  ~ 10–2–10–5 s–1 [7–11]. For contact
times of the indenter with the sample of the order of 10–

3–10–2 s, which are close to real contact times in abra-
sive wear, a large spread of experimental data was
observed in all experiments [12–16]. As a result, the
millisecond contact time range remains virtually unex-
plored. The possibility of studying the time-dependent
properties of materials using the method of dynamic
indentation over micro- and nanovolumes under load-
ing by a rectangular pulse of force was reported by us
earlier [17–23]. In the present work, a modified setup
and the method of dynamic indentation by a triangular
pulse of force with a controllable amplitude and dura-
tion are used for studying the time-dependent elasto-
plastic properties of polycrystalline (tetragonal zirconia
polycrystals, TZPs) ZrO2-based ceramics with various
thermal histories and grain sizes (table) in the contact
time range 20 ms–4 s.

The experimental setup, whose prototype was
described in detail earlier in [20–23], was modified in
order to increase space and time resolution. In the new
system of the electrodynamic activator, the interaction
of the current passing through a coil, mounted at the

dh
dt
------

ε̇
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end of a rod, with the field of a permanent magnet fixed
at a bulk frame of the setup was used. The loading
parameters (amplitude, shape, temporal characteristics,
the number of loading cycles, etc.) were programmed
on a PC and covered the loading time range from 10–2

to 50 s for a maximum load of 250 mN on the indenter.
The signals from the loading device, force sensors and
displacement pickups, as well as other auxiliary mea-
suring devices (in all, eight information channels), were
transformed from an analog to digital form with the
help of a decimal A/D converter and were fed through
an interface to the computer used for controlling the
experiment and for processing the results. The speed of
the A/D converter permitted a time resolution of 50 µs
in the single-channel version of data recording; the
introduction of each subsequent data recording channel
automatically increased the discretization time by
50 µs. For four-channel version of the A/D converter
connection, which was mainly used in the present
work, the time resolution within a channel was 0.2 ms.
The capacitive displacement pickup ensured operation
in three intervals of measurements: 10, 1, and 0.1 µm
with resolutions 10, 1, and 0.1 nm, respectively; the
piezoelectric force sensor ensured a resolution of

Characteristics of various samples of ZrO2-based ceramics

Sample
no.

Static 
(Vickers) 
hardness 
HV , GPa

Fracture 
toughness 

K1C,
MPa m–1/2

Relative 
mass loss in 
wear tests

I, %

Grain size
d, µm

1 11.2 7 0.4 0.3

2 10.5 7.5 0.11 0.5–0.7

3 10.6 8.5 0.6 0.5–0.7

4 9.5 >10 11 3

100

0 100

P

h, nm

150
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200 300 400

Pmax

0 t
τ

1
23

4

P, mN

Fig. 1. Typical curves describing the dependence of load P
on the indenter penetration depth h for all ZrO2-based sam-
ples in a loading–unloading cycle for the loading rate
6.25 × 103 mN/s (Pmax = 125 mN, τ = 20 ms). The numbers
on the curves are the sample numbers in the table.
PH
10 µN. The experimentally determined compliance of
the suspension system of the indenter was 10–1 m/N,
while the compliance of the setup as a whole, which
was taken into account for the correction of the indenter
penetration depth, was 1.567 × 10–7 m/N.

All samples were in the form of balls ~1.5 mm in
diameter. The wear test was carried out for one hour on
a laboratory ball mill under hard conditions: the angular
velocity of the propeller in the mill was 360 s–1. A con-
tinuous water flow was pumped through the mill under
a high pressure for cooling. The values of the relative
mass loss I = ∆m/m in such tests for various samples are
given in the table. For measurements in a nanoinden-
tometer, the balls were sealed in a polymer matrix and
then ground to half their diameter and polished with a
diamond paste. It is known that ZrO2-based ceramics
virtually do not experience surface strain-hardening or
loss of strength in the course of meticulous grinding
and polishing. All measurements were made at a tem-
perature of T = 293 K. The indenter was in the form of
a Berkovich diamond pyramid. The results were aver-
aged over ten measurements for each loading time and
loading force used. The measurements were made for
loading rates ranging from 62.5 to 12.5 × 103 mN/s.

The hardness H was measured by applying a sym-
metric triangular pulse of force to the indenter for five
fixed values of the maximum load Pmax: 25, 50, 75, 100,
and 125 mN (see inset to Fig. 1). In turn, the duration τ
of the loading–unloading cycle was varied from 20 ms
to 4 s for each fixed value of Pmax. The current values of
load P, indenter penetration depth h, and time t were
recorded continuously in the course of indentation
(Fig. 1). The value of H was calculated using the fol-
lowing two methods: (1) as the ratio of the load P at a
given instant to the area of the indentation projection at
the same instant and (2) as the ratio of the maximum
load Pmax applied to the indenter to the maximum area
of the indentation projection calculated from the maxi-
mum value of h. The results of such calculations for
sample no. 3 are presented in Fig. 2. Both methods of
determining H give close results and indicate the pres-
ence of the size effect [24–27]. The latter is usually
explained in terms of the application of an unjustified
method of calculating the area of the indentation pro-
jection under the assumption of its ideal geometrical
similarity to the shape and size of the pressed-in
indenter [28, 29], disregarding its finite sharpness,
peculiarities of sharpening, and the formation of heaps
and dips along the indentation perimeter. According to
McElhaney et al. [28], corrections that take this fact
into account do not exceed 20% for h ≥ 200–300 nm,
while the effect observed in Fig. 2 for the dynamic
hardness is approximately equal to 300%. Such a mag-
nitude of the effect is preserved for all loading rates,
including those for which the hardness attains its quasi-
static value.

The anomalously high values of hardness for all
loading rates were typically observed within time inter-
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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vals 2–50 ms after the beginning of indentation. In the
case of a jumplike loading, 50 to 90% of the entire
imprint is formed during this time [30] and the mecha-
nism of mass transfer from the region under the
indenter can change. Precisely this time range is
beyond the detection ability of commercial nanotesters
with a low indentation rate (~1 nm/s) and a small time
resolution (~0.1 s). On the other hand, the processes
occurring in the material under the indenter at the initial
stage of its incursion are complex and have been insuf-
ficiently studied; it can be stated with a high degree of
confidence that the indentation process is not self-sim-
ilar precisely at this stage of its development. For this
reason, the description of the P vs. h loading curve
using the simple expression P = Chn of the classical
Meyer law [31], where C = const and the exponent n is
usually assumed to be constant and close to two, cannot
be regarded as adequate for the indentation process.
The experimentally observed value of n varies from 1.5
to 2.0 for ceramics [24]. For TZP, the value of n
obtained in [32] was 1.912, but at the initial stage of
indenter incursion (up to times of the order of 50 ms),
the value of n may differ even from this mean value [33,
34]; i.e., it may change in the course of measurements.
In our experiments, the value of n jumpwise changed
the slope at a depth from 50 to 200 nm (depending on
the loading rate) from lower to higher values upon an
increase in h, which can apparently be due to a change
in the dominating mechanism of deformation.

Figure 2 also shows that the value of dynamic hard-
ness in ZrO2 (sample no. 3) is affected to a considerable
extent by the duration of the loading–unloading cycle.
The rate dependence of hardness in various materials
has been being investigated since the early 1980s [12–
16], when it was found that, in the first approximation,
the value of H decreases linearly upon an increase in the
time of active contact interaction of the indenter with
the material under investigation. However, this depen-
dence was in fact extrapolated from a range of much
longer times to a range of contact times shorter than
100 ms [12] or the results were approximated in view
of a large spread in experimental data [15]. Figure 3
shows the time dependence of hardness determined
using the second method for Pmax = 125 mN for three
ZrO2 ceramic samples. In semilogarithmic coordinates,
the experimental results for all the samples can be
approximated by a linear dependence to within 10%.
The time-dependent properties of hardness are usually
estimated quantitatively using the coefficient m charac-
terizing the strain-rate sensitivity of hardness: m =
d(lnH)/d(ln ); it equals the slope of the H = f( ) curve
in the log–log coordinates [13, 34]. Figure 4 shows the
dependence of dynamic hardness on the strain rate for
all the investigated samples for two values of the depth
of penetration of the indenter. The upper group of the
curves corresponds to h1 = 200 nm; the lower group, to
h2 = 650 nm. The slopes of these curves are quite close
within each group: m1 = 1.56 ± 0.03 for the upper group

ε̇ ε̇
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Fig. 2. Dynamic hardness as a function of the indenter pen-
etration depth in ZrO2 (sample no. 3): (1, 3) hardness deter-
mined from Pmax for τ = 2 s and 20 ms, respectively, and (2)
current values of dynamic hardness for τ = 2 s.
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Fig. 3. Time dependence of hardness determined for Pmax =
125 mN for ZrO2 ceramic sample nos. 1–3.

Fig. 4. Dynamic hardness as a function of strain rate (in the
log–log coordinates) for ZrO2 ceramics at the initial (h1 =
200 nm, the upper group of curves) and final (h2 = 650 nm,
the lower group of curves) stages of active loading. Fig-
ures 1–4 are the sample numbers. Dark symbols correspond
to h1; light symbols, to h2.
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of curves and m2 = 0.49 ± 0.03 for the lower group.
Such a noticeable difference in coefficients m for differ-

ent values of h (such that  ≈ ) can also be due to

the change in the dominating mechanisms of plastic
deformation of the material upon a transition from the
initial stage of penetration of the indenter to the next
stages.

The H = f( )curves in the log–log coordinates do
not pass through the origin but intercept the segments

 = 20.2 ± 0.25 GPa and  = 8.0 ± 0.3 GPa on the
ordinate axis, respectively, which makes it possible to
separate the time-dependent and time-independent
components of hardness. An extrapolation of these
dependences to the range of values  ~ 106 s–1, typical
of the operation conditions in ball mills, gives, approx-
imately, a fivefold increase in the value of H as com-
pared to its static value for h = 200 nm and a twofold
increase for h = 650 nm. In addition, the rate depen-
dence of hardness can also be determined directly from
the P–h diagram. For this purpose, it is sufficient to
compare the sharpness of the peak of the P–h diagram
in the vicinity of Pmax for various loading rates (Fig. 5)
but for the same maximum loads. The shorter the dura-
tion of a loading–unloading cycle, the larger the equiv-
alent radius of curvature of the top of the P–h diagram
and the larger the mismatching between the position of
hmax and the maximum load applied to the indenter.

Thus, our investigations of ZrO2-based ceramics
enabled us to separate two (time-dependent and time-
independent) components of hardness. The hardness
sensitivity to the strain rate has been determined in the
range  = 1–103 s–1. It has also been proved that the
complex-stressed state of the material under the
indenter at the initial stage of its penetration (whose
duration is 5–50 ms) cannot be described by using sim-
ple models in which a strictly quadratic dependence
between the load and the penetration depth of the
indenter is assumed.

m1

m2
------

h1

h2
-----

ε̇

H0' H0''

ε̇

ε̇

100

500

P, mN

h, nm
600 700
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1 2 3

Fig. 5. P–h diagrams (sample no. 2) for the same maximum
load Pmax = 125 mN and various durations of loading:
(1) 20 ms, (2) 200 ms, and (3) 2 s.
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Abstract—The results of experimental and theoretical investigations of ferromagnetic resonance (FMR) in fer-
rite single crystals having hexagonal structure and magnetocrystalline anisotropy of the easy-axis type are
reported. Experiments are carried out on disk-shaped samples of materials differing in anisotropy strength. The
values of the effective anisotropy fields and the gyromagnetic ratios (g-factors) of the materials are determined
from measured frequency dependences of the FMR field along the easy and hard magnetization directions for
homogeneously magnetized samples. It is shown that if the FMR spectra are also measured for the same sam-
ples in the presence of a domain structure, then one can experimentally determine not only the above-mentioned
parameters but also the saturation magnetization of uniaxial magnetic materials. It is shown that the theory of
the FMR frequency spectrum of a partially magnetized sample with a simple domain structure in the form of
a system of plane-parallel layers is in good agreement with the experiment. © 2001 MAIK “Nauka/Interpe-
riodica”.
1. The ferromagnetic resonance (FMR) theory in the
presence of a domain structure (DS) in materials with
uniaxial magnetocrystalline anisotropy (MCA) was
developed by Smit and Beljers in [1]. They considered
the case where a monocrystalline sample has the form
of an ellipsoid of revolution and possesses a stripe DS
and the magnetic field (H0) is applied in the plane per-
pendicular to the easy magnetization axis (EMA). The
axis of the ellipsoid of revolution was along the EMA.
For this orientation of H0, the DS period is not changed
when the sample is magnetized; therefore, the contribu-
tion from each magnetic subsystem to the resonance
frequencies and absorption is the same. The results of
[1] were generalized in [2] to the case where the sample
has bubble domains in addition to the stripe DS. The
case of a sample magnetized by a field applied parallel
to the EMA was also considered in [2]. The displace-
ment of the domain walls and the rotation of the mag-
netization vectors in domains were taken into account.
The former process leads to a change in the relative vol-
ume of neighboring domains and in the DS demagneti-
zation factors. The FMR theory for materials with a
stripe DS and an arbitrary orientation of H0 relative to
the anisotropy axis of an ellipsoidal sample was devel-
oped in [3, 4].

In this paper, we report on experimental investiga-
tions of the FMR frequency spectrum for uniaxial
materials which either have a DS or are magnetized to
saturation. Investigations are carried out on BaFe12O19

(BaM) and BaSc1.1Fe10.9O19 (BaScM) hexaferrite
monocrystals (which differ in MCA strength) in the
case where the samples are magnetized in the plane per-
1063-7834/01/4311- $21.00 © 22110
pendicular to the EMA. The experimental results are
compared with theoretical findings.

2. Our theoretical calculations are similar to those
performed in [1–6]; we will not discuss them in detail.
We point out only the main distinctions in our model
and present the relations that are necessary for analysis
of the experimental data. A sample having the form of
an ellipsoid of revolution and characterized by the
demagnetization factors N⊥ 0 and Nz0 (2N⊥ 0 + Nz0 = 1) is
considered. The ellipsoid axis coincides with the z axis
of the (x, y, z) coordinate system and with the EMA,
which is the c axis of the hexagonal crystal. The MCA
energy is written in terms of the anisotropy constants ki

of the first, second, and third orders. It is necessary to
take into account the higher order anisotropy constants,
because, under certain conditions (see, e.g., [7–9]), they
can contribute considerably to the MCA of uniaxial fer-
romagnets in the plane perpendicular to the EMA. The
magnetizing field H0 is applied along the y axis. The
sample is assumed to be divided into alternate plane-
parallel domains with opposite magnetization direc-
tions. The domains have the same volume, and their
walls are perpendicular to the xy plane. The DS orien-
tation relative to the field H0 is determined by the Nx,
Ny, and Nz demagnetization factors, as in [2]. If the
domain walls are parallel to H0, then Nx + Nz = 1 and
Ny = 0, while for the perpendicular orientation, we have
Nx = 0 and Ny + Nz = 1. The characterization of the DS
in terms of demagnetization factors makes it possible to
consider bubble domains [2] together with stripe
domains. Theoretical analysis of FMR in the presence
of a DS in the field H0 directed along the EMA is not
001 MAIK “Nauka/Interperiodica”
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carried out by us, because the first anisotropy constant
plays a crucial role in this case and the results are iden-
tical to those reported in [2–6].

The total energy of the system is written as

(1)

Here, M0 is the saturation magnetization and Mnx, Mny,
and Mnz are the projections of the domain magnetiza-
tion vectors Mn (n = 1, 2). In Eq. (1), the first term is the
Zeeman energy, the second is the demagnetization
energy due to the sample surface, the third is the DS
demagnetization energy, and the last term is the MCA
energy. The term describing the domain wall energy is
omitted in Eq. (1). In hexaferrites of the M type, the
domain wall thickness is approximately 0.01 µm; there-
fore, the volume of a domain wall is considerably
smaller than that of a domain, whose thickness is
~10 µm [2].

When solving the static problem, we assumed that,
in the absence of the magnetizing field, the vector M1 is
parallel and the vector M2 is antiparallel to the z axis.
The application of a magnetic field H0 leads to devia-
tion of the vectors Mn from the z axis through the angles
ϑ1 and ϑ2, respectively. Due to the symmetry of the
problem in the xy plane, the vectors Mn and H0 are in
the same plane and ϑ2 = π – ϑ1. In contrast to [1–6], we
calculated the equilibrium values of ϑ1 and ϑ2 for fields
lower than the saturation field, which is equal to

(2)

using a numerical method under the condition for the
total energy of the system given by Eq. (1) to be a min-
imum. In Eq. (2), HΘ = 2(k1 + 2k2 + 3k3)/M0 is the
anisotropy field in the plane perpendicular to the hexag-
onal axis c.

The dynamical problem of determination of the fre-
quencies of natural oscillations of the sample magneti-
zation in the presence of the DS was solved using a
method proposed in [2, 10]. We considered a set of cou-
pled equations of motion for the magnetization vectors
of neighboring domains. The effective static and
dynamical magnetic fields involved in these equations
were determined from Eq. (1) for the energy. The lin-
earized set of homogeneous equations for the variable

U
1
2
---H0 M1y M2y+( ) π

2
--- N ⊥ 0 M1x M2x+( )2[{+–=

+ M1y M2y+( )2 ] Nz0 M1z M2z+( )2 }+

+
π
2
--- Nx M1x M2x–( )2 Ny M1y M2y–( )2+[

+ Nz M1z M2z–( )2 ] 1
2
---

ki

M0
2i

-------- M1x
2 M1y

2+( )i[
i 1=

3

∑+

+ M2x
2 M2y

2+( )i ] .

HS HΘ= 4πN ⊥ 0M0,+
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components of the sample magnetization (mnx, mny,
mnz) in a matrix representation has the form

(3)

where [m] = (m1x , m1y, m1z, m2x , m2y , m2z)T is the vari-
able magnetization vector and [D] is the 6 × 6 matrix of
coefficients. The natural frequencies were found from
the equation

(4)

This equation has two positive roots for the reso-
nance frequencies (ωres). These roots correspond to two
spectrum branches which are excited by a microwave
magnetic field h parallel or perpendicular to H0.
Depending on the DS orientation, the calculated fre-
quencies correspond to the situations shown in Fig. 1
and are labeled 1–4. The same notation is used in Fig. 2
and when we compare the calculated resonance fields
and frequencies of the corresponding oscillation modes
with experimental results. For H0 = 0 and Nz = 0, two

D[ ] m[ ]× 0,=

det D[ ] 0.=
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Fig. 1. Relative positions of the DS and the static and micro-
wave magnetic fields for which the resonance frequencies
were calculated. Labels 1 and 4 correspond to the oscillation
modes with Nx = 0; labels 2 and 3, to modes with Ny = 0.

Fig. 2. FMR curves for BaM hexaferrite samples. Curves a
and b correspond to the samples whose sizes are given in the
caption to Fig. 3.
01



2112 ZHURAVLEV, OSHLAKOV
modes of natural ferromagnetic resonance are
observed. These modes have frequencies

(5)

An increase in H0 leads to a decrease in frequency
for all oscillation modes. In this case, the frequencies of
modes 2 and 4 (Fig. 1), which are excited by microwave
fields parallel to H0, are decreased to zero at a field H0 =
HS (Fig. 3), while the frequencies of the other modes
(1, 3), which are excited by a transverse microwave
field, become equal to the frequency ωr⊥  for the sample
magnetized to saturation:

(6)

ω1/γ( )2 Ha1 Ha1 4πN ⊥ 0M0+( ),=

ω2/γ( )2 Ha1 4πM0+( ) Ha1 4πN ⊥ 0M0+( ).=

ωr⊥ /γ( )2 H0 H0 HΘ– 4π N ⊥ 0 Nz0–( )M0–[ ] .=

10

0 4

Frequency, GHz

H0, kOe
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Fig. 3. Field dependences of the resonance frequencies:
(a) BaM, diameter ∅  = 1.4 mm, thickness h = 0.06 mm;
(b) BaM, ∅  = 2.6 mm, h = 0.11 mm, and (c) BaScM, ∅  =
2.6 mm, h = 0.095 mm. The notation for the calculated
oscillation modes in Figs. 3b and 3c is the same as that in
Fig. 3a.
PH
If the DS is oriented at an arbitrary angle with
respect to H0, then the resonance frequencies will be
located in the sectors restricted by curves 1, 3 and 2, 4,
respectively [4]. At the field H0 = HS, Eq. (6) is reduced
to the following formula, which can be used to deter-
mine the value of 4πM0 from the experiment:

(7)

When the sample is magnetized along the EMA, the
FMR frequencies in the presence of the DS are inde-
pendent of the magnetizing field and remain equal to ω1
and ω2 until the sample becomes uniformly magne-
tized, which is realized for fields H0 ≥ 4πM0Nz0 [4]. The
FMR frequency for the uniformly magnetized sample is
equal to

(8)

Comparing formulas (6) and (8), one can see that in this
case (where the axis of the ellipsoid of revolution coin-
cides with the EMA), the anisotropy field Ha1 = 2k1/M0

is replaced by  = Ha1 + 4πM0(N⊥ 0 – Nz0).

3. The experimental investigations were carried out
by means of an FMR spectrometer within the 15–
55 GHz frequency range for magnetizing fields up to
21 kOe. For frequencies up to 38 GHz, the measure-
ments were carried out by means of a resonator tech-
nique using rectangular multimode resonators which
support the TE10p oscillation modes. These resonators
were inserted in a waveguide circuit and operated in a
transmission mode. At higher frequencies, a waveguide
measuring technique was utilized. All experiments
were carried out at room temperature. Disk-shaped
samples less than 3 mm in diameter were used. The disk
axis coincided with the hexagonal axis of the crystal. A
sample was placed into an antinode of the microwave
magnetic field in such a way that, when the sample was
rotated, the orientation of the magnetizing field H0 was
changed from the direction along the disk axis to the
direction in the disk plane and the microwave magnetic
field always remained in the direction of the disk plane.
The FMR measurements were performed at certain
fixed frequencies in the form of dependences of the
microwave power transmission coefficient through the
resonator (waveguide) upon H0. In order to ensure iden-
tical experimental conditions, the measurements of the
resonance curves were carried out for a magnetization
field that was always decreased from its maximal value.
The natural FMR spectra (at H0 = 0) were recorded in
the frequency scanning regime.

The experiment was carried out as follows. The fre-
quency dependences of the resonance fields (Hres) were
measured on uniformly magnetized samples in magne-
tizing fields directed along the disk axis and lying in its
plane. The obtained data were processed by the least
squares method using Eqs. (6) and (8), and the gyro-
magnetic ratio (γ) and the anisotropy fields HΘ and 

ωr⊥ /γ( )2 4πNz0M0HS.=

ωr||/γ H0 Ha1 4πM0 N ⊥ 0 Nz0–( ).+ +=

Ha1'

Ha1'
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Measured parameters of the materials

Material γ, GHz/kOe 4πM0, kG Ha1, kOe HΘ, kOe

BaM 2.8 ± 0.02 4.8 ± 0.1 16.7 ± 0.1 16.7 ± 0.1

BaScM 2.78 ± 0.02 4.0 ± 0.1 7.0 ± 0.1 6.8 ± 0.1
were found. The sample demagnetization factors were
calculated using the Osborne formulas (see, for exam-
ple, [11]). The saturation magnetization (4πM0) was
determined from the experimental values of ωr⊥  and HS

using formula (7). Then, the contributions from shape
anisotropy and MCA to  were separated.

The parameters of the studied materials thus
obtained are presented in the table. These parameters
were used to plot the theoretical field dependences of
the resonance frequencies for samples with the DS.
Note that for the BaM sample, the parameters measured
by us correlate well with the literature data [12].

4. Let us discuss the results obtained in the present
work. Figure 2 shows the resonance curves measured at
a frequency of 36.76 GHz. Figures 3a and 3b present
the field dependences of the resonance frequencies for
two samples of BaM hexaferrite differing in size. The
disk dimensions are indicated in the caption to Fig. 3.
In the region of fields higher than HS, the uniform FMR
resonance curve is observed. Several magnetostatic
peaks are located on its high-field slope. For a thin sam-
ple (Fig. 2, curve a), the intensity of these peaks is low,
while the resonance curve for a larger sample (Fig. 2,
curve b) represents a superposition of two oscillation
modes with approximately equal intensities. For fields
lower than the saturation field, the FMR peak is
observed. This peak, as well as the uniform FMR peak,
is excited by a transverse (h ⊥  H0) microwave magnetic
field (mode 1 in Fig. 1). The line width (∆H) for this
peak is close to that for uniform FMR. A broad diffuse
absorption region on the low-field slope is observed for
a thin sample. It is well-known (see, for instance, [2,
12]) that the plane-parallel DS in uniaxial hexaferrites
normally has a meander form at low magnetizing fields.
Its orientation with respect to the magnetizing field in
different regions of the sample can be different. The
angle between the DS and the field H can vary from 0
to π/2. Such a distribution should lead to a wide absorp-
tion band. However, this region can be divided into sev-
eral resonance ranges; their fields are presented in
Fig. 3a. According to Fig. 2, this diffusion region is
transformed into a group of well-pronounced maxima
with increasing sample size. The resonance fields of
these maxima are close to the calculated ones for the
oscillation modes excited by the field h || H0, in spite of
the fact that the sample is located at an antinode of the
microwave field that is perpendicular to the magnetiz-
ing field. A similar effect was also observed in [2]. One
can suppose that the above-mentioned oscillation
modes are due to the nonuniformity of the microwave

Ha1'
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field in the vicinity of the sample. This nonuniformity
arises because the sample sizes are comparable to the
wavelength of the field. Moreover, the induced second-
ary microwave field has a component along the field
H0. In addition, a complimentary peak (marked by the
symbol “?”) is observed between the peaks of oscilla-
tion modes 2 and 4. The value of its resonance field is
close to the calculated one for the oscillations with Nx =
Ny = 1/2 (bubbles) for h || H0. However, the bubbles
should not appear for H0 applied in the difficult magne-
tization direction. Figure 3c presents the field depen-
dences of the resonance frequencies for a BaScM hexa-
ferrite disk with a lower anisotropy field. The results of
measurements for this material are similar to those pre-
sented above for the BaM hexaferrite. However, it can
be seen that, for BaScM, a noticeable difference in the
experimental and calculated resonance frequencies is
observed. This is especially evident for the high-fre-
quency oscillation mode (mode 1 in Fig. 1), the fre-
quency of which is strongly influenced by the DS [for
H0 = 0, its frequency is equal to ω2 given by Eq. (5)].
For the low-frequency mode (mode 4 in Fig. 1), whose
frequency is determined fundamentally by MCA and is
equal to ω1 for H0 = 0, good agreement between the cal-
culation and experiment is observed for low fields H0.
Such a behavior is due to the fact that the DS of this
material probably differs from the plane-parallel stripe
DS for which the calculation was done. Moreover, the
anisotropy field of this material is comparable in value
to the demagnetizing field. This leads to an increased
influence in the closure domains at the surface of the
sample. These domains have not been taken into
account in our calculations.

5. Thus, combined studies of the field dependences
of the FMR resonance frequencies on samples which
either have a DS or are magnetized to saturation pro-
vide the opportunity to experimentally determine, on a
single sample, not only the anisotropy fields Ha1 and HΘ
and the gyromagnetic ratio γ but also the saturation
magnetization of a material. Although the sample was
placed at an antinode of the microwave magnetic field
oriented perpendicular to the magnetizing field, the
modes that can be excited only by a longitudinal micro-
wave field are present in the spectrum of the excited
oscillation modes. The presence of these modes is prob-
ably due to the nonuniformity of h in the vicinity of the
sample. The resonance frequencies measured for the
BaM hexaferrite are close to the calculated values,
because the DS model used by us adequately describes
the experimentally observed DS. For the BaScM hexa-
ferrite with a lower anisotropy field, one observes a
01
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noticeable deviation of the measured frequencies from
the calculated values for those oscillation modes that
strongly depend upon the DS. We note that, according
to Fig. 2, the line width for the domain oscillation mode
1 is close to that for a uniform FMR. This provides an
opportunity to utilize this oscillation mode (for practi-
cal purposes) instead of a uniform FMR, which occurs
at a considerably higher magnetization field.
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Abstract—The inhomogeneous states (solitons) in a single chain of classical dipoles are studied numerically
and analytically. An analytical solution to the problem is based on the long-wave approximation for dipole sums
which holds for high magnetic fields perpendicular to the dipole chain. The analytical and numerical solutions
are in reasonable agreement. The magnetization reversal is investigated by numerical simulation based on the
Landau–Lifshitz stochastic equations. It is demonstrated that the magnetization reversal of a dipole chain at a
finite temperature has a thermal activation nature and occurs through the formation of a stable phase nucleus (a
soliton at the edge of the chain) and its growth (the motion of the soliton along the chain). © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The considerable interest expressed in ordered sys-
tems of ferromagnetic nanoparticles is associated pri-
marily with prospects for the creation of superdense
information (>1010 bit/cm2) recording and storage
devices based on these systems. On the other hand, the
investigation of an ensemble of single-domain mag-
netic particles offers a unique opportunity to study in
detail collective effects brought about by well-defined
interparticle interactions. Since the size of a particle is
rather large (compared to the interatomic distance), the
magnetic moment of particles can be treated as a clas-
sical quantity. The static magnetic fields generated by
single-domain particles are the fundamental cause of
interparticle interaction. As a rule, this interaction is
theoretically investigated in the dipole approximation.
A particle is considered to be a point dipole with a mag-
netic moment proportional to its volume. This approxi-
mation is satisfied in two cases: (a) the distance
between the particles is substantially larger than their
sizes and (b) the particles have a nearly spherical form.
In this work, the inhomogeneous states (solitons) in a
chain of classical dipoles and their role in magnetiza-
tion reversal at a finite temperature were studied analyt-
ically and numerically. The ordered chains of ferro-
magnetic nanoparticles can be synthesized either
through the process of self-organization [1] or by nan-
olithography [2, 3]. As far as we know, experimental
investigations have been performed with systems of
chains rather than with individual chains. However, in
view of the smallness of the interchain interaction as
compared to the intrachain interaction [4], the theoreti-
cal investigation of a single chain of classical dipoles is
1063-7834/01/4311- $21.00 © 22115
of great importance in the understanding of the experi-
mentally observed phenomena.

2. A SOLITON IN A ONE-DIMENSIONAL CHAIN 
OF THREE-DIMENSIONAL DIPOLES

First, we calculate the spectrum of small (linear)
excitations in an infinite chain. The nonexcited state
corresponds to the parallel orientation of dipoles M =
(M0, 0, 0). By linearizing the Landau–Lifshitz equation,
we obtain the following relationships for the Fourier
transforms of the small corrections m in dimensionless
variables:

(1)

where τ = tγM0, t is the time, γ is the gyromagnetic ratio,
and M0 is the magnetization of the dipole chain. The
distance between the nearest-neighbor dipoles is taken
equal to unity. When deducing relationships (1), we
took into account the condition Dzz = Dyy = –Dxx/2 =
1/n3 and the fact that all the off-diagonal components of
the dipole tensor are equal to zero: D(0) ≡ D(k = 0). It
is a simple matter to determine the dependence of the
frequency of natural oscillations on the wave number,
that is,

(2)

∂mx

∂τ
--------- 0,

∂my

∂τ
--------- 2mz D k( ) 2D 0( )+( ),–= =

∂mz

∂τ
--------- 2my D k( ) 2D 0( )+( ), D k( ) kncos

n3
--------------,

n 1=

∞

∑= =

ω k( ) 2 D k( ) 2D 0( )+( ).=
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The frequencies of small-amplitude oscillations are
nonzero due to the anisotropy of the dipole–dipole
interaction. Thus, the calculation of the mean-square
deviation angle of dipoles with respect to the X axis in
the Gaussian approximation results in a finite value.
However, this does not mean that a long-range order
exists in a one-dimensional chain of dipoles at a finite
temperature [5]. The long-range order is disturbed in
this system under nonlinear excitations, as is the case in
the one-dimensional Ising model. The problem of
determining the correlation radius (or the equilibrium
concentration of excitations) is much more complex
than that in the Ising model. This is due to the fact that
the Ising excitations form an ideal gas and their equilib-
rium concentration is ~exp(–2J/T), where J is the
energy of the spin–spin interaction. In a dipole system,
the solitons interact with each other. Since the problem
of calculating the thermodynamic characteristics of a
chain of three-dimensional classical dipoles has not yet
been solved, the determination of the energy and the
structure of nonlinear excitations (solitons) in this sys-
tem is of particular interest. Note that the solitons also
play a significant role in the processes of magnetization
reversal of a dipole chain at a finite temperature.

The energy of a single chain of dipoles in an external
magnetic field can be written as follows:

(3)

Since analytical determination of the extremals of this
functional is very complex, we consider a special case
when the external magnetic field is sufficiently high and
is directed across the dipole chain, H = (0, H, 0). As will
be shown below, this allows us to use the long-wave
approximation. Now, we rewrite the energy defined by
Eq. (3) in the Fourier representation:

(4)

By using the integral representation of D(k) [6],

(5)

we obtain the following relationship in the long-wave
approximation (k  0):

(6)

E
1
2
--- 1

n m– 3
------------------ My n( )My m( ) Mz n( )Mz m( )+[

n m≠

∞
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– Mx n( )Mx m( ) ] H M n( ).
n

∑–

E
1

2π
------ D( k( ) My k( )My k–( ) Mz k( )Mz k–( )+[

∞–

∞

∫=

– 2Mx k( )Mx k–( ) ] HMy k( ) )dk.–

D k( ) kncos

n3
--------------

n 1=

∞

∑ t2 et k 1–cos( )
1 2et k e2t+cos–
---------------------------------------- t,d

0

∞
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D k( ) . ζ 3( ) 1
2
--- k2 kln

3
2
---k2– 

  ,+
PH
where ζ(3) . 1.2 is the Riemann function. In relation-
ship (6), the first term describes the chain anisotropy,
the second term corresponds to the magnetodipole
interaction in the continuous medium approximation,
and the third term (the “pseudoexchange” term) is
introduced due to the discreteness of the system under
consideration. The energy functional in the long-wave
approximation takes the following form:

(7)

Expression (4) implies that, in high fields H, the z com-
ponent of the magnetic moment becomes zero. The
absolute minimum of this functional corresponds to the
homogeneous distribution of the magnetic moment:
cosϕ0 = H/6ζ(3), where ϕ is the angle between the
direction of the magnetic field and the magnetic
moment. In the case when the external field H is close
to the anisotropy field 6ζ(3), the deviation of the M vec-
tor from the Y axis is insignificant. We restrict our treat-
ment to the case of the terms proportional to ~ϕ4 and
obtain the equation for the extremals of functional (7),
that is,

(8)

where ϕ = ϕ0ψ, x = ln, ϕ2 = 2(1 – h) is the equilibrium
value of the angle, l2 = 2/(ζ(3)ϕ2) is the characteristic
dimension of the problem, and h = H/6ζ(3). For h 
1, we have l @ 1 and the long-wave approximation is
justified. Our main concern here is the solutions to
Eq. (8) that satisfy the boundary conditions ψ(x 
±∞) = ±1. We seek a solution to Eq. (8) in the form

(9)

The first term describes both the nucleus of a soliton
whose size increases with an increase in the field
according to the root law ~(1 – h)0.5 and the attainment
of an asymptotic value ±1. From the symmetry of the
problem and the boundary conditions, we obtain
f(−x) = –f(x). Let us determine the law of variation in
the f(|x |  ∞)  0 function at large x values, which,
in turn, specifies the law of the interaction between the
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solitons at large distances. Under the assumption that
f(x) ! , we obtain

(10)

At large x, the first two terms on the left-hand side
of Eq. (10) can be ignored. By virtue of the properties
of the f(x) function, the appropriate distribution of mag-
netic charges has a zero net charge. In fact, the relation-
ship ∂ϕ/∂x ~ ∂Mx/∂x = divM determines the charge
density in magnetostatics. Hence, the second term on
the left-hand side of this equation can also be disre-
garded. Consequently, we have

(11)

This result is easily understood if it is remembered
that the soliton (domain wall) under consideration is
charged in the magnetostatic sense. To every soliton
there corresponds a negative magnetic charge distrib-
uted inside the nucleus. At large distances (compared to
the nucleus size), this charge can be treated as a point
change inducing a field which is directed toward the
center of the soliton and decreases as 1/x2.

