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Abstract—This paper reports on NMR measurement of hyperfine fields, enhancement factors, and quadrupole
splitting for “°Sc nuclei in the ScFe,, Scy gsFe; o5, ad ScFe; g7Al o3 aloys at room temperature and 77 K. The

NMR spectra are studied, and the hyperfine-field shifts at “°Sc nucleus sites in the above alloys, caused by Fe
substituting for Sc and Al, for Fe in the nearest Sc coordination shells, are determined. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Intermetallic Laves compounds of RFe, stoichio-
metric composition (where R stands for Sc, Y, Zr, and
other 3d, 4d, and 5d el ements) have recently been asub-
ject of intenseinvestigation. These aloysare of consid-
erable interest from the standpoint both of the phenom-
ena responsible for their magnetic properties (for
instance, the existence of magnetic moments and the
magnitude of these momentsfor the Ratoms) and of the
application potential involved. These aloys are usualy
synthesized in one of the following crystalline states:
MgCu,-type cubic (C15) and MgNi, (C36) and MgZn,
(C14) hexagona [1]. The ScFe, compounds exhibit
polymorphism and can exist in the three above crystal-
line states [1]. The magnetic properties of the ScFe,
alloys have been very poorly studied in comparison
with those of the other RFe, dlloys (R=Y, Zr, Nb, or a
rare-earth element). Some data exist on the hyperfine
interaction (HFI) parameters for 5’Fe nuclel measured
using the M 6ssbauer technique in the ScFe, hexagonal
aloy (Cl4-type structure) [2, 3] and for 5’Fe and #°Sc
nuclei determined using the NMR method in the ScFe,
hexagonal alloy (C36 structure) [4—6] and cubic (C15)
aloy [4-6]. The NMR spectra of these Laves aloys
exhibit additional unresolved peaks and other features,
whose nature remains unclear [4-6]. Because single-
phase alloys of this compound are difficult to prepare,
the presence of other phases does not permit one to
study somefine effectsin the spectra, which are due, for
instance, to small deviations from stoichiometry and to
the specific conditions in which samples of the alloys
under study are synthesized, as well asto the influence
of impurity s, p, or d atoms on the HFI parameters.

This paper reports on a measurement of the NMR
parameters for %Sc nuclei in single-phase ScFe,,
SCyg5F€5 05, @Nd ScFe; 57Al o3 intermetallic alloys with
C14 hexagonal structure.

2. SAMPLES AND EXPERIMENTAL
TECHNIQUE

Samples of the Laves aloys ScFe,, Scy g€, 05, aNd
ScFe, g;Alp 03 Were prepared by melting high-purity
metalsin an arc furnace in ahigh-purity argon environ-
ment. The ingots were crushed and remelted several
times. Ingots of the ScFe, and ScFe,; g;Al o3 alloyswere
additionally remelted at a pressure of ~7 GPa, and an
ingot of ScygsF€, o5 Wasannealed at 1273 K for 48 hand
guenched in water to preclude polymorphic transfor-
mations. X-ray diffraction measurements of powder
samples showed them to be single phase and to have a
MgZn, hexagonal structure. The lattice constants of the
aamplfof the alloys studied werea = 4.964 A and c =
8.106 A.

The %Sc NMR spectra were measured using the
pulsed technique at 293 and 77 K. The amplitudes of rf
pulses (exciting an echo) and of echo signals were cal-
ibrated to take into account the influence of their ampli-
fication in the transmitting and receiving spectrometer
units, as well as the diode regime of measurement at
each frequency. During the measurements, the rf pulse
amplitude was maintained constant (close to the echo
maximum within the frequency range covered). In
these conditions, the true NMR spectrum correspond-
ing to the hyperfine-field (resonant-frequency) distribu-
tion was obtained by normalizing the measured NMR
spectrum through the cubed measurement frequency f3
[7]. When obtaining NMR spectra of the #Sc nuclei in
ScFe,-based aloy samples, the exciting rf pulse dura-
tion was 1 us and that for the 5’Fe nuclel in iron was
10 ps. We a'so measured the rf magnetic field h, in the
resonance coil used to obtain the ®°*Sc NMR spectra, for
which purpose proton resonance in an agueous CuSO,
solution in a corresponding magnetic field and 90° and
180° rf pulses were employed.
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3. RESULTS AND DISCUSSION

Figure 1 presents the °Sc NMR spectra of the sam-
ples under study. The NMR spectrum of the ScFe, aloy
(Fig. 1a) measured at room temperature has a maxi-
mum at 63.0 MHz corresponding to a hyperfine field
B, =6.09 T. At 77 K, the maximum of the spectrum of
this aloy lies at 73.68 MHz, so that B, = 7.125 T
(Fig. 1b). There are unresolved lines on the high-fre-
guency side of the spectrum of this aloy. The intensity
of these additional lines in the spectrum of the
SChosF€ 05 aAloy with an excess of Fe increases
(Fig. 1c). The “*Sc NMR spectrum of the ScFe, alloy
shiftstoward lower frequenciesin an external magnetic
field of 5 kOe, and, hence, the hyperfinefield at the “°Sc
nucleus sites is negative (Fig. 1b).

Sc atoms occupy equivalent positions in the MgZn,
structure and are surrounded by 12 Fe and 4 Sc atoms,
which make up a 16-corner Laves polyhedron around
the scandium atom [8]. The Fe atoms sit at two inequiv-
alent crystallographic sites, Fel and Fe2, the occupan-
cies of these sitesbeingina3: 1ratio. A Sc atom has
12 Fe atoms (9 Fe2 and 3 Fel) inits first coordination
shell (CS), 4 Sc atoms in the second CS, 15 Fe
(12 Fel + 3 Fe2) atomsin the third, 13 Sc atomsin the
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fourth, 9 Fe (6 Fel + 3 Fe2) atoms in the fifth, and
9 Sc + 3 Fe2 atomsin the sixth CS. Although a sample
of the ScFe, alloy with MgZn, structure was prepared
as a stoichiometric sample (with due account of compo-
nent loss during melting), its composition was actually
SC; - «F€y1 + 5, Where X is the Fe impurity content. In
[9], the resistivity of samples of the ScFe, (MgZn,-
structure) aloy was measured. The results obtained
indicated the presence of excess Fe atoms in the sam-
ples with stoichiometric composition. °Sc NMR data
obtained on the ScFe, and Scy k€, o5 aloys suggest
that the additional peaksin these spectramay be due to
excess Fe atoms occupying the Sc sites in the second,
fourth, and sixth scandium CSs. It can be conjectured
that the peak at 77.86 MHz (in the Scy gsFe; o5 Sample)
isdueto one Fe atom being substituted for one Sc atom
in the second Sc coordination shell; the 82.57 MHz
peak, to two Fe atoms being substituted for two Sc
atomsin the same shell; and the peak at 75.27 MHz, to
one Fe atom substituting for one Sc atom in the fourth
Sc coordination shell. A similar situation is observed in
samples of the ZrFe, aloy [10]. Assuming the excess
Fe atomsto be randomly distributed over the second CS
around Sc atoms (for 77.62 MHz), one can estimate the
number of such atoms in a ScFe, sample. Using bino-
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Fig. 1. “°*Sc NMR spectra of the samples studied (circles and squares are experimental data; dashed lines are spectra decomposed
into constituent Gaussian lines; solid lines are the sum of the Gaussians). (a) ScFe, at room temperature; (b) ScFe, at 77 K in an

external magnetic field B equal to (1) zero and (2) 5 kOe; () Sco gsFe; o5 at 77 K; and (d) ScFe; g7Alg gz at 77 K.
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mial distribution, we obtain for theratio of probabilities
of aSc atom having no and one Fe atom in the second CS

= =70 (D)

where x is the concentration of excess Fe atoms. Fig-
ure 1b presents an experimental spectrum of the ScFe,
(MgZn,-structure) alloy decomposed into Gaussian
lines using the ORIGIN code. The solid lineis the sum
of the resolved components. Decomposition of the
spectrum yielded constituent peaks at 73.68, 75.45, and
77.62 MHz. Taking the ratio of the peak areas at
73.68 MHz (the nearest Sc atom environment { 12 Fe +
4 Sc}) and at 77.62 MHz {12 Fe + (1 Fe + 3 S¢)} and
comparing it with Eq. (1) yields x = 0.046. Substitution
of one Fe atom for one Sc atom in the second CS of an
Sc atom shifts the resonant frequency for the #Sc
nuclei by +3.98 MHz or +0.386 T.

Figure 1d presents a “°Sc NMR spectrum for the
ScFe, g;Alg oz aloy. In addition to the main peak at
~73.2 MHz and an unresolved peak on the high-fre-
guency side, the spectrum exhibitstwo additional peaks
at low frequencies. These two low-frequency peaks are
due to Al atoms appearing in the first CS around the Sc
atoms, with the peak at ~66.8 MHz originating from
oneAl atom and that at ~61.1 MHz, from two Al atoms
occupying Fesitesin thefirst Sc coordination shell. The
NM R spectrum was decomposed; the results are shown
in Fig. 1d. The solid curve is the sum spectrum. The
maxima of these peaks (spectral components) and the
possible nearest environment configurations corre-
sponding to these peaksare 73.19 MHz {12 Fe + 4 Sc},
76.80 MHz {12 Fe + (1 Fe + 3 Sc)}, 66.76 MHz
{(11Fe+1Al)+45Sc}, 6110 MHz {(10 Fe + 2 Al) +
4 S}, and 70.41 MHz (thisis possibly due to Al atoms
being present in the third CS around Sc atoms). Substi-
tution of one Al atom for one Fe atom in the first CS of
Sc shifts the resonant frequency by —6.4 MHz or
—0.619T. The Al atom has a zero d-type magnetic
moment, and, therefore, the difference between theres-
onant frequenciesfor Sc atomswith 12 and 11 Fe near-
est neighbors characterizes the effect of the magnetic
moment of one Fe atom on the resonant frequency
(hyperfine field) for 4°Sc nuclei.

Figure 2 plots the echo amplitude A, vs. the rf mag-
netic field h; acting on the #Sc nuclei in our alloys at
77 K. Shown for comparison is an Ai(h;) dependence
measured at 77 K and a frequency of 46.54 MHz on
5’Fe in iron powder samples enriched in this isotope.
The maxima of the A(h;) curves were found to lie at

different rf magnetic field amplitudes hy . In the aloys

under study, all values of h]' are smaller than those for

a pure Fe sample. In magnetically ordered substances,
the A,(h,) dependenceisdueto aspread of the enhance-
ment factorsn inthedomain walls. Thiseffect was con-
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Fig. 2. Echo amplitude A vs. rf magnetic field hy for “°Sc
nuclei in (1) ScFe,, (2) Scg gsFes o5, and (3) ScFey 97Alg 03

and (4) for °’Fe nuclei in iron powder.

sidered in detail for adomain wall modeled by avibrat-
ing edge-fixed membrane, and an analytical expression
for the dependence of the echo amplitude on h; was
obtained in [11]. The distribution of enhancement fac-
torsin adomain wall can be presented in the form [11]

N(x) = nosech(x)(1-r*)dp, 2

where n, is the maximum enhancement factor corre-
sponding to nuclel located at the wall center, x is the
position of the nucleusin the domain wall on the x axis
(measured in units of the wall thickness d), r =r/rq (r,
istheradial position of the nucleusinthewall andrgis
the membrane radius), and d,, is the maximum relative
displacement of thewall (in units of the maximum wall
displacement for the sample under consideration). The
decreasein the echo amplitude at high excitation levels,
as seen from Eq. (2), is caused by low effective
enhancement factors for nuclei at domain wall edges.

Consider one more approach to estimating the
enhancement factor in magnetically ordered sub-
stances, that described in [12]. Studies of various
enhancement factor distributions across the domain
wall thickness have established that it is possible to
determine the average enhancement factor n, for
nuclei in adomain wall. Because real samplesfeature a
variety of types of domain walls and enhancement fac-
tor distributions across the wall thickness, the expres-
sion given in [12] for the average enhancement factor
may provide agood estimate for thisparameter in ferro-
or ferrimagnetic powders. The relation connecting 1, ,

the rf pulse duration At, and the rf magnetic field h’

corresponding to the maximum in the A.(h;) depen-
dence can be written [12] as

NaYnlthy = 1, €©)
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Fig. 3. Echo amplitude A, plotted as a function of the time
interval t;, between two echo-exciting rf pulsesfor different
values of the rf magnetic-field amplitude hy: (1) 16,
(2) 48 mG, (3) 1.34, and (4) 4.0G.

wherey, isthe gyromagnetic ratio for the nucleus under
study. Let us estimate the average enhancement factors
n., for our aloys using the above relation and the
experimental datain Fig. 2. The values of n,, obtained
are as follows: n, (Fe) = 780, n,, (ScFe,) = 17500,
Nav (SCo.05F€;.05) = 2600, and N, (ScFey g7Al g g5) = 1650.
The average enhancement factors for #°Sc nuclei in
domain walls of the corresponding alloys are seento be
considerably larger than that for 5’Fe in iron. Note that
thevalue of n,, for >Feinironfoundin thiswork coin-
cides remarkably well with the value of =900 obtained
in [13] at 77 K for ®Fe in an isotopic-iron powder.
Because the enhancement factor n,, is proportiona to
the displacement susceptibility x, ScFe, samples are
seen to have larger displacement susceptibilities than
iron and an increasein theiron content or addition of Al
to ScFe, sharply reduces x.

We studied the dependence of the echo amplitude on
the time interval t;, between two rf pulses exciting an
echo at frequencies corresponding to the maxima of the
main linesin the alloys under study at 77 K in different
rf magnetic fields h,. These dependences are plotted in
Fig. 3 for the ScFe, sample. At low excitation levels,
one observes weak oscillations in the A, decay curves;
however, at high h, levels, the echo decay exhibits a
clearly pronounced oscillation. According to Fig. 2, at
high excitation levels h,, an echo is observed for nuclei
located at the domain wall edge. A similar situation was
observed in hexagonal cobalt [14]. As shown in [15],
the oscillationsin the echo amplitude A, setting into the
A(t;,) dependence are caused by electronic quadrupole
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interaction. The oscillation period T is related to the
quadrupole splitting Av,, through the expression

Av,T = 1. (@)

Asfollowsfrom Fig. 3, the modulation period Tis 15 +
1 ysand, hence, Av, = 66.6 kHz. Similar dependences
of the echo amplitude decay on t;, and h; were mea-
sured for the Scy gsF€, 5 and ScFe; oAl o3 dloys. The
modulation period T of the echo amplitude in these
alloyswasfoundtobe 15+ 1 psat 77 K. Thus, we see
that the electron quadrupol e splitting in the alloys under
study does not depend on the sample preparation tech-
nology, slight deviations from the alloy stoichiometry,
or small additions of Al atoms.
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Abstract—The formation and structure of the nanocrystalline phase in the AlggNi 1Y b; a@loy are investigated
using differential scanning calorimetry (DSC), transmission electron and high-resolution e ectron microscopy,
and x-ray diffraction. The nanocrystalline phase is formed upon controlled crystallization of the amorphous
alloy prepared by quenching of the melt on a rapidly moving substrate. It is revealed that the nanocrystalline
alloy consists of aluminum nanocrystals (5-12 nm in size) randomly distributed in the amorphous matrix. The
maximum fraction of the nanocrystalline phase does not exceed 25%. The nanocrystal size substantially
increases at the initial stage of isothermal treatment (at 473 K) and then changesinsignificantly. It isfound that
nanocrystals are usually free of defects. However, some nanocrystals have amore complex microstructure with
twins and dislocations. The size distributions of nanocrystals are determined at several durations of isothermal
treatment. It is demonstrated that the nucleation of nanocrystals predominantly occurs through the heteroge-
neous mechanism. The experimental distributions are compared with those obtained from a computer simula-
tion. The activation energy of crystallization, the time-lag, and the coefficient of ytterbium diffusionin the alloy
are estimated © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Light nanocrystalline alloys (based on Al and Mg)
were first produced by partial devitrification of amor-
phous aloys a few years ago [1, 2]. Among metallic
materials, these alloys possess record-high strength
characteristics (calculated per gram). Nanocrystalline
alloys usualy contain 6-15 at. % of atransition meta
(Fe or Ni) and severa percent of a rare-earth metal
(Y, Ce, Nd, or Sm). Although the yield point of these
alloys can reach 1.6 GPa[3], the alloy samples remain
plastic in a number of cases. The structure of these
materials consists of Al nanoparticles and the amor-
phous matrix. The volume fraction of particles, as a
rule, is equal to approximately 0.25. There exist differ-
ent opinions regarding the mechanism of enhancement
of strength properties upon primary crystallization of
these materials. According to thefirst point of view [4],
the strength properties are determined by the amor-
phous matrix. The chemical composition of the amor-
phous matrix changes upon precipitation of aluminum
crystals, which is attended by strengthening of the
matrix. The second view accounts for the presence of
nanocrystals in the matrix [3]. In this respect, it is
important to answer the following questions: Arethe Al
particles deformable? Do these particles contain dislo-
cations or are they free of dislocations? How can these
particles be arranged in the amorphous matrix? One of
the purposes of the present work was to obtain answers
to these questions.

The second important purpose of this work was to
investigate the formation of nanocrystalline particles

upon heating of amorphous aloys. The phase transfor-
mation under consideration occurs by the mechanism
of nucleation and growth. The growth of nanocrystals
upon primary crystallization has studied in anumber of
works. In particular, Nakarato et al. [5] showed that the
growth of nanocrystals in alloys of the AI-Ni—Ce sys-
temiscontrolled by diffusion. Asregards the nanocrys-
tal nucleation, the available data on the mechanisms of
this process are rather contradictory. For example,
according to Greer [4], the nucleation of Al nanocrys-
tals is considered a homogeneous process, whereas
Foley et al. [6] treated the nanocrystal nucleation as a
heterogeneous process.

It is believed that the homogeneous process due to
fluctuation nucleation of particles of critical size can
proceed only at temperatures above the glass transition
point Ty. At T < T, the viscosity of the alloy istoo high
for these fluctuations to occur and the nucleation can
proceed only through the heterogeneous mechanism
[7]. For light nanocrystalline alloys, it is difficult to
determine the temperature range of nucleation with
respect to the T, temperature, because the value of Ty in
these alloys is unknown. Consequently, a correct con-
clusion regarding the nucleation mechanism cannot be
made as judged only from the temperature range of the
transformation.

In order to draw a reliable inference on the nucle-
ation mechanism responsible for nanocrystallization, it
is necessary to determine the size distributions of
nanocrystals at different durations of isothermal treat-
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ment and to carry out the appropriate analysis of these
distributions.

In this respect, one more purpose of the present
work was to elucidate the mechanism of nanocrystal
nucleation in light nanocrystalline aloys.

2. EXPERIMENTAL TECHNIQUE

The AlgNiy; Y bs amorphous alloy was prepared in
theform of ribbons by quenching of the melt. The cool-
ing rate was equal to ~10° K/s. The ribbons were 3 mm
wide and ~30 pum thick. Measurements of the thermal
properties and isothermal treatment of the samples
were performed using a Perkin—Elmer DSC-7 differen-
tial scanning calorimeter. The x-ray structure investiga-
tion was carried out on a Siemens D-500 x-ray diffrac-
tometer. The microstructure was examined with aJEM-
4000EX high-resolution electron microscope at an
accelerating voltage of 400 kV. The direct image of the
nanocrystal lattice was obtained using a computer
recording of a series of images with different defocus-
ing. The micrographs presented in thiswork were taken
at the optimum defocusing value 6 = —46 nm, which
corresponds to the Scherzer defocusing (& =

0.286CY2 \¥2, where C, = 1 mm isthe spherical aberra-

tion constant and A is the electron wavelength). Other
methodical aspects of this work will be described
below.

3. EXPERIMENTAL RESULTS

The as-prepared samples have an amorphous struc-
ture. The x-ray diffraction and electron diffraction pat-
terns exhibit only diffuse maxima without crystalline
phase peaks. The high-resolution images of the initial
aloy structure are characterized by a “mazy” contrast
typical of the amorphous structure. Figure 1 displays

R

~—— Heat flow

473 523 573
T,K

423

Fig. 1. Thermogram of the aloy upon heating at a rate of
40 K/min.

PHYSICS OF THE SOLID STATE \Vol. 43

ARONIN et al.

the thermogram obtained at a heating rate of 40 K/min.
Two peaks observed in the thermogram indicate exo-
thermic phase transformations upon heating. The first
broad peak with an initial temperature of 463 K is asso-
ciated with the first crystallization stage (primary crys-
tallization) of the amorphous alloy. At this stage, Al
crystals are formed in the amorphous matrix and the
reflections from the crystalline phase (Al) together with
a diffuse halo appear in the corresponding diffraction
patterns. The second (double) peak is attributed to the
subsequent crystallization stage (eutectic crystalliza-
tion), at which theresidual amorphous phase undergoes
decomposition.

According to differentiad scanning calorimetry
(DSC), the total thermal effect of crystalization is
approximately equal to 116 Jg and the thermal effects
of the first and second crystallization stages are 36 and
80 J/g, respectively.

The structura evolution of the AlggNi;;Yb; amor-
phous aloy was investigated under the conditions of
isothermal treatment at a temperature of 473 K, which
was determined from the DSC data. It can be expected
that, at this temperature, the formation and growth of
crystals at the first crystallization stage will occur at an
optimum rate for investigation.

The primary crystallization of the alloy leads to the
formation of Al face-centered cubic (fcc) crystalsand a
change in the amorphous matrix composition. The
amorphous matrix becomes enriched in nickel and
ytterbium which are virtually insoluble in auminum.
An increase in the treatment duration results in an
increasein thefraction of the crystalline phase. The dif-
fraction patterns of the samplesafter treatment at 473 K
for different times are shown in Fig. 2. It can be seen
that apeak of the Al fcc phase appears against the back-
ground of the diffuse halo, and theintensity of this peak
increases with an increase in treatment duration.

The fraction of the crystalline phase can be evalu-
ated from the DSC data with the use of the method
described in [8]. The results obtained are depicted in
Fig. 3. It is seen that, as the treatment time increases
from 5 to 60 min, the fraction of the crystalline phase
increasesfrom 0.15t0 0.23. The highest rate of increase
inthe fraction of the crystalline phaseis observed at the
early treatment stage. The Al fcc crystals cease to grow
when the metastable equilibrium between the crystal-
line phase and the residual amorphous phase (differing
in composition from the initial phase) is attained.

The primary crystallization results in the formation
of a structure composed of the amorphous matrix
involving randomly distributed Al fcc crystals several
nanometersin size. Thisstructureisdisplayed in Fig. 4.
Asarule, the Al nanocrystals are separated from each
other by the amorphous matrix. In certain cases, nanoc-
rystals are in direct contact with each other.

Figure 3 shows the dependence of the average
nanocrystal size determined from the dark-field elec-
tron microscope images. The average grain size varies
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from 7 nm (at atreatment time of 5 min) to 13nm (at a
treatment time of 60 min). As can be seen, the average
nanocrystal size most strongly changes at the early
transformation stages. The experimenta size distribu-
tions of nanocrystals at treatment durations of 5 and
15 min are plotted in Fig. 5. It should be noted that the
fraction of crystals with the smallest sizes could be
underestimated due to the difficulty of their observa
tion. Thisisespecially essential for the size distribution
obtained at atreatment duration of 5 min, sincethedis-
tribution is shifted toward the small-size range.

Asarule, nanocrystals are free of defects. However,
we observed particles with high-angle boundaries
whose misorientation corresponds to twin boundaries.
An example of these nanocrystalsis depicted in Fig. 6.
By using the Fourier transform of the direct image of
the lattice of this nanocrystal, we obtained the image of
the reciprocal lattice cross section (corresponding to
the electron diffraction pattern), which is shown in
Fig. 6b. This “diffraction” pattern involves reflections
from parts 1 (type A) and 2 (type B) of the nanocrystal.

Inthiscase, the (111) or (111) plane can be the twin
plane and the parts of the twinned crystal havethe [110]
zone axis (the direction parall€l to theincident electron
beam). A comparison between the boundary in the
image and two possible arrangements of the twin
boundary trace in the reciprocal lattice cross section

allows us to conclude that the (111) plane isthe twin
plane in our case. The reflections from twinned part B
of the crystal can be determined from the reflections
from part A by using the orientation matrix:

h 1iééh
K| = 3]212| k|
' 221U

The schematic representation of this diffraction pattern
is depicted in Fig. 6b.

The reciprocal |attice cross section under investiga-
tion has a characteristic feature that is typical of other
twinned crystals. This feature is a mutual position of
reflections from the nanocrystal parts at which the
shortest distance between the reflections of different
types A and B inthe directions {111} isequal to 1/3 of
the shortest distance between the reflections of the
same type, A (AA) or B (BB), in the same direction.

Inlight alloys, nanocrystals are free of dislocations.
However, the particle shown in Fig. 6a contains two
closely spaced dislocations which are not typical of fcc
crystals. These didocations (Fig. 6¢) have oppositely

directed Burgers vectors b = 1/2[110] and 1/2[110]
(the dislocation lines are paralel to [110]) and can
move only with the formation of a stacking fault.
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Fig. 3. Dependences of (1) the fraction f of the crystalline
phase and (2) the average nanocrystal size D on the duration
of isothermal treatment.

4. DISCUSSION

Let us discuss the problems associated with the for-
mation of the nanocrystalline structure upon decompo-
sition of the amorphous phase in the AlggNi,,Y b; aloy.
As was noted above, the dependence of the fraction of
the crystallized alloy on the treatment duration is plot-
ted in Fig. 3. This fraction was calculated by the for-
mula

f = (Ah,/AH,) — (Ahy /AHy), Q)

where Ah, is the enthalpy of the first part of the peak
and the shoulder in the thermogram and AH, isthe total
enthalpy of crystallization. According to [8], the above
dependence can be calculated from the DSC data under
the following assumptions: (1) the volume fraction of
the crystallized part of the material is proportional to
the heat released upon this transformation (this can be
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Fig. 4. Microstructure of the alloy annealed for 30 min: (a)
bright-field and (b) dark-field images.

true when no processes in addition to crystallization
occur in the aloy) and (2) the heats of formation of dif-
ferent phasesareidentical. In order to make sufficiently
rough estimates, this approach seems to be justified,
because the heats of formation of different phases are
actually comparable.

The ratio (Ah,JAH,) gives the volume fraction of
the material crystallized upon primary reaction (the
precipitation of a-Al fcc crystals). In the sample sub-
jected to isothermal annealing, the primary reaction
took place in part, so that a smaller amount of crystals
was formed through the mechanism of the primary
crystallization upon repeated heating. Then, the value
of (Ah,,/AH,) determines the volume fraction of a-Al
fcc crystals precipitated in the course of the repeated
heating and the fraction of the alloy crystallized during
the initial isothermal treatment can be estimated from
formula (1).

As was dready noted, the nanocrystalline structure
consists of the amorphous matrix with incorporated
aluminum particles. By assuming that the maximum
fraction of aluminum particlesis equal to 23%, that the
mean particle size, in this case, is equa to 12 nm, and
that the particles are uniformly distributed over the
amorphous matrix, the mean thickness of the amor-
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Fig. 5. Size distributions of nanocrystals after isothermal
treatment at 473 K for (a) 5 and (b) 15 min. Columns repre-
sent the experimental data, and solid lines show the results
of calculations.

phous layer between particles can be estimated at
approximately 8 nm.

The experimental size distributions of nanocrystals
exhibit characteristic features. They can be analyzed by
comparing the theoretically possible and experimental
sizedistributionsof crystals. Figure 7 showsall the pos-
sible size distributions of crystals formed according to
the nucleation and growth mechanism for homoge-
neous and heterogeneous nucleation processes.

