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Abstract—Numerical simulation was applied to study the influence of the size distribution of granules and the
interaction between them on the percolation threshold in granulated metal–insulator alloys. An alloy model was
considered in which metal granules have two characteristic sizes, l and L (with L > l), and the size distribution
of granules of greater size L having an average value of approximately L0 is described by a normal distribution
with a standard deviation d, by a step function with a halfwidth d, or by a delta function. A model with attraction
between granules and mechanisms of trapping of an additional granule by an already developed cluster with a
characteristic trapping range R was also considered. The percolation threshold significantly grows with the ratio
L0/l and with R for both two- and three-dimensional cases and tends to flattening at large L/l or R. The calculated
results make it possible to explain the high percolation threshold observed for the majority of granulated alloys.
© 2002 MAIK “Nauka/Interperiodica”.
1. A granulated metal–insulator alloy represents a
system consisting of metal granules dispersed in the
insulator host. A metal–insulator transition takes place
in the vicinity of a critical volume concentration pc of a
metal, referred to as the percolation threshold, such that
the system is characterized by metal conduction at p >
pc and is an insulator at p < pc [1–3]. Granulated alloys
with a composition close to pc are characterized by
unique properties [1–3]. Magnetic granulated alloys for
which the tunnel-type giant magnetoresistance [4],
giant anomalous Hall effect [5], enhanced magnetoop-
tical effects, etc. have relatively recently been detected
are of particular interest.

The most important characteristic of a granulated
alloy is the percolation threshold pc. The effective-field
theory developed for a three-dimensional (3D) system
of a spherical metal and insulator particles gives pc =
0.33 [1–3]. Numerical calculations yield pc ≈ 0.32
within the site-percolation model for a simple cubic lat-
tice and lower values of pc for other lattices and within
the bond-percolation model [1–3].

Experiments [6] on powders of spherical particles
alike in diameter yielded pc = 0.27 ± 0.05, which con-
forms to the theoretical predictions. At the same time,
in deposited granulated systems, the values of pc have
been found to lie in the range 0.5–0.6 [4, 5, 7]. Since pc

can depend on many factors, including the particle
shape [8], the character of short- and long-range order
[1–3], and film thickness [6], different standpoints have
been advanced on the observed high values of pc; how-
ever, none of the hypotheses is consistent with experi-
1063-7834/02/4409- $22.00 © 21611
mental data. For example, according to numerous
microscopic studies, the shape of particles is close to
spherical, tunneling should decrease pc, and the two-
dimensional character of films 1–2 µm thick with
nanometer-sized granules affects pc only slightly [6].

In this paper, we suggest a simple explanation for
high values of pc in granulated films which is based on
the size distribution of granules. In Section 2, the pres-
ence of granules of significantly different sizes is pos-
tulated. By using the Monte Carlo method, it is shown
that this assumption leads to increased values of pc in
both 2D and 3D cases. In Section 3, we perform a com-
puter simulation of the formation of large clusters
(including nonspherical ones) due to attractive interac-
tion between granules and consider the influence of this
attraction on pc. In earlier papers (see [3, 9] and refer-
ences therein), the attraction, considered only at dis-
tances shorter than the granule radius, was shown to
decrease pc [9], because the attraction between granules
improves electrical contact between them. It was shown
in [10] that an increase in pc can take place even if the
attraction range is small, because more compact gran-
ules form from fine ones and the system becomes dis-
continuous.

In this study, we consider the case of a large interac-
tion range in which the latter tendency is dominant and
pc significantly increases. The attraction between gran-
ules can be due to both Coulomb forces and magnetic
interaction. It is evident that most of the small granules
in nanocomposites are charged; consequently, granules
can be drawn to one another. Furthermore, small parti-
002 MAIK “Nauka/Interperiodica”
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cles possessing a charge are attracted to one another
due to electrostatic image forces. In magnetic systems,
single-domain particles tend to form sufficiently large
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Fig. 1. Dependence of the percolation threshold pc on the
relative size L/l of large granules for the 2D and 3D cases.

Fig. 2. Example of configurations found in the model with
attraction in the 2D case.
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Fig. 3. Dependence of the percolation threshold on the trap-
ping range R in the 2D and 3D cases.
PH
aggregates or chains with magnetic-flux closure. As a
result of these interactions, sufficiently large clusters
arise along with fine ones in granulated alloys, which
causes pc to increase.

2. Now, we consider a granulated metal–insulator
alloy characterized by two types of metal granules (par-
ticles) of diameters l and L > 1. We assume that small
particles have a well-defined diameter l coinciding with
the cell size of the lattice percolation problem, while
the size distribution of large particles about the average
L0 is described by (i) the delta function f(L) = Aδ(L –
L0), or (ii) the normal distribution f(L) = Bexp[–(L –
L0)2/(2d)2], or (iii) a uniform distribution in a certain
range 2d wide:

Various versions of f(L) are taken to find the functional
dependence of pc on the size distribution. Let the distri-
bution parameters A, B, and C be determined from the
normalization conditions such that the number of gran-
ules of the second type is always ten times smaller than
the number of granules of the first type.

In our numerical experiment, granules were ran-
domly distributed over the sample volume. The bound-
aries of granules distributed in the preceding iteration
cycles were not crossed. After the granules had been
distributed over the volume, discretization was carried
out. For this purpose, the sample volume was parti-
tioned into cells of size l; the cells that fell within clus-
ters were considered to be occupied, and the cells that
fell outside of the clusters were considered to be empty.
The percolation threshold for the sample was deter-
mined by the Hoschen–Kapelmann method (also
known as the cluster-labeling method) [8]. The percola-
tion probability was found by performing 50 iterations
for each concentration.

In the 2D and 3D cases, the sample size was 100l
and 50l, respectively. The calculated dependences of
the percolation threshold pc on the relative size L/l of
large particles are shown in Fig. 1 for a ratio of the num-
bers of small and large granules equal to n = 10.

For particles of the same size L = l, we found pc =
0.32 and 0.58 in the 2D and 3D cases, respectively,
which coincides with the published data [1–3]. The
value of pc increases with the ratio L/l to a greater extent
in the 3D case, tending to flattening at large L/l. It is
noteworthy that the size L of large particles is much
smaller than the size of the sample (lattice); therefore,
the effect of boundary conditions is insignificant.

This result can be readily understood from simple
geometrical considerations or using the Scher–Zallen
invariant [11]. According to the Scher–Zallen condition
[11] in percolation problems, the product Zpc remains
invariant for any packing of particles. Here, Z is the
effective coordination number or the number of good

f L( )
C: L0 d L L0 d+< <–

0: L0 d L; Λ0 d L.>–<+
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electric contacts between the nearest neighbor parti-
cles. In the presence of large particles, Z decreases;
hence, pc should depend not only on the ratio L/l but
also on the relative number n–1 of large particles.

It follows that the function pc(n) has a maximum at
a certain value of L/l. This conclusion is fully confirmed
by calculations. It also follows that the value of pc (L/l)
depends only weekly on the size distribution of large
granules. Indeed, to within the error of the numerical
experiment, the results shown in Fig. 1 are virtually
identical for any size distribution of granules.

3. Large granules can also be nonspherical. Let us
elucidate whether the percolation threshold increases in
this case. To model the formation of large clusters
numerically, we assume that all the granules are of the
same size l and are attracted to each other at a certain
distance R. In the course of the numerical experiment,
the coordinates of the occupied cells were randomly
generated in successive iteration cycles. When the dis-
tance from a cell to the cells filled in the preceding iter-
ation was shorter than R, its coordinates were
exchanged with the coordinates of the empty cell near-
est to the center of mass of the cluster generated in the
next iteration. In this case, the parameter R character-
izes the attraction strength or the particle trapping range
and clusters represent branched parts of a fractal struc-
ture rather than compact spherical formations. One of
the clusters obtained in the 2D case is shown in Fig. 2.
The calculated dependences of the percolation thresh-
old on the ratio R/l for the 2D and 3D cases are dis-
played in Fig. 3. These dependences exhibit the same
behavior as the dependence of the percolation threshold
on the particle size L/l (Fig. 1); i.e., the percolation
threshold also significantly increases, reaching a value
of pc = 0.58 in the 3D case.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
Thus, the high percolation thresholds observed in
granulated alloys can be due to rather large spherical
and nonspherical clusters present in these systems.
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Abstract—This paper reports on the results of investigations into the polarization dependence of the spontane-
ous radiation of hot electrons due to their intervalley redistribution in multivalley semiconductors. It is demon-
strated that the radiation is predominantly polarized normally to the electric field and the direction of polariza-
tion and its intensity can vary according to the degree of electron redistribution, the electron concentration, and
the heating electric field. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The spontaneous radiation of charge carriers of
crystals with cubic symmetry is not polarized. How-
ever, the cubic symmetry of the electron distribution in
the space of wave vectors can be broken by a heating
electric field. The symmetry breaking can be governed
by different mechanisms. In particular, Vas’ko [1] and
Malevich [2] considered a number of mechanisms asso-
ciated with radiation polarization and absorption
anisotropy.

In the present work, we investigated the polarization
dependence of the spontaneous radiation of hot elec-
trons due to their intervalley redistribution in multival-
ley semiconductors. It is well known that absorption
and radiation of free electrons become possible only in
the presence of a “third body.” Under normal condi-
tions, the role of a third body is played by phonons and
impurities providing the law of conservation of quasi-
momentum. Note that scattering by phonons and impu-
rities is substantially anisotropic in multivalley semi-
conductors (germanium, silicon, etc.). This leads to a
polarization dependence of the spontaneous radiation
upon nonuniform population of the valleys.

2. FORMULATION OF THE PROBLEM. 
ACOUSTIC SCATTERING

Let us first consider anisotropic scattering of an
electron by acoustic vibrations of the lattice in multival-
ley semiconductors. We proceed from the collision
integral of electrons scattered by acoustic phonons in
which the effect of the field of a high-frequency electro-
1063-7834/02/4409- $22.00 © 21614
magnetic wave on the collision event is taken into
account; that is,

(1)

where f(p) is the distribution function of the electron
momenta p, N (s) is the distribution function of phonons

of the sth branch, "  is the phonon energy, "ω is the
photon energy, W (s)(q) is the scattering probability, Il is
the Bessel function of the lth order, m⊥  is the transverse
electron mass, c is the velocity of light, and γ is the
quantity defined by the formula

(2)

Here, l0 is the unit vector of the rotation axis of the mass
ellipsoid of the ith valley and A is the vector-potential
of the electromagnetic wave.

It is assumed that the scattering is quasi-elastic and
that

where θ is the lattice temperature expressed in units of
energy.
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The total probability of electron scattering by all the
three acoustic branches is defined by the expression

(3)

where s|| is the longitudinal velocity of sound, s⊥  is the
transverse velocity of sound, V is the volume, ρ is the
density of the material, and Σd and Σu are the constants
of the deformation potential.

According to formula (1), the energy transferred
from electrons to the lattice in a unit time in the pres-
ence of an electromagnetic wave can be represented by
the expression

(4)

where P0 is the transferred energy in the absence of the
electromagnetic wave and p' = p + "q.

We will restrict our consideration to the case of one-
quantum processes (i.e., l = ±1).

The estimates indicate that the argument of the
Bessel function is considerably less than unity for vir-
tually all the frequencies in the optical range. On this
basis, the correction to the energy transferred to the lat-
tice in the presence of the electromagnetic wave field
can be written in the following form:

(5)

After the transition, the electron energy is determined
as εp' = εp ± "ω. Hence, it follows that ∆P(+) describes
the processes associated with photon absorption,
whereas ∆P(–) characterizes the processes due to photon
emission.

Expression (5) is accepted as a basis for the calcula-
tion of both the absorption caused by the electromag-
netic wave field and the wave-field-induced radiation.
As will be shown below, the spontaneous radiation of
interest can be easily obtained from the expression for
radiation induced by an electromagnetic wave field.

It is convenient to perform integration in expres-
sion (5) in distorted coordinates in which the initial
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ellipsoidal isoenergetic surfaces become spherical;
that is,

(6)

In these coordinates, the delta function takes the form

(7)

where ν* is the angle between p* and q*.

By using the delta function, it is easy to carry out the
integration in expression (5) with respect to ν*. In this
case, we have

(8)

Relationship (8) and the condition  ≤ 1 deter-
mine the limits of integration with respect to q*. As a
result, we obtain

(9)

Here, d  is the solid angle in the q* space and the
quantities qmin and qmax can be determined from condi-
tion (8) and, in the case of absorption, take the form
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It follows from formula (3) that

(11)

Here, ν* is the angle between the vector q* and the unit

vector . Since the probability W does not depend on
the modulus q* and the quantity γ2 [as can be seen from
relationship (2)] is proportional to q*2, the integration
can be easily performed with respect to both dq* and
d  = cosν*dν*dϕ2. The remaining integral over p*

is given by

(12)

In expression (12), the Maxwellian function with the
effective electron temperature θi in the ith valley is
taken as f0(ε) and ni is the electron concentration in
the ith valley.

Integrals of type (12) can be expressed through the
Bessel function of the imaginary argument K1(a):

(13)

where Γ is the gamma function.

In the calculations of the radiation, instead of the
limits specified by relationships (10), we should write
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As a consequence, we obtain

(15)

(16)

In relationship (15),  and are the transverse and
longitudinal components of the tensor of the relaxation
time at ε = θ, respectively, due to electron scattering by
acoustic phonons.

By using formulas (15) and (16), it is easy to deduce
a general expression for the absorption coefficient
related to the acoustic scattering; that is,

(17)

where

(18)

is the flux incident on the semiconductor, ε0 is the static
permittivity, E is the electric field of the electromag-
netic wave, A0 is the amplitude of the vector-potential
defined by the formula

(19)

q0 is the unit vector specifying the polarization of the
wave, and x is the wave vector.

Next, we take into account that the polarization-
dependent factor in relationship (15) can be reduced to
the form

(20)
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tionship for the absorption coefficient in the following
form:

(21)

Equation (21) holds in the classical limit (θi @ "ω)
and in the quantum limit (θi ! "ω). In the limiting
cases, the general formula can be substantially simpli-
fied and, as a result, we obtain

(22)

at θi @ "ω and

(23)

at θi ! "ω.

It is evident that, in the general case, when the valley
populations ni are not equal to each other or the electron
temperatures θi in different valleys differ, the absorp-
tion coefficient depends on the polarization of the elec-
tromagnetic wave. The difference in the valley popula-
tions can be associated either with the different degrees
of electron heating in the valleys or with the uniaxial
deformations of the sample.

For isotropic acoustic scattering, the relaxation time
τ(ε) is a scalar quantity and has the standard form
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Formula (25) differs from the classical Drude for-

mula by the factor . This insignificant difference is

due to the fact that, in the classical Drude theory, the
energy dependence of the relaxation time is ignored. In
the quantum limit, when the scattering is anisotropic,
instead of formula (23), we obtain

(26)

To avoid confusion, we recall that, in formulas (25) and
(26), n is the total electron concentration, whereas ni

involved in formulas (22) and (23) is the electron con-
centration in the ith valley (n = Σni).

Expression (16) determines the radiation induced by
the wave field. The spontaneous radiation of hot elec-
trons under consideration can easily be obtained for-
mally from expression (16). For this purpose, we nor-
malize the vector-potential of the electromagnetic wave
[defined by expression (19)] in such a manner that there
will be Nph photons in the volume V; i.e., we use the
condition

(26a)

from which it follows that

(27)

By substituting expression (27) into relationship (16),
assuming that Nph = 1, and multiplying the resultant
expression by the density of final states of the field, we
obtain the formula for the spontaneous radiation.

The density of final states of the field in a unit fre-
quency interval at the solid angle dΩ is given by

(28)

After the above transformations, we obtain the fol-
lowing expression for the contribution made by hot
electrons of the ith valley to the spontaneous radiation:

(29)
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In the quantum range of frequencies, i.e., for fre-

quencies at which ai =  @ 1, expression (29) has a

simple form,

(30)

In this range of frequencies, the spontaneous radia-
tion exponentially depends on the electron temperature.
A different situation occurs in the classical range of fre-
quencies (ai ! 1). In this case, we have

(31)

3. IMPURITY SCATTERING

For impurity scattering, the power induced by the
field of the electromagnetic wave, which is absorbed or
radiated by electrons, has the form of expression (5)
with the only difference that, instead of formula (3), the
scattering probability W(q) is defined by the expression

(32)

Here, N is the concentration of ionized impurities, r0 is
the shielding length, and x0 is the statistical permittivity.
The scattering probability (32) is calculated for the case
of scattering of an electron by the screened Coulomb
potential.

Let us dwell briefly on a procedure of calculating
the required integrals [see expression (5)]. We begin
with the calculation of integral (9) for the case of impu-
rity scattering. Integral (9) corresponds to the case of
absorption of the photon energy "ω. Now, we consider
the case of emission of the photon energy "ω.

Taking into account expressions (6) and (7), by anal-
ogy with integral (9), we obtain

(33)

Relationship (33) accounts for the fact that photons can
be emitted only by electrons with energies ε ≥ "ω.
Moreover, the quantities qmax and qmin in formula (32)
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for the radiation are determined by expressions (14).
When calculating integrals (9) for acoustic scattering,
we performed the integration with respect to the modu-
lus q*.

This treatment was convenient because the scatter-
ing probability W(q*) did not depend on the magnitude
of the vector q* and was dependent on the angles alone.
In the case of photon emission, as follows from formula
(32), the scattering probability depends on the modulus
of the transferred momentum. Hence, it is assumed that
f(ε) is the Maxwellian function of the ith valley with the
temperature θi and concentration ni:

(34)

In relationship (33), we shift the limits of integration
with respect to the energy (ε = ε' + "ω) and take the
integral by parts with respect to the variable ε'. As a
result, relationship (33) can be transformed into the
expression

(35)

Here, the quantities  and  coincide (owing to
the energy shift) with those determined by expression
(10). It follows from relationship (35) that the case of
radiation differs from the case of absorption only in the

factor . Consequently, relationship (16) also holds
for impurity scattering.

The calculation of the integrals with respect to the

angles  presents no problems, and we

easily obtain
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Here, we introduced the following designations:

(37)

Next, we change over to the dimensionless variables

x =  in relationship (35) and substitute expression

(36) into relationship (35). We take into account that, in
the new variables,

(38)

As a consequence, from relationship (35), we obtain

(39)

where

(40)

Recall that, in formula (40), q0 is the unit vector
specifying the polarization of the electromagnetic wave
and l0 is the unit vector directed along the axis of rota-
tion of the mass ellipsoid of the ith valley.

From relationship (39), we easily determine the cor-
rections to the power transferred to (or removed from)
the electron subsystem due to the action of the electro-
magnetic wave.

According to expressions (5) and (39), we obtain the
formulas
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(41)

By using relationship (41), we obtain a general
expression for the coefficient of light absorption by free
electrons in the case when anisotropic impurity scatter-
ing in multivalley semiconductors plays a dominant
role. Form formulas (17) and (41), we derive the
expression

(42)

Expression (42) can be substantially simplified in dif-

ferent limiting cases. For example, at  @ 1, the

quantities  and  in the integrand in expression
(42) can be taken as

Then,

Let us now write a general expression for the radiation
of hot electrons of the ith valley in the case of impurity
scattering. By using relationship (41) and repeating the
procedures used to derive formula (29), we easily
obtain

(43)
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4. RESULTS AND DISCUSSION

Equations (29) and (43) describe the electromag-
netic radiation of electrons of a single valley. The struc-
ture of these equations is such that both equations and
their sum can be written in the form

(44)

For a multivalley semiconductor, it is necessary to carry
out summation of the radiation over all equivalent val-
leys:

(44a)

where Ri and Qi depend on the lattice temperature,
impurity concentration, electron temperatures, and
electron concentrations in the valleys. As an example,
we consider germanium, because the radiation of hot
electrons from germanium has been studied in a num-
ber of works [3–5]. It is assumed that the electric field
is directed along the [111] axis of the crystal. In this
case, all the valleys can be divided into two groups with
different electron temperatures and different electron
concentrations in the valleys. The first group contains a
single valley located on the [111] axis, and the second

group consists of three valleys located on the [ 11],

[1 1], and [11 ] axes.

After summation in formula (44a), in the case under
consideration, we obtain

(45)
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PH
It can easily be shown that extreme values of the

anisotropic part are reached at q0x = q0y = q0z =  with

the constraint q0x + q0y + q0z = 0, i.e., in the [111] direc-
tion and in the plane perpendicular to this direction,
which, what more, follows from symmetry consider-
ations.

For definiteness, we assume that the propagation

wave vector is directed along the [ 10] axis; conse-

quently, the polarization vector lies in the ( 10) plane.
The sense of the polarization vector in this plane can be
specified, for example, by the angle α the vector makes
with the [111] axis. After simple transformations, for-
mula (45) is rearranged to the form

(45a)

and the degree of polarization is represented by the for-
mula

(46)

It follows from expressions (29) and (43) that R > 0,
Q < 0, and |R | ≈ |Q | for germanium characterized by the

ratio  ≈ 0.05. Consequently, according to formula

(46), the radiation polarization reaches a maximum
value close to 100% and the polarization vector is pre-
dominantly directed across the electric field at Q2 ! Q1.
This means that, in the case when a single valley
located on the [111] axis is populated by electrons, the
electromagnetic waves with polarization along the
minor axis of the energy ellipsoid are predominantly
emitted independently of the emission wavelength, the
electric field strength, and the electron scattering mech-
anism. For Q1 = Q2, i.e., when the electron temperatures
and electron concentrations in valleys of both groups
are equal to each other, the polarization is absent. At
Q2 > Q1, the radiation is predominantly polarized along
the electric field and the degree of polarization reaches
a maximum value of about 25% at Q2 @ Q1. When the
partial populations of valleys in both groups differ, the
radiation polarization depends on the electric field, the
emission wavelength, the degree of crystal doping, etc.

As an illustration, the figure presents the results of
the radiation polarization measurements carried out
by V.M. Bondar1 for germanium crystals doped with
antimony at a concentration of 1015 cm–3. The measure-

1 Detailed description of the experimental procedure and experi-
mental data will be published in a separate paper.
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ments were performed at a temperature of about 5 K in
an electric field with a strength of 50 V/cm in the wave-
length range 80–120 µm. In this figure, zero corre-
sponds to such a configuration of the polarizer and the
sample when the polarization lines are directed along
the electric field. Different curves were obtained at dif-
ferent uniaxial pressures applied parallel to the electric
field as aligned along the [111] axis. In this case, the
electrons predominantly occupy the [111] valley both
in the heating field and under the applied pressure. At a
maximum pressure (about 7 tn/cm2), virtually all the
electrons are located in this valley.

It is seen from the figure that, at all the pressures, the
radiation is polarized perpendicularly to the electric
field and, in accordance with the developed theory, the
degree of polarization increases with an increase in the
pressure, i.e., when the electrons are transferred into the
[111] valley. However, the maximum degree of polar-
ization (about 25%) is substantially less than that pre-
dicted from the theory. Moreover, the degree of polar-
ization depends on the heating field. There are several
reasons for this discrepancy between the theory and
experiment. First, the insignificant decrease in the mea-
sured degree of polarization is associated with imper-
fections in the polarization analyzer. Second, a certain
depolarization takes place when the radiation leaves the
crystal. Third, one of the main reasons is that, at low
temperatures of the crystal, the polarization occurs
through the competing mechanism with its preferential
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
direction along the electric field. It is well known that,
at low temperatures, the asymmetric part of the distri-
bution function becomes significant and comparable to
the symmetric part. Proper allowance made for this cir-
cumstance can lead to better agreement between the
theoretical and available experimental results. On the
other hand, it is expedient to perform measurements of
the radiation polarization of hot electrons at higher tem-
peratures of the lattice (for example, at T = 77 K) for
which the assumptions underlying the theory hold
good.
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Abstract—The temperature dependence of electrical resistivity in LaSrNiO4 ± δ ceramics synthesized using
various techniques and subjected to heat treatment is studied. The occurrence of a metal–semiconductor tran-
sition is shown to be accounted for by the Anderson carrier localization originating from the random arrange-
ment of oxygen vacancies.© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of superconducting oxide ceramics
and of their structural analogs shows that their conduc-
tion is due, to a large extent, to inhomogeneities in their
microstructure (structural defects, charge nonstoichi-
ometry, microphase inhomogeneity), which might
depend substantially on the actual conditions of prepa-
ration and heat treatment. The nickel-containing oxides
La2 – xSrxNiO4, which are isostructural to superconduct-
ing cuprates, reveal, in addition to many features which
make these compounds similar to cuprates (similarity
between the electronic spectra of the Ni and Cu 3d
states, the possibility of changing the valence state, sus-
ceptibility of the low-spin Ni3+ and Cu2+ ions to Jahn–
Teller distortions), some specific transport properties;
moreover, they have not thus far been shown to be
superconducting. Substitution of strontium for lantha-
num was found [1] to change the properties of
La2 − xSrxNiO4 from those of an antiferromagnetic insu-
lator to those of a metallic conductor, but much slower
than occurs in La2 – xSrxCuO4; indeed, metallic conduc-
tion sets in the nickelates for temperatures >100 K only
at x = 1. At the same time, the conduction in LaSrNiO4

has a semiconducting character within the temperature
interval 10–300 K [2]. To establish the mechanism of
the onset of metallic conduction in the nickelates, we
studied the transport properties of the LaSrNiO4 ± δ
ceramics (synthesized using various techniques) and
their variation under heat treatment.

LaSrNiO4 ± δ belongs to the class of layered perovs-
kites with a K2NiF4-type lattice. The nickel ions in the
LaSrNiO4 structure do not produce an EPR signal [3,
4]. The weak EPR signals sometimes observed in this
compound are due to various paramagnetic defects
originating from charge or structural nonstoichiometry
[5, 6].
1063-7834/02/4409- $22.00 © 21622
2. SAMPLE PREPARATION
AND MEASUREMENT TECHNIQUES

The LaSrNiO4 ceramics were synthesized using
standard solid-phase technology. Spectroscopically
pure La2O3, NiO, and SrCO3 were taken in a 1 : 1 : 1
stoichiometric ratio and crushed in a Pulversette 6
(Fritsch) ball mill (with an agate container). The pow-
der was heated in a corundum crucible at 1150°C in air
for 12 h and subsequently cooled slowly to room tem-
perature. The product thus obtained was again crushed,
pressed in pellets, sintered in air at 1150°C for 12 h, and
then cooled to room temperature (sample A1). Part of
sample A1 was annealed at 850 K for 10 h in a pure oxy-
gen flow (sample B1). Samples A1 and B1 were addi-
tionally annealed in air at 500°C for 1 h (regime I, sam-
ples A2 and B2) and at 700°C for 4 h (regime II, sam-
ples A3 and B3); in both cases, the samples were cooled
slowly to room temperature in air. Sample C was syn-
thesized by nitrate decomposition using the technique
described in [7], and a preliminary study of it was
reported in [2]. All samples were found to be single-
phase within the x-ray diffraction sensitivity and to
belong to the K2NiF4 structural type. The lattice para-
meters extracted from the x-ray diffraction patterns are
listed in Table 1.

The temperature dependence of the electrical resis-
tivity was measured using the conventional four-probe
method within the temperature interval 15–340 K. The
measurements were carried out on a computerized sys-
tem combined with a CS-202 helium cryostat (APD
Cryogenics USA). Indium was used as contacts. The
reliability of measurements was ensured by repeated
reversal of the dc current direction at each temperature
point.

The EPR measurements were performed on an
ERS-230 EPR spectrometer in the X range at tempera-
tures from 10 to 300 K.
002 MAIK “Nauka/Interperiodica”
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Table 1.  Lattice parameters and some data on the electrical resistivity of the LaSrNiO4 ± δ ceramics

Sample a, Å c, Å Ttr , K ρ100 K, 10–3 Ω cm ρ0, 10–3 Ω cm
, 

10–6 Ω cm/K

A1 3.832 12.376 155 1.67 1.13 2.18

A2 150 1.61 1.02 2.58

A3 3.829 12.419 – 4.67 – –

B1 3.827 12.374 152 1.87 1.45 2.00

B2 152 2.51 1.86 2.68

B3 3.832 12.413 – 3.80 – –

C 3.827 12.510 – 52.56 – –

dρ dT⁄( )T T tr>
3. EXPERIMENTAL RESULTS 

Measurements of the temperature dependence of
electrical resistivity ρ revealed a transition from the
semiconducting to metallic conduction at a temperature
Ttr ~ 150 K in samples A1 and B1 (Fig. 1). The resistiv-
ity of sample B1 was found to be higher than that of A1
at the same temperatures. No EPR signal was detected
in either sample.

Heat treatment of sample A1 at 500°C did not
change, on the whole, the behavior of ρ(T); sample B1
subjected to the same treatment also exhibited the
metal–semiconductor transition, but the resistivities
increased slightly (curves A2, B2 in Fig. 1). Samples A2
and B2 at temperatures below ~100 K produced a type-I
EPR signal, namely, an axial-symmetry spectrum with
S = 1/2 and parameters g|| = 2.098 and g⊥  = 2.022, which
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
are characteristic of -type oxygen defects [8]. The
concentration of such centers is rather low (a few hun-
dredths of a percent) and is comparable to the expected
defect content.

Samples A1 and B1 subjected to heating at 700°C
exhibited a semiconducting character of conduction
throughout the temperature interval covered (curves
A3, B3 in Fig. 1). EPR spectra of sample A3 revealed a
broad type-II line in addition to type-I signals (Fig. 2).
The type-II signal is observed in the range 10–293 K.
As seen from Fig. 2, the effective, peak-to-peak width
of the signal decreases from ~200 to ~30 mT with
increasing temperature and geff measured at the cross-
ing with the zero line varies from 2.75 to 2.03. At low
temperatures, the line shape is close to symmetrical;
however, above 116 K, the spectrum takes on a more
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Fig. 1. Temperature dependence of the electrical resistivity of LaSrNiO4 ± δ samples prepared using various methods: (a) standard
solid-phase technology in air; (b) same conditions as in (a) but with additional annealing in an oxygen flow; and (c) nitrate decom-
position. A1 and B1 are starting samples; A2 and B2 are samples after annealing at T = 500°C for 1 h; and A3 and B3 are samples
after annealing at T = 700°C for 4 h.
2



1624 IVANOVA et al.
complex shape, which implies superposition of several
signals.

The temperature dependence of the electrical resis-
tivity obtained on sample C over the whole range 14–
340 K exhibits a semiconducting character, with the

100 200 300 400 500

116 K

32 K

85 K

138 K

172 K

204 K
240 K

I

II

H, mT

Fig. 2. Temperature behavior of the EPR spectra of sample
A3. ν = 9.32 GHz.
P

resistivities considerably exceeding (by several orders
of magnitude) those of samples A1 and B1.

The results obtained in an analysis of the tempera-
ture dependence of the electrical resistivity of the sam-
ples are presented in Tables 1 and 2 and Fig. 3.

The ρ(T) dependence for samples A1, A2, B1, and
B2 follows a linear character in the metallic-conduction
range, i.e., for T > Ttr : ρ(T) = ρ0 + (dρ/dT)T, its slope
increases slightly after annealing at 500°C (for the oxy-
gen-annealed samples B, this increase is somewhat
larger than that for the A samples).

The temperature dependence of the electrical resis-
tivity ρ(T) of samples A3 and B3 and the semiconduct-
ing-type ρ(T) relation of samples A1, B1, A2, and B2
at  low temperatures is fitted satisfactorily by Mott’s
law (variable-range hopping conduction) ρ(T) =
ρ0exp{(T0/T)1/4}. As the temperature increases, the ρ(T)
relation for these samples takes on an activated charac-
ter, ρ(T) = ρ0exp(α/T). The temperature at which ρ(T)
crosses over to activated behavior increases with
increasing heat treatment temperature, particularly in
the B sample series. Sample C exhibits good agreement
with Mott’s law throughout the temperature range cov-
ered. As seen from Table 2, heat treatment increases the
parameter T0 (for samples B, this increase is quite sub-
stantial). The values of T0 for sample C are comparable
with the data available for isostructural cuprates [9],
while being considerably larger than those for samples
A and B.

Measurements of the sign of the thermopower
showed the conduction in all the samples to be of elec-
tronic type, which agrees with the data [4, 10] reported
for ceramics of the same composition.
Table 2.  Fitting parameters for the experimental ρ(T) relations obtained on samples A3, B3, and C and on samples A1, A2,
B1, and B2 in the temperature range where these samples are semiconductors

Sample Best-fit forms of ρ(T) ∆T T0, K α, K lnρ0

A1 lnρ = lnρ0 + (T0/T)1/4 14–42 3.46 –6.710

lnρ = lnρ0 + α / T 42–150 17.8 –6.590

A2 lnρ = lnρ0 + (T0/T)1/4 14–48 15.00 –7.042

lnρ = lnρ0 + α / T 48–130 18.1 –6.683

A3 lnρ = lnρ0 + (T0/T)1/4 14–50 26.36 –5.864

lnρ = lnρ0 + α / T 50–340 57.4 –5.947

B1 lnρ = lnρ0 + (T0/T)1/4 14–46 1.95 –6.526

lnρ = lnρ0 + α / T 46–130 14.5 –6.417

B2 lnρ = lnρ0 + (T0/T)1/4 30–85 77.20 –6.916

lnρ = lnρ0 + α / T 85–140 19.7 –6.179

B3 lnρ = lnρ0 + (T0/T)1/4 63–99 2.2 × 103 –7.847

lnρ = lnρ0 + α / T 99–340 84.32 –6.518

C lnρ = lnρ0 + (T0/T)1/4 87–340 82 × 106 –19.244
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Fig. 3. Illustration of the fitting of the experimental ρ(T) relations by the models specified in Table 2 (a–c) for sample A1 in the
regions of the metallic, activated, and Mott’s conduction, respectively, and (d) for sample C exhibiting Mott’s conduction throughout
the temperature range covered.
4. DISCUSSION OF RESULTS

As follows from an analysis of the dependence of
the electrical resistivity on the conditions of preparation
(see Table 1 for samples A1, B1, C), the electrical con-
ductivity σ = 1/ρ correlates with the content of oxygen
vacancies in the sample. Indeed, sample A1 exhibits the
highest electrical conductivity. It was prepared under
conditions precluding the formation of oxygen vacan-
cies. Synthesis from the oxides and carbonates pro-
ceeds by the reaction (1/2)La2O3 + SrCO3 + NiO =
LaSrNiO3.5 + CO2. Although the oxygen balance levels
off in the course of sintering and cooling, the com-
pound we obtained is most likely LaSrNiO4 – δ, which
contains the largest number of vacancies δ as compared
with the other samples. Heat treatment in an oxygen
flow reduces δ (sample B1), and the electrical resistiv-
ity increases slightly. Synthesis from nitrates produces
a more oxygen-enriched compound: La(NO3)3 +
Sr(NO3)2 + NiO = LaSrNiO4 + 5NO2 + O2. One might,
therefore, expect the value of δ in sample C to be sub-
stantially smaller. As a result, the electrical resistivity
of sample C should be higher than that of A1 and B1.
The formation of oxygen vacancies gives rise to a
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
decrease in the number of negatively charged sites in
the structure. The charge neutrality of the sample is pro-
vided by additional electrons, which can be either
localized on the vacancy or delocalized over the sample
volume. One may also expect a decrease in the positive
charge on a part of the nickel ions, i.e., the formation of
some amount of Ni2+ ions. It may be conjectured that
the electronic conduction of the samples studied is pri-
marily due to the electrons freed in the formation of
defects of the type of oxygen vacancies. This conjec-
ture is borne out indirectly by x-ray structural measure-
ments. Assuming the binding energy of the apical oxy-
gen to be smaller than that of the oxygen in the planes,
the vacancies should form predominantly in the apical
positions. Then, an increase in the number of oxygen
vacancies should bring about a decrease in the parame-
ter c, which is in accord with the structural measure-
ments (Table 1).

We assume that the oxygen vacancies efficiently
localize the carriers. The character of the temperature
dependence of electrical resistivity, as well as the acti-
vation energy and the constant T0 in Mott’s law, is sen-
sitive to the vacancy content in a compound; this is usu-
2
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ally observed in doped semiconductors. The oxygen
vacancies apparently act as a donor impurity and form
an impurity band located close to the conduction-band
bottom. The acceptors required for the operation of the
hopping mechanism in the impurity band are most
likely Ni2+ ions. The random potential associated with
charged point defects gives rise to the formation of an
energy range of localized states near the bottom of the
conduction band. We denote the energy separating the
localized from nonlocalized states (the carrier mobility
edge) by EC and the lower boundary of the energy range
of localized states by EA. The Fermi level lies in the
impurity band and is separated from the mobility edge
by the distance ∆ = EC – EF and from the lower bound-
ary of the region of localized states by the distance ∆' =
EA – EF.

Let us estimate the maximum carrier concentration
in the samples under study. According to the literature
data [11, 12], the largest value of δ obtained in such
samples is 0.04, which corresponds to 0.02 vacancies
per unit cell. Then, our estimates suggest that there are
2.4 × 1019 vacancies per cubic centimeter and that the
average distance between donors at their maximum
concentration is ~16.7 Å, which exceeds the lattice
constant a by a factor of 4.4. Hence, in all the cases
studied, the samples remain lightly doped and one can
expect the impurity band to be fairly narrow.

At low temperatures, the hopping conduction is
described by Mott’s law; in other words, variable-range
hopping between localized states with an energy close
to the Fermi level provides a major contribution to the
semiconducting behavior.

At higher temperatures, the conduction is realized
via hopping to localized states near the band edge. The
crossover point to activated conduction increases with
increasing anneal temperature and under annealing in
an oxygen flow. This is probably associated with the
vacancies becoming partially compensated under
annealing because of the oxygen being supplied by
thermal diffusion from the surrounding medium or
from microregions containing excess oxygen. A
decrease in the number of structural defects reduces the
energy range of localized states near the impurity band
edge and, accordingly, makes the energy interval ∆'
smaller. The nonactivated behavior of sample C (or the
shift of the crossover to the activated character toward
high temperatures beyond the measurement range cov-
ered) implies that the magnitude of ∆' in this sample is
larger than 340 K.

Thermal excitation of carriers above the energy cor-
responding to the boundary separating the localized
from nonlocalized states gives rise to the onset of
metallic conduction. The small temperature coefficient
dρ/dT (Table 1) indicates that the mean free path is
equal in order of magnitude to the interatomic separa-
tion [13].

The vanishing of the metal–semiconductor transi-
tion after heat treatment following regime II implies an
P

increase in the interval ∆. This increase is most proba-
bly associated with a downward shift of the Fermi level
as a result of increased donor compensation. This
annealing regime apparently initiates the transfer of an
additional amount of Ni3+ ions to the Ni2+ state. This
conjecture is argued for by sample A3 producing a
type-II EPR signal. This signal indicates the formation
of magnetic clusters with an odd total spin which con-
tain both Ni3+ and Ni2+ ions. In particular, the decrease
in the linewidth from 150–200 mT to a few tens of mil-
liteslas with increasing temperature [14], a feature
characteristic of intermediate-valence clusters, is also
observed to occur in our case. Refined interpretation of
the type-II signals requires additional experiments.

In samples annealed in regime I (T = 500°C), the
change in the state of the carriers primarily involves the
centers lying close to the surface. Therefore, the param-
eters of sample A2 virtually do not change as compared
to those of sample A1. This conjecture is borne out by
the observation of a type-I EPR signal in sample A2,
which is usually assigned to  oxygen radicals form-
ing on the surface of oxides [15]. Heat treatment at
500°C results in a certain change in the parameters of
the ρ(T) relation for sample B2 as compared to those for
sample B1, although the metal–semiconductor transi-
tion in sample B2 persists. This may be due to the fact
that the electrical resistivity was increased during the
prolonged oxygen annealing that transferred sample A1
to B1, but the surface layers retained a higher density of
additional oxygen than the bulk of the sample did. Oxy-
gen diffusion from the surface layers into the bulk of
the sample in the course of annealing of sample B1 in
regime I brings about a change in the parameters of the
ρ(T) dependence in sample B2 as compared to those
in B1.

In conclusion, we note that in this case there is
apparently one more example of the metal–semicon-
ductor transition associated with the Anderson localiza-
tion of carriers. As in other compounds [16–18], the
random potential initiating Anderson localization near
the energy band edge is formed because of charged
point defects (oxygen vacancies in our case, cerium
vacancies in the cerium sulfide and oxygen “holes” in
cuprates with x < 0.05) being randomly distributed over
the sample.
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Abstract—The structure of the HgTe0.85S0.15 ternary mercury compound was studied by neutron diffraction at
high pressures of up to 40 kbar. A phase transition from the cubic (sphalerite-type) to the hexagonal (cinnabar-
type) structure was established to occur with increasing pressure and to be accompanied by an abrupt change
in the unit-cell volume and interatomic distances. The unit cell parameters, the positions of the Hg and Te/S
atoms in the hexagonal cinnabar phase, and their pressure dependences were found. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the semiconductor–metal-type (S–
M) phase transformations is an important field of con-
densed-state physics offering a broad range of applica-
tions [1, 2]. The ternary mercury chalcogenides
HgSe1 − xSx and HgTe1 – xSx, with substitutional atoms
on the cation or anion sublattice, are of interest in this
respect, because they undergo reversible S–M pressure-
driven phase transformations. By properly varying the
composition, one can change the electrophysical
parameters of the initial and final phases and the phase
transition pressure [3–5]. However, our knowledge of
the structural changes associated with such phase tran-
sitions is still incomplete. These changes are assumed
to be similar to the phase transformations occurring in
the HgSe and HgTe binary mercury compounds [6–8].
In the case of the HgSe1 – xSx system, this assumption
was checked with neutron diffraction measurements on
the high-pressure phases [9]. We report here on a simi-
lar investigation of a ternary compound of another type,
namely, HgTe1 – xSx. Unlike the HgSe1 – xSx system,
which has the electrical properties of a semimetal [4],
the HgTe1 – xSx compound with a low sulfur content
(x < 0.2) is a gapless semiconductor with a negative
exponent of the temperature dependence of electrical
resistivity (ρ(T) ~ T–3/2) and becomes a semimetal only
for x > 0.3 [10, 11]. The contribution of the electronic
component to the total lattice energy can noticeably
affect the phase stability at high pressures [3]. In this
study, we used a crystal with x = 0.15, which is, like
HgTe, a gapless semiconductor [10, 11].
1063-7834/02/4409- $22.00 © 1628
2. EXPERIMENTAL TECHNIQUE

The technique employed in the sample preparation
was described in [10, 11], and the sample composition
was measured with a Superprobe-JCXA-733 x-ray
spectrometer. Neutron diffraction measurements were
carried out on an IBR-2 pulsed high-flux reactor (JINR,
Dubna) with a DN-12 spectrometer [12] using high-
pressure sapphire-anvil chambers [13]. The samples
were V ~ 2 mm3 in volume. The diffraction spectra were
obtained at a scattering angle 2θ = 90°, for which the
diffractometer resolution at the wavelength λ = 2 Å was
∆d/d = 0.02. The time taken to measure one spectrum
was typically 20 h. The chamber pressure was derived
from the shift of the ruby luminescence line to within
0.5 kbar. All measurements were made at room temper-
ature.

3. RESULTS AND DISCUSSION

Figure 1 shows parts of the diffraction spectra of
HgTe0.85S0.15 measured at normal and high pressures.
The spectrum obtained at P = 0 belongs to the cubic
sphalerite structure. Starting from P = 16 kbar, new dif-
fraction peaks began to appear, whose intensity grew
with a further increase in pressure, and the intensity of
the original sphalerite phase reflections decreased. A
Rietveld refinement [14] of the diffraction data showed
the new peaks to correspond to the hexagonal cinnabar
structure [3–5]. At P = 37 kbar, the diffractograms
revealed a single-phase cinnabar structure. Within a
pressure interval of 16 to 24 kbar, HgTe0.85S0.15 revealed
the presence of a two-phase state; the concentration of
the cinnabar phase increased and the concentration of
2002 MAIK “Nauka/Interperiodica”
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the original sphalerite decreased with a rise in pressure.
This phenomenon was observed earlier in x-ray struc-
tural studies of the HgSe and HgTe binary systems [15,
16], as well as in neutron diffraction measurements car-
ried out on the HgSe1 – xSx ternary systems at high pres-
sures [9]. The formation of a two-phase state is tenta-
tively attributed to a low rate of the phase transforma-
tion [16]. The HgTe and HgSe binary compounds also
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Fig. 1. Parts of the HgTe0.85S0.15 diffraction spectra mea-
sured with a DN-12 spectrometer at 0, 23, and 37 kbar and
refined by the Rietveld procedure. The spectra feature
experimental points, the calculated profile, and the differ-
ence curve (at the bottom of each panel).

P3121
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
exhibited (near the sphalerite–cinnabar structural tran-
sition) weak reflections which could be assigned to the
cristobalite structure [15, 16]. In the present study, this
phase was not observed.

The Rietveld analysis of neutron diffraction data by
the MRIA code [14] was based on well-known struc-
tural models [15], namely, space group F 3m for the
original cubic sphalerite phase and space group P3121
for the high-pressure phase with the hexagonal cinna-
bar structure. In accordance with the measurements
made on the binary mercury chalcogenide systems
HgSe, HgTe, and HgS [15–20], it was assumed that the
Hg atoms in the cinnabar structure occupy positions 3a
(u, 0, 1/3) and the Te/S atoms are in positions 3b (v, 0,
5/6) of the space group. The structural parameters of
HgTe0.85S0.15 found at various pressures are given in the
table. The typical values of the R factors for the
HgTe0.85S0.15 diffraction spectrum measured at P =
37 kbar and corresponding to the cinnabar phase
(Fig. 1) were Rp = 14.5% and Rwp = 12.8%. As seen
from the table, the coordination number of the cinnabar
structure of HgTe0.85S0.15 and HgTe is 4 + 2 [20]. In
HgS, the cinnabar structure has another coordination
type, namely, 2 + 4 [15, 20].

With increasing pressure, the unit cell parameter of
the hexagonal cinnabar phase decreases almost linearly
and the c/a ratio increases (Fig. 2). The value c/a =
0.264 found at P = 37 kbar is smaller than that for HgTe
(c/a = 0.287) measured at a similar pressure, P =
36 kbar [20]. As in the HgSe and HgTe binary com-
pounds [6–8, 21], the cubic-to-hexagonal phase transi-
tion is accompanied by a jump in the unit-cell volume
∆V/V ≈ 10% (Fig. 3). The pressure corresponding to the
onset of the phase transition in HgTe0.85S0.15 is in accord
with the value P ≈ 15 kbar derived from the electrical
resistivity measurements [5, 10, 11]. Linear interpola-
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tion of the pressure dependence of the cell volume per
formula unit (Fig. 3) yields B0 =  =

673 kbar for the bulk modulus of the cinnabar phase.
The cell volume per formula unit used in the calcula-
tions, V0 = 57.89 Å3, was obtained by extrapolation to
P = 0. The calculated value of B0 is in agreement with
the compressibility data [22] (B0 = 656 kbar) and is
slightly in excess of the value B0 = 410 kbar from [21].

VdP/dV
V V0=

Structural parameters of HgTe0.85S0.15 at normal and high
pressures for the sphalerite (unit cell parameter a, Hg–X inter-
atomic distance) and cinnabar (unit cell parameters a, c; posi-
tional parameters u, v ; the distances between nearest neigh-
bor atoms Hg1–X, Hg2–X, Hg3–X) phases. In the cinnabar
phase, the Hg atoms occupy positions of the (u, 0, 1/3) type
and atoms X = Te/S are in positions of the (v, 0, 5/6) type

Parameter
P, kbar

0 14 16 23 37

Cubic sphalerite phase

ac , Å 6.382(5) 6.329(5) 6.313(5) 6.300(5)

Hg–X, Å 2.763 2.740 2.734 2.728(5)

Hexagonal cinnabar phase

a, Å 4.441(5) 4.415(5) 4.375(5)

c, Å 9.930(9) 9.927(9) 9.904(9)

c/a 2.236 2.248 2.264

u – 0.597(5) 0.609(5)

v – 0.549(8) 0.541(9)

Hg1–X, Å – 2.73(2) 2.68(2)

Hg2–X, Å – 2.90(2) 2.92(2)

Hg3–X, Å – 3.66(2) 3.62(2)
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Fig. 3. Cell volume per formula unit in the (1) sphalerite and
(2) cinnabar phases of HgTe0.85S0.15 plotted as functions of
pressure. Solid lines are linear interpolations of experimen-
tal data. The hatched area specifies the region of existence
of the two-phase state.
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PH
The observed changes in the atomic positions and in
the lattice parameters of HgTe0.85S0.15 with pressure
increasing from 23 to 37 kbar (see table) correspond to
an increase in the X–Hg–X angle α1 from 156.5° to
158.2° and to a decrease in the Hg–X–Hg angle α2 from
111.8° to 111.7° in the helical chains formed by the Hg
and X atoms (X = Te, S) in the cinnabar structure [21].
Because the cinnabar structure can be considered a dis-
torted NaCl structure, this change in the interatomic
angles with increasing pressure reflects a gradual rear-
rangement of the hexagonal lattice to the cubic NaCl
structure, for which α1 = 180° and α2 = 90°. A similar
pattern was observed in HgTe, where α1 and α2 at P =
34.5 kbar are closer to the limiting angles correspond-
ing to the NaCl structure [21]; in other words, the lattice
in this case is distorted less than in the ternary com-
pound HgTe0.85S0.15. Therefore, the phase transition
from the cinnabar structure to the NaCl-type lattice in
HgTe0.85S0.15 should occur at higher pressures than in
HgTe (P ≈ 80 kbar) [18–25]. As shown by electrical-
resistance and thermopower measurements [26], the
pressure at which the semiconductor–metal electronic
transition takes place in HgTe1 – xSx shifts toward higher
values with increasing x. In the HgTe and HgSe binary
systems, this electronic phase transition occurs at the
cinnabar–NaCl structural transformation.

4. CONCLUSION

As shown in our study, the phase transition occurs in
the ternary mercury-chalcogenide system HgTe0.85S0.15
with increasing pressure and the cubic sphalerite struc-
ture transforms into the hexagonal cinnabar structure
characterized by the coordination number 4 + 2, as in
the HgSe and HgTe binary compounds. The structural
transformation of the cinnabar phase under pressure
can be considered to be its gradual rearrangement to a
cubic NaCl-type lattice. At higher pressures, the
HgTe1 − xSx ternary systems should apparently also
undergo the cinnabar–NaCl structural transition, as was
observed to occur in HgTe at P ≈ 80 kbar [21].
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Abstract—The electrodynamic response of an electron gas on the surface of a nanosphere is investigated. An
analytical relationship for the absorption of electromagnetic radiation by the nanosphere is derived. It is dem-
onstrated that the absorption curve at low temperatures has two resonance peaks. The shape, position, and inten-
sity of the peaks are examined. The dependence of the absorption on the radiation frequency exhibits kinks
associated with the degeneracy of the electron gas. The number and position of the kinks and the absorption
jumps at these kinks are analyzed. Consideration is given to the cases of an isolated sphere and a sphere
exchanging electrons with a reservoir. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent considerable progress achieved in nanotech-
nology has provided a way of producing spherical
nanostructures with sizes from several nanometers to
hundreds of nanometers [1–3]. Investigation of spheri-
cal nanostructures has revealed that these objects pos-
sess interesting spectral [4] and optical [5–7] proper-
ties. In a number of works [5–8], it has been shown that
the absorption of optical radiation by a spherical metal-
lic nanostructure can be adequately described in the
framework of the classical approach. The optical prop-
erties of a nanoparticle depend on its size and geometry.
Albe et al. [9] studied the influence of the nanoparticle
shape on the absorption spectrum. It was demonstrated
that closely packed nanospheres can form three-dimen-
sional crystals. The collective optical properties of
closely packed nanospheres were considered in [3, 10–
12]. Note that these crystals have a photonic band gap
and can be treated as photonic crystals [13–15]. In
recent years, it has become possible to cover spherical
nanostructures with metallic or semiconducting shells.
In particular, Hines and Guyot-Sionnest [16] prepared
crystals from nanospheres based on a CdSe core cov-
ered with a ZnS shell. There is a number of works con-
cerned with the optical properties of Au2S dielectric
cores covered with a gold shell [17–20]. These spheri-
cal nanoshell structures can be produced by mixing
HAuCl4 and Na2S aqueous solutions. The sizes of the
spheres thus obtained are equal to several tens of
nanometers. Zhou et al. [17] and Averitt et al. [18]
investigated the absorption of electromagnetic radia-
tion in a medium containing nanoshell structures and
demonstrated that, in the optical range, the absorption
spectrum exhibits a resonance peak associated with the
absorption of radiation by nanoshell structures. A theo-
retical model for describing the optical properties of
1063-7834/02/4409- $22.00 © 21632
spherical nanoshells was developed on the basis of the
Mie classical theory [8]. It was established that the
absorption peak corresponds to plasma resonance of
electrons in the system and that the position and the
intensity of this peak depend on the metallic shell thick-
ness and the diameter of the dielectric core [17, 18].
Investigation into the optical absorption in nanostruc-
tures provided a deep insight into the growth kinetics of
nanostructures [18] and made it possible to determine
important parameters such as the electron relaxation
time and the electron–phonon coupling constant [17].
Analysis of the nonlinear optical response of nanoshell
spherical and spheroidal systems proved that the
nanoshell can substantially enhance the nonlinear opti-
cal response of the system [21–23]. It should be noted
that, in the case of thin metallic or semiconducting
shells (of the order of several atomic layers thick),
quantum effects become significant and can make a
considerable contribution to the properties of the sys-
tem; hence, the classical model cannot be used to
describe the optical absorption in the nanoshell [17].

The aim of the present work was to investigate the
intraband optical transitions in a nanosphere. Note that
the study of the intraband optical transitions provides
important information on the parameters of the energy
spectrum and the Fermi surface of electrons [24–28].
The model of a sphere can be applied to analyzing dif-
ferent physical properties of a metallic or semiconduct-
ing shell whose thickness is appreciably less than the
size of the structure. This model was successfully used
to investigate the spectral [29, 30], magnetic [31–34],
and transport [35] properties of spherical or spheroidal
nanostructures and to examine the influence of the elec-
tron–electron [36] and spin–orbit [37] interactions on
the spectral properties of electrons in spherical systems.
002 MAIK “Nauka/Interperiodica”
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2. ABSORPTION OF ELECTROMAGNETIC 
RADIATION

Let us consider a system of noninteracting electrons
confined to the surface of a nanosphere. The eigenfunc-
tions and eigenvalues of the Hamiltonian for this sys-
tem are well known and have the form

where l and m are the orbital and magnetic quantum
numbers, respectively; Ω = "/m*R2 and Yl, m(ϑ , ϕ) are
the spherical harmonics; m* is the effective mass; and
R is the sphere radius. The absorption of electromag-
netic radiation can be determined using the perturba-
tion theory for the interaction of electrons with a high-
frequency electromagnetic field [38]. In the case of a
degenerate electron gas, the absorption by a nanosphere
can be represented by the relationship

(1)

where ε(ω) is the real part of the permittivity (the dis-
persion is assumed to be absent in the frequency range
under consideration), Nf is the concentration of photons
(with the frequency ω) incident on the nanosphere, f is
the photon wave vector, f0(El) is the electron distribu-
tion function, and [1 – exp(–"ω/T)] is the multiplier
accounting for the induced photon emission. The elec-
tron–photon interaction operator can be written in the
form

where ef is the polarization vector of the photon.

The matrix elements of the operator HR are calcu-
lated by assuming three to be a uniform electromag-
netic field; i.e., the photon wavelength is taken to be
considerably larger than the sphere radius.

Let the Oz axis be aligned along the polarization
vector of the photon. In the dipole approximation, the
transition matrix elements are defined as

(2)

ψl m, ϑ ϕ,( ) Yl m, ϑ ϕ,( ), El
"Ω
2

--------l l 1+( ),= =

Γ ε ω( )

2c"R2N f

---------------------- 1 e "ω/T––( )=

× f 0 El( ) 1 f 0 El "ω+( )–[ ]
l' m',
∑

l m,
∑

× l' m' f HR l m 0, ,–, ,〈 〉 2δ El El' "ω+–( ),

HR
e

m∗
-------

2π"N f

ε ω( )ω
----------------efp,=

l' m' f HR l m 0, ,–, ,〈 〉

=  
e

m∗
-------

2π"N f

ε ω( )ω
---------------- l' m' pz l m,,〈 〉 e "

m∗ R
-----------

2π"N f

ε ω( )ω
----------------δm' m,=

× l 1+( ) l2 m2–

4l2 1–
----------------δl' l 1–, l

l 1+( )2 m2–

4 l 1+( )2 1–
------------------------------δl' l 1+,+ .
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
It follows from expression (2) that, in the dipole
approximation, the transitions are allowed only
between adjacent levels (l' = l ± 1). Substitution of
expression (2) into relationship (1) gives

(3)

It is seen from relationship (3) that the dependence
Γ(ω) is resonant in character. Resonances arise at the
frequencies of electromagnetic radiation ω = Ω(l + 1)
for the orbital quantum numbers l at which the distribu-
tion function f0(El)[1 – f0(El + "Ω(l + 1))] is not a small
quantity.

In order to take into account the broadening of the
resonance peaks due to scattering, we introduce the
Lorentzian broadening of delta-shaped peaks according
to the formula

(4)

where τ is the phenomenological relaxation time. With
due regard for expression (4), relationship (3) can be
written as the sum of two terms: Γ = Γ1 + Γ2, where

Here, Γ0 = e2τ/3cm*R2 .
The nonresonant term Γ1 describes the processes

associated with photon emission and satisfies the con-
dition Γ1 = O(Γ2/(τω)2) in the vicinity of the resonance
point. Therefore, in the case of a high-frequency field,
the contribution of the nonresonant term Γ1 to the
absorption in the vicinity of the resonance can be
ignored. By omitting the nonresonant term, we obtain

(5)

Γ πe2

3cm∗ R2 ε ω( )
-----------------------------------Ω

ω
---- 1 e "ω/T––( )=

× f 0 El( ) 1 f 0 El "ω+( )–[ ] l l 1+( )
l 0=

∞

∑
× l 1+( )δ ω Ωl+( ) lδ ω Ω l 1+( )–( )+[ ] .

δτ x( )
πτ( ) 1–

τ 2– x2+
------------------,=

Γ1

Γ0
-----

Ω
ω
---- 1 e "ω/T––( )=

×
f 0 El( ) 1 f 0 El "ω+( )–[ ] l l 1+( )2

1 τ2 ω Ωl+( )2+
-----------------------------------------------------------------------------,

l 1=

∞

∑
Γ2

Γ0
-----

Ω
ω
---- 1 e "ω/T––( )=

×
f 0 El( ) 1 f 0 El "ω+( )–[ ] l2 l 1+( )

1 τ2 ω Ω l 1+( )–[ ] 2+
-----------------------------------------------------------------------------.

l 1=

∞

∑

ε ω( )

Γ
Γ0
-----

Ω
ω
---- 1 e "ω/T––( )=

×
f 0 El( ) 1 f 0 El "ω+( )–[ ] l2 l 1+( )

1 τ2 ω Ω l 1+( )–[ ] 2+
-----------------------------------------------------------------------------.

l 1=

∞

∑

2
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Fig. 1. Appearance of new resonance peaks in the absorption curve with increasing temperature. R = 10–5 cm, τ = 5 × 10–11 s, and
µ = 5.15 × 10–15 erg.
It follows from relationship (1) that, at a sufficiently
low temperature, only electrons whose energy falls
within the range [µ – "ω, µ] participate in the absorp-
tion. Note that, in the case when the frequency of elec-
tromagnetic radiation changes, the line (µ – "ω) can
cross an electron energy level. As a result, the number
of electrons involved in the absorption changes and a
kink appears in the dependence of the absorption Γ on
the frequency ω.
P

From the condition for the appearance of kinks (µ –
"ω = El), we found that the kinks can arise at the fre-
quency of electromagnetic radiation

(6)

Hence, the separation between the adjacent kinks is
determined by the formula ωkink(l) – ωkink(l – 1) = Ωl.

The absorption jump at the kink ∆l at temperatures
close to zero can be estimated from the expression

ωkink l( ) µ
"
---

Ω
2
----l l 1+( ).–=
(7)∆l Γ0
Ωl2 l 1+( )

µ/" Ωl l 1+( )/2–[ ] 1 τ2 µ/" Ω l 1+( ) l 2+( )/2–[ ] 2+{ }
-------------------------------------------------------------------------------------------------------------------------------------.≈
As is known, the thermodynamic properties of a
three-dimensional electron gas (for example, the Lan-
dau diamagnetism) are virtually independent of
whether the number of particles in the system is con-
stant (N = const) or whether the chemical potential is
constant (µ = const). This circumstance is primarily
associated with the fact that the effect of the method
chosen to describe the system on its thermodynamic
properties is of the order of N–1/3 [39], and this effect
can be ignored when the number of particles is very
large.

In the case of an electron gas on a nanosphere, the
number of particles in the system is small; hence, the
physical properties of the nanosphere essentially
depend on the method chosen to describe the system
[34]. In this respect, we will consider two cases,
namely, the case of a constant chemical potential and
the case of a constant number of electrons on the
sphere, and perform a detailed analysis of the differ-
ences in absorption between these cases.

3. THE NANOSPHERE IN A THERMOSTAT

We assume that the nanosphere is in contact with a
reservoir characterized by the chemical potential µ and
the temperature T.

For further analysis, it is convenient to introduce the
quantum number l0 such that  ≤ µ < . At zero
temperature, l0 is the orbital quantum number of the
upper level filled by electrons and the absorption reso-
nance arises upon transition of electrons from the l0th
level to the (l0 + 1)th level at the electromagnetic radia-
tion frequency Ω(l0 + 1) (the solid line in Fig. 1). As the
temperature increases, the contribution of the electron
transitions from the (l0 – 1)th level to the l0th level

El0
El0 1+
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Fig. 2. Temperature smearing of kinks on the right wing of the second resonance peak. R = 10–5 cm, τ = 5 × 10–11 s, and µ =
5.15 × 10–15 erg.
becomes significant and the resonance peak appears at
the frequency Ωl0 (the dashed line in Fig. 1). A further
increase in the temperature gives rise to absorption
maxima due to electron transitions from the (l0 – 2)th
level to the (l0 – 1)th level or from the (l0 + 1)th level to
the (l0 + 2)th level (the dot-dashed line in Fig. 1) and
so on.

The intensities of the first (at ω = Ωl0) and second [at
ω = Ω(l0 + 1)] peaks can be estimated from the follow-
ing formulas:

(8)

(9)

Note that an increase in the temperature results in a
decrease in the intensity of the largest peak [at ω =
Ω(l0 + 1)] and an increase in the intensities of the other
peaks.

At T = 0 K, the absorption curve in Fig. 1 exhibits a
kink corresponding to the intersection of the line (µ –
"ω) with the sixth electron energy level. As can be seen
from Fig. 1, this kink is completely smoothed at a tem-
perature of 0.5 K. The next two kinks, which appear on
the right wing of the second resonance peak due to the
intersection of the line (µ – "ω) with the fifth and fourth
energy levels, are displayed in Fig. 2. It is seen from
this figure that an increase in the temperature does not

Γ ω Ωl0=( ) Γ0 1 e
"Ωl0/T–

–( ) f 0 El0 1–( )=

× 1 f 0 El0
( )–[ ] l0 1–( )2 O 1/ τΩ( )2( ),+

Γ ω Ω l0 1+( )=( ) Γ0 1 e
"Ω l0 1+( )/T–

–( ) f 0 El0
( )=

× 1 f 0 El0 1+( )–[ ] l2 O 1/ τΩ( )2( ).+
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affect the position of the kinks; however, even a small
increase in the temperature leads to their noticeable
smoothing.

Let us now examine the kink corresponding to the
intersection of the line (µ – "ω) with the (l0 – 1)th
energy level. As follows from relationships (6) and (7),
the closer the chemical potential to the energy  of the
electronic level, the closer the frequency ωkink to the fre-
quency Ωl0 and the larger the absorption jump at this
kink. In particular, at µ ≈ , the absorption jump at the

kink is equal to Γ0(l0 – 1)2 (Fig. 3). It should be noted
that, since the change in the chemical potential leads
only to a change in the position of the kink and in the
absorption jump at the kink, the absorption curves coin-
cide on both sides of the kink. According to relationship
(7), the absorption jump ∆l at other kinks decreases
with a decrease in the quantum number l (Fig. 2).

Next, we evaluate the absorption at zero tempera-
ture. In the range of electromagnetic radiation frequen-
cies close to the resonance frequency Ω(l0 + 1), only
two terms with l = l0 – 1 and l0 in expression (5) make
substantial contributions. Then, by retaining only these
terms in expression (5) and tending the temperature to
zero, we obtain

(10)

El0

El0

Γ T 0=( )
Γ0

--------------------- Ω
ω
----

l0
2 l0 1+( )

1 τ2 ω Ω l0 1+( )–[ ] 2+
------------------------------------------------------≈

+
l0 1–( )2l0

1 τ2 ω Ωl0–( )2+
----------------------------------------Θ El0 1– "ω µ–+( ) ,
2
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Fig. 3. Changes in the kink position and in the absorption jump at the kink in the absorption curve at different chemical potentials.
The kink appearing at the intersection of the line (µ – "ω) and the (l0 – 1)th energy level is shown. R = 10–5 cm, T = 0 K, and τ =

5 × 10–11 s.
where Θ(x) is the step function defined as

In relationship (10), the first term describes the res-
onance absorption peak at the frequency ω = Ω(l0 + 1)
and the second terms characterizes the kink at the fre-
quency ω = µ/" – Ω(l0 – 1)l0/2. It follows from relation-
ship (10) that, at T = 0, no absorption resonance occurs
at the electromagnetic radiation frequency Ωl0. This
stems from the fact that the l0th level at zero tempera-
ture is filled [f0( ) = 1]; hence, electron transitions
from the (l0 + 1)th level to the l0th level become impos-
sible. An increase in the temperature results in the
appearance of a resonance peak at the frequency Ωl0

{owing to the multiplier [1 – f0( )] in expression (8)}
(Fig. 1).

It is seen from formula (9) that, at T = 0, the peak
at the frequency ω = Ω(l0 + 1) has the highest intensity,
because f0( )[1 – f0( )] = 1. Therefore, from
relationship (10), we obtain the expression

(11)

Here, we take into account that  + "Ω(l0 + 1) =

 + "Ω . According to expression (11), the intensity

Θ x( )
0, at x 0≤
1, at x 0.>




=

El0

El0

El0
El0 1+

Γ ω Ω l0 1+( )=( )
Γ0

---------------------------------------- l0
2=

+
l0 1–( )2l0

l0 1+( ) 1 τ2Ω2+( )
--------------------------------------------Θ El0

"Ω µ–+( ).

El0 1–

El0
P

of the absorption peak at zero temperature and the elec-
tromagnetic radiation frequency ω = Ω(l0 + 1) has the
form

(12)

at µ <  + "Ω , i.e., when the (l0 – 1)th kink is located
to the left of the resonance frequency Ω(l0 + 1), and

at µ >  + "Ω , i.e., when the (l0 – 1)th kink is located
to the right of the resonance frequency Ω(l0 + 1).

An increase in the temperature leads to a decrease in
the multiplier f0( )[1 – f0( )] in formula (9) and,
consequently, to a decrease in the intensity of the
absorption peak (Fig. 1). Note that the resonance fre-
quencies are completely determined by the chemical
potential and the sphere radius. Indeed, it can be seen
from relationship (5) that the low-temperature reso-
nances arise at the frequencies Ωl0 and Ω(l0 + 1); i.e.,
their positions depend on R and l0; in turn, the quantum
number l0 is governed by the chemical potential.

4. THE ISOLATED NANOSPHERE

For the isolated nanosphere, the number of electrons
in the system remains unchanged (N = const) and the
chemical potential is determined from the normalizing
condition. Figure 4 shows the dependences of the
potential µ on N at different temperatures. Analysis of

Γ ω Ω l0 1+( )=( )
Γ0

------------------------------------------- l0
2 l0 1–( )2l0

l0 1+( ) 1 τ2Ω2+( )
--------------------------------------------+=

El0

Γ Ω l0 1+( )( ) Γ0l0
2=

El0

El0
El0 1+
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Fig. 5. Temperature dependences of the chemical potential of the electron gas on a sphere of radius R = 10–5 cm.
these dependences indicates that the chemical potential
at T ≈ 0 K is very close to the energy of the upper filled
level. In the case when the l0th energy level is filled by

less than half (N – 2  < 2l0 + 1), we have µ < . If
the number of electrons at the l0th level is larger than

half the degeneracy multiplicity of this level (N – 2  >

2l0 + 1), the reverse inequality µ >  holds. When a
change in the number of electrons in the system leads
to a change in the quantum number l0, there occurs an

l0
2

El0

l0
2

El0
YSICS OF THE SOLID STATE      Vol. 44      No. 9      200
abrupt jump in the dependence µ(N) at T ≈ 0. As is seen
from Fig. 4, an increase in the temperature to T = 1 K
brings about a substantial smoothing of the step depen-
dence. With a further increase in the temperature to T =
3 K, the steps disappear completely and the dependence
µ(N) exhibits an almost linear behavior.

Figure 5 displays the temperature dependences of
the chemical potential. It is worth noting that, when the

l0th level is filled by less than half (N – 2  < 2l0 + 1),
the chemical potential is a decreasing function of the

l0
2

2
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Fig. 6. Change in the position of the kink in the absorption curve at different temperatures (the case of the upper completely filled
electron shell). R = 10–5 cm, τ = 5 × 10–11 s, and N = 128.
temperature. At (N – 2  > 2l0 + 1), the chemical poten-
tial increases with an increase in the temperature. In the

case when N – 2  = 2l0 + 1, the chemical potential is
virtually independent of temperature. It can be seen
from Fig. 5 that the dependence µ(T) is linear at suffi-
ciently low temperatures (T < 1 K). As the temperature
increases, the linear dependence changes over to a
weak monotonic dependence of the potential µ on T.
Judging from the data presented in Fig. 5 and formula (6),
at sufficiently low temperatures, the position of the
kinks changes with an increase in T due to the depen-
dence of the chemical potential on the temperature.

Now, we dwell on the case of an upper filled elec-
tron shell. The number of electrons is determined by the
formula N = 2(2l0 + 1)2. At T = 0, the distribution func-
tion is defined as f0( ) = 1; hence, relationships (10)
and (11) hold for the case under consideration.

At T = 0, the chemical potential is given by µ = .
As a consequence, we have

(13)

As follows from this expression, the (l0 – 1)th kink in
the absorption curve arises at the electromagnetic radi-
ation frequency ω = Ωl0.

Analysis of the dependence µ(T) (Fig. 5) demon-
strates that, for the closed electron shell, the chemical
potential exceeds the energy of the l0th electronic level
and the difference between µ and  increases with an
increase in the temperature. Consequently, an increase

l0
2

l0
2

El0

El0

ωkink l( )
Ω
2
---- l0 l0 1+( ) l l 1+( )–[ ] .=

El0
P

in the temperature leads to a shift of the kinks toward
the high-frequency range (Figs. 6, 7). The kinks at a
sufficiently low but nonzero temperature transform into
peaks which are considerably smoothed with an
increase in the temperature.

With due regard for relationships (10) and (13), the
absorption at zero temperature can be estimated from
the expression

(14)

According to expression (14), the intensity of the
absorption peak at the resonance frequency ω = Ω(l0 +
1) is identical to that found for the constant chemical
potential at µ <  + "Ω [formula (12)]. As is seen

from expression (9), an increase in the temperature
results in a decrease in the intensity of the second reso-
nance peak. Note that, owing to the temperature depen-
dence of the chemical potential at a constant number of
electrons, the temperature dependence of the intensity
of the second peak is weaker than that in the case of a
constant chemical potential (Figs. 1, 6).

At low temperatures, the absorption jump at the kink
can be evaluated from the expression

Γ T 0=( )
Γ0

--------------------- Ω
ω
----

l0
2 l0 1+( )

1 τ2 ω Ω l0 1+( )–[ ] 2+
-----------------------------------------------------≈

+
l0 1–( )2l0

1 τ2 ω Ωl0–( )2+
----------------------------------------Θ ω Ωl0–( ) .

El0
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∆l 2Γ0
l2 l 1+( )

l0 l0 1+( ) l l 1+( )–[ ] 1 τ2Ω2 l0 l0 1+( ) l 1+( ) l 2+( )–[ ] 2/4+{ }
--------------------------------------------------------------------------------------------------------------------------------------------------.≈
As follows from this expression, the absorption jump at
the (l0 – 1) kink can be estimated by the formula

Next, we consider the case of an upper partly filled
electron shell. As is known, the broadening of a step
Fermi function is of the order of T. Let us assume that
the temperature broadening of the distribution function
is considerably less than the energy level spacing; i.e.,
"Ωl0/T @ 1. Then, from the normalizing condition, we
obtain

(15)

Here, 2(2l0 + 1) is the degeneracy multiplicity of the

upper filled level and N – 2  is the number of electrons
at the l0th level.

From relationship (15), we found

(16)

This formula adequately describes the behavior of the
chemical potential at T ≤ 1 K (Fig. 5). It is easy to show
that 2(l0 + 1)2 – N is the number of free states at the l0th
level. It follows from formula (16) that, when the upper

∆l0 1– Γ0 l0 1–( )2.≈

f 0 El0
( )

N 2l0
2–

2 2l0 1+( )
------------------------.≈

l0
2

µ El0
T

N 2l0
2–

2 l0 1+( )2
N–

---------------------------------.ln+≈
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level is half filled (N = 2  + 2l0 + 1), the chemical
potential is determined as µ = . If the number of
electrons at the l0th level is larger than half the degen-

eracy multiplicity of this level (N – 2  > 2l0 + 1), we
obtain µ > ; otherwise, we have µ <  (Fig. 4).

Making allowance for relationship (15), the absorp-
tion at low temperatures can be evaluated by the expres-
sion

(17)

According to formula (17), the intensities of the
absorption peaks can be estimated using the following
relationships:

l0
2

El0

l0
2

El0
El0

Γ
Γ0
----- Ω

ω
----

N 2l0
2–( )l0

2 l0 1+( )
2 2l0 1+( ) 1 τ2 ω Ω l0 1+( )–[ ] 2+{ }
------------------------------------------------------------------------------------≈

+
1 f 0 El0 1– "ω+( )–[ ] l0 1–( )2l0

1 τ2 ω Ωl0–( )2+
-------------------------------------------------------------------------- .

Γ ω Ωl0=( )
Γ0

---------------------------
N 2l0

2–( )l0 l0 1+( )
2 2l0 1+( ) 1 τΩ( )2+[ ]
-----------------------------------------------------≈

+
2 l0 1+( )2 N–[ ] l0 1–( )2

2 2l0 1+( )
----------------------------------------------------------,
10
2  É

/É
0

T = 0 K

ω/Ω

T = 0.03 K
3
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1

13 15 17 19

Fig. 7. Shift of the kinks in the absorption curve toward the high-frequency range with increasing temperature (the case of the upper
completely filled electron shell). R = 10–5 cm, τ = 5 × 10–11 s, and N = 128.
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Fig. 8. Absorption curves at different temperatures of the electron gas on the nanosphere (the case of the upper partly filled electron
shell). R = 10–5 cm, τ = 5 × 10–11 s, and N = 120.
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Fig. 9. Shift of the kinks in the absorption curve toward the low-frequency range with increasing temperature (the number of elec-
trons at the l0th energy level is less than half the degeneracy multiplicity of this level). R = 10–5 cm, τ = 5 × 10–11 s, and N = 100.
It is worth noting that, at zero temperature, we observed
a kink with the absorption jump Γ0(l0 – 1)2 rather than
the first peak (Fig. 8). As follows from the estimated
intensities of the peaks, the intensity of the second peak
is independent of the temperature in the range in which
the temperature dependence of the chemical potential is

Γ ω = Ω l0 1+( )( )
Γ0

-----------------------------------------
N 2l0

2–
2 2l0 1+( )
-----------------------l0

2 l0 l0 1–( )2

l0 1+( ) 1 τΩ( )2+[ ]
----------------------------------------------.+≈
P

linear, i.e., in which formula (16) holds. A further
increase in the temperature is attended by a decrease in
the intensity of the second absorption peak (Fig. 8).

