Physics of the Solid Sate, Vol. 44, No. 9, 2002, pp. 1611-1613. Trandated from Fizika Tverdogo Tela, Vol. 44, No. 9, 2002, pp. 1537-1539.

Original Russian Text Copyright © 2002 by Khanikaev, Granovski, Clerc.

METALS

AND SUPERCONDUCTORS

| nfluence of the Size Distribution of Granules
and of Thelir Attractivelnteraction on the Percolation Threshold
in Granulated Alloys

A. B. Khanikaev, A. B. Granovskii, and J. P. Clerc
Moscow State University, Vorob'’ evy gory, Moscow, 119899 Russia
e-mail: alhany@magn.ru, granov@magn.ru
Received September 17, 2001

Abstract—Numerical simulation was applied to study the influence of the size distribution of granules and the
interaction between them on the percolation threshold in granulated metal—insulator alloys. An alloy model was
considered in which metal granules have two characteristic sizes, | and L (with L > 1), and the size distribution
of granules of greater size L having an average value of approximately L, is described by anormal distribution
with astandard deviation d, by astep function with ahalfwidth d, or by adeltafunction. A model with attraction
between granules and mechanisms of trapping of an additional granule by an already developed cluster with a
characteristic trapping range Rwas a so considered. The percol ation threshold significantly growswith theratio
Lo/l and with Rfor both two- and three-dimensional cases and tendsto flattening at large L/l or R. The calculated
results make it possible to explain the high percolation threshold observed for the majority of granulated alloys.

© 2002 MAIK “ Nauka/lInterperiodica” .

1. A granulated metal-insulator alloy represents a
system consisting of metal granules dispersed in the
insulator host. A metal—insulator transition takes place
in the vicinity of acritical volume concentration p, of a
metal, referred to asthe percolation threshold, such that
the system is characterized by metal conduction at p >
p. and isan insulator at p < p. [1-3]. Granulated alloys
with a composition close to p, are characterized by
unique properties [1-3]. Magnetic granulated alloysfor
which the tunnel-type giant magnetoresistance [4],
giant anomalous Hall effect [5], enhanced magnetoop-
tical effects, etc. have relatively recently been detected
are of particular interest.

The most important characteristic of a granulated
aloy isthe percolation threshold p.. The effective-field
theory developed for a three-dimensional (3D) system
of a spherical metal and insulator particles gives p, =
0.33 [1-3]. Numerical caculations yield p, = 0.32
within the site-percolation model for asimple cubic lat-
tice and lower values of p, for other lattices and within
the bond-percolation model [1-3].

Experiments [6] on powders of spherical particles
alike in diameter yielded p, = 0.27 £ 0.05, which con-
forms to the theoretical predictions. At the same time,
in deposited granulated systems, the values of p, have
been found to liein therange 0.5-0.6 [4, 5, 7]. Since p,
can depend on many factors, including the particle
shape [8], the character of short- and long-range order
[1-3], and film thickness [6], different standpoints have
been advanced on the observed high values of p.; how-
ever, none of the hypotheses is consistent with experi-

mental data. For example, according to numerous
microscopic studies, the shape of particles is close to
spherical, tunneling should decrease p,, and the two-
dimensional character of films 1-2 um thick with
nanometer-sized granules affects p, only slightly [6].

In this paper, we suggest a simple explanation for
high values of p. in granulated films which is based on
the size distribution of granules. In Section 2, the pres-
ence of granules of significantly different sizesis pos-
tulated. By using the Monte Carlo method, it is shown
that this assumption leads to increased values of p, in
both 2D and 3D cases. In Section 3, we perform acom-
puter simulation of the formation of large clusters
(including nonspherical ones) due to attractive interac-
tion between granules and consider the influence of this
attraction on p.. In earlier papers (see [3, 9] and refer-
ences therein), the attraction, considered only at dis-
tances shorter than the granule radius, was shown to
decrease p, [9], because the attraction between granules
improveselectrical contact between them. It was shown
in [10] that an increase in p, can take place even if the
attraction range is small, because more compact gran-
ules form from fine ones and the system becomes dis-
continuous.

In this study, we consider the case of alarge interac-
tion range in which the | atter tendency is dominant and
p. significantly increases. The attraction between gran-
ules can be due to both Coulomb forces and magnetic
interaction. It is evident that most of the small granules
in nanocomposites are charged; consequently, granules
can be drawn to one another. Furthermore, small parti-
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Fig. 1. Dependence of the percolation threshold p, on the
relative size L/l of large granules for the 2D and 3D cases.
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Fig. 2. Example of configurations found in the model with
attraction in the 2D case.

R/l

Fig. 3. Dependence of the percolation threshold on the trap-
ping range R in the 2D and 3D cases.

cles possessing a charge are attracted to one another
due to electrostatic image forces. In magnetic systems,
single-domain particles tend to form sufficiently large
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aggregates or chains with magnetic-flux closure. As a
result of these interactions, sufficiently large clusters
arise along with fine ones in granulated aloys, which
causes p, to increase.

2. Now, we consider a granulated metal—insulator
alloy characterized by two types of metal granules (par-
ticles) of diameters| and L > 1. We assume that small
particles have awell-defined diameter | coinciding with
the cell size of the lattice percolation problem, while
the size distribution of large particles about the average
L, is described by (i) the delta function f(L) = A&(L —
Ly), or (ii) the normal distribution f(L) = Bexp[—(L —
Lo)?/(2d)?], or (iii) a uniform distribution in a certain
range 2d wide:

HL) = [C: Log—d<L<Ly+d
Ep: Lo+td<L; A,—d>L.

Various versions of f(L) are taken to find the functional
dependence of p. on the size distribution. Let the distri-
bution parameters A, B, and C be determined from the
normalization conditions such that the number of gran-
ules of the second type is always ten times smaller than
the number of granules of thefirst type.

In our numerical experiment, granules were ran-
domly distributed over the sample volume. The bound-
aries of granules distributed in the preceding iteration
cycles were not crossed. After the granules had been
distributed over the volume, discretization was carried
out. For this purpose, the sample volume was parti-
tioned into cells of sizel; the cellsthat fell within clus-
ters were considered to be occupied, and the cells that
fell outside of the clusterswere considered to be empty.
The percolation threshold for the sample was deter-
mined by the Hoschen—Kapelmann method (also
known asthe cluster-labeling method) [8]. The percola
tion probability was found by performing 50 iterations
for each concentration.

In the 2D and 3D cases, the sample size was 100l
and 501, respectively. The calculated dependences of
the percolation threshold p, on the relative size L/I of
large particlesare shownin Fig. 1 for aratio of the num-
bers of small and large granules equal to n = 10.

For particles of the same size L = I, we found p, =
0.32 and 0.58 in the 2D and 3D cases, respectively,
which coincides with the published data [1-3]. The
valueof p.increaseswiththeratio L/l to agreater extent
in the 3D case, tending to flattening at large L/I. It is
noteworthy that the size L of large particles is much
smaller than the size of the sample (lattice); therefore,
the effect of boundary conditionsis insignificant.

This result can be readily understood from simple
geometrical considerations or using the Scher—Zallen
invariant [11]. According to the Scher—Zallen condition
[11] in percolation problems, the product Zp, remains
invariant for any packing of particles. Here, Z is the
effective coordination number or the number of good
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electric contacts between the nearest neighbor parti-
cles. In the presence of large particles, Z decreases;
hence, p, should depend not only on the ratio L/I but
also on the relative number Nt of large particles.

It follows that the function p,(n) has a maximum at
acertainvalueof L/I. Thisconclusionisfully confirmed
by calculations. It also follows that the value of p. (L/1)
depends only weekly on the size distribution of large
granules. Indeed, to within the error of the numerical
experiment, the results shown in Fig. 1 are virtually
identical for any size distribution of granules.

3. Large granules can aso be nonspherical. Let us
elucidate whether the percol ation threshold increasesin
this case. To model the formation of large clusters
numerically, we assume that all the granules are of the
same size | and are attracted to each other at a certain
distance R. In the course of the numerical experiment,
the coordinates of the occupied cells were randomly
generated in successive iteration cycles. When the dis-
tance from a cell to the cellsfilled in the preceding iter-
ation was shorter than R, its coordinates were
exchanged with the coordinates of the empty cell near-
est to the center of mass of the cluster generated in the
next iteration. In this case, the parameter R character-
izesthe attraction strength or the particle trapping range
and clusters represent branched parts of afractal struc-
ture rather than compact spherical formations. One of
the clusters obtained in the 2D caseis shown in Fig. 2.
The calculated dependences of the percolation thresh-
old on the ratio R/l for the 2D and 3D cases are dis-
played in Fig. 3. These dependences exhibit the same
behavior asthe dependence of the percolation threshold
on the particle size L/l (Fig. 1); i.e., the percolation
threshold a'so significantly increases, reaching a value
of p.=0.58 in the 3D case.
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Thus, the high percolation thresholds observed in
granulated alloys can be due to rather large spherical
and nonspherical clusters present in these systems.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 00-02-17797.

REFERENCES

B. I. Shklovskit and A. L. Efros, Electronic Properties of
Doped Semiconductors (Nauka, Moscow, 1979; Springer,
New York, 1984).

2. J.P.Clerc, G. Giraund, and J. M. Laugier, Adv. Phys. 3,
191 (1990).

3. M. B. Isichenco, Rev. Mod. Phys. 64, 961 (1992).

4. S. Mitani, H. Fujimori, and K. Takanashi, J. Magn.
Magn. Mater. 198-199, 179 (1999).

5. A. B. Pakhomov and X. Yan, Solid State Commun. 99,
139 (1996).

6. J.P.Clerc, G. Giraud, S. Alexander, and E. Guyon, Phys.
Rev. B 22, 2489 (1980).

7. C.L.Chien, J. Appl. Phys. 69, 5267 (1991).
E. W. Brouer, J. Phys. C 19, 7183 (1986).

9. L. R. Bug, S. A. Safran, G. S. Grest, and |. Webman,
Phys. Rev. Lett. 55, 1896 (1985).

10. H. Gould and J. Tobochnik, An Introduction to Computer
Smulation Methods. Applications to Physical Systems
(Addison-Wesdley, Reading, 1988; Mir, Moscow, 1990).

11. H. Scher and R. Zallen, J. Chem. Phys. 53, 3759 (1970).

=

©

Trandated by A. Kazantsev



Physics of the Solid Sate, Vol. 44, No. 9, 2002, pp. 1614-1621. Translated from Fizika Tverdogo Tela, \ol. 44, No. 9, 2002, pp. 1540-1546.

Original Russian Text Copyright © 2002 by Bondar, Sarbey, Tomchuk.

SEMICONDUCTORS

AND DIELECTRICS

Polarization Dependence of the Spontaneous Radiation
of Hot Electrons

V.M. Bondar, O. G. Sarbey, and P. M. Tomchuk

Intitute of Physics, National Academy of Sciences of Ukraine, pr. Nauki 46, Kiev, 03028 Ukraine
e-mail: sarbey@iop.kiev.ua
Received June 9, 2001

Abstract—This paper reports on the results of investigationsinto the polarization dependence of the spontane-
ous radiation of hot electrons due to their intervalley redistribution in multivalley semiconductors. It is demon-
strated that the radiation is predominantly polarized normally to the electric field and the direction of polariza-
tion and itsintensity can vary according to the degree of electron redistribution, the electron concentration, and
the heating electric field. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The spontaneous radiation of charge carriers of
crystals with cubic symmetry is not polarized. How-
ever, the cubic symmetry of the electron distribution in
the space of wave vectors can be broken by a heating
electric field. The symmetry breaking can be governed
by different mechanisms. In particular, Vas' ko [1] and
Malevich[2] considered anumber of mechanisms asso-
ciated with radiation polarization and absorption
anisotropy.

In the present work, weinvestigated the polarization
dependence of the spontaneous radiation of hot elec-
trons due to their intervalley redistribution in multival-
ley semiconductors. It is well known that absorption
and radiation of free electrons become possible only in
the presence of a “third body.” Under normal condi-
tions, therole of athird body is played by phonons and
impurities providing the law of conservation of quasi-
momentum. Note that scattering by phonons and impu-
rities is substantially anisotropic in multivalley semi-
conductors (germanium, silicon, etc.). This leads to a
polarization dependence of the spontaneous radiation
upon nonuniform population of the valleys.

2. FORMULATION OF THE PROBLEM.
ACOUSTIC SCATTERING

Let us first consider anisotropic scattering of an
electron by acoustic vibrations of thelatticein multival-
ley semiconductors. We proceed from the collision
integral of electrons scattered by acoustic phonons in
which the effect of thefield of ahigh-frequency electro-

magnetic wave on the collision event is taken into
account; that is,

=3 3 W

(9 ql==

x[f(pt+7q) (NG £ 1) - f(p)NG] (1)
X B[ €514 pq—Ep —h W) — 1] + f(p—AQ)NS
—fE)(NS +1)3[ &, 14—, + A 0],

where f(p) is the distribution function of the electron
momenta p, N© is the distribution function of phonons
of the sth branch, # wff) isthe phonon energy, Awisthe
photon energy, W®(q) is the scattering probability, |, is
the Bessel function of the Ith order, m; isthe transverse

electron mass, c is the velocity of light, and vy is the
guantity defined by the formula

v = Aq+ HE - B(Al)(lo). 2

Here, |, isthe unit vector of therotation axis of the mass
ellipsoid of the ith valley and A is the vector-potential
of the electromagnetic wave.

It is assumed that the scattering is quasi-elastic and
that

where 0 is the lattice temperature expressed in units of
energy.
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POLARIZATION DEPENDENCE OF THE SPONTANEOUS RADIATION

Thetotal probability of electron scattering by all the
three acoustic branches is defined by the expression

3
_ (s) 2mno1 Hodr
W = 3 W = 5 z[zd %A |
° ©)
Z_ﬁ[l _ oty }do_qmz
Sé Uql JUq0”

where s is the longitudinal velocity of sound, s isthe
transverse velocity of sound, V is the volume, p is the
density of the material, and =, and %, are the constants
of the deformation potential.

According to formula (1), the energy transferred
from electrons to the lattice in a unit time in the pres-
ence of an electromagnetic wave can be represented by
the expression

P= js(p)ff(p)dp = Py

o

v 3hoo
(211R)

S Ifwpt@pw@ikLs @

| = —o0

x 0 & —€&,— 1AW,

where P, isthe transferred energy in the absence of the
electromagnetic waveand p' = p + £Q.

We will restrict our consideration to the case of one-
quantum processes (i.e., | = +1).

The estimates indicate that the argument of the
Bessdl function is considerably less than unity for vir-
tually all the frequencies in the optical range. On this
basis, the correction to the energy transferred to the lat-
tice in the presence of the electromagnetic wave field
can be written in the following form:

Vﬁw I pf(p)

APY = P_p, =

)
Ide(Q)D &Y DB[E —g, Tha).

After the transition, the electron energy is determined
as g, = &, * hw. Hence, it follows that AP™) describes
the processes associated with photon absorption,
whereas AP©) characterizes the processes due to photon
emission.

Expression (5) is accepted as abasis for the calcula-
tion of both the absorption caused by the electromag-
netic wave field and the wave-field-induced radiation.
As will be shown below, the spontaneous radiation of
interest can be easily obtained from the expression for
radiation induced by an electromagnetic wave field.

It is convenient to perform integration in expres-
sion (5) in distorted coordinates in which the initia
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ellipsoidal isoenergetic surfaces become spherical;
that is,

Py = ph Py = %E i
n =95, Q) = E{%E aj (6)
_ pu _ &
P 2mEI 2m,  2my

In these coordinates, the delta function takes the form

Oley—€, )]
= 6[(2?“? thDcosvD+ ﬁw} @

where v* isthe angle between p* and g*.

By using the deltafunction, it iseasy to carry out the
integration in expression (5) with respect to v*. In this
case, we have

cosvl] = [+hw (thb} quD,
2my Mg ®
|cosv < 1.
Relationship (8) and the condition |cosv < 1 deter-

mine the limits of integration with respect to g*. As a
result, we obtain

[ep i) Idp'W(q)vzeS[epv—sp—ﬁw]
= A [dpCt e, ) fdaD(a Dy D

[(ﬁqib

m 9)
O — TPELL! (
o Ethosv hw} 2n— ﬁ

T

Omax

J’ dpUplifo(e ) | qubDJ’ dQ WDy,

Amin

Here, dQ;;D is the solid angle in the g* space and the

quantities gy, and g, can be determined from condi-
tion (8) and, in the case of absorption, take the form

MO = PO+ /0 + 2mfiw,
hOmn = —p0+ 4/ pl + 2m .

In relationship (9), we used the symmetric function
fo(€) instead of the function f(p).

(10)
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It follows from formula (3) that

2ol

2 2
— 5[4+ cos'V[
pVhESH

W(@) = WD =
(11)

b 0
+=[1- cos’v( 2o’y

s O
Here, v* isthe angle between the vector g* and the unit
vector TO . Since the probability W does not depend on
the modulus g* and the quantity y?[as can be seen from
relationship (2)] is proportional to g*2, the integration
can be easily performed with respect to both dg* and
dQgy = cosv* dv* dd2. The remaining integral over p*
is given by

[

[epCptf(ho+ &) (e + 2¢) fole) = nui
0

n
E

(12)
Ide(Eﬁw

g;—(i” + 2%«3‘X

In expression (12), the Maxwellian function with the
effective electron temperature 6; in the ith valley is
taken as fy(€) and n; is the electron concentration in
theith valley.

Integrals of type (12) can be expressed through the
Bessel function of the imaginary argument K,(a):

00

g_—
I dxe *x"(x* + 2ax)

(13)

= (- 1)”—rB; {a eKy(@) ,

where ™ is the gamma function.

In the calculations of the radiation, instead of the
limits specified by relationships (10), we should write

A = PO+ ./ pCF —2mfico,
Aimin = PO—4/pT —2mfw

and the integration with respect to p* should be per-
formed within the limits defined by the relationship

J2mofiw < pU< oo,

(14)
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As a conseguence, we obtain

2 2 3/2
APY = EAD + A|I g 2 n6
' t® mr®03./m /6
0 1l

(15)
1 O 3§ d |j<1(a)
X e ,
choor dal a |
@ _ A% *),
APy = —expDe AP;
16
o (16)
T

In relationship (15), 15 and t(” are the transverse and
longitudinal components of the tensor of the relaxation
time at € = 6, respectively, due to electron scattering by
acoustic phonons.

By using formulas (15) and (16), it is easy to deduce
a general expression for the absorption coefficient
related to the acoustic scattering; that is,

Z (AP™) + AP

-
K i )

(17)

where

C«/_oz_

C'\/S_O[N:IZAO
4~ 4n O 2

(18)

isthe flux incident on the semiconductor, €, isthe static
permittivity, E is the electric field of the electromag-
netic wave, A, is the amplitude of the vector-potential
defined by the formula

A = goAycos(wt —xz), (29
o is the unit vector specifying the polarization of the
wave, and X is the wave vector.