In order to verify the above assumptions concerning
the structure of the soliton in a one-dimensional chain
of dipoles and to elucidate its structure in low fields, we
carried out numerical calculations. The numerical sim-
ulation was based on a system of Landau–Lifshitz
equations (see below). The soliton solutions were cho-
sen by specifying of the initial conditions. Figure 1
depicts the calculated dependence of the self-energy of
a soliton on the external magnetic field. In high fields,
the soliton energy is well approximated by the expres-
sion E = 3/4(6ζ(3) – H)1.5. This dependence of the soli-
ton energy on the external field follows from expression
(7). In fact, the soliton energy is proportional to the
ratio of the equilibrium angle squared (ϕ2 ~ (1 – h)) to
the soliton “thickness” (l ~ (1 – h)–0.5). As a result, we
have the relationship E ~ (1 – h)1.5.

The results of calculations of the magnetization dis-
tribution in a soliton are displayed in Fig. 2. The numer-
ical simulation lends support to the validity of our con-
cept of soliton structure in high fields (H ~ 6ζ(3)). Fig-
ure 3 shows the field dependence of the integral y
component of the soliton magnetization,

hxtan

∂2 f

∂x2
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----------------- f+ 2π ∂
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h2ycos
----------------- yd

x y–
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– 2π ∂
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∂y
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x y–
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As the external magnetic field decreases, the structure
of the soliton becomes different from that determined
analytically. Specifically, when the field H is equal to

0.05

7.0

E

H
7.1 7.2

0.10

Fig. 1. The field dependence of the self-energy of a soliton
in the field range close to the saturation field (in dimension-
less units). The solid line shows the approximation accord-
ing to the formula E = 0.76(6ζ(3) – H)1.5. Points correspond
to the results of the numerical solution.
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Fig. 2. (a) Distribution of the magnetization in a soliton in
the external field h = 0.9844 (in dimensionless units). The
dashed line corresponds to ψ = , and the solid line
shows the results of the numerical simulation. (b) Distribu-
tion of the magnetization for large distances. Points repre-
sent the results of the numerical solution, and the solid line
corresponds to ψ = 1 – 1/x2.
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zero, the y component of the soliton magnetic moment
vanishes and the soliton nucleus has an “antiferromag-
netic” structure (Fig. 4).

3. THE THERMAL ACTIVATION MECHANISM 
OF MAGNETIZATION REVERSAL OF A SINGLE 

CHAIN OF DIPOLES

As was noted above, the solitons play a significant
role in the magnetization reversal of a single chain of
dipoles. Now, we consider a chain of particles whose
dipole moment is directed along the X axis. If the sys-
tem is placed in an external field aligned opposite to the
magnetic moment, the initial state remains metastable
up to a certain field Hc . At H > Hc, the dipoles are ori-
ented along the field and the dipole chain undergoes a
magnetization reversal; in this case, Hc is the coercive
field of the chain. A standard analysis of the system for
stability leads to the relationship

where D(k) is determined by expression (5). Note that
the minimum value of D(k) corresponds to the Brillouin
zone boundary. For this reason, the above mechanism
of magnetization reversal was referred to as the fanning
mechanism [7]. At a finite temperature, the processes of
magnetization reversal can proceed in a different man-
ner. It is known that the metastable state breaks down
through the formation of a critical nucleus of the stable
phase and its growth. This mechanism, as applied to the

Hc 2min D k( ) 2ζ 3( )+[ ] ,=

0.2

0

〈My〉

H

0.6

1.0

2 4 6 8

Fig. 3. Dependence of the y component 〈My〉  of the integral
magnetic moment of a soliton on the external field (the
results of the numerical solution are given in dimensionless
units).

Fig. 4. Distribution of magnetic dipole moments in the
absence of an external field.
PH
magnetization reversal of a thin ferromagnetic cylinder,
was considered in [8, 9]. The key to understanding how
the magnetization reversal occurs in this case lies in
solving the problem of the structure and the energy of
the critical nucleus, because the probability of the mag-
netization reversal is proportional to exp(–Ec/kT),
where Ec is the energy of the critical nucleus, T is the
temperature, and k is the Boltzmann constant.

It is assumed that, in a single chain of dipoles ori-
ented in the positive direction of the X axis, there arises
a nucleus containing l particles whose magnetic
moments are aligned with the applied field. The change
in the energy of the system due to the formation of the
nucleus can be written as

(12)

Here, the first term corresponds to the increase in the
energy due to the formation of two solitons at the
boundary of the nucleus and the second term accounts
for the decrease in the energy of the system due to inter-
action with an external field. The surface contribution
to the energy ε(l) contains the self-energy of two soli-
tons and the energy of their interaction. It is clear that,
at sufficiently large L, the interaction of solitons is
caused by their magnetostatic charge proportional to
−divM. The energy of their interaction is proportional
to 4/l. The attraction of solitons brings into existence a

critical nucleus with size lc ~ 1/  and energy Ec .

2ε0 – 4  (where ε0 is the self-energy of a single soli-
ton). Therefore, a critical nucleus of the new phase can
occur in the system under consideration with a proba-
bility proportional to ~exp(–Ec(h)/T).

The validity of this hypothesis was tested by numer-
ical simulation of magnetization reversal in a chain of
dipoles. The numerical calculation consists in solving
the system of Landau–Lifshitz stochastic equations,
which has the following form in dimensionless vari-
ables:

(13)

where hi(x) = h0i – (x – y)mk(y) + ξi(x, τ) is the
total magnetic field acting on a particle with coordinate x.
The dimensionless variables are chosen as follows: m =
M/Ms, h = H/Ms, τ = tγMs/(1 + λ2), and x = r/v 1/3. Here,
Ms is the magnetic moment of the particle (in our calcu-
lations, we used the value of Ms = 800 G, which corre-
sponds to permalloy), v  is the volume of the particle
(v  = 8 × 10–18 cm3), γ = 1.76 × 107 Oe–1 s–1, and λ is the
dimensionless damping constant (λ = 0.1). The distance
between the particles was taken equal to 50 nm. The
effective field h(x) acting on a particle at the point x
involves the homogeneous external field h0, the field
induced by all other particles at this point, and a random
field ξ(x, τ), which simulates the action of the thermo-

∆E l( ) ε l( )= 2hl.–

h

h

∂m
∂τ
-------- mh[ ] λ m mh[ ][ ] ,––=

Diky∑
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001



INHOMOGENEOUS STATES AND THE MECHANISM OF MAGNETIZATION REVERSAL 2119
stat on the particle. The field ξ is assumed to be a delta-
correlated random Gaussian quantity, that is,

(14)

According to the fluctuation–dissipative theorem,
the intensity of fluctuations is proportional to tempera-

ture, Γ2 = 2kTλ/ v∆τ, where ∆τ is the time integra-
tion step.

Let us assume that α(T, h0) is the probability of for-
mation of a critical nucleus in a unit time. In order to
calculate the probability α, we consider a random quan-
tity θ, the instant of formation of a nucleus. The proba-
bility density of this quantity has the form p(θ) =
α exp(–αθ). Therefore, the mean time interval preced-
ing the formation of a nucleus (the latent period of the
nucleus) is defined as 〈θ〉  = 1/α. The computational
algorithm of this quantity is as follows. First, we choose
the initial conditions in the form

In this case, it is assumed that the external magnetic
field is aligned opposite to the X axis, i.e., h = (–h0, 0, 0).
We solve system (13) up to the instant of time θ, when
one-half the total number of dipoles in the chain has
turned over: (n, θ) = 0. The time θ is slightly
longer than the time of the formation of an irreversibly

growing nucleus of the new phase . Since  – θ ! θ,
we disregard this difference (the chain consists of
50 particles). By repeating this procedure K times (in
our simulation, we chose K = 30), we obtain sample

ξ i〈 〉 0,=

ξ i x τ p,( )ξ j y τq,( )〈 〉 Γ 2δijδ x y–( )δpq.=

Ms
2

m t 0=( ) 1 0 0, ,( ).=

mx∑
θ̃ θ̃

6

4

ln(〈θ〉γMs/(1 + λ2))

T–1, 10–3 K–1
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Fig. 5. Dependences of the logarithm of the latent time of
magnetization reversal for a chain of 50 particles on the
reciprocal of temperature T –1 in external fields H = 70 and
80 Oe.

~
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values for the random quantity  at specified external

field and temperature. As a result, we have  .

/K = 1/α.

In our simulation, we more often observed the for-
mation of the nucleus at the end of the chain, which was
likely due to a decrease in the energy of the critical
nucleus at the end of the chain as compared to its
energy in the bulk.

The dependence of  on T–1 is well approxi-
mated by a straight line, which proves the activation
nature of the magnetization reversal (Fig. 5). Figure 6
shows the dependence of the latent period of the
nucleus on the external magnetic field. Despite the
probabilistic character of the magnetization reversal,
this dependence can be characterized by a critical
value. For example, at T = 300 K, when the field is
higher than 60 Oe, the time of the magnetization rever-
sal shortens. It can be assumed that the coercive field is
equal to 60 Oe. It is quite reasonable that this “critical”
field decreases with an increase in the latent time,
which is specified by the conditions of performing the
experiment.
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Abstract—The results of high-temperature (20 ≤ T ≤ 800°C) relaxation and magnetic investigations of
ferrite Li0.5Fe2.5O4 in various structural states are given. Anomalies of internal friction caused by the
occurrence of ferrimagnetic and structural (ordering type) second-order phase transitions and by
vibrations of domain walls of ferrimagnetic and antiphase domains were revealed. It is shown that the
1 : 3 ordering of Fe3+ and Li+ ions in the octahedral sublattice of the spinel leads to a decrease in the
Curie temperature, a change in the character of the temperature dependence of the low-field magne-
tization, and a narrowing of the temperature range of the structural phase transition, as well to a sub-
stantial weakening of dissipation processes connected with vibrations of ferrimagnetic domain walls
in the field of elastic stresses. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Lithium ferrite Li0.5Fe2.5O4 appears to be the sim-
plest representative of the class of inverse spinels; its
crystal lattice contains only one type of magnetically
active ion (Fe3+), and the distribution of the cations Fe3+

and Li+ between the tetrahedral (A) and octahedral (B)
sublattices is as follows: Fe3+ . This fer-
rite has the greatest Curie temperature among all
known spinels (TC ≥ 600°C). The magnetic properties
of Li0.5Fe2.5O4 have been studied in much detail,
although the data on the magnitude of TC and the char-
acter of the temperature dependence of the low-field
magnetization are controversial (see, e.g., [1–5]). It is
also known that the process of 1 : 3 atomic ordering
occurs in the B sublattice of Li0.5Fe2.5O4 at temperatures
T1 : 3 ≤ 750°C, which leads to a regular arrangement of
three Fe3+ ions and one Li+ ion along crystallographic
directions <110>; as a result of this ordering-type phase
transition, the space group –Fd3m is reduced to O7–
P413 [4].1 

As we know, the relaxation properties of Li0.5Fe2.5O4
have not been studied earlier. Meanwhile, for many rea-
sons, the investigation of the lithium ferrite with vari-
ous degrees of ordering by using the internal-friction
(IF) method is of a fundamental interest.

First, on the one hand, the results of numerous relax-
ation experiments on metallic and insulating ferro-,
antiferro-, and ferrimagnets show that the IF method is
sensitive to magnetic transformations in a very wide

1Such a transformation apparently should be accompanied by a
doubling of the lattice parameter [6, 7].
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frequency range; on the other hand, the classical Lan-
dau–Khalatnikov theory [8] predicts the appearance of
anomalies of absorption for only high-frequency (in a
megahertz range) acoustic vibrations upon the relax-
ation of the order parameter in the vicinity of a second-
order phase transition, so that no anomalies in the
sound absorption seemed should be observed at low
frequencies (1–102 Hz).

Second, as was already mentioned above, this ferrite
exhibits a rather specific type of ionic ordering (1 : 3
ordering in the B sublattice) and it is absolutely unclear
if the method of low-frequency internal friction is sen-
sitive to structural phase transitions of this type.

Third, the method of IF is sensitive to the processes
of domain-structure evolution [9], and we know that two
types of domains should coexist in this multiaxial ferri-
magnet, i.e., magnetic and structural (antiphase domains
[7]). The character of dissipative processes in such situa-
tions has not been studied earlier, as far as we know.

In this connection, the aim of this paper is to study, in
a wide temperature range, the low-frequency IF of sam-
ples of lithium ferrite Li0.5Fe2.5O4 in ordered and disor-
dered states. It is obvious that the investigation of the
behavior of the IF of Li0.5Fe2.5O4 alone is hardly suffi-
ciently informative for analysis of the effects related to
the simultaneous occurrence of two types (magnetic and
structural) of phase transitions and to the evolution and
(possibly) interaction of two types of domain structures.
For this reason, the program of the investigations that
was realized in this work also envisaged, along with
measurements of low-frequency IF at 20–800°C, precise
magnetic measurements in the same temperature range.
001 MAIK “Nauka/Interperiodica”
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1. EXPERIMENTAL

As the objects for the investigation of relaxation and
magnetic properties, we used polycrystalline samples
obtained by the standard powder-metallurgy method
(see, e.g., [2]). A mixture of initial components (pure
powders of Li2CO3 and Fe2O3) corresponding to the sto-
ichiometric composition of the lithium ferrite
Li0.5Fe2.5O4 was subjected to wet milling and subsequent
preliminary annealing at ~1000°C for 5 h. The thus-
obtained ferrite charge ground in the process of a second-
ary wet milling was used to press samples for relaxation
and magnetic measurements (rectangular parallelepi-
peds with characteristic dimensions of 2 × 2 × 8 mm for
IF measurements and 2 × 2 × 25 mm for magnetic mea-
surements), which were then sintered at ~1250°C for
5 h in air. X-ray diffraction showed that they were
almost completely single-phase.

To obtain Li0.5Fe2.5O4 samples in the ordered state
(i.e., with a 1 : 3 superstructure in the octahedral sublat-
tice) and in the disordered state, we used various
regimes of cooling to room temperature, namely, a slow
cooling with a furnace or quenching in air from the sin-
tering temperature. The choice of the regime of heat
treatment was based on the results of x-ray diffraction
analysis. In the diffraction patterns of slowly cooled
samples, superlattice reflections (110), (210), (211),
etc. were present, whereas the diffraction patterns of
quenched samples contained only reflections character-

istic of the space group –Fd3m, which indicates the
absence of 1 : 3 ordering of Fe3+ and Li+ ions in the B
sublattice. A cyclic variation of the heat treatment
regimes permitted us to obtain both ordered and dislo-
cation states on the same sample.

Measurements of the IF parameters, i.e., of the log-
arithmic decrement Q–1 and the resonance frequency of
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Fig. 1. Temperature dependence of the logarithmic decre-
ment Q–1 of (1) disordered and (2) ordered samples of
Li0.5Fe2.5O4 at 20–800°C.
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vibrations ν (the vibration frequency is related to the
effective elastic modulus E as ν2 ~ E), at temperatures of
20–800°C were conducted by the pendulum method
using bending vibrations in a frequency range of 57–
68 Hz with a relative deformation amplitude ε ~ 10–6 on
a specially constructed setup [10]. As a rule, the mea-
surements were carried out in the course of heating of
the samples.

The polytherms σH(T) and isotherms σT(H) of the
magnetization were measured by the induction method
using a microfluxmeter F-190 as the indicator of the
signal; the signal from the magnetic field was compen-
sated for by an additional (compensation) coil. The sen-
sitivity of the setup was ~10–3 G cm3 g–1. The relative
error of measuring magnetization (∆σ) was no more
than ~2%.

2. RESULTS AND DISCUSSION

The IF spectra Q–1(T) obtained upon heating of
Li0.5Fe2.5O4 samples in various structural states are dis-
played in Fig. 1. A number of anomalies (peaks) are
seen in the Q–1(T) curves. Computer processing of the
IF spectra permits their being interpreted as a set of four
Lorentzians (a, b, c, and d) against the background of
exponential Q–1(T) dependences. As an illustration, this
figure also shows (in the bottom) the resolution of the
Q–1(T) spectrum into components for a disordered sam-
ple.

As can be seen from Fig. 1, there are several differ-
ences between the IF spectra of disordered (quenched)
and ordered (slowly cooled) samples. The main fea-
tures of the evolution of the Q–1(T) curves that are
observed upon the passage from a disordered spinel to
a spinel with a 1 : 3 ordering of Fe3+ and Li+ ions are as
follows: (1) the most high-temperature peak d is mark-
edly increased and insignificantly shifted to lower tem-
peratures; (2) peak c becomes weaker, somewhat shift-
ing into the region of lower temperatures; (3) peak b is
narrowed and is also shifted toward lower tempera-
tures; and (4) peak a becomes diffuse and virtually
indiscernible against the IF background.

In the ν(T) curves, only two weak peaks could be sep-
arated; they correspond to peaks b and d in the Q–1(T)
curves.

The results of measurements of temperature depen-
dences of magnetization (the σH(T) polytherms in a
magnetic field H = 18 Oe at 20–650°C) of the
Li0.5Fe2.5O4 samples studied are displayed in Fig. 2. The
σH(T) curves obtained in fields H = 3–48 Oe are similar.
Note that the σH(T) dependences for Li0.5Fe2.5O4 sam-
ples are in essence analogous to the temperature depen-
dences of the initial susceptibility χ0(T), since the mag-
netization isotherms σT(H) (Fig. 3) are almost linear
and completely reversible (exhibit no hysteresis) in a
rather wide range of magnetic fields. This permits us to
consider the temperature at which σH(T) becomes zero
as the Curie temperature of the sample. An estimation
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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of TC values based on measurements of σH(T) yields
TC ~ 610°C for the disordered samples and ~595°C for
the samples with the 1 : 3 ordering in the B sublattice.
These values of TC are close to the position of peaks b
in the Q–1(T) (Fig. 1) and ν(T) curves.

The values of TC for the samples studied were
refined based on the measurements of the magnetiza-
tion isotherms σT(H) in the vicinity of these tempera-
tures (Fig. 3).

According to the Landau theory of second-order
phase transitions, the equation of state of ferro- and fer-
rimagnets near the Curie point is as follows [8]:

 (1)

where α(T) and β(T) are thermodynamic coefficients.
Equation (1) is linearized in the Belov–Arrott coor-

dinates . The inset in Fig. 3 displays the data

obtained in these coordinates for a disordered sample.

As is seen, the (σ2) curve passes through zero at

TC = 608 ± 2°C. The Curie temperature for a sample
with 1 : 3 ordering determined by the Belov–Arrott
method is 595 ± 2°C.

Thus, the combined results of relaxation and mag-
netic measurements permit one to unambiguously solve
the problem of the nature of the observed b-type anom-
alies in the temperature dependences of the IF parame-
ters of the lithium ferrite Li0.5Fe2.5O4.

At the same time, as was already noted, the appear-
ance of features in the temperature dependences of the
low-frequency IF upon second-order magnetic phase
transitions seems to contradict the Landau–Khalatni-
kov theory [8]. We think that the observed anomalies in
the Q–1(T) dependences near TC are caused not by the
direct relaxation of the order parameter in the vicinity
of the phase transition but by the accompanying effect
of significant magnetostrictive deformations of the
crystal lattice near TC; i.e., they are related to the second
derivatives of the thermodynamic potential. Thus, the
anomalies of IF near TC in the case of the ferromagnetic
rare-earth metal gadolinium [11], in which such defor-
mations reach 10–3 [12, 13], were revealed even at a fre-
quency of 1 Hz.

The nature of the highest-temperature relaxation
effect (peak d in the Q–1(T) and ν(T) curves) related to
the phase transition due to the atomic ordering of Fe3+

and Li+ ions in the octahedral sublattice of Li0.5Fe2.5O4
is also undisputed. In this paper, we obtained strong
evidence that the transformation at the T1 : 3 temperature
is a second-order phase transition: near T1 : 3, character-
istic features of the type of Landau’s λ anomalies
appear in the Q–1 and ν behavior (see Fig. 1), and in the
Q–1(T) curves, no hysteresis is observed upon heating
and cooling of the samples through the temperature of
the phase transition (Fig. 4).
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Fig. 2. Temperature dependence of the relative magnetiza-
tion of (1) disordered and (2) ordered samples of
Li0.5Fe2.5O4 in a field H = 18 Oe at T = 20–650°C.

Fig. 3. Magnetization isotherms of a quenched sample of

Li0.5Fe2.5O4 near TC. The inset shows the (σ2) depen-

dence of a quenched sample of Li0.5Fe2.5O4 at T = 608°C.
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Fig. 4. Temperature dependence of the logarithmic decre-
ment Q–1 of a sample of Li0.5Fe2.5O4 upon cooling and
heating in a temperature range of 600–800°C.
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The IF features caused by the occurrence of mag-
netic and structural transitions at temperatures TC and
T1 : 3 are preceded on the low-temperature side by the
appearance of anomalies in the Q–1(T) curves (peaks a
and c in Fig. 1). The relaxation effects can be supposed
to be explained by the absorption of low-frequency
sound caused by resonance vibrations of the walls of
magnetic and structural domains in the field of elastic
stresses. The appearance of an IF peak c at T < T1 : 3 can
be due to dissipative processes at the boundaries of
antiphase domains that arise in a diffusive way in the
process of the structural phase transition of the ordering
type [6, 14]. This assumption is supported by the fact
that the Q–1(T) peak c in the ordered samples is sharper
but substantially lower in its intensity then that for the
disordered samples, in which the 1 : 3 superstructure is
formed during heating (Figs. 1, 4).

Note that the IF anomalies in the acoustic frequency
range caused by the vibrations of walls of ferrimagnetic
domains were observed previously also for other ferrite
spinels (see, e.g., [8, 15]). In addition, the mechanism
related to magnetoelastic hysteresis, which is tradition-
ally discussed in studying IF in magnets (see, e.g., [16]),
does not work in this case; indeed, it follows from the
magnetization measurements in Li0.5Fe2.5O4 at T ≤ TC
that the σT(H) curves for both ordered and disordered
samples are reversible (Fig. 3). This is not surprising,
since the energy of magnetocrystalline anisotropy of
lithium ferrite is relatively small; this is caused by spin–
orbit interaction of Fe3+ ions in the S state, which
appears only in higher-order perturbation theory [17].
Note also that the presence or absence of 1 : 3 ordering
should affect the energy of single-ion anisotropy. This
is well confirmed by the results of this paper and fol-
lows from the difference in the shapes of the curves
σH(T) ~ χ0(T): in the ordered state, as T  TC, a Hop-
kinson effect is observed; i.e., the appearance of an
asymmetric maximum in the σH(T) curve is observed
(curve 2 in Fig. 2). As is well known [17], the appear-
ance of a maximum in the curves of the temperature
dependence of magnetic susceptibility,

 (2)

is due to the fact that the spontaneous magnetization σs
falls off at T  TC more slowly than the anisotropy
constant K. The σH(T) curve shown in Fig. 2 (curve 1)
is typical of magnetically soft materials with a predom-
inant shape anisotropy [18].

Thus, it is evident that the observed anomaly is due
to purely relaxation-related losses caused by irrevers-
ible vibrations of domain walls.

As is seen from Fig. 1, the IF peak a at ~310°C
caused by damping of low-frequency sound at ferri-
magnetic domain walls in Li0.5Fe2.5O4 is clearly pro-
nounced in the disordered sample but is virtually absent
in the sample with 1 : 3 ordering of the Fe3+ and Li+

ions. The appearance of this effect, in our opinion, can

χ T( )
σs

2 T( )
K T( )
--------------,=
PH
be explained by the substantial differences in the
microstructure of the ordered and disordered samples
of the ferrite studied. Indeed, in the ordered sample (at
T ≤ T1 : 3), the grains of the polycrystalline aggregate
are divided into numerous antiphase domains whose
boundaries are formed as a result of shifts of neighbor-
ing domains by a lattice half-period. These walls serve
as efficient stoppers for the motion of ferrimagnetic
domains. In the disordered sample, in which the forma-
tion of the 1 : 3 superstructure is suppressed by rapid
quenching, such a mechanism of domain-wall pinning
is absent and only grain boundaries can serve as obsta-
cles for domain motion. Naturally, in the last case, the
dissipative processes related to domain-wall vibrations
are stronger.

The shift of TC toward higher temperatures in the
presence of disordering in the B sublattice of the
Li0.5Fe2.5O4 ferrite, found in magnetic and relaxation
measurements, is quite determinate. It is well known
that in the framework of the exchange model of ferro
(ferri) magnetism, the dependence of the Curie temper-
ature on the degree of short-range order α for the most
important case where only the exchange integral for
pairs of atoms that are magnetic-moment carriers
(“magnetic atoms”) is important is as follows [19]:

 (3)

where W is the energy of exchange interaction between
two magnetic atoms, k is the Boltzmann constant, N is
the coordination number,2 cF is the concentration of
magnetic atoms, and cD is the concentration of nonmag-
netic atoms.

Although we cannot directly use Eq. (3) when con-
sidering a sufficiently complex picture of exchange
interactions in a two-sublattice ferrite, qualitatively, it
follows from this equation that an increase in the degree
of atomic order α, i.e., in our case, a decrease in the
number of neighboring magnetic ions Fe3+, should lead
to a decrease in TC and that a decrease in α should result
in an increase in TC, which indeed is observed in mag-
netic and relaxation experiments.

3. CONCLUSIONS

Thus, based on the results of temperature measure-
ments of the IF parameters in a zero magnetic field, i.e.,
of the logarithmic decrement Q–1 and resonance fre-
quency of vibrations ν, as well as of the polytherms and
isotherms of magnetization in ordered and disordered
samples of lithium ferrite, we can arrive at some con-
clusions referring to the entire problem of the relation
between the relaxation properties on the one hand and
the structure and magnetism of ferrites on the other
hand.

2 It is obvious that only the values of α and N for the first coordina-
tion shell (α1 and N1) are important.

TC α( ) W
k
-----

N 1–( ) cF αcD+( ) 1+
N 1–( ) cF αcD+( ) 1–

-----------------------------------------------------ln
1–
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(1) At the Curie temperature TC and at the T1 : 3 tem-
perature of the structural phase transition of the 1 : 3-type
ordering in the octahedral sublattice, anomalies of low-
frequency IF are observed in samples that differ in the
initial degree of atomic ordering.

(2) The T1 : 3 temperature of the 1 : 3 ordering phase
transition is virtually independent of the direction of the
temperature change and the degree of atomic order.

(3) A decrease in the degree of structural ordering in
one of the sublattices of the ferrite increases TC and
changes the energy of the single-ion magnetocrystal-
line anisotropy.

(4) Below T1 : 3, some features of IF connected with
the vibration of structural (antiphase) domain walls in
the field of elastic stresses were revealed.

(5) In disordered samples, a relaxation peak of IF
caused by vibrations of ferrimagnetic domain walls in
the field of elastic stresses is observed at T < TC; in
ordered samples, the presence of antiphase domains
leads to suppression of this peak.

The results of this work are qualitative to a certain
degree. Although we studied the internal friction and
magnetic properties of a particular ferrimagnet, i.e., of
lithium ferrite Li0.5Fe2.5O4 with various degrees of
atomic ordering, the state of the objects of the investi-
gation could change substantially directly in the pro-
cess of relaxation or magnetic measurements. This fol-
lows foremost from the appearance of weak superlat-
tice reflections in the x-ray diffraction patterns of
quenched samples after high-temperature measure-
ments.
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Abstract—The formation of superstructures due to the interaction of one-component and two-component
order parameters in three-sublattice magnets is considered. It is shown that, in the general case, the propagation
vector is located in the XOY plane and the irreducible vectors can rotate either within one plane or in two mutu-
ally perpendicular planes. Under the conditions of “latent” paramagnetism, no superstructure is formed. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The modern theory describing the formation of
long-period structures has been elaborated sufficiently
well. Earlier [1–3], it was shown that the formation of
these structures can stem from competition between the
interactions represented by invariants (quadratic in the
first-order spatial derivatives) of the moments of spin
density and the second- or fourth-degree invariants of
these derivatives in terms of the density of the nonequi-
librium thermodynamic potential. Another condition of
the existence of the long-period structure is the small-
ness of the invariant that is linear in the first-order spa-
tial derivatives, which can be provided by distinct space
anisotropy of the exchange (or exchange–relativistic)
interaction [4]. Dzyaloshinski [4] also considered the
symmetry conditions of the existence of these invari-
ants. More recently, Stefanovskiœ [5] demonstrated that,
unlike the situation considered in [4], the formation of
a superstructure can occur with the participation of two
order parameters which are transformed through differ-
ent irreducible representations of the space group of
symmetry of the paramagnetic phase. Moreover,
Bar’yakhtar et al. [6] analyzed the formation conditions
of superstructures in Cr2BeO4 and proved that the den-
sity of the nonequilibrium thermodynamic potential
can be described by Dzyaloshinski-type invariants of
an exchange nature. This situation becomes possible in
the case when the expansion of the direct product of the
three irreducible representations, according to which
two order parameters (the magnetic vectors) are trans-
formed, by the coordinate (in which the first-order
derivative is calculated) involves a completely symmet-
ric representation. In this case, the group with respect to
which the order parameters are calculated is the permu-
tation group of the magnetic ions in the unit cell. The
exchange invariants deduced in [6] are composed of two
one-component order parameters. Bar’yakhtar et al. [6]
1063-7834/01/4311- $21.00 © 22126
also determined the regularities of the formation and
existence conditions of incommensurate structures. It
was found that, for the one-component order parame-
ters, the propagation vector is invariably aligned with
one of the coordinate axes. It should be expected that,
in the case of the two-component order parameter, the
propagation vector can be arbitrarily directed along one
of the coordinate planes. This situation can be realized
in three-sublattice magnets. In these compounds, the
number of order parameters is no greater than three.
Specifically, iron phosphide (Fe2P), which, as is known,
exhibits an incommensurate structure [7], possesses
two order parameters [8]: the one-component order
parameter (the ferromagnetic vector F) and the two-
component order parameter consisting of two antiferro-
magnetic vectors L1 and L2, which are transformed
with respect to different rows of the same two-dimen-
sional irreducible representation of the permutation
group. Yablonski and Medvedeva [8] presented only the
explicit form of the nonequilibrium thermodynamic
potential and noted the possibility of forming a super-
structure in principle, but appropriate calculations sup-
porting this were not performed.

2. FORMALISM

As was noted above, crystals with a triangular
structure of the Fe2P type [8] exhibit two order param-
eters: the ferromagnetic vector F = S1 + S2 + S3 (the
one-component order parameter) and the six-dimen-
sional vector L with two component antiferromagnetic
vectors L1 = 2–1/2(S2 – S3) and L2 = 6–1/2(2S1 – S2 – S3),
where Si (i = 1, 2, 3) is the spin of the ith magnetic ion.
The L1 and L2 vectors are transformed with respect to
the different rows of the same two-dimensional irreduc-
ible representation E', as well as the Y and X compo-
nents of the polar vector, and the F vector is trans-
formed according to the completely symmetric irreduc-
001 MAIK “Nauka/Interperiodica”
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ible representation of the permutation group D3h. As
was shown in [8], the density of the nonequilibrium
thermodynamic potential in the absence of a magnetic
field can be represented in the following form:

 (1)

The appropriate system of Ostrogradski equations
for the determination of the extrema has the form

(2)

where i = x, y, z denote the projections of the vectors
and the parenthetic subscripts indicate the variables
with respect to which the derivatives are calculated (the
Z axis coincides with the threefold crystallographic
axis).

Now, we change over to the spherical coordinates in
the system of equations (2) in accordance with the rela-
tionships

where θ1 and ϕ1 (i = 1, 2, 3) are the polar and azimuthal
angles, respectively.

It follows from the transformed system of equations
that there exist the mutually independent solutions for
the azimuthal angles:

 (3)

According to relationship (3), rotation of the irre-
ducible vectors can occur in the following ways.

(1) All three vectors rotate in one plane if the azi-
muthal angles ϕi (i = 1, 2, 3) are of the same sign.

(2) Two of the three vectors rotate in one plane if
their azimuthal angles ϕ are of the same sign and the
third vector, with opposite sign of ϕ, rotates in the per-
pendicular plane.

Φ δ1F2= δ2 L1
2 L2

2+( ) ∆ F
∂L1

∂y
--------- L1

∂F
∂y
------–

+ +

+ F
∂L2

∂x
--------- L2

∂F1

∂x
---------

– α1
∂F
∂x
------ 

 
2

+

+ α2
∂F
∂y
------ 

 
2

α3

∂L1

∂y
--------- 

 
2

α4

∂L2

∂x
--------- 

 
2

.+ +

α1Fi xx( )'' α2Fi yy( )'' ∆ Li1 y( )' Li2 x( )'+( )– δ1Fi–+ 0=

α3Li1 yy( )'' ∆Fi y( )' δ2Li1–+ 0=

α4Li2 xx( )'' ∆Fi x( )' δ2Li2+ + 0,=





Fz = F θ3, L1zcos  = L1 θ1, L2zcos  = L2 θ2,cos

Fx F θ3 ϕ3, L1xcossin L1 θ1 ϕ1,cossin= =

L2x L2 θ2sin ϕ2,sin=

Fy F θ3sin ϕ3, L1ysin L1 θ1 ϕ1,sinsin= =

L2y L2 θ2sin ϕ2,sin=

ϕ i
π
4
---.±=
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Making allowance for relationships (3), we seek a
solution to the system of Ostrogradski equations in the
form

 (4)

where ρi (i = 1, 2) are constants specifying the phase
shift and kx and ky are the projections of the propagation
vector onto the OX and OY axes, respectively. It follows
from the minimum condition of the potential that the
relationships ρj = –π/2(ρj = π/2) (j = 1, 2) are satisfied
at ∆ > 0 (∆ < 0). It is evident that the phases of the polar
angles of the antiferromagnetic vectors coincide with
each other and are shifted through an angle of π/2 with
respect to the ferromagnetic vector.

By substituting relationships (4) into the system of
equations (2) rewritten in the spherical coordinates, we
obtain a system of three homogeneous equations for
determining the magnitudes of three irreducible vectors
F, L1, and L2. Then, we set the determinant of the sys-
tem equal to zero and obtain the equation

 (5)

As can be seen from Eq. (5), the propagation vector
of the superstructure is located in the XOY plane and
has an arbitrary direction. Equation (5) specifies the
relation between the kx and ky components. In order to
obtain their actual values, it is necessary to determine
the derivative of the density of the nonequilibrium ther-
modynamic potential with respect to kx or ky. Since the
temperature T appears in the equations used for deter-
mining the kx and ky values, its variation affects both the
magnitude |k| and the direction of the propagation vec-
tor. As was shown above, the azimuthal angles ϕ are
temperature independent and constant. Therefore, the
propagation vector k cannot be aligned with any of the
possible planes of rotation of the irreducible vectors. In
this case, the structures thus formed are either skew spi-
ral structures, when all the order parameters rotate in
the same plane, or mixed structures, provided the rota-
tion occurs in different planes.