5. RESULTS AND DISCUSSION

Let us now consider the case when the system is
characterized by a constant chemical potential. As was
noted above, the absorption curve at zero temperature
has one resonance peak at the frequency ω = Ω(l0 + 1).
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The intensity of the peak is determined by the orbital
quantum number l0 of the upper filled shell, the sphere
radius R, and the relaxation time τ. An increase in the
temperature leads to a decrease in the intensity of this
peak and the appearance of new resonance peaks due to
electron transitions from the (l0 – 1)th level to the l0th
level, from the (l0 – 2)th level to the (l0 – 1)th level or
from the (l0 + 1)th level to the (l0 + 2)th level, and so on
(Fig. 1). At zero temperature, the absorption curve
exhibits sharp kinks arising when the line (µ – "ω)
crosses the electron energy levels. The position of the
kinks depends on the chemical potential and the quan-
tum number of the electronic level. If the change in the
chemical potential does not affect the quantum number
l0, it leads only to a change in the position of the kink
and in the absorption jump at the kink. Consequently,
the absorption curves at different chemical potentials µ
coincide on both sides of the kink (Fig. 3). An increase
in the temperature is not accompanied by a change in
the position of the kinks; however, even a small
increase in the temperature leads to their noticeable
smoothing (Fig. 2).

The difference in the behavior of the absorption in
the cases when µ = const and N = const results prima-
rily from two circumstances. First, when the number of
particles is constant, the chemical potential depends on
the temperature. For the isolated sphere and the upper
completely filled electron shell, the intensity of the
peak at the resonance frequency ω = Ω(l0 + 1) and T =
0 is identical to that for the sphere in the thermostat at
µ <  + "Ω [formula (12)]. An increase in the temper-
ature brings about an increase in the chemical potential
(Fig. 5). As a result, unlike the case of the sphere in the
thermostat, the intensity of the peak at ω = Ω(l0 + 1) is
virtually independent of the temperature in the range of
the linear dependence µ(T) (Figs. 1, 6). Since the chem-
ical potential for the upper filled electron shell
increases with an increase in the temperature, the kinks
shift toward the high-frequency range as the tempera-
ture increases (Figs. 6, 7). Note that the kink position at
µ = const does not depend on the temperature (Fig. 2).

Second, in contrast with the case of a constant
chemical potential, the upper energy level at a constant
number of particles can be partly filled by electrons at
zero temperature. If the electron shell with l = l0 is
partly filled, the intensity of the absorption peaks at
zero temperature depends on the number of electrons in

this shell (N – 2 ). For N – 2  < 2l0 + 1 (the number
of electrons at the l0th level is less than half the degen-
eracy multiplicity of the level), an increase in the tem-
perature is accompanied by a decrease in the chemical
potential and, hence, by a shift of the kinks toward the

low-frequency range (Fig. 9). At N – 2  > 2l0 + 1, the
behavior of the kinks is the same as in the case of the
upper filled shell (Figs. 6, 7). When the l0th level is half

El0

l0
2 l0

2

l0
2
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filled (N = 2  + 2l0 + 1), the chemical potential satisfies

the condition µ ≈  and the kink position is indepen-
dent of the temperature.
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Abstract—The local lead-atom environment in the PbxSn1 – xS solid solutions with cubic and orthorhombic
structure was studied by EXAFS spectroscopy. The shortest Pb–S distance in samples with orthorhombic struc-
ture was found to be smaller by ≈0.2 Å than that in cubic-lattice samples, which is a sign of stereochemical
activity of the two paired 6s2 electrons of a Pb atom. The metal atom arrangement reveals strong short-range
order, which results in the formation of –Pb–Sn–Pb–Sn–… zigzag chains aligned with the c axis (in the Pbnm
system) in orthorhombic samples. It was shown that the onset of such short-range order in Pb0.5Sn0.5S can ini-

tiate the formation of superstructures belonging to the  or  space groups. © 2002 MAIK “Nauka/Inter-
periodica”.
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1. INTRODUCTION

One of the problems encountered in studies of solid
solutions is establishment of the relation between the
deviation of a solid solution from its ideal structure and
its physical properties.

The available scarce information on solid solutions
in the SnS–PbS system is fairly contradictory. This sys-
tem forms a limited number of solid solutions, because
SnS has an orthorhombic structure (space group –
Pbnm) while PbS has an NaCl-type cubic structure. The
limiting solubility of SnS in PbS is ≈10 mol %, and that
of PbS in SnS is about 50 mol % [1–3]. There is no con-
sensus on whether the Pb0.5Sn0.5S composition (exist-
ing in nature in the mineral form of teallite [4]) in this
system is an individual phase or a SnS-based solid solu-
tion. Some authors consider this composition to be an
individual phase crystallizing in space group  [2, 5,

6] or space groups  or  [2, 6]. Others believe
this material to be an SnS-based solid solution [1, 3, 7,
8]. To resolve this contradiction, coordinated studies of
the short- and long-range order in samples of this com-
position are needed.

Our interest in the SnS–PbS system is connected
with the off-centering of large-radius impurity ions,
which was revealed earlier in the Ge1 – xPbxTe and
Ge1 − xSnxTe semiconducting solid solutions [9]. The
displacement of Pb and Sn atoms in these compounds
to off-center positions was explained as being due to a
deformation of the spherically symmetric electron-den-
sity distribution of the two paired s2 electrons in these
atoms. Being energetically favorable, this deformation

D2h
16
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16
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produced chemical bonds of unequal length. As con-
cerns Pb atoms, this came as a surprise, because the 6s2

lone pair in compounds of divalent lead is typically ste-
reochemically inactive, as a result of which the local Pb
environment in crystals is usually symmetric (as in
PbS). It appeared, therefore, of interest to see whether
the local environment of Pb atoms in SnS is distorted
and whether it is associated with the stereochemical
activity of their 6s2 electron pairs. In addressing this
problem, we chose EXAFS spectroscopy. This modern
x-ray method for investigating local structure is widely
used in studies of the structure of solid solutions.

2. EXPERIMENTAL TECHNIQUE

2.1. Samples

Samples of the PbxSn1 – xS solid solution with x =
0.1, 0.2, 0.35, 0.5, and 0.95 were prepared by synthesiz-
ing PbS and SnS and melting them in evacuated quartz
ampules, with subsequent annealing of the alloys at
645°C for 70–96 h. The phase homogeneity of the sam-
ples was checked by x-ray diffraction. At 300 K, the
crystal structure of the samples with x ≤ 0.5 corre-
sponded to the orthorhombic phase and the structure of
the x = 0.95 sample was cubic. Immediately before
EXAFS spectral measurements, the alloys were ground
to powder, sieved, and deposited on adhesive tape. The
optimum absorber thickness for spectral measurements
was obtained by repeatedly folding the tape.

The EXAFS spectra were obtained at the Pb LIII
absorption edge (13.055 keV) at 80 K in transmission
geometry on station 7.1 at the Daresbury Laboratory
(Great Britain). The radiation was made monochro-
002 MAIK “Nauka/Interperiodica”
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matic by using a Si(111) double-crystal monochroma-
tor, and the intensity of the radiation incident on and
transmitted through a sample was measured with ion-
ization chambers. Two spectra were recorded for each
sample.

2.2. Processing Technique

The EXAFS function χ(k) was extracted from µx(E)
transmission spectra as was done in [10]. After subtrac-
tion of the background caused by the absorption of radi-
ation by atoms other than Pb, the monotonic part of
atomic absorption µx0(E) was isolated by spline fitting
and the dependence of χ = (µx – µx0)/µx0 on wave vec-

tor k =  was calculated. The photoelec-
tron energy E0 was reckoned from the inflection point
at the absorption edge. The jump at the absorption edge
varied from 0.10 to 1.5.

The information on the first three coordination
shells of interest to us here was extracted by taking
direct and inverse Fourier transforms of the χ(k) curves
thus obtained using a modified Hanning window. The

2m E E0–( )/"
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k2 χ
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)
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x = 0.1

x = 0.2
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x = 0.5

x = 0.95

x = 1.0

Fig. 1. Typical Pb LIII EXAFS spectra of lead obtained for
PbxSn1 − xS samples (solid lines) and their theoretical
approximation (dashed lines).
P

range of isolation in the R space was typically 1.2–
3.7 Å. The Rj distances, the coordination numbers Nj,

and the Debye–Waller factor  for each of the three
coordination shells (j = 1–3) were derived by minimiz-
ing the rms deviation between the experimental and cal-

culated k2χ(k) curves. The parameters Rj, Nj, and , as
well as the origin displacement along the energy axis
dE0, were varied. To reduce the number of variable
parameters, known relations between the coordination
numbers in the SnS and NaCl structures were taken into
account. The number of variable parameters (eight) was
about two times smaller than that of independent
parameters (15 or 16) in the 2∆R∆k/π data. The errors
in determination of the parameters reported in the paper
were found from the covariance matrix and correspond
to a 95% confidence interval of their variation.

The dependences of the backscattering amplitude
and phase, of the central-atom phase, and of the photo-
electron mean free path on k, which are necessary to
construct theoretical χ(k) curves, were calculated using
the FEFF code [11].

3. EXPERIMENTAL RESULTS

Figure 1 shows typical k2χ(k) relations obtained for
all PbxSn1 − xS samples. The curves for samples with
cubic (x ≥ 0.95) and orthorhombic (x ≤ 0.5) structure
differ qualitatively in pattern, which indicates different
characters of the local Pb environment in these sam-
ples. An analysis of the data reveals that lead atoms in
the x = 0.95 solid solution and PbS are surrounded by
six sulfur atoms located at the same distance (see table
and Fig. 2). The spectra obtained for samples with
orthorhombic structure are described well only by the
model according to which, in the first coordination
shell, three S atoms sit at one distance from the central
atom (R1) and the other three sit at another distance
(R2). Thus, the nearest neighbor environment of Pb in
SnS differs from that in PbS. As follows from the table,
as x increases from 0.1 to 0.5, distance R1 remains

σ j
2

σ j
2

2.6
0

R
, Å

x

2.8

3.0

3.2

3.4

3.6

0.2 0.4 0.6 0.8 1.0

Pb–meta

Pb–S

Fig. 2. Interatomic distances for the three nearest coordina-
tion shells of Pb atoms in the PbxSn1 − xS solid solution
plotted vs. composition parameter x.
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Local Pb environment parameters for PbxSn1 – xS samples

Parameter
x

SnS*
0.1 0.2 0.35 0.5 0.95 1

R1, Å 2.750(8) 2.745(8) 2.752(4) 2.752(4) 2.954(8) 2.942(6) 2.660(3)

, Å2 0.0066(13) 0.0053(10) 0.0087(6) 0.0079(6) 0.0095(11) 0.0086(9) 0.0036(4)

R2, Å 3.246(16) 3.243(16) 3.233(7) 3.232(8) 4.175(7) 4.184(6) 3.301(8)

, Å2 0.0174(35) 0.0120(26) 0.0178(14) 0.0187(16) 0.0064(7) 0.0066(6) 0.0059(8)

R3, Å 3.534(13) 3.500(15) 3.522(7) 3.535(10) 3.481(7)

, Å2 0.0081(16) 0.0090(15) 0.0118(8) 0.0141(12) 0.0067(6)

*The EXAFS data for the local environment of an Sn atom in SnS were obtained at the Sn K edge.

σ1
2

σ2
2

σ3
2

unchanged to within experimental error, whereas R2
decreases slightly. Note also the fairly large value of the
Debye–Waller factors for the longer Pb–S bond length.

In samples with orthorhombic structure, the metal
atoms (Pb, Sn) in the second coordination shell are
located at an average distance R3 ≈ 3.5 Å, which grows
insignificantly with x. The Debye–Waller factors for

this shell  turn out to be even smaller than 
(see table); however, their values grow noticeably with x.

As seen from the table, the Debye–Waller factors
are the largest for the longer Pb–S bond length and
depend only weakly on composition. To separate the
contributions from thermal motion and static lattice dis-
tortions to the Debye–Waller factors, we measured the
temperature dependences of EXAFS spectra for the
Pb0.8Sn0.2S sample within the temperature interval 80–
300 K. An analysis of the data obtained showed that the
temperature dependence of the Debye–Waller factor

 is stronger. One may thus conclude that the main

contribution to  is due not to static lattice distor-
tions but rather to thermal vibrations. This suggests that
the corresponding chemical bonding is weak.

Because solid solutions often exhibit short-range
order, we decided to check whether this order is
reflected in the metal atom arrangement in the second
coordination shell. To check this possibility, we com-
pared the experimental EXAFS spectra with the curves
calculated for various ratios of Pb and Sn concentra-
tions in the second coordination shell of lead under the

assumption that the values of R3 and  for atoms of
both types are equal. Figure 3 plots the sum of the
squares of deviations, Smin, for all the measured spectra
as a function of the local Sn atom concentration in the
second coordination shell of Pb atoms. We readily see
that the minimum in the curves for samples with x =
0.2, 0.35, and 0.5 lies at a local Sn concentration con-
siderably in excess of its average concentration in the
sample; the local concentration averaged over several

σ3
2( ) σ2

2( )

σ2
2( )

σ2
2( )

σ3
2( )
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spectra for each of the samples studied is close to
100%. In our opinion, the short-range order in which Pb
atoms are surrounded predominantly by atoms of Sn
may be accounted for by the deformation interaction
between metal atoms, which precludes two large-radius
lead atoms from sitting close to one another.

4. DISCUSSION OF RESULTS

According to the neutron diffraction data available
for SnS [12], the six S atoms in the first coordination
shell of tin lie at four different distances: 2.627 Å (one
atom), 2.665 Å (two atoms), 3.290 Å (two atoms), and
3.388 Å (one atom). The two shortest distances are so
close to each other that their separation in EXAFS spec-
tra is impossible. The same applies to the two longest
distances. For this reason, the nearest environment of
metal atoms in EXAFS spectra should be represented
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xSn
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Fig. 3. Sum of the squares of deviations plotted vs. local Sn
concentration in the second coordination shell of Pb atoms.
Curves of one type belong to two spectra measured on sam-
ples of the same composition. Arrows identify the average
Sn concentration in a sample.
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by three short and three long distances, each of them
being determined by the averaged length of the constit-
uent bonds. It is this that is observed experimentally.

As follows from a comparison of EXAFS data
obtained for the local environment of Pb impurity
atoms in SnS with those available for Sn atoms in pure
SnS (see table), the shorter Pb–S bond length turns out
to be ≈0.1 Å longer than the corresponding Sn–S bond
length in SnS and the longer Pb–S bond length is
shorter by ≈0.07 Å than the corresponding Sn–S dis-
tance in SnS.

Another result, which we believe to be most impor-
tant, is that the short Pb–S bond length in samples with
orthorhombic structure turned out to be noticeably
shorter (by ≈0.2 Å) than that in PbS (2.94 Å). The
decrease in this bond length and the splitting of the first
coordination shell into two components indicate that Pb
atoms in SnS occupy off-center positions. A compari-
son of our data with the results obtained in the study of
the Ge1 – xPbxTe solid solution [9] shows that, in both
systems, the Pb–chalcogen bond lengths become differ-
ent, with the decrease in the short bond length being
nearly equal in both systems (≈0.2 Å). Significantly,
the decrease in the Pb–chalcogen bond length is consid-
erably smaller than the difference between the ionic
radii of Pb2+ and Pb4+ (0.5 Å). This suggests that the
two paired 6s2 electrons are not involved in chemical
bonding, and we have here only a deformation in the
density distribution of these paired electrons, i.e., a
crossover to a stereochemically active state. In view of
the fact that Pb is observed in off-center positions in
SnS and GeTe, whereas introduction of Pb atoms into
cubic SnTe does not entail, as we have seen, any local
distortion of the symmetric environment, one can con-
clude that lead atoms become off-center only when they
enter lattices with symmetry lower than cubic. Thus,
the density distribution of the paired 6s2 electrons of a
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Fig. 4. (a) Projection of the SnS structure on the ab plane,
and (b, c) two possible schemes of superstructural ordering
of metal atoms in the Pb0.5Sn0.5S solid solution. The space

groups of the superstructures are (b)  and (c) .C2v
7

C2v
2

P

Pb atom is mobile enough to be able to transfer from the
inactive (as in PbS, PbSe, PbTe) to an active state under
certain conditions. This feature of the paired lead elec-
trons could account for the structural instability and
phase transitions observed to occur in many lead com-
pounds.

Our results also permit certain conclusions as to the
structure of the solid solutions studied. According to
our data, all the bond lengths in the nearest neighbor
environment of Pb atoms in the PbxSn1 − xS solid solu-
tion vary monotonically with x. This suggests that the
Pb0.5Sn0.5S composition in the SnS–PbS system should
be considered to be an SnS-based solid solution.

Consider now the short-range order observed in this
system. The SnS structure is known to consist of dou-
ble-layer packets (Fig. 4a). The formation of a well-
defined short-range order, in which Pb atoms in one
double-layer packet are surrounded predominantly by
Sn atoms of the neighboring packet, suggests that under
certain conditions a superstructural metal-atom order-
ing observed in minerals (teallite) can set in in
Pb0.5Sn0.5S crystals.

Assuming the local tin atom concentration in the
second coordination shell of lead atoms to be 100%, we
may expect that completely ordered zigzag chains
…−Pb–Sn–Pb–Sn–… aligned with the c axis (perpen-
dicular to the plane of Fig. 4a) will form in Pb0.5Sn0.5S
samples. However, even if atoms in one such chain are
fully ordered, three-dimensional long-range order
(superstructure) can form only in the case where the
atomic arrangements in neighboring chains are corre-
lated. We note that the formation of zigzag chains
destroys the inversion center in the crystal, which in the
SnS structure lies midway between the two nearest
neighbor tin atoms. This means that the space group of
the superstructure must be a subgroup of space group

 and contain point group C2v as a subgroup.
Restricting oneself to analysis of superstructures with-
out any change in unit cell volume, two types of atomic
ordering in the superstructure can be conceived: (1) one
packet contains atoms of one species (space group

–P21nm, Fig. 4b), and (2) one packet contains

atoms of both species (space group –Pb21m,
Fig. 4c). Superstructures of the first type allow (00l)
superstructure reflections with odd l, while superstruc-
tures of the second type allow (00l) and (l00) reflections
with odd l.

Electron diffraction patterns of thin Pb0.5Sn0.5S films
grown on substrates of alkali halide crystals at 200°C

[8] exhibited reflections characteristic of a  super-
structure. In an attempt to reproduce this result, we
annealed a volume Pb0.5Sn0.5S sample at 240°C for a
month. X-ray studies of the annealed sample did not
reveal any superstructural reflections. In our opinion,
this may be due to the fact that the coupling energy of

D2h
16

C2v
7

C2v
2

C2v
2
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neighboring chains (in which the shortest interatomic
distance is ≈4.1 Å) is too low; therefore, annealing at
lower temperatures is required. Thus, well-defined
short-range order and the absence of long-range order
in our samples indicates that interlayer coupling
between metal atoms in the SnS-based solid solution
under study is stronger than the intralayer coupling.
This is in accord with the relative magnitude of the cor-
responding bond lengths (3.5, 4.1 Å).

Thus, the strong short-range order manifesting itself
in the distribution of metal atoms permits one to con-
sider the structure of the SnS–PbS solid solution to be
in the form of randomly arranged fragments of zigzag
chains aligned with the c axis of the structure. The
clearly pronounced anisotropy of the local structure
may account for the unusual physical properties of
these solid solutions.

The short-range order in the arrangement of metal
atoms is also directly reflected in the phase diagram of
the SnS–PbS system. As already mentioned, the extent
of the single-phase region in the phase diagram of the
solid solution on the SnS side is ≈50%. Our analysis
suggests that this concentration corresponds to the lim-
iting case where all metal atoms are ordered in zigzag
chains. At higher Pb atom concentrations, Pb–Pb pairs
should inevitably appear in the chains, whose forma-
tion is energetically unfavorable. It is this factor that
determines the boundary of existence of the solid solu-
tion in the system studied.
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Abstract—The results of a structural-optical characterization of synthetic opals are presented. Information on
the growth-induced features of the opal structure was derived from an analysis of the position and width of the
one-dimensional photonic band gap. The structure of the samples was found to vary substantially along the
growth axis coinciding with the [111] direction of the fcc lattice. It was shown that the regions corresponding
to early stages in the opal structure growth are typically strongly disordered, which manifests itself, in particu-
lar, in the crystallites being misoriented relative to the sample growth axis. It was concluded that the regions of
synthetic opals most suitable for application as photonic crystals are those corresponding to later growth stages.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Starting from the publication of studies [1, 2], the
investigation and synthesis of photonic band-gap struc-
tures [3] (photonic crystals [4]) have been an important
area in solid-state physics. One usually understands
photonic crystals to be weakly absorbing dielectric
structures possessing the following two properties [4]:
(i) periodic modulation of the dielectric permittivity on
a scale comparable to the wavelength of electromag-
netic waves and (ii) the existence of a complete photo-
nic band gap in three-dimensional space [1], or, at least,
of a photonic band gap in prescribed crystallographic
directions (the stop band) associated with the periodic-
ity of the structure [4, 5]. The latter property means that
within a given spectral range, light of any polarization
cannot enter a sample or leave it in any direction. By
analogy with the electronic band structure, the forma-
tion of a band gap in the photonic spectrum is con-
nected with Bragg diffraction of Bloch light waves
from a dielectric grating. It is believed that the exist-
ence of a complete photonic band gap will suppress
spontaneous emission from a sample [1] and give rise
to other important optical effects [3].

A complete photonic band gap was first observed in
the microwave range in an artificial fcc lattice formed
by crossing cylindrical holes drilled in a dielectric [6].
The problem of detecting a complete photonic band gap
in the optical spectral region apparently remains open
[7]. At the same time, properties characteristic of a one-
dimensional photonic structure have been observed in
the optical region in a number of materials, in particu-
lar, in synthetic opals [5] and colloidal structures made
up of spherical TiO2 microparticles [8]. Opal-based
inverted structures are considered to be the most prom-
1063-7834/02/4409- $22.00 © 21648
ising materials from the standpoint of formation of a
complete band gap in the optical range [7, 9].

Monodisperse spherical SiO2 particles in synthetic
opals form close-packed layers parallel to the growth
surface. These layers can alternate in the sequence
ABCABC… characteristic of an fcc lattice or ABA-
BAB… typical of a hexagonal close-packed (hcp)
structure. Numerical simulation of a perfect crystal
consisting of rigid spheres suggests that the fcc struc-
ture is more stable [10, 11]. It is generally believed that
real opals represent a random mixture of fcc and hcp
structures. The growth technologies used in various
laboratories to obtain synthetic photonic structures,
including opals, produce samples varying in properties
and degree of lattice perfection. In this connection,
investigation of the effect of the real crystal structure of
materials on the photonic band gap parameters is an
urgent problem [12, 13].

The purpose of this work was to analyze the struc-
ture of synthetic opals and characterize them by optical
methods. It was established that in most of the samples
studied, regions with different optical properties, which
are associated with differences in the defects in the
structures, form along the growth axis. Each of these
regions was characterized based on an analysis of trans-
mission and reflection spectra obtained in visible light
over a broad spectral range, as well as on studying the
diffraction of laser monochromatic light. The paper is
organized as follows. Section 2 describes the character-
ization of the samples using transmission electron and
atomic-force microscopy, Section 3 presents the results
of optical measurements, Section 4 gives a theoretical
analysis of the one-dimensional photonic band gap, and
Section 5 sums up the results obtained.
002 MAIK “Nauka/Interperiodica”
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(b) (c)

(a)

Fig. 1. Opal surface imaged by (a, b) electron and (c) atomic-force microscopy; (a) (111) growth plane, (b) cleaved surface featuring
a sequence of (111) planes forming the fcc structure, and (c) point defect (vacancy) in a (111)-type layer.
2. SAMPLE PREPARATION AND SURFACE 
MORPHOLOGY STUDIES

The samples of synthetic opals studied in this work
were prepared using the technology described in [14].
In the first stage of the technological process, a mono-
disperse suspension (size dispersion ~5%) of spherical
SiO2 particles, whose average diameter can vary in the
range 200–800 nm, is synthesized. Next, a water solu-
tion of this suspension is prepared and placed in a cell
for an extended period of time (up to nine months).
SiO2 particles in the cell settle to the bottom under grav-
ity and form a three-dimensional periodic structure
through self-organization. The sediment thus obtained
is dried and annealed to impart a higher density and
hardness to the sample. The samples have a porous
structure with a continuous array of voids separating
the SiO2 spheres. The lattice parameter of the opals thus
formed lies in the visible wavelength range, and the
samples measure a few centimeters on their base and up
to one centimeter in height.

During the growth of synthetic opals, hexagonal
close-packed layers perpendicular to the growth direc-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
tion Z form. In a real structure, these layers are parallel
to the (111) plane of the fcc lattice. It is essential that
the system of growth layers perpendicular to the growth
axis Z in the synthesized samples differs physically
from layers with orientations determined by the system

of the other three fcc lattice planes, namely, ( 11),

(1 1), and (11 ). The reason for this lies in the fact that
in synthetic opals, there are stacking faults along the
growth axis Z, thus differentiating this axis from the
other three equivalent [111] directions in the fcc lattice,
which are perpendicular to the crystallographic planes
mentioned above.

The orientation of crystallographic planes relative to
the sample faces was determined through direct visual-
ization of the sphere packing patterns using transmis-
sion electron microscopy (Hitachi SEM-2700 electron
microscope) and atomic-force microscopy (P4-SPM
microscope). The results obtained in visualization of
the opal crystal structure using these methods are pre-
sented in Fig. 1. As seen from Fig. 1a, the growth sur-
face of the crystal is formed by hexagonal close-packed
layers. The pattern of mutual arrangement of SiO2

1

1 1
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spheres in several layers lying one upon another sug-
gests that, near the sample surface, the ABC…-type
layer stacking, as a rule, corresponding to the opal fcc
lattice is formed. We also readily see that (111)-type
growth layers of the fcc lattice retain long-range order
in the sphere arrangement, unlike natural opals, in
which micron-scale ordered regions are misoriented
with respect to one another [15]. Figure 1b features an
image of a (100)-type cleaved surface of the fcc lattice
indicating cubic opal structure. All samples exhibit
point lattice defects [see the image of the (111) surface
in Fig. 1c] with a concentration of about 1 defect per
square micron, as well as edge and screw dislocations.
Atomic-force microscopy images show that the diame-
ter of the SiO2 spheres varies from 240 to 300 nm. The
SiO2 sphere diameter in each of the original samples is
the same over the volume, and the defect concentration

1 2

3

4 5

6

(a)

n
Θ'

Θ

Z
H

0

(b)
Plate 5

Plate 1

(111)

Fig. 2. (a) Experimental setup: (1) light source, (2) collima-
tor, (3) opal plate, (4) spherical vessel, and (5, 6) radiation
detectors; (b) cutting of a sample into plates.
P

is higher in the regions corresponding to earlier growth
stages.

3. OPTICAL EXPERIMENTS

For the experimental investigation of the structural
features and optical properties of synthetic opals, we
chose the most optically homogeneous original sam-
ples, which were oriented using an atomic-force micro-
scope. Next, the samples were cut, as shown in Fig. 2b,
into plates of thickness not more than 0.5 mm perpen-
dicular to the crystal growth axis Z. We shall call such
plates the (111) plates, with the plates cut from the
upper and lower parts of the original sample (which
correspond to the later and earlier growth stages) being
referred to as the upper and lower plates, respectively.

The optical spectra of the (111) plates were studied
in the transmission and reflection geometries under the
condition that the reflecting surface coincided with the
growth plane of the opal. The spectra were measured on
a setup as shown schematically in Fig. 2a. The source
of white light was an incandescent lamp (1) whose light
beam was collimated with a diaphragm and a lens (2) to
reach a beam divergence of 2°–4°. Next, the beam was
directed onto an opal plate (3) placed in a spherical ves-
sel (4) filled with immersion liquid to reduce incoherent
scattering from the surface. The transverse cross sec-
tion of the beam on the sample surface was 1–1.5 mm2.
The transmitted (5) or reflected (6) light was directed
onto the entrance slit of a DFS-12 spectrometer (spec-
tral resolution 0.5 nm) through a fiber 2 mm in diame-
ter, thus obtaining an angular resolution of about 1°.
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Fig. 3. Absorption spectra of opal plates. (a) Spectra obtained at normal incidence for the following plates (Fig. 2b): (1) the lowest
plate in the sample, (2–4) plates from the central part, and (5) the top plate. (b) Transmission spectra of plate 5 obtained at different
incidence angles Θ.
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Fig. 4. Reflection spectra of plate 1 measured at different reflection angles Θ' (solid lines) and transmission spectrum of the same
plate obtained with the light incident at Θ = 25° (dashed line). Inset: dependence of the maximum reflection band intensity on the
angle Θ' at which the corresponding spectrum was measured (filled circles refer to the top plate; open ones, to the bottom plate).
Figure 3a presents the spectra of unpolarized white
light transmitted through (111) plates. These spectra
were taken with the light propagating normally to the
plate surface (i.e., in the Γ  L direction from the Γ
to the L point of the Brillouin zone of the fcc lattice).
The spectra of all the plates exhibited a characteristic
band whose position, width, and depth were strongly
dependent on the plate number, i.e., on the coordinate Z
in the original sample (Fig. 2). The spectrum of the bot-
tom plate (curve 1 in Fig. 3a), corresponding to an early
stage in growth, has a characteristic band with the
smallest dip and the largest width. As one crosses over
to the upper plates of the sample, which correspond to
later growth stages, the position of the band minimum
shifts toward longer wavelengths, its width decreases,
and the depth of the spectral dip increases. Figure 3b
shows reflection spectra for a (111) plate cut from the
top part of the sample obtained at different light inci-
dence angles Θ, with the Θ = 0° angle corresponding to
the beam striking the growth surface along its normal.
It can readily be seen that, as the beam deviates from
the normal, the band in the transmission spectra mea-
sured in the beam direction (Fig. 2a) shifts toward
shorter wavelengths while broadening noticeably.

The Bragg angle of light scattering inside an opal
sample is given by the well-known theoretical equation
b2 = –2k · b, where k is the quasi-wave vector of a
Bloch electromagnetic wave in the crystal and b is the
reciprocal-lattice vector. For the Bragg wavelength in
vacuum, this yields the relation λB = 2dncosδ, where δ
is the angle of light incidence inside the crystal on the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
crystallographic plane perpendicular to vector b, n is
the refractive index, and d = 2π/b is the interplanar dis-
tance in the direction of vector b. Because the quantities
δ and n are not measured in the experiment, we will use
the relation

(1)

Here, λB is expressed through the experimentally mea-
sured angle of light incidence on the sample Θ and the
effective refractive index . Thus, the wavelength
determining the position of the minima in the opal
transmission spectra (the position of the stop band) as a
function of the incidence angle Θ is described by Eq.
(1), where, in the case of light diffraction from the (111)

opal plane, d = R  is determined by the radius R of
SiO2 spheres. Substitution of the position of the band
minimum in the transmission spectrum of the top (111)
plate obtained at normal incidence (curve 5 in Fig. 3a)
into Eq. (1) yielded a reasonable value of  = 1.36 for
the effective refractive index.

In addition to transmission spectra, we also mea-
sured reflection spectra under oblique incidence of
white light on a (111) plate. Each spectrum was taken
at an angle Θ' (Fig. 2) close to the direction of mirror
reflection (Θ' = Θ) specified by the light incidence
angle Θ. Figure 4 presents spectra measured in an inter-
val of angles Θ' for a fixed incidence angle Θ ≈ 25° on
the plate cut from the top part of the sample (plate 5).
To permit identification of the origin of the bands in the
transmission (Fig. 3b) and reflection (Fig. 4) spectra,

λB 2dn Θ.cos=

n

8/3

n

2
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Fig. 4 also displays a transmission spectrum of the plate
obtained at an incidence angle near 25° (dashed line).
All reflection spectra are seen to lie in the region of one
stop band, which implies that the bands revealed in the
transmission and reflection spectra are of the same ori-
gin. The inset to Fig. 4 shows the intensities at the max-
ima of reflection bands as functions of angle Θ' for two
plates cut from the top and bottom parts of the sample.
We readily see that the reflection is maximum and the
angular width of the peak is minimum (≈5°) for the top
plate (filled circles), while for the bottom plate, the
angular width of the reflected beam is considerably
larger (≈15°, open circles). This means that, due to
strong structural imperfections in the lower plates, the
diffuse light scattering from them is substantially larger
than that from the upper plates.

The same set of (111) plates was subjected, in addi-
tion to white-light experiments, to measurements of the
reflected intensity component under monochromatic
illumination using a narrow He–Ne and Ar laser beam
directed under different incidence angles Θ. In this
case, at the angles Θ satisfying condition (1), diffracted
light in the direction of mirror reflection is observed.
The diameter of the diffraction spot depends on the
degree of perfection of the crystal structure. For the top
plate, the angular width of this reflection is the smallest,
5°, while for the lower plates this reflection is broad-
ened, thus corroborating the above conclusion on
strong diffuse scattering of light from the lower plates.

4. ANALYSIS OF THE ONE-DIMENSIONAL 
BAND GAP

Because the stacking of hexagonal layers in opals is
well ordered only along the growth axis Z [the normal
to the growth plane (111) of the fcc lattice], the one-
dimensional periodic model of the photonic crystal is
applicable to investigation of the optical properties of
opals near this direction. In this section, we will make
a theoretical analysis of the one-dimensional photonic
band gap (stop band).

As already mentioned, the formation of photonic
band gaps in the presence of a periodic modulation of
dielectric properties is initiated by coherent Bragg scat-
tering of light waves. The electromagnetic eigenwaves
in photonic crystals have the form of Bloch waves. The
propagation of a light wave in such a structure can be
considered a result of its multiple elastic scattering
involving Umklapp processes with all possible combi-
nations of the reciprocal-lattice vectors of the photonic
crystal. In experiments on light scattering performed in
the mirror-scattering and transmission geometry, the
directions of propagation of the waves striking the crys-
tal and scattered from it are fixed. The detected second-
ary radiation is a sum of the contributions due to the
coherent Bragg scattering processes in which the
resultant reciprocal-lattice vector of the Umklapp pro-
cesses (tangent to the plate surface) is zero. In all other
scattering processes, the energy is removed from the
P

detected beam. Thus, in general, the attenuation of the
light beam propagating through a photonic crystal has
the character of extinction and reflects a combined
manifestation of both irreversible scattering of light and
its absorption.

All this was taken into account in analyzing the
transmission and reflection of opals, which was per-
formed in terms of the dielectric superlattice model
(one-dimensional photonic crystal [4]). An infinite
structure made of periodically alternating layers with
dielectric permittivities εA and εB can be described by a
dispersion relation,

(2)

This equation relates to Bloch electromagnetic waves,
which are characterized by a quasi-wave number q and
are linearly polarized in the layer plane of the superlat-

tice. Here, ki = ; Q is the tangential compo-
nent of the wave vector, which is preserved in this
model; a and b are the thicknesses of uniform layers
which have dielectric permittivities εA and εB and repre-
sent a close-packed layer of spheres in the opal and the
space between them, respectively; and d = a + b is the
structure period. It is essential that Eq. (2) predicts the
formation of a one-dimensional band gap (stop band) in
the presence of any weak periodic modulation of the
dielectric permittivity. Within the one-dimensional
model discussed here, the effect of extinction on the
photonic band structure is included subsequently by
introducing an imaginary part into the dielectric per-
mittivities εA and εB.

Following [12], we simulate the opal structure peri-
odicity in the growth direction by means of an effective
dielectric function,

(3)

This function is obtained by averaging the dielectric
permittivities in the planes perpendicular to the [111]
growth direction of the opal fcc lattice, with the S(z)
function determining the part of the cross section (spec-
ified by the coordinate z) occupied by SiO2 spheres. In
Eq. (3), εs and εv denote the dielectric permittivities of
the materials filling the volume of the spheres in the
opal and the volume of the voids separating them,
respectively; if these volumes are filled nonuniformly
by the dielectric, the corresponding volume-averaged
values of εs and εv should be used in the calculations.

The specific features of the one-dimensional photo-
nic band gap in an infinite structure were analyzed qual-
itatively with the use of Eq. (1) for a superlattice
aligned with the [111] growth direction of an opal fcc

lattice having a period d = R  = 1.63R, with R
being the sphere radius. The constants εA and εB enter-

qd( )cos kAa( )cos kBb( )cos=

–
1
2
---

εA

εB

-----
εB

εA

-----+ 
  kAa( ) kBb( ).sinsin

εik0
2 Q2–

εeff z( ) εsS z( ) εv 1 S z( )–[ ] .+=
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ing Eq. (2) were approximated using the function εeff(z)
from Eq. (3), with the ratio β = b/a and the period d =
a + b assumed to be fixed. The same assumptions were
used in calculating the transmission and reflection
spectra of a one-dimensional photonic crystal formed
by a finite number of layers N and bounded by uniform
nonabsorbing dielectric media in the Z axis direction.
As in deriving Eq. (2), the close-packed layer of the
opal spheres was simulated by a dielectric layer with
the coefficients of reflection r1 and transmission t1 and
width b. By properly using the transfer matrices (see,
e.g., [16]), we come to the following expression for the
transmission coefficient [17]:

(4)

Here, 

 

are the coefficients of transmission and reflection,
respectively, for a periodic structure of N layers; the
dielectric permittivity of the outer medium is accepted
equal to εA;

τI(ρI) and τII(ρII) are the coefficients of transmission
(reflection) of light, taken with the corresponding
phases, for the real front and rear dielectric boundaries
of the finite periodic structure, respectively; and

The results of numerical calculations of the light
transmission coefficient TN(ω) from Eq. (4) made using
the dielectric structure parameters characteristic of
opals are presented in Fig. 5. Curve 1 shows that if light
strikes the layers of the structure with N @ 1 normally,
the TN(ω) spectrum has a frequency band within which
the transmission is zero even in the case of negligible
losses. Outside the dip, TN(ω) undergoes oscillations
originating from light interference at the outer bound-
aries of the structure. In its position and width, the dip
in the TN(ω) transmission spectrum agrees well with the
band gap found in the one-dimensional dispersion rela-
tion of electromagnetic waves ω(q), which was derived
from Eq. (2). On the other hand, the specific features of
the dip in the theoretical TN(ω) spectrum are in quanti-
tative agreement with the parameters of an experimen-
tal transmission spectrum obtained at Θ = 0 (curve 5 in
Fig. 3a). Thus, the dip observed in the opal transmission
spectrum is indeed due to the existence of a photonic
band gap along the normal to the (111) plate surface.

T N tNτ Iτ II/∆N
2.=

tN Nqd H Nqd/ qdsinsin–cos( ),=

rN
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t1
---- Nqdsin

qdsin
------------------tN=

∆N 1 ρI ρII–( )rN ρIρII tN
2 rN

2–( );+ +=

H
1

2t1
-------=
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2– 1–( ) kd( ) i t1
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2– 1+( ) kd( )sin+cos{ } .
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Curves 2 and 3 in Fig. 5 illustrate the extinction
effect, which was simulated by adding an imaginary

term , uniform over the plate volume, to function (3).
Curve 3 differs from curve 2 only in that it relates to
oblique incidence of light (Θ = 20°), a case for which
the stop band is observed to shift because of the
changed condition of Bragg reflection. As follows from
a comparison of curves 2 and 3 with curve 1, at plate
thicknesses typical of real samples, the light transmis-
sion decreases substantially outside the stop band even
for very small  ~ 10–4. Also, the characteristics of
the band gap do not change noticeably with increasing

 (transition from curve 1 to curves 2, 3). Curve 4
was plotted for a periodic structure with a small number
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Fig. 5. Light transmission coefficient calculated for a one-
dimensional photonic crystal. The curves are plotted for the
following sets of parameters (Θ, N, ): (1) (0°, 1000, 10–6),

(2) (0°, 2000, 2 × 10–4), (3) (20°, 2000, 2 × 10–4), and (4)
(0°, 50, 2 × 10–3), where N is the number of layers in the
photonic crystal (plate), Θ is the angle of light incidence on
the plate, and  is an imaginary term that is uniform over

the plate volume and is added to the dielectric permittivity
expressed by Eq. (3). The one-dimensional lattice period

d = R  is equal to the interplanar distance of the opal
fcc lattice in the [111] direction. The opal parameters used
are as follows: R = 150 nm, εs = 1.37 (SiO2), and εv  = 1
(vacuum). The oscillations seen in all four curves are asso-
ciated with light interference at the boundaries of the struc-
ture of finite thickness.
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of layers; this curve exhibits the onset of considerable
light transmission within the stop band.

In accordance with our model, the weak dependence
of the transmission coefficient on the wavelength out-
side the stop band (curves 2, 3) can be attributed to a
decrease in the absorption of the plate (proportional to

/λ) with increasing wavelength. The onset of trans-
mission in the region of the stop band (curve 4) can be
assigned to the coherence of Bloch light waves being
destroyed by the introduction of boundary conditions,
whose role increases substantially in plates with a small
number of layers. We note that this interpretation of
both effects differs substantially from the one based on
the numerical simulation performed in [12], where
these effects were attributed to disorder. Thus, our the-
oretical interpretation is of a more general character,
because it is based on a model of the regular structure
and does not require that any additional assumptions be
made.

The characterization of opals rests on the following
theoretical conclusions established above. (1) The dip
observed in transmission spectra is due to the presence
of a one-dimensional photonic band gap. (2) The main
features of the band gap do not change under oblique
light incidence at comparatively small angles to the
normal. (3) Any slip in structural coherence gives rise
to a finite transmission in the region of the band gap.
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Fig. 6. Experimental transmission spectrum of a top (111)
plate obtained under normal light incidence, Θ = 0 (curve 1),
and transmission spectra calculated using Eqs. (5) and (6)

for the following standard deviations ∆ϑ  =  of the
crystallite orientation angle relative to the cut plane of the
(111) plate: (2) 5°, (3) 10°, (4) 15°, and (5) 25°.

ϑ 2〈 〉
P

5. DISCUSSION OF RESULTS

Let us consider the results obtained in characteriz-
ing the structure of synthetic opals based on the above
data on the properties of the spectral band correspond-
ing to a photonic stop band. As shown earlier (Fig. 3),
as one crosses over to later sample growth stages, this
band exhibits a long-wavelength shift, an increase in
the depth of the corresponding dip in the transmission
spectrum, and its narrowing. This evolution of the band
(stop band) observed to occur as one transfers from ear-
lier growth stages (the lower part of the original sam-
ple) to later stages (the upper part) can be associated
with the fact that the upper part of the sample is sub-
stantially more perfect in structure than the lower part.
One can maintain that the perfect top part is character-
ized by a structure made up of close-packed layers
arranged perpendicular to the growth axis. In this case,
the increase in the band width in the lower part of the
sample (Fig. 3a) can be accounted for by assuming that
in the initial stages of growth, the opal structure is
strongly disordered and consists of misoriented crystal-
lites of close-packed layers of SiO2 spheres.

The presence of strong disorder in the bottom part of
the sample is indicated in the structural-optical analysis
of the three-dimensional patterns of Bragg diffraction
in opals, which was performed by us on samples illumi-
nated perpendicular to the growth axis. The diffraction
pattern obtained from the top part of the sample is a set
of reflections caused by Bragg diffraction from several
(111)-type fcc planes. This indicates a perfect crystal
structure of the opal in this region. The diffraction
reflections from the bottom part of the sample broaden,
to become circles similar to those observed in x-ray
structural analysis of polycrystalline objects.

As follows from Eq. (1), a short-wavelength shift of
the stop band can be produced by any deviation of the
direction of light incidence on the (111) plane from its
normal (i.e., a deviation from Θ = 0) or by a decrease in
the quantity d . We shall use this as a basis for inter-
pretation of the stop band evolution in going from the
top to the bottom part of the sample (Fig. 3a). We shall
assume that the observed transmission band broadening
is inhomogeneous in character and connected with mis-
orientation of micron-sized crystallites in the lower lay-
ers of the sample. Assuming the crystallites to have per-
fect internal packing, we shall define the crystallite ori-
entation by the angle ϑ  between the normal to its (111)
plane and the sample growth axis Z. Then, in the case
of normal light incidence on the plate, the orientation
angle of a crystallite ϑ  is equal to the angle of light inci-
dence Θ on the (111) plane of this crystallite. We intro-
duced a distribution function g(ϑ) of crystallites into
the angles of their orientation with respect to the normal
to the (111) plane of the plate and calculated the trans-
mission coefficient taking due account of the inhomo-
geneous broadening of the spectrum:

(5)

n

T ω( )〈 〉 T ω ϑ,( )g ϑ( ) ϑ .d∫=
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We used the Gaussian distribution

(6)

with a mean 〈ϑ〉  = 0 and a variance 〈ϑ 2〉  [standard devi-

ation ∆ϑ  = ], the latter being the only statistical
parameter determining the inhomogeneous spectral
broadening. When using Eqs. (5) and (6) in the calcula-
tions, the reference transmission spectra T(ω, ϑ) in
Eq. (5) are taken to be spectra obtained on the most per-
fect sample (plate 5), which are shown in Fig. 3b for
some values of Θ(=ϑ); we took account of the fact that
the experimental reflection spectra are symmetric about
the incidence angle Θ, namely, T(ω, –Θ) = T(ω, Θ). The
results of the calculation of an inhomogeneously broad-
ened transmission spectrum are presented graphically
in Fig. 6 for various values of the variance 〈ϑ 2〉 . A com-
parison of Figs. 3a and 6 shows that the model of inho-
mogeneous broadening caused by different orientation
of crystallites relative to the incident beam accounts
quite well, on the whole, for the behavior of the trans-
mission band in going from the ordered top part of the
sample to the disordered bottom part. This relates, in
particular, to the short-wavelength shift of the band
centroid. However, when using the spectra shown in
Fig. 3b for reference, the shape of the inhomogeneously
broadened spectrum virtually does not change for ∆ϑ  >
20°. Hence, the disagreement between the short-wave-
length shifts of the spectra displayed in Figs. 3a and 6
in the region λ < 570 nm can be associated only with the
factor d  entering into Eq. (4). Because parameter d is
the smallest for the [111] growth direction, it cannot
account for the short-wavelength shift. Therefore, the
additional contribution to the observed short-wave-
length shift of the transmission band should be related
to a decrease in the refractive index  in the disordered
lower part of the sample as compared to the top one,
which is of higher perfection. This decrease may be due
to an excess fraction of the optically less dense medium
(air) in the voids both between the SiO2 spheres and
inside the spheres themselves.

6. CONCLUDING REMARKS

We have demonstrated that measurement of the
optical reflection and transmission spectra in the region
of the photonic band gap is an efficient method of char-
acterizing synthetic opals. It was shown that by analyz-
ing the parameters of the one-dimensional band gap
(stop band), one can obtain important information on
the growth features of the structure. It was established
that the natural growth anisotropy of opals gives rise to
the formation of regions with an essentially different
structure along the growth axis Z. The structure of these

g ϑ( )
1

2π ϑ2〈 〉
---------------------- ϑ 2

2 ϑ 2〈 〉
--------------– 

 exp=

ϑ 2〈 〉

n

n

PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
regions is characterized by (1) different opal lattice
defect concentrations, (2) crystallite misorientation rel-
ative to the sample growth axis, and (3) nonuniform
dielectric filling of the voids between the SiO2 spheres
and inside them. The regions corresponding to earlier
stages in the structure growth are the most disordered;
therefore, the parts of the sample produced in later
growth stages are more suitable for use as photonic
crystals.
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Abstract—The basic properties of the one-electron density matrix of a crystal are considered. It is shown that
when the Brillouin zone special-point technique, developed earlier for calculating the electron density and local
exchange potentials, is directly applied to the case of a nonlocal exchange potential, the calculated density
matrix is not idempotent and physically meaningless divergences appear. To surmount these difficulties, a
scheme is developed for interpolating the density matrix over the Brillouin zone in reciprocal space. A modifi-
cation of the Hartree–Fock method for an infinite crystal is proposed in which the equations of the cyclic-cluster
model are satisfied automatically. The electronic structures of perfect crystals of BNhex, silicon, and rutile are
calculated using the Hartree–Fock method and the density-functional theory. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The theory of the electronic structure of a crystal is
based on the assumption of the translation symmetry of
the crystal, i.e., of the invariance of the energy operator
under translations through vectors Rn. Strictly speak-
ing, only an infinite crystal possesses translational sym-
metry; in fact, such a crystal is kept in mind when the
one-electron-Hamiltonian approximation is used and
the electron–electron interaction is not included explic-
itly in the energy operator. In this approach, the calcu-
lated one-electron energies εi(k) form a continuum and
the one-electron Bloch functions ψi, k, which do not
vanish at infinity, are normalized to unity within a prim-
itive cell. Calculations are performed independently for
each of the values of wave vector k chosen.

Self-consistent schemes for calculating the elec-
tronic structure within the Hartree–Fock (HF) approach
and density-functional theory (DFT) have been exten-
sively used in recent years. The fundamental difficulty
in such calculations for crystals is that the number of
electrons in the system is very large (formally, infinite).
Indeed, the one-electron density matrix (DM) in the
basis of crystal orbitals can be calculated only if the
number of electrons is finite and the orbitals can be nor-
malized to unity in all space. At the same time, the
translational and point symmetry of the one-electron
energy operator must not be broken. These two condi-
tions are met in a cyclic-cluster model representing a
crystal fragment which has a finite volume but is
unbounded [1] because its one-electron wave functions
are subject to cyclic boundary conditions. A cyclic clus-
ter is usually taken to be the so-called basic domain of
1063-7834/02/4409- $22.00 © 21656
the crystal, in which the number of primitive cells is so
large that the cyclic boundary conditions imposed on
the end atoms virtually do not affect the electron den-
sity distribution in the bulk of the crystal. In actual
practice, self-consistent calculations also suffer from a
lack of proper balance between the summations over
direct and reciprocal lattices, because a fixed number of
states differing in wave vector k are involved in self-
consistent calculations. (In calculating the DM, sum-
mation over a set of points in the Brillouin zone (BZ) is
performed in each iterative cycle of the self-consistent
procedure.) However, a finite set of wave vectors k cor-
responds, in fact, to a particular choice of the cyclic
cluster of the direct lattice, which restricts the summa-
tion region in calculating lattice sums [2]. Further
refinement should be done by simultaneously extend-
ing the set of vectors k and the summation region of the
direct lattice. Unfortunately, this requirement is not
always met in self-consistent calculations of the elec-
tronic structure of crystals. Within the Hartree–Fock
approach, the imbalance between the summations over
the direct lattice and BZ leads to divergence of the
exchange energy [2–4] and complicates the application
of the BZ special-point technique [5] developed for cal-
culating the electronic structure in terms of the diagonal
elements of the density matrix of the crystal in the
framework of such methods as the DFT.

In this paper, we propose a self-consistent method
for calculating the electronic structure of a crystal in
which an infinite crystal is approximated by a progres-
sively enlarging cyclic cluster placed in the Madelung
field produced by the remainder of the crystal. A crite-
rion for convergence of this procedure is proposed; the
002 MAIK “Nauka/Interperiodica”
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criterion is based on the fact that the density matrix of
the cyclic cluster, which is a finite system in an infinite
crystal, must be idempotent. By using the large-unit-
cell (LUC) method [6, 7], a relationship between the
symmetries of the infinite crystal and of the cyclic clus-
ter is established and a correlation is made between a
specific set of wave vectors k (involved in summation
over the BZ) and the corresponding summation region
of the direct lattice when calculating the DM of the
crystal.

In Section 2, the general properties of the one-elec-
tron density matrix of the crystal (e.g., symmetry prop-
erties) are considered using the single-determinant Har-
tree–Fock approximation to the many-electron wave
function and it is shown that the DM is idempotent in
the coordinate and quasi-momentum representations.

In Section 3, we introduce the CO-LCAO approxi-
mation (for crystal orbitals as linear combinations of
atomic orbitals) and derive relations which allow one to
establish the accuracy to which the density matrix is
approximately calculated using a specific set of wave
vectors k in the BZ.

In Section 4, the DM of the basic domain of the
crystal is approximately calculated using a method
based on a transformation of the large unit cell that
gives a set of k points in the BZ between which the DM
is analytically interpolated in the BZ. This method
allows one to test the successive approximations to the
DM for convergence.

The CO-LCAO approximation within the Hartree–
Fock approach and DFT and the specific features of the
approximate calculation of the DM of the crystal within
each of these methods are discussed in Section 5. An
intimate relationship is established between the inter-
polation of the DM of the infinite crystal in the BZ and
the LUC (cyclic cluster) which generates the given set
of k points.

Finally, in Section 6, the proposed approach is
applied to a number of specific crystals differing in
symmetry and in the nature of the electron density dis-
tribution, namely, a hexagonal boron nitride crystal in
the single-layer model, a tetragonal rutile crystal, and a
cubic silicon crystal with diamond structure.

2. THE ONE-ELECTRON DENSITY MATRIX 
OF A CRYSTAL

Let the basic domain (cyclic cluster) of an infinite
crystal consist of N = N1 × N2 × N3 primitive cells of vol-
ume Va = a1[a2 × a3] each, where ai (i = 1, 2, 3) are the
primitive direct-lattice vectors; therefore, the volume of
the basic region is VN = NVa and the primitive transla-
tions of the corresponding cyclic system are Ai = Ni ai

(i = 1, 2, 3). In the case of an infinite crystal, the trans-
lation group is infinite and its irreducible representa-
tions are specified by the wave vector k, which varies
continuously in the BZ. The replacement of the crystal
by the cyclic cluster (basic domain) implies that any
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
translation of the cluster as a unit is equivalent to the
identity translation. In this case, the translation group
and the number of its irreducible representations
become finite. Therefore, the latter are specified by a
finite number (N) of values of the wave vector, which
now varies discretely in the BZ. These values are
defined by the relation exp(ikAi) = 1 and given by

and gi are primitive reciprocal lattice vectors.

The infinite crystal can be considered a basic limit-
lessly expanding domain, in which case the numbers Ni

tend to infinity. We will treat the basic domain of the
crystal as a many-electron system containing M = Nn
electrons (n is the number of electrons per primitive
cell).

As is well known, the energy of a system within the
single-determinant Hartree–Fock approximation and
DFT can be expressed in terms of the one-electron den-
sity matrix. The one-electron spinless DM ρ(R, R') is
defined as

(1)

where the electron position vectors R and R' vary
within the basic domain of a crystal of volume VN . The
DM of the infinite crystal is obtained from the DM of
the basic domain by taking the limit N  ∞. In its
translational symmetry, the DM is periodic on the direct
lattice:

(2)

where Rn is an arbitrary translation vector of the Bra-
vais lattice.

We will represent the electron position vector R in
the form (r, Rn), where Rn specifies the primitive cell
within which the tip of the vector R lies and r is the
position vector of an electron within this primitive cell.
Therefore, we have R = r + Rn. Using Eq. (2), the den-
sity matrix can be written in the form

(3)

The notation  for the one-electron DM in the
coordinate representation implies that the indices r and
r' of the matrix vary continuously only within the prim-
itive cell. Therefore, there is an analogy between the
properties of the DM in the coordinate representation
and the properties of the DM represented in terms of a
set of basis functions, for example, in terms of Bloch
sums of atomic orbitals (AOs) or plane waves.

k κ igi, where κ i

i 1=

3

∑ 0
1
Ni

----- …
Ni 1–

Ni

--------------, , ,= =

ρ R R',( ) ψ R R2 … RM, , ,( )

V N
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× ψ∗ R' R2 … RM, , ,( )d3R2d3R3…d3RM,

ρ R R',( ) ρ R Rn+ R' Rn+,( ),=

ρ R R',( ) ρ r Rn+ r' Rn'+,( )=
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As is known, the diagonal elements of the one-elec-
tron DM in the coordinate representation are equal to
the electron density:

(4)

From the normalization condition for the many-
electron wave function within the basic domain, it fol-
lows that

(5)

Therefore, the electron density is normalized to the
number of electrons per primitive cell,

(6)

By using the single-determinant approximation to
the many-electron wave function, the DM can be
expressed through the one-electron wave functions
(crystal orbitals):

(7)

where the index i specifies the energy bands and ni(k)
are the occupation numbers. In insulators, the energy
bands are either completely filled or empty; therefore,
ni(k) are independent of k and ni = 0, 2.

The one-electron DM is invariant under any orthog-
onal transformation in the space of occupied states. In
particular, in insulators, we can go over from the
orthonormal set of extended Bloch states ψik(R) to the
orthonormal set of localized Wannier functions:

. (8)

In this case, Eq. (7) for the DM takes the form

(9)

or

(10)

It is well known that the Wannier functions ui(R)
vanish exponentially as |R |  ∞ in crystals with com-
pletely filled bands. Since the vectors r and r' lie in the
zeroth primitive cell, the products of the Wannier func-
tions on the right-hand side of Eq. (10) fall off exponen-
tially with increasing |Rn |. Therefore, we may expect
the total lattice sum in Eq. (10) for the off-diagonal ele-

ρ R( ) ρ R R,( ) ρr r, 0( ).= =
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Va

∫
Rn

∑ N ρr r, 0( ) r3 .d
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∑
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∑
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PH
ments  of the DM to also vanish exponentially
with increasing |Rn | (see [8, 9] for further details). It
should be noted that in metals, the DM decays accord-
ing to a power law.

Under translation through a lattice vector, according
to Bloch’s theorem, the crystal orbitals transform
according to irreducible representations of the transla-
tion group:

(11)

This condition is satisfied for both the infinite crystal
and the basic domain; only the sets of values of the
wave vector k for which Eq. (11) is satisfied are differ-
ent in these two cases.

By applying Bloch’s theorem (11) to the wave func-
tions in Eq. (7) for the one-electron DM of the basic
domain, we obtain

(12)

where  is the density matrix in k space, which
is defined as

(13)

From the familiar orthogonality relations for columns
and rows of the matrices in the irreducible representa-
tions of the Abelian translation group, it follows that

(14a)

(14b)

where g is a reciprocal lattice vector and A is a primitive
translation of the basic domain as a whole. Using
Eq. (14b), it is easy to derive an inverse relation of
Eq. (12),

(15)

It follows from Eq. (15) that  is a periodic func-
tion in the reciprocal space:

(16)

Using the hermiticity of the DM

, (17)

ρr r', Rn( )

ψik R Rn+( ) ikRn( )ψik R( ).exp=

ρr r', Rn( ) ni k( )ψik r( )ψik* r' Rn+( )
k

∑
i

∑=

=  
1
N
---- ikRn–( )Pr r', k( ),exp

k

∑
Pr r', k( )

Pr r', k( ) N ni k( )ψik r( )ψik* r'( ).
i

∑=

1
N
---- e

ikRn

Rn

∑ δk g, ,=

1
N
---- e

ikRn–

k

∑ δRn A, ,=

Pr r', k( ) ikRn( )ρr r', Rn( ).exp
Rn

∑=

Pr r', k( )

Pr r', k gm+( ) Pr r', k( ).=

ρ R R',( ) ρ∗ R' R,( )=
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we find that

(18)

From Eq. (6), the normalization condition for the DM
in k space can easily be found to be

(19)

Here, integration is performed over a primitive cell of
volume Va.

In the case where the many-electron wave function
is calculated in the single-determinant approximation,
the spinless DM is idempotent:

(20)

Similar relations also hold for the matrices 

and :

(21)

(22)

3. THE ONE-ELECTRON DENSITY MATRIX 
OF THE CRYSTAL IN THE LCAO 

APPROXIMATION

In the CO-LCAO approximation, a one-electron
Bloch function ψik(R) (crystal orbital, CO) is expanded
in Bloch sums χµk(R) of AOs:

(23)

where

(24)

In Eqs. (23) and (24), the index µ labels all AOs in the
zeroth primitive cell (µ = 1, 2, …, M) and the index i
numbers the energy bands (i = 1, 2, …, M). The Bloch
sums, as well as the AOs, do not compose an orthonor-
mal basis; that is, the overlap integrals

(25)

are not equal to δµν.

ρr r', Rn( ) ρr' r,* –Rn( ), Pr r', k( ) Pr' r,* –k( ).= =

Pr r, k( ) r3d

Va

∫ n.=

ρ R R'',( )ρ R'' R',( ) R''3d

V N

∫ 2ρ R R',( )=

ni 0 2,=( ).

ρr r', Rn( )
Pr r', k( )

r''ρr r'', Rm( )ρr'' r', Rn Rm–( )3d

Va

∫
Rm

∑ 2ρr r', Rn( ),=

r''3d

Va

∫ Pr r'', k( )Pr'' r', k( ) 2Pr r', k( ).=

ψi k, R( ) Cµi k( )χµ k, R( ),
µ
∑=

χµ k, R( )
1

N
-------- e

ikRnφµ R Rn–( ).
Rn

∑=

Sµν k( ) R3 χµ k,
*

R( )χν k, R( ),d∫=

sµν Rn( ) R3 φµ* R( )φν R Rn–( )d∫=
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The crystal orbitals ψi, k(r) compose an orthonormal
set from which the following orthonormality relations
can be derived for the elements of the matrix C(k)
involved in Eq. (23):

(26)

In terms of the Bloch sums of AOs, the DM ele-
ments Pµν(k) can be expressed as

(27)

Within the LCAO approximation, the DM elements in
the coordinate space are given by an expression similar
to Eq. (12),

(28)

and the DM in the reciprocal space is related to the DM
in the coordinate space through a relation similar to
Eq. (15),

(29)

In the reciprocal space, the analog of the normalization
condition (19) for the DM in the AO representation is
the relation

(30)

The normalization condition for the DM in the coordi-
nate space [analog of Eq. (6)] is

(31)

The idempotency relation for the density matrix P(k) in
the reciprocal space (with allowance for the nonorthog-
onality of the AO basis) has the form [ni(k) = 0, 2]

(32)

In the coordinate space, the idempotency relation for
the DM is written as

(33)

In various semiempirical versions of the Hartree–
Fock approximation, the orthonormal set of Lowdin
atomic orbitals (LAOs) rather than the nonorthogonal
AO basis is used; the LAOs are defined as

(34)

In this basis, the normalization condition for the density
matrix PL(k) is simplified; instead of Eqs. (30) and
(31), we have

(35)

C k( )S k( )C k( ){ } ij δij.=

Pµν k( ) ni k( )Cµi k( )Cν i* k( ).
i

∑=

ρµν Rn( )
1
N
---- e

ikRn–
Pµν k( ),

k

∑=

Pµν k( ) ikRn( )ρµν Rn( ).exp
Rn

∑=

Tr P k( )S k( )( ) Pµν k( )Sµν k( )
µ ν,
∑ n.= =

Tr ρ Rn( )s –Rn( )[ ]
Rn

∑ n.=

P k( )S k( )P k( ) 2P k( ).=

ρ Rm( )S Rm' Rm–( )ρ Rn Rm'–( )
RmRm'

∑ 2ρ Rn( ).=

χµ k,
L R( ) Sµν

–1/2 k( )χνk R( ).
ν
∑=

TrPL k( ) n, Tr ρL 0( )[ ] n.= =
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In the LAO basis, the idempotency relations for the
DM in the coordinate and reciprocal spaces are similar
to Eqs. (21) and (22) for the DM in the coordinate rep-
resentation; in the reciprocal space, we have

(36)

and in the coordinate space, the relation has the form

(37)

In particular, for the zeroth primitive cell (Rn = 0), with
allowance for the hermiticity of the DM, we have

(38)

The off-diagonal elements of the DM in the AO basis
determine the quantities

(39)

which are called the Wiberg indices of the crystal [10,
11]. The Wiberg indices WAB(Rn) can be interpreted as
chemical-bond indices (orders) between atoms A and B.
These indices are subject to a relation that is a conse-
quence of the idempotency of the DM. To derive this
relation, we consider the diagonal matrix elements of
Eq. (38) and carry out summation over all AO indices
of atom A. The result is

(40)

Here,  is the total electron population (in Lowdin’s
sense) of atom A,

(41)

Let us define the covalence CA of atom A as the sum of
the chemical-bond orders (Wiberg indices) between
atom A and all other atoms of the crystal. Using the
idempotency relation (40), we have

(42)

It follows from Eq. (42) that the covalence of atom A in
the crystal can be calculated either by summing the
bond indices between atom A and all other atoms of the
crystal or by using only single-center DM elements
related to atom A. This property of the covalence is a
consequence of the idempotency of the DM.

The above consideration holds for the density
matrix of the basic domain of the crystal; that is, it is
assumed that the number N of primitive cells in this
domain is so large that the introduction of cyclic bound-

PL k( )PL k( ) 2PL k( ),=

ρL Rm( )ρL Rn Rm–( )
Rm

∑ 2ρL Rn( ).=

ρL Rn( )ρL∗ Rn( )
Rn

∑ 2ρL 0( ).=

W AB Rn( ) ρµν
L Rn( )

2
,

µ A ν B∈,∈
∑=

W AB Rn( )
Rn

∑
B A≠
∑ 2 pA

L ρµµ
L 0( ).

µ A∈
∑–=

pA
L

pA
L ρµµ

L 0( ).
µ
∑=

CA W AB Rn( )
B Rn A 0,≠,

∑ 2 pA
L ρµµ

L 0( ).
µ A∈
∑–= =
P

ary conditions virtually does not affect the density
matrix of the infinite crystal.

4. APPROXIMATE ONE-ELECTRON DENSITY 
MATRIX OF THE CRYSTAL

4.1. Large-Unit-Cell Method for Generating
a Set of Special Points in the Brillouin Zone

In actual practice, the electronic structure of a crys-
tal is calculated using one-electron wave functions
found at a finite (relatively small) number L of points
{kj} in the BZ (j = 1, 2, …, L). This raises the question
of how the sum over k points in the BZ should be
approximately calculated in Eq. (12) for the one-elec-
tron DM of the crystal.

We consider a set of points {kj} generated by the
large-unit-cell (LUC) method [6, 7]. In this method, the
primitive lattice vectors ai (i = 1, 2, 3) are transformed
with the help of a matrix l whose elements are integers:

(43)

The basis vectors  determine an LUC and a new Bra-
vais superlattice. The LUC thus constructed has volume
VL = LVa and consists of L primitive cells. The superlat-
tice vectors A are linear combinations (with integral-

valued coefficients) of the basis vectors . The matrix
l is chosen such that the point symmetry of the new
superlattice is identical to that of the original lattice [7]
(the corresponding transformation (43) is called a sym-
metric extension). The type of the direct lattice can be
changed if there are several types of lattice with the
given point symmetry. The LUC is conveniently chosen
in the form of a Wigner–Seitz (WS) cell, which pos-
sesses the point symmetry of the lattice.

We introduce the cyclic boundary conditions for the
crystal domain coinciding with the LUC; that is, we
assume that all translations through the superlattice
vectors A are equivalent to the identity translation.
Thus, we have a system of finite size, i.e., a cyclic clus-
ter belonging to the symmetry group GL = TLF [12] (we
consider only symmetric extensions). Here, the sub-

group TL includes L translations through the vectors 
of the original direct lattice that lie within the LUC or
fall on its boundary. The lattice sites lying on the
boundary of the LUC are connected by superlattice
vectors A. These lattice sites should be counted only
once, because they belong simultaneously to several
LUCs.

For the cyclic cluster thus constructed, the following
orthogonality relations hold:

(44a)

a j
L l jiai, L

i 1=

3

∑ detl .= =

a j
L

ai
L

Rn
0

1
L
--- e

ik jRn
0

Rn
0

∑ δk jg
,=
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(44b)

These relations are a generalization of the analogous
equations in (14) for the basic domain of the crystal.
Equations (44) are more general, because the cyclic
cluster is obtained with the help of transformation (43),
in which the matrix l can be nondiagonal. The vectors
kj in Eqs. (44) label L different irreducible representa-
tions of the group TL and can be found from the relation

(45)

Equation (44a) is a consequence of the orthogonal-
ity of the characters of irreducible representations of
the translation group to the character of the unit repre-
sentation (kj = 0), while Eq. (44b) means that the char-
acters of a regular representation of the group are equal
to zero for all elements of the group except for the
identity element (i.e., except for the identity translation
and equivalent translations through the superlattice
vectors A).

4.2. Interpolation Procedure for Constructing
an Approximation to the Density Matrix

Let the density matrix P(k) be known at a finite set
of points {kj} (j = 1, …, L) determined by the LUC
method and, therefore, satisfying Eq. (45). Our aim is
to approximate the DM at an arbitrary point k in the
BZ. The interpolation procedure discussed in this sub-
section is appropriate for calculations in both the coor-
dinate representation and the AO basis. For this reason,
we drop the indices on the DM, keeping in mind that
these indices are r and r' in the coordinate representa-
tion and µ and ν in the AO or orthogonalized-AO rep-
resentation.

The expansions of the density matrix P(k) given by
Eqs. (15) and (29) can be rewritten in the form

(46)

where the translations (  + A) lie in the basic domain
of the crystal. As mentioned above, the off-diagonal

elements of the density matrix ρ(  + A) fall off with
distance as Wannier functions (exponentially in the
case of insulators). Therefore, as the LUC grows in size
and the values of |A | become sufficiently large, the sec-
ond term in Eq. (46) will be small in magnitude. With

1
L
--- e

ik jRn
0–

k j

∑ δ
Rn

0 A,
.=

ik jA( )exp 1 j 1 2 … L, , ,=( ).=

P k( ) e
ikRn

0

ρ Rn
0( )

Rn
0

∑=

+ e
ik Rn

0 A+( )
ρ Rn

0 A+( ),

Rn
0

∑
A 0≠
∑

Rn
0

Rn
0
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this in mind, we will approximate the density matrix

of the crystal as follows [2]. In the expansion
given by Eq. (46), we drop the sum over the superlattice
sites with A ≠ 0 and take the remaining expression as an
interpolation formula for determining the DM at any k
point in the BZ; we rewrite this expression in the form

(47)

This formula was proposed in [13] for the interpolation
of an arbitrary periodic function f(k) (see also [2, 14,

15]). The interpolation coefficients ρ0( ) (the number
of which is L) can be found from the condition

(48)

Using the orthogonality relation (44b), the interpo-
lation coefficients can be found to be

(49)

The coefficients ρ0( ) can also be represented as a

sum of the DM elements ρ( ) over the superlattice
sites. Indeed, substituting Eq. (46) for P(kj) into
Eq. (49) and using Eq. (44b), we have

(50)

It should be noted that the matrix ρ0( ) can be defined
for all vectors Rn of the Bravais lattice by using the
appropriate extensions of Eqs. (49) and (50). It is easy
to see that ρ0( ) is a periodic function of period A.

Substituting Eq. (49) for the coefficients ρ0( ) into
Eq. (47), we obtain an interpolation formula for the DM
in the reciprocal space,

(51)

Here, Ωj(k) are interpolation weights, the sum of which
is equal to unity (the normalization natural for weight-

P̃ k( )

P̃ k( ) e
ikRn

0

ρ0 Rn
0( ).

Rn
0

∑=

Rn
0

P̃ k j( ) e
ik jRn

0

ρ0 Rn
0( )

Rn
0

∑ P k j( ).= =

ρ0 Rn
0( )

1
L
--- e

ik jRn
0–
P k j( ).

k j

∑=

Rn
0

Rn
0

ρ0 Rn
0( ) ρ Rn

0 A+( ).
A

∑=

Rn

Rn

Rn
0

P̃ k( ) P k j( )Ω j k( ),
k j

∑=

Ω j k( )
1
L
--- e

i k k j–( )Rn
0

.

Rn
0

∑=
2
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ing factors). Indeed, using Eq. (44b), we find

(52)

For the appropriate DM in the coordinate space, one
can write equations similar to Eqs. (12) and (28):

(53)

According to Eq. (14b), the expression in the square
brackets on the right-hand side of Eq. (53) is equal to

unity if the vector Rn belongs to the set of vectors { }
(i.e., if this vector lies within the LUC or on its bound-
ary) and vanishes otherwise. Therefore, the appropriate
DM can be represented in the form

(54)

where ω(Rn) is the so-called weighting function [2, 3],

(55)

We note that the procedure described above for
interpolating the DM in the BZ is not uniquely deter-
mined, because the LUC (i.e., the set of vectors { })
can be variously chosen for the same superlattice. Fur-
thermore, the LUC can be chosen differently for the
pairs of DM indices r, r' and µ, ν. In this paper, the
LUC is taken to be the Wigner–Seitz cell, because only
this cell has a symmetry identical to the point symmetry
of the superlattice in all cases. In order to correlate the
LUC with a cyclic cluster, we choose the LUC to be
dependent of the pair of DM indices as follows. In the
coordinate representation, the LUC (VA region) is cen-
tered at the point (r – r'); therefore, we have

(56)

In the AO representation, the LUC is centered at the
point (dµ – dν), where dµ and dν are the position vectors

Ω j k( )
k j

∑ e
ikRn

0 1
L
--- e

ik jRn
0–

k j

∑
Rn

0

∑=

=  e
ikRn

0

δ
Rn

0 0,

Rn
0

∑ 1.=

ρ̃ Rn( )
1
N
---- ikRn–( )P̃ k( )exp

k

∑=

=  ρ0 Rn
0( )

1
N
---- e

ik Rn
0 Rn–( )

k

∑ .

Rn
0

∑

Rn
0

ρ̃ Rn( ) ω Rn( )ρ0 Rn( ),=

ω Rn( )
1
N
---- e

ik Rn
0 Rn–( )

k

∑
1 Rn Rn

0{ }∈

0 Rn Rn
0{ } .∉




= =

Rn
0

ωr r', Rn( ) ω Rn r' r–+( )=

=  
1 Rn r' r V A∈–+

0 Rn r' r V A.∉–+



P

of the two atoms to which the AOs with indices µ and ν
belong, respectively. Thus, we have

(57)

The weighting function ωµ, ν(Rn) of Eq. (57) intro-
duced into expressions for the DM specifies the cyclic
boundary conditions and the cyclic cluster. Indeed, let
an arbitrarily chosen LUC be fixed and let us consider
the orbitals of atoms A and B in this LUC (µ ∈  A, ν ∈
B). Out of all matrix elements  with indi-
ces µ and ν kept fixed and the vector A running over the
superlattice, only one matrix element is nonzero. For
this matrix element, the vector (dν + Rn + A) (the posi-
tion vector of atom B) falls into the Wigner–Seitz cell
centered at the atom-A site. This matrix element exactly

equals the matrix element .

4.3. Essential Features of the Approximate 
Density Matrix

According to Eq. (54), the approximate density
matrix  found by interpolation in the BZ contains
the weighting function of Eqs. (55)–(57) as a factor. This
function ensures the proper behavior of the off-diagonal
elements of the approximate DM as |Rn|  ∞. As

already mentioned, the matrix  without a
weighting factor is a periodic (not vanishing at infinity)
function,

(58)

However, this DM is frequently used in many calcula-
tions based on the Hartree–Fock approximation or its
semiempirical versions for crystals (the CNDO and
INDO methods). In those calculations, all summations
over the lattice sites are usually truncated by introduc-
ing interaction ranges. The nondecaying density matrix
ρ0(Rn) gives rise to a divergent exchange term in the
Fock matrix [2]. In other words, as the corresponding
interaction range increases in size at a fixed number of
involved k points, the results do not converge to a cer-
tain limit and the total energy of the system sharply
decreases. In order to avoid these divergences, the
exchange interaction range should be chosen such that
the corresponding sphere differs only slightly from the
Wigner–Seitz cell of the superlattice, which generates
precisely the set of k points used in the calculations. In
this case, the size of the summation domain in the coor-
dinate space is in accord with the number of k points
used in the calculations and the exchange term in the
Fock operator does not diverge. The approximate den-
sity matrix  is not subject to these drawbacks, and
the balance between the size of the summation domain

ωµν Rn( ) ω Rn dν dµ–+( )=

=  
1 Rn dν dµ–+ V A∈
0 Rn dν dµ–+ V A.∉




ρ̃µν Rn A+( )

ρµν
0 Rn( )

ρ̃ Rn( )

ρ0 Rn( )

ρ0 Rn A+( ) ρ0 Rn( ).=

ρ̃ Rn( )
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in the coordinate space and the number of kj points
involved occurs automatically [2].

It should be noted that in the versions of the density-
functional theory in which the exchange-correlation
term depends on the electron density alone, both
approaches are equivalent. Indeed, the electron density
ρ(R, R) = ρr, r(0) depends only on the diagonal ele-
ments of the DM; therefore, the weighting function of
Eqs. (55) and (56) is equal to unity in this case.

In general, the approximate DM does not satisfy all
the conditions to which the exact DM is subject. Let us
elucidate which of the relations presented in Section 2
holds for the approximate DM and which do not.

The normalization conditions (5), (31), and (35) are
very important. The approximate DM in the coordinate
representation and in the LAO basis meets these condi-
tions because the weighting function for the diagonal
elements of the DM is equal to unity. In the nonorthog-
onal AO basis, a modified normalization condition is
satisfied,

(59)

where  is an approximate overlap-integral matrix,
which is obtained by interpolating in the BZ in much
the same way as the approximate DM was obtained and
has the form

(60)

It is easy to verify that in all cases the approximate
DM is Hermitian; i.e., it obeys relations identical to
Eqs. (17) and (18).