Next, we take into account that the polarization-
dependent factor in relationship (15) can be reduced to
the form

AZ .\ Al
m, T2 m”Tﬁo)
. (20)
l 1

As a result, from expression (17) with due regard for
formulas (15), (16), and (18), we obtain a general rela-
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tionship for the absorption coefficient in the following
form:

« - 18/me Zneg“2
T3 ch
& 8w
g 1 1
X D (0) + |: (0) (O)i|(q0 0) D
Omgtg” =My MpTg O 21)
FhomU 38 d Ki(a)
%l *Pog | DDEa' dal a =
BT

Equation (21) holds in the classical limit (6, > #w)
and in the quantum limit (6, < #Aw). In the limiting
cases, the general formula can be substantially simpli-
fied and, as aresult, we obtain

32ﬁr e 6,
= 3 Jecw? Z i 4/:

0]

. (22)
1 1
omtd? Lmyr mD O
a6, > Awand
« = 4m € 1o
3 ﬁ Ue U
(23)
U 1 1
n; D (0) + |: (0) (0)i|(q0 0) D
@ HMoton =myTs moth
a6, < hw

It isevident that, in the general case, when thevalley
populations n; are not equal to each other or the electron
temperatures 6, in different valleys differ, the absorp-
tion coefficient depends on the polarization of the elec-
tromagnetic wave. The difference in the valley popula-
tions can be associated either with the different degrees
of electron heating in the valleys or with the uniaxial
deformations of the sample.

For isotropic acoustic scattering, the relaxation time
1(€) isascalar quantity and has the standard form

3/2
_ J2m7e%, o (24)
T(S) T ps’h
In this case, instead of formula (22), we have
2
_RJ/n_en y (25)
3.Jecmi(®)w
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Formula (25) differs from the classical Drude for-

8
mulaby the factor — .
due to the fact that, in the classical Drude theory, the
energy dependence of the relaxation timeisignored. In
the quantum limit, when the scattering is anisotropic,
instead of formula (23), we obtain

_ 41N 1
3me, /eow’ T(hw)’

To avoid confusion, werecall that, in formulas (25) and
(26), n is the total electron concentration, whereas n,
involved in formulas (22) and (23) is the electron con-
centration in the ith valley (n = Zn,).

Expression (16) determinesthe radiation induced by
the wave field. The spontaneous radiation of hot elec-
trons under consideration can easily be obtained for-
mally from expression (16). For this purpose, we nor-
malize the vector-potential of the el ectromagnetic wave
[defined by expression (19)] in such amanner that there
will be Ny, photons in the volume V, i.e., we use the
condition

Thisinsignificant differenceis

(26)

2

Ly e = E-
\—/Nphhoo = I (269)
from which it follows that
nﬁ
Ao = cEEN,E (27)

By substituting expression (27) into relationship (16),
assuming that Ny, = 1, and multiplying the resultant
expression by the density of fina states of the field, we
obtain the formulafor the spontaneous radiation.

The density of final states of the field in a unit fre-
guency interval at the solid angle dQ is given by

2
VK dk3d§2 __V 3(0de.
(2mh)"dw  (21C)

After the above transformations, we obtain the fol-
lowing expression for the contribution made by hot
electrons of the ith valley to the spontaneous radiation:

32
wo =

dp(w) =

(28)

ene

ZJéC
(O)}(CIO 0)%

MpTg

0
Mgty

03 ad Ky(a)
X %ﬁi e d_a.ID——al “%dQ,

0

g 1 [ 1
myTy

(29)

0]

aizz—ei.
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In the quantum range of frequencies, i.e., for fre-

guencies at which g, = hio > 1, expression (29) has a

29
simpleform,
_ V D 1 1
wo — + [ }(CIO o)%
2477 DnDT(O) m”Tl(lO) mgT (DO)
2 3/2 (30)
NIRRT I
J@cS O] 8, O

In this range of frequencies, the spontaneous radia-
tion exponentially depends on the el ectron temperature.
A different situation occursin the classical range of fre-
guencies (a < 1). Inthis case, we have

) v U1 1
W = (0) + |: (0) (0)i|(q0 0) O
3 [mDr mT” Moty O
(31)
eznie?,/z
X 7dQ.
Joc

3. IMPURITY SCATTERING

For impurity scattering, the power induced by the
field of the electromagnetic wave, which is absorbed or
radiated by electrons, has the form of expression (5)
with the only differencethat, instead of formula (3), the
scattering probability W(q) is defined by the expr on

mingh

(2T[ﬁ) 4¢" N
EHJD '

W(a) = =

(32)

Here, N isthe concentration of ionized impurities, ryis
the shielding length, and x, isthe statistical permittivity.
The scattering probability (32) iscalculated for the case
of scattering of an electron by the screened Coulomb
potential.

Let us dwell briefly on a procedure of calculating
the required integrals [see expression (5)]. We begin
with the calculation of integral (9) for the case of impu-
rity scattering. Integral (9) corresponds to the case of
absorption of the photon energy 7w. Now, we consider
the case of emission of the photon energy 7w.

Taking into account expressions (6) and (7), by anal-
ogy with integral (9), we obtain

[ort®) Idp-w(q)y25{ €y — &, + 10}

00 Omax (33)
= 2mh’mym, [ def(e) [ dalgfdRW@Dy’.
hw Amin

Relationship (33) accounts for the fact that photons can
be emitted only by electrons with energies € = %w.
Moreover, the quantities (. and d., in formula (32)

BONDAR et al.

for the radiation are determined by expressions (14).
When calculating integrals (9) for acoustic scattering,
we performed the integration with respect to the modu-
lusg*.

This treatment was convenient because the scatter-
ing probability W(g*) did not depend on the magnitude
of thevector g* and was dependent on the anglesaone.
In the case of photon emission, asfollowsfrom formula
(32), the scattering probability depends on the modulus
of the transferred momentum. Hence, it is assumed that
f(€) isthe Maxwellian function of theith valley with the
temperature 6, and concentration n;:

f(e) = o 00 (34)

" 2n8)®Pm,

In relationship (33), we shift the limits of integration
with respect to the energy (€ = €' + 7w) and take the
integral by parts with respect to the variable €'. As a
result, relationship (33) can be transformed into the
expression

[ort®) Idp-w(q)y25{ €y — &, + 10}

nemDexpD GQH -
= J’ds exp 6
0 I

(2m8)*,/m, )

Ol
* Q102 WDV g .,

d 'min
—_ [qDJ’quDW(qE)VZ] a9= Gpin 38' ’

Here, the quantities q,,, and g, coincide (owing to
the energy shift) with those determined by expression
(20). It follows from relationship (35) that the case of
radiation differs from the case of absorption only inthe

hw
factor e . Consequently, relationship (16) also holds
for impurity scattering.
The calculation of the integrals with respect to the
angles J’quDW(q E)y2 presents no problems, and we
easily abtain

_ (emh)® 4eD m; 7 TN

dQ_ Wi =
(36)
0 m [
x DAGB,(aD) + Aﬁ[—Bl(qE) + 2By 0.
0 Il [
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Here, we introduced the following designations:

1-b° 1
By(qD = b— o = arctang,,
-1 .1 1
B,(qD = i + barctanb, (37)
m 1
b = —=—Li+ a
m”_mD%L (roql:biED
Next, we change over to the dimensionless variables
X = ei in relationship (35) and substitute expression

(36) into relationship (35). We take into account that, in
the new variables,

(2my8,)20 # oV
max DTD 1/2 %("' GQE %,

(39)
_ @m8)"0 e, o lert
min h |:| |:|

As a conseguence, from relationship (35), we obtain

[opf®) fdp'W(q)vza{ &y — &, + 16}

_ (2mh)’e'Nnprm2 my 2

V X(Z) [l 9 O ”_m[p (39)
. Iolxe‘*{ w(q;nax); Can g
/s% + —G(I_*E
where
V(@) = By(a) + (dolo)| ~By(aD) + Z%i B.(c) | a0

Recall that, in formula (40), q, is the unit vector
specifying the polarization of the electromagnetic wave
and |, is the unit vector directed along the axis of rota-
tion of the mass ellipsoid of theith valley.

From relationship (39), we easily determine the cor-
rections to the power transferred to (or removed from)
the electron subsystem due to the action of the electro-
magnetic wave.

According to expressions (5) and (39), we obtain the
formulas
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N — —A
ax5c w(my—mg)
s (X W) + () (1)

By using relationship (41), we obtain a genera
expression for the coefficient of light absorption by free
electronsin the case when anisotropic impurity scatter-
ing in multivalley semiconductors plays a dominant
role. Form formulas (17) and (41), we derive the
expression

e’ Nmy#

- 2 3/2
K= (m xg/zc(m|| my)’w’ (42)

n; h dXE { l'I',(qmax) + l'I'J(qmln)}
X Z T %L — ex pD AN

7,0
Sy e

Expression (42) can be substantialy simplified in dif-

ferent limiting cases. For example, at ﬁe_w > 1, the

quantities gy, and gy, in theintegrand in expression
(42) can be taken as

q;nax:q:"nin:D ﬁ [l

Then,

00dxe_x{ l'I',(q;nax) + LIJ(q;nln)} ~ 2/\/.,_-[ LIJ(q')/\/E
Ao

/x%+%‘%

Let us now write a general expression for the radiation
of hot electrons of the ith valley in the case of impurity
scattering. By using relationship (41) and repeating the
procedures used to derive formula (29), we easily
obtain

O%

3 e°Nn, /mA°dQ expLLher
4(2m**xec’ /B i(my-my)? 0 B0
X wdxe_x{ W(Omax) + P(Ain)} (43)

OH

/X%H%E
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Intensity, arb.units
AULAW N
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180 270 360
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Dependences of the radiation intensity of n-Ge on the turn
angle of the polarizer. Uniaxial pressure, P, kbar/cm?: (1) 0,
(2) 1.0, (3) 2.0, (4) 3.0, (5) 4.0, and (6) 6.0.

4. RESULTS AND DISCUSSION

Equations (29) and (43) describe the electromag-
netic radiation of electrons of asingle valley. The struc-
ture of these equations is such that both equations and
their sum can be written in the form

W = R+ Q%(qo, io).

For amultivalley semiconductor, it isnecessary to carry
out summation of the radiation over al equivalent val-

leys.

(44)

WY = SR+ Qe ig],

where R and Q; depend on the lattice temperature,
impurity concentration, electron temperatures, and
electron concentrations in the valleys. As an example,
we consider germanium, because the radiation of hot
electrons from germanium has been studied in a num-
ber of works [3-5]. It is assumed that the electric field
is directed along the [111] axis of the crystal. In this
case, all the valleys can be divided into two groups with
different electron temperatures and different electron
concentrationsin the valleys. Thefirst group containsa
single valley located on the [111] axis, and the second

group consists of three valleys located on the [111],
[111], and [111] axes.

After summation in formula (444), in the case under
consideration, we obtain

(449)

we = R1+3R2+Q1+Q2
(45)

2
+ é(%x%y + Coy %oz * GoxJoz) (Q1 — Q5).
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It can easily be shown that extreme values of the

anisotropic part are reached at do, = Goy = Qo = jé with
the constraint g, + Qo, + 0o, = 0, i.€., inthe [111] direc-
tion and in the plane perpendicular to this direction,
which, what more, follows from symmetry consider-
ations.

For definiteness, we assume that the propagation
wave vector is directed along the [110] axis, conse-

quently, the polarization vector liesin the (110) plane.
The sense of the polarization vector in this plane can be
specified, for example, by the angle a the vector makes
with the [111] axis. After simple transformations, for-
mula (45) is rearranged to the form

W = Ry+3R,+5Q,+ (Qu-Q))oos’(a)  (458)

and the degree of polarization is represented by the for-
mula

(46)

T
2(Ri+3R;) +Q  + §Q2

It follows from expressions (29) and (43) that R> 0,
Q <0, and |R|=|Q|for germanium characterized by the

ratio %’ = 0.05. Consequently, according to formula
I

(46), the radiation polarization reaches a maximum
value close to 100% and the polarization vector is pre-
dominantly directed acrosstheelectricfieldat Q, < Q;.
This means that, in the case when a single valley
located on the [111] axisis populated by electrons, the
electromagnetic waves with polarization along the
minor axis of the energy ellipsoid are predominantly
emitted independently of the emission wavelength, the
electric field strength, and the electron scattering mech-
anism. For Q; = Q,, i.e., when the el ectron temperatures
and electron concentrations in valleys of both groups
are equal to each other, the polarization is absent. At
Q, > Q,, theradiation is predominantly polarized along
the electric field and the degree of polarization reaches
a maximum value of about 25% at Q, > Q,. When the
partial populations of valleys in both groups differ, the
radiation polarization depends on the electric field, the
emission wavelength, the degree of crystal doping, etc.

As an illustration, the figure presents the results of
the radiation polarlzatl on measurements carried out
by V.M. Bondar? for germanium crystals doped with
antimony at aconcentration of 10> cm=3. The measure-

1 Detailed description of the experimental procedure and experi-
mental datawill be published in a separate paper.
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ments were performed at atemperature of about 5K in
an electric field with astrength of 50 V/cm in the wave-
length range 80-120 pm. In this figure, zero corre-
sponds to such a configuration of the polarizer and the
sample when the polarization lines are directed along
the electric field. Different curves were obtained at dif-
ferent uniaxial pressures applied parallel to the electric
field as aligned along the [111] axis. In this case, the
electrons predominantly occupy the [111] valley both
in the heating field and under the applied pressure. At a
maximum pressure (about 7 tn/cm?), virtually al the
electrons are located in this valley.

Itisseenfrom thefigurethat, at al the pressures, the
radiation is polarized perpendicularly to the electric
field and, in accordance with the developed theory, the
degree of polarization increases with an increase in the
pressure, i.e., whenthe electronsaretransferred into the
[111] valley. However, the maximum degree of polar-
ization (about 25%) is substantially less than that pre-
dicted from the theory. Moreover, the degree of polar-
ization depends on the heating field. There are severa
reasons for this discrepancy between the theory and
experiment. First, theinsignificant decreasein the mea-
sured degree of polarization is associated with imper-
fections in the polarization analyzer. Second, a certain
depol arization takes place when the radiation |eaves the
crystal. Third, one of the main reasons is that, at low
temperatures of the crystal, the polarization occurs
through the competing mechanism with its preferential
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direction along the electric field. It is well known that,
at low temperatures, the asymmetric part of the distri-
bution function becomes significant and comparable to
the symmetric part. Proper alowance made for this cir-
cumstance can lead to better agreement between the
theoretical and available experimental results. On the
other hand, it is expedient to perform measurements of
the radiation polarization of hot electrons at higher tem-
peratures of the lattice (for example, at T = 77 K) for
which the assumptions underlying the theory hold
good.
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Abstract—The temperature dependence of electrical resistivity in LaSrNiOy, . 5 ceramics synthesized using
various techniques and subjected to heat treatment is studied. The occurrence of a metal—semiconductor tran-
sition is shown to be accounted for by the Anderson carrier localization originating from the random arrange-
ment of oxygen vacancies.© 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Investigation of superconducting oxide ceramics
and of their structural analogs shows that their conduc-
tion isdue, to alarge extent, to inhomogeneitiesin their
microstructure (structural defects, charge nonstoichi-
ometry, microphase inhomogeneity), which might
depend substantially on the actual conditions of prepa-
ration and heat treatment. The nickel-containing oxides
La,_,Sr,NiOQ,, which areisostructural to superconduct-
ing cuprates, reveal, in addition to many features which
make these compounds similar to cuprates (similarity
between the electronic spectra of the Ni and Cu 3d
states, the possibility of changing the valence state, sus-
ceptibility of the low-spin Ni®* and Cu?* ions to Jahn—
Teller distortions), some specific transport properties;
moreover, they have not thus far been shown to be
superconducting. Substitution of strontium for lantha-
num was found [1] to change the properties of
La, _,Sr,NiO, from those of an antiferromagnetic insu-
|ator to those of a metallic conductor, but much slower
than occursin L&, _,Sr,CuQ,; indeed, metallic conduc-
tion setsin the nickelates for temperatures >100 K only
at x = 1. At the same time, the conduction in LaSrNiO,
has a semiconducting character within the temperature
interval 10-300 K [2]. To establish the mechanism of
the onset of metallic conduction in the nickelates, we
studied the transport properties of the LaSrNiO;, . 5
ceramics (synthesized using various techniques) and
their variation under heat treatment.

LaSrNiO, . 5 belongs to the class of layered perovs-
kites with a K,NiF,-type lattice. The nickel ionsin the
LaSrNiO, structure do not produce an EPR signal [3,
4]. The weak EPR signals sometimes observed in this
compound are due to various paramagnetic defects
originating from charge or structural nonstoichiometry
[5, 6].

2. SAMPLE PREPARATION
AND MEASUREMENT TECHNIQUES

The LaSrNiO, ceramics were synthesized using
standard solid-phase technology. Spectroscopically
pure La,0O;, NiO, and SrCO; weretakeninal:1:1
stoichiometric ratio and crushed in a Pulversette 6
(Fritsch) ball mill (with an agate container). The pow-
der was heated in a corundum crucible at 1150°C in air
for 12 h and subsequently cooled slowly to room tem-
perature. The product thus obtained was again crushed,
pressedin pellets, sinteredinair at 1150°Cfor 12 h, and
then cooled to room temperature (sample Al). Part of
sample Al wasanneaed at 850K for 10 hin apure oxy-
gen flow (sample B1). Samples Al and B1 were addi-
tionally annealed in air at 500°C for 1 h (regimel, sam-
ples A2 and B2) and at 700°C for 4 h (regime Il, sam-
ples A3 and B3); in both cases, the sampleswere cooled
slowly to room temperature in air. Sample C was syn-
thesized by nitrate decomposition using the technique
described in [7], and a preliminary study of it was
reported in [2]. All samples were found to be single-
phase within the x-ray diffraction sensitivity and to
belong to the K,NiF, structural type. The lattice para
meters extracted from the x-ray diffraction patterns are
listed in Table 1.

The temperature dependence of the electrical resis-
tivity was measured using the conventional four-probe
method within the temperature interval 15-340 K. The
measurements were carried out on a computerized sys-
tem combined with a CS-202 helium cryostat (APD
Cryogenics USA). Indium was used as contacts. The
reliability of measurements was ensured by repeated
reversal of the dc current direction at each temperature
point.

The EPR measurements were performed on an
ERS-230 EPR spectrometer in the X range at tempera-
tures from 10 to 300 K.