It should be noted that, in the framework of the the-
ory accounting for one-dimensional order parameters,
the propagation vector k of the superstructure is aligned
only with one of the crystallographic axes and the tem-
perature variation affects solely the magnitude and not
the direction of the propagation vector [3].

3. RESULTS AND DISCUSSION

Let us now analyze Eq. (5). For simplicity, we
assume that α1 = α2 and α3 = α4. Then, at δ1 = 0, we
have

θ3 kxx kyy, θ1+ θ3 ρ1, θ2+ θ3 ρ2,+= = =

α3kx
2 δ2+( ) α4ky

2 δ2+( ) α1kx
2 α2ky

2 δ1+ +( )–

+ ∆2kx
2 α4ky

2 δ2+( ) ∆2ky
2 α3kx

2 δ2+( )+ 0.=
1
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 (6)

where k2 =  + . Similarly, at δ2 = 0, we obtain the
expression

 (7)

where TN and TC are the Néel and Curie temperatures,
respectively.

We consider the following cases.
(i) TN > TC.
(a) δ2 = 0. In this case, the solution to Eq. (7) exists

only when α4(TN – TC) < 2∆2; i.e., the temperatures TN
and TC should not significantly diverge one from the
other. In the opposite situation, the formation of a
superstructure becomes impossible.

(b) δ1 = 0 and δ2 < 0. Equation (6) involves two
changes of sign in the sequence of coefficients, which

results in two different positive solutions for . Con-
sequently, if the conditions of stability are met, two
superstructures with different propagation vectors
should occur near the TC temperature.

(ii) TC > TN.
(a) δ1 = 0 and δ2 > 0. If α1(TC – TN) > ∆2, Eq. (6) has

two changes of sign in the sequence of coefficients and,
correspondingly, two positive solutions; otherwise, it
has only one solution. In this case, the difference
between the Curie and Néel temperatures should be
sufficiently large. A similar requirement should be ful-
filled in the case of the formation of superstructures due
to the interaction of two one-component order parame-
ters [9].

(b) δ2 = 0 and δ1 < 0. Equation (7) has solutions at
any parameters; i.e., the superstructure can be formed at
any difference between the Curie and Néel tempera-
tures.

It is evident that, at TN > TC and TC > TN, the forma-
tion conditions of superstructures differ radically. In the
first case, the long-period structure exists only when the
difference between the Curie and Néel temperatures is
sufficiently small, whereas in the second case, this dif-
ference should be sufficiently large.

The above consideration of superstructures was per-
formed without taking the specific configuration
responsible for the particular superstructure into
account. In the case of a two-component order parame-
ter, the inclusion of the specific configuration in the
analysis can substantially affect the results. For exam-
ple, three-sublattice magnets can occur in the antiferro-
magnetic–ferromagnetic state in which L1 = 0 [8]. In
this case, we have S2 = S3 and S1 = –2S3 + S4, where the
term S4, as was shown in [8], appears as the result of the
occurrence of fourth-degree invariants containing the

α4
2α1kx

2ky
2k2 α4δ2α1k4 2∆2α4kx

2ky
2–+

+ k2 α1δ2
2 ∆2δ2–( ) 0,=

kx
2 ky

2

α1α4k2 2∆2= α4 TN TC–( ),–

kx
2

PH
product  in the nonequilibrium thermodynamic
potential. It is easy to see that only the spatial deriva-
tives with respect to x will appear in the density of the
nonequilibrium thermodynamic potential (1); i.e., the
propagation vector will be directed along the OX axis.
The superstructure thus formed can be either a spiral-
type structure or a cycloidal-type structure. Further-
more, a configuration with latent paramagnetism
becomes possible [8, 10]. For this magnetic configura-
tion in the system of crystallographically equivalent
paramagnetic ions, the effective exchange field in one
of the three sublattices turns is completely compen-
sated and the first-order spin moment of this sublattice
vanishes. Actually, for this configuration, we have
F = L2 = 0. Hence, it follows that S1 = 0 and S2 = –S3;
i.e., the ions of the first sublattice have a paramagnetic
nature, whereas the ions of the other sublattices form an
antiferromagnetic structure. Since F = L2 = 0 and
invariants of a different nature are absent in the density
of the nonequilibrium thermodynamic potential (1), the
superstructure cannot be formed in the configuration
with latent paramagnetism.

4. CONCLUSIONS

Thus, we can state that three-sublattice magnets are
characterized by the following features.

(1) Three-sublattice magnets can form four types of
superstructures, namely, cycloidal, spiral, mixed, and
skew spiral structures. In the first two structures, the L2
vector becomes zero (the antiferromagnetic–ferrimag-
netic state) and the F and L1 vectors rotate in the same
plane. In structures of the third and fourth types, all the
order parameters are nonzero and the F, L1, and L2 vec-
tors can rotate either in different, mutually perpendicu-
lar planes or in the same plane.

(2) The propagation vector k is located in the XOY
plane and has an arbitrary direction. The magnitude of
this vector and its direction can vary with temperature.
In the antiferromagnetic–ferrimagnetic state, this vec-
tor has the only component kx.

(3) A long-period structure cannot be formed in the
configuration with latent paramagnetism.

(4) In the structures considered in this work, the
propagation vector for all nonzero order parameters is
generally located neither in the plane of rotation of the
irreducible vectors nor in the perpendicular direction.
This suggests that these superstructures are not spiral or
cycloidal structures in a universally accepted sense.
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Abstract—The propagation of electromagnetic waves in a composite medium based on an array of conducting
wires in a ferromagnetic nonconducting matrix is discussed. It is demonstrated that, in certain ranges of fre-
quencies and wavelengths, the composite under investigation can possess properties inherent in a “left-handed”
medium. The regions of the existence of bulk and surface localized electromagnetic waves are explored. Con-
sideration is given to the dispersion of surface electromagnetic waves in thick layers of the composite. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The design of new composites is of considerable
physical and applied interest, because composite media
can possess specific properties that are not observed in
ordinary materials. In recent years, important theoreti-
cal and experimental results have been obtained for
composite materials based on different conducting ele-
ments arranged in a dielectric nonmagnetic matrix.
Under electromagnetic radiation, a periodic array com-
posed of conducting elements is equivalent to an effec-
tive medium with a time dispersion of the permittivity
and permeability when the radiation wavelength is
much longer than both the element dimension and the
lattice spacing.

Pendry et al. [1] proved that, in the long-wavelength
limit, a three-dimensional array composed of very thin
conducting straight wires behaves as an electron
plasma in a metal. For a plane wave with frequency ω
and wave vector k, the permittivity ε of the electron
plasma with frequency ωp is represented by the rela-
tionship

 (1)

and does not depend on the wave vector over a wide
range of wavelengths. It is of importance that the per-
mittivity ε(ω) is negative at ω < ωp and γ = 0. Although
the damping parameter γ is substantially less than the
plasma frequency (γ ! ωp), the plasma waves in metals
are observed only in the ultraviolet and visible fre-
quency ranges. This is explained by the fact that metals
exhibit rather high values of the electron concentration
n, the plasma frequency ωp = (ne2/4πm)1/2, and the
damping parameter γ. For example, these parameters
for aluminum are as follows: ωp = 15 eV and γ = 0.1 eV.
In [1], it was demonstrated that, in artificial materials
made up of thin conducting wires, the mean concentra-

ε ω( ) 1
ωp

2

ω ω iγ–( )
------------------------–=
1063-7834/01/4311- $21.00 © 22130
tion of charge carriers and the effective plasma fre-
quency can be decreased by six orders of magnitude
and the effective mass of charge carriers can be
increased by one order of magnitude as compared to the
effective electron mass in the bulk metal. In this case,
the ratio γ/ωp remains sufficiently small (γ/ωp ∝  0.01
for aluminum). The plasma resonance in these materi-
als, unlike the bulk metal, occurs in the microwave
range.

Periodic systems composed of different-type ring
conducting elements (wire rings, split rings, helices,
layers in the form of split rings, etc.) with a consider-
able effective permeability have been proposed and
examined in recent works [2–6]. These systems are
characterized by the resonant frequency of electromag-
netic wave absorption. The dispersion of their effective
permeability µ(ω) in the long-wavelength range is
described by the formula

 (2)

where ω0 is the resonant frequency, Γ is the dissipation
factor, and F is a constant. It is worth noting that all
these quantities depend on the internal structure and
concentration of the conducting elements. As is the
case with the transverse diagonal component of the per-
meability of a homogeneous magnetized isotropic fer-
romagnet, the effective permeability (2) in the vicinity
of the resonance is negative in the high-frequency range.
Smith et al. [6] noted that, by combining thin conducting
straight wires and the aforementioned ring elements with
a large inductance and capacitance, it is possible to con-
struct composites whose effective permittivity and per-
meability are negative in a certain range of frequencies.
This would allow experimental observations of the
unusual effects, which were theoretically predicted by
Pafomov [7] and Veselago [8–10] in the 1950s–1960s.

µ ω( ) 1
Fω2

ω2 ω0
2– iωΓ+

----------------------------------,–=
001 MAIK “Nauka/Interperiodica”



        

SURFACE POLARITONS IN COMPOSITE MEDIA WITH TIME DISPERSION 2131

                                                                    
Earlier works [7–10] dealt primarily with the prop-
agation of uniform plane electromagnetic waves in
right-handed and left-handed media and with wave
reflection from the interface between these media.
However, it is important to know the specific features of
the spectrum of excitations occurring in materials with
a time dispersion of the general form, for example, the
features of the spectrum of bulk and surface long waves
in plane-parallel layers of a composite.

In the present work, we examined the spectrum of
surface polaritons in a layer of a composite material
based on a periodic lattice of conducting wires [1] in a
ferromagnetic nonconducting matrix.

2. THEORETICAL ANALYSIS

Let us analyze the dispersion of surface electromag-
netic waves in a sufficiently thick layer of a composite
material. This layer covers the region –L/2 ≤ y ≤ L/2 in
space and is composed of a ferrodielectric matrix
involving a simple cubic lattice of thin conducting or
superconducting wires (similar to the structure com-
prising a regular array of conducting wires in a dielec-
tric nonmagnetic matrix [1]). In the case when the lat-
tice spacing is very small compared to the layer thick-
ness, the electromagnetic radiation wavelength, and the
penetration depth of the electromagnetic wave, the
high-frequency properties of the composite can be
described within the continuous approximation. The
volume percentage of the conducting material is small,
and the permittivity tensor  coincides with that calcu-
lated in [1], that is,

 (3)

where the quantity ε is defined by formula (1). The
effective plasma frequency ωp and the parameter γ of
damping at the expense of resistance losses in the con-
ductors are expressed through the parameters of the
conducting wires as follows:

 (4)

where σ is the conductivity, r is the wire radius, a is the
lattice spacing, and c is the velocity of light in free
space. Note that the γ/ωp ratio is inversely proportional
to the bulk concentration of the conducting material;
hence, its value cannot be inappropriately low. Gener-
ally speaking, it is preferable to use superconductors
for preparing composites with a high Q-factor in the
microwave range. Hereafter, we assume that the damp-
ing effect in a metal and a ferromagnet is small and can
be ignored. According to Pendry et al. [5], who calcu-
lated the permeability of the lattice of conducting rods
arranged in a dielectric matrix, the permeability of this
composite is proportional to the bulk concentration of
the metal. Since the bulk concentration is assumed to be
rather low, the effective permeability of the lattice of
conducting elements in the ferromagnetic matrix is

ε̂

ε̂ εδik,=

ωp
2 2πc2/a2 a/r( ), γln 4a2ωp

2 /r2σ,= =
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approximately equal to the permeability of the matrix.
Therefore, for the layer in a tangential external mag-
netic field H0 || nz, when the excitation amplitude varies
with time t as exp(iωt), the permittivity is represented
in the form

 (5)

and the permeability tensor is given by

 (6)

Here, Ω = ω/ωM, Ωp = ωp/ωM, ωM = 4πgM0, g > 0 is the
gyromagnetic ratio, M0 is the saturation magnetization
of the magnetic matrix,

 (7)

The electromagnetic field inside and outside the
composite satisfies the Maxwell equations:

 (8)

where k0 = ω/c. The continuity conditions of the tan-
gential components of the electric e and magnetic h
fields and the normal components of the electric d = 
and magnetic b =  inductions are met at the layer
boundary. We will restrict our consideration to the case
of a transverse electric wave whose field is specified as
{hx, hy , ez} and propagates along the nx axis.

The solution to the system of Maxwell equations (8)
with the boundary conditions at the interface will be
sought under the assumption that the dependence of the
electric field component ez on the x and y coordinates is
described by the expression

 (9)

where

 

The expression for the magnetic induction b follows
immediately from the first equation of system (8), and

ε
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the constants a1, a2, a3, and a4 are determined from the
boundary conditions. We omit simple calculations and
write the dispersion relationship for electromagnetic
waves localized in the vicinity of the layer:

 (10)

where 

In the limiting case of short wavelengths, we have
q0 ≅  q1 ≅  |k | and relationship (10) describes the disper-
sion of a Damon–Eshbach wave. The inequality

 (11)

is the necessary and sufficient condition for the electro-
magnetic emission to be absent.

Equation (10) is transcendental, and, hence, its solu-
tions in the general form can be found only by numeri-
cal methods.

From the standpoint of spin-wave electronics, the
principal interest is in analyzing surface electromag-
netic modes whose field amplitude exponentially
decreases deep in the layer. In addition to inequality
(11), the region of the existence of surface electromag-
netic waves in the plane kΩ is limited by the inequality

 (12)

If this inequality is not satisfied, the electromagnetic
wave is a bulk wave.

For short wavelengths or thick layers, we have
q1L @ 1 and the dispersion relationship (10) takes the
simple form

 (13)

Since the left-hand side of Eq. (13) is an even function
of the frequency Ω and the wave number k, the disper-
sion curves in the half-plane kΩ are symmetric with
respect to the ordinate axis. After the appropriate rear-
rangement of the terms and squaring of the right-hand
and left-hand sides of Eq. (13), we obtain the biqua-
dratic equation for determining the dependence k(Ω),
that is,

 (14)

where

 

One of the solutions to Eq. (14) is physically meaning-
less and results from the squaring of Eq. (13).

q1
2 µ⊥

2+ q0
2 ν/µ( )2k2–[ ] q1L( )sinh

+ 2µ⊥ q0q1 q1L( )cosh 0,=

µ2 ν2 0.≠–

k2 k0
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k2 k0
2εµ⊥ .>

q1 µ⊥ q0+( )2 ν/µ( )2k2– 0.=

A2k4 A1k2– A0– 0,=

A2 µ⊥
2 4 µ⊥ 1/µ+( )2–[ ] ,=

A1 2k0
2µ⊥ 2µ⊥ 1 εµ⊥+( ) ε µ⊥+( ) µ⊥ 1/µ+( )–[ ] ,=

A0 k0
4µ⊥

2 ε µ⊥–( )2.=
PHY
At k2 @ , we have |εµ⊥ | @ 1 and

 (15)

The signs ± in relationship (15) correspond to the prop-
agation of the surface electromagnetic wave along the
lower and upper boundaries of the layer. The dispersion
of short surface waves depends on the normalized
effective plasma frequency Ωp. The surface waves are
forward waves when Ωp < Ω0 + 1/2 and backward
waves when Ωp > Ω0 + 1/2. This implies that the change
in sign of the permittivity ε leads to a change in sign of
the group velocity of the surface wave. The regions of
existence of the bulk and surface localized wave solu-
tions and the dispersion curves of the surface electro-
magnetic mode in the layer at different ratios of the quan-

tities Ωp, Ω0, Ω1 = , and Ω2 = Ω0 + 1 are
qualitatively shown in Figs. 1–4.

In Figs. 1–4, straight lines 1 (q0 = 0), which are
described by the expression

 (16)

separate the localized and nonlocalized wave solutions.
Curves 2 and 3, which are represented by the relation-
ship

 (17)

and whose points correspond to q1 = 0, are the bound-
aries between the regions of existence of bulk and sur-
face waves. The curve described by formula (17) is
doubly connected, because the inverse function Ω(κ1)
is determined from the biquadratic equation and has
two positive branches. As a consequence, the region of
the existence of bulk waves is singly connected,
whereas the region of the existence of surface waves is
doubly connected. The upper branch of the curve corre-
sponding to relationship (17) is of no interest, because
it completely lies in the region of nonlocalized solu-
tions.

For Ωp < Ω1 (Fig. 1), the region of the existence of
bulk waves (region I) is bounded by straight line 1 from
the left, the lower κ1(Ω) branch [curve 2, relationship
(17)] from below, and the straight line Ω = Ω1 from
above. The low-frequency region of the existence of
surface waves (region II) is located to the right of
straight line 1 and below the κ1(Ω) branch (curve 2).
The high-frequency region of the existence of surface
waves (region III) lies to the right of straight line 1 and
above the straight line Ω = Ω1. In region II, the disper-
sion curve of the surface electromagnetic wave (curve

k0
2

k2 kM
2 Ω2 Ωp

2–( ) Ω2 Ω0
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2 Ω0 1/2+( ) Ω ksgn±
----------------------------------------------------,≅ ≅
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AB) terminates in the straight line |k | = κ0(Ω) = kMΩ at
point A with the coordinates

 (18)

and continuously goes into the branch of bulk waves in
the lower branch of the curve |k | = κ1(Ω) (curve 2) at

k kA kMΩA,= =

Ω ΩA Ω1Ωp Ω0 Ωp
2+( ) 1/2–

= =

Ω

Ω2

Ω1
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|k|

III
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Ω
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Ω1

Ω0 + 1/2

|k|

II

I

D

C

B

A

Ωp

0

IV

1 2

3

0

III

Fig. 1. Regions of the existence of (I) bulk and (II, III) sur-
face localized waves and the dispersion curves of surface
electromagnetic waves (curves AB and CD) at Ωp < Ω1.

Fig. 3. Regions of the existence of (I) bulk and (II, III) sur-
face localized waves and (IV) nonlocalized backward waves
and the dispersion curves of surface electromagnetic waves
(curves AB and CD) at Ω0 + 1/2 < Ωp < Ω2.
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point B with the coordinates

. (19)

In this case, the frequency ΩB satisfies the equation

 

k kB κ1 ΩB( ), Ω ΩB= = =

B2ΩB
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2– B0+ 0, B2 1 Ω2 Ωp
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0
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Fig. 2. Regions of the existence of (I) bulk and (II, III) sur-
face localized waves and (IV) nonlocalized backward waves
and the dispersion curves of surface electromagnetic waves
(curves AB and CD) at Ω1 < Ωp < Ω0 + 1/2.

Fig. 4. Regions of the existence of (I) bulk and (II, III) sur-
face localized waves and (IV) nonlocalized backward waves
and the dispersion curves of surface electromagnetic waves
(curves AB and CD) at Ωp > Ω2.
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In region III, the branch of surface waves (curve CD)
terminates in the straight line Ω = Ω1 at point C with the
coordinates

 (20)

The quantity µ⊥  has a feature at Ω = Ω1. Consequently,

at Ω  Ω1, the depth  of penetration of the surface
wave into the composite tends to zero and the long-
wave approximation in the vicinity of the line Ω = Ω1
turns out to be inapplicable at any parameter Ωp. It fol-
lows from relationship (15) that, at |k |  ∞, the wave
frequency Ω tends to a value of Ω = Ω0 + 1/2, which
coincides with the upper boundary of the spectrum of
surface waves in a ferromagnetic layer free from con-
ducting elements. However, at |k | ∝  2π/a, it is necessary
to take into account the periodicity of the system. In
regions II and III, the surface waves are forward waves
at any k value.

In the case where Ω1 < Ωp < Ω2 (Figs. 2, 3), the
region of bulk localized electromagnetic waves in the
plane kΩ is bounded by the straight lines |k | = κ0(Ω) –
kMΩ (line 1) and Ω = Ω1 from the left and below and by
the lower branch 2 of the curve |k | = κ1(Ω) from above.
The remaining doubly connected part of the kΩ plane
with the |k | values lying to the right of straight line 1
(regions II, III) is the region in which the surface elec-
tromagnetic waves can exist. The dispersion of surface
waves in region II (curve AB) is positive. The terminal
point A of this curve is specified by coordinates (18),
and the terminal point B, at which the surface wave
changes over to the bulk wave, is defined by coordinates
(20). In region III, the dispersion branch of surface waves
terminates at point C with coordinates (19) and asymp-
totically approaches the straight line Ω = Ω0 + 1/2 with
an increase in |k|. At Ωp < Ω0 + 1/2, the surface waves are
forward waves (Fig. 2). When Ωp > Ω0 + 1/2 (Fig. 3), the
dispersion of surface waves can become negative with
an increase in |k |.

For Ωp > Ω2 (Fig. 4), the regions of the existence of
bulk and surface localized wave solutions are virtually
identical to those described in the preceding case. The
surface waves also occur in the lower region (curve AB)
and are forward waves. The terminal points of the dis-
persion curve of surface waves (curve AB) are specified
by the same coordinates as in the case where Ω1 < Ωp <
Ω2. However, as the effective plasma frequency Ωp
increases, the dispersion curve AB approaches line 1
represented by the expression |k | = κ(Ω) and contracts
to the intersection point of straight lines 1 (q0 = 0) and
Ω = Ω1 with the coordinates

 (21)

It should be emphasized that, in the vicinity of this
point, the long-wave approximation becomes incorrect.
In the upper region III, the surface waves are backward
waves; the dispersion branch of surface waves continu-

k kC kMΩ1Ω2
1/2, Ω ΩC Ω1.= = = =

q1
1–

k kMΩ1, Ω Ω1.= =
PH
ously goes into the branch of bulk waves at the point
with the coordinates given by the formula (19).

Kaganov and Shalaeva [11] described the high-fre-
quency branch of surface polaritons. In the system
under investigation, this branch is absent, because we
disregard the electric polarizability of the ferromag-
netic matrix. This branch appears when the permittivity
of the ferromagnet ε0 > 1 is taken into account. For this
purpose, it is necessary to calculate preliminarily the
effective permittivity of the composite.

It is very important that the given composite is char-
acterized by the region of nonlocalized bulk solutions
in the kΩ plane (Figs. 2–4, region IV), in which the ine-

qualities ε < 0, µ⊥  < 0, k2 < , and k2 < εµ⊥  are met
simultaneously. It is easy to demonstrate that the suffi-
cient condition for existence of this region is the fulfill-
ment of the inequality

 (22)

In this range of frequencies and wave numbers, the
composite behaves as a left-handed medium and the
phase velocity of the bulk electromagnetic wave is
oppositely directed to the group velocity.

3. CONCLUSION

Thus, the interaction of magnetization oscillations
with plasma oscillations leads to the appearance of an
additional branch of surface electromagnetic waves in
the long-wavelength excitation spectrum of the com-
posite layer. In the composite layer, unlike a purely fer-
romagnetic layer, the surface electromagnetic waves
can be forward, backward, and mixed waves depending
on the plasma frequency (and its related sign of the
effective permittivity).

It is worth noting that, in a certain frequency range,
the studied composite with nonrigid requirements
imposed on the parameters of conducting elements can
possess properties inherent in a left-handed medium.
The main advantage of this composite over the compos-
ite material proposed by Smith et al. [6] is that it can be
produced using planar technology. For example, multi-
layer structures composed of yttrium iron garnet films
alternating with two-dimensional conducting arrays
that are prepared by photolithography are suitable for
observing the violation of Snell’s law. In this case, the
main difficulties are most likely associated with the
choice of the optimum parameters for conducting ele-
ments to provide appropriate attenuation of electro-
magnetic waves and with the necessity of preparing a
sufficiently large bulk system.

The results obtained in this work on the propagation
of electromagnetic waves in a composite material based
on a three-dimensional cubic lattice composed of con-
ducting elements are also valid for composite media
with a two-dimensional array of conducting wires
aligned parallel to the z axis.

k0
2 k0

2

Ωp Ω1.>
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Abstract—The temperature dependence of the longitudinal-ultrasound velocities in (CH3)2NH2Al(SO4)2 ·
6H2O crystals was studied using the echo-pulse technique in the 90–300 K range. The measurements were car-
ried out along mutually perpendicular crystallographic directions X, Y, Z on samples both unirradiated and irra-
diated to various doses by γ quanta and an electron beam. The ultrasound velocity V in this crystal was shown
to be anisotropic, with VYY > VXX > VZZ. The VXX = f(T), VYY = f(T), and VZZ = f(T) curves exhibit anomalies in the
form of breaks at the ferroelectric phase transition (PT) at Tc1 = 152 K, as well as in the region of Tc2 = 218 K. It
was established that as the irradiation dose increases, the PT temperature Tc1 decreases and the anomalies in the
temperature dependences of the ultrasound velocities are smeared. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Dimethyl ammonium aluminum sulfate hexahy-
drate (DMAAS) (CH3)2NH2Al(SO4)2 · 6H2O belongs to
the family of ferroelectrics–ferroelastics. This family
has recently been a subject of intense investigation
using various methods and is of considerable interest
due to the number of phase transformations it under-
goes. This crystal is a ferroelastic in the paraelectric
phase. As the temperature decreases, a phase transition
from the ferroelastic to a ferroelectric phase takes place
at Tc1 = 152 K [1]. Studies [2, 3] of the temperature
dependences of the birefringence and plastic properties
of DMAAS crystals revealed anomalies at T ~ 110 and
390 K, which suggest possible phase transformations at
these temperatures. As shown in [4] and as later con-
firmed in [5] in an investigation of dielectric properties,
DMAAS undergoes a low-temperature phase transition
at T ≈ 75 K whose nature remains unclear. In addition,
the dielectric permittivity ε and  were found to
behave anomalously within the 30–50 K range [5],
which may also be connected with some transforma-
tions.

We report on a study of the temperature depen-
dences of longitudinal-ultrasound velocities VXX, VYY,
and VZZ measured along mutually perpendicular crys-
tallographic axes X, Y, Z in crystalline DMAAS in the
90–300 K range and of their response to irradiation by
γ quanta and an electron beam.

δtan
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2. EXPERIMENTAL TECHNIQUE 
AND THE RESULTS OF THE STUDY

The longitudinal ultrasound velocities were mea-
sured using the echo pulse method with an IS-3 ultra-
sound velocity meter; the time between the reflected
signals was determined by means of calibration marks.
The longitudinal ultrasound waves were excited by an
X-cut piezoelectric quartz plate. The hydrophobic liq-
uid 136-157 provided a good acoustic contact between
the sample and the measurement circuit throughout the
temperature interval covered. The measurements were
carried out at temperatures from 90 to 300 K and at a
frequency of 10 kHz. The temperature variation rate
was ~0.4 K/min. The samples chosen for the study were
parallelepiped-shaped and measured ~4.5 × 4.5 × 5 mm.
Because DMAAS crystals form a monoclinic structure
with the unit cell parameters a = 6.403 Å, b = 10.747 Å,
c = 11.128 Å, and β = 100.47° [6], the sample faces
were oriented in the following way: the crystallo-
graphic axis X was aligned with a, the Y axis was
aligned parallel to the twofold symmetry axis (along
the b crystallographic axis), and the Z axis was aligned
perpendicular to both X and Y. The temperature was
measured with a chromel–coppel thermocouple, which
was attached directly to a sample connected to the mea-
suring circuit. The temperature dependence of the ultra-
sound velocity was studied under quasi-static heating
of samples cooled in liquid-nitrogen vapors. The heat-
ing was effected by means of a heater mounted on a
thermostatting screen surrounding the measuring cir-
cuit. The absolute temperature was measured to within
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependences of the longitudinal-ultrasound velocity VXX along the X crystallographic axis in the

(CH3)2NH2Al(SO4)2 · 6H2O crystal measured on (1) an unirradiated sample and a sample irradiated by γ quanta to doses of 106

(inset), (2) 107, and (3) 108 R and (4) by an electron beam to a fluence of 1016 electrons/cm2.
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Fig. 2. Temperature dependences of the longitudinal ultrasound velocity VYY along the Y crystallographic axis in the

(CH3)2NH2Al(SO4)2 · 6H2O crystal measured on (1) an unirradiated sample and a sample irradiated by γ quanta to doses of (2) 107

and (3) 108 R and (4) by an electron beam to a fluence of 1016 electrons/cm2.
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Fig. 3. Temperature dependences of the longitudinal ultrasound velocity VZZ along the Z crystallographic axis in the
(CH3)2NH2Al(SO4)2 · 6H2O crystal measured on (1) an unirradiated sample and a sample irradiated by γ quanta to doses of (2) 107

and (3) 108 R and (4) by an electron beam to a fluence of 1016 electrons/cm2. In the inset, arrows indicate the PT temperatures Tc1 for
(1) the unirradiated sample (152 K), the sample irradiated (3) by γ quanta to a dose of 108 R (148 K), and (4) by electrons (142 K).
0.8 K, and the precision of relative temperature mea-
surements was no worse than 0.2 K. The samples were
irradiated by Co60 γ quanta with the source strength of
≈120 R/s. The irradiation dose was accumulated
through successive exposure of the same sample to 106,
107, and 108 R. The irradiation by electrons to a fluence
of 1016 electrons/cm2 was performed on a 6 MeV accel-
erator on samples which had been preirradiated by γ
quanta to a dose of 108 R. The accuracy of measuring
the changes in the longitudinal ultrasound velocity was
~5 × 10–5. The absolute velocities were measured to no
worse than 3 × 10–2.

The results of the measurements of the longitudinal
ultrasound velocities in the X, Y, and Z crystallographic
directions are plotted in Figs. 1–3, which reveal an anisot-
ropy in the ultrasound velocities, with VYY > VXX > VZZ
throughout the temperature interval studied. Also shown
are the same dependences obtained for samples irradi-
ated to various doses by γ quanta and by electrons to a
fluence of 1 × 1016 electrons/cm2. As the sample temper-
ature decreases, the velocity is seen to increase, until, at
the phase transition (PT) point Tc1 = 152 K, one observes
an anomaly in the form of a distinct break, accompanied
by a change in the pattern of the VXX = f(T), VYY = f(T),
and VZZ = f(T) curves below Tc1. Note that below the PT
temperature, i.e., in the ferroelectric phase, the tempera-
PH
ture dependence of the longitudinal ultrasound velocities
is nonlinear in all crystallographic directions, whereas
above Tc1, i.e., in the ferroelastic phase, this dependence
can be considered as consisting of two linear parts within
the regions of 152–218 and 218–300 K (inset to Fig. 1).
Thus, below 218 K, one also observes a break. It should
be noted, though, that the break-shaped anomalies in the
VXX = f(T), VYY = f(T), and VZZ = f(T) curves obtained on
electron-irradiated samples in this temperature interval
wash out. The VYY = f(T) curve obtained in [7] in study-
ing the longitudinal ultrasound velocities made in
DMAAS along the b axis only exhibits the same anoma-
lies at temperatures of 152 and 218 K. While the nature
of the anomaly at Tc2 = 218 K remains unclear, it may be
mentioned that a study [8] of the thermal expansion of a
DMAAS crystal along the main crystallographic axes a,
b, and c revealed small diffuse minima in the thermal
expansion coefficients at T ~ 220 K. The sample irradi-
ated by γ quanta to 108 R was subsequently bombarded
by electrons. The irradiation-induced variation of the
temperature dependence of ultrasound velocity is seen to
follow the same pattern in all crystallographic directions,
X, Y, and Z. γ irradiation shifts Tc1 toward lower tempera-
tures; indeed, at a dose of 108 R, Tc1 = 148 K, and after
electron irradiation, the PT temperature Tc1 decreases by
10 K in comparison with the unirradiated sample (inset
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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to Fig. 3). Note that measurements were also performed
on samples irradiated to 106 R, but because these results
did not differ from those obtained for unirradiated sam-
ples, only the VXX = f(T) curve is presented for this dose
(inset to Fig. 1).

As seen from Figs. 1–3, irradiation not only shifts
the PT temperature but also smears the anomaly at Tc1;
i.e., the breaks in the VXX = f(T), VYY = f(T), and VZZ = f(T)
curves become smoother. The displacement of the PT
point Tc1 toward lower temperatures implies that the
region of existence of the ferroelectric phase in the
DMAAS crystal narrows under irradiation. As shown in
[9], this may be due to the decrease in excess PT energy
associated with the decrease in the concentration of fer-
roelectrically active dipoles, which is caused in
DMAAS by the formation of defects and structural dis-
tortions under irradiation.
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Abstract—It is shown experimentally in the specific example of Cr-doped barium–strontium niobate that the
anomalies in the infralow-frequency dielectric properties characteristic of a ferroelectric relaxor persist over the
whole temperature region of the diffuse phase transition and decrease gradually with increasing temperature.
Experimental data are presented on the anomalous quasi-static dielectric hysteresis loops, the slow polarization
kinetics, and the anomalously broad energy-distribution spectra of potential barriers. The anomalies are a sig-
nature and a quantitative measure of the structural disorder typical of a relaxor. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Relaxor ferroelectrics (relaxors) include a large
group of oxide solid solutions, which are essentially
inhomogeneous systems with a disordered structure [1,
2]. Relaxors are characterized by a random spatial dis-
tribution of the concentrations of some ions, strains,
and an internal electric field; this entails breakdown of
the local symmetry and distortion of the polarization
dependence of the local free energy, with the latter
acquiring the shape of an asymmetric double-minimum
function [3]. Unlike a conventional homogeneous fer-
roelectric, the phase transition to the polar state and the
anomalies in the physical properties of a relaxor are dif-
fuse within a broad temperature region (the Curie
region). In particular, the dielectric permittivity ε has a
weakly pronounced broad maximum at a temperature
Tm and a characteristic dispersion near Tm within the
low-frequency range from 1 to 5000 kHz [1–3]. In the
infralow-frequency range, down to 10–5 Hz, a large dis-
persion in ε persists even at temperatures T ! Tm, the
dielectric hysteresis loop of the electric-field depen-
dence of polarization takes on an anomalous shape [4],
and the energy distribution of potential barriers for the
relaxation centers is anomalously broad and includes
giant barriers. The anomalous loop and the energy
spectrum of barriers give one an idea of the long-lived
metastable states involved and are an indication and a
measure of the structural disorder in a relaxor [5].

We have earlier observed and studied specific fea-
tures in the polarization kinetics in the barium–stron-
tium niobate ferroelectric relaxor SrxBa1 – xNb2O6
(SBN) [4, 5]. However, the electrometric method
employed by us and intended to detect slow polariza-
tion processes permits one to perform measurements
only on samples with an electrical resistivity of no less
1063-7834/01/4311- $21.00 © 22140
than 1012 Ω cm. This restricted the accessible tempera-
ture range to T < Tm in the compositions studied, thus
precluding investigation of the polarization kinetics
within the whole Curie region.

The present work was aimed at investigating the
polarization kinetics of a relaxor within the Curie tem-
perature region with inclusion of the Tm point. Obvi-
ously enough, relaxors with an as low as possible Tm
temperature, near which one can expect the resistivity
to be sufficiently high, are best suited to this type of
investigation. It is known that Tm in the SBN can be
lowered by increasing the strontium concentration [2]
or by doping it with various impurities [6, 7].

2. THE CRYSTALS 
AND THE EXPERIMENTAL TECHNIQUE

We studied Cr-doped SrxBa1 – xNb2O6 single crystals
with x = 0.61 (SBN : Cr) grown by the Czochralski
method at the Osnabrück University, Department of
Physics (Germany). Doping the SBN with Cr results in
a considerable lowering of Tm and a broadening of the
maximum in ε [7]. The Cr concentration in the melt
used to grow the crystal was (2.02 ± 0.015) × 104 ppm.
This composition has the lowest Tm temperature of all the
SBN compositions known to date. The sample was a pol-
ished polar z-cut plate measuring 2.5 × 3 × 0.7 mm. Sil-
ver paste contacts were painted on the large plate sides.
The sample temperature in the cryostat was maintained
to within 0.03 K.