In general, the approximate DM is not idempotent,
because Eq. (22) holds only at points k = kj ( j = 1,
2, …, L) and is not satisfied at other points of the BZ.
For this reason, Eqs. (21) and (37) in the coordinate
space do not generally hold. However, in the important
particular case where the vector Rn in these equations is
zero, the idempotency relation is satisfied. In the coor-
dinate space and in the LAO representation, we have

(61)

Therefore, the relation important for the Wiberg indices
(42) is also satisfied.

We note that the matrix ρ0(Rn) obeys the relation

(62)

Tr ρ̃ Rn( )s̃ Rn–( )[ ]
Rn

∑ n,=

s̃ Rn( )

s̃µν Rn( ) ω Rn dν dµ–+( )sµν
0 Rn( ),=

sµν
0 Rn( )

1
L
--- e

ik jRn–
S k j( )

k j

∑ s Rn A+( ).
A

∑= =

ρ̃ Rm( )ρ̃ Rm–( )
Rm

∑ 2ρ̃ 0( ).=

ρ0 Rm
0( )ρ0 Rn

0 Rm
0–( )

Rm
0

∑ 2ρ0 Rn
0( ).=
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In the strict sense, Eq. (62) is not an idempotency rela-
tion, because summation is carried out only over the

vectors  lying within the LUC, whereas the vector

difference (  – ) can lie outside the LUC. If we
perform summation over all Bravais lattice vectors, the
right-hand side of Eq. (62) will diverge, because ρ0(Rn)
does not vanish at infinity.

For the approximate DM to have the proper point
symmetry, the LUC should be taken to be the Wigner–
Seitz (WS) cell. In this case, however, the symmetry
can be broken if, on the boundary of the WS cell, there
are atoms of the crystal. Indeed, if an atom lies on the
WS cell boundary, then there is one or several equiva-
lent atoms that also lie on the boundary of the cell and
their position vectors differ from that of the former
atom by a superlattice vector A. When constructing the
approximate density matrix , we assigned only one of
several equivalent atoms to the WS cell. In other words,

in the set { }, there are no two vectors that differ
from each other by a superlattice vector A. In this case,
if a point-symmetry operation takes one boundary atom
into another atom assigned to another WS cell, then the
point symmetry of the density matrix  is broken,
because the symmetry of the weighting function
ωµν(Rn) of Eq. (57) is broken.

Since it is desirable to preserve the point symmetry
when calculating the electronic structure, the approxi-
mate DM can be replaced by an averaged density
matrix ρs (see also [14, 16–18]):

(63)

Here, the index α = 1, 2, …, Ns labels all Ns possible
ways in which one of the equivalent boundary atoms
can be assigned to a given WS cell and the symmetrical
weighting function ωs(Rn) is defined as

(64)

where  is the number of atoms in the WS cell
(including its boundary) that are translationally equiva-
lent to atom B (ν ∈  B) in the case where the WS cell is

centered at the atom-A site (µ ∈  A). In other words, 
is the number of WS cells that have atom B in common.

If atom B is strictly inside the WS cell, then  = 1 and
Eq. (64) is identical to Eq. (57). We note that the density

Rm
0

Rn
0 Rm

0

ρ̃

Rn
0

ρ̃

ρs Rn( )
1
Ns

------ ρ̃α Rn( )
α 1=

Ns

∑ ωs Rn( )ρ0 Rn( ).= =

ωµν
s Rn( )

1
Ns

------ ωµν
α Rn( )

α 1=

Ns

∑=

=  

1

nµν
s

------- Rn dν dµ V A∈–+

0 Rn dν dµ V A,∉–+





nµν
s

nµν
s

nµν
s

2
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matrix ρs(Rn) does not satisfy idempotency relation
(61) and corresponds to a mixed state of the system.
However, as the LUC enlarges, the effect of the bound-
ary atoms decreases and the density matrix ρs(Rn)
approaches the idempotent density matrix ρ(Rn).

5. HARTREE–FOCK METHOD 
AND DENSITY-FUNCTIONAL THEORY

IN THE CO-LCAO APPROXIMATION

The energy of the crystal (per primitive cell) as cal-
culated within the Hartree–Fock (HF) approximation
(EHF) and DFT (EDFT) can be expressed in terms of the
one-electron DM:

(65)

where E0[ρ] is the one-electron energy, which is
defined as the expectation value of the one-electron

operator ,

(66)

EH[ρ] is the Coulomb (Hartree) energy,

(67)

EX[ρ] is the HF exchange energy,

; (68)

and EXC[ρ] is the exchange-correlation energy,

(69)

In Eq. (69), εXC[ρ] is the exchange-correlation energy
per electron as calculated within the uniform electron
gas approximation.

In the HF approximation and DFT, the crystal orbit-
als are solutions to the equations

(70)

where the one-electron operator  is either the HF

operator ,

(71)

or the Kohn–Sham operator ,

(72)

EHF ρ[ ] E0 ρ[ ] EH ρ[ ] EX ρ[ ] ,+ +=

EDFT ρ[ ] E0 ρ[ ] EH ρ[ ] EXC ρ[ ] ,+ +=

ĥ R( )

E0 ρ[ ] 1
N
---- R3 ĥ R( )ρ R R',( )[ ] R' R=d ;

V N

∫=

EH ρ[ ] 1
N
---- R3 R'3 ρ R R,( )ρ R' R',( )

R R'–
----------------------------------------;d

V N

∫d

V N

∫=

EX ρ[ ] 1
2
--- 1

N
---- R3d

V N

∫ R'3 ρ R R',( ) 2

R R'–
-------------------------d

V N

∫–=

EXC ρ[ ] 1
N
---- R3 ρ R R,( )εXC ρ[ ] .d

V N

∫=

F̂ k( )ψi k, εi k( )ψi k, ,=

F̂

F̂
HF

k( )

F̂
HF

k( ) Ĥ k( ) Ĵ k( ) X̂ k( ),+ +=

F̂
DFT

k( )

F̂
DFT

k( ) Ĥ k( ) Ĵ k( ) V̂ XC k( ).+ +=
P

Here,  is a one-electron operator which describes
the motion of an electron in the crystal and is equal to
the sum of the kinetic-energy operator and the Cou-
lomb interaction operator between the electron and

fixed atomic nuclei and  and  are the Cou-
lomb and exchange operators, respectively, which
describe the interaction of the given electron with the
other electrons of the crystal. In the LCAO basis, the
Hartree–Fock and Kohn–Sham operators in the recipro-

cal space are represented by the Fock matrices 

and Kohn–Sham matrices , which are related to
the matrices in the coordinate space by the relations

(73)

where hµν(Rn), jµν(Rn), and xµν(Rn) are the one-electron,
Coulomb, and exchange parts of the Fock matrix in the
coordinate space, respectively. The Coulomb part
jµν(Rn) of the Fock matrix is defined as

(74)

The exchange part of the Fock matrix can be obtained
from Eq. (74) by interchanging the electron position
vectors R and R' in the arguments of functions φν(R –
Rn) and φλ(R' – Rm'):

(75)

In the DFT, instead of the nonlocal-exchange interac-
tion matrix xµν(Rn), the exchange-correlation matrix

 is used, with different exchange-correlation-
functional approximations being employed in various
versions of the DFT. In particular, in the local-density
approximation (LDA), it is assumed that

(76)

Ĥ k( )

Ĵ k( ) X̂ k( )

Fµν
HF k( )

Fµν
DFT k( )

Fµν
HF k( ) e

ikRn hµν Rn( ) jµν Rn( ) xµν Rn( )+ +[ ] ,
Rn

∑=

Fµν
DFT k( ) e

ikRn hµν Rn( ) jµν Rn( ) v µν
XC Rn( )+ +[ ] ,

Rn

∑=

jµν Rn( ) ρλσ Rm( ) R R'φµ R( )3d∫
3

d∫
Rm Rm',
∑

λ σ,
∑=

× φν R Rn–( )
1

R R'–
------------------φλ R' Rm'–( )φσ R' Rm– Rm'–( ).

xµν Rn( )
1
2
--- ρλσ Rm( ) R R'3 φµ R( )d∫

3
d∫

Rm Rm',
∑

λ σ,
∑–=

× φλ R Rm'–( )
1

R R'–
------------------φν R' Rn–( )φσ R' Rm– Rm'–( ).

v µν
XC Rn( )

v µν
XC Rn( ) R3 φµ R( )v XC R( )φν R Rn–( ),d∫=

v XC R( ) ρ∂
∂ ε ρ R( )[ ] .=
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Here, ρ(R) = ρ(R, R) is the electron density. In the
DFT, the exchange-correlation potential depends only
on the electron density and, therefore, has no off-diag-
onal elements in the coordinate representation. In more
accurate (than LDA) versions of the DFT, a gradient
correction is added to the energy functional.

In the DFT, the electronic structure of a crystal is
calculated, as a rule, in the plane-wave basis [19].
Recently, CO-LCAO calculations have been performed
using the Crystal-95 computer code [20], which is
based on both the HF method and DFT and allows one
not only to make a comparison between the results
obtained within these two approximations but also to
employ a combination of these approximations. For
example, the HF self-consistent electron density of the
crystal can be used to calculate correlation corrections
to the total HF energy a posteriori. Self-consistent cal-
culations of the electronic structure of a crystal are also
carried out using the so-called hybridized operator,
which includes both the nonlocal HF exchange operator
and the correlation potential derived from the density
functional. The other terms in operators (71) and (72)
are calculated in this case within the same approxima-
tions. In the LCAO approximation, the exchange-corre-

lation potential  is expanded in the Gaussian
AOs and the expansion coefficients are found self-con-
sistently by fitting to an analytical expression in each
iterative cycle.

In actual practice, calculations are performed for a
relatively small number of points kj ( j = 1, 2, …, L),
which are usually chosen using the LUC method with a
diagonal [21] or nondiagonal matrix l [22] (see
Eq. (43)). Such a set of wave vectors is chosen when
constructing an approximate DM of the crystal. In the
Crystal-95 computer code [20], the periodic (not van-
ishing at infinity) matrix  is taken, in fact, as the
approximate DM. Therefore, particular attention
should be given to calculating lattice sums like
Eqs. (74) and (75) in this case. We will consider this
problem in more detail following [20].

In the Crystal-95 code [20], the accuracy to which
the overlap-integral and kinetic-energy lattice sums are
computed is controlled by parameter t1; the summation
is terminated when the product of AOs at different cen-

ters becomes less than . The accuracy to which the
Coulomb lattice sum jµν(Rn) is computed is also deter-
mined by parameter t1 and, in addition, by parameter t2.
When the overlap of the electron densities of different

atoms becomes less than , the corresponding Cou-
lomb interaction is treated as that of point multipoles.

The sums over Rm' and Rm in Eq. (75) for the
exchange energy are convergent; the corresponding
summation is controlled by parameter t3 and terminated
when the φµ(R)φλ(R – Rm') and φν(R' – Rn)φσ(R' – Rm –

Rm') AO overlap becomes less than . However,

v XC R( )

ρµν
0 Rn( )

10
t1–

10
t2–

10
t3–
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when the periodic (not vanishing at infinity) matrix
ρ0(Rn) is taken as the approximate DM, the matrix ele-
ments xµν(Rn) do not tend to zero as |Rn |  ∞. This
can be easily verified by putting Rm' = 0 and Rm = Rn in
the sums over Rm and Rm' in Eq. (75) and taking into
account that the function 1/|R – R' | slowly decreases
with increasing |R – R' |. Because of this improper
asymptotic behavior of xµν(Rn), the exchange part of
the Fock operator in the reciprocal space diverges at
k = 0 and the total energy of the crystal also becomes
divergent. In order to avoid these divergences, the
appropriate interaction ranges (determined by parame-
ters t4 and t5) are introduced in the Crystal-95 code; the
DM elements ρµν(Rn) and ρλσ(Rm) in Eq. (75) are taken
equal to zero if the φµ(R)φν(R – Rn) and φλ(R)φσ(R –

Rm) AO products become less than  and ,
respectively.

Such a scheme for calculating the lattice sums
involved in the matrix elements of the energy operator
was employed in [20] within both the HF approxima-
tion and DFT. In the former approach, the accuracy of
computation of integrals was controlled by all of the
parameters t1 to t5; in the latter, only by t1 and t2.

We propose three different versions of the HF
method in which the approximate density matrix ρs(Rn)
is used instead of the matrix ρ0(Rn) not vanishing at
infinity.

In the first version, the density matrix ρλσ(Rm) in
Eq. (75) for the exchange part xµν(Rn) of the Fock

matrix is replaced by the approximate DM ,

which differs from  in that the former contains

the weighting factor  [see Eq. (63)]. The intro-
duction of this factor removes the divergence of the
exchange energy of the crystal and the imbalance
between the number of k points in the BZ involved in
calculations and the summation procedure over the
direct lattice in Eq. (75). In this case, there is no need to
introduce artificial cutoffs determined by parameters t4

and t5. This version allows one to calculate the elec-
tronic structure of the infinite crystal (or its basic
domain) by using a proper DM rapidly vanishing at
infinity in constructing the exchange potential.

In the second version, the density matrix  is
substituted not only into the exchange part of the Fock
matrix in Eq. (75) but also into the Coulomb part
jµν(Rn) of the Fock matrix in Eq. (74). In this case, how-
ever, one should redefine the overlap integral matrix

 in accordance with Eq. (60) in order to pre-
serve the normalization relation (59). This version, as
well as the first, corresponds to calculation of the elec-

10
t4–

10
t5–

ρλσ
s Rn( )

ρλσ
0 Rn( )

ωλσ
s Rn( )

ρλσ
s Rm( )

s̃µν Rn( )
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tronic structure of the infinite crystal (or its basic
domain).

In the third version, the approximate DM 
is substituted into the total energy of the crystal in
Eq. (65) and both the HF energy EHF[ρs] and DFT
energy EDFT[ρs] are calculated. Equations for the crystal
orbitals can be found by minimizing the energies
EHF[ρs] and EDFT[ρs]. The distinctive feature of this ver-

sion is that the cutoff weighting function  is
also involved as a factor in all lattice sums for the one-
electron and two-electron parts of the Fock matrix in
Eq. (73):

(77)

Thus, in the third version, the cutoff factor 
is introduced in all lattice sums, in particular, in the
overlap integral matrices and kinetic-energy matrix.
The introduction of a cutoff factor in these sums is
equivalent to considering a cyclic cluster placed in an
external electric field (Madelung field) produced by
various (finite-size) multipoles. The field due to charges
and multipoles is determined by the diagonal DM ele-
ments  for which the weighting function 
equals unity. Thus, there is an intimate relationship
between the interpolation procedure proposed for cal-
culating the DM of the infinite crystal in the k space and
a cyclic cluster equal to the LUC in size.

In this paper, we employed the first version of mod-
ified HF equations. In the next section, we discuss the
electronic structures of a number of crystals computed
by means of the Crystal-95 code without and with
allowance for the weighting function.

6. CALCULATED ELECTRONIC STRUCTURES 
OF BNhex, Si, AND RUTILE TiO2 CRYSTALS

From the above discussion of calculations of the
electronic structure of an infinite crystal and a cyclic
cluster by using the HF and DFT methods, we can draw
some practically important conclusions. Such calcula-
tions are performed first for a set of points kj (j = 1,
2, …, L) chosen in the BZ and then for enlarged sets
{kj} until the results become convergent. In this paper,
we investigated the convergence of quantities such as
the total energy per primitive cell, the energies corre-
sponding to the top of the valence band and the bottom
of the conduction band, the band width, and the atomic
charges and covalences.

The calculations are performed for (i) hexagonal
BN (in the single-layer model) having two atoms per
primitive cell and belonging to the double-periodic

ρλσ
s Rm( )

ωµν
s Rn( )

Fµν
HF k( ) e

ikRnωµν
s Rn( )

Rn

∑=

× hµν Rn( ) jµν Rn( ) xµν Rn( )+ +[ ] .

ωλσ
s Rn( )

ρµµ
s 0( ) ωµµ

s 0( )
P

symmetry group , (ii) a cubic Si crystal having two
atoms per primitive cell and belonging to the space

group  (Fd3m), and (iii) a rutile-structure TiO2 crys-
tal having a tetragonal lattice and belonging to the

space group  (P42/mnm). By choosing these crys-
tals, we can compare the convergence of calculations
for crystals with different chemical-bond covalence (a
pure covalent Si crystal, a BN crystal with weakly dis-
tributed charge, and an essentially ionic TiO2 crystal).

We employed the Crystal-95 computer code [20],
which allows one to perform computations within the
LCAO approximation by using the HF and DFT meth-
ods. The lattice parameters are taken to be equal to their
theoretical values for BNhex (a = 2.504 Å), Si (c =
5.460 Å), and TiO2 (a = 4.555 Å, c = 2.998 Å) calcu-
lated in [23–25], respectively. The AO bases for Si, Ti,
and O are also taken from those papers. For BNhex, the
STO-3G basis is used. In the DFT calculations, we used
the Becke–Lyp exchange-correlation potential [26],
which includes a gradient correction.

As indicated in Section 5, the accuracy of calcula-
tions of lattice sums in the Crystal-95 code is controlled
by parameters t1, t2, …, t5 in the HF method and by t1

and t2 in DFT. In our computations, we put t1 = t2 = t3 =
t4 = 6 and t5 = 12. For such values of the parameters,
summations over the direct lattice cover domains of
radius Rs equal to 9.03, 11.17, and 8.16 Å for BNhex, Si,
and TiO2 crystals, respectively.

The results are listed in Tables 1–3. In the first col-
umns, the transformation matrices l defined by Eq. (43)
are presented; these matrices determine the direct-lat-
tice domains and the corresponding sets of L vectors
{kj}. Columns 2 to 10 present the following: the num-
ber J, which is the number of the translation-vector
shell determining the LUC (the number of points kj

and, hence, the accuracy of calculations of the approx-
imate DM  are increased with increasing J); the radii
RJ and RX, which characterize the localization region of
the Wannier functions for the diagonal and off-diagonal
DM elements, respectively [see Eq. (10)]; next, the
energy characteristics are listed (the total energy per
primitive cell Etot, the energy of the top of the valence
band Ev , and the band gap width ∆Eg); and the atomic
charges Q (Ti atom charge in the case of TiO2) and the
chemical-bond orders WAB (Wiberg indices) for the
nearest neighbors as calculated from the LAO popula-
tions using Eq. (39). For the Si crystal (in which we
have QSi = 0), the covalence CA of the Si atom is pre-
sented. The calculations are performed using three
methods: the standard HF method ignoring the weight-
ing function [20], the HF method with allowance for the

D3h
1

Oh
7

D4h
14

ρ̃
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Table 1.  Electronic structure of the BNhex crystal (Rs = 9.03 Å)

Matrix l J RJ (Å) RX (Å) Method Etot Ev ∆Eg (a.u.) |Q | WB–N

L = 3

2 4.34 2.50

HF
HFω
DFT

–81.192
–78.311
–78.632

–0.992
–0.260
–0.031

1.381
0.558
0.097

0.356
0.353
0.298

0.987
1.047
1.042

L = 9

5 7.51 3.82

HF
HFω
DFT

–78.299
–78.286
–78.693

–0.268
–0.239
–0.083

0.617
0.508
0.153

0.356
0.353
0.298

1.120
1.123
1.137

L = 12

6 8.67 4.34

HF –78.295 –0.252 0.564 0.258 1.116

HFω
DFT

–78.290
–78.694

–0.245
–0.082

0.516
0.153

0.259
0.167

1.116
1.133

L = 27

12 13.01 6.62 HF
HFω
DFT

–78.291
–78.291
–78.697

–0.241
–0.241
–0.087

0.508
0.507
0.157

0.260
0.260
0.156

1.123
1.123
1.141

L = 36

15 15.02 7.51

HF
HFω
DFT

–78.291
–78.291
–78.697

–0.240
–0.240
–0.087

0.504
0.504
0.158

0.259
0.259
0.153

1.124
1.124
1.143

2 1

1– 1 
 
 

3 0

0 3 
 
 

4 2

2– 2 
 
 

6 3

3– 3 
 
 

6 0

0 6 
 
 
weighting function in the exchange part of the Fock
matrix (HFω method), and the DFT method.

The data presented in Tables 1 to 3 allow one to
draw the following conclusions, which are applicable to
all three crystals under study:

(1) In spite of the differences in the crystallographic
structure and in the AO basis used, the convergence of
the results for all three crystals sets in at parameter RX

values close to one another (7.51, 11.58, 8.99 Å). In
[27], the variations of the diagonal DM elements with
distance were investigated for valence AOs in BNhex
and Si crystals. In those calculations, sets of points {kj}
were used for which the convergence of HF computa-
tions already took place. It was found that these DM
elements are close to zero for interatomic distances 7–
10 Å, which correlates with the values of RJ calculated
in this paper. The last statement does not contradict the
fact that the approximate DM ρ0 without the weighting
function is a periodic function of distance [see Eq. (58)]
and does not vanish at infinity, because the spatial peri-
ods (superlattice parameters) for the given sets of {kj}
are far larger than the interatomic distances under dis-
cussion. We also note that the values of the parameters
Rx and Rs are close to each other when the convergence
of calculations sets in. This is no surprise, because the
calculations become convergent when the size of the
localization region of Wannier functions (parameter Rx)
is close to the size of the region of crystal-lattice sum-
mation (parameter Rs).
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
(2) For sets of {kj} relatively small in number (L =
3, 9 for BNhex; L = 4, 8 for Si; L = 2, 4, 9 for TiO2), HF
calculations not involving a weighting function lead to
significantly lower values of the total energy of the
crystal in comparison with the total energy calculated
using {kj} sets large in number. The reason for this is
that the DM ρ0(Rn) exhibits improper asymptotic
behavior at large distances |Rn | and, hence, is not idem-
potent. Because of the divergence mentioned in Section 4,
the negative exchange energy becomes large in magni-
tude and the total energy of the crystal is considerably
decreased. Such an artificial decrease in the total energy
is particularly noticeable for large values of the param-
eters t4 and t5, which truncate the lattice sums in the
exchange energy. In calculations involving the weight-
ing function, there are no artificial divergences and,
when wave-vector sets small in number are used, the
total energy is virtually always an upper-bound esti-
mate, as it must be in variational calculations. We note
that, in the case of the Si crystal, the introduction of the
weighting function leads to the formation of a nonzero
band gap for any {kj} set small in number. In HF calcu-
lations not involving a weighting function, the elec-
tronic structure is found to correspond to a metal in the
case of L = 8, whereas in HFω calculations, the electron
density distribution is obtained to be close to the
“exact” result even for {kj} sets very small in number.

(3) Because of the absence of nonlocal exchange
terms in the Hamiltonian, the DFT method gives an
upper-bound (typical of variational methods) estimate
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Table 2.  Electronic structure of the Si crystal (Rs = 11.17 Å)

Matrix l J RJ (Å) RX (Å) Method Etot Ev ∆Eg (a.u.) CA WSi–Si

L = 4

HF –10.154 –4.900 1.602 3.647 0.816

2 5.46 3.86 HFω –7.557 –0.216 0.285 4.146 0.999

DFT –7.643 –0.098 0.041 4.173 0.996

L = 8

HF – Metal 0.0 – –

4 7.72 3.86 HFω –7.515 –0.230 0.293 4.160 0.998

DFT –7.645 –0.109 0.042 4.188 0.995

L = 16

HF –7.537 –0.208 0.308 4.176 0.952

6 9.46 5.46 HFω –7.534 –0.216 0.251 4.154 0.964

DFT –7.724 –0.138 0.046 4.180 0.947

L = 32

HF –7.535 –0.223 0.254 4.149 0.967

8 10.92 5.46 HFω –7.537 –0.228 0.247 4.165 0.955

DFT –7.727 –0.139 0.046 4.179 0.941

L = 64

HF –7.537 –0.226 0.260 4.155 0.966

15 15.44 7.72 HFω –7.537 –0.227 0.257 4.157 0.966

DFT –7.728 –0.140 0.047 4.178 0.939

L = 216

HF –7.540 –0.223 0.230 4.155 0.961

34 23.16 11.58 HFω –7.540 –0.223 0.230 4.155 0.961

DFT –7.733 –0.143 0.036 4.174 0.928

L = 512

HF –7.541 –0.222 0.228 4.155 0.961

59 30.88 15.44 HFω –7.541 –0.222 0.230 4.155 0.961

DFT –7.734 –0.144 0.034 4.173 0.925

1 1– 1–

1– 1 1–

1– 1– 1 
 
 
 
 

2 0 0

0 2 0

0 0 2 
 
 
 
 

3 1– 1–

1– 3 1–

1– 1– 3 
 
 
 
 

2– 2 2

2 2– 2

2 2 2– 
 
 
 
 

4 0 0

0 4 0

0 0 4 
 
 
 
 

6 0 0

0 6 0

0 0 6 
 
 
 
 

8 0 0

0 8 0

0 0 8 
 
 
 
 
of the total energy of the crystal for any set of k points.
In this case, as is evident from numerous calculations
available in the literature, the calculated band gap width
∆Eg is always less than that given by the HF method.
Allowance for correlation effects in DFT leads to a
more covalent electron density distribution (in compar-
ison with that given by the HF method); it follows from
P

Tables 1 and 3 that the atomic charges become notice-
ably smaller in the case of BNhex and TiO2.

(4) As the {kj} set is enlarged, calculations of the
local characteristics of the electron density (atomic
charges, chemical-bond orders) converge more rapidly
than calculations of the energy characteristics do in all
three methods.
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Table 3.  Electronic structure of the TiO2 crystal (Rs = 8.16 Å)

Matrix l J RJ (Å) RX (Å) Method Etot Ev ∆Eg (a.u.) QTi WTi–O

L = 2

HF –70.171 –0.633 0.452 –0.033 0.630

3 5.45 2.99 HFω –69.732 –0.303 0.409 1.768 0.512

DFT –71.885 –0.222 0.363 2.605 0.364

L = 4

HF –69.790 –0.316 0.406 1.602 0.580

5 6.44 3.45 HFω –69.772 –0.303 0.397 1.697 0.556

DFT –71.323 –0.133 0.057 1.137 0.657

L = 8

HF –69.778 –0.307 0.391 1.719 0.560

6 8.80 4.55 HFω –69.775 –0.305 0.389 1.728 0.558

DFT –71.341 –0.135 0.057 1.110 0.656

L = 12

HF –69.775 –0.305 0.389 1.728 0.557

9 8.99 4.55 HFω –69.775 –0.304 0.389 1.729 0.556

DFT –71.349 –0.138 0.057 1.117 0.649

L = 16

HF –69.775 –0.303 0.387 1.730 0.557

10 9.11 4.55 HFω –69.775 –0.304 0.387 1.730 0.557

DFT –71.344 –0.138 0.055 1.112 0.649

L = 24

HF –69.775 –0.303 0.387 1.729 0.557

10 9.11 4.55 HFω –69.775 –0.304 0.387 1.729 0.557

DFT –71.343 –0.135 0.055 1.108 0.649

L = 64

HF –69.776 –0.303 0.386 1.728 0.557

18 11.99 5.99 HFω –69.776 –0.303 0.386 1.728 0.557

DFT –71.347 –0.139 0.058 1.103 0.650

L = 216

HF –69.776 –0.303 0.386 1.727 0.557

45 17.99 8.99 HFω –69.776 –0.303 0.386 1.727 0.557

DFT –71.348 –0.139 0.058 1.101 0.650

0 1 1

1 0 1

1 1 0 
 
 
 
 

0 1 2

1 0 2

1 1 0 
 
 
 
 

1– 1 2

1 1– 2

1 1 2– 
 
 
 
 

2 0 0

0 2 0

0 0 3 
 
 
 
 

2 0 0

0 2 0

0 0 4 
 
 
 
 

2 0 0

0 2 0

0 0 6 
 
 
 
 

4 0 0

0 4 0

0 0 4 
 
 
 
 

6 0 0

0 6 0

0 0 6 
 
 
 
 
7. CONCLUSION

Thus, the results presented in this paper allow one to
better understand the features of Hartree–Fock self-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      20
consistent calculations of the electronic structure of an
infinite crystal with a nonlocal exchange potential
determined by the off-diagonal elements of the one-
electron density matrix. It has been shown that the
02
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number of k points chosen in the BZ for calculations
should be in accord with the size of the interaction
range in the coordinate space. In other words, there
should be a correlation between summations over the
Bravais lattice in the coordinate space and over the BZ
in the reciprocal space. It was also shown that when the
Fock operator or the Kohn–Sham operator contains off-
diagonal DM elements, the BZ special-point technique
should be modified. By performing calculations for
particular systems, it was shown that the introduction of
the weighting function ω(Rn) in the direct-lattice sums
entering the exchange term establishes the necessary
balance and removes the artificial divergences.

The comparison made between the HF operators in
the infinite-crystal and cyclic-cluster models in Section 5
makes it possible to understand the relation between
these models. The equations derived within the cyclic-
cluster model by using the variational method are dif-
ferent from the equations following from the HF equa-
tions for an infinite crystal in which the weighting func-
tion is introduced. This important problem will be the
subject of our next publication.
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Nonradiative Relaxation of Photoexcited  Centers 
in Glassy SiO2

A. F. Zatsepin, D. Yu. Biryukov, V. S. Kortov, and S. O. Cholakh
Ural State Technical University, ul. Mira 19, Yekaterinburg, 620002 Russia

e-mail: zats@dpt.ustu.ru
Received December 3, 2001

Abstract—The processes involved in the excited-state relaxation of hole  centers at nonbridging oxygen
atoms in glassy SiO2 were studied using luminescence, optical absorption, and photoelectron emission spec-
troscopy. An additional nonradiative relaxation channel, in addition to the intracenter quenching of the 1.9-eV
luminescence band, was established to become operative at temperatures above 370 K. This effect manifests
itself in experiments as a negative deviation of the temperature-dependent luminescence intensity from the
well-known Mott law and is identified as thermally activated external quenching with an energy barrier of
0.46 eV. Nonradiative transitions initiate, within the external quenching temperature interval, the migration of
excitation energy, followed by the creation of free electrons. In the final stages, this relaxation process becomes

manifest in the form of spectral sensitization of electron photoemission, which is excited in the hole -center
absorption band. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Silicon dioxide plays a significant part in conven-
tional and integrated optics, electronics, and microelec-
tronics. The operating characteristics of the various
SiO2-based devices depend substantially on the pres-
ence of photosensitive defects in the SiO2 structure.
Structural defects form in the material in the course of
its preparation (for instance, in crystal growth or
quartz-glass fiber drawing) or under bombardment by
high-energy radiation.

The nonbridging oxygen, which is a component of
the complementary pair of a broken silicon–oxygen
bond, is an important kind of native defect in glassy

SiO2. The hole  centers associated with nonbridging
oxygen atoms form efficiently in amorphous SiO2 mod-
ifications, and their observation in crystals is an indica-
tion of structural amorphization of the material [1].

Despite extensive studies of defects of this type,
some of the problems related to their properties still
remain unsolved. In particular, mechanisms operating

in the relaxation of excited states of the  centers
require more comprehensive investigation. These cen-
ters in SiO2 are usually associated with the optical-
absorption bands at 4.75 eV (oscillator strength f =
0.048) and 2.0 eV ( f = 0.001) and with red lumines-
cence at 1.9 eV [1–3]. It was observed that Mott’s law
is insufficient for adequate description of the quenching
of the 1.9-eV luminescence in samples warmed to room
temperature and higher. This point requires a special
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analysis, because the above disagreement may be
caused by various reasons. One of them could be the
structural disorder in glassy SiO2, which makes an acti-
vation-energy distribution of intracenter photolumines-
cence quenching possible [1]. At the same time, one
cannot exclude the possibility of existence of other
energy dissipation channels, for instance, of the recom-
bination type, which become operative at elevated tem-
peratures. In other words, there is an obvious diver-
gence in the description of thermal quenching of the
luminescence produced by native defects in SiO2,
which implies a lack of clear understanding of the pro-
cesses involved in the nonradiative relaxation of excited
states.

The present communication reports on an integrated
investigation of photoluminescence (PL) and of the
excitation, optical absorption (OA), and optically stim-
ulated electron emission (OSEE) spectra of glassy
quartz containing radiation-induced defects undertaken
with the purpose of obtaining more detailed informa-
tion on the specific features of nonradiative transitions

in photoexcited  centers.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

We studied polished samples of KV-grade optical
quartz glass. Defect centers in the structure of the sam-
ples under study were produced by irradiating them
with 10-MeV electrons on an M-20 microtron. The
electron fluence Φ was 2.4 × 1016 cm–2.
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The OA spectra were measured with a Specord-40M
spectrophotometer. The PL spectra were obtained with
an FÉU-71 PM tube interfaced with a DMR-4 double
crystal monochromator. The luminescence was excited
with a DRK-120 mercury lamp or a DDS-400 deute-
rium lamp through a DMR-4 monochromator.

OSEE spectra were measured in the wavelength
range 200–600 nm. The UV radiation was produced by
a DDS-400 lamp, with the required energy interval cut
out by a monochromator. The light beam formed in this
way was focused into a 3 × 0.5-mm spot on the sample
surface. The OSEE intensity was measured in a vacuum
of 10–4 Pa with a VÉU-6 secondary-electron multiplier.
The OSEE temperature behavior was studied with the
use of a device providing sample temperature variation
within the range 80–800 K. The heater was of double-
helical design, thus precluding the electromagnetic
field induced by the heater current from exerting defo-
cusing action on the electron beam. The system permit-
ted the carrying out of measurements under linear heat-
ing at a preset rate or in the thermostating regime.

The OSEE spectral response curves obtained in the
experiment were normalized to the light flux and
treated subsequently by a technique described else-
where [4–6]. The spectral-response treatment proce-
dure used by us is based on the assumption that the
OSEE spectrum of an irradiated sample can be pre-
sented as a superposition of an exponential described
by the Urbach rule and a set of Gaussians correspond-
ing to various species of point defects. This model per-
mitted us to obtain refined OSEE response curves
which, as shown in [4–6], are emission counterparts of
induced OA spectra. The OSEE data thus obtained can
be used to determine the spectral parameters and con-
centration of photosensitive defects in the emission-
active layer of a material [5–7].
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Fig. 1. OA spectrum of quartz glass obtained after fast-elec-
tron irradiation (2.4 × 1016 cm–2, 10 MeV) and its decom-
position into Gaussian constituents (dashed lines).
PH
3. EXPERIMENTAL RESULTS

3.1. Optical-Absorption and Optically Stimulated 
Electron Emission Spectra

Figure 1 shows induced OA spectra of quartz glass
samples irradiated by fast electrons. Decomposition of
OA spectra in the 4.0- to 5.3-eV region into the constit-
uent Gaussians revealed three maxima located at
4.75 eV (half-width at full maximum ∆ = 0.9 eV),
5.02 eV (∆ = 0.4 eV), and 5.15 eV (∆ = 0.55 eV), with
spectral parameters permitting their assignment to the

, B2α, and B2β centers, respectively [1, 2, 8]. The
curve rising with energy in the range 4.7–5.4 eV origi-
nates apparently from the long-wavelength part of the
E '-center absorption band [1, 8].

The OSEE spectral cutoff for the sample irradiated
at room temperature lies near 4.8 eV. Heating the sam-
ple shifts the cutoff toward lower photon energies, with
a simultaneous steepening of the exponential slope of
the OSEE response curves.

When treated by the technique described in [4–6],
the OSEE spectra of the irradiated samples exhibited
the presence of selective bands (Fig. 2), which permits
their identification with similar bands in the induced
OA spectra (Fig. 1). The OSEE spectra obtained at suf-
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Fig. 2. OSEE spectra of radiation centers in quartz glass
obtained after fast-electron irradiation (10 MeV, 2.4 ×
1016 cm–2) and its decomposition into Gaussian constitu-
ents (dashed lines).
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ficiently low temperatures are dominated by an emis-
sion maximum at 5.02 eV, whose spectral parameters
coincide with those of the α component of the B2-center
OA band [8]. At temperatures above 370 K, an addi-
tional emission band at 4.75 eV appears in OSEE spec-
tra (Fig. 2). When heated still further, this band grows
in intensity and, in addition, undergoes strong thermal
broadening (with ∆ increasing from 0.23 to 0.8 eV).
Taking into account the optical absorption data (Fig. 1),
we assigned the 4.75-eV OSEE band to photoexcited

 centers. This assignment is supported by the obser-
vation that at elevated temperatures, the spectral param-
eters of the corresponding OSEE and OA bands
become nearly identical.

3.2. Photoluminescence Spectra

Luminescence studies of the nonbridging oxygen
atom centers yielded additional data which permitted
us to refine the nature of the OSEE maximum near
4.75 eV. In this experiment, the PL was excited by the
256-nm line (4.85 eV) of the mercury lamp spectrum,

which corresponds to the absorption band of the 

centers. As seen from Fig. 3a, the  emission spec-
trum has a narrow band peaking at 1.9 eV. As the tem-
perature is increased from 80 to 530 K, the lumines-
cence intensity drops by more than an order of magni-
tude. At the same time, the maximum of the
luminescence band shifts from 1.9 to 2.02 eV while
simultaneously broadening from 0.18 to 0.2 eV, which
is in full accord with the data reported in [1–3].

The excitation spectra were measured with a deute-
rium lamp. The excitation spectrum of the 1.9-eV lumi-
nescence in the temperature range 80–515 K is domi-
nated by a broad band peaking at 4.75 eV (Fig. 3b). As
the temperature increases, the intensity of the 4.75-eV
excitation band varies in correlation with that of the
corresponding luminescence peak. We note that this
band in the excitation spectrum does not undergo ther-
mal broadening (∆ = 0.8 eV) or a noticeable shift in the
position of the maximum.

The parameters of the PL excitation spectrum (the
width and position of the maximum) agree well with
the photoelectron emission data. For T > 520 K, the
half-widths of the corresponding bands in the excitation
and OSEE spectra are close in magnitude. This gives us
grounds to assume that the 1.9-eV photoluminescence
and the OSEE processes excited by 4.75-eV photons
are intimately connected and actually represent various

relaxation channels of the same excited state of the 
centers. The relaxation probabilities can undergo sub-
stantial redistribution among the channels with varia-
tions in temperature.

O1
0

O1
0

O1
0

O1
0

PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
3.3. Thermal Quenching of the Luminescence

Studies of the thermal quenching of the PL permit-
ted us to determine the quantitative characteristics of
radiative and nonradiative relaxation of the optically

excited  centers, as well as to confirm the involve-
ment of these centers in the OSEE effect. The lumines-
cence quenching was studied under heating from the
liquid-nitrogen temperature up (Fig. 4). It was taken
into account that the radiative transition probability is
only weakly dependent on temperature [9]. The tem-
perature dependence of the luminescence intensity
I1(T), considered with inclusion of the luminescence
quantum yield ηL, can be written as

(1)

where I0 is the PL intensity for T  0, PL is the lumi-

nescence probability, and EI and  are the activation
barrier and the frequency factor of intracenter lumines-
cence quenching, respectively.

Equation (1) is the well-known Mott law [1, 9] for
intracenter quenching. Fitting the experimental I(T)

curve by Eq. (1) shows that the quenching of the  PL
is well reproduced by Mott’s law only for temperatures
T ≤ 370 K (dashed line in Fig. 4). At higher tempera-
tures, a negative deviation from Mott’s law is observed
to exist; it appears only logical to assign this deviation
to the operation of an additional quenching channel.
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Fig. 3. (a) Emission spectra and (b) excitation spectra of the

 radiation centers localized on nonbridging oxygen

atoms at various temperatures T: (1) 80, (2) 300, and (3) 515 K.
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Assuming this process to be thermally activated, Eq. (1)
can be rewritten in the form

(2)

where I2(T) is the temperature-dependent luminescence
intensity with inclusion of the additional quenching; PE

and EE are the probability and activation energy of the

additional quenching, respectively; and  is a prefac-
tor which is inversely proportional to the shortest char-
acteristic time of the process.

The calculated curve described by Eq. (2) shows a
good fit to the experimental relation (solid line in
Fig. 4). Because luminescence is the dominant relax-

ation channel of the  centers, the radiative transition
probability PL can be found as 1/τ, where τ ~ 20 µs [1]
is the lifetime of the excited state. Knowing PL, one can

find the prefactors  and . The parameters I0, EI ,

and /PL were calculated from Eq. (1) using the part
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Fig. 4. Temperature dependence of the 1.9-eV lumines-

cence intensity of  centers produced in quartz glass by

electron bombardment. Circles are experiment, dashed line
is fitting by Mott’s relation (I1), and solid line is fitting with
inclusion of external quenching (I2).
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Parameters of  center luminescence quenching

I0, cps PI , s
–1 , s–1 EI , eV , s–1 EE , eV

24000 5 × 104 106 0.05 2 × 1010 0.46
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of the experimental curve that obeys Mott’s law. The
results of the fitting are given in the table.

An analysis of the shape of the experimental I(T)
curve in Fig. 4 shows immediately that the initiation of
the additional quenching channel coincides in tempera-
ture (370 K) with the appearance of the 4.75-eV band in
the OSEE spectra (Fig. 2). This observation should be
considered as independent evidence that the processes
responsible for the deviation from Mott’s law (1) and for
excitation of the photoelectron emission are interrelated.

4. DISCUSSION OF RESULTS

To understand the processes underlying the relax-

ation of excited  centers, as well as to establish the
part played by these centers in the photoelectron emis-
sion, it appears appropriate to consider their electronic
structure. According to the model proposed in [1, 2],

the absorption and luminescence bands of the  cen-
ters at 2.0 and 1.9 eV, respectively, derive from elec-
tronic transitions between the split 2p states of the non-
bridging oxygen atom. One of these states is the filled
2px orbital, and the other is the 2py orbital with one
unpaired electron. The origin of the 2p state splitting
can be explained in terms of the dynamic Jahn–Teller
effect; the nonbridging atom occupying a corner of the
oxygen tetrahedron precesses and forms additional
chemical bonds with other oxygen atoms in the same
tetrahedron. According to [1, 2], the electronic transi-
tions responsible for the absorption at 2 eV and lumi-
nescence at 1.9 eV are forbidden, which is in accord
with experimental results; indeed, the oscillator
strength of the 2-eV absorption band is small and the
decay time of the 1.9-eV luminescence band (τ ~ 20 µs)
is substantially larger than the corresponding values for
allowed transitions (τ < 0.01 µs).

Considered within this model, the experimentally
observed 4.75-eV band can be associated with a transi-
tion from the σ-bonding orbital to the 2py antibonding
orbital with an unpaired electron. The allowed charac-
ter of the transition is in accord with the large amplitude
of the 4.75-eV band observed in the OA, luminescence
excitation, and OSEE spectra (Figs. 1–3). The lumines-
cence at 1.9 eV is excited after the σ  2py transition
has been followed by a fast nonradiative 2px  σ
transition and, subsequently, by a radiative 2py  2px

transition. The Mott intracenter quenching of the
1.9-eV luminescence is associated in this case with the
increased probability of nonradiative transitions of the
2py  2px type with an activation barrier of 0.05 eV
(see table). The process of additional quenching occurs
with a considerably higher barrier of 0.46 eV. To con-
firm the external character of the luminescence quench-
ing and its relation to the formation of the 4.75-eV
OSEE band, it appears appropriate to compare the
quantitative characteristics of these processes.

O1
0

O1
0

HYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002



NONRADIATIVE RELAXATION 1675
The quantum efficiency of the additional quenching
ηE can be derived from the PL temperature dependence
(Fig. 4). As follows from a comparison of Eqs. (1) and (2),

(3)

Using Eq. (3), one can compare the numerical values of
the quenching efficiency ηE and integrated intensity of
the 4.75-eV OSEE band (see Fig. 5). As is evident from
Fig. 5, the relation constructed in this manner is linear and
demonstrates an intimate correlation (with a coefficient of
0.99) between the nonradiative relaxation processes and
the OSEE. This result can be considered an argument
supporting the external character of the high-temperature
luminescence quenching and, accordingly, the involve-

ment of  centers in the photoelectron emission.

Auger recombination may be one of the possible
mechanisms by which hole centers can be involved in
electron emission [10]. This mechanism, however,

assumes that the hole is released from the  center. At
the same time, an analysis of the electronic structure of
this center suggests that 0.46 eV is too small an energy
for such a process to be realized (see table). In our case,
resonant transfer of the energy of the 2py  2px elec-

tronic transition from  to the centers donating elec-
trons appears to be the most probable mechanism. The
generation of free electrons, which occurs at tempera-
tures above 370 K, is completed in the final stages of
the relaxation process by their escaping from the sur-
face into vacuum. According to [11], the observed phe-
nomenon should be treated as spectral sensitization of
photoelectron emission in the hole center excitation
band. The activated character of this process may be
due to thermal broadening with a subsequent overlap of
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the emission and absorption bands between centers
releasing and absorbing energy [12].

5. CONCLUSION

Thus, we have shown that photoexcited nonbridg-
ing-oxygen centers in glassy SiO2 can undergo relax-
ation, in general, over three channels. In addition to the
radiative transitions accounting for the 1.9-eV lumines-
cence band, there are two channels involving nonradia-
tive transitions 2py  2px between sublevels of the

photoexcited 2p state of the  center. One of these
nonradiative channels transforms the excitation energy
into thermal lattice vibrations and is actually an intrac-
enter quenching process (EI = 0.05 eV) obeying Mott’s
law. The other nonradiative recombination channel
(EE = 0.46 eV) involves external quenching with exci-
tation transfer to emission-active electronic centers and
manifests itself at certain temperatures in the form of
spectrally sensitized photoelectron emission.
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Abstract—The amplitude-independent dislocation absorption (internal friction) is investigated under the joint
action of constant and random external forces on the dislocation. The action of random forces of different types
are considered with due regard for the inertial properties of the dislocation and the effect of the internal (para-
bolic) potential relief of the crystal. The dependences of the internal friction on the degree of correlation of ran-
dom forces and the parameters of the dislocation and the medium are obtained. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Traditionally, the acoustical properties and the
microstructure of crystals (internal friction) have been
investigated with the use of exciting signals described
by a harmonic function. The dislocation motion under
external harmonic loads, the associated dynamical
properties, and the internal microstructure of crystals
have been examined in sufficient detail [1–10]. How-
ever, up to now, a number of interesting experimental
effects (and, sometimes, their irreproducibility as well)
have defied justified explanation. These effects can be
associated with the manifestation of random actions on
the crystal and its microstructure. External actions on a
material cannot be reduced to harmonic loads alone. In
practice, the material is often subjected to random
mechanical stresses induced by different thermome-
chanical and radiation processes. In order to describe
the behavior of materials under these random loads, it
is necessary to elucidate the mechanisms of energy
absorption by defects of the crystal lattice with the aim
of determining the damping ability of the materials
themselves and their internal microstructure.

The use of a random signal (with known statistical
characteristics) as an exciting action in experiments on
internal friction can also provide a way of deriving new
additional information on the internal structure of the
material.

The specific feature of the action of random loads is
that the correlation of these loads can have a pro-
nounced effect on the dislocation dynamics. In this
respect, the dependence of the internal friction on the
degree of correlation of external actions (in addition to
the dependence on the frequency) is an important char-
acteristic of the dislocation motion and can be used to
obtain new data on the crystal microstructure.

In the present work, we solved a model problem that
permitted us to demonstrate clearly how the random
1063-7834/02/4409- $22.00 © 21676
external loads affect the dislocation (amplitude-inde-
pendent) internal friction and to determine the dynamic
properties of crystals and their microstructure under
random actions.

2. THE EQUATION OF MOTION

Let us consider a dislocation segment that has a
length L, is rigidly fixed at the ends, and executes oscil-
lations under applied constant and random external
stresses. Moreover, the segment interacts with the inter-
nal-stress field, which can be induced by the interaction
of a dislocation with the crystal lattice (the Peierls–
Nabarro relief) or with different aggregates of lattice
defects (point, linear, and other defects). Without going
into the origin of the internal-stress field, we will
assume that the interaction between the dislocation and
this field is described by a linear force dependence.
This dependence corresponds to a parabolic potential
well in which the dislocation resides: U = κu2. The dis-
location displacement u(x, t) in the glide plane at the
point x and the instant of time t from an equilibrium
position is determined by the standard equation of
motion in the elastic-string approximation [1], that is,

(1)

Here, the x axis is parallel to the rectilinear dislocation
at the equilibrium position in the absence of external
stresses, b is the magnitude of the Burgers vector of the
dislocation, m is the effective mass per unit length of
the dislocation, T0 is the effective line tension of the dis-
location, λfr is the coefficient of dislocation dynamic
friction, g(t) = bf0 + bη(t) is the external force acting on
the dislocation per unit length, f0 is the constant com-

m
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ponent of the external stress, and η(t) is the stress pro-
duced under random actions of the medium on the dis-
location string.

In the case when the dislocation moves, for exam-
ple, in a valley of the Peierls–Nabarro relief, the coeffi-
cient κ can vary from ~1015 to ~1019 g/(cm s)2 with a
change in the Peierls stress σP from ~104G to ~10–2G
(where G is the shear modulus) [7]. The motion in
potential wells of another origin can be characterized
by similar or different coefficients κ.

The random actions on the crystal have different ori-
gins. Correspondingly, the random forces can be
described by different models. In the present work, we
will use the following processes for modeling typical
random actions on a dislocation [11]: the telegraph and
generalized telegraph processes, the rectangular-pulsed
process with a fixed width and a random amplitude of
pulses, and the “exponential-saw” process (see the
Appendix). For these processes, the mean amplitude of
signals is equal to zero. In this case, the dislocation
does not undergo regular displacement under the action
of random forces.

The random instants of time ti at which the random
force suddenly changes its action on the dislocation
will be referred to as the flow of events. We will con-
sider the stationary Poissonian flow with the intensity
ν. This means that the mean number of events per unit
time (the mean frequency) is equal to ν. The quantity ν
can be treated as an analog of the frequency of a peri-
odic action. Hence, the quantity ν will be termed the
frequency of the random action. The probability that
the behavior of the force changes n times on the time
interval τ = t2 – t1 is defined by the Poisson formula

 = anexp(–a)/n!, where a = 〈n(t1, t2)〉  is the
ensemble-averaged number of events on the time inter-
val (t1, t2), 〈n(t1, t2)〉  = ντ.

3. INTERNAL FRICTION

As is customary, the logarithmic decrement ∆ is
taken as a measure of the internal friction. However,
since the external action is a random event, the corre-
sponding quantities are averaged over an ensemble of
random forces. Furthermore, in view of the aperiodic
external action, the viscous loss is calculated for a time
chosen equal to the reciprocal of the mean frequency ν.
Consequently, the loss ∆ (damping decrement) is calcu-
lated for the effective period Teq = ν–1 from the relation-

ship ∆ = (N〈A〉)/(2 ). Here, 〈 〉  is the operator of
averaging over the ensemble of random forces, N is the
number of dislocation segments per unit volume,

(2)

Pn t1 t2,( ) n=

Ue1
0〈 〉

A〈 〉 1
T
--- L b f 0 bη t( )+[ ] ∂u x t,( )

∂t
----------------- td

0

T

∫T ∞→
lim xd

0

L

∫=
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is the mean energy dissipated by one dislocation seg-
ment per unit volume in the case of stationary disloca-

tion motion,  = (  + )/2G is the ensemble-
averaged vibrational energy per unit volume of the

crystal, and  is the square of the amplitude (or the
variance Dv) of the random component of the external
force.

Hereafter, without loss of generality, we will con-
sider a typical delta distribution of dislocation segments
over lengths. Other distributions can be treated in a sim-
ilar way.

From relationships (1) and (2), we obtain the expres-
sion for the damping decrement [12]

(3)

Here,

n = 0, 1, 2, …; Λ is the dislocation density; and Kor(S)
is the correlation function of the random component of
the external force. Expression (3) indicates that the
damping decrement depends on the correlation proper-
ties of the random component of the external force.

4. ANALYSIS OF THE RESULTS

4.1. The telegraph process. The calculations per-
formed with inclusion of the correlation function of the
telegraph random process lead to the following rela-
tionship for the decrement:

(4)

where

Figure 1 shows the frequency dependence of the
normalized damping decrement ∆n (where ∆n = ∆/∆*
and ∆* = πGb2ΛL2/2T0) for different damping magni-
tudes D = 2mΩ0/λfr. The frequency characteristic
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involves two portions, namely, a frequency-indepen-
dent plateau and a branch descending with an increase
in the frequency. The decrement in the range of the pla-
teau (the low-frequency range) is governed by the elas-
tic properties of the dislocation and the stiffness of the
internal relief. A decrease in the decrement in the high-
frequency range is associated with the inertial proper-
ties of the dislocation and the friction. The plateau
width, i.e., the frequency range in which the decrement
is independent of the frequency, is determined by the

frequency νcr = λfr(–1 + )/4m. The higher the
frequency νcr, the wider the plateau. At frequencies of
the external random action ν ! νcr, the decrement does
not depend on the frequency and can be represented by
the expression

(5)

where y1 =  and a1 = bκ.

Two types of the frequency characteristics of the
decrement at a constant dislocation length can be
observed depending on the damping magnitude D.

At a light damping (D @ 1), we have νcr ≈ Ω0/2 and
the frequency characteristic exhibits a wide plateau
extending to nearly half the resonance frequency. At
higher frequencies, the decrement in a narrow range
varies in inverse proportion to the frequency; i.e., ∆ ~ ν–1.
In this range, the dislocation motion is governed by the
friction. In the vicinity of the resonance frequency, the
decrement sharply decreases as ν–2. In this case, the
behavior of the decrement is determined by the inertial
properties of the dislocation.

An increase in the damping results in a narrowing of
the plateau. At D2 @ 1, the frequency νcr decreases
compared to that in the preceding case and is deter-
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Fig. 1. Frequency dependences of the decrement at a con-
stant dislocation length L and different damping magnitudes
D. The decrement is normalized to the multiplier
πGb2ΛL2/2T0.
P

mined by the formula νcr ≈ 0.5(Ω0 – λfr/2m). In turn, the
descending branch of the frequency characteristic of
the decrement, which is associated with the friction,
extends over a progressively wider frequency range.

If the damping is heavy (D ! 1), we obtain νcr =
λfrD2/4m = Ω0D/4. In this case, the critical frequency is
considerably lower than the resonance frequency. The
plateau is shifted toward the range of very low frequen-
cies. The frequency characteristic is represented by the
curve smoothly descending with an increase in the fre-
quency. At ν ! λfr/2m, the decrement decreases
smoothly [∆ ~ (λfrν)–1] due to the friction. In the range
ν @ λfr/2m, the decrement decreases steeply (∆ ~ ν–2),
which is explained by the effect of the inertia. The max-
imum loss is observed at ν ! νcr.

When the internal relief is soft [bκ ! T0(π/L)2], the
decrement in the range of the plateau is determined
only by the elastic properties and the length of the dis-
location and can be written as

(6)

As follows from relationship (6), the decrement is pro-
portional to the dislocation length squared and does not
depend on the friction coefficient λfr, dislocation mass,
and stiffness of the internal relief. Moreover, the decre-
ment does not depend on the amplitude (variance) of
the random force in the absence of the constant load
(f0 = 0). Note that, in this case, the normalized decre-
ment is a universal quantity equal to 1/(3π).

For the stiff internal relief [bκ @ T0(π/L)2], the dec-
rement in the range of the plateau is represented by the
expression

(7)

According to expression (7), the decrement does not
depend on the length, mass, elastic properties, and
coefficient of dynamic friction of the dislocation seg-
ment and is governed only by the relief stiffness and
dislocation density. Relationship (7) can be used to esti-
mate experimentally the stiffness κ of the internal
potential relief in which the dislocation resides.

The influence of the internal-relief stiffness κ on the
frequency dependence of the decrement is illustrated in
Fig. 2. It can be seen from this figure that the relief
affects the decrement only in the range of the plateau
and the dependences for different stiffnesses in the
high-frequency range virtually coincide with each
other. This implies that the dislocation motion at these
frequencies of the external action does not depend on
the relief and is determined by the friction and inertial
properties of the dislocation.
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The dependence of the decrement on the dislocation
segment length is controlled by the parameter

Under the condition Leff ! 1, the decrement is char-
acterized by a quadratic dependence on the length, that
is,

(8)

At Leff > 1, we have

(9)

As follows from formula (9), an increase in the disloca-
tion length leads to an increase in the decrement ∆ ~ 1 –
constL–1; however, this increase is smoother than that
observed in the preceding case.

For long dislocation segments with Leff @ 1, we
obtain

(10)

It is seen from expression (10) that the decrement does
not depend on the dislocation segment length and is
determined by a relationship identical to that derived
for the action of a random force of the telegraph type on
a dislocation with free ends [13]. The condition Leff @
1 is satisfied not only for very long dislocations but also
in the case of dislocation motion in a stiff relief [κ >
1015 g/(s cm)2] at dislocation segment lengths larger
than L = 102b for any friction coefficient. This condition
can also be met for the motion in a softer relief at cer-
tain ratios between the dislocation length and the fric-
tion coefficient.

In the case when the random force associated with
the generalized telegraph process (see the Appendix)
acts on the dislocation, the decrement can be repre-
sented in the form

(11)

This model is characterized by dependences similar to
those obtained for the telegraph process. However, for
the model of the generalized telegraph process, the dec-
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rement becomes smaller, the frequency νcr is doubled,
and the amplitude in the corresponding formulas is
replaced by the amplitude variance.

It should be noted that the decrement over the entire
frequency range does not depend on the amplitude
(variance) of the random force when the dislocation
does not experience an additional constant load or its
amplitude is substantially less than that of the random
force. If the constant load is predominant [its amplitude
is considerably larger than the amplitude (variance) of
the random force], the decrement becomes proportional
to the square of the ratio between the amplitude (vari-
ance) of the random component of the external force
and the amplitude of the constant load.

Analysis demonstrates that the stronger the correla-
tion of random forces (the lower the frequency ν), the
larger the damping decrement. For strongly correlated
forces (ν ! νcr), the decrement does not depend on the
degree of correlation.

4.2. The exponential-saw process. From formula (3),
we obtain the expression for the decrement in the form

(12)

where

and α is the attenuation coefficient of the exponential
pulse. It is seen from expression (12) that the decrement
is independent of the frequency ν; i.e., the frequency of
the action of the random force on the dislocation does
not affect the decrement. The behavior of the decrement
is determined by the attenuation coefficient α of a sin-
gle pulse. This coefficient characterizes the degree of
correlation of random forces.
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Fig. 2. Effect of the lattice relief stiffness κ on the frequency
dependence of the normalized decrement ∆n at a constant

dislocation length. κ = (1) 0 and (2) 1015 g/(s cm)2.
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For α ! αcr and the critical coefficient defined by
the formula

(13)

the decrement does not depend on the coefficient α and
can be written as

(14)

In this range of coefficients α, the dislocation behavior
is governed only by the length and elastic properties of
the dislocation and the internal relief. The relationship
for the decrement appears to be identical to that derived
in the case of the random low-frequency action mod-
eled by the generalized telegraph process. By ignoring
the internal-stress field (κ = 0) in the description of the
dislocation motion, expression (14) for the decrement
takes the form

. (15)

When the damping is sufficiently light (D2 @ 1), the
coefficient αcr is close to the resonance frequency Ω0;
that is,

(16)

The decrement ∆(α) remains unchanged at α ! αcr. In
the range of α ~ αcr, the decrement decreases gradually
due to the friction [∆ ~ (λfrα)–1]. At α @ αcr, the decre-
ment decreases sharply (∆ ~ α–2), because the inertial
properties of the dislocation in this range make the
main contribution. For a very light damping (D @ 1),
we have αcr = Ω0. In this case, the range of gradual
decrease in the decrement due to the friction is virtually
absent. With an increase in α, the decrement remains
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Fig. 3. Dependences of the normalized decrement ∆n on the
degree of correlation α of random forces at a constant dis-
location length and different damping magnitudes D.
P

constant almost to the resonance frequency Ω0 and then
decreases steeply (∆ ~ α–2).

If the damping is not light (D2 ! 1), the coefficient
αcr = Ω0D/2 is substantially less than the resonance fre-
quency. The plateau is shifted toward the range of very
low frequencies. At Ω0D/2 ! α < λfr /2m, the curve
∆(α) falls off smoothly as (λfrα)–1. Finally, at α > λfr/2m,
the sharp decrease in the decrement (∆ ~ α–2) is governed
by the inertial properties of the dislocation. The loss is
maximum at α ! αcr. The loss associated with this
mechanism is observed in the range α ! Ω0 for a light
damping and in the range α ! Ω0D/2 for a heavy damp-
ing.

Figure 3 displays the dependences of the normalized
decrement on the degree of correlation α of random
forces for different damping magnitudes D. The depen-
dences of the decrement on the relief stiffness and the
dislocation length are similar to those for a random
force modeled by the generalized telegraph process.

Over the entire frequency range, the dependence of
the decrement on the amplitude variance for the expo-
nential-saw random force exhibits a behavior identical
to that for the telegraph random force.

Analysis shows that the stronger the correlation of
random forces (the less the parameter α), the larger the
damping decrement. For strongly correlated forces
(α ! αcr), the decrement does not depend on the degree
of correlation.

4.3. The rectangular-pulsed process. From rela-
tionship (3), we obtain the following formula for the
decrement:

(17)

where

and δ is the pulse width.
In this case, the decrement is independent of the fre-

quency. The dependence of the decrement on the dislo-
cation segment length and the pulse width is character-
ized by a complex behavior (Fig. 4). When the damping
is relatively light (D2 > 1), the relationship for the dec-
rement includes trigonometric functions, which, in a
number of cases, leads to oscillating dependences of
the decrement on the pulse width and the dislocation

∆ 8Gb2Λ
π2

----------------- 1

f 0
2/Dv( ) 1+[ ]

----------------------------------=

+
1

2n 1+( )2
---------------------- 1

bκ T0 2n 1+( )2 π/L( )2+[ ]
---------------------------------------------------------------

n 0=

∞

∑

× 1
λ fr

2m
-------δ– 

  Anexp–
 
 
 

,

An Bnδ( )cos
λ frδ
2m
---------

Bnδ( )sin
Bnδ

----------------------+
 
 
 

=

HYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002



AMPLITUDE-INDEPENDENT DISLOCATION INTERNAL FRICTION 1681
length. For a heavy damping (D2 < 1), the trigonometric
functions are replaced by the hyperbolic functions and
the dependences on the dislocation length and the pulse
width become monotonic. Let us analyze the limiting
cases of the decrement behavior.

If the inequality λfrδ/2m @ 1 is met, at any damping
magnitude (D > 1 or D < 1) satisfying the condition
λfrδD2/4m @ 1, the decrement is defined by the expres-
sion coinciding with formula (14), which was derived
in the case when the dislocation was subjected to a low-
frequency random force modeled by the generalized
telegraph process or an external random force of the
exponential-saw type (at α < αcr). Under these condi-
tions, the decrement does not depend on the degree of
correlation of external forces (i.e., on the pulse width),
friction coefficient λfr, and inertial properties of the dis-
location and is determined only by the stiffness of the
internal relief of the lattice and the length and elastic
properties of the dislocation.

When the inequality  @ 1 holds, but the damp-

ing magnitude is so large (D2 ! 1) that λfrδD2/(4m) !
1, the decrement is given by

(18)

In this situation, the decrement depends neither on the
mass, length, and elastic properties of the dislocation
segment nor on the stiffness of the internal relief and is
governed by the pulse width and friction.

For λfrδ/2m ~ 1 and a light damping (D2 @ 1), we
have

(19)

where

In this case, oscillations are observed in the depen-
dences of the decrement on the dislocation length L
(Fig. 5). The amplitude of these oscillations does not
depend on the length L and is determined by the value
of λfrδ/2m. The smaller this value, the larger the oscil-
lation amplitude. The oscillation frequency decreases
with an increase in the length L. The dependence of the
decrement on the length L is not periodic, whereas the
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dependence of the decrement on the pulse width,
according to formula (19), is represented by a high-fre-
quency periodic function with an exponentially decay-
ing amplitude.

At a heavy damping (D2 ! 1), the relationship for
the decrement coincides with expression (18).

For λfrδ/2m ! 1 and damping magnitudes D > 1 sat-
isfying the inequality λfrδD/2m ! 1, we obtain

(20)

Under these conditions, the decrement does not depend
on the friction coefficient λfr, the length and elastic
properties of the dislocation segment, and the stiffness
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Fig. 4. Dependences of the normalized decrement ∆n on the
degree of correlation δ of random forces at a constant dislo-
cation length and different friction coefficients λfr: (1) 10–6
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of the internal relief and is proportional to the quantity
δ2m–1.

If the damping is so light (D @ 1) that λfrδD/(2m) @ 1,
the decrement has the form

(21)

The dependence of the decrement on the dislocation
length in this case coincides with that given by relation-
ship (19). The dependence of the decrement on the
pulse width is described by a high-frequency periodic
function with a constant amplitude.

When the damping is heavy (D2 ! 1), the expression
for the decrement takes the form

(22)

Therefore, at λfrδ/2m @ 1 and any damping magni-
tude (D > 1 or D < 1) satisfying the inequality
λfrδD2/4m @ 1, the decrement does not depend on the
degree of correlation of external forces (i.e., on the
pulse width), friction, and dislocation mass and coin-
cides with the decrement observed for a random force
modeled by the generalized telegraph process (in the
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low-frequency range) or an exponential-saw random
force (at α < αcr).

The amplitude dependence of the decrement is iden-
tical to that obtained for random forces modeled by the
generalized-telegraph or exponential-saw processes.

5. CONCLUSIONS
Thus, the regularities of the energy loss by excita-

tion of the dislocation structure under random external
actions essentially differ from those observed under
harmonic actions. Unlike the Granato–Lucke classical
case of periodic actions on a dislocation, the internal
friction in the low-frequency range for the random
actions nonlinearly depends on the frequency. The dec-
rement in this frequency range is considerably larger
than that under periodic actions. The dependence of the
damping decrement on the dislocation segment length
is governed by the parameters of the dislocation, the
medium, and the random force and can exhibit different
behavior in contrast with the corresponding depen-
dence observed under periodic actions (∆ ~ L4).

The decrement behavior substantially depends on
the degree of correlation of random forces. The degree
of correlation is considered to mean the quantity char-
acterizing a decrease in the correlation function. This
quantity is determined by the parameter ν for the tele-
graph and generalized telegraph processes, the parame-
ter α for the exponential-saw process, and the pulse
width δ for the rectangular-pulsed process. The stron-
ger the correlation of external forces, the larger the dec-
APPENDIX
Types and correlation characteristics of random processes

Process Relationships describing the process Correlation function

Telegraph process η(t) = a(–1)n(0, t),
Probability (a = δ0) = Probability (a = –σ0) = 1/2,

Probability ,

Kor(τ) = 

Generalized
telegraph process

η(t) = Vn(0, t) ,

(〈Vi〉  = 0,  〈V2〉  = Dv)
Kor(τ) = 

Exponential-saw 
process

Rectangular-pulsed 
process with a fixed 
width and a random 
amplitude of pulses

Note: n(0, t) is the integer random Poissonian flow; V0, V1,…, Vk are the random statistically independent quantities with the distribution
p(V); N is the number of random points ti on the interval (0, t) [N obeys a Poisson distribution with the parameter 〈N〉  = νt]; and h(t)
is the pulse shape.
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  0 t 0 <,  

=
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  θ 1 τ
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rement. When the degree of correlation exceeds the
threshold value, the decrement becomes independent of
the type of random process. In this case, the decrement
depends neither on the frequency of the action of ran-
dom forces and the coefficient of dynamic friction, nor
on the inertial properties of the dislocation. The thresh-
old degree of correlation is governed by the type of the
process modeling the random force and the parameters
of the problem.

In the case when the constant load is appreciably
larger than the amplitude (variance) of the random
force, the decrement depends on the amplitude. The
amplitude dependence of the decrement is not associ-
ated with hysteresis phenomena.

The inclusion of the internal-stress field results in a
change in the damping decrement. The deeper the
potential well (the larger the coefficient κ) in which the
dislocation executes a motion, the smaller the decre-
ment.
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Abstract—The morphological nature of discontinuous (jumplike) deformation is studied. Recording creep
behavior of materials using a laser interferometer permits one to determine the parameters of deformation
jumps on a micron scale. The objects of investigation were poly(dimethylsiloxane) (PDMS) and a composite
material consisting of PDMS and quartz (SiO2). It is shown that the height and sharpness of jumps depend on
the composition of the material and the stage of deformation. An analysis of differential scanning calorimetry
(DSC) curves of the materials in the deformed and initial states suggests that deformation results in ordered
domains in rubberlike polymers. This confirms the assumption that deformation jumps reflect the presence and
the evolution of structural inhomogeneities in amorphous polymers. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Real bodies, including polymers, have a complex
nonuniform structure on various morphological levels.
According to modern concepts, the creep behavior of
materials at constant external parameters is a process of
structural self-organization and macrodeformation is
ensured by microdeformations on deeper levels. One of
the main features of deformation on various levels is its
localization, i.e., its discontinuous, jumplike develop-
ment, e.g., through the nucleation of disclinations and
dislocations, slip lines and bands, the formation of “sil-
very cracks” in polymers, etc. However, the traditional
techniques of recording creep curves level the hetero-
geneity of the structure and the localization of deforma-
tion revealed by microscopic, x-ray diffraction, and
other methods, and support the concept of a monotonic-
ity of the process with a gradually changing deforma-
tion rate. This contradiction can be eliminated by
increasing the resolution of the methods of measuring
the deformation rate and using new approaches to the
investigation of the kinetics of deformation [1–7]. The
use of an interferometer in the scheme of recording
creep in materials permitted study of the kinetics (rate)
of processes at the level of strain increments beginning
from fractions of a micron, i.e., on a mesoscopic struc-
tural level, and revealing rate changes (deformation
jumps) as a creep property common for various materi-
als. The novelty of the results was in the fact that not
only the phenomenon of the nonmonotonic develop-
ment of deformation on a micron level was established,
but also a regular change in the characteristics of the
jumps at various stages of creep for amorphous poly-
mers, whose structure had no long-range order, was
shown. Usually, the term “discontinuous (jumplike)
deformation” referred to macroscopic (on the order of
1063-7834/02/4409- $22.00 © 1684
a few millimeters) shear bands, which are formed upon
tensile tests at liquid-helium temperatures [8]. In [7],
the deformation is considered as a fundamentally non-
monotonic process.

As to the nature of jumps, the following assumption
was made already in our first work [1]: the deformation
jumps arise because of the existence of nonuniform
(strong and weak) interactions between polymer mole-
cules; these interactions are overcome in deformation
acts, and the scale of the jumps observed depends on
the size of ordered domains typical of a given level.
This assumption is confirmed by correlations with
molecular characteristics [2, 4, 7] and experiments on
model samples of polyethylene [3, 5].

To more completely study the nature of jumplike
acts of deformation, it is necessary to investigate poly-
mers with various chemical and supramolecular struc-
ture in various physical states. Earlier, main attention
was paid to solid amorphous and amorphous–crystal-
line polymers.

In this work, we consider changes in the rate of
deformation on a mesoscopic level for poly(dimethylsi-
loxane) (PDMS) and a composite consisting of PDMS
and SiO2. These materials are interesting since at 300 K
the polymer is in a rubberlike state and can crystallize
upon cooling.

1. EXPERIMENTAL

Samples of cross-linked PDMS as well as PDMS
filled with quartz particles (40 wt % SiO2) were inves-
tigated. At 300 K, PDMS is in an amorphous rubberlike
state. The samples were deformed at a constant stress in
the regime of creep at 300 K. Using an interferometer
[1–7], the creep process was recorded as successive
2002 MAIK “Nauka/Interperiodica”
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L

Fig. 1. An interferogram of discontinuous creep. The period of the rate variation, or the height of a jump, is L = 0.6 µm. Each beat
is equal to an increment of deformation by 0.3 µm.
beats, each corresponding to a deformation increment
of 0.3 µm (Fig. 1). The relative rate of deformation is
calculated by the formula  = , where λ = 0.63
µm is the laser wavelength, ν is the beat frequency or
an average frequency of several beats, and l0 is the ini-
tial length of the sample. Figure 1 displays an interfer-
ogram in which the rate of deformation (frequency of
beatings) changes periodically. The period L of the rate
variation expressed as the number of oscillations multi-
plied by 0.3 µm is equal to the height of the deforma-
tion jump. Since the periodicity in the beat frequency is
by no means always clearly pronounced, the periods L
were usually determined from the dependence of the
rate  (calculated from the frequencies of successive
beat in the interferogram) on the number of beats
(Figs. 2–5). The period of the rate changes, or the
height of the deformation jump, is equal to the number
of points in a period multiplied by 0.3 µm. Another
characteristic of a jump is its sharpness h, i.e., the ratio
of the maximum rate to the minimum rate within each
period. The table lists the average values of L and h for
small periods (calculated from five oscillations) and the
maximum parameters of the jumps near the general
microdeformations indicated in the table.

The tensile samples were 20 mm long and 2 mm
thick; the compression samples were 6 mm in height
and 4 mm in diameter.

In [9], using the infrared dichroism and birefrin-
gence methods, a proportionality was shown to exist
between the molecular orientations and the degree of
extension of PDMS at 300 K. In this work, for the
investigation of changes in the structure of the polymer
after deformation, we used the ability of PDMS to crys-
tallize upon cooling. Using differential scanning calo-
rimetry (DSC), we measured the thermal effect upon
phase transition [10]. A DSC-2 Perkin–Elmer calorim-
eter was used; the rates of cooling and heating were
5 K/min. The assumption on the formation of a hetero-
geneous structure in the process of deformation of the
polymer at 300 K was checked as follows. The samples

ε̇ λν /2l0

ε̇

PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
stretched to 40% at 300 K were cooled to below the
melting temperature Tm; then, upon heating, we
recorded the DSC curve in the melting range of the
crystals and compared the DSC curves of the deformed
and undeformed samples of PDMS and PDMS + SiO2.

2. RESULTS AND DISCUSSION

In the rubberlike state, the main deformation of the
polymer is developed during loading, then the creep
rate decreases rapidly. To obtain the same degree of
deformation, the PDMS samples should be subjected to
smaller stresses than the composite samples and to
smaller stresses during tensile tests than upon compres-
sion tests; therefore, it is impossible to compare the
creep behavior of such materials at identical stresses
and strains and main attention was paid to deformation
under tension. Fragments of creep curves of the materi-
als studied are shown in Figs. 2–5 in the strain-rate–
strain coordinates; each point in the curves shown

4

2

0
35.05 35.10 35.15 35.20

ε, %

ε,
 1

0–
5  s

–
1

.

Fig. 2. Variation of the creep rate as a function of deforma-
tion upon tension for poly(dimethylsiloxane). Each point
corresponds to the creep rate within an interval of 0.3 µm.
The stress is σ = 0.15 MPa.
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Fig. 3. PDMS + SiO2, same as in Fig. 2, σ = 0.2 MPa.
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Fig. 4. PDMS + SiO2, same as in Fig. 2, σ = 0.35 MPa.
refers to a deformation increment of 0.3 µm. The main
result of the work is that the deformation jumps (the
nonuniform deformation rate) are observed for the
polymer in the rubberlike state even at relatively small
deformations (Fig. 3). It is seen from Figs. 2–5 and
from the table that the periods L of the variation of the
deformation rate, or the deformation jumps, can be
divided into two groups. The periods Lmin of the small-
est variations are approximately the same upon tension
and compression (see table). With increasing deforma-
tion ε, small jumps unite into coarser ones (Lmax) con-
sisting of smaller jumps (Figs. 4, 5 and table). Upon
tension, the amplitude of variations of the deformation
rate (h) is usually higher than upon compression, which
is in general typical of various polymers and various
deformation stages. The greater sharpness and the more
PH
complex shape of jumps upon tension can be explained
by the formation of microcracks under the effect of ten-
sile stresses. The greatest variety of jumps was
observed upon tension of the composite, which can be
attributed to shears not only in pure polymer but also in
the adhesion layers at polymer–quartz interfaces.

It was shown, using composite samples as an exam-
ple (see Figs. 3–5 and table), that with increasing defor-
mation (and stress), there occurs an increase in the
period L of jumps and the formation of large jumps
from smaller ones. An analogous evolution of the peri-
ods of the variations of the deformation rate was
observed upon deformation of glassy and crystalline
polymers in [1, 3, 5, 7].