1063-7834/02/4409-1622%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Table 1. Lattice parameters and some data on the electrical resistivity of the LaSrNiO, .. 5 ceramics
(dp/dT) :
Sample a A c, A Ty, K ,10°%Qcm| pg, 10°Q cm > T
p tr P10k Po 10 O am/K
Al 3.832 12.376 155 1.67 113 2.18
A2 150 161 1.02 2.58
A3 3.829 12.419 - 4.67 - -
Bl 3.827 12.374 152 1.87 145 2.00
B2 152 251 1.86 2.68
B3 3.832 12.413 - 3.80 - -
C 3.827 12,510 - 52.56 - -

3. EXPERIMENTAL RESULTS

Measurements of the temperature dependence of
electrical resistivity p revealed a transition from the
semiconducting to metallic conduction at atemperature
T, ~ 150 K in samples Al and B1 (Fig. 1). Theresistiv-
ity of sample B1 was found to be higher than that of Al

at the same temperatures. No EPR signal was detected
in either sample.

Heat treatment of sample Al at 500°C did not
change, on the whole, the behavior of p(T); sample B1
subjected to the same treatment also exhibited the
metal—semiconductor transition, but the resistivities
increased dightly (curvesA2, B2 in Fig. 1). Samples A2
and B2 at temperatures below ~100 K produced a type-|
EPR signal, namely, an axial-symmetry spectrum with
S=1/2 and parameters g, = 2.098 and g = 2.022, which

are characteristic of O, -type oxygen defects [8]. The
concentration of such centersis rather low (afew hun-

dredths of apercent) and is comparable to the expected
defect content.

Samples Al and B1 subjected to heating at 700°C
exhibited a semiconducting character of conduction
throughout the temperature interval covered (curves
A3, B3inFig. 1). EPR spectra of sample A3 revealed a
broad type-Il line in addition to type-l signals (Fig. 2).
The type-ll signal is observed in the range 10293 K.
As seen from Fig. 2, the effective, peak-to-peak width
of the signal decreases from ~200 to ~30 mT with
increasing temperature and gy; measured at the cross-
ing with the zero line varies from 2.75 to 2.03. At low
temperatures, the line shape is close to symmetrical;
however, above 116 K, the spectrum takes on a more

16
a b [¢
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Fig. 1. Temperature dependence of the electrical resistivity of LaSrNiOy . 5 sSamples prepared using various methods: (&) standard
solid-phase technology in air; (b) same conditions asin (a) but with additional annealing in an oxygen flow; and (c) nitrate decom-
position. Al and B1 are starting samples; A2 and B2 are samples after annealing at T = 500°C for 1 h; and A3 and B3 are samples
after annealing at T = 700°C for 4 h.
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Fig. 2. Temperature behavior of the EPR spectra of sample
A3.v =9.32 GHz.

complex shape, which implies superposition of several
signals.

The temperature dependence of the electrical resis-
tivity obtained on sample C over the whole range 14—
340 K exhibits a semiconducting character, with the

IVANOVA et al.

resistivities considerably exceeding (by several orders
of magnitude) those of samples Al and B1.

The results abtained in an analysis of the tempera-
ture dependence of the electrical resistivity of the sam-
ples are presented in Tables 1 and 2 and Fig. 3.

The p(T) dependence for samples Al, A2, B1, and
B2 followsalinear character in the metallic-conduction
range, i.e, for T> T, : p(T) = py + (dp/dT)T, its slope
increases slightly after annealing at 500°C (for the oxy-
gen-annealed samples B, this increase is somewhat
larger than that for the A samples).

The temperature dependence of the electrical resis-
tivity p(T) of samples A3 and B3 and the semiconduct-
ing-type p(T) relation of samples Al, B1, A2, and B2
at low temperatures is fitted satisfactorily by Mott's
law (variable-range hopping conduction) p(T) =
poexp{ (Ty/T)¥4}. Asthe temperatureincreases, the p(T)
relation for these samples takes on an activated charac-
ter, p(T) = poexp(a/T). The temperature at which p(T)
crosses over to activated behavior increases with
increasing heat treatment temperature, particularly in
the B sample series. Sample C exhibits good agreement
with Mott’s law throughout the temperature range cov-
ered. As seen from Table 2, heat treatment increases the
parameter T, (for samples B, thisincrease is quite sub-
stantial). The values of T, for sample C are comparable
with the data available for isostructural cuprates [9],
while being considerably larger than those for samples
Aand B.

Measurements of the sign of the thermopower
showed the conduction in all the samplesto be of elec-
tronic type, which agrees with the data [4, 10] reported
for ceramics of the same composition.

Table 2. Fitting parameters for the experimental p(T) relations obtained on samples A3, B3, and C and on samples Al, A2,
B1, and B2 in the temperature range where these sampl es are semiconductors

Sample Best-fit forms of p(T) AT To, K a, K Inpg
Al Inp = Inpy + (To/ TH¥4 14-42 3.46 -6.710
Inp=Inpg+al/T 42-150 17.8 —6.590
A2 Inp = Inpgy + (To/ V4 14-48 15.00 —7.042
Inp=Inpy+a/T 48-130 18.1 —6.683
A3 Inp = Inpg + (To/T)V4 14-50 26.36 -5.864
Inp=Inpg+a/T 50-340 574 -5.947
B1 Inp = Inpy + (To/ TH¥4 14-46 1.95 —-6.526
Inp=Inpg+al/T 46-130 145 —6.417
B2 Inp = Inpgy + (To/ V4 30-85 77.20 -6.916
Inp=Inpy+a/T 85-140 19.7 -6.179
B3 Inp = Inpy + (T/T)¥4 63-99 2.2x 103 —7.847
Inp=Inpg+a/T 99-340 84.32 -6.518
C Inp = Inpg + (To/ TH¥4 87-340 82 x 10° -19.244
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Fig. 3. lllustration of the fitting of the experimental p(T) relations by the models specified in Table 2 (a—) for sample Al in the
regions of themetallic, activated, and Mott’s conduction, respectively, and (d) for sample C exhibiting Mott’s conduction throughout

the temperature range covered.

4. DISCUSSION OF RESULTS

As follows from an analysis of the dependence of
the electrical resistivity on the conditions of preparation
(see Table 1 for samples Al, B1, C), the electrical con-
ductivity o = 1/p correlates with the content of oxygen
vacanciesin the sample. Indeed, sample Al exhibitsthe
highest electrical conductivity. It was prepared under
conditions precluding the formation of oxygen vacan-
cies. Synthesis from the oxides and carbonates pro-
ceeds by the reaction (1/2)La,0O; + SICO; + NiO =
LaSrNiO; 5 + CO,. Although the oxygen balance levels
off in the course of sintering and cooling, the com-
pound we obtained is most likely LaSrNiO, _ 5, which
containsthe largest number of vacancies d as compared
with the other samples. Heat treatment in an oxygen
flow reduces & (sample B1), and the electrical resistiv-
ity increases dlightly. Synthesis from nitrates produces
a more oxygen-enriched compound: La(NOj); +
Sr(NO3), + NiO = LaSrNiO, + 5NO, + O,. One might,
therefore, expect the value of & in sample C to be sub-
stantialy smaller. As a result, the electrical resistivity
of sample C should be higher than that of A1 and B1.
The formation of oxygen vacancies gives rise to a
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decrease in the number of negatively charged sites in
the structure. The charge neutrality of the sampleispro-
vided by additional electrons, which can be either
localized on the vacancy or delocalized over the sample
volume. One may a so expect adecrease in the positive
charge on a part of the nickel ions, i.e., the formation of
some amount of Ni?* ions. It may be conjectured that
the electronic conduction of the samples studied is pri-
marily due to the electrons freed in the formation of
defects of the type of oxygen vacancies. This conjec-
tureisborne out indirectly by x-ray structural measure-
ments. Assuming the binding energy of the apical oxy-
gen to be smaller than that of the oxygen in the planes,
the vacancies should form predominantly in the apical
positions. Then, an increase in the number of oxygen
vacancies should bring about a decrease in the parame-
ter ¢, which is in accord with the structural measure-
ments (Table 1).

We assume that the oxygen vacancies efficiently
localize the carriers. The character of the temperature
dependence of electrical resistivity, as well as the acti-
vation energy and the constant T, in Mott’s law, is sen-
sitiveto the vacancy content in acompound; thisis usu-
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ally observed in doped semiconductors. The oxygen
vacancies apparently act as a donor impurity and form
an impurity band located close to the conduction-band
bottom. The acceptors required for the operation of the
hopping mechanism in the impurity band are most
likely Ni?* ions. The random potential associated with
charged point defects gives rise to the formation of an
energy range of localized states near the bottom of the
conduction band. We denote the energy separating the
localized from nonlocalized states (the carrier mobility
edge) by E. and thelower boundary of the energy range
of localized states by E,. The Fermi level lies in the
impurity band and is separated from the mobility edge
by the distance A = E- — E¢ and from the lower bound-
ary of theregion of localized states by the distance A' =
Ex—E:.

Let us estimate the maximum carrier concentration
in the samples under study. According to the literature
data [11, 12], the largest value of & obtained in such
samples is 0.04, which corresponds to 0.02 vacancies
per unit cell. Then, our estimates suggest that there are
2.4 x 10" vacancies per cubic centimeter and that the
average distance between donors at their maximum
concentration is ~16.7 A, which exceeds the lattice
constant a by a factor of 4.4. Hence, in al the cases
studied, the samples remain lightly doped and one can
expect the impurity band to be fairly narrow.

At low temperatures, the hopping conduction is
described by Mott’slaw; in other words, variable-range
hopping between localized states with an energy close
to the Fermi level provides a mgor contribution to the
semiconducting behavior.

At higher temperatures, the conduction is realized
via hopping to localized states near the band edge. The
crossover point to activated conduction increases with
increasing anneal temperature and under annealing in
an oxygen flow. This is probably associated with the
vacancies becoming partially compensated under
annealing because of the oxygen being supplied by
thermal diffusion from the surrounding medium or
from microregions containing excess oxygen. A
decrease in the number of structural defects reducesthe
energy range of localized states near the impurity band
edge and, accordingly, makes the energy interval A'
smaller. The nonactivated behavior of sample C (or the
shift of the crossover to the activated character toward
high temperatures beyond the measurement range cov-
ered) implies that the magnitude of A' in this sampleis
larger than 340 K.

Thermal excitation of carriers above the energy cor-
responding to the boundary separating the localized
from nonlocalized states gives rise to the onset of
metallic conduction. The small temperature coefficient
dp/dT (Table 1) indicates that the mean free path is
equal in order of magnitude to the interatomic separa-
tion [13].

The vanishing of the metal—semiconductor transi-
tion after heat treatment following regime Il implies an
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increase in the interval A. Thisincrease is most proba-
bly associated with a downward shift of the Fermi level
as a result of increased donor compensation. This
annealing regime apparently initiates the transfer of an
additional amount of Ni* ions to the Ni?* state. This
conjecture is argued for by sample A3 producing a
type-Il EPR signal. This signal indicates the formation
of magnetic clusters with an odd total spin which con-
tain both Ni®* and Ni?* ions. In particular, the decrease
in the linewidth from 150-200 mT to afew tens of mil-
litedlas with increasing temperature [14], a feature
characteristic of intermediate-valence clusters, is also
observed to occur in our case. Refined interpretation of
the type-1l signals requires additional experiments.

In samples annealed in regime | (T = 500°C), the
changeinthe state of the carriers primarily involvesthe
centerslying closeto the surface. Therefore, the param-
eters of sample A2 virtually do not change as compared
to those of sample AL. This conjecture is borne out by
the observation of a type-l EPR signal in sample A2,

which isusually assigned to O, oxygen radicals form-

ing on the surface of oxides [15]. Heat treatment at
500°C results in a certain change in the parameters of
the p(T) relation for sample B2 as compared to those for
sample B1, although the metal—semiconductor transi-
tion in sample B2 persists. This may be due to the fact
that the electrical resistivity was increased during the
prolonged oxygen annealing that transferred sample A1
to B1, but the surface layersretained a higher density of
additional oxygen than the bulk of the sampledid. Oxy-
gen diffusion from the surface layers into the bulk of
the sample in the course of annealing of sample Bl in
regime | brings about a change in the parameters of the
p(T) dependence in sample B2 as compared to those
in B1.

In conclusion, we note that in this case there is
apparently one more example of the metal—semicon-
ductor transition associated with the Anderson localiza-
tion of carriers. As in other compounds [16-18], the
random potential initiating Anderson localization near
the energy band edge is formed because of charged
point defects (oxygen vacancies in our case, cerium
vacancies in the cerium sulfide and oxygen “holes” in
cuprates with x < 0.05) being randomly distributed over
the sample.
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Abstract—The structure of the HgTe, g5 15 ternary mercury compound was studied by neutron diffraction at
high pressures of up to 40 kbar. A phase transition from the cubic (sphalerite-type) to the hexagonal (cinnabar-
type) structure was established to occur with increasing pressure and to be accompanied by an abrupt change
in the unit-cell volume and interatomic distances. The unit cell parameters, the positions of the Hg and Te/S
atoms in the hexagonal cinnabar phase, and their pressure dependences were found. © 2002 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Investigation of the semiconductor—metal-type (S—
M) phase transformations is an important field of con-
densed-state physics offering a broad range of applica-
tions [1, 2]. The ternary mercury chalcogenides
HgSe, _,S, and HgTe, _,S,, with substitutional atoms
on the cation or anion sublattice, are of interest in this
respect, because they undergo reversible S-M pressure-
driven phase transformations. By properly varying the
composition, one can change the electrophysica
parameters of theinitial and final phases and the phase
transition pressure [3-5]. However, our knowledge of
the structural changes associated with such phase tran-
sitions is still incomplete. These changes are assumed
to be similar to the phase transformations occurring in
the HgSe and HgTe binary mercury compounds [6-8].
In the case of the HgSe, _,S, system, this assumption
was checked with neutron diffraction measurements on
the high-pressure phases [9]. We report here on a simi-
lar investigation of aternary compound of another type,
namely, HgTe, _,S,. Unlike the HgSe, _,S, system,
which has the electrical properties of a semimetal [4],
the HgTe, _,S, compound with a low sulfur content
(x<0.2) is a gapless semiconductor with a negative
exponent of the temperature dependence of electrica
resistivity (p(T) ~ T-¥?) and becomes a semimetal only
for x > 0.3 [10, 11]. The contribution of the electronic
component to the total lattice energy can noticeably
affect the phase stability at high pressures [3]. In this
study, we used a crystal with x = 0.15, which is, like
HgTe, a gapless semiconductor [10, 11].

2. EXPERIMENTAL TECHNIQUE

The technique employed in the sample preparation
was described in [10, 11], and the sample composition
was measured with a Superprobe-JCXA-733 x-ray
spectrometer. Neutron diffraction measurements were
carried out on an IBR-2 pulsed high-flux reactor (JINR,
Dubna) with a DN-12 spectrometer [12] using high-
pressure sapphire-anvil chambers [13]. The samples
wereV ~ 2 mm?3involume. The diffraction spectrawere
obtained at a scattering angle 20 = 90°, for which the
diffractometer resolution at the wavelength A = 2 A was
Ad/d = 0.02. The time taken to measure one spectrum
was typically 20 h. The chamber pressure was derived
from the shift of the ruby luminescence line to within
0.5 kbar. All measurements were made at room temper-
ature.

3. RESULTS AND DISCUSSION

Figure 1 shows parts of the diffraction spectra of
HgTeygsSy.15 measured at normal and high pressures.
The spectrum obtained at P = O belongs to the cubic
sphalerite structure. Starting from P = 16 kbar, new dif-
fraction peaks began to appear, whose intensity grew
with a further increase in pressure, and the intensity of
the original sphalerite phase reflections decreased. A
Rietveld refinement [14] of the diffraction data showed
the new peaks to correspond to the hexagonal cinnabar
structure [3-5]. At P = 37 kbar, the diffractograms
revealed a single-phase cinnabar structure. Within a
pressureinterval of 16 to 24 kbar, HgTe, 55, 15 revealed
the presence of atwo-phase state; the concentration of
the cinnabar phase increased and the concentration of

1063-7834/02/4409-1628%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Parts of the HgTey g5 15 diffraction spectra mea-
sured with a DN-12 spectrometer at 0, 23, and 37 kbar and
refined by the Rietveld procedure. The spectra feature
experimental points, the calculated profile, and the differ-
ence curve (at the bottom of each panel).

the original sphalerite decreased with arisein pressure.
This phenomenon was observed earlier in x-ray struc-
tural studies of the HgSe and HgTe binary systems[15,
16], aswell asin neutron diffraction measurements car-
ried out on the HgSe, _, S, ternary systems at high pres-
sures [9]. The formation of a two-phase state is tenta-
tively attributed to a low rate of the phase transforma-
tion [16]. The HgTe and HgSe binary compounds aso
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Fig. 2. Lattice parametersa and c of the hexagonal cinnabar
phase of HgTey g5Sg 15 and their ratio c/a plotted as func-
tions of pressure. Solid lines are linear interpolations of
experimental data.

exhibited (near the sphalerite—cinnabar structural tran-
sition) weak reflections which could be assigned to the
cristobalite structure [15, 16]. In the present study, this
phase was not observed.

The Rietveld analysis of neutron diffraction data by
the MRIA code [14] was based on well-known struc-

tural models [15], namely, space group F43m for the
original cubic sphalerite phase and space group P3,21
for the high-pressure phase with the hexagonal cinna-
bar structure. In accordance with the measurements
made on the binary mercury chalcogenide systems
HgSe, HgTe, and HgS [15-20], it was assumed that the
Hg atomsin the cinnabar structure occupy positions 3a
(u, 0, 1/3) and the Te/S atoms are in positions 3b (v, O,
5/6) of the space group. The structural parameters of
HgTe, g55,.15 found at various pressures are given in the
table. The typica values of the R factors for the
HgTey g5y 15 diffraction spectrum measured at P =
37 kbar and corresponding to the cinnabar phase
(Fig. 1) were R, = 14.5% and R,, = 12.8%. As seen
from the table, the coordination number of the cinnabar
structure of HgTeys5S, 15 and HgTe is 4 + 2 [20]. In
HgS, the cinnabar structure has another coordination
type, namely, 2 + 4 [15, 20].