The permittivity was measured in the standard way
at 1 kHz. The polarization was measured electrometri-
cally using an equal-arm bridge with a maximum sen-
sitivity of 20 µV in voltage and 2 × 10–9 µC in charge.
The compensation of the voltage across the bridge was
001 MAIK “Nauka/Interperiodica”
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controlled by a computer. The compensating voltage
was measured in real time, and the data collected were
used to calculate the crystal polarization. A detailed
description of the automated setup, its operation, and
data processing can be found in [8].

The polarization was measured in slowly varying
(quasi-static) electric fields (dielectric hysteresis
loops), as well as after turning on and turning off a dc
field (relaxation processes) at various constant temper-
atures.

After a long time had passed and the polarization
relaxation had practically come to a halt, the electrical
resistivity of the sample was derived from the variation
of the charge in the bridge circuit with time.

3. RESULTS AND DISCUSSION

3.1. Permittivity and Dielectric Hysteresis Loops

Figure 1 presents the temperature dependence of the
permittivity ε of the SBN-0.61 : Cr crystal under study,
which features a broad diffuse maximum typical of
relaxors; the temperature of the maximum Tm = 244 K
is substantially lower than the temperature Tm = 354 K
for the undoped SBN-0.61 crystal [2]. Also shown are
the experimental data on the dielectric loss tangent

, which increases with decreasing temperature.
Because of the relatively low Tm, the electrical resistivity
ρ in the region of Tm is sufficiently large (ρ ≥ 1013 Ω cm).
Therefore, there was practically no need to introduce
corrections to the constant electrical conductivity; this
can distort slow-polarization measurements. The verti-
cal arrows in Fig. 1 specify the temperatures at which
the hysteresis loops were measured.

Figure 2 displays quasi-static dielectric hysteresis
loops obtained at several temperatures in the Tm region.
The figures adjoining the loop trajectories identify the
sequence of the polarization variations. The filled cir-
cles relate to the beginning and end of the polarization
switching process. The loops exhibit the characteristic
features of the SBN relaxor [4, 5]: the first loop cycles
are open nonreproducing curves, with the loop ampli-
tude decreasing gradually; however, a few cycles later,
it reaches saturation, with the trajectories of all subse-
quent cycles practically coinciding, i.e., becoming
reproducible. These features may be caused by strong
local internal electric fields Ei coming from structural
inhomogeneities [4, 5]. The fields Ei bring about a
strong asymmetry in the local double-minimum free
energy F as a function of polarization P [3]. The field Ei
and the parameters of the F function are random quan-
tities. If the external field E = 0, one part of the crystal
resides in a stable state and the other resides in a long-
lived metastable state, which correspond to the deep
and shallow minima in F, respectively. When a field E
with a slowly varying amplitude is applied, the barriers
separating the minima decrease in height and the ther-
mally activated transition to the stable states grows

δtan
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more quickly. The reverse process is practically impos-
sible; thus, part of the crystal no longer participates in
the polarization switching by the external field with the
same amplitude E and the amplitude of P decreases.
Complete reversible polarization switching is possible
only in a field E larger than the maximum Ei in the sam-
ple, which is apparently high [4, 5].

When the crystal is heated in the Tm region, the
quasi-static hysteresis loop narrows and becomes
smaller in amplitude, the noncoinciding trajectories of
the first loops come closer together and merge, and the
nonlinearity of the P dependence on E on the initial
polarization curve of the cycles becomes less pro-
nounced (Fig. 2). In other words, the quasi-static loop
shows signs of degradation for T > Tm similar to those
recorded at higher measuring-field frequencies [9]. It is
essential, however, that the quasi-static hysteresis loop
retain the shape characteristic of a relaxor even at tem-
peratures considerably in excess of Tm, i.e., apparently,
throughout the region where the phase transition is dif-
fuse (Fig. 2).

3.2. Polarization Relaxation

Investigation of polarization and depolarization
kinetics in dc electric fields permits one to obtain addi-
tional information on the quasi-static hysteresis loops
and structure of the SBN : Cr relaxor. Figure 3 presents,
as an illustration, an evolution of polarization P with
time t for the turning on (polarization process) and turn-
ing off (depolarization) of a weak field E = 0.43 kV/cm
that is less than the half-width of the hysteresis loop and
is effected at the same temperatures in the Tm region at

3000

2900

220 240 260 280

4.5

4.0

3.5

ε
tanδ, 10–3

T, K

Tm

Fig. 1. Temperature dependences of the permittivity ε and
of the dielectric loss tangent  of the SBN : Cr ferro-
electric relaxor obtained at a frequency of 1 kHz. The verti-
cal arrows specify the temperature of hysteresis loop mea-
surement.
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Fig. 2. Quasi-static dielectric hysteresis loops of the dependence of P (µC/cm2) on E (kV/cm) for SBN : Cr obtained at temperatures
of (K) (a) 206, (b) 236, (c) 250, (d) 268, and (e) 295. The E variation period is 1 h. The inset shows nonlinear P vs. E plots drawn
for the first polarization switching cycle quarter.

0

which the hysteresis loops in Fig. 2 were obtained. Both
processes start with the jump in ∆P characteristic of the
SBN, to which contribute the avalanche over-barrier
and fast processes through low barriers. After the jump,
the pattern of the relaxation changes sharply: a slow
PH
thermally activated process begins, during which some
crystal regions transfer from the long-lived metastable
to stable states (see Fig. 3 and the insets to it). The jump
∆P is observed to occur at any field E within the range
employed in the work, which is both smaller and larger
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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than the half-width of the hysteresis loop; this indicates
the absence of a common coercive field Ec. Unlike a
conventional homogeneous ferroelectric [8], the
relaxor is characterized by a broad distribution of Ec

over the crystal volume.
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The slow thermally activated stage of the P(t) relax-
ation in the polarization and depolarization processes
follows the universal power law

 (1)p t( ) Pe P t( )–[ ] / Pe P0–( ) 1/ 1 t/a+( )n,= =
1
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Parameters of the P relaxation and of the energy spectrum of barriers g for an SBN : Cr crystal

Process E, kV/cm T, K a, min n Pe , µC/cm2 τm , min

Polarization

5

205.97 0.516 ± 0.05 0.054 ± 0.001 18.59 ± 0.04 9.55 ± 1.1

236.16 0.643 ± 0.06 0.050 ± 0.001 16.72 ± 0.04 12.86 ± 1.5

250.32 0.535 ± 0.06 0.054 ± 0.001 10.78 ± 0.02 9.91 ± 1.1

281.68 0.185 ± 0.02 0.036 ± 0.0008 7.25 ± 0.02 5.15 ± 0.7

295.02 0.29 ± 0.03 0.023 ± 0.0005 6.65 ± 0.01 12.61 ± 1.6

0.43

205.00 0.881 ± 0.05 0.010 ± 0.0002 4.03 ± 0.1 88.1 ± 6.8

236.00 1.658 ± 0.09 0.009 ± 0.0002 5.34 ± 0.01 184.2 ± 14.1

249.24 0.373 ± 0.04 0.0089 ± 0.0002 4.82 ± 0.01 41.91 ± 5.4

267.7 0.538 ± 0.05 0.1318 ± 0.001 0.63 ± 0.001 4.08 ± 0.4

Depolarization 0

221.3 0.807 ± 0.05 0.0739 ± 0.002 –0.01 10.92 ± 1.0

236.08 0.642 ± 0.04 0.123 ± 0.001 0 5.22 ± 0.4

249.2 0.518 ± 0.05 0.1509 ± 0.002 0 3.43 ± 0.4
where P0 is the initial polarization at t = 0, Pe is the
equilibrium polarization, and a and n are the fitting
parameters [5]. If a crystal was not prepolarized before
measurement, P0 = ∆P for the polarization process. The
P(t) measurement data were fitted to Eq. (1) by the least
squares method using a standard code. In Fig. 3, the
P(t) power-law relations are drawn by solid lines and
the circles indicate experimental data. The latter deviate
from the calculated lines by no more than 0.5%. The
filled circles on curves 2 specify values of P0. The error
in determination of the parameters Pe, a, and n
decreases with increasing P(t) measurement time [10].

Assuming the relaxation centers to be independent,
the dimensionless polarization p(t) in Eq. (1) should
obey the relation

 (2)

where f(τ) is the distribution function of the relaxation
time τ. It appears more reasonable to use, in place of
f(τ), a dimensionless function g(lnτ) = τ f (τ), which
describes the lnτ distribution in the crystal or the distri-
bution of potential barriers in energy U, because U =
kT ln(τ/τ0), where τ0 is a kinetic coefficient. Accepting
a power-law dependence of Eq. (1) for p(t), we obtain

 (3)

with a maximum gmax at τm = a/n [10]. The parameters
of the P(t) relaxation and of the energy spectrum of bar-
riers g are given in the table.

Note some features in the spectra g obtained at dif-
ferent temperatures (Fig. 3). For the polarization pro-
cesses, g(lnτ) are asymmetric relations involving giant
relaxation times or giant potential barriers. For T > Tm,
the g(lnτ) spectrum becomes more symmetrical, nar-
rows, and shifts toward shorter τ. For the depolarization
processes, the g(lnτ) relations are more symmetrical,

p t( ) f τ( ) t/τ–( )exp τ ,d

0

∞

∫=

g 1/Γ n( )( )= a/τ( )n a/τ–( )exp
PH
and, in crystals heated above Tm, they behave like polar-
ization spectra. The filled circles in the spectra pre-
sented in Fig. 3 correspond to the maximum polariza-
tion measurement times tm . 170 min. Therefore, some
of the spectra corresponding to τ > τm result from exper-
imental data being extrapolated to long times. The f(τ)
and g(lnτ) distributions are normalized functions; i.e.,

 

One can readily verify that the areas bounded by the
g(lnτ) curves in Fig. 3 are indeed close to unity. The
width of the spectrum is ∆U = kT ln(τ2/τ1), where τ2 and
τ1 are the maximum and minimum values of τ, respec-
tively, at which g(lnτ) = 0. Estimates yield ∆U . 3.3 eV
for the polarization processes for T ≤ Tm (curves 1–3 in
Fig. 3c) and ∆U . 0.4 eV for depolarization for T > Tm
(curve 4 in Fig. 3c) and depolarization for T = Tm
(curves 2, 3, 5 in Fig. 3d).

The values of the P relaxation and g(lnτ) spectrum
parameters depend substantially on the polarizing field
E, as was the case with the SBN compositions studied
earlier [5]. For instance, for depolarization processes
starting after crystal polarization in a weak field of
0.43 kV/cm, the equilibrium value Pe . 0 (Fig. 3),
while in stronger fields, Pe ≠ 0 and grows with increas-
ing E.

Figure 4 presents temperature dependences of some
parameters of P relaxation and of the g(lnτ) spectrum
near the Tm point of the SBN : Cr relaxor obtained for
polarization processes in dc fields of E1 = 0.43 and
E2 = 5 kV/cm, the first of which is less than the half-
width of the hysteresis loops within the temperature
interval studied, while the second far exceeds this value
(Fig. 2). One can see the temperature dependences of
the jump ∆P = P0, of the equilibrium polarization Pe,
and of the characteristic time τm. Note that the values of

g τln( ) τln( )d

∞–

∞

∫ f τ( ) τd

0

∞

∫ 1.= =
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τm are substantially smaller and those of ∆P and Pe are
larger in the E2 field than those obtained in the E1 field.
One readily sees that Pe and τm exhibit weak anomalies
around Tm = 244 K and decrease slowly in magnitude
under heating above Tm, similar to the local P2 obtained
from thermal expansion measurements for a relaxor
[3]. In the strong field E2, these anomalies appear more
diffuse. The ∆P jump increases slowly for E1 and
decreases for E2 when the crystal is heated. The behav-
ior of the temperature dependence ∆P(T) is governed
by the competition of two processes, more specifically,
a decrease in the height of potential barriers with a cor-
responding increase in the polarized part of the crystal
volume on the one hand and a decrease in the polariza-
tion under heating on the other. For the weak field E1,
the first process is dominant, and for the E2 field, which
polarizes most of the crystal volume, the second pro-
cess dominates. It is these factors that account qualita-
tively for the difference in the behavior of the ∆P(T)
curves in Fig. 4.
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Fig. 4. Temperature dependences of the parameters ∆P, Pe,
and τm of the P relaxation and of the g(lnτ) spectra near the
Tm point obtained for an electric field E equal to (a) 0.43 and
(b) 5 kV/cm.
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4. CONCLUSIONS
Thus, near the diffuse phase transition, the polariza-

tion of the low-temperature ferroelectric relaxor Cr-
doped barium–strontium niobate (SBN : Cr) reveals
dielectric anomalies typical of such materials, namely,
open and noncoinciding trajectories of the first few hys-
teresis cycles, the absence of a common coercive field
and a common equilibrium polarization, and a broad
distribution of the relaxation times or of the potential
barrier energy over the crystal volume. The anomalies
are detected only in the infralow-frequency range and
persist within a broad temperature region, including the
characteristic point Tm of the maximum low-frequency
permittivity. The anomalies are a signature and a mea-
sure of structural disorder in relaxors and permit one to
obtain quantitative information on the development of
a diffuse phase transition from the nonpolar to polar
state occurring under temperature variation.
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Abstract—Temperature dependences of the permittivity and of the dielectric hysteresis loops in ceramic sam-
ples of nominally pure CdTiO3 and a Sr1 – xCdxTiO3 solid solution were studied. At 76.5 ± 0.5 K, CdTiO3 was
established to undergo a ferroelectric phase transition close to the tricritical point. The temperature dependence
of spontaneous polarization of CdTiO3 is described within the Landau theory of phase transitions with the crit-
ical order parameter exponent ≈0.25. The phase diagram of the Sr1 – xCdxTiO3 solid solution was drawn in (T,
x) coordinates, and the critical concentration xc = 0.002, above which an induced polar state sets in the solid
solution, was determined. © 2001 MAIK “Nauka/Interperiodica”.
 1. INTRODUCTION

The ferroelectric phase transition in CdTiO3 was
first discovered in ceramic samples at 50 K by Smolen-
skiœ in 1950 [1]. However, the low-temperature proper-
ties of nominally pure cadmium titanate have remained
very poorly studied until recently. While optical [2] and
dielectric [3] measurements of single-crystal and
ceramic CdTiO3 samples have been carried out, the
conclusions drawn therein on the temperature and char-
acter of the ferroelectric transition are controversial.
This makes a comprehensive investigation of the ferro-
electric properties of CdTiO3 a topical issue.

The Sr1 – xCdxTiO3 solid solution used for the study
of impurity-induced phase transitions in incipient ferro-
electrics (quantum paraelectrics), the class to which
pure SrTiO3 belongs, is also of considerable interest.
To date, systematic studies have been performed on
such SrTiO3-based compounds as Sr1 – xCaxTiO3 [4]
(incipient ferroelectric–incipient ferroelectric [5]) and
Sr1 − xBaxTiO3 [6, 7], Sr1 – xPbxTiO3 [8] (incipient ferro-
electric–ferroelectric solid solutions). Sr1 – xCdxTiO3 is
a new solid solution in the incipient ferroelectric–ferro-
electric solid-solution system, in which the ferroelec-
tric component (CdTiO3) has the lowest Curie temper-
ature among the systems studied thus far.

We earlier reported on a study of the dielectric prop-
erties of CdTiO3 and Sr1 – xCdxTiO3 [9]. This communi-
cation presents the results of a comprehensive investi-
gation into the temperature dependences of permittivity
ε and of spontaneous polarization Ps measured from
dielectric hysteresis loops in ceramic samples of
CdTiO3 and Sr1 – xCdxTiO3. These studies were used to
determine the temperature and character of the ferro-
electric phase transition in CdTiO3, to construct the
phase diagram, and to determine the character of the
induced polar states in Sr1 – xCdxTiO3.
1063-7834/01/4311- $21.00 © 22146
2. EXPERIMENTAL

The temperature dependences of the permittivity
and of the dielectric losses were obtained at frequencies
of 1 kHz and 1 MHz with automatic digital bridges E7-8
(1 kHz) and E7-12 (1 MHz), which served to measure
the total sample impedance. The relative error in the per-
mittivity measurements was no greater than 0.2%. The
measuring field amplitude for the E7-8 bridge (1 kHz)
was ≈30 V/cm; for the E7-12 (1 MHz), ≈2.5 V/cm.

A fully automated setup representing a modified
Sawyer–Tower circuit was developed to measure the
dielectric hysteresis loops and the temperature depen-
dences of spontaneous polarization. The setup permit-
ted measurement of objects with small spontaneous and
residual polarizations within the frequency range from
50 Hz to 1 kHz.

The temperature of samples mounted in a helium
cryostat was monitored independently using copper–
constantan and iron-doped copper–copper thermocou-
ples and a KTG-type semiconductor pickup. During the
experiment, the measurement procedure was controlled
on a computer and, depending on the actual measure-
ment regime, either a fixed sample temperature or rate
of its variation was maintained. The absolute error of
temperature measurement did not exceed 0.5 K, and the
sensitivity was 0.1 K throughout the temperature range
covered, 5–300 K.

CdTiO3 and Sr1 – xCdxTiO3 samples (x = 0.0025,
0.005, 0.01, 0.03, 0.05, 0.075, 0.1, 0.2, 0.5, 0.65, 0.75,
and 0.85) were prepared using standard ceramic tech-
nology [10, 11]. SrCO3 of ChDA grade and CdCO3 and
TiO2 of OSCh grade were used as starting materials.
The preliminary calcination was carried out at 1000–
1100°C over 2 h. The batch was finally calcined for 1 h
in platinum crucibles at temperatures ranging from
1125 to 1400°C (depending on the actual cadmium
001 MAIK “Nauka/Interperiodica”
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δtan
concentration). The density of the samples chosen for
the measurements was not less than 0.9–0.96 of the
value given by the x-ray diffraction method. The cut
samples were plates measuring ≈4 × 4 × 1 mm. The
electrodes were made of silver paste fired on at 500°C.
X-ray diffraction analysis showed the ceramic samples
with x = 1 (pure CdTiO3) to have rhombic symmetry at
room temperature and the samples of the Sr1 – xCdxTiO3
solid solution for x ≤ 0.1 to be single phase and to have
the perovskite structure with cubic symmetry.
Sr1 − xCdxTiO3 samples with x ≥ 0.2 were found to be
double-phase. The x-ray diffraction measurements sug-
gest that under the conditions chosen for the prepara-
tion of the ceramic samples, the Sr1 – xCdxTiO3 solid
solution is formed only at low CdTiO3 concentrations
(x < 0.2).
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3. DIELECTRIC STUDIES OF CdTiO3

Figure 1 presents the temperature dependences of
the permittivity ε(T) and of the loss tangent 
obtained in CdTiO3 at frequencies of 1 kHz and 1 MHz.
The ε(T) relation passes through a maximum at Tc =
76.5 K, which indicates a ferroelectric phase transition.
The values of Tc measured at 1 kHz and 1 MHz coin-
cided to within 0.1 K. At the same time, the ε(T) rela-
tion exhibited a hysteresis near Tc (inset to Fig. 1). The
difference between the temperatures at which ε reached
a maximum under heating [T(h)] and under cooling [T(c)]
of a sample ∆T = T(h) – T(c) was no greater than 1 K at a
temperature variation rate of ≈1 K/min. The weak hys-
teresis indicates the phase transition to be of the first
order and close to the second order. Approximation of

δ T( )tan
01
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the inverse permittivity ε–1(T) using the Curie–Weiss
law

 (1)

yielded T0 = 73 K and C = 3.5 × 104 K for the Curie–
Weiss constant, which is characteristic of displacive
transitions [12].

As seen from Fig. 1, the ε(T) relation has a weak
anomaly at T1 ≈ 50 K, which is actually a shoulder on
the experimental curve. This anomaly occurs at the
maximum of dielectric losses, which was observed at
42 K. The nature of this anomaly is possibly related to
another phase transition, as is the case, for instance,
with the BaTiO3 and KNbO3 ferroelectric perovskites.
Our studies do not, however, provide an unambiguous
answer to the origin of the anomaly observed at T1.

The measurements of hysteresis loops carried out in
the 5–100 K range permitted determination of the tem-
perature dependence of the spontaneous polarization
Ps. Figure 2 displays P(E) relations measured at a fre-
quency of 50 Hz and temperatures of 5, 40, 71, and
82 K. The amplitude of the measuring electric field was
≈5.5 kV/cm. The temperature dependence of the spon-
taneous polarization Ps in CdTiO3 is plotted in Fig. 3.
The magnitude of the spontaneous polarization upon
saturation was found to be Ps = 9 × 10–7 C/cm2, which
is an order of magnitude smaller than Ps in BaTiO3. The

ε 1– T T0–( )/C=
PH
residual polarization observed to exist at temperatures
above Tc is due to the effect of the measuring field and
is characteristic of measurements in strong electric
fields [12].

A first-order ferroelectric phase transition is charac-
terized by a jump in the order parameter (the spontane-
ous polarization Ps) at the transition point. However,
unambiguous discrimination and determination of the
magnitude of a small jump directly from Ps(T) mea-
surements (Fig. 3) presents difficulties, because the
hysteresis loops are studied under a fairly strong elec-
tric field (E ≈ 5.5 kV/cm). An electric field shifts the
phase transition point and reduces the jump in Ps down
to its complete disappearance at the electric critical
point. In such measurements, the derivative dPs/dT
should pass through an extremum at the phase transi-
tion or go to infinity (at the electric critical point) [12–
14]. Figure 4 shows the temperature dependence of the
derivative dPs/dT in CdTiO3. One clearly sees a sharp
minimum in this relation at a temperature T = 77 K,
which coincides, within the temperature hysteresis of ε,
with Tc = 76.5 K.

The weak temperature hysteresis of the permittivity
and the absence of an experimentally observed jump in
Ps suggest that the phase transition in CdTiO3 occurs in
the vicinity of the tricritical point. According to the
Landau theory of phase transitions, the temperature
dependence of the order parameter (in our case, the
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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spontaneous polarization Ps) near Tc should follow the
relation

 

where the critical order parameter exponent β at the tri-
critical point is β = 0.25 [13]. Figure 5 plots the temper-

ature dependence of . Within the temperature interval

60–75 K, (T) is a linear function of temperature,
which yields β = 0.25 for the critical exponent. The
magnitude of the critical order parameter exponent
shows unambiguously that the ferroelectric transition
in CdTiO3 occurs practically at the tricritical point.

4. DIELECTRIC STUDIES 
OF THE Sr1 – xCdxTiO3 SOLID SOLUTION

We turn now to studying the dielectric properties of
Sr1 – xCdxTiO3 in the concentration region x ≤ 0.1.

Figure 6 presents temperature dependences of the
permittivity ε in Sr1 – xCdxTiO3 obtained at x = 0,
0.0025, and 0.005. Also shown is the temperature
dependence of the dielectric loss tangent  for the
sample with x = 0.0025. At room temperature, the per-
mittivity is approximately the same in all samples, ε ≈
290, which is close to the value ε ≈ 350 found for pure
SrTiO3 [4, 12, 15]. The maximum in the ε(T) relation
observed in the samples studied can be related to a tran-
sition to the polar state, which is induced by Cd2+ impu-
rity ions. For comparison, Fig. 6 shows the ε(T) depen-
dence for pure SrTiO3 prepared using the same technol-
ogy.

The Sr1 – xCdxTiO3 sample with x = 0.0025 (curve 2
in Fig. 6) does not exhibit a maximum in ε at tempera-
tures above 5 K. In the x = 0.005 sample, a maximum

Ps Tc T–( )β,∼

Ps
4

Ps
4

δtan

2

0

Tc = 76.5 K

T, K

0

4

6

8

10

20 40 60 80 100

Ps, 10–7 C/cm2

120

Fig. 3. Ps(T) relation in CdTiO3.
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in ε(T) was observed at a temperature Tc = 11 K
(curves 3, 4 in Fig. 6) at 1 kHz, but it is absent at 1 MHz.
This result does not, however, permit an unambiguous
conclusion regarding the existence of a frequency dis-
persion of ε, because the amplitude of the measuring
field was about 3 V/cm at 1 MHz and an order of mag-
nitude larger, 30 V/cm, at a frequency of 1 kHz. After
the sample with x = 0.005 was maintained at T = 5 K in
a measuring field at 1 kHz (with an amplitude ≈30 V/cm)
for 30 min, its permittivity decreased by approximately
7%. After subsequent heating, the temperature Tc of the
maximum in ε did not change, but the difference in the
magnitude of ε persisted up to 30 K (curves 3, 4 in
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δtan
Fig. 6). A similar deviation of ε from ergodicity is char-
acteristic of a glassy polar state [16]. As shown by
dielectric hysteresis measurements made on samples
with x = 0.0025 and 0.005 at temperatures from 5 to
50 K, the Sr1 – xCdxTiO3 solid solution does not exhibit
ferroelectric hysteresis at these concentrations. Below
30 K, the P(E) dependence was nonlinear and had an S
shape similar to that for pure strontium titanate. Thus,
our studies show that the Sr1 – xCdxTiO3 system does
not undergo a transition to the ferroelectric state with
long-range order at concentrations x ≤ 0.005. As for the
x = 0.005 composition, the maximum in the permittivity
PH
and the nonergodicity in the ε(T) relation do not exclude
the possibility of a polar glassy state for T < 11 K.

In Sr1 – xCdxTiO3 samples with x = 0.01, 0.03, and
0.05, permittivity maxima were observed to exist at
1 kHz and 1 MHz at practically the same temperature
(Fig. 7). The sample with x = 0.01 exhibits a distinct
maximum in ε(T) (with the largest value of the permit-
tivity for the Sr1 – xCdxTiO3 system, ε = 17 × 103) at
Tc = 14 K, which is accompanied by a maximum in

(T) at 12 K. As the CdTiO3 concentration
increases, the temperature of the maximum Tc

increases, the maximum itself spreads out, and the

δtan
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magnitude of ε at the maximum decreases. A similar
behavior of ε(T) at low impurity concentrations was
observed earlier in other SrTiO3-based solid solutions
[4, 6, 8, 17]; note that the amplitude of ε(T) in the
Sr1 − xCaxTiO3 system is the largest [4, 17] at the same
impurity concentration as in Sr1 – xCdxTiO3 (x ≈ 0.01).

Figure 8 plots hysteresis loops measured on samples
with x = 0.01, 0.03, and 0.05 at a frequency of 50 Hz.
Below Tc, the P(E) dependence has the shape of a nar-
row ferroelectric loop. This implies that at 0.01 ≤ x ≤
0.05, the Sr1 – xCdxTiO3 solid solution undergoes a tran-
sition to a polar state with a nonzero switching sponta-
neous polarization Ps. Narrow hysteresis loops were
also observed above Tc; this is due to electric-field-
induced polarization. Unlike the SrTiO3-based systems

Temperatures Tc and the values of the permittivity measured
at 1 kHz at these temperatures in the Sr1 – xCdxTiO3 solid
solution for concentrations x ≤ 0.1

x Tc, K ε(Tc)

0 – 3817

0.0025 – 9900

0.005 11 14003

0.01 14 17046

0.03 23.5 5940

0.05 29 6513

0.075 25 3592

0.1 22 2456

0

0

Tc, K

x
0.025 0.050

10

20

30

40

PE

FE

GL
?

xc = 0.002

Fig. 9. Tc plotted vs. x for Sr1 – xCdxTiO3. Points are the
experimental data and the solid curve is fitting of the exper-
imental data to the Tc = 139(x – xc)

1/2 relation. PE is the
paraelectric phase, FE is the ferroelectric phase, and GL is
the glassy polar phase.
PH
with the second ferroelectric component that were stud-
ied earlier (Sr1 – xBaxTiO3 [6, 7], Sr1 – xPbxTiO3 [8]), the
magnitude of Ps in Sr1 – xCdxTiO3 at low temperatures
(at saturation) decreases with increasing Cd2+ concen-
tration, namely, at T = 5 K, Ps = 1 × 10–6 C/cm2 (x =
0.01), 0.5 × 10–6 C/cm2 (x = 0.03), and 0.3 × 10–6 C/cm2

(x = 0.05).
Fitting the experimental data on ε(T) to the Curie–

Weiss law in Eq. (1) within the 60–150 K temperature
interval yielded similar values of T0 for 0.01 ≤ x ≤ 0.05,
namely, T0 = 36 K for x = 0.01 and 33 K for x = 0.03
and 0.05. Note that the difference T0 – Tc decreases with
increasing x and, thus, ε(T) measured in the
Sr1 − xCdxTiO3 solid solution at concentrations from
0.01 to 0.05 approaches, with increasing x, the relation
characteristic of a ferroelectric undergoing a second-
order phase transition.

As the concentration of the second component
increases still more (x = 0.075, 0.1), the temper-
ature of the maxima in ε(T), in contrast to the
systems Sr1 − xCaxTiO3 [4], Sr1 – xBaxTiO3 [6, 7], and
Sr1 − xPbxTiO3 [8], begins to decrease rapidly (table).
This is accompanied by the onset of a weak frequency
dispersion, which increases with increasing x, namely,
∆T = Tc (1 MHz) – Tc (1 kHz) = 1 K for x = 0.075 and
∆T = 3 K for x = 0.1. No dielectric hysteresis loops
were observed in samples with x = 0.075 and 0.1, and
the P(E) relation was linear within the temperature
range of 5 to 300 K and in electric fields of up to
4 kV/cm. Thus, the long-range ferroelectric order
induced in Sr1 – xCdxTiO3 at a cadmium concentration
x = 0.01 breaks down already at x = 0.075.

Impurity-induced phase transitions in incipient fer-
roelectrics are characterized by the following depen-
dence of the temperature corresponding to the maxi-
mum permittivity on the impurity concentration x [4]:

 (2)

where xc is the critical concentration, which is usually
determined by fitting the experimental data on Tc (x) to
relation (2). Figure 9 plots Tc vs. x for the Sr1 – xCdxTiO3
solid solution obtained for x ≤ 0.05. Approximating the
experimental relation through expression (2) yields
A = 139 K and xc = 0.002. The magnitude of the critical
concentration in Sr1 – xCdxTiO3 is close to that measured
in other SrTiO3-based solid-solution systems [4, 6–8, 18].

Summing up the dielectric properties of the
Sr1 − xCdxTiO3 solid solution, it should be noted that
long-range ferroelectric order sets in for Sr1 – xCdxTiO3 at
concentrations x > 0.005 (its formation was observed at
x = 0.01), i.e., at values different from the critical concen-
tration xc derived from Eq. (2). A glassy polar phase can
exist within the concentration interval 0.01 > x > 0.002.
A similar transformation of polar states was observed
to occur in the Sr1 – xBaxTiO3 solid solution [6, 7], in
which a glassy polar phase sets in for x ≥ 0.0027 and
long-range ferroelectric order occurs for x ≥ 0.035.
However, in order to confirm the existence of a glassy

Tc A x xc–( )1/2,=
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polar state in Sr1 – xCdxTiO3 at small x, additional stud-
ies are needed, in particular, on single crystals. The
induced ferroelectric properties of Sr1 – xCdxTiO3 vary
with increasing impurity concentration differently than
in other incipient ferroelectric–ferroelectric systems,
such as Sr1 – xBaxTiO3 [6, 7] and Sr1 – xPbxTiO3 [8]. In
Sr1 – xBaxTiO3 and Sr1 – xPbxTiO3, the spontaneous polar-
ization and Tc(x) grow monotonically with increasing
concentration of the ferroelectric component. In
Sr1 − xCdxTiO3, as x increases in the 0.01 ≤ x < 0.075
interval, the magnitude of Ps falls off monotonically,
until at x = 0.075, the long-range order breaks down
altogether. The disappearance of long-range order is
accompanied by a change in the concentration depen-
dence of the temperature position of the maxima in ε;
more specifically, the temperature of the maxima in
ε(T) begins to decrease rapidly with increasing x for
x ≥ 0.075. As already mentioned, x-ray diffraction anal-
ysis shows that the Sr1 – xCdxTiO3 solid solution does
not form for x ≥ 0.2. The weakening of the impurity-
induced ferroelectric properties with increasing x in
Sr1 – xCdxTiO3 may be associated with approaching the
solubility limit.

5. CONCLUSIONS

The results of this work can be summed up as fol-
lows. Our studies of the temperature dependence of the
permittivity and of the dielectric hysteresis loops
revealed that a ferroelectric phase transition close to the
tricritical point occurs in CdTiO3 at 76.5 ± 0.5 K. The
temperature dependence of the spontaneous polariza-
tion in CdTiO3 can be described within the Landau the-
ory of phase transitions with a critical order parameter
exponent equal to ≈0.25.

The temperature dependences of the permittivity and
of the spontaneous polarization were studied in
Sr1 − xCdxTiO3. The phase diagram of this solid solution
was constructed in (T, x) coordinates, and the critical
concentration xc = 0.002 was determined. It was shown
that the dependence of the transition temperature to the
polar state in Sr1 – xCdxTiO3 on concentration x scales as
Tc = 139(x – xc)1/2 for xc ≤ x ≤ 0.05. In the concentration
interval 0.01 ≤ x ≤ 0.05, the induced polar state has a fer-
roelectric long-range order which breaks down as x
increases to 0.075; this may be associated with
approaching the solubility limit of CdTiO3 in
Sr1 − xCdxTiO3.
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Abstract—This paper reports on the first observation of soft-mode condensation in the Raman spectra of the
Rb2KScF6 elpasolite crystal below the transition points from the cubic to tetragonal and, subsequently, mono-
clinic phase. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The A2BCX6 elpasolites (high-symmetry phase G0,
space group Fm3m, Z = 4), a family of perovskite-like
crystals, are subjects of considerable interest because of
their application potential and as model media to study
phase-transition mechanisms [1]. Phase transitions
(PT) in these structures are usually associated with the
lattice becoming unstable to rotation of the CX6 octahe-
dral ions, which is caused by phonon-mode condensa-
tion. Soft mode condensation has been successfully
observed before only in bromine-, chlorine-, and oxy-
gen-containing elpasolites [2–5]. Studies of transitions
in the fluorine compounds of this family performed, in
particular, using vibrational spectroscopy are usually
rendered difficult by their comparatively high tempera-
tures. The Rb2KScF6 crystal appears a promising sys-
tem from this standpoint. Indeed, its phase transition
temperatures are relatively low: T1 = 252 K (to the G1
phase, space group I114/m, Z = 2) and T2 = 223 K (to
the G2 phase, space group P1121/n, Z = 2) [6]. This sug-
gests that one could obtain spectra with narrow lines
and a low background. A recent first-principles calcula-
tion of the stability and dynamics of the Rb2KScF6 lat-
tice [7] showed that the phase transitions observed to
occur in this crystal can also be due to soft phonon-
mode condensation. Earlier studies of Raman scatter-
ing (RS) spectra did not, however, provide experimen-
tal support of this conjecture [8], just as in the case of
other fluorine-containing elpasolites isomorphic with
respect to Rb2KScF6 [9]. This stimulated the present
study of the low-frequency Raman spectrum of the
Rb2KScF6 crystal as a search for soft phonon modes.