Let us now compare the theoretical and experimen-
tal distributions. The size distributions obtained upon
treatment for 5 and 15 min are depicted in Figs. 5a and
5b, respectively. The experimental sizedistributionsare
represented by columns. It is apparent that the hetero-
geneous nucleation with a time-lag proceeds in our
case. This is confirmed by the following facts.
(1) Small-sized crystals are absent in the distribution
obtained upon treatment for 15 min. (2) A sharply
descending portion in the small-size range is observed
inthedistribution at atreatment time of 5min, whichis
impossible in the case of homogeneous nucleation.
(3) The fraction of large-sized particles (the right-hand
branch of the distribution) decreases gradually, which
is characteristic of the nonstationary rate of nanocrystal
nucleation (with the time-lag).
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(b, €) Histograms for nonstationary nucleation.

Therefore, at the very early stage of annealing of
metallic glass, there exists a certain time interval in
which the stationary size distribution of subcritical
nuclei (corresponding to the classica theory) is
reached. In this case, the time-dependent rate I(t) of
crystal nucleation is defined by the equation [9]

1(t) = 14f 1+ 25(=1)"exp[-n*(t/1)]} )

where the summation is performed over n from 1 to o,
T is the time-lag (which sharply increases with a
decrease in the temperature), and |y is the nucleation
rate at stationary conditions. In turn, the I4 rate is
described by the relationship

lq = loeXp(—LAG/RT)exp(—Qn\/RT), (3)

where L is the Loschmidt number, Q) is the activation
energy for the transfer of an atom through the crystalli-
zation front surface, and AG, is the free energy neces-
sary for the nucleation.

Under strong supercooling, the value of AG, is very
low and

lg = lo&Xp(—Qu/RT). (4)

We now dwell on the growth of nucleated nanocrys-
tals. Since the concentration gradient of nickel and

PHYSICS OF THE SOLID STATE Vol. 43

ytterbium arisesin the amorphous matrix near growing
aluminum crystals, the matrix is enriched in nickel and
ytterbium, whose atoms diffuse over large distances.
The growth rate of nucleated crystals decreases with an
increase in time. On the other hand, it is known that the
primary crystallization or nanocrystalization in amor-
phous alloysis accompanied by aparabolic variationin
the radius of growing crystals with an increase in the
isothermal treatment time [7]. In our case, the crystal
growth is governed by the bulk diffusion of Ni andYb
in the amorphous matrix that is,

r = o./Dt, 5)

where D isthe bulk diffusion coefficient, t isthe time of
isothermal treatment, r is the radius of agrowing crys-
tal, and a isthe dimensionless parameter of an order of
unity. In the present work, we assume that the a param-
eter does not depend on the fraction of the crystalline
phase.

The dependence r(t) implies that the size distribu-
tion of nanocrystalsin the case of heterogeneous nucle-
ation becomes narrower with time. Indeed, the disper-
sions of the distributions shown in Figs. 5a and 5b are
equal to 15.76 and 4.96 nm?, respectively. According to
the Lifshitz—Slyozov theory [10], the Ostwald ripening
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of nanocrystals can also bring about a narrowing and a
shift of the histograms of the size distribution of nanoc-
rystals with an increase in time. However, this process
does not noticeably contribute to our experimental data
and will be discussed below.

After revealing the most probable mechanism of the
nucleation and growth of nanocrystals during isother-
mal treatment of the AlggNi;;Y b, aloy, the experimen-
tal data can be compared with the theoretical results.
For this purpose, we performed computer calculations
and constructed histograms of the size distribution of
nanocrystals for heterogeneous nucleation and diffu-
sion-controlled growth.

In order to carry out these cal culations using formu-
las (2)«5), it is necessary to determine the following
parameters: the number of nuclei N, (which is limited
in the case of heterogeneous crystalization), the time-
lag T (duration of the nonstationary stage), the nucle-
ation rate | at stationary conditions, the constant I, in
the formula determining the stationary rate of crystal
nucleation, and the activation energy Q, for thetransfer
of an atom through the crystallization front surface.

In calculations, we assumed that 1,=3 x 109 m s,
which is typical of the nucleation of nanocrystaline
aluminum in aloys of auminum-nickel—rare-earth
metal systems|[4].

The value of N, was determined from the experi-
mental dataasfollows. Treatment for atime longer than
30 min does not result in a substantial change in the
fraction of the crystalline phase (it is equal to approxi-
mately 0.23). The average nanocrystal size in this case
is approximately 12 nm. Therefore, the number of
nanocrystals, i.e.,, Ny (by assuming that the heteroge-
neous nucleation is accomplished and by ignoring the
possible Ostwald ripening of nanocrystals), is approxi-
mately equal to 2 x 10 m=3, This estimate is in good
agreement with the data available in the literature. For
example, according to Greer [4], the value of N, upon
nanocrystallization can be as large as 10%° m=.

In order to calculate the size distribution of nanoc-
rystals, it is necessary to divide the isothermal treat-
ment time into short time interval s At and then to deter-
mine the number of nanocrystals formed during each
interval At [11]. For the heterogeneous crystallization
when the number N, of active nuclei islimited, we have

N, = 1(t)(1—x_1)(1-Ng'ZN,)At, (6)

where the summation is performed over j from 1toi at
ZN; <N, N; = 0for all the other values of i, and X is

the volume fraction of the material crystallized during
the time interval At. The fraction x; is given by

x, = (41U3)D¥?EN (At +1- ) *2, ()

where the summation is made over j from 1 toi.

The shape and location of the theoretical size distri-
bution depend on the parameters substituted into the
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formulas. A variation in such parameters as Qy, T, and
diffusion coefficient D enables usto best fit the theoret-
ical curve to the experimental distribution.

Now, we compare the above-discussed two experi-
mental size distributions of nanocrystals in the
AlggNi,, Y b aloy subjected to isothermal treatment at
473K for 5and 15 min (Fig. 5) with the theoretical dis-
tributions.

The histograms for both times should be calculated
using the same crystallization parameters. Changes in
the shape and location of the distributions should only
be associated with different treatment durations (5 and
15 min). This requirement appears to be sufficiently
rigid. It was found that both theoretical curves can be
reasonably fitted to the experimental distributionsat the
same parameters Qy and T but at different diffusion
coefficients D (Fig. 5). In order to achieve good agree-
ment between the distributions, the diffusion coeffi-
cient should decrease with an increase in the treatment
time (and, correspondingly, in the fraction of crystal-
line phase formed). Notethat adecreasein the diffusion
coefficient with an increase in the fraction of the crys-
tallized material is quite typical of the primary crystal-
lization in amorphous alloys [7]. It seems likely that a
similar phenomenon would be observed in our case. A
comparison of the experimental and calculated data
demonstrates that, in the AlggNi,; Y b; amorphous aloy
at 473 K, the effective diffusion coefficient of Ni and
Yb is equal to 1.4 x 1071® m? s and the time-lag is
150 s. Since the diffusion coefficient of nickel is con-
siderably larger than that of ytterbium, it is assumed
that the nanocrystal growth is limited by the diffusion
rate of ytterbium. Then, it is this ytterbium diffusion
that is determined by the aforementioned diffusion
coefficient. It should be noted that Hono et al. [12] stud-
ied the crystallization of alloysinthe AlI-Ni—Ce system
and observed an increase in the Ce concentration near
growing Al nanocrystals and a uniform distribution of
Ni in the amorphous matrix. Taking into account that
the properties of Ce and Yb atoms are close to each
other, the above assumption as to the ratio between the
diffusion coefficients of Ni and Yb seems to be quite
correct.

Asis clearly seen from Fig. 5, one more difference
between the calculated and experimental size distribu-
tionsresidesin the presence of atail of large-sized par-
ticles in the experimental histograms. Most likely, the
occurrence of large-sized particles can be explained by
the presence of asmall number of the so-called “frozen-
in crystal nuclei” in the initial aloy. The formation of
crystalsfrom these nuclei isfacilitated. Asaresult, par-
ticles begin to grow earlier (prior to the completion of
the time-lag of attaining the stationary size distribution
of subcritical nuclei) and reach larger sizes.

We now analyze the possible contribution of the
Ostwald ripening to the experimental histograms of the
size distributions of nanocrystals. Within the Lifshitz—
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Slyozov theory, the evolution of the crystal size is
described by the equation

s 3 _ 8DOV,C()t
iy = Gl ®

where T is the average particle size, 1, is the initia
average size, V,,, is the molar volume of precipitates, o
is the particle-matrix interface energy, and C() isthe
equilibrium solubility of a component far from a parti-
cle. The maximum growth rate related to the Ostwald
ripening is given by

(dr/dt), . = (8DOV,,C())/(27TRTr?).  (9)

The maximum growth rate due to the Ostwald ripen-
ing can be estimated from Eq. (9) as approximately
0.2nm/h (at 473 K, r = 4 nm &fter the treatment for
5minand D = 1.4 x 10* m? s%). At r = 5.5 nm (after
treatment for 15 min), the maximum growth rate isless
than 0.03 nm/h. It is seen that these rates are immaterial
for the considered time interval of the formation and
evolution of the nanocrystalline structure (treatment
times shorter than 60 min). Ardell [13] introduced the
correction for the volume fraction of precipitates into
Eq. (8). He derived an eguation that differs from the
Lifshitz—Slyozov equation in the parameter K, which
depends only on the volume fraction of precipitates,
thatis,

23 23 _ K§D0Vmc(°°)t
°©™ Mg RT

Notethat K =1 at azero volumefraction of precipitates,
K = 4 at the fraction of the crystalline phase formed
upon treatment of the studied alloy for 5 min, and K =
7 a a fraction of 15%, which approximately corre-
sponds to the fraction obtained after treatment for
15 min in our case. Then, the maximum growth rates
due to the Ostwald ripening of nanocrystalsin the alloy
after treatment for 5 and 15 min are less than 1 and
0.2 nm/h, respectively. It isworth noting that these esti-
mates are too large, because the diffusion coefficient
decreases with an increase in time [in the present work,
the dependence of the parameter a in the equation
dr/dt = (a/2)(D/t)Y? on the fraction of the crystalline
phaseis neglected and this parameter istaken to be con-
stant and equal to unity]. The aboverates can be consid-
ered upper estimates (upon treatmentsfor 5 and 15 min)
of the instantaneous growth rate, which decreases with
anincreaseintime. Therefore, even with due regard for
the K parameter related to the volume fraction of pre-
Cipitates, these rates, in our case, do not affect the evo-
lution of the size distribution of nanocrystals.

Furthermore, in the framework of the Lifshitz—Sly-
ozov theory, it is assumed that the system isin equilib-
rium and the formation and growth of particles of the
second phase at the expense of the matrix do not occur.
Consequently, the change in the nanocrystal size dueto
the Ostwald ripening within the Lifshitz—Slyozov the-

(10)
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ory can become substantial after completion of the
nanocrystal growth from the amorphous phase when
the nanocrystal—-amorphous matrix systemisin ameta-
stable equilibrium. In order for the Ostwald ripening to
proceed, this equilibrium should be retained for a suffi-
ciently long time and should not be accompanied by
further crystallization of the amorphous matrix. Note
that the size distribution of particles in our work was
obtained at the stages when the metastabl e equilibrium
between the nanocrystalline and amorphous phases was
not attained and the fraction of nanocrystals continued
toincrease.

Therefore, nanocrystal nucleation during devitrifi-
cation of the AlgNiy;Yb; amorphous aloy occurs
through the heterogeneous mechanism and from fro-
zen-in crystal nuclei. Since the nucleation occurs
through the heterogeneous mechanism, questions arise
as to the origin of the centers of the heterogeneous
nucleation and to the conditions and time of their for-
mation. In [4, 7], it was assume that a certain set of sub-
critical nuclei can be formed according to the heteroge-
neous mechanism (at higher temperatures) during the
preparation of an initial amorphous aloy (i.e., during
guenching of the melt). These nuclei can serve as cen-
ters of heterogeneous nanocrystal nucleation upon sub-
sequent heating. Certainly, the stationary distribution of
these nuclei can be attained only for a certain time

(time-lag).

5. CONCLUSION

Thus, it was demonstrated that the nanocrystalline
structure with nanocrystals 5-12 nm in size is formed
in the case of controlled crystallization of the
AlgNi;;Yb; amorphous aloy. The nanocrystals are
aluminum particleswhich, asarule, are free of defects.
However, some nanocrystals consist of twinned regions
and contain dislocations. The average nanocrystal size
and the fraction of the crystalline phase increase with
an increase in the isotherma treatment time. The
growth rate of nanocrystals is maximum at the early
treatment stage and then decreases. The nanocrystals
are formed according to the mechanism of the nonsta-
tionary heterogeneous nucleation and from frozen-in
crystal nuclel. The time-lag of attaining the stationary
size distribution of nuclei and the diffusion coefficient
of ytterbium in the amorphous alloy were determined
by comparing the experimental and calculated size dis-
tributions of nanocrystals.
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Abstract—The differential magnetic susceptibility x4(H) of Y Ba,Cuz;0; _, polycrystalline samplesis studied
experimentally in fields H < 150 Oe. The empirical x4(H) dependenceis determined. The results are explained
on the basisof the critical -state model of a Josephson medium with hypervortices. © 2001 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

The interest in the magnetic properties of granular
high-temperature superconductors (HTSC) has not
subsided [1-3]. This is due not only to their practica
importance but also to the fact that the microscopic pat-
tern of the magnetic field penetration into a granular
HTSC material isnot completely clear at present. Poly-
crystalline granular HTSC materials with Josephson
(weak) links between granules display a number of
anomalous properties in weak magnetic fields of
strength H < 10-50 Oe; for example, nonlinearity and
the absence of magnetization hysteresis are simulta-
neously observed in experiments in this region [4-7].
This contradicts both the Meissner effect (linear mag-
netization) and various modifications of the model of
the critical state [8], because this model presumes the
existence of hysteresis. Other models of magnetic prop-
erties of polycrystalline HTSC materias, such as the
model of a superconducting glass [9, 10] and the
Josephson loop model [4, 11, 12], alsofail to providean
adequate description of experimental resultsand cannot
resolve the above-mentioned contradictions.

The drawbacks to the models are manifested most
clearly in the description of the spectrum of magnetiza-
tion harmonics, which can be obtained experimentally
by applying a modulated magnetic field to an HTSC
[11, 13, 14], aswell as in the description of harmonics
in the current—voltage characteristics (IVC) of HTSC
materials [15, 16].

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The polycrystalline Y Ba,Cu;0; _, (YBaCuO) sam-
ples were prepared in the form of pellets (nos. 1-3) d =
20mmindiameterandl,; =2.4,1,=3.4,andl;=2.1mm
in thickness using conventional ceramic technology.
Annealing was carried out at atemperature of 950°C in
oxygen. The superconducting transition temperature T,
of the prepared sampleswas 92 K. The samples were of
densities p, = 4.34, p, = 3.80, and p; = 2.81 g/cm?. We

used the two-coil compensation method of magnetic
susceptibility measurements [5]. A sinusoidal signal
from a GZ-118 generator (with the harmonics coeffi-
cient 0.005%) wasfed into the input induction coil. The
output response signal was fed into the input of a selec-
tive voltmeter. Theresponse signal can bewritteninthe
form[11, 13]

£(t) = NS M)

Here, M = (1/V) Y MdV isthe magnetization averaged

over the sample volume V, Sis the average cross-sec-
tional areaof the sample, N isthe number of turns of the
compensation coil, and P = 41t x 10~ H/m. In the mea-
surements of the first harmonic in the response signals
of YBaCuO polycrystals in a constant magnetic field
Ho, the amplitude of field modulation was h = 0.005 Oe
a afrequency of 2 kHz. For such a value of the field
modulation depth, the amplitudes of higher harmonics
were at the noise level; therefore, they could be disre-
garded. In this case, the in-phase component of the emf
of the first harmonic in the response signal from the
sample was proportional to the differential magnetic
susceptibility [13]:

€1(t) = HoNSwhx4(Ho) sin(wt), )

where w is the frequency of the varying magnetic field,
histhe amplitude of field modulation, and x4(H,) isthe
differential magnetic susceptibility of the samplein the
field Hyp. The magnitude of the first-harmonic amplitude

g =[(e)° + (8.1.)2]112 of the response signal from an
HTSC sample was detected with the help of a V6-9
selective voltmeter. The separation of the in-phase (&))

and the 90°-out-of-phase (&;) components of the first

harmonic was carried out using the synchronous detec-
tion method with the help of a UPI-2 lock-in amplifier.
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The dependences &,(Hy), €1 (Hy), and €7 (H,) were
investigated at T = 77 K in liquid nitrogen. The sample
was cooled in a zero magnetic field to liquid-nitrogen
temperature and exposed to a constant magnetic field
varied slowly from zero to +H,,,, then decreased to

—H e and then increased again. The g,(H,), €; (Ho),

and € (H,) dependences were measured with a step of
10 Oein aconstant magnetic field up to H,,, = 150 Oe
and with astep of 100 Oein stronger fields. In all cases,
the varying, constant, and slowly varying fields were
paralel to the sample axis. The magnetic field of the
Earth was compensated for with the help of asystem of
Hemlholtz coils. The error of the first-harmonic mea
surements of the response signal was less than 3%.

3. EXPERIMENTAL RESULTS OF THE STUDY
OF THE DIFFERENTIAL MAGNETIC
SUSCEPTIBILITY OF YBaCuO POLYCRYSTALS

The obtained results are presented in Figs. 1 and 2.
An analysisof €; and €; as functions of the constant
field proved that the values of these quantities decrease
rapidly upon an increase in the magnetic field from 0 to
30 Oe. Upon further increase in the field, €; and ¢;

smoothly attain saturation. The value of €; isequal, on
average, to less than one tenth of the corresponding in-
phase component €; . The irreversible behavior of the

dependences &;(H,), €;(Ho), and € (Ho) is observed
only when the maximum field exceeds a certain value
H;i.r, which depends on the technological conditions of
sample preparation.

Taking into account the results obtained on the dif-
ferential magnetic susceptibility of YBaCuO polycrys-
talsfor h =0.005 Oe and the theoretical concepts devel-
oped in [4-6, 9-18], it was found that for the descrip-
tion of the magnetic properties of the investigated
samples, the most suitable expression for the amplitude

of the harmonic €] (t) = €; (Ho,, h)sin(wt) is

U U

. g B U

€1(Ho, h) = WoNSwh[A + ———], (3)
O cos® EEE
[ |:H*

whereA, B, a, and H* arethe parameters characterizing
the polycrystal. The quantity A is apparently responsi-
ble for the Meissner screening by granules of the poly-
crystal. Using the least square technique, we deter-
mined the values of these parameters for each sample.
The results are presented in the table.

The error in determining the parameters A, B, H*,
and a amountsto lessthan 5% (A and B are dimension-
less quantities). The average value [A& 2.0. It follows
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from Eq. (3) that the initial magnetization curve can be
described by the expression

M = AH + BH*tanhEl%E. 4)

4. THEORETICAL MODEL

The model describing the penetration of a time-
dependent magnetic field into a weak-link system of a
granular HTSC material is based on the concept of the
critical state of a Josephson medium. It is assumed that
the carriers of supercurrent in the subsystem of weak
intergranular links of the polycrystal are in a coherent
state (Josephson medium; see, for example, [9-11, 17,
19]). This coherent state corresponds to the order

parameter (wave function) W = ./n€®, where n is the
effective concentration of supercurrent carriersand @ is
their phase. Let us consider an HTSC sample placed in
an external magnetic field of strength H. If H < H;,
(Heyy isthe lower critical field of weak links), then the
static magnetic field penetrates into the array of weak
links to the Josephson depth A; ~ 0.01-10 mm for an
HTSC[9, 10, 17, 20-23] and no Josephson vortices are
formed. An exact estimate of the value of H,; has not
yet been obtained. The reported values range from
0.001 to 100 Oe (see, for example, [10, 17, 19]). The
magnetic flux trapping by the sample is possible in the
case of the pinning of formed vortices. If we take for
Hgy the irreversible-magnetization field H;, of the
HTSC material (table), we obtain the following results.
The values of A;, Hej, and j; are connected through
therelation [20-23]

4. . .
Hey = .,_.[)\JJCJ OAjjes- %)

Assuming that j.; ~ 0.1-10 A/cm? [10], we obtain an
estimate of A; ~ 1-10° cm, which contradicts the avail-
able data (A; ~ 0.01-10 mm). We must assume that
either jo; ~ 10°-10° A/cm? or Hgy; ~ 1010 Oe. The
latter corresponds to the model of hypervortices [17,
19]. For Hg; ~ 10 Oe, the hypervortex diameter
~0.5 mm corresponds to macroscopic sizes. The fol-
lowing analysis will be based on the model of hyper-
vortices.

In order to describe the penetration of atime-depen-
dent magnetic field into a subsystem of weak intergran-
ular links, we will use the concept of the critical state.
The varying magnetic field penetrates into the sample
in the form of hypervortices and, in accordance with
Maxwell’s equations, induces an electric field of
strength E in the system of weak links. This field pro-
duces a superconduction current of density j, which
screens the external magnetic field.

This effect can be described by Maxwell’s equation,
which is used in describing the critica state of type Il
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superconductors with alarge number of centersthat pin
Abrikosov vortices (see, for example, [8, 18, 20, 21]):

curlH = j%. (6)

According to models of the Josephson medium, the
screening supercurrent density j [see EQ. (6)] must be
proportional to the Josephson critical current |5, whichis
defined by the Ambegaokar—Baratoff formula[20-23]

_ A(T) A(T)
o = SR tanh[ZKT] @)

Here, A(T) is the superconducting energy gap at tem-
perature T, e is the electron charge, k is Boltzmann's
constant, and R, isthe normal resistance of the junction
(R, = pn(1/9), with p, being the resistivity and | and S
being the length and the cross-sectional area of the
junction, respectively).
The current j screening the magnetic field in acylin-

drical sampleis defined as

00

>— ®

| = [ [Sn(ne/®g) 00
oo, |00

Here, the angle brackets denote averaging over al
Josephson junctions in the sample, ® = §AdI is the

magnetic flux penetrating into the samplein the form of
vortices (Josephson vortices or hypervortices), A isthe
vector potential of the magnetic field (the magnetic
field is concentrated in a vortex), ®, = /e = 2.07 x
1077 G cm? is the flux quantum, © is the phase of the
screening current, and ¢ is the polar angle of the cylin-
drical system of coordinates. In accordance with
Eq. (7), the Josephson critical current density is

. _ AT A(T)
Jeo = 4epnrtanh[2kT}’ ©)

where p,, is the resitivity of the Josephson medium in
the normal state and r is the radia coordinate in the
cylindrical sample. Indeed, an annular layer of radiusr,
width a, and height b has a resistance R = p(2rr/ab).
Thecurrent intheringis| ~ /R, and, accordingly, the
current density j = l/ab ~ 1/(2mrtpr). This gives the
following expression for the screening supercurrent
density:

THENLE

_ A 0 A 90 S‘”%Tqap

= ——tanh—r| [——
dep,r

j DkT36

o (10)

A n0An
4nepnrtanhE12kTD'

Here, we assume that [En(mtd®y)|~ 1 and 0P/d¢ =
/D, = =N (N is the number of vortices formed in the
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sample). The sign of d©/0¢ depends on the direction of
variation of the external magnetic field, i.e., on dH/at.

In the vicinity of T, (T < T), in accordance with

Eqg. (10), we have j O 1%?—

C
gaokar—Baratoff formula (7) for I (T)is identical to the
Abrikosov—-Gor'kov formula for the temperature
dependence of concentration n(T) of supercurrent carri-

nA?

Moreover, the Ambe-

ers [21, 23, 24]. Consequently, |Wf O

5 and the
C

screening current in Eq. (10) is given by

j = %(w*mp W *), (11)
Here, W = ./ne® andi2=-1. Inthecylmdrlcal sys

tem of coordinates, the ¢ component j, of the current in
Eqg. (11) isgiven by

_ efind®
Yo = Tor Iy

Equation (6) for thecritical stateinthe caseof along
cylinder has the form

0H, _ efindo
or mr a¢

Thisequation is another form of Eq. (10). In contrast to
formula (10), we must put 00/0¢ = £1 into Eq. (12).
This is due to the fact that 00/0¢p = tN(~H) and n ~
UN(~L/H), because the formed vortices involve a part
of the supercurrent carriers that participate in the for-
mation of the macroscopic screening current. As a
result, the right-hand side of Eq. (12) isindependent of
H. Taking into account Eg. (10), we introduce the nota-
tion

(12)

ehn A

> tanh L= A
4me’p,

EQkTD

In this model, the equation describing the penetra-
tion of the magnetic field into the array of weak linksin
along cylinder (L > R, where L isthelength of the cyl-
inder and Risitsradius; the external magnetic field has
the axial direction), which uniformly fill the cylinder
volume, and an analogous equation for alarge plate (the
magnetic field isdirected along the zaxis parallel to the
plane of the plate) have the form

0H, _ H%90
OH, _ <00
x Moy )

respectively, where 00/d¢ = +1 and 00/dy O +1vl (I >
b, | isthe length and width of the square plateand b is
its thickness).
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The solution to Eqg. (13) with the boundary condi-

tion H(R) = H (the axial externa magnetic field
strength H increases; i.e., 00/0¢ = +1) has the form
DH r>R
I:J s, R
H,(r) = [H-H InF, r<rR (15)
0
0, r<p.
a p

The magnetic field does not penetrate into the region of
the cylinder where r < p = Rexp(—H|/H?®). Using solu-
tion (15), we can write the magnetization of the cylin-
der in theform

S uLaln)
it}

The solution to Eq. (14) with the boundary condition
H,(£b/2) = H (the field also increases) has the form

M = —He Mg (16)

U b
> =
EH’ IXI—2

4
Hz(x)=mH_,-*%g_% osiX<? @D

NIT

DISEID

Here, p = H/j* —b/2 and j* = HY(0O/dy) = TT‘HS isthe

screening current density. It follows from solution (17)
that the magnetization of the plateis

H H
M = —M [ EHE son(H) T D}
_ 1. _1 - :
Here, H, = Ej*b and Mg = QHP' Expression (18) is

vaid for H < H,. For H > H,,
M(H) = M.