By definition, deformation jumps reflect the cooper-
ative behavior of kinetic units and, consequently, are
YSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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Fig. 5. PDMS + SiO2, same as in Fig. 2, σ = 0.55 MPa.
related to the heterogeneity of the polymer morphol-
ogy. The information on the morphology of amorphous
polymers is contradictory, but the concept of a cross-
linked structure formed by “physical nodes” between
fragments of neighboring chains can be considered to
be commonly accepted.

Strong interactions between groups of atoms in
neighboring molecules and the most densely packed
regions of molecular chains can serve as physical
nodes. Strong bonds correspond to large relaxation
times; weak bonds, to small relaxation times; i.e., the
nonuniformity of interactions in amorphous polymers
is sufficient grounds for the appearance of a stepped
type of motion. It is more difficult to explain what fea-
tures are associated with the scale of jumps in amor-
phous polymers, where the presence of clearly pro-
nounced elements of packing of micron size has not yet
F THE SOLID STATE      Vol. 44      No. 9      200
been proved. In this case, an analogy with dislocation
models can be drawn; these models were not first
applied to amorphous bodies, since such bodies do not
contain classical dislocations. The situation changed
when Gilman suggested the model of the formation,
under the action of a force, of a gliding dislocation
loop, which travels on the plane in which maximum
tangential stresses act. Similarly, we suppose that struc-
tural nonuniformities of micron sizes can arise in amor-
phous polymers under the effect of directional forces
and deformations. For PDMS, it was shown in [9] that
the molecules become oriented upon deformation. In
the process of orientation, ordered domains can arise
(because of a greater degree of local orientation of
chain fragments and because of their denser packing),
similar to the situation where fibrils are formed upon
extension of amorphous–crystalline polymers. The
Parameters of deformation jumps for PDMS and PDMS + SiO2

Material and loading mode Stress, MPa ε, % Average values 
of Lmin , µm Lmax, µm Average

values of h hmax

PDMS, tension 0.15 35 0.9 1.2 2.5 3

PDMS, compression 0.65 30 0.9 3 1.3 2.2

PDMS + SiO2, tension 0.2 11.3 1.0 1.5 6.0 10

0.25 14.3 1.25 5.4 3.0 4.0

0.35 23.4 1.25 9.0 2.5 3.0

0.45 31.3 1.6 9.0 3.0 4.5

0.55 33.6 1.8 50 3.5 7.0

PDMS + SiO2, compression 1.5 26 1.0 1.5 1.4 1.5
2



 

1688

        

PESCHANSKAYA 

 

et al

 

.

                                    
length of the initial ordered domains in amorphous
polymers is supposed to correspond approximately to
the length of a stretched molecule (fractions of a
micron, microns). Such “amorphous fibrils” can deter-
mine the scale of deformation jumps that can be solved
using this technique. In the process of deformation, as
follows from experiments (Figs. 2–5), coarser jumps
are formed from smaller ones and complex jumps
appear sometimes [3, 4], which indicates an evolution
of the structure that can be called “kinetic.”

The above suggested concepts were confirmed in
this work by the investigations (using the DSC tech-
nique) of structural change upon deformation. At
300 K, poly(dimethylsiloxane) is in a rubberlike state,
but upon cooling it passes into an amorphous–crystal-
line state (the melting temperature is Tm = 230 K, and
the temperature of transition into the glassy state is
Tg = 150 K). It turned out that the DSC spectra of
PDMS and composite films that were stretched at
300 K and cooled to below Tg broaden significantly
upon heating in the region of Tm as compared to similar
spectra for undeformed samples (Fig. 6).

The effect for the composite is somewhat higher; in
addition, a shift of the spectra of deformed samples
toward higher temperatures by 2–3 K is noted. The
broadening of the DSC lines suggests that the deforma-
tion of the polymer in the rubberlike state increases the
dispersion of crystallites that are formed at low temper-
atures; i.e., the structure of a deformed amorphous
polymer contains a greater number of nuclei for crystal-
lites than in the undeformed material. In the filled poly-

200 220 240 260 280 300
T, K

E
nd

o

Fig. 6. DSC curves: (1, 1') undeformed sample and (2, 2')
sample stretched to 40% at 300 K. Solid lines, PDMS;
dashed lines, composite. 

dH/dt = 0.2 mW

1

1'

2

2'
P

mer, the number of variations of crystals can increase
because of the existence of boundary layers between
the polymer and SiO2; therefore, the DSC line for the
composite turns out to be broader than that for a pure
polymer. Thus, the data obtained support the assump-
tion on the appearance of heterogeneity in the polymer
structure oriented upon deformation even for the rub-
berlike state when the relaxation times are small. The
data on discontinuous creep and the results of DSC are
in good agreement; the introduction of a filler increases
the variety of the characteristics of jumps and the vari-
ation of crystals.

The above results prove that the assumption that it is
the heterogeneity of the medium that is the cause of the
discontinuous (jumplike) character of creep is also con-
firmed for amorphous polymers. Therefore, the investi-
gation of the kinetics of deformation on a mesoscopic
level gives information on the scale of ordered struc-
tural domains and on their evolution during deforma-
tion.
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Abstract—Carbon fibers with inclusions of cobalt nanoclusters are prepared by heat treatment of carboxylated
cellulose containing cobalt cations. The influence of the heat treatment conditions on the structuring of the car-
bon matrix and cobalt clusters, the magnetization hysteresis loop, the temperature dependence of the conduc-
tivity, and the magnetoresistance is investigated. It is established that the cobalt-containing carbon fibers heat
treated at TM = 700 and 900°C possess superparamagnetic and ferromagnetic properties, respectively. It is
shown that fibers heat treated under different conditions are characterized by different conduction mechanisms
and can exhibit anisotropic and giant magnetoresistances and also the effects associated with the influence of
magnetic field on the processes of weak localization and spin–orbit scattering. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Over the last decades, the electronic properties of
granular metals have been extensively investigated by
experimental and theoretical methods. Granular ferro-
magnets belong to the subclass of granular metals in
which metallic nanoparticles consisting of a ferromag-
netic material are introduced into a nonmagnetic
matrix. Either nonmagnetic metals (Ag, Au, and Cu) or
dielectrics (SiO2 and Al2O3) are traditionally used as
nonmagnetic matrices. These materials possess quite
different magnetic, magnetoresistive, and transport
properties, which can be controlled by choosing the
composition of the materials and the shape and struc-
ture of magnetic nanoparticles. The size-dependent
magnetic characteristics [1] and the giant [2] and tunnel
[3] magnetoresistive effects are among the most
intriguing properties of these materials. However, the
mechanisms of electron transfer in these systems, espe-
cially in the vicinity of metal–insulator junctions, are
still not clearly understood. In this range, the electrical
conductivity is determined, to a large extent, by the
properties and structure of thin interlayers between
metallic particles, because these interlayers, as a rule,
are strongly disordered and can vary in composition.

Investigation into the magnetic and transport prop-
erties of these nanostructured materials is not only of
purely scientific importance but also of applied signifi-
cance in respect to the development of magnetic-mem-
ory elements with a giant density and magnetic-field
pickups on the basis of the giant or tunnel magnetore-
sistive effects. The giant and tunnel magnetoresistive
effects are observed in the cases of metallic and dielec-
tric matrices, respectively. At the same time, the phys-
ics of electron transfer processes that are responsible
1063-7834/02/4409- $22.00 © 21689
for the giant and tunnel magnetoresistive effects in a
magnetic field calls for further investigation. In order to
gain a better insight into the magnetism and the mech-
anisms of magnetotransport in these systems, it is also
important to investigate the structural and electrical
properties in the case when the conductivity of the
matrix is intermediate between the conductivities of
metals and dielectrics.

Granular solids are usually produced by simulta-
neous or sequential deposition of metal and insulator
layers [4, 5], the sol–gel method [6], or a combination
of ion-beam sputtering and preparation of a matrix in an
inert-gas flow [7]. Alternatively, metallic nanoparticles
in the matrix with different electrical conductivities can
be prepared by heat treatment of carboxylated cellulose
fibers after replacement of protons in COOH groups of
the cellulose by metal cations through the ion-exchange
sorption. An atomically uniform distribution of metal
cations over the fiber bulk in the course of sorption can
provide a uniform distribution of metallic nanoparticles
in carbon fibers upon heat treatment under the appropri-
ate conditions.

The present paper reports on the results of a system-
atic investigation into the structural, magnetic-field,
and temperature dependences of the electrical conduc-
tivity and the magnetoresistance for CoxC1 – x carbon
fibers containing cobalt clusters at different concentra-
tion ratios between cobalt and carbon. Cobalt, like
nickel, is the main metal used for preparing granular
ferromagnets. Carbon was chosen as the matrix mate-
rial, because its conductivity can be easily changed by
varying the temperature and conditions of heat treat-
ment.
002 MAIK “Nauka/Interperiodica”
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2. SAMPLE PREPARATION

Cobalt clusters in the carbon matrix were produced
by heat treatment of carboxylated cellulose fibers after
substitution of cobalt cations for protons in COOH
groups of the cellulose through the ion-exchange sorp-
tion. Tricarboxycellulose (polymeric acid) was used as
carboxylated cellulose. Tricarboxycellulose was
obtained by introducing three carboxyl groups into
each monomer unit of a cellulose macromolecule
according to the reactions

(1)

(2)

Tricarboxycellulose synthesized through reactions (1)
and (2) retained the fibrous structure of the initial cellu-
lose (viscose fibers). As follows from chemical analy-
sis, the content of COOH groups in tricarboxycellulose
was equal to 2.8–35.0 wt %. Cobalt cations were intro-
duced into the tricarboxycellulose matrix from aqueous
solutions of cobalt acetate at a solid-to-liquid ratio of
1 : 50 and a temperature of 20.0 ± 0.2°C through ion-
exchange sorption according to the reaction

(3)

The concentration of cobalt acetate solutions was
0.125 M, which provided the maximum substitution of
cobalt cations for protons of tricarboxycellulose. The
cobalt content in tricarboxycellulose varied from 2.5 to
3.1 mmol/g.

The samples were heat treated under vacuum (with
a residual pressure of 1.3 Pa) at a heating rate of
3 K/min. After heating to the final heat treatment tem-
perature TM (700 or 900°C), the samples were isother-
mally treated for 30 min with the aim of stabilizing

C6H7O2 OH( )3[ ] n nHIO4+

C4H5O2 OH( ) CHO( )2[ ] n nHIO3 nH2O,+ +

C4H5O2 OH( ) CHO( )2[ ] n 2nN2O4+

C3H3O2 COOH( )3[ ] n 4nNO nH2O.++

2 C3H3O2 COOH( )3[ ] n 3nCo2++

C3H3O2 COOH( )3[ ] 2Co3{ } n 6nH+.+

Effect of the duration of preliminary annealing of the cobalt
salt of tricarboxycellulose (the cobalt content in polymeric
acid is equal to 2.7 mmol/g) in air at TP = 300°C on the cobalt
content in carbon fibers prepared by annealing under vacuum
at TM = 700 and 900°C

No. Time τ of annealing
at 300°C in air, h

Mole fraction of cobalt
in carbon fibers

TM = 700°C TM = 900°C

1 0 0.138 0.146

2 0.5 0.159 0.185

3 1.0 0.177 0.198

4 2.0 0.251 –

5 3.0 0.606 –
P

thermochemical transformations in the annealing prod-
uct. The heat treatment resulted in the formation of car-
bon fibers that had cobalt inclusions and reproduced the
texture of the cellulose precursor. When it is necessary
to obtain spatial formations with a complicated config-
uration, this method offers an advantage, as the initial
cellulose fibers possess a high flexibility.

The thermostimulated transformations in tricarbox-
ycellulose fibers under the above conditions led to a
considerable decrease in their size and mass (the fiber
diameter decreased from 1.5 to 0.5 mm, and the mass
loss was as large as 70%) due to the removal of volatile
low-molecular products, for the most part, in the form
of carbon monoxide and carbon dioxide.

The maximum mole fraction x of cobalt in the
CoxC1 – x fibers prepared from cobalt salts of tricarboxy-
cellulose at the annealing temperatures used did not
exceed 0.19. This appeared to be insufficient for reach-
ing the metal–insulator transition. In order to increase
the cobalt content in the carbon matrix, we modified the
regime of heat treatment of the metallocellulose precur-
sors. Essentially, the modification was as follows: prior
to the thermal annealing under vacuum, the metallocel-
lulose fibers were heat treated at 300°C in air for τ =
0.5–3 h. This led to more intensive oxidation reactions
in the cellulose matrix and to an increase in the total
mass loss in the sample and the cobalt content in the
carbon fiber (see table). As can be seen from the table,
the preliminary annealing of tricarboxycellulose con-
taining 2.7 mmol/g Co at TP = 300°C for 3 h made it
possible to obtain carbon fibers with a mole fraction of
cobalt as large as 0.60.

The cobalt content in the CoxC1 – x fibers was inde-
pendently determined by chemical (gravimetric) analy-
sis and Auger spectroscopy. In the case of gravimetric
analysis, the fibers were calcined at a temperature of
850°C to transformation into Co3C4 and the cobalt con-
tent in the cobalt-containing carbon fibers was calcu-
lated from the weight of the reaction product. The
cobalt contents determined in the carbon fibers by these
two methods were slightly different, possibly, because
the chemical method offers an integral estimate,
whereas the Auger spectroscopic data refer only to a
thin surface layer. For this reason, we presented the data
obtained by the chemical method and Auger spectros-
copy was used to check the presence of foreign ele-
ments in the fibers. The carbon matrix reliably protects
the cobalt clusters against oxidation. The stability of the
cluster structure in the carbon matrix is indicated by the
fact that the electrical and magnetic characteristics of
the CoxC1 – x fibers remained constant over the course of
a year.

3. EXPERIMENTAL TECHNIQUE

The distribution of cobalt clusters over the carbon
fiber, their structure, and the influence on the structur-
ing of the carbon matrix were investigated using trans-
HYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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mission electron microscopy (TEM) on a Philips CM
300UT-EFG transmission electron microscope at an
accelerating voltage of 300 kV with a resolution of
about 1.5 Å. The magnetization hysteresis loops were
recorded on a Faraday magnetometer. The temperature
dependences of the electrical resistance and the magne-
toresistance were measured with samples prepared by
cutting the fibers into 6- to 8-mm-long pieces to which
copper wires were cemented using a silver paste. The
current–voltage characteristic in the range covered was
linear. The temperature dependences of the resistance
and the magnetoresistance were measured in a dc mode
in the temperature range 2–300 K at magnetic fields as
high as 1.2 T.

4. RESULTS

4.1. Structuring of the matrix and cobalt clusters.
Examination of the TEM images of fibers (Figs. 1–5)
prepared at different heat treatment temperatures
revealed that the heat treatment leads to the formation
of cobalt clusters inside the carbon fibers. As can be see
from Figs. 1 and 2, the mean size of the cobalt clusters
at the heat treatment temperature TM = 700°C is approx-
imately equal to 10 nm. The clusters are rather uni-
formly distributed over the fiber bulk and have a poly-
crystalline structure. No structuring of carbon is
observed.

A general view of the matrix and clusters in the car-
bon fiber annealed at TM = 900°C is displayed in Fig. 3.
An increase in the annealing temperature leads to an

20 nm

Fig. 1. TEM image of the fiber annealed at TM = 700°C.
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increase in the cluster size. In this case, the diameter of
the cobalt clusters varies from less than 30 to 200 nm or
greater and their distribution over the fiber bulk
becomes nonuniform.

It is seen from Fig. 4 that the cobalt clusters have a
catalytic effect on the formation of graphite planes.
This process most intensively occurs in the region
between two closely spaced cobalt clusters. It can also
be seen from this figure that a layer composed of graph-
ite planes surrounding the cobalt cluster is formed in
the matrix. The layer of graphite planes has an imper-
fect structure in regions far from other clusters. The
twisting of the graphite planes around the cobalt clus-
ters induces mechanical stresses in regions between
spherical formations, which leads to the appearance of
pores in these regions.

Note that the introduction of the cobalt clusters into
the amorphous carbon matrix results in the formation of
extended regions 100 nm in size or greater with parallel
graphite planes, as is shown in Fig. 5. The interplanar
distance d is of the order of 0.370 nm. This is somewhat
larger than the corresponding distances in turbostratum
carbon, which is characterized by the absence of regu-
lar orientation of layers with respect to the hexagonal
axis (d = 0.344 nm), and pyrolytic graphite (d =
0.335 nm) but is typical of strongly disordered fibers [8].

4.2. Magnetization. The magnetization hysteresis
loops measured at room temperature for the cobalt-con-
taining carbon fibers annealed at TM = 700 and 900°C
are depicted in Fig. 6. The magnetization for a particu-
lar magnetic field strength increases with an increase in

10 nm

Fig. 2. Structure of the cobalt cluster in the fiber annealed at
TM = 700°C.
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the heat treatment temperature and the cobalt content in
the carbon fibers. It is seen that the fibers annealed at
TM = 700°C with x = 0.123 and 0.157 do not possess
remanent magnetization (Fig. 6, curves 1, 2). This indi-
cates that the blocking temperature of magnetic
moments of the clusters is below room temperature;
i.e., the system of cobalt clusters at 300 K is in the
superparamagnetic state. The blocking temperature

500 nm

Cobalt
cluster

Carbon
matrix

Fig. 3. TEM image of the fiber annealed at TM = 900°C.

10 nm

Fig. 4. TEM image of a fiber region with structuring of car-
bon between cobalt clusters upon annealing at TM = 900°C.
PH
estimated according to [9] for the system of cobalt clus-
ters with a cluster diameter of 10 nm, which is most
characteristic of this heat treatment temperature
(Fig. 1), is less than 100 K.

An increase in the magnetization with an increase in
the concentration of cobalt cations in tricarboxycellu-
lose and in the annealing temperature is caused by an
increase in the cluster size. The fibers annealed at TM =
900°C with the cobalt contents x = 0.146 and 0.187 pos-
sess remanent magnetization with the equal coercive
force BC = 0.043 T (Fig. 6, curves 3, 4). The cobalt clus-
ters, whose size in these fibers can be as large as 200 nm
or greater (Fig. 3), are in the ferromagnetic state, which
explains the remanent magnetization of the carbon
fibers annealed at TM = 900°C.

4.3. Temperature dependence of the resistance.
With the use of the above procedures and heat treatment
conditions, we prepared three groups of samples exhib-
iting different behavior of the temperature dependences
of the resistance R(T) and magnetoresistance R(B)
Since the dependences R(T) for the samples belonging
to each group differed only quantitatively, one sample
from each group was chosen for analysis.

Figure 7 shows the temperature dependences of the
resistance for three samples on the linear (Fig. 7a), log-
arithmic (Fig. 7b), and T1/2 (Fig. 7c) scales. The num-
bering of the samples corresponds to that of the groups
of the samples. The samples of the first group (0.146 ≤
x ≤ 0.187) were prepared by the aforementioned tech-
nique with annealing under vacuum at TM = 900°C and
without intermediate annealing at 300°C in air. The
experimental dependences R(T) and R(B) are given for
sample no. 1 with x = 0.187. As is seen from Fig. 7

10 nm

d = 0.37 nm
(graphite)

Fig. 5. TEM image of a fiber region with structuring of car-
bon in the form of graphite planes upon annealing at TM =
900°C.
YSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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(curve 1), the temperature coefficient of resistance for
this sample is negative; hence, we can make the infer-
ence that this sample corresponds to the dielectric side
of the metal–dielectric transition. The temperature
dependence of the resistance is linear on the logarith-
mic scale (Fig. 7b).

The procedure of preparing sample no. 2 with x =
0.198 involved preliminary annealing at TP = 300°C for
1 h in air followed by annealing under vacuum at TM =
900°C for 0.5 h. The dependence R(T) for this sample
(Fig. 7, curve 2) exhibits a minimum at T = 45 K. The
temperature coefficient of resistance is positive in the
high-temperature range and negative in the low-tem-
perature range. The minima in the curves R(T) are
observed for all samples of the second group with a
change in the low-temperature annealing time in the
range 0.5 ≤ τ ≤ 1 h.

For sample no. 3 with x = 0.251, the time τ of the
preliminary annealing at TP = 300°C in air was equal to
2 h and the temperature TM of the high-temperature
annealing was 700°C. The temperature dependence of
the resistance for this sample is typical of “dirty” met-
als. As the temperature decreases, the resistance
decreases and reaches saturation at low temperatures.
Other samples of this group with the preliminary
annealing time τ varying in the range 1–3 h have a sim-
ilar dependence R(T).

The change in the behavior of the dependence R(T)
(when changing over from sample no. 1 to sample
no. 3) with a variation in the annealing temperature
reflects an increase in the structural perfection of the
percolation channels providing the charge transfer.
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Fig. 6. Magnetization hysteresis loops at T = 300 K for
cobalt-containing carbon fibers annealed at TM = (1, 2) 700
and (3, 4) 900°C. Mole fraction x of cobalt in carbon fibers:
(1) 0.123, (2) 0.157, (3) 0.146, and (4) 0.187.
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These channels consist of cobalt clusters with a pro-
nounced crystal structure and intercluster regions that
are characterized by a considerable degree of disorder-
ing and, possibly, include the carbon phase.

4.4. Magnetoresistive effect. The magnetic-field
dependences of the magnetoresistance ∆R(B)/R(0) =
(R(B) – R(0))/R(0) for the samples of three groups at
different temperatures with the magnetic field applied
normally to the fiber are plotted in Figs. 8 and 9. The
dependences of the magnetoresistance on the magnetic
field for samples of these groups differ significantly. It
is worth noting that the magnetoresistance of the sam-
ples of all the groups involves a negative magnetoresis-
tance component over the entire studied range of mag-
netic fields –1.2 ≤ B ≤ 1.2 T. The negative magnetore-
sistance component of all the samples increases with a
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Fig. 7. Temperature dependences of the resistance normal-
ized to the resistance at T = 255 K on different scales for
fiber samples prepared under different heat treatment condi-
tions: (1) TM = 900°C, x = 0.187, without preliminary heat
treatment; (2) TM = 900°C, x = 0.198, τ = 1 h; and (3) TM =
700°C, x = 0.251, τ = 2 h.
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decrease in the temperature and exhibits a similar
behavior in the magnetic field. In this respect, the typi-
cal magnetic-field dependences of the magnetoresis-
tance are represented only for samples of the first group
at different temperatures in Fig. 8. The magnetoresis-
tance of the samples of different groups differs only in
weak magnetic fields, in which the positive magnetore-
sistance component is observed for the fibers of all the
groups (Fig. 9). The magnetoresistance of sample no. 1
(Fig. 9a) is positive only in weak magnetic fields at a
temperature of 2 K, whereas only the negative compo-
nent is observed at higher temperatures. No hysteresis
is found in the magnetoresistance curves; i.e., the mag-
netoresistance does not depend on the prehistory and
the direction of magnetic field scanning.

The dependence of the magnetoresistance for sam-
ple no. 2, which is characterized by the minimum in the
temperature dependence of the resistance, also exhibits
unusual behavior. As for the samples of the first group,
the magnetoresistance of this sample, in the low-tem-
perature range is positive without hysteresis. An
increase in the temperature is attended by the disap-
pearance of the positive magnetoresistance component
for sample no. 2. However, unlike sample no. 1, the
positive magnetoresistance component again arises at
temperatures above 50 K (Fig. 9b). It can be seen that
the local minimum in the magnetoresistance curve at
this temperature is shifted with respect to B = 0 and is
located approximately at B = 0.07 T when the magnetic
field changes from 1.2 T toward negative fields. The
change in the magnetic field in the opposite direction
leads to a symmetrical shift of the local minimum
toward positive magnetic fields.

The positive magnetoresistance component is
observed for the samples of the third group over the

1

2
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4
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∆R
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0

Fig. 8. Typical magnetic-field dependences of the magne-
toresistance for cobalt-containing carbon fibers of the first
group at different temperatures T (K): (1) 2.2, (2) 10, (3) 50,
and (4) 100.
PH
entire temperature range 2 K ≤ T ≤ 100 K (Fig. 9c).
However, the magnetic-field dependence of the magne-
toresistance substantially changes in the range of weak
magnetic fields: as the temperature decreases, the pro-
nounced local minimum shifted with respect to B = 0 at
high temperatures (Fig. 9c, curves 3, 4) is smeared and
manifests itself as a plateau in the curves R(B) at low
temperatures (Fig. 9c, curves 1, 2). The direction of the
shift of the local minimum in the magnetoresistance
curves depends on the prehistory. As a consequence,
there occur hysteresis phenomena in the magnetoresis-
tance of the samples of the third group (Fig. 10).
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Fig. 9. Magnetic-field dependences of the magnetoresis-
tance for cobalt-containing carbon fibers of (a) the first,
(b) second, and (c) third groups at different temperatures in
weak fields. Curves 1–4 are measured at the same tempera-
tures as those in Fig. 8.
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5. DISCUSSION

It is evident that the differences in the magnetiza-
tion, the temperature dependence of the resistance, and
the magnetoresistance of the samples of the three
groups under investigation are associated primarily
with the cobalt content in the CoxC1 – x fibers and the
degree of coagulation of the cobalt clusters in the car-
bon matrix. The samples of the first group with a low
cobalt content correspond to the dielectric side of the
metal–dielectric transition and are characterized by a
logarithmic temperature dependence of the resistance.
This dependence is predicted for two-dimensional dis-
ordered systems [10, 11] and is not typical of three-
dimensional systems, including the CoxC1 – x fibers
studied in our work. The reason for this behavior of the
dependence R(T) is still unclear. Peng et al. [12]
observed the logarithmic dependence R(T) is observed
for three-dimensional films of Cox(CoO)1 – x granular
metals. It was established that the logarithmic depen-
dence R(T) is observed only in the case when individual
clusters are separated by a very thin layer of a tunnel-
transparent dielectric or metal point contacts.

Two mechanisms responsible for the logarithmic
dependence R(T) with a negative temperature coeffi-
cient of resistance are known for two-dimensional dis-
ordered systems: a weak localization due to the inter-
ference of electron wave functions [11] and an alterna-
tive effect associated with the Coulomb electron–
electron interaction [10]. These effects manifest them-
selves differently in the magnetic field. The magnetic
field suppresses the weak localization and leads to neg-
ative magnetoresistance. At the same time, a moderate
magnetic field does not affect the electron–electron
interaction. The experimental data obtained allow us to
draw the inference that the weak localization mecha-
nism occurs for CoxC1 – x fibers of the first and second
groups at low temperatures. Actually, the spin–orbit
interaction suppressing the interference of the wave
functions owing to the spin reorientation upon scatter-
ing results in the antilocalization of electrons and,
hence, in alternating magnetoresistance [13]. There-
fore, the observed positive magnetoresistance associ-
ated with the spin–orbit scattering in the CoxC1 – x fibers
at low temperatures and the deviation of R(T) from the
logarithmic dependence at the lowest temperatures
count in favor of the weak localization mechanism. The
spin-dependent electron scattering by magnetic clus-
ters, i.e., the giant magnetoresistance, can also contrib-
ute to the negative magnetoresistance. However, since
the conductivity of the carbon matrix is low and has a
nonmetallic character, it can be assumed that this con-
tribution is not dominant for the samples of the first
group.

The cobalt content x in the samples of the second
group is equal to 0.185–0.198. The temperature depen-
dence of the resistance for the samples of this group at
high temperatures is characteristic of metallic conduc-
tivity. At T < 45 K, the weak localization proceeding in
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the samples leads to a logarithmic temperature depen-
dence of the resistance (Fig. 7, curve 2). As a conse-
quence, at low temperatures and in weak magnetic
fields, the positive magnetoresistance manifests itself
owing to the spin-orbit scattering. With an increase in
the temperature, the positive component of the mag-
netoresistance decreases and vanishes, as is the case
with samples of the first group. However, unlike the lat-
ter samples, the positive magnetoresistance component
for the samples of the second group again appears at
T > 45 K in the form of a maximum shifted with respect
to B = 0, thus reflecting the domination of the metallic
conductivity upon the suppression of weak localization
due to an increase in the temperature.

The cobalt content x in the samples of the third
group varies from 0.251 to 0.60, which exceeds the per-
colation threshold for three-dimensional systems. In
this case, individual cobalt clusters coalesce into con-
tinuous metallic percolation channels. The metallic
conductivity in these samples manifests itself in the
positive temperature coefficient of resistance and the
residual resistance at low temperatures.

As was noted above, the magnetic-field depen-
dences of the magnetoresistance for CoxC1 – x fibers of
the third group exhibit a complex behavior due to a
superposition of the positive and negative components.
Examination of the magnetoresistance demonstrates
that the minimum of the positive magnetoresistance
component is shifted to the magnetic field BS = 0.078–
0.08 T with respect to B = 0, whereas the minimum of
the negative magnetoresistance component is observed
at B = 0 over the entire temperature range. It should be
noted that the direction of the shift of the positive mag-
netoresistance component at a minimum with respect to
B = 0 is determined by the direction of the magnetic
field scanning (see Fig. 10). Therefore, it can be
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Fig. 10. Magnetoresistance hysteresis loop for a sample of
the third group at T = 4.2 K.
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assumed that the positive magnetoresistance is associ-
ated with the remanent magnetization that results from
the formation of an infinite cobalt cluster and is
observed for the samples of the given group. The rema-
nent magnetization is characteristic of ferromagnetic
films and wires, whereas the positive magnetoresis-
tance in these systems is a manifestation of the aniso-
tropic magnetoresistance [14–16]. As the temperature
decreases, the pronounced local minimum in the curves
R(B) in the vicinity of B = BS transforms into a plateau
(Fig. 9c). This change in the shape of the curves R(B) is
caused by an increase in the negative magnetoresis-
tance component with a decrease in the temperature,
because the positive magnetoresistance component
only weakly depends on the temperature. The plateau at
B = BS in the magnetoresistance curves for sample no.
3 appears at temperatures for which the slopes of the
curves R(B) for the positive and negative magnetoresis-
tance components become equal in magnitude.

The specific feature of the studied fibers is that the
positive magnetoresistance component is found in a
magnetic field applied perpendicularly to the fiber. The
positive magnetoresistance component in granular fer-
romagnetic films is observed only in the case when the
magnetic field is aligned along the direction of current
flow, i.e., along the film plane. It is reasonable to
assume that the clusters in the fibers under consider-
ation form a three-dimensional percolation network
built up of metallic channels whose resistance can
strongly fluctuate over the fiber bulk. In this network,
the current predominantly flows along the fiber; how-
ever, there are regions in which the current, to a greater
or lesser extent, flows normally to the fiber axis, i.e.,
along the magnetic field. These regions in the three-
dimensional network of metallic percolation channels
are responsible for the positive component of the aniso-
tropic magnetoresistance in the magnetic field perpen-
dicular to the fiber.

The remanent magnetization of these network
regions leads to a shift of the minimum of the positive
magnetoresistance component with respect to B = 0.
Since the remanent magnetization of the formed infi-
nite cluster does not result in a shift of the negative
magnetization component, we can state that this com-
ponent is unrelated to the anisotropic magnetoresis-
tance. We believe that the negative magnetoresistance
component is associated with the spin-dependent elec-
tron scattering by cobalt clusters, i.e., with the giant
magnetoresistance effect, even though this effect in the
CoxC1 – x fibers is far from giant, because the parameters
of the system (the size of magnetic clusters and the
intercluster distance) are not optimum for the manifes-
tation of the effect. The weak manifestation of the giant
magnetoresistance effect and the superposition of the
negative and positive magnetoresistance components
were observed earlier in granular ferromagnetic films
with a high content of the magnetic component [15].
The large size of magnetic clusters and the small free
P

path in the carbon matrix account for the small negative
magnetoresistance and the absence of the hysteresis in
the CoxC1 – x fibers studied. Note also that the negative
magnetoresistance can also be due to the suppression of
the weak localization by the magnetic field; however,
the contributions of the aforementioned two processes
cannot be separated because of the small negative mag-
netoresistance.

It is of interest to consider the change in the origin
of the positive magnetoresistance for samples of the
second group under variations in temperature. It can be
expected that the system of magnetically interacting
clusters will become ferromagnetically harder with a
decrease in the temperature. However, the shift of the
minimum in the positive-magnetoresistance curves for
samples of the second group due to the manifestation of
bulk ferromagnetic properties and, correspondingly, the
magnetization hysteresis occurs at high temperatures.
This fact can be explained by the change in the mag-
netic interaction between the magnetic clusters. The
anisotropic magnetoresistance effect for samples of the
second group (Fig. 9b, curve 3) is observed at the same
temperatures as the crossover from the weak localization
mechanism to metallic conductivity (Fig. 7, curve 2).
Whether or not this coincidence is accidental is unclear.
Possibly, the exchange interaction, which is responsible
for the magnetic ordering in the ensemble of the cobalt
clusters and, hence, for the manifestation of collective
ferromagnetic properties, proceeds through the
exchange of free electrons between the clusters. At low
temperatures, the weak localization results in a
decrease in the electron exchange rate, which should
weaken the indirect magnetic exchange interaction
between the cobalt clusters. Therefore, these clusters in
the CoxC1 – x fibers behave as a system of noninteracting
magnetic clusters. At high temperatures, the suppres-
sion of the weak localization leads to an enhancement
of the exchange interaction and the fibers exhibit col-
lective ferromagnetic behavior and, consequently, the
anisotropic magnetoresistance.

6. CONCLUSION

Thus, it has been demonstrated that cobalt clusters
can be produced in a carbon matrix upon heat treatment
of carboxylated cellulose in which cobalt cations are
introduced through the ion-exchange sorption. This
makes it possible to control the structuring of the car-
bon matrix and to prepare different composite carbon
materials. In particular, these materials can (i) possess
both superparamagnetic and ferromagnetic properties,
(ii) have positive and negative temperature coefficients
of resistance and the conductivity typical of metals and
dielectrics, and (iii) exhibit different mechanisms of the
magnetoresistance. These materials can find applica-
tion in devices of magnetic recording, storage, and
reading of information.
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Abstract—Magnetization and remagnetization processes in a close-packed nanodispersed barium hexaferrite
powder sample in the magnetically stable state were analyzed. Reversibility effects were discussed in terms of
interparticle interaction. Judging from the magnetization curve and the parameters characterizing remagnetiza-
tion irreversibility, the sample under study is a model system of small Stoner–Wohlfarth particles. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental studies of the properties of magnetic
powder materials used in nano- and microelectronics
pass, as a rule, over the problem of model approxima-
tion of objects as complex as highly dispersed systems.
Generalization of results of investigations and estab-
lishment of the causes of observed deviations from the-
oretical predictions are complicated because of the size
and, in specific cases, chemical-composition distribu-
tions of particles.

The investigation of systems of single-domain nano-
and micrometer particles includes two basic aspects:
revealing of the possible occurrence of a superpara-
magnetic state of particles with a volume close to criti-
cal under a temperature–field exposure, and analysis of
the influence of the rough free surface of particles on
their properties. Some of the results of our study were
reported earlier in [1, 2]. The emphasis in this paper is
on model approximation of an object, refinement of the
nature of magnetization and remagnetization in fields
of various strength, and determination of the parame-
ters of these processes.

2. SAMPLE PREPARATION

We studied hexagonal barium ferrite with an unsub-
stituted magnetic BaFe12O19 host in the form of a nano-
dispersed powder produced using cryochemical tech-
nology [3]. Barium and iron nitrates highly soluble in
water were used as initial components. The solution
concentrations were 1–2 and 0.3–0.32 mol/l for
Fe(NO3)3 and Ba(NO3)2 solutions, respectively. The
solutions were mixed in a stoichiometric (for the end
product) ratio (6 : 1). The solution, in the form of a
monodisperse flow of drops, was subjected to cryocrys-
tallization followed by sublimation drying. To stabilize
1063-7834/02/4409- $22.00 © 21698
the chemical system homogeneity at the subsequent
technological stages, complex formation was used. Cit-
ric acid was used as a complexing agent. The produced
salt mixture was annealed without flux at T = 1173 K
for 2 h. The chosen technological conditions allowed
complete ferritization and crystallization of particles
with an average size of 60 nm in the basal plane and an
aspect ratio of 2–3. X-ray and Mössbauer studies of the
powder sample at room temperature do not detect any
unintentional phases or para- or superparamagnetic
particles.

3. MAGNETIZATION CURVES

The measurements were carried out with a ther-
mally demagnetized close-packed (packing factor p of
approximately 0.4) powder sample. Figure 1 displays
an experimental magnetization curve measured at
300 K; the material is in a magnetically stable state.
This curve, in contrast to the case of a macroscopic
analogous crystal in fields up to 4 kOe, exhibits a linear
increase in the magnetization followed by a drastic
growth. The magnetization change in fields above
8 kOe indicates that in a field equal to the macroscopic-
crystal anisotropy field (Ha = 17.8 kOe), there is no sat-
uration. Figure 1 also shows a magnetization curve cal-
culated theoretically in the Stoner–Wohlfarth (SW)
model for a system of randomly oriented identical non-
interacting magnetically uniaxial single-domain parti-
cles under the assumption of homogeneous rotation of
their magnetization vectors [4]. For convenience of
comparison, the anisotropy field of the SW model sys-
tem is assumed to be that of barium ferrite and the mag-
netization is given in relative units. One can see that the
experimental dependence correlates well with the cal-
culated SW curve. The shift of the position of the mag-
002 MAIK “Nauka/Interperiodica”
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netization jump in the experimental curve to weaker
fields with respect to the jump in the calculated curve is
due to the fact that the sample under study is character-
ized by an effective-anisotropy-field distribution of par-
ticles in the range Ha = 8–18 kOe [2].

To establish the nature of the magnetization process
for various portions of the experimental curve, partial
and major hysteresis loops were studied (the latter is
shown in Fig. 1). From the data obtained, the depen-
dence of the magnetization reversal field HS on the
amplitude of the magnetizing field H was determined
(Fig. 2). One can see that the field HS is zero for mag-
netizing-field amplitudes up to 3.0 kOe; i.e., the mag-
netization reversal proceeds without hysteresis. Hence,
the initial linear portion of the magnetization curve cor-
responds to reversible processes of magnetization vec-
tor rotation.

As is known, the field value separating the regions
of reversible and irreversible rotation (threshold field
H0) for a magnetically uniaxial particle depends on the
orientation of the easy magnetization axis and on the

value of the anisotropy field [5]. The minimum (  =

Ha/2) and maximum (  = Ha) threshold fields are
characteristic of particles with an easy-axis orientation
θ = 45° and θ = 0°, 90° with respect to the field, respec-
tively. In the case of chaotically oriented particles with
a unique value of Ha, particles with easy-axis orienta-
tions different from θ = 45° are gradually involved in
irreversible rotation as the magnetizing field increases
from H = Ha/2 up to H = Ha.

In considering the threshold fields for the system
under study, one should also take into account the dis-
tribution of the anisotropy fields of particles and the
effect of thermal fluctuations. According to the classifi-
cation from [6], the particles of the system at hand are
small SW particles. The criterion is the ratio between
the actual volume V of particles and the critical volume
VS for the transition from the magnetostable to super-
paramagnetic state. Particles for which VS < V < 1000 VS

are referred to as small. This condition is met at 300 K
not only for the finest (V/VS ~ 3.5) and intermediate
(V/VS ~ 130) but also for the largest (V/VS ~ 600) parti-
cles of the system under study. As the ratio V/VS

decreases, the threshold field is reduced and its depen-
dence on the angle θ is flattened in comparison to that
for large SW particles (V/VS  ∞) [7]. The latter fac-
tor makes it possible to consider the magnetic behavior
of the disordered system under study to be similar to the
behavior of particles oriented at an angle θ = 45°. From
the above discussion, it becomes clear why the lower

boundary of the threshold field range is  ~ 
and the dependence of the magnetization reversal field
on the magnetizing-field amplitude is saturated at a

field of the order of 9 kOe rather than at  =
17.8 kOe (Fig. 2).

H0
min

H0
max

H0
min Ha

max

Ha
max
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The limiting value of the magnetization reversal
field HS is the coercivity HC, which is an important
parameter characterizing the magnetic state of particles
and powder quality in terms of a model approximation.
According to [4], the coercivity for an array of chaoti-
cally oriented identical noninteracting single-domain
particles is related to the effective anisotropy field as

(1)HC 0.48Ha,=

Fig. 1. Normal magnetization curve and major hysteresis
loop of a nanodispersed powder sample of barium hexafer-
rite at 300 K: (I) experiment and (II) calculated magnetiza-
tion curve. Dashed curves are the magnetization curve and
hysteresis loop taking into account the interparticle interac-
tion.

Fig. 2. Dependence of the magnetization reversal field on
the magnetizing field amplitude at 300 K.
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where the effective anisotropy field is given by

(2)

Here, HK is the magnetocrystalline anisotropy field and
NIS is the shape anisotropy field.

Equation (2) is valid for microcrystalline powders of
BaFe12O19 ferrite. As shown in [8], the anisotropy field
measured using various methods in these materials is,
on the average, 13.8 (〈d〉  = 0.11 µm) and 13.65 kOe
(〈d〉  = 0.42 µm). In this case, the shape anisotropy field
(NIS ~ 4.8 kOe) is responsible for the decrease in the
anisotropy field in comparison with the case of a mac-
roscopic crystal.

For the nanocrystalline system studied in this work,
the average effective anisotropy field is close to that of

the above-mentioned microcrystalline systems (  =
12.4 kOe). As in the case of microcrystals, the domi-
nant contribution to the magnetic anisotropy comes
from the magnetocrystalline anisotropy. However, the
shape anisotropy field of platelike particles of the sys-
tem under study, even with the maximum aspect ratio
d/h = 3, is an order of magnitude weaker than the mag-
netocrystalline anisotropy field (HK = 17.8 kOe, NIS ≅
1.8 kOe); the surface anisotropy is responsible for the
decrease in the effective anisotropy field in this case.

The coercivity found in this work from the major
hysteresis loop is 5.3 kOe.

The underestimated values of HC in comparison
with the value given by Eq. (1) are usually explained by
such causes as the presence of multidomain or super-
paramagnetic particles and magnetic interaction
between particles [9–11]. As indicated above, the size
of particles in the system under study does not exceed
the critical size for the single-domain state (d = 1.3 µm
[12]) and all of the particles are in the magnetically sta-
ble state at 300 K. Taking into account that in the sys-

Ha HK NIS.–=

Ha
˜〈 〉

Fig. 3. Field dependences of the remanent magnetizations
mr and md.
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tem at hand the particle volume is close to its critical
value, the influence of thermal fluctuations should be
considered above all.

According to [7], the true average anisotropy field
〈Ha〉  of the system of particles is related to the experi-

mentally observed field  as

(3)

where the coefficient Z is determined by thermal fluctu-
ations and can be found from the equation

(4)

Here, k is the Boltzmann constant, 〈V〉  is the average
volume of particles of the system, IS is the magnetiza-
tion, and µ0 is the vacuum permeability.

Our numerical calculations gave the value Z = 1.04,
which corresponds to the true anisotropy field 〈Ha〉  =
12.9 kOe and the coercivity HC = 5.5 kOe. The dis-
agreement between the value of HC found with account
of thermal fluctuations and the value determined by for-
mula (1) with 〈Ha〉  substituted for the true anisotropy
field (HC = 6.2 kOe) necessitates estimation of the role
of the interparticle interaction.

4. INTERPARTICLE MAGNETIC
INTERACTION

It is generally believed that the magnetic interaction
between small particles of a close-packed system can
significantly affect its properties. The interaction can be
either positive or negative, promoting a sample magne-
tization or demagnetization, respectively. As indicated
in [13], both interaction types take place in the systems
of barium hexaferrite particles; however, as a rule, one
of these types dominates.

In this study, in order to estimate the interparticle
magnetostatic interaction in a nanocrystalline close-
packed powder sample of barium hexaferrite, we
employed a technique based on measurement of the
field dependence of the remanent magnetizations
mr(H) = σr(H)/σr(∞) and md(H) = σd(H)/σd(∞). The iso-
thermal remanent magnetization σr is measured on a
thermally demagnetized sample by cycling the partial
and major hysteresis loops with a gradual increase in
the measuring field amplitude; σr(∞) is the value of σr

found by extrapolation of the σr = f(1/H) dependence to
an infinite field. The remanent magnetization σd is pro-
duced by magnetizing the sample to saturation fol-
lowed by a field decrease down to zero, then reversing
the field sign (direction) and increasing the field to a
preset value, and then turning the field off. The quantity
σd(∞) is analogous to σr(∞) and is an extrapolated value
of σd in an infinite field.

Ha
˜〈 〉

Ha〈 〉 Z Ha
˜〈 〉= ,

Z 1–( )Z 0.3– 50kT

V〈 〉 IS Ha
˜〈 〉µ 0

-------------------------------- 
  0.7

.=
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According to [14], the mr(H) and md(H) depen-
dences for a system of noninteracting magnetically
uniaxial single-domain particles are related as

(5)

Any deviation from linearity in the md(H) = f(mr(H))
graph (Henkel plot [15]) indicates interaction between
the particles.

Figure 3 shows the experimental field dependences
of mr and md, and Fig. 4 presents a Henkel plot con-
structed on their basis for the powder sample under
study. The concavity of the experimental md = f(mr)
curve with respect to a straight line indicates that the
negative interaction dominates in the array of particles.

Since the Henkel plot compares the remanent mag-
netizations mr and md in the same field, we also ana-
lyzed the magnetization and remagnetization processes
by using an additional, more informative technique [16]
in which the deviation from Eq. (5) is considered as a
function of the applied field:

(6)

One can see from the dependence shown in Fig. 5
that the effect of the interaction manifests itself in the
field range 3–9 kOe, which, according to the data of
Fig. 2, corresponds to irreversible magnetization pro-
cesses. The maximum interaction (∆m = –0.34) is
observed for fields of 6–6.5 kOe. The portions of the
normal magnetization curve and of the saturation hys-
teresis loop taking the interparticle interaction into
account are indicated in Fig. 1 by dashed lines. It turns
out that the negative interaction, as a destabilizing fac-
tor, manifests itself only in the region of the magnetiza-
tion jump, while the threshold fields and coercivity are
almost unaffected by the interaction in the system at
hand. For example, the correction to the value HC =

md H( ) mr ∞( ) 2mr H( )– 1 2mr H( ).–= =

∆m H( ) md H( ) 1 2mr H( )–[ ] .–=

0.5

0

–0.5

–1.0

0.2 0.6 0.80.4

md

mr

Fig. 4. Henkel plot.
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5.3 kOe can be as small as 100 Oe. As a result, the true
coercivity found when taking into account thermal fluc-
tuations and the interparticle interaction is equal to 90%
of the theoretical value.

5. CONCLUSION

Thus, we have shown that the magnetic behavior of
a nanodispersed powder sample of high-anisotropy bar-
ium hexaferrite can be rather well described by the clas-
sical model as applied to an array of small Stoner–
Wohlfarth particles. This allows one to conclude that
magnetization proceeds via coherent rotation in parti-
cles with a volume close to the critical value.

The negative interparticle magnetic interaction
detected in the close-packed array of disordered nano-
crystals manifests itself in the field range correspond-
ing to irreversible magnetization and has no apprecia-
ble effect on either the shape of the magnetization curve
or the values of the coercivity and critical fields charac-
terizing the magnetization mechanism.
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Abstract—The stroboscopic method was applied to study the evolution of dynamic spiral domains in garnet
ferrite films in an ac magnetic field. The spiral-domain shape was shown to change significantly within a field
period; the basic shape transformations take place in the phase range –π/4 to +π/4 with respect to the polarity
inversion time. During the spiral-domain formation or decay, the area and shape of a hysteresis loop of the film
region containing the domain gradually change. The upper boundary of the frequency range in which spiral
domains form was established to be associated with transformations of the domain wall structure. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Spiral domains represent an interesting case of the
ordered domain structure of a magnetic material,
attracting the attention of many researchers. Dynamic
spiral domains can be formed in uniaxial magnetic
films in certain frequency and amplitude ranges of an ac
magnetic field [1–4]. Spiral domains can also be
formed in a pulsed field [4–7], in a quasi-static field [8,
9], under laser radiation [10], in two-layer films [11],
and in very thin films [12].

Available experimental data on dynamic spiral
domains in an ac magnetic field are not strictly related
to the field phase. Due to poor temporal resolution,
micrographs of domain structures often display an inte-
gral state of the structure over a time comparable to or
exceeding a field period. Therefore, we can no more
than speculate on the correspondence between domain
structure micrographs and the remagnetization phase,
which makes the interpretation of experimental data
more complicated. In particular, there is no unambigu-
ous answer to the question of whether the spiral-
domain formation in an ac magnetic field (of frequency
f ~ 102–103 Hz) is controlled by the dynamic mecha-
nisms of domain wall motion or if it is a superposition
of quasi-static processes producing insignificant varia-
tions from one field period to another. The remagneti-
zation mechanisms determining the boundaries of the
frequency range in which dynamic spiral domains
occur are also unclear.

This work is aimed at a direct study of the formation
mechanisms of dynamic spiral domains. To this end, we
studied the evolution of these domains over a period of
the ac magnetic field by detecting dynamic domain
structures using the stroboscopic method.
1063-7834/02/4409- $22.00 © 21703
2. EXPERIMENTAL

Dynamic spiral domains were studied with a mag-
netooptical setup using the Faraday effect. The setup
allows one to record hysteresis loops in the field fre-
quency range f = 10–4–2 × 105 Hz and to simultaneously
view images of dynamic domain structures correspond-
ing to various portions of a hysteresis loop by using the
stroboscopic method with a temporal resolution of
0.8 µs [13]. A transversely pumped (by microwave
radiation) helium–neon laser with a modulated supply
voltage was used as a pulsed light source [14]. Adapt-
able variation of the laser switching mode made it pos-
sible to apply the stroboscopic method with a tuned
strobing multiplicity, Kst = 1, 2, 3, … . To detect nonre-
curring processes when recording dynamic domain
structures using a video camera, we selected the setup
operating condition by varying the strobing multiplicity
such that the dynamic domain structure was recorded in
one video frame over one laser pulse.

In addition to the conventional method of recording
dynamic hysteresis loops from an oscilloscope screen
when a sequence of loops for many remagnetization
cycles is included in a single frame, the setup allows
one to strobe and video record a dynamic hysteresis
loop for a single remagnetization cycle. To this end, we
synchronized the laser pulse in phase and duration with
a field period by tuning the pulse duration.

The ac magnetic field was produced by Helmholtz
coils 2.5 mm in diameter applied perpendicular to the
film plane. A sample area 1.5 mm in diameter was
studied.

Single-crystal garnet ferrite films were used as sam-
ples. To compare our results with the available data on
002 MAIK “Nauka/Interperiodica”
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(d) (e) (f)

(g) (h) (i)
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100 µm

Fig. 1. (a) Static (H = 0) and (b–l) dynamic domain structures in a garnet ferrite film corresponding to various phases of an applied
ac magnetic field with frequency f  = 2 kHz and amplitude HM = 38 Oe: (b) 0°, (c) 30°, (d) 60°, (e) 90°, (f) 100°, (g) 125°, (h) 135°,
(i) 200°, (j) 224°, (k) 292°, and (l) 328°.
spiral domains, we chose a (Tm,Bi)3(Fe,Ga)5O12 film
with parameters comparable to those of the samples
studied in [2–4, 15–17], namely, thickness h = 5.8 µm,
equilibrium width of stripe domains w = 8.7 µm, satu-
ration magnetization Ms = 10 G, uniaxial anisotropy
constant Ku = 1.3 × 104 erg cm–3, and damping constant
α = 0.09.
PH
3. EXPERIMENTAL RESULTS

In an equilibrium state, the film possessed a domain
structure in the form of stripe or labyrinth domains
(Fig. 1a). To achieve an equilibrium state, the structure
was placed in an ac magnetic field with a frequency f =
50 Hz and with an amplitude slowly decreasing to zero.
YSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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Spiral domains were formed in the field frequency
range f = 0.5–5 kHz at the field amplitudes HM = 43 ±
5 Oe. Stripe domains can be twisted into microspirals
in a significantly wider range of the field frequency
(0.1–20 kHz); however, we did not take into account
spiral domains with a number of turns less than two. In
this case, the longest lifetime (3–8 s) and the shortest
expectation time (5–8 s) of the spiral structure were
observed at the frequency f ~ 2 kHz. Therefore, this fre-
quency was chosen for the study of the spiral-domain
evolution over a field period (Figs. 1b–1l). The time
separation between video frames is 80 field periods.
Since the spiral-domain lifetime (elapsed from its
nucleation to decay) is about 104 field periods, the num-
ber of spiral turns changes insignificantly for several
tens of periods.

Spiral domains could also be formed in higher-fre-
quency fields [4, 17], up to f ~ 100 kHz. However, this
requires a dc bias field Hb applied perpendicular to the
film plane; this field must increase and, simultaneously,
the ac field amplitude HM must decrease with increas-
ing frequency. The field amplitude HM and the field Hb

varied steadily (as in [4]) as the frequency was
increased; no frequency ranges in which nucleation of
spiral domains was impossible [17] were observed. In
the whole frequency range, the maximum magnetic
field HM + Hb applied to the film corresponded to the
hysteresis transition region between a uniformly mag-
netized state and a labyrinth domain structure [4].

The spiral domains shown in Figs. 1b–1l are most
typical of the indicated magnetic-field phases. The
domains were formed in the same region of the sample
at different instants of time. The spiral twist direction
can vary since the dc bias field Hb is zero [3].

At the instant of field polarity inversion, a spiral
domain is strongly distorted (Fig. 1b). As the field
increases, the amplitude of quasiperiodic distortions of
the spiral turns and their “appendixes” (branches)
decrease (Fig. 1c). Spiral-turn smoothing is virtually
completed at a phase of 60° (Figs. 1b–1d). After the
peak field is passed, small-scale untwisting of the spiral
center takes place (Fig. 1f) and is followed by distortion
of spiral turns (Figs. 1g, 1h). As the field polarity is
inverted (in the next field half-cycle), the pattern
repeats (Figs. 1i–1l). Thus, a significant change in the
spiral domain shape takes place within the magnetic-
field period, with the number of spiral turns remaining
virtually unchanged.

The shape of domains of the same polarity changes
differently as the field varies within a half-cycle: bend-
ing distortions increase as the field decreases (Figs. 1g,
1h, 1l), and appendixes are formed as the field increases
(Figs. 1c, 1i).

The hysteresis loop shape is closely related to the
spiral-domain formation [4, 15]. The major and minor
hysteresis loops of a film under a quasi-statically varied
magnetic field are similar to those typical of garnet fer-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
rite films with a low coercive field (Fig. 2; the loop
recording time is about 200 s). During the formation or
decay of a spiral domain in the ac field, we recorded a
hysteresis loop simultaneously with domain detection
by focusing a laser beam onto the sample area occupied
by a spiral. The hysteresis loop area gradually changed
for a few seconds when the spiral formed and curled.
Certainly, the loop area changed in steps from one field
period to another. However, as strobing of dynamic
hysteresis loops for individual remagnetization cycles
showed, the step size is insignificant. At the field fre-
quency f ~ 2 kHz, the steps are inappreciable when hys-
teresis loops are observed on the oscilloscope screen

M a

b

H

Fig. 2. Major (HM = 120 Oe) (curve a) and minor (HM =
38 Oe) (curve b) hysteresis loops of a garnet ferrite film in
the case of a quasi-statically varying magnetic field.

M a

b

H

Fig. 3. Minor hysteresis loops in an ac magnetic field with
amplitude HM = 38 Oe and frequency f = 2 kHz for the same
film area occupied by labyrinth domains (curve a) or a spi-
ral domain (curve b).
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and manifest themselves as an increase in the oscillo-
scope beam diameter in separate portions of a loop.

As in [15], hysteresis loops had the least area in the
case of the spiral domain structure (Fig. 3, curve b). An
increase in the loop area and in the maximum film mag-
netization (Fig. 3, curve a) corresponds to spiral decay
and transition to the labyrinth domain structure. No
loop jumps as observed in [15] were found. The hyster-
esis loop of the spiral domain is characterized by a
downward deviation of the ascending loop branch from
the hysteresis loop branch of the stripe domain struc-
ture (Fig. 3). The deviation is smaller than the theoreti-
cally calculated value [18].

4. DISCUSSION

Compression and expansion of a stripe domain
forming a spiral within a period of the magnetic field
are accompanied by a change in the structure of its
domain walls and, hence, by redistribution of the effec-
tive mass along the walls. This is indicated by the for-
mation of appendixes in the spiral domain regions,
which are clearly distinguishable over part of the mag-
netic-field period (Figs. 1c, 1i). Earlier, the formation of
lateral appendixes was observed in studying spiral-
domain formation, but only under a pulsed field during
the pulse [6, 7] or after the pulse was turned off (in a
frozen structure) [4, 5].

The formation of spiral-domain appendixes and
branches is due to the finite saturation velocity of
domain walls [19], which was, according to high-speed
photography data with an exposure time of 5 ns [20],
Vs ~ 10 m s–1 for our sample. Notwithstanding the low
average velocity of domain walls over a field period at
the frequency f ~ 2 kHz, separate regions of the spiral
domain, due to jumplike motion, reach a critical veloc-
ity Vcr (during jumps) at which the domain wall struc-
ture changes and wall regions with different effective
masses (and, hence, different velocities) arise. We
observed such phenomena both at the spiral-domain
center during the spiral formation or its decay and at
the periphery during the transformation of branches.
The jumps are caused by local pinning of domain
walls (at film defects) and their breaking away under
changes in the instantaneous values of the ac field, as
well as by the hysteresis of the transformation of
stripe magnetic domains into bubble domains and vice
versa [21].

The probability that the critical velocity Vcr will be
reached during jumplike motion of a domain wall is rel-
atively high. According to our calculations carried out
using various models of domain wall motion [19], the
critical velocity for the sample at hand is reached in a
driving field Hcr = 1.2–2 Oe, which is comparable to the
coercive field for the film (Hc ~ 0.6 Oe for a quasi-static
hysteresis loop and Hc > 1 Oe for a dynamic loop, at
f > 0.1 kHz).
P

It is noteworthy that the upper boundary fh of the fre-
quency range in which spiral domains form in an ac
magnetic field is due to the dynamic properties of
domain walls and depends on the maximum rate of the
magnetic-field variation. As the field frequency
increases, the hysteresis loop area increases; further-
more, the transformation of the structure of dynamic
domain walls and the formation of regions with differ-
ent effective masses in domain walls result not only in
branching but also (even more frequently) in breaking
of stripe domains (as in the case of formation of bubble
magnetic domains in a pulsed field [19]). These pro-
cesses prevent the formation of a spiral domain, which
is, in fact, a long curled stripe domain. To find a gener-
alized parameter defining the boundaries of the fre-
quency range in which spiral domains form is an objec-
tive of further investigations. Difficulties encountered
in reaching this goal can be associated with significant
variations in the shape and parameters of spiral
domains, as well as in the amplitude of domain wall
vibrations, that are produced by changes in the mag-
netic-field frequency.
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Abstract—A method is proposed for analyzing magnetic phase transitions within the Ising model under the
conditions of competing direct and indirect exchange interactions. It is demonstrated that the competition of
exchange interactions leads to a reentrant phase transition between the ferromagnet and spin glass near the per-
colation threshold below the Curie temperature. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although spin-glass systems have been intensively
studied over many years [1], their properties in the
vicinity of the percolation threshold have yet to be
explained reasoning from the essentially different (and,
sometimes, mutually exclusive) assumptions put for-
ward [2–4]. In particular, Efimova and Ustimenkova [5]
and Delyagin et al. [6] proposed a number of alternative
explanations of the formation of magnetic structures
with the properties of the so-called reentrant spin
glasses, in which the second magnetic phase transition
to the spin-glass state is observed at a temperature
below the Curie point. In the present paper, the possi-
bility of the magnetic phase transitions occurring in
amorphous alloys with competing exchange interac-
tions is considered in the framework of the Ising model.

2. THE DISTRIBUTION FUNCTION
OF INTERACTION FIELDS

Earlier [7, 8], we demonstrated that the distribution
function for random interaction fields W(H) in an amor-
phous ferromagnet is determined by the following rela-
tionship:

where

n* =  is the number of ferromagnetic atoms per unit

volume, ϕ(m, r) describes the law of their interaction,
and τ(m) is the particle distribution function with

W H( ) A ρ( ) iρH–{ }exp ρ,d∫=

A ρ( ) n*a–{ } ,exp=

a 1 iρϕ m r,( ){ }exp–[ ]τ m( ) md V ,d∫=

N
V
----
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respect to the magnetic moments, which, in the Ising
model, has the following form:

(1)

Here, µ is the magnetic moment per atom, ϑ  is the angle
responsible for the orientation of m with respect to the
Z axis, α + β = 1, and (α – β) is the relative magnetic
moment of the system. Within the approximation in
which the expression for a contains only the terms qua-
dratic in ρ, we obtain the relationship

where

The advantage of this relationship over those used
earlier in the spin glass theory is that the basic charac-
teristics of the distribution function H0 and B are related
through the interaction law ϕ(r).

After averaging of the relative magnetic moment
(α – β) in terms of the Gibbs distribution and over con-

figurations, the self-consistent equation for 
takes the form

or

(2)

τ m( ) = 
1

m2
------δ m µ–( ) 1

ϑsin
2

------------- αδ ϑ( ) βδ ϑ π–( )+[ ] 1
2π
------.

W H( ) 1

πB
-----------

H H0 α β–( )–[ ] 2

B2
------------------------------------------–

 
 
 

,exp=

H0 n* ϕ r( ) V , B2d

V

∫– 2n* ϕ2 r( ) V .d

V

∫= =

α β–〈 〉

α β–〈 〉 M≡ µH
kT
--------

 
 
 

W H M,( )tanh Hd

∞–

∞

∫=

M
1

πB
-----------

µ H H0M+( )
kT

-------------------------------
 
 
  H2

B2
------–

 
 
 

exptanh H .d

∞–

∞

∫=
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Fig. 1. Dependences M(β) calculated with the use of (a) the Gaussian function and (b) the step function substituted for the Gaussian
function.
If we replace the Gaussian function by the approxi-
mate function

Eq. (2) for small M can be represented in the form

(3)

The insignificant loss of accuracy due to the above
replacement is overweighed by the simplicity of the
subsequent estimates. This error can be estimated by
solving Eq. (2) numerically for two different distribu-
tion functions. Figure 1 represents the results of the cal-

culation for different values of α =  (the variable β

is defined by the expression β = H0 ).

It follows from Eq. (3) that the solution with non-
zero M (ferromagnetism) becomes possible only under
the condition

(4)

In this case, the Curie point can be determined from the
relationship

(5)

For  < 1, a decrease in the temperature can result

only in the transition to the spin-glass state.

f H B,( )
0, H2 B2>
1

2B
-------, H

2
B2,<







=

M M
H0

B
------ µB

kT
-------

 
 
 

.tanh=

mB
kT
--------

M
B
-----

H0

B
------ 1.≥

H0 Tc( )
B Tc( )

-----------------
µB Tc( )

kTc

------------------
 
 
 

tanh 1.=

H0

B
------
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3. COMPETING INTERACTIONS

In the case when the two exchange mechanisms
described by different laws, namely, ϕ1(r) and ϕ2(r),
take place simultaneously, the parameters of the distri-
bution function can be expressed as

(6)

or

Here, H0, 1, B1 and H0, 2, B2 are the corresponding
parameters for each type of interaction and

 (7)

is the interference integral.

It is evident that the different temperature depen-
dences of the parameters H0 and B can lead to a suffi-
ciently complex (nonmonotonic) behavior of the function

(8)

The points of intersection of this function with the line
F = 1 determine the temperatures of the magnetic phase
transitions.

We consider the following competing interactions: (i)
the direct exchange, which is described by the function

(9)

H0 n* ϕ1 r( ) ϕ2 r( )+( ) V ,d

V

∫–=

B2 2n* ϕ1 r( ) ϕ2 r( )+( )2 V ,d

V

∫=

H0 H0 1, H0 2, , B+ B1
2 B2

2 B12+ +( )1/2
.= =

B12 4n* ϕ1ϕ2 Vd

V

∫=

F T( )
H0 T( )
B T( )

--------------- µB T( )
kT

----------------
 
 
 

.tanh=

ϕ1

f 0, 0 R 2R0< <–

0, R 2R0,>



=

2
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where R0 is comparable to the atomic size in order of
magnitude; (ii) the Ruderman–Kittel–Kasuya–Yosida
(RKKY) exchange interaction

; (10)

and (iii) the indirect exchange in semiconductors (see [9])

(11)

Here,

where m* is the effective electron mass.
In the above relationships, the parameters f0, b, and

d characterize the intensity of the interaction and are
chosen in such a manner that, in the vicinity of the con-
centration , which provides the percolation transition
for the direct exchange, any one of these interactions
leads to a Curie temperature of the order of 100 K.

The percolation threshold is determined from the
condition

Taking into account that the minimum distance
between atoms is of the order of R0, we obtain

ϕ2 bkF
4 R0

4 2kFR( )sin 2kFR 2kFR( )cos–

2kFR( )4
----------------------------------------------------------------------–=

ϕ3 dkF
4 R0

4 kFR( )2–{ }exp
kFR

-----------------------------------.–=

kF
2m*kT

"
2

------------------,=

np*

H0 1,

B1
---------- 1.=

H0 n* f 0 Vd

R0

2R0

∫ 7 f 0n*
4
3
---πR0

3,= =

B2 14 f 0
2
n*

4
3
---πR0

3,=

Tc
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Fig. 2. Curves F(T) for different concentrations of magnetic
atoms n*, 1028 m–3: (1) 4, (2) 3, (3) 2, (4) 1.5, and (5) 1. The
temperature range below the point Tf point of the second
intersection of the line F(T) = 1 corresponds to the reentrant
spin glass.
P

where cp is the relative volume concentration of ferro-
magnetic atoms.

For R0 = 10–10 m, we have  ~ 3 × 1028 m–3. The
function F(T) for the cases of competing interactions
(ϕ1, ϕ2) and (ϕ1, ϕ3) was calculated in the vicinity of

 ~ 1028 m–3at f0 = 102 and b = d = 5 × 104. The
effective mass m* was assumed to be equal to the elec-
tron mass. The results of calculations at different n* for
the case of competing interactions (ϕ1, ϕ2) are pre-
sented in Fig. 2. As is seen from this figure, there exists
a concentration range in which the ferromagnet–spin
glass transition can occur at a temperature T = Tf below
the Curie point. In the temperature range T > Tc, the dif-
ference between the paramagnet and the spin glass is
determined by the maximum exchange field B; more

specifically, the condition  ! 1 corresponds to the

paramagnet, whereas the condition  * 1 determines

the region of existence of the spin glass. A similar result
was obtained for the competing interactions (ϕ1, ϕ3); in
this case, Tc somewhat increases.

4. CONCLUSION

Thus, the competition of direct and indirect exchange
interactions in the vicinity of the percolation threshold
for amorphous semiconducting alloys can lead to a reen-
trant phase transition between the ferromagnet and spin
glass at temperatures below the Curie point.
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Abstract—Thin films of Ba–Me ferrites are synthesized by reactive rf diode sputtering of a BaO · nFe2O3
ceramic target. Quartz plates subjected to preliminary annealing are used as substrates. The influence of the bar-
ium ion content on the crystalline and magnetic properties and the microstructure of the prepared films is inves-
tigated, and the interrelation between the quantity dHc/dT and the microstructure of the film is considered. The
prepared films satisfy the requirements for materials used as information carriers with a superhigh recording
density.© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Thin magnetic films are promising materials for use
as information carriers with high and superhigh record-
ing densities. This necessities comprehensive investiga-
tions of their properties and the development of new
technologies for manufacturing thin magnetic films
with specified parameters. The main objective of these
investigations is to increase the data recording density.
One way to increase the recording density is to decrease
the distance between the recorder and the information
carrier. For this purpose, information carriers need to
possess high mechanical strength and chemical durabil-
ity. Films of Ba–Me hexagonal ferrites exhibit high
resistance to mechanical actions; however, the coercive
forces of these films are insufficiently strong to provide
data recording with high and superhigh densities.
Moreover, it is important to decrease the manufacturing
cost of Ba–Me ferrite films.

The possibility of using thin films of Ba–Me hexag-
onal ferrites of the chemical formula BaFe12O19 in data
recording with high and superhigh densities has long
since been demonstrated (see, for example, [1–3] and
references therein). However, stringent requirements
on the properties of hexagonal ferrite films used as stor-
age media necessitate their growth on single-crystal
substrates prepared from garnets or other ferrites. In
turn, this appreciably increases the net cost of the films
at the expense of the single-crystal substrates alone.
Matsuoka et al. [4] showed that Ba–Me ferrite films
whose properties satisfy the rigid requirements on data
recording with a superhigh density can be synthesized
on amorphous quartz plates. These findings gave impe-
tus to a search for new inexpensive substrates and the
development of techniques for synthesizing Ba–Me fer-
rite films on these substrates. Chen et al. [5] proved that
the properties of Ba–Me ferrite thin films substantially
1063-7834/02/4409- $22.00 © 21711
depend on their chemical composition. Nonetheless,
even despite the large number of works dealing with
Ba–Me ferrite films, the processes of crystallization and
formation of complex oxide compounds (such as fer-
rites) in the form of thin films are still not clearly under-
stood.

In the present work, we investigated the influence of
the barium ion content on the crystalline and magnetic
properties and the microstructure of Ba–Me ferrite thin
films synthesized on amorphous substrates. Moreover,
we analyzed how the quantity dHc/dT (where Hc is the
coercive force) affects the microstructure of the film.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Thin films of Ba–Me ferrites were synthesized by
reactive rf diode sputtering of a Ba–Me ceramic ferrite
target in a gaseous mixture of Ar and O2 in the ratio
3.5 : 0.5 (mTorr). Quartz plates subjected to prelimi-
nary annealing were used as substrates for film deposi-
tion. Targets were prepared in the form of BaO · nFe2O3
ceramic pellets annealed for 5 h in a mixture of BaCO3
and Fe2O3 taken in appropriate proportion. After depo-
sition, the films were annealed for 1 h at a temperature
of 800°C with the aim of forming crystal and magnetic
structures of the required quality, which was estab-
lished experimentally. The thickness of the prepared
films was approximately equal to 100 nm.

The film composition was determined using induc-
tively coupled plasma mass spectrometry (ICP-MS).
The crystal structure of the prepared films was investi-
gated by x-ray diffraction. The magnetic structure of
the films was analyzed using Auger-electron and con-
version-electron Mössbauer spectroscopy. The mag-
netic properties and their temperature dependences
002 MAIK “Nauka/Interperiodica”
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were measured on a vibrating-sample magnetometer.
The surface morphology of the films was examined
using an electron microscope.

3. RESULTS AND DISCUSSION

Figure 1 shows the x-ray diffraction spectra of BaO ·
nFe2O3 films. The concentrations n = 4.5, 5.0, 5.25, 6.0,
and 6.5 were determined by inductively coupled plasma
mass spectrometry. Analysis of the x-ray diffraction
spectra depicted in Fig. 1 revealed that broad peaks
with maxima in the 2θ range of 22° are attributed to
reflections from the substrate. As is seen from this fig-
ure, the (008) reflection dominates in the spectrum of
the BaO · 4.5Fe2O3 film. This indicates that, for BaO ·
nFe2O3 films at n = 4.5, the crystallographic axis C is
perpendicular to the growth plane of the film. More-
over, the x-ray diffraction spectrum of the BaO ·
4.5Fe2O3 film exhibits reflections of moderate intensity
which correspond to the BaFe2O4 ferrite. This can be
explained by the fact that the content of barium ions in
this compound is relatively high and exceeds their con-
tent in the stoichiometric compound BaO · 6.0Fe2O3.
An increase in the concentration n leads to an increase
in the intensity of the reflection assigned to the (110)
plane, which suggests a deviation of the crystallo-
graphic axis C from the normal to the growth plane of
the film. It can be seen that the (110) reflection domi-
nates in the spectrum of the BaO · nFe2O3 film at n =
5.25; i.e., for the BaO · 5.25Fe2O3 composition, the C
axis is predominantly oriented along the film plane. The
x-ray diffraction spectrum of the BaO · 6.5Fe2O3 film is
characterized by the reflection attributed to hematite.
This can be associated with the deviation of the BaO ·
6.5Fe2O3 composition from stoichiometry, as was also
noted in [5].

Figure 2 depicts the temperature dependences of the
saturation magnetization and the coercive force mea-
sured in a magnetic field applied parallel and perpen-
dicular to the growth plane of the BaO · nFe2O3 films at
different concentrations n. The temperature depen-
dences of the saturation magnetization Ms measured
with the use of the vibrating-sample magnetometer
upon heating from room temperature to 700 K are dis-
played in Fig. 2a. It can be seen that, for all the ferrite
films under investigation, the saturation magnetization
Ms almost linearly decreases with an increase in the
temperature. For films with concentrations n = 5.0, 5.5,
and 6.0, the value of dMs/dT remains unchanged.

The concentration dependences of the saturation
magnetization Ms and the coercive force measured in a
magnetic field applied parallel and perpendicular to the
growth plane of the BaO · nFe2O3 films are plotted in
Fig. 3. As the concentration n increases, the saturation
magnetization Ms increases (Fig. 3, curve 1) and
reaches a maximum value of ~370 emu/cm3 at n = 5.25.
A further increase in the concentration n results in a
HYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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decrease in the magnetization Ms. It can be assumed
that low values of Ms at n < 4.5 and n > 6.0 are associ-
ated with the presence of the paramagnetic phase in
these compositions. This inference is in agreement with
the results obtained from analyzing the x-ray diffrac-
tion spectra.

Let us now consider the concentration dependences
of the coercive force measured in a magnetic field
applied parallel and perpendicular to the growth plane
of the BaO · nFe2O3 films (Fig. 3, curves 2, 3). As can
be seen, an increase in the concentration n leads to a
decrease in the coercive force measured both parallel
and perpendicular to the growth plane. At room temper-
ature, the value of dHc/dT decreases with an increase in
the concentration n. It is worth noting that the smaller
the value of dHc/dT, the higher the bit density—an
important parameter of information carriers (in our
case, the BaO · nFe2O3 films). By analogy with [6], we
analyzed our results within an approach described in
[7] and revealed that, for the Ba–Me ferrite films under
investigation, the above parameter depends solely on
the crystal grain shape. According to electron micro-
scopic data, the BaO · nFe2O3 ferrite films with a high
content of barium ions (at small concentrations n) are
characterized by small-sized grains and, at n ≤ 5.0, pre-
dominantly contain crystal grains of platelet shape. At
n ≥ 6, the mean size of crystal grains in the ferrite films
substantially increases and exceeds 200 nm. Crystal
grains of needle shape with a length-to-diameter ratio
of ~6 dominate in the Ba–Me films at n ≥ 6. It seems
likely that, at n ≥ 6, the grain size exceeds the size of
single domains and the existence of domain walls in the
crystal grains leads to a decrease in the coercive force
of these films. For concentrations n ≥ 6, the coercivity
in the film plane is higher than that in the perpendicular
direction. The opposite situation occurs at n ≤ 5.75; i.e.,
the coercive force measured in a magnetic field applied
parallel to the growth plane of the film is weaker than
that applied in a direction perpendicular to this plane.
Therefore, we can draw the conclusion that the concen-
tration n is a controlling factor responsible for the ori-
entation of the C axis in the synthesized films of BaO ·
nFe2O3 ferrites.

It is well known that the phase composition of the
materials under investigation and the orientation of the
magnetic moments in the samples can be determined
directly from Mössbauer measurements. For this rea-
son, the prepared films were examined by Mössbauer
spectroscopy with recording of conversion electrons
and Auger electrons in a backscattering geometry [8].
The latter circumstance stems from the fact that tradi-
tional Mössbauer spectroscopy with recording of
gamma radiation in a transmission geometry cannot be
used for thin films, because, in this case, the signal-to-
noise ratio is very small. Figure 4 displays the Möss-
bauer spectra of BaO · 4.5Fe2O3 ferrite films prepared
at room temperature and subjected to annealing for 1 h
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
at different temperatures. The wave vector of gamma
radiation is perpendicular to the growth plane of the
films.
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As is seen from Fig. 4a, the Mössbauer spectrum of
the BaO · 4.5Fe2O3 ferrite film subjected to annealing
at a temperature of 700°C represents a doublet. Similar
spectra are observed for ferrite films either not sub-
jected to annealing or annealed at temperatures below
700°C for 1 h. The isomer shifts (0.25 mm/s) with
respect to Fe and quadrupole splittings (0.75 mm/s) cal-
culated from these spectra (Fig. 4a) coincide with those
obtained for Ba–Me ferrite films immediately after
their synthesis through radio-frequency sputtering [9]
and correspond to the parameters of Ba–Me nonmag-
netic bulk amorphous ferrites [10].