2. CRYSTAL STRUCTURE 
AND NORMAL-MODE SYMMETRY

Figure 1 presents schematically the unit cell of the
high-symmetry phase G0. The vibrational representa-
1063-7834/01/4311- $21.00 © 22154
tion can be reduced into irreducible representations
(IR) at the Brillouin zone center as

 

where the parentheses contain the RS tensor compo-
nents to which the corresponding vibrations contribute.
The table identifies the atoms involved in these vibra-
tions. The position symmetry of the ScF6 group in the
structure coincides with that of the free group, and the
symmetries, types, and frequencies of its Raman-active
normal vibrations taken from [10] are given in Fig. 2.
Figure 3 displays the correlation diagram of the vibra-
tions active in the RS spectra of the cubic and tetragonal
phases. As follows from this diagram, only one lattice
vibration mode (hard) is active in the spectrum of the
cubic phase (the others being internal vibrations of the
ScF6 groups), but the soft mode hardening (which splits
below the transition in two) can be seen in RS below the
transition point.

Γvib A1g xx yy zz, ,( )= Eg xx yy zz, ,( )+

+ 2F2g xz yz xy, ,( ) F1g 5F1u F2u,+ + +

Vibrational representation of the group symmetry of the
Rb2KScF6 cubic phase

IR A1g
(xx, yy, zz)

Eg
(xx, yy, zz) F1g

F2g
(xz, yz, xy) F1u F2u

2Rb – – – 1 1 –

K – – – – 1 –

Sc – – – – 1 –

6F 1 1 1 1 2 1

Γvib 1 1 1 2 5 1

Note: F1g is the representation corresponding to the cubic-phase
soft-mode symmetry.
001 MAIK “Nauka/Interperiodica”



        

SOFT-MODE CONDENSATION IN RAMAN SPECTRA 2155

                                                                  
The transition to the G2 phase occurs according to

the  representation of the G0 phase (which corre-

sponds to the  representation of the G1 phase; we use
here the notation of [9]) and is accompanied by primi-
tive-cell doubling. The modes corresponding to the
X(Z) point in the Brillouin zone are Raman inactive;
however, as can be seen from the correlation diagram in
Fig. 4, they may also be observed below the second
transition point.

3. EXPERIMENT

The samples for the experiment, measuring 2 × 2 ×
4 mm, were chosen from the same crystallization as in
[6] and were cut such that, in the G0 phase, their edges
were aligned with the crystallographic axes (note that,
after the phase transitions, a well-developed domain
structure precluding measurement of polarized spectra
in the low-temperature phases is formed). The crystals
were optically transparent and did not contain colored
defects or inclusions visible under a microscope. The
spectra were obtained on a Jobin-Yvon T-64000 Raman
spectrometer with CCD-array detection. To suppress
the elastic scattering wing as much as possible, a triple-
monochromator mode was used with subtraction of dis-
persion and with a low-frequency cutoff at 8 cm–1. The
spectral width of the slits was 1 cm–1, the spectral size
of the array cell was 650/1024 cm–1, and the signal
accumulation time was 600 s. The excitation was
accomplished with 514.5 nm polarized radiation from a
500 mW Ar+ laser. The sample temperature during
spectral measurement was stabilized to no worse than
0.2 K.

4. RESULTS AND DISCUSSION

The number and polarization of the spectral lines
detected in the high-temperature cubic phase far from
the transition point agree well with calculations and
earlier observations [8, 9]. The frequency of the only
Raman-active lattice vibration mode at room tempera-
ture is 89 cm–1, and it increases slightly under cooling;
thus, it does not interfere with the observation of anom-
alies in the low-frequency part of the spectrum.

As the temperature is lowered, one observes the cen-
tral scattering peak to grow in intensity and broaden a
few degrees before the transition point. Below T1, a
broad wing appears near the central peak, which can be
interpreted as an enhancement of a low-intensity broad
band (Fig. 5); at lower temperatures, one can discrimi-
nate two maxima in it, at 26 and 39 cm–1. Figure 6
shows the temperature dependence of the squared fre-
quencies of the line maxima (the parameters of the
overlapping profiles were derived with the SigmaPlot
5.0 program with a dispersive function used for line
contours). No noticeable frequency shifts of these lines
are observed to occur in the tetragonal phase (because
of the background level being comparable to the line

X5
+

Z5
+
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intensity, the line position could not be determined with
a sufficiently high accuracy); one can only notice a cer-
tain redistribution of the intensity to higher frequencies
within this band with decreasing temperature and a
lowering of the central peak intensity, which is possibly
caused by rearrangement of the domain structure.

ScF6

K

Rb

Fig. 1. Structure of the original phase G0 of the Rb2KScF6
crystal.

ν1(A1g)
498 cm–1

ν2(Eg)
390 cm–1

ν5(F2g)
230 cm–1

Fig. 2. Types of Raman-active normal modes of the ScF6
group.

Fm3m(É)
A1g

Eg

F1g

2F2g

I114/m(É)
3Ag

3Bg

3Eg

Fig. 3. Correlation diagram of the Raman-active modes of
the cubic and tetragonal phases.
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Fig. 5. Temperature-induced changes in the low-frequency
part of the Rb2KScF6 spectrum.

Fig. 6. Temperature dependence of the squared frequencies
of the observed low-frequency lines.
PH
As the second transition point is reached, the elastic
scattering intensity increases in a jump and the band
undergoes an intensity redistribution, with its high-fre-
quency part growing noticeably. The frequency of this
maximum increases monotonically under cooling. The
temperature dependence of the squared frequency is
close to being a linear dependence; this is a feature
characteristic of soft modes associated with displacive
phase transitions, either of the second order or of the
first close to the second order. Below 100 K, where the
line widths become smaller because of the decrease in
anharmonicity, the corresponding band splits in two
components. As the temperature is lowered still more,
the high-frequency component of the doublet thus
formed continues to move up, while the low-frequency
one remains unchanged (47–48 cm–1).

The lowest frequency maximum also remains prac-
tically in the same position (26–27 cm–1). Its intensity
falls off slowly, until it becomes practically indistin-
guishable against the background noise below 100 K.

Thus, one may conclude that the phase transforma-
tions in Rb2KScF6 studied here are accompanied by soft
phonon-mode condensation; hence, they should be
assigned to displacive transitions. As shown in using
group-theoretical analysis, the first phase transition is
associated with a rotation of the  octahedral molec-
ular ions (table), whereas the second one may be
induced by a more complex deformation involving both
rotation of these ions and cation displacement [8, 9]. At
the same time, the first transition is accompanied by
considerable pretransition effects and the lines forming
below the transition point exhibit extremely low inten-
sities and large widths, which may be caused by either
strong order-parameter fluctuations over a broad
enough temperature interval or by the onset of struc-
tural disorder in the pretransition region [11].

Because all critical vibrations in the low-tempera-
ture phase belong to one totally symmetric representa-
tion, their closeness in position and the strong temper-
ature dependence of their frequencies must inevitably
give rise to strong coupling and, hence, mixing of vari-
ous types of vibrations. Thus, even if these strong fluc-
tuation effects are originally related to the cubic-to-tet-
ragonal phase transition, the interaction between the
critical vibrations should also cause intense fluctuations
of the order parameter governing the second transition.
Only a substantial decrease in temperature weakens this
coupling and permits reliable observation of the recov-
ery of the corresponding modes.
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Abstract—The variation of the temperatures of martensitic transformations and the rate of radiation damage
in TiNi alloys were studied upon irradiation with reactor neutrons. The irradiation was performed at tempera-
tures of 120 and 335 K. In the process of irradiation, electrical resistance of the alloys was measured continu-
ously and thermal cycling through the temperature range of martensitic transformations was carried out. The
transformation temperatures were shown to decrease at different rates with increasing irradiation fluence. The
electrical resistance increases linearly with increasing neutron fluence to 6.7 × 1018 cm–2 irrespective of the irra-
diation temperature. Deviation from a linear dependence is only observed when the irradiation leads to a change
in the phase state of the alloy. The rate of the resistance increase only slightly depends on the irradiation tem-
perature. In martensite, it is greater by a factor of 2–4 than that in austenite. Mechanisms of irradiation-induced
modification of the structure of TiNi alloys that explain the experimental data obtained are discussed. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

As the temperature changes, the TiNi alloy of equi-
atomic composition undergoes two martensitic trans-
formations. In the process of cooling, the ordered high-
temperature cubic phase B2 (CsCl type) sequentially
transforms into a rhombohedral R phase and then into a
monoclinic (monoclinically distorted orthorhombic)
crystal structure B19'. Heating from the low-tempera-
ture state causes transitions in the inverse sequence:
B19'  R  B2. Frequently, the transformation
occurs directly from the B19' into the B2 phase without
the intermediate R state.

The sequence of martensitic transformations in the
TiNi alloy and the characteristic temperatures of the
transitions are determined by many factors, such as the
chemical composition of the base and the concentra-
tions of alloying impurities, mechanical stresses, condi-
tions of processing, thermomechanical treatment, etc.
[1]. Among them, neutron irradiation is noteworthy,
whose effect on the properties and structure of titanium
nickelide has been intensely studied in recent years [2–
12]. The interest of researchers in this problem is pri-
marily connected with the need to predict the properties
of this alloy, which exhibits a shape-memory effect and
is a promising material for solving a number of prob-
lems that arise when constructing, exploiting, and
repairing atomic and thermonuclear plants [13–15]. Of
great importance is also the possibility of controlling
martensitic transitions and the functional and mechani-
cal properties of the TiNi alloy using irradiation with
high-energy particles—a process that can easily be con-
trolled and dosed.
1063-7834/01/4311- $21.00 © 202158
It has been established to date that the temperatures
of martensitic transitions are shifted toward lower tem-
peratures range as a result of neutron irradiation [2–8].
Thus, according to [2–5], the temperature Ms of the onset
of the R  B19' transition decreases by more than
200 K after irradiation with fast neutrons (E > 1 MeV) to
a fluence Φ = 8 × 1019 cm–2 at a temperature Tirr = 323 K.
The temperature TR of the onset of the B2  R trans-
formation decreases only slightly (by 1–20 K). These
findings contradict the results of [7], where the shift of
both TR and Ms in the process of annealing of irradiated
(to a fluence Φ = 8 × 1019 cm–2 at Tirr = 340 K) samples
of titanium nickelide was found to be the same. As was
shown in [2–5], no shift in Ms and TR occurs up to a dose
of 1.1 × 1021 cm–2 if the irradiation is performed at
enhanced temperatures (520 K). This fact indicates a
sharp activation of the processes of radiation-defect
annealing in the TiNi alloy near 500 K. In fact, as is
emphasized in [3–5], the kinetics of martensitic transi-
tions stops, depending on the neutron dose, at very small
homologous irradiation temperatures, such as Tirr/Tm =
0.33, where Tm is the melting temperature.

Measurements performed directly in the process of
irradiation at Tirr = 170 K showed that in the range of
small fluences (to Φ = 6.7 × 1018 cm–2), the decrease in
the temperatures of martensitic transformations in the
TiNi alloy is described by the dependence

 (1)

where ∆Tirr is the increment in the temperature of the
phase transition, Φ is the neutron fluence, and d and Φ0

∆T irr d Φ/Φ0–( )exp 1–[ ] ,=
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Table 1.  Heat-treatment regimes and martensitic-transformation temperatures of the samples

No. Heat-treatment regime TR, K Ms , K Mf , K As , K

1 770 K, 2 h 315 250 195 295

2 770 K, 2 h 335 305 295 –

3 As-supplied 310 – – –

4 Same 320 250 205 –
are constants [6]. The different transformation tempera-
tures are shifted with increasing dose at different rates.
The temperatures of the start and finish of the R  B19'
transition (Ms and Mf, respectively) decrease by 80 K at
a fluence of 6.7 × 1018 cm–2, whereas TR and Af (Af is the
temperature of the finish of the reverse B19'  B2
transformation) change by 18 and 30 K, respectively.

On the whole, the available data suggest that neu-
tron irradiation at temperatures below 500 K leads to a
significant change in the temperatures of martensitic
transformations in titanium nickelide. In its effect on
the transformation temperatures, the irradiation can be
comparable only to the variation of the chemical com-
position or alloying with a third component [16].

Most researchers ascribe the observed changes to
the radiation-induced disordering of the crystal struc-
ture of the alloys [5–9]. In [7, 9–11], a decrease in the
intensity of superlattice reflections in Ti49Ni51 was
directly observed using neutron diffraction. The rela-
tive change in the intensity of superlattice maxima sig-
nificantly exceeded that of fundamental reflections,
which permitted the authors of the above papers to
arrive at the conclusion that irradiation decreased the
degree of long-range order of the alloy. In experiments
on the annealing of irradiated samples, an empirical
relation was established between the temperatures of
martensitic transformations and the degree of long-
range order in TiNi [7]. However, the radiation modifi-
cation of the structure of the TiNi alloy is not restricted
to only a decrease in the degree of long-range order. In
[9–11], an amorphization of titanium nickelide upon
irradiation with fast neutrons was revealed. In polycrys-
tals, e.g., according to [1], the fraction of the amor-
phous phase is about 90% after neutron irradiation to a
fluence of 6 × 1019 cm–2 at 340 K. The authors of [12]
interpret the results of structural analysis of an irradi-
ated TiNi alloy from the viewpoint of the processes of
radiation-stimulated aging, which generates local inho-
mogeneities of chemical composition in the alloy. The
aging is supposed to be stimulated by the high-intensity
γ radiation, which always accompanies the irradiation
in a reactor. In addition, it is stated that in the regions of
atomic-collision cascades, elastic distortions arise in
the lattice, which favor the continuous development of
martensitic transformations in a wide temperature
range from 300 to 4.2 K.

In this paper, we studied martensitic transformations
and kinetic features of radiation-stimulated modifica-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
tion of the properties of TiNi alloys irradiated with
reactor neutrons at various temperatures. In contrast to
most papers, where investigations were performed on
preliminarily irradiated samples, our measurements
were carried out directly in the process of irradiation in
a specially equipped reactor channel. We used the
method of measuring electrical resistance. This charac-
teristic, as is well known, is structure-sensitive with
respect to both radiation defects and martensitic trans-
formations.

1. EXPERIMENTAL

For experiments, we used samples of equiatomic
titanium nickelide from various suppliers. The as-sup-
plied samples were wires 0.5 mm in diameter and 30 mm
in length deformed during the last processing step
(drawing) to a reduction of area by 20–25%. Part of the
samples were irradiated without any additional heat
treatment; the others were annealed at 770 K for 2 h in
an argon atmosphere. Before measurements, the sam-
ples were repeatedly cycled through the temperature
range of martensitic transformations to stabilize their
properties. Directly before placing the samples in the
reactor channel, we measured the temperature depen-
dence of resistance to determine the martensitic-trans-
formation temperatures. The data for four test samples
are given in Table 1 and in Fig. 1. In the figure, the ver-
tical arrows indicate temperatures corresponding to
various transformations in the titanium nickelide. The
temperature TR of the onset of the B2  R transition
upon cooling is defined as the temperature of the onset
of the anomalous rise of the electrical resistance; the
temperature Ms of the onset of the R(B2)  B19' tran-
sition is associated with a maximum in the ρ(T) depen-
dence; and the temperature Mf of the finish of the trans-
formation into the B19' martensite corresponds to the
passage to a linear dependence of the resistance on tem-
perature.

As can be seen from Fig. 1, the temperature depen-
dences of the resistance differ substantially for heat-
treated and untreated samples. In samples 1 and 2, the
B2  R  B19' transformation sequence is
observed upon cooling, whereas upon heating, the B19'
martensite appears to transform directly into the B2
austenite.

In the deformed samples 3 and 4, the stage of the
rise of resistance upon cooling is strongly extended in
01
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temperature and the temperature hysteresis is weak (the
resistance changes upon cooing and heating in a similar
manner). It may be assumed that in the samples that
were not subjected to a heat treatment in the tempera-
ture range under study, the B2  R transition that is
characterized by a small temperature hysteresis (2–5 K)
is mainly realized, while the R  B19' transition is
suppressed to a significant extent.

The irradiation was performed in a low-temperature
helium loop placed in one of the vertical channels of the
VVR-M research reactor of the St. Petersburg Institute
of Nuclear Physics, Russian Academy of Sciences.
Helium cooled in a cryogenic system was circulated in
the channel along a closed contour to remove heat
released in samples due to radiation heating. The tem-
perature in the loop was kept constant or changed
according to a specified schedule by changing the rate
of helium circulation and the degree of its cooling. The
thermal insulation of the walls of the helium loop from
the heat carrier of the reactor was ensured with a vac-
uum jacket. At a reactor power of 15 MW, the density of
the fast-neutron flux with an energy of more than 1 MeV
was 1 × 1013 cm–2 s–1.

The electrical resistance was measured using a four-
probe technique; the temperature was measured with a
copper–constantan thermocouple. All the measure-
ments were carried out continuously during the entire
experiment. Each value of the resistance was deter-
mined as an average of four measurements performed
using different polarities of the current and voltage sig-
nals. This permitted us to eliminate the effect of the
thermopowers that arise at contacts between unlike
conductors.

The irradiation with fast neutrons to a fluence of
5.5 × 1018 cm–2 was performed at a temperature
Tirr = 120 ± 7 K (in the martensitic state of the alloys),
after which the temperature was increased and further
irradiation was carried out at 335 ± 10 K (in the auste-
nitic state). During the entire experiment, we measured
the temperature dependences of the resistance in the
course of intermediate thermal cycling through the
interval of martensitic transformations without inter-
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Fig. 1. Temperature dependences of resistance of the alloys
in the unirradiated state. Figures near the curves denote the
order numbers of the samples (see Table 1).
PHY
rupting the irradiation. The rate of the temperature vari-
ation in the thermocycles was 2–3 K/min. The graph of
the temperature variation in the course of the whole
experiment is displayed in Fig. 2. The time interval a–
b in this figure corresponds to a reactor suspension,
when the helium circulation in the channel was stopped
and the temperature established at a level of 330 K with
a short-time rise to 380 K when the irradiation was
restarted. Before the irradiation at a temperature Tirr =
335 K, the temperature of the samples was increased to
400 K for 20 min (temperature peak c in Fig. 2).

2. RESULTS AND DISCUSSION

The temperature dependences of resistance obtained
in the course of thermocycling allow us to analyze both
the changes in the temperatures of martensitic transfor-
mations and the kinetics of the processes of radiation-
stimulated changes in the structure of the materials.
Several such dependences are shown in Fig. 3 for sam-
ple 2. It is seen that, with increasing neutron fluence,
there occur substantial changes in the shape and posi-
tion of the curves in the diagram field. First of all, note
that the temperatures of martensitic transformations
decrease in the course of irradiation. The process begins
in the first hours of the irradiation of the material and is
developed in accordance with Eq. (1) at different rates
for different martensitic temperatures. The Ms and Mf
temperatures decrease at greater rates than the TR tem-
perature. Thus, at the maximum fluence used in the
experiments (6.7 × 1018 cm–2), TR decreases by 15–20 K,
whereas Ms is diminished by 70–80 K. As a result, the
temperature field of existence of the R phase expands
and the martensitic transitions after irradiation occur in
a much wider temperature range as compared to the ini-
tial unirradiated state. After irradiation, the R  B19'
transformation upon cooling may not be realized at all
down to 120 K, and in the temperature range of ther-
mocycling, only a resistance increase connected with
the B2  R

 

 transition is observed. As an example of
such a behavior, alloy 1 can be considered (Fig. 4),
which after irradiation to a dose of 3.5 
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exhibits an anhysteretic ρ(T) dependence virtually
without the stage of resistance decrease corresponding
to the R  B19' transition upon cooling.

Simultaneously with a change in the shape of the
temperature dependences of resistance in the course of
irradiation, their shift upward along the ρ axis occurs.
According to the Matthiessen’s rule, the ρ(T) depen-
dence should be shifted parallel to itself with increasing
concentration of radiation defects. However, measure-
ments show that the shift occurs inhomogeneously in
the thermocycling range (Figs. 3, 4). The high-temper-
ature branch of the ρ(T) dependence is shifted at a
smaller rate as compared to the low-temperature
branch. This circumstance could be referred to a partial
annealing of radiation defects with increasing tempera-
ture during thermocycling. However, the data given in
Figs. 3 and 4 show that the nonclosure of the heating–
cooling curves in a thermocycle is only small if it exists
at all. This means that the recovery of electrical resis-
tance due to an increase in temperature is small. In
addition, the nonuniform shift of the ρ(T) dependences
is observed at Tirr = 335 K as well (Figs. 3, 4), when the
temperature decreases rather than increases during
thermocycling with respect to the irradiation tempera-
ture. In general, it is important to emphasize that the
character of changes in the kinetics of martensitic trans-
formations and electrical resistance are almost indepen-
dent of the irradiation temperature and, consequently,
of the structural state (martensitic or austenitic) in
which the irradiation was performed.

With the above data, we can quantitatively estimate
the observed behavior of the martensitic temperature
using the following procedure. If in Figs. 3 and 4 we
draw straight lines parallel to the ρ axis, the points of
intersections of such isotherms with the ρ(T) depen-
dences will give us a picture of changes of the resis-
tance at certain constant temperatures. Such construc-
tions were performed for the isotherms corresponding
to 130 and 335 K. These temperatures were chosen to
eliminate, if possible, the factor of changes in the phase
state of TiNi alloys related to neutron irradiation upon
the analysis of the rate of accumulation of radiation
damage. Indeed, the temperature of 335 K for all sam-
ples during the whole period of irradiation corre-
sponded to a single-phase austenitic state and the tem-
perature of 130 K corresponded to a martensitic state
with a monoclinic structure B19' for sample 2 and
rhombohedral R structure for samples 3 and 4. Alloy 1
at 130 K had a B19' structure at the beginning of irradi-
ation and mainly a rhombohedral structure after a dose
of 3.5 × 1018 cm–2 had been accumulated, as suggested
by Fig. 4.

Figure 5 illustrates the dose dependences of radia-
tion damage for samples 1 and 2. The points in the
graphs include all intersections of the ρ(T) depen-
dences with the corresponding isotherms both upon
heating and cooling both during thermal cycles and
upon isothermal irradiation. The lines shown in the fig-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      200
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1018 cm–2.
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ure can be divided into several segments. Segment ab
corresponds to the initial irradiation at Tirr = 120 K; seg-
ment bc, to a partial recovery of resistance due to the
stopping of the reactor (Fig. 2); cd, to the continued
irradiation at 120 K; de, to the recovery of resistance
related to a short-time heating of the sample upon the
passage to irradiation at 335 K (temperature peak c in
Fig. 2); and ef, to irradiation at 335 K. Changes in the
resistance depending on the dose in all segments are
satisfactorily approximated with straight lines whose

Fig. 5. Variation of the relative resistance at a temperature
of ( ) 130 and ( ) 335 K as a function of the neutron flu-
ence for samples 1–4 (Table 2) of the TiNi alloy.
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slopes characterize the rates of radiation-stimulated
changes in the structure of the TiNi alloys. One excep-
tion is sample 1 at 130 K. The results of the measure-
ments of dρ/dΦ are summarized in Table 2.

When analyzing these results, it was unexpectedly
revealed that an increase in the irradiation temperature
by 215 K only insignificantly affected dρ/dΦ. On aver-
age, the rate of an increase in the resistance decreased
only by a factor of 1.2. At the same time, the magnitude
of dρ/dΦ strongly depended on the temperature at
which it was measured. As is seen from Table 2, the rate
of the change in the resistance estimated at 130 K is
greater by a factor of 2–4 than that estimated at 335 K.
In other words, the reaction of the martensitic phase of
the TiNi alloys to neutron irradiation is sharper as com-
pared to that of the austenitic phase irrespective of the
irradiation temperature. Undoubtedly, this is due to the
specific features of the crystal structure of the alloys
being in various structural states.

Let us consider the physical factors that cause the
phenomena observed. In pure metals, the rate of growth
of electrical resistance upon neutron irradiation is pro-
portional to the rate of growth of the point-defect con-
centration: dρ/dΦ = ρpdC/dΦ, where C is the concentra-
tion of defects and ρp is the resistance increment per
unit concentration. In the case of the TiNi alloy, it is
also necessary to take into account the contributions to
the resistance caused by solid-solution disordering [7–
11] and amorphization of the crystal [9–11]. All these
mechanisms of radiation-induced modification of the
alloy structure are realized in both the martensitic and
austenitic phases. However, a distinctive feature of
martensitic phases in materials with thermoelastic mar-
tensitic transformations is their domain structure.
Therefore, it is logical to suppose that in the martensitic
state one more factor is operative, namely, that con-
nected with the scattering of charge carriers from twin
boundaries and boundaries separating structural
domains with different crystallographic orientations.
This assumption is based on the following consider-
ations. Upon low-temperature irradiation, in the region
of the localization of a thermal peak, a martensitic
transformation may occur according to the scheme
martensite  austenite  martensite of another ori-
Table 2.  Rate of resistance changes at various stages of irradiation of TiNi samples

No.

Rate of resistance change dρ/dΦ, 10–18 µΩ cm2

T = 130 K T = 335 K

Tirr = 120 K Tirr = 335 K Tirr = 120 K Tirr = 335 K

ab cd ef ab cd ef

1 6.1 4.1 2.5 1.4 0.9 0.8

2 8.8 6.0 5.6 3.1 1.6 1.3

3 5.7 4.6 3.2 3.3 2.3 2.0

4 12 8.6 6.0 5.2 3.7 3.3
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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entation. As a result, there arise new structural domains
whose dimensions are comparable with the dimensions
of the thermal spike. In addition, elastic lattice distor-
tions that arise near the displacement spikes can lead to
a heterogeneous nucleation of martensite crystals.
Since the number of displacement peaks increases with
increasing fluence, the number of centers of nucleation
of the new phase also increases upon austenite  mar-
tensite transitions. It is understandable that the above
processes are accompanied by an increase in the den-
sity of domain boundaries upon irradiation and lead to
an additional contribution to resistance.

Therefore, on the assumption of the additivity of
contribution caused by different types of defects [17],
we may write

 (2)

where Va is the volume fraction of the amorphous
phase, S is the degree of long-range order, D is the den-
sity of domain and twin boundaries, ρb is the resistance
increment per unit density of boundaries, and ρa and ρd
are the coefficients that characterize the resistance
change upon amorphization and disordering, respec-
tively.

The data obtained in this paper permit us to compare
the contribution of amorphization to the total magni-
tude of resistance. The degree of amorphization was
estimated from the measurements of the magnitudes of
the features in the temperature dependences of the
resistance connected with the martensitic transitions
(an increase in the resistance upon the B2  R trans-
formation and a decrease in the resistance upon the
R  B19' transformation). We assumed that the
amorphization should cause a decrease in the magni-
tudes of these features, since martensitic transitions
occur only in crystalline regions of a material and the
amorphous component is excluded from the transfor-
mation process. Figure 6 demonstrates that ∆ρB2 → R
and ∆ρR → B19' virtually do not change upon irradiation
of sample 2. Similar dependences were also obtained
for other samples. Therefore, we can state that no amor-
phization occurs under the chosen conditions up to a
fluence of 7 × 1018 cm–2.

Thus, the second term in Eq. (2) can be discarded.
Note also that the last term is nonzero only in the two-
phase or martensitic state of the alloy and gives no con-
tribution to the resistance of the austenite. This explains
the differences in the rates of growth of ρ correspond-
ing to martensite and austenite upon irradiation. On the
whole, the picture of the radiation-induced modifica-
tion of the structure of titanium nickelide is very com-
plex and is associated with changes in several structural
parameters.

In conclusion, we pay special attention to the differ-
ence in the functional relations between the tempera-
tures of martensitic transformations in TiNi and the
electrical resistance on the one hand and the neutron

dρ
dΦ
------- ρp

dC
dΦ
-------= ρa

dV a

dΦ
--------- ρd

dS
dΦ
------- ρb

dD
dΦ
-------,+++
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fluence on the other hand. The exponential decrease in
the temperatures of phase transitions and the linear
growth of resistance require a coordinated explanation
based on an analysis of the structural mechanisms of
the modification of the properties of irradiated alloys,
which is the task of our further investigations.

ACKNOWLEDGMENTS

This work was supported in part by the State Pro-
gram “Neutron Studies of Condensed Matter” (project
no. 107) and the Program for the Support of Leading
Scientific Schools by the Russian Foundation for Basic
Research (project nos. 00-15-96027 and 00-15-96023).
We are also grateful to G.V. Kolobanov for his assis-
tance in the experiments and to the group of technicians
who ensured the operation of the cryogenic plant at the
St. Petersburg Institute of Nuclear Physics.

REFERENCES
1. Materials with Shape Memory Effect: Reference Edition,

Ed. by V. A. Likhachev (Nauchno-Issled. Inst. Khim.
Sankt-Peterb. Gos. Univ., St. Petersburg, 1997).

2. T. Hoshiya, F. Takada, and Y. Ichihashi, Mater. Sci. Eng.,
A 130 (2), 185 (1990).

3. T. Hoshiya, F. Takada, and Y. Ichihashi, Mater. Sci.
Forum 56–58, 577 (1990).

4. T. Hoshiya, S. Shimakawa, Y. Ichihashi, et al., J. Nucl.
Mater. 1119 (1991).

5. T. Hoshiya, S. Den, H. Ito, et al., J. Jpn. Inst. Met. 55
(10), 1054 (1991).

6. S. P. Belyaev, A. E. Volkov, R. F. Konopleva, et al., Fiz.
Tverd. Tela (St. Petersburg) 40 (9), 1705 (1998) [Phys.
Solid State 40, 1550 (1998)].

7. S. F. Dubinin, S. G. Teploukhov, and V. D. Parkho-
menko, Fiz. Met. Metalloved. 78 (2), 84 (1994) [Phys.
Met. Metallogr. 78 (2), 182 (1994)].

8. A. Kimura, S. Miyazaki, H. Horikawa, and K. Yamauchi,
in Proceedings of the International Conference on Mar-
tensitic Transformations, ICOMAT’92, Monterey, CA,
1992, p. 935.

12

0

∆ρ/ρ, %

Φ, 1018 cm–2
2 4 6

16

20
R         B19'

B2         R

Fig. 6. Resistance increment upon the B2  R and
R  B19' transformations depending on the fluence for
sample 2.
01



2164 BELYAEV et al.
9. S. F. Dubinin, S. G. Teploukhov, and V. D. Parkho-
menko, Fiz. Met. Metalloved. 82 (3), 136 (1996) [Phys.
Met. Metallogr. 82 (3), 297 (1996)].

10. S. F. Dubinin, V. D. Parkhomenko, and S. G. Teplou-
khov, Fiz. Met. Metalloved. 85 (3), 119 (1998) [Phys.
Met. Metallogr. 85 (3), 332 (1998)].

11. S. F. Dubinin, V. D. Parkhomenko, and S. G. Teplou-
khov, Fiz. Met. Metalloved. 88 (2), 111 (1999) [Phys.
Met. Metallogr. 88 (2), 208 (1999)].

12. S. F. Dubinin, S. G. Teploukhov, and V. D. Parkho-
menko, Fiz. Met. Metalloved. 87 (1), 75 (1999) [Phys.
Met. Metallogr. 87 (1), 66 (1999)].
PH
13. M. Nishikawa, S. Toda, E. Tachibana, et al., Fusion Eng.
Des. 10, 509 (1989).

14. M. Nishikawa, E. Tachibana, K. Watanabe, et al., Fusion
Eng. Des. 5, 401 (1988).

15. R. R. Ionaœtis and M. A. Tuktorov, At. Tekh. Rubezhom
2, 3 (1997).

16. V. N. Khachin, V. G. Pushchin, and V. V. Kondrat’ev,
Titanium Nickelide: Structure and Properties (Nauka,
Moscow, 1992).

17. M. W. Thompson, Defects and Radiation Damage in
Metals (Cambridge Univ. Press, Cambridge, 1969; Mir,
Moscow, 1971).

Translated by S. Gorin
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001



  

Physics of the Solid State, Vol. 43, No. 11, 2001, pp. 2165–2170. Translated from Fizika Tverdogo Tela, Vol. 43, No. 11, 2001, pp. 2076–2080.
Original Russian Text Copyright © 2001 by Voronin, Shchennikov, Berger, Glazkov, Kozlenko, Savenko, Tikhomirov.

                                           

LATTICE DYNAMICS 
AND PHASE TRANSITIONS

                      
Neutron Diffraction Investigation of the Structural Transition 
in HgSe1 – xSx Ternary Mercury Chalcogenide Systems 

at High Pressures
V. I. Voronin**, V. V. Shchennikov**, I. F. Berger***, V. P. Glazkov****, 

D. P. Kozlenko*, B. N. Savenko*, and S. V. Tikhomirov*
* Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia

** Institute of Metal Physics, Ural Division, Russian Academy of Sciences, 
ul. S. Kovalevskoœ 18, Yekaterinburg, 620219 Russia

*** Institute of Solid-State Chemistry, Ural Division, Russian Academy of Sciences, 
Pervomaœskaya ul. 91, Yekaterinburg, 620219 Russia

**** Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia
e-mail: phisica@ifm.e-burg.su

Received April 12, 2001

Abstract—The structure of HgSe1 – xSx  ternary mercury chalcogenides at high pressures up to 35 kbar is inves-
tigated by neutron diffraction. It is found under pressure, that the HgSe1 – xSx  compounds undergo, a phase tran-
sition from the cubic sphalerite-type to the hexagonal cinnabar-type structure, which is accompanied by a jump-
wise change in the unit cell volume and interatomic distances. The unit cell parameters and the positional
parameters of Hg and Se (S) atoms in the high-pressure hexagonal phase are determined. A two-phase state is
revealed in the phase transition region. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The investigation of mercury chalcogenides HgX
(where X = S, Se, and Te) under pressure is of particular
interest, because these compounds undergo structural
[1–9] and electron phase transitions [10]. In recent
years, the effect of pressure on the structure of com-
pounds in binary mercury chalcogenide systems has
been intensively studied by x-ray diffraction [5–9].

At pressure P ~ 8–14 kbar and room temperature,
the HgSe and HgTe compounds undergo a structural
phase transition from the cubic sphalerite phase (space
group ) to the hexagonal cinnabar phase (space
group P3121) [7], which is attended by a semimetal–
semiconductor electron transition [10]. Bridgman [1]
was the first to propose the structure of the high-pres-
sure phase in HgSe and HgTe, which was subsequently
confirmed in [2–5]. Another representative of this class
of compounds, namely, HgS (cinnabar), has a similar
hexagonal structure even under normal conditions [5].
High-pressure phases with a cinnabar-type structure are
also observed in ZnTe and CdTe [6, 7]. As the pressure
increases, chalcogenides of mercury, cadmium, and
zinc undergo a phase transition from the hexagonal cin-
nabar-type to the cubic NaCl-type structure [6, 7]. The
pressure of this transition increases with a decrease in
the radius of the chalcogenide ion and is approximately
equal to 80 kbar for HgTe and 160 kbar for HgSe and
exceeds 200 kbar for HgS [5].

F43m
1063-7834/01/4311- $21.00 © 22165
The cinnabar structure (Fig. 1) is intermediate
between the cubic sphalerite structure with a coordina-
tion number of four and the NaCl structure with a coor-
dination number of six and can be treated as a distorted
NaCl lattice [7]. This structure is characterized by two
positional parameters: Hg atoms occupy the 3a posi-
tions (u, 0, 1/3) and Se (S) atoms are located at the 3b
positions (v, 0, 5/6) in the unit cell. The cinnabar struc-
ture in different compounds can differ substantially

Hg
X = Se (S)Hg2

Hg3

Hg1

Hg3

Hg2

Hg1
X

2/3

1/3

5/6 1/61/2

1/3

1/6

2/3

5/6 x

y

0

Fig. 1. Projection of the hexagonal cinnabar structure onto
the xy plane. The z coordinates of the chalcogen X (X = Se
and S) and mercury atoms and the shortest distances Hg1–
X, Hg2–X, and Hg3–X are shown.
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depending on the positional parameters u and v. For
example, the coordination number in the cinnabar
structure is equal to 2 + 4 in HgS and 4 + 2 in HgTe and
CdTe [6, 9].