With increasing pressure, the unit cell parameter of
the hexagonal cinnabar phase decreases almost linearly
and the c/a ratio increases (Fig. 2). The value c/a =
0.264 found at P = 37 kbar issmaller than that for HgTe
(c/a = 0.287) measured at a similar pressure, P =
36 kbar [20]. As in the HgSe and HgTe binary com-
pounds [6-8, 21], the cubic-to-hexagonal phase transi-
tion is accompanied by a jump in the unit-cell volume
AVIV = 10% (Fig. 3). The pressure corresponding to the
onset of the phasetransitionin HgTey gsS 15 1Sin accord
with the value P = 15 kbar derived from the electrical
resistivity measurements [5, 10, 11]. Linear interpola
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Structural parameters of HgTeygsSy15 a normal and high
pressuresfor the sphalerite (unit cell parameter a, Hg—X inter-
atomic distance) and cinnabar (unit cell parameters a, c; posi-
tional parameters u, v; the distances between nearest neigh-
bor atoms Hgl—X, Hg2—X, Hg3-X) phases. In the cinnabar
phase, the Hg atoms occupy positions of the (u, 0, 1/3) type
and atoms X = Te/S are in positions of the (v, 0, 5/6) type

P, kbar

Parameter

0 14 16 23 37

Cubic sphalerite phase

a, A 6.382(5)| 6.329(5) | 6.313(5) | 6.300(5)
Hg-X, A |2.763 |2.740 |2.734 |2.728(5)

Hexagonal cinnabar phase
a A 4.441(5)| 4.415(5) | 4.375(5)
c A 9.930(9) | 9.927(9) | 9.904(9)
cla 2236 |2248 |2.264
u — |0.597(5)|0.609(5)
v —  |0.549(8)| 0.541(9)
Hgl-X, A - |273(2) |2.68(2)
Hg2-X, A - 2.90(2) |2.92(2)
Hg3-X, A - [3.66(2) [3.62(2

tion of the pressure dependence of the cell volume per
formula unit (Fig. 3) yields B, = VdP/dV|V:VD =

673 kbar for the bulk modulus of the cinnabar phase.
The cell volume per formula unit used in the calcula-
tions, V, = 57.89 A3, was obtained by extrapolation to
P = 0. The calculated value of B, isin agreement with
the compressibility data [22] (B, = 656 kbar) and is
dlightly in excess of the value B, = 410 kbar from [21].

66
B O o]/
)
621
™
oL -
'
58+
54
1 1 1 1 1 1 1 1
0 5 15 25 35

Fig. 3. Cell volume per formulaunitinthe (1) sphaleriteand
(2) cinnabar phases of HgTey g5, 15 plotted as functions of
pressure. Solid lines are linear interpolations of experimen-
tal data. The hatched area specifies the region of existence
of the two-phase state.
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The observed changesin the atomic positionsandin
the lattice parameters of HgTeyg:S,15 With pressure
increasing from 23 to 37 kbar (see table) correspond to
an increase in the X-Hg—X angle a; from 156.5° to
158.2° and to adecrease inthe Hg—X-Hg angle a, from
111.8°to 111.7° inthe helical chainsformed by the Hg
and X atoms (X = Te, S) in the cinnabar structure [21].
Because the cinnabar structure can be considered a dis-
torted NaCl structure, this change in the interatomic
angles with increasing pressure reflects a gradual rear-
rangement of the hexagonal lattice to the cubic NaCl
structure, for which a; = 180° and a, = 90°. A similar
pattern was observed in HgTe, wherea; and a, at P =
34.5 kbar are closer to the limiting angles correspond-
ing to the NaCl structure [21]; in other words, the lattice
in this case is distorted less than in the ternary com-
pound HgTe,s5S;15. Therefore, the phase transition
from the cinnabar structure to the NaCl-type lattice in
HgTey 855015 should occur at higher pressures than in
HgTe (P = 80 kbar) [18-25]. As shown by electrical-
resistance and thermopower measurements [26], the
pressure at which the semiconductor—-metal electronic
transition takes placein HgTe; _, S, shiftstoward higher
values with increasing x. In the HgTe and HgSe binary
systems, this electronic phase transition occurs at the
cinnabar—NaCl structural transformation.

4. CONCLUSION

Asshownin our study, the phasetransition occursin
the ternary mercury-chal cogenide system HgTey g5, 15
with increasing pressure and the cubic sphalerite struc-
ture transforms into the hexagonal cinnabar structure
characterized by the coordination number 4 + 2, asin
the HgSe and HgTe binary compounds. The structural
transformation of the cinnabar phase under pressure
can be considered to be its gradua rearrangement to a
cubic NaCl-type lattice. At higher pressures, the
HgTe, _,S, ternary systems should apparently also
undergo the cinnabar—-NaCl structural transition, aswas
observed to occur in HgTe at P = 80 kbar [21].
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Abstract—The electrodynamic response of an electron gas on the surface of a nanosphere isinvestigated. An
analytical relationship for the absorption of electromagnetic radiation by the nanosphere is derived. It is dem-
onstrated that the absorption curve at |ow temperatures has two resonance peaks. The shape, position, and inten-
sity of the peaks are examined. The dependence of the absorption on the radiation frequency exhibits kinks
associated with the degeneracy of the electron gas. The number and position of the kinks and the absorption
jumps at these kinks are analyzed. Consideration is given to the cases of an isolated sphere and a sphere
exchanging electrons with areservoir. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recent considerable progress achieved in nanotech-
nology has provided a way of producing spherical
nanostructures with sizes from several nanometers to
hundreds of nanometers [1-3]. Investigation of spheri-
cal nanostructures has revealed that these objects pos-
sess interesting spectral [4] and optical [5—7] proper-
ties. Inanumber of works[5-8], it has been shown that
the absorption of optical radiation by a spherical metal-
lic nanostructure can be adequately described in the
framework of the classical approach. The optical prop-
erties of ananoparticle depend on its size and geometry.
Albe et al. [9] studied the influence of the nanoparticle
shape on the absorption spectrum. It was demonstrated
that closely packed nanospheres can form three-dimen-
siona crystals. The collective optical properties of
closely packed nanospheres were considered in [3, 10—
12]. Note that these crystals have a photonic band gap
and can be treated as photonic crystals [13-15]. In
recent years, it has become possible to cover spherical
nanostructures with metallic or semiconducting shells.
In particular, Hines and Guyot-Sionnest [16] prepared
crystals from nanospheres based on a CdSe core cov-
ered with aZnS shell. There is a number of works con-
cerned with the optical properties of Au,S dielectric
cores covered with a gold shell [17-20]. These spheri-
cal nanoshell structures can be produced by mixing
HAuCI, and N&,S agueous solutions. The sizes of the
spheres thus obtained are equal to severa tens of
nanometers. Zhou et al. [17] and Averitt et al. [18]
investigated the absorption of electromagnetic radia
tion in a medium containing nanoshell structures and
demonstrated that, in the optical range, the absorption
spectrum exhibits a resonance peak associated with the
absorption of radiation by nanoshell structures. A theo-
retical model for describing the optical properties of

spherical nanoshells was developed on the basis of the
Mie classical theory [8]. It was established that the
absorption peak corresponds to plasma resonance of
electrons in the system and that the position and the
intensity of thispeak depend on the metallic shell thick-
ness and the diameter of the dielectric core [17, 18].
Investigation into the optical absorption in nanostruc-
tures provided adeep insight into the growth kinetics of
nanostructures [18] and made it possible to determine
important parameters such as the electron relaxation
time and the electron—phonon coupling constant [17].
Analysis of the nonlinear optical response of nanoshell
spherical and spheroidal systems proved that the
nanoshell can substantially enhance the nonlinear opti-
cal response of the system [21-23]. It should be noted
that, in the case of thin metallic or semiconducting
shells (of the order of several atomic layers thick),
guantum effects become significant and can make a
considerable contribution to the properties of the sys-
tem; hence, the classical model cannot be used to
describe the optical absorption in the nanoshell [17].

The aim of the present work was to investigate the
intraband optical transitions in a nanosphere. Note that
the study of the intraband optical transitions provides
important information on the parameters of the energy
spectrum and the Fermi surface of electrons [24-28].
The model of a sphere can be applied to analyzing dif-
ferent physical properties of ametallic or semiconduct-
ing shell whose thickness is appreciably less than the
size of the structure. This model was successfully used
to investigate the spectral [29, 30], magnetic [31-34],
and transport [35] properties of spherical or spheroidal
nanostructures and to examine the influence of the elec-
tron—electron [36] and spin—orbit [37] interactions on
the spectral properties of electronsin spherical systems.

1063-7834/02/4409-1632%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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2. ABSORPTION OF ELECTROMAGNETIC
RADIATION

L et us consider a system of noninteracting electrons
confined to the surface of a nanosphere. The eigenfunc-
tions and eigenvalues of the Hamiltonian for this sys-
tem are well known and have the form

U@, 0) = Y (3. 9),

where | and m are the orbital and magnetic quantum
numbers, respectively; Q = 2/m*R2 and Y, (8, ¢) are
the spherical harmonics;, m* is the effective mass; and
R is the sphere radius. The absorption of electromag-
netic radiation can be determined using the perturba
tion theory for the interaction of electrons with a high-
frequency electromagnetic field [38]. In the case of a
degenerate el ectron gas, the absorption by ananosphere
can be represented by the relationship

- _EW)

" 2chRPN,

E = %I(I +1),

1— e—ﬁ,w/T)

1
xzsz(E|)[1—fo(El+ﬁw)] @

IL,ml',m
x |0, m, —f[H/l, m, 00°3(E, — E; + Aw),

where g(w) isthe real part of the permittivity (the dis-
persion is assumed to be absent in the frequency range
under consideration), N; isthe concentration of photons
(with the frequency w) incident on the nanosphere, f is
the photon wave vector, fo(E)) is the electron distribu-
tion function, and [1 — exp(-hw/T)] is the multiplier
accounting for the induced photon emission. The elec-
tron—photon interaction operator can be written in the
form

ﬂ 2114 N;
mN g(ww

Hg =

where g is the polarization vector of the photon.

The matrix elements of the operator Hy are calcu-
lated by assuming three to be a uniform electromag-
netic field; i.e., the photon wavelength is taken to be
considerably larger than the sphere radius.

Let the Oz axis be aligned aong the polarization
vector of the photon. In the dipole approximation, the
transition matrix elements are defined as

a, m, —f|Hgll, m, 0O

_ld 2nthD,, m‘|pz|l,m]=|6|—ﬁ /2nﬁNf6mm
m e(w)w mORN g(wW)w ™ )

2 2 2 2
| Z_mém-l"'I wél',Hl :
471 Na(l+1)2—1
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It follows from expression (2) that, in the dipole
approximation, the transitions are allowed only
between adjacent levels (I' = | £ 1). Substitution of
expression (2) into relationship (1) gives

e’ Q

—hwl/T
= —— = )
3emR? Je(w) @

l-e

x> FoBE)[L=fo(E +Aw)]I(I+1) )
=0

x[(1 +1)8(0+ Q) +15(0— Al +1))].

It is seen from relationship (3) that the dependence
IN(w) is resonant in character. Resonances arise at the
frequencies of electromagnetic radiation w = Q(I + 1)
for the orbital quantum numbers| at which the distribu-
tion function f(E)[1 —fo(E, + 2Q(l + 1))] isnot asmall
guantity.

In order to take into account the broadening of the
resonance peaks due to scattering, we introduce the
L orentzian broadening of delta-shaped peaks according
to the formula

5,09 = (T (@)
T +X

where T is the phenomenol ogical relaxation time. With
due regard for expression (4), relationship (3) can be
written asthe sum of twoterms: ' =T, + [, where

M _Q el T
Mo oo(l e )

fo(EN[L— fo(E +Aw)]I(I +1)°
1+ 1% (w+ QI

=]
"2
=1

L _Q el T

r—z =5@d-e)
fo(EN[1— foE + )] 1( + 1)

1+ [w-QU+1)]*

X
2
Here, 'y = €°1/3cn* R%./g(w) .

The nonresonant term I'; describes the processes
associated with photon emission and satisfies the con-
dition I'; = O(,/(Tw)?) in the vicinity of the resonance
point. Therefore, in the case of a high-frequency field,
the contribution of the nonresonant term I'; to the
absorption in the vicinity of the resonance can be
ignored. By omitting the nonresonant term, we obtain

r_ Q. o

Mo (o(l e )
foEDI1- foE + )] I°(1 +1)
1+ [w-QU+1)]>

()

o0
2
=1
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Fig. 1. Appearance of new resonance peaks in the absorption curve with increasing temperature. R=10°cm, 1=5x 10! s, and

1 =5.15 x 10715 erg.

It follows from relationship (1) that, at a sufficiently
low temperature, only electrons whose energy falls
within the range [ — 2w, Y] participate in the absorp-
tion. Note that, in the case when the frequency of elec-
tromagnetic radiation changes, the line (L — #w) can
cross an electron energy level. As aresult, the number
of electrons involved in the absorption changes and a
kink appears in the dependence of the absorption I' on
the frequency w.

QI’(1 +1)

From the condition for the appearance of kinks (1 —
#iw = E)), we found that the kinks can arise at the fre-
guency of electromagnetic radiation

Q
Oall) = E-Z1(1+1). (6)
Hence, the separation between the adjacent kinks is
determined by the formula oy, (1) — Wil = 1) = QI.

The absorption jump at the kink A, at temperatures
close to zero can be estimated from the expression

A=

As is known, the thermodynamic properties of a
three-dimensional electron gas (for example, the Lan-
dau diamagnetism) are virtualy independent of
whether the number of particles in the system is con-
stant (N = const) or whether the chemical potential is
constant (4 = const). This circumstance is primarily
associated with the fact that the effect of the method
chosen to describe the system on its thermodynamic
properties is of the order of N=V2 [39], and this effect
can be ignored when the number of particles is very
large.

In the case of an electron gas on a nanosphere, the
number of particles in the system is small; hence, the
physical properties of the nanosphere essentially
depend on the method chosen to describe the system
[34]. In this respect, we will consider two cases,
namely, the case of a constant chemical potential and
the case of a constant number of electrons on the

B ro[u/h—QI(I + D)21{1+T[Wh-Q( +1)(1 +2)/2]3
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(7)

sphere, and perform a detailed anaysis of the differ-
ences in absorption between these cases.

3. THE NANOSPHERE IN A THERMOSTAT

We assume that the nanosphere is in contact with a
reservoir characterized by the chemical potential p and
the temperature T.

For further analysis, it is convenient to introduce the
quantum number I, such that B, <pu < E, ,,.Atzero

temperature, I, is the orbital quantum number of the
upper level filled by electrons and the absorption reso-
nance arises upon transition of electrons from the I th
level to the (I, + Dth level at the electromagnetic radia-
tion frequency Q(lp + 1) (thesolidlinein Fig. 1). Asthe
temperature increases, the contribution of the electron
trangitions from the (I, — 1)th level to the Igth level

2002
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Fig. 2. Temperature smearing of kinks on the right wing of the second resonance peak. R=10°cm, 1=5x 10 s and p =

5.15 x 1071° erg.

becomes significant and the resonance peak appears at
the frequency Ql, (the dashed linein Fig. 1). A further
increase in the temperature gives rise to absorption
maxima due to electron transitions from the (I, — 2)th
level to the (I, — 1)th level or from the (I, + 1)th level to
the (I, + 2)th level (the dot-dashed line in Fig. 1) and
SO on.

Theintensities of thefirst (at w= Ql) and second [at
w=Q(ly + 1)] peaks can be estimated from the follow-
ing formulas:

—5Qly/T

M(w=Qlg) =Ty(1-e ) Fo(Ei,-1) ®)
x[1-fo(E )] (Io—1)*+0(1/(1Q)?),
Mw=Q(le+1)) = Mo(l—e "Ny y(E,) ©

x[1=fo(Ey, . DII*+ O(1/(1Q)").

Note that an increase in the temperature resultsin a
decrease in the intensity of the largest peak [at w =
Q(l, + 1)] and an increase in the intensities of the other

peaks.

At T = 0K, the absorption curvein Fig. 1 exhibitsa
kink corresponding to the intersection of the line (U —
hw) with the sixth electron energy level. As can be seen
from Fig. 1, thiskink is completely smoothed at atem-
perature of 0.5 K. The next two kinks, which appear on
the right wing of the second resonance peak due to the
intersection of theline (1 —%w) with thefifth and fourth
energy levels, are displayed in Fig. 2. It is seen from
this figure that an increase in the temperature does not

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

affect the position of the kinks; however, even a small
increase in the temperature leads to their noticeable
smoothing.

Let us now examine the kink corresponding to the
intersection of the line (U — Aw) with the (I, — Dth
energy level. Asfollows from relationships (6) and (7),
the closer the chemical potential totheenergy E, of the

electronic level, the closer the frequency w;, to thefre-
guency Ql, and the larger the absorption jump at this

kink. Inparticular, at u = E, , theabsorption jump at the

kink is equal to (I, — 1)? (Fig. 3). It should be noted
that, since the change in the chemical potential leads
only to a change in the position of the kink and in the
absorption jump at the kink, the absorption curves coin-
cide on both sides of the kink. According to relationship
(7), the absorption jump A, at other kinks decreases
with a decrease in the quantum number | (Fig. 2).

Next, we evaluate the absorption at zero tempera
ture. In the range of electromagnetic radiation frequen-
cies close to the resonance frequency Q(l, + 1), only
two termswith | = [, — 1 and |, in expression (5) make
substantial contributions. Then, by retaining only these
terms in expression (5) and tending the temperature to
zero, we obtain

[(1=0_90 12(1,+ 1)
o W1+ 17 [w—Ql,+ 1)]?

(10)
(l,—=1)%1,
1+1%(w-Qly)°

®(E|0_1+ﬁw—u)},
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Fig. 3. Changesin the kink position and in the absorption jump at the kink in the absorption curve at different chemical potentials.
The kink appearing at the intersection of the line (1 — Aw) and the (I — 1)th energy level is shown. R= 10°cm, T=0K,and 1 =

5x 101,

where ©(X) is the step function defined as

[0, a x<0
0¥ = [
M, a x>0.

In relationship (10), the first term describes the res-
onance absorption peak at the frequency w = Q(l, + 1)
and the second terms characterizes the kink at the fre-
guency w= Wh —Q(lo—Dly2. It followsfrom relation-
ship (10) that, at T = 0, no absorption resonance occurs
a the electromagnetic radiation frequency Ql,. This
stems from the fact that the Ith level at zero tempera-
ture is filled [fo(E; ) = 1]; hence, electron transitions
fromthe (I, + 1)th level to thelth level become impos-

sible. An increase in the temperature results in the
appearance of a resonance peak at the frequency Ql,

{ owing to the multiplier [1 —fy(E, )] in expression (8)}
(Fig. 1).

It is seen from formula (9) that, at T = O, the peak
at the frequency w = Q(l, + 1) hasthe highest intensity,
because fo(E, )[1 — fo(E, +1)] = 1. Therefore, from
relationship (10), we obtain the expression

FMw=9Q(o+1) _ 2
= |0
Mo

2
4 —Uo=1o O(E, +hQ—p).