After annealing of the BaO · 4.5Fe2O3 ferrite film at
a temperature of 800°C, the Mössbauer spectrum
exhibits Zeeman splitting (Fig. 4b). A similar spectrum
is observed for the BaO · 4.5Fe2O3 ferrite film subjected
to annealing at 900°C (Fig. 4c). A computer-assisted
least-squares analysis of the experimental Mössbauer
spectra demonstrated that the films under investigation
belong to the Ba–Me hexagonal ferrite [11]. Mössbauer
lines attributed to other phases, including the BaFe2O4
ferrite, were not found to within an error of 5%. The
effective magnetic fields at Fe nuclei in , , and

12k sublattices were determined from the spectra and
amounted to 342 ± 5, 348 ± 5, and 327 ± 5 kOe, respec-
tively.

It can be seen from Figs. 4b and 4c that the intensi-
ties of the second and fifth components of the Zeeman
sextets are relatively low. This indicates that the mag-
netic moments in the studied material slightly deviate
from the wave vector of gamma radiation, which is per-
pendicular to the film plane. The angle θ determines the
orientation of the magnetic moments in the crystal with
respect to the wave vector of gamma radiation and can
be calculated from the Mössbauer spectra according to
the following formula (see, for example, [12]):

(1)

where A1.6 stands for the intensities of the first and sixth
lines and A2.5 are the intensities of the second and fifth
lines. The angle θ calculated from formula (1) is equal
to 30° ± 7°.

An examination of the BaO · 4.5Fe2O3 ferrite films
under the electron microscope revealed that these films
consist of platelike grains. Earlier [8], it was shown
that, in Ba–Me hexagonal ferrites, the magnetic
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moments are aligned along the crystallographic axis C.
As follows from analyzing the results of electron
microscopy and Mössbauer spectroscopy, in the major-
ity of platelike grains forming the BaO · 4.5Fe2O3 film
under investigation, the C axis is oriented normally to
the growth plane of the film.

4. CONCLUSION
Thus, our investigation has demonstrated that thin

films of Ba–Me hexagonal ferrites whose properties
satisfy the requirements for information carriers with a
superhigh recording density can be synthesized through
reactive rf diode sputtering onto an amorphous
annealed quartz substrate followed by annealing.
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Abstract—The spin-wave resonance spectrum of a ferromagnetic film magnetized normally to its surface is
investigated as a function of the finite depth of penetration of the high-frequency field into the film with due
regard for damping in the spin system and different types of surface-spin pinning. The exact numerical solution
of the equation of motion for magnetization is obtained by considering the finite thickness of the skin layer. For
a substantially inhomogeneous distribution of the high-frequency field over the layer thickness, the change in
the resonance shape at frequencies close to the ferromagnetic resonance frequency is observed in addition to
the broadening of all the resonance peaks and the decrease in their amplitudes. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

It is known that a necessary condition for excitation
of spin-wave resonance in a uniformly magnetized film
by a homogeneous high-frequency field is the surface
anisotropy of the film. The surface anisotropy differs
from the bulk anisotropy and determines the character
and degree of spin pinning on the film surface. In many
works [1–5], the influence of the boundary conditions
on the spin-wave resonance spectrum has been ana-
lyzed taking into account the specific features of the
spin-wave resonance for different types of surface-spin
pinning and damping in the spin system. However, the
fact that the high-frequency field penetrates into a con-
ducting sample to a finite depth, thus breaking the
homogeneity of the magnetization distribution, has
been disregarded by the majority of authors. A consis-
tent analysis of the skin effect, which is important for
high-conductivity films, necessitates simultaneous
solution of the electromagnetic equation and the equa-
tion of motion for magnetization. In general, this leads
to a bicubic dispersion equation and a cumbersome
solution of the boundary-value problem even for a
semi-infinite medium and special cases of total surface-
spin pinning or its absence [6]. In this respect, approx-
imate analytical methods of analyzing the spin-wave
resonance spectra of conducting films have assumed
particular importance.

If the mean free path of conduction electrons is con-
siderably less than the depth δ of penetration of the
electromagnetic field into a metal, the normal skin
effect takes place and the skin depth is determined by

the expression δ = c/ , where c is the velocity
of light in free space, ω is the field frequency, and σ is

2πσωµ
1063-7834/02/4409- $22.00 © 21715
the conductivity of the metal. The magnetic permeabil-
ity µ of the sample is a function of the frequency and
accounts for the magnetic characteristics, geometry,
and orientation of the sample with respect to the exter-
nal magnetic field. For magnetic films with the thick-
ness L ~ 10–5 cm and the conductivity σ ≥ 1017 s–1, the
skin depth can be of the same order of magnitude even
at room temperature due to high values of the high-fre-
quency permeability (µ @ 1). In the case when the film
thickness satisfies the condition L ≥ δ, the distributions
of both the microwave field and magnetization cannot
be considered to be homogeneous over the film thick-
ness. This circumstance can lead to a modification of
the spin-wave modes and a decrease in their amplitudes
compared to those in the case δ @ 1.

2. GENERAL EQUATIONS 
AND RELATIONSHIPS

Let us consider a film magnetized normally to its
surface by an external field H0 along the easy magnetic
axis. Since the film possesses axial symmetry, it is con-
venient to describe the deviation of the magnetic
moment M from the equilibrium moment M0 in terms
of the circular projections m± = mx ± imy. If the micro-
wave field is also circularly polarized (h± = hx ± ihy) and
harmonically depends on time, the equation of motion
for the component m+ ≡ m, which is responsible for free
oscillations of the spin system, takes the form

(1)d2m

dz2
--------- ν2m+

h z( )
α

----------.–=
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Here, the wave number of the spin wave is determined
by the relationship

(2)

where ω0 = γ(H0 + βM0 – 4πM0) is the frequency of uni-
form (ferromagnetic) resonance; α and β are the
exchange interaction constant and magnetic anisotropy
constant, respectively; γ is the gyromagnetic ratio; and
ξ is the damping parameter. Let us represent the depen-
dence of the microwave field on the coordinate in the
form

(3)

Here, it is accepted that the origin of coordinates is
located at the center of a layer with thickness 2L. Tak-
ing into account that the high-frequency permeability
µ, which enters into the definition of the depth δ of pen-
etration of the microwave field into the metal, is a com-
plex quantity, we obtain

(4)

where δ0 = c/  is the penetration depth without
regard for the magnetic properties of the metal,

Next, we take into account that the high-frequency
permeability can be expressed as µ = 1 + 4πχ, where χ
is the complex high-frequency susceptibility. Hence,
the real and imaginary parts of the magnetic permeabil-
ity involved in expression (4) can be represented by the
relationships µ' = 1 + 4πχ' and µ'' = 4πχ''. Therefore, in
order to calculate the depth of penetration of the micro-
wave field into the layer, it is necessary to determine the
high-frequency susceptibility χ. In turn, this calls for
solving the equation of motion for magnetization (1).
Making allowance for the inhomogeneous distribution of
the microwave field, which is defined by relationship (3),
the exact solution to Eq. (1) can be obtained only by
numerical methods.

We will seek the exact solution to Eq. (1) with the
following boundary conditions for magnetization:

(5)

where di stands for the parameters of spin pinning on
the layer surface. The total spin pinning is observed at
di  ∞ and is absent on the corresponding surface of
the layer at di = 0.

ν2 1 iξ–( )ω ω0–
αγM0

-----------------------------------,=

h z( ) h0 z L–( )/δ[ ]exp .=

1
δ
---

1
δ
--- g ip–( ),=

2πσω

g µ 1/2 ϕ , pcos µ 1/2 ϕ ,sin= =

µ µ'
2 µ''2+( )

1/2
, ϕ 1

2
--- µ''/µ'( ).arctan= =

dm
dz
------- dim z L±=± 0,=
P

3. HIGH-FREQUENCY SUSCEPTIBILITY 
OF THE LAYER

Simultaneous solution of Eqs. (1) and (5) in terms of
Eq. (3) gives the expression for the high-frequency
magnetization: m(z) = χ(z)h0. Averaging the high-fre-
quency magnetization m(z) over the layer thickness and
taking into account that 〈m〉  = χh0, we obtain the fol-
lowing general relationship for the high-frequency sus-
ceptibility of the layer, which does not depend on the
coordinate but does depend on the parameters of the
magnetic subsystem, layer thickness, frequency, and
conductivity:

(6)

where a = (ν + d1 )(1 + d2δ), b = (ν + d2 ) ×
(1 – d1δ), and G = δ3/2αL(1 + ν2δ2). It should be
remembered that the quantity δ in expression (6) is a
complex function of the frequency and is determined
by relationship (4), which involves both the real and
imaginary parts of the high-frequency susceptibility χ.
In order to obtain an approximate analytical representa-
tion of the spin-wave resonance spectrum with the use
of relationships (4) and (6), the complex parameter δ
can be determined using an approximate expression for
the susceptibility χhomog. This expression corresponds
to the homogeneous distribution of the microwave field
over the layer thickness and can be derived from rela-
tionship (6) at δ  ∞ in the following form:

(7)

In our recent work [7], we applied expression (7) to
analyze thoroughly the spin-wave resonance spectrum
for a layer characterized by a homogeneous distribution
of the high-frequency field and finite degrees of sur-
face-spin pinning. As will be shown below, the approx-
imate solution thus obtained agrees well with the exact
numerical solution of the problem under consideration.

Let us now consider the most important special
cases of resonant susceptibility of the spin system at a
finite skin depth δ, which follow from relationship (6).
For symmetric boundary conditions (d1 = d2 = d), the
susceptibility of the spin system can be represented as

(8)

χ G
a be 2L/δ––

νδ2 d1d2 ν d1 d2+( ) 2νLcot ν2–+[ ]
--------------------------------------------------------------------------------------





=

---– 1 e 2L/δ–+
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-------------------------------------------------------------------------- .
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The situation with the total pinning of surface spins
(d  ∞) is of particular interest. The susceptibility of
the spin system takes the form

, (9)

and the position of resonance peaks corresponding to
spin-wave modes (in the absence of damping) is deter-
mined by the wave numbers νp = π(1 + 2p)/2L, as is the
case with the homogeneous distribution of the high-fre-
quency field over the layer thickness.

In the case of asymmetric pinning (d1 = –d2 = d), the
high-frequency susceptibility has the form

(10)

For the total asymmetric pinning, the expression for χ
coincides with relationship (9).

For completely free surface spins (d1 = d2 = 0), the
resonant susceptibility of the layer takes the form

(11)

from which it follows that the spectrum contains only
the “uniform” mode (ν  0).

Among the asymmetric cases of surface-spin pin-
ning, the most interesting situation corresponds to the
total pinning of spins on one of the layer surfaces and
to the absence of spin pinning on the other surface
(d1  ∞, d2 = 0). In this case, the expression for the
high-frequency susceptibility takes the form

(12)

The position of spin-wave modes is specified by the
wave numbers νp = π(1 + 2p)/4L; in this case, the num-
ber of maxima in the spin-wave resonance spectrum is
doubled in comparison with the case of symmetric pin-
ning.

In order to determine the position, amplitude, and
width of the line corresponding to the resonant mode in
the spin-wave resonance spectrum with damping in the
spin system, it is necessary to derive the imaginary part
of the susceptibility χ'' for each of the above cases,
because χ'' determines the absorbed power per unit vol-
ume (P = ωh2χ''/2). Since the wave number ν and
parameter δ are the complex quantities determined by
relationships (2) and (4), the appropriate expressions
for χ'' appear rather cumbersome. In the simplest case
of the absence of surface-spin pinning (d1 = d2 = 0),

χ G 1 e 2L/δ––( ) νLtan
νδ
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which is described by relationship (11), the susceptibil-
ity χ'' satisfies the expression

(13)

At the resonance frequency ω = ω0, we obtain the imag-
inary part of the susceptibility for the amplitude of the
uniform mode:

(14)

Hence, it follows that, as the depth of penetration of the
microwave field into the sample increases, the ampli-
tude for the ferromagnetic resonance peak increases
and, at δ0  ∞, reaches the susceptibility  =
γM0/ξω0. Note that the broadening and shift of the res-
onance curve due to changes in the penetration depth
are virtually absent because the parameter of magnetic
damping is fixed and is unrelated to the conductivity σ.

4. NUMERICAL ANALYSIS

The above analysis can be illustrated using the fre-
quency dependences of the susceptibility χ'', which
were obtained by numerical calculation and plotted on
a semilogarithmic scale. In our case, the frequency
dependence is taken to mean a dependence of the sus-
ceptibility χ'' on the normalized detuning ∆ω/ω0, where
∆ω = ω – ω0. For the calculation, we chose the follow-
ing parameters of the permalloy film: M0 = 103 G, α =
10–12 cm2, ξ = 10–2, L = 2 × 10–5 cm, and ω0 = 3 ×
1010 s−1. The required changes in the depth of penetra-
tion of the high-frequency field into the sample were
obtained by varying the conductivity. For all the depen-
dences given below (Figs. 1–3), the conductivity was
taken to be σ = (1, 50, and 1000) × 1015 s–1 (curves 1–
3). The solid lines represent the results of exact numer-
ical calculations, and the dashed lines correspond to the
results of approximate calculations. The exact numeri-
cal calculation implies a procedure in which the param-
eter δ at a given frequency is calculated from the values
of χ' and χ'' obtained at the preceding step of calcula-
tion. The step of frequency detuning is chosen such that
it provides as small changes in the aforementioned
quantities as possible. Curves 1, which correspond to
σ = 1015 s–1, coincide to within high accuracy for both
the exact and approximate calculations. This is associ-
ated with the distribution of the microwave field over
the layer thickness actually being homogeneous. The
time of the exact numerical calculation substantially
exceeds the time of the approximate calculation.

Figure 1 shows the resonance curves χ''(ω) at d1 =
d2 = 0. As in the case of the homogeneous field distri-
bution h(t), the absence of spin pinning leads to the dis-
appearance of the spin-wave spectrum and to excitation
of a single mode characterized by the exponential

χ'' ω( )
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ξω0
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decay of the amplitude of in-phase oscillations of mag-
netization over the layer thickness. An increase in the
conductivity σ brings about a decrease in the penetra-
tion depth of the field h(t) and, consequently, a decrease
in the amplitude of the resonance curve. At frequencies
close to the frequency of uniform ferromagnetic reso-
nance, the resonance shape somewhat changes, because
it is at this frequency that the quantity Re(δ–2), which is
proportional to µ'', becomes zero.

The dependences χ''(ω) for the total symmetric pin-
ning (d1 = d2  ∞) and limiting asymmetric pinning
(d1 = 0, d2  ∞) of surface spins are shown in Figs. 2
and 3, respectively. The number of spin-wave modes at
the symmetric boundary conditions is equal to half the
number of modes in the case of the asymmetric bound-
ary conditions. However, the amplitude of these modes
in the former case is substantially higher than that in the
latter case. This is associated with the fact that, in the
case of asymmetric boundary conditions, spins are
pinned only at one surface of the layer.

In addition to the changes in the amplitude, there
occur a shift of the resonance curves and their broaden-
ing, which are determined by the relationships

(15)

These quantities are small at the chosen parameters on
the given scale. However, detailed analysis of the spin-
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Fig. 1. Spin-wave resonance spectra in the absence of spin
pinning on the layer surfaces (d1 = d2 = 0) at different con-

ductivities σ, 1015 s–1: (1) 1, (2) 50, and (3) 1000. Solid
lines represent the results of exact calculations, and dashed
lines are the results of approximate calculations.
P

wave resonance spectrum at frequencies close to ω0

revealed that an increase in the conductivity σ leads to
a shift of the uniform mode toward the range of positive
∆ωδ, i.e., toward the range of bulk modes.

10

1

0.1

0 0.2 0.4
∆ω/ω0

χ"

Fig. 2. Spin-wave resonance spectra for total symmetric
pinning of surface spins (d1 = d2  ∞). Designations of
curves 1–3 are the same as in Fig. 1.
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Fig. 3. Spin-wave resonance spectra for total asymmetric
pinning of surface spins (d1 = 0, d2  ∞). Designations
of curves 1–3 are the same as in Fig. 1.
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5. CONCLUSION

The above analysis has demonstrated that the con-
ductivity of metallic magnetic layers most strongly
affects the character of the spin wave spectrum in the
frequency range in which the skin effect leads to an
inhomogeneous field distribution over the layer thick-
ness. In this case, the distinctive feature of the spin-
wave resonance spectrum is a slight change in the reso-
nance shape in the frequency range of the uniform fer-
romagnetic resonance in addition to the broadening,
shift, and decrease in the amplitude for all the spin-
wave modes. The observed change in the resonance
shape stems from the fact that the parameter δ is a com-
plex quantity. This parameter determines the depth of
penetration of the high-frequency field into the mag-
netic material and depends on its magnetic susceptibil-
ity. At frequencies close to the uniform resonance fre-
quency, the real part of the susceptibility becomes zero,
which results in a sharp increase in the penetration
depth and deviation of the resonance curve from the
Lorentzian shape.
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Abstract—Annealing in vacuum is found to affect magnetic order in polycrystalline Cu1 – xZnxCr2Se4 samples
(x = 0.88, 0.90). Samples subjected to heat treatment exhibit a temperature dependence of dynamic magnetic
susceptibility characteristic of a non-single-phase magnetic state. The annealing-induced magnetic order is
assigned to the zinc off-stoichiometry formed in the process. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Cu1 – xZnxCr2Se4 solid solutions have been
attracting interest due to the rich variety of magnetic
states these solutions feature upon different substitu-
tions x [1–3]. This diversity is due to the strong differ-
ence in magnetic properties between the extreme com-
pounds in the series, namely, CuCr2Se4 (ferromagnetic
semimetal with TC ~ 420 K) and ZnCr2Se4 (helicoidal
antiferromagnet with TN ~ 20 K). The competition
between the exchange interactions in the solid solutions
gives rise to nontrivial magnetic properties. Of particu-
lar interest is the alternation of magnetic phases in the
concentration interval from 1.0 to 0.8, where gradual
substitution of copper for zinc offers a possibility of
observing the following magnetic states successively:
simple spin spiral, ferromagnetic spiral, spin glass, fer-
romagnetic spiral, and collinear ferromagnetism [4].

In our earlier comprehensive investigation [5] of
the   concentration-driven phase transition in
Cu1 − xZnxCr2Se4, we measured the magnetic properties
of this solid solution in the 0.8–0.9 concentration inter-
val with a small step of 0.02. Polycrystals were pre-
pared by the authors of [6] using solid-phase technol-
ogy, which is described in considerable detail in [6].
The substituent concentration xc = 0.88 was established
to be critical. Indeed, all compounds with x < xc are fer-
romagnets with a Curie temperature of 370–420 K, a
sample with x = 0.88 possesses a weak room-tempera-
ture magnetic moment, and an x = 0.9 sample under-
goes only an antiferromagnetic transition at the same
temperature as the extreme compound ZnCr2Se4.

The magnetic transition from a helicoidal structure
in ZnCr2Se4 to a ferromagnetic structure in CuCr2Se4 in
this series of compounds is accompanied by a change
over from semiconducting to semimetallic conduction.
Thus, to fully understand the nature of the concentra-
tion-driven phase transitions in Cu1 – xZnxCr2Se4, one
1063-7834/02/4409- $22.00 © 21720
has to make a comprehensive investigation of both the
magnetic and electrical properties. This raises the prob-
lem of thermal stability of these solid solutions, as elec-
trical measurements on polycrystals are made on
pressed and sintered powder samples. This problem
was discussed earlier in [6], where studies of the ther-
mal stability of Cu1 – xZnxCr2Se4 compositions in air
were carried out at temperatures ranging from 500 to
920 K. It was found that up to temperatures of about
650 K, selenium is detached and a selenium-deficient
spinel forms [6]. Above 650 K, oxide compounds were
observed to form. This study was aimed at establishing
whether the heat treatment used in sintering a powder
sample results in a noticeable change in its physical
properties, primarily in its magnetic properties, and,
hence, at estimating the possible effect of the off-
stoichiometry caused by the heat treatment.

2. EXPERIMENTAL TECHNIQUE

The samples, pressed into rectangular parallelepi-
peds measuring 2 × 2 × 4 mm, were placed in quartz
ampules evacuated to 10–3 mm Hg. One sample lot was
annealed at T1 = 850 K (anneal 1); the other, at T2 =
1150 K (anneal 2). The samples were annealed for two
hours, and the operating temperature was reached in
three hours of uniform heating. After this, the samples
were allowed to cool in the furnace.

The temperature-dependent real part of magnetic
susceptibility χ' of the samples subjected to heat treat-
ment was measured using the dynamic ac bridge tech-
nique. The sample temperature was varied by blowing
it with a stream of heated air in a cylindrical flow-
through cryostat with measuring coils mounted on its
outer wall. The bridge unbalance was measured with a
UNIPAN 232B phase-sensitive nanovoltmeter.

The electrical resistance R(T) was measured using
the dc four-probe method. The contacts, made of
002 MAIK “Nauka/Interperiodica”
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indium paste, were arranged along a straight line on the
larger face of the sample. The current was supplied over
thin copper wires 0.06 mm in diameter. The measure-
ments in the cooling runs were also carried out in a
flow-through cryostat, and the samples were heated in
an unsealed quartz ampoule in a muffle furnace.

3. RESULTS

The magnetic measurements carried out after the
annealing revealed that all the samples of the lot under
study exhibit spontaneous magnetism with a clearly
pronounced ferromagnetic component. This is also
valid for compositions with a high zinc concentration,
x = 0.88 and 0.90, of which the former had an extremely
low magnetization before the annealing and the latter
was fully paramagnetic at room temperature. Magnetic
ordering occurred during both anneals 1 and 2. The
samples of these two compositions demonstrated simi-
lar temperature dependences of the dynamic magnetic
susceptibility χ'. The measurements made on the sam-
ple with x = 0.88 are displayed in Fig. 1, which shows,
for comparison, χ'(T) curves for compositionally simi-
lar samples Cu0.14Zn0.86Cr2Se4 and Cu0.16Zn0.84Cr2Se4
measured before the heat treatment. We readily see
from Fig. 1 that the magnetic susceptibility of the
annealed sample (curve 1), as well as χ'(T) of the
Cu0.14Zn0.86Cr2Se4 stoichiometric composition, van-
ishes at a temperature close to TC of the original com-
pound CuCr2Se4. Note that curve 1 follows a pattern
characteristic of a non-single-phase magnetic state of a
sample and lies between curves 2 and 3 for the samples
with x = 0.86 and 0.84, respectively.

The measurements of the temperature dependence
of electrical resistance showed that the samples can be
divided into two groups. With increasing temperature,
the electrical resistance decreases in samples with x ≥
0.88 and increases in the other samples. Figures 2a and
2b display the R(T) relations measured for two similar
compositions, x = 0.88 and 0.86, respectively, featuring
different types of conduction.

4. DISCUSSION

As already mentioned, it was shown in [6] that
annealing Cu1 – xZnxCr2Se4 solid solution samples in air
up to temperatures of 750–900 K brings about only
detachment of selenium, without any visible indica-
tions of chemical activity of the Cu and Zn ions. Com-
positions with a high zinc content were observed to
have the highest thermal stability. For instance, the oxi-
dation of Cu0.2Zn0.8Cr2Se4 started at 920 K. Thus, one
might expect that a short annealing in vacuum at a
lower temperature (anneal 1) would not produce a
noticeable off-stoichiometry in copper or zinc. How-
ever, susceptibility measurements showed that the
annealed samples (after either of anneals 1 or 2)
approached, in magnetic properties, the compositions
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
with a lower zinc content, which suggests that the com-
position shifted toward the zinc-deficient spinel as a
result of annealing. Note that the expected selenium
deficiency cannot apparently initiate the onset of ferro-
magnetism, because the ferromagnetism of CuCr2Se4 is
due to the high hole concentration in the valence band.

Fig. 1. Temperature dependences of the magnetic suscepti-
bility for (1) annealed Cu0.12Zn0.88Cr2Se4 and (2, 3) the
original Cu0.14Zn0.86Cr2Se4 and Cu0.16Zn0.84Cr2Se4 sam-
ples, respectively.

Fig. 2. Temperature dependences of the electrical resistance
of annealed samples (a) Cu0.12Zn0.88Cr2Se4 and (b)
Cu0.14Zn0.86Cr2Se4.
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The additional electrons appearing as a result of sele-
nium deficiency entail partial compensation and, hence,
weakening rather than enhancement of the magnetic
properties.

One more important result of this study consists in
supporting the assumption made in [5] that the concen-
tration-driven magnetic transition within the critical
concentration region in Cu1 – xZnxCr2Se4 occurs
through separation of the compound into two magnetic
phases, namely, a ferromagnetic phase with a high TC

and an antiferromagnetic phase. This is argued for by
the observation that the Curie temperature for the heat-
treated samples, as well as for the untreated x = 0.86
sample, is close to TC of the extreme compound in the
series, CuCr2Se4, although the content of copper in
them is considerably lower than that of zinc. Also, the
heat-treated samples with x = 0.88 and 0.90 behave as
semiconductors. It is this combination of properties,
according to [7], that is characteristic of a magnet with
highly conducting ferromagnetic particles embedded in
a weakly conducting antiferromagnetic matrix.

Thus, our heat treatment of Cu1 – xZnxCr2Se4 sam-
ples apparently resulted in a compositional shift toward
a spinel which is deficient not only in selenium but also
in zinc. The reason for this probably lies in the high vol-
atility of zinc subjected to annealing in vacuum.
Indeed, the boiling point of pure zinc drops from
1210 K at a pressure of 103 mm Hg to 565 K at 10–3 mm
Hg, which is substantially below the anneal tempera-
ture used in the study. Because the study was carried
out in the critical concentration region, a slight change
P

in the composition apparently produced a substantial
change in the physical properties. One can thus con-
clude that even short anneals, such as those needed to
sinter Cu1 – xZnxCr2Se4 samples for resistance measure-
ments, should be performed under an intentionally pro-
duced excess zinc-vapor pressure.
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Abstract—The coercive force, the temperature dependence of the magnetization, and the structure of a DyFeTi
alloy based on the DyFe11Ti compound with an excess content of α-Fe in the initial coarse-grained, nanocrys-
talline, and submicrocrystalline states are investigated experimentally. It is found that, in the submicrocrystal-
line sample, the coercive force is three times stronger and the temperature of the first spin-reorientation transi-
tion is 20 K higher than those in the coarse-grained sample. In the nanocrystalline sample, the coercive force is
five times stronger than that in the coarse-grained sample, the first spin-reorientation transition is not revealed,
and the transition at the Curie temperature is smeared. It is demonstrated that the changes observed in the mag-
netic properties are unrelated to the phase transformations but stem from the small size of crystal grains and
high imperfection of the structure. The thermal instability of the DyFe11Ti compound is observed in submicro-
crystalline and nanocrystalline states. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intermetallic compounds based on 3d transition
metals and rare-earth elements have been intensively
studied in recent years because their magnetic proper-
ties are of considerable interest both in basic research
and from the practical standpoint. In particular, Clark
[1] revealed that RFe2 compounds exhibit a giant mag-
netostriction at room temperature. Permanent magnets
with record-high characteristics were obtained from
rare-earth compounds with 3d elements. It is also
known that the magnetic properties of ferromagnets are
determined by their structure in many respects. This is
especially true for ferromagnetic samples in nanocrys-
talline and submicrocrystalline states. For example,
compared to coarse-grained samples, in nanostructured
samples, the coercive force of pure Dy and Tb increases
thousandfold [2, 3]; the magnetization of Dy [2], Tb
[3], and Gd [4] decreases severalfold; the points of
magnetic transformations are shifted [2, 3]; and the
magnetic ordering in these metals changes in character
[5]. In our recent work [6], we found that, in the triple
intermetallic compound GdTiGe, the transition to a
nanocrystalline state leads to a transformation of the
crystal lattice and, correspondingly, to substantial
changes in the magnetic properties. Until presently, tri-
ple rare-earth compounds with 3d elements and an
RFe11Ti-type structure had not been adequately studied,
even though these materials are very promising for use
1063-7834/02/4409- $22.00 © 21723
as permanent magnets [7]. For example, Tereshina et al.
[8, 9] revealed that single-crystal DyFe11Ti can undergo
two spin-reorientation transitions (at 120 and 248 K).
However, the properties of these compounds in nanoc-
rystalline and submicrocrystalline states are not under-
stood.

The present paper reports on the results of experi-
mental investigations into the magnetic properties and
the structure of a DyFeTi alloy in nanocrystalline and
submicrocrystalline states. For comparison, we studied
a coarse-grained sample of the same composition.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The experiments were performed with a DyFeTi
alloy (5.2 at. % Dy, 88.2 at. % Fe, and 7.1 at. % Ti) pre-
pared by induction melting. Prolonged homogenization
of this alloy at a high temperature resulted in the forma-
tion of the triple compound DyFe11Ti with a ThMn12-
type structure. An excess iron content in the alloy
brought about the precipitation of α-Fe. This slightly
increased the plasticity of the material and made severe
deformation of the ingots possible.

Samples with a nanocrystalline structure were pre-
pared from a homogenized ingot subjected to severe
plastic deformation through torsional strain with the
use of Bridgman anvils under a pressure of 8 GPa at
002 MAIK “Nauka/Interperiodica”
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room temperature with a rotation through an angle of
10π. The choice of severe plastic deformation as the
method of nanostructuring of the studied samples was
made for the following reasons: (i) this method does not
introduce contaminants into the initial material, and
(ii) severe plastic deformation makes it possible to
obtain nonporous samples that do not need to be further
compacted for structural and magnetic measurements.
Samples with a submicrocrystalline structure were pro-
duced by grinding a coarse-grained sample in an agate
mortar in a protective medium. The submicrocrystal-
line powder with a particle size of less than 1 µm was
separated through sedimentation. The size of powder
particles was determined on a JSM-840 scanning elec-
tron microscope.

The magnetization curves and temperature depen-
dences of the magnetization of the samples under inves-

Coercive forces of DyFeTi alloy samples in different crystal-
line states

Measure-
ment tem-
perature, K
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Fig. 1. Temperature dependences of the magnetization σ(T)
measured in the magnetic field H = 250 kA/m for (a) coarse-
grained, (b) submicrocrystalline, and (c) nanocrystalline
samples.
P

tigation were obtained on a vibrating-sample magne-
tometer in a magnetic field of 1.6 × 103 kA/m. The tem-
perature was measured using a copper thermal resistor.
The temperature dependence of the magnetization at
high temperatures was measured using an automated
magnetic microbalance under vacuum with a residual
pressure of 1.3 × 10–2 Pa in a magnetic field of
250 kA/m in the temperature range 78–1070 K. In this
case, the temperature measurements were performed
with a chromel–alumel thermocouple.

The microstructure of the nanocrystalline samples
was examined using a JEM 2000EX transmission elec-
tron microscope. The chemical composition of the sam-
ples was determined on a JSM-840 scanning electron
microscope with a Link attachment.

3. EXPERIMENTAL RESULTS

3.1. Coercive force. Earlier [8], it was shown that
RFe11Ti compounds exhibit a strong uniaxial magne-
tocrystalline anisotropy. Therefore, these compounds in
a nanocrystalline state should possess a strong coercive
force. In this respect, we measured the coercive force
Hc of DyFeTi alloy samples in different crystalline
states at temperatures of 298 and 78 K. The results of
measurements are presented in the table. It is seen from
the table that, at 298 K, the coercive force Hc of an
unstrained coarse-grained sample does not exceed
3.2 kA/m, whereas the coercive forces of submicro-
crystalline and nanocrystalline samples are equal to 6.1
and 6.6 kA/m, respectively. A decrease in the tempera-
ture leads to an increase in the coercive force Hc of all
the studied samples; however, the maximum increase in
Hc is observed in the nanocrystalline state (by a factor
of more than six).

3.2. Temperature dependence of the magnetiza-
tion. Figure 1 depicts the temperature dependences of
the magnetization σ(T) measured in the magnetic field
H = 250 kA/m for samples in different crystalline
states. It can be seen from Fig. 1 that, in all the crystal-
line states, the temperature dependences of the magne-
tization exhibit complex behavior: as the temperature
increases, the magnetization increases, passes first
through a maximum at 250 K and then through an
inflection at 350 K, drastically decreases at 550 K, and
becomes zero at 1040 K. It should be noted that the
position of the maximum in the dependence σ(T) mea-
sured upon heating is determined by the crystalline
state of the sample; specifically, the maxima in the
dependences σ(T) for coarse-grained and nanocrystal-
line samples are observed at 250 and 275 K, respec-
tively. For a submicrocrystalline sample, the depen-
dence σ(T) exhibits a broad maximum at 310 K. The
inflection in the vicinity of 350 K is well defined for the
coarse-grained sample (Fig. 1a), less pronounced for
the nanocrystalline sample (Fig. 1c), and is absent for
the submicrocrystalline sample (Fig. 1b). Although the
decrease in the magnetization in all the crystalline
HYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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states occurs at approximately the same temperature
(550 K), which corresponds to the Curie point of the
DyFe11Ti phase, the slope of the curve σ(T) depends on
the crystalline state of the sample; in particular, the
curve σ(T) for the coarse-grained sample has a very
steep slope, whereas the slope of the curve σ(T) for the
nanocrystalline sample is slightly flattened. For all the
samples, the magnetization reduces to zero at the same
temperature (1040 K), which corresponds to the α-Fe
phase (Fig. 1).

In order to elucidate the thermal stability of the stud-
ied compound in different crystalline states, the tem-
perature dependences σ(T) were measured upon cool-
ing of the samples after high-temperature heating. The
curves σ(T) obtained upon heating and cooling of the
samples completely coincide only for the coarse-
grained sample (Fig. 1a). For submicrocrystalline and
nanocrystalline samples, the curves σ(T) measured
upon cooling lie slightly above the heating curves and
the aforementioned specific features in the cooling
curves are more pronounced. As the temperature
decreases, the dependence σ(T) for the nanocrystalline
sample (Fig. 1c) becomes similar to the dependence
σ(T) for the coarse-grained sample (Fig. 1a).

It can be seen that the first spin-reorientation transi-
tion (at 120 K) does not manifest itself in the curves
σ(T) depicted in Fig. 1. This can be associated with the
fact that the magnetic field strength (250 kA/m) used in
the magnetization measurements with the magnetic
microbalance is not very high. For this reason, the tem-
perature dependences of the magnetization σ(T) were
also measured in stronger magnetic fields (H = 1.6 ×
103 kA/m). These dependences are displayed in Fig. 2.
As is seen, the first spin-reorientation transition mani-
fests itself as a slight kink in the curves σ(T). This kink
is observed at 115 K for the coarse-grained sample and
at 135 K for the submicrocrystalline sample. As regards
the nanocrystalline sample, no kink is found in the
curve σ(T) and the magnetization smoothly increases in
the temperature range of the first spin-reorientation
transition.

3.3. Structural investigations. Figure 3 displays
the electron microscope image of the microstructure
and the electron diffraction pattern of the nanocrystal-
line sample. The size of crystal grains was estimated
from the bright-field images and amounted to 20–
30 nm. An examination of the electron microscope
image revealed a high defect density within the crystal
grains. It can be seen that crystal grains have broad and
diffuse boundaries. The electron diffraction pattern
taken from a 0.5-µm2 section of the nanocrystalline
sample has the shape of a ring. This suggests large
grain-boundary angles.

The mean size of crystal grains in the submicrocrys-
talline sample was determined using a scanning elec-
tron microscope and amounted to 1 µm.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
4. DISCUSSION

The results of our investigations demonstrate that
the magnetic properties of the DyFeTi alloy in different
crystalline states differ significantly. The coercive force
Hc of the submicrocrystalline sample is less than that of
the nanocrystalline sample. At a temperature of 78 K,
the coercive forces of these samples are three and five
times stronger than that in the coarse-grained sample,
respectively. Such an increase in the coercive force can
be associated with the small size of crystal grains. This
assumption is confirmed by the fact that, in the nanoc-
rystalline state, the smaller the grain size, the stronger
the coercive force Hc. However, the measured values of
Hc proved to be considerably less than the coercive
forces predicted from the single-domain theory for the
DyFe11Ti compound with strong anisotropy. This can
be explained by the fact that microcrystals of the
DyFe11Ti phase with a high coercivity are surrounded
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Fig. 2. Temperature dependences of the magnetization σ(T)
measured in the magnetic field H = 1.6 × 103 kA/m for (a)
coarse-grained, (b) submicrocrystalline, and (c) nanocrys-
talline samples.
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Fig. 3. Electron microscope image of the nanocrystalline
structure of the studied compound.
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by the α-Fe soft magnetic phase which encourages
magnetization reversal of DyFe11Ti crystal grains in
weaker magnetic fields. The presence of the α-Fe soft
magnetic phase in the composition of the studied alloy
is indicated by the temperature dependences of the
magnetization (Fig. 1).

As was noted above, the temperature dependences
of the magnetization of the DyFe11Ti compound in all
the crystalline states under investigation exhibit similar
behavior. However, some portions of these curves show
specific features associated with the small size of the
crystal grains involved. In particular, the smoother
decrease in the magnetization of the nanocrystalline
sample [the curve σ(T) measured upon heating] in the
vicinity of the Curie temperature of the DyFe11Ti phase
is indirect evidence that the crystal lattice of this phase
is substantially distorted and that the interatomic dis-
tances vary within a certain range. This brings about
local changes in the exchange interaction, which, in
turn, leads to smearing of the transition from the ferro-
magnetic order to the paramagnetic state of the
DyFe11Ti phase. This inference is supported by the fact
that, for the submicrocrystalline sample with interme-
diate-sized grains, the slope of the curve σ(T) in the
vicinity of the Curie point of the DyFe11Ti phase
slightly exceeds the slope for the nanocrystalline sam-
ple and is less than that for the coarse-grained sample.

It seems likely that the lattice distortions and the
small size of crystal grains affect not only the exchange
interaction, which determines the Curie temperature,
but also the magnetocrystalline anisotropy constants.
The effect of the lattice distortions and the grain size on
the anisotropy constants can be judged from the tem-
peratures of the spin-reorientation transitions, because
they are determined primarily by the ratio of the first to
the second magnetic anisotropy constants. Apparently,
this circumstance accounts for both the shift of the kink
in the curve σ(T) for the submicrocrystalline sample
toward the high-temperature range and its smearing for
the nanocrystalline sample (Fig. 2).

The shift and smearing of the maximum attributed
to the second spin-reorientation transition in the nanoc-
rystalline sample can also be explained by the weaken-
ing of the magnetic anisotropy due to lattice imperfec-
tion in the bulk and at the boundaries of nanocrystals.

The fact that the curves σ(T) measured upon heating
and cooling of the coarse-grained sample completely
coincide with each other indicates the thermal stability
of the composition under investigation. For submicro-
crystalline and nanocrystalline states, the curves σ(T)
P

measured upon cooling of the samples after high-tem-
perature heating lie above the heating curves due to the
precipitation of α-Fe. This suggests that the DyFe11Ti
compound in submicrocrystalline and nanocrystalline
states possesses a low thermal stability. Moreover,
high-temperature heating leads to recrystallization of
the nanocrystalline sample, as judged from the recov-
ery of the curve σ(T) below the Curie temperature of
the DyFe11Ti phase.

5. CONCLUSION

Thus, it has been demonstrated that, upon the transi-
tion to the nanocrystalline state, the temperatures of
spin-reorientation transitions increase, the coercive
force enhances, and the thermal stability of the studied
alloy decreases.
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Abstract—A model is proposed for magnetic ordering in Fe/Cr-type multilayers substantially above the Néel
temperature of bulk chromium. Redistribution of the charge (and, hence, spin) density near the Fe/Cr interfaces
gives rise to the formation of an essentially inhomogeneous spin-density-wave (SDW) state in the chromium
spacer. The spatial structure of the antiferromagnetic order parameter in thick spacers is described. The SDW
contribution to the effective exchange coupling between the moments in adjacent iron layers is calculated. The
data obtained are used in the interpretation of experimental data on the tunneling spectroscopy of trilayers and
neutron diffraction from Fe/Cr superlattices. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Multilayer structures (multilayers) containing tran-
sition metals have been recently attracting considerable
interest due to their unusual magnetic and kinetic prop-
erties. This interest is focused primarily on Fe/Cr-type
structures with alternating ferro- and antiferromagnetic
layers of iron and chromium [1, 2]. The discovery that
the effective coupling between the moments of adjacent
Fe layers oscillates in sign depending on the thickness
L of the Cr spacer and the temperature T should in itself
be worthy of close attention [3, 4] because of the con-
siderable significance of this effect from both the stand-
point of fundamental science and applications. How-
ever, after a number of other features in the magnetic
properties of the Fe/Cr structures were revealed (phase
slip of the effective exchange, the existence of short and
long periods of its oscillations, the formation of noncol-
linear structures, exchange shift of the hysteresis loop,
giant magnetoresistance, etc.), it became clear that one
here deals with a new class of objects, which requires
individual investigation with the inclusion of a theoret-
ical analysis.

Even a cursory glance at the magnetic phase dia-
gram derived from neutron diffraction and magnetoop-
tical measurements [5–7] supports the need for such a
study. For instance, the reason for the existence of two
critical temperatures, T1(L) and T2(L), that depend dif-
ferently on the chromium spacer thickness L is unclear.
It is also not understood why there is a strong difference
in the properties between multilayers with thick (L >
L*) and thin (L < L*) spacers, where L* is a critical
thickness of about 30 chromium monolayers. Systems
with L > L* exhibit two antiferromagnetic phases in the
chromium spacer; one of them [the so-called low-tem-
perature phase, occurring for T < T2(L)] can be tenta-
tively identified with the corresponding phase in bulk
1063-7834/02/4409- $22.00 © 21727
chromium, while the other [high-temperature phase,
existing for T2(L) < T < T1(L)] has no bulk counterpart.
For L < L*, only the high-temperature phase persists; it
exists below the T1(L) line down to very low tempera-
tures. Recall that T1(L) is of the order of 550 K; it rises
sharply for L < L* while remaining nearly unchanged
for L @ L*; at the same time, T2(L) drops to zero and
does not exist for L < L* while tending to the bulk value
T2(L @ L*) ≅  TN = 311 K for L/L*  ∞.

There are sound grounds to believe that the proper-
ties of the Fe/Cr(100)-type multilayers are directly con-
nected with the formation, in the chromium spacer, of a
peculiar antiferromagnetic order of the type of a spin
density wave (SDW) [8] whose structure depends
strongly on the perfection of the Fe/Cr interface and on
the temperature and thickness of the spacer itself. There
is still no adequate theoretical model that could consis-
tently explain the bulk of available experimental obser-
vations and support these conjectures. While there are
numerical calculations of the ground-state magnetiza-
tion distribution inside the chromium spacer (see, e.g.,
[9]), they are not applicable to the complex thermody-
namics of magnetic structures in the multilayers stud-
ied. The variational approach [10] to description of the
magnetic structure inside the chromium spacer, which
is based on a straightforward analogy to bulk systems,
is not capable of accounting even for the existence of
two transition temperatures and of the critical thickness
of the spacer, to say nothing of finer details in the mag-
netic phase diagram. Furthermore, this approach
ignores the complex character of spin density redistri-
bution near the Fe/Cr interfaces on the scale of the cor-
relation length of antiferromagnetism in chromium,
which depends on temperature and determines the
region where short-range order with SDW is formed at
002 MAIK “Nauka/Interperiodica”
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various temperatures, in particular, above the bulk Néel
point.

We suggest here a possible scenario for the forma-
tion of a strongly inhomogeneous high-temperature
SDW phase in the chromium spacer. The main mecha-
nism responsible for the onset of such an antiferromag-
netic order at a temperature T1 substantially in excess of
TN = 311 K consists, in our opinion, in the redistribution
of the charge (and, hence, spin) density in the chro-
mium layers adjoining the interface. This redistribution
results in a change in electronic polarizability, parame-
ters of the energy spectrum, and band occupation on the
scale of the Debye screening length ld near the Fe/Cr
interface; accordingly, the condition of the paramag-
netic phase instability (the generalized Stoner criterion)
against SDW formation in the near-surface chromium
layers changes. An analysis made within this approach
provides a straightforward explanation for the existence
of the near-surface antiferromagnetic transition and
permits one to estimate its temperature T1 and find the
characteristic spatial scale D ~ L*/2 of the forming
state.

Unfortunately, there are strong factors that do not
permit description of magnetic ordering with SDW
throughout the temperature interval from T1 to T2
within a single analytical procedure. First, as the tem-
perature decreases from T1 to T2, the order parameter
D(x) (the spin density amplitude expressed in energy
units; x is the coordinate reckoned from the spacer cen-
ter, x < L/2) can be far from small near the Fe/Cr inter-
face; as a result, the condition ∆(x) ! πT, which is used
in deriving the Ginzburg–Landau expansion for the
free-energy functional and is valid for T ≈ T1, is no
longer applicable for all x. Second, even if for some rea-
son ∆(x) remains sufficiently small in comparison with
πT for all x [in the bulk of a thick spacer, where ∆(x)
decays exponentially with distance away from the
interfaces, this condition is always satisfied], it
becomes necessary, as the temperature decreases from
T1 to T2, to take into account terms of higher order in
D(x) in the Ginzburg–Landau expansion. The fact is
that it is in this temperature interval that the coefficient
of the lowest order gradient term reverses sign from
positive to negative, which, as is well known [11, 12],
accounts for the formation of the incommensurate
SDW structure in bulk chromium. Thus, when describ-
ing antiferromagnetic spin-density configurations in
Fe/Cr multilayers with the temperature varying in the
interval T1 > T > T2 and when crossing over from the
boundaries of the spacer to its inner layers, one has to
take into account the radical change in the significance
of the various terms in the thermodynamic potential of
the system.

As we will show below, the profile of the order
parameter D(x) across the spacer thickness changes
strongly with decreasing temperature; indeed, while for
T ≤ T1, the SDW amplitude decays exponentially away
from the Fe/Cr interfaces over a length ξ(t) which is
P

larger than or of the order of D, the sharp falloff of D(x)
near the interfaces is replaced at lower temperatures, in
the case of a thick spacer with L > L*, by a smoother
decay accompanied by oscillations on the scale of the
correlation length ξ(T) @ D, where ξ(T) = ξ0(T/TN – 1)–1/2

and ξ0 is the coherence length, which in chromium
equals, according to various estimates, seven to ten
monolayers; i.e., ξ0 < D ~ L*/2. Assuming the inter-
faces separating the chromium and iron layers to be ide-
ally plane, the formation of only collinear SDW struc-
tures in the chromium spacer (which may change their
symmetry relative to x = 0 with variations in the thick-
ness L and temperature T) appears energetically prefer-
able. We believe that this feature can provide a clue to
the experimentally observed phase slip [1, 4] in the
effective moment coupling at the adjacent iron layers.

Following the universally accepted terminology, we
shall call T2(L) the Néel temperature TN while bearing
in mind that the identification of these quantities is for-
mally valid only in the limit L/ξ  ∞ under periodic
boundary conditions imposed on the order parameter,
i.e., T2(∞) = TN.

2. FORMATION OF A CHARGE-INDUCED 
PROXIMITY SDW STATE NEAR 

AN Fe/Cr INTERFACE
Let us consider the structural unit of a Fe/Cr(100)-

type multilayer system representing a trilayer made up
of two iron films sandwiching a chromium spacer. In
the high-temperature domain T > TN, the paramagnetic
phase of bulk chromium is stable against magnetic
ordering; however, the presence of the Fe/Cr interfaces
can disrupt this stability. The origin of the SDW state
above the Néel point can be qualitatively understood
already in terms of the simple model of a plane defect
placed in a one-dimensional medium with a free-energy
density [12]:

(1)

Equation (1) is based on the well-known Landau–Gin-
zburg expansion for the free energy of an SDW system
in powers of the order parameter D(x), which is made
under the assumption that |D(x) | ! πT and |D'(x) | !
πT/ξ0. This expansion is derived directly from the
microscopic SDW model, in which the origin of the
antiferromagnetic instability is connected with nesting
of the electron and hole parts of the metal Fermi surface
in the paramagnetic phase. Here, vF is the Fermi veloc-
ity of the quasiparticles and c1, c2, and c3 are coeffi-
cients depending on the temperature and band-structure
parameters; c1 and c2 can reverse their sign under the
variation of temperature, and the coefficient c3 is
always positive [11, 12]. In this section, we consider the
region of fairly high temperatures in which (c1, c2) > 0;

f x( ) c1D2 c2v F
2 D'2 c2D4 c3

2
----v F

4 D''2+ + +=

+ c3D6 c3v F
2 2 DD'( )2 3D2D'2+[ ] .+
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in these conditions, the equilibrium value of the order
parameter corresponding to a minimum of functional
(1) is zero, which is certain to correspond to the para-
magnetic phase. In this case, the part of the free energy
that is connected with the defect potential and is not
contained in Eq. (1) plays a decisive role in SDW for-
mation. We shall approximate the Fe/Cr(100) interface
with an ideal smooth plane placed perpendicular to the
structure growth direction nx and assume the chromium
spacer thickness to be large enough (a more rigorous
criterion is introduced later on) to exclude the mutual
influence of the opposite interfaces. The potential sim-
ulating the interface interaction with the itinerant com-
ponent of spin density forming the SDW will be
assumed to fall steeply near the defect as compared
with the slowly varying order parameter D(x). The con-
tribution from the plane defect placed at the origin x =
0 to the thermodynamic potential of the system can be
written, with due inclusion of the above approxima-
tions, in the form

(2)

The coefficients ν and A can be obtained in the micro-
scopic model [12] and are of different physical origin.
The term quadratic in D(0) in Eq. (2) describes the
effect of Coulomb interaction and charge redistribution
near the Fe/Cr interface. Estimation of coefficient ν
made within the model proposed in [12] yields ν ≈
−U /|δ| for |δ| ~ πT, where U = 4πqse/ld, qs is the sur-
face charge, ld is the Debye length in the spacer metal,

 is the averaged density of states in the electron and
hole parts of the Fermi surface possessing the nesting
property, and δ is the difference (expressed in energy
units) between the occupations of these parts by quasi-
particles. In our case, δ < 0 and |δ| < 0.05 eV, πT <
0.2 eV, and U  ~ 1; i.e., ν > 20 eV–1. Note that the neg-
ative sign of the parameter ν corresponds to electrons
flowing from Fe into Cr. The term linear in D(0) in
Eq. (2) derives from the exchange interaction between
the Fe and Cr spins in the monolayers adjacent to the
interface. Coefficient A takes into account the possible
formation of a localized moment in the first Cr mono-
layer adjoining an Fe layer [2]. The antiferromagnetic
coupling between the nearest neighbor iron and chro-
mium moments can reduce the effective interface
moment, which affects the itinerant component of spin
density in more distant chromium layers, thus produc-
ing a specific magnetic screening. Estimation of coeffi-
cient A made in terms of the model of [12] yields A ≈
JS0 , where J is the exchange integral and S0 is the
effective moment of the interface. In our case, it
appears reasonable to use the estimate of J made for
bulk Cr1 – xFex alloys, namely, |J | < 0.05, which
yields A < 0.1, because S0 < SFe, where SFe ≅  2.2µB/atom
is the iron moment at T ~ 400–600 K. Thus, the Cou-

Ωd
ν
2
---D2 0( ) AD 0( ).–=

N

N

N

N

N
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lombic term [quadratic in D(0)] can noticeably exceed
the exchange term [linear in D(0)], at least for values of
∆(0) (greater than 10–2 eV) that are not overly small, in
the high-temperature domain of πT ≈ 0.2 eV where ∆ !
πT. In the approach proposed here, the term quadratic
in D(0) is the main contribution and drives the near-sur-
face transition to the SDW state at the temperature T1 >
TN. We shall call this state charge-induced. Note that the
term linear in D(0) in Eq. (2), while not driving the tran-
sition with T, induces a small-amplitude SDW compo-
nent at any temperature. This additional, exchange-
induced, proximity SDW component should be taken
into account only above or in the immediate vicinity of
the near-surface transition temperature T1 where the
charge-induced SDW component is either very small or
absent altogether [a case realistic enough under the
condition ∆(0) < 10–2 eV]. It may be expected that this
approach, taking into account primarily the term qua-
dratic in D(0) in Eq. (2), will bring about more or less
reasonable qualitative results for the high-temperature
region far from the Néel point of interest here.

Let us describe the formation of the charge-induced
SDW near a plane defect by using a model expression
for the thermodynamic potential:

(3)

where we retain in Ωd only the first term of Eq. (2),
which is proportional to ~νD2(0), with ν < 0. Consider
the case of temperatures T > T* high enough to justify
neglect of terms proportional to c3 in the f(x) expansion
of Eq. (1) (the temperature T* is estimated in the next
section). Treating Eq. (3) as a functional of D(x), Ω =
Ω[∆], we can find its stationary function in the class of
linearly polarized SDW envelopes in the form

(4)

where n is the unit polarization vector, ξ(T)vF  is

the correlation length, and D = 2c2 /ν is a character-
istic scale, which, by analogy with the terminology
accepted in the theory of surface superconductivity
[13], we shall call the interpolation length. Within the
model used, the length D is only weakly temperature-
dependent. Solution (4) is valid for D/ξ ≤ 1; for D/ξ >
1, only the trivial solution D(x) ≡ 0 exists.

Equation (4) suggests the following scenario of the
system behavior. For temperatures T > T1 [which is
equivalent to the condition ξ(T) < D], only the para-
magnetic phase is stable. Below the temperature T1,
which satisfies the equality

(5)

the near-surface SDW described by Eq. (4) forms;
thereby, equality (5) can be considered a specific Stoner

Ω f x( ) x Ωd,+d
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criterion for antiferromagnetism in a semi-infinite sys-
tem described by Eq. (3). As the temperature decreases
below T < T1 [or ξ(T) > D], a spin density distribution
D(x), which falls off sharply in amplitude for x @ D
while varying only weakly on the spatial scale x ! D,
forms near the plane defect. It goes without saying that
a more consistent description of the behavior of the
order parameter D(x) in the high-temperature domain
near the Fe/Cr interfaces would require the introduction
of a number of complications into the simplest model
(3). One would have first of all to cross over from a
semi-infinite medium with one defect to a spacer of
thickness L bounded on both sides in the nx direction by
plane defects. Criterion (5) is valid in this case only in
the limit ξ/L  0, while in a more general case, the
transition temperature depends in a more complicated
way on the spacer thickness, T1 = T1(L). These compli-
cations do not affect the qualitative pattern and were
considered in detail in [14]. In our case, it is important
to understand the origin of the proximity SDW and to
estimate the critical temperature T1 of its onset and its
characteristic spatial scale D. Following these esti-
mates, we shall subsequently use approximations to
construct a model of spin density distribution across the
chromium spacer for temperatures which, while being
fairly low compared to T1, would nevertheless corre-
spond to the paramagnetic phase of bulk chromium
(T > TN). The approach based on the relation between
T1 ≈ 550 K and TN = 311 K and on the existence of a
short-range order on the scale D ~ (L*/2) ≈ 10–15 chro-
mium monolayers is applicable at least up to thick spac-
ers with L > L*.

3. SPATIAL SPIN-DENSITY DISTRIBUTION
FAR FROM THE Fe/Cr INTERFACES

In the temperature region TN < T < T1, we consider
the chromium spacer of thickness L > L* in an
Fe/Cr(100) multistructure as consisting conventionally
of layers of a strong and a weak antiferromagnet. The
terms strong and weak relate to the regions adjoining
the interfaces and those far in the bulk of the spacer,
respectively. We shall assume that all the temperature-
induced changes in the order parameter D(x) occurring
in the interval of temperatures (of interest to us here)
sufficiently low in comparison with T1, take place only
in the domain of weak antiferromagnetism with an
effective thickness 2l = L – L*.

The region of strong antiferromagnetism of thick-
ness L*, which adjoins the technological interfaces, is
only a small fraction of the total chromium spacer
thickness and separates the deep layers of chromium
from the Fe/Cr interfaces. We shall assume that within
the strong-antiferromagnet layers, the amplitude of the
charge-induced SDW is temperature-independent and
that its formation at temperatures considerably above
TN is described by nonlinear equations with self-consis-
tent sources at the boundaries, solution of which (as
P

already pointed out) is a fairly complicated problem in
itself. Moreover, for T ! T1, the SDW amplitude near
the interfaces is ∆(±L) ~ vF/D(T1) and can turn out to be
not at all small as compared to πT, which may make the
Ginzburg–Landau expansion throughout the |x | < L/2
spacer inapplicable. Nevertheless, within the weak-
antiferromagnetism region, we still have |D(x)| ! πT, so
that one can use Eq. (1) for the free-energy density.
Because the temperature region within which we use
this expression is now different, the relations between
the coefficients c1, c2, and c3 also change. Naturally, c1
and c3 are positive as before; however, the parameter
c2(T) decreases strongly and can even reverse sign as
the temperature varies between T1 and TN, so that the
terms containing c3 cannot, generally speaking, be
neglected. This makes finding the optimum SDW struc-
ture D(x) an extremely complex problem. There is,
however, a simplifying factor which permits one to
retain only the terms lowest (quadratic) in D(x) in the
f(x) expansion of Eq. (1), albeit with some restrictions.
The fact is that, in contrast to the situation considered
in the preceding section, there is no charge transfer and
no Coulomb interaction at the conventional interface
separating the strong antiferromagnet from the weak
one (these ferromagnets differ in the SDW amplitudes
only). Therefore, the surface contribution to the ther-
modynamic potential of the weak antiferromagnet can
be written simply in an approximation linear in D(x):

(6)

where l is one half of the effective spacer thickness.
Within the specified temperature region, any spin den-
sity distribution across the spacer thickness can be rep-
resented as the sum of a slowly varying [on the scale of
the correlation length ξ(T)] and a rapidly varying part
[on a scale less than or of the order of the interpolation
length D < ξ(T)]. By averaging over the rapidly varying
part of the order parameter, which is concentrated
within a distance D ~ L*/2 from the interfaces, we
obtain for the small, slowly varying component an
effective Hamiltonian with a term linear in D(±l) and
given by Eq. (6), where the coefficient B(±l) can be esti-
mated (to within a factor) as B ≡ |B(±l) | ≈

dx, with U0 being the effective SDW poten-
tial in chromium equal to 0.3–0.5 eV (for more details,
see [11]); the integration is performed over the interval
l < x < L/2. An order-of-magnitude estimate of the coeffi-
cient B ~ (πT1/U0) ≈ 0.5–1.0 does not contain any small-
ness; therefore, the exchange term Ωs in Eq. (6) is a source
of the order parameter in the bulk of the spacer for |x| < l.

We write the thermodynamic potential of the SDW
system in the weak-antiferromagnetism region in the
form

(7)

Ωs
1
2
--- B l( )D l( ) B –l( )D –l( )+[ ] ,–=

U0
1– ∆ x( )∫

Ω D[ ] 1
2
--- f D D' D'', ,( ) xd

l–

l

∫ Ωs D[ ] ,+=
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where f and Ωs are given by Eqs. (1) and (6), respec-
tively. Presented in this form, Eq. (7) simulates the
effect of the exchange field of the Fe layers on SDW
formation in the Cr spacer, although the effective thick-
ness 2l and the effective exchange potential B(±l) natu-
rally have totally different meanings here. In particular,
B ≠ 0, even if we formally put the magnetic moment of
the Fe layer equal to zero. Actually, the thermodynamic
potential was chosen in the form of Eq. (7) in order to
be able, after conditional variation of the bulk part [the
integral of the density f(x)] of the functional Ω[D] for
given SDW amplitudes near the Fe/Cr interfaces
(where the Ginzburg–Landau expansion is either
invalid or its analysis would be too cumbersome), to
derive the optimum configuration of the order parame-
ter D(x) in the bulk of the chromium spacer from the lin-
ear equation. Considered from the formal standpoint,
this corresponds to excitation of the long-wavelength
D(x) component by an external (with respect to the
region of weak antiferromagnetism) exchange field
B(±l), which is generated near the Fe/Cr interfaces at a
high temperature T ≈ T1 by the mechanism outlined in
the preceding section.

To find the extremals of functional Ω[D] of Eq. (7),
we make a few additional simplifying assumptions. We
shall consider only transverse-polarized SDW struc-
tures and assume the D(x) vector to be orthogonal to the
multilayer growth direction nx:

(8)

where {nx, ny , nz} is the basis of the orthogonal refer-
ence frame. We also restrict ourselves to D(x) depen-
dences with a symmetric modulus, |D(x) | = |D(–x) |. We
choose the angle ϕ (0 ≤ ϕ ≤ π) between vectors B(l) and
B(–l) to which the directions of the SDW vectors D(l)
and D(–l) are rigidly related at the boundaries of the
weak antiferromagnetism region. This angle is assumed
to be a fixed external parameter for the present. The nz

axis from which the angle ϕ is reckoned is chosen con-
veniently so as to group the solutions for the extremals
of functional Ω[D] according to boundaries of two
types, namely, type I

(9)

and type II

(10)

We shall have to analyze only type I solutions, because
solutions of type II are equivalent to those of type I
under the substitution z  y. Conditions (9) or (10)
correspond to a noncollinear SDW structure whose
polarization vector in the chromium spacer turns con-
tinuously (from one monolayer to another) from the
angle –ϕ/2 for x = –l to ϕ/2 for x = l.

D x( ) nzDz nyDy,+=

∆z l( ) ∆z l–( ) D l( ) ϕ /2( ),cos= =

∆y l( ) –∆y l–( ) D l( ) ϕ /2( )sin= =

∆z l( ) –∆z l–( ) D l( ) ϕ /2( ),cos= =

∆y l( ) ∆y l–( ) D l( ) ϕ /2( ).sin= =
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Consider first the temperature interval TN < T < T*,
wherein coefficient c2 is either positive and compara-
tively small or negative and terms proportional to c3
have to be retained in expansion (1). By varying func-
tional Ω[D] of Eq. (7), we obtain the Euler–Lagrange
equation

(11)

subject to the boundary conditions

(12)

(13)

The fundamental system of solutions to Eq. (11) can be
written as

(14)

where the quantities α–1 and β–1 are the correlation
lengths of amplitude and phase fluctuations of the order
parameter:

(15)

Solutions of type I have the form

(16)

where the constants Ai, according to boundary condi-
tions (12) and (13), are

(17)
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Here, P(ϕ) is the determinant of the coupled equations
for Ai (i = 1, 2, 3, 4):

(18)

Note two fundamental circumstances connected with
relations (17) and (18). First, for αl  ∞, all coeffi-
cients Ai tend to zero exponentially (exp(–2αl)  0),
such that in the thermodynamic limit there are no SDW
states of the type of Eq. (16). Second, for a negative
coefficient c2, the determinant P(ϕ) in Eq. (18) reverses
sign and vanishes at a temperature Tϕ, which exceeds
the Néel temperature TN in an infinite sample specified

by Eq. (15) for α = 0: 2c1c3 = . This means that even
in the absence of an external source (B = 0), the system
can become unstable with respect to the formation of
unique nonuniform SDW states, whose origin derives
essentially from the spacer being limited purely geo-
metrically on both sides in the nx direction. The ampli-
tude of such states (we call them topological) oscillates
with a period ~β–1 and decays over a length ~α–1 (β >
α) away from the interfaces into the spacer. The solu-
tion of the equation P(ϕ) = 0 gives the temperature
max{Tϕ(l)} above which such topological states cannot

P ϕ( ) ϕ /2( )cos
2 βlsin

2 α lsinh
2

+( )=

× β 3α2 β2–( ) 2α lsinh α 3β2 α2–( ) 2βlsin+[ ]

+ ϕ /2( )sin
2 βl α lsinh

2
+cos
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× β 3α2 β2–( ) 2α l α 3β2 α2–( ) 2βlsin–sinh[ ] .

c2
2

2αl

3π

2π

π

0 π 2π 3π 2βl

T0

Tπ

C2 = 0

Phase diagram of induced SDW states in the chromium
spacer above the bulk Néel temperature.
P

exist. It is this temperature, rather than TN, that limits,
from below, the region of applicability of the approach
based on Eqs. (11)–(13). As l  ∞, the quantity Tϕ(l)
approaches the value Tϕ(∞) asymptotically, which does
not depend on ϕ and is given by the equality 3α2 – β2 =

0 or, which is the same, c1c3 = 2 . Note that, as follows
from the expressions for the coefficients c1, c2, and c3

given in [12], we have Tϕ(∞) > TN for c2 < 0. For finite
values of l, the function Tϕ(l) is fairly complex; indeed,
it oscillates near the Tϕ(∞) line and crosses it at the
nodes 2βln = πn (n = 0, 1, 2, …). The figure qualita-
tively presents the T0(l) and Tπ(l) relations correspond-
ing to the lines of instability with respect to the forma-
tion of topological collinear states with a symmetrical
and an antisymmetrical SDW envelope ∆(x), respec-
tively. Note that the Tπ(l) line exists down to very small
l; for βl ! 1, the equation for Tπ(l) simplifies greatly,

3 c2 = c1l2. By contrast, the T0(l) line exists only at
values of l in excess of a certain critical value; in the
limit βl ! 1, there is no instability against the formation
of a symmetrical collinear topological state above TN.
For 0 < ϕ < π, the Tϕ(l) curves always lie in the interval
between T0(l) and Tπ(l).

As the temperature increases, we reach the region of
c2 > 0, where the determinant P(ϕ) of Eq. (18) can be
only positive. The structure of the order parameter is
changed (compared to that for c2 < 0) toward slower
oscillations against the background of a sharper drop in
amplitude as one moves away from the layer interfaces.
In the β/α  0 limit (which is equivalent to 2c1c3 

 for c2 > 0), we obtain the temperature T = T*, which
it appears only natural to choose as an estimate of the
above conventional boundary. Above T*, the terms of
expansion from (1) that are proportional to c3 become
insignificant; therefore, by dropping the corresponding
terms in Eqs. (11) and (13) and taking into account con-
dition (9), we find the components of the noncollinear
structure (8) of type I for the given parameters ϕ and B:

(19)

In the high-temperature phase T1 > T > T*, it is possible
to make a self-consistent calculation with an effective
exchange potential B(±l) in Eq. (6) in an explicit way.
To do this, we construct linear combinations of SDW
envelopes in the form of Eq. (4) which are localized at
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the boundaries of a thick spacer (L @ ξ). For small
arguments |x | ! L – ξ, the symmetric combination
coincides with function ∆z(x) and the antisymmetric
one coincides with function ∆y(x) in Eq. (19) if we set

(20)

Equality (20) relates the exchange constant B at the
boundary between the weak and the strong antiferro-
magnetism to the charge density redistribution near the
Fe/Cr interface through the interpolation length D(ν).

Thus, within the temperature interval max{Tϕ(L)} <
T < T1(L), only SDW states associated with the decrease
in surface energy at the expense of an external (with
respect to the spacer) charge perturbation in near-inter-
face layers and ordered nonuniformly over the Cr
spacer thickness can exist. It appears natural to call
such states induced, because they vanish in the absence
of external sources, as opposed to the topological
states, which form spontaneously for T ≤ Tϕ(L). The lat-
ter states can exist only if the following two factors are
present simultaneously: (i) the system must be bounded
on both sides along the SDW wave vector direction, and
(ii) the free-energy functional must have a specific form
of Eq. (1) containing a negative lowest order gradient
term c2(D'(x))2 predetermining instability with respect
to the formation of an incommensurate SDW structure
in the volume and a positive higher order gradient term
c3(D''(x))2 stabilizing this structure. No topological
SDW states will form in the absence of either of these
factors. Unfortunately, the scope of this publication
does not allow us to consider the situation at T <
max{Tϕ(l)}, because this would require taking into
account higher powers of D(x) in expansion (1) and
would strongly complicate all calculations. Thus, the
restriction T > max{Tϕ(l)}, under which we have
P(ϕ) > 0 for all ϕ and l, is of fundamental significance
and is assumed subsequently to hold.

4. EFFECTIVE EXCHANGE ENERGY
AND PHASE SLIP

It can readily be shown that the equilibrium thermo-
dynamic potential Ω[D] of Eq. (7) is expressed through
the SDW amplitude at the boundary as Ω = –B|D(l) |/2.
In the temperature region max{Tϕ} < T < T*, straight-
forward calculation of the order parameter configura-
tion using Eqs. (9) and (16) made with coefficients Ai of
Eq. (17) yields the following relation for Ω as a func-
tion of the parameter ϕ:

(21)

where P(0) and P(π) are the values of the determinant
in Eq. (18) for ϕ = 0 and π, respectively, and Γ does not

B
4v F

2 c2

ξ2
--------------- ξ D–

ξ D+
------------- 

 
1/2

.=

Ω ϕ( )
Γ

P 0( ) ϕ /2( )cos
2

P π( ) ϕ /2( )sin
2

+
----------------------------------------------------------------------------,–=
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depend on the angle ϕ and can be written as

(22)

In the temperature region of interest here, Γ, P(0), and
P(π) are positive; i.e., the gain in energy is the highest
either at ϕ = 0 or at ϕ = π.

The choice of the solution corresponding to the cho-
sen value of ϕ depends on the formulation of the prob-
lem. We may recall that the region of weak-antiferro-
magnetic order described here is connected with the Fe
layer spins indirectly through the strong order regions.
If the ϕ angle is fixed by an exchange mechanism cou-
pling the iron moments which is not related to SDW
formation in the spacer (for instance, coupling through
the paramagnetic parts of the chromium itinerant-elec-
tron Fermi surface [8, 11]) or by an external magnetic
field, then the problem of the choice of the optimum
SDW structure can be solved using Eqs. (14)–(18); as
for Eqs. (21) and (22), they are not needed in the further
commentary.

By contrast, if the energy gained in the formation of
antiferromagnetic order in the chromium spacer is large
enough, then the relative magnitude of Ω(0) and Ω(π)
determines the type of the SDW collinear structure and,
accordingly, the mutual orientation of the iron magnetic
moments in adjacent layers. Considered in terms of the
above model with an additional vector B, which has the
symmetry of the order parameter in the commensurate
SDW state, the state with ϕ = π corresponds to the fer-
romagnetic orientation of Fe moments for an even num-
ber of Cr monolayers in the spacer and to the antiferro-
magnetic orientation if the number of Cr monolayers is
odd. If ϕ = 0, the ferro- and antiferromagnetic orienta-
tions of the Fe moments in the above reasoning should
be reversed. Consider that the SDW-induced contribu-
tion to the effective exchange energy is usually calcu-
lated as the difference

(23)

where EAF – EF = (–1)N + 1Eex is the difference between
the energies of states with antiferromagnetic and ferro-
magnetic configurations of iron moments in adjacent
layers and N is the number of chromium monolayers in
the spacer. The sign of Eex is determined by the relative
magnitude of P(0) and P(π) and depends on the spacer
thickness and temperature. The P(0) – P(π) difference
vanishes if the equality

(24)
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is met. The solution to Eq. (24) can be conveniently
plotted on the (2βl, 2αl) plane (see figure); this solution
represents a family of curves starting at the nodes 2βl =
πn (n = 0, 1, 2, …) on the Tϕ(l) line of topological insta-
bility and reaching the asymptotic behavior 2βl = π(n +
1) – 3β/α for β/α  0. Each curve can be identified
with its temperature-dependent ln(T) (which has no
simple analytical form). For a fixed temperature, the
quantities Ln(T) ≅  2(ln(T) + D) are essentially the spacer
thicknesses at which the phase of the effective
exchange (–1)N + 1Eex undergoes a slip (in the regular
sign alternation), with the number of monolayers N
changing by one [1, 2, 4]. Each phase slip line ln(T) is
formally a line of thermodynamic equilibrium between
collinear phases with an even and an odd order param-
eter, Ω(0) = Ω(π). As the length l passes through the
point ln(T), function ∆(x) acquires or looses one zero.
For illustration, the insets to the figure qualitatively
show the ∆(x) distributions in a spacer with an effective
half-thickness l, which for small n is confined within an
interval (ln(T), ln + 1(T)). Assuming 2ln ≈ dNn, where d is
the distance between adjacent chromium monolayers,
one can estimate the critical monolayer numbers at
which the effective exchange phase undergoes the first,
second, and subsequent slips. Because the α(T) and
β(T) quantities given by Eq. (15) are temperature-
dependent, the numbers Nn(T)also vary with tempera-
ture. It is easy to verify that in the temperature region of
interest to us here, the phase correlation length β–1(T)
increases, whereas the amplitude correlation length
α−1(T) decreases with increasing T, which is associated
with the behavior of the coefficient c2(T) described
above. Thus, the critical numbers Nn(T) grow with tem-
perature and, in addition, as follows from Eq. (24), we
have Nn(T) ≈ nN1(T) (n = 1, 2, …); i.e., as the number
of monolayers in the chromium spacer varies, the effec-
tive exchange phase should slip with a close-to-regular
periodicity.

We note that the zero line of phase slippage l0(T)

exists only for c2 > 0 and has the form l0(T) = ξ(T)
for (αl, βl) ! 1. However, if β becomes imaginary,
which corresponds to the temperature rising above T*,
then Eq. (24) has no solutions and there is no phase slip
effect. This is in accord with the finding that the most
energetically favorable state in the high-temperature
region T1 > T > T* is always a state with a symmetric
SDW envelope. Indeed, the thermodynamic potential
for structure (19)

(25)

has a minimum at the point ϕ = 0.

As follows from Eqs. (21)–(23) and (25), effective
exchange through a thick chromium spacer decays
exponentially with increasing L on the scale length of

3/2

Ω ϕ( )
B2ξ

4c2v F
2

--------------- 2l/ξ( )sinh
2l/ξ( )cosh ϕcos–

---------------------------------------------–=
P

amplitude SDW fluctuations: α–1(T) for max{Tϕ} < T <
T * and ξ(T) for T* < T < T1.

The present model of an SDW state in Fe/Cr-type
multilayers, which is strongly nonuniform over the
chromium spacer thickness, can be useful in the inter-
pretation of some experimental results obtained in
investigating these systems. We have in mind here pri-
marily investigation of the magnetic structure of multi-
layers with thick spacers (L > 20–30 chromium mono-
layers) performed at high temperatures (150 to 550 K).
Polarized neutron reflection experiments [7] (see also
reviews [1, 2]) made on Fe/Cr(100) superlattices have
revealed two antiferromagnetic transitions in the chro-
mium spacer. The first of them is described in [7] as a
gradual transition from the state with an incommensu-
rate SDW to a state with a commensurate SDW (but,
possibly, strongly nonuniform over the spacer thick-
ness). For instance, the diffraction pattern obtained
with a quasi-momentum Q = (100)π/(2d) on a sample
with L = 56 monolayers featured two satellites that
approached each other with the temperature increasing
from 175 to 310 K. The other transition is identified on
the (T, L) plane of the magnetic phase diagram with a
fairly distinct boundary at T1(L) ≈ 500 K above which
the central peak disappears; this boundary is interpreted
in [7] as corresponding to the transition between the
commensurate SDW and the paramagnetic state. We
note that the results obtained in neutron diffraction and
kinetic measurements on superlattices apparently
depend strongly on the quality of the Fe/Cr interface; as
a result, in some experiments (e.g., [5]), where the sam-
ples were grown in other conditions, one observed only
one (low-temperature) incommensurate-SDW phase at
T < TN(L) in spacers with a L > 30 monolayer thickness.
Measurements of the conductivity and magnetization
hysteresis made in [15] on epitaxial superlattices of a
different composition, Fe/Cr1 – xFex(100) with x = 0.06,
showed the existence of two antiferromagnetic transi-
tion temperatures in a thick (L > 24 monolayers) spacer.
The lower of these temperatures, TN, is associated with
the transition to a state with a uniform SDW, which is
of the type of the AF0 phase in bulk dilute Cr1 – xFex

alloys; the other critical temperature T0 (or T1 in our
notation), lying, as a rule, 150 K above TN, corresponds
to the transition from the nonuniform SDW state to the
paramagnetic phase.

One can thus maintain that experiments carried out
on superlattices indicate the existence in the tempera-
ture region TN(L) < T < T1(L) of a nonuniform antifer-
romagnetic phase which has no counterparts in bulk
chromium. Unfortunately, it will likely not prove possi-
ble to reproduce the fine spatial structure of the SDW
envelope that determines this nonuniformity from neu-
tron diffraction data. It is possible to detect only a
strong broadening of the central peak within the inter-
val TN(L) < T < T1(L) in the neutron diffractogram near
the quasi-momentum Q = (100)π/(2d) associated with
the existence of some short-range antiferromagnetic
HYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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order and, apparently, with a large diffuse contribution
to neutron scattering.