(18)

the magnetization is

5. DISCUSSION OF RESULTS

Let us estimate the field HS and the current density
J*. We assume that the effective concentration of super-
current carri ers in weak links (the concentration of tun-
neling pairs)t isn ~ 101°-10%° cmr3, thelengthis| ~ 1-
10 cm, and the mass of a supercurrent carrier is 2m
(misthe mass of afree electron). The results of calcu-
lations are HS ~ 1-20 Oe and j* ~ 1-10 A/cm?. These
estimates are in accordance with our experimental
results (see Section 3) if we assume that H* = HS, as
well as with the results obtained in [4, 10, 12]. Indeed,

1The concentration of supercurrent carriers in YBay,CuzO7_y
granulesis approximately equal to 1021-10%2 cm=3[10].
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Parameters of the investigated Y BaCuO samples
Model parametersin Eq. (3)
Sample number H;., Oe
A B H*, Oe a
1 0.10 0.305 9.7 19 19
2 0.32 0.35 245 19 82
3 0.018 0.15 17 2.3 23

the nonlinear component of dependence in Eq. (4) is
very close to the dependencein Eqg. (16), except for the
region near H = 0. It was mentioned above that the
right-hand side of Egs. (13) and (14) isindependent of
the external field strength H. Thiseffect issimilar to the
one described by the well-known Bean model of the
critical state [8], in which the critical current density is
independent of H. Our results, as well as the results of
many other experimental investigations [10, 12, 25—
27], confirm this conclusion. Bean’s model of the criti-
cal state [8] is successfully employed for describing the
magnetic properties of hard type Il superconductors.
This model predicts the existence of a magnetization
hysteresis for these materials. Our experimenta results
(Fig. 2 and table), as well as the results obtained by
other authors (see, for example, [4, 5, 12, 25]), point
towards the absence of magnetization hysteresis in
Y Ba,Cu;0; _, polycrystalline samples for H < H;,, ~
20-80 Oe. In the model considered in Section 4 and in
the model of hypervortices [17, 19], this effect can be
explained as follows. It was mentioned by us earlier
that the theoretical model presented in Section 4 is
based on the concept of a Josephson medium in which
hypervortices are formed. According to the estimates
obtained at the beginning of Section 4, the hypervortex

R, pQ

200t

150

100

50

1
0 50 100 150

H, Oe

200

Fig. 3. Magnetic-field dependence of the resistance R of a
Y Bay,Cuz0; _ ceramic sample carrying a dc current | =
100 mA at T = 77 K. The arrows show the direction of mag-
netic field variation.
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diameter is of the order of ~10-500 um and embraces a
large number of granules of the polycrystal, whose size
is ~0.1-10 um. This means that continuous or netlike
hypervortices are formed. As the magnetic field
increases and attains a value H,,,, these vortices are
gradually transformed into conventional Josephson
vortices between granules; after the attainment of the
value Hygq by the field, Abrikosov vortices are formed
in the granules. Hypervortices are low-mobility forma-
tions[17, 19]. With increasing magnetic field, the diam-
eter of hypervortices decreases and their number
increases so that they gradually fill the entire volume of
the sample. This process is accompanied by the emer-
gence of and increase in a macroscopic peripheral
screening supercurrent. In a decreasing field, the pro-
cess is reversed; therefore, there is no magnetic hyster-
esisin the sample.

The pinning and motion of Josephson vortices for
H > H,,, are described by the well-known model s of the
critical state, magnetic flux creep, and the viscous flow
of vortices. The magnetic hysteresis and, accordingly,
the flux trapping for H > H;,, take place in the case of
pinning of Josephson vortices by nonsuperconducting
inclusions and by pores in YBa,Cu;0,_, polycrystal-
line samples. This can be explained using the well-
known Kim model of the critical state (j, ~ 1/(Hy +
[H])). The motion of Josephson vortices leads to the
emergence of aresistance, while their pinning leads to
magnetic-flux trapping and to hysteresis of magnetiza-
tion and magnetoresistance. This fact has been con-
firmed by experimental investigations of the magne-
toresistance of HTSC ceramics [28] (Fig. 3). It can be
seen from Fig. 3 that a dc resistance appearing for H =
20 Oe increases with the field and hysteresis is
observed when the field variesin the opposite direction
inthe region of H ~ 30-70 Oe. Asthefield decreasesto
zero, aresidual resistanceis preserved, which gradually
decreases to zero.

Let us estimate the size of a nonuniformity, assum-
ing that a vortex carries a magnetic flux quantum ®, =

2 x 10" Mx. For H;,~ 20 Oe, we obtain a ~ 1 um.

The model considered by us here is basically close
to the models considered in [4-6, 12], in which a
ceramic material is regarded as an aggregate of micro-
scopic current loops containing Josephson junctions.
The only difference is that, in our model, a screening
current loop occupies the entire sample and is inter-
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sected by alarge number of Josephson junctions (weak
links). A magnetic field penetrates into the sample in
the form of hypervortices (in comparison to micro-
scopic current loops carrying a magnetic-flux quan-
tum). The magnetic response of the sample is formed
by this macroscopic screening current alone, as in the
models of thecritical state. We assume herethat therea-
son for the emergence of this macroscopic current is
associated with the penetration of hypervortices into
the bulk of the sample and their transformation into
Josephson vortices.

Asaresult, analyzing the available data, preference
was given precisely to this reason, athough other rea-
sons can also be applicable when describing the mag-
netic properties of granular HTSC materials on the
basis of Egs. (6) and (10)—<12).

Inthe model presented by us here, the emergence of
magneti zation harmonics (a consequence of the nonlin-
earity of the magnetization M(H) given by Eq. (16) or
Eq. (18)), aswell astheir temperature dependence [see
Eqg. (10)], receives a natural explanation. The out-of-

phase component M, of the magnetization harmonics
appears as a result of the magnetic moment relaxation
in the sample, M = M(H, t). This topic will be covered
in our next publication.
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Abstract—The effect of the surface barrier on the surface impedance Z of atype-11 superconductor slab with
afinitethicknessisinvestigated in dc magnetic fields Hg, which are aligned parallel or perpendicular to the slab
plane. It is demonstrated that, in a perpendicular geometry, the surface resistivity p; = ReZ has a maximum
when the depth of penetration of the ac magnetic field is of the order of the dab thickness (size effect). For a
parallel orientation of the magnetic field Hy, the effect of the Bean—Livingston surface barrier manifests itself
as adecreasein the dissipative loss and a change in the field dependence of the surface resistivity characterized
by a magnetic hysteresis. It is shown for thefirst time that, under the conditions of persistent trapped magnetic
flux, the dependence py(Ho) is a decreasing function, which is associated, in particular, with a nontrivial sup-
pression of the size effect. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Investigation into the high-frequency properties of
type-Il superconductors and, especially, the properties
of high-temperature superconductors has attracted the
particular attention of many researchers (see, for exam-
ple, [1-4]). Theresponse of asuperconductor sampleto
an ac magnetic field in the presence of a dc magnetic
field is characterized by the surface impedance, which
depends on the temperature, the strength of the dc mag-
netic field, and the amplitude and frequency of the ac
magnetic field. Examination of these functional depen-
dences can provide important information on the prop-
erties of quasiparticle excitations, density of states, and
vortex-lattice dynamics. The problem of the linear
response of type-Il superconductors has aready been
considered in a number of works (see, for example, [5—
12]). In particular, it was established that, at ac field fre-
guencies w higher than the depinning frequency wy,
vortices move freely and the penetration of the ac mag-
netic field into the sampleis governed by the skin depth
0 [5, 6]. Coffey and Clem [7-9] calculated the surface
impedance of a superconductor in the mixed state with
due regard for the vortex—vortex interaction, magnetic-
flux pinning, and the flux creep. Sonin et al. [10] dem-
onstrated that, in the case when allowance for the non-
local interaction between vortices is included in the
analysis, the penetration of the ac magnetic field into a
superconductor is determined not only by the skin-
layer width but also by another considerably smaller
scale on which the vortex lattice is strongly deformed.
The calculation of the impedance in adc magnetic field
normal to the sample surface provided conclusive evi-
dence that the extra short-wavel ength mode makes the
dominant contribution to the impedance of samples

with a strong surface pinning. It turned out that the
energy of an incident wave corresponds to the short-
wavel ength mode when the motion of the vortex endsis
suppressed by strong surface pinning. Consequently,
the decrease in the contribution of the long-wavelength
mode responsible for the energy dissipation resultsin a
substantial suppression of the ac losses in the range of
sufficiently low frequencies. The inferences drawn in
[10] were experimentally confirmed by Berezin et al.
[12], who examined the field and frequency depen-
dences of the real part of the surface impedance for a
bulk sample.

In the case when the dc magnetic field is aligned
with the sample surface, it is necessary to take into
account the Bean—Livingston surface barrier, which, as
is known, considerably affects the magnetic character-
istics of type-l1l superconductors (see, for example,
[13-15]). Recent studies [16-18] have revealed that the
behavior of the third harmonic of magnetic susceptibil-
ity isgoverned primarily by the mechanism of irrevers-
ibility, viz., bulk pinning or the surface barrier. Thefor-
mation of a vortex-free region near the superconductor
surface due to the Bean-Livingston barrier leads to a
partial screening of the vortex system and a drastic
decrease in the absorption in the ac magnetic field [11].

For the most part, the surface impedance in the cited
works has been calculated for semi-infinite samples,
which, in actual fact, correspond to bulk sampleswhose
sizes considerably exceed the depth of penetration of
the ac magnetic field. However, the investigation into
the nonlinear response of a hard superconductor slab
showed that the real part of the impedance has a char-
acteristic maximum when the wave penetration depth is
comparable to the sample thickness (see, for example,

1063-7834/01/4311-2018%21.00 © 2001 MAIK “Nauka/Interperiodica’
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[19, 20]); i.e., thereexistsasize effect smilar tothe Fis-
cher—Kao effect for normal metals[21].

In the present work, we derived an expression for
the surface impedance of a superconducting slab of
arbitrary thickness without bulk inhomogeneities. In
the transverse geometry when the dc magnetic field is
perpendicular to the slab surface, the linear response
was determined using the equations of two-mode elec-
trodynamics. It was demonstrated that the dependence
of thereal part of the surface impedance on the external
dc magnetic field exhibits a maximum due to the man-
ifestation of the size effect. The behavior of this maxi-
mum was examined at different slab thicknesses and ac
field frequencies. A similar calculation in the paralléel
geometry showed that, in the case when the Bean—Liv-
ingston barrier prevents the penetration of vortices
through the sample surface and the number of these
vortices remains constant, the surface resistivity
decreases significantly and its dependence on the dc
magnetic field is changed.

2. SURFACE IMPEDANCE
OF A SUPERCONDUCTING SLAB
IN A PERPENDICULAR DC MAGNETIC FIELD

Let us consider a superconducting slab of thickness
d (0 < x < d) in a transverse dc magnetic field Hy =
(Ho, 0, 0) (Hy <€ Hp < Hy,), which produces a vortex
lattice with the density n, = Hy/®, (where @, is the
magnetic flux quantum). The ac magnetic field aligned
parallel to the surface of the superconducting slab
brings about the displacement u(x, t) of the vortices
from their equilibrium positions and, consequently, dis-
tortion (tilting) of the vortex lines. The magnetic induc-
tion B; due to this distortion is defined by the expres-
son[7, 11]

B, = (HoDMu—-Ho(V-u) = [VIOH.]]. (1)

It is assumed that the intervortex spacing a satisfies the
condition a < A, where A is the London penetration
length. With this assumption and taking into account
expression (1), the set of equations for the determina-
tion of the mean magnetic field h(x, t) = h(x)exp(—iwt)
inside the slab [h(x = 0) = h(x =d) = H;, H; < Hg] can
be written in the following form:

20°h Jdu
h—A\"— i = Hos>, 2
ou ¢o *a u
— = L] C 3
n3; [J o+, Cur e (3
i = C
j = 4T[roth. 4

Here, c is the velocity of light, n = ®H/C%p, is the
coefficient of viscosity, p,, is the resistivity in the nor-
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mal phase, and Cj, is the renormalized tilt modulus
given by [10]

o H a
C* - 0''0 In—, 5
BT 2 G ©

where & is the radius of the vortex core. It should be
noted that the tilt modulus thus determined is of the
local nature, whereas the long-range intervortex inter-
action responsible for the nonlocality is accounted for
in the Lorentz force acting on the vortex [the first term
on the right-hand side of Egs. (3)] [22]. Under the
assumption that solutionsto the set of equations (2)—4)
are described by the exponential dependence u(x, t) O
h(x, t) O exp(kx — iwt), we obtain the dispersion equa
tion for determining the frequency dependence of the
wave vector k. The solutions to this equation for the
long-wavelength (k;) and short-wavelength (k,) modes
in the frequency range w < w, are represented by the
relationshipst

2 iw
= — 6
A?(00, + 0y) ©
= SH+ o8 ™
®,C* ® H
— 0 244, — 0 2O ] (8)
HoA™n 4TIA' N

By adopting the Maxwell equationsfor deducing the ac
electric field E(x, t) and solving the set of equations
(2+(4), we determine the surface impedance of the slab
in the transverse magnetic field, that is,

41tE(0)
< h(0) 9)

Further analysis will be performed with due regard
for the boundary conditionsfor the vortex displacement
u(x), which characterize the surface quality.

(@) Inthe absence of surface defects, the vortex ends
can freely move along the slab surfaces. The appropri-
ate boundary condition has the form (0u/0x)|, - 4 = O,
which leads to the following formula for the surface
impedance:

Z =

4rir{1-A°k3)
Z= 0k, anh 2
(10)
1-2%k )
LN ey

! Formulas (6) and (7) differ from the corresponding expressions

obtained in [10] in the sign ahead of the k? quantity, because, in
[10], k isthe wave vector.

2001



2020

(Py/Po) x 1078
10

1 1 1 1
0 20 60
HIH,

Fig. 1. Surface impedance of the superconducting slab of
thickness d in a perpendicular magnetic field: (a) real and

(b) imaginary parts. Conditions: d = 200\, pg = 4T\ /c?,
g = 1 Hz, and Hg is determined according to formula (21).

| |
100 140

Specifically, the surface resistivity p, = ReZ for a semi-
infinite sample (d — ) is determined by the flux-
flow resistivity p; = ®H/c?n [6]:

_ (2nppw)™?

: (1

S

Here, p = wy/(w, + wy). For asufficiently dense vortex
lattice [Hy > ®yIn(alr.)/4TtN?], we obtain g = 1. This
implies that the last term in relationship (3) can be
ignored. In this case, the bulk losses are determined
only by the long-wavelength mode. As follows from
formula (10) for the surface impedance Z, the surface
resistivity of a superconducting slab of finite thickness
isanonmonatonic function of the dc magnetic field H,
which reaches a maximum in the dc field H, = H* at a

thickness d 0 ki (H*); i.e., the size effect takes place.

The size effect revealed inthiscaseissimilar tothe Fis-
cher—Kao effect for normal metals[21]. Its analog was
also observed in hard superconductors (see, for exam-
ple, [19]).

Figure 1 displays the calculated field dependences
of the real and imaginary parts of the surface imped-
ance for a superconducting slab of thickness d = 200\
(A = 1300 A) without surface pinning. The ac field fre-
quency w is equal to 107 Hz. These conditions can be
realized, for example, in YBaCuO crystals at tempera-
tures close to the melting temperature of the vortex lat-
tice. Lutke-Entrup et al. [4] proved that, under these
conditions, the depinning frequency related to both
bulk and surface pinning of vortices does not exceed

10" Hz. The maximum surface resistance R = pg _ /Xn
(where x,, = 2rad/c? is the surface reactance in the nor-

mal state) depends on the slab thickness d/A and the ac
field frequency. As the ratio d/A increases, the maxi-
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R
0.40

0.35

0.25

0.151

0.05
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d/N

Fig. 2. Dependences of the maximum surfaceresistanceR =
Ps, .. IXn (Wherex, = Znunllcz) on the dlab thickness.

mum surface resistance R tends to a constant value that
is independent of the superconductor parameters and
the w frequency (Fig. 2). Fisher et al. [19] obtained a
similar dependence of the surface resistance R for hard
superconductors in the framework of the nonloca
model of the critical state; however, the maximum
value of Rwas approximately halved.

(b) We now dwell on a strong surface pinning of
vortex line ends. From the set of equations (2)—(4) with
the boundary condition ul, - o 4 = 0, we deduce the rela-
tionship

_ 4m WA
C2

k
(ki—kg)gl—xzki)kzcothid

£ 2

) (12)
2,2 k,dr7

At d — oo, the surface resigtivity of a semi-infinite

sample [10] can be found from the real part of the

impedance Z in relationship (12) according to the for-

mula

_ (@rppw) e

Y (13)

S

As can be seen from this formula, the absorption in the
case of strong surface pinning decreases considerably
(owing to the smallness of the parameter ww, < 1).
This effect is explained by the fact that the amplitude
ratio of the long-wavelength and short-wavelength

modes is small: h,/h, O . Jw/w, < 1 [10]. Conse-
guently, the contribution of the long-wavelength mode
responsible for the energy dissipation in the supercon-

ductor bulk becomes small compared to that in the case
of weak surface pinning. The numerical calculations
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demonstrated that the py(H,)function for superconduct-
ing slabs of finite thickness also has a maximum. How-
ever, the width of this maximum (with respect to the dc
magnetic field Hy) is rather large. As a result, the size
effect for superconducting slabs with strong surface
pinning is weakly pronounced.

3. STRUCTURE OF THE MIXED STATE
OF A SUPERCONDUCTING SLAB
IN A PARALLEL DC MAGNETIC FIELD

Now, we consider the case when the dc magnetic
field Hy= (0, O, Hy) isdirected parallel to the slab sur-
face. In the continuous approximation, the mean mag-
netic field inside the slab is determined by the equa-
tion[9]

H—)\Zdz—H

e = Pyng(X).

(14)

Here, ny(X) isthe averaged vortex density, whichisnon-
zero in the region with a zero current density (j(x) = 0).
The solution of Eq. (14) yieds

Ho

HOX) = oz —ay/a]

Ccosh[ (x—di2+a)/], Osxsdi2-a  (15)

xM, di2—asx<d/l2+a
Heosh[(x—d/2—a)/A], d/2+as<x<d.

Inthiscase, the vorticesarelocated in the central region
of the film:

Ho/ P d d
cos[(dz—a)A] 2 asxs3+a (19

No(X) =

The parameter a, which corresponds to the half-width
of the region occupied by the vortices, isrelated to the
trapped magnetic flux ® = Nd, (where N isthe number
of vortices already entered the dlab) by the expression

2aH,

¢ = oHaz-aN

(17)

The distribution described by relationships (15)—17) at
a specified ® determines the set of metastable statesin
the field range Ho (®P) < Hg < Hey(P). Thefield He (D),
in which the barrier to the vortex penetration (entry)
becomes zero, can be found from the condition of the
equality between the current density at the slab surface
and the depairing current density: o =
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cdy/(12./312EN2). Intheimplicit form, thisfield can be
determined using the equation
He.  d
® = 2Hg, [1-—tanh=<
Hen

2\
(18)

d_ OHs 1o 90
X [2 )\arctanEHentanhz)\D]
Here, H, is the field attributed to the entry of the first
vortex, that is,

_ ATTAj
s ctanh(d/2A)’
We assume that the vortices begin to leave the dlab
when the distance between the boundary of the region
occupied by the vortices and the dab surface (a) is of
the order of the vortex coresize§. Inthiscase, the mag-

netic field which suppresses the barrier to the vortex
exit can be represented in the form

dcoshé&/A
d-2¢ -
The intersection point of Hg,(®) and Hg (P) specifies

(in our model) thefield H, O ®y/&2. For asemi-infinite
sample (d — o), formulas (18)—(20) take the form

(19)

He(®) = (20)

[23]
He = JB*+HZ, H, = Bcosh%,
21
4TI 21
H, = :
C

where B = ®/d is the induction.

4. A SUPERCONDUCTING SLAB
IN AC MAGNETIC FIELDS (A PARALLEL
GEOMETRY)

Let us now consider a superconducting slab with a
fixed trapped magnetic flux ® in a magnetic field Hy,
which is aligned with the slab surface and satisfies the
condition

He(P) < Hp< Heo(P). (22)

In the absence of bulk pinning, the vortices are distrib-
uted with the density ny(x), which is defined by formu-
las (16) and (17). In the case when aweak ac magnetic
field Hyexp(—wt) is applied paralel to the dc field H,
and thetotal field satisfies condition (22), the number of
vortices in the slab (and, correspondingly, the flux ®)
remains unchanged. Under the action of an alternating
current, the vortices inside the slab begin to move,
which, in turn, brings about a change in their density
and, consequently, displacement of the vortex region
boundary. In the geometry under consideration, the
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equation for the coordination part of the ac magnetic
field h(x)exp(—iwt) inside the slab has the form

h(x)—)\z%—%m(x) - 0. 29)

The change in the vortex density n,(x, t) = n,(X)exp(—
iwt) due to the response of the sample to the ac mag-
netic field can be obtained from the continuity equation
and the equation determining the vortex displacement
u, along the x axis:

on; 0. 0un _

3t Taxdogo = O (24)
ou, @,
n=2 = Zix ). (25)

It should be noted that the vortex motion equations (3)
and (25) involve the superconduction current density
j(x, t). Thisimplies that the normal current component
Jn isignored, which isvalid in the range of sufficiently
low frequencies. Coffey and Clem [7, 9] considered the
contribution from the normal component of the current
density in the framework of the two-fluid model.
Within this model, the Lorentz force acting on the vor-
tex isgiven by

Oy, Dy,
F=—=2s+n). (26)
However, as was shown by Placais et al. [22], expres-
sion (26) is incompatible with the Onsager equations
and the inclusion of j, in the interaction with vortices
would be more correctly performed in terms of the
microscopic theory.

The set of equations (23)—25) can be easily reduced
to asole equation for the field h(x) that is,

2d°h(x) , d 7 PoNo dhry _

h(x) A a2  dxtaminodd ~

0. (27)

Note that the field distribution is symmetric with
respect to the midplane of the film. Therefore, Eq. (27)
should be solved in the vortex-freeregion 0 < x < d/2 —
a(l) andthevortex regiond/2—a<x< d/2+a(ll) with
the boundary condition h(0) = H; and the matching
conditions at the boundaries of these regions:2

dh, i®din, Odh,

0
h =h , —=EIL+——%
| ”lg—a dx O 4nnwXd dx

2 The second condition (28) is the condition for continuity of the
tangential components of the electric field, because the supercon-
ductor in an alternating field is characterized by the conductivity

0, = cAl4nwX in the Meissner state and o) = o/(1 +
i 2 ng/4meon)?) in the mixed state.

(28)

q
5-a
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The solution of Eqg. (27) hasthe form

—d/i2+a
h(x) = Hl%oshXT+

x (coshb—ysinhb) ™,

x—d/2+a]

sinh
Y » Do)

H;,  cosh[(x—d/2)/a]

M) = @) cosb—ysnhb © O
_d/i2—-a _ il BUZ
b = 0 _)\%H)\coshtﬂ ’ @D
= [T n2 g
4rined) a A coshb

As was noted above, when the number of vortices is
constant, the boundary of the region occupied by the
vortices harmonically varies with time:

a(t) = a+a;exp(-iwt),

where a, is determined from the condition ® = const
according to the formula

iPyH, tanh(a/a)
4rtnwa(coshb —ysinhb)

a =

From the above solution, we obtain the surface imped-
ance of the superconducting slab of thickness d in the
parallel geometry:

_ 4miwA y—tanhb

2= 72 1-yanhb

(32)

5. RESULTS AND DISCUSSION

Now, we analyze the behavior of the surface imped-
ance Z in different limiting cases.

(1) According to formula (32), the surface imped-
ance Z in the Meissner state (i.e., in the case when a =
0) hasthe form

ATH WA tanh d

Z=- =
2 2\

(33)

At frequencies w< 10* Hz under the condition A/3, < 1
(where &, isthe skin depth in the normal state), the nor-
mal component j,, of the current density can beignored.
In this case, as follows from relationship (33), the
response of the slab to the ac magnetic field hasanearly
inductive nature [7].

(2) Let us now compare the expressions for the sur-
face impedance of the superconducting slab in the
mixed state for parallel [formula (32)] and perpendicu-
lar [formulas (10)—<12)] orientations of the dc magnetic
field. If the vortex-free region is absent (b = 0), the sur-
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face impedance defined by formula (32) coincides with
the corresponding expression for the perpendicular
geometry. Analysis of formula (32) a b # 0 demon-
strates that the occurrence of the vortex-free regions
associated with the Bean—Livingston surface barrier
results in the following: (i) substantial suppression of
the dissipative loss [11] and (ii) changes in the fre-
guency and field dependences of the surface resistivity.
In particular, for thick slabs (d — ) and a small
width b(H,, B) of the vortex-free region when

A A |w
|—<b(HOlB)<11 I—_/\/;b,

thereal part of theimpedance ReZ is determined by the
expression

(34)

(2P ) 2N

c 02,0

Inthisexpression, the surfaceresistivity islessthan that
determined by relationship (11) for the perpendicular
geometry by afactor of A%/1%b? < 1. For example, the
parameter A?/12b? = 1 is of the order of 10 for the
superconducting slab of thicknessd =10°A =1 mmat a
frequency w= 10" Hzand H,=H,= 0.4 T. Aswas noted
by Sonin and Traito [11], the frequency dependence of
the ps function for asemi-infinite sampleistransformed
from p O wY? in the perpendicular geometry to pg O
w¥2in the parallel geometry.

ps = ReZ = (35)

(3) Another important feature of the surface barrier
manifests itself in the fact that the surface resistivity
depends not only on the ac field frequency w and the dc
magnetic field Hy but also on the trapped magnetic flux
@. Thelast circumstance |eadsto magnetic hysteresis of
the resistivity pJ(Ho). The characteristic hysteresis|oop
ps(Hy) of the superconducting slab in a magnetic field
Ho varying in the range Hg, < Hp < Hogyy (P4 > @) iS
displayed in Fig. 3. In the field ranges Hg,; < Hp < Hent
and He < Ho < Henp, the number of vorticesin the slab
remains constant and the surface resistivity py(Hg, ®;)
reversibly varies according to formula (32). When the
magnetic field decreases from Hg,; to He,,, the vortices
leave the slab. In this case, the vortex-free regions are
virtually absent and the dependence py(Hy) is described
by formula (32) at b = O (the dashed linein Fig. 3). As
the magnetic field increases from Hg,, to He,4, the vor-
tices enter the sample and the curve of the surfaceresis-
tivity in this range coincides with the envelope of the
family pJ(Ho, ®) at the points Hy = Hg (D) (Fig. 4). It
should also be noted that, at a fixed trapped magnetic
flux @, the surface resistivity p(Hy) is a decreasing
function in the field range He(®) < Hy £ Hg(P)
(Fig. 4). In this range, the function p{(H,) for the per-
pendicular orientation of the magnetic field has a max-
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Fig. 3. Hysteresis of the surface resistivity of the supercon-
ducting slab in a parallel magnetic field with due regard for
the Bean-Livingston barrier.

(Py/Po) * 107°
7

6

kLL

0 02 04 06 08 1.0
HIH,

Fig. 4. Plots of the pg(Hg) function for the superconducting
slab in a paralldl magnetic field (with due regard for the
Bean-Livingston barrier) at different trapped magnetic

fluxes ® (d = 200M, pg = 4mtap)/c?, and wy = 1 Hz). The
arrow shows the direction of increase in the magnetic flux.

imum, whereas the interaction of vortices with the sur-
face (i.e., the Bean—-Livingston surface barrier) in the
parallel geometry suppresses this effect.
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Abstract—An electrodynamic equation is derived for the magnetic field of an isolated Pearl vortex moving
along an arbitrary trgjectory in an ultrathin film of a magnetic superconductor. This equation is valid for any
type of magnetic order in the magnetic subsystem. The magnetic structure of an isolated oscillating Pearl vortex
isinvestigated in a thin magnetic superconductor film. Oscillations of the vortex and the presence of the mag-
netic subsystem are shown to lead to a significant renormalization of the vortex field in comparison with the
Pearl solution. New phenomena of inverted satellites are predicted in which an inverted precursor appearsin
front of the vortex and an inverted wake is formed behind the latter at a distance of the order of 10A4; from the
vortex center. These phenomenacan be observed in magnetooptical experiments. © 2001 MAIK “ Nauka/Inter-

periodica” .

1. There are many magnetic superconductors that
show surprising and nontrivial properties[1-3]. Super-
conductivity and magnetism have been found to exist in
ternary compounds[4] and high-temperature supercon-
ductors such as REBaCuO and RECuO (RE is a rare-
earth ion). One of the most important properties of
HTSC materials is the fairly strong antiferromagnetic
correlation of copper-ion spins exhibited by them in
CuO, planesin the superconducting state [5].