(lo+ 1)(1+7°Q%
Here, we take into account that E, _, +7Q(lp + 1) =
E,, + Q. According to expression (11), the intensity

(11)
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of the absorption peak at zero temperature and the elec-
tromagnetic radiation frequency w = Q(l, + 1) has the
form

(lo— 1)1
(Io+1)(1+1°Q%)
ap<g +4Q,ie,whenthe(lo—1thkink islocated
to the left of the resonance frequency Q(l, + 1), and

MNw=Q(y+1)) _ 12+
Co -0

12)

M(QUo+ 1)) = Molp

ap>Eg +4Q,ie,whenthe(lo—1)thkink islocated
to theright of the resonance frequency Q(l, + 1).

Anincreasein thetemperature leadsto adecreasein
the multiplier fo(E; )[1 —fo(E),+ 1)] in formula(9) and,
consequently, to a decrease in the intensity of the
absorption peak (Fig. 1). Note that the resonance fre-
guencies are completely determined by the chemical
potential and the sphere radius. Indeed, it can be seen
from relationship (5) that the low-temperature reso-
nances arise at the frequencies Ql, and Q(l, + 1); i.e.,
their positions depend on Rand | ; in turn, the quantum
number |, is governed by the chemical potential.

4. THE ISOLATED NANOSPHERE

For the isolated nanosphere, the number of electrons
in the system remains unchanged (N = const) and the
chemical potential is determined from the normalizing
condition. Figure 4 shows the dependences of the
potential L on N at different temperatures. Analysis of
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Fig. 4. Dependences of the chemical potential of the system on the number of electrons on a sphere of radiusR = 10~ 5cm.

T,K

Fig. 5. Temperature dependences of the chemical potential of the electron gas on a sphere of radiusR = 10° cm.

these dependences indicates that the chemical potential
at T=0K isvery closeto the energy of the upper filled
level. In the case when the |th energy level isfilled by

less than half (N 215 < 2l, + 1), we have pi < E, . If
the number of eectrons at the I th level is larger than
half the degeneracy multiplicity of thislevel (N—215 >
2y + 1), the reverse inequality p > E;  holds. When a

change in the number of electrons in the system leads
to a change in the quantum number |, there occurs an

PHYSICS OF THE SOLID STATE Vol. 44 No. 9
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abrupt jump in the dependence u(N) at T = 0. Asis seen
from Fig. 4, an increase in the temperatureto T = 1 K
brings about a substantial smoothing of the step depen-
dence. With afurther increase in the temperatureto T =
3K, the steps disappear completely and the dependence
M(N) exhibits an amost linear behavior.

Figure 5 displays the temperature dependences of
the chemical potential. It isworth noting that, when the

Ioth level isfilled by less than half (N —2I§ <2,+1),
the chemical potential is a decreasing function of the



1638

BULAEV, MARGULIS

50

40

30

/T,

10

\=]
=]
T

Fig. 6. Change in the position of the kink in the absorption curve at different temperatures (the case of the upper completely filled

electron shell). R=102cm, 1=5x 10t s and N = 128.

temperature. At (N— 2I§ > 2l, + 1), the chemical poten-
tial increaseswith an increase in thetemperature. Inthe

case when N — 2I§ =2, + 1, the chemical potential is
virtually independent of temperature. It can be seen
from Fig. 5 that the dependence [u(T) is linear at suffi-
ciently low temperatures (T < 1 K). Asthe temperature
increases, the linear dependence changes over to a
weak monotonic dependence of the potential L on T.
Judging from the data presented in Fig. 5 and formula (6),
at sufficiently low temperatures, the position of the
kinks changes with an increase in T due to the depen-
dence of the chemical potential on the temperature.
Now, we dwell on the case of an upper filled elec-
tron shell. The number of electronsisdetermined by the
formulaN = 2(2l, + 1)2. At T = 0, the distribution func-

tion is defined as fo(E, ) = 1; hence, relationships (10)
and (11) hold for the case under consideration.

At T =0, the chemical potential isgivenby p = E, .
As aconseguence, we have

Wyinkl(l) = %[lo(|o+ 1) -1+ 1)]. (13)

As follows from this expression, the (I, — 1)th kink in
the absorption curve arises at the electromagnetic radi-
ation frequency w = Ql,,.

Analysis of the dependence u(T) (Fig. 5) demon-
strates that, for the closed electron shell, the chemical
potential exceeds the energy of the I th electronic level

and the difference between p and E, increaseswith an
increase in the temperature. Consequently, an increase

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

in the temperature leads to a shift of the kinks toward
the high-frequency range (Figs. 6, 7). The kinks at a
sufficiently low but nonzero temperature transform into
peaks which are considerably smoothed with an
increase in the temperature.

With due regard for relationships (10) and (13), the
absorption at zero temperature can be estimated from
the expression

lo(lo + 1)
1+ [w- Ql,+ 1)]°

rMT=0)_ 9
b,
(14)
(lo—1)l,

1+ 15 (w=Qly)°

O(w- QIO)}.

According to expression (14), the intensity of the
absorption peak at the resonance frequency w = Q(l, +
1) is identical to that found for the constant chemical
potential at p < E, + 7Q [formula (12)]. As is seen

from expression (9), an increase in the temperature
resultsin adecrease in the intensity of the second reso-
nance peak. Note that, owing to the temperature depen-
dence of the chemical potential at a constant number of
electrons, the temperature dependence of the intensity
of the second peak is weaker than that in the case of a
constant chemical potential (Figs. 1, 6).

At low temperatures, the absorption jump at the kink
can be evaluated from the expression
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1%(1 + 1)

A =27

Asfollowsfrom this expression, the absorption jump at
the (I, — 1) kink can be estimated by the formula

A Mo(lo— 1)2-

Next, we consider the case of an upper partly filled
electron shell. As is known, the broadening of a step
Fermi function is of the order of T. Let us assume that
the temperature broadening of the distribution function
is considerably less than the energy level spacing; i.e.,
hQly/T > 1. Then, from the normalizing condition, we
obtain

N-212
Here, 2(2l, + 1) is the degeneracy multiplicity of the

upper filled level and N —2I§ isthe number of electrons
at the lgth level.
From relationship (15), we found

N-2I7
2(l,+1)° =N’

This formula adequately describes the behavior of the
chemical potential at T< 1K (Fig. 5). It iseasy to show
that 2(I, + 1)?> — N isthe number of free states at thel,th
level. It follows from formula (16) that, when the upper

H=E +TIn (16)

"Hollo+ 1) =11 + DI{ 1+ Q% o(lo + 1) — (1 + 1)(1 + 214

level is half filled (N = 215 + 2, + 1), the chemical
potential is determined as 4 = E, . If the number of
electrons at the I5th level is larger than half the degen-

eracy multiplicity of thislevel (N — 2I§ > 2, + 1), we
obtain u > E, ; otherwise, we have u < E, (Fig. 4).

Making allowance for relationship (15), the absorp-
tion at low temperatures can be eval uated by the expres-
sion

r_o (N=215)I5(1o + 1)

N w 221, + {1+ rz[oo— Qlly+ 1)]2}

L= Fo(Byoa + )] (= 1),
1+ t%(w—-Qly)? }

According to formula (17), the intensities of the
absorption peaks can be estimated using the following
relationships:

Mw=0ly) _ (N-2lg)lg(lo+1)

To 202+ D1+ (1Q)]
L2300+ D° =N (1I,-1)°
2(2l,+1) ’

13 15

17 19

w/Q

Fig. 7. Shift of the kinksin the absorption curve toward the high-frequency range with increasing temperature (the case of the upper
completely filled electron shell). R=10°cm, 1=5x 10 s, and N = 128.
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Fig. 9. Shift of the kinks in the absorption curve toward the low-frequency range with increasing temperature (the number of elec-
trons at the Igth energy level is less than half the degeneracy multiplicity of thislevel). R= 10 cm, 1=5x 107t s, and N = 100.

F@=0%o+ D) N=2p o, lo(lo=1)°
Co 221+ ° (1,+ D[1+ Q)

Itisworth noting that, at zero temperature, we observed
akink with the absorption jump (I, — 1) rather than
the first peak (Fig. 8). As follows from the estimated
intensities of the peaks, theintensity of the second peak
isindependent of the temperature in the range in which
the temperature dependence of the chemical potential is

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

linear, i.e., in which formula (16) holds. A further
increase in the temperature is attended by adecreasein
the intensity of the second absorption peak (Fig. 8).

5. RESULTS AND DISCUSSION

Let us now consider the case when the system is
characterized by a constant chemical potential. As was
noted above, the absorption curve at zero temperature
has one resonance peak at the frequency w = Q(l, + 1).
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The intensity of the peak is determined by the orbital
guantum number |, of the upper filled shell, the sphere
radius R, and the relaxation time 1. An increase in the
temperature leads to a decrease in the intensity of this
peak and the appearance of hew resonance peaks due to
electron transitions from the (I, — 1)th level to the I th
level, from the (I, — 2)th level to the (I, — 1)th level or
fromthe (I, + L)th level to the (I, + 2)th level, and so on
(Fig. 1). At zero temperature, the absorption curve
exhibits sharp kinks arising when the line (L — W)
crosses the electron energy levels. The position of the
kinks depends on the chemical potential and the quan-
tum number of the electronic level. If the changein the
chemical potential does not affect the quantum number
lo, it leads only to a change in the position of the kink
and in the absorption jump at the kink. Consequently,
the absorption curves at different chemical potentials
coincide on both sides of the kink (Fig. 3). An increase
in the temperature is not accompanied by a change in
the position of the kinks; however, even a small
increase in the temperature leads to their noticeable
smoothing (Fig. 2).

The difference in the behavior of the absorption in
the cases when 1 = const and N = const results prima-
rily from two circumstances. First, when the number of
particlesis constant, the chemical potential depends on
the temperature. For the isolated sphere and the upper
completely filled electron shell, the intensity of the
peak at the resonance frequency w=Q(lp+ 1) and T =
Oisidentica to that for the sphere in the thermostat at
U< E, +#AQ [formula(12)]. Anincreasein thetemper-

ature brings about an increase in the chemical potential
(Fig. 5). Asaresult, unlike the case of the sphere in the
thermostat, the intensity of the peak at w = Q(l, + 1) is
virtually independent of the temperature in the range of
thelinear dependence (T) (Figs. 1, 6). Sincethe chem-
ica potential for the upper filled electron shell
increases with an increase in the temperature, the kinks
shift toward the high-frequency range as the tempera-
tureincreases (Figs. 6, 7). Note that the kink position at
M = const does not depend on the temperature (Fig. 2).

Second, in contrast with the case of a constant
chemical potential, the upper energy level at a constant
number of particles can be partly filled by electrons at
zero temperature. If the electron shell with | = 1 is
partly filled, the intensity of the absorption peaks at
zero temperature depends on the number of electronsin

this shell (N— ZIS). For N — ZIS < 2ly + 1 (the number
of electrons at the Ith level isless than half the degen-
eracy multiplicity of the level), an increase in the tem-
perature is accompanied by a decrease in the chemical
potential and, hence, by a shift of the kinks toward the
low-frequency range (Fig. 9). At N =215 > 2, + 1, the
behavior of the kinks is the same as in the case of the
upper filled shell (Figs. 6, 7). When thelth level is half

PHYSICS OF THE SOLID STATE Vol. 44 No. 9
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filled(N= ZIS + 2|y + 1), thechemical potential satisfies
the condition p = E; and the kink position is indepen-
dent of the temperature.
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Abstract—The local lead-atom environment in the Pb,Sn; _,S solid solutions with cubic and orthorhombic
structure was studied by EXAFS spectroscopy. The shortest Pb—S distance in sampleswith orthorhombic struc-
ture was found to be smaller by =0.2 A than that in cubic-lattice samples, which is a sign of stereochemical
activity of the two paired 65° electrons of a Pb atom. The metal atom arrangement reveals strong short-range
order, which results in the formation of -Pb—Sn—Phb—Sn—... zigzag chains aligned with the c axis (in the Pbnm
system) in orthorhombic samples. It was shown that the onset of such short-range order in Pbg sSng 5S can ini-

tiate the formation of superstructures belonging to the Cgv or CZV space groups. © 2002 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

One of the problems encountered in studies of solid
solutions is establishment of the relation between the
deviation of asolid solution from itsideal structure and
its physical properties.

The available scarce information on solid solutions
inthe SNnS—-PbS system isfairly contradictory. Thissys-
tem forms alimited number of solid solutions, because

SnS has an orthorhombic structure (space group Dy —

Pbnm) while PbS has an NaCl-type cubic structure. The
limiting solubility of SnSin PbSis=10 mol %, and that
of PbSin SnSisabout 50 mol % [1-3]. Thereisno con-
sensus on whether the Pb, :Sn, S composition (exist-
ing in nature in the mineral form of teallite [4]) in this
systemisanindividual phase or a SnS-based solid solu-
tion. Some authors consider this composition to be an

individual phase crystallizing in space group D32 [2, 5,

6] or space groups D3 or C,, [2, 6]. Others believe
this material to be an SnS-based solid solution [1, 3, 7,
8]. To resolve this contradiction, coordinated studies of
the short- and long-range order in samples of this com-
position are needed.

Our interest in the SnS—PbS system is connected
with the off-centering of large-radius impurity ions,
which was revealed earlier in the Ge,_,Pb,Te and
Ge, _,Sn, Te semiconducting solid solutions [9]. The
displacement of Pb and Sn atoms in these compounds
to off-center positions was explained as being due to a
deformation of the spherically symmetric electron-den-
sity distribution of the two paired s? electrons in these
atoms. Being energetically favorable, this deformation

produced chemical bonds of unegual length. As con-
cerns Pb atoms, this came as a surprise, because the 6s?
lone pair in compounds of divalent lead istypically ste-
reochemically inactive, asaresult of which theloca Pb
environment in crystals is usually symmetric (as in
PbS). It appeared, therefore, of interest to see whether
the local environment of Pb atomsin SnSis distorted
and whether it is associated with the stereochemical
activity of their 6s* electron pairs. In addressing this
problem, we chose EXAFS spectroscopy. This modern
x-ray method for investigating local structureiswidely
used in studies of the structure of solid solutions.

2. EXPERIMENTAL TECHNIQUE
2.1. Samples

Samples of the Pb,Sn, _,S solid solution with x =
0.1,0.2,0.35, 0.5, and 0.95 were prepared by synthesiz-
ing PbS and SnS and melting them in evacuated quartz
ampules, with subsequent annealing of the alloys at
645°C for 7096 h. The phase homogeneity of the sam-
ples was checked by x-ray diffraction. At 300 K, the
crystal structure of the samples with x < 0.5 corre-
sponded to the orthorhombic phase and the structure of
the x = 0.95 sample was cubic. Immediately before
EXAFS spectral measurements, the alloyswere ground
to powder, sieved, and deposited on adhesive tape. The
optimum absorber thickness for spectral measurements
was obtained by repeatedly folding the tape.

The EXAFS spectra were obtained at the Pb L,
absorption edge (13.055 keV) at 80 K in transmission
geometry on station 7.1 at the Daresbury Laboratory
(Great Britain). The radiation was made monochro-

1063-7834/02/4409-1643%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. Typical Pb L;;; EXAFS spectra of |ead obtained for
Pb,Sn, - S samples (solid lines) and their theoretical
approximation (dashed lines).

matic by using a Si(111) double-crystal monochroma-
tor, and the intensity of the radiation incident on and
transmitted through a sample was measured with ion-
ization chambers. Two spectra were recorded for each
sample.

2.2. Processing Technique

The EXAFS function X (K) was extracted from ux(E)
transmission spectraaswas donein [10]. After subtrac-
tion of the background caused by the absorption of radi-
ation by atoms other than Pb, the monotonic part of
atomic absorption px,(E) was isolated by spline fitting
and the dependence of X = (X — UXg)/ X, ON wave vec-

tork=,/2m(E — E,)/h was caculated. The photoelec-

tron energy E, was reckoned from the inflection point
at the absorption edge. The jump at the absorption edge
varied from 0.10 to 1.5.

The information on the first three coordination
shells of interest to us here was extracted by taking
direct and inverse Fourier transforms of the x(k) curves
thus obtained using a modified Hanning window. The
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Fig. 2. Interatomic distances for the three nearest coordina-
tion shells of Pb atoms in the Pb,Sn; _,S solid solution

plotted vs. composition parameter x.

range of isolation in the R space was typicaly 1.2—
3.7A. The R distances, the coordination numbers N;,

and the Debye-Waller factor o° for each of the three
coordination shells (j = 1-3) were derived by minimiz-
ing the rms deviation between the experimental and cal-

culated k% (k) curves. The parametersR, N, and o7 , as
well as the origin displacement along the energy axis
dE,, were varied. To reduce the number of variable
parameters, known relations between the coordination
numbersin the SnSand NaCl structuresweretaken into
account. The number of variable parameters (eight) was
about two times smaller than that of independent
parameters (15 or 16) in the 2ARAK/Tt data. The errors
in determination of the parametersreported in the paper
were found from the covariance matrix and correspond
to a 95% confidence interval of their variation.

The dependences of the backscattering amplitude
and phase, of the central-atom phase, and of the photo-
electron mean free path on k, which are necessary to
construct theoretical X(K) curves, were calculated using
the FEFF code [11].

3. EXPERIMENTAL RESULTS

Figure 1 shows typical k?x (k) relations obtained for
al Pb,Sn, _,S samples. The curves for samples with
cubic (x = 0.95) and orthorhombic (x < 0.5) structure
differ qualitatively in pattern, which indicates different
characters of the local Pb environment in these sam-
ples. An analysis of the data reveals that lead atomsin
the x = 0.95 solid solution and PbS are surrounded by
six sulfur atoms located at the same distance (seetable
and Fig. 2). The spectra obtained for samples with
orthorhombic structure are described well only by the
model according to which, in the first coordination
shell, three S atoms sit at one distance from the central
atom (R;) and the other three sit at another distance
(Ry). Thus, the nearest neighbor environment of Pb in
SnSdiffersfrom that in PbS. Asfollows from the table,
as X increases from 0.1 to 0.5, distance R; remains
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Loca Pb environment parameters for Pb,Sn, _,S samples
X

Peremeter 0.1 0.2 0.35 0.5 0.95 1 S

Ry, A 2.750(8) 2.745(8) 2.752(4) 2.752(4) 2.954(8) 2.942(6) 2.660(3)

of A2 0.0066(13) 0.0053(10) 0.0087(6) 0.0079(6) 0.0095(11) 0.0086(9) 0.0036(4)
Ry, A 3.246(16) 3.243(16) 3.233(7) 3.232(8) 4.175(7) 4.184(6) 3.301(8)

05 A2 0.0174(35) 0.0120(26) 0.0178(14) 0.0187(16) 0.0064(7) 0.0066(6) 0.0059(8)
Rs, A 3.534(13) 3.500(15) 3.522(7) 3.535(10) 3.481(7)

0§ A2 0.0081(16) 0.0090(15) 0.0118(8) 0.0141(12) 0.0067(6)

* The EXAFS data for the local environment of an Sn atom in SnS were obtained at the Sn K edge.

unchanged to within experimental error, whereas R,
decreases dightly. Note also thefairly large value of the
Debye-Waller factors for the longer Pb—S bond length.