The effect of pressure on the structure of com-
pounds in the HgSe1 – xSx and HgTe1 – xSx ternary mer-
cury chalcogenide systems has not been adequately
investigated. It is known that under pressure, these
compounds undergo electron phase transitions of the
semimetal–semiconductor type which noticeably
affect the thermoelectric and galvanomagnetic proper-
ties [11–14]. It should be noted that the resistivity
jumps observed in HgTe and HgSe binary compounds
correspond to the phase transition from the cubic
sphalerite-type to the hexagonal cinnabar-type struc-
ture [1–7]. It was assumed that a transition of the
sphalerite–cinnabar type also occurs in ternary com-
pounds [11]. However, direct structural investigations
of high-pressure phases in these compounds were not
performed.

Since the amplitude of x-ray scattering by Hg atoms
is considerably larger than that for chalcogenide atoms
(X = Se and S), the accuracy in determining the location
of X atoms in the structure by using x-ray diffraction
analysis can be insufficiently high. It is more preferable
to investigate the structure of mercury chalcogenides
by neutron diffraction, because the amplitudes of neu-
tron scattering by Hg and X atoms are comparable in
magnitude.

In the present work, the structure of HgSe1 – xSx ter-
nary mercury chalcogenide compounds at pressures up
to 35 kbar was studied by neutron powder diffraction.

5.90

0

a, Å

x

5.95

6.00

6.05

6.10

5.85
0.2 0.4 0.6 0.8 1.0

Fig. 2. Dependence of the lattice parameter of a cubic
sphalerite structure on the sulfur content x in the HgSe1 – xSx
crystals under normal pressure according to the x-ray dif-
fraction data (triangles), neutron diffraction results obtained
on a D7a diffractometer (crosses), and diffraction data
obtained using a DN-12 spectrometer (circles). The solid
line is the linear interpolation of the experimental data.
PH
2. EXPERIMENTAL TECHNIQUE

We studied the HgSe1 – xSx compounds with sulfur
content x ≈ 0.302, 0.508, and 0.601, which were used
in compression measurements of the electrical resis-
tivity in our earlier works [11–14]. The synthesis of
the samples was described in [11, 12]. The samples
were characterized by x-ray and neutron diffraction
analyses. The sample composition was determined by
x-ray microanalysis on a Superprobe-JCXA-733
spectrometer [12].

The neutron diffraction investigations at pressures
up to 10 kbar were performed on an IVV-2M stationary
reactor (Institute of Metal Physics, Ural Division, Rus-
sian Academy of Sciences, Yekaterinburg) using a D7a
diffractometer under normal conditions and a D3b dif-
fractometer at high pressures. The wavelength λ of
monochromatic neutrons was equal to 1.66 Å. The res-
olutions ∆d/d of the diffractometers were 0.023 and
0.03, respectively. The time taken for one neutron dif-
fraction pattern to be measured was approximately 12 h.
Hydrostatic pressure was produced in a high-pressure
piston–cylinder-type chamber fabricated from a TiZr
alloy with an operating volume V ~ 1 cm3 [15]. Liquid
Freon-11 with a boiling temperature of 25°C served as
the pressure-transferring medium. The usability of
Freon-11 was limited by its crystallization at a pressure
of 9.5 kbar.s

The experiments at higher pressures (up to 35 kbar)
were carried out in high-pressure chambers with sap-
phire anvils [16] with the use of a DN-12 spectrometer
[17] and an IBR-2 pulsed high-flux reactor (Frank Lab-
oratory of Neutron Physics, Joint Institute for Nuclear
Research, Dubna). In this case, the volume V of the
studied samples was ~2 mm3. The diffraction spectra
were recorded at the scattering angle 2θ = 90°. The dif-
fractometer resolution ∆d/d for this scattering angle at
wavelength λ = 2 Å was 0.02. The characteristic time of
measuring one spectrum was 20 h. The pressure in the
chamber was measured from the shift of the ruby lumi-
nescence line with an accuracy of 0.5 kbar. All the mea-
surements were performed at room temperature.

3. RESULTS AND DISCUSSION

Analysis of the x-ray and neutron diffraction pat-
terns revealed that, under normal conditions, the
HgSe1 – xSx (0.03 ≤ x ≤ 0.6) crystals have a cubic
sphalerite structure and the unit cell parameter almost
linearly decreases with an increase in the sulfur content
x (Fig. 2).

Figure 3 displays fragments of the neutron diffraction
patterns of the HgSe0.5S0.5 compound at different pres-
sures, which were recorded using the D3b diffractome-
ter. The neutron diffraction patterns at normal pressure
and P ≈ 3 kbar are virtually identical. At P = 6 kbar, the
diffraction patterns exhibit new peaks whose intensities
increase with a further increase in pressure, whereas the
intensities of the reflections associated with the initial
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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cubic sphalerite phase decrease. The Rietveld profile
analysis of the diffraction data demonstrated that the
new peaks are attributed to the hexagonal cinnabar
structure. At pressures above 8 kbar, the diffraction pat-
terns correspond to the single-phase state with a cinna-
bar structure. The phase with a cristobalite structure,
which was observed in the HgSe and HgTe compounds
near the structural transition [7], was not found in the
studied compound.

26
2θ, deg

28 30 32 34 36

(a)

(b)

(c)

Fig. 3. Fragments of the neutron diffraction patterns of the
HgSe0.5S0.5 compound at pressures of (a) 3, (b) 6, and
(c) 8 kbar. Points are the experimental data, and solid lines
represent the profiles calculated by the Rietveld method.
The dashed and dotted lines show the contributions to the
total profile from the cubic sphalerite and hexagonal cinna-
bar phases, respectively. Measurements are carried out
using an IVV-2M stationary reactor, D3b diffractometer,
and a high-pressure titanium–zirconium chamber of the pis-
ton–cylinder type.
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Therefore, in the pressure range from 6 to 8 kbar, the
HgSe0.5S0.5 compound is in a two-phase state (Fig. 3),
in which the concentration of the cinnabar phase
increases and the concentration of the initial sphalerite
phase decreases with an increase in the pressure.
Recent investigations into the electrical properties of
the HgSe1 – xSx compounds [11–14] revealed that meta-
stable states with a high resistivity but with a positive
temperature coefficient of resistance and a high elec-
tron mobility are observed at pressures of 6–8 kbar.
This phenomenon was explained by the existence of
two phases in the system, namely, the semimetal phase
with a sphalerite-type structure and the semiconductor
phase with a cinnabar-type structure, which is in agree-
ment with our results. McMahon and Nelmes [7]
observed inclusions of the initial sphalerite phase in the
binary HgSe and HgTe compounds at pressures as high
as 20 kbar.

For the HgSe0.7S0.3 and HgSe0.4S0.6 compounds, an
increase in pressure also leads to the structural transi-
tion to the cinnabar phase. Figure 4 shows fragments of
the diffraction spectra of the HgSe0.4S0.6 compound at

5
0

–5

5
0

–5

Al Al Al

F43m, P = 0
–

P3121, P = 12 kbar

1.0 1.5 2.0 2.5 3.0 3.5 4.0
d, Å

Fig. 4. Fragments of the diffraction spectra of the HgSe0.4S0.6
compound at (a) normal pressure and (b) P = 12 kbar. Points
are the experimental data, and solid lines represent the pro-
files calculated by the Rietveld method. The difference
curves are normalized to the root-mean-square deviation at
the point. The spectrum measured under normal conditions is
processed with due regard for the contribution of the alumi-
num foil used as a container. Measurements are performed by
the time-of-flight technique using a DN-12 spectrometer,
IBR-2 pulsed reactor, and a high-pressure chamber with sap-
phire anvils. The scattering angle 2θ is 90°.

(a)

(b)
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Structure parameters of sphalerite (the unit cell parameter ac and the interatomic distance Hg–X) and cinnabar (the unit cell
parameters a and c and the shortest interatomic distances Hg1–X, Hg2–X, and Hg3–X) phases of the HgSe1 – xSx compounds
at normal and high pressures

HgSe0.7S0.3 HgSe0.5S0.5 HgSe0.4S0.6

Cubic phase (sphalerite structure type)

P, kbar 0 0 6 8 0

ac, Å 6.012(5) 5.963(5) 5.945(5) 5.943(5) 5.947(5)

Hg–X, Å 2.603(5) 2.582(5) 2.574(5) 2.573(5) 2.576(5)

Hexagonal phase (cinnabar structure type)

P, kbar 17 6 8 17 12 32

a, Å 4.164(5) 4.174(5) 4.158(5) 4.142(5) 4.118(5) 4.069(5)

c, Å 9.513(5) 9.571(5) 9.534(5) 9.470(5) 9.465(5) 9.353(5)

c/a 2.285 2.29 2.29 2.286 2.298 2.299

u 0.642(8) – – 0.652(8) 0.663(8) 0.663(8)

v 0.523(8) – – 0.512(8) 0.514(8) 0.506(8)

Hg1–X, Å 2.52(2) – – 2.45(2) 2.44(2) 2.39(2)

Hg2–X, Å 2.82(2) – – 2.90(2) 2.91(2) 2.89(2)

Hg3–X, Å 3.44(2) – – 3.40(2) 3.35(2) 3.33(2)

Note: In the cinnabar phase, the Hg and X (X = Se and S) atoms occupy positions of the (u, 0, 1/3) and (v, 0, 5/6) types, respectively.
pressures P = 0 and 12 kbar, which were recorded on
the DN-12 spectrometer.

The diffraction data were processed by the Rietveld
method according to the MRIA [18] (the spectra were

4.0
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x = 0.5
x = 0.6

x = 0.3
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 Å

Fig. 5. Pressure dependences of the lattice parameters a
(open symbols) and c (closed symbols) of the hexagonal
cinnabar phase in HgSe1 – xSx compounds. Solid lines are
the linear interpolation of the experimental data.
PH
obtained on the DN-12 spectrometer) and Fullprof [19]
(the patterns measured with D3b and D7a diffractome-
ters) programs by using the known structure models
[7]: the space group  for the initial cubic sphaler-
ite phase and the space group P3121 for the high-pres-
sure phase with a hexagonal cinnabar structure. Rea-
soning from the results obtained earlier for HgSe,
HgTe, and HgS binary mercury chalcogenide systems
[6–9], it was assumed that, in the cinnabar structure, the
Hg atoms occupy the 3a positions (u, 0, 1/3) and the Se
(S) atoms are located at the 3b positions (v, 0, 5/6). The
positional parameters u and v  for hexagonal cinnabar
modifications of HgSe and HgS are close in magnitude:
u ~ 0.7 and v  ~ 0.5 [7].

The structure parameters for the HgSe1 – xSx com-
pounds (x = 0.3, 0.5, and 0.6) at different pressures
were obtained from the diffraction data processed by
the Rietveld method. The results obtained are listed in
the table. The characteristic R factors for the diffraction
spectrum of the HgSe0.4S0.6 compound at P = 12 kbar
(Fig. 4) in the cinnabar phase are as follows: Rp =
9.37% and Rwp = 7.24%.

The compressibility of the HgSe1 – xSx compounds
has an anisotropic nature. As the pressure increases, the
unit cell parameter c decreases more rapidly compared
to the parameter a (Fig. 5). Note that the c/a ratio varies
only slightly with a change in pressure (see table).

As in the binary HgSe and HgTe compounds [1–7,
20], the transition from the cubic to the hexagonal
phase is accompanied by a jump in the unit cell volume
∆V/V ≈ 8% (Fig. 6). The pressure of the onset of the

F43m
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001



NEUTRON DIFFRACTION INVESTIGATION OF THE STRUCTURAL TRANSITION 2169
phase transition in HgSe0.5S0.5 agrees well with the
pressure P ≈ 5 kbar determined earlier from electrical
resistivity measurements [12]. The linear interpolation
of the experimental dependence V(P) (Fig. 6) results in
the following estimates of the bulk modulus B0 =
V/dP/  in the hexagonal cinnabar phase: B0 =
480 kbar for HgSe0.5S0.5 and B0 = 590 kbar for
HgSe0.4S0.6. The calculations were performed using
unit cell volumes per molecular unit (extrapolated to
P = 0): V0 = 48.58 Å3 for HgSe0.5S0.5 and V0 = 47.18 Å3

for HgSe0.4S0.6. These values of B0 are comparable (in
order of magnitude) to the bulk moduli for the phases
with a cinnabar structure in other mercury chalco-
genides: B0 is equal to 410 kbar for HgTe and 320 kbar
for CdTe [21].

It is seen from the table that, in the hexagonal cinna-
bar phase of the HgSe1 – xSx compounds, an increase in
the concentration of sulfur atoms from x = 0.3 to 0.6
leads to an increase in the positional parameter u for Hg
atoms from 0.642(8) to 0.663(8) and to a decrease in
the positional parameter v  for Se (S) atoms from
0.523(8) to 0.509(8). Binary compounds exhibit a sim-
ilar behavior of the positional parameters depending on
the size of the chalcogen ions. Specifically, u = 0.72 and
v  = 0.48 for HgS at P = 0 [9] and u = 0.666 and

dV V V0=

Fig. 6. Pressure dependences of the unit cell volume per
molecular unit in the HgSe1 – xSx compounds. Solid lines
are the linear interpolation of the experimental data. The
hatched region corresponds to a two-phase state in the
HgSe0.5S0.5 compound. The dashed and dotted lines repre-
sent the hypothetical dependences V(P) near the sphalerite–
cinnabar phase transition in HgSe0.4S0.6 and HgSe0.7S0.3
compounds, respectively. The phase-transition pressures
are taken from [12].
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v  = 0.540 for HgSe at P = 23 kbar [22]. According to
Wright et al. [9], the cinnabar phases in the HgS and
HgTe compounds have coordination numbers equal to
2 + 4 and 4 + 2, respectively. However, the coordina-
tion of the HgSe1 – xSx compounds has a different char-
acter (see table), which is similar to the coordination
(2 + 2 + 2) of the HgSe compound [22].

4. CONCLUSION

Thus, the results obtained in the present work demon-
strated that, as the pressure increases, the ternary mer-
cury chalcogenide compounds HgSe1 – xSx (0.3 ≤ x ≤ 0.6),
like the binary HgSe and HgTe compounds, undergo a
phase transition from the cubic sphalerite-type to the
hexagonal cinnabar-type structure. The hexagonal cin-
nabar phase is characterized by a coordination number
of 2 + 2 + 2, as is the case with the cinnabar phase of
the HgSe compound [22] (the coordination number in
the cinnabar structure of HgS is 2 + 4). The metastable
two-phase state was revealed in the phase transition
region, which is in agreement with the results of inves-
tigations into the electrical properties of the HgSe1 – xSx
compounds [12]. The two-phase state in the sphalerite–
cinnabar transition region was observed earlier in HgTe
and HgSe binary mercury chalcogenide compounds.
The inference was made that this state is formed as the
result of a slowing down of the phase transition under
investigation [22].
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Abstract—A one-dimensional diatomic chain whose energy contains cubic and quartic terms in the atomic dis-
placements is considered. A modified asymptotic method is proposed for finding soliton solutions to equations
describing systems with nonlinearities of various symmetry. It is shown that the dynamics of the model in ques-
tion can be described in terms of equations that are similar to the dynamic equations for a diatomic chain with
an even potential function. Soliton solutions of a new, unusual type are found in the specific case of a free
diatomic chain with a purely cubic anharmonic potential. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Elastic mono- and polyatomic chains are particularly
attractive for their use in studying nonlinear dynamics.
Although these models are simple, studying them pro-
vides some insight into the physical nature of intricate
nonlinear excitations occurring in real crystals.

Recently, diatomic and polyatomic chains have been
widely considered in investigation of the properties of
so-called gap and near-gap solitons, whose energy
parameters lie within or near the gap in the linear-wave
spectrum of a system [1–8]. The majority of relevant
papers deal with systems with an anharmonic potential
as a symmetric function of atomic displacements. How-
ever, a more general case, where the interaction poten-
tial contains terms that are asymmetric with respect to
atomic displacements, is also of considerable interest.
The simplest model of a monatomic chain with such a
potential was considered in [9].

In this paper, we consider a diatomic chain with a
nonlinear interparticle interaction placed in an anhar-
monic external potential in the case where both the
interparticle and external potentials contain symmetric
and asymmetric terms with respect to atomic displace-
ments. A modified asymptotic method is developed for
finding static solutions of the system. In contrast to the
method proposed in [8], our method is applicable to a
chain with an asymmetric potential. A method for find-
ing traveling-wave solutions for such systems is also
developed. Possible static and traveling-wave solutions
are analyzed qualitatively in the phase plane in the spe-
cific case of a potential in which the anharmonic terms
are purely asymmetric. Analytical expressions for soli-
ton solutions of a special type are derived for the case
of a free chain (in a zero external potential) with cubic
anharmonic interparticle interaction.
1063-7834/01/4311- $21.00 © 22171
2. STATEMENT OF THE PROBLEM
AND ANALYSIS OF THE LINEAR SYSTEM

We consider a one-dimensional diatomic chain of
alternate atoms of masses M and m (M > m) character-
ized by an anharmonic interparticle interaction poten-
tial

 (1)

The chain is placed in an anharmonic external
potential

 (2)

where ξn is the displacement of the nth atom and K2 and
γ2 are positive constants. In what follows, the difference
between the atomic masses is assumed to be small,
(M – m) ! M, m; therefore, the gap in the frequency
spectrum of the linear waves is narrow.

The equation of motion of the nth atom is

 (3)

where µ = (M + m)/2 and e2 = (M – m)/(M + m) ! 1.

In order to analyze the properties of linear waves in
the system under study, the general solution to the lin-

U ξn( )
K2

2
------ ξn ξn 1––( )2=

+
K3

3
------ ξn ξn 1––( )3 K4

4
------ ξn ξn 1––( )4.+

V ξn( )
γ2

2
-----ξn

2 γ3

3
-----ξn

3+=
γ4

4
-----ξn

4,+

µ 1 e
2 πn( )cos+[ ]

d2ξn

dt2
---------- K2 2ξn ξn 1+– ξn 1––( )+

+ γ2ξn K3 ξn ξn 1+–( )2 ξn ξn 1––( )2+[ ] γ 3ξn
2+ +

+ K4 ξn ξn 1+–( )3 ξn ξn 1––( )3+[ ] γ 4ξn
3+ 0,=
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earized equations (3) is written as a sum of two fields,
which describe oscillations of light and heavy particles:

 (4)

Particles of each type are conveniently enumerated sep-
arately; thereby, enumeration of the unit cells is also
accomplished [1–5].

The dispersion relation of linear waves described by
Eq. (4) is plotted in Fig. 1 and has the form

 (5)

where  = (2K2 + γ2)/M,  = (2K2 + γ2)/m,  = 2K2/M,

 = 2K2/m, and a is the lattice parameter (which is taken
to be unity in what follows). At k = ±k0 = ±π/2, the linear-
wave spectrum has a gap, which is limited by the fre-
quencies ω1 and ω2. The gap width is proportional to the

mass difference, (  – ) = (2K2 + γ2)(M – m)/Mm;
therefore, it is a small parameter.

The ratio between the amplitudes of oscillations of
heavy and light particles is determined by the frequency
of the linear waves [10]:

 (6)

Here, the upper and lower signs correspond to excita-
tions with frequencies lying in the ranges over which
the frequency increases and decreases, respectively,
with increasing wave number.

For the lower branch of the vibrational spectrum,
i.e., at ω ≤ ω1, the amplitude of an oscillation of heavy
atoms F is larger than that of light atoms G. At ω = ω1,
the amplitude of light atoms vanishes and the heavy
atoms oscillate in counterphase. For the upper branch

ξn G iωt ikn–( )exp= c.c., n+ 1 3 …,±,±=

=  F iωt ikn–( ) c.c., n+exp 0 2 4 …  . ,±,±,=

ω4 ω1
2 ω2

2+( )ω2– ω1
2ω2

2 ω̃1
2ω̃2

2 ka( )cos
2

–+ 0,=

ω1
2 ω2

2 ω̃1
2

ω̃2
2

ω2
2 ω1

2

F
G
---- 1 ω2

ω2
2

------–
 
 
 

1 ω2

ω1
2
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 
 
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.+−=
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ω
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ω1

Fig. 1. Dispersion relation of linear waves described by
Eq. (5).
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of the spectrum, at 

 

ω

 

 

 

≥

 

 

 

ω

 

2

 

, the amplitude of an oscilla-
tion of light atoms is larger than that of heavy atoms. At

 

ω

 

 = 

 

ω

 

2

 

, the latter amplitude vanishes and the light
atoms oscillate in counterphase. Therefore, the lower
oscillation branch can be referred to as that of heavy
particles; the upper branch, as that of light particles.

In Eq. (4), the wave number 

 

k

 

 lies in the range (–

 

π

 

/2,

 

π

 

/2) (between the two dashed lines in Fig. 1), i.e., in the
first Brillouin zone (see, e.g., [11]).

There is another approach, in which the general
solution to the linearized equations (3) is written in the
same form for heavy and light particles [7, 10]:

 (7)

In this case, the general solution consists of two
waves which have the same frequency and group veloc-
ity but differ in amplitude and phase velocity (this
method is sometimes referred to as two-wave approxi-
mation [7, 10]). The amplitudes 

 

A

 

 and 

 

B

 

 of the partial
waves are not independent; their ratio is determined by
the frequency of the waves [7, 10]:

 (8)

where the upper and lower signs correspond to the
respective signs in Eq. (6).

The wave numbers of the two waves in solution (7)
lie within the so-called extended Brillouin zone, i.e., in
the (–

 

π

 

, 

 

π

 

) range. The first Brillouin zone is inadequate
in this case, because all atoms of the chain are num-
bered sequentially without regard of the fact that there
are two types of particles. The decrease in the unit-cell
size leads to an extended Brillouin zone, which coin-
cides with the Brillouin zone of a monatomic chain.

From Eqs. (4) and (7), one can easily find the fol-
lowing relations between amplitudes 

 

F

 

, 

 

G

 

 and 

 

A

 

, 

 

B

 

:

 (9)

Thus, both approaches are equivalent and appropriate
for describing linear and nonlinear waves.

3. STATIC SOLITONS

In studying nonlinear waves, the vicinity of the
point 

 

k

 

0

 

 = 

 

π

 

/2 (i.e., the values of 

 

k

 

 = 

 

k

 

0

 

 + 

 

κ

 

 with 

 

κ

 

 

 

!

 

 

 

k0)
is of most interest; in this region, both branches of the
linear-wave spectrum described by Eq. (5) are approxi-
mately parabolic.

As a preliminary, we consider static solutions to
Eq. (3) that correspond to the wave number k ≡ k0. We
employ an asymptotic method to seek the solution and
successively consider (i) the case of an anharmonic
external potential (external nonlinearity) and a linear
interparticle interaction in the system (Subsection 3.1),
(ii) the case of nonlinear interparticle interaction (inter-

ξn A i ωt kn–( )exp= B i ωt k π–( )n–( ).exp+

B
A
---

1 ω2/ω2
2– 1 ω2/ω1

2–±

1 ω2/ω2
2– 1 ω2/ω1

2–+−
-------------------------------------------------------------------,=

G A B,+=

F A B.–=
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nal nonlinearity) and a zero external potential (Subsec-
tion 3.2), and (iii) the general case of both types of non-
linearity present in the system (Subsection 3.3).

3.1. The Case of an Anharmonic External Potential

We assume that the interaction between particles is
bilinear [K3 = K4 = 0 in Eq. (1)] but the external poten-
tial is anharmonic. The dynamics of a monatomic chain
with interaction of this type was analyzed in [9]. In this
case, the equations of motion (3) take the form

 (10)

where v n and wn are the displacements of heavy and
light particles, respectively.

In the linear approximation at k = k0, as indicated
above, neighboring atoms of the same type oscillate in
counterphase (their displacements are opposite in sign).
When nonlinearity is included, the displacements of
neighboring atoms in each sublattice remain opposite
in sign but their magnitudes become different because
the anharmonic potential is asymmetric along the direc-
tion of atomic displacements [9]. The general solution
to the nonlinear equations in (3) can be expanded in
terms of harmonics with frequencies that are multiples of
ω. The displacements of neighboring atoms of the same
type are opposite in sign in the odd harmonics (with fre-
quencies ω, 3ω, 5ω, …) but are of the same sign in the
even harmonics (with frequencies 0, 2ω, 4ω, …). This
feature of the general solution to the nonlinear equa-
tions (3) was ignored in [12], which led, in our opinion,
to incorrect final results.

Thus, the general solution to Eq. (3) can be written as

 (11)

where f (i) and g(i) are smooth functions of index n in the
long-wavelength limit and e2 = (M – m)/(M + m) is the
small parameter in which the expansion is made.

We go to the continuum limit by replacing the dis-
crete index n with a continuous coordinate x and

M
d2v n

dt2
----------- K2 2v n wn 1+– wn 1––( )+

+ γ2v n γ3v n
2 γ4v n

3+ + 0, n 2 j,= =

m
d2wn

dt2
----------- K2 2wn v n 1+– v n 1––( )+

+ γ2wn γ3wn
2 γ4wn

3+ + 0, n 2 j 1,+= =

v n v 2 j≡ e
2 f n

0( )= e 1–( ) j f n
1( ) ωt( )cos+

+ e
2 f n

2( ) 2ωt( )cos e
3 1–( ) j f n

3( ) 3ωt( ) …  ,+cos+

wn w2 j 1+≡ e
2gn

0( )= e 1–( ) jgn
1( ) ωt( )cos+

+ e
2gn

2( ) 2ωt( )cos e
3 1–( ) jgn

3( ) 3ωt( ) …  ,+cos+               
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expand the functions  f (i) and g(i) in a Taylor series to
within terms of the order e2:

 (12)

where 

 

i

 

 = 1, 2, 3, … . As will be shown below, 

 

df

 

(

 

i
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/

 

dx

 

and 

 

dg
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/

 

dx

 

 are of the order of 

 

e

 

2

 

.
Substituting expansions (11) and (12) into Eq. (10)

and equating the coefficients of the same harmonics
gives a closed set of equations for 
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, 

 

g

 

(0)

 

, 

 

f

 

(1)

 

, 

 

g

 

(1)

 

, 

 

f

 

(2)

 

,
and 

 

g

 

(2)

 

:

 

 (13)

 

where 

 

F

 

 

 

≡

 

 

 

f

 

(1)

 

, 

 

G

 

 

 

≡

 

 

 

g

 

(1)

 

, and 

 

δ
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 are parameters character-
izing the deviations of 

 

ω

 

 from the upper and lower
edges of the gap:

 (14)

Since the gap width and the deviations of the frequen-
cies in question from the gap edges are of the order 
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,
we have 
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 ~ 1.
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 by using the first four algebraic equations of set (13)
and derive a set of differential equations for these two
functions. By scaling the coordinate, (
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, the

set of first-order differential equations for  F   and  G  can
be written as

 (15)
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Fig. 2. Phase portraits for the set of equations (15) in the
case of purely cubic external nonlinearity for the frequency
of the nonlinear excitation lying in the ranges (a) ω1 < ω <
ω2, (b) ω∗  < ω < ω1, and (c) ω < ω∗ .

K

PH
where β and p are expressed through the parameters of
the model in question as

(16)

(In principle, the parameter β can be eliminated from
the set of equations (15) through appropriate renormal-
ization of the field amplitudes F and G.)

Equations (15) have the form of Hamilton equations
for canonically conjugate variables (coordinate G and
momentum F) with the Hamiltonian

 (17)

The coordinate x plays the role of effective time.
Equations (15) are similar to the dynamic equations

that describe a nonlinear diatomic chain with an even
anharmonic-potential function; these equations were
considered in detail in [5, 6]. In this paper, we restrict
our consideration to the specific case of an external
potential with cubic nonlinearity (γ4 = 0). In this case,
the coefficients p and β are subject to the conditions β >
0 and 0 < p < 1.

It is convenient to examine possible solutions to the
set of equations (15) in the (F, G) phase plane. The
phase portrait of the system under study is determined
by the parameters δ1 and δ2, that is, by the frequency of
a nonlinear excitation.

At ω > ω2 (δ1 < 0, δ2 < 0), i.e., above the upper
branch of the linear-wave spectrum, there is a single
fixed point in the (F, G) plane, which is of the center
type and has coordinates F = 0 and G = 0. In this fre-
quency range, set (15) has only solutions that are peri-
odic in space in the form of cnoidal waves.

At the upper edge of the gap (ω = ω2, δ2 = 0), a bifur-
cation occurs and the center at F = 0, G = 0 is replaced
by three fixed points in the (F, G) phase plane, so that,
in the ω1 < ω < ω2 frequency range, there is a fixed point
of the saddle type at F = 0, G = 0 and two fixed points

of the center type at F = 0, G =  (Fig. 2a). Thus,
closed separatrices of the L type arise in the gap of the
spectrum; they go out of the saddle point, pass around
one of the centers, and return to the saddle. These sep-
aratrices correspond to soliton solutions, that is, to gap
solitons. In an L-type soliton, both fields F and G tend
to zero at infinity. The amplitude of oscillation of light
atoms G is larger than that of heavy atoms F. Such a
soliton can be thought of as a local oscillation of light
particles accompanied by small-amplitude oscillations
of heavy particles.

β γ3
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×
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At the lower edge of the gap (ω = ω1, δ1 = 0), another
bifurcation occurs: the saddle at F = 0, G = 0 is trans-
formed into a center at the same point and two new sad-

dles with coordinates F = , G = 0 (Fig. 2b). In
the frequency range (ω1 – pω2)/(1 – p) = ω∗  < ω < ω1,
there are separatrices of two types, N and N ', which cor-
respond to so-called near-gap solitons. An N-type soli-
ton, as well as an L-type soliton, is a soliton of the light-
particle field: the amplitude G is larger than the ampli-
tude F in such a soliton. However, in contrast to a gap
soliton, the amplitude F in a near-gap N soliton tends to
a nonzero value at infinity. The N ' soliton is similar to
the N soliton, but it is a soliton of the heavy-particle
field, because the amplitude F in it is larger than G.

Finally, at the frequency ω = ω∗  (δ1 = pδ2), the last

bifurcation occurs: the centers at F = 0, G =  are
replaced by saddles with the same coordinates and

centers with coordinates F = ,

G =  (Fig. 2c). Therefore, in the
frequency range ω < ω∗  < ω1, new separatrices, of the
K type arise in addition to the separatrices of the N and
N ' types. The K-type separatrices correspond to near-
gap solitons in which coupled oscillation of the heavy-
particle field is accompanied by light-particle oscilla-
tion that does not decay at infinity. The K soliton is a
combination of a bright soliton of the F field and a dark
soliton of the G field; that is, excitations of the heavy-
particle field are localized within a well produced by
condensed excitations of light particles.

Using the integral of motion (17), one can integrate
set (15) and derive analytical expressions for all types
of soliton solutions described above [1, 6].

3.2. The Case of Nonlinear Interparticle Interaction

Let us consider a diatomic chain in the absence of an
external potential [γ2 = γ3 = γ4 = 0 in Eq. (2)] but with
nonlinear interparticle interaction described by Eq. (1).
In this case, the equations of motion (3) become

 

 (18)

δ1/β±

δ2/β±

δ1 pδ2/ 1 p2–( )–±

δ2 pδ1– / 1 p2–( )±

M
d2v n

dt2
----------- K2 2v n wn 1+– wn 1––( )+

+ K3 v n wn 1––( )2 v n wn 1+–( )2–[ ]

+ K4 v n wn 1––( )3 v n wn 1+–( )3+[ ] 0, n 2 j,= =

m
d2wn

dt2
----------- K2 2wn v n 1+– v n 1––( )+

+ K3 wn v n 1––( )2 wn nn 1+–( )2–[ ]

+ K4 wn v n 1––( )3 wn v n 1+–( )3–[ ] 0, n 2 j 1.+= =
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As in the case of external nonlinearity, we seek a solution
to the set of equations (18) in the form of Eq. (11). Pass-
ing to the continuum limit and substituting Eq. (11) into
Eq. (18), we arrive at a set of equations for  f (i) and g(i):

 

 (19)

 

Here, as before, δi are the deviations of the frequency ω
from the lower and upper edges of the gap [see
Eq. (14)], F ≡ f (1), G ≡ g(1), and the coordinate is scaled:
(e2/2K2)x  x.

Eliminating the functions f (0), g (0), f (2), and g(2), we
obtain Hamiltonian equations for the functions F and
G, which have the form of Eq. (15) with the parameters
β and p equal to

 (20)

It should be noted that in [12], the form of the solu-
tion assumed for an analogous set of equations was
incorrect, with the consequence that the equations
derived were not of the Hamiltonian form.

Of special interest is the case where K4 = 0 and,
hence, the anharmonic part of the interparticle interac-
tion potential in Eq. (1) contains only the asymmetric
term in atomic displacements. In this case, set (15) for
the variables F and G takes the form

 (21)

These equations have no static-soliton solutions but
admit traveling solitons, as will be shown below. At fre-
quencies ω > ω2 (δ1, δ2 < 0), i.e., above the gap in the
linear-wave spectrum, there is a single fixed point in the
(F, G) phase plane with coordinates F = 0 and G = 0. In
this frequency range, set (21) has only solutions that are
periodic in space. At the edge of the gap (ω = ω2), the
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center is transformed into a fixed line F = 0, which, in
turn, is replaced by a fixed point of the saddle type at
F = G = 0 within the gap ω1 < ω < ω2. In this frequency
range, set (21) has only unphysical singular solutions.
At the lower edge of the gap (ω = ω1), the saddle is
replaced by five fixed points: a center at F = G = 0 and

four saddle points with coordinates F = 

and G =  (Fig. 3a). Separatrices C and C '

separate solutions of two types: those in which the F
and G fields vary periodically with the space coordinate
(as in the solutions above the gap) and (unphysical)
those in which one of the fields increases infinitely with
the space coordinate. The separatrices themselves cor-
respond to a special type of solution in which one of the
fields has the form of a kink, while the other is a con-

δ22K2/K3
2±

δ12K2/K3
2±

Fig. 3. (a) Phase portrait of Eq. (21) and (b) the soliton solu-
tion corresponding to separatrix C.

G

0

C

C'

F

(a)

G, F

G

0

F

x

(b)
PH
stant over the entire chain (Fig. 3b). The solutions cor-
responding to the C separatrices have the form

 (22)

and the solutions corresponding to the C ' separatrices are

 (23)

3.3. The Case of Nonlinear Internal Interaction and an 
Anharmonic External Potential

It is easy to verify that a combination of the two
types of nonlinearity does not lead to physically new
results. As before, the closed set of equations for the
variables F and G has the form of set (15), in which the
parameters β and p are expressed through the constants
K2, K3, K4, γ2, γ3, and γ4; the corresponding formulas are
similar to Eq. (16) and have the form

 

 (24)

Therefore, the set of equations (15) describes static
solutions to set (3) in the general case of external and
internal nonlinearities that are cubic and quartic in the
atomic displacements. Equations (15) are similar to
those derived in [5, 6] describing the nonlinear dynam-
ics of a diatomic chain with external and internal quar-
tic nonlinearities (the case of an even potential func-
tion). All possible solutions to set (15) are qualitatively
analyzed and described in [5]. A method for solving
this set of equations analytically is described in detail in
[1, 6].
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4. TRAVELING SOLITONS

Now, we examine moving solutions to the set of
equations (3). For the sake of simplicity, only potentials
with cubic nonlinearity are considered, putting the
parameters K4 and γ4 equal to zero in Eqs. (1) and (2).
As shown above, the inclusion of terms that are quartic
in the atomic displacements in the potential does not
significantly affect the solutions to the nonlinear equa-
tions.