An external magnetic field penetrates into a bulk
type Il superconductor in the form of Abrikosov vorti-
ces [6] and magnetizes the magnetic subsystem at dis-
tances of the order of the London penetration depth A
around the normal core of aflux vortex. A fairly heavy
dc or ac electric transport current flowing through a
superconductor in ararefied mixed state suppresses flux
vortex pinning, with the result that the vortex array or
nearly isolated Abrikosov vortices are forced to move
uniformly or to oscillate [7]. High-power microwave
radiation can also give rise to harmonic oscillations of
the Abrikosov vortex array or isolated flux vortices.

Krivoruchko [8] investigated the magnetic structure
of an isolated Abrikosov vortex moving uniformly and
slowly through a bulk magnetic superconductor with a
thickness along the magnetic field of d > A; he wasthe
first to predict the formation of an inverted wake at
large distances (of the order of 10A) behind the vortex.
In[9], it wasfirst predicted that if anisolated Abrikosov
vortex oscillates in a bulk magnetic superconductor, an
inverted precursor arises before this vortex, an inverted
wake is formed behind it, and they are located at adis-
tance of the order of 10A from the vortex center.

Aswasfirst pointed in [10], vortices move under the
action of the Lorentz force, which results from the

superconduction current. In a highly rarefied mixed
state, the vortex density islow and the distance between
themisd,> A. Inthiscase, thereisno e ectric transport
current in the bulk of the superconductor (because of
the Meissner effect) and the current flows only through
the skin depth near the interfaces. It isin the skin depth
that the Lorentz force acts on aflux vortex. Since avor-
tex line is continuous along the z axis in the bulk of a
superconductor far from its surface, the vortex will
move uniformly or oscillate; therefore, its motion can
be considered two-dimensional.

The solutions to the relevant two-dimensional prob-
lemsfoundin[8, 9] arevalid only inthe bulk of asuper-
conductor or, more specificaly, in the regions at dis-
tancesL, > A from theinterfaces, where the system can
be assumed to be approximately two-dimensional. In
the vicinity of the air/superconductor surface, these
solutions should be modified and it is not clear whether
the inverted satellites will persist in rigorous solutions
to three-dimensional problems; this issue needs further
consideration. At the sametime, it isvery difficult, if at
all feasible, to observe inverted satellites formed near
an Abrikosov vortex in the bulk of a superconductor. As
wewill seefurther on, this problem does not arisein the
case of athin superconductor film.

It should be noted that the time dependence of the
magnetic field of an Abrikosov vortex is essentially dif-
ferent in the cases of its uniform motion [8] and har-
monic oscillation [9]. Inthe former case, the configura-
tion of a magnetic field with an inverted wake does not
vary in time, whereasin the latter, the structure of both
theinverted precursor and theinverted wakeisradically
altered over an oscillation period.

1063-7834/01/4311-2025%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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An external magnetic field penetrates in the form of
two-dimensional Pearl vortices[11-13] into athin mag-
netic superconductor film (with a thickness of d < A)
and magnetizes the magnetic subsystem at distances of
the order of the effective Pearl penetration depth A4 =

A?/d > A around the normal core of avortex in the film.
When a fairly heavy dc or ac transport current flows
through a superconductor film in the rarefied mixed
state, virtually isolated Pearl vortices are forced to
move at aconstant velocity v or to oscillate with atime-
varying velocity v (t). The velocity of a vortex is pro-
portional to the transport current that produces the mag-
netic field. It should be noted that since Maxwell’s
equations are linear (in the case where the superposi-
tion principle holds), the corrections to the entire mag-
netic field of a Pearl vortex that are due to the transport
current and that are proportional to the vortex velocity
v or v(t) do not affect the sol utions obtained; these cor-
rections are negligibly small even in comparison with
the magnetic field of the inverted satellites of the Pearl
vortex (because v/ic < 1 and v (t)/c < 1) and can be
ignored.

In [14], the magnetic structure of an isolated two-
dimensional Pearl vortex moving uniformly in a thin
magnetic superconductor film was investigated using
an equation derived for the vector potential A(r, t) and
it was shown that the vortex motion and the presence of
the magnetic subsystem give rise to a significant renor-
malization of the vortex field in comparison with the
Pearl solution. It was predicted that an inverted wakeis
formed behind a moving vortex at a distance of the
order of 10A4; from its center and that this phenomenon
can be observed in magnetooptical experiments.

It isalso of interest to investigate the magnetic field
of the Pearl vortex in a more intricate case where the
vortex motion isdifferent from being slow and uniform.
The magnetic structure of anisolated Pearl vortex oscil-
lating harmonically in athin film of a magnetic super-
conductor has not yet been analyzed. In this paper, we
perform this analysis in the case of an ultrathin film
whose thickness along the external magnetic field is
d < A. In the geometry in question, the problem is
reduced to the case of aPearl vortex in aninfinitely thin
two-dimensional film, where the physical vortex char-
acteristics, such as the field and the current, can be
assumed to be independent of the coordinate zalong the
normal to the plane of the film.

We assume that the system under study is two-
dimensional with respect to both the superconducting
and magnetic properties; therefore, the magnetic per-
meability of the film can bewrittenaspu(r —r', t—t") =
H(p - p', t=1)8(z— 2), wherer = (x,y,2), p = (x,Y),
and 6(2) is the Dirac o function. In the coordinate sys-
tem chosen, the xy plane coincides with the film plane
and the magnetic field of the vortex is parald to the
zaxis.

The conduction electrons are assumed to interact
with the spin subsystem via the electromagnetic
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(dipole) field, while the spin—spin exchange interaction
isignored. We use the London approximation, in which
the structure of the vortex core is of no importance,
because A > & and even A4 > € (€ is the correlation
length). When considering isolated vortices in a thin
film in a highly rarefied mixed state in the range of
magneticfieldsH,, <B <H,, (Hy and H, arethe lower
and upper critical fields of the superconductor, respec-
tively), we actually suggest that the separation between
vorticesisd, > A 4. However, sinced < A, thetransport
current flows through the entire thickness of the film.

We use akinematic approach, inwhichit is assumed
that the dynamic equations for the Pearl vortex have
already been solved with allowance for pinning and
various processes of dissipation [7, 15] and only those
solutions are chosen that correspond to harmonic oscil-
lations of an isolated vortex line.

It should be noted that, in the general case, the
deformation of vortices in a superconductor in the
mixed state is of importance [16]. However, in the case
of a highly rarefied mixed state considered here, this
deformation is small because of the low vortex concen-
tration and does not affect the formation of inverted sat-
ellites (precursor and wake) of an oscillating Pearl
vortex.

2. Asin [17-19], we start from Maxwell equations
in which the magnetic induction B(r, t) = curl A(r, t) is
determined by the persistent superconduction current
j(r, t), the magnetization M (r, t), and the displacement
current:

curl B(r, t) = 4mc Y (r, t)
+4mcurlM (r, t) + ¢ 'aD(r, t)/ot, (1)
curlE(r,t) = —c9B(r, t)/ot.

For simplicity, the electric displacement D(r, t) is
assumed to be related to the electric field E(r, t)
through the local constitutive equation D(r, t) =
£.E(r, t), where the permittivity €, is considered to be
constant.

The displacement current is usually neglected in the
first equation of set (1). However, as we will see later,
the displacement current affects the dependence of the
renormalized magnetic field of the Pearl vortex on the
functional form of the permeability of the system.

From the London equation [in the London potential
gauge divA(r, t) = 0], one can derive the relation
between the current, the vector potential, and the phase
of the order parameter O(r, t):

j(r.t) = 41;2[8(;:, ) -A(r, )], 2

where the vector function S(p, t) is determined by the
order parameter phase gradient:

S(p,t) = %’[@ (p, 1), ©)
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with @, being the flux quantum.
The function S(p, t) satisfies the equation

curlS(p, t) = 2®,3(p —po(1)), (4)

where 2 isthe unit vector (parallel to the z axis) along
the magnetic field of the vortex situated at the point
Po(t)-

In the case of athin film of amagnetic superconduc-
tor, EQ. (2) for the current density can be represented in
the form

j(r,t) = 1(p,1)0(2) = j(p,1)dd(2)

t)—A(r, 1)]5(2). ©®)

411)\ef
From Egs. (1)—5), it follows that
curlcurlH(r,t) = )\;lfcurl{[S(p,t) A(r, t)]6(z)}
—g,C20°B(r, t)/ot.
Using theformulacurl(pA) =dcurlA +[§ xA andthe
obvious eguation {3 (2) x [S(p, t) —A(r, 1)]}, =0,
Eqg. (6) can bereduced to aclosed equation for the mag-

netic field of aPearl vortex oscillating about its equilib-
rium position in athin magnetic superconductor film:

curleur H(r, t) = Agr[2D,3(p — apSinwyt)
—B(r, 1)]18(2) —&,c 20°B(r, t)/0t’.

Here, the time dependence of the position vector of the
oscillating vortex istaken to be py(t) = agsinwt, where
a, and wy, are the amplitude and frequency of harmonic
oscillations, respectively. The magnetic induction is
related to the magnetic field through an integral consti-
tutive equation,

t 00

B(p.zt) = Idt'jdp'u(p -p,t=t)H(p', z ). (8

We note that for fields H(r, t) = zH(r, t) and
B(r,t)= 2zB(r, t), we have divB(r, t) = 0 and
divH(r,t) =0.

Taking the spatial Fourier transform of Eqg. (7), we
obtain an equation for the time-dependent Fourier com-

ponent of the magnetic field of the oscillating Pearl vor-
tex:

(q°+ p*)H(q, p, t) + g, °0°B(q, p, t)/at*
+AgiB(Q, 1) = 2DoA g exp(—igagsinuyt),
where q = (q,, q,) is a two-dimensional vector, q =

(o + qf, )]j2 isits magnitude, and

B(a.) = [52B(a. p.). (10)
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By using the expansion of the exponential in terms
of Bessdl functions of integral order J(x) [20],

exp(-iqa Sinuyt) = cos(gasinwyt) —isin(qagsinwyt)

= Jo(030) +2 3 Jom(G0) cOS(2magt)
m=1 11)

—i2 Z Jom+1(9@g) SIN[(2mM+ 1) wof],

and taking the temporal Fourier transform of Eq. (9)
after substitution of Eq. (8), one can obtain an algebraic
equation

[q° + p*—gow’c u(g, W) H(q, p, w)

o o (12
+Agil(d, W)H (g, @) = ZOA 41 (g, w)
whose solution is
_ 5 1(9, w)
A R R R
Here, I(qg, w) isaspectral function given by
O
1(q, w) = ZHEJo(qao)é(w)
+ z Jam(0ap) [0( W+ 2mMay,) + 6(w—2mwy)]
m=t (14)

- z Jom+1(030)[O(+ (2m + 1) wy)
=0

50— (2m+ 1)o)]
0

R(g, w) isan additional renormalization function dueto
the displacement current,

R(d, w) = Ry(q, w) —iR(q, w)

-1

0. d } ot @s)
= N Of P+ ' —eowe (@ ) 0
and we also define
_ dp
H(g, w) = J’ H(a, p, w). (16)

The real and imaginary parts of the additional renor-
malization function (15) are

Ri(g, w) = 2Ag{a(q, w)/2
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+[a(q, w) + b(q, )] 12},

(17)
Ry(0, ) = 2sgn(w)Aer{ —a(a/w)/2

+[a(q, w) + b*(q, w)] 123 .

Here, the functions a(q, w) and b(qg, w)are expressed
through the real and imaginary parts of the permeability
of the system as

2
a(q, ) = o°—£ 2 14(q, W),
© (18)

2

W
b(g, w) = 30?“2(‘1- w).

3. Since A > a (aisthe crystal lattice parameter),
one can use a hydrodynamic approximation for the
magnetic subsystem. In the paramagnetic temperature
range, the permeability of the two-dimensional film can
be written as [21]

i411X,Dq”
w+iDg*
where ¥, is the static magnetic susceptibility and the
spin diffusion coefficient for a two-dimensional
Heisenberg magnet is given by [22] D =
(U3)(2mY2Jas(s + 1)]V? (J is the intralayer exchange
constant and s is the spin).

Strictly speaking, superconduction currents screen
the long-wavelength part of the exchange and electro-
magnetic interactions, thereby renormalizing the
parameters of the magnetic subsystem [23]. However,
when considering the paramagnetic temperature range
and making only order-of-magnitude estimates, we can
ignore this circumstance.

Let us introduce dimensionless variables k = gAg;,
Q = WA/ Vg, Qp = WA/ Vo, T =tV/Ag, and n = vy/c,
where v, = D/A 4 is the characteristic velocity.

Taking the inverse (frequency) Fourier transform,
wefind from Egs. (13)—(16) the time dependence of the
spatial Fourier component of the magnetic field of the
oscillating Pearl vortex:

H(Q, 00) = Hy(q, @) +ipa(q, ) = 1+ (19)

H(x, 1) = Ho(x, T) + H (s, T), (20)
where
Hi(i, T) = Hyge(x, T) —iH (%, 1), (22)
HlRe(KvT) = 22¢)0 Z JZm(KXAO)
m=1 (23)

N Fl(K,T,m)_ cos(2mQ,T)
[ F,(ic, m) 1+4T[)(0+2K:|’
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00

Hllm(Ki T) = 22CDO z ‘]2m+ l(KxAO)

m=0 (29)
N Fi(x, T,m) sin((2m+ 1)Q,1)
[F4(K,m) T 1+4Amy, + 2K }

Here, the vortex is assumed to oscillate along the x axis,
Ay = ay/A is the dimensionless amplitude, and the
functions Fy, F,, F5, and F, are given by

Fi(ie, T,m) = [H1(, 2mMQy)
+ R, (1, 2mQ,)] cos(2mQ,1)
—[H.(x, 2mQ,) — R, (1, 2mQ,)]sin(2mQ,1),
Fo(k, m) = [[y(k, 2mQ,) + Ry(k, 2mQ,)]*
+ [Ha(k, 2MQo) — Ry(x, 2MQ) ],
Fa(ie, T, m) = [Ho(x, (2m+1)Q,)
—R,(x, (2m+1)Qy)]

x cos[(2m+ 1)Q.1] + [, (x, (2m+1)Q,)
+ R;(x, (2m+1)Qp)]sin[(2m+ 1)Q,1],
F,(c,m) = [0, (2m+1)Q,)
+Ry(k, (2m+1)Q,)]*

+ [Ha(k, (2m+1)Qq) —Ry(1, (2m+ 1)Q)]".

According to Egs. (15), (17), and (18), therenormal-
ization function is

R (%, Q) = 2{ a(x, Q)/2

(25)

26
+[a’(x, Q) + B, Q)] 12}, 0
R,(k, Q) = 2sgn(Q){—a (1, Q)/2
2 2 12 1/2 (27)
+[a"(k, Q) +B(1, Q)] /2} 77,
where
— 2 22
ok, Q) = K'—g,n" Q14 (x, Q), 28)

B(x, Q) = £n°Q%,(x, Q),

and the real and imaginary parts of the permeability
take the form

Hy(1c, Q) = 1+ 41K (Q% + k),
Mo(w,, Q) = 4T[)(OQK4/(QZ+K4).

Equations (20)—(28) are valid for any type of mag-
netic ordering in the magnetic subsystem, i.e., for any
character of dispersion of the permeability p(q, w).

We note that there are essential differences between
these expressions for the Fourier component of the
magnetic field of the oscillating Pearl vortex in a two-
dimensional superconductor and the corresponding

(29)
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expression [9, Eq. (7)] for the same component of the
oscillating Abrikosov vortex in a three-dimensional
superconductor. First, the dependence on the two-
dimensional wave vector q isdifferent, and, second, the
characteristic spatial scales of field variation are differ-
ent: in the three-dimensional case, this scale is A,
whereas in a two-dimensional superconductor, it is
Aeit = A,

Taking the inverse Fourier transform with respect to
the two-dimensional wave vector g, we obtain from
Egs. (20)<29) an integra representation for the mag-
netic field of the isolated oscillating two-dimensional
Pear| vortex in a thin magnetic superconductor film:

H(X ¥, 1) = Ho(X, y, 1) + Hi(X v, 1), (30)
2P,
Ho(x v, 1) = >
i ()
c COS[K, (X —Aysin(Qy1))] cos(k,Y) (3
xIdKXIde < 1+4T[)(0-|?2K Y,
0 0
Hi(X Y, 1) = Hig(X Y, 1) + Hia(X Y, 1), (32
1
Hl (X! y’ t) = 2
) (TAu)
0 (33)
XIdKXIdeH 1re(K, T) COS(K, X) cOS(K,Y),
1
Hia(X Yy, 1) = >
(Tt )
@ (34)

XIdKXIdeH um(x, T)Sin(K,X) cos(K,Y),
0 0

where we have introduced the dimensionless coordi-
nates X = X/Ag and Y = y/A 4.

According to Egs. (30)—(34), the dominant positive
contribution to the magnetic field of the oscillating
Pearl vortex comes from the function Hy(x, v, t) cen-
tered at the point x-(t) = a;sinut. Information on the
inverted satellites is contained in the integrals in
Egs. (33) and (34), which are centered at the origin.
H,s(X, ¥, t) is a symmetric function of x and y, while
Hia(X, Yy, t) is symmetric in y and antisymmetric in X.
Let us discuss how the regions of the inverted magnetic
field arise along the direction of oscillations (the x
axis). This effect ismost pronounced at the instantst, =

+nmw,” (= 0, 1, 2, ...), where the point x(t,), at
which the function Hy(x, y, t) is centered, is close to the
origin. In this case, the strongly localized positive func-
tion Hy(x, y, t) falls off steeply to zero. The functions
H,s(X, y, t) and H (X, y, t) are more weakly localized in
comparison with Hy(X, v, t) and can take both positive
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and negative values. Theinverted precursor isthe result
of superposition of a negative minimum of Hig(X, vy, t)
and a positive maximum of H,(X, V, t), whereas the
inverted wake is the sum of two negative minima of
these functions.

The typical values of X, for antiferromagnets are
1073-107°. The characteristic velocity v, [ Jsa(a/\ ) is
(Agt/@) O 10%--10* times lower than the spin-wave
velocity v, [0 Jsa. Inthe CuO, planes, because of strong
intralayer exchange, the spin-wave velocity is fairly
high: v, (0.5-1.3) x 10’ cm/s[3]; therefore, v, 1 10°—
10* cm/s. We note that the experimentally observed
maximum velocities of Abrikosov vortices in bulk
superconductors are of the same order of magnitude,
V= 6.6 x 10° cm/s [24].

The maximum velocity of the oscillating vortex
V, = 8y is much lower than the relaxation velocity of
the magnetic subsystem, which is of the order of v,
Therefore, in our case, the magnetic subsystem closely
followsthe changesin the magnetic field of the oscillat-
ing Pearl vortex, renormalizing this field because of
spatial and time dispersion of the permeability and
causing the formation of an inverted precursor in front
of the vortex and of an inverted wake behind it at large
distances from its center.

The stationary vortex field distribution, averaged
over an oscillation period, differs essentially from the
standard one and has the form

20,
H, (X =
(x.¥) 2n3)\§ff
[K (X — Agsing)] (Y>(35)
COS[K, (X — Agsing)] cos(k ,
xIdd)‘([dKX'([de 17 drrg + 2K .

Numerical analysis shows that if we put x, 0 10°-
10 (which is comparable with the magnetic suscepti-
bility of the copper subsystem of HTSC materials), the
frequency Q, O 103, the amplitude a, = S5\, €, = 30,
and the parameter n 0 10°-107%, then at theinstant T, =
11, the minima of the inverted-precursor and inverted-
wake fields will be situated symmetrically about the
vortex center at distancesry, =rq, = 5\« fromit and will
be equal t0 H in. 2 = H(ro1 2, To)(TA4) 7Py O 103104,
For X, 0 1072 (such values of the magnetic susceptibil -
ity are typical of ternary and HTSC compounds with
rare-earth ions near the magnetic-ordering temperature
TWO 1K), Qy=1,ay=5\g, T=T, 1N =10" and g, =
30, the distribution of the reduced magnetic field of the
vortex H = (TtA«)?H(X, 0, T = m)/d, along the x axis (as
afunction of X at Y = 0) has two minima: H,;,; 0 107
at ry; O BA g (inverted precursor) and H,i, 0 =7 x 1072
at ro, O 3y (inverted wake, see figure). We note that
when the oscillation phase is wyt = QuT = 1, the vortex
movesto the left and the maximum of its magnetic field
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Distribution of the instantaneous reduced magnetic field of
an oscillating Pearl vortex H = (T[)\eff)zH(X, 0, T = M/Pg
aong the x axis (as afunction of X at Y = 0), in which the
minima correspond to an inverted precursor in front of the
vortex and to an inverted wake behind it.

goes through the point x = 0 at this instant (the maxi-
mum of the dimensionless magnetic field is roughly 8
at this point).

According to Eqg. (35), the vortex field distribution
averaged over an oscillation period essentially depends
on the amplitude A,, is positive everywhere, and differs
significantly from the standard magnetic field distribu-
tion of afixed Pearl vortex. The stationary distributions
of the reduced average magnetic field of a Pearl vortex

2n3)\§ﬁ H., (X, 0)/®, aong the x axis (as afunction of X

at Y = 0) and of 218\ %, H,,(0, Y)/®, along they axis (as
afunction of Y at X =0) are similar to those of the Abri-
kosov vortex presented in [9, Figs. 2, 3] for five differ-
ent values of the amplitude a,. These distributions dif-
fer only in that the spatial scale of the Abrikosov vortex
A should be replaced by the characteristic spatial scale
A Of the Pearl vortex and, in addition, the exponential
faloff of the field to zero in the case of the Abrikosov
vortex should be replaced by a power-law falloff of the
Pearl vortex.

4. We note that there is an essential differenceinthe
time dependence of the magnetic field distribution of
the Pearl vortex between the cases of uniform motion
[14] and harmonic oscillations. In the former case, the
configuration of the field distribution with an inverted
wake is time-independent, whereas in the latter, the
structure of both theinverted precursor and the inverted
wake essentially varies in time over an oscillation
period.

When the longitudinal component of the magnetic
field of avortex isinverted, vortices are attracted to one
another [25, 26]. Therefore, moving vortices will be
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aligned in chainsin athin film of a magnetic supercon-
ductor. This effect can be essential in switching and
memory devices based on Pearl vortices.

Stationary and nonstationary domain structures,
labyrinth patterns of bubble domains and Bloch lines,
moving vortex lattices, and isolated moving vortices
can be easily visualized and observed on the surface of
a sample in magnetooptical experiments. Therefore, in
contrast to the inverted wake of a uniformly moving
Abrikosov vortex [8] and the inverted precursor and
wake of an oscillating Abrikosov vortex [9] in a bulk
magnetic superconductor, the inverted precursor and
wake of an oscillating two-dimensional surface Pearl
vortex in a two-dimensional magnetic superconductor
can be observed in magnetooptical experimentson thin
magnetic superconductor films.

From the results of [14] and this paper, one can con-
clude that the more intricate the vortex motion and the
character of magnetic ordering dictated by the features
of the permeability p(k, w), the richer and more diver-
sified the pattern of inverted satellites that accompany a
moving Pearl vortex in athin film of a magnetic super-
conductor.
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Abstract—The effect of specific features of scattering center formation during electroplastic deformation on
the electric properties of germanium isinvestigated. © 2001 MAIK “ Nauka/Interperiodica” .

An analysis of the influence of defect formation in
the course of electroplastic deformation of silicon crys-
tals on their electric properties revealed a number of
peculiarities in the behavior of the Hall mobility of
holes [1]. A comparative analysis of the observed fea-
tures and the results of earlier investigations [2-5]
devoted to the influence of deformation-produced
defects on the mobility of charge carriers and their
comparison with the modern concepts of the evolution
of defect structures [6, 7] led to certain assumptions
concerning the features of scattering mechanisms in
real crystals of elemental semiconductors. In this con-
nection, it is interesting to continue investigations of
related objects in order to better understand the nature
of carrier scattering and the mechanisms responsible
for it.

The experimentswere made on plastically deformed
germanium samples with different structural parame-
ters, such as the density of defects, impurity composi-
tion, type of dislocation dynamics, and relative orienta-
tion of the directions of the current and dislocations.

Here, we present an investigation of the electric
properties of monocrystalline germanium samples cut
from crystals subjected to electroplastic (EPD) and
thermoplastic deformation (TPD). The deformation
was accompanied by diffusion of indium impurity
atoms aong the preferred direction of dislocation
emergence.

We investigated p-germanium single crystals with
resistivity p = 43 Q cm at room temperature, which
were initially doped with galium to an uncompen-
sated-acceptor concentration Ny — Np = 9 x 1083 cm3,
The growth dislocation density did not exceed 10 cm.
Crystalsin the form of prisms 12 x 10 x 5 mm in size
with edges coinciding with the [110], [111], and [112]
directions, respectively, were deformed along the [110]
axisin the stationary creep mode at atemperature T =
700°C for 30 minutes. The reference sampleswere sub-
jected to thermal treatment under deformation. Before
the deposition of the diffusing impurity, the sample sur-

face was cleaned using the ion-plasma technique. The
electric properties were measured on three samples cut
from a deformed crystal in three different ways. from
the face subjected to impurity diffusion and along and
acrossthe slip planes. After grinding and chemical pol-
ishing, indium contacts were fused in a high-vacuum
setup for 20 min at T = 350°C. The quality of the con-
tacts was verified on a curve tracer, and then samples
with ohmic contacts were selected. Measurements of
the dc electrical conductivity and the Hall effect were
madein the temperature range 4.2—400 K in amagnetic
field of 8 kOe with the help of the compensation tech-
nigue in a metallic cryostat, which made it possible to
control and maintain the temperature to within £0.1 K
in helium vapor and to within £1 K in nitrogen vapor.

The nontraditional methodical and technological
approaches used by us for forming the structures
enriches the physical properties of acrystal but consid-
erably complicates its quantitative description. Thisis
dueto thefact that asaresult of deformation, the crystal
becomes similar to an open system which is far from
thermodynamic equilibrium and whose properties
change under shear stress. At the shear instability
points, self-organization of dissipative dislocation
structures takes place [8]. It can be expected that new
materials with controllable properties can be obtained
by using this method [9].

Figures 1 and 2 show the temperature dependences
of the Hall mobility of holesin the samplesunder inves-
tigation on the log— og scale. It follows from the curves
that aconsiderable differencein the scattering of charge
carriers in the reference and thermoplastically
deformed samplesis observed in the temperature range
T < 100 K, while for electroplastically deformed sam-
ples, the difference begins to manifest itself at lower
temperatures T < 80 K.

It can be seen from curves5—7 in Fig. 1 that the most
typical and distinguishing feature of samples corre-
sponding to the TPD mode and cut acrossthe slip plane
is the presence of minima in the mobility u(T) in the
vicinity of T = 25 K, whose depth increases with the
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Fig. 1. Temperature dependence of the Hall mobility of
holes in p-germanium samples subjected to thermoplastic
deformation at T = 700°C: (1) initial sample; (2) € = 1%
with indium diffusion; (3) € = 1%, | || D; (4) € = 1.5% with
indium diffusion; (5) € = 1.5%, | ||D; (6) e =1%, | OD, and
(7)e=15%,1 0D.

strain €. The change in the mobility amounts to more
than four orders of magnitude for samples subjected to
TPD and to less than two orders of magnitude for sam-
ples subjected to EPD. It should be observed that,
according to electron-microscopic data, the density of
dislocations in samples subjected to TPD is two orders
of magnitude higher than in samples subjected to EPD
for the same strain. In the case of samples deformed in
the EPD mode, there are no distinct minimaon the u(T)
dependence but the steepness of the temperature
dependence of the mobility increases with the strain
(curves 5-7 in Fig. 2). The common features typical to
both deformation modes are the existence of anisotropy
in the mobility of the majority charge carriers (thisis
manifested much more weakly for samples with EPD)
and the identical effect of indium impurity atoms, dif-
fusing to the bulk of the crystal simultaneously with the
generation of dislocations, on the carrier scattering.
For example, the impurity—dislocation interaction for
small strains considerably suppresses the scattering
(curves2,4inFigs. 1, 2), whileanincreasein the strain
considerably enhances the scattering of charge carriers
(curves 5-7 in Figs. 1, 2); the latter is responsible for
anomalously low values of the mobility (especialy for
the TPD mode).