In samples with orthorhombic structure, the metal
atoms (Pb, Sn) in the second coordination shell are
located at an average distance Ry = 3.5 A, which grows
insignificantly with x. The Debye-Waller factors for

this shell (03) turn out to be even smaller than (o3)
(seetable); however, their values grow noticeably with x.

As seen from the table, the Debye-Waller factors
are the largest for the longer Pb—S bond length and
depend only weakly on composition. To separate the
contributionsfrom thermal motion and static lattice dis-
tortions to the Debye-Waller factors, we measured the
temperature dependences of EXAFS spectra for the
Phby sSNn, S sample within the temperature interval 80—
300 K. An analysis of the data obtained showed that the
temperature dependence of the Debye-Waller factor

(05) is stronger. One may thus conclude that the main

contribution to (og) is due not to static lattice distor-

tions but rather to thermal vibrations. This suggeststhat
the corresponding chemical bonding is weak.

Because solid solutions often exhibit short-range
order, we decided to check whether this order is
reflected in the metal atom arrangement in the second
coordination shell. To check this possibility, we com-
pared the experimental EXAFS spectrawith the curves
calculated for various ratios of Pb and Sn concentra-
tionsin the second coordination shell of lead under the

assumption that the values of R; and (05) for atoms of

both types are equal. Figure 3 plots the sum of the
squares of deviations, S, for all the measured spectra
as afunction of the local Sn atom concentration in the
second coordination shell of Pb atoms. We readily see
that the minimum in the curves for samples with x =
0.2, 0.35, and 0.5 lies at alocal Sn concentration con-
siderably in excess of its average concentration in the
sample; the local concentration averaged over severa

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

spectra for each of the samples studied is close to
100%. In our opinion, the short-range order inwhich Pb
atoms are surrounded predominantly by atoms of Sn
may be accounted for by the deformation interaction
between metal atoms, which precludestwo large-radius
lead atoms from sitting close to one another.

4. DISCUSSION OF RESULTS

According to the neutron diffraction data available
for SnS [12], the six S atoms in the first coordination
shell of tin lie at four different distances: 2.627 A (one
atom), 2.665 A (two atoms), 3.290 A (two atoms), and
3.388 A (one atom). The two shortest distances are so
closeto each other that their separationin EXAFS spec-
trais impossible. The same applies to the two longest
distances. For this reason, the nearest environment of
metal atoms in EXAFS spectra should be represented

. . —x=05
258 Y Lo -—-x=0.35

1
0.6 0.8 1.0
Xsn

0 02 0.

Fig. 3. Sum of the squares of deviations plotted vs. local Sn
concentration in the second coordination shell of Pb atoms.
Curves of onetype belong to two spectrameasured on sam-
ples of the same composition. Arrows identify the average
Sn concentration in a sample.
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Fig. 4. (@) Projection of the SnS structure on the ab plane,
and (b, c) two possible schemes of superstructural ordering
of metal atomsin the Pbg 5Sng 5S solid solution. The space

groups of the superstructures are (b) CZV and (c) Cgv .

by three short and three long distances, each of them
being determined by the averaged length of the constit-
uent bonds. It isthisthat is observed experimentally.

As follows from a comparison of EXAFS data
obtained for the local environment of Pb impurity
atomsin SnSwith those available for Sn atomsin pure
SnS (see table), the shorter Pb—S bond length turns out
to be=0.1 A longer than the corresponding Sn-S bond
length in SnS and the longer Pb-S bond length is
shorter by =0.07 A than the corresponding Sn-S dis-
tancein SnS.

Another result, which we believe to be most impor-
tant, is that the short Pb—S bond length in samples with
orthorhombic structure turned out to be noticeably
shorter (by =0.2 A) than that in PbS (2.94 A). The
decreasein this bond length and the splitting of thefirst
coordination shell into two componentsindicate that Pb
atoms in SnS occupy off-center positions. A compari-
son of our data with the results obtained in the study of
the Ge, _,Pb,Te solid solution [9] shows that, in both
systems, the Pb—chal cogen bond lengths become differ-
ent, with the decrease in the short bond Iength being
nearly equal in both systems (=0.2 A). Significantly,
the decrease in the Pb—chal cogen bond length is consid-
erably smaller than the difference between the ionic
radii of Pb?* and Pb* (0.5 A). This suggests that the
two paired 6s” electrons are not involved in chemical
bonding, and we have here only a deformation in the
density distribution of these paired electrons, i.e, a
crossover to a stereochemically active state. In view of
the fact that Pb is observed in off-center positions in
SnS and GeTe, whereas introduction of Pb atoms into
cubic SnTe does not entail, as we have seen, any local
distortion of the symmetric environment, one can con-
cludethat |lead atoms become off-center only when they
enter lattices with symmetry lower than cubic. Thus,
the density distribution of the paired 65> electrons of a

PHYSICS OF THE SOLID STATE Vol. 44 No. 9
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Pb atom ismobile enough to be ableto transfer from the
inactive (asin PbS, PbSe, PbTe) to an active state under
certain conditions. This feature of the paired lead elec-
trons could account for the structural instability and
phase transitions observed to occur in many lead com-
pounds.

Our results also permit certain conclusions as to the
structure of the solid solutions studied. According to
our data, al the bond lengths in the nearest neighbor
environment of Pb atoms in the Pb,Sn, _,S solid solu-
tion vary monotonically with x. This suggests that the
Pby 55N, 5S composition in the SnS—PbS system should
be considered to be an SnS-based solid solution.

Consider now the short-range order observed in this
system. The SnS structure is known to consist of dou-
ble-layer packets (Fig. 4a). The formation of a well-
defined short-range order, in which Pb atoms in one
double-layer packet are surrounded predominantly by
Sn atoms of the neighboring packet, suggeststhat under
certain conditions a superstructural metal-atom order-
ing observed in mineras (tealite) can set in in
Pby 55N, 5S crystals.

Assuming the local tin atom concentration in the
second coordination shell of lead atomsto be 100%, we
may expect that completely ordered zigzag chains
...—Pb-Sn—Pb-Sn—... aligned with the ¢ axis (perpen-
dicular to the plane of Fig. 4a) will form in Py sSn, sS
samples. However, even if atoms in one such chain are
fully ordered, three-dimensional long-range order
(superstructure) can form only in the case where the
atomic arrangements in neighboring chains are corre-
lated. We note that the formation of zigzag chains
destroystheinversion center in the crystal, whichin the
SnS structure lies midway between the two nearest
neighbor tin atoms. This means that the space group of
the superstructure must be a subgroup of space group

Déﬁ and contain point group C,, as a subgroup.
Restricting oneself to analysis of superstructures with-
out any changein unit cell volume, two types of atomic

ordering in the superstructure can be conceived: (1) one
packet contains atoms of one species (space group

CZV—lenm, Fig. 4b), and (2) one packet contains

atoms of both species (space group C5,—Pb2;m,
Fig. 4c). Superstructures of the first type allow (00l)
superstructure reflections with odd I, while superstruc-
tures of the second type allow (001) and (100) reflections
with odd I.

Electron diffraction patterns of thin Pb, 5Sn, sSfilms
grown on substrates of akali halide crystals at 200°C

[8] exhibited reflections characteristic of a Cév super-

structure. In an attempt to reproduce this result, we
annealed a volume P, sSn, ;S sample at 240°C for a
month. X-ray studies of the annealed sample did not
reveal any superstructural reflections. In our opinion,
this may be due to the fact that the coupling energy of
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neighboring chains (in which the shortest interatomic
distance is =4.1 A) is too low; therefore, annealing at
lower temperatures is required. Thus, well-defined
short-range order and the absence of long-range order
in our samples indicates that interlayer coupling
between metal atoms in the SnS-based solid solution
under study is stronger than the intralayer coupling.
Thisisin accord with the rel ative magnitude of the cor-
responding bond lengths (3.5, 4.1 A).

Thus, the strong short-range order manifesting itself
in the distribution of metal atoms permits one to con-
sider the structure of the SnS—-PbS solid solution to be
in the form of randomly arranged fragments of zigzag
chains aligned with the ¢ axis of the structure. The
clearly pronounced anisotropy of the local structure
may account for the unusual physical properties of
these solid solutions.

The short-range order in the arrangement of metal
atomsis aso directly reflected in the phase diagram of
the SNnS-PbS system. As already mentioned, the extent
of the single-phase region in the phase diagram of the
solid solution on the SnS side is =50%. Our analysis
suggests that this concentration correspondsto the lim-
iting case where all metal atoms are ordered in zigzag
chains. At higher Pb atom concentrations, Pb—Pb pairs
should inevitably appear in the chains, whose forma-
tion is energetically unfavorable. It is this factor that
determines the boundary of existence of the solid solu-
tion in the system studied.

PHYSICS OF THE SOLID STATE Vol. 44 No. 9
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Abstract—The results of astructural-optical characterization of synthetic opals are presented. Information on
the growth-induced features of the opal structure was derived from an analysis of the position and width of the
one-dimensional photonic band gap. The structure of the samples was found to vary substantially along the
growth axis coinciding with the [111] direction of the fcc lattice. It was shown that the regions corresponding
to early stagesin the opal structure growth are typically strongly disordered, which manifestsitself, in particu-
lar, in the crystallites being misoriented relative to the sample growth axis. It was concluded that the regions of
synthetic opals most suitable for application as photonic crystals are those corresponding to later growth stages.

© 2002 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Starting from the publication of studies [1, 2], the
investigation and synthesis of photonic band-gap struc-
tures[3] (photonic crystals[4]) have been an important
area in solid-state physics. One usualy understands
photonic crystals to be weakly absorbing dielectric
structures possessing the following two properties [4]:
(i) periodic modulation of the dielectric permittivity on
a scale comparable to the wavelength of electromag-
netic waves and (ii) the existence of a complete photo-
nic band gap in three-dimensional space[1], or, at least,
of a photonic band gap in prescribed crystallographic
directions (the stop band) associated with the periodic-
ity of the structure[4, 5]. The latter property means that
within a given spectral range, light of any polarization
cannot enter a sample or leave it in any direction. By
analogy with the electronic band structure, the forma-
tion of a band gap in the photonic spectrum is con-
nected with Bragg diffraction of Bloch light waves
from a dielectric grating. It is believed that the exist-
ence of a complete photonic band gap will suppress
spontaneous emission from a sample [1] and give rise
to other important optical effects[3].

A complete photonic band gap was first observed in
the microwave range in an artificial fcc lattice formed
by crossing cylindrical holes drilled in a dielectric [6].
The problem of detecting acompl ete photonic band gap
in the optical spectral region apparently remains open
[7]. At the sametime, properties characteristic of aone-
dimensional photonic structure have been observed in
the optical region in a number of materials, in particu-
lar, in synthetic opals [5] and colloidal structures made
up of spherical TiO, microparticles [8]. Opal-based
inverted structures are considered to be the most prom-

ising materials from the standpoint of formation of a
complete band gap in the optical range[7, 9].

Monodisperse spherical SIO, particles in synthetic
opals form close-packed layers parallel to the growth
surface. These layers can alternate in the sequence
ABCABC... characteristic of an fcc lattice or ABA-
BAB... typical of a hexagona close-packed (hcp)
structure. Numerical simulation of a perfect crysta
consisting of rigid spheres suggests that the fcc struc-
tureismore stable [10, 11]. It isgenerally believed that
real opals represent a random mixture of fcc and hep
structures. The growth technologies used in various
laboratories to obtain synthetic photonic structures,
including opals, produce samples varying in properties
and degree of lattice perfection. In this connection,
investigation of the effect of thereal crystal structure of
materials on the photonic band gap parameters is an
urgent problem [12, 13].

The purpose of this work was to analyze the struc-
ture of synthetic opals and characterize them by optical
methods. It was established that in most of the samples
studied, regionswith different optical properties, which
are associated with differences in the defects in the
structures, form along the growth axis. Each of these
regionswas characterized based on an analysis of trans-
mission and reflection spectra obtained in visible light
over a broad spectral range, as well as on studying the
diffraction of laser monochromatic light. The paper is
organized asfollows. Section 2 describes the character-
ization of the samples using transmission electron and
atomic-force microscopy, Section 3 presents the results
of optical measurements, Section 4 gives a theoretical
analysisof the one-dimensional photonic band gap, and
Section 5 sums up the results obtained.

1063-7834/02/4409-1648%22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. Opal surfaceimaged by (a, b) electron and (c) atomic-force microscopy; (a) (111) growth plane, (b) cleaved surface featuring
asequence of (111) planes forming the fcc structure, and (c) point defect (vacancy) in a (111)-type layer.

2. SAMPLE PREPARATION AND SURFACE
MORPHOLOGY STUDIES

The samples of synthetic opals studied in this work
were prepared using the technology described in [14].
In the first stage of the technological process, a mono-
disperse suspension (size dispersion ~5%) of spherical
SO, particles, whose average diameter can vary in the
range 200-800 nm, is synthesized. Next, a water solu-
tion of this suspension is prepared and placed in a cell
for an extended period of time (up to nine months).
SO, particlesin the cell settleto the bottom under grav-
ity and form a three-dimensional periodic structure
through self-organization. The sediment thus obtained
is dried and annealed to impart a higher density and
hardness to the sample. The samples have a porous
structure with a continuous array of voids separating
the SO, spheres. Thelattice parameter of the opalsthus
formed lies in the visible wavelength range, and the
samples measure afew centimeterson their base and up
to one centimeter in height.

During the growth of synthetic opals, hexagonal
close-packed layers perpendicul ar to the growth direc-
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tion Z form. In areal structure, these layers are parallel
to the (111) plane of the fcc lattice. It is essential that
the system of growth layers perpendicul ar to the growth
axis Z in the synthesized samples differs physically
from layers with orientations determined by the system

of the other three fcc lattice planes, namely, (111),

(111),and (111). Thereason for thisliesin the fact that
in synthetic opals, there are stacking faults along the
growth axis Z, thus differentiating this axis from the
other three equivalent [111] directionsin thefcc lattice,
which are perpendicular to the crystallographic planes
mentioned above.

Theorientation of crystallographic planesrelativeto
the sampl e faces was determined through direct visual-
ization of the sphere packing patterns using transmis-
sion electron microscopy (Hitachi SEM-2700 electron
microscope) and atomic-force microscopy (P4-SPM
microscope). The results obtained in visualization of
the opal crystal structure using these methods are pre-
sented in Fig. 1. As seen from Fig. 1a, the growth sur-
face of the crystal isformed by hexagonal close-packed
layers. The pattern of mutual arrangement of SO,
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Fig. 2. () Experimental setup: (1) light source, (2) collima-
tor, (3) opal plate, (4) spherical vessel, and (5, 6) radiation
detectors; (b) cutting of a sample into plates.

spheres in severa layers lying one upon another sug-
gests that, near the sample surface, the ABC...-type
layer stacking, as a rule, corresponding to the opal fcc
lattice is formed. We also readily see that (111)-type
growth layers of the fcc lattice retain long-range order
in the sphere arrangement, unlike natural opals, in
which micron-scale ordered regions are misoriented
with respect to one another [15]. Figure 1b features an
image of a (100)-type cleaved surface of the fcc lattice
indicating cubic opa structure. All samples exhibit
point lattice defects [ see the image of the (111) surface
in Fig. 1c] with a concentration of about 1 defect per
square micron, as well as edge and screw dislocations.
Atomic-force microscopy images show that the diame-
ter of the SIO, spheres varies from 240 to 300 nm. The
SiO, sphere diameter in each of the original samplesis
the same over the volume, and the defect concentration
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is higher in the regions corresponding to earlier growth
stages.

3. OPTICAL EXPERIMENTS

For the experimental investigation of the structural
features and optical properties of synthetic opals, we
chose the most optically homogeneous original sam-
ples, which were oriented using an atomic-force micro-
scope. Next, the samples were cut, as shown in Fig. 2b,
into plates of thickness not more than 0.5 mm perpen-
dicular to the crystal growth axis Z. We shall call such
plates the (111) plates, with the plates cut from the
upper and lower parts of the original sample (which
correspond to the later and earlier growth stages) being
referred to as the upper and lower plates, respectively.

The optical spectra of the (111) plates were studied
in the transmission and reflection geometries under the
condition that the reflecting surface coincided with the
growth plane of the opal. The spectrawere measured on
a setup as shown schematically in Fig. 2a. The source
of whitelight was an incandescent lamp (1) whose light
beam was collimated with adiaphragm and alens (2) to
reach a beam divergence of 2°—4°. Next, the beam was
directed onto an opal plate (3) placed in aspherical ves-
sel (4) filled withimmersion liquid to reduceincoherent
scattering from the surface. The transverse cross sec-
tion of the beam on the sample surface was 1-1.5 mm?.
The transmitted (5) or reflected (6) light was directed
onto the entrance dlit of a DFS-12 spectrometer (spec-
tral resolution 0.5 nm) through a fiber 2 mm in diame-
ter, thus obtaining an angular resolution of about 1°.

Transmission, %
(9,1
S

T

N
()]
T

(b) —0=0

i ! )
500 600

|
700

| |
500 700

Wavelength, nm

Fig. 3. Absorption spectra of opal plates. (a) Spectra obtained at normal incidence for the following plates (Fig. 2b): (1) the lowest
plate in the sample, (2—4) plates from the central part, and (5) the top plate. (b) Transmission spectra of plate 5 obtained at different

incidence angles ©.
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Reflection, arb. units

27.5°
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Transmission, %

0

640
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Fig. 4. Reflection spectra of plate 1 measured at different reflection angles ©' (solid lines) and transmission spectrum of the same

plate obtained with the light incident at © = 25° (dashed line). |

nset: dependence of the maximum reflection band intensity on the

angle ©' at which the corresponding spectrum was measured (filled circles refer to the top plate; open ones, to the bottom plate).

Figure 3a presents the spectra of unpolarized white
light transmitted through (111) plates. These spectra
were taken with the light propagating normally to the
plate surface (i.e., inthe " — L direction from the "
to the L point of the Brillouin zone of the fcc lattice).
The spectra of all the plates exhibited a characteristic
band whose position, width, and depth were strongly
dependent on the plate number, i.e., on the coordinate Z
intheoriginal sample (Fig. 2). The spectrum of the bot-
tom plate (curve 1 in Fig. 3a), corresponding to an early
stage in growth, has a characteristic band with the
smallest dip and the largest width. As one crosses over
to the upper plates of the sample, which correspond to
later growth stages, the position of the band minimum
shifts toward longer wavelengths, its width decreases,
and the depth of the spectral dip increases. Figure 3b
shows reflection spectra for a (111) plate cut from the
top part of the sample obtained at different light inci-
dence angles ©, with the © = 0° angle corresponding to
the beam striking the growth surface along its normal.
It can readily be seen that, as the beam deviates from
the normal, the band in the transmission spectra mea-
sured in the beam direction (Fig. 2a) shifts toward
shorter wavel engths while broadening noticeably.