Tunneling spectroscopy measurements performed
on the so-called optimized Fe/Cr/Fe(100) trilayers with
a wedge-shaped spacer and a high-quality interface
structure (see references in reviews [1, 2]), which can-
not be reached in Fe/Cr superlattices, turned out to be
more informative as to details on the SDW spatial struc-
ture. Those experiments studied the effective exchange
coupling of ferromagnetic iron layers through a chro-
mium spacer and, in particular, the role played in this
coupling by antiferromagnetic ordering inside the
spacer. It was found that, instead of the expected alter-
nation of ferro- and antiferromagnetic relative moment
orientation of the iron layers with variation of the num-
ber of chromium monolayers N by one, the phase
undergoes slippage at room temperature (i.e., irregular
reversal of the exchange sign) at Ni = 24, 44, and 64
(i = 1, 2, 3); if the spacer thickness exceeds ≈75 mono-
layers, magnetic coupling between the layers virtually
disappears. The first point of phase slip N1(T) is seen to
increase monotonically with temperature from 24 to
38 monolayers up to 550 K, as though it continues the
corresponding dependence of the half-period of the
long-wavelength SDW envelope above TN in the AF1

phase of bulk chromium [8]. While the data available
on the N2, 3(T) relations are less definite, they indicate,
on the whole, a rise in Ni(T) at temperatures T > TN(L).

Within the model proposed here, the results of the
Ni(T) measurements can be unambiguously considered
as arguing for the existence in a chromium spacer above
TN(L) of a transversely polarized SDW with long-wave-
length modulation along the growth direction of the
structure, with the values of Ni being connected in a
straightforward way with the nodes of the SDW at
which its amplitude vanishes. The fact that we did not
experimentally observe the N0(T) line, which appears
formally in our model, may be due either to the real
temperature of the onset of the proximity SDW state
T1(L) lying lower than the zero-phase-slip temperature
calculated by us or to the N0(T) line being in the region
of the (T, L) parameters that is beyond the scope of
applicability of our model.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
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Abstract—It is shown that high-temperature treatment of self-poled lead zirconate–titanate films containing an
excess of lead oxide, followed by prolonged storage at room temperature, results in a charge redistribution in
the near-electrode regions of ferroelectric films. Such heat treatment destroys, as a rule, the self-poled state and
removes the dielectric nonuniformity. A model of a thin-film ferroelectric capacitor is proposed which makes
it possible to reproduce variations in the P–V hysteresis loop shape and capacity–voltage (C–V) characteristics,
as well as in the frequency-dependent pyroelectric response (LIMM). The effect of the interface and grain
boundaries on the onset of the self-poled state, its variation, and destruction is discussed in terms of the pro-
posed model. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the most interesting properties of thin ferro-
electric films is the formation of the self-poled state in
some of them. The poled state sets in in a film without
application of any external electric field after the film
has crystallized and become ferroelectric. The self-
poled state can be observed in ferroelectric films irre-
spective of their composition, crystal structure, and the
method of preparation used [1–9]. Self-polarization is
actually an interface effect [1, 2]. This state can be
induced, in particular, by a field of electrons trapped in
surface states on a ferroelectric–bottom electrode inter-
face [3, 4]. Another viewpoint on the nature of the self-
poled state relates this state to mechanical stresses
present in ferroelectric films [7]. The internal electric
field, which manifests itself in the shift of hysteresis
loops and C–V characteristics, is correctly considered
to be an attribute of self-poling [2] and is due to the
migratory polarization which screens the self-polariza-
tion [3].

Nevertheless, the origin of self-poling is still far
from being clear and requires additional studies.
Among the problems which have to be refined are (1)
the role played by Schottky barriers at the interfaces of
a thin-film ferroelectric capacitor [1]; (2) the effect of
the film crystal structure, for instance, the predominant
onset of self-poling in thin films of lead zirconate–titan-
ate solid solutions PbZr1 – xTixO3 (PZT) in the tetragonal
phase (x ≥ 0.47), compared with the rhombohedral
compositions (x ≤ 0.47) [1, 2, 10]; (3) the size effects
(depending, in particular, on the relation between the
grain size and thickness of polycrystalline films) and
their manifestations in the film properties; and (4) the
1063-7834/02/4409- $22.00 © 1736
reasons for self-poling destruction under film annealing
[1, 10, 11].

We present here an analysis of the onset of the self-
poled state and of its variation and destruction in PZT
films subjected to heat treatment.

2. FILM PREPARATION AND COMPOSITION 
AND EXPERIMENTAL TECHNIQUES

The films prepared by using radio-frequency mag-
netron sputtering of a ceramic target of composition
PbZr0.54Ti0.46O3 + 10 mol % PbO contained an excess
of lead oxide PbO, which is known [3, 11–14] to stim-
ulate the onset of the self-poled state in these films.
Films of thickness 0.7–1.0 µm were deposited on a cold
substrate (130°C) and subjected to heat treatment at
550°C. We believe [3] that the role of the lead oxide
excess in PZT films can be reduced, in particular, to the
extraction of a certain amount of oxygen atoms (which
are mobile in the perovskite structure) from the perovs-
kite lattice, as a result of which the ferroelectric layer
becomes doped by oxygen vacancies and features
n-type conduction. Platinum films were used as the top
and bottom electrodes. The area of the capacitor struc-
ture was determined by the dimensions of the top elec-
trode, whose diameter was 130 µm.

The dielectric hysteresis loops of thin-film ferro-
electric capacitors were studied using a modified Saw-
yer–Tower circuit at a frequency of 50 Hz, their volt-
age–capacity characteristics were obtained with an E7-
12 digital bridge at a frequency of 1 MHz, and the fre-
quency-dependent pyroelectric response (LIMM) was
measured and processed following the technique
described in detail in [15, 16].
2002 MAIK “Nauka/Interperiodica”
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3. EXPERIMENTAL RESULTS

We showed earlier that the self-poled state in PZT
films is distributed nonuniformly over the film thick-
ness and is concentrated in the film region adjacent to
the bottom electrode (curve 1 in Fig. 1) [3]. A weakly
polarized region with oppositely directed polarization
was located close to the top electrode. This distribution
of the self-polarization was reflected in the asymmetric
hysteresis loops (Fig. 2a) and voltage–capacity charac-
teristics (Fig. 3a).

A comparison of the polarization distribution curves
obtained by biasing the film with an external dc voltage
of +20 or –20 V (curves 2, 3 in Fig. 1) with the self-pol-
ing curve (curve 1 in Fig. 1) showed the self-poled state
not to extend over more than 10–15% of the film vol-
ume. Despite a fairly strong polarizing field
(200 kV/cm) being applied to the film, the maximum in
the polarization distribution is seen to remain shifted
toward the bottom electrode. This shift becomes stron-
ger after application of a positive voltage (curve 2 in
Fig. 1).

The results of LIMM measurements made on the
films, which were poled by a voltage of +20 and –20 V
at a temperature of 280°C and in the course of subse-
quent cooling and then storage for 24 h at room temper-
ature, are represented by curves 4 and 5 in Fig. 1. The
degree of polarization of such samples is seen to
increase substantially compared to that reached in nor-
mal conditions. The LIMM amplitudes in the PZT film
near the top electrode were almost identical when
polarized by pulses of either polarity. At the same time,
the amplitude of the positive signal near the bottom
electrode is noticeably larger than that of the negative
signal, which may be due to the existence of a residual
space charge near the bottom electrode.

Heat treatment of self-poled PZT films at 100 and
200°C did not affect the shape of the P–V and C–V
curves. Annealing the films at a higher temperature
(300°C), which is close to the Curie point, resulted in
their depolarization and a noticeable change in the
shape of the hysteresis loops (Fig. 2b) and C–V charac-
teristics (Fig. 3b). The hysteresis loops and the voltage–
capacity characteristics assumed their normal, i.e.,
symmetric, form. Prolonged storage of such PZT films
at room temperature produced waists in the hysteresis
loops (Fig. 2c, storage 4 × 107 s), which is frequently
seen in polycrystalline ceramic ferroelectrics [17], with
additional extrema appearing in the C–V characteristics
(Fig. 3c).

The hysteresis loop shape of self-poled films
depended on the amplitude of the ac voltage used. For
instance, application of an ac voltage 20 V in amplitude
reduced the loop asymmetry (Fig. 4a) in comparison
with that at 10 V (Fig. 2a) but did not result in a com-
plete disappearance of the internal bias field. Consecu-
tive measurement of C–V curves made on the same
sample revealed that as the number of polarization
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
switching cycles increases, the shape of the C–V curves
changes (Fig. 3c), making them smoother (Fig. 3d).

The experiments showed that the dielectric charac-
teristics of an array of capacitor structures based on a
self-poled PZT film exhibit a significant scatter over the
film area (Figs. 2a, 2d, 2e). For instance, identical
capacitor structures exhibited hysteresis loops of three

Fig. 1. Polarization distribution in a PZT film over its thick-
ness (d = 1 µm): (1) self-poled state; (2) after application of
a voltage +20 V or (3) –20 V for 30 min at room tempera-
ture; (4) after application of +20 V or (5) –20 V at 280°C
and field cooling to room temperature.

Fig. 2. Hysteresis loops of a self-poled film 1 µm thick
deposited at 130°C: (a, d, e) before annealing, the loops are
observed with a probability of 80, 15, and 5%, respectively;
with a capacitor array; (b) immediately after film annealing
at 300°C; (c) after film storage for 14 months at room tem-
perature; and (f) the hysteresis loop of a self-poled PZT film
of thickness 0.7 µm deposited at a temperature of 200°C.
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types with different degrees of asymmetry, from loops
with a strong internal field Eint = 25 kV/cm (Fig. 2a) to
nearly symmetric ones with waists (Fig. 2e). Increasing
the substrate temperature from 130 to 200°C upon dep-
osition of the ferroelectric layer gave rise to a better
uniformity of the dielectric characteristics over the film
area, as well as to a growth in dielectric permittivity
(from 450 to 750). A typical hysteresis loop for such a
film is shown in Fig. 2f.

4. DISCUSSION OF RESULTS

To explain the above experimental results, we pro-
pose a model whose essence is illustrated in Figs. 5 and
6. The model postulates the following assumptions,

Fig. 4. Hysteresis loops of a self-poled PZT film in a strong
electric field (20 V) (a) after film formation and (b) after
annealing at 300°C and prolonged storage.

Fig. 3. C–V characteristics of a self-poled PZT film (a)
immediately after its formation, (b) after annealing at
300°C, and (c, d) after one-month storage of the annealed
film in the first and second cycles of bias voltage variation,
respectively.
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which were made on the basis of previous studies. (1)
PZT films have a predominantly columnar structure
characterized by a distinctly oriented texture, e.g.,
along 〈111〉  [12, 18, 19]. (2) Due to an oxygen defi-
ciency, the films feature n-type conduction [3, 20, 21].
(3) Localized states are distributed nonuniformly over
the film thickness and concentrate at the interfaces of
the thin-film ferroelectric capacitor, where the charge
builds up [22]. (4) Self-poling is screened by migratory
polarization [17].

Figure 5 schematically shows the distribution of the
self-poled state and of the screening space charge over
the PZT film thickness (a) before annealing and
(b) after annealing and prolonged storage at room tem-
perature.

Before annealing, the poled region in the film is con-
centrated primarily near the bottom interface of the
structure (Fig. 5a). This is due to the fact that the per-
ovskite phase in the PZT film crystallized without the
top electrode; this electrode was deposited on the
already formed film at a substrate temperature of 100–
120°C [3]. The reason for the shift in the P–V and C–V
characteristics toward negative voltages is that the
migratory polarization screens the spontaneous polar-
ization (Figs. 2a, 2f, 3a).

The internal field in the capacitor structures charac-
terized by an asymmetric hysteresis loop (Fig. 2a) can
be as high as 25 kV/cm. Such a field can be generated
by the charge of the electrons trapped in the surface
states. We estimate the density of this charge to be
approximately 5 µC/cm2. The density of surface states
at the interface will be about 3 × 1013 cm–2 in this case,
which correlates well with the data from [23] and cor-
responds to a volume density of defects of 1018 cm–3.

According to our model, as a result of high-temper-
ature annealing, the charged localized states at the
interfaces become partially depleted due to the disap-
pearance of spontaneous polarization and the released
charges are distributed uniformly over the film thick-
ness. When cooled subsequently to below the Curie
temperature, the electrons trapped in surface states of
the bottom and top interfaces polarize the near-elec-
trode regions of the ferroelectric film. Poled states
forming near the interface initiate migratory polariza-
tion, which eventually gives rise to the formation of
space charge in the near-electrode regions screening
spontaneous polarization (Fig. 5b). Therefore, the hys-
teresis loops and the C–V characteristics, which exhibit
the usual symmetric form immediately after annealing
(Figs. 2b, 3b), transform with time to assume the shape
illustrated in Figs. 2c and 3c. A waist appears in the P–
V curves, and the C–V characteristics exhibit additional
extrema, which reflect that the migratory polarization
screens oppositely poled regions in the ferroelectric
film near the electrodes. Thus, annealing and subse-
quent storage of a film in normal conditions bring about
charge redistribution between the top and bottom inter-
faces and in the volume of the structure. The time
HYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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required for the space charge to build up is apparently
determined by the low migration rate of charged oxy-
gen vacancies at room temperature.

However, within this concept, one cannot explain
the observed nonuniformity of dielectric parameters
over the film area and the existence of a poled volume
at the top interface of the self-poled film. The experi-
mental results, as a whole, can be interpreted if one
assumes that there are structural defects in the film
which interfere with the migration of charged particles
between the electrodes of the thin-film capacitor.

We believe that such structural defects could be, in
the simplest case, transverse grain boundaries parallel
to the plane of the capacitor structure (Fig. 6). Grain
boundaries can be initiated by film lattice imperfec-
tions, such as inclusions of a foreign phase, lattice mis-
fit between the top electrode and the perovskite film,
and mechanical stresses. In our case, the formation of
transverse boundaries in a PZT film can be related to
the presence of a substantial excess of lead oxide,
which precipitates at grain boundaries in the volume of
the film in the course of perovskite phase formation and
suppresses the growth of perovskite nuclei through the
film thickness. Figures 6b–6e illustrate the possible
arrangement of transverse boundaries over the film
thickness. Let us consider the way in which these
boundaries can affect hysteresis loops in self-poled fer-
roelectric films before and after their annealing.

If there are no transverse boundaries across the film
(Fig. 6a), charge migration from the interior of the film
to traps at the bottom electrode does not meet with
obstacles. After the transition to the ferroelectric phase,
the region of the film near the bottom interface polar-
izes to the maximum extent. To this state of the capaci-
tor structure corresponds the strongly asymmetric hys-
teresis loop shown in Figs. 2a and 2f.

The self-poled film volume at the bottom interface
contracts when a transverse boundary forms a two-
grain structure (Fig. 6b), because in this case only part
of the charges can reach the traps at the bottom inter-
face. This trend becomes stronger as the grain boundary
moves toward the bottom interface (Figs. 6c, 6d). If at
least part of the charge from the volume of the grain
becomes localized in the surface traps, the film region
near the free surface will also become poled. In this
case, the hysteresis loops will be less asymmetric
(Figs. 2d, 2e). If, after deposition of the top electrode,
the top interface traps still retain a considerable charge,
a loop with a waist can form (Fig. 2e). An increase in
the number of grain boundaries (Fig. 6e) tends to make
the loops more symmetrical, reduce the polarization of
the near-electrode regions of the PZT film, and, accord-
ingly, reduce and, possibly, suppress self-poling.
Therefore, the shape of the hysteresis loop will be
determined by the relationship between the volumes of
individual crystallites and the number of structural
defects within the capacitor area (Figs. 6a–6e).
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
High-temperature annealing of films containing the
above types of structural defects makes the hysteresis
loops more symmetrical (Fig. 2b). In particular, in the
absence of transverse boundaries, part of the charges
become distributed with equal probability between the
top and bottom interfaces and polarize the near-inter-
face film regions. Subsequent prolonged storage of
such films at room temperature results in the formation
of a screening space charge and, accordingly, of waists
in the hysteresis loops (Fig. 4b). At the same time, it

a

b

c

d

e

Fig. 6. Schematic of a PZT film with different arrangements
of transverse grain boundaries over the film thickness.
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Fig. 5. Schematic distribution pattern of the poled state (Pr
is residual polarization) and space charge (Emigr is the
migratory polarization field) at the interfaces of a thin-film
ferroelectric capacitor made of a self-poled PZT film (a)
after film formation and (b) after annealing and prolonged
storage at room temperature.
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may be conjectured that when a film contains grain
boundaries shifted toward either electrode, the film can
retain noticeable self-poling, as was observed in [1].

As mentioned above, increasing the substrate tem-
perature from 130 to 200°C removes dielectric nonuni-
formity over the film area and increases the dielectric
permittivity from 450 to 750, with the hysteresis loops
taking on a distinct asymmetric shape (Fig. 2f). We
assign these changes to a decrease in the amount of
excess lead in deposited PZT films; this situation is fre-
quently encountered when applying ion plasma meth-
ods to ceramic target sputtering. The probability of for-
mation of oppositely poled regions in such films
reduces to a minimum, and their crystal structure can be
described by the scheme in Fig. 6a.

The above reasoning was made under the assump-
tion that after the annealing, the top and the bottom
interfaces of a thin-film ferroelectric capacitor become
identical in terms of their density of states. One cannot,
however, exclude the possibility that the hysteresis loop
asymmetry that is retained in some cases can be associ-
ated with there being a difference in the density of
charged states between these interfaces. One should,
therefore, perform a more comprehensive study of the
PZT film structure, interfaces, and their relation to the
parameters of capacitor structures.

5. CONCLUSION

The results obtained permit the following conclu-
sion. High-temperature annealing of self-poled PZT
films brings about destruction of the self-poled state
and removes the dielectric nonuniformity over the film
area, which is connected with charge redistribution
between the top and bottom interfaces of the thin-film
ferroelectric capacitor.

The specific features of charge redistribution in a
film can be explained within a model which assumes
that there are transverse grain boundaries in a ferroelec-
tric film that suppress charge migration between the
capacitor electrodes.

The existence of transverse grain boundaries in tex-
tured PZT films originates from inclusions of the
excess lead oxide phase.
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Abstract—The reverse dependences of the permittivity (E=) and the polarization and depolarization currents
in multicomponent ferropiezoelectric ceramics based on lead zirconate titanate (PZT) are investigated over a
wide range of temperatures. The results obtained make it possible to separate the effects associated with the
phase transformation and the effects predominantly caused by the switching of the domain structure in the stud-
ied material. The assumption is made that two smeared phase transitions occur in the system under consider-
ation. © 2002 MAIK “Nauka/Interperiodica”.

εr'
1. INTRODUCTION

It is known (see, for example, [1]) that relaxor ferro-
electrics have two characteristic temperatures, namely,
Tm and Td. The temperature Tm corresponds to a maxi-
mum of the permittivity ε' and depends on the fre-
quency of the measuring field. The temperature Td is the
temperature at which the preliminarily polarized sam-
ple undergoes depolarization upon heating. It is worth
noting that the temperature Td is universally less than
the temperature Tm (see, for example, the detailed
investigations performed by Zuo-Guang Ye and Hans
Schmid [2] for a model relaxor—the lead magnesium
niobate PbMg1/3Nb2/3O3 (PMN)). In our earlier works
[3–5], we demonstrated that similar characteristic tem-
peratures are also observed in multicomponent ferropi-
ezoelectric ceramics based on lead zirconate titanate
(PZT). However, according to [3–5], the behavior of a
number of physical parameters characterizing the
polarization in the temperature range from Tm to Td for
this multicomponent system significantly differ from
the behavior of these parameters, for example, for the
well-known PLZT relaxor [6]. In particular, with a
change in the frequency from 1 to 1000 Hz, the shift of
the temperature Tm for the multicomponent ferropiezo-
electric ceramics is equal to 4 K [7, 8], whereas this
shift for the PLZT-9/65/35 ceramics is as large as 10–
11 K [6]. Moreover, even at infralow frequencies, the
multicomponent ceramics does not exhibit double
polarization loops typical of relaxors at T ≥ Td. At the
same time, the temperature dependences of the effec-
tive permittivity (T) determined from analysis of the
polarization loops [3, 4] are characterized by two max-
ima: one maximum is observed in the vicinity of the

εeff'
1063-7834/02/4409- $22.00 © 21741
temperature Td and the other maximum occurs in the
vicinity of the temperature Tm. It should be noted that,
in the case of the PZT multicomponent ceramics [3, 4],
unlike conventional relaxors based on lead magnesium
niobate (see, for example, [9, 10]), an increase in the
field amplitude (in the amplitude range covered) brings
about a substantial decrease only in the temperature of
the additional maximum in the vicinity of Td in the
dependence (T) without a change in the temperature
of the maximum in the range of Tm.

Toshio Ogawa and Ayako Yamada [11] performed
an x-ray structure investigation into the switching
effects in tetragonal ferropiezoelectric ceramics based
on lead zirconate titanate and revealed the specific fea-
tures in the behavior of the intensity of maxima in the
diffraction pattern. In [11], these features were attrib-
uted to 90° rotations of domains. In the authors' opin-
ion, this should result either in a change in the shape of
the polarization loops or in the appearance of double
maxima in the reverse dependences of the permittivity

(E=). Therefore, in ferropiezoelectric ceramics,
unlike relaxors, anomalies in the dielectric properties
can be associated both with the domain dynamics and
with the phase transitions [3, 4, 12].

In this respect, the aim of the present work was to
analyze thoroughly the reverse dependences (E=) in
the range of the characteristic temperatures Td and Tm

and to investigate the polarization and depolarization
currents in the multicomponent ferroelectric ceramics
in order to separate the effects associated with phase
transformations. In other words, we made efforts to
separate the effects typical of relaxor ferroelectrics
from the effects predominantly caused by the switching
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of the domain structure in multicomponent ferroelectric
ceramics.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The reverse (field) dependences of the permittivity
(E=) were measured by the bridge method at a fre-

quency of 1 kHz with a stepwise variation in the bias
field E=. The measuring field strength E0 did not
exceed 1 V/cm. The temperature dependences of the
current I(T) were obtained using a V7-30 electrometer
under the following conditions: (i) upon heating after
annealing for 1 h at T > Tm and subsequent cooling to
room temperature (Tr), (ii) upon heating after ageing
for one month at Tr, and (iii) upon heating after cool-
ing of a sample from T > Tm to Tr in a dc electric field.
The heating was carried out at E = E= = 0. In all cases,
the heating rate was approximately equal to 1 K/min.
The samples used in measurements had the form of
plane-parallel plates prepared from the PZT-based soft
ferroelectric ceramics belonging to multicomponent
systems of the PbTiO3–PbZrO3–PbNb2/3Zn1/3O3–
PbW1/2Mg1/2O–PbW3/5Li2/5O3 type with a PbTiO3 con-
tent of 34.89 mol % [13] (hereafter, designated as
PKR1.) The measurements were performed with sam-
ples 5 × 5 × 1 mm in size. Electrodes were applied by
burning-in silver.

3. RESULTS AND DISCUSSION

Figure 1 displays the dependences (E=) at temper-
atures below Td (T = 298, 373, and 439 K), in the vicin-
ity of Td (T = 450 K), and above Td (T = 472, 479, 484,
and 493 K). The temperatures T = 484 and 493 K are
higher than the temperature Tm for this material at a fre-
quency of 1 kHz (Tm(1 kHz) ≈ 483 K [4]). In our previous
work [8], the temperature Td was determined using the
method proposed by Isupov [1]: the temperature Td was
taken as the temperature at a minimum of the frequency
of piezoelectric resonance. For the ceramics under
investigation, this temperature was estimated to be T ≈
449 K. Figure 1 also shows the temperature depen-
dences of the effective coercive field Ec(T) (curve 1)
and the critical field Eind(T) (curve 2). The effective
coercive field Ec(T) was determined from the positions
of the maxima in the dependence (E=). The critical
field Eind(T) corresponds to the appearance of a pro-
nounced nonlinearity (a kink) in the dependence (E=)
in the temperature range T > Tm.

1 The notation PKR (piezoelectric ceramics, Rostov) was intro-
duced by the designers of the aforementioned ferroelectric
ceramics at the Research Institute of Physics of the Rostov State
University. Patents have been taken out for many ferroelectric
ceramics similar in composition to that used in the present work:
PKR-1, PKR-8, PKR-7M, and others.
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It can be seen from Fig. 1 that a number of reverse
dependences (E=) (at T = 298, 373, and 472 K)
exhibit anomalies in the form of local minima which
arise after preliminary polarization of the sample in a dc
field E= > |Emin | (where Emin is the field strength E= cor-
responding to the permittivity (E=) at a minimum).
These anomalies are characterized by the following
feature: as the temperature increases, the minimum of
the permittivity (E=) arises at all the temperatures,
except for the temperature range in the vicinity of Td

and T ≥ Tm. It should also be noted that the fields corre-
sponding to the appearance of these anomalies substan-
tially exceed the fields at which the permittivity (E=)
reaches maxima; i.e., they are stronger than the effec-
tive coercive fields for this material. It seems likely that
these features are caused by the following factors.

(1) A gradual increase in the permittivity (E=)
with a decrease in the magnitude of the polarizing field
E= from –Emax to zero is most likely due to an increasing
contribution to the permittivity from non-180-degree
domain walls (the main contribution) and 180-degree
domain walls of both “persistent” and newly arising
domains. New, usually tapered, domains [14] appear in
ferroelectric ceramics upon switching off the external
field E= owing to residual mechanical stresses and, pos-
sibly, remanent electric fields, which lead to a partial
breakdown of nearly single-domain states formed in
strong fields E=. The application of the electric field E=
with opposite sign encourages the growth of these
domain and the formation of new a domains and a num-
ber of c domains. In electric fields E= ≈ Ec, the domain
walls of these domains make the maximum contribu-
tion, which is reflected in the appearance of the maxi-
mum in the dependence (E=) at the given field
strength (E= ≈ Ec).

(2) A further increase in the magnitude of the field
E= (above the maximum of ) is attended by a consid-

erable decrease in the permittivity (E=). This can be
explained by the rotation of non-180-degree domains
(i.e., by the transformation of a domains into c domains
with a substantially smaller permittivity  [15]) and a
further formation of the 180-degree domain structure,
which results in pinning of 90-degree domains and
piezoelectric clamping of 180-degree antiparallel
domains (the well-known Drougard–Joung effect [16]).
Note that the switching of domain walls due to the
Drougard–Joung effect attains a maximum when the
numbers of these antiparallel domains are equal to each
other. In our case, this situation is observed at a certain
field E= > Ec and leads to the appearance of the mini-
mum in the curve (E=) (Fig. 1). The stronger fields E=

give rise to a unipolar domain state, and the clamping
of domains is eliminated in part. As a consequence, the
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permittivity (E=) slightly increases and the local min-

imum in the curve (E=) at E= > Ec becomes more pro-
nounced (Fig. 1). A further decrease in the permittivity

(E=) at E=  +Emax is primarily caused by a
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decrease in the concentration of domain walls upon
polarization of the material in a strong bias field.

Since no local minimum in the dependence (E=) is
revealed at temperatures close to the Td point, the tem-

εr'
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perature Td can be treated as the most probable temper-
ature of a smeared phase transition from one ferroelec-
tric phase (hypothetically, rhombohedral) to another
ferroelectric phase (hypothetically, tetragonal). The
same situation was observed for ferroelectric ceramics
of this type in our previous works [3, 4]. It should be
emphasized that the x-ray diffraction investigation per-
formed by Konstantinov et al. [17] revealed a smeared
phase transition of this kind in another PZT-based mul-
ticomponent system (similar to that studied in the
present work), namely, PKR-7M. Note that the afore-
mentioned smeared phase transition occurs irrespective
of whether or not the bias field E= is applied to the sam-
ple. In our case, the behavior of the dependence (E=)
can only suggest that, in the range of the hypothetical
smeared phase transition, relatively weak external
(electric or mechanical) fields can rather easily change
the phase (domain) state of the material owing to an
appreciable lability of the crystal lattice. As a result, in
the transition range (i.e., at T ≈ Td), the processes asso-
ciated with changes in the phase and domain states in
the piezoelectric ceramics under investigation can be
superimposed on one another and lead to a certain
“weakening” (suppression) of the clamping of 180-
degree antiparallel domains. However, in the case when
the temperature reaches the range of the existence of
the stable crystal and domain structures, the Drougard–
Joung effect again rather clearly manifests itself, as can
be seen from the curves (E=) in the temperature range
Td < T < Tm (Fig. 1). Aleshin and Luchaninov [18] car-
ried out a numerical simulation of the domain clamping
and proved that the clamping effect weakens at a high
mobility (compliance) of domain (interphase) bound-
aries. Making allowance for the fact that such a high
compliance is achieved in the vicinity of any phase
transition, the above factors responsible for the disap-
pearance of the local minimum in the dependence

(E=) at temperatures T ≈ Td and T ≈ Tm suggest the
occurrence of a phase transition in the vicinity of Td,
which is in good agreement with the inferences drawn
in [18].

In the temperature range T ≥ Tm, the heating of the
material studied can be attended by a phase transition
from the tetragonal ferroelectric phase to a macroscop-
ically nonpolar phase, as is the case with PKR-7M [17].
Earlier [19], we demonstrated that the temperature
range T ≥ Tm in ceramics of this type can be character-
ized as the range of existence of a superparaelectric
phase. The superparaelectric phase can be considered a
paraelectric phase with fluctuating polar nanoregions
[20] which are responsible for the extremely high
polarizability of the material. This inference agrees
well with the structural data obtained in [17] for PKR-
7M, according to which the cubic phase and the so-
called secondary phase composed of an aggregate of
polar microregions coexist in the temperature range
from Tm to temperatures more than 100 K above the Tm

εr'

εr'

εr'
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point. In the present work, the high polarizability of the
system at T > Tm can be judged from the behavior of the
reverse dependences (E=) at temperatures that corre-
spond to the appearance of a pronounced nonlinearity
in the curve (E=) at certain fields E= = Eind. As is
clearly seen from the temperature dependence Eind(T)
plotted in Fig. 1 (curve 2), the field Eind increases with
an increase in the temperature. In our opinion, this field
represents an induction field in which the macroscopi-
cally polar phase is induced from the nonpolar phase in
much the same manner as in relaxors.

Therefore, unlike the aforementioned relaxors with
a sole strongly smeared phase transition [2, 7, 10], in
the piezoelectric ceramics, we deal with two smeared
phase transitions: one transition occurs in the vicinity
of the temperature Td and is associated with the coexist-
ence of two ferroelectric phases, and the other (conven-
tional) transition is observed in the vicinity of Tm. Note
that the temperature Tm for the piezoelectric ceramics
under investigation can, to some extent, characterize
the mean temperature of the high-temperature smeared
phase transition.

The assumption that the piezoelectric ceramics
undergoes two phase transitions can be confirmed, in
particular, by the behavior of the dependence Ec(T)
(Fig. 1, curve 1). It is seen from Fig. 1 that this depen-
dence at temperatures Td and Tm exhibits clearly defined
steps, which, as a rule, are observed upon phase transi-
tions [14].

The results of investigations into the influence of the
sample prehistory on the polarization and depolariza-
tion currents in the piezoelectric ceramics (Fig. 2) also
indicate that this material can undergo two smeared
phase transitions. As is clearly seen from Figs. 2b–2d,
the long-term ageing (like the application to the field)
leads to the appearance of two anomalies in the form of
maxima in the curve I(T); more specifically, one maxi-
mum is observed in the vicinity of the temperature Td

and the other maximum is located in the vicinity of the
temperature T ≈ Tm determined at a frequency of 1 kHz.
It should be noted that, in the case of preliminary ther-
mal annealing, the maximum in the dependence I(T) is
observed only at a temperature T ≈ Tm(1 kHz) (Fig. 2a).
Similar results were obtained in our recent studies on
electric currents in different ferroelectric ceramics with
smeared phase transitions, namely, in PLZT-8/65/35,
lead barium scandium niobate (PBSN-4) [21, 22], and
SBN-75 single crystals [23]. In these works, the above
behavior of the dependence I(T) was explained by the
fact that, in the course of ageing, specific polar clusters
(microelectrets [24, 25] or the so-called tweed struc-
tures [26]) are formed over a wide range of smeared
phase transition temperatures. Most likely, these clus-
ters are typical of heterogeneous structures, i.e., the
structures characterized by the coexistence of different
phases. This is particularly supported by the fact that
structures of the tweed type were found for the first
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tories: (a) after annealing for 1 h at T > Tm and cooling to room temperature (Tr), (b) after annealing at T > Tm and ageing for one
month at Tr without preliminary polarization, (c) after cooling of the sample from T > Tm to Tr in the dc electric field E= =
2.23 kV/cm, and (d) after cooling of the sample from T > Tm to Tr in the dc electric field E= = –4.46 kV/cm. The polarizations Pmax
are determined according to the data taken from [4] on polarization loops measured at a frequency of 0.1 Hz and different fields E0,
V/cm: (1) 1730, (2) 3400, (3) 4243, (4) 5072, (5) 5937, (6) 6785, and (7) 8412.
time in martensitic materials (see, for example, [27]).
The coexistence of the polar and nonpolar phases over
a very wide range of temperatures (down to liquid-
helium temperature) is characteristic of the aforemen-
tioned ferroelectric materials with smeared phase tran-
sitions. In our case (piezoelectric ceramics), two differ-
ent polar phases coexist in the vicinity of the tempera-
ture Td. This can result in the formation of mesoscopic
structures, such as microelectrets, fractal clusters,
tweeds, etc. In turn, the formation of these structures
can be attended by an increase in the internal electric
fields inducing self-polarization processes. The fact
that, during ageing, the thermally annealed piezoelec-
tric ceramic sample becomes partially unipolar due to
the induction of considerable internal fields is con-
firmed by the qualitative similarity of the behavior of
the currents in this sample and the sample preliminarily
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
polarized in an external electric field (Figs. 2c, 2d).
Although the currents in the latter case are several times
heavier, they are comparable to those in the aged sam-
ple. In our opinion, this could indicate that the internal
fields induced in the material during ageing are compa-
rable to the fields generated as a result of polarization
in an external field.

Therefore, we can state that the anomalies observed
in the current in the temperature range T ≈ Td upon heat-
ing of the polarized or aged sample are caused by the
change in the polarization state of the material due to
the phase transition. This inference is supported by the
behavior of the temperature dependences of the maxi-
mum polarization Pmax(T) for the given piezoelectric
ceramics (Fig. 2e). The polarizations Pmax were deter-
mined according to the data taken from our earlier work
2
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[4], in which we analyzed the temperature evolution of
the polarization loops at different frequencies and
amplitudes of the measuring field (the polarizations
Pmax at a frequency of 0.1 Hz are presented in Fig. 2e).

It can be seen from Fig. 2e that certain of the depen-
dences Pmax(T) are characterized by a temperature
range (433–463 K) in which the anomalies manifest
themselves in the form of local minima or plateaus. The
temperature that corresponds to the beginning of the
steepest decrease (step) in the polarization Pmax(T) vir-
tually coincides with the temperature at which the cur-
rent I(T) noticeably increases in the range T ≤ Td. The
second (high-temperature) step in the dependence
Pmax(T) is observed in the vicinity of the high-tempera-
ture maximum in the dependence I(T) (i.e., at T ≈
Tm(1 kHz)). It should be emphasized that the current was
measured under dynamic conditions upon heating at
the rate VT = 1 K/min, whereas the polarization Pmax(T)
was determined under quasi-static conditions (the rate
was decreased to 0.1 K/min in measurements of the
polarization loop family at a specified temperature [4]).
It is quite possible that this is the reason for the shift of
both the low-temperature and high-temperature max-
ima in the dependence I(T) toward the high-tempera-
ture range with respect to the temperatures of the steps
in the curves Pmax(T). Indeed, it is well known (see, for
example, [28]) that the heating rate substantially affects
not only the magnitude of the current but also the posi-
tion of the maximum in the dependence I(T) [the higher
the heating rate, the higher the temperature of the max-
imum in the curve I(T)].

At the same time, it should be noted that an increase
in the field amplitude E0 in measurements of the polar-
ization loops leads to a considerable increase in the
maximum polarization Pmax(T). The polarization
Pmax(T) in the temperature range of the plateau
increases more rapidly compared to that in the range of
the high-temperature step. As a consequence, the local
minimum or the plateau in the dependence Pmax(T)
gradually disappears in the strongest fields. Specifi-
cally, only the high-temperature step and one very
smeared maximum can be distinguished in curve 7
(Fig. 2e). This increase in the polarization Pmax(T) with
an increase in the amplitude E0 is governed primarily
by the dynamics of domain and interphase boundaries
in the course of polarization and polarization switching.
A similar inference was made in our earlier work [29],
in which we investigated the PZT germanium-doped
multicomponent ferroelectric ceramics related to the
material studied in the present work. In [29], it was also
established that the positions of plateaus or additional
maxima in the temperature dependences of the effective
permittivity (T) = P(T)/E0 substantially depend on
both the field E0 and the measurement conditions (heat-
ing–cooling). For example, the temperature hysteresis
of the effective permittivity (T) in the vicinity of the
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low-temperature anomaly of (T) reached as high as
10 K, whereas the high-temperature maximum of

(T) shifted by no more than 5 K.

Therefore, the data obtained in the present work,
together with the results of other studies concerning
multicomponent systems based on lead zirconate titan-
ate, allow us to make the inference that the specific fea-
tures revealed in the dielectric and polarization charac-
teristics of the piezoelectric ceramics in the vicinity of
the depolarization temperature Td are associated with
the phase transformation. Since the hypothetical struc-
tural phase transformation is a transition between two
ferroelectric phases, the domain structure also under-
goes transformation (we emphasize that this structure
does not disappear, as is the case with relaxors at the
temperature Td). On the other hand, as was noted by
Isupov [30], the role played by the ceramic nature of the
material under investigation (grain misorientation,
spread in composition, etc.) in the electrical properties
cannot be ruled out.

4. CONCLUSIONS

Thus, the results of our investigation can be summa-
rized as follows.

(1) It is established that, in bias fields E= > Ec, the
reverse dependences (E=) for the multicomponent
ferropiezoelectric ceramics based on lead zirconate
titanate exhibit local minima due to piezoelectric
clamping of antiparallel domains. These minima are
observed in the entire temperature range, except for the
temperatures close to Td and Tm.

(2) The anomalies of the polarization and depolar-
ization currents are revealed at T ≈ Td and T ≈ Tm. The
character of the anomalies observed in the currents at
T ≈ Td is essentially dependent on the prehistory of the
material.

(3) The assumption is made that the ferroelectric
ceramics studied undergo two smeared phase transi-
tions. One (low-temperature) transition occurs in the
vicinity of T ≈ Td and represents the transition between
two ferroelectric phases. The other (high-temperature)
transition observed in the vicinity of the temperature Tm

at a maximum of the permittivity is the transition from
the ferroelectric phase to the superparaelectric
(pseudocubic) phase.
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Abstract—The influence of domain reorientations on the piezoresistivity of polycrystalline ferroelectric semi-
conductors under mechanical stresses is investigated. It is demonstrated that the inclusion of 90° domain reori-
entations in the analysis of the potential barriers formed at the grain boundaries leads to correct determination
of the magnitude and sign (positive under compression and negative under tension) of the piezoresistive coef-
ficients for BaTiO3. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Polycrystalline ferroelectric semiconductors that
exhibit the so-called effect of the positive temperature
coefficient of resistance, or the posistor effect (i.e., a
drastic increase in the electrical resistance R upon tran-
sition from a ferroelectric state to a paraelectric state),
also manifest the piezoresistive effect (pressure depen-
dence of the resistance R) [1]. The piezoresistive effect
is characterized by the piezoresistive coefficient π =
(1/R)(∂R/∂σ), where σ is the mechanical stress. For
polycrystalline ferroelectric semiconductors, the
piezoresistive coefficient π substantially increases (to
103 cm2/MN) at temperatures close to the ferroelectric–
paraelectric phase transition temperature Tc [1] as com-
pared to the coefficients π for other materials. For
example, the piezoresistive coefficient π for germanium
and silicon at 20°C does not exceed 10 cm2/MN and
decreases proportionally to T–1 [2]. Capurso and
Schulze [3] noted that, for polycrystalline ferroelectric
semiconductors, the piezoresistive coefficient mea-
sured along the compression axis over the entire tem-
perature range under investigation satisfies the condi-
tion π = πc > 0 (Fig. 1a, curve 1). Guntersdorfer and
Heywang [4] revealed that, at higher applied pressures,
the coefficient πc changes sign with variations in the
temperature (Fig. 1b). A similar inversion of the sign of
the piezoresistive coefficient π measured along the
compression axis was observed by Gurevich [5]. It was
found that the piezoresistive coefficient measured along
the tension axis has negative sign: π = πt < 0 [5]
(Fig. 1a, curve 2); the same sign of the coefficient π
measured normally to the compression axis is observed
for polycrystalline ferroelectric semiconductors under
uniaxial compression [5]. As was shown in [3], a
decrease in the posistor effect of polycrystalline ferro-
electric semiconductors is attended by a decrease in the
piezoresistivity at temperatures close to the Tc point. In
[6–8], the behavior of the piezoresistive coefficient π in
the paraelectric phase was satisfactorily described in
1063-7834/02/4409- $22.00 © 201748
the framework of the Heywang model [9] and the ther-
modynamic theory of ferroelectricity [10]. However,
the temperature behavior of the piezoresistive coeffi-
cient π in the ferroelectric phase, i.e., the drastic
increase in the value of π as the temperature Tc is
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Fig. 1. Typical temperature dependences of the piezoresis-
tive coefficients π for BaTiO3 under (a) (1) uniaxial com-
pression and (2) uniaxial tension at σ = 10 MPa [3] and (b)
uniaxial compression at σ = 25 MPa [4].
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approached (Fig. 1a), has defied explanation in terms of
the Heywang model [9]. In our earlier work [11], we
found experimentally that the domain reorientations
have an extremely strong effect on the resistance R of
polycrystalline ferroelectric semiconductors. In this
respect, the purpose of the present work was to analyze
theoretically how the transformation of the domain
structure under external mechanical stresses affects the
piezoresistive coefficient π.

2. DESCRIPTION OF THE MODEL

For polycrystalline ferroelectric semiconductors,
the resistance R is determined primarily by potential
barriers formed at the grain boundaries owing to local-
ized charged states of the acceptor type with the num-
ber density Ns and activation energy Es [9]. The resistiv-
ity ρ of a crystal grain at small strengths of an external
field inducing an electric current can be represented by
the relationship

(1)

Here, ϕ0 is the potential ϕ at the grain boundary, µ is the
mobility of free charge carriers, q is the elementary
charge, Nd is the number density of donors with a low
activation energy, k is the Boltzmann constant, T is the
temperature, d is the crystal grain size, and ls is the
thickness of the Schottky region, whose depletion in
mobile charge carriers leads to complete neutralization
of the surface charge at the grain boundary. The system
of equations for determining the potential ϕ0 involves

(2)

(3)

(4)

and the equation of state of the polarization P. The last
equation takes into account the influence of an electric
field of the charged grain boundary and can be derived
from the minimum condition for the elastic thermody-
namic potential Φ, which can be written in the follow-
ing form [8–10, 12]:

(5)
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Here, Q is the space-charge density in the Schottky
region, E is the electric field strength, ε0 is the dielectric
constant, ns is the density of filled localized states at the
grain boundary, and EF is the Fermi energy. For donor
states with a low activation energy, the space-charge
density is determined as Q = qNd.

The potential barrier height qϕ0 depends on the
degree of screening of localized charged states. The
screening is provided both by conduction electrons
with the number density Nd and through the response of
the ferroelectric system. The low resistivity ρ in the fer-
roelectric phase, as compared to that in the paraelectric
phase, indicates the important role played by screening
processes due to the existence of the order parameter
(the spontaneous polarization Ps) and states corre-
sponding to different directions of the spontaneous
polarization Ps in the ferroelectric phase. The transition
from one state to another (i.e., the polarization switch-
ing initiated by an external action, namely, the electric
field Eb at the grain boundary) brings about the forma-
tion of an antiparallel domain with a zigzag domain
wall [12]. Within this domain wall, the fields induced
by a change in the direction of the polarization P and
those created by the response of the electronic sub-
system of the Schottky region, for the most part, com-
pensate each other. Consequently, the resultant field is
determined by thermoactivated processes responsible
for changes in the direction of the spontaneous polar-
ization Ps and is equal to the coercive field. After com-
plete polarization switching, polarization occurs in
fields whose strength is appreciably larger than that of
the coercive field, because the polarization processes,
unlike the polarization switching, are not attended by a
thermoactivated transformation of the domain structure
[12]. The posistor effect is observed in the case when
the thickness ls of the Schottky region does not exceed
the size of the polarization switching region. In the fer-
roelectric state, the potential ϕ0 is predominantly gov-
erned by the polarization switching and, at the same
direction of the spontaneous polarization Ps in crystal
grains with respect to their boundaries, can be approxi-
mated by the relationship

(6)

Here, Ec is the coercive field in which the spontaneous
polarization Ps changes its direction due to thermoacti-
vated processes [12]. The number density Ns is constant
for a particular composition of the material. The coer-
cive field Ec depends on the orientation of the spontane-
ous polarization Ps of the domains with respect to the
grain boundaries, because this field is determined by
the difference between the depths of the potential wells

+ σ2 P1
2 P3

2+( ) σ3 P1
2 P2

2+( ) )+

– q44 σ4P2P3 σ5P1P3 σ6P1P2+ +( ).

ϕ0 lsEc

NsEc

Nd

------------.≈≈
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for the states involved in the phase transition [12]. Spe-
cifically, for the tetragonal phase, the coercive field Ec =
Ec180 at a 180° reorientation of the spontaneous polar-
ization Ps is equal to half the field Ec = Ec90 at a 90°
reorientation of the polarization Ps, even though the
mechanical clamping of the domains upon 90° reorien-
tation is disregarded. Therefore, the potential barrier
qϕ0 depends on the mutual orientation of the spontane-
ous polarization Ps in the bulk of the adjacent crystal
grains and on the electric field Eb induced by localized
charged states at the grain boundaries. In particular, the
potential barrier qϕ0 for the antiparallel orientation of
Ps and Eb is less than that for the perpendicular orienta-
tion. As a result, the resistance R for charge transfer
through the boundary of crystal grains with the sponta-
neous polarization Ps of configuration I (Fig. 2a) is less
than that of configuration II. Note that crystal grains in
a nonpolarized stress-free state have a complex domain
structure. Let us now consider a ferroelectric placed in

Eb 

Ps Ps

Eb

Eb Eb

Ps Ps

III

1 765432

(a)

(b)

Fig. 2. Schematic representation of (a) the orientations of
the spontaneous polarization Ps and the electric field Eb
(arrows) with respect to the grain boundary (solid lines) and
the Schottky region boundary (dotted lines) and (b) the ori-
entations of the polarization Ps (arrows) in the bulk of adja-
cent crystal grains with respect to the grain boundary (solid
lines).

Calculated resistivities ρ at the boundaries of crystal grains
with different configurations of the orientations of the spon-
taneous polarization Ps (Fig. 2b)

Configuration no. ρi , Ω cm n

1 116 1

2 9 × 106 1

3 3.3 × 104 2

4 512 8

5 8.3 × 105 8

6, 7 105 16
PH
a rectangular system of coordinates. It is assumed that,
in the ferroelectric under consideration, an electric cur-
rent flows along the OY axis and a grain boundary
(across which the current flows) lies in the XOZ plane.
The main configurations that characterize the orienta-
tion of the spontaneous polarization Ps in adjacent crys-
tal grains in the YOX plane are depicted in Fig. 2b.
Moreover, proper allowance must be made for equiva-
lent configurations (with respect to the potential barrier
height) obtained from different combinations of rota-
tions of configurations 3–7 (Fig. 2b) about the OX axis
through an angle of 180° and about the OY axis through
angles of 90°, 180°, and 270°. From relationships (1)–(5),
we calculated the resistivities of BaTiO3 crystal grains
with potential barriers corresponding to different con-
figurations with the following parameters: d = 5 ×
10−3 cm [3], Ns = 3 × 1014 cm–2, Es = 0.9 eV [9], Nd = 4 ×
1017 cm–3, Ec180 = 480 V cm–1 [10], µ = 0.5 cm2 V–1 s–1

[13], and T = Tc – 5 K. The results of these calculations
are presented in the table (n is the number of equivalent
configurations). The required coefficients of the ther-
modynamic potential (5) used to determine the polar-
ization P were taken from [10]. The number densities
Ns and Nd were determined by the best fitting of the cal-
culated results to the experimental data obtained by
Capurso and Schulze [3]. In this case, the constraints
providing the validity of relationship (6) are satisfied. It
should be noted that, in the nonpolarized stress-free
state, all the configurations are equally probable and the
resistivity ρ is inversely proportional to the electrical
conductivity to which each configuration (Fig. 2b, con-
figurations 1–7) makes a contribution proportional to n.
Hence, the resistivity ρ of the ferroelectric tetragonal
phase in the stress-free state can be represented by the
expression

(7)

where ρ1 and ρ4 are the lowest resistivities for domain
configurations shown in Fig. 2b.

According to Subbarao et al. [14], the application of
the uniaxial stress σ brings about 90° rotations of the
spontaneous polarization Ps of the domains involved.
The most intensive rotations are observed in the phase
transition range in which the degree of tetragonality of
the crystal lattice decreases significantly. Let A be the
fraction of domains in which 90° rotations of the polar-
ization Ps occur under pressure (0 ≤ A ≤ 1). For small
fractions A, simultaneous rotations of the polarization
Ps in adjacent domains involved in configurations 1–7
(Fig. 2b) are improbable; hence, the change in the con-
tribution of each configuration to the conductivity is
proportional to A. With due regard for the data pre-
sented in the table, the resistivities of the ferroelectric
tetragonal phase under uniaxial compression (ρc) and
uniaxial tension (ρt) can be written as

(8)

ρ 1– ρ1
1– 8ρ4

1–+( )/36,=

ρc
1– ρ 1– A ρ1

1– 2ρ4
1–+( )/18,–=
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(9)

Within the proposed model, the appropriate trans-
formation of the relationship π = (ρσ – ρ)(ρσ) (where ρσ
and ρ are the resistivities under mechanical stresses and
in the stress-free state, respectively) gives the following
formulas for describing the piezoresistivity in the ferro-
electric tetragonal phase:

(10)

(11)

for uniaxial compression and

(12)

(13)

for uniaxial tension along the direction of the electric
current.

3. COMPUTATIONAL RESULTS

In our calculations, we used relationships (10) and
(11) and the experimental x-ray diffraction data on the
degree of 90° domain reorientation under pressure in
the tetragonal phase of the barium titanate ferroelectric
ceramics at temperatures far from the phase transition
range (A = 0.2 at σ ≅  35 MPa and T = 20°C) [14] and
obtained the piezoresistive coefficient πc ~ 190 cm2/MN
for BaTiO3. This value is in reasonable agreement with
the experimental piezoresistive coefficient πc, exp ~
200 cm2/MN determined for barium titanate ferroelec-
tric ceramics at T = 20°C in [1]. According to formulas
(10)–(13), we have πc > 0, πt < 0, and πc > πt, which also
agrees well with the experimental data obtained in [3]
(Fig. 1a). A comparison with the experimental data at
σ = 10 MPa leads to the following estimates: A ≈ 0.3–
0.4 at T = Tc and A ≈ 0.06 at T = Tc – 5 K. Figure 3a
shows the calculated dependences of the piezoresistive
coefficient π on the fraction A for BaTiO3 at σ = 10 MPa
and T = Tc – 5 K. The calculated temperature depen-
dences of the coefficient π at σ = 10 MPa are plotted in
Fig. 3b. The numerical calculations were performed
with fractions A = 0.4 at T = Tc and A = 0.06 at temper-
atures below Tc. For temperatures corresponding to the
paraelectric phase, the piezoresistive coefficient π was
calculated using relationships (1)–(5). As can be seen
from Figs. 1 and 3, our theoretical results (Fig. 3b) are
in qualitative agreement with the experimental data
(Fig. 1a). Therefore, the proposed model can be used in
a more detailed analysis of the factors responsible for
the piezoresistivity.

ρt
1– ρ 1– A ρ1

1– 2ρ4
1–+( )/9.+=

πc
A

σ Kc A–( )
------------------------,=

Kc

ρ1
1– 8ρ4

1–+

2 ρ1
1– 2ρ4

1–+( )
--------------------------------=

πt
A

σ Kt A+( )
------------------------,–=

Kt

ρ1
1– 8ρ4

1–+

4 ρ1
1– 2ρ4

1–+( )
--------------------------------=
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Let us now analyze how the uniaxial compression
and uniaxial tension along the direction of the electric
current affect the electrical resistance of the ferroelec-
tric tetragonal phase. Under compression, 90° rotations
of the polarization Ps occur in domains at the boundary
specifying the barrier to electric current. This leads to a
decrease in the fraction of configurations 1 and 4 and an
increase in the fraction of configurations 6 and 7
(Fig. 2b). As a result, we have ρc < ρ and πc > 0
(Figs. 1a, 3b, curves 1) because of the low values of qϕ0

for configurations 1 and 4 and high values of qϕ0 for
configurations 6 and 7 (see table). The opposite situa-
tion occurs under uniaxial tension along the direction of
the electric current; in this case, we obtain ρt < ρ and
πt < 0 (Figs. 1a, 3b, curves 2). The same effect is
observed under uniaxial compression in a direction per-
pendicular to the direction of the electric current. Now,
we consider the influence of uniaxial compression and
uniaxial tension along the direction of the electric cur-
rent on the electrical resistance of the paraelectric
phase. In the paraelectric phase, the spontaneous polar-
ization in the bulk of crystal grains is absent; i.e., Ps =
0. However, the ferroelectric polarization can be
induced in the Schottky region by the electric field of
grain boundaries at E > Epi [portions AiBi (i = 1, 2, 3) in
Fig. 4]. This polarization contributes to the screening of
the potential barrier. The compression hinders induc-
tion of the polarization along the compression direction
by the electric field of grain boundaries, because the
field Ep3 of the transition to the induced ferroelectric
state (Fig. 4, curve 3) is stronger than the field Ep2 in the
absence of mechanical stresses (Fig. 4, curve 2). Con-
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Fig. 3. Calculated dependences of the piezoresistive coeffi-
cient π on (a) the fraction of domains A at T = Tc – 5 K and
(b) the temperature T under (1) uniaxial compression and
(2) uniaxial tension at σ = 10 MPa.
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Fig. 4. Dependences of the polarization P on the electric
field strength E: (1) uniaxial tension at σ = 10 MPa, (2) the
stress-free state, and (3) uniaxial compression at σ =
10 MPa. T = Tc + 5 K.
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Fig. 5. (a) Calculated temperature dependences of the resis-
tivity ρ (1) in the stress-free state and (2) under uniaxial
compression at σ = 30 MPa and (b) the calculated tempera-
ture dependence of the piezoresistive coefficient π under
uniaxial compression at σ = 30 MPa.
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sequently, the degree of screening of the potential bar-
rier decreases under uniaxial compression and πc > 0
(Fig. 1a, curve 1). The tension in the paraelectric phase
facilitates induction of the polarization along the ten-
sion direction by the electric field of grain boundaries,
because the field Ep1 of the transition to the induced fer-
roelectric state (Fig. 4, curve 1) is weaker than the field
Ep2. Therefore, under uniaxial tension, the degree of
screening of the potential barriers along the direction of
the electric current increases and πt < 0 (Figs. 1a, 3b,
curves 2).

In polycrystalline ferroelectrics, the uniaxial com-
pression affects the crystal grain volume and leads to an
increase in the temperature Tc by ∆Tc. As a conse-
quence, in the limited temperature range T ∈  (Tc, Tc +
∆Tc), the resistivity ρc (Fig. 5a, curve 2) appears to be
less than the resistivity ρ of the paraelectric phase in the
stress-free state (Fig. 5a, curve 1); hence, we have πc <
0 (Fig. 5b). A theoretical estimate in terms of the ther-
modynamic potential (5) for uniaxial compression at
high pressures (σ = 30 MPa) gives ∆Tc = 21 K. This
value considerably exceeds ∆Tc = 0.5 K, which is cal-
culated from the relationship ∆Tc = 3.31 × 10–16σ
obtained experimentally in [1]. This difference can be
explained by ignoring the mechanical clamping of
domains in the theoretical estimate. In our calculations
of the resistivity ρc and the piezoresistive coefficient πc

for uniaxial compression at σ = 30 MPa, we used the
experimental value ∆Tc. The results of these calcula-
tions are displayed in Fig. 5. The temperature depen-
dence of the coefficient πc at high pressures (≥30 MPa)
exhibits complex behavior (Figs. 1b, 5b). For the ferro-
electric phase at temperatures far from the temperature
Tc, the change in the direction of the spontaneous polar-
ization Ps under uniaxial compression results in a posi-
tive piezoresistive coefficient (πc > 0). In the phase tran-
sition range, an increase in the temperature Tc under
compression leads to a change in the sign of the
piezoresistive coefficient (πc < 0). In the paraelectric
phase, the compression hinders the polarization and,
correspondingly, the screening of the potential barriers
along the direction of the electric current; consequently,
the piezoresistive coefficient is positive (πc > 0). Since
∆Tc is small at pressures ≤10 MPa and the resistance R
increases gradually, no inversion of the sign of the coef-
ficient πc occurs in the vicinity of Tc and πc > 0 over the
entire temperature range (Figs. 1a, 3b, curves 1). The
uniaxial tension affects the crystal grain volume and
leads to an increase in the temperature Tc for configura-
tion 1 (Fig. 2b), providing the best screening of the
potential barriers along the direction of the electric cur-
rent; hence, we have ρt < ρ. As a result, under uniaxial
tension, the negative piezoresistive coefficient (πt < 0)
is observed over the entire ranges of temperatures and
pressures (Figs. 1a, 3b, curves 2).
YSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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4. CONCLUSIONS
Thus, it has been demonstrated that, in polycrystal-

line ferroelectric semiconductors, the resistivity and the
order parameter (Ps) are affected by the same factors,
because the screening of the potential barriers induced
by charged grain boundaries is governed, to a large
extent, by local perturbations of the spontaneous polar-
ization Ps [12]. Consequently, the resistivity appears to
be sensitive to external mechanical stresses due to both
transformation of the domain structure under stresses
and changes in the temperature range of the existence
of the order parameter. In the case when the direction of
the spontaneous polarization Ps in adjacent crystal
grains is opposite to the direction of the electric field
induced by the boundaries of these grains, the potential
barrier heights are less than those in the case when
these directions are perpendicular to each other.

As a result, 90° rotations of the polarization Ps in a
number of domains under external uniaxial mechanical
stresses lead to an increase in the electrical resistance R
along the compression axis, whereas the electrical
resistance along the tension axis decreases; moreover,
the piezoresistive coefficient proves to be dependent on
the degree of transformation of the domain structure.
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Abstract—The optical properties of Pb0.96Ba0.04Sc0.5Nb0.5O3 (PBSN-4) and Pb0.94Ba0.06Sc0.5Nb0.5O3 (PBSN-
6) single-crystal solid solutions were studied for the first time. It was shown that the spontaneous phase transi-
tion occurring in PBSN-4 with no electric field present is accompanied by a sharp minimum in optical trans-
mission, which indicates the percolation nature of the transition. No sharp changes were observed in the tem-
perature dependence of optical transmission in PBSN-6 single crystals with no electric field applied. However,
a very weak electric field, ~0.4 kV/cm, is sufficient to induce the ferroelectric state in PBSN-6 single crystals.
It was shown that the destruction of the induced ferroelectric state is a first-order phase transition which is
accompanied by an anomalously narrow peak in the small-angle light scattering intensity (or by a minimum in
optical transmission) and occurs through the percolation mechanism. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The properties of compositionally ordered ferro-
electrics, to which Pb O3-type compounds
belong (where B' stands for Sc and B" stands for Nb,
Ta), have recently attracted the increasing interest of
researchers. This may be attributed primarily to the
observation that the properties of these substances can
change from those characteristic of normal ferroelec-
trics to relaxor properties without a change in their
chemical composition. As a result of a high-tempera-
ture phase transition of the order–disorder type in the B'
and B" ion distribution over equivalent crystallographic
positions, the degree of order (s) of the B' and B" ions
in a compound can be different, depending on the actual
thermal treatment of the samples or the growth temper-
ature regime chosen [1, 2]. The lead scandiumniobate
PbSc1/2Nb1/2O3 (PSN) single crystals belong to this
class. Crystals with long-range order (s ≈ 1) undergo a
sharp phase transition and do not exhibit the main fea-
tures inherent in relaxor compounds. When the crystal
is in a disordered state (s  0), the ferroelectric phase
transition becomes diffuse, but even in this case, a
spontaneous phase transition from the relaxor (micro-
domain) to a macrodomain ferroelectric state takes
place below the temperature at which the dielectric per-
mittivity ε is maximum. This spontaneous transition is
identified with a jump in the temperature dependence
ε(T) [3] and with a small-angle light scattering (SAS)
peak, which indicates the percolation nature of the
phase transition [4, 5]. The relaxor state in partially
ordered compounds (0 < s < 1) exists in a fairly broad
temperature region, thus offering a unique possibility to
follow the relation between the conventional ferroelec-

B1/2' B1/2''
1063-7834/02/4409- $22.00 © 21754
tric and the relaxor behavior in one and the same com-
pound, both in zero electric field and under the action
of an external factor.

However, obtainment of a stable relaxor state simi-
lar to that observed in lead magnesiumniobate (PMN),
a classical relaxor, has not been successful even with
the Sc3+ and Nb5+ ions arranged in total disorder [6].
For a stable relaxor behavior to set in, the lattice must
be additionally disordered. By increasing the lead
vacancy concentration in ceramic PSN samples from a
nominal level of 0.2–0.5 to 1.4–2 at. %, a quenched
relaxor state can seemingly be reached. However, a
spontaneous phase transition, although strongly dif-
fused, does occur [6]. It remains unclear at what defect
concentration the relaxor state can be quenched.

To enhance the relaxor properties in the PSN
ceramic, an attempt was made in [7, 8] to partially sub-
stitute isovalent Ba ions for the Pb ions. The motivation
was as follows: (i) in the case of a partial substitution of
barium for lead, the concentration and uniformity of
distribution of isovalent impurities is easier to control
than in the case of lead vacancies, and (ii) it may be
expected that as the barium content is increased, the
stability of the relaxor state in PSN will gradually
increase up to total quenching of this state.

Performing such studies on ceramic samples with dif-
ferent barium contents has met with obstacles because of
the difficulties in obtaining Pb1 – xBaxSc0.5Nb0.5O3
(PBSN) equilibrium solid solutions; these difficulties
stem from the PSN and BaSc0.5Nb0.5O3 (BSN) having
substantially different reactivities [9]. This difficulty
was overcome by growing single-crystal samples of the
P1 – xBxSN solid solutions (0 < x < 0.58) [10, 11]. The
002 MAIK “Nauka/Interperiodica”
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temperature dependence of ε of crystals with 0 ≤ x ≤
0.04 was found to exhibit, slightly below the tempera-
ture at which the permittivity is maximum, a spontane-
ous phase transition from the relaxor to a macrodomain
state, in which the features of both the normal ferro-
electric and the relaxor behavior are retained. The spon-
taneous phase transition becomes manifest as a jump in
ε and the onset of birefringence [11]. Crystals with x >
0.08 exhibited a typically relaxor behavior. Crystals
with x = 0.06 (PBSN-6) were assigned a particular
place. These crystals occupied an intermediate position
between crystals with normal ferroelectric properties
(low barium content) and high-Ba-content compounds
possessing typical relaxor properties. As a result,
PBSN-6 crystals had a low enough threshold field to
allow transition to the macrodomain ferroelectric state
[12]. It is such compounds with a low threshold field
that are most interesting from the standpoint of study-
ing the effect of a static electric field on the dielectric
and optical properties, because the field will affect the
relaxor properties and the character of the spontaneous
ferroelectric transition differently. The temperature
dependences of the dielectric permittivity of PBSN-4 (x
= 0.04) and PBSN-6 single crystals and the effect of a
static electric field on these dependence were studied in
[11, 12]. The observed anomalies were not always dis-
tinct enough, which made their experimental detection
difficult.

Optical methods, more specifically, optical trans-
mission and SAS, are more sensitive in studying the
processes occurring in phase transitions. These meth-
ods were employed by us to advantage in investigating
the spontaneous ferroelectric phase transition in PSN
and PST crystals [5, 13, 14] and the induced phase tran-
sition in the PMN and PZN relaxors [15]. The temper-
ature dependence of the SAS intensity measured on sto-
ichiometric PST and PSN crystals with different
extents of ionic disorder exhibited a narrow peak at the
temperature of the spontaneous ferroelectric phase
transition in the absence of an electric field; in the PMN
crystals, a narrow SAS peak was found to exist only
with an electric field applied. If the phase transition is
of the percolation type, then the average size of the
new-phase cluster at the percolation threshold
approaches the side of the sample and a large-scale
nonuniform structure forms; in this case, the phase
transition should be accompanied by the appearance of
anomalously narrow SAS peaks and, hence, of a mini-
mum in optical absorption. The presence of peaks in the
temperature dependence of the SAS intensity indicates
a percolation character of the transition between the
relaxor and ferroelectric states. A theoretical descrip-
tion of anomalous light scattering in the vicinity of first-
and second-order phase-transition temperatures in
crystals with large-scale inhomogeneities can be found
in [16].

The purpose of this study was to investigate the
effect of a static electric field on the behavior of the fer-
roelectric and relaxor states in single crystals of both
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
PBSN-6 (in which a weak electric field is needed to
induce a ferroelectric phase transition) and PBSN-4
(which exhibits a ferroelectric phase transition and
relaxor behavior even in the absence of an electric
field).

2. SINGLE-CRYSTAL GROWTH 
AND EXPERIMENTAL TECHNIQUE

PBSN-4 and PBSN-6 single crystals were grown by
mass crystallization. The growth technique used and
the x-ray and dielectric studies of these crystals were
described in [10, 11]. The crystal samples, 0.3- to
0.8-mm thick plates with [100] faces, were transparent
and yellowish in color. All measurements were carried
out on samples that were not subjected to mechanical
processing. A static electric field was applied in the
[100] direction, and light was propagated along [001].
The electric field was applied in various regimes,
namely, field-heating after field-cooling (FHaFC) and
field-heating after zero-field-cooling (FHaZFC). After
each field application, the subsequent measurement
was preceded by annealing of the sample at 500°C for
an hour. To obtain reproducible results and to avoid
dielectric ageing (an effect observed in PBSN-6 crys-
tals [11]), the dielectric and optical measurements were
performed directly following the sample annealing. We
studied optical transmission and SAS, which was mea-
sured in the transmission geometry [17]. The optical
measurements were made with a He–Ne laser. The
dielectric measurements were carried out at a frequency
of 1 kHz. The sample temperature variation rate was
1.5 to 4.5°C/min.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 presents temperature dependences of the
dielectric permittivity and optical transmission
obtained on PBSN-4 single crystals under heating and
cooling with no electric field applied. When the sample
is heated, optical transmission curve 2 clearly shows a
minimum at a temperature ~52°C, whereas curve 1
exhibits only a fast rise (jump) in ε at this temperature
(Ts), which is the point of spontaneous phase transition
from the macrodomain to relaxor state [11]. As follows
from [11], PBSN-4 crystals exhibit frequency disper-
sion of ε and an increase in the temperature of the per-
mittivity maximum with increasing measurement field
frequency. Unlike , the temperature position of the
jump in ε is virtually frequency-independent. The non-
relaxation character of the spontaneous transition is
supported by our optical and dielectric measurements,
more specifically, by the coincidence between the min-
imum-transmission temperature Ts at zero field fre-
quency and the fast rise in ε at Ts at a frequency of
1 kHz. The minimum in optical transmission (or the
maximum in SAS) indicates the formation of a large-
scale inhomogeneous structure at this temperature and

Tεmax
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Fig. 1. Temperature dependences of (1, 1') dielectric permittivity and (2, 2') optical transmission obtained on single-crystal PBSN-
4 under (1, 2) heating and (1', 2') cooling.

1

the onset of a spontaneous percolation-type phase tran-
sition. The temperature hysteresis of ~13°C observed in
the optical and dielectric measurements (Fig. 1) is one
of the main features of a first-order phase transition.
The temperature of the spontaneous transition is ~20°C
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Fig. 2. Temperature dependences of (1, 3) optical transmis-
sion and (2) dielectric permittivity (f = 1 kHz) measured
on a PBSN-6 single crystal in an electric field E= equal to
(1, 2) 0 and (3) 0.45 kV/cm.

0

P

lower than the temperature of the maximum in ε, which
indicates that the relaxor state exists in this crystal in a
fairly broad temperature interval. The temperature
dependences of optical transmission for the PBSN-4
and PSN [5] crystals are identical.

The situation with the PBSN-6 crystal is radically
different (Fig. 2). In the absence of an electric field, the
optical transmission grows fairly smoothly with
increasing temperature without any jumps and clearly
pronounced maxima (curve 1), a feature characteristic
of purely relaxor compounds. The weak maxima at 28
and 45°C are most likely associated with the samples
being inhomogeneous. The temperature dependence of
ε exhibits no significant anomalies other than the
clearly seen maximum (curve 2).

The pattern of optical transmission seen in the
PBSN-6 crystal changes in an electric field. When an
electric field E < E ≈ 0.3 kV/cm is applied in the
FHaZFC regime, the transmission pattern does not
show any changes as compared with the zero-field case.
An electric field of E ~ 0.4 kV/cm is high enough to
change the character of the temperature dependence of
optical transmission (curve 3); namely, a jump in the
intensity is observed and a minimum appears at a tem-
perature of ~27°C. The pattern of optical transmission
in PBSN-6 in an electric field becomes similar to that
HYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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crystal in an electric field of 3.5 kV/cm applied under different conditions: (1, 2) FHaZFC and (3) FHaFC. Scattering angle 30′.

0

for the PBSN-4 crystal with no electric field applied
(curve 2 in Fig. 1). The observed minimum signals the
formation of an induced large-scale structure and a fer-
roelectric state in an electric field in excess of a thresh-
old level. The temperature position of the observed
anomaly coincides with the depolarization temperature
Td, which was derived from dielectric measurements
[11], and can be identified with destruction of the elec-
tric-field-induced ferroelectric phase.

The anomalies in the temperature dependences of
optical transmission and of SAS intensity become more
distinct in higher electric fields. Figure 3 displays tem-
perature dependences of the optical transmission and
SAS intensity Iθ measured in the PBSN-6 crystal in an
electric field of 3.5 kV/cm in both field application
regimes, FHaZFC and FHaFC. As seen from Fig. 3, at
a certain temperature Td corresponding to destruction
of the ferroelectric state under cooling, the temperature
dependence of the SAS intensity exhibits a narrow
peak, indicating the percolation nature of this transition
(curve 3). This temperature coincides, for the same
electric field, with the destruction temperature of the
ferroelectric state in the FHaZFC regime. It should be
noted that we did not succeed in deriving the tempera-
ture at which the ferroelectric state is induced in the
FHaZFC regime from our experiments on optical trans-
mission carried out at a fixed sample heating rate. This
is probably associated with the fact that, as follows
from [12], the formation of the ferroelectric state is a
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
kinetic phase transition and requires a fairly long time
for the equilibrium to set in.

In fields above 2 kV/cm, the depolarization temper-
ature Td increases linearly with the field in the PBSN-6
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Fig. 4. Temperatures of (1) the spontaneous phase transition
Ts for the PBSN-4 crystal and (2) destruction of the field-
induced ferroelectric state Td for PBSN-6 plotted as func-
tions of the electric field.
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crystal (curve 2 in Fig. 4). The temperature Td was
derived from the position of the maximum in the tem-
perature dependence of the SAS intensity measured in
various electric fields. Interestingly, in fields 0.4 < E <
2 kV/cm, the temperature Td was virtually independent
of the electric field. This is most likely connected with
the samples being inhomogeneous. The peak in the
temperature dependence of the SAS intensity at the
destruction temperature of the field-induced ferroelec-
tric phase, as well as the linear dependence of this tem-
perature on electric field in fields above 2 kV/cm,
implies that this transition is of the percolation nature
and is first order. The occurrence of such a “weak” first-
order transition during the destruction of the field-
induced ferroelectric phase in the PLZT 9/65/35
ceramic was reported in [18]. We note that the transi-
tion from the field-induced ferroelectric to ergodic
relaxor phase in the classical relaxors PMN and PZN is
not of the percolation type [15].

The observed difference in the nature of the phase
transition associated with destruction of the field-
induced ferroelectric phase in PBSN-6 single crystals
and in the classical relaxor PMN may originate from
the fact that PBSN-6 single crystals are at the boundary
of stability separating normal ferroelectrics from relax-
ors. When the barium concentration in PBSN increases
and the relaxor state becomes more stable, the phase
transition involving destruction of the field-induced fer-
roelectric state will apparently occur in the same way as
it does in the PMN. Further studies are needed to sup-
port this conjecture. A linear dependence of the sponta-
neous phase-transition temperature on electric field was
also observed by us within the field interval covered in
PBSN-4 crystals (curve 1 in Fig. 4) and is similar to the
corresponding relation for pure PSN [5].
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Abstract—The reflection, transmission, and absorption of a symmetric electromagnetic pulse whose carrier
frequency is close to the frequency of the interband transition in a quantum well are calculated. The energy lev-
els in the quantum well are assumed to be discrete, and one excited level is taken into account. Consideration
is given to the case of a sufficiently wide quantum well when the pulse wavelength corresponding to the carrier
frequency is comparable to the quantum well width and when allowance should be made for the dependence of
the matrix element of the interband transition on the photon wave vector. The calculations are performed with
due regard for the difference between the refractive indices of the material of the quantum well and the barrier
at an arbitrary ratio of the reciprocal radiative to nonradiative lifetimes of the excited level of the electronic sys-
tem. It is demonstrated that the inclusion of the spatial dispersion and the difference in the refractive indices
most strongly affects the reflection of the electromagnetic pulse, because the reflection due to interband transi-
tions in the quantum well is accompanied by an additional reflection from the quantum well boundaries. Com-
pared to the previously considered model, the most radical changes in the reflection are observed in the case
when the reciprocal nonradiative lifetime of the excited state is substantially longer than the reciprocal radiative
lifetime. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, a number of works have been
devoted to the investigation of variations in the shape of
a light pulse in its penetration through a quantum well
[1–7]. Consideration has been given to an asymmetric
exciting pulse with a steep edge [1–3] and a symmetric
pulse [4, 5]. In [1, 2, 5], analysis was performed under
the assumption that the carrier frequency ωl of the
exciting pulse is close to the frequency ω0 of the elec-
tronic excitation (a two-level system). A three-level
system [7] and a system with many excited states [3, 6]
have also been studied. The results obtained in these
works are valid for relatively narrow quantum wells
when the following inequality is satisfied:

(1)

where d is the quantum well width and κ is the magni-
tude of the photon wave vector corresponding to the
carrier frequency of the symmetric pulse. In actual fact,
the parameter κd in the aforementioned works was
taken equal to zero and the calculated reflectance,
absorptance, and transmittance were independent of the
quantum well width d. The magnitude κ can be numer-
ically estimated from the lasing wavelength of a gal-
lium arsenide heterolaser. This wavelength is estimated
to be 0.8µ, and the corresponding energy "ωl is equal

κd  ! 1,
1063-7834/02/4409- $22.00 © 21759
to 1.6 eV. If the refractive index of the quantum well
material is taken as ν = 3.5, we have κ = νωl/c = 2.8 ×
105 cm–1, where c is the velocity of light in free space.
For the quantum well width d = 500 Å, we obtain
the parameter κd = 1.4. Therefore, in the case of suffi-
ciently wide quantum wells, the contribution of the spa-
tial dispersion of waves forming the exciting pulse can
be significant.

For wide quantum wells, the inequality d @ a0
(where a0 is the lattice constant) is very strong and the
penetration of a pulse through the quantum well can be
described by the Maxwell equations for a continuous
medium. This approach requires inclusion of the differ-
ence between the refractive indices of the barrier and
the quantum well. As a consequence, there should
appear an additional reflection from the quantum well
boundaries. This reflection decreases with a decrease in
the parameter κd but, in the range κd ≥ 1, in certain
cases, can be equal or exceed the reflection due to res-
onant transitions in the quantum well. The change in
the reflection of the light wave is accompanied by a
change in its transmission. Therefore, account must be
taken of both the difference in the refractive indices of
the barrier and the quantum well and the dependence of
the reflection and transmission on the parameter κd.
The aim of the present work was to analyze how these
two factors affect the shape of the light pulse reflected
002 MAIK “Nauka/Interperiodica”
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from a quantum well and the light pulse passed
through it.