The above comparative analysis suggests that, in
both modes of deformation of germanium crystals,
identical sources of scattering of charge carriers are
generated. It should be noted, however, that the struc-

PHYSICS OF THE SOLID STATE Vol. 43 No. 11

2033

log(H, cm? V-1 571
1

1.3 1.7 2.1 2.5
log (T, K)

Fig. 2. Temperature dependence of the Hall mobility of
holes in p-germanium samples subjected to electroplastic
deformation at T = 700°C: (1) initial sample; (2) € = 1%
with indium diffusion; (3) € = 1%, | || D; (4) € = 1.5% with
indium diffusion; (5) € = 1.5%, | || D; (6) € =1%, | 0D, and
(7)e=15%,1 0D.

tural formation of new scattering centers generated in
the course of deformation, as well as their quantitative
characteristics, differs considerably for the two defor-
mation modes. We note, for example, that in contrast to
the TPD mode, all the structural particles participating
in the process in the case of the electroplastic mode of
deformation, namely, the impurity and intrinsic atoms,
aswell asthe charged carriers of the subsystem (holes)
and simultaneously generated dislocations, interact in
the dynamic flow and in a certain direction of motion.
Thus, the conditionsfor crystal deformation in the EPD
mode are facilitated by the presence of an additional
perturbation of the didocation system in the form of a
directional current pulse [10, 11]. We can also assume
that the scattering centers formed as a result of the
structure evolution in the two deformation modes also
differ in such properties asthermal stability and electri-
cal and chemical activity. For this reason, a more
ordered structure of deformation-produced defects is
formed, in our opinion, in the EPD mode. It is well
known that dislocations can lead to a considerable
anisotropy of carrier scattering in the case of their non-
uniform orientation distribution [12].

Let us analyze the above-mentioned anisotropy in
the electric properties of samples subjected to both
regimes of deformation. It should be recalled that the
mobility p; was obtained while measuring the current
perpendicular to the dlip planes {111}. Obviously, the
scattering properties of dislocations for such an orien-
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Fig. 3. Schematic diagramillustrating the model of acrystal
with dislocation tubes.

tation are manifested most significantly. The mobility
M, correspondsto resi stance measurements for acurrent
parallel to the dip planes. In the case of a small strain
and of the concentration of dislocation clustersin indi-
vidual planes being separated by large didocation-free
regions, we can naturally expect that p, > p; the resis-
tanceinthe paralel direction is shunted by dislocation-
free regions between preferred slip planes.

In order to substantiate the above qualitative expla-
nation, we consider the following model of adeformed
crystal, which takes into account the nonuniformity in
the distribution of dislocation clusters in the crystal
(Fig. 3). We present the crystal in the form of alternat-
ing layers with different conductivities and different
carrier concentrations, which are perpendicular to the x
axis. Layers of thickness |, have a conductivity o, and
a carrier concentration n,, while layers of thickness I,
distributed between them have parameters ¢, and n..
We direct the magnetic field along the z axis and the
electric contacts along the x and y directions, alter-
nately.

The current isdirected a ong the x axis, the magnetic
field along the z axis, and the value of V is measured

along they axis. The expressionsfor the current density
have the form

ALIEV et al.

;—'1 is the cyclotron frequency; and E is the electric

field.
From the condition j, = O, it follows that

E, = QTE,. 3
Then, expression (1) implies that
jx = O-ZEX' (4)

The voltage V, applied along the x axisis distributed
among the layers. The voltage applied to apair of layers
l;andl,is

N = ; 5)

Ly Ly, and L, are the crystal dimensions.

The distribution of AV, is proportional to the resis-
tances of the layers:

AV,
AV,,

Thisrelation and the equality AV, + AV,, = AV, give

1,0,
1,0,

(6)

1,0,

AV, = _—
> 1,0, + 1,0,

AV

|
LAV = AV 22— (7)

201 +1,0,

For the electric fields acting in layers |, and |, we
obtain from relations (7)

_ 0, _ 0,
ElX - AVXI]_O-2+|20-]_1 E2X AVXI]_O-2+|20-1. (8)
Using relations (3) and (4), we obtain the relation
_H.
By = aenh ©)

for the Hall electric field, which leads to the following
relation for the Hall voltage:

H I

AE, = eon H,’ (20

In the measurements of the Hall potential differ-
ence, averaging is carried out over the length of a Hall
contact and along the x axis.

i, = QZ 2(E +QTE)), (1) Equation (10) gives
1+
HI, |
. BV, = ot il sy nj% (11)
j, = 22( —QTE+E,), ) Hy
1+Q1 Us_ing the definition of the Hall coefficient, we can
wherei =1, 2, ...; T istherelaxation timein the layers,  WNte
2
ent ) o _1 1
o = TI = en;; isthe conductivity inthelayers; Q = by +|2D|l n}j (12)
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Using relation (4) with thefield values (8) in the lay-
ers and taking into account relations (5), we obtain
_ 010y(l1 +15) v

7 1,0,+L0, L, (13

which leads to the following expression for the effec-
tive conductivity o :

af _ 0101+ 1)
. a1l + 0yl

(14)

In accordancewith relations (14) and (12), the effec-
tive mobility is given by
I +1
ue = o%'R, = 1(ly/ny 2/’12)0102
e o4, +0,l,
(15)
e |1/n1 + |2/n2

Cmly/nT 4 LIngTy,
Now, we consider the case where the current is

passed along the y axis. From the condition j, = 0, the
Hall electric field is found to be

E, = —QT,E,. (16)

The current density along the y axis is different in
layersl, and |,

Jy(l) = 0-1Ey! Jy(2) = 0-2Ey' (17)
The preset total current is
| = J'dxdzjy = L,N(l,0, +1,0,)E,. (18)

Thisleadsto the following expression for the effec-
tive conductivity o] :

l,o,+1,0

eff 1Y1 2Y2

= —— 19

Il |1+ |2 ( )

Using relations (16) and (17), we derive an expres-
sion for the Hall voltage:

AV, = —IdeX
_ oty 2 Hyeoly ol 9
I o, e ’Un n,0
In accordance with relations (20) and (18), the Hall
coefficient is given by
'™ ecn,t,l;, + n,T,l,°

Ultimately, we obtain from relations (19) and (21)
the following expression for the effective mobility:

(21)

af _ el +T,l,

" m 1+, (22)
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Comparing Eqg. (12) for R; and Eq. (21) for R, we
note that the Hall coefficient becomes isotropic (R =
) when the concentrations n; and n, are equal. Thus,
in order to relate our model to the results obtained on
the mohility anisotropy, we must put n; # n,.

A comparison of Egs. (15) and (22) for the mobility
shows that

pﬁ”#pgf for 1, #1,.

Thus, in order to fit the model to the experimental
data, we must put n; # n, and 1, # T,. We will assume
that the carrier scattering in thelayer |, ismore effective
and that 1, < T,. The layer simulates the dip plane with
adislocation pile-up if the value of |, is comparable to
the radius of the Read cylinders or to the effective dis-
tance over which the dislocation-induced deformation
isacting. The carrier concentration in thislayer islower
than the concentration in the bulk because of electro-
static expulsion from the region occupied by charged
didlocations; consequently, it is natural to assume that
n, < n,. For a small deformation, when the dip planes
filled with dislocation clusters are scarce, we can
assume that I, < I,. Let us consider the limiting case
when the inequalities between these parameters are
strong. In this case, the characteristics for the direction
paralel to the dip planes become

ef _ €T, af 1 eff
by =— /N =27 0

= 0'2,
m ecn,

(23)
they involve the parameters of an intermediate layer,
which is natural under the assumption concerning the
shunting of the current by high-conductivity regions.
The characteristics for the direction perpendicular to
the dlip planes are determined by the relationship
between the quantities|,/n, and I,/n,.

Assuming that
1,/n, > 1,/n,, (24)
we obtain
| I
uy = et/m, R = lec—=, of = Zo,. (25)
|2n2 I]_

This case (24) corresponds to the experimental situ-
ation, i.e,, toinequalities pf < ', Ry>R,and of' <
eff
0” .
In the case of the opposite inequality

I/, <1 /n,, (26)
we arrive at the relations

ef _ 1 off _ I, e_2

5 een, U LIngT,+ 1y /ngT,m’ @

e l1/ny

eff _ e h
Ha ml,/n,T, + l,/n T,
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In accordance with relations (27) and (23), the dif-
ference between |; and , disappearsin this case.This
can easily be verified by selecting the limiting numeri-
cal values of the parameters|, n, and T and substituting
them into the corresponding formulas.

L et us now consider the physical pattern of manifes-
tation of the scattering properties of defects upon the
introduction of impurity atoms into a plasticaly
deformed crystal. For small deformations, when a
strong anisotropy of mobility exists in the absence of
impurity diffusion, the value of L increases both in the
TPD and in the EPD mode in the presence of diffused
indium acceptor impurities. Thisfact can beinterpreted
as follows. Doping with indium noticeably increases
the concentration of ionized impurities. Since the
mobility increases instead of decreases, this can be due
to the mutual suppression of two scattering mecha-
nisms associated with dislocations and impurities. Such
a situation can be realized if the electric interaction
between dislocations and carriers, associated with the
charge of dislocation lines, is significant in the disloca-
tion scattering.

It should be noted that, for small deformations,
when the number of dislocations is small and they are
arranged in the form of planar clusters, their limiting
charging can be attained because the electrostatic bar-
rier prevents the further trapping of holes. It is well
known that, in p-Ge, dislocations behave as donors
which acquire a positive charge after capturing holes.
The introduced negatively charged indium acceptor
atoms must pile up on dislocation lines in noticeable
numbers. In this case, the combined (dislocation and
impurity) electrostatic interaction with carriers can be
compensated to a considerable extent. Only in this case
can anincreasein the mobility 1 be expectedin crystals
with either deformation mode. Thus, we assume that,
for the most part, the indium ions do not become effec-
tive scatterers but they noticeably reduce the scattering
ability of dislocations.

Such an interpretation is also supported by the fact
that theionic radius of indium differs significantly from
the radius of the host atoms. Consequently, it can be
expected that indium ions are “replaced” by disloca-
tions more easily than gallium atoms, which are theini-
tial dopant in germanium crystals. As aresult, asignif-
icant component of the el ectrostatic scattering potential
is suppressed, thereby causing an increase in the effec-
tive mobility.

The considerably smaller anisotropy of the mobility
for samples with EPD with transverse and longitudinal
orientations of the current lines relative to the dip
planesis probably associated with the involvement of a
larger number of dlip planes even at early stages of
deformation in view of the localization of the thermal
effect of the current, which was presumed in [13]. This
assumption correlates with the well-known fact of the
absence of mobility anisotropy in samples subjected to
thermoplastic deformation at high temperatures [14].
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As regards the minimum of thermal mobility in the
TPD mode, its didocation origin is indisputable; this
minimum can be associated with amanifestation of res-
onance scattering at a shallow dislocation level. A min-
imum for the transverse orientation can also be
observed in formula (15) if we assume that, as the tem-
perature decreases, atransition from inequality (25) to
inequality (27) and further to inequality (24) takes
place. In this case, U attains the value et./m, which
coincides with L. Thus, a tendency to nonmonotonic
behavior of Y is present in the model considered by us
here, but the magnitude of the effect cannot be matched
easily with experimental data. Detailed experimentsare
required in order to draw more exact conclusions.
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Abstract—Exact selection rules for matrix elements of the generalized momentum operator x at thel” point in
semiconductors of the GaAs-type without an inversion center are deduced for the first time with thorough
account of spin—orbit interaction, which manifestsitself in both splitting and mixing of orbital states. In partic-
ular, selection rules are obtained for forbidden optical transitions™; — I'g in the valence band. The selection
rules are formulated in terms of Clebsch—Gordan coefficients and reduced matrix elements. The relation
between the reduced matrix elements and the mixing parameters of the wave functionsisderived. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Matrix elements of the momentum operator at the I’
point play an extremely important role in the 11—V
semiconductors. These matrix elements characterize
optical transitions in direct bandgap materials and
determine the mass spectrum and g-factors of charge
carriers. Various multiband versions of the kp method
of the perturbation theory constructed on the basis of
these matrix elements are constantly being improved
upon and are widely used in investigations of electronic
and optical properties of three-dimensional and low-
dimensional semiconductor structures (see, for exam-
ple, [1-3]). Usually, the matrix elements involved in
Kane's model [4], which takes into account tetrahedral
symmetry and spin—orbit splitting of bands, are used in
calculations. According to Kane's model, the spectrum
of charge carriers at the I' point has a simple structure:
the electrons are described by s-type wave functionsin
the I s conduction band and by p-type wavefunctionsin
the I'; and I'g valence bands. However, while Kane's
model is satisfactory in many cases, it is not a general
model, because it does not take into account the spin—
orbit interaction in full measure. According to [4], the
spin—orbit interaction gives rise only to splitting of
orbital states at the center of the Brillouin zone, while
the theory of symmetry [5] leaves room not only for
splitting but also for spin—orbit mixing of space func-
tions of various symmetries at the " point. Thiscircum-
stance is usually disregarded, because it is seemingly
believed to be of little importance. However, there are
situations in which the mixing of wave functions plays
adecisive role. The splitting of the I'g valence band in
the linear approximation in k (k is the quasi-momen-
tum) and the optical transitions ', — Ig inside the
valence band are examples of such situations. It is cus-

tomary to consider these intraband transitionsto be for-
bidden [6], but the theory of symmetry alows them.
The possible important role of the forbidden transitions
I, —= g was suggested by the experiments performed
in [7] on the absorption of radiation by free holesin p-
GaSh. Preliminary calculations carried out in the three-
band maodel [8] count in favor of this conclusion.

The mixing of wave functions at the I point means
that the spectrum of charge carriers has a complicated
structure because of the correlation between their
orbital motion and spin; this structure is more compli-
cated than that assumed in Kane's model. The fine
details of the electronic states may prove to be essential
in studying the polarization properties of charge carri-
ers in both three-dimensional and low-dimensional
materials. Recent research on the transverse g-factor
(gp) of heavy holesin a GaAg/AlGaAs (001) quantum
well [9] has shown that the measured quantity g; is
directly connected to the Luttinger parameter q [10],
which characterizesthe three-dimensional properties of
GaAs and has ardlativistic nature [11]. When calcul at-
ing the parameter g, satisfactory agreement with exper-
imental data was achieved in [9] only by going beyond
Kane's model and alowing for spin—orbit mixing.
Comprehensive study of the polarization properties of
charge carriersis aso of interest because of the practi-
cal useof I11-V semiconductors and structures made on
their basis as sources of polarized electrons[12].

The above-mentioned examplesindicatethat Kane's
model isof limited usefulnessfor anumber of problems
and that it needs to be generalized taking the spin—orbit
interaction into complete account. In the present work,
the general expressions for spin—orbit harmonics are
derived for al bands at the I' point with due regard for
the spin—orbit mixing and selection rules for the matrix

1063-7834/01/4311-2037$21.00 © 2001 MAIK “Nauka/Interperiodica’
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elements of the generalized momentum operator =
between all states at the center of the Brillouin zone are
established. The results are represented in terms of
Clebsch—Gordan coefficients and reduced matrix ele-
ments. The reduced matrix elements are written using
the mixing parameters of the wave functions; therefore,
they are convenient for use in practical calculations of
concrete models of mixing.

Theresults obtained in this paper allow oneto study,
in particular, theforbidden optical transitionsl; —~ g
and to obtain information on the space symmetry of
excited states at the I' point using optical methods. The
energies and symmetry of excited states are also
extremely important in researching the I' g valence band
splitting that islinear in k, which has been poorly inves-
tigated to date. In addition, the selection rules estab-
lished alow one to develop a new version of the kn
method in which the spin—orbit interaction isaccurately
taken into account and, within this approach, to obtain
the most general expressions for the effective masses
and g-factors of charge carriers allowed by tetrahedral
symmetry at thel” point for all bandsin thelll-V semi-
conductors.

2. WAVE FUNCTIONS

The states of electrons in crystals of tetrahedral
symmetry at the [ point are described by wave func-
tions W, (r) that satisfy the Schrodinger equation:

HLIJn = (HO+HreI)qJn = Enl'Pn’ (1)
p2
Ho = £+ v(n), @
4 2
Hy = —P b ave T o(vVxp). (3)

8m’c® 8m’c’ am’c?
Here, misthe electron mass, V(r) isthe periodic poten-
tial, o arethe Pauli matrices, p =-i%[, theindex n enu-
merates the energy bands, and E,, is the energy of an
electron in the nth band. The Hamiltonian H in Eq. (1)
is written in the relativistic approximation, which is
correct to the first order in the parameter c2 [13]. The
relativistic term H,q in EQ. (3) isthe sum of threeterms.
The first two terms produce a shift in the levels of the
Hamiltonian H, given by Eq. (2) and intermixing of
wave functions related to the same type of coordinate
representation. The third term in Eqg. (3) is spin-depen-
dent and isresponsible for spin—orbit splitting and mix-
ing of the wave functions at the I' point that belong to
different types of representations according to which
the eigenfunctions of the operator H,, are transformed.
Hereafter, the Dirac notation is used for the wave func-
tionsat thel” point:

Wa(r) =0 (4)
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Disregarding the spin, the energy levels of the
Hamiltonian H, in 111-V semiconductors are related to
five types of states, the wave functions of which are
transformed according to the irreducible representa-
tionsly, M, M5, My, and M5 [5]. Thel; and I, states are
nondegenerate, the I'; state is doubly degenerate, and
the I', and 5 states are triply degenerate. The basis
functions |I',[(a =1, 2, 3, 4, 5) for the irreducible rep-
resentations at the I" point are written as [5]

Ir.0=s, ()

M= s, =Xy = 2) +y (2 - x°) + ' (x*~y?), (6)
Ir 0= %2<Zz2—x2—y2), @(xz—yz), (7

|r4|:|: X, y! Z, (8)
[FsO= €4, €,, €3, 9
where
2 2 2 2
€, = X(Y'=-2), €,=y(Z-X),
1 (y ) ) 2 ZY( ) (10)
€3 = Z(X"—Y").
In formulas (5)—10), s is the tetrahedral-group invari-
ant and X, y, and z are coordinate functions which are
transformed under tetrahedral symmetry operations as
coordinates of the position vector x, y, and z. All basis
functions in Egs. (5)—10) are assumed to be real and
normalized to unity. Here and henceforth, the coordi-
nate axes are taken to be along the directions [100],
[010], and [001]. The zaxisis along [001] and taken to
be the axis of quantization.
The eigenfunctions of the Hamiltonian (1) belong to
the spinor representations ™, (n=6, 7, 8) [5, 14]. They
are formed from orbital functions similar to those in

Egs. (5)—(9) and from the spin functions a = % and

B= gﬁ by using multiplication rules for representa-
tionsTy x Dy (0 =1,2,3,4,5), where 9, istherep-
2 2

resentation according to which the spin functions are

transformed. The multiplication table for representa-

tionsisgivenin[5]. Thefinal resultsfor all spinor states

at the I point in alll-V semiconductor are presented

below. The Iy states are doubly degenerate, and their

basis functions |I'g; MM = £1/2) can be written as
IFe;MO= z Cr.r IMe(ly); MO

rl

(11)
+ z Cr.r.IMe(Ms); ML)
r5
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where
're(rl);%> = isa, re(rl);—%> = isp,  (12)
g‘u(rf,);%} =l i)+ el
: 1> 1 (13
Me(Fs);—5) = —[esB—(e;—ley)a].
SRR A

The states in the I'; band are also doubly degenerate,
and the basis functions |I';; MOM = +1/2) can be writ-
ten as

r-;MO= ZCr7r2|r7(rz); MO
rZ

(14)
+ z CrrIM2(M); MU
Iy

where

1 :
r7(r2), §> = |Sla,

M) = s, (19)

E r7(r4),2> Jé[(x+|y)B+za] s
C S A S SRSV
Er7(r4),—2>— 528 (x-iy)al.

The I'g states in a 111-V semiconductor are fourfold
degenerate. Their wave functions|I'g; MM = 3/2, 1/2)
can be represented as

IMg; M= ZCF8F3|F8(F3); M [+ z Cr,rIMs(My); MO

M3 Iy

a7
+ Zcr8r5|r8(r5); ML
where
: 8(r3)3> (@7 - -y)p
.
Cru(raig) = [;xz—yz)a "
L
E rs(rg);—1> S f—”(xz—yzm
[T 3> ——(2z—x—y)a
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i T3] = ki
L _1_
E oFag) = [ -xrin oz -
C N AN ) e &
: o img) = | (i 2
Elrarai-3) = (x—ip £,
C 2 J2
E 8(F5)3> (61 'ez)A/—"'«/éEsB}
L
L AN ﬁ
E ra(rs)vz> = (¢ I€2)«/é o0
LI r(Fe)ims) = (e +iep)
e
E Mg(ls); 3> (€1+|€2)J—+«/§€30}

The summations in formulas (11), (14), and (17) are
carried out over all indicated representations of the
operator H,. The phase factors of the spin—orbit har-
monicsin Egs. (12), (13), (15), (16), and (18)—(20) are
chosen such that the coefficients Cr - in Egs. (11),
(14), and (17) arereal.

The general character of mixing described by
Egs. (11), (14), and (17) indicates that charge carriers
in the 11—V semiconductors are in relatively compli-
cated states which cannot be described by Kane's
model. For example, the admixture of thel 5 to ', state
in the I' g conduction band means that the electron can-
not be generally described by a wave function of the s
type; therefore, it possesses not only a spin but also,
because of the I' 5 admixture, a nonzero orbital angular
momentum per unit cell, which can basically influence
the polarization properties of the electron. Thisfact was
not noted earlier.

3. SELECTION RULES

In this section, we present selection rules for the
operator kzx, where k is the quasi-momentum and & is
the generalized momentum operator:

h

n=p+u(ox0V), = .
p+HK( ), H e

(21)

The matrix elements are calculated between al wave
functions at the I" point. The selection rules are formu-
lated in terms of Clebsch—Gordan coefficients and
reduced matrix elements. The reduced matrix elements
are expressed through the mixing coefficients of the
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wave functions. This approach seems to be the most
convenient for usein practice.!

Calculations carried out with the help of the wave
functions (11) and (17) give the following selection
rules for the 'y = [ transitions:

[ gM' rers
Mg MIKa|lg; MO = ky_uC: 1 A
: (22)
1 . 3.1
= += = +- +-
M —2! M —21 —21
A= S G Crr -1 BP0 u< ‘aV >

rry

+«/§Z Crr.Cryr [<€1|px|x —y§ <

3r5

)

(23)

{54
3

Informula(22), k, (o = 1, 0, —1) are cyclic components
of the vector k [16] and Cj'y, ;. arethe Clebsch-Gor-
dan coefficients.

The selection rulesfor the g =—
low from relations (11) and (14):

z Crr.Cryr [' Cés| py| X+ 3U<

+ z (-:rsrg,(-"rgrg[—i I:é3|py|e'1D+|J.<€3

Isls

I, transitionsfol-

1] %M' I—6|—7
T MlkalT7; MO = ky_yC2 1 B,
2 (24)

1 . 1
= 4+ = +-
M 5 M 5

= z Cror,Cr r [ —i O8] p X0+ 2H< ‘OV

rry

]
slﬂ (25)

+ z Cror.Crr [' [&] pyd s+ 2H<€1 %V

s,

2.
+ z Cr6r5Cr7r4|:_:/—§l &3| py| XDi| :

sy

1The formal selection rules formulated in a number of mono-
graphs (see, for example, [14, 15]) do not allow one to trace the
relation of the matrix elements to the character of the spin-orbit
mixing.
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Thesedlectionrulesfor thel; == g transitions are for-
mulated with the help of relations (14) and (17):

10
[r7; Mllknlr& MZD = |: /\/;k+lC§M 21

= z Cr7rzcr8r5[—i (5] px|€15—u<31 —

Mals

]
()

(27
z>}
i d
+ Cr7r4cr8r5[_ [X| py| €4 - «/§U< X
r;s /\/é

ov 63>]

Each of the selection rules in Egs. (22), (24), and (26)
is characterized by one parameter, namely, by the
reduced matrix element. This follows from the formu-
las for multiplication of the representations [5]:

Fexly =Tg+l,, [ox[,=Tg+T,. (28)
The reduced matrix elements (23), (25), and (27) are
rea, because the mixing coefficients C are red.

The derivation of the selection rulesin Egs. (22), (24),
and (26) is given in the Appendix.

The I'g == g transitions, in contrast to the transi-
tions considered above, are characterized by two
parameters. This follows from the relation

FgxMy=20g+Tg+T . (29
Using wave functions (17), one can derive the follow-
ing selection rules for the 'y == g transitions:

(T Mlkn|[g; MO
r r8 (lA)MM-,

Here, IS is a Hermitian 4 x 4 matrix and | is an anti-
Hermitian 4 x 4 matrix. These matrices can be
expressed in terms of the matrices J,, Jy and J, of the
angular momentum J = 3/2 as

= kd Jp 35— 33
Jz—Ji} +k{ 3, I I3,

+ z Cr7r4crgr3[i [X| py X’ _YZD_U-

Mals

+ z Cr7r4Cr8r4,[i X| py| z'D—u< x|V

(L

(1) mmr +-9?5 0

(31)
+Kk,{J,,
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1% = i(kd Jy 33 +K{dp I3 +k{0d}), (32

where

0 N
0o 3 0
Eo > 0 0E
0.3 0
0% 0 1 0¢
*= B g
0o 1 oﬁ’m
- 0
0 NERS
g0 05 0p

0 N
0o i3 0
Eo i 0 0E
0:d3 o 4 o O
DIZ ! U]

Jy:E E' (33

0o i o—i@D
: g
0 /3 0
Jo0 o0 % o[
DS |
020 0 o0

02 0

0 4 0
0oz 0 oO

3. =0 2 0
2= 1 O
000 -=00

0 2 0

doo o3
Joo o 30

Thesymbol {...} informulas (31) and (32) denotesthe
anticommutator, { A, B} = AB + BA.

The reduced matrix elements nggrs' and Qb;srg' in

Eq. (30) arewritten as

.
I —Z (Cr.r.Cror, * Crr.Cr,r))

sy,

dl D<2—yzl|ox|><D+u<><2—y2 A Xﬂ

- Z (Crr.Cr,r, * Cr.r.Cr.r.) |J-< XB—\;‘ Z'>

(A

ov

+ z (Cr,r.Crore * Cror.Cryry) |J-< €3

Msls

> (34)

PHYSICS OF THE SOLID STATE Vol. 43 No. 11

2041

-3 z (Cr.r.Cror, * Crr,Cr,rl)
r3r5

x [i D<2—y2||0x|elﬂ+u<><2—y2 oV

)]

2 .
+— z (Cr.r.Cror. * Crr.Crr)i X|p, e

Jér4r5

Mglg _
A= —Z (Cryr,Cror, = Cryr,Cryr)

sy

x[10¢ -y - 2u< -y Xﬂ
X

1 . ,
+ é Z (Cr8r4Cr8'r4' - Cra'rztcrsrw)l D(| pyl zl

(AT

1 . '
*5 z (Cr,r.Croro —Cr,r.Cr,r.)ilE&|pledd  (35)

[

+./3 z (Crr.Cror. = Cr,r.Criyrl)

Fsls

i Exz—yzlpxlelm—2u< -y e>}
X

1 .
+ ﬁrzr (Cr.r.Cror.—Cr,r,Cr.r)i X| py| €4l

The real quantities ngsrg and 9" are symmetric
and antisymmetric, respectively, with respect to the
permutation of symbolsTgand I'g":

Melg _ Fglg

Ds =D

rS'r8

L D = g (36)

From relations (36), it follows that the intraband transi-

tions are characterized by one parameter, @,

Mglg

because 9, ° = 0.