It is convenient to analyze solutions by using the
two-wave approximation. Near the linear-wave spec-
trum gap (e ! 1), we seek a solution to Eq. (3) to within
terms of the order e2 in the form of Eq. (7):

 (25)

where Ai, Bi, and Ci are functions of the atomic index n
and time t.

In this section, as in Section 3, we consider the cases
of external nonlinearity alone (Subsection 4.1), of inter-
nal nonlinearity alone (Subsection 4.2), and of both
types of nonlinearity (Subsection 4.3).

4.1. The Case of an Anharmonic External Potential

We assume the interparticle interaction to be linear
and put K3 = K4 = 0 in Eqs. (1) and (3).

Substituting Eq. (25) into Eq. (3) and equating the
sums of the coefficients of identical exponentials to
zero, we arrive at a set of algebraic equations for the
variables Ai, Bi, and Ci in the long-wavelength limit,

 (26)

and, in addition, at a set of two differential equations for
A1 and A2,

 

 (27)
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+ e
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1
2
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∂t
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2A2 γ3e
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We represent the frequency in the form ω = ω0 + δ,

where δ is of the order of e2 and  = (2K2 + γ2)/µ cor-
responds to the midgap of the linear-wave spectrum;
hence, δ is the deviation of the frequency from the mid-
gap.

After scaling the time, space coordinate, and ampli-
tudes,

 

we obtain a set of two differential equations for Fi in
dimensionless variables:

 (28)

where Ω = 2δ/ω2e
2 is the dimensionless deviation of the

frequency from the midgap and the parameters p1 and
p2 are expressed through the ratio of the constants K2
and γ2 (χ = K2/γ2) as

 (29)

(it will be recalled that K2 and γ2 are positive).
Equations (28) are similar to equations that describe

the nonlinear dynamics of a diatomic chain in an exter-
nal even potential [8] and of a monatomic chain in an
external double-barrier potential [13].

By introducing new real variables u1, u2, s, and q,

 (30)

one can obtain the equations

 (31)

 (32)

 (33)

 (34)
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(a)

(b)

(c)

u1

0

L

π s

N

N '

K

u1

u1

0

0

π

π s

s

N

N '

Fig. 4. Phase portraits of the set of equations (31) and (32)
with parameters α and β given by Eq. (35) (the case of cubic
external nonlinearity) for values of parameter ν lying in the
ranges (a) –1 < ν < 1, (b) ν∗  < ν < –1, and (c) ν < ν∗ .
PH
where z = (x – Vt)/  and ν(Ω , V), α(V, p1, p2) and
β(V, p1, p2) are given by

 (35)

The relation between the amplitudes u1 and u2 given
by Eq. (34) corresponds to two-parametric solutions to
the set of equations (28); as the parameters, one can
conveniently take the frequency Ω and the velocity V.
We note that, in addition to two-parametric solutions,
Eqs. (28) also admit a wider class of three-parametric
solutions [8, 14], which are not considered in this paper.
Three-parametric solutions were investigated compre-
hensively in [14].

Equations (31) and (32) form a closed set of Hamil-
ton equations with the effective Hamiltonian

 (36)

where  and 2s can be considered to be canonically
conjugate variables (coordinate and momentum); the
coordinate z, effective time.

It is convenient to investigate possible solutions to
Eqs. (31) and (32) in the (u1, s) phase plane. The char-
acter of the phase portrait of the system under study
depends on the parameter ν, which is a function of the
frequency and velocity of the nonlinear excitation [see
Eq. (35)]. In the general case, the phase portrait is sym-
metric relative to the u1 = 0 axis and periodic in the vari-
able s with a period of π. Therefore, we can consider it
only in the region u1 > 0 and 0 < s < π (Fig. 4).

At ν > 1, the frequency of the nonlinear excitation
lies above the upper branch of the linear-wave spectrum

(Ω > ) and there are no fixed points in the (u1,
s) phase plane; therefore, soliton solutions are absent in

this frequency range. At Ω =  (ν = 1), a fixed
point arises with coordinates u1 = 0 and s = π/2. In the
region of parameters V and Ω over which –1 < ν < 1,
this fixed point is replaced by two saddle points with
coordinates u1 = 0, s = π ±  and a center

at u1 = , s = π/2 (Fig. 4a). The saddle
points are connected by separatrices L, which correspond
to traveling gap solitons. In these solitons, the amplitudes
u1 and u2 tend to nonzero values as z  ±∞ and the
phase s is changed by ∆s =  as the coordi-
nate z increases from –∞ to +∞.
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2 1 V+( ) 1 V2–
-----------------------------------------------,=
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At ν = –1 (the lower branch of the linear-wave spec-

trum, Ω = ), another bifurcation occurs, with
the result that, in the range of ν values –(α – β)/2β = ν∗  <
ν < –1, two saddle points with coordinates u1 =

 and s = 0, π and a center with coor-

dinates u1 =  and s = π/2 arise in the
(u1, s) phase plane (Fig. 4b). The saddles are connected
by separatrices of the N and N ' types, which correspond
to traveling near-gap solitons. In contrast to gap solitons
of the L type, the amplitudes u1 and u2 in N- and N '-type
solitons tend to nonzero values as z  ±∞ and the
phase s is changed by ∆s = π as the coordinate z
increases from –∞ to +∞.

Finally, at ν = ν∗  = –(α – β)/2β, the final bifurcation

occurs: the center at u1 =  and
s = π/2 is replaced by a saddle point with the same
coordinates and two new centers with coordinates u1 =

 and s = π ±  (Fig. 4c); in
addition to the N and N ' types, a new type of separatrix
(K type) appears in this case. In the range ν < ν∗ , there
are three types (N, N ', K) of traveling near-gap solitons.
The characteristic feature of solitons of the K type is
that the overall change in phase s in them is zero as the
coordinate z increases from –∞ to +∞.

Traveling L solitons and near-gap solitons of the N,
N ', and K types were investigated comprehensively in
[8, 13].

4.2. The Case of Nonlinear Interparticle Interaction

In this case, the coefficients γ2, γ3, and γ4 are zero in
Eq. (3) (there is no external potential).

As before, we seek a solution to Eq. (3) in the form
of Eq. (25). By substituting Eq. (25) into Eq. (3) and
going over to dimensionless variables,

 

we obtain a set of two differential equations for Fi,

 (37)
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where ω0 =  is the frequency that corresponds
to the midgap and Ω = 2δ/ω0e

2 is the dimensionless
deviation of the frequency from the midgap.

Introducing real variables u1, u2, s, and q in accor-
dance with Eq. (30), we arrive at Eqs. (31)–(34) for
them, in which the coefficients α and β are

 (38)

The evolution of the phase portrait of the set of equations
(31) and (32) in the case in question is similar to that in
the case of external nonlinearity alone described in Sub-
section 4.1. As before, as the parameter ν is varied, three
bifurcations occur successively. The bifurcations at ν = 1
and ν = –1 (the upper and lower branches of the linear-
wave spectrum, respectively) are qualitatively similar to
the respective bifurcations described above. Therefore,
the phase portraits of the set of equations (31) and (32) in
the ranges –1 < ν < 1 and –(α + β)/2β = ν∗  < ν < –1 in
the case under study are similar to the respective phase
portraits in the case of external nonlinearity alone
(Figs. 4a, 4b). However, the bifurcation at ν = ν∗  is dif-

ferent: each of the saddles at u1 = 
and s = 0, π is transformed into a center with the same
coordinates and two new saddles with coordinates u1 =

 and s =  (Fig. 5).
Therefore, at ν ≤ ν∗ , the phase portrait of the set of

2K2/e2

α 3 V2–

2 1 V+( ) 1 V2–
----------------------------------------= ,

β 3 1 V– 2( )

2 1 V+( ) 1 V2–
----------------------------------------.–=

–ν 1–( ) α β+( )

ν/ α β–( )– ν*/ν( )/2arccos±

0 π s

u1

Fig. 5. Phase portrait of the set of equations (31) and (32)
with parameters α and β given by Eq. (38) (the case of cubic
internal nonlinearity) for values of parameter ν lying in the
range ν < ν∗ .
01
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equations (31) and (32) has separatrices of four types:

N, N ', , and ; they correspond to traveling near-gap
solitons which are analogous in character to the near-gap
solitons of the N and N ' types that exist in the range ν∗  <
ν < –1, but the asymptotic behavior of the phase s at
infinity (as z  ±∞) is different in them.

Thus, in the case of internal cubic nonlinearity, trav-
eling gap solitons (of the L type) and traveling near-gap

solitons (of the N, N ', , and  types) can exist in the
system. At the same time, as shown in Subsection 3.2,
there are no static soliton solutions in this case. In this
connection, it is of interest to analyze the transition
from traveling solitons to static ones. It can be shown

that the amplitudes of L, N, and  solitons near z = 0
(i.e., in the vicinity of the center of a soliton) increase
indefinitely as V  0. (It should be noted, however,
that the small-amplitude approximation we employ
here becomes inapplicable in this case.) Soliton solu-

tions of the N ' and  types are transformed into the
localized solutions described by Eqs. (22) and (23) as
V  0; these solutions correspond to separatrices C
and C ' in Fig. 3a.

As an example, we write out expressions for the
traveling gap soliton of the L type:

(39)

where

 

It is seen from these expressions that at a low veloc-
ity (|V| ! 1), the amplitude u1 increases indefinitely in
the vicinity of z = 0. Therefore, the asymptotic method
employed here is inadequate for the investigation of
solitons moving at a low velocity in the case of a system
with cubic internal nonlinearity. Within the small-
amplitude approximation, there are no static solitons
nor solitons moving at a low velocity in the system
under study.
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4.3. The General Case
of a Cubic Anharmonic Potential

As in the case of static solutions, a combination of
the two types of nonlinearity does not lead to physically
new results. In the general case of external and internal
cubic nonlinearity present in the system, we substitute
Eq. (25) into Eq. (3) and, going over to dimensionless
variables,

 

obtain for Fi a set of two differential equations of the
form of Eq. (28) with the parameters p1 and p2 given by

 

 

The structure of solutions to these nonlinear equations
depends on the relationship between the coefficients γ3
and K3, characterizing the external and internal nonlin-
earity, respectively. Equations of the form of Eq. (28)
were analyzed comprehensively in [8] for various val-
ues of the parameters involved.

5. CONCLUSIONS

In this paper, we considered the general case of a
nonlinear diatomic chain in which the interparticle
interaction potential and the external anharmonic
potential contain both even and odd terms in atomic
displacements. By using a modified asymptotic
method, which takes into account the asymmetry of the
anharmonic potential in the atomic displacements,
static solutions to the system were found to satisfy
dynamic equations that are different from those derived
in [12]. We also developed an asymptotic method
which allows one to find solutions corresponding to
traveling solitons. It was shown that the dynamics of
nonmoving and moving solitons can be described by
differential equations which are identical to those that
describe the nonlinear dynamics of a diatomic chain
with an even potential function. A qualitative analysis
of possible static and traveling solitons was performed
in the phase plane for particular cases of external and
internal nonlinearities. In the latter case, the system has
no static small-amplitude soliton solutions; there are
only solutions that are periodic in space in the form of
so-called cnoidal waves and special solutions in which
the envelope of oscillations of particles of one type has

ω0e
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the form of a kink. However, traveling small-amplitude
solitons exist in the case where the interparticle interac-
tion potential has cubic nonlinearity.
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The Role of Spatial Dispersion of an Electromagnetic Wave
in Its Penetration through a Quantum Well
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Abstract—The theory of light penetration through a quantum well in a strong magnetic field perpendicular to
the well plane is developed under the conditions where interband transitions occur in the well. The light wave-
length is assumed to be comparable to the well width. The relationships for the reflection, absorption, and trans-
mission are derived with due regard for the spatial dispersion of a monochromatic light wave and the difference
between the refractive indices of the quantum well and the barrier. The normal incidence of light with respect
to the well plane is considered, and one excited level is taken into account. It is demonstrated that the above two
factors most strongly affect the reflection, because the reflection from the well boundaries appears in addition
to the reflection caused by interband transitions in the quantum well. The most radical changes in the reflection
are observed in the case when the reciprocal radiative lifetime of the excited state in the quantum well is short
compared to the reciprocal nonradiative lifetime. In the range of large well widths, the applicability of the the-
ory is limited by the existence condition of quantum well levels. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

When light passes through a quantum well, the
reflected and transmitted waves exhibit characteristic
features which allow one to judge the electronic pro-
cesses proceeding in this well [1–4]. The most interest-
ing results are obtained in the case when the energy lev-
els of an electronic system are discrete. This situation
arises in a strong magnetic field directed perpendicu-
larly to the well plane or when exciton states in a zero
magnetic field are taken into account. Modern semicon-
ductor technology provides a means for producing
high-quality quantum wells for which the radiative
broadening of the absorption peak can be comparable
to the contributions from nonradiative relaxation mech-
anisms and can even exceed them. In this case, consid-
eration cannot be reduced to an approximation linear in
the interaction of electrons with the electromagnetic
field and all the higher-order terms in this interaction
should be taken into account [5–18].

A number of works have been devoted to the inves-
tigation of the reflection, absorption, and transmission
of an electromagnetic wave that interacts with discrete
levels of an electronic system of a quantum well at fre-
quencies corresponding to interband transitions [12–
18]. In these works, both light pulses [12–17] and
monochromatic radiation [18] were treated as exciting
waves. Allowance was made for one [16], two [17, 18],
and a larger number of excited levels [15]. The results
obtained in these studies are valid for relatively narrow
1063-7834/01/4311- $21.00 © 22182
quantum wells when the following inequality is satis-
fied:

 (1)

where d is the quantum well width and κ is the magni-
tude of the light wave vector k. In actual fact, the
parameter κd in the aforementioned works was taken
equal to zero and the calculated reflection, absorption,
and transmission were independent of the well width d.

The value of κ can be numerically estimated from
the lasing wavelength of a gallium arsenide heterolaser.
This wavelength is equal to 0.8µ, and the correspond-
ing energy "ωl is 1.6 eV. If the refractive index ν of the
quantum well material is equal to 3.5, then κ = νωl/c =
2.8 × 105 cm–1 (where c is the velocity of light in free
space). At the well width d = 500 Å, the κd parameter
is equal to 1.4. Therefore, in the case of sufficiently
wide wells, the allowance made for the spatial disper-
sion of an exciting wave can turn out to be significant.

For wide quantum wells, the inequality d @ a0
(where a0 is the lattice constant) is very strong and the
penetration of a light wave through a quantum well can
be described by the Maxwell equations for a continuous
medium. In the strict sense, this approach requires
inclusion of the difference between the refractive indi-
ces of the barrier and the well. Hence, there should
appear an additional reflection from the quantum well
boundaries. This reflection decreases with a decrease in
the κd parameter but, in the range κd . 1, in certain

κd  ! 1,
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cases, can be equal or exceed the reflection due to inter-
band transitions in the quantum well itself. A change in
the reflection of a light wave is accompanied by a
change in its transmission. Therefore, the difference
between the refractive indices of the barrier and the
quantum well should be allowed for in addition to the
spatial dispersion of the electromagnetic wave.

The aim of the present work was to analyze the
effect of these two factors on the reflection, absorption,
and transmission of electromagnetic waves that pene-
trate through quantum wells and induce interband tran-
sitions in them.

2. THE MODEL AND BASIC RELATIONS

We consider a system that consists of a deep semi-
conductor quantum well located in the range 0 ≤ z ≤ d
and two semi-infinite barriers. A strong constant mag-
netic field is directed perpendicularly to the well plane
(along the z axis). It is assumed that an external electro-
magnetic wave propagates along the z axis from nega-
tive values of z, the barriers are transparent to the wave,
and the wave is absorbed in the quantum well and
induces resonant interband transitions. Analysis is car-
ried out at zero temperature for the situation when, in
the ground state, the valence band is completely filled
and the conduction band is empty. Only the states that
are formed after the transfer of an electron from the
valence band to the conduction band with the formation
of a hole in the valence band are considered to be
excited. This is valid within the approximation linear in
the wave amplitude. We will consider the light frequen-
cies close to the band gap of the quantum well when a
small fraction of valence electrons participates in the
absorption. These electrons are located near the extre-
mum of the band and can be described by the effective
mass method. In this case, for deep quantum wells, the
electron tunneling into the barrier can be ignored and
the barrier–quantum well boundary can be regarded as
a sharp boundary, which implies that the current in the
barrier is absent. Moreover, the levels close to the well
bottom can be treated within the approximation of an
infinitely deep well, even though this restriction is not
rigid and the theory can be generalized to the case of
wells with a finite depth. The system under consider-
ation is inhomogeneous. Since the size of the inhomo-
geneity (quantum well) is less or of the order of the
light wavelength, the optical characteristics of this sys-
tem should be determined from solutions of the Max-
well equations, in which the current and charge densi-
ties should be represented by relationships obtained in
the framework of the microscopic approach [19, 20].

The final results will be obtained for one discrete
level of the electronic system in the quantum well. The
influence of other levels on the reflection and absorp-
tion of light can be neglected when the frequency ωl of
exciting light is close to the frequency ω0 of the inter-
band transition. The exciton levels in a zero magnetic
field or the levels in a strong magnetic field perpendic-
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ular to the well plane are discrete in the quantum well
at "K⊥  = 0, where "K⊥  is the vector of the total quasi-
momentum of an electron–hole pair in the well plane.
As a convenient example, we will analyze the level of
an electron–hole pair in a strong magnetic field without
regard for the Coulomb interaction between an electron
and a hole. This interaction is considered a weak pertur-
bation for sufficiently strong fields and not very wide
wells [21]. However, the exciton effect does not lead to
radical changes in the results obtained in the work and
only affects the radiative broadening γr of the electronic
excitation introduced below. The same is true for the
exciton levels in a zero magnetic field.

Let us calculate the high-frequency current density
induced by exciting light in the quantum well. For any
spatially inhomogeneous electronic system, it is possible
to introduce the electrical conductivity tensor σαβ(k, ω|r)
that relates the mean current density J(r, t) and the elec-
tric field by the expression

 (2)

 (3)

Since the temperature is assumed to be zero, the cur-
rent density is averaged over the ground state of the
electronic system, that is,

 (4)

where  is the current density operator within the
approximation linear in the external field. The electrical
conductivity tensor is defined by the formula1

 (5)

Here, Θ(t) is the Heaviside function and jα(r, t) is the
Cartesian projection of the current density operator in
the absence of an external electromagnetic field but
with due regard for the strong constant magnetic field

 (6)

1 The terms containing the multipliers of the order of κv /ω (where
v  is the electron velocity) are omitted in formula (5).
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where A(0)(r) is its vector potential. The jα(r, t) operator
has the form

 (7)

 (8)

 (9)

where * is the Hamiltonian of the electronic system
that accounts for the strong magnetic field and disre-
gards the external electromagnetic field,

 (10)

 (11)

By using the effective mass method for electrons
and holes near extrema of the valence and conduction
bands and making allowance for the system homogene-
ity in the quantum well plane, from relationships (2)
and (5), we obtain

 (12)

where  is the electric field induced–current den-
sity averaged over the ground state of the electronic
system. The bar indicates additional averaging of the
current density over a unit cell, which is possible at d @
a0. The following designations are used in formula
(12): m0 is the bare electron mass; "ωg is the band gap;
aH = (c"/|e |H)1/2 is the magnetic length; χ is the set of
indices

 (13)

j is the number of the valence band (because the valence
band is degenerate in cubic crystals, which will be con-
sidered in the work); nc(nv) are the Landau quantum
numbers of electrons (holes); mc(mv) are the quantum
numbers of the size quantization of electrons (holes)
along the z axis;

 (14)
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-----------------------------------+

χ
∑
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PH
is the product of the electron and hole wave functions
dependent on z;

 (15)

 is the quasi-momentum interband matrix element
corresponding to the transition from a maximum of the
valence band to the conduction band bottom;

 (16)

is the energy of the electronic excitation with the λ indi-
ces; ε(mc) [ε(mv)] is the energy of an electron (a hole)
in the size quantization levels; Ωµ = |e |H/µc is the
cyclotron frequency; µ = memh/(me + mh); me(mh) is the
effective electron (hole) mass; and γλ is the reciprocal
nonradiative lifetime of the excited state with the quan-
tum numbers λ. In deducing relationship (12), we used
the expression

 (17)

where rcv is the interband matrix element of the radius
vector r. Relationship (12) is applicable not only in the
case of a monochromatic exciting wave but also in the
case of pulse excitation.

Then, we apply the model (see [15–18]) in which

the  vectors for two degenerate bands have the form

 (18)

where ex and ey are the unit vectors along the x and y
axes and pcv is the real constant. This model corre-
sponds to heavy holes in crystals with a zinc blende
structure when the z axis is aligned along a fourfold
symmetry axis [22, 23]. For the circular polarization
vectors of exciting light

 (19)

the following condition of polarization vector conser-
vation is satisfied:

 (20)

where el is either of vectors (19). As a result, the use of
these vectors renders subsequent calculations less cum-
bersome. Since the projection pcv z is equal to 0 for the

model defined by expressions (18), the  current
density is transverse and the induced charge density
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ρ(z, t) is equal to 0. Then, the gauge can be chosen as fol-
lows: ϕ(z, t) = 0 [where ϕ(z, t) is the scalar potential] and

 

where A(z, t) is the vector potential of the electromag-
netic wave. With the use of the expression

 (21)

we change over to the vector potential in formula (12).
The result is conveniently expressed as

 (22)

where

 (23)

is the reciprocal radiative lifetime of an electron–hole
pair in the magnetic field at κd = 0 [13, 18] and the sca-
lar A(z, ω) is given by the formula

 (24)

3. THE ELECTRIC FIELD 
OF AN ELECTROMAGNETIC WAVE

Further calculations will be performed under two
assumptions. First, we assume that the plane wave is
monochromatic with the frequency ωl; i.e., in formula
(24),

 (25)

and the A(z, t) vector takes the form

 (26)

Second, we will include only one excited level in the
quantum well. The other levels are assumed to be suffi-
ciently far from the chosen level, and their effect is
ignored. The scalar amplitude A(z) of the vector poten-
tial in the barrier region is defined by the equation

 (27)

where ν1 is the refractive index of the barrier. In the
quantum well region 0 ≤ z ≤ d, we have the equation

 (28)
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Here, according to formulas (22) and (25), the scalar
amplitude  of the current density with due regard
for one excited level is written as

 (29)

where, for simplicity, we used the designations

 (30)

Near the resonance ωl = ω0, the term proportional to
(ωl + ω0 + iγ/2)–1 in Eq. (29) is disregarded. Equa-
tion (29) is integro-differential. If the solution of
Eq. (29) is formally represented as the sum of the gen-
eral solution of a homogeneous equation and the partic-
ular solution of a nonhomogeneous equation, Eq. (29)
transforms into the Fredholm integral equation of the
second kind2

 (31)

Here, C1 and C2 are arbitrary constants, which are
determined from the boundary conditions in the planes
z = 0 and d, and the function F(z) is given by

 (32)

At γr ! γ, the integral term in Eq. (31) is a small pertur-
bation. Hence, it is sufficient to allow for the first
approximation with respect to this term. In the case of
γr ≥ γ, the complete iteration series should be taken into
account. By representing the sought function A(z) as the
series

 (33)

and substituting it into Eq. (31), we obtain the recurrent
relation

 

2 A similar equation for an inversion layer was considered in [24].
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The use of this relation enables us to reduce series
(33) to the geometric progression

 (34)

where, for simplicity, we introduced the designations

 

and the complex function

 (35)

Substitution of h, s, and ε into relationship (34) gives
the following solution:

 (36)

The complex quantity ε determines changes in the
broadening and shifts of the level due to spatial disper-
sion of the wave. As follows from definition (35), in the
limiting case κd = 0, ε =  and the integral on the

right-hand side of solution (36) is equal to (C1 + C2) ;
i.e., in this limiting case, only the allowed transitions
with mc = mv contribute to the current. For κd ≠ 0, the
forbidden transition at mc ≠ mv also contributes to the
interband current and leads to the appearance of the ε
quantity in the denominator of solution (36). However,
ε  0 at κd  0. Note also that the function F(z)
[formula (32)] is equal to  at κd  0. Hereafter,
we will treat only the case of the allowed transitions.

The solution of Eq. (27) is written as

 (37)

where CR and CT determine the amplitudes of the wave
reflected from the well and the wave transmitted
through the well. At the boundaries z = 0 and d, the con-
tinuity of the wave magnetic field provides continuity
of dA/dz and the continuity of the tangential projections
of the electric field ensures the continuity of A(z). As a
result, the coefficients C1, C2, CR, and CT are defined by
the expressions
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 (39)

where

 (40)

 (41)

By returning to the time representation and changing
over from A(z) to the electric fields on the left [El(z, t)]
and right [Er(z, t)] of the quantum well in relationship
(37), we obtain

 (42)

 (43)

The electric field inside the well is given by formula
(36) after replacing A(z) by E(z) and changing over to
the time representation. The relationships for the fields
include ε and F(0). The expression for the field inside
the well, in addition, involves the F(z) function, which
contributes to the coordinate dependence of the field. At
mc = mv = m, the F(z) and ε quantities are described by
the formulas

 (44)

 (45)

 (46)

The dependences of ε' and ε'' on the κd parameter are
displayed in Fig. 1.

In the limiting case of a homogeneous medium
(κ1 = κ), we have

 (47)
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where we introduced the following new designations:

 (49)

The field inside the well has the form

 (50)

The quantity  coincides with the reciprocal radiative
lifetime calculated in [13] and [18] for an electron–hole
pair in a strong magnetic field at K⊥  = 0 for an arbitrary
value of κd. A comparison of expressions (47) and (48)
with the corresponding relationships obtained in [18]
for the fields on the left and right of the well shows that,
at κd ≠ 0, γr is replaced by , the level is shifted by
γrε'', and the additional multiplier exp(iκd) appears in
the formula for the wave induced on the left of the well.
It can be demonstrated that, upon replacement of d – z
by z, the field induced on the left of the well coincides
with that induced on the right of the well. It is seen from
formula (46) and Fig. 1 that  decreases with an

increase in κd. At κd @ 1,   0, which corresponds
to a change-over from the quantum well to a bulk crys-
tal. In this case, the contribution from one level to the
induced fields and, hence, to the absorption and reflec-
tion tends to zero.

In the limiting case γr = 0, formulas (42) and (43)
lead to the standard solution for a monochromatic wave
propagating in a medium containing a transparent layer
of another material [26].

4. REFLECTION, ABSORPTION, 
AND TRANSMISSION 

OF AN ELECTROMAGNETIC WAVE

Therefore, according to expression (42), the electric
field vector ∆El(z, t) of the reflected wave with a circu-
lar polarization is written as

 (51)

According to expression (43), the field vector of the
transmitted wave is represented as

 (52)

By analogy with [18], we introduce the fraction of
the reflected energy 5, which is defined as the ratio
between the magnitudes of the incident and reflected
energy fluxes, i.e.,

 (53)
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The fraction of the transmitted energy 7 is given by

 (54)

and the fraction of the absorbed energy ! is deter-
mined as

 (55)

First, we examine how the spatial dispersion affects
the frequency dependence of the reflection when the
medium is homogeneous. In this case, from formulas
(38), (39), and (53)–(55), we find

 (56)

These expressions coincide in form with those obtained
in the absence of dispersion. The difference consists in
replacing the constant γr by the function  (   γr

at κd  0) and the appearance of the function ε'',
which determines the shift of the extremum in the cor-
responding curve and vanishes in the limit κd = 0.

In the case of reflection, the spatial dispersion has
the strongest effect at γ @ γr. Actually, at γ ! γr, the
maximum reflection 5max ≅  1 in the reflection curve
defined by relationships (56) is approximately equal to
1 and almost does not depend on κd. On the other hand,
at γ @ γr,  in the denominator of formulas (56) makes
a small contribution to the dependence on κd and this
dependence is governed by the  function in the

numerator. However, in this case, 5max = ( /γ)2 ! 1.
The opposite situation is observed for transmission. At
γ ! γr, the minimum transmission 7min in the transmis-
sion curve is equal to (γ/ )2 ! 1, noticeably depends on
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Fig. 1. Functions ε' and ε'' determining the change in width
and the shift in reflection, transmission, and absorption
peaks with inclusion of the spatial dispersion in the case of
a homogeneous medium. mc(mv) are the quantum numbers
of the size quantization of electrons (holes).
1
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κd, and increases with an increase in κd. At the same
time, for γ @ γr., 7 ≅  1 and only slightly depends on κd.
The absorption !max at the maximum in these limiting

cases is equal to 2γ/  at γ ! γr and 2 /γ at γ @ γr. In

both cases, !max ! 1 but !max @ 5max at γ @ γr and
!max @ 7min at γ ! γr. The frequency dependences of
5, !, and 7 for the limiting cases γ @ γr and γ ! γr are
plotted in Figs. 2–4.

Figure 2 demonstrates how the spatial dispersion
affects the height and width of the reflection peak.
These parameters increase with an increase in κd. At
the same time, the frequency shift of the peak is virtu-
ally absent, since ε''γr ! γ. By contrast, the dispersion
leads to a shift of the reflection peak in Fig. 3 without
changing its shape. The dependence of the transmission
7 at γ ! γr is also depicted in Fig. 3. In this case, an
increase in κd results in a shift of 7min and its increase,
which is poorly seen because of the chosen scale along
the ordinate axis. The dependences of the absorption !
for the two limiting cases are displayed in Fig. 4. A
series of narrow peaks (Fig. 4b, γ ! γr) clearly illus-
trates both an increase in the absorption !max and its
shift. This shift (as for 7 in Fig. 2) is associated with

the fact that !max ~  and ε''γr ≅  . As follows from
the curves depicted in Fig. 4a, at γ @ γr, the shift is
small and !max decreases with an increase in κd.

If the medium inhomogeneity is taken into consid-
eration, i.e., in the case when ζ ≠ 1 (ν ≠ ν1) and the spa-
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Fig. 2. Effect of spatial dispersion on the frequency depen-
dence of the reflection 5 for a homogeneous medium. ζ =
1, γ/γr = 10, γr = 10–4 eV, and mc = mv  = 1.
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tial dispersion is ignored, instead of formulas (56), we
have the expressions

 (57)

As is seen from expressions (57), in this limiting case,
γr is replaced by the quantity ζγr defined by relationship
(23), in which the refractive index ν1 refers to the bar-
rier material. This result coincides with the expressions
obtained in our earlier work [18].

5. THE GENERAL CASE

In this section, we analyze the general case when the
medium is inhomogeneous and the spatial dispersion is
substantial. By using formulas (38), (39), and (41), the
reflection can be represented in the form

 (58)

 (59)

where

 (60)

 (61)

 (62)

 (63)

The main contribution to the denominator [defined by
formula (59)] of the 5 function is made by the function
v  (v  @ 1). The other terms are small and can be disre-
garded. The exception is the term proportional to Γ,
which makes a substantial contribution at γ ! . In the
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numerator of 5, the function v 1 describes the reflection
from the quantum well boundaries. This reflection in
the frequency range corresponding to the peak width
does not depend on the light frequency and vanishes in
the limiting cases κd  0 and ζ  0 [see relation-
ship (60)]. At γ ! , the first term in the numerator of
expression (58) predominantly contributes to the reflec-
tion and 5, in this case, is approximately equal to 1.
For γ @ , the first term becomes small and the v 1

function and the term proportional to Ω (which is
responsible for reflection peak asymmetry) play a con-
siderable role. The frequency dependence of the reflec-
tion is shown in Fig. 5. It can be seen that the peaks are
strongly asymmetric and the dependence of 5max on κd
is nonmonotonic. The nonmonotonic behavior is deter-
mined by the magnitude and sign of the Y1 function
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Fig. 5. Frequency dependences of the reflection 5 with inclu-
sion of the spatial dispersion of the light and the inhomoge-
neity of the medium at ζ: (a) >1 (the curve at κd = 0.175 cor-
responds to GaAs) and (b) <1. γ @ γr, γr = 10–4 eV, and
mc = mv  = 1.
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given by expression (62). In particular, Y1 varies from
0.507 (Fig. 5a, curve at κd = 1.5) to 0.072 (Fig. 5a,
curve at κd = 3). In the latter case, Y1Ω weakly affects
the peak shape and the asymmetry is insignificant,
because the main contribution is made by the first term
in expression (58). The same situation is observed in
Fig. 5b. However, in this case, Y1 < 0 and the peak max-
imum occurs at Ω > 0. At γr  0,

 (64)

This corresponds to a reflection from a plane transpar-
ent layer in a medium with a different refractive index.
A comparison of Figs. 2 and 5 permits us to draw the
inference that the medium inhomogeneity results in a
stronger dependence of the reflection on the κd param-
eter.

The absorption ! and the transmission 7 are
defined by the relationships

 (65)

 (66)

which, in the limiting cases ζ = 1 and κd = 0, change over
into expressions (56) and (57), respectively. As was
noted above, the v1 function associated with the reflec-
tion from the well boundaries and the term proportional
to Ω in the numerator appreciably contribute to the
reflection curve. It is these terms that determine strong
shifts of the peak maximum and the appearance of a min-
imum. On the other hand, expressions (65) for the
absorption ! and relationship (66) for the transmission
7 coincide in form with those obtained for a homoge-
neous medium. The difference resides in the appearance
of multipliers that are virtually independent of Ω and
weakly depend on κd. Therefore, the effect of the
medium inhomogeneity on the absorption and transmis-
sion is considerably weaker than that on the reflection.

6. CONCLUSIONS

The above analysis allows us to make the general
conclusion that inclusion of the spatial dispersion of the
electromagnetic wave and the medium inhomogeneity
most strongly affects the reflection and leads to a radical
change in the shape of the reflection peak. The changes
are most pronounced in the limiting case γ @  when

5max . ( /γ)2. This is explained by the fact that the v 1

function described by expression (60) and the term lin-
ear in Ω in relationship (58) are small and can affect the
first term only if it is also small. In the other limiting
case γ ! , 5max . 1 and the influence of the above
terms is almost negligible. When either the spatial dis-
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persion or the medium inhomogeneity is taken into
account, the reflection changes rather weakly, because,
in these limiting cases, v 1 = Y = Y1 = 0. At γ @ , the
medium inhomogeneity and the spatial dispersion have
a weaker effect on the ! and 7 quantities. Indeed, it
follows from expression (66) that, in this case, 7 . 1
and a substantial change in the small quantity 5max

weakly affects 7min. The same is true for !max @ 5max.
The dependences of the 5, !, and 7 functions on

the κd parameter, which characterizes the spatial dis-
persion of the wave in the quantum well, were obtained
for square quantum wells and infinitely high barriers. In
real semiconductor heterostructures, impurity electrons
of the barrier transfer to the quantum well and distort its
square shape in the vicinity of boundaries. Therefore,
the theory developed above is valid for pure materials
and wide wells when the size of distorted boundary
regions is small compared to the well width. Moreover,
the theory is true for deep wells in which the location of
the first levels and the corresponding wave functions
only slightly differ from those in an infinitely deep
well. The one-level approximation used above assumes
that energy spacing between the adjacent levels in the
quantum well is larger than the width of the level under
consideration. This imposes the restriction on the well
width from above. For example, at d = 500 Å and mc =
0.06m0, the difference between the energies of the two
lowest-lying levels of size quantization is equal to
approximately 10–3 eV.