We consider a system composed of a deep semicon-
ductor quantum well located in the range 0 ≤ z ≤ d and
two semi-infinite barriers. Analysis is carried out for an
intrinsic semiconductor at zero temperature under the
following assumptions: (i) the exciting light pulse prop-
agates along the z axis from negative values of z, (ii) the
barriers are transparent to the pulse, and (iii) the pulse
is absorbed in the quantum well, thus inducing resonant
interband transitions. Only the states in which one elec-
tron transfers from the valence band to the conduction
band with the formation of a hole in the valence band
are considered to be excited. It is assumed that ωl ≅  ωg

(the band gap in the quantum well is defined as Eg =
"ωg) and a small fraction of valence electrons partici-
pates in the absorption. These electrons are located near
the extremum of the band and can be adequately
described by the effective mass method. For deep quan-
tum wells, the electron tunneling into the barrier, in this
case, can be ignored and the barrier can be regarded to
be free of electrons. Moreover, the energy levels close
to the quantum well bottom can be treated within the
approximation of an infinitely deep well. The system
under consideration is inhomogeneous. Since inequal-
ity (1) does not hold for wide quantum wells, the optical
characteristics of this system should be determined
from the solution of the Maxwell equations in which
the current and charge densities should be expressed by
the relationships derived in the framework of the micro-
scopic approach [8, 9].

The final results are obtained for one discrete level
of the electronic system in the quantum well. The influ-
ence of other levels on the reflection and absorption of
light can be disregarded when the carrier frequency ωl

is sufficiently close to the excitation frequency ω0 of the
chosen level and the other levels are sufficiently far
from this level. The exciton levels in a zero magnetic
field or the levels in a strong magnetic field perpendic-
ular to the quantum well plane are discrete in the quan-
tum well under the condition "K⊥  = 0, where "K⊥  is the
vector of the total quasi-momentum of an electron–hole
pair in the quantum well plane. As an example, we will
examine the level of an electron–hole pair in a strong
magnetic field aligned parallel to the z axis without
regard for the Coulomb interaction between the elec-
tron and the hole. This interaction is considered a weak
perturbation for sufficiently strong magnetic fields and
not very wide quantum wells [10]. However, the exci-
ton effect does not lead to radical changes in the results
obtained and only affects the reciprocal radiative life-
time γr of the electronic excitation in the quantum well.
The same is also true for the exciton levels in a zero
magnetic field.
P

2. THE ELECTRIC FIELD INDUCED 
BY A PENETRATING PULSE

Let us assume that a symmetric exciting pulse is
incident on a single quantum well from negative values
of z. The circularly polarized electric field that corre-
sponds to this pulse can be represented in the form

(2)

Here, E0 is the real amplitude, p = t – ν1z/c,

 (3)

is the unit vector of circular polarization, ex and ey are
the real unit vectors, ν1 is the refractive index of the bar-
rier, Θ(p) is the Heaviside function, and the parameter
γl determines the rise and decay of the symmetric pulse.
The Fourier transform of the function E0(z, t) has the
form

(4)

where κ1 = ν1ω/c.

In our earlier work [11], we solved the problem of
the penetration of a monochromatic electromagnetic
wave through a quantum well with due regard for the
spatial dispersion of the wave. In [11], we obtained the
relationship for the density of the high-frequency cur-
rent induced by the propagating wave in the quantum
well. For one excited level and circularly polarized inci-
dent waves, the current density can be written as

(5)

The interband transition energy that corresponds to the
chosen excited state is defined by the expression

, (6)

where ε(mc) [ε(mv)] is the energy of an electron (a hole)
with the quantum number mc (mv) in the quantum-well
level, Ωµ = |e |H/µc is the cyclotron frequency, e is the
elementary charge, H is the strength of a constant mag-
netic field, µ = memh/(me + mh), me(mh) is the effective

E0 z t,( ) elE0 iωl p–( )exp=

× Θ p( )e
γl p/2–

1 Θ p( )–[ ] e
γl p/2

+{ } c.c.+

el ez iey±( )/ 2=

E0 z ω,( ) iκ1z( ) elE0 ω( ) el*E0 ω–( )+{ } ,exp=

E0 ω( ) E0γl/ ω ωl–( )2 γl/2( )2+[ ] ,=

J z t,( ) 1/2π( ) ω iωt–( )J z ω,( ),expd

∞–

∞

∫=

J z ω,( )
elγrνω

4π
----------------–=

× Φ z( ) 1
ω ω0– iγ/2+
-------------------------------- 1

ω ω0 iγ/2+ +
--------------------------------+

× z'A z' ω,( )Φ z'( )d

0

d

∫ c.c.+ elJ z t,( ).=

"ω0 "ωg ε mv( ) ε mc( ) "Ωµ n 1/2+( )+ + +=
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electron (hole) mass, n is the Landau quantum number,
and γ is the reciprocal nonradiative lifetime of the
excited state. Within the approximation of an infinitely
deep well, we have

(7)

In expression (5), we introduced the reciprocal radia-
tive lifetime γr of the electron–hole pair in the magnetic
field at κd = 0, that is,

(8)

where m0 is the mass of a free electron. Furthermore,
we introduced the scalar A(z, ω) related to the Fourier
transform of the vector potential A(z, ω) through the
expression

(9)

The electric field vector E(z, ω) is described by a for-
mula similar to expression (9). Relationship (5) is valid
for heavy holes in crystals with a zinc blende structure
when the z axis is aligned along the fourfold symmetry
axis [12, 13]. The real constant pcv entering into the for-
mula for the reciprocal lifetime γr is associated with the
momentum interband matrix element for two degener-
ate bands, that is,

The current density  satisfies the condition

div  = 0, and hence, the induced charge density is
ρ(z, t) = 0. Then, we can use the gauge : ϕ(z, t) = 0,
where ϕ(z, t) is the scalar potential, and

(10)

Since E(z, ω) ~ A(z, ω), instead of the equation for A(z,
ω), it is convenient to solve a similar equation for the
scalar E(z, ω). This equation can be written in the form

(11)

Note that, in relationship (5) for , A(z', ω)
should be replaced by E(z', ω) with the use of expres-
sion (10).

Equation (11) is integro-differential. The solution of
Eq. (11) can be formally represented as the sum of the
general solution of a homogeneous equation and the
particular solution of a nonhomogeneous equation.

Φ z( ) 2/d( ) πmcz/d( ) πmv z/d( ).sinsin=

γr 2e2/"cν( ) pcv
2 /m0"ωg( ) e H/m0c( ),=

A z ω,( ) elA z ω,( ) el*A z ω–,( ).+=

pcv
I II, pcv ex iey+−( )/ 2.=

Jl z t,( )

Jl z t,( )

E z t,( ) 1/c–( ) ∂A/∂t( ),=

E z ω,( ) iω/c( )A z ω,( ).=

d2E z ω,( )/dz2 κ2E z ω,( )+ 4π/c( )J z ω,( ),–=

κ νω/c.=

J z ω,( )
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Then, Eq. (11) transforms into the Fredholm integral
equation of the second kind,1 

(12)

This equation is valid at frequencies ω close to ω0,
because it was derived without regard for the nonreso-
nant term ω + ω0 + iγ/2 in relationship (5) for the cur-

rent density . Ignoring the nonresonant term is
equivalent to having the inequality (ω – ω0)/ω0 ! 1.
Therefore, the theory becomes inadequate at ω – ω0 ≈
ω0; however, this frequency range is very far from the
resonance frequency ω0 and is of no interest. In the case
of the time representation, the inadequacy of the theory
manifests itself at times t ≤ t0 = . For "ω0 = 1.6 eV,

we obtain t0 = 4 × 10–16 s. The arbitrary constants C1 and
C2 are determined from the boundary conditions in the
planes z = 0 and z = d, and the function F(z) has the
form

(13)

At γr ! γ, the integral term in Eq. (12) can be treated
as a small perturbation. Hence, it is sufficient to allow
for the first approximation with respect to this term.
The radiative broadening of the energy levels in quasi-
two-dimensional systems results from the breaking of
the translational symmetry in a direction perpendicular
to the plane of the quantum well [15, 16]. For high-
quality quantum wells, the scattering by inhomogene-
ities of the quantum well boundaries can make a small
contribution to the nonradiative broadening of the level.
The same is also true for the scattering by phonons and
impurities at low temperatures and small impurity con-
centrations. As a consequence, it can turn out that γr ≥
γ. In this case, the solution of Eq. (12) cannot be limited
to the first iteration and requires summation of the com-
plete iteration series. It can be demonstrated that this
series is reduced to a geometric progression and the
solution can be written in the form [11]

(14)

1  A similar equation for an inversion layer was considered in [14].
The exact solution of Eq. (12) for a monochromatic exciting wave
was obtained in [11].

E z ω,( ) C1eiκ z C2e iκ z–+=

–
i γr/2( )F z( )

ω ω0– iγ/2+
-------------------------------- z'E z' ω,( )Φ z'( ).d

0

d

∫

J z ω,( )

ω0
1–

F z( ) eiκ z z'e iκ z'– Φ z'( )d

0

z

∫ e iκ z– z'eiκ z'Φ z'( ).d

z

d

∫+=

E z ω,( ) C1eiκ z C2e iκ z–+=
i γr/2( )F z( )

ω ω0– i γ γrε+( )/2+
---------------------------------------------------–

z' C1eiκ z' C2e–iκ z'+( )Φ z'( ).d

0

d

∫×
2
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The complex quantity ε defined as

(15)

characterizes the change in the broadening and the shift
in the level due to spatial dispersion of the wave. In the
limiting case κd = 0, we have ε = . For barriers
without induced current, instead of Eq. (11), the follow-
ing equation holds:

(16)

The solution of this equation has the form

(17)

In the expression for El(z, ω), the first term is the scalar
amplitude of the Fourier transform of the exciting pulse
and CR and CT determine the amplitudes of the wave
reflected from the quantum well and the wave transmit-
ted through the well, respectively. The coefficients C1,
C2, CR, and CT depend on the frequency ω and are
deduced from the continuity conditions for E(z, ω) and
dE(z, ω)/dz at the boundaries z = 0 and z = d. As a result,
we found

(18)

(19)

In relationships (18) and (19), we introduced the fol-
lowing designations:

(20)

(21)

The function E0(ω) is defined by formula (4). It follows
from expressions (13) and (15) that, at mc = mv = m (the
allowed interband transition in the limiting case κd =
0), the functions F(z) and ε can be written as

(22)

ε ε' iε''+ z'Φ z'( )F z'( )d

0

d

∫= =

δmcmv

d2E z ω,( )/ z2 κ1
2E z ω,( )+d 0,=

z 0, z d , κ1≥≤ ν1ω/c.=

El z ω,( ) E0 ω( )e
iκ1z

CRe
iκ1z–

,+=

z 0; Er z ω,( )≤ CTe
iκ1z

, z d .≥=

C1 2E0 ω( )/∆( )e iκd– 1 ζ 1 ζ–( )1+ +[ ] ,=

C2 2E0 ω( )/∆( ) 1 ζ–( ) eiκd 1+[ ] ,–=

CR E0 ω( )ρ/∆,=

CT 4E0 ω( )ζe
iκ1d–

1 e iκd– 1+[ ] /∆,=

∆ ζ 1+( )2e iκd– ζ 1–( )2eiκd–=

– 2 ζ 1–( )1 ζ 1+( )e iκd– ζ 1–+[ ] ,

ρ 2i ζ2 1–( ) κd 2 ζ2 1+( )e iκd– ζ2 1–+[ ] 1.+sin=

ζ κ /κ1 ν/ν1,= =

1 i γr/2( )F2 0( )/ ω ω0– i γ γrε+( )/2+[ ] .–=

F z( ) iB 2 iκz( )exp iκ d z–( )( )exp––[=

– κd/πm( )2 πmz/d( )2sin ] ,
P

(23)

(24)

According to formula (17), the Fourier transform of the
electric field vector Er(z, ω) on the right of the quantum
well is given by

(25)

The Fourier transform of the electric field vector El(z,
ω) on the left of the quantum well involves the compo-
nents associated with the exciting pulse field [expres-
sion (4)] and the reflected wave field ∆El(z, ω) and is
described by the relationship

(26)

(27)

3. THE CHANGE-OVER TO THE TIME 
REPRESENTATION

In the time representation, the electric field vector of
the pulse transmitted through the quantum well, accord-
ing to relationship (17), has the form (p = t – zν1/c)

(28)

In a similar way, the field vector of the pulse reflected
from the quantum well is written as 

(29)

where s = t + zν1/c. After substitution of E0(ω) defined
by expression (4) and 1(ω) represented by formula
(21) into relationships (18), the functions CT(ω) and
CR(ω) take the form

(30)

F 0( ) F d( ) iB 1 iκd( )exp–[ ] ,= =

B 4π2m2/κd( )/ 4π2m2 κd( )2–[ ] ,=

ε' F2 0( ) iκd–( )exp 4B2 κd/2( )sin
2

,= =

ε'' 2B 1 B κdsin 3 κd( )2/8π2m2––[ ] .=

Er z ω,( ) iκ1z( ) elCT ω( ) el*CT ω–( )+[ ] ,exp=

z d .≥

El z ω,( ) E0 z ω,( ) ∆El z ω,( ),+=

∆El z ω,( ) iκ1z( )–[ ] elCR ω( ) el*CR ω–( )+[ ] ,exp=

z d .≥

Er z t,( ) elE
r z t,( ) c.c.,+=

Er z t,( ) 1/2π( ) ω iωp–( )CT ω( ), z d.≥expd

∞–

+∞

∫=

∆El z t,( ) el∆El z t,( ) c.c.,+=

∆Er z t,( ) 1/2π( ) ω iωs–( )CR ω( ), z d,≤expd

∞–

+∞

∫=

CT ω( )
4E0γlζ iκ1d–( )exp

+$
----------------------------------------------=

×
ω ω0– γrε''/2 iγ/2+–

ω ωl–( )2 γl/2( )2+
-----------------------------------------------------,
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(31)

(32)

(33)

(34)

(35)

In integrals (28) and (29), the integrands have the poles
ω = ωl ± iγl/2 and, in addition, the pole determined by
the equation $ = 0 in the lower half-plane ω. In the
strict sense, the functions ^1 and ^2 entering into $
[see formula (32)] depend on ω, because the magnitude
of the wave vector κ = νω/c is a function of ω. However,
reasoning from the assumptions made in deriving rela-
tionship (12), the frequency ω should not differ
strongly from the frequency ω0. Therefore, the equation
$ = 0 can be solved using only the first iteration. As a
result, we obtain the following pole in the lower half-
plane:

(36)

By using the approximate pole (36), we obtain

(37)

On the other hand, the poles ω = ωl ± iγl/2 lead to κ =
κl = νωl/c and κ1 = κ1l = ν1ωl/c. Since the theory holds
true when the inequality (ωl – ω0)/ω0 ! 1 is satisfied,
hereafter, we assume that κl = κ0 = κ and κ1l = κ10 = κ1.

After integration over the frequency ω, the scalar
functions Er(z, t) and ∆El(z, t) take the form

(38)

(39)

where the functions eT and eR are defined by the identi-
cal formulas

(40)

CR ω( )
E0γl

+$
----------=

×
@ ω ω0– γrε''/2 i γ γrε'+( )/2+–[ ] i@1γrε'/2–

ω ωl–( )2 γl/2( )2+
-----------------------------------------------------------------------------------------------------------------,

$ ω ω0– γr^1/2 i γ γr^2+( )/2,+–=

+ 1 ζ+( )2 iκd–( ) 1 ζ–( )2 iκd( ),exp–exp=

@ 2i 1 ζ2–( ) κd ,sin–=

@1 2 1 ζ2 1 ζ2–( ) iκd( )exp–+[ ] ,=

^1 ε''
2ε' 1 ζ2–( ) κdsin

1 ζ2 1 ζ2–( ) κdcos+ +
-------------------------------------------------------,–=

^2
2ζε'

1 ζ2 1 ζ2–( ) κdcos+ +
-------------------------------------------------------.=

ω ω0 γr^1 ω0( )– i γ γr^2 ω0( )+( )/2.–=

κ κ 0 νω0/c, κ1 κ10 ν1ω0/c.= = = =

Er z t,( ) 4ζE0/+( ) i ωl p κ1d+( )–( )exp=

× 1 Θ p( )–[ ] γ l p/2( )WT γl( ) Θ p( )eT+exp{ } ,

∆El z t,( ) E0/+( ) iωls–( )exp=

× 1 Θ s( )–[ ] γ ls/2( )WR γl( ) Θ s( )eR+exp{ } ,

eT R( ) e
γl p s( )/2–

WT R( ) γl–( ) e
i ∆ω γr^1/2–( ) p s( )

–=

× WT R( )' e
γ γr^2+( ) p s( )/2–

.
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In relationships (38)–(40), we introduced the following
notation:

(41)

(42)

(43)

(44)

(45)

(46)

Note that allowance made for the dependence of κ
on ω leads to the replacement of the variable p by p' =
p + t1 in expression (38) for the scalar function Er(z, t).
Here, t1 = ν1d/c is the time the light takes to propagate
through the quantum well. Consequently, the inclusion
of the dependence of κ on ω manifests itself only in the
case when p ≤ t1. At d = 500 Å and ν1 = 3, we obtain
t1 = 5 × 10–16 s ≅  t0. The approximate equality t1 ≅  t0
indicates that allowance made for the dependence of κ
on ω in calculation of integrals (28) and (29) leads to
exceeding the required accuracy, because, in this case,
the corrections are of the same order of magnitude as
those ignored when deriving formula (12). The expres-
sions deduced for Er(z, t) and ∆El(z, l) are rather cum-
bersome, and their analytical examination is compli-
cated. Therefore, of special interest are the two limiting
cases for which these expressions are simplified sub-
stantially. If the medium is homogeneous (i.e., ν1 = ν),
we obtain

and expressions (38) and (39) transform into the rela-
tionships

(47)

(48)

where the function Ω(γl) defined by formula (46) trans-
forms into the function

(49)

∆ω ωl ω0,–=

WT γl( ) ∆ω γrε''/2 i γ γl+( )/2+–[ ] /Ω γl( ),=

WR γl( ) @ ∆ω γrε''/2 i γ γl γrε'+ +( )/2+–[ ]{=

– iγrε'@1/2 } /Ω γl( ),

WT'  = i γr/2( ) ^2 i ε'' ^1–( )–[ ] 1
Ω γl–( )
---------------- 1

Ω γl( )
------------– 

  ,–

WR' i γr/2( ) @ ε' ^2– i ε'' ^1–( )+[ ] ε '@1+{ }–=

× 1
Ω γl–( )
---------------- 1

Ω γl( )
------------– 

  ,

Ω γl( ) ∆ω γr^1/2– i γ γl γr^2+ +( )/2.+=

κ1 κ , + 4 iκd–( ),exp= =

@ 0, @1 4, ^1 ε'', ^2 ε'= = = =

Er z t,( ) E0 z t,( ) ∆Er z t,( )+=

=  E0 z t,( ) E0 iγrε'/2( ) iωl p–( )exp–

× 1 Θ p( )–[ ] γ l p/2( )/Ω γl( ) Θ p( )e+exp{ } ,

∆El z t,( ) E0 iγrε'/2( ) i ωls κd–( )–( )exp–=

× 1 Θ s( )–[ ] γ ls/2( )/Ω γl( ) Θ s( )e+exp{ } ,

Ω γl( ) ∆ω γrε''/2– i γ γl γrε'+ +( )/2+=
2
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and the function described by expression (40) takes the
form

(50)

The parameter t in formula (50) is as follows: t = p for
Er and t = s for ∆El. The function ∆Er(z, t) determines
the distortion of the exciting pulse transmitted through
the quantum well.

It is seen from relationships (47) and (48) that the
inclusion of the spatial dispersion in the case of the
homogeneous medium leads to a shift in the frequency
ω0 by γrε''/2 and the replacement of γr by  = γrε'. The

quantity  coincides with the reciprocal radiative life-
time calculated in [3, 7] for an electron–hole pair in a
strong magnetic field at K⊥  = 0 for an arbitrary value of
κd. When the spatial dispersion is disregarded (i.e., at
κd = 0), according to formulas (24), we have ε'  1
and ε''  0 and expressions (47) and (48) transform
into the relationships derived in [5] for the case of a
homogeneous medium in the absence of spatial disper-
sion. Formulas (47) and (48) coincide with similar
expressions obtained in [5] [formula (15)] provided
that, in these expressions, the transition frequency ω0 is
considered to mean ω0 + γrε''/2 and γr is replaced by .
It is also of interest to analyze the limiting case of a
weak spatial dispersion when κd  0 but the medium
is inhomogeneous (i.e., ν1 ≠ ν). This situation can arise
with comparatively narrow quantum wells. Setting κd = 0
in formulas (38) and (39), we obtain + = 4ζ, @ = 0,
@1 = 4ζ2, ^1 = 0, ^2 = ζ, and

(51)

(52)

In the given case, the function Ω(γl) is represented as

(53)

and the difference between ∆El(z, t) and the corre-
sponding function described by expression (51) resides
in the replacement of p by s. It can be seen that the inho-
mogeneity of the medium without regard for the spatial
dispersion results only in the substitution of γrζ for γr,
i.e., in the substitution of ν1 for ν in expression (8) for
γr. Formulas (51) and (52) coincide with the relation-
ships deduced in [5] if γr is replaced by ζγr in these rela-
tionships. Since the condition ζ ≅ 1 is met in real sys-
tems, the inhomogeneity of the medium makes only a
small contribution. The passage to the limit γl  0
implies the change-over to a monochromatic exciting
wave. In this limiting case, formulas (38) and (39) are
reduced to the expressions obtained in [11].

e γlt/2–( )/Ω γl–( ) i ∆ω γrε''/2–( )t[ ]exp–exp=

× γ γrε'+( )t/2–[ ] Ω γ l–( ) 1– Ω γl( ) 1––{ } .exp

γ̃r

γ̃r

γ̃r

∆Er z t,( ) iE0γrζ /2–( ) iωl p–( )exp=

× 1 Θ p( )–[ ] γ l p/2( )/Ω γl( ) e' p( )Θ p( )+exp{ } ,

e' p( ) γl p/2–( )/Ω γl–( )exp=

– i∆ωp γ γrζ+( )p/2–[ ] Ω γ l–( ) 1– Ω γl( ) 1––( ).exp

Ω γl( ) ∆ω i γ γl γrζ /2+ +( )+=
P

4. REFLECTION AND TRANSMISSION
OF AN EXCITING PULSE

The energy flux S(p) corresponding to the electric
field of the exciting pulse can be written in the form

(54)

where S0 = c /(2πν1) and ez is the unit vector along
the z axis. The dimensionless function P(p) determines
the spatial and time dependences of the energy flux of
the exciting pulse, that is,

(55)

By analogy with expression (54), the transmitted flux,
i.e., the flux on the right of the quantum well, can be
represented as

(56)

The reflected flux (on the left of the quantum well) has
the form

(57)

The dimensionless functions 7(p) and 5(s) determine
the fractions of the transmitted and reflected energies of
the exciting pulse.

By analogy with [5], the absorbed energy flux Sa can
be defined as the difference between the flux S + Sl,
which is incident on the quantum well from the left at
z = 0, and the flux Sr, which leaves the well toward the
right at z = d at the same instant of time t; that is,

(58)

With the use of definitions (54)–(58), the flux Sa(t) can
be represented as

(59)

The fraction of the absorbed energy !(t) is defined
using the equality Sa(t) = ezS0!(t). As a result, we have

(60)

Formula (60) can be generalized if the planes in which
the fluxes are considered are displaced by z = –z0
toward the left of the quantum well and by z0 toward the
right of the quantum well (z0 > 0). Then, instead of rela-
tionship (60), we obtain

(61)

where x = p = s = t – ν1|z0|/c. The relationships for the
quantities 7, 5, and ! are expressed through the sca-
lar functions Er(z, t) and ∆El(z, t) according to the gen-
eral formulas (38) and (39). These relationships are
very cumbersome and are not presented in this work.
The quantities P(t), 7(t), and 5(t) are universally pos-

S p( ) ez/4π( ) c/ν1( ) E0 z t,( )( )2 ezS0P p( ),= =

E0
2

P p( ) E0 z t,( )( )2/S0=

=  Θ p( )e
γl p–

1 Θ p( )–[ ] e
γl p.+

Sr z t,( ) ez/4π( ) c/ν1( ) Er z t,( )( )2
ezS07 p( ).= =

Sl – ez/4π( ) c/ν1( ) ∆El z t,( )( )2
ezS05 s( ).–==

Sa t( ) S t( ) Sl t( ) Sr t( ).–+=

Sa t( ) ezS0 P t( ) 5 t( )– 7 t( )–[ ] .=

! t( ) P t( ) 5 t( )– 7 t( ).–=

! x( ) P x( ) 5 x( )– 7 x( ),–=
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itive, whereas the absorptance !(t) can be positive or
negative. The negative absorptance at a certain instant
of time t suggests that the electronic system of the
quantum well gives away the energy accumulated at the
preceding instants of time.

5. TIME DEPENDENCE OF THE REFLECTANCE, 
TRANSMITTANCE, AND ABSORPTANCE 

IN THE CASE OF TRUE RESONANCE ωl = ω0

First, we analyze the limiting case γ @ γr. The fields
E r(z, t) and ∆E l(z, t) defined by expressions (38) and
(39) can be represented as the series

(62)

, (63)

where

(64)

(65)

correspond to the transmitted and reflected pulses at
γr = 0, i.e., when the absorption in the quantum well is
absent.

In the limiting cases κd ≠ 0 and ζ = 1 or κd = 0 and

ζ ≠ 1, we have  = 0, because, according to for-
mula (34), @ = 0. In the former case, this is explained
by the fact that the medium becomes homogeneous. In
the latter case, the amount of the material in the quan-
tum well is very small and the transmitted wave does
interact with it. In these limiting cases, from relation-
ship (57), we obtain 5(t) ~ (γr/γ)2; i.e., the reflectance
is a small quantity. When changing over to the general
case κd ≠ 0 and ζ ≠ 1, the reflectance 5(t) takes the
form

(66)

As a consequence, the reflectance appreciably
increases owing to the first term in expression (66). As
regards the transmittance 7(t), in the limiting cases
κd = 0 or ζ = 1, we found that 7(t) = P(t). When chang-
ing over to the general case, the transmittance changes
only slightly, because the multiplier 16ζ/|+ |2 does not
differ significantly from unity.

Figure 1 displays the time dependences of the
dimensionless transmittance 7, absorptance !, and
reflectance 5 for different values of the parameters κd
and ζ. It is seen from Fig. 1a that the curve 7(t) at κd =
0 and ζ = 1 virtually coincides with that at κd = 1.5 and
ζ = 1.1. The same holds true for the absorptance !(t).
As can be seen from Fig. 1b, the reflectance is a small

Er z t,( ) E0
r z t,( ) γr/γ( )E1

r z t,( ) …,+ +=

∆El z t,( ) ∆E0
l z t,( ) γr/γ( )∆E1

l z t,( ) …+ +=

E0
r z t,( ) el 4ζE0/+( ) –i ω( l p κ1d )+[ ] 1 Θ p( )–[ ]{exp=

× γl p/2( )exp Θ p( ) γl p/2–( )exp+ } c.c.,+

∆E0
l z t,( ) el @E0/+( ) iωls–( ) 1 Θ p( )–[ ]{exp–=

× γls/2( )exp Θ s( ) γls/2–( )exp+ } c.c.+

∆E0
l z t,( )

5 t( ) S0
1– ∆E0

l s( )( )2
2 γr/γ( ) ∆E0

l s( )∆E1
l s( )( )+[ ] .=
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quantity and substantially depends on the parameter ζ
at κd = 1.5: a change in ζ from 1 to 1.3 leads to an eight-
fold increase in the reflectance 5(t)

In the limiting case γr @ γ, the induced fields are
comparable in magnitude to the field of the exciting
pulse and, hence, the shape of the pulse transmitted
through the quantum well changes very strongly. It can
be seen from Fig. 2 that, under these conditions, the
transmittance 7 is small and the reflectance 5 is pre-
dominant. In our previous work [5], we introduced the
notion of singular points in the time dependences of the
functions 7, !, and 5. In particular, one of these
points (the total reflection point of the first kind) is
defined by the conditions 5(t0) = P(t0) and 7(t0) =
!(t0) = 0 (Fig. 2a). At ζ ≠ 1 and κd ≠ 0 (Fig. 2b), other
conditions, namely, 7(t0) + !(t0) = 0 and 5(t0) = P(t0),

1.0

0.4

0.2

0.8

0.6
1

2

3
!

!

7

P ∆ω = 0
γr/γl = 0.2
γ = γl

(a)

–2 –1 0 1 2 3 4

0.02

0.06

0.05

0.04

0.03

0.01
1

2

3

4

5

5

(b)

γlt

Fig. 1. Dependences of the transmittance 7, the absorp-
tance !, and the reflectance 5 of the symmetric exciting
pulse P on the dimensionless time γlt in the case of true res-
onance and γr ! γ. (a) (1) ζ = 1, κd = 0 and ζ = 1.1, κd =
1.5; (2) ζ = 1 and κd = 0; and (3) ζ = 1.1 and κd = 1.5.
(b) (1) ζ = 1 and κd = 0, (2) ζ = 1 and κd = 1.5, (3) ζ = 1.1
and κd = 1.5, (4) ζ = 1.2 and κd = 1.5, and (5) ζ = 1.3 and
κd = 1.5.
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are satisfied at the total reflection point. This means that
the absorptance is negative !(t) < 0; i.e., the system
generates radiation accumulated at earlier instants of
time. Therefore, the change-over to the general case
results in the appearance of a singular point, which,
according to the classification proposed in [5], is the
total reflection point of the second kind. Note also that
the transmittance shown in Fig. 2b is several times
larger than that in Fig. 2a. Consequently, in this case,
too, the inhomogeneity of the medium and the spatial
dispersion substantially affect only small quantities,
which are represented by the transmittance 7(t) in the
given limiting case.

6. DEVIATION OF THE CARRIER FREQUENCY 
FROM THE RESONANCE FREQUENCY

In [5], it was demonstrated that the deviation ∆ω of
the carrier frequency from the resonance frequency
leads to oscillations of the quantities !(t) and 5(t)
with time. However, the oscillations could be observed
only at small values of !(t) and 5(t). On the other

Fig. 2. Time dependences of the functions P, 5, !, and 7
in the case of true resonance and γr ! γ. (a) ζ = 1 and κd =
0 and (b) ζ = 1.1 and κd = 1.5. γl t0 and γl tr are the singular
points of total reflection of the first and second kinds,
respectively.
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hand, the inclusion of the inhomogeneity of the
medium and the spatial dispersion results in the appear-
ance of an additional reflection from the quantum well
boundaries. Its magnitude can exceed the oscillating
component of the reflectance 5(t). The effect of the
inhomogeneity of the medium and the spatial disper-
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Fig. 3. Time dependences of the reflectance in the case of
deviation of the carrier frequency from the resonance fre-
quency at γ = 0 and (a) ∆ω = 10 and γr/γl = 0.1, (b) ∆ω = 10
and γr/γl = 1, and (c) ∆ω = 30 and γr/γl = 1. (1) ζ = 1 and
κd = 0 and (2) ζ = 1.1 and κd = 1.5.
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sion of the light wave on the reflectance 5(t) is illus-
trated in Fig. 3. The most noticeable changes are
observed at γr/γl ! 1, i.e., for a short exciting pulse. It
is seen from Fig. 3a that, compared to the reflectance at
ζ = 1 and κd = 0, the reflectance 5(0) increases by a
factor of more than 300 and no oscillations can be dis-
tinguished as a consequence of their low amplitude. In
the intermediate case γr = γl (Fig. 3b), the changes are
insignificant and the oscillations are clearly seen in the
curve corresponding to ζ = 1.1 and κd = 1.5. In Fig. 3c,
the reflectance 5(0) increases by a factor of 22 and the
oscillations can be distinguished. As regards the
absorptance, the oscillating curves !(t) weakly change
in the inhomogeneous medium. This is explained by the
fact that the absorption in the quantum well is caused
by the quantum transitions, which only slightly depend
on the refractive index.

Figure 4 shows the curves 5(t) at γr @ γl (a long
exciting pulse) and ∆ω ≠ 0. However, in this case, the
reflection oscillations are virtually indistinguishable.
As is seen from Fig. 4, allowance made only for the
spatial dispersion leads to a decrease in the reflectance
as compared to the reflectance at κd = 0. This is associ-
ated with a decrease in the effective reciprocal radiative
lifetime γrε', because ε' is a decreasing function of the
parameter κd. The change-over to the inhomogeneous
medium results in an increase in the reflectance. The
larger the parameter ζ, the greater the increase in the
reflectance.

7. CONCLUSIONS

The results obtained allowed us to draw the general
conclusion that the inclusion of the inhomogeneity of
the medium and the spatial dispersion of the plane
waves forming the exciting pulse most strongly affects
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Fig. 4. Time dependences of the reflectance in the case of a
strong deviation of the carrier frequency from the resonance
frequency at (1) ζ = 1 and κd = 0, (2) ζ = 1.1 and κd = 1.5,
(3) ζ = 1.2 and κd = 1.5, and (4) ζ = 1.3 and κd = 1.5.
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the reflection. The changes are most pronounced in the
case when the reflection associated with the interband
transitions in the quantum well is relatively weak and
masked by a stronger reflection from the quantum well
boundaries. This situation occurs in the limiting case
γ @ γr at true resonance ∆ω = 0 and in the other limiting
case γ ! γr when the carrier frequency deviates from the
resonance frequency. Noteworthy also is the depen-
dence of the reflectance on the parameter ν/ν1, which
becomes more pronounced due to the reflection from
the quantum well boundaries. The change in the trans-
mittance is also observed only in the case when the
value of 7 is small.

In real semiconductor heterostructures, impurity
electrons of the barrier transfer to the quantum well and
distort its square shape in the vicinity of the boundaries.
Therefore, the theory developed above is valid for suf-
ficiently pure materials and wide quantum wells when
the size of distorted boundary regions is small com-
pared to the quantum well width. Moreover, the theory
holds true for deep quantum wells in which the location
of the first levels and the corresponding wave functions
only slightly differ from those in an infinitely deep
quantum well. Since the theory allows for only one
excited level, the energy separation between the adja-
cent levels in the quantum well should be larger than
the width of the level under consideration and the
energy width of the exciting pulse. These conditions
impose a restriction on the quantum well width from
above. For example, at d = 500 Å and mc = 0.06m0, the
difference between the energies of the two lowest quan-
tum-well levels is equal to approximately 10–3 eV.
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Abstract—A theory of the Shubnikov–de Haas effect is developed for two-dimensional systems in a tilted
magnetic field. The conductivity tensor is calculated for an arbitrary ratio r of the Zeeman splitting to the cyclo-
tron splitting. Possible anisotropy of the g factor is taken into account. It is shown that at integer values of r, the
main harmonic dominates in the spectrum of Shubnikov–de Haas oscillations and the phase of the oscillations
depends on the parity of r. At half-integer values of r, the conductivity oscillations are determined by the har-
monics of the second order of smallness.© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
It is well known that at low temperatures, the con-

ductivity of a degenerate electron gas in a magnetic
field oscillates as the field changes (the Shubnikov–de
Haas effect). These oscillations are caused by consecu-
tive crossing of the Fermi level by Landau levels in a
quantizing magnetic field. In two-dimensional (2D)
systems, small-amplitude conductivity oscillations are
observed in classical magnetic fields, when ωcτ ~ 1.
Here, ωc is the cyclotron frequency and τ is the carrier
relaxation time. The corresponding small parameter
determining the amplitude of the oscillations is
exp(−π/ωcτ). The Shubnikov–de Haas effect in 2D sys-
tems was theoretically studied in [1, 2], and at present,
the measurement of Shubnikov–de Haas oscillations is
one of the main methods for characterizing conducting
2D structures.

In addition to the diamagnetic (cyclotron) quantiza-
tion, splitting of the electron states into spin sublevels
occurs in a magnetic field (Zeeman effect). The magni-
tude of the splitting ∆ is linear in the magnetic field and
determined by the g factor of the carriers.

In bulk materials, the condition ∆ ! "ωc is usually
satisfied; therefore, the Zeeman splitting does not affect
small-amplitude Shubnikov–de Haas oscillations and
manifests itself only in extremely strong magnetic
fields, when the amplitude of conductivity oscillations
becomes large. Galvanomagnetic phenomena in bulk
materials with due regard for spin splitting were con-
sidered in [3]. In 2D systems, however, a qualitatively
new situation arises. By applying a magnetic field at
some angle to the plane of a 2D electron gas, one can
vary the ratio r = ∆/"ωc over a wide range, because in
the case of strong quantum confinement of the carriers,
the cyclotron splitting is determined by the component
of the field B⊥  perpendicular to the plane of the electron
1063-7834/02/4409- $22.00 © 21769
gas [4], whereas the Zeeman splitting is determined by
the total magnetic field B.

If the magnitude of the Zeeman splitting is compa-
rable to the distance between the Landau levels, the
character of magnetic oscillations changes signifi-
cantly. For example, if the cyclotron splitting is two
times larger than the Zeeman splitting (r ≈ 1/2), the
oscillations are observed at the double frequency. Sim-
ilar magnetic-transport measurements in a tilted mag-
netic field (suggested in [5]) have been actively carried
out in recent years and allow one to determine, for
example, the g factors of electrons in quantum wells [6–
13]. However, only qualitative treatment of the experi-
mental data is possible, because there is presently no
consistent theory of this effect.

The aim of this paper is to develop a theory of the
Shubnikov–de Haas effect for 2D systems in a tilted
magnetic field. The Zeeman splitting is considered with
due regard for possible anisotropy of the electron g fac-
tor. It is assumed that the carriers are scattered by a
short-range potential and the spin relaxation time is sig-
nificantly larger than the momentum relaxation time.

2. CALCULATION OF THE CONDUCTIVITY 
TENSOR

In order to calculate the conductivity tensor in the
case where the Shubnikov–de Haas effect takes place,
it is convenient to use a diagrammatic technique. With
allowance for spin splitting, the Green’s function of
noninteracting electrons in an external magnetic field is
generally a (2 × 2) matrix:

(1)&ε r r',( ) Ĝε n ky,( )ψnky
r( )ψnky

* r'( ).
n ky,
∑=
002 MAIK “Nauka/Interperiodica”
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Here,  = u(z) are the electron coordinate
wave functions in a quantum well under an external
magnetic field with the vector potential written in the
Landau gauge, A = (0, B⊥ x, 0); n labels the Landau lev-
els; ky is the wave vector; and u(z) is the quantum con-
finement function. The wave functions of the carriers in
the quantum-well plane  and the electronic
spectrum are determined by the perpendicular compo-
nent of the field only, because the size-quantization
energy is significantly larger than the distance between
the Landau levels.

Let us assume that the condition of a good conduc-
tor is satisfied for the electron gas,

(2)

and the Fermi energy EF is significantly larger than the
magnitude of the spin splitting and the energy distance
between the Landau levels,

(3)

where ωc = eB⊥ /mc is the cyclotron frequency, m is the
effective electron mass for the in-plane motion, e is the
elementary charge, and c is the speed of light.

In the case where the electrons are scattered by a
system of randomly distributed short-range scatterers

and there is no spin relaxation, the matrix  takes the
form

(4)

where  is the Hamiltonian responsible for the Zee-
man splitting,

(5)

Here, µ0 is the Bohr magneton, gαβ is the electron g-fac-
tor tensor,  is the Pauli matrix, and α and β are Car-
tesian coordinates. In the framework of the self-consis-

tent Born approximation, the self-energy  is inde-
pendent of the index n [1, 3] and defined by the
equation

(6)

In view of Eqs. (4) and (6), the matrix  can be
rewritten as

(7)

ψnky
r( ) φnky

r( )

φnky
ρ( )

EFτ /" @ 1,

EF @ ∆ "ωc,,

Ĝε

Ĝε n ky,( ) ε EF "ωc n 1/2+( ) Ĥs– X̂ε––+[ ] 1–
,=

Ĥs

Ĥs µ0/2( ) gαβσ̂α Bβ.
αβ
∑=

σ̂α

X̂ε

X̂ε
"ωc

π
--------- "

2τ
----- Ĝε n ky,( ).

n

∑=

X̂ε

X̂ε aε Î bεĤε/∆,+=
P

where aε and bε are complex quantities. The spin split-
ting ∆ is generally defined by the formula

(8)

In the case of natural anisotropy of the g factor, caused
by the presence of a size-quantization axis, we have
gxx = gyy = g||, gzz = g⊥ , and gαβ = 0 (α ≠ β) and Eq. (8)
takes the form

(9)

where B|| is the component of the magnetic field parallel
to the plane of the 2D electron gas.

Using the Poisson summation formula

(10)

and neglecting the first term, one can derive the follow-
ing closed system of equations for aε and bε from
Eq. (6):

(11)

A similar equation for the self-energy part of the
Green’s function without regard for spin effects was
derived, for example, in [14].

In order to calculate the conductivity tensor at an
electric-field frequency ω > 0, we use the relationship
[3, 14]

(12)

where  is the current-density operator, which is
diagonal with respect to the spin indices,

(13)

∆ µ0 gαβBβ

β
∑ 

 
 

2

α
∑ .=

∆ µ0 g||
2B||

2 g⊥
2 B⊥

2+ ,=

f n( )
n

∑ f 0( )
2

---------- n 2πikn( ) f n( )expd

0

∞

∫
k ∞–=

∞

∑+=

aε i
"
2τ
----- 1 2 2πik

EF ε aε–+
"ωc

-------------------------- 1
2
---– 

 exp
k 1=

∞

∑+




–=

∫ × εsgn πk
∆ bε+
"ωc

-------------- 
 cos





ε,sgn

bε
"
τ
---2 2πik

EF ε aε–+
"ωc

-------------------------- 1
2
---– 

  εsgnexp
k 1=

∞

∑–=

× πk
∆ bε+
"ωc

-------------- 
  .sin

σαβ ω( )
1
ω
----Tr rd r'

εd
2π
------ Ĵα r( )&ε "ω+ r r',( )[ ]

∞–

∞

∫d∫∫=

× Ĵβ r'( )&ε r' r,( )[ ] iNe2

mω
-----------δαβ,+

Ĵ r( )

Ĵ r( )
e
m
---- i"— e

c
--A r( )+– Î;–=
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N is the total electron concentration; and Tr implies
summation over the spin variables. Below, we investi-
gate the static conductivity and, therefore, consider the
frequency ω as a small quantity and replace it by zero
in the final expressions. Since the components of the
conductivity tensor are real at ω = 0 and related to one
another by the relationships σxx = σyy and σxy = –σyx, it
will suffice to calculate the quantity

(14)

Using the Green’s functions in the coordinate repre-
sentation given by Eq. (1) and the matrix elements of
the current-density operator between the eigenstates of
an electron in the magnetic field

(15)

we can write the conductivity σ in the form

(16)

After summation over the spin indices, the quantity

Tr  can be written as the sum of two terms,

(17)

each of these terms being a product of the functions

(18)

where

(19)

Using the system of equations (11) for aε and bε, one
can derive independent equations for X(±),

(20)

which differ from each other only in the sign of ∆/2.
It is obvious that G(±) are the Green’s functions of

noninteracting spinless electrons in a magnetic field
with the effective Fermi energy , that is, of the
particles occupying the upper and lower spin sublevels,
and Eqs. (20) are equations for the self-energy parts of

σ σxx iσxy.+=

n'ky' Ĵ x nky〈 〉 ie
"ωc

2m
---------=

× nσn' n 1–, n 1+ δn' n 1+,–( )δky ky', ,

n'ky' Ĵ y nky〈 〉 –e
"ωc

2m
---------=

× nσn' n 1–, n 1+ δn' n 1+,–( )δky ky', ,

σ
e2ωc

2

2πω
-----------Tr n

n

∑ εd
2π
------Ĝε "ω+ n( )Ĝε n 1–( )

iNe2

mω
-----------.+

∞–

∞

∫=

ĜĜ

TrĜε "ω+ Ĝε Gε "ω+
+( ) Gε

+( ) Gε "ω+
–( ) Gε

–( ),+=

Gε
±( ) n( ) ε EF ∆/2 "ωc n 1/2+( )– Xε

±( )–+−+[ ] 1–
,=

Xε
±( ) aε bε/2.±=

Xε
±( ) i

"
2τ
----- 1 2 2πik ∫exp

k 1=

∞

∑+




–=

×
EF ∆/2 ε Xε

±( )–++−
"ωc

--------------------------------------------- 1
2
---– 

  εsgn




ε,sgn

EF ∆/2+−
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these Green’s functions. Thus, Eq. (17) formally dem-
onstrates that the spin subsystems, as one would expect,
give independent contributions to the conductivity in
the absence of spin relaxation: σ = σ(+) + σ(–). In this
case, the contribution from each spin subband to the
conductivity can be calculated as the conductivity
without spin effects , in which EF is replaced by the
energy distance between the Fermi level and the bottom
of the spin subband, EF ± ∆/2:

(21)

Summing over the Landau levels by using the Pois-
son summation formula (10) (detailed calculations
without regard for spin effects are presented in [14])
gives the following expression for the conductivity:

(22)

Expanding the self-energy parts up to the second order
in exp(–π/ωcτ) yields

(23)

The final expression for the static-conductivity tensor
(ω  0), which is correct to the second order in
exp(−π/ωcτ), is

(24)

σ̃

σ ±( ) σ̃ EF ∆/2+−( ).=

σ ±( ) e2τ
"

3ω
---------EF=
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2π
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∞
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× 2πi
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where Ω = ωcτ and δ1 and δ2 are oscillating quantities
of the first and second order of smallness, respectively:

(25)

The smearing of the electron distribution at a non-
zero temperature leads to temperature damping of the
oscillations. A similar calculation of the conductivity
tensor at a finite temperature made using the Matsubara
diagrammatic technique shows that Eqs. (24) remain
unchanged, but extra (conventional) temperature fac-
tors appear in the formulas for δ1 and δ2:

(26)

δ1 2 π
ωcτ
---------– 

  2π
EF

"ωc

--------- π– 
  π ∆

"ωc

--------- 
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δ2 2 2π
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EF
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  2π ∆

"ωc

--------- 
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δ1 2 π
ωcτ
---------– 

 exp=

× 2π
EF

"ωc

--------- π– 
  π ∆
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--------- 
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--------------,coscos

δ2 2 2π
ωcτ
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Fig. 1. Dependence of the resistivity ρxx on magnetic field
in the regime of the Shubnikov–de Haas effect for different
values of the ratio between the spin and cyclotron splittings
of energy levels.
P

where λ = 2π2T/"ωc and T is the temperature expressed
in energy units.

Equations (24), in combination with Eqs. (26) and
(9), describe the magnetoconductivity of two-dimen-
sional systems under the conditions of small-amplitude
Shubnikov–de Haas oscillations in a magnetic field of
arbitrary direction.

3. RESULTS AND DISCUSSION

Figure 1 shows the dependences of the resistivity

ρxx = σxx/(  + ) on magnetic field at different val-
ues of the ratio r = ∆/"ωc. The dependences were calcu-
lated using Eqs. (24) for zero temperature and EFτ/" =
10. In the absence of spin splitting, small-amplitude
Shubnikov–de Haas oscillations are determined by the
cos(2πEF/"ωc)harmonic, which is of the first order of
smallness in exp(–π/ωcτ)(Fig. 1a). Multiple harmonics
appear only in stronger fields, when the amplitude of
oscillations becomes large, and modify the shape of
oscillations.

When the spin splitting is comparable to the cyclo-
tron one, the behavior of the Shubnikov–de Haas oscil-
lations qualitatively changes. Since the spin subsystems
give additive contributions to the conductivity, the
oscillation parameters depend on the relative positions
of the Landau levels of the spin subbands. This leads to
the appearance of the factors cos(π∆/"ωc) and
cos(2π∆/"ωc) in Eqs. (25) and (26) for the oscillating
parts of the conductivity tensor. Figure 2 schematically
shows the relative positions of the Landau levels at a
certain value of cyclotron splitting and different values
of the parameter r.

At r = 1/2, 3/2, … (half-integer values), the “mis-
match” between the Landau levels of the spin sub-
systems is maximal; that is, the Landau levels of one
spin subband are located between the Landau levels of
the other subband (Fig. 2). In this case, the contribu-
tions from the spin subsystems to the conductivity
oscillations cancel out to the first order in exp(–π/ωcτ).
As a result, the Shubnikov–de Haas effect is deter-
mined by the harmonic of the second order of small-
ness, because the contributions from the spin sub-
systems to this harmonic coincide when r is half-inte-
ger. Such doubling of the oscillation frequency and a
decrease in the amplitude of oscillations are clearly
seen in Figs. 1b and 1d.

If the spin splitting is a multiple of the cyclotron
splitting (when r is an integer), the matching of the Lan-
dau levels of the spin subsystems occurs (Fig. 2) and
the main harmonic again dominates in the spectrum of
Shubnikov–de Haas oscillations. However, the posi-
tions of the maxima and minima of the resistivity at
even (Fig. 1e) and odd (Fig. 1c) values of r are different,
because the positions of the Landau levels differ by
"ωc/2 in these two cases (Fig. 2). The second-order har-

σxx
2 σxy

2
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monics, which slightly change the character of the
oscillations, are the same for all integer values of r.

The Shubnikov–de Haas effect in a tilted magnetic
field was experimentally investigated in a number of
works [5–13]. The effect of the change in the phase of
the main harmonic caused by the transition from an
even to an odd value of r was used to determine the g
factor. In accordance with the results of our calcula-
tions, the doubling of the oscillation frequency and a
decrease in the amplitude of oscillations were observed
when r was half-integer. The experimental data indi-
cate, however, that the phases of second-harmonic
oscillations can be different [9, 11, 12]. In [12], as in
our calculations, the extrema of the dependence of ρxx

on magnetic field at integer values of r transform to the
maxima of the resistivity at half-integer values of r. In
contrast, the data presented in [9, 11] indicate that the
phase of the second harmonic is the opposite. Since the
phase sign is determined by smooth functions of the
magnetic field that are the coefficients of δ2 in
Eqs. (24), such a difference in the sign is, probably, due
to a significant difference between the transport and
quantum relaxation times in the structures investigated.
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Fig. 2. Relative positions of the Landau levels of the spin
subsystems at different values of the Zeeman splitting.
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Abstract—The temperature dependences of electrical resistivity and of the Hall effect of nanocluster tellurium
crystals obtained by filling the voids in a dielectric (opal) matrix with a melt of pure and doped Te were studied.
The Hall hole concentration peff was found to increase anomalously (by more than two orders of magnitude) in
a sample prepared from pure Te and cooled to helium temperatures. At T = 1.45 K, the hole concentration in
this sample was peff ≅  6 × 1017 cm–3. At the same time, the Hall effect in this sample was observed to reverse
sign at T ≅  200 K from positive for T < 200 K to negative at higher temperatures. This implies a low impurity
concentration (NA is less than at least 1015 cm–3). A nanocluster crystal of doped Te does not exhibit this anom-
aly; here, we have peff ≅  6 × 1017 cm–3 throughout the temperature region covered, as in the original Te. These
features are assigned to the formation of a two-dimensional conducting accumulation layer near the Te–amor-
phous SiO2 (the opal material) interface at low temperatures; such a layer determines the low-temperature prop-
erties of nanocluster crystals prepared from pure Te. Actually, we obtained a model of a three-dimensional
structure formed from a two-dimensional film. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Progress made in the growth technologies of syn-
thetic opal [1] has provided a basis for the development
of a new class of ordered semiconductor nanostruc-
tures, namely, spatially modulated cluster crystals.

Synthetic opal represents a system of silicate
spheres of amorphous silicon dioxide, about 200 nm in
diameter, that are close-packed, producing an fcc cubic
lattice. The material under study is introduced into
voids between the spheres. When the voids are filled
completely by a metal or semiconductor, the conduct-
ing structure thus formed makes up a nanocluster crys-
tal, i.e., a cubic array of octa- and tetrahedral clusters,
~45 and ~85 nm in size (the diameters of inscribed
spheres), which share corners [2]. As has been shown
by electron microscopy [3], Te introduced into opal
crystallizes in the voids between silicate spheres under
cooling to form a single-crystal structure corresponding
to the tellurium volume lattice, with all clusters having
the same crystallographic orientation.

On the other hand, the system of filled voids inside
the opal can be considered to be a regular honeycomb
structure, with the cells separated by holes correspond-
ing to points of contact between the silicate spheres,
which represents an inverted opal lattice [4]. In a real
opal, the diameter of these holes varies depending on
the technology of preparation. In the sample studied in
[5], the diameter was estimated as 2 nm. Thus, the
1063-7834/02/4409- $22.00 © 21774
material embedded in the opal contacts with the matrix
material over an extremely large area.

There were grounds to believe that this circum-
stance would play a decisive role in the electrical prop-
erties of a tellurium cluster crystal, because the surface
of crystalline tellurium is known to support the forma-
tion of an accumulation layer [6].

This publication is the first report of an investigation
into the electrical resistivity and Hall effect of samples
prepared by injecting original Te doped to various lev-
els into opal performed over a broad range of tempera-
tures and magnetic fields in order to reveal the role
played by the Te–silicon dioxide interface in the prop-
erties of nanocluster tellurium crystals.

2. EXPERIMENT

Nanocluster crystals were prepared by injecting
pure melted Te with a residual hole concentration
p(77 K) ~ 1014 cm–3 (sample 1) and doped Te with
p(77 K) ≈ 5 × 1017 cm–3 (sample 2) under pressure into
a matrix (synthetic opal). In the first case, the electron
gas (holes) in the original material remained nondegen-
erate down to helium temperatures. In the second case,
the holes are degenerate at low temperatures (T < 100 K).

The samples intended for electrical measurements
were 2 × 3 × 8-mm rectangular parallelepipeds pre-
pared by mechanical processing of synthetic opal crys-
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Hall voltage UH vs. magnetic-field plots obtained at T = 1.4 K on samples 1 [UH (no. 1)] and 2 [UH (no. 2)]. Also shown is
the magnetic-field dependence of the ratio UH/B ~ Reff for these samples.
tals following tellurium injection. No purposeful align-
ment of the C3 crystallographic axis of tellurium with
respect to the parallelepiped edges was made. The con-
tacts were prepared by gold deposition through a mask.
The electrical resistivity and Hall effect measurements
on the cluster samples discussed here were carried out
in the magnetic-field range 0–12 T at temperatures of
1.4–300 K with an 11-Hz ac current. The current did
not exceed 10 µA. The magnetic field was generated by
a superconducting coil, and the measured signal was
entered into a computer.

The measurements were conducted at the Interna-
tional Laboratory of Strong Magnetic Fields and Low
Temperatures in Wroclaw, Poland.

Figure 1 shows the Hall voltage UH measured as a
function of magnetic field at T = 1.4 K on samples of
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
both types. The voltages are seen to depend approxi-
mately linearly on the magnetic field and to be similar

in magnitude. Calculation of the ratio  (i is the
number of a data point), which is proportional to the
effective Hall coefficient RH, eff, revealed a certain
decrease in RH, eff with increasing magnetic field
(Fig. 1). We note that the magnitude of RH, eff differs
markedly from the microscopic value for bulk tellurium
in clusters not only because of the sample size differing
geometrically from the total size of the Te clusters (the
filling factor), but also as a result of the topological
properties of the Te cluster sublattice in opal voids and
as a consequence of the Te–SiO2 interface affecting the
conductivity, a point which we touch on later. The
rough calculation of the effective hole concentration peff

UH
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Fig. 2. Dependence of the effective Hall coefficient RH, eff of samples 1 and 2 on reciprocal temperature. The measurements were
performed at B = 8 T.
took into account only the filling factor (~25% of the
sample volume).

The experiment showed that peff at T = 1.45 K is
approximately the same (~5.5 × 1017 cm–3) for both
samples (the magnetic-field-averaged values obtained
at 1.45 K are peff = 6.11 × 1017 cm–3 for sample 1 and
5.23 × 1017 cm–3 for sample 2). One might thus con-
clude that the severe technological conditions followed
in Te injection into the opal (temperature T ~ 600°C and
hydrostatic pressure P ~ 3 kbar) favor impurity intro-
duction into the starting material (the doping level of
the pure material increases by three orders of magni-
tude). This conclusion, however, proved to be wrong.
Check measurements of RH performed on fragments of
the starting material after removal from a high-pressure
chamber showed the hole concentration of the undoped
starting Te to have increased only to p(77 K) ~1015 cm–3.

Figure 2 presents the RH, eff(1/T) temperature depen-
dences for both samples measured in a magnetic field of
P

80 T. The value of RH, eff(77 K) obtained for sample 2
yields peff ≈ 5 × 1017 cm–3 and varies only weakly up to
room temperature. RH, eff of sample 1, prepared from
pure Te, almost coincides below 10 K with the value
measured on sample 2. However, as the temperature of
sample 1 is increased, RH, eff reverses its sign at Tin ≈
200 K from positive (for T < Tin) to negative for T > Tin.

The temperature dependence of effective electrical
resistivity (ρeff) of both samples is displayed graphi-
cally in Fig. 3. While the ρeff(T) relation for sample 2
has a metallic character (it grows monotonically with
temperature), ρeff of sample 1 decreases with increasing
temperature.

3. DISCUSSION

The sign reversal of RH, eff observed in sample 1 is
typical of p-type semiconductors with a low acceptor
concentration NA and indicates a transition to mixed
conduction with increasing temperature, i.e., to thermal
HYSICS OF THE SOLID STATE      Vol. 44      No. 9      2002
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activation of electrons with a mobility un higher than
that of holes, up.

The temperature of the Hall coefficient sign reversal
can be used for independent determination of NA with-
out recourse to absolute values of the semiconductor
electrical characteristics. In the case of a cluster crystal,
this approach acquires specific significance, because
the result does not depend here on the topological char-
acteristics of the object.1 

In general, the magnitude and sign of the Hall coef-
ficient R(H) depend on the contributions provided by all
active groups of carriers to the conductivity in a mag-
netic field:

(1)

where  =  and  = .

In the case of a magnetic field tending to zero,
Eq. (1) for the standard band-structure model can be
presented in the form

(2)

where un and up are the mobilities of the electrons and
holes, respectively; n and p are their respective concen-
trations; and A is a coefficient of order unity which
depends on the scattering mechanism and the statistics
of carriers.

By combining the condition of the zero Hall coeffi-
cient

(3)

with the charge neutrality equation

, (4)

one can determine the concentration of the ionized
acceptor impurity NA at the temperature of the Hall
coefficient sign reversal. Calculations made for tellurium
at Tin = 200 K in this model yield NA ≅  1.8 × 1014 cm–3.

We used here un/up ≅  1.6 and  = 0.076  [7].
Note that R(T) of single-crystal Te samples with a con-
centration p(77 K) ≅ 1 × 1014 cm–3 does indeed reverse
sign at Tin ≅  200 K (see, e.g., [8]).

The value of NA thus obtained corresponds to the
residual hole concentration p(77 K) in the starting

1 When determining the microscopic characteristics, the topologi-
cal features of a nanocluster crystal can be roughly included
within a simplified geometric model, for instance, a model of
spheres connected by cylindrical channels [2], paralleled by
simultaneous measurement of the resistance, Hall effect, and
magnetoresistance in a weak magnetic field.
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material and is at odds with the low-temperature mea-
surements presented graphically in Fig. 1. This sug-
gests a qualitative conclusion that the value of RH, eff
measured on the undoped starting material at low tem-
peratures (Fig. 1) cannot be identified with the concen-
tration of three-dimensional (3D) holes in the bulk of Te
clusters.

No such phenomenon was observed in the Te cluster
crystal prepared from a strongly doped material. In this
case, as expected, RH, eff remains virtually temperature-
independent up to 300 K. This appears only natural,
because at high values of NA, the RH sign reversal
occurs at substantially higher temperatures.

We propose the following model to account for
these contradictory results.

It is known that the free surface of single-crystal tel-
lurium is always coated by a thin (~2 nm thick) film of
natural tellurium oxide TeO2. This oxide is a dielectric
with a large band gap width. It is because of the exist-
ence of the Te–TeO2 interface on the Te surface that a
layer of thickness of the order of 10 nm with an
enhanced content of free two-dimensional (2D) holes
(size-quantized accumulation layer, AL) forms on the
Te surface [6]. The hole concentration in the AL as
derived from the Shubnikov–de Haas effect is approxi-
mately 1012 cm–2 (or p ≈ 1018 cm–3, if reduced to three-
dimensional volume), and the mobility of the 2D holes
exceeds that of holes in the volume by nearly an order
of magnitude [9]. If the Te–SiO2 (opal) contact pro-
duces an effect similar to that of Te–TeO2, a layer with
an enhanced hole concentration should also form in the
Te–SiO2 interface. Recalling that a cluster crystal has
an extremely large Te–SiO2 interface, one readily
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Fig. 3. Electrical resistivity ρeff of samples 1 and 2 mea-
sured as a function of reciprocal temperature.
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comes to the conclusion that the major contribution to
the electrical conductivity and Hall effect at helium
temperatures is due to charge carriers in the AL. In this
case, the value of RH, eff measured at low temperatures
contains, according to Eq. (1), contributions from 2D
holes in the AL and from 3D holes in the bulk of the
clusters, as in the case of bulk Te samples with a surface
AL [6]. As the temperature increases and the system
crosses over to the state of mixed conduction, the con-
centration of free carriers (primarily, of electrons)
increases, the screening length decreases rapidly, and
the AL disappears. Therefore, for T > 100 K, we deal
already with volume conduction, where Eq. (2) is
appropriate for the Hall coefficient. In a Te cluster crys-
tal prepared from a strongly doped material, an AL does
not form at all, because the screening length for doped
Te is small and the surface layer does not contain
allowed states.

This model provides an explanation for the fact that
the temperature dependences of electrical resistivity
ρ(T) of the samples studied follow different patterns
(Fig. 3). In sample 1, ρ(T) has a semiconducting char-
acter with a transition to intrinsic conductivity at high
temperatures, whereas sample 2, because of the elec-
tron gas being strongly degenerate, behaves as a dirty
metal. One can thus conclude that the major contribu-
tion to low-temperature galvanomagnetic effects is due
to 3D carriers in the sample with doped tellurium and
to 2D holes in the AL on the Te–SiO2 interface in the
“pure” sample. According to Eq. (1), the value of Reff
measured on sample 1 at low temperatures is deter-
mined by the sum σxy(2D) + σxy(3D) and depends pri-
marily on the concentration of 2D holes in the AL.

The two-group conductivity model proposed for the
Te cluster crystal at helium temperatures is also argued
for by the above-mentioned slight decrease in RH, eff
observed to occur with increasing magnetic field
(Fig. 1). Indeed, in accordance with Eq. (1), an increase
in the magnetic field brings about a decrease in the rel-
ative contribution from the group of fast charge carriers
to σxy and, accordingly, a decrease in Reff. For sample 1,
such carriers are 2D holes. In sample 2, the role of the
second group of carriers is apparently played by holes
residing in regions of size comparable to the extension
in space of their wave functions but possessing a con-
siderably lower mobility.

As a result of the Te cluster crystals having a large
surface area in the opal matrix, the main carrier scatter-
ing mechanism here involves the Te–SiO2 interface.
Estimation of the hole mobility in the samples studied
yielded ueff(sample 1) = 10 cm2/(V s) and ueff(sample 2) =
100 cm2/(V s). No such low mobility has thus far been
observed in Te. The interface mechanism of scattering
is also indicated by the fact that the mobility in the dirty
sample is an order of magnitude higher than that in the
pure one, where the electrical conductivity is deter-
mined by the interface charge carriers.
PH
An interface or a thin interlayer of modified tellu-
rium separating the sublattice of octahedral and tetrahe-
dral tellurium clusters from the amorphous SiO2
spheres making up the opal lattice forms an interface
bubble lattice. An earlier publication [10] described a
silicon bubble lattice obtained by Si deposition on the
inner opal surface. In our case, the physical properties
of such an interface bubble lattice are determined by
both the contact effects between the Te sublattice and
the SiO2 spheres and the symmetry of the opal lattice
and of its three-dimensional volume replica (Te sublat-
tice). In the case of n- and p-cluster sublattices, the
interface will represent a large-area p–n junction,
which can be treated as a superrectifier or a supercapac-
itor [11].
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Abstract—Within the framework of the nonrelativistic fluctuation electromagnetic theory, relationships for the
quadrupole–quadrupole contribution to the tangential and normal components of the force acting on a particle
moving parallel to the polarizing surface are derived for the first time. Consideration is given to the cases when
the particle possesses a permanent quadrupole moment or a fluctuation quadrupole moment and the surface is
characterized by a local dielectric function. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As far as we know, all theoretical investigations into
the interaction of moving neutral particles with a sur-
face have hitherto been performed only within the
dipole approximation (see, for example, [1–4]), specif-
ically for the cases of particles with both a permanent
dipole moment (a polar molecule, etc.) and a fluctua-
tion moment (an atom in the ground state, etc.). How-
ever, there exists a diversity of molecules with a zero
dipole moment d but with a nonzero quadrupole
moment Qik and higher-order multipole moments. For
example, among these molecules are all homonuclear
molecules (H2, N2, O2, etc.) [5]. Spherical particles that
have no permanent multipole moments possess the

fluctuation moments dsp, , and  with zero mean
values but with nonzero mean squares [5, 6]. This pro-
vides interaction of the spherical particles with each
other and with the surface at distances considerably
longer than the interatomic distances. Despite the fact
that the dipole contribution to the fluctuation interac-
tion of spherical particles with the surface dominates in
the vicinity of the van der Waals minimum, the inclu-
sion of higher-order multipole moments is of the
utmost significance [6].

The purpose of the present work is to develop the
nonrelativistic theory of dynamic interaction between
neutral particles and a surface [2–4] with inclusion of a
permanent quadrupole moment or a fluctuation quadru-
pole moment.

2. THE PARTICLE WITH A PERMANENT 
QUADRUPOLE MOMENT

(A QUADRUPOLE MOLECULE)

By analogy with the approach developed in [2–4],
we consider a point particle with the quadrupole
moment Qik that moves in vacuum with the nonrelativ-

Qik
sp Lijk

sp
1063-7834/02/4409- $22.00 © 21779
istic velocity V along the x axis aligned parallel to a flat
surface bounding a semi-infinite medium with the per-
mittivity ε(ω). The particle and the surface are sepa-
rated by a distance z0. The space density of bound
charges of the quadrupole particle can be represented in
the form [6]

(1)

It should be noted that the quadrupole moment tensor
involved in expression (1) is defined as

(2)

This expression differs from the most universally
accepted definition [7, 8] by a multiplier of 1/2. Defini-
tion (2) used in [5, 6] is more convenient in terms of the
spherical tensor formalism.

With due regard for expression (1), the Poisson
equation for the electric potential can be written in the
form

(3)

After the Fourier transformation of both sides of Eq. (3)
with respect to components of the two-dimensional
wave vector (kx, ky) in a plane of the surface, we have

(4)

ρ x y z t, , ,( )
1
3
--- ∇ i∇ k=

× δ x Vt–( )δ y( )δ z z0–( )Qik{ } .

Qik
1
2
--- ρ r'( ) 3xi'xk' δikr'2–( ) r'3 .d∫=

∆ϕ x y z t, , ,( )
4π
3

------ ∇ i∇ k–=

× δ x Vt–( )δ y( )δ z z0–( )Qik{ } .

z2

2

d

d
k2– 

  ϕωk z( )
8π2

3
--------δ ω kxV–( )=

× kx
2
Qxx ky

2Qyy 2kxkyQxy+ +( )δ z z0–( ){
– 2ikxQxz 2ikyQyz+( )δ' z z0–( ) Qzzδ'' z z0–( )– } .
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The solution of Eq. (4) for the Fourier component of the
induced potential has the following form (for more
details, see the Appendix):

(5)

where ∆(ω) = .

Note that the components of the tensor Qik in
Eqs. (4) and (5) can also be calculated in the coordinate
system related to the particle, because they do not
depend on the shift of the coordinate system provided
the particle has zero charge and zero dipole moment [5,
6].

Let us now calculate the lateral (Fx) and normal (Fz)
forces acting on the particle on the side of the induced
field of the surface. The Hamiltonian of the interaction
of the quadrupole Qik with an external electric field can
be represented by the expression [6]

(6)

Taking into account expression (6), we obtain

(7)

(8)

It should be remembered that, in relationships (7) and
(8), we first perform the differentiation with respect to
spatial variables and then substitute the coordinates of
the moving particle, r0(t) = (Vt, 0, z0).

Next, the induced potential ϕin is expanded in a Fou-
rier integral with respect to spatial and time variables
[ϕωk(z) is defined by formula (5)] and the resultant
expression is substituted into relationships (7) and (8)
with due regard for the above remark. Upon integrating
by parts and transforming the limits of integration over
kxky to the interval (0, ∞) with allowance made for the
evenness of the real part and the oddness of the imagi-
nary part of the dielectric function ε(ω), we obtain the
following expressions:

(9)

ϕωk z( )
4π2

3k
--------δ ω kxV–( )∆ ω( ) k z z0+( )–(exp=

× kx
2
Qxx ky

2Qyy 2kxkyQxy+ +{

– 2ikxQxz 2ikyQyz– k2Qzz– } ,

ε ω( ) 1–
ε ω( ) 1+
--------------------

*
1
3
---Qik∇ kEi.–=

Fx
1
3
--- ∇ xQik∇ kEi

1
3
--- ∇ xQik∇ k∇ iϕ

in,–= =

Fz
1
3
--- ∇ zQik∇ kEi

1
3
--- ∇ zQik∇ k∇ iϕ

in.–= =

Fx
2

9π
------ kx kykx 2kz0–( )

∆'' kxV( )
k

------------------expdd∫
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∞
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× kx
4Qxx

2 ky
4Qyy

2 k4Qzz
2 2kx
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2 2Qxy

2 QxxQyy+( )+ + +{

+ 2kx
2k2 2Qxz

2 QxxQzz–( ) 2ky
2k2 2Qyz

2 QyyQzz–( )+ } ,
PH
(10)

Here, the real and imaginary components of the func-
tion ∆(kxV) are denoted by one and two primes, respec-
tively.

Expressions (9) and (10) describe not only the inter-
action of moving homonuclear molecules with a sur-
face but also the interaction between a surface and more
complex molecules (benzene, ethylene, etc.) that pos-
sess more than one symmetry axis, a reflection axis, or
the center of symmetry. In all the above cases, the first
nonzero moment of a particle is the quadrupole
moment [5].

In the static case (at V = 0), we have Fx = 0 and the
integration of expression (10) with respect to wave vec-
tors leads to the relationship for the attractive force

(11)

where ε is the static permittivity. Formula (11) can be
appreciably simplified for an axially symmetric mole-
cule whose axis is perpendicular to the surface. In this
case, the nondiagonal components of the quadrupole
moment tensor are taken as zero and the diagonal com-
ponents are related through the simple expression [5]

. (12)

By substituting these relationships into expression (11),
we have

(13)

Formula (13) can also be derived in a simpler manner
as follows. Let us consider a system of three point
charges (e, –2e, e) whose coordinates on the z axis are
given by (z0 – a, z0, z0 + a). In this system, according to
definition (2), we have Qzz = 2ea2. The image charges in

this case are determined as  (e, –2e, e)[9]. Recall

that the energy of the system accounts for the interac-
tion between the charges and their images. By expand-
ing the energy of the system into a series with respect

Fz
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to the small parameter a/z0, to a first nonvanishing
approximation, we obtain the expression

(14)

Taking into account the relationship Fz = –∂U(z0)/∂z0,
formula (13) immediately follows from expression
(14).

3. THE PARTICLE WITH A FLUCTUATING 
QUADRUPOLE MOMENT

Before proceeding to the case of a moving fluctuat-
ing quadrupole, we should note that, in addition to the

fluctuation quadrupole moment , a neutral particle
possesses the fluctuation dipole moment dsp (apart from
the other fluctuation multipole moments). For a spheri-
cal particle in its own coordinate system, no correlation

between the fluctuation quadrupole moment  and
the fluctuation dipole moment dsp is revealed [6]. How-
ever, upon changing over to another coordinate system
through the parallel shift r  r' = r – b, the compo-
nents of the quadrupole moment tensor defined by for-
mula (2) can be represented in the form [6]

(15)

From relationship (15), it follows that, in the coordinate
system related to the surface, the fluctuation dipole
moment correlates with the fluctuation quadrupole

moment; i.e.,  ≠ 0. By virtue of this correla-
tion, the total force acting on the moving neutral parti-
cle on the side of the surface can be written as

(16)

The first term in relationship (16) describes the retard-
ing force within the dipole approximation in the case
when the quadrupole and higher-order multipole
moments are equal to zero. To the best of our knowl-
edge, all the theoretical works dealing with the calcula-
tion of dissipative tangential forces were reduced to
analyzing only this contribution. In relationship (16),
the second term accounts for the correlation between
the dipole moment and the quadrupole moment and the
third term describes the quadrupole contribution. For-
mally, the quadrupole contribution can be obtained
from relationship (16) at dsp = 0. In this work, we will
restrict our consideration to the case of the purely qua-
drupole contribution.

For a fluctuating quadrupole moment, the expres-
sion for the tangential force takes the form

(17)
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In formula (17), the first term describes the contribution
of spontaneous fluctuations of the quadrupole moment
and the second term accounts for the contribution of the
fluctuation electromagnetic field of the surface. The
Poisson equation for the Fourier component of the
potential ϕωk(z) takes the form

(18)

The solution of Eq. (18) (see the Appendix) has the fol-
lowing form:

(19)

In order to calculate the first term in relationship (17),

the quadrupole moment  is expanded in the Fourier

frequency integral and the components of the field 
are expanded in the Fourier integral with respect to the
frequency and the two-dimensional wave vector. Next,
the Fourier components of the induced field are
expressed in terms of ϕωk with due regard for relation-
ship (19). The resultant correlator of the quadrupole
moment can be calculated using the fluctuation dissipa-
tive relationship [6]

(20)

where  is the quadrupole polarizability. After
transformations with allowance made for the evenness
of the real parts and the oddness of the imaginary parts

of the functions  and ε(ω), the contribution of
spontaneous fluctuations of the quadrupole moment to
the tangential force can be written in the form

(21)

z2

2

d

d
k2– 

  ϕωk z( )
4π
3

------ kx
2Qxx ω kxV–( )({=

× ky
2Qyy ω kxV–( ) 2kxkyQxy ω kxV–( )+

× δ z z0– 2ikxQxz ω kxV–( )(–(
+ 2ikyQy ω kxV–( ) )δ' z z0–( )

– Qzz ω kxV–( )δ'' z z0–( ) } .

ϕωk z( )
2π
3k
------∆ ω k z z0–( )–( )exp( ) kx

2Qxx ω kxV–( ){=

+ ky
2Qyy ω kxV–( ) 2kxkyQxy ω kxV–( )+

– 2ikxQxz ω kxV–( ) 2ikyQyz ω kxV–( )–

– k2Qzz ω kxV–( ) } .

Qij
sp

Ei
in

Qik
sp ω( )Qlj

sp ω'( )〈 〉 2πδ ω ω'+( )3"
4

------ "ω
2kBT
------------coth=

× Imα 2( ) ω( ) δilδkj δijδkl
2
3
---δikδlj–+ 

  ,

α 2( ) ω( )

α 2( ) ω( )

Fx
1( ) 2"

3π2
-------- ω kx kykxk

3 2kz0–( )expddd∫
0

∞

∫∫–=

× "ω
2kBT1
--------------α 2( ) '' ω( ) ∆'' ω kxV+( ) ∆'' ω kxV–( )–[ ] ,coth
2



1782 KYASOV, DEDKOV
where T1 is the temperature of the particle.

The second term in formula (17) can be calculated
using a linear integral relationship between the induced
quadrupole moment and the Fourier components of the
fluctuation field of the surface. For this purpose, the

components of the field  entering into formula (17)
are expanded in Fourier integrals with respect to ω, kx,
and ky. The correlators of the spatial derivatives of the
surface field, which appear in the course of the calcula-
tion, are expressed through the components of the
retarded Green’s function of a photon in the medium in
accordance with the general result of the theory of elec-
tromagnetic fluctuations [10]. After transformations
similar to those applied to derive relationship (21), we
obtain

(22)

where T2 is the temperature of the surface. By combin-
ing expressions (21) and (22), we finally obtain

(23)

Similar calculations for the force of attracting the qua-
drupole to the surface lead to the following formula:

(24)

In conclusion, we consider the special cases of formu-
las (23) and (24), which are important from the practi-
cal standpoint. Within an approximation linear in the
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PH
velocity, the particle temperature is equal to the surface
temperature; hence, it follows from formula (23) that

(25)

Formula (25) is identical in the structure of the fre-
quency integral to the expression for the dipole–dipole
force [1, 4]. The only difference is provided by the

additional small factor a2/ , where a is the charac-

teristic linear size of the quadrupole. It is obvious that
the parameter a/z0 characterizes the convergence of the
total interaction between the particle and the surface in
the case of the expansion into a series in terms of mul-
tipole moments.