With reference to the conduction band 'y and the
valence bands I'g and I, the following reduced matrix

6r8

€lements connecting these bands are of interest: Ar ,

B°',C"? and nggr*‘. From formulas (23), (25),

(27), and (34), it follows that if we suppose the wave
functions in the band 'y to be stype functions and

Fel7 F7lg
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thosein thebandsT g and I'; to be p-type functions, then
in the absence of mixing, we have

Arerg — Brer7 - _I |:(B| pX|XD,
ct =0, 0=

i.e, the situation postulated in Kane's model takes
place [5]. The spin—orbit mixing resultsin the inequal-

(37)

ity of quantities A °"® and B"® 7 and in nonzero matrix
elements C'"° and @.°°.
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APPENDIX

Let us derive expressions (22), (24), and (26). Since
the dependence of matrix elements upon the projec-
tions M and M' of the angular momentum is invariant
with respect to the specific form of the reduced matrix
elements, it is convenient to use wave functions in the
simplest form when deriving the selection rules. We
assume that the wave functionsin bands g, 7, and g
have a concrete space symmetry and are given by Egs.
(12), (16), and (18).

We introduce the notation for the spin functions

o =X, B=Xu (Al)
22 22
and for the functions of the I, representation
P = —E(x+1y),
2
(A2)

Yo =2, P13 = A/ié(X—iY)-

Then, wave functions (16) and (18) in bands ', and I'g
can be written as

1

M
) _ >

IM7(Fs);MO= M%ZC”” gMZ‘“lMngM; (A3)
3

IFe(ry); MO= z c? M12M2'~IJ1M X1 (A4)

MM,

Here, the quantities Cj'y, ;.. are the Clebsch-Gordan
coefficients.

By expressing the operator kz in terms of the cova
riant and contravariant components of vectors in the
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cyclic basis[16], we obtain

To(Ma); mik CriFo(ra); MO = Y

M,M,a

x<isx1m|p°kq +p(0V x k)00u|L|J1M1X;M> (A5)
3 277

—_ k gM I_Grﬂ
T M-em 1—M—m%m !
A= 08| p,| XO— u< 5‘6_\/ x> (A6)
ox
and, similarly,
M e(M4); mik Cr|T,(T,); MO
1
5M Moy (A7)
= kM_mCiM—m%m !

Il

B ' = —il§p,xI+ 2u<s‘a_v
ox

x>. (A8)

When deriving expressions (A5) and (A7), the follow-
ing relations were used [16]:

= (_1)0( p—ou Eas'pa'quMlD: lepx|X|:6GMlv

OV xK* = iﬁZC}SM(DV)VkA, o,v,A = %10,
(oor)mM = '\/_C}Ml
<S|DV)V|lIJlM = <S‘a—\/ X>6VM ’

X !
JM
Z ClMéMZC;M la ClMl“
M, M,a
g9,1,0
I+l 0 1:J 0
=(-1) ?.ecM, 0 % n
'gl, 4,0
o 4
O O

e

i 0 0. .
Here, &5 isthe Kronecker deltaand [ abc 0 isag
OdefQ

symbol. The reduced matrix elements A" in Eq. (A6)

and B™'" in Eq. (A8) correspond to a concrete space
symmetry of wave functions (12), (16), and (18). Gen-
erally, when the functions |Is; M) |I'7; MO and |[g; MO
havetheform of Egs. (11), (14), and (17), the quantities

A" and B should be replaced by expressions (23)
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and (25). This can be verified directly by calculating
any one matrix element in Egs. (22) and (24).

Let us now verify formulas (26). For this pur-
pose, we first calculate the matrix elements
I AT 2); MIKT|Tg(T 4); M'CE (KRt)p- Theresult is

S3(km)y = ~(km) 45 = kaC T
22 22

2, ATl
(km)y s = (k)5 = Bl
272 22 (A9)
S3km) 4 5= ~(km), y = k,CT
2 2 2 2
(km)y;, = (k@) 4 4 = O,
22 2 2
(A10)

ce = X p,| 20— p< x“l\_/‘z‘>.
ay

In order to write relations (A9) in terms of Clebsch—
Gordan coefficients, it issufficient to expressthe matrix
elements I /(I 4); MIkp|Tg(M4);M'O= (kp)ww through
these coefficients, because the quantities (k) and
(kp)um differ only in their reduced matrix elements.
From Egs. (A3) and (A4), it follows that

1 3M.
(Kp)mm = z CiM 1 Cot mlellkpqulM [ (Al1)
M,M,m 12" e

The matrix elementsin Eq. (A11) can be related to the
3 x 3 matrix I:

mlellkpqullMZD =i ¥ py|Z'|:(|)M1M21

(A12)
M;,, M, = 1,0,-1,
where
% 0 _k+1 ko%
0 0
%, k, 00

Thematrix | in Eg. (A13) can be expressed through the
polarization operators T,s(s= 0, 1, 2) [16]:

| = 2K Ty +Ko(Tro=To0) =2k Top. (A14)

Taking into account that, in the cyclic basis, the matrix
elements of the operators T, are given by the formulas

[16]
5 1M,
(Tzs)Mle - /\/;Clezs (A15)
and using the relation [16]
3 1 1
M M amy M
z ClMZ;mclM ; Cimzs = _CgM'Zs' (A16)
M;M,m
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one can obtain an expression for the matrix element
(kp)uw from Egs. (Al4), (Al1l2), and (All). If we
replace the matrix element iX|p,|Zin that expression

by c''e given by Eqg. (A10), then, in accordance with
Eqg. (A9), we obtain

. 10 3
0 ,(T4); MIk G| (M 4); MO= [—/\/%kﬂ(:g

2k [C_Ml ¥ k a" e
30 3M2 2 §M2 D -1 §M22 1 '

In the general case of spin—orbit mixing, where the
wave functions have the form of Egs. (14) and (17),
expression (A17) istransformed into Eq. (26) with the
reduced matrix element given by Eq. (27). This can be
verified by calculating any one matrix element in the
left-hand side of Eq. (26).
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Abstract—It isshown that, because the shape of the exciton absorption curvein crystalline TIGaS; is described
by the Fano antiresonance profile, the experimentally observed exciton peak corresponds to a modified state
which istheresult of the configuration interaction of adiscrete state (exciton) with the quasi-continuum of con-
duction-band states. The oscillator strength for the transition to the discrete (“ pure”) exciton state is cal culated
asFy=1.22 x 1072 The exciton transition selection rules are cal cul ated for two assumed symmetry groups, D,
and D4y,. An analysis of the selection rulesfor the dipole-allowed exciton transition permits one to conclude that
the symmetry group for the TIGaS, crystal is Dy, © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

TheTIGaS, crystal isclassified with the ternary lay-
ered semiconductors. Literature data suggest that the
narrow peak observed at the fundamental absorption
edge is due to direct-exciton formation at the Brillouin
zone center [1].

The symmetry group of the TIGaS, crystal remains
to be completely ascertained. The symmetry factor
group which is most frequently used for describing the
properties of thiscrysta is C,,; however, the number of
Raman- and IR-active modes calculated using this
group of symmetry far exceeds that of Raman scatter-
ing (RS) and IR lines observed in experimental spectra
[2,3].

In [2], the structure of the TIGaS, layer is symme-
trized by dlightly displacing the intralayer atoms until

they form atetragonal structure with space group D3,.

By introducing an interlayer inversion operation and
retaining the layer symmetry elements, the authors of
[2] obtained a hypothetical structure with space group

D, and adouble-layer unit cell. With this approxima:

tion, the mode number allowed by the theory agrees
better with the one obtained experimentally [2]. In this
case, one can assume Dy, Dy, and D, as possible layer
symmetry groups. Analysis of the polarization depen-
dences and study of the structure of the RSand IR spec-
tra suggested two possible symmetry groups for the
TIGaS, crystal, namely, Dy, [2] and D, [3].

Comparison of the selection rules for exciton transi-
tions with experimental data may permit one to pin-
point the preferable group from the above two. To do
this, one hasto establish whether the observed excitons
are alowed in the dipole approximation. This question

T Deceased.

can be answered by calculating the oscillator strength
for the transition to the exciton state.

The present communication reports on the determi-
nation of the exciton-band symmetry and on a calcula
tion of the oscillator strength for the exciton transition
from optical absorption spectra obtained at 1.8 K. At
this temperature, the exciton—phonon coupling is
weaker than the exciton—-photon coupling and, there-
fore, the exciton absorption line profile is only weakly
distorted.

2. EXPERIMENT

The samples for the measurements were prepared by
cleaving. The samples used in the measurements were
thin platelets with a thickness d = 0.0020-0.0070 cm.
The crystal purity was verified according to the absence
of impurity- or defect-induced luminescence; the sur-
face paraléelism, according to the perfection of the
interference pattern in the transmission region. We
studied absorption spectrain both theE ||zand E O z
polarizations (z isthe optical crystal axis perpendicular
to the layer plane).

The figure presents an absorption spectrum of the
TIGaS, crystal (d =21 um) obtained at 1.8 K.

3. CALCULATION OF THE OSCILLATOR
STRENGTH

In calculating the oscillator strength, one usually
makes use of the integrated absorption coefficient
derived from the area bounded by the transmission
curve. However, at low temperatures (about 1.8 K), this
calculation yields incorrect values [4]. Therefore, cal-
culation of the oscillator strength for transitions to the
exciton state at low temperatures must take polariton
effects into account. We calculated [5] the oscillator
strength for the transition to the exciton state in TIGaS,

1063-7834/01/4311-2044%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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with due account of the polariton effects, F = 1.33 x 107%;
this corresponds to a dipole-allowed transition.

4. EXCITON ABSORPTION LINE SHAPE
A line shape analysis for exciton absorption in
TIGaS, [6] showed the exciton absorption peak in crys-
talline TIGaS, to be best fitted by the Fano antireso-
nance profile [7]:

_ (g+eg)’
f(e,q) = ~—=%, 1
(¢, Q) e D
where
. = E—EeX—E, @
I
2 a

E., is the energy corresponding to the discrete state
(exciton), E" is the correction to the discrete state
energy due to the configuration interaction, E, + E"
determinesthe experimentally measured position of the
resonance ling, and I, is the half-width of the antireso-
nance profile.

The best fit parameters were found to be E, =
2.605eV, I', = 0.011 eV, and the Fano antiresonance
parameter q = 3.5. In accordance with [7], the quantity
o? isdetermined by theintensity ratio (i.e., in effect, the
ratio of the corresponding oscillator strengths) for the
optical transition to the modified discrete state @ and to
an unperturbed continuum state Yg:

[(@lpl)* 3
|(Welpli)*ra

where p is the dipole moment operator and I, is the
half-width of the antiresonance profile. Because the
experimentally measured absorption line position cor-
responds to a modified state arising as a result of con-
figuration interaction between a discrete state (in our
case, of the exciton) and the continuum (electronic
states in the conduction band), the oscillator strength of
the transition to the exciton state in TIGaS, determined
in [5] actually corresponds to a transition to the modi-
fied state. The oscillator strength for atransition to the
pure exciton state can be determined from the expres-

sion[7]
@RI = Z(a” ~ )T/ (Welpli)f
2 1 2 q2—1 2 )
= [(@Ipl)I” = ZTr|(Welpli)]” = 7|(¢|pli)l :

where ¢ isthe discrete-state wave function.

Becausethe oscillator strength for the modified state
calculated earlier isF = 1.33 x 1072, that for the transi-
tion to the pure exciton state, according to Eq. (4), is
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Absorption spectrum of TIGaS, obtained at 1.8 K.

Fo=1.22 x 1072, Thus, the transition to a pure exciton
state is dipole-allowed.

5. EXCITON BAND SYMMETRY

Analysis of the selection rules for an exciton transi-
tion using group theory should also yield a dipole-
allowed transition.

Thevaencebandin TIGaS, isbelieved to be derived
from single-electron states of the sulfur ions; the con-
duction band, from those of the gallium ions [8].

According to the LCAO method, the electron wave
functionsin the valence band are represented asalinear
combination of wave functions of the outer filled elec-
tronic shells of the ions that make up the crystal.
Because only the highest valence-band and the lowest
conduction-band levels are considered, the bands
should be derived only from those shells which are the
first to undergo changesin the cases where an ion loses
or acquires an electron.

According to [9, 10], the formula of the TIGaS,

compound can be presented as TI*(Ga** Sg‘)l_. Taking

into account the configurational changes that the S
and Ga** ions undergo in losing or acquiring an elec-
tron, we come to the conclusion that the valence-band
top is derived from the p states of the 3p® sulfur ion (the
2P,;, term) and that the conduction band originates from
the s states of the 3d'%s gallium ion (the 2S,;, term).

Consider the classification of the valence- and con-
duction-band levels according to the irreducible repre-
sentations of the two possible symmetry groups, D, [2]
and D4, [3].

According to [11], the site symmetry of the S and
Gaatomsin alayer with symmetry D, is described by
the following groups: C,, for Sand D,y for Ga. To find
the symmetry of the valence and conduction bands, we
use the correlation diagram method. According to this
method, the states of these bands should be induced by
irreducible representations of the corresponding site-
Symmetry groups.
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Because the valence band of TIGaS, is derived from
the p states of sulfur (°P,, term), the states of the

valence band are induced by local functions, whose
symmetry is described by the E' representation of the

double group C,,, and the states of the conduction

band, which are derived from the Ga s states, are
induced by local functions, with their symmetry being

described by irreducible representations E, of the dou-
ble group D>4. We shall use the correlation diagrams

for thetwo possiblefactor groups of the crystal, D, and
D, to analyzethe selection rulesfor the excitonic tran-

sitions. This shall be done assuming D, to bethelayer

symmetry group in both cases, so that the site symme-
try of the gallium and sulfur atoms will be retained in
both cases.

(1) We assume D4, to be the factor group of the crys-
tal. According to the correlation diagram, the E' repre-

sentation of group C;, is formally compatible with
four representations of the D}, group, more specifi-
cally, Ei4, Ei,, Eyy, and E;, . The representation cor-
responding to the ?p,,, state should formally be a two-
fold representation of the Dy;, group. Because the elec-
tronic configuration under study contains 5 p electrons,
the 2Py, state has odd parity and the E;, and E,, rep-
resentations should be excluded from the consider-
ation. Of the two remaining representations, E;, and
E,, , preference should be given to E;,,, because it can

be derived directly from the expressions used in deter-
mining the representation corresponding to the original

level 2Py, in symmetry group Dy,

Consider, in the same manner, the %S, state for the

s electron bound to a Ga** ion. The electronic configu-
ration forming in this case corresponds to an even-par-
ity state; therefore, of the two representations of the

D3, group, Ey, and E,,, specified in the correlation
diagram, one should choose E'zg . We thus obtain
M, = By T = By )
For the S state of the exciton, we cometo
rex = Blu + BZu + Euv (6)
and for the exciton P state,

rex(px, y) = Alg + AZQ + Blg + Bzg + 2Eg, (7)

rex(pz) = Blg + BZg + Eg' (8)

Because the ground state of the crystal is totally
symmetric, the dipole-allowed components of the S
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excitonareE, intheE ||y and E ||x polarizations, while
for the P exciton, all components are dipole-forbidden.

(2) We assume D, to be the factor group of the crys-
tal. In this case, the correlation diagram is constructed
following the scenario typical of layered crystals.
Namely, one considers, sequentially, the change in the
local state symmetry inthetransition from the atom site
symmetry group in a layer (C,, for sulfur and D, for
gallium) through the layer symmetry group (D) to the
crystal symmetry group (D,y,). On making assumptions
similar to those introduced when considering the D,
symmetry group, we obtain

r.=g, r,=Eg. 9)

For the exciton states, thisyields

ra((s) = E+ xE = Au + Blu+ BZu + B3u’
rex(pz) = E+ X E X Blu = Ag + Blg + BZg + Bsgv
rex(px) = E+ xE x BZU = Ag + Blg+ BZQ + B39’
Fe(py) = E'xE xBy, = Ay + Byg+ Byg + Bayy.

(10)

In this case, the selection rules yield the following
dipole-alowed transitions for the S-exciton compo-
nents: By, inthe E ||z polarization, B,, for E ||y, and B,
for the E || x polarization. The P exciton isforbidden by
the selection rules in the dipole approximation.

The above selection rules for the exciton transitions
permit determination of the crystal symmetry group.
Because the experiment shows the exciton transition to
be allowed in the dipol e approximation and the absorp-
tion peak is seen in both the E ||z and E [J z polariza-
tions, one should consider D, to be the crystal symme-

try group.

6. CONCLUSION

Thus, the results obtained in thiswork permit one to
conclude that the symmetry of the valence and conduc-
tion bands is described by the E- and E* irreducible
representations of the D,,, group, respectively; the S
exciton symmetry, by the By, + By, + By, representa-
tions of the Dy, group. The oscillator strength of the
pure exciton state calculated under the assumption that
the exciton absorption curve is best fitted by the Fano
antiresonance profileis F, = 1.22 x 1072,
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Abstract—The dynamic conduction of bismuth-containing oxide layered ceramics of the composition
Sr,Bi,TiNb,O;, is investigated in a weak aternating field at frequencies of 0.5-500 kHz in the temperature
range 300700 K. It isdemonstrated that the high-temperature conduction can be adequately described interms
of theoretical concepts using the effective medium method and corresponds to two-dimensional hopping trans-
fer. The concentration of nodesin the system through which charge-carrier hopping occursis estimated. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Although ceramic materials are widely used in var-
ious electrical devices owing to their unique properties,
the exact mechanisms of their conduction are not yet
completely understood. This is explained by the fact
that ceramics are a rather complex object of investiga-
tion primarily due to their inhomogeneous polycrystal-
line structure, which possesses a high concentration of
pores. In this structure, charge transfer can occur
through several different mechanisms simultaneously,
so that the overall picture of electrical conduction is
rather intricate. In this case, it is important to answer
the question as to whether the charge transport due to
carrier transitions through potential barriers at grain
boundaries prevails or if the conduction along the inter-
crystallite boundaries plays a dominant role and the
properties of the crystallites by themselves are of no
significance.

The purpose of this work was to investigate ac the
conduction in Sr,Bi,TiNb,O,, ceramics. This com-
pound belongs to the family of layered bismuth-con-
taining perovskite-like oxides with the general formula
An-1BisBOsm+ 3[1]. Inour case, m=3, A= Sr, and the
element B; is replaced by the isovalent combination
B,B' where B, = Ti, and B' = Nb.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The samples were prepared in the form of pellets
approximately 2 mm thick according to the standard
ceramic technology. The sample density was 6.9 g/cm?®.
The electrodes were fabricated by firing in a silver
paste. Measurements were performed on a BM-507
impedometer in the temperature range 300700 K at
frequencies of 0.5-500 kHz according to the procedure
described in [2]. The maximum error in determining the

impedance modulus and the phase shift did not exceed
+6%. The measuring field strength was less than
10 V/cm. The experimental data were processed on a
computer using a smoothing procedure.

3. RESULTS AND DISCUSSION

3.1. Thetemperature dependences of the conduction
G for the sampl e at different frequencies of the measur-
ing field are depicted in Fig. 1la. It is seen that the G
conduction decreases only slightly with an increase in
the temperature, which is especially pronounced at |ow
frequencies. At T > 450 K, the temperature dependence
of G has a shape characteristic of semiconductor mate-
rials. For this reason, we focused our attention on the
temperature range above 450 K. It was found that the
electrical conductivity at these temperatures is gov-
erned by arelationship typical of hopping charge trans-
fer: Rea(w) ~ w®, where o isthe effective conductivity,
wisthe cyclic frequency of an dternating electric field
(w= 21, where f isthe frequency expressed in Hz), and
sisaparameter (s = 0.65 at 700 K). However, judging
only from this dependence, it is impossible to deter-
mine the particular mechanism of electrical conduc-
tion. Moreover, in the case of systems such as the
ceramics under investigation, the dispersion can be
associated with mobile carriers and dipoles. Asis seen
from Figs. 1b and 1c, the conduction dispersion is sub-
stantially more pronounced compared to the capaci-
tance dispersion. Therefore, it would be more correct to
represent the resultsin terms of the complex impedance
Z* and the complex dielectric modulus M*, as was
done by Macdonald [3]. In order to analyze the mecha-
nisms of hopping conduction, we used the theoretical
approach developed in the framework of the effective
medium method, which was described by Bryksin et al.
[4, 5]. Within this approach, the theoretical treatment is

1063-7834/01/4311-2048%21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. (a) Dependences of the electrical conduction of the sample on the reciprocal of temperature at frequencies of (1) 1, (2) 10,
and (3) 100 kHz. Dependences of (b) the electrical conduction and (c) the capacitance on the frequency of the measuring field at

temperatures of (1) 500 and (2) 700 K.

carried out in terms of the dimensionless function,
which isthe reciprocal of the dielectric loss tangent:

(D)
)

Here, €' and €" are the real and imaginary parts of the
complex permittivity, respectively; G(w) and G(0) are
thereal parts of the ac and dc admittances, respectively;
C, isthe capacitance of themeasuring cell; and €, isthe
real part of the permittivity at (0 — oo.

cotd = (g¢'—¢,)/e",

e" = [G(w) —G(0)]/wC,.

PHYSICS OF THE SOLID STATE Vol. 43 No. 11

In order to analyze the experimental resultsin accor-
dance with expressions (1) and (2), it is necessary to
determinethe dc resistance R, = 1/G(0) and &,,. The lat-
ter quantity can be determined from the formula C,, =
£,Co, Where C,, isthe electrical capacitance of the sam-
pleat w —= oo,

For the samples under investigation, the shape of the
hodograph curves for Z* and M* permitted us to per-
form extrapolation only at temperatures of approxi-
mately 700 K for w — 0 and w —» o and to deter-
minethevauesof R,=10°Q and ¢,, = 235 (Fig. 2). The
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Fig. 3. (1) Dependence of the dielectric loss cotangent on
the measuring field frequency at atemperature of 700 K and
(2) astraight line with slope 2/ttloge.

dielectric loss cotangent as a function of the logarithm
of the measuring field frequency at 700 K is shown in
Fig. 3. It can be seen from Fig. 3 that the experimental
curve has a linear portion in the low-frequency range.
Brykcin and Kleinert [5] proved that this behavior is a
characteristic feature of hopping transfer in two-dimen-
sional systems. Therefore, according to the data
obtained in [5], we can write the following relation-
ships:

cotd = (2/m)In(32W,/ w), (©)]

PHYSICS OF THE SOLID STATE Vol. 43
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W, = vpexpl(-4/In2aN™?)//m,  (4)

where W, isthe critical hopping probability, which cor-
responds to the probability of forming an infinite clus-
ter in the percolation theory; a is the reciprocal of the
localization length; N is the node concentration in the
system; and v, is the phonon frequency.

It is aso seen from Fig. 3 that the slope of the low-

frequency portion is equal to 2/1t (or 2/logewhen
changing over to the decimal logarithm); i.e., thisvalue
is in agreement with the coefficient theoreticaly pre-
dicted in [5]. It was demonstrated [5] that this coeffi-
cient is independent of the disorder parameter aN—Y?
and is characteristic of the frequency dependence of the
conduction in two-dimensional systemsfor the hopping
mechanism of chargetransfer. From the aforesaid it fol-
lows that, in our case, this mechanism corresponds to
charge transfer over the intercrystallite boundaries and
pore surfaces in the studied samples.

3.2. Using expressions (3) and (4), we can estimate
the node concentration N. To accomplish this, we
extrapolate the low-frequency portion of the frequency
dependence of cotd (see Fig. 3) until it intersects the
vertical axis at the point corresponding to logf =0.As

aresult, weobtain cotd = 6.6. Settingv,, = 102 Hz and
o = 0.8 nm, aswas donein [6], we determine the value
of N = 10 m?, which falls within the permissible lim-
its.

Itisof interest to evaluate one more parameter of the
theory, namely, the ratio of the mean distance between

the nodesto the localization length: kK = 4aN-Y2/ ﬁT. In
our case, thisquantity isequal to 9 and fallsin therange
of possible values considered in [5].
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Abstract—Nonlinear propagation of longitudinal—transverse acoustic pulses down to a length of one cycle
(video pulses) in alow-temperature paramagnetic crystal in the direction parallel to an external magnetic field
isinvestigated theoretically. The case of a crystal with paramagnetic impurity ions with effective S= 1/2 spin
is considered. It is shown that, due to spin—phonon interaction, two-component acoustic pulses can propagate
in the form of high-power quasi-solitons. Conditions are determined for the formation of exponentially local-
ized subsonic rational solitons which propagate with a velocity higher than the velocity of transverse sound
and which have a transverse component with arotating plane of polarization. © 2001 MAIK “ Nauka/Inter pe-

riodica” .

1. INTRODUCTION

Over the last decade and a half, severa reports on
the generation of laser pulses roughly one cycle long
(electromagnetic video pul ses) have been published [1—
3]; thisinitiated theoretical studies into the interaction
of such pulses and matter (see, e.qg., review [4]). Non-
stationary coherent effects (such as photon echo and
self-induced transparency) produced by video pulses
have specific features[5, 6] in comparison with the cor-
responding effects caused by resonant quasi-mono-
chromatic pulses with awell-defined carrier frequency.
Since such a frequency is absent in electromagnetic
video pulses, one cannot use the slowly varying ampli-
tude (and phase) approximation in studying the interac-
tion of these pulses and matter.

Acoustic picosecond video pulses have also been
generated in many laboratories [7-9], and their propa-
gation in various media has been studied theoretically.
Different solitonic modes were considered [10-13]
separately for longitudinal and transverse acoustic
pulses. It was shown in [14] that when paramagnetic
impurity ions in a crystal are excited by a series of
transverse acoustic video pulses, acoustic echoes with
both transverse and longitudinal structure can arise. In
a solid, an acoustic pulse can have two components,
longitudinal and transverse, which may lead to specific
features unigue to two-component acoustic solitons.

In this paper, we investigate quasi-solitonic propa-
gation modes of longitudinal—transverse (two-compo-
nent) acoustic video pulses in crystals with paramag-
netic impurities. Solitons in the form of localized trav-
eling video pulses will be referred to upon occasion as
solitons, but they will not be assumed to haveto interact
elastically with one ancther.

Paramagnetic impurity ions are assumed to have an
effective spin S = 1/2 (Kramers doublets) and to be
placed in an external magnetic field B. As an example,
we refer to paramagnetic Co?* ions being in a cubic
MgO crystal [15].

Following [6, 14, 16], we assume that
W, < 1, (D)

where wy, is the frequency characterizing the Kramers
doublet splitting and T, is the video-pulse duration.

We note that in [17] the interaction of paramagnetic
ions and nonresonant |ongitudinal—transverse soliton-
like acoustic pulses was considered under the assump-
tion that the pulse duration T, was such that wet, > 1,
which is opposite to inequality (1).