The Bragg angle of light scattering inside an opal
sampleis given by the well-known theoretical equation
b?> = -2k - b, where k is the quasi-wave vector of a
Bloch electromagnetic wave in the crystal and b is the
reciprocal-lattice vector. For the Bragg wavelength in
vacuum, thisyields the relation Ag = 2dncosd, where &
is the angle of light incidence inside the crystal on the

crystallographic plane perpendicular to vector b, nis
the refractiveindex, and d = 21/b isthe interplanar dis-
tancein thedirection of vector b. Becausethe quantities
0 and n are not measured in the experiment, we will use
therelation

Ag = 2dncosO. D

Here, Ag is expressed through the experimentally mea-
sured angle of light incidence on the sample © and the
effective refractive index n. Thus, the wavelength
determining the position of the minima in the opa
transmission spectra (the position of the stop band) asa
function of the incidence angle © is described by Eq.
(1), where, inthe case of light diffraction from the (111)

opa plane, d = R./8/3 is determined by the radius R of
SiO, spheres. Substitution of the position of the band
minimum in the transmission spectrum of thetop (111)
plate obtained at normal incidence (curve 5 in Fig. 3a)
into Eqg. (1) yielded areasonable value of n = 1.36 for
the effective refractive index.

In addition to transmission spectra, we also mea-
sured reflection spectra under oblique incidence of
white light on a (111) plate. Each spectrum was taken
at an angle ©' (Fig. 2) close to the direction of mirror
reflection (@' = ©) specified by the light incidence
angle ©. Figure 4 presents spectrameasured in an inter-
val of angles ©' for afixed incidence angle © = 25° on
the plate cut from the top part of the sample (plate 5).
To permit identification of the origin of the bandsin the
transmission (Fig. 3b) and reflection (Fig. 4) spectra,
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Fig. 4 aso displays atransmission spectrum of the plate
obtained at an incidence angle near 25° (dashed line).
All reflection spectraare seen to liein the region of one
stop band, which implies that the bands revealed in the
transmission and reflection spectra are of the same ori-
gin. Theinset to Fig. 4 showstheintensities at the max-
ima of reflection bands as functions of angle ©' for two
plates cut from the top and bottom parts of the sample.
We readily see that the reflection is maximum and the
angular width of the peak is minimum (=5°) for the top
plate (filled circles), while for the bottom plate, the
angular width of the reflected beam is considerably
larger (=15°, open circles). This means that, due to
strong structural imperfections in the lower plates, the
diffuse light scattering from them is substantially larger
than that from the upper plates.

The same set of (111) plates was subjected, in addi-
tion to white-light experiments, to measurements of the
reflected intensity component under monochromatic
illumination using a narrow He-Ne and Ar laser beam
directed under different incidence angles ©. In this
case, at the angles © satisfying condition (1), diffracted
light in the direction of mirror reflection is observed.
The diameter of the diffraction spot depends on the
degree of perfection of the crystal structure. For the top
plate, the angular width of thisreflection isthe smallest,
5°, while for the lower plates this reflection is broad-
ened, thus corroborating the above conclusion on
strong diffuse scattering of light from the lower plates.

4. ANALY SIS OF THE ONE-DIMENSIONAL
BAND GAP

Because the stacking of hexagonal layersin opalsis
well ordered only along the growth axis Z [the normal
to the growth plane (111) of the fcc lattice], the one-
dimensional periodic model of the photonic crystal is
applicable to investigation of the optical properties of
opals near this direction. In this section, we will make
atheoretical analysis of the one-dimensional photonic
band gap (stop band).

As dready mentioned, the formation of photonic
band gaps in the presence of a periodic modulation of
dielectric propertiesisinitiated by coherent Bragg scat-
tering of light waves. The electromagnetic eigenwaves
in photonic crystals have the form of Bloch waves. The
propagation of alight wave in such a structure can be
considered a result of its multiple elastic scattering
involving Umklapp processes with all possible combi-
nations of the reciprocal-lattice vectors of the photonic
crystal. In experiments on light scattering performed in
the mirror-scattering and transmission geometry, the
directions of propagation of the waves striking the crys-
tal and scattered from it are fixed. The detected second-
ary radiation is a sum of the contributions due to the
coherent Bragg scattering processes in which the
resultant reciprocal-lattice vector of the Umklapp pro-
cesses (tangent to the plate surface) is zero. In al other
scattering processes, the energy is removed from the
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detected beam. Thus, in general, the attenuation of the
light beam propagating through a photonic crystal has
the character of extinction and reflects a combined
manifestation of both irreversible scattering of light and
its absorption.

All this was taken into account in analyzing the
transmission and reflection of opals, which was per-
formed in terms of the dielectric superlattice model
(one-dimensional photonic crystal [4]). An infinite
structure made of periodically alternating layers with
dielectric permittivities €, and €5 can be described by a
dispersion relation,

cos(qd) = cos(kaa)cos(kgb)

_10[ay [Eignk,a)s @
2Q/;+J;Dsn(kAa)sn(ka).

This equation relates to Bloch electromagnetic waves,
which are characterized by a quasi-wave humber g and
are linearly polarized in the layer plane of the superlat-

tice. Here, k = ,/g;k;— Q”; Q is the tangential compo-
nent of the wave vector, which is preserved in this
model; a and b are the thicknesses of uniform layers
which have dielectric permittivities €, and €g and repre-
sent a close-packed layer of spheresin the opal and the
space between them, respectively; andd = a + b isthe
structure period. It is essentia that Eq. (2) predicts the
formation of aone-dimensional band gap (stop band) in
the presence of any weak periodic modulation of the
dielectric permittivity. Within the one-dimensiona
model discussed here, the effect of extinction on the
photonic band structure is included subsequently by
introducing an imaginary part into the dielectric per-
mittivities €, and &g.

Following [12], we simul ate the opal structure peri-
odicity in the growth direction by means of an effective
dielectric function,

€ai(2) = &2 +¢,[1-H2)]. ©)

This function is obtained by averaging the dielectric
permittivities in the planes perpendicular to the [111]
growth direction of the opal fcc lattice, with the §2)
function determining the part of the cross section (spec-
ified by the coordinate z) occupied by SiO, spheres. In
Eqg. (3), & and €, denote the dielectric permittivities of
the materias filling the volume of the spheres in the
opal and the volume of the voids separating them,
respectively; if these volumes are filled nonuniformly
by the dielectric, the corresponding volume-averaged
values of €, and €, should be used in the calculations.

The specific features of the one-dimensional photo-
nic band gap in aninfinite structure were analyzed qual -
itatively with the use of Eq. (1) for a superlattice
aligned with the [111] growth direction of an opal fcc
|lattice having a period d = R./8/3 = 1.63R, with R
being the sphere radius. The constants €, and € enter-
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ing Eq. (2) were approximated using the function €4(2)
from Eq. (3), with the ratio 3 = b/a and the period d =
a + b assumed to be fixed. The same assumptions were
used in calculating the transmission and reflection
spectra of a one-dimensional photonic crystal formed
by afinite number of layers N and bounded by uniform
nonabsorbing dielectric media in the Z axis direction.
As in deriving Eq. (2), the close-packed layer of the
opal spheres was simulated by a dielectric layer with
the coefficients of reflection r, and transmission t; and
width b. By properly using the transfer matrices (see,
e.g., [16]), we come to the following expression for the
transmission coefficient [17]:

Ty = |tNTITII/AN|2' (4)
Here,
ty = (cosNgd —HsinNgd/sinqd),

_ "isinNgd
t, sinqd

N tN

are the coefficients of transmission and reflection,
respectively, for a periodic structure of N layers; the
dielectric permittivity of the outer medium is accepted
equal to g,;

Ay = 1+(p—p)ry+ plpll(tzN_ril);

T,(p) and t,(p,) are the coefficients of transmission
(reflection) of light, taken with the corresponding
phases, for the real front and rear dielectric boundaries
of thefinite periodic structure, respectively; and

-1
2t,
x { (2 =r2—1)cos(kd) +i(t;—r2+1)sin(kd)} .

The results of numerical calculations of the light
transmission coefficient Ty(w) from Eg. (4) made using
the dielectric structure parameters characteristic of
opalsarepresented in Fig. 5. Curve 1 showsthat if light
strikes the layers of the structure with N > 1 normally,
the Ty(w) spectrum has afrequency band within which
the transmission is zero even in the case of negligible
losses. Outside the dip, Ty(w) undergoes oscillations
originating from light interference at the outer bound-
aries of the structure. In its position and width, the dip
in the Ty(w) transmission spectrum agreeswell with the
band gap found in the one-dimensional dispersion rela
tion of electromagnetic waves w(q), which was derived
from Eq. (2). On the other hand, the specific features of
the dip in the theoretical Ty(w) spectrum are in quanti-
tative agreement with the parameters of an experimen-
tal transmission spectrum obtained at © = 0 (curve 5in
Fig. 3d). Thus, the dip observed in the opal transmission
spectrum is indeed due to the existence of a photonic
band gap along the normal to the (111) plate surface.

H
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Fig. 5. Light transmission coefficient calculated for a one-
dimensional photonic crystal. The curves are plotted for the

following setsof parameters(©, N, £ ): (1) (0°, 1000, 10‘6),
(2) (0°, 2000, 2 x 1074, (3) (20°, 2000, 2 x 10~%), and (4)

(0°, 50, 2 x 10‘3), where N is the number of layers in the
photonic crystal (plate), © isthe angle of light incidence on

the plate, and £%; isanimaginary term that is uniform over

the plate volume and is added to the dielectric permittivity
expressed by Eq. (3). The one-dimensiona lattice period

d=R./8/3 is equal to the interplanar distance of the opal
fcc lattice in the [111] direction. The opal parameters used
are as follows: R = 150 nm, g5 = 1.37 (SiO,), and g, = 1
(vacuum). The oscillations seen in @l four curves are asso-
ciated with light interference at the boundaries of the struc-
ture of finite thickness.

Curves 2 and 3 in Fig. 5 illustrate the extinction
effect, which was simulated by adding an imaginary

term € , uniform over the plate volume, to function (3).
Curve 3 differs from curve 2 only in that it relates to
oblique incidence of light (® = 20°), a case for which
the stop band is observed to shift because of the
changed condition of Bragg reflection. Asfollowsfrom
a comparison of curves 2 and 3 with curve 1, at plate
thicknesses typical of real samples, the light transmis-
sion decreases substantially outside the stop band even

for very small €5 ~ 107 Also, the characteristics of
the band gap do not change noticeably with increasing

€y (transition from curve 1 to curves 2, 3). Curve 4
was plotted for aperiodic structure with asmall number
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Fig. 6. Experimental transmission spectrum of a top (111)
plate obtained under normal light incidence, © = 0 (curve 1),
and transmission spectra calculated using Egs. (5) and (6)

for the following standard deviations A9 = «/ (970 of the
crystallite orientation angle relative to the cut plane of the
(1112) plate: (2) 5°, (3) 10°, (4) 15°, and (5) 25°.

of layers; this curve exhibits the onset of considerable
light transmission within the stop band.

In accordance with our model, the weak dependence
of the transmission coefficient on the wavelength out-
side the stop band (curves 2, 3) can be attributed to a
decrease in the absorption of the plate (proportional to

€ /\) with increasing wavelength. The onset of trans-

mission in the region of the stop band (curve 4) can be
assigned to the coherence of Bloch light waves being
destroyed by the introduction of boundary conditions,
whoseroleincreases substantially in plateswith asmall
number of layers. We note that this interpretation of
both effects differs substantially from the one based on
the numerica simulation performed in [12], where
these effects were attributed to disorder. Thus, our the-
oretical interpretation is of a more genera character,
because it is based on a model of the regular structure
and does not require that any additional assumptions be
made.

The characterization of opals rests on the following
theoretical conclusions established above. (1) The dip
observed in transmission spectrais due to the presence
of aone-dimensional photonic band gap. (2) The main
features of the band gap do not change under oblique
light incidence at comparatively small angles to the
normal. (3) Any slip in structural coherence gives rise
to afinite transmission in the region of the band gap.
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5. DISCUSSION OF RESULTS

Let us consider the results obtained in characteriz-
ing the structure of synthetic opals based on the above
data on the properties of the spectral band correspond-
ing to a photonic stop band. As shown earlier (Fig. 3),
as one crosses over to later sample growth stages, this
band exhibits a long-wavelength shift, an increase in
the depth of the corresponding dip in the transmission
spectrum, and its narrowing. This evolution of the band
(stop band) observed to occur as onetransfersfrom ear-
lier growth stages (the lower part of the original sam-
ple) to later stages (the upper part) can be associated
with the fact that the upper part of the sample is sub-
stantially more perfect in structure than the lower part.
One can maintain that the perfect top part is character-
ized by a structure made up of close-packed layers
arranged perpendicular to the growth axis. In this case,
the increase in the band width in the lower part of the
sample (Fig. 3a) can be accounted for by assuming that
in the initial stages of growth, the opal structure is
strongly disordered and consists of misoriented crystal-
lites of close-packed layers of SiO, spheres.

The presence of strong disorder in the bottom part of
the sampleisindicated in the structural-optical analysis
of the three-dimensional patterns of Bragg diffraction
in opals, which was performed by uson samplesillumi-
nated perpendicular to the growth axis. The diffraction
pattern obtained from the top part of the sampleisaset
of reflections caused by Bragg diffraction from severa
(111)-type fcc planes. This indicates a perfect crystal
structure of the opal in this region. The diffraction
reflections from the bottom part of the sampl e broaden,
to become circles similar to those observed in x-ray
structural analysis of polycrystalline objects.

Asfollowsfrom Eq. (1), a short-wavelength shift of
the stop band can be produced by any deviation of the
direction of light incidence on the (111) plane from its
normal (i.e., adeviation from ® = Q) or by adecreasein
the quantity dn. We shall use this as a basis for inter-
pretation of the stop band evolution in going from the
top to the bottom part of the sample (Fig. 3a). We shall
assumethat the observed transmission band broadening
isinhomogeneousin character and connected with mis-
orientation of micron-sized crystallitesin thelower lay-
ersof the sample. Assuming the crystallites to have per-
fect interna packing, we shall define the crystallite ori-
entation by the angle 9 between the normal to its (111)
plane and the sample growth axis Z. Then, in the case
of normal light incidence on the plate, the orientation
angle of acrystalited isequal to the angle of light inci-
dence © on the (111) plane of this crystallite. We intro-
duced a distribution function g(8) of crystalites into
theangles of their orientation with respect to the normal
to the (111) plane of the plate and calculated the trans-
mission coefficient taking due account of the inhomo-
geneous broadening of the spectrum:

T(@0= [T(w 9)g@)do. (5)
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We used the Gaussian distribution

L ool 0 ©)
J2mO90 U2y

with amean B]= 0 and a variance @ ?[standard devi-

ation A9 = A/ E192E_|, the latter being the only statistical
parameter determining the inhomogeneous spectral
broadening. When using Egs. (5) and (6) inthe calcula
tions, the reference transmission spectra T(w, 9) in
Eqg. (5) aretaken to be spectra obtained on the most per-
fect sample (plate 5), which are shown in Fig. 3b for
some values of ©(=19); we took account of the fact that
the experimental reflection spectraare symmetric about
theincidence angle ©, namely, T(w, —©) = T(w, ©). The
results of the cal culation of aninhomogeneously broad-
ened transmission spectrum are presented graphically
in Fig. 6 for various values of the variance [ 2[JA com-
parison of Figs. 3aand 6 shows that the model of inho-
mogeneous broadening caused by different orientation
of crystallites relative to the incident beam accounts
quite well, on the whole, for the behavior of the trans-
mission band in going from the ordered top part of the
sample to the disordered bottom part. This relates, in
particular, to the short-wavelength shift of the band
centroid. However, when using the spectra shown in
Fig. 3bfor reference, the shape of theinhomogeneously
broadened spectrum virtually does not change for A9 >
20°. Hence, the disagreement between the short-wave-
length shifts of the spectra displayed in Figs. 3aand 6
intheregion A <570 nm can be associated only with the
factor dn entering into Eq. (4). Because parameter d is
the smallest for the [111] growth direction, it cannot
account for the short-wavelength shift. Therefore, the
additional contribution to the observed short-wave-
length shift of the transmission band should be related
to adecreasein therefractive index n in the disordered
lower part of the sample as compared to the top one,
whichisof higher perfection. Thisdecrease may be due
to an excessfraction of the optically less dense medium
(ar) in the voids both between the SiO, spheres and
inside the spheres themselves.

9®) =

6. CONCLUDING REMARKS

We have demonstrated that measurement of the
optical reflection and transmission spectrain the region
of the photonic band gap is an efficient method of char-
acterizing synthetic opals. It was shown that by analyz-
ing the parameters of the one-dimensional band gap
(stop band), one can obtain important information on
the growth features of the structure. It was established
that the natural growth anisotropy of opals givesriseto
the formation of regions with an essentially different
structure along the growth axis Z. The structure of these
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regions is characterized by (1) different opal lattice
defect concentrations, (2) crystallite misorientation rel-
ative to the sample growth axis, and (3) nonuniform
dielectric filling of the voids between the SIO, spheres
and inside them. The regions corresponding to earlier
stages in the structure growth are the most disordered;
therefore, the parts of the sample produced in later
growth stages are more suitable for use as photonic
crystals.
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Abstract—The basic properties of the one-electron density matrix of a crystal are considered. It is shown that
when the Brillouin zone special-point technique, devel oped earlier for cal culating the electron density and local
exchange potentials, is directly applied to the case of a nonlocal exchange potential, the calculated density
matrix is not idempotent and physically meaningless divergences appear. To surmount these difficulties, a
scheme is developed for interpolating the density matrix over the Brillouin zone in reciprocal space. A modifi-
cation of the Hartree—Fock method for an infinite crystal is proposed in which the equations of the cyclic-cluster
model are satisfied automatically. The electronic structures of perfect crystals of BN, Silicon, and rutile are
calculated using the Hartree—-Fock method and the density-functional theory. © 2002 MAIK “ Nauka/Interpe-

riodica” .

1. INTRODUCTION

The theory of the electronic structure of acrystal is
based on the assumption of the trandation symmetry of
the crystal, i.e., of theinvariance of the energy operator
under trangdlations through vectors R,,. Strictly speak-
ing, only an infinite crystal possessestranslational sym-
metry; in fact, such a crystal is kept in mind when the
one-€lectron-Hamiltonian approximation is used and
the electron—€lectron interaction is not included explic-
itly in the energy operator. In this approach, the calcu-
lated one-electron energies g;(k) form a continuum and
the one-electron Bloch functions ; ., which do not
vanish at infinity, are normalized to unity within aprim-
itive cell. Calculations are performed independently for
each of the values of wave vector k chosen.