The results obtained above are valid in the case
when the Coulomb interaction weakly affects the spec-
trum of electron–hole pairs generated by light. The cor-
responding corrections are small if the following ine-
qualities are satisfied [21, 26]:

 (67)

where aH is the magnetic length and aexc = "2ε0/µe2 is
the radius of a Wannier–Mott exciton in a zero mag-
netic field. It can be seen that the first inequality (67)
can be met in sufficiently strong magnetic fields. As
regards the second inequality, the larger the permittivity
ε0 of the material of the quantum well and the smaller
the reduced effective mass µ of the electron and hole,
the better the fulfillment of this inequality. Note that the
second condition (67) for heterostructures based on
gallium arsenide is satisfied at d ≤ 150 Å, when the spa-
tial dispersion and the medium inhomogeneity have a
comparatively weak effect on the quantities studied.
This is evident from Fig. 5a, in which the curve at κd =
0.175 corresponds to a gallium arsenide quantum well
of width d . 62 Å. In this case, the second inequality is
approximately met, but the shift and asymmetry of the
reflection peak are small. When the second inequality
(67) is not fulfilled, the dependence of the wave func-
tion on the z coordinate cannot be represented by for-
mula (14). However, the exciton effect does not bring
about radical changes in the results obtained and only
affects the aforementioned radiative broadening γr of

γ̃r

aexc
2

 @ aH
2 , aexc @ d ,
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the electronic excitation. The same holds true for the
exciton levels in a zero magnetic field.
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Abstract—Sodium calcium silicate glasses with Ag+ implanted ions are studied. The ion implantation condi-
tions are as follows: the energy is 60 keV, the dose is 7 × 1016 cm–2, and the ion current density is 10 µA/cm2.
Ion implantation provides the formation of a composite layer that incorporates silver nanoparticles in the sur-
face region of glass. The size distribution of nanoparticles over the depth in the composite layer is strongly non-
uniform. The effect of a high-power pulsed excimer laser on the composite layer is investigated. It is found that,
under laser irradiation, the size of silver nanoparticles in the implanted layer decreases but the size distribution
of nanoparticles over the depth remains nonuniform, even though it becomes slightly narrower compared to that
observed prior to irradiation. The experimental results are interpreted in terms of the effects of the melting of
glass and metallic particles on a nanosecond scale. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation into the action of high-power laser
pulses on dielectrics containing metallic nanoparticles
(DMNs) for the purpose of producing materials with
new optical properties is an urgent problem [1, 2]. The
considerable attention focused on this problem in
recent years has been motivated by rapid progress in
modern microelectronics based on nanostructured
materials and the necessity of elaborating basic con-
cepts regarding the effect of high-power light beams on
the properties of inhomogeneous composite media [3].
In particular, numerous works in this field have been
aimed at analyzing controllable changes in size, geo-
metric shape, size distribution, and in phase structure of
metallic nanoparticles. For example, a number of exper-
imental works dealt with the pulsed laser (Nd : YAG)
processing of aqueous silver colloidal solutions pre-
pared by chemical deposition [4] and metal–polymer
nanostructures [5]; photochromic aluminosilicate
glasses containing metallic nanoparticles [6]; and opti-
cal waveguides based on sodium calcium silicate
glasses with silver clusters synthesized through the ion-
exchange technique followed by ion or electron irradi-
ation [7, 8]. Of special interest are the studies con-
cerned with laser processing of various DMNs synthe-
sized by ion implantation [9, 10]. Note that ion implan-
tation is a very promising method for the production of
nanoparticles [9, 11]. This method makes it possible to
attain the highest filling factors upon incorporation of
metal atoms into the solid matrix beyond the equilib-
1063-7834/01/4311- $21.00 © 22192
rium solubility limit. Materials synthesized through ion
implantation can be successfully modified by varying
parameters such as the lasing wavelength, pulse energy,
and pulse duration. Battaglin et al. [12] showed that
spherical titanium silicide nanoparticles produced by
ion implantation in quartz can be transformed into
ellipsoidal particles under exposure to Nd : YAG laser
radiation in the visible and near-IR spectral ranges.
Bukharaev et al. [13] demonstrated that the crystal
structure of iron particles implanted into silicon dioxide
can be modified under exposure to ruby laser radiation
(λ = 690 nm).

In all the aforementioned works, laser processing
was performed at wavelengths corresponding to the
spectral range of optical transparency of the dielectric
matrices used in the experiments and, hence, high-
power laser pulses were absorbed by metallic nanopar-
ticles. Recently, Wood et al. [14] proposed a new
approach to the laser annealing of implanted DMNs.
According to this approach, sodium calcium silicate
glasses with silver nanoparticles are exposed to high-
power pulses of an ArF excimer laser at a wavelength
of 193 nm, which corresponds to the absorption range
of these glasses. It was found that the reflectivity of
DMNs decreases under laser irradiation due to struc-
tural modification of the glasses or implanted metallic
particles. This technique has opened up fresh opportu-
nities for controlling changes in nanoparticle size in
DMNs with the use of laser technology. In our recent
works [1, 2], we used a combined technique of KrF
001 MAIK “Nauka/Interperiodica”
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excimer laser (λ = 248 nm) processing and thermal
annealing in order to decrease the scatter in the size of
silver nanoparticles implanted into sodium calcium sil-
icate glasses.

Although practical advances have been made in this
area, a number of problems concerning the mechanisms
responsible for the modification of DMNs subjected to
high-power laser pulses, specifically under irradiation
of materials at wavelengths corresponding to the
absorption of dielectrics, remain unresolved. The aim
of the present work was to investigate experimentally
the effect of high-power laser pulses on DMNs formed
through implantation and to elucidate the regularities in
the transformations of metallic nanoparticles.

2. EXPERIMENTAL TECHNIQUE

Sodium calcium silicate glass (Societa Italiana
Vetro) with a homogeneous composition of chemical
components (70% SiO2, 20% Na2O, 10% CaO) and an
optical transparency of ~90% in the spectral range 350–
900 nm was used as a substrate for a composite mate-
rial. Samples were prepared in the form of 0.15-mm-
thick plates 2 × 2 cm in size. The implantation was per-
formed on a Whickham implanter with 107Ag+ ions at an
energy of 60 keV with a dose of 7 × 1016 ion/cm2 and
an ion current density of 10 µA/cm2 under vacuum (the
residual pressure was 10–5 Torr). The substrate temper-
ature during the implantation did not exceed 45°C. The
laser processing of implanted glasses was carried out
using five pulses of a krypton excimer laser (ALTEX
210) at a frequency of 1 Hz. The pulse duration was
equal to 25 ns. The wavelength was 248 nm, which cor-
responded to the spectral absorption range of the glass.
The total released energy was equal to 0.2 J/cm2. The
change in energy from pulse to pulse was checked
against a DGX FL150A-EX-RP (OPHIR) laser energy
meter and did not exceed 2%. The reproducibility of the
results of the laser processing of DMNs was checked
using five samples implanted and irradiated under iden-
tical conditions. Since the differences in the quantities
measured did not exceed 8%, we considered the results
obtained for only one of these sample.

The distribution of silver atoms over the depth in the
glass bulk was determined using the Rutherford back-
scattering technique with 4He+ ions (1.89 MeV) at the
backscattering angle θ = 150°. The 4He+ ions were gen-
erated by a van de Graaf electrostatic accelerator. The
energy resolution was better than 21 keV, and the ion
current density did not exceed 10 nA. The experimental
Rutherford backscattering spectra were transformed to
the depth profiles of implanted silver ions according to
the Data Furnace software package [15]. The unifor-
mity of the size distribution of nanoparticles in the sam-
ples was checked using reflection and transmission
optical spectroscopy. The optical spectra were mea-
sured at room temperature with a Monolight single-
beam waveguide instrument in the wavelength range
300–800 nm at normal light incidence to the sample
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
surface. The microtopograms of the surface of the
implanted samples and the samples exposed to laser
radiation were obtained using a Solver-P4 scanning
probe microscope operating in the atomic-force micro-
scope (AFM) mode. The measurements were per-
formed in the vibrational mode. The vibration ampli-
tude of the microprobe near its resonance frequency
varied from 10 to 100 nm. The vertical displacement of
a sensitive probe in the microscope in the course of
line-by-line scanning of the sample surface was
recorded with the use of a low-intensity laser beam
reflected from an analyzing tip. The surface profile was
formed upon short-term touch of the surface by a tip
(tapping mode). All the scanned area was 2 × 2 µm. The
measurements were carried out in air.

3. ION SYNTHESIS OF DMN

It is known that low-energy (<100 keV) ion implan-
tation leads to a statistically nonuniform distribution of
implanted metal ions over the glass depth [16]. This
implies that the depth distribution differs from the typ-
ical symmetrical Gaussian profile predicted in accor-
dance with traditional statistical theories [17]. In the
experimental (obtained using Rutherford backscatter-
ing) distributions of silver ions in sodium calcium sili-
cate glass under the ion implantation conditions used in
the present work, the concentration of the impurity
metal is maximum near the irradiated glass surface and
monotonically decreases when going deeper into the
sample down to 60 nm. The features of these distribu-
tions were previously explained in [18, 19] by the
effects of surface sputtering and dynamic changes in
the phase composition of glass during ion implantation;
close examination of these features is beyond the scope
of the present work.

An excess of silver concentration in glass above the
solubility limit in the course of ion implantation leads
to nucleation of the metallic nanoparticles. By assum-
ing that the nucleation and growth of nanoparticles
result from the sequential addition of silver atoms (neu-
tralized implanted Ag+ ions), the inference can be made
that these processes depend on both the diffusion coef-
ficient and the local concentration of silver atoms. At a
relatively low mobility of silver atoms in the glass
matrix at temperatures close to room temperature,
nanoparticles predominantly grow at the expense of
newly implanted metal ions (the so-called particle
growth under conditions of limited diffusion [11, 20]).
Since the absolute concentration of metal ions in the
implanted layer increases according to the distribution
of impurities over the depth, the sizes of metallic parti-
cles formed at different depths appear to be propor-
tional to the metal filling factor of the glass at the same
depth; i.e., they are determined by the concentration
profile of implanted ions. Therefore, in the studied sam-
ples with a maximum silver concentration near the sur-
face, the largest nanoparticles are also formed near the
surface and a decrease in the impurity concentration
01
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deep into the sample is attended by a decrease in the
particle size. This nonuniform size distribution of nano-
particles in the bulk has been confirmed by electron
microscopic observations of cross sections of
implanted glasses [21].

Figure 1 shows the experimental reflectance and
transmittance optical spectra of sodium calcium silicate
glass implanted with silver ions. The broad selective
spectral bands observed in the visible range due to the
formation of silver nanoparticles in the glass are asso-
ciated with the plasma polariton resonance [22, 23].
The transmittance spectra (typical of the chosen
implantation conditions [21–24]) measured for the
implanted and rear faces of sodium calcium silicate
glass turn out to be identical and exhibit a deep, almost
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Fig. 1. Transmittance (T) and reflectance (R) optical spectra
of sodium calcium silicate glass implanted with silver ions.
The reflectance is measured for the implanted and rear faces
of the sample.
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Fig. 2. AFM image of the surface of sodium calcium silicate
glass prior to ion implantation.
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symmetrical minimum near 430 nm. The reflectance
spectra have a more complex shape and differ for the
implanted and rear sample faces. The reflectance spec-
trum of the implanted surface consists of overlapping
bands with a clear-cut shoulder in the short-wavelength
range and a maximum at 490 nm. The reflectance spec-
trum of the rear sample face exhibits a pronounced
maximum in a longer-wavelength range at approxi-
mately 505 nm. Consequently, reflection optical spec-
troscopy can be applied to evaluate qualitatively the
degree of nonuniformity of the size distribution of
nanoparticles over the sample depth. It should be noted
that this technique is less laborious and expensive than
electron microscopy [22].

The AFM images of the surface of sodium calcium
silicate glass prior to and after the ion implantation are
displayed in Figs. 2 and 3, respectively. As can be seen,
the surface of the nonimplanted glass is virtually
smooth, whereas the implanted sample surface is char-
acterized by hemispherical bumps and hollows with a
mean size of ~100–150 nm. The formation of this struc-
ture (Fig. 3) is associated with the sputtering of the
glass surface that occurs during ion implantation,
which results in the uncovering of metallic nanoparti-
cles nucleated in the surface layer [25, 26]. Approxi-
mate calculations demonstrate that the thickness of the
sputtered sodium calcium silicate glass layer at the used
energy and dose of the ion implantation is equal to sev-
eral tens of nanometers [19].

4. IRRADIATION OF DMN WITH HIGH-POWER 
LASER PULSES

4.1. Size distribution of nanoparticles over the
depth. The Rutherford backscattering spectra of silver-
implanted sodium calcium silicate glasses prior to and
after laser irradiation are depicted in Fig. 4. As follows
from these spectra, the exposure of the glass to high-
power laser pulses brings about a decrease in the silver
concentration by approximately 30%. A similar pattern
was observed earlier upon exposure of inorganic
glasses containing silver [14] and bismuth [27] clusters
to excimer laser radiation and was explained by the
heating of DMNs followed by the evaporation of metal
atoms from the glass surface. At the same time, it can
be seen from Fig. 4 that the laser irradiation leads not to
a shift in the silver concentration maximum but to a cer-
tain broadening of the silver distribution toward deeper
regions. It is evident that the observed diffusion outflow
of silver atoms from the sodium calcium silicate glass
surface is also determined by the heating of DMN
material during its interaction with a laser pulse. It is
believed that the thermal diffusion and evaporation of
silver from the surface of sodium calcium silicate glass
should necessarily be preceded by the decomposition
of nanoparticles into individual atoms.

The transmittance and reflectance optical spectra of
the implanted samples after pulsed laser processing are
shown in Fig. 5. It is seen from the transmittance spec-
YSICS OF THE SOLID STATE      Vol. 43      No. 11      2001
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tra (Fig. 5a) that the intensity of the band corresponding
to the absorption associated with silver nanoparticles in
the initial implanted sample is considerably less (16%
at a minimum) than that (23%) for the sample subjected
to laser processing. Moreover, the minimum of the
transmission band of the composite glass after laser
processing is insignificantly shifted (by 3–5 nm) toward
the short-wavelength range. The laser processing more
noticeably affects the reflectance spectra of different
sample faces (Figs. 5b, 5c). The reflection band in the
spectrum of the implanted surface subjected to laser
irradiation is narrower than that of the initial implanted
sample. The reflection band maximum is shifted toward
the short-wavelength range (from 490 to 450 nm), and
its intensity decreases from 38 to 27%. A similar
(though not so pronounced) shift in the reflection band
(by ~5 nm) is observed in the spectrum of the rear non-
implanted face. In this case, the maximum of the spec-
tral band is located at 500 nm and its intensity decreases
to 13%. However, despite the symbate shift in the
reflection bands toward the UV spectral range after
laser irradiation, they differ noticeably. This indicates
that the size distribution of silver particles over the
depth in sodium calcium silicate glass remains nonuni-
form; however, the nonuniformity becomes less pro-
nounced than that in the implanted samples prior to
laser annealing. A decrease in the intensity of the reflec-
tion bands is caused by a decrease in the concentration
of silver nanoparticles after laser irradiation.

According to the Mie theory as applied to the optical
properties of small-sized metallic particles [23], the
shift observed in the location of the reflection band
maxima toward the short-wavelength range suggests
that the pulsed laser processing of implanted sodium
calcium silicate glasses results in a decrease in the
mean size of metallic nanoparticles. On the other hand,
in the framework of the effective medium theory
[22, 23], the observed short-wavelength shift in the
spectra of silver-implanted glasses should be inter-
preted as a decrease in the factor of filling of the surface
glass layer by metallic particles, i.e., as a decrease in
the fraction of silver that occurs as nanoparticles rather
than as individual atoms in a dielectric. Since the size
distribution of particles over the depth for implanted
materials coincides with the concentration profile of an
impurity and corresponds to the metal filling factor of
the dielectric and, furthermore, the reflectance spectra
of the implanted and rear faces remain different after
laser irradiation, we can draw the inference that the
largest silver nanoparticles are located near the glass
surface and their mean size is reduced after laser pro-
cessing.

The AFM observations confirm the inference that
the size of silver nanoparticles in sodium calcium sili-
cate glass decreases under laser irradiation. A compari-
son of the surface images prior to (Fig. 3) and after laser
irradiation (Fig. 6) shows that the size of nanoparticles
corresponding to bumps on the surface decreases by
approximately one order of magnitude [28].
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
4.2. Heating and melting of a DMN surface layer
under laser irradiation. The interaction between
high-power laser radiation and a material depends on
the parameters of the beam laser and the physicochem-
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Fig. 3. AFM images of the surface of sodium calcium sili-
cate glass implanted with silver ions: (a) top view and (b)
top view under lateral illumination. The step along the X
and Y axes is 100 nm, and the step along the Z axis is 3 nm.
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ical properties of the DMN composite used. At the ini-
tial instant, this interaction is not thermal (does not
result in heating) and leads only to electronic and vibra-
tional photoexcitations. Further development of the sit-
uation through thermal (photothermal) or nonthermal
(photochemical) processes is predominantly governed
by the photoexcitation relaxation times. For the DMN
materials under consideration, the corresponding exci-
tation and relaxation processes can be divided into
those associated with the glass matrix and those with
the metallic inclusions. Excimer laser radiation with a
wavelength of 248 nm (5 eV) corresponds to the spec-
tral absorption range of sodium calcium silicate glass.
Since the band gap of this glass is equal to ~3.5 eV, the
laser radiation generates electron–hole pairs via the
direct excitation of electrons from the valence band to
the conduction band. In metallic silver nanoparticles,
laser radiation at the same wavelength brings about the
excitation of electrons from both the valence and con-
duction bands. Consequently, the energy of absorbed
photons in the metal immediately transforms into the
thermal energy, whereas the absorption of radiation in
the glass at the initial stage leads only to an increase in
the number of interband electron transitions, i.e., to an
increase in the concentration of electron–hole pairs [3].
In metals, the time of electron–electron collisions is of
the order of 10–14–10–13 s and the times of electron–
phonon relaxations are usually one or two orders of
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Fig. 5. (a) Transmittance and (b, c) reflectance optical spec-
tra of sodium calcium silicate glass prior to and after pulsed
laser irradiation. The reflectance is measured for (b)
implanted and (c) rear faces of the sample.
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magnitude longer [29]. In nonmetallic materials, the
times of interband electron transitions lie in the range
10–12 –10–6 s [3]. Therefore, for the most part, the above
times are substantially shorter than the duration of the
laser pulse used (25 ns). Thus, the transformation of
laser radiation in DMNs can be treated as a relaxation
of imparted energy that directly results in heating of the
composite material (glass and metal simultaneously),
i.e., as such sequential processes as the heating of the
surface layer, its melting, and (or) evaporation (abla-
tion) in the time range from nanoseconds to microsec-
onds. For the sodium calcium silicate glasses used, the
total energy released during the laser pulse was appre-
ciably lower than the ablation threshold (5 J/cm2 for the
excimer laser at 248 nm [30]), and, hence, surface sput-
tering was assumed to be absent.

Since the wavelength (248 nm) of the excimer laser
is much more than the typical size of nanoparticles syn-
thesized through implantation [9, 21], the optical prop-
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Fig. 6. AFM images of the surface of sodium calcium sili-
cate glass with implanted silver ions after irradiation with
an excimer laser: (a) top view and (b) top view under lateral
illumination. The step along the X and Y axes is 100 nm, and
the step along the Z axis is 40 nm.
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erties of the DMN formed can be considered in terms of
the effective medium theory [23]. This approach allows
us to treat a composite material as homogeneous, to
apply the laws of geometrical optics for the directed
propagation of light, and to evaluate the optical length
α–1 of laser pulse penetration into the composite mate-
rial (where α is the linear absorption coefficient). We
consider the case when the laser radiation is absorbed
and transforms into thermal energy in the sodium cal-
cium silicate glass layer of thickness α–1. According to
the estimates made in [31], this thickness is equal to
several microns, which is considerably larger than the
thickness of the implanted region. The implanted sur-
face layer, in which the radiation energy is absorbed,
can be considered an internal heat source in the sample.
The development of the thermal process is governed by
the heat source, diffusion redistribution of heat, and its
reemission and convection losses. At nanosecond laser
pulses, the thickness of the layer absorbing the radia-
tion exceeds the heat diffusion length L(τ) = (Dτ)1/2,
where D is the thermal diffusivity of the material and τ
is the laser pulse duration. Since the energy of high-
power radiation transforms within a relatively thin
absorbing layer, the surface region of the sample rapidly
heats up and melts [3]. At the pulse duration τ = 25 ns,
the heat diffusion length in sodium calcium silicate
glass is approximately equal to 115 nm [32]. Although
the heat diffusion length L is somewhat less than α–1, it
is larger than the thickness of the implanted layer in
sodium calcium silicate glass. The estimates performed
in our earlier work [32] show that, upon exposure of
sodium calcium silicate glass to KrF excimer laser radi-
ation, the temperature at the glass surface reaches
700°C, which exceeds the melting point of this glass.
This temperature also appears to be sufficient for the
melting of the synthesized silver nanoparticles to take
place, because it is known that the melting temperature
of metals appreciably decreases when the particle sizes
decrease to nanometers [33]. For example, according to
Castro et al. [34], the melting temperature of silver
decreases from 960°C for a bulk material to ~500°C for
nanoparticles less than 50 nm in size. Consequently, an
increase in the temperature of the glass matrix to a cer-
tain temperature exceeding the melting point of metal-
lic nanoparticles brings about their melting, which
results in a decrease in particle size up to their complete
disappearance. Direct absorption of laser radiation by
the metal can also lead to heating of the silver nanopar-
ticles. However, in the heated dielectric matrix contain-
ing nanoparticles, their melting should apparently
occur at a higher rate. The melting of nanoparticles in
the composite layer, as a whole, is a nontrivial process,
and its correct description requires consideration of
several processes, such as the migration of surface
atoms (surface “remelting”), structural fluctuations
(quasi-melting), and the formation of mixed liquid–
solid phases [33]. The destruction of nanoparticles pro-
ceeds in stages. The above effects depend on the nano-
particle size; i.e., small-sized particles decrease more
PHYSICS OF THE SOLID STATE      Vol. 43      No. 11      20
rapidly as compared to large-sized particles. As a result,
the size distribution of nanoparticles formed in sodium
calcium silicate glass upon ion implantation remains
nonuniform after laser processing.

5. CONCLUSION

Thus, we investigated the formation of silver nano-
particles in sodium calcium silicate glass through ion
implantation and their modification under exposure to
high-power pulses of an excimer laser. It was demon-
strated that the size distribution of nanoparticles over
the depth is not uniform. The largest-sized silver clus-
ters are formed near the surface, and the decrease in
impurity concentration deep into the sample is attended
by a decrease in the particle size. Exposure to high-
power pulses of the excimer laser leads to heating of the
surface layer of sodium calcium silicate glass with sil-
ver nanoparticles. This brings about a decrease in the
particle size due to melting; however, the scatter in the
size of nanoparticles over the depth remains
unchanged. It was shown that silver atoms formed upon
melting of nanoparticles can both evaporate and be
involved in limited diffusion deep into the sample. Con-
sideration was given to the physical principles of the
melting of metallic nanoparticles in dielectrics under
laser irradiation.
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Abstract—The evolution of the distribution of nanodefects formed on the surface of polished copper foils
under tensile stresses is investigated. It is found that nanodefects form four ensembles. The energies of forma-
tion and the mean sizes of nanodefects in two consecutive ensembles differ, respectively, by a factor of three.
When the concentration of nanodefects in a particular ensemble reaches a thermodynamically optimum value
(≈5%), some of these nanodefects annihilate and the other nanodefects transform to nanodefects of the follow-
ing ensemble. The load applied to the sample continuously generates nanodefects comprising the first ensem-
ble, which leads to periodic oscillations of the nanodefect concentration in all four ensembles. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Recent investigations [1–8] of the surface of metals
(Cu, Au, Mo, and Pd) with the use of scanning tunnel-
ing microscopy have demonstrated that defects of
nanometer size are formed on the polished metal sur-
face under tensile stresses (Fig. 1). These defects are
generated and annihilate through the motion of material
strips in the directions parallel to the dislocation glide
planes. In our previous work [8], the nanodefect forma-
tion was considered within the model of reversible
aggregation of atomic steps formed at sites of the emer-
gence of dislocations on the metal surface. It was found
that the distribution n(y) (where y is the size of a nano-
defect, i.e., the length of its walls) is determined by the
maximum entropy and can be described by the canoni-
cal distribution of the thermodynamic probability. As is
known [9], this distribution can be represented in the
form of the Γ-function density:

 (1)

Here, ∆U0 is the energy of aggregation of atomic steps,
β ≡ 1/kBT, kB is the Boltzmann constant, T is the temper-
ature, and n0 is the normalization constant.

The mean size of nanodefects 〈y〉  and the energy of
their formation ∆U0 are related by the expression [8]

 (2)

The aim of the present work was to investigate the
accumulation kinetics of nanodefects on the surface of
loaded copper and to elucidate the hierarchy of the dis-
tribution of their ensembles.

n y( ) n0y2 βy∆U0–( ).exp=

y〈 〉
β∆U0

3
--------------= .
1063-7834/01/4311- $21.00 © 2199
2. EXPERIMENTAL TECHNIQUE

We studied the surface profiles of high-purity cop-
per (99.96%) foils approximately 60 µm thick. The
samples were cut out parallel to the axis of foil rolling
by using special knives, polished with a GOI paste, and
washed in alcohol and acetone. A spring device
designed at the laboratory was used for loading the
samples.

The topograms of the copper surface under a load of
380 MPa were recorded at different instants of time
after loading. The scanned area was 10 × 10 µm, and
the distance between two sequential scans was equal to
100 nm. By this means, only the nanodefects whose
lengths were greater than 50 nm could be recorded.
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Fig. 1. A nanodefect formed on the copper surface under
load.
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The shape of a nanodefect on the copper surface (see
Fig. 1) does not depend on its size. As can be seen from
Fig. 1, one of the nanodefect walls is nearly perpendic-
ular to the surface and the second wall makes an angle
of ≈30° with the surface. In order to determine the
length y of the walls of a nanodefect, it was sufficient to
measure its depth d (i.e., the length of the wall perpen-
dicular to the surface) and to calculate y (y ≈ 3.92d).
The nanodefect depth was measured for each scan.
Large-sized nanodefects (with a length of more than
200–300 nm) were intersected by scans several times;
however, their depths differed from one another in two
sequential scans. These findings were explained under
the assumption that, in our samples, the length of dislo-
cations emerging on the surface was less than 100 nm.
Hence, the different cross sections of a large-sized nan-
odefect were considered independent.

The magnification of the image in the direction per-
pendicular to the surface plane was equal to 6.7 × 104.
This made it possible to examine nanodefects more
than ≈4 nm in depth. The number of nanodefects in the
topograms ranged from 1500 to 5500 depending on the
time elapsed after loading of the sample, which ensured
sufficiently reliable statistical size distribution of the
nanodefects.
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Fig. 2. Depth distributions of nanodefects on the surface of
copper within (a) 21 and (b) 144 h after loading. Solid lines
correspond to calculations according to (a) relationship (1)
and (b) relationship (3). (1–3) Distributions of nanodefects
for the first, second, and third ensembles.
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3. SIZE DISTRIBUTIONS OF DEFECTS

A detailed analysis of the topograms demonstrated
that the empirical size distribution of nanodefects is
described by relationship (1) only at short times elapsed
after loading: t ≤ 0.1τf, where τf is the time prior to
fracture of the sample (sample endurance) (Fig. 2a). At
t > 0.1τf, the size distribution of nanodefects should be
described using at least four expressions of type (1)
with different energies ∆U0i (Fig. 2b):

 (3)

Consequently, all nanodefects can be divided into four
ensembles. The energies of formation of nanodefects
comprising these four ensembles are as follows: ∆U01 ≈
0.058kBT for the first ensemble, ∆U02 ≈ 0.019kBT for
the second ensemble, ∆U03 ≈ 0.0063kBT for the third
ensemble, and ∆U04 ≈ 0.0021kBT for the fourth ensem-
ble. The mean depths of nanodefects in these ensembles
are as follows: 〈d1〉  = 20 nm for the first ensemble,
〈d2〉  = 60 nm for the second ensemble, 〈d3〉  = 180 nm for
the third ensemble, and 〈d4〉  = 550 nm for the fourth
ensemble.

Therefore, the energies of formation and the mean
depths of nanodefects in two consecutive ensembles
differ, respectively, by a factor of three:

 (4)

In addition to the distribution of nanodefects on the
surface of loaded metal (Cu, Mo, Au, and Pd) foils,
relationship (1) adequately describes the size distribu-
tions of carbon black aggregates in filled rubbers [10],
supramolecular formations on the surface of vitreous
poly(methyl methacrylate) [11], E-coli bacteria [12],
and yeast fungi [12], as well as the angular distribution
of dislocation boundaries in deformed Al samples [13].
Therefore, the stationary Γ-distribution over sizes in the
studied systems is attained in a state that is far from
equilibrium even though the concentration of structural
units continuously varies with time.

4. ACCUMULATION KINETICS OF DEFECTS

In order to elucidate the factors responsible for the
formation of nanodefect ensembles, we investigated the
accumulation kinetics of nanodefects at different times
elapsed after loading. As an example, Fig. 3 displays
four fragments of the topograms of the copper surface,
which were recorded within 16, 165, 238, and 356 h
after loading of the sample. It can be seen that the
defect concentration in the topograms obtained within
16 and 238 h after loading is higher than that in the two
other cases (within 165 and 356 h after loading).
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A close examination of the topograms revealed that
both the total concentration of nanodefects and their
concentrations in each of the four ensembles oscillate
with time. The oscillation period is approximately
equal to 45 h (Fig. 4). The nanodefect concentrations in
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Fig. 3. Fragments of the topograms of the copper surface at
different instants of time after loading: (a) 16, (b) 165, (c)
238, and (d) 356 h.
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consecutive ensembles oscillate in antiphase: an
increase in the concentration of large-sized nanodefects
is always attended by a decrease in the concentration of
small-sized nanodefects. Therefore, the kinetics of
defect formation has a hierarchic character; i.e., nano-
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Fig. 4. Time dependences of the concentration of nanode-
fects forming four ensembles on the copper surface. Mean
nanodefect depth in each ensemble: (a) 20, (b) 60, (c) 180,
and (d) 540 nm.
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defects of the (i + 1)th rank are formed only from nan-
odefects of the ith rank. This is clearly seen from Fig. 4:
the deeper the nanodefects forming a particular ensem-
ble, the longer the time it takes for the nanodefect con-
centration to begin to vary periodically with time.

Tomilin et al. [14, 15] revealed that the initiation of
cracks formed in Westerly and Harcourt granites under
compressive stresses is hierarchic in character and that
the cracks also form four ensembles. It seems likely
that the defect formation in loaded materials exhibits a
hierarchic character not only in metals but in other sol-
ids as well.

The maximum concentration of nanodefects in each
ensemble is found to be Xc = 5 ± 1%. Earlier [8], we
proved that this value corresponds to the thermodynam-
ically optimum concentration of nanodefects in the sur-
face layer of metals. At this concentration, the mean
distance 〈L〉  between two neighboring defects is e times
larger (where e is the base of natural logarithm) than
their mean size 〈y〉  [8]:

 (5)

Numerous investigations of crack accumulation in
various solids (polymers, metals, ionic crystals,
glasses, and rocks) under load [15–18] have demon-
strated that cracks begin to coalesce when their concen-
tration in the bulk of a solid reaches the value at which
criterion (5) is satisfied. The above results indicate that
the criterion for coalescence (5) is valid for both cracks
and nanodefects on the surface of loaded metals.

The observed oscillations of the nanodefect concen-
tration can be explained in terms of this criterion as fol-
lows. The stresses bring about the emergence of dislo-
cations on the surface, which, in turn, leads to the for-
mation of first-rank nanodefects. The concentration of
nanodefects increases to a thermodynamically opti-
mum value Xc ≈ 0.05, at which the entropy of mixing
nanodefects with atoms of the crystal lattice becomes
maximum [8]. Thereafter, some of these nanodefects
annihilate, while the other nanodefects increase in
depth by a factor of three and form an ensemble of sec-
ond-rank nanodefects. The concentration of second-
rank nanodefects increases and reaches 5%, after which
a portion of these nanodefects annihilate and the other
nanodefects transform into third-rank nanodefects, etc.
This process is thermodynamically favorable, because
the energy of formation of new large-sized nanodefects
is less than that of small-sized nanodefects by a factor
of three. The load applied to the sample continuously
generates new portions of first-rank nanodefects. As a
result, after the transformation of some of these nano-
defects into second-rank nanodefects, the first-rank
nanodefects begin to accumulate again and the process
occurs over and over.

According to the theory of consecutive reactions
[19], the oscillation frequency ν and the rate constant k1

L〈 〉
y〈 〉

---------
1

Xc
3
---------- 2.7.≈=
PH
for the formation of first-rank defects are related by the
expression

 (6)

Under the experimental conditions (room tempera-
ture and a load of 380 MPa), we have ν ≈ 6.2 × 10–6 s–1

and k1 ≈ 7.4 × 10–5 s–1. At the same time, the rate of
steady-state creep  is two orders of magnitude
smaller:  ≈ 6 × 10–7 s–1.

In the case when the formation of nanodefects occurs
as the result of thermal fluctuations, the activation energy

of formation is U1 = kBT  = kBT  ≈ 43 kJ/mol

and the activation energy of steady-state creep is U0 =

kBT  ≈ 52 kJ/mol.

5. THE MECHANISM OF NANODEFECT 
COALESCENCE

In many studies concerned with the accumulation of
cracks in loaded materials, the crack coalescence sub-
ject to condition (5) is interpreted under the assumption
that cracks are randomly arranged in a loaded solid. In
this case, the possibility exists of forming clusters in
which several small-sized cracks appear very close to
one another and coalesce to form a large-sized crack.

This concept is in good agreement with the results
obtained in the study of nanodefects. The nanodefect
walls consist of steps 5–50 nm wide (Fig. 1), which are
formed upon the emergence of dislocations generated
by a cluster of nearby sources [1, 2, 5, 6].

As follows from the results described above, the
clusters of dislocation sources are delocalized in the
surface layer of loaded metals. Analysis of the distribu-
tion of nanodefects shows that the clusters of disloca-
tion sources also form four ensembles in which the dis-
tributions are represented by expression (1) for the
Γ-function density.

The length of the nanodefect walls in the first-rank
ensemble is approximately equal to 80 nm. These walls
are formed upon the emergence of ≈300 dislocations
generated by clusters of first-rank sources. The second
ensemble involves clusters of second-rank dislocation
sources that generate ≈900 dislocations. The third and
fourth ensembles consist of clusters generating ≈2700
and ≈8000 dislocations, respectively.

The load applied to the sample generates dislocation
sources at a rate equal to the creep rate. The rate of for-
mation of first-rank clusters from these sources is two
orders of magnitude higher. Then, there arise clusters of
second-rank dislocation sources, etc.

k1 12ν .≈

ε̇
ε̇

k0

k1
----ln 1013

k1
----------ln

1013

ε̇
----------ln
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6. CONCLUSION

Thus, it was demonstrated that nanodefects form four
ensembles on the surface of loaded copper. The energy of
formation of nanodefects in each of the following
ensembles is three times smaller and the size of these
nanodefects is three times larger than those in the preced-
ing ensemble. When the concentration of nanodefects in
a particular ensemble reaches a thermodynamically opti-
mum value (≈5%), some of these nanodefects annihilate
and others transform into nanodefects of the following
ensemble. The load applied to the sample continuously
generates nanodefects that form the first ensemble,
which brings about periodic oscillations of the nanode-
fect concentration in all four ensembles.
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