Inequality (1) can be called the condition for spec-
tral overlap, because, according to Eq. (1), the band-

width of avideo pulseisdw~ T;l > (. Therefore, the
spectrum of a pulse contains Fourier components that
can induce resonant quantum transitions between the
Zeeman sublevels of paramagnetic ions; these transi-
tions can be fairly strong if condition (1) is fulfilled.

2. SELF-CONSISTENT SET OF CONSTITUTIVE
AND WAVE EQUATIONS

Condition (1) will be fulfilled if, for example, the
Zeeman splitting is ), ~ 10'° st and the duration of an
acoustic video pulse is T, ~ 107 s. The characteristic
spatial length of such pulsesis| = at,, where ais the
sound velocity inasolid. For a~5 x 10° cm/s[18], we
havel ~5 x 10°% cm, which is two orders of magnitude
larger than the | attice parameter h ~5 x 108 cm. There-

1063-7834/01/4311-2051$21.00 © 2001 MAIK “Nauka/Interperiodica’
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fore, we can ignore acoustic spatial dispersion (which
is significant for shorter pulses|[9, 10, 12, 13, 17]). For
the interaction between acoustic pulses and the spin
subsystem (Kramers doubl ets) to be significant, theini-
tial difference in population of the levels must be
noticeable. This imposes a restriction on the tempera-
ture of the paramagnetic crystal [13] T < Zwy/kg, where
. isPlanck’s constant and k isthe Boltzmann constant.
At 0y~ 10°s?, we have T < 0.1 K, which corresponds
to ultralow temperatures.

Let an acoustic pulse travel in a cubic crystal along
an external magnetic field B applied parallel to one of
the fourfold axes (z axis). The Hamiltonian of the spin
subsystem interacting with lattice deformations can be
written as[12, 18]

H = Fls+ Hint, (2)

where
Hs = z AR
j

oy,

Hint = z_{ I:11 zzSJZ+ FM(%XZg(-F%ng/)}

i

Here, & = & (r;) are spin operators of thejth paramag-
netic ion, which are proportional to the Pauli matrices

Oy, S = 04/2 (a =X, Y, 2); r; isthe position vector of
thejth paramagneticion; €;; = (0U;/0x; + dU,;/0x;)/2 are
the components of the strain tensor (in our case, €, =
0U,/0z, €,, = 0.50U,/0z, €,,= 0.50U,/02); U; (i =X, Y, 2)
are the components of the displacement vector U of lat-
ticesites; and Fy; and F,, arethelongitudinal and trans-
verse spin—phonon coupling coefficients, respectively
(intheVoigt notation [18]: xx —= 1,yy —= 2, zZz— 3,
yz —= 4, x2 — 5, Xy — 6). The Zeeman splitting
frequency wy, is expressed through the Landé g factor,
the Bohr magneton g, and the external magnetic field
as wy = gugB/fi; the summation in Eq. (3) is carried out
over all paramagnetic impurity ionsin the crystal.

In the case of the spin S = 1/2 under study, spin—
phonon interaction is due to modulation of the Landé g
factorseffected by the strain field of an acoustic pulse[ 10,

12, 18]. At t H—t,wehavesﬁ', — —Sf, (a=xYy,2
and B — —B (wy — —y,); therefore, Hamiltonian (3)
isinvariant under time reversal. In Eq. (3), this invari-

ance is due to the fact that the spin—phonon coupling
coefficients are multiplied by ~u,.

In what follows, we employ a semiclassica
approach in which the dynamics of the spin subsystem
is described quantum-mechanically, while the strain is
considered to be aclassical field. Therefore, in addition

PHYSICS OF THE SOLID STATE \Vol. 43

VORONKQV, SAZONOV

to Egs. (2) and (3), we should write the classical Hamil-
tonian of the acoustic field:

1 0Op2+p2+p’ U
e P il
(4)

Ui, Yy
A [DazD Dazﬂ}gjr

where p; (j = X, Y, 2) are the components of the momen-
tum density of the lattice, p is the mean density of the
crystal, and A,; and A ., are the elastic moduli of the sec-
ond order; integration in Eq. (4) is performed over the
entire volume of the crystal.

In the semiclassical approach [12, 17], the dynamic
variables of the elastic field obey Hamilton's equations,
U _JdH @ 3H
S 3 5= 3 (5)
ot op’ ot ouU

where H = H, + [(Hind and O.. Odenotes the quantum-
mechanical average.

It is convenient to represent [(Hi,Jin Eq. (5) in the
form

Fll%zz[sl 0
{ (r) ©)

+ FM(%XZE&(f)D’f €,,05(1)D}d’r.

Here, n= ; & (r —r;) isthe concentration of paramag-
netic impurity ions, d(r — ;) is the Dirac & function,
S(r)O=Tr@S), and p is the density operator of

the spin subsystem, which obeys the quantum Liouville
equation

P _ (o -
in5e = [A,fl. 7)
Using Egs. (2)—(7), we find
0°Q 0°Qy _ nhwy_, 0°
ZD_ é ZD = 20F42"4 Szj’ (8)
ot 0z pg 0z
0°Q 20 Q” nﬁcogF2 *W ©
7 9 2 120
ot 07 pg 07
aa—StD = i(wy + QPSS —iQyW, (10a)
"a\f’ Im(Q%S,), (10b)
where Q; = (WFa/0)(éx + 1€y); Q) = (WF1/0)E

= JAulp and a; = JAy/p are the velocities of

transverseandlongltudmal sound, respectively; and the
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dynamic variables S, and W are the transverse magnetic
moment and the negative of the longitudinal magnetic
moment (or theinverse popul ation), respectively, which
are expressed in terms of the density matrix elementsas
S =pppand W= (py—p19)/2 (-L/2< W< 1/2).

Asisaobviousfrom Eq. (10), in the case of an acous-
tic pulse traveling along the direction of the external
magnetic field, the transverse strain induces quantum
transitions between the Kramers doublet components,
while the longitudinal strain modulates the frequency
of these transitions.

In what follows, we analyze the self-consistent set
of wave and constitutive equations (7)—(10).

3. REDUCED WAVE EQUATIONS

It follows from Eq. (10a) that S, ~ Q(t,,. Therefore,
the ratio of the right-hand side of Eq. (8) to one of the
two terms on the left-hand side is € ~

(N Fis /g2pa®) (0xT,). Putting n ~ 10%° cmr3, w, ~
10¥s?, Fy/g ~ 10?2 [18], p ~ 5 g/lcm?®, and a ~ 3 x
10° cm/s, we obtain € ~ 10wyt < 1 [seealso Eq. (1)].
A similar conclusion can also be arrived at for Eq. (9).
Therefore, one can employ the single-propagation-
direction approximation to Egs. (8) and (9); that is, the
pulse shape can be assumed to vary slowly in the co-
moving frame of reference [19]. Thiswill betakeninto
account in what follows.

To solve Egs. (10), we rewrite them in the matrix
form:

R _ .4
E = 1AR,
gsglfzg (11)
T EE
Ow O
% Wy +Q 0 —Qulﬁ%
A=H 0 —w+Q) Qi2n (12

0 0
0-Q8/J2  QulJ2 0 O

It follows from Egs. (10)—<(12) that the square of the
Bloch vector R? = |SJ? + W2 isan integral of motion.
It can be seen from Eq. (104) that, when Eq. (1) is

true, one of the two following inequalities or both of
them hold (since |S| and W are finite):

1Q/we> 1, Qpwy> 1. (13)

(Wewill consider al possible casesin the next section.)
Therefore, one can solve Egs. (10) using the method of
successive approximations, with w, being a small
parameter. Furthermore, it follows from Egs. (12) and
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(13) that Eq. (11) isalinear equation with large variable
coefficients; hence, it can be approximately solved
using the WKB method [20, 21]. In this paper, how-
ever, we will apply another method, which leadsto the
same final results but is more efficient than the WKB
method [22].

It is easy to verify that the condition [23]

J'[A(t), At)]dt' = 0 (14)

isnot fulfilled and, therefore, asolution to Eg. (11) can-
not be represented in the form of a matrix exponential
acting on the initial vector R(ty) [23]. However, ine-
quality (1) alows one to consider the limiting case

t —» t,. During thetime At =t —t, — 0, the matrix A

is changed only dlightly, A(t) = A(t') for (ty < t' < t).
Therefore, Eq. (14) is approximately valid and we can
write

R(t) = U(t, to)R(to), (15)

where the evolution operator has the form [22]

0 0
U(t, t,) = Jim expg IA(t')th,
to

IAl -

(16)

with | A| being the norm of the matrix A.

If the eigenvalues of the matrix 6 = tOA(t')dt' are

al different, the exponential in Eq. (16) can be calcu-
lated using the Sylvester identity [24]:

exp(i0) = S [

Jok#]j

Wl

-\
A=A

exp(i)\j), a7

k

where [ isthe unit matrix and {\} is the set of eigen-
values of the matrix 8, which are determined from the
equation det(d —AT) = 0. Inthelimit as At — 0, we
have 6 = ﬁoAdt' = AAt, A = pAt = ﬁo pdt', and
det(B —AT) = (At)%det(A —pl) = 0. Therefore, if {p}
is the set of eigenvalues of the matrix A, then in the
limit as At — 0 and [|A] — w, the set {A} =

O . .
grt P, dtDDforms the eigenval ue spectrum of the matrix
° O

6 =, Adt'.
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It follows from the above discussion that, using
Eqg. (17), we can represent the evolution operator (16)
in the form

t A~
N L] - P
Ut t) = Y explifp : 18
(t, to) z pD_t[pJ -y (18)
where summation is carried out over all eigenvalues of
the matrix A.

In our case, the matrix A is Hermitian, because its

eigenvaluesarerea: p; =0 and p, = —p; = J Q[ + Q)
(we have neglected wy, in the zeroth approximation).
Therefore, Eq. (18) takes the form

A’ .9 A

U, to)—I—ZQ—sm—+|—sm6 (29

2 Q
where

t

Q= Jot+|Qd% o= [ Qo

Here, we have formally put t, = —o, assuming that the
fundamental change in R (due to Qp and Q) occurs
during ashort time At ~ T, and, hence, Q and Qp vanish
asty — —oo.

Taking into account that, at t = —o (before the acous-
tical action), W=W, and S, = S = 0 and using Egs.
(15) and (19), we obtain

(20)

Q, QQ; . 20
it 2120gn?
S, = —iW,—5'sing +2W, L sin' s, (21)
W = WDL 2 (22)

sin %
Putting Q= 0 in Egs. (21) and (22), we arrive at the

results obtained in [25] for the case of transverse elec-
tromagnetic pulses.

We represent Q in the form
Qp = Fexp(iq), (23)

where F isthe real amplitude and @ is the phase which
defines the rotation of polarization plane of the trans-
verse pulse component. Then, we substitute Eq. (21)
into Eq. (10a) and insert the result, as well as Eq. (22),
into the right-hand sides of Egs. (8) and (9). Then,
inserting Eqg. (23) and using the single-propagation-
direction approximation, we arrive at a set of reduced
equations for the dynamical parameters of the acoustic
pulse:

VORONKOQV,

SAZONOV
09 _ _
3 - W, cos8, (25)
57 6 = W %————sm % (26)

where T = t — Za, Wy = NhgFa/(2g%0a), W =

nhwyFa [(2g%pal an), and o = (ay/2)(Vas — Vaj).
When deriving Eq. (23), it was taken into account that
wWoQ/Q? < 1 because of Eq. (13). In the absence of the
longitudinal component (Q =, =0), wehaveQ =F =
00/01 [see Eq. (20)]; substituting this into Eq. (24), we
obtain the sine-Gordon equation for the transverse
component of the pulse:

06
0201

The corresponding solitons with arotating polarization
plane were considered in [25, 26]. Here, we investigate
a more genera set of equations, (23) and (24) [or
Egs. (24)—(26)], which also take into account the
dynamics of thelongitudinal component of the acoustic
video pulse.

= UpweW,,SinG.

4. TRANSVERSE-LONGITUDINAL SOLITONS
We seek solutions Q; and F in the form of stationary
traveling pulses Q| (&) and F(E), where & =t-2z/v =1 -
(/v — Vay)z and v has the meaning of the velocity of
the pulse. Assuming that Q, F, and all their derivatives

vanish at & — oo, we obtain from Egs. (24) and (26)

F = Bu(wy+Q))(F/Q)sinG, (278)

Q, = -By(F/Q)’sin’(6/2), (27h)

where B = U W,,(Uv — Vag)™, By = =2 W, (/v —
Vay + a)™%, and the superscript dot on F indicates the
derivative with respect to €.

Let us first consider the case where only the first
conditionin Egs. (13) ismet, i.e., wp, Qf <|Q P =F2
This is not to say that Q,, can be neglected altogether,
because Q;; and wy, can be comparablein magnitude and
Q, can markedly affect the dynamics of propagation of
the acoustic video pulse [see Egs. (24), (27d)]. In view
of the inequality |Qq| > Q, the solitons considered in
this section can be called transverse-ongitudina video
pulses. Under the assumptions made, we have Q = 8 =

F and Q= {3,sin%(6/2) and Eq. (27a) takes the form
6 = osinB +vsin26. (28)

Here, 0 = Br(wy— By2) and v = BB /4.

oF = W, (0, + Q”) sme (24) We assume that the spin subsystem was at thermo-
9z dynamic equilibrium before the acoustical action; i.e.,
PHYSICS OF THE SOLID STATE  Vol. 43 No. 11 2001
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W, = —|W,| = -0.5tanh(Aw,/2kgT) . In this case,
Eq. (28) [see Egs. (25), (27b)] has two possible solu-
tions in the form of solitary traveling pulses. We con-
sider these solutions separately.

(1) o >0and B, > 0. Inthiscase,

. Qgpcosh
F == 2omcoshd (299)
1+ A°sinh’E
Q
Q= —=ln (29b)
1+ A’sinh’E
2
0= Kz+ ——K—\ﬂﬂarctanhgmg. (30)
1-A° 1-A°

Here, & = (t —ZV)Tp,, A = QT/2 < 1 [see Eq. (29D)],
and K =W, = u|W, |; the velocity v and the charac-
teristic amplitudes of the transverse (Q,,) and longitu-
dinal (Qn components are expressed in terms of the
pulse duration T, as

V = + wO“D|Wm|T (31)
2 21, |W |/ w
Qo = 240 T—/\/l——pl|| /e, >
p 0 + W W,| T, 32)
a2 W
Qum = By =

O + Wolo|W,,| T2

It can be seen from Egs. (23) and (30) that the
parameter K characterizes the rotation angle (per unit
length) of the polarization plane of the transverse pulse
component. Under the condition defined by Eqg. (1), this
parameter does not depend on the pulse length (asisthe
case with an electromagnetic video pulse [22, 26]) but
itissensitiveto changesin theinitial inverse population
[W,,| and in the external magnetic field (see expressions
for uy and W,,). If we look along the direction of prop-
agation of the video pulse (dlong B or the opposite
direction), the polarization plane of the transverse com-
ponent rotates counterclockwise becausek > 0 (Fig. 1).
This component has a double-humped profile with a
local minimum at the center, and it propagates in com-
bination with anegative longitudinal component whose
intensity has a minimum at the center. As can be seen
from Eq. (29a), the entire area of thevideo pulseis 8., =

J":th' zJ’:: Fdt' =2m

(2) 0 <0 and By > 0. Under these conditions, we
have

Q||m(l+)\2)
1+A° cosh’® E

ngsmhé 0
1+2\°c shE

F=0-=- (33)
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Qp, Q (a)

-~ 0 - Z—Vt
N s
N 7
~ |—
Qp, Q) (b)
~ ~ 0 ) ~ Z—Vt

Fig. 1. Profiles of two-component subsonic (v < ag, &)
acoustic solitons propagating in athermodynamically equi
librium medium described (a) by Egs. (23), (30), and (31)
and (b) by Egs. (23), (38), and (39). The solid and dashed
curves correspond to the profiles of the transverse and lon-
gitudinal components, respectively. The directions of the
propagation of the pulse and of the polarization plane rota-
tion of the transverse component are shown on the right.

Utanhe U

2
+ =222 arctan o0 @
N1+A O/1 2%
where)N\ = EZDmTpIZ, E)Hm = Q||m/(1+ 5\2)’ and
Gom = 2.fi0] = 2 | 2UWell ;- o,
Tona +w0uD|Ww|T

while the dependence of the velocity of the pulse onits
length is given by Eq. (31).

The rotation angle (per unit length) of the polariza-
tion plane of the transverse component K given by
Eq. (33) is similar to that for the soliton described by
Eq. (29a). They differ only in the shape of the profile of
the corresponding transverse components. In the case
of the soliton described by Eq. (299), the transverse
component has a double-humped profile (as indicated
above), while in the case of Eq. (33), this component
has the shape of a bipolar pulse (Fig. 1b). In the latter
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case, the area of the transverse component is equal to
zero.

From Egs. (32) and (35), it follows that there are
limitations on the length of the solitons described by
Egs. (29) and (33), respectively:

Fuagf

(i) = 20 25 (1-0), (30)

where g = g2p(a; —a%) /(2n|W,.[fiw, F 1y ). It should be

remembered that the condition in Eg. (1) is aso

assumed to befulfilled. Puttingg =2, p = 2 g/lcm?, aﬁ -
a’ ~ 10 cm?/<?, n~ 10%° cm3, wy, ~ 1010 s, Fyy ~ 102,
and |W,| = 1/2 (for kgT < 7iwy), we obtain g ~ 10°.
Therefore, if the velocities of longitudina and trans-
verse sound are different, only solitons described by
Egs. (29) can arisein actua crystals. A MgO host crys-
tal with Co?* impurity ionsis an example of this. In the
case where the vel ocities of longitudinal and transverse
sound are exactly equal (3, = ap), we have q= 0. At the
same time, typically, F; > Fy, [18, 27]; therefore, the
inequalitiesin Egs. (1) and (36) can be simultaneously
true only for solitons described by Eq. (33). The condi-
tion a, = a5 ismore closely fulfilled inionic crystals of
alkali halides with central interatomic forces [28]. For
example, solitons with a rotating polarization plane of
the transverse component described by Eqg. (33) can be
observed in NaBr crystals with Co?* impurity ions. As
seen from the estimates made above, the condition a, =
a; must be fulfilled with a relative accuracy of ~107,
which is a challenging task. If the difference between
the velocities a and a; is larger, the formation of soli-
tons of the Eq. (33) typeis open to question but solitons
described by Egs. (29) can be observed.

For the material parameters indicated above, it fol-
lows from Eq. (32) that (Q/Qrn)? < 1if wtp, < g~
106. Thislimitation is much less severe than Eqg. (1) and
can be easily met. At the same time, for solitons

described by Eq. (33) a o = 0, we have Qquw/Qom ~
(0Tp)% /Uil Wy - Therefore, the condition Qjm/Qom <1

is fulfilled if (0yT,)? < JWy/Hpy = F1i/Fy,. This condi-
tion is not inconsistent with Eq. (1), because usually
F.; > F4,, asindicated above.

From Egs. (22), (23), (29), and (33), it follows that,
in the case of solitons of both types, the population
inversion is not full due to the presence of the longitu-
dinal component.

Let us estimate the dynamical parameters of the
solitonlike pulses considered above. According to
Eq. (13), |Qal/wy ~ Fuuf€é| > 1. Putting F,, ~ 10%, we
obtain [€| ~ 0.1. For ), ~ 10'° s, the pulse duration is
Tp ~ Qo™ ~ (woF 4af€l)™ ~ 10 ps. At p = 2 g/cm3 and
a5 ~ 3 x 10° cm/s, we find that the intensity of the
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acoustic soliton is | ~ pa’ [é.P ~ 107 W/cm? and the

pressure within the soliton is P ~ paé [€é4| ~ 10 kbar.

Acoustic pulses with such parameters can be realized
experimentally [9].

5. RATIONAL SOLITONS

Now, we consider the case where both inequalities
in Eq. (13) are true; therefore, the components Q; and
|Qg| (or F) of the acoustic pulse are comparable in
value. In accordance with Eq. (13), we neglect wy in
comparison with Q in Eq. (27a). Putting F = AQ,

where A is a constant to be determined, we have 8 =

Q= J1+AQusgnQ, = —J1+A’QsgnP, [see
Eqg. (27b)]. Substituting these expressions into

Egs. (27) and differentiating Eq. (27b), one can find
that the compatibility condition is A2 = (ug/p)(ay —
V)/(v — ay). Here, it has been assumed that the differ-
ence between a and g issmall, i.e, (a—ay)/a; < 1,
and, asisusualy thecaseinasolid, a,= a; (a = 0) [28].
Further, we integrate Eq. (27b) and abtain

Q,mSgn Qum

Q, = 2wy g o Dom (37)
1+¢ 1+¢

@ = Kz+2KvTyarctang, (38

where Q= 2/(T,4/1 + A%) and Q= 2A/(T, /1 + A7),
The relation between the pulse duration T, and the
velocity of the soliton described by Eq. (37) isgiven by

(v —an)®+ (Mo/ky) (3= v) (v —ap)
= (MoWeapyt p)2'

From Egs. (38) and (23), it followsthat the polarization
plane of the transverse component of the soliton
described by Eq. (37) rotates counterclockwise (if we
look along the propagation direction of the pulse) in a
thermodynamically equilibrium medium (W,, < 0) and
rotates clockwise in anonequilibrium medium (W,, > 0)
(Fig. 2).

A two-component video pulse from Eq. (37) falls
off according to a power law rather than exponentialy,
in contrast to solitons of Egs. (29) and (33). Therefore,
it can bereferred to as arational soliton [29]. From the
expression for A?, it is seen that the vel ocity of theratio-
nal soliton lies within the range between a; and g
(regardless of the sign of W,,), while for the velocity of
solitons considered in the preceding section, we have
v <aforW, <O0.

The approximation |Q > wy, corresponds to the
case where the dynamic transition frequency oy = wy +
Q, [see Eq. (10a)] in the region of the video pulse dif-
fers significantly from wy,. In a thermodynamicaly

(39)
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equilibrium medium (W,, <0, B” > 0), we have Q,<0,
as seen from Eq. (37). Therefore, wy < 0, which corre-
spondsto dynamic population inversion of the quantum
levels: the ground level becomes an excited one, and
vice versa. A similar effect takes place in the case of
electromagnetic video pulses propagating in isotropic
para- and ferromagnets [30]: the population isinverted
in the medium which was initialy at equilibrium. It is
well known that in a nonequilibrium medium with an
inverse population, the velocity of solitons is higher
than that of the corresponding linear waves that induce
guantum transitions in this medium [31]. In our case,
the transitions are caused by the transverse component
of the pulse; hence, v > a,.

If a medium initially possesses an inverse popula-
tion (W,, >0, 3, < 0), then Q> 0 [see Eq. (37)]. Inthis
case, wy > 0 and the dynamic population inversion of
the quantum levels does not occur. Therefore, in the
presence of the longitudinal component of an acoustic
video pulse, the population remainsinverted and v > a
as before.

In the approximation |Q| > y, discussed here, we
have wy = Q); that is, the dynamic transition frequency
virtually does not depend on the frequency wy, for the
initial Zeeman splitting but is instead determined fun-
damentally by the longitudinal component of the
acoustic video pulse (wy = —{Q| in the medium that was
initially at equilibrium and wy = |Q| in the medium that
initially possessed an inverse population). For this rea-
son, the velacity v is independent of the sign of W,
[see Eq. (39)]. On the other hand, the presence of a
magnetic field isanecessary condition. First, thereisno
spin—phonon interaction in the absence of B in the case
of S=1/2 (see Section 3), and, second, the initial
inverse population W,, becomes zero at B = 0 (v, = 0)
with the consequence that the spin—phonon coupling
responsible for the soliton formation a so vanishes [see
Egs. (8). (9). (23), (24)].

It followsfrom Egs. (20) and (37) that the entire area
of the longitudinal—transverse rationa soliton is 6,, =

:: Qdt' = 2rt Figure 3 shows the dependence of the

duration of the rational soliton on its velocity as calcu-
lated from Eq. (39). It can be seen that the pulse dura-
tion T, increases monotonically with velocity v in the
case of N = o/, = (FeafFpan)?<2.1fn>2 1 hasa
maximum in the range between a;, and a. In both cases,
T, — 0asv — ayand 1, tends to afinite value as
V—gp

The amplitude of the longitudinal component Q.
decreases with increasing velocity for n < 1 and
increasesfor n > 1 (Fig. 4).

The Qq(v) dependenceis moreintricate. At n <9,
Qq,, decreases monotonically with increasing velocity;
at n > 9, the Q(v) dependence has two extremaat v;
and v, between which Qg increases; however, it

PHYSICS OF THE SOLID STATE Vol. 43 No. 11

2057

O O (@)

Fig. 2. Profiles of rational solitons(ag < v < &) propagating
in (a) an equilibrium medium and (b) a medium with an
inverse population. The notation isthe same asin Fig. 1.

P 1

max L o
P — T~

an Vin a) v

Fig. 3. Dependence of the rational-soliton length 1, on

its velocity v. The solid curve corresponds to the case of
n < 2, where 1, increases monotonically with v. The

dashed curve describes the velocity dependence in the
case of n > 2; here, T, has @ maximum in the range

between ag and & at vy, = [n(ay + ag) — 2aq)/2(n — 1);
Tr:ax = (8 — an)/(2We | Wyamay/n — 1)

decreases outside of this velacity interval with increas-
ing velocity (Fig. 4). In addition, Q, — @ asv —

For arational soliton to beformed, the amplitudes of
both the transverse and longitudinal components of an
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ag 4] WV q v

Fig. 4. (a) Dependence of the amplitude of the longitudinal
component of the rational soliton Q,, onthe velocity v ; the
solid and dashed curves correspond to the cases of n < 1 and
n > 1, respectively. (b) Dependence of the amplitude of the
transverse component of the rational soliton Q. on the

velocity v; the solid and dashed curves correspond to the
cases of N <9 and n > 9, respectively; in the latter case,
there are two extrema at v, and v, (Qqy, increases with v
inthe range between them), vy » = (a; + ap)/2 + [(g -

ag)/4][1+ J(n-9)/(n-1)].

acoustic pulse generated at the entrance of a medium
must satisfy inequalities (13). Therefore, the intensity
of rational solitons is several times larger than that of
exponentially localized acoustic video pulses (for
which only one of inequalities (13), namely, that for the
transverse component, is satisfied) and is of the order of
108 Wicm?,

6. CONCLUSIONS

Thus, we investigated [in the spectral-overlap
approximation defined by Eqg. (1)] quasi-solitonic prop-
agation modes of two-component acoustic video pulses
traveling along an external magnetic field in paramag-
netic crystals. It was found that in order to avoid the
effects of acoustic spatial dispersion and of nonlocality
of spin—phonon interaction on the formation of soliton-
like pulses, one should use ultralow temperatures (T =
0.1 K) and magnetic fields in which the Zeeman split-
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tingiswy ~10°s™. Anincreasein temperature aslarge
as afew kelvins should be accompanied by an increase
in magnetic-field strength by an order of magnitude,
because the initia inverse population of the spin sub-
system decreases markedly, which leads to a decrease
in the strength of spin—phonon interaction. On the other
hand, if B (or wy) is increased, the video-pulse length
should be taken to be shorter (down to 1 ps) in order to
satisfy inequality (1). For such pulse lengths, one
should take spatial dispersion into account.

It iswell known that dynamic coupling with crystal
lattice vibrationsis strongest when the effective spin of
paramagnetic ions is equal to S= 1 [18]. Mathemati-
cally, study of the propagation of acoustic video pulses
inasystem of S=1 spinsis moreintricate than that per-
formed in this paper for the case of S= 1/2 spins; nev-
ertheless, this study is of great practical importance.
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Abstract—The temperature dependence of the proton spin-lattice relaxation time (T,) isinvestigated for chan-
nel ureaclathrateswith paraffin molecules. The results obtained are interpreted within the reorientational model
of paraffin moleculesand their fragmentsin clathrate channels. The specific features of the dynamics of normal
paraffins in urea clathrates are associated with incommensurate regions in the structure of these compounds.