For a particle at rest (V = 0 and T1 = T2 = 0), the inte-
gration of expression (24) with respect to wave vectors
and the rotation of the frequency integration contour
through an angle of π/2 lead to the following relation-
ship for the force of attracting the particle to the sur-
face:

(26)

From relationship (26), we can readily obtain the stan-
dard expression for the conservative interaction poten-
tial between the fluctuating quadrupole and the surface
[11]:

(27)

4. CONCLUDING REMARKS

It is evident that, in the case a/z0 ! 1, the quadru-
pole–quadrupole contribution to the normal and tan-
gential forces of the interaction between a moving par-
ticle and the surface is negligible compared to the
dipole–dipole contribution. However, the structure of
the frequency integrals involved in expressions (25)–
(27), generally speaking, does not allow us to introduce
the small parameter a/z0 in a formal manner. Conse-
quently, there can occur a situation when the contribu-
tion of higher-order multipole moments will appear to
be predominant, specifically for the resonance structure
of the functions entering into the integrands in expres-
sions (25)–(27).

At T1 = T2 = 0, formula (25) and the dipole–dipole
contribution [1, 4] lead to a zero tangential force to the
first order in the velocity. In this case, Persson and
Volokitin [12] applied the higher-order perturbation
theory (based on the dipole approximation) to the deter-
mination of the coefficient of internal friction and
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obtained a dependence ~ , which was used for the
interpretation of experiments on the friction of adsor-
bates. The inclusion of the multipole moments, which
are disregarded by the theory used in [12], as follows
from formula (25), makes contributions with a weaker
dependence of the forces on the distance. Therefore, the
multipole moments cannot be ignored.

It should also be noted that the derived formulas can
be easily generalized to the case of nonlocal dielectric
surface functions through formal substitution [13].

APPENDIX

SOLUTION OF THE POISSON EQUATION 
FOR THE FOURIER COMPONENTS 

OF THE ELECTRIC POTENTIAL INDUCED 
BY A MOVING MULTIPOLE

For a quadrupole particle, the Poisson equation for
the Fourier components of the electric potential coin-
cides with expressions (4) and (18) in the cases of a per-
manent quadrupole moment and a fluctuating quadru-
pole moment, respectively. Without loss of generality,
these equation can be written as follows:

(A1)

where A, B, C, and D are the z-independent coefficients

and k2 =  + .

The general solution of Eq. (A1) can be represented
as the sum of the general solution of the homogeneous
equation

(A2)

and the partial solution of the inhomogeneous equation
(A1). The partial solution of the inhomogeneous equa-
tion (A1) can be found using a Green’s function which
corresponds to the formulated problem and satisfies the
equation

(A3)

By directly substituting into Eq. (A3), we can easily
check that the required Green’s function has the form

(A4)

Then, according to the conventional method of finding
partial solutions to equations of type (A1) [14], we
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write the convolution of the right side of Eq. (A1) with
the Green’s function (A4); that is,

(A5)

For calculating the convolution, we use the standard
relationships

As a result, from expression (A5), we obtain the partial
solution in the following form:

(A6)

A combination of Eqs. (A2) and (A6) results in the gen-
eral solution of Eq. (A1). The coefficients C1 and C2
(C1 = 0 at z < 0 and C2 = 0 at z > 0) can be determined
from the continuity conditions of the potential and the
normal component of the electrical induction on the
surface z = 0. As a result, we have

(A7)

Next, we eliminate the internal electromagnetic field of
the particle [the nonzero term at ε(ω) = 1] from the gen-
eral solution. Consequently, for the induced potential in
the range z > 0, we have

(A8)

where ∆(ω) = .

Formula (A8) can be easily generalized to the case
of multipole moments of an arbitrary order. For this
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purpose, given a zero octupole moment Likm, the coeffi-
cient D in formula (A8) should be taken as zero.

In the case when the solutions of Eqs. (4) and (18)
are represented in terms of formula (A8), we have D =
0 and the coefficients A, B, and C can be found from
direct comparison of the right sides of Eqs. (4) and (18)
with formula (A1).
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Abstract—The photoluminescence (T = 5 K) and absorption (T = 295 K) spectra and thermostimulated lumi-
nescence (T = 5–300 K) curves of poly(methylphenyl)silane (PMPS) films are investigated as functions of the
film thickness, annealing temperature, and oxygen content in air. It is revealed that the optical spectra and ther-
mostimulated luminescence curves of PMPS films prepared in air at room temperature undergo changes after
annealing at T = 370–450 K. The assumption is made that the observed changes are associated with the forma-
tion of long polymer chain segments with a closer packing. This leads to an increase in the density of low-
energy states of excitons and charge carriers. It is demonstrated that atmospheric oxygen substantially affects
the formation processes and the energy disorder in the films prepared. The PMPS films are found to degrade
after heating to T ≥ 500 K. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Polysilanes are organosilicon polymers in which the
chains consist of silicon atoms linked by σ bonds and
attached side organic groups. Chromophores in polysi-
lanes are polymer chain segments in which electrons
involved in the σ bonds between silicon atoms are delo-
calized. These segments have different lengths and are
separated by topological defects [1, 2]. Polysilanes are
characterized by large quantum yields of photolumi-
nescence (PL) [1] and high drift mobilities of holes [3]
and hold considerable promise for use as transferring
and light-emitting layers in multilayer electrolumines-
cent diodes [4–7].

Under operating conditions, electroluminescent
diodes degrade and, in the process, the passage of ulti-
mate currents considerably shortens their service life.
According to Kido et al. [4] and Suzuki et al. [5], the
degradation of diodes can be associated with the oxida-
tion of electrodes, deterioration of contacts between
layers, morphological changes in the films, and their
photodegradation and thermodegradation. Fujii et al.
[6] and Nespurek et al. [7] studied the photolumines-
cence and electroluminescence spectra of diodes in
which poly(methylphenyl)silane (PMPS) films served
as emitting layers. The photodegradation of PMPS
films as a function of the temperature, emission wave-
length, and atmospheric oxygen content was investi-
gated in detail in [8, 9]. The aim of the present work
was to elucidate how the heat treatment conditions
affect the luminescent properties and the energy disor-
der of PMPS films. For this purpose, the photolumines-
cence (T = 5 K) and absorption (T = 295 K) spectra and
thermostimulated luminescence (TSL) (5–300 K)
curves of PMPS films were investigated at different
1063-7834/02/4409- $22.00 © 21785
film thicknesses (d = 0.5–30 µm), annealing tempera-
tures (Tan = 295–570 K), and oxygen contents in air.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The polymer films were prepared by pouring tolu-
ene solutions of PMPS onto fused silica substrates fol-
lowed by drying in air at room temperature. Moreover,
a number of films were produced by drying of a
degassed toluene solution of PMPS under vacuum with
the residual pressure P = 100 Pa. The degassing was
carried out as follows. Initially, a quartz cell filled with
a PMPS solution was held for t = 60 min at T = 370 K.
Then, the cell was dipped into liquid nitrogen, the
PMPS solution was frozen, and air was evacuated from
the cell. After the solution was defrozen, the procedures
of its freezing and evacuation of air were repeated. The
absorption spectra (T = 295 K) were recorded on a
KSVU-23 spectrometric computer complex, and the
photoluminescence spectra (T = 5 K) were measured on
an SDL-1 spectrometer. The photoluminescence was
excited by a DRSh-250-3 high-pressure mercury-vapor
lamp with a set of absorption glass filters. The low-tem-
perature measurements were performed using an opti-
cal helium cryostat with quartz windows and an auto-
matic system of control and stabilization of the temper-
ature which was measured with a thermocouple.

The thermostimulated luminescence curves were
measured as follows: the samples in the cryostat at T =
5 K were irradiated with a DRSh-500M mercury lamp
at the excitation wavelength λex = 365 nm for t = 30 s,
were allowed to stand in the dark at this temperature,
and were then heated at a constant rate of 0.15 K s–1.
The integrated signal of thermostimulated lumines-
002 MAIK “Nauka/Interperiodica”
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cence was measured on an automated setup with the use
of an FÉU-106 photomultiplier operating in a photon-
counting mode. The activation energies of charge car-
rier traps were determined by the fractional thermolu-
minescence technique based on the temperature modu-
lation of the linear heating of the studied sample [10].
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Fig. 1. Absorption spectra of the PMPS film (T = 295 K, d =
5 µm) prepared in air at room temperature: (1) prior to
annealing and (2, 3) after annealing under vacuum with
residual pressure P = 100 Pa for t = 60 min at Tan = (2) 400
and (3) 550 K. The structural formula of PMPS is shown.

Fig. 2. Photoluminescence spectra of PMPS films (T = 5 K,
λex = 313 nm) prepared in air at room temperature: (1, 2)
prior to annealing and (3, 4) after annealing under vacuum
with residual pressure P = 100 Pa for t = 60 min at Tan =
(3) 400 and (4) 550 K. Film thickness d: (1) 1 and (2–4)
30 µm.
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The activation energies Ea in each thermal cycle were
calculated from the relationship

(1)

where ITSL(T) is the thermostimulated luminescence
intensity and k is the Boltzmann constant.

3. EXPERIMENTAL RESULTS

Let us first consider the absorption and photolumi-
nescence spectra and the thermostimulated lumines-
cence curves of PMPS films prepared from a nonde-
gassed solution in air. At T = 295 K, the absorption
spectrum of the PMPS film prepared at room tempera-
ture consists of two broad structureless bands with
maxima at 275 and 337 nm (Fig. 1, curve 1). These
bands are associated with the π  π* and σ  σ*
transitions in side phenyl groups and polymer chain
segments, respectively [2, 11]. Upon annealing of this
film for t = 60 min at P = 100 Pa and Tan = 370–450 K,
i.e., at temperatures either near or above the glass tran-
sition point of the PMPS polymer (Tg = 408 K [3]), the
intensity of both absorption bands in the spectrum
slightly decreases and the low-energy edge of the band
attributed to the σ  σ* transition shifts toward the
long-wavelength range (Fig. 1, curve 2). A further
increase in the annealing temperature to Tan ≥ 500 K
brings about a drastic decrease in the intensity of the
band attributed to the σ  σ* transition and a hypso-
chromic shift in the location of its maximum. For exam-
ple, after annealing for t = 60 min at Tan = 550 K, the
intensity of the absorption band of the σ  σ* transi-
tion at a maximum decreases by ~25% and the hypso-
chromic shift is approximately equal to 5 nm (Fig. 1,
curve 3). These changes become more pronounced with
an increase in the temperature Tan and the annealing
time.

Figure 2 displays the photoluminescence spectra of
PMPS films (T = 5 K, λex = 313 nm) at different film
thicknesses and different heat-treatment conditions. It
is found that the spectra of PMPS thin films (d = 0.5–
3 µm) prepared at room temperature coincide with
those of the PMPS solution in toluene (the concentra-
tion C is equal to 0.01 wt %) and contain two bands
with maxima at λm1 = 350–353 nm and λm = 415 nm
(Fig. 2, curve 1). The short-wavelength band with a
half-width of approximately 0.1 eV is assigned to the
σ*  σ exciton transitions in long chain segments,
whereas the long-wavelength band corresponds to the
radiative transition from the π* state to the σ state,
which is formed as a result of the σ electron transfer
from a chain segment to the π* orbital of the side phe-
nyl ring [7, 11]. As the film thickness increases to d =
5–7 µm, the half-width of the exciton band increases by
a factor of approximately 1.5. At d ≥ 7 µm, this band is
split into two components with maxima at λm1 = 350 nm
and λm2 = 355–358 nm whose intensities are virtually
equal to each other (Fig. 2, curve 2). After annealing of

Ea T( ) d ITSL T( )ln[ ] /d 1/kT( ),–=
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both thin and thick films for t = 10–200 min at P =
100 Pa and Tan = 370–450 K, their photoluminescence
spectra coincide with each other and consist of two
bands with maxima at λm2 = 355–358 nm and λm =
415 nm (Fig. 2, curve 3).

An increase in the annealing temperature of PMPS
films to Tan = 500–570 K at P = 102–105 Pa results in
more significant changes in the photoluminescence
spectra. These changes become more pronounced with
an increase in the temperature and time of annealing. In
particular, the annealing of the PMPS film at Tan =
550 K for t = 60 min brings about an appreciable
decrease in the intensity of the exciton band, a hypso-
chromic shift in the location of its maximum by 5–
8 nm, and the appearance of a new broad luminescence
band in the visible range with a maximum at λm =
460 nm (Fig. 2, curve 4). An increase in the annealing
temperature to Tan = 570 K is attended by a substantial
decrease in the intensity of all the bands in the spec-
trum, and the photoluminescence almost completely
disappears after annealing of the film at this tempera-
ture for t = 60 min.

Now, we analyze the thermostimulated lumines-
cence curves for PMPS films. It is revealed that the
thermostimulated luminescence curves for thin and
thick films (d = 0.5–30 µm) prepared at room tempera-
ture coincide with each other and have the shape of a
broad asymmetric peak located in the temperature
range T = 5–150 K with a maximum at Tm1 = 95 K
(Fig. 3, curve 1). It turned out that the thermostimulated
luminescence curves measured in this work are similar
to those obtained in [8, 12]. As follows from the frac-
tional thermoluminescence measurements, the activa-
tion energy Ea linearly increases with an increase in the
temperature (Fig. 3, curve 4) and proves to be Em1 =
0.21 eV at a maximum of the thermostimulated lumi-
nescence band. The annealing of PMPS films at Tan =
370–450 K and P = 100 Pa for t = 10–200 min leads to
a shift of the thermostimulated luminescence band
toward the high-temperature range, and its intensity
increases by a factor of two to five (Fig. 3, curve 2). In
this case, the maximum of the band is observed at Tm2 =
110 K and the activation energy Em2 is equal to 0.25 eV.
As the annealing temperature increases to Tan = 550 K
(t = 60 min), the intensity of the thermostimulated lumi-
nescence band at Tm2 = 110 K decreases and a new
high-temperature band appears in the range T = 150–
180 K with a maximum at Tm3 = 160 K. This indicates
the formation of new traps of charge carriers with the
activation energy Em3 = 0.40 eV (Fig. 3, curve 3).

In order to elucidate how atmospheric oxygen
affects the luminescent properties of the PMPS poly-
mer, we analyzed the photoluminescence spectra and
the thermostimulated luminescence curves for a thick
film (d = 30 µm) annealed at Tan = 400 K and P = 100 Pa
for t = 60 min and saturated with oxygen upon holding
in air at room temperature for a certain time. First, the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
photoluminescence spectrum and the thermostimulated
luminescence curve were measured for the film rapidly
cooled from room temperature to liquid-helium tem-
perature. Then, the film was annealed in a cryostat in a
helium atmosphere at Tan = 300 K for t = 15 min and
cooled to T = 5 K and the photoluminescence spectrum
and the thermostimulated luminescence curve were
recorded again. It was found that, after annealing of the
PMPS film in a helium atmosphere, the intensities of
both the photoluminescence and thermostimulated
luminescence bands increase by a factor of 1.5–2. Note
that the photoluminescence spectrum remains
unchanged (Fig. 4a, curves 1, 2), whereas the thermo-
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Fig. 3. Thermostimulated luminescence curves of the
PMPS film (T = 5 K, λex = 365 nm, d = 30 µm) prepared in
air at room temperature: (1) prior to annealing and (2, 3)
after annealing under vacuum with residual pressure P =
100 Pa for t = 60 min at Tan = (2) 400 and (3) 550 K. (4)
Dependence of the activation energy Ea(T).
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stimulated luminescence curve for the film containing
adsorbed oxygen shifts toward the low-temperature
range (Fig. 4b, curves 1, 2). Moreover, it is revealed that
the maximum of the exciton photoluminescence band
in the spectrum of the PMPS film prepared from a
degassed solution at room temperature under vacuum
with residual pressure P = 100 Pa is observed at λm2 =
354–355 nm and its location remains unchanged after
annealing of the film at Tan = 370–450 K for t = 60 min.

4. DISCUSSION

In disordered organic matrices, only relatively weak
forces of intermolecular interaction act between mole-
cules. As a consequence, excitons and charge carriers
are localized at molecules of the matrix and exhibit
energy distributions that are characterized by the den-
sity-of-state functions of excitons and charge carriers,
respectively. According to the model proposed by
Bassler [13, 14], these functions can be represented by
a Gaussian distribution. Specifically, for charge carri-
ers, we can write the relationship

(2)

where E is the energy of a charge carrier with respect to
the center of the Gaussian distribution with the half-
width σ. As follows from the calculations, the parame-
ter σex for excitons is approximately 1.5 times smaller
than that for charge carriers [13]. In the model under
consideration, it is assumed that the energy disorder in
polysilanes is governed by the distributions of chain
segments over energies and over local changes in the
packing of the polymer chains. In this case, the low-
energy edge of the absorption band attributed to the
σ  σ* transition is determined primarily by the
length distribution of chain segments. Within this
model, the dynamics of excitonic excitations is treated
as migration of excitons from short segments to longer
segments with a lower excitation energy. The excitons
continue to migrate until their energy becomes equal to
an energy Eth, which is referred to as the mobility
threshold. Below the mobility threshold Eth, the density
of states is so low that the migration of excitons
becomes impossible and they are localized. Conse-
quently, upon excitation of excitons with energies
higher than the mobility threshold, the photolumines-
cence spectrum does not depend on the excitation
wavelength λex. In the case when the excitation energies
are less than the mobility threshold Eth, the photolumi-
nescence spectrum is associated with radiative transi-
tions from states that have already been excited selec-
tively and the Stokes shift between absorption and
emission in long segments is absent [15].

In polysilanes, the trans planar conformation of
chain segments is more energetically favorable and the
polymer chains containing segments with this confor-
mation in the solid phase have a closer packing as com-
pared to polymer chains involving segments with a dis-

ρ E( ) 2πσ2( ) 1/2–
E2/ 2σ2( )–[ ] ,exp=
P

ordered structure [1, 2]. The calculations demonstrates
that, in polysilanes containing chain segments with a
disordered structure, the longest segments should adopt
a conformation similar to the trans planar conformation
[1]. As is known [2], PMPS polymers can form amor-
phous films and the PMPS chain fragments have a dis-
ordered structure. It can be assumed that the structure,
the conjugation length, and packing of chain segments
in PMPS depend on the preparation conditions of the
polymer films. Moreover, in the photoluminescence
spectrum, the short-wavelength band at λm1 = 350–
353 nm corresponds to luminescence of excitons local-
ized at relatively short segments and the long-wave-
length band at λm2 = 353–358 nm is attributed to lumi-
nescence of excitons localized at longer segments.
Analysis of the photoluminescence spectrum (Fig. 2,
curve 1) shows that relatively short chain segments are
formed in thin films prepared in air at room tempera-
ture. The doublet structure of the exciton photolumi-
nescence spectrum of thick films prepared in air at
room temperature (Fig. 2, curve 2) indicates that these
films contain two types of spatially separated centers of
radiative excitonic recombination. These centers are
polymer chains with different length distributions of
chain segments. It seems likely that the annealing of
thin and thick films at Tan = 370–450 K leads to an
increase in the concentration of long segments with a
closer packing, as judged from the long-wavelength
shift in the low-energy edge of the absorption band
assigned to the σ  σ* transition (Fig. 1, curves 1, 2).
As a result, the energy disorder in the films becomes
more pronounced, the density of low-energy states
localized at long segments increases, and the maximum
of the exciton photoluminescence band is located at
λm2 = 355–358 nm (Fig. 2, curve 3).

If the hypothesis that the energy disorder in PMPS
films prepared at room temperature increases after their
annealing at Tan = 370–450 K holds true, it can be
expected that, after annealing of the film, the parameter
σ for charge carriers will increase. As a rule, the param-
eter σ is determined from the temperature dependence
of the charge carrier mobility µ, which is extrapolated
to zero electric field strength [3, 13]; that is,

(3)

where µ0 is the mobility in the energetically ordered
matrix.

Unlike excitons with a finite lifetime, photogener-
ated charge carriers in disordered matrices at suffi-
ciently low temperatures are localized at the lowest
energy levels described by the density-of-state function
[13, 14]. An increase in the temperature results in ther-
mal release of trapped carriers, and radiative recombi-
nation of oppositely charged carriers leads to thermo-
stimulated luminescence. Earlier [12, 16–18], it was
shown that the shape of the distribution ρ(E) can be
determined from analyzing the thermostimulated lumi-
nescence curves; more specifically, the high-tempera-

µ T( ) µ0 2σ/3kT( )2–[ ] ,exp=
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ture edge of these curves for a number of molecular,
doped, carbazolyl-containing, and σ- and π-conjugated
polymers can be approximated by the Gaussian func-
tion (2). In this case, the parameter σ can be calculated
using the following relationship [12, 16, 17]:

(4)

Here, Em is the activation energy at a maximum of the
thermostimulated luminescence curve measured after
illumination of the polymer at T = 5 K, ∆t = 103 s is the
delay time between the illumination of the polymer and
the recording of the thermostimulated luminescence
curve, and t0 ≈ 10–13 s is the residence time of carriers
in the polymer molecule in the absence of disorder
effects.

From relationship (4) and the data presented in
Fig. 3 (curves 1, 2), we obtain σ1 = 0.10 eV and σ2 =
0.12 eV. Therefore, the annealing of the PMPS film at
Tan = 400 K results in an increase in the energy disorder.
According to formula (3), the above increase in the
parameter σ after annealing of the film implies that the
hole mobility at room temperature decreases by a factor
of 20. Note that the parameter σ1 determined in the
present work agrees well with the parameter σT =
0.093 eV obtained from the experimental data on the
hole mobility in PMPS films in [3].

After heating of the PMPS films to higher tempera-
tures (Tan = 500–570 K), the changes revealed both in
the absorption (Fig. 1, curve 3) and luminescence
(Fig. 2, curve 4) spectra and in the thermostimulated
luminescence curves (Fig. 3, curve 3) are similar to
those observed earlier upon exposure of the PMPS
films to UV light at room temperature due to photodeg-
radation of the polymer [8, 9]. It is known that photo-
degradation and thermodegradation of PMPS are
accompanied by identical chemical reactions due to the
following factors: (i) the scission of σ bonds between
silicon atoms in the polymer chain, (ii) the formation of
cyclic structures, (iii) the cross-linking between poly-
mer chains, and (iv) the incorporation of oxygen into
the polymer chain [1, 9]. Reasoning from the results
obtained in previous works, we can make the inference
that the decrease in the intensity of the absorption band
attributed to the σ  σ* transition and the decrease in
the intensity of the exciton photoluminescence band,
which are attended by a hypsochromic shift in their
maxima, are caused by the scission of σ bonds between
silicon atoms in the polymer chain, whereas the appear-
ance of the new photoluminescence band at λm =
460 nm and the new thermostimulated luminescence
band at Tm3 = 160 K is associated with the cross-linking
between polymer chains [8, 9]. It should be noted that
thermodegradation is a completely irreversible process.

It is known that, in polysilanes, adsorbed atmo-
spheric oxygen [20] serves as an electron acceptor and
can form weak charge-transfer complexes with mole-

σ
Em

3 ∆t/t0( )lnln[ ] 1/2 1–
--------------------------------------------------.=
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cules of many organic compounds at atmospheric pres-
sure. These complexes are relatively unstable and can
easily dissociate upon elimination of oxygen [21]. As
was shown in my recent work [22], doping of PMPS
films by acceptors, namely, 2,7-dinitro-9-fluorenone,
2,4,7-trinitro-9-fluorenone, and 7,7',8,8'-tetracyano-
quinodimethane, results in coloration of the films and
the appearance of new broad bands in the absorption
and photoluminescence spectra due to the formation of
weak charge-transfer complexes with segments of the
PMPS chain. It can be assumed that atmospheric oxy-
gen is also capable of forming weak charge-transfer
complexes with PMPS chain segments. This accounts
for the experimentally observed photoluminescence
quenching in the film saturated with atmospheric oxy-
gen (Fig. 4a). The interaction between an electron
donor and an electron acceptor is accompanied by par-
tial transfer of the electron density from the donor to the
acceptor, and the efficiency of this process increases
with a decrease in the ionization potential of the donor
[21]. Consequently, it can be expected that the charge-
transfer complexes with oxygen molecules will be
formed primarily by the longest PMPS chain segments
on which the lowest energy states of holes are localized.
The formation of the charge-transfer complexes
between oxygen molecules and the longest segments
leads to rearrangement of the energy levels of the seg-
ments and a decrease in the density of low-energy states
of holes. In turn, this results in a shift of the thermo-
stimulated luminescence curve toward the low-temper-
ature range after saturation of the film with atmospheric
oxygen (Fig. 4b).

Thus, the following model can be proposed to
explain the changes observed in the morphology and
energy disorder in PMPS films prepared under different
conditions. In thin films (d < 7 µm) produced from non-
degassed solutions at room temperature, atmospheric
oxygen forms weak charge-transfer complexes with
PMPS chain segments. This prevents their close pack-
ing, and relatively short segments are predominantly
formed in the films. The maximum of the exciton pho-
toluminescence band (T = 5 K) is observed at λm1 =
350–353 nm. During the preparation of thick films, the
oxygen concentration in the film bulk decreases, which
encourages the formation of chain segments with a
large conjugation length and regions with a close pack-
ing of the polymer chains. As a result, the spatially sep-
arated polymer chains with different length distribu-
tions of segments are formed and the exciton photolu-
minescence band is split into a doublet with maxima at
λm1 = 350 nm and λm2 = 355–358 nm. The films pre-
pared at room temperature are characterized by the
energy disorder parameter σ1 = 0.10 eV.

The annealing of PMPS films at sufficiently high
temperatures and a low pressure brings about the
decomposition of charge-transfer complexes formed by
chain segments with oxygen molecules and the elimi-
nation of oxygen. Upon heating to temperatures either
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near or above the glass transition point, the mobility of
individual fragments of the polymer chains increases
and, after cooling of the films, the concentration of long
segments with a closer packing increases. This results
in a substantial increase in the density of low-energy
states of excitons and charge carriers. As a conse-
quence, the maximum of the exciton photolumines-
cence band is observed at λm2 = 355–358 nm and the
energy disorder parameter increases to σ2 = 0.12 eV.
After annealing at temperatures above 500 K, the
PMPS polymer undergoes thermodegradation.
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Abstract—It is demonstrated that prolonged treatment in a constant magnetic field considerably increases
the creep rate under compression of poly(methyl methacrylate) samples irradiated with gamma-ray doses as
high as 100 kGy. For higher irradiation doses, the effect of the magnetic field on the creep rate is insignificant.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As a rule, polymers used in recent devices are sub-
jected to fields of different nature simultaneously. In
this respect, the study of the mechanical properties of
irradiated polymers is an urgent problem, because these
properties remain poorly understood. Smolyanskiœ
et al. [1] and Borisenko and Zhdanov [2] investigated
radiation-chemical processes in polymers under irradi-
ation and in light, magnetic, and temperature fields. The
inference was made that radiation-chemical transfor-
mations can be enhanced under the action of magnetic
fields. It was assumed that changes in the rate of radical
reactions can lead to variations in the strength proper-
ties of polymers. In our earlier works [3, 4], we experi-
mentally demonstrated that an applied constant mag-
netic field can substantially affect the stress–strain
properties of polymers; moreover, we assumed that the
changes in the creep rate in a magnetic field are caused
by averaging of local magnetic fields. It was also
proven that the strength and stress–strain characteris-
tics of poly(methyl methacrylate) depend on the irradi-
ation dose [5, 6].

In this work, we analyzed the changes in the strain
of poly(methyl methacrylate) irradiated with different
gamma-ray doses after prolonged exposure to a con-
stant magnetic field. It was demonstrated that the effect
of the constant magnetic field on the creep rate depends
on the radiation dose absorbed by the polymer under
investigation.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

Poly(methyl methacrylate) was studied under con-
ditions of uniaxial compression at a constant load of 80
MPa and a temperature of 300 K. The samples were
6 mm in height and 3 mm in diameter. Before mechan-
ical testing, the samples were placed in a constant mag-
1063-7834/02/4409- $22.00 © 21791
netic field with a strength of 1600 Oe for 1.5 months.
Then, the samples were evacuated in ampules and irra-
diated by different gamma-ray doses with the use of a
60Co source at a power of 0.4 Gy/s. The reference series
of samples was not subjected to the magnetic field. The
samples were loaded after the ampules were opened,
and the time evolution of their strain under a constant
stress was measured. The error in measuring the total
creep was equal to 0.05%. The creep curves for the
samples treated and not treated in the magnetic field
were compared.

3. RESULTS AND DISCUSSION

Figures 1–3 depict the creep curves for reference
samples and samples treated in the magnetic field at
identical irradiation doses. For low irradiation doses,
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Fig. 1. Creep curves for poly(methyl methacrylate) after
irradiation with a dose of 10.5 kGy. H, Oe: (1) 0 and (2)
1600.
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the constant magnetic field, as a rule, increases the
strain rate (curves 2). However, for irradiation doses
higher than 107 kGy, the measured and reference
curves approach each other.

Earlier [3–6], we examined the individual effects of
a constant magnetic field and gamma radiation. It was
shown that an increase in the creep rate with an increase
in the irradiation dose is associated not only with the
plastic shear but also with the extension of large-sized
hollow cracks. Note that, usually, the latter phenome-
non is not observed under the compression of unirradi-
ated poly(methyl methacrylate) samples. A sharp
decrease in the yield strength was observed at irradia-
tion doses above 100 kGy, whereas the scatter of yield
strengths increased at irradiation doses of approxi-
mately 25 kGy. These effects can be explained by the
difference in the radical reactions at different irradia-
tion doses. Prolonged treatment (no shorter than a few
days) in a magnetic field at a temperature of 300 K also
increased the creep rate (the strain in the same time) for
poly(methyl methacrylate) samples [3, 4]. The effect of
the constant magnetic field was explained in terms of
disordering of the structure (excitation of macromole-
cules), which is characteristic of the early stages of ori-
entation [3, 4].

Let us now compare the effects of gamma radiation
alone and the joint action of gamma radiation and a
constant magnetic field on the poly(methyl methacry-
late) samples treated according to the above procedure.
After irradiation, poly(methyl methacrylate) can be so
brittle that it cleaves under compression. For this rea-
son, we observed creep for small strains at which no
macroscopic fracture occurred.

Figures 4 and 5 display the creep curves for two
series of samples. It can be seen from Fig. 4 that the
strain of poly(methyl methacrylate) samples in the
same time increases with an increase in the irradiation
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Fig. 2. Creep curves for poly(methyl methacrylate) after
irradiation with a dose of 156 kGy. H, Oe: (1) 0 and
(2) 1600.
PH
dose. However, at irradiation doses of 205 and 350 kGy,
the mean strain rate decreases. The same is also true for
poly(methyl methacrylate) samples treated in the mag-
netic field (Fig. 5); however, the deceleration of the pro-
cess occurs at lower irradiation doses and is more pro-
nounced.

The times of attaining a 10% strain in the samples
irradiated with different gamma-ray doses and in the
samples treated in the magnetic field are compared in
Fig. 6. The shorter the time, the higher the strain rate.
As can be seen from Fig. 6, the largest divergence of the
two curves is observed at irradiation doses of 10.5 and
107 kGy. A similar result was obtained for strains in the
range from 5 to 15%. The higher strains were disre-
garded because of the distortion of the true strain due to
the extension of hollow cracks. Thus, prolonged treat-
ment in a constant magnetic field with a strength of
1600 Oe at a temperature of 300 K substantially affects
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Fig. 3. Creep curves for poly(methyl methacrylate) after
irradiation with a dose of 350 kGy. H. Oe: (1) 0 and
(2) 1600.
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Fig. 4. Creep curves for poly(methyl methacrylate) after
irradiation with different doses D, kGy: (1) 10.5, (2) 29.2,
(3) 107, (4) 156, (5) 205, and (6) 350. Curves 1 refer to two
different samples.
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the creep rate of poly(methyl methacrylate) irradiated
with gamma-ray doses as high as 107 kGy.

The intensive formation of hollow cracks that sup-
press the true strain is observed in the samples irradi-
ated with a dose of higher than 107 kGy. Therefore, we
can assert that the magnetic field affects the shear acts
associated with the intermolecular interaction. As is
seen from Fig. 6, the magnetic field most strongly
affects the samples irradiated with doses of 10.5 and
107 kGy. Earlier [6], we noted that the creep rate begins
to change after irradiation with a dose of higher than
10.5 kGy; i.e., the influence of the constant magnetic
field at this dose of irradiation is not yet complicated by
radiation-chemical processes. It was assumed that
exposure to gamma radiation with a dose of approxi-
mately 25 kGy decreases the molecular mobility, thus
initiating, for example, the reaction of radiative linking;
consequently, the effect of the constant magnetic field
in this range of irradiation doses decreases. Smolyan-
skiœ et al. [1] also observed a specific feature in the form
of a maximum in the radical concentration at a radiation
dose of 25 kGy. As was mentioned earlier, the influence
of a constant magnetic field on the strain at doses above
107 kGy is suppressed by the fictive strain due to the
growth of cracks; as a result, the creep rates (times in
Fig. 6) for samples of two types approach each other. It
is evident that, even for the same polymer, the critical
irradiation doses can vary depending on the conditions
of irradiation and heat treatment of the samples, the
strength and exposure time of the constant magnetic
field, and the measurement temperature of the stress–
strain characteristics.

The mechanism of the influence of the constant
magnetic field on the creep rate is open to speculation.
Diamagnetism is inherent in all solids; however, its
mechanism is assumed to be specific to each material.
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Fig. 5. Creep curves for poly(methyl methacrylate) after
prolonged exposure to a magnetic field. D, kGy: (1) 10.5,
(2) 29.2, (3) 107, (4) 156, (5) 205, and (6) 350.
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For complex molecules, diamagnetism is governed not
only by electron precession in atoms but also by the
polarization of electron clouds in an external magnetic
field and by the orbital magnetic moment oriented par-
allel to the constant magnetic field [7]. Theoretically,
the coefficients of magnetic susceptibility are calcu-
lated for individual atoms and molecules.

Since the strain is associated with overcoming of the
barriers to intermolecular nonchemical interactions and
is determined by the degree of molecular mobility [8],
it is clear that the constant magnetic field affects the
intermolecular bonds and mobility of segments of the
polymer chains. In [3], it was demonstrated that the
effect of a constant magnetic field on the unirradiated
poly(methyl methacrylate) manifests itself in an
increase in the creep rate and a decrease in its non-
monotonicity. It was assumed that the constant mag-
netic field suppresses strong interactions between
neighboring molecules. This leads to an increase in the
molecular mobility and accelerates shear processes
under mechanical stresses. It is also known that poly-
mer molecules are oriented in a constant magnetic field.
According to the calculations performed by Rodin [9],
the complete orientation of the molecule becomes pos-
sible in viscous solutions. In solid polymers [4–6], the
orientation is also observed upon prolonged treatment
in a magnetic field; however, reasoning from the long
times of relaxation of the molecules involved, we can
only infer an orientation of individual segments of the
macromolecule. Consequently, the orientation influ-
ence of the constant magnetic field on the polymer is
similar to the influence of the mechanical field. This
corresponds to a decrease in the potential barrier to
shear acts and to an increase in the strain rate, which is
observed experimentally.
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Fig. 6. Dependences of the time of attaining a 10% strain in
poly(methyl methacrylate) on the irradiation dose. H, Oe:
(1) 0 and (2) 1600.
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The changes observed in radiation-chemical reac-
tions in irradiated polymers under the action of a con-
stant magnetic field have been discussed in the litera-
ture. In particular, Borisenko and Zhdanov [2] noted
that, upon irradiation of polymers, a constant magnetic
field increases the density of paramagnetic centers and
stabilizing charged particles and enhances radiation-
chemical transformations. The magnetic field can also
favor a decrease in the recombination rate of radical
pairs. It is not improbable that the variations in chemi-
cal reactions under the action of a constant magnetic
field can affect the strength properties of the polymers.
Actually, the deformation and failure can be considered
chemical processes. In this case, the increase in the
strain rate (decrease in the time in Fig. 6) agrees with
the data obtained in [2].

At present, the mechanism of the influence of a con-
stant magnetic field on the mechanical properties can-
not be unambiguously interpreted for the lack of reli-
able data; however, the changes in the stress–strain
characteristics and certain regularities have been estab-
lished [3, 4]. The results of this work confirm and com-
plement the available data regarding the influence of a
constant magnetic field on the properties of diamag-
netic materials. It was demonstrated that the effect of a
magnetic field on the strain rate of poly(methyl meth-
acrylate) depends on the radiation dose.
PH
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Abstract—The structural and elastic properties of 4-n'-pentyl-4'-cyanobiphenyl (5CB) in the nematic liquid-
crystal phase are investigated in the framework of the statistical–mechanical theory and the molecular dynamics
method. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The macroscopic properties of liquid crystals, gen-
erally, and the Frank elastic constants, in particular,
have been the subject of extensive experimental [1] and
theoretical [2] investigations. In many cases, homologs
of cyanobiphenyls, specifically of 4-n'-pentyl-4'-cyano-
biphenyl (5CB), are used as liquid-crystal materials.

Mesogenic molecules of these compounds consist
of one or several flexible hydrocarbon chains attached
to an elastic polar core. The flexibility of the hydrocar-
bon chains determines the physical properties of liquid
crystals in many respects. Moreover, these molecules
possess a sufficiently large dipole moment (~4.5–5.0 D
[3]), which is directed from the polar core to the molec-
ular tail, and form a nematic phase in the low-tempera-
ture range (295–305 K [1]). The latter circumstance
renders these objects very interesting for experimental
investigations [4–7]. Direct experimental measure-
ments of the Frank elastic constants are rather compli-
cated and can be performed accurate to within ~20–
40% [4, 5]. In this respect, theoretical studies of the
elastic liquid-crystal properties in the framework of sta-
tistical mechanics [8] or numerical molecular dynamics
calculations [9] have assumed a new significance,
because these approaches can provide answers to a
number of fundamental questions. For example, how
much do the microscopic parameters responsible for
the character of intermolecular interactions in a liquid-
crystal system affect the measured macroscopic charac-
teristics of the real liquid crystal?

In the present work, the above theoretical
approaches were used to investigate the elastic proper-
ties of liquid crystals. The statistical–mechanical theory
is based on the method of conditional distribution func-
tions [10]. This method makes it possible to take into
account not only translational and orientational correla-
tions but also mixed correlations of the molecules
involved. As a model intermolecular interaction poten-
tial, we chose the dipolar Gay–Berne potential [11].
1063-7834/02/4409- $22.00 © 21795
The dipoles were aligned parallel to the long axes of the
molecules forming a liquid crystal. The pair and direct
correlation functions of the distribution and the orienta-
tion distribution function of 5CB molecules in the tem-
perature range corresponding to the nematic phase
were calculated in the framework of the statistical–
mechanical theory. Moreover, the orientation distribu-
tion function and the pair correlation function were
obtained by molecular dynamics calculations with the
use of realistic intramolecular and intermolecular
atom–atom interaction potentials for 5CB [12, 13].

Nowadays, there exist a number of microscopic the-
ories describing the elastic properties of nematic liquid
crystals [14–17]. Within these theories, the Frank elas-
tic constants Ki (i = 1, 2, and 3) are expressed in terms
of the orientation distribution function and the direct
correlation function of the nematic liquid crystal. It
should be noted that the key problem—the determina-
tion of the direct correlation function for a nematic liq-
uid crystal—was solved with different degrees of strict-
ness. In particular, the pair correlation function was
obtained in the framework of the statistical–mechanical
theory with the inclusion of translational, orientational,
and mixed correlations, which made it possible to con-
struct the direct correlation function in the classical
Percus–Yevick approximation [18]. In turn, the direct
correlation function within the molecular dynamics
approach was derived by numerical solution of the Orn-
stein–Zernike equation [18]; furthermore, the pair cor-
relation function was also determined by the molecular
dynamics method. In the latter case, both the direct and
pair correlation functions were expressed as power
series in spherical functions and the solution of the Orn-
stein–Zernike equation was limited to the lowest
expansion terms.

This paper is organized as follows. Section 2 covers
the basic principles of the statistical–mechanical
description of the Frank elastic constants for nematic
liquid crystals. Section 3 describes the equilibrium sta-
tistical–mechanical theory used to calculate the orien-
002 MAIK “Nauka/Interperiodica”
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tation distribution function and the pair correlation
function, the numerical solution of the nonlinear inte-
gral equations required to construct these functions,
and the specific features in molecular dynamics calcu-
lations of the pair correlation function and order param-
eters of a nematic liquid crystal formed by 5CB mole-
cules. Section 4 presents the results of calculations of
the Frank elastic constants and the structural properties
of 5CB and the basic inferences drawn in this work.

2. FRANK ELASTIC CONSTANTS

In a perfect nematic liquid crystal, molecules are
predominantly aligned parallel to the director n [1, 2].
In the case when the perfect configuration is distorted
by either surfaces bounding the nematic liquid crystal
or thermal fluctuations, the molecular orientation varies
from point to point and the distortion of the director
field n(r) can be determined by minimizing the free
energy density functional

(1)

where f0 is the density functional for the unstrained
state; Kij, Kijk, and Kijkl are the elastic constant tensors;

and ni, j =  [1, 2]. In the bulk of the nematic liquid

crystal, we have Kij = 0 and the contributions Kijkni, jk
can be represented in the form [19, 20]

(2)

Moreover, in functional (1), the other important part,
which is proportional to the square of the derivative of
the director, can be written in the Frank form [14, 15]

(3)

where Ki (i = 1, 2, and 3) are the three fundamental elas-
tic constants corresponding to the longitudinal, tor-
sional, and flexural strains.

Therefore, the complete expression for the free
energy takes the form

(4)

where f13 = k13k · (n · — · n), f24 = –(K2 + k24)k · [n— ·
n + n × (— × n)], and k is the normal to the surface S
bounding the volume V.

In recent years, several microscopic approaches to
the description of the coefficients Ki have been pro-
posed [14–17, 19, 21]. Within these approaches, the
coefficients Ki are related to structural characteristics of

f f 0 Kijni j, Kijkni jk,+ +=

+
1
2
---Kijklni j, nk l, …,+

∂ni

∂x j

-------

f 13 f 24+ k13— n —n⋅( )=

– K2 k24+( )— n —n⋅ n —× n×+[ ] .

f F
1
2
---=

× K1 —n( )2 K2 n —n×( )2 K3 n —× n×( )2+ +[ ] ,

F V f F S f 13 f 24+( )d∫ S f S,d∫+ +d∫=
PH
the nematic phase, such as the orientation distribution
function and the direct correlation function. In the gen-
eral form, the Frank elastic constants can be repre-
sented by the following expressions [14, 15]:

(5)

(6)

(7)

where C(r, ei, ej) is the direct correlation function;
f0(cosβi) is the orientation distribution function; βi is
the polar angle, i.e., the angle between the z axis (coin-
ciding with the director orientation n) and the long axis
of the ith molecule; dΩi = sinβidβidϕi; dΩ =
sinβijdβijdϕij; βij and ϕij are the polar and azimuthal
angles of the unit vector e = r/|r |, respectively; r = ri –
rj; ri and rj are the vectors specifying the coordinates of
the centers of mass of the ith and jth molecules, res-
pectively; T is the temperature; ρ = N/V is the density of
the system; kB is the Boltzmann constant; and (cosβi)
is the derivative of the orientation distribution function
with respect to cosβi.

There are a number of simplified approaches to the
problem of calculating the Frank elastic constants [17,
19–21]. These approaches are based on the approxi-
mate calculation of the direct correlation function C(r,
ei, ej) = C(r/σ), where σ is the parameter of the Gay–
Berne potential [11], which depends on the vectors ei

and ej (specifying the orientation of the ith and jth mol-
ecules, respectively) and the unit vector e.

For example, according to the approach developed
in our earlier works [8, 17], the Frank elastic constants
can be written in the form

(8)

(9)

(10)

K1

kBTρ2

2
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where

γ = σ||/σ⊥  is the length-to-width ratio of the molecule, and 

(11)

Here, the factor B has the dimensions of force and is
given by

(12)

(13)

The dimensionless parameter M2L (L = 1 and 2) is
defined as

(14)

and

(15)

are the order parameters of rank 2L. Here, P2L(cosβ)
(L = 1, 2, and 3) are the Legendre polynomials of even
order.

Thus, relationships (8)–(10) allow us to calculate
the Frank elastic constants in the case when the order
parameters , the orientation distribution function
f0(cosβ), and the direct correlation function C(r) are
known. Note that the calculation of the first two quanti-
ties presents no special problems, whereas the calcula-
tion of the direct correlation function for the nematic
phase is considerably more complicated.

3. CORRELATION FUNCTIONS

The direct correlation functions for such an aniso-
tropic system as the nematic phase of 5CB are calcu-
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lated in the framework of two independent approaches:
(i) the equilibrium statistical–mechanical theory [8, 17,
22], which is based on the method of conditional distri-
bution functions [10], and (ii) the molecular dynamics
method applied to the description of nematic liquid
crystals [9, 12, 13]. Within the equilibrium statistical–
mechanical theory, we consider a single-component
system composed of ellipsoidal molecules of length σ||
and width σ⊥  in a volume V at a temperature T. The vol-
ume V of the system is divided into N cells, each occu-
pying the volume v  = V/N. As a first approximation, we
take into account only states of the system for which
each cell contains one molecule [8, 17, 22].

The potential energy of this system can be repre-
sented as U = , where Φ(ij) is the pair inter-
molecular potential, i ≡ (ri, ei), and ri and ei are the vec-
tors specifying the position and the orientation of the ith
molecule, respectively. By integrating the quantity

, which is the density of probability of find-

ing the system at points i at the temperature T [10, 18],
we can introduce partial distribution functions, namely,
the one-particle distribution function F(i) (the density
of probability of finding a particle inside the ith cell),
the pair distribution function F(ij) (the density of prob-
ability of finding two particles in the ith and jth cells),
etc. [8, 10, 17, 22].

Within this approach, we will restrict our consider-
ation to the case of two-particle correlations. The func-
tions F(i) and F(ij) can be expressed in terms of the
mean-force potentials [8, 10, 17]

(16)

(17)

where

and α is the volume associated with the orientation of
the ith molecule. The one-particle function F(i) auto-
matically satisfies the normalizing condition

 = 1, and the constraint Fi(i) = ,

which relates the one-particle and two-particle func-
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i j<∑

U
kBT
---------–exp

F j j( )
ψ j j( )

j( )ψ j j( )d

j

∫
--------------------------,=

Fij ij( ) Fi i( )F j j( )V ij( )ψi j, i( ) 1– ψ j i, j( ) 1– ,=

ψ j j( ) ψ j i, j( )
i j≠
∏ , j( )d

j

∫ r j e j,dd

ω
∫= =

V ij( ) Φ ij( )
kBT

-------------– ,exp=

ω v α ,⊗=

i( )Fi i( )d
i∫ j( )Fij ij( )d

j∫



1798 ZAKHAROV et al.
tions, allows us to derive the closed integral equation
with respect to the mean-force potential [8, 10, 17, 22]:

(18)

Equation (18) can only be solved by a numerical
method, which is described in detail in [8, 22].

With the use of the solution ψi, j(i), we can calculate
the pair correlation function F(ij) and the orientation

distribution function f0(cosβi) = F(i), where

ϕi is the azimuthal angle of the unit vector ei. In the
classical Percus–Yevick approximation [18], the
expression for the direct correlation function has the
form

(19)

Here, V(ij) is the kernel of the integral equation (18),
which is determined by the pair intermolecular poten-
tial chosen as the sum of the Gay–Berne potential [11]
and the dipole–dipole interaction potential: Φ(ij) =
ΦGB(ij) + Φdd(ij). The former potential can be written as
ΦGB(ij) = 4ε0ε(R–12 – R–6), where R = (r – σ + σ⊥ )/σ⊥ ;

ψi j, i( ) j( )V ij( )ψ j i,
1– jF j j( )( ).d
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Fig. 1. Orientation distribution function for 5CB molecules
at T = 300 K according to calculations in the framework of
(1) the molecular dynamics method, (2) the statistical–
mechanical theory with inclusion of the dipole–dipole inter-
action, and (3) the statistical–mechanical theory without
regard for the dipole–dipole interaction.
PH
r = |ri – rj |; and σ and ε [11] are the width and the depth
of the potential well, respectively. The parameters σ
and ε depend on the orientation of the unit vectors ei, ej,
and e; the geometric parameter γ; and the exponents ν
and µ in the relationship ε = (ei, ej) (e, ei, ej). The
dipole–dipole interaction potential has the form

Φdd(ij) = (ei · ej – 3ej · ee · ej), where ∆ is the dipole

moment of the 5CB molecule (∆ ~ 5 D [3]).
The intermolecular interaction parameters used in

our calculations are as follows: γ = 3 (σ|| ≈ 1.8 nm and
σ⊥  ≈ 0.59 nm), ν = 2.0, µ = 0.98, and ε0 = 2.07 × 10–21 J.
In addition, we used the following dimensionless

parameters: the dimensionless density ρ* = N /N ≈
0.512 (corresponding to a density of 103 kg/m3 for
5CB), the temperature Θ* = kBT/ε0, and the dipole

moment µ* =  ≈ 2.5. The molecular dynamics

calculations included 120 5CB molecules enclosed in a
cubic cell with an edge of 3.647 nm, which corresponds
to a density of 103 kg/m3. The temperature was main-
tained at 300 K (Θ* = 2.0) (for a large canonical ensem-
ble).

The equations of motion were solved using the Ver-
let algorithm [23] with a time step of 2 fs. The starting
configuration corresponded to the smectic phase of
5CB [9]. The orientation of the director n was deter-

mined with the use of the matrix  written in the
form [24]

(20)

where N0 is the number of 5CB molecules and is the
angle between the long axis of the jth molecule and the
ν axis related to the cubic cell. The molecular coordi-
nates of the system were constructed using the eigen-
vectors of the tensor of the moment of inertia [9, 12,

13]. By diagonalizing the matrix , we obtained
three eigenvectors, of which the largest vector corre-
sponds to the orientation of the director n. Figure 1
depicts the orientation distribution function f0(cosβi)
calculated directly by the molecular dynamics method
with due regard for the potential energy involving the
intramolecular and intermolecular atom–atom contri-
butions in the system at T = 300 K [9, 12, 13]. The ori-
entation distribution functions derived with the use of
the integral equation for polar (µ* ≈ 2.5) and nonpolar
(µ* = 0) systems at T = 300 K are also displayed in
Fig. 1. Making allowance for the fact that the calcula-
tions were performed using different potentials of the
intermolecular interaction, the results obtained by dif-
ferent methods are in good agreement. Moreover, the
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order parameters  and  calculated in the frame-

work of the statistical–mechanical theory (  = 0.4 and

 = 0.13) and the molecular dynamics method (  =

0.504 and  = 0.188) were compared with the exper-

imental data obtained by Raman spectroscopy (  =

0.58 and  = 0.14) [25].

It turned out that the results of our calculations devi-
ate from the experimental data only slightly. The pair
correlation function F(ij) of the anisotropic system
formed by 5CB molecules at T = 300 K was also cal-
culated using the aforementioned molecular dynamics
method. Figure 2 (curve 1) shows the radial distribu-

tion function G(r) = , where dΩ =

sinβijdβijdϕij.

The Ornstein–Zernike equation relating the direct
and pair correlation functions, that is,

(21)

makes it possible to calculate the direct correlation
function with the use of the iterative procedure
described in [9]. The radial part of the direct correlation
function obtained by solving Eq. (21) numerically is
plotted in Fig. 2 (curve 2). Thus, we determined the ori-
entation distribution function f0(cosβi), the order

parameters , and the direct correlation function
C(r), which are necessary in calculating the Frank elas-
tic constants.

4. RESULTS OF CALCULATIONS 
OF THE FRANK ELASTIC CONSTANTS

AND STRUCTURAL PROPERTIES FOR 5CB

In order to calculate the Frank elastic constants Ki

(i = 1, 2, and 3) with the use of relationships (8)–(10),
it is necessary to determine the moments M2L (L = 1 and
2) of the direct correlation function and the order

parameters  (L = 1, 2, and 3). The moments M2L

were obtained in the framework of both the statistical–
mechanical theory with expression (19) and the molec-
ular dynamics method with expression (21). The calcu-
lated magnitudes of Ki (i = 1, 2, and 3) in the tempera-
ture range corresponding to the nematic phase of 5CB
are displayed in Fig. 3.

A comparison shows that the theoretical and exper-
imental results are in reasonable agreement with allow-
ance made for the approximate character of relation-
ships (8)–(10) and the accuracy of the measurements
(20–40% [4, 5]). Note that the accuracy in direct mea-
surements of the ratios between the Frank constants
K3/K1 and K2/K1 can be higher than that of the con-
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calculated according to relationships (8)–(10) with the
direct correlation function obtained from expression (19)
and (4) K3, (5) K1, and (6) K2 constants calculated accord-
ing to relationships (8)–(10) with the direct correlation
function obtained from expression (21).
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stants Ki themselves [1]. The theoretical and experi-
mental data on the Frank constants and their ratios are
presented in the table. Knowing the radial parts of the
pair and direct correlation functions and using the
hyperinterlacing chain approximation [18], we can

Frank elastic constants Ki (i = 1, 2, and 3) and their ratios
K3 /K1 and K2/K1 for 5CB at a temperature of 300 K

Frank
constants

Theoretical approach

Experimentstatistical–
mechanical theory

molecular 
dynamics

K1, pN 19.4 9.5 10.5

K2, pN 10.0 5.1 5.4

K3, pN 30.1 13.8 13.8

K3/K1 1.55 1.45 1.31

K2/K1 0.52 0.54 0.51

Note: The calculations were performed according to relationships
(8)–(10). The direct correlation function was calculated
within two approaches: (i) the statistical–mechanical theory
with expression (19) and (ii) the molecular dynamics
method with expression (21). The experimental data were
obtained by the Freédericksz transition technique [5].
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Fig. 4. (1) Radial part of the effective intermolecular poten-
tial Φ(r)/(kBT) determined using relationship (21) and

(2) the effective force Feff(r) between two 5CB molecules.
PH
determine the radial part of the effective pair potential
Φ(r), that is,

(22)

and the effective force Feff(r) = – e between two

5CB molecules. The results of calculations are repre-
sented in Fig. 4. The potential Φ(r)/kBT is characterized
by a pronounced repulsive part at distances up to  =
0.6 (which corresponds to the width of the 5CB mole-
cule) and the small potential barrier ∆Φ = Φ(0.79) –
Φ(0.59) ≅  0.26kBT. The repulsive force between two
5CB molecules rapidly decreases with an increase in
the intermolecular distance and becomes zero at  ≅
0.6. As the distance increases in the range 0.62 ≤  ≤
0.8, the molecules are attracted to each other. The max-
imum attractive force is approximately equal to
2.21 pN at  ≅  0.8. With a further increase in the dis-
tance between the molecules, the attractive force rap-
idly tends to zero. It should be noted that the effective
potential Φ(r) differs from the Gay–Berne potential
ΦGB(ij) in both the potential well depth and the poten-
tial barrier. However, structural characteristics, such as
the orientation distribution function f0(cosβi) and the

order parameters , calculated in the framework of
these radically different approaches exhibit a very sim-
ilar behavior. In turn, this gives grounds to make the
inference that the correct inclusion of intermolecular
correlations leads to a decrease in the differences asso-
ciated with the choice of the intermolecular potential.
At the same time, structural characteristics such as the
Frank elastic constants must be calculated with due
regard for the flexibility of the hydrocarbon chains of
cyanobiphenyls. This problem is partly solved in the
framework of the molecular dynamics approach. As a
result, compared to the calculations in terms of the
mechanical–statistical theory, the molecular dynamics
calculations lead to a better agreement with the experi-
mental data. However, we believe that both approaches
open up independent ways of solving the problem con-
cerning the prediction of the structural properties of
real liquid crystals.
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Abstract—The vibration spectrum of perfect carbon nanotubes is studied using a two-parametric potential
which includes pairwise and three-particle interatomic interactions. This potential was proposed by Keating and
allows one to take into account the elasticity of pairwise interatomic bonds and the elasticity associated with a
change in the angle between directional interatomic bonds in covalent crystals. Using the Keating potential, the
vibration spectrum of a graphite monolayer is calculated and fitted to the vibration spectrum of crystalline
graphite, thereby determining the parameters of the potential. With these parameters, the phonon spectra of per-
fect monolayer graphite nanotubes are calculated. A continuum model, in which a monolayer nanotube is rep-
resented as an elastic cylindrical shell of a finite thickness, is also discussed. Within this model, the vibration
spectrum of a nanotube is calculated numerically in the long-wavelength limit as a function of the radius and
thickness of the nanotube. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Carbon nanotubes were experimentally discovered
by Iijima [1] and have attracted considerable attention
because of their unique properties, such as high
strength and conductivity dependent on the chirality
indices of the nanotube, and of their application poten-
tial in nanoelectronics. Unfortunately, there is no cur-
rently available technology of fabricating a nanotube of
a given chirality; nanotubes resulting from thermal
decomposition of graphite have uncontrollable dimen-
sions and chirality.

A perfect carbon nanotube can be covered by mak-
ing screw rotations of a unit cell consisting of two car-
bon atoms lying on the cylindrical surface. Let
S(∆z, ∆ϕ) be a screw rotation operator that transforms
the cylindrical coordinates z and ϕ of a point on the
cylindrical surface according to the rule z, ϕ  z + ∆z,
ϕ + ∆ϕ.

We can introduce two linearly independent screw
rotation operators S1(∆z1, ∆ϕ1) and S2(∆z2, ∆ϕ2) on the
nanotube. These operators can be chosen differently.
Since screw rotation operators commute, the operator

 (where n, m are arbitrary integers) transforms the
coordinates of an arbitrary point according to the rule
(z, ϕ)  (z + n∆z1 + m∆z2, ϕ + n∆ϕ1 + m∆ϕ2). For cer-
tain values of n and m, this operator can be equivalent
to the identity operator. The minimum values of n and
m in this case are called the indices of the nanotube and
are designated as (i1, i2) in what follows. Since the
choice of operators S1 and S2 is not unique, there are
several different definitions of indices (i1, i2) in the lit-

S1
nS2

m

1063-7834/02/4409- $22.00 © 21802
erature (these indices are also called chirality indices).
In this paper, we use the notation from Fig. 1.

Let us discuss how the parameters of the screw rota-
tion operators shown in Fig. 1 can be found for a perfect
monolayer nanotube with given chirality indices. Men-
tally cutting the nanotube along its generator and
unbending the tube, we will obtain a strip which can be
thought of as part of an infinite graphite monolayer con-
sisting of closely packed regular hexagons of carbon
atoms with side d0. The screw rotation operators S1 and
S2 for the nanotube are represented by primitive vectors
T1 and T2 in the plane, and the chirality indices i1 and i2
define a vector C = i1T1 + i2T2; this vector is perpendic-
ular to two sides of the strip, and its magnitude is equal
to the strip width. The parameters ∆ϕ1 and ∆ϕ2 can eas-
ily be related to the projections of the vectors T1 and T2
onto the vector C, while ∆z1 and ∆z2 are equal to the

S1S2

Fig. 1. Atomic structure of a carbon nanotube (schematic).
002 MAIK “Nauka/Interperiodica”
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projections of T1 and T2 onto the direction of the gen-
erator of the nanotube:

where ez is a unit vector parallel to the generator of the
lateral surface. Thus, given the value of d0 and using
the above formulas, one can calculate the parameters
of the screw rotation operators for a perfect monolayer
nanotube from the primitive vectors T1 and T2 and the
vector C.

Using the operators S1 and S2 introduced above, we
can uniquely determine the coordinates of atoms on the
surface of the carbon nanotube by expressing them in
terms of three numbers (n, m, s), where n and m are
arbitrary integers, except the multiples of the tube indi-
ces i1 and i2, and s takes on two values (s = 0, 1) and
specifies the atoms in the unit cell of the structure. The
cylindrical coordinates of an atom specified by the

numbers (n, m, s) can be found by operating with 
on the sth atom in the zeroth unit cell of the structure.
For notational convenience, we will replace the pair of
numbers (n, m) by one index γ, so that the position of
an atom on the nanotube will be specified by the pair of
numbers (γ, s). We also note that the carbon nanotube
can be represented as two interpenetrating tubes, with
the unit cell of each of these tubes containing one car-
bon atom.

∆ϕ1 2π
T1 C⋅( )

C2
-------------------, ∆ϕ2 2π

T2 C⋅( )
C2

-------------------,= =

∆z1 T1 ez⋅( ), ∆z2 T2 ez⋅( ),= =

S1
nS2

m
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2. DISCRETE MODEL
We numerically calculated the vibration spectrum of

the nanotube by using the Keating two-parametric
interatomic interaction potential [2], in terms of which
the relative interaction energy of atoms of the nanotube
can be written as

(1)

where α and β are the stiffness coefficients of the C–C
bond stretching and C–C–C bond bending modes of
vibration, respectively; tγs, γ's' is the vector connecting
the nearest neighbor atoms (γ, s) and (γ', s') in equilib-
rium positions; and rγs, γ's ' is the current value of the vec-
tor connecting the nearest neighbor atoms. In the first
sum in Eq. (1), summation is performed over various
pairs of nearest neighbor atoms, while in the second
sum, it is performed over various triples of nearest
neighbor atoms. When all of the carbon atoms are in
their equilibrium positions, characterized by vectors
tγs, γ's', the energy of Eq. (1) is equal to zero.

Let Uγs be the displacement of an atom from its equi-
librium position. Assuming this displacement to be
small in comparison with the interatomic distances, we
expand the function W into a Taylor series and keep
only second-order terms. In this case, the force acting
on a specified atom (γ, s) is a linear function of atomic
displacements and the classical equations of motion in
this approximation have the form

W
α
2
---

rγs γ's',
2 tγs γ's',

2–( )2

tγs γ's',
2

---------------------------------------
γs γ's',
∑=

+
β
2
---

rγs γ's', rγs γ's', tγs γ's', tγs γ''s'',–( )2

tγs γ's', tγs γ''s'',
-------------------------------------------------------------------,

γs γ's' γ''s'', ,
∑

(2)

M U̇̇γs 4α
τγs γ's', Uγs Uγ's'–( )( )τγs γ's,

τγs γ's',
2

-----------------------------------------------------------
γ's'

∑=

+ β
τγs γ's', Uγ''s'' Uγs–( ) tγs γ''s'', Uγ's' Uγs–( )+( ) τγs γ's', τγs γ''s'',+( )

τγs γ's', τγs γ''s'',
----------------------------------------------------------------------------------------------------------------------------------------

γ's' γ''s'',
∑

+ β
τγ's' γs, Uγ'''s''' Uγ's'–( ) tγ's' γ'''s''', Uγs Uγ's'–( )+( )τγ's' γ'''s''',

τγ's' γs, τγ's' γ'''s''',
-------------------------------------------------------------------------------------------------------------------------,

γ's' γ'''s''',
∑

where M is the mass of a carbon atom.

Figure 1 schematically depicts two atoms of the
zeroth unit cell of the carbon nanotube and the atoms
interacting with the zeroth unit cell; the latter atoms are
responsible for the terms on the right-hand side of the
equations of motion (2) with γ = 0 and s = 0, 1. In Fig.
1, the atoms of the zeroth unit cell are hatched and the
atoms of the neighbor unit cells interacting with the
zeroth unit cell are represented by black circles.
It should be noted that in the case of a planar carbon
structure (graphite monolayer), all of the vectors tγs, γ's'
in Eq. (1) lie in the same plane and the restoring force
acting on the atoms in the monolayer, according to
Eq. (2), has no component along the normal to the
monolayer. In the case of the carbon nanotube, the vec-
tors tγs, γ's' do not lie in the same plane and the restoring
force acting on an atom on the nanotube surface,
according to Eq. (2), can have a nonzero radial compo-
nent.
2
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We seek a solution to the set of equations (2) in the
form

(3)

It will be recalled that γ stands for (n, m); R1 and R2 are
the rotation matrices corresponding to the screw rota-
tion operators S1 and S2, respectively; A0 and A1 are the
displacement vectors of the atoms of the zeroth unit
cell; "q is the momentum of a phonon and "l is the
angular momentum of the phonon; ω is the frequency;
and zγ and ϕγ are the cylindrical coordinates of the γth
unit cell on the nanotube surface. Substituting Eq. (3)
into Eq. (2) reduces the infinite set of differential equa-
tions describing the motion of atoms of the carbon nan-
otube to the eigenvalue and eigenvector problem for a
dynamic 6 × 6 matrix. Given the solution to this prob-
lem, one can numerically calculate the dispersion
curves and polarization of phonons in the nanotube.

To calculate the phonon spectrum of the carbon nan-
otube, we need the numerical values of the stiffness
coefficients α and β and the vectors tγs, γ's' characteriz-
ing the equilibrium positions of the carbon atoms of the
perfect monolayer nanotube in a Cartesian coordinate
system. We choose the x axis to pass through the zeroth-
cell atom with index s = 0 and the z axis to coincide
with the nanotube axis. By acting with operators S1 and
S2 on the coordinates of the two atoms of the zeroth cell,
one can determine the Cartesian coordinates of the
atoms of the nanotube and then find the equilibrium
position vectors tγs, γ's'.

We determined the values of α and β by solving the
set of equations (2) describing atomic oscillation for the
case of a plane carbon monolayer. In this case, the rota-
tion matrices in Eq. (3) are equal to the identity matrix
and the atomic displacements in the monolayer plane
have the form

(4)

Uγs R1
nR2

mAs iqzγ ilϕγ iωt–+( ).exp=

Uγs As iqzzγ iqxxγ iωt–+( ),exp=
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Fig. 2. Phonon spectrum of an individual graphite mona-
tomic layer.
P

where qx and qz are the components of the wave vector
of a two-dimensional phonon in the xz coordinate plane
coinciding with the monolayer plane. Substituting
Eq. (4) into Eq. (2) reduces the infinite set of differen-
tial equations to the eigenvector and eigenvalue prob-
lem for a dynamic 4 × 4 matrix. By solving this prob-
lem, we found the dispersion curves and polarization of
two-dimensional phonons in the graphite monolayer.
We note that the order of the dynamic matrix of the car-
bon monolayer is associated with the Keating potential,
for which the restoring force acting on an atom dis-
placed along the normal to the monolayer vanishes in
the linear approximation and, hence, the component of
the atomic displacement vector along the monolayer
normal in Eq. (4) is equal to zero. The parameters α and
β are fitted under the assumptions that the frequency of
the optical vibration mode at the Γ point in the Brillouin
zone of the graphite monolayer equals 1582 cm–1 [3]
and the behavior of the phonon dispersion curves along
the ΓM, ΓK, and MK directions is similar to that deter-
mined from experimental phonon spectra of a graphite
crystal [4] for the case where the propagation vectors
and the atomic displacement vectors of phonons lie in
the graphite atomic sheets. These assumptions are jus-
tified, because the interaction between atomic sheets in
graphite is relatively weak and the properties of two-
dimensional phonons are mainly determined by the
elastic moduli of individual carbon monatomic layers.
The values of the parameters α and β thus fitted are α =
105216.76 dyn/cm and β = 84489.06 dyn/cm for the
equilibrium value of the carbon hexagon side in the
monolayer taken to be d0 = 1.418 Å. The dispersion
curves calculated for two-dimensional phonons in the
carbon monolayer are presented in Fig. 2. It follows
from Fig. 2 that the velocities of long-wavelength
acoustic phonons in the monolayer are V1 = 14.3 km/s
and V2 = 20.7 km/s. These values are close to the theo-
retical values of the velocities of long-wavelength
phonons in a carbon monolayer presented in [3] and are
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Fig. 3. Phonon spectra of a (20, 10) carbon nanotube as cal-
culated within the discrete model for l = 0, 1, and 2. The
nanotube radius is R = 6.785 Å.
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equal to V1 = 15.0 km/s and V2 = 21.1 km/s. It should be
noted that calculations of the vibration spectrum of a
graphite monolayer based on the Keating potential
were first performed in [5]; those calculations are at
variance with the data presented in [3, 4] because of the
inadequate values of the parameters α and β chosen in
[5].

We assumed that the parameters α and β of the Keat-
ing potential found for a carbon monolayer can be used
to calculate the phonon spectra of carbon nanotubes.

Calculations are performed for a (20, 10) nanotube,
for which the data on phonon dispersion are available in
the literature. For example, in [3], the phonon spectrum
of a (20, 10) nanotube was calculated using only trans-
lational symmetry without specifying the quantum
numbers of phonons: the longitudinal momentum and
angular momentum. The calculated phonon dispersion
curves for a nanotube with chirality indices (20, 10) are
presented in Fig. 3. The velocities of long-wavelength
acoustic phonons with orbital quantum number l = 0 are
found to be V1 = 14.1 km/s and V2 = 20.7 km/s; these
phonons belong to the longitudinal mode (in which
atoms are displaced along the axis of the nanotube) and
to the shear mode (in which atomic displacements are
perpendicular to the nanotube axis). In addition, the
nanotube supports a breathing phonon mode with a lim-
iting frequency equal to ωb = 161.2 cm–1; in this mode,
atoms are displaced in the radial direction and their dis-
placements have axial symmetry. An analysis of the
dispersion curves in Fig. 3 reveals that near the breath-
ing mode, there is a vibration mode with a limiting fre-
quency 228.7 cm–1 which corresponds to radial vibra-
tions of the nanotube sublattices relative to each other.
In the optical-frequency region, there are modes with
limiting frequencies 1575 and 1583 cm–1 in the long-
wavelength limit; these modes correspond to displace-
ments of the nanotube sublattices relative to each other
along the axis of the nanotube and to relative rotations
of the sublattices.

The dispersion curves for phonons with l ≠ 0 are dif-
ferent (Fig. 3).

We compared the numerically calculated frequen-
cies of long-wavelength phonons in the (20, 10) nano-
tube with the data from [3, 6] obtained using another
technique and a potential with many parameters. In
those papers, the frequency of the breathing mode in
the long-wavelength limit was calculated to be ωb =
170 cm–1 [6] and ωb = 165 cm–1 [3], which is close to
our result for this frequency, ωb = 161.2 cm–1.

3. CONTINUUM MODEL

In the continuum model, the carbon nanotube is rep-
resented as a cylindrical elastic shell of finite thickness.
This approximation is adequate if qd0 ! 1 and ld0/R !
1 (R is the radius of the nanotube), which corresponds
to the case where the phonon wavelength is large in
PHYSICS OF THE SOLID STATE      Vol. 44      No. 9      200
comparison with the interatomic distance. If the vibra-
tion amplitude of the thin elastic shell is small com-
pared to the shell thickness, the vibrations of the shell
can be described by the linear equations [7]

(5)

where µ is the Poisson ratio, ρ is the density of the
material of the shell, R is the radius of the middle cylin-
drical surface within the shell, h is the shell thickness,
and z and ϕ are the cylindrical coordinates of a point on
the middle cylindrical surface within the shell; uz, uϕ,
and ur are the components of the displacement vector in

the cylindrical coordinate frame; and c = 

(E is the Young modulus).

We seek solutions to Eqs. (5) for the components of
the displacement vector in the form

(6)

where A, B, and C are constants. By substituting
Eqs. (6) into Eqs. (5), we obtain a set of algebraic equa-
tions for the constants A, B, and C. From the condition
for a nontrivial solution of these equations to exist, we
obtain dispersion relations for elastic waves propagat-
ing through the shell.

We note that Eqs. (5) have the following simple par-
ticular solutions with l = 0 in the elastic-membrane
limit h = 0.

(1) uz = ur = 0 and uϕ = Bexp(–iωt + iqz). In this case,
the dispersion relation has the form

(7)

and the solution describes torsional waves propagating
along the elastic shell.

(2) uϕ = 0, uz = Aexp(iωt + iqz), and ur = Cexp(iωt +
iqz).

∂2uz

∂z2
----------

1 µ–

2R2
------------ ∂2

∂ϕ2
---------uz

1 µ+
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------------
∂2uϕ
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∂ur
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--------–+ +

1
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∂t2
----------,=
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∂z∂ϕ
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2
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This solution describes a wave propagating along
the shell. Under the conditions gh ! qR ! 1, the disper-
sion relations have the form

(8)

In the case of q = 0, the wave with frequency ω1 is a
radial shell vibration (A = 0, C ≠ 0) and corresponds to
the breathing mode. The second of dispersion relations
(8) in the case of q ~ 0 corresponds to a longitudinal
wave with A ≠ 0 and C = 0.

Generally, the dispersion relations for waves propa-
gating through the elastic shell are found by solving a
cubic equation following from Eqs. (5) for the fre-
quency squared ω2 at fixed values of q and l.

We determined the values of the phenomenological
parameters µ and c for the monolayer carbon nanotube
by fitting to the long-wavelength phonon spectra calcu-
lated within the discrete atomic model in the preceding
section. These fitting parameters are found to be µ =
0.065 and c = 20.59 km/s.

Figure 4 shows phonon spectra of the (20, 10) car-
bon nanotube calculated numerically within the contin-
uum approximation. The velocities of long-wavelength
acoustic phonons with l = 0 are V1 = 14.1 km/s and V2 =
20.6 km/s, and the frequency of the breathing mode is
ωb = 161.3 cm–1. The calculated spectra presented in
Fig. 4 correspond to a nanotube of zero thickness h = 0.
In the case of h ≠ 0, the calculated dispersion curve of
the breathing mode depends heavily on the thickness of
the nanotube. As an illustration, Fig. 5 shows the
numerically calculated phonon dispersion curves for a
(20, 10) carbon nanotube with h/R = 0.295.

Thus, the discrete and continuum models of carbon
nanotubes considered above may prove useful in ana-
lyzing data on Raman scattering on nanotubes, in esti-
mating the lattice heat capacity of an individual nano-
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Fig. 4. Phonon spectra of a carbon nanotube as calculated
within the continuum model for l = 0, 1, and 2. The nano-
tube radius is R = 6.785 Å, and the thickness of the nanotube
wall is zero.
PH
tube, and in analyzing the electron–phonon interaction
in nanotubes.

For example, scattering of an optical photon on a
carbon nanotube can be accompanied by the creation or
annihilation of a phonon and the photon–phonon inter-
action must obey certain selection rules following from
the conservation of energy, momentum, and angular
momentum. A Raman-active phonon mode of a nano-
tube is a breathing mode; the limiting frequency of this
mode (in inverse centimeters) as a function of the nan-
otube radius (in angstroms) is given by the following
formula, as can be seen from Eq. (8):

(9)ωb
1093.278
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Fig. 5. Phonon spectra of a carbon nanotube as calculated
within the continuum model for l = 0, 1, and 2. The nano-
tube radius is R = 6.785 Å, and the ratio of the wall thick-
ness of the nanotube equals 0.295.
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Fig. 6. Dependence of the limiting frequency of the breath-
ing mode on the nanotube radius as calculated within the
discrete model. The frequency ω is measured in inverse cen-
timeters; the radius R, in angstroms.
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Figure 6 shows the dependence of the frequency of
the breathing mode on the nanotube radius calculated
numerically in the long-wavelength limit within the
discrete model. It can be seen from Fig. 6 that a devia-
tion from Eq. (9) is observed only for nanotubes of
small radius. Calculations also show that the frequency
of the breathing mode virtually does not depend on the
nanotube chirality. These data and Eq. (9) can be used
to identify carbon nanotubes on the basis of experimen-
tal Raman scattering data.

The low-temperature heat capacity of a nanotube
can be calculated within the continuum model. In a
nanotube at low temperatures, there are acoustic
phonons with zero angular momentum and phonons
whose frequencies do not vanish in the limit q = 0 and
depend on the orbital quantum number l. The frequency
of long-wavelength acoustic phonons can be evaluated
from a simple formula,

(10)

where V is the velocity of an acoustic phonon with l =
0. At low temperatures, phonons are excited with vari-
ous values of the orbital quantum number l for which
"ω0l ≈ kBT, where kB is the Boltzmann constant and T is

ω0l
lV
R
-----,≈
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the temperature; therefore, anomalies can occur in the
temperature dependence of the nanotube heat capacity.
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