© 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Intercalation compounds belong to an interesting
class of solids with a high mobility of guest molecules
and ions. The crystal structure of these compounds
involves cavities, channels, and layers occupied by
molecules or ions. As a rule, the guest molecules and
ions possess a rather high mobility. Another important
property inherent in intercalation compounds is the
occurrence of incommensurate regions in their struc-
ture over a wide range of temperatures. This featureis
associated with the differences in the host lattice spac-
ing along the channel axis and the mean distance
between intercal ated guest molecules or ions [1-3] and
clearly manifests itself in channel-type intercalation
compounds [4]. In our recent works, we demonstrated
that the incommensurate structure in intercal ation com-
pounds can be formed either through variations in the
ion concentration [5, 6], or by properly choosing guest
moleculeswhaose length is not amultiple of the host lat-
tice spacing. The latter variant can be easily accom-
plished in urea clathrates with normal paraffins of dif-
ferent lengths.

Urea clathrates with different organic molecules are
representative of a wide class of intercalation com-
pounds [7]. Parsonage and Pemberton [8] proved that
urea clathrates crystallize in a hexagona lattice with
the space group P6,2. In these structures, the ureamol-
ecules are linked to one another through hydrogen
bonds and form one-dimensional channels filled with
guest molecules (Fig. 1). Figure 2 shows variations in
the difference between the length of aguest moleculein
a clathrate channel [9] and the nearest multiple of the
host (urea) lattice spacing along the channel for differ-
ent guest n-paraffins. The multiple ratios between the
lattice parameters of the guest and host subsystems are

observed in the urea clathrates with N = 7 and 16. For
the other clathrates, the guest-to-host spacing ratio has
a nonintegral value. Unfortunately, this essential fea-
ture was disregarded in earlier studies concerned with
the mobility of paraffin molecules in urea clathrates
[10, 11].

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

In this work, we thoroughly investigated the mobil-
ity of different n-paraffin molecules in urea clathrates,

Fig. 1. A structure of channel urea clathrates with paraffin
molecules.

1063-7834/01/4311-2060$21.00 © 2001 MAIK “Nauka/Interperiodica’
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namely, the normal CyH,y, . » paraffin molecules of dif-
ferent lengths (N = 7, 10, 16, 17, 20, 21, and 24) and
n-paraffins with N = 16 and 20 in channels of urea-d,.
The samples with a nondeuterated host matrix were
synthesized according to the procedure described in
[12]. The urea used in the deuterated samples was pre-
pared by fourfold or fivefold recrystallization from a
D,0O solution. All the operations were performed in a
dry chamber. The main properties of the samples were
in good agreement with the data available in the litera-
ture[13].

The nuclear spin-lattice relaxation times T, were
measured at aresonance frequency of 26 MHz. The use
of a pulse sequence with highly efficient rectangular
pulses [14] and signal integration make it possible to
measure the nuclear spin-lattice relaxation time T, with
an accuracy better than 5%. The heating and cooling of
the samples were carried out in a gaseous nitrogen
stream whose temperature was specified accurate to
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Fig. 4. Activation energies of the motion of normal paraffins
in urea clathrates at (a) low and (b) high temperatures.

within 1-3 K. The temperature variations were per-
formed as follows. the sample temperature was first
decreased monotonically from room temperature, then
increased monotonically to room temperature, main-
tained constant (at room temperature) within at least
half aday, and again increased.

3. RESULTS AND DISCUSSION

Figure 3 displays typical temperature dependences
of the proton spin-lattice relaxation time for urea clath-
rates with paraffin molecules at integral (N = 16) and
obvioudly nonintegral (N = 20) ratios between the lat-
tice parameters of the guest and host subsystems.
According to Cope and Parsonage [15], al the studied
compounds undergo phase transitions, which this is
also confirmed by our results.

The dependence of the activation energies observed
at temperatures above minima of the relaxation curves
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on the number of carbon chain links N in the interca-
lated paraffin molecules is shown in Fig. 4a. A similar
dependence of the activation energies at lower temper-
atures is depicted in Fig. 4b. Analysis of these depen-
dences allowed us to conclude that the spin-lattice
relaxation at temperatures above the minima of the
relaxation curves can be associated with the rotation of
paraffin molecules about their own axes of symmetry,
which structurally coincide with the axis of ahexagonal
channel of the urea clathrate. An increase in the length
of the guest molecule should be accompanied by a pro-
portional increase in the rotation barrier; this was
observed in the experiment.

At the same time, the activation energy of the motion
of normal paraffin molecules in urea clathrates at tem-
peratures below the minima of the relaxation curves is
virtualy independent of the length of the intercalated
guest molecule for all the studied paraffins (except, pos-
sibly, for the shortest paraffin molecule). This suggests
that the low-temperature relaxation of all protonsin urea
clathrates is determined only by the rotation of terminal
methyl groups of the guest molecules. This inferenceis
in qualitative agreement with the behavior of the spin-
lattice relaxation time T, a the minima of the temper-
ature dependences: the Ty, time increases monotoni-
cally with an increase in the length of the paraffin mole-
culefor al the studied systems almost without exception.
However, the numerica values of T, at these minimaare
inconsistent with the experimental data, as was the case
in our recent work [3]. In [3], we proposed different
models of motion for guest molecules or ionsin order to
explain the above discrepancy. In our opinion, the spread
in the activation energies of reorientation of the methyl
groups dueto the differencein their mutual arrangement
with respect to the host matrix is the decisive factor that
affectsthe behavior of the spin-lattice relaxation time T,.
Webelievethat thisdifferenceisquite evident in the case
of a lattice mismatch between the guest and host sub-
systems. This assumption is confirmed by the dataon T,
at integral (N = 16) and obvioudly nonintegral (N = 20)
ratios between the lattice spacings of the guest and host
compounds (Fig. 3). The difference in the mutua
arrangement of the methyl groups and, consequently, the
spread in their activation energies lead not only to a
changein the T, time at the minimum of the temperature
dependence but also to a change in the shape of the tem-
perature dependence of the spin-lattice relaxation time,
which aready defies description by the appropriate for-
mulas with a unique correlation time. Thedataon T, for
the deuterated samples also indicate an inhomogeneity
of the system and a spread in the correlation times of
reorientation of the methyl groups. The drastic decrease
in relaxation time at high temperaturesis associated with
the well-understood 180° reorientation of the NH,
groups involved in urea molecules. The activation
parameters of thismotion areidentical for all the studied
clathrates and agree well with the available data [3].
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4. CONCLUSION

Thus, the above investigation has demonstrated that
the nuclear spin-lattice relaxation in the studied com-
pounds of urea clathrates with n-paraffins is caused by
two main types of mation of intercalated guest mole-
cules: (1) at high temperatures, it is the rotation of the
guest molecule asawhole; and (2) at temperatures cor-
responding to the minimum relaxation time T, and
below, it is the rotation of the methyl groups, which
cannot be described by the formulas with the same cor-
relation time. Unfortunately, more detailed information
on the correlation time distribution and mutual arrange-
ment of the methyl groups cannot be obtained from the
currently available methods of nuclear magnetic reso-
nance relaxation spectroscopy.
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Abstract—The spectra of elementary oscillators of optical transitions in corundum in the region of 8-30 eV
are determined for the first time. The parameters of the oscillators are calculated using experimental reflection
spectra taken from four different papers. The main features of the spectra are established. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Aluminum oxide (corundum, a-Al,O,) is a radia-
tion-resistant and chemically inert insulator with high
optical transparency in awiderange of wavelengths[1].
Due to the complex nature of interatomic interactions,
itsstructureisusually considered rhombohedral or trig-
onal for the sake of simplicity. Various experimental
studies indicate that corundum has a very complicated
electronic structure [1-8]. According to theoretical
considerations, the valence and conduction bands con-
sist of avery large number of closely situated bands[9—
13]. Therefore, one should expect measured optical
spectraof corundum to be composed of many transition
bands, among them strongly overlapping ones which
can even be hidden in an integral curve. At present, the
available experimental and theoretical information on
the electronic structure of corundum is rather ambigu-
ous and incomplete.

The aim of the present work is to obtain new infor-
mation regarding the structure of elementary transitions
in corundum in the most important range of fundamen-
tal absorption (8-30 eV). Of special interest are the
probabilities of transitions, which cannot be easily
determined experimentally and are very tedious to cal-
culate theoretically.

2. CALCULATION METHODS

To accomplish these tasks, first, we calculated sets
of optical fundamental functions of corundum (g,, €,
etc.) using the integral Kramers—Kronig relations and
analytical formulas. Next, the calculated spectra of the
dielectric functions were decomposed into elementary
constituent bands and their main parameters—the
energy positions of peaks E;, half-widths H;, and their
areas § proportional to the transition probabilities—
were determined. The calculation methods used to
determinethe set of optical functions and to decompose
the didlectric function spectrum into components have

been described in detail and repeatedly applied [14—
17].

3. RESULTS OF CALCULATIONS
AND DISCUSSION

The reflection spectra R(E) measured with polariza-
tion E O C and E || C for a-Al,O; were obtained in
some works in the regions (2-110 eV) [7] and (5—
30eV) [6] and asointheregions (543 ¢eV) [8] and (7—
20 eV) [5] most likely for E [ C. Using the R(E) spec-
tra from these four papers, we calculated four sets of
fundamental optical functions of corundum, including
&,(E) and &,(E). Next, the ,(E) spectra were decom-
posed into components and the parametersE;, H;, and §
and the band heights €,,,,., were determined, which are
represented in Fig. 1 by vertical lengths of four types, |
[7], 11 [6], 11l [8], and IV [5], plotted from zero up
(down) for the polarization of light E O C (E || C).
These four sets of optical functions were then analyzed
in detail taking into account the particular method of
recording the reflection spectra used in [5-8]. As a
result, some distinctive features of the spectra of the
four groups were established.

The experimental reflection spectrum measured in
[7], as well as other functions calculated on its basis,
seems to be the most reliable. The €,(E) spectrum cal-
culated on the basis of R(E) [7] in the region 8-30 eV
was decomposed by us into 15 components for E 1 C
and E || C, indicated by thefirst and second numbersin
parentheses, respectively: 1 (9.22, 9.22), 2 (10.8, 10.9),
3 (12.0, 12.2), 4 (13.1, 12.8), 5 (14.0, 13.7), 6 (15.0,
14.8), 7 (16.0, 16.2), 8 (17.4, 17.7), 9 (18.7, 19.0),
10(20.7, 20.8), 11 (22.9, -), 12 (-, 23.65), 13 (24.6, -),
14 (26.6, 26.65), and 15 (29.15, 29.25) eV; the compo-
nent numbers are shown in Fig. 1. From the 15 compo-
nents, only three (11-13) are fully polarized. The areas
of the component bands determine their intensities and
transition probabilities up to a constant factor. An anal-

1063-7834/01/4311-2063%21.00 © 2001 MAIK “Nauka/Interperiodica’
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ysis of the areas of the components showed that the
transition probabilities for the polarization E O C are
higher by factors of approximately 2 (2), 1.6 (7, 14),
and 1.3 (15), than those for E || C. At the sametime, for
components 6, 3, 10, and 9, the transition probabilities
for the polarization E O C are ~4, 3, 2, and 1.5 times
lower, respectively, than those for E || C. For compo-
nents 1, 4, 5, and 8, the transition probabilities depend
on the polarization only slightly. The splitting energies
of the components AE, for E 1 C and E || C related to
the half-widths at half maximum H; are equal to 0.6 (3),
0.4 (4-6),0.3(8,9),0.16(7),0.10(2, 10, 15), 0.04 (14),
and 0.00 (1). According to theoretical considerations,
the valence and conduction bands of corundum are
closely situated in awide energy range with only small
gaps between them. Therefore, it is natural to suggest
that the comparatively large differences noticed
between the energies E; and the areas S for the bands
making up the fine doubl et structure of the components
with E 0 C and E || C could be due to an accidental
coincidence in energies of two transitions differently
polarized and occurring between different pairs of
bands at different points of the Brillouin zone. The
parameters H; and €, Wwere also found to be apprecia
bly dependent on light polarization.

We now discuss, in short, the results of calculations
of the &5(E) components performed by us on the basis
of the R(E) spectrafrom papers|[5, 6, 8]. The large dif-
ferences between the R(E) spectra from these papers
and the R(E) spectrum from [7] and the discrepancies
between the results of [5, 6, 8] are naturally manifested
in the parameters of the bands of &,(E) spectra calcu-
lated by us. In our calculationsof group Il performed on
the basis of the R(E) datafrom [6] (5-30 eV), we deter-
mined the components 1, 2, 4, 5, 7-10, 12, and 14
(E OC); that is, the components 3, 6, 13, and 14 (2, 5,
6, 11, 12, and 15) did not appear for the polarization
E ||C (E OC). The reflection spectrain [5] were stud-
ied only for E 0 C and in a smaller energy range, 7—
20 eV. Dueto alarge decrease in R(E) [8] in the energy
range E > 20 eV, the calculated values of €,(E) proved
too small to fulfill decomposition into components.
Therefore, we determined a smaller number of compo-
nents for them and only for E O C, namely, 1-10 and
1-7, 9 for the calculations of groups 111 and IV, respec-
tively.

For the polarization E || C, the spectrum bands of
group |1, when compared with the data of group I, are
strongly shifted in energy, as a rule, and the €,,,, are
several times overestimated but have the same half-
width H;. Bands 3, 6, 13, and 15 were not observed at
all, and the intensities of the other bands—5, 8, 10, 12,
and 14 (2, 4, 7, and 9)—proved strongly overestimated
(underestimated). With the other polarization (E O C),
the data for the parameters S, H;, and €, in calcula
tions of groups 11, 111, and 1V, as arule, are noticeably
different from each other and from the datafor group I.
For this polarization in calculations of groups I, 11,
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and 1V, weidentified 8, 10, and 8 bands, respectively. In
this case, we did not detect components 3, 5, 6, 11-13,
15 (group I1), 11-15 (group Il1), and 8, 10-15
(group 1V).

We now discuss, in short, possible reasons for the
occurrence of noticeable discrepancies between the
experimental spectra from [5-8]. We suggest that the
Al,O; samples studied in [7] are of the best quality,
because (1) intensive impurity bands near the long-
wavelength absorption edge are observed only in [5, 6,
8] and (2) special attention was given to the preparation
of the perfect surface used in [ 7], whereas the employed
surface treatment was not described in [5, 6, 8]. It is
generally recognized that the use of synchrotron radia-
tion allows one to measure reflection spectra with
higher precision in comparison to techniques that use a
glow discharge of gases. Synchrotron radiation was
used in [6, 7], and glow discharge of gaseswas used in
[5, 8]. Taking into account the above-mentioned, we
suggest that the most correct measurements of the
reflection spectra were performed in [7]; therefore, the
most correct parameters of the £,(E) components were
determined using these spectra.

The reflection spectra abtained in different works,
aswell asthe spectra of dielectric functions, are notice-
ably distinguishable one from another in awide energy
range. Therefore, how changes in R(E) will affect
changesin €,(E) is unclear. It was interesting to inves-
tigate this issue using, as an example, four reflection
spectra of sapphire crystals measured on various sam-
ples using different methods.

4. CONCLUSION

Thus, the parameters of the most intensive optical
transitions of corundum have been established for the
first timein the region of 8-30 eV, including their ener-
gies, intensities, and polarization dependences. We
have demonstrated a strong dependence of these results
on the experimenta technique of reflectance spectra
measurement employed. Analyzing the features of the
sets of fundamental optical functions of corundum, we
have selected the most reliable from the four known,
and using it, we have determined the most correct
parameters of the transitions.

Detection of alarge number of components hidden
in the integral curves of the spectra of the optical func-
tions and determination of the probabilities and ener-
gies of the transition components allow one to explain
many of the properties of corundum in a new way and
provide a closer approach to constructing theoretical
models of the electronic structure and optical spectra of
corundum and oxides of the M,O5 group.
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Abstract—Self-consistent valence electron densities of a MgCO; crystal and of its constituent sublattices are
calculated on the basis of the local-density functional theory. The coupling between the sublattices is charac-
terized by the density difference, introduced as the difference between the total electron density and the densi-
tiesof individual sublattices. Intra- and interlattice hybridization effects are considered. It is shown that the den-
sity difference is in qualitative agreement with the experimental deformational density. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The experimental potentialities that permit determi-
nation of the electron density distribution function and
potential in crystals at varying but comparatively high
accuracy have been extended considerably. The change
in the total electron density upon the introduction of an
atom into acrystal (the so-called deformation density),
rather than the total electron density itself, isimportant
for practical applications. Theoretical calculations of
the deformation density on the basis of various methods
of the band theory have a so been perfected to acertain
degree mainly due to the development of self-consis-
tent Hartree—Fock methods and the theory of the local
density functional (TLDF).

The deformation density characterizes the resultant
effect of the redistribution of electrons among various
atoms and of the electron transitions from atomic sites
to interstices. The redistribution effect is traditionally
explained in terms of aloca approach in the language
of hybridization of orbitals of neighboring atoms, asis
usually done in molecular quantum chemistry. Therole
of the long-range order in the formation of chemical
bonds in crystalline solids remains unclear in this case.
In order to investigate thisrole, we propose an approach
based on introducing the concepts of sublattices and
density difference for describing the changein the elec-
tron density of atoms undergone during combination
into acrystal lattice. The application of thisapproach to
MgO crystals [1] made it possible to establish the fact
that the main peculiarities in the valence density distri-
bution in rare-earth oxides are determined by the oxy-
gen sublattice, while the electron density of the magne-
sium sublattice is smeared quite uniformly over the unit
cell. In this work, we apply the sublattice technique to
aMgCQO; crystal, in which the covalent component of
the chemical bond exists along with the ionic compo-
nent in the CO5; molecular complex, for determining the

role played by sublattices in the formation of the
valence electron density.

2. METHOD AND OBJECT
OF INVESTIGATION

We consider a crystal consisting of s sublattices
formed by identical atoms. In order to single out a sub-
lattice, it isexpedient to assume an electron distribution
which ensures its electrical neutrality. Then, we will
carry out self-consistent calculations of the electron
structure of the crystal and of all the sublatticesusing a
unified model. In all cases, the structural parametersare
defined in accordance with the actual geometrical
structure of the lattice. The results of self-consistent
calculations include the hybridization effects between
all atomsfor the crystal and only between atoms of the
same species for the sublattices. In order to calculate
the hybridization effects between the sublattices, we
introduce the density difference Ap(r):

Ap(r) = p™(r) =5 p3(r). (1)

If the electron densities are normalized to the number of
electrons, then the integral of the density difference
over aunit cell isequal to zero and, hence, the maps of
Ap(r) contain regions of both positive and negative val-
ues, which gives a visua impression of the charge
transfer between the sublattices. In this approach, the
effects of hybridization between identical atoms consti-
tuting sublattices and between subl attices constituting a
crystal are separated.

The method described above was applied by us for
calculating the electron density of magnesium carbon-

ate MgCO; (space group ng 1 Z=2[2]). Magnesiteis
an abundant technological material used, for example,
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for obtaining refractory materials and magnesium
oxide, which is used widely in optics. The electron
structure of this compound is not only interesting in
itself but also from the point of view of model concepts
on the nature of cation—-oxygen interactions and of the
order—disorder phase transition associated with the
rotation of the carbonate group and its possible pyrami-
dal deformation, whichisin contrast to the planar struc-
ture required by the symmetry [3, 4].

We calculated the el ectron density in the framework
of the TLDF using pseudopotentias [5] on the basis of
numerical atomic s'p3d® pseudoorbitals determined
from atomic calculations with the same pseudopoten-
tialsfit to the known energy-level diagrams[6] by vary-
ing the occupation numbers. In order to calculate the
overlap integrals and the pseudo-Hamiltonian matrix,
the basis functions were expanded into a seriesin 2500
plane waves. The details of the numerical realization of
the method are described in [7].

3. RESULTS OF CALCULATIONS

The distributions of the total valence density of
MgCO; and the densities of the sublatticesin an anion
plane are presented in Fig. 1. The numerical values of
the electron density are givenin unitsof e - A= (eisthe
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electron charge), and the distances are given in ang-
stroms.

The maximum electron density pyqco,(r) isconcen-

trated in the vicinity of the positions of oxygen atoms
and embraces them from the outer side relative to the
carbon atoms. The density has a minimum at the posi-
tion of the carbon atom; then, the value of pyyco,(r)
increases towards oxygen atoms with small peaks at
0.45 and 1.02 A and finally attains its principal pesk at
1.46 A (thelength of the C-O bond isequal to 1.2857 A).

The low peak existing at the middle of the O-O bonds
amounts to 20% of the value of pygco,(r) on the oxy-

gen atom. The last closed loop of Pygco,(r), which

embraces a complex anion, has a shape close to a
sphere of radius~2 A. It should be noted that the thick-
ness of the anion layer in the direction of the C; axis,
which was also estimated from the last closed density
loop, was a'so found to be ~2 A

L et usnow consider the electron density po(r) of the
oxygen sublattice. It can be seen from Fig. 1 that the
loops of Pygco, (1) and po(r) beyond the anion virtually

coincide and differ only in numerical value. Thus, the
electron density of the crystal in this region is formed

7
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Fig. 1. Total valence density ngCO3(r) and the densities po(r), pc(r), and pyg(r) of the oxygen, carbon, and magnesium sublat-

tices, respectively, in the anion plane.
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mainly due to oxygen states. Within the anion, charges
between the oxygen atoms are formed and a density
peak of height ~1 e-A- appears on the C-O bond
behind the position of the oxygen nucleus. The mini-
mum value ~0.5 e-A-3 of the density correspondsto the
middle of the bond between neighboring anions. The
oxygen atoms of neighboring anions have no common
loops on the plane. The common loop with pg(r) =
0.5 e-A-3 encloses each individual anion. A low density
peak of 0.55 e-A=3 liesin a position between the three
anions under and above which magnesium atoms are
located.

The electron density p(r) of the carbon sublattice
has asixfold symmetry axis, and the density associated
with carbon atomsis almost spherically symmetric rel-
ativeto their positionsin thelattice. Inthisdistribution,
there exists a peak ~0.26 e-A-3 corresponding approxi-
mately to the middle of the C-O bond. The density
pc(r) has aminimum (~0.09 e-A-3) at points above and
bel ow which magnesium atoms are located. There exist
low paired peaks of height ~0.1 e-A=3 at the anion—
anion bond, which serve as bridges between carbon
positions.

The electron density py4(r) of the magnesium sub-
lattice is also symmetric relative to the sixfold axis.
Magnesium atoms transfer a considerable part of their
valence chargeto the anionic plane, which is facilitated
by the hybridization of their sorbitalswith virtual p and
dorbitals. A density py4(r) hasaminimum at the center
of an anion, and its value increases towards the anion
periphery. The peaks of the density of the metal lie at
six positions between the exact same anions at which
low density peaks of the oxygen sublattice are located.
Thus, the two sublattices synchronously form the fea-
tures of the total density.

The absence of a rigid covalent bond between
molecular groups and the fact that the symmetry of the
carbon and magnesium sublattices is higher than the
crystal symmetry are factors that facilitate the orienta
tional disorder of the CO; carbonate group; this has
been observed experimentally [3, 4].

Figure 2 shows the density difference Ap(r) calcu-
lated by using formula (1) in the anionic plane and in
the plane containing nearest C, O, and Mg atoms. The
density difference has negative values (in e units) only
inavery small region in the vicinity of an oxygen atom
in the direction towards the carbon atom. Two peaks of
Ap(r) with a height of 0.05 e-A=3 lie in the anionic
plane symmetrical relative to the C-O bond at a dis-
tance 0.45 A from an oxygen atom. The principal peak
of Ap(r) lies on the C-O bond at a distance of ~0.5 A
from a carbon atom. At this atom, the value of the den-
sity is positive and increases from the center to the
periphery. Thus, the interaction of sublattices, whichis
strongest between the oxygen and carbon sublattices,
leads to acomplex redistribution of the electron charge,
which can be characterized as a covalent type of chem-
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Fig. 2. Density difference Ap in the anion plane and in a
plane containing nearest neighbor Mg, C, and O atoms.

ical bond. The density differenceinthevicinity of aMg
atom has negative values over a fairly wide region.
Thus, an ionic bond is formed between the cation and
anion planes due to the charge transfer from the cation
to the anion plane.

4. COMPARISON WITH EXPERIMENT
AND DISCUSSION

The deformation density of CaCO;, MgCO;, and
MnCO; was investigated in [3] using the method of
synchrotron x-ray diffraction. The experimental data
obtained in [3] for MgCO; were meticulously pro-
cessed in [4], and the deformation density of this com-
pound was calculated theoretically using the Hartree—
Fock method. It was proved that the results of theoreti-
cal calculations are in good agreement with the experi-
mental data. A dight discrepancy was observed for
positions near oxygen atoms, for which the theory pre-
dicts nearly spherically symmetric density peaks on
lines perpendicular to the C-O bonds, while in experi-
ments, these peaks have elliptic cross sections. More-
over, in the experimental density maps, the centers of
these peaks are displaced insignificantly relative to the
oxygen position as compared to the theoretical peaks.

Let us now compare the results of our calculations
of the density difference in the anion plane (see Fig. 2)
with the theoretical and experimental deformation den-
sity maps presented in Figs. 2a and 2b in [4]. The
arrangements and the profiles of the peaks and minima
for the density difference calculated by us were found
to be closer to those for the experimental deformation
density. The most significant distinction is that both
theoretical and experimental deformation densities are
negative in the vicinity of oxygen and carbon atoms,
while the density difference has funnel-shaped minima
in this region and only a small part of the minimum in
the vicinity of an oxygen atom corresponds to negative
values. Thisdistinction isdueto the fact that, while cal-
culating the deformation density, we subtract from the
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total density the densities of free atoms and not the den-
sities of sublattices in which intralattice hybridization
has already taken place.

The pronounced similarity observed by us for
MgCO; between the density difference defined by
Eqg. (1) and the deformation density is due to the fact
that the strongest hybridization effects in this com-
pound take place between the atoms of the CO; carbon-
ate group, while the hybridization between other sub-
|attices is much weaker. It should be borne in mind,
however, that the density difference and the deforma-
tion density are essentially different quantities. The dif-
ference between them is especialy large in the case
when hybridization effects in the sublattices are stron-
ger than those between them. Such cases are presently
being investigated by us.
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Abstract—The radiation-stimulated pulse conductivity of CsBr crystalsis investigated upon picosecond exci-
tation with electron beams (0.2 MeV, 50 ps, 0.1-10 kA/cm?). The time resolution of the measuring technique
is~150 ps. It is shown that the lifetime of conduction band electrons is limited by their bimolecular recombi-
nation with autolocalized holes (V| centers). A delay in the conduction current pulse build-up is revealed. This
effect is explained within the proposed model, according to which the Auger recombination of valence band
electrons and holes of the upper core band substantially contributes to the generation of conduction band elec-

trons. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Investigation of dielectric crystals under excitation
with electron beams of picosecond duration and mea-
surements of the relaxation kinetics of the conduction
current induced by an exciting pulse can provide the
most direct information on the possible mechanism of
generation, transfer, recombination, and trapping of
band charge carriersin these materials.

In our previous works [1-8], we investigated the
radiation-stimulated conductivity of NaCl, KCl, KBr,
and Csl crystals upon excitation with an electron beam
(0.2 MeV, 50 ps, 0.1-10 kA/