Self-consistent schemes for calculating the elec-
tronic structure within the Hartree—Fock (HF) approach
and density-functional theory (DFT) have been exten-
sively used in recent years. The fundamental difficulty
in such calculations for crystals is that the number of
electronsin the system isvery large (formaly, infinite).
Indeed, the one-electron density matrix (DM) in the
basis of crystal orbitals can be calculated only if the
number of electronsisfinite and the orbitals can be nor-
malized to unity in all space. At the same time, the
trandational and point symmetry of the one-electron
energy operator must not be broken. These two condi-
tions are met in a cyclic-cluster model representing a
crystal fragment which has a finite volume but is
unbounded [1] because its one-el ectron wave functions
are subject to cyclic boundary conditions. A cyclic clus-
ter is usually taken to be the so-called basic domain of

the crystal, in which the number of primitive cellsis so
large that the cyclic boundary conditions imposed on
the end atoms virtually do not affect the electron den-
sity distribution in the bulk of the crystal. In actua
practice, self-consistent calculations also suffer from a
lack of proper balance between the summations over
direct and reciprocal lattices, because afixed number of
states differing in wave vector k are involved in self-
consistent calculations. (In calculating the DM, sum-
mation over a set of pointsin the Brillouin zone (BZ) is
performed in each iterative cycle of the self-consistent
procedure.) However, afinite set of wave vectorsk cor-
responds, in fact, to a particular choice of the cyclic
cluster of the direct lattice, which restricts the summa-
tion region in calculating lattice sums [2]. Further
refinement should be done by simultaneously extend-
ing the set of vectorsk and the summation region of the
direct lattice. Unfortunately, this requirement is not
always met in self-consistent calculations of the elec-
tronic structure of crystals. Within the Hartree—Fock
approach, the imbalance between the summations over
the direct lattice and BZ leads to divergence of the
exchange energy [2-4] and complicates the application
of the BZ special-point technique [5] developed for cal-
culating the electronic structurein terms of the diagonal
elements of the density matrix of the crystal in the
framework of such methods as the DFT.

In this paper, we propose a self-consistent method
for calculating the electronic structure of a crystal in
which an infinite crystal is approximated by a progres-
sively enlarging cyclic cluster placed in the Madelung
field produced by the remainder of the crystal. A crite-
rion for convergence of this procedure is proposed; the
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criterion is based on the fact that the density matrix of
the cyclic cluster, which is afinite system in an infinite
crystal, must be idempotent. By using the large-unit-
cell (LUC) method [6, 7], a relationship between the
symmetries of theinfinite crystal and of the cyclic clus-
ter is established and a correlation is made between a
specific set of wave vectors k (involved in summation
over the BZ) and the corresponding summation region
of the direct lattice when calculating the DM of the
crystal.

In Section 2, the general properties of the one-elec-
tron density matrix of the crystal (e.g., symmetry prop-
erties) are considered using the single-determinant Har-
tree-Fock approximation to the many-electron wave
function and it is shown that the DM is idempotent in
the coordinate and quasi-momentum representations.

In Section 3, we introduce the CO-LCAQO approxi-
mation (for crystal orbitals as linear combinations of
atomic orbitals) and derive relationswhich allow oneto
establish the accuracy to which the density matrix is
approximately calculated using a specific set of wave
vectorsk inthe BZ.

In Section 4, the DM of the basic domain of the
crystal is approximately calculated using a method
based on a transformation of the large unit cell that
givesaset of k pointsin the BZ between which the DM
is analyticaly interpolated in the BZ. This method
allows one to test the successive approximations to the
DM for convergence.

The CO-LCAO approximation within the Hartree—
Fock approach and DFT and the specific features of the
approximate cal culation of the DM of the crystal within
each of these methods are discussed in Section 5. An
intimate relationship is established between the inter-
polation of the DM of theinfinite crystal in the BZ and
the LUC (cyclic cluster) which generates the given set
of k points.

Finally, in Section 6, the proposed approach is
applied to a number of specific crystals differing in
symmetry and in the nature of the electron density dis-
tribution, namely, a hexagonal boron nitride crystal in
the single-layer model, atetragonal rutile crystal, and a
cubic silicon crystal with diamond structure.

2. THE ONE-ELECTRON DENSITY MATRIX
OF A CRYSTAL

Let the basic domain (cyclic cluster) of an infinite
crystal consist of N =N; x N, x N3 primitive cellsof vol-
umeV, = g [a, X a3] each, where g; (i =1, 2, 3) arethe
primitive direct-lattice vectors; therefore, the volume of
the basic region is Vy = NV, and the primitive tranda
tions of the corresponding cyclic system are A; = N, g;
(i=1, 2, 3). Inthe case of an infinite crystal, the trans-
lation group is infinite and its irreducible representa
tions are specified by the wave vector k, which varies
continuously in the BZ. The replacement of the crystal
by the cyclic cluster (basic domain) implies that any
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trandation of the cluster as a unit is equivalent to the
identity trandlation. In this case, the trandation group
and the number of its irreducible representations
become finite. Therefore, the latter are specified by a
finite number (N) of values of the wave vector, which
now varies discretely in the BZ. These values are
defined by the relation exp(ikA;) = 1 and given by

3
N, -1
k = ZKigi, where k; = ONi'T
el I I

and g; are primitive reciprocal lattice vectors.

The infinite crystal can be considered a basic limit-
lessly expanding domain, in which case the numbers N;
tend to infinity. We will treat the basic domain of the
crystal as a many-electron system containing M = Nn
electrons (n is the number of electrons per primitive
cell).

Asiswell known, the energy of a system within the
single-determinant Hartree—Fock approximation and
DFT can be expressed in terms of the one-electron den-
sity matrix. The one-electron spinless DM p(R, R’) is
defined as

p(R,R") = J'l]J(R, R, ...,Rw) M

x PR, R,, ..., R,)d°R,d°R;...d°R,,,

where the electron position vectors R and R' vary
within the basic domain of acrystal of volume V. The
DM of the infinite crystal is obtained from the DM of
the basic domain by taking the limit N —» co. Inits
tranglational symmetry, the DM isperiodic onthedirect
lattice:

P(R,R) = p(R+R,, R'+R,), )

where R, is an arbitrary trandation vector of the Bra-
vais lattice.

We will represent the electron position vector R in
the form (r, R,), where R, specifies the primitive cell
within which the tip of the vector R liesand r is the
position vector of an electron within this primitive cell.
Therefore, wehaveR =r + R,,. Using Eq. (2), the den-
sity matrix can be written in the form

P(R,R) = p(r + R, r'+Ry)

_ : _ (©)
- p(r1r +Rn'_Rn) - pr,r'(Rn'_Rn)'

The notation p, ..(R,) for the one-electron DM in the

coordinate representation implies that the indicesr and
r' of the matrix vary continuously only within the prim-
itive cell. Therefore, there is an analogy between the
properties of the DM in the coordinate representation
and the properties of the DM represented in terms of a
set of basis functions, for example, in terms of Bloch
sums of atomic orbitals (AOs) or plane waves.
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Asisknown, the diagonal elements of the one-elec-
tron DM in the coordinate representation are equal to
the electron density:

P(R) = p(R,R) = p; (0). (4)

From the normalization condition for the many-
electron wave function within the basic domain, it fol-
lows that

J’p(R, R)A’R = Nn
o ©)
=3 [Pr.AQdT = N[p, (OdT.

Therefore, the electron density is normalized to the
number of electrons per primitive cell,

Ipr,r<0)d3r = n. (6)

\

a

By using the single-determinant approximation to
the many-electron wave function, the DM can be
expressed through the one-electron wave functions
(crystal orhitals):

PR.R) = 5 S nMuRWLR), (D
i Kk

where the index i specifies the energy bands and n;(k)

are the occupation numbers. In insulators, the energy

bands are either completely filled or empty; therefore,

n;(k) are independent of k and n, =0, 2.

The one-electron DM isinvariant under any orthog-
onal transformation in the space of occupied states. In
particular, in insulators, we can go over from the
orthonormal set of extended Bloch states | (R) to the
orthonormal set of localized Wannier functions:

1 ikR
WR-Ry) = =% e "Pu(R). )
Rz
In this case, Eq. (7) for the DM takes the form
PR.R) = I Y UR-RIUWR-R) (9

! m

or

pr, r'(Rn) = z ni Z Ui(l' - Rm)ui* (I" - Rm + Rn) . (10)
i Rp

It is well known that the Wannier functions u;(R)
vanish exponentially as|R| — o in crystalswith com-
pletely filled bands. Since the vectorsr and r' liein the
zeroth primitive cell, the products of the Wannier func-
tionson theright-hand side of Eq. (10) fall off exponen-
tialy with increasing |R,|. Therefore, we may expect
the total lattice sumin Eq. (10) for the off-diagonal ele-
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ments p, (R,) of theDM to also vanish exponentially
with increasing |R,| (see [8, 9] for further details). It
should be noted that in metals, the DM decays accord-
ing to a power law.

Under trand ation through alattice vector, according
to Bloch's theorem, the crystal orbitals transform
according to irreducible representations of the transla-
tion group:

Pic(R+Ry) = exp(ikR)Pi(R). (11)

This condition is satisfied for both the infinite crystal
and the basic domain; only the sets of values of the
wave vector k for which Eq. (11) is satisfied are differ-
ent in these two cases.

By applying Bloch's theorem (11) to the wave func-
tions in Eq. (7) for the one-electron DM of the basic
domain, we obtain

pr,r'(Rn) = z Z ni(k)llJik(f)llJfk(f' + Rn)
ik (12)
= 23 ep(-ikR)P, (K),
k

where P, (k) isthe density matrix in k space, which
is defined as

Pr (k) = Nzni(k)mik(r)lpi*k(r')- (13)

From the familiar orthogonality relations for columns
and rows of the matrices in the irreducible representa-
tions of the Abelian trandlation group, it follows that

%ze‘m" = 3, (143)
Rn
%Ze_ikR” = 5 n (14b)

k

wheregisareciprocal lattice vector and A isaprimitive
trandation of the basic domain as a whole. Using
Eq. (14b), it is easy to derive an inverse relation of
Eqg. (12),

Prr(k) = 5 exp(ikRy)pr, r(Ry).

n

(15

It follows from Eq. (15) that P, (k) isaperiodic func-
tion in the reciprocal space:

P (K +0m = P, (k). (16)
Using the hermiticity of the DM
p(R,R) = pHR"R), (17)
PHYSICS OF THE SOLID STATE  Vol. 44 No.9 2002
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we find that

pr,r'(Rn) = p;'k',r(_Rn)1 Prr(k) = P;'kr(_k) (18)

From Eq. (6), the normalization condition for the DM
in k space can easily be found to be

IP,,r(k)d‘*r =n. (19)

Here, integration is performed over a primitive cell of
volume V.

In the case where the many-electron wave function
is calculated in the single-determinant approximation,
the spinless DM is idempotent:

’ A .
Jp(R, R"p(R", RYdR" = 2p(R, R (20)
(n;=0,2).

Similar relations also hold for the matrices p, (R,)
and P, .(k):

Y [4PRe)Pr (R —Red = 20, (R, (2D
R V,

AP (P (k) = 2P (k). (22)

3. THE ONE-ELECTRON DENSITY MATRIX
OF THE CRYSTAL IN THE LCAO
APPROXIMATION

In the CO-LCAO approximation, a one-electron
Bloch function y;, (R) (crysta orbital, CO) is expanded
in Bloch sums x,«(R) of ACs:

Y k(R) = zcui(k)xu,k(R)v (23)
u

where

kR

o.(R-Ry). (24)

1
Xu,k(R) - :/——ﬁRzn

In Egs. (23) and (24), the index u labels al AOs in the
zeroth primitive cell (n =1, 2, ..., M) and the index i
numbers the energy bands (i = 1, 2, ..., M). The Bloch
sums, as well asthe AOs, do hot compose an orthonor-
mal basis; that is, the overlap integrals

S.(K) = jd3Rxﬁ,k(R)xv,k(R),

(25)
Sw(Ry) = jd3R<p:(R><pv(R—Rn)
are not equal to 9,
PHYSICS OF THE SOLID STATE Vol. 44 No. 9
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Thecrystal orbitalsy; (r) compose an orthonormal
set from which the following orthonormality relations
can be derived for the elements of the matrix C(k)
involved in Eq. (23):

{C)Sk)CK)} i = & (26)
In terms of the Bloch sums of AOs, the DM ele-
ments P, (k) can be expressed as
Pu(k) =S mi(k) Ci(k) Cli(K). (27)
Within the LCAO approximation, the DM elementsin
the coordinate space are given by an expression similar
to Eq. (12),

PR = £ 3 &P, (29)
k

and the DM in thereciprocal spaceisrelated to the DM
in the coordinate space through a relation similar to
Ea. (15),

Pu(k) = 5 exp(ikR;)pu(Ry)- (29)

In the reciprocal space, the analog of the normalization
condition (19) for the DM in the AO representation is
the relation

Tr(PR)S(K) = 5 Puu(k)Su(k) = n. (30)
W, v

The normalization condition for the DM in the coordi-
nate space [analog of Eq. (6)] is

> Trlp(R)SRA)] = n. (31)

Theidempotency relation for the density matrix P(k) in
the reciprocal space (with allowance for the nonorthog-
onality of the AO basis) has the form [ni(k) = 0, 2]

P(k)Sk)P(k) = 2P(k). (32)

In the coordinate space, the idempotency relation for
the DM iswritten as

> PRSRL-R)PR,—RH) = 2p(Ry).  (33)

R.Rm

In various semiempirical versions of the Hartree—
Fock approximation, the orthonormal set of Lowdin
atomic orbitals (LAOSs) rather than the nonorthogonal
AO basisis used; the LAOs are defined as

Xik(R) = 5 SV RXK(R). (39)

Inthisbasis, the normalization condition for the density
matrix P-(k) is simplified; instead of Egs. (30) and
(31), we have

TrP(k) = n, Tr[p-(0)] = n. (35)
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In the LAO basis, the idempotency relations for the
DM in the coordinate and reciprocal spaces are similar
to Egs. (21) and (22) for the DM in the coordinate rep-
resentation; in the reciprocal space, we have

P (k)P (k) = 2P"(k), (36)
and in the coordinate space, the relation has the form

Y P (RIP(R-Ry) = 20°R). (37

In particular, for the zeroth primitive cell (R, = 0), with
allowance for the hermiticity of the DM, we have

S P"RIPHR,) = 2070). (38)

The off-diagonal elements of the DM in the AO basis
determine the quantities

2
Was(R,) = bR,
uOAvOB

which are called the Wiberg indices of the crystal [10,
11]. The Wiberg indices Wyg(R,,) can be interpreted as
chemical-bond indices (orders) between atomsA and B.
These indices are subject to a relation that is a conse-
guence of the idempotency of the DM. To derive this
relation, we consider the diagonal matrix elements of
Eqg. (38) and carry out summation over al AO indices
of atom A. Theresult is

z ZWAB(Rn) = 2p/LA_ z ptu(o)'

BZAR, oA

(39)

(40)

Here, p,K is the total electron population (in Lowdin’s
sense) of atom A,

Pa =Y Pu(0). (41)
u

L et us define the covalence C, of atom A as the sum of
the chemical-bond orders (Wiberg indices) between
atom A and all other atoms of the crystal. Using the
idempotency relation (40), we have

Was(Ro) = 2pa= > (@ (42)

HOA

C, =
B,R, %A, 0

It follows from Eq. (42) that the covalence of atom Ain
the crystal can be calculated either by summing the
bond indices between atom A and all other atoms of the
crystal or by using only single-center DM elements
related to atom A. This property of the covalence is a
consequence of the idempotency of the DM.

The above consideration holds for the density
matrix of the basic domain of the crystal; that is, it is
assumed that the number N of primitive cells in this
domainissolargethat theintroduction of cyclic bound-
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ary conditions virtually does not affect the density
matrix of the infinite crystal.

4. APPROXIMATE ONE-ELECTRON DENSITY
MATRIX OF THE CRYSTAL

4.1. Large-Unit-Cell Method for Generating
a Set of Special Pointsin the Brillouin Zone

In actual practice, the electronic structure of acrys-
tal is calculated using one-electron wave functions
found at afinite (relatively small) number L of points
{kj} intheBZ (j =1, 2, ..., L). Thisraisesthe question
of how the sum over k points in the BZ should be
approximately calculated in Eq. (12) for the one-elec-
tron DM of the crystal.

We consider a set of points {k;} generated by the
large-unit-cell (LUC) method [6, 7]. In this method, the
primitive lattice vectors a; (i = 1, 2, 3) are transformed
with the help of amatrix | whose elements are integers:

3
a = > i, L= [detl].
i=1

(43)

Thebasis vectors ajL determinean LUC and anew Bra-

vaissuperlattice. The LUC thus constructed hasvolume
V, =LV, and consists of L primitive cells. The superlat-
tice vectors A are linear combinations (with integral-

valued coefficients) of the basis vectors aiL . The matrix

| is chosen such that the point symmetry of the new
superlatticeisidentical to that of the original lattice [7]
(the corresponding transformation (43) iscalled asym-
metric extension). The type of the direct lattice can be
changed if there are several types of lattice with the
given point symmetry. The LUC isconveniently chosen
in the form of a Wigner—Seitz (WS) cell, which pos-
sesses the point symmetry of the lattice.

We introduce the cyclic boundary conditions for the
crystal domain coinciding with the LUC,; that is, we
assume that all trandations through the superlattice
vectors A are equivalent to the identity trandlation.
Thus, we have a system of finite size, i.e., acyclic clus-
ter belonging to the symmetry group G- = T-F [12] (we
consider only symmetric extensions). Here, the sub-

group Tt includesL trans ations through the vectors Rg

of the original direct lattice that lie within the LUC or
fall on its boundary. The lattice sites lying on the
boundary of the LUC are connected by superlattice
vectors A. These lattice sites should be counted only
once, because they belong simultaneously to severa
LUCs.

For the cyclic cluster thus constructed, the following
orthogonality relations hold:

1 ikRY _
[ze = 6kjg, (444)
RO
PHYSICS OF THE SOLID STATE Vol. 44 No.9 2002
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—ik;R®

rn
Ze = 5R3,A'
K

These relations are a generalization of the analogous
equations in (14) for the basic domain of the crystal.
Equations (44) are more general, because the cyclic
cluster is obtained with the help of transformation (43),
in which the matrix | can be nondiagonal. The vectors
k; in Eqgs. (44) label L different irreducible representa-

tions of the group T* and can be found from the relation

(44b)

-

exp(ik;A) =1 (j=1,2,...,L). (45)

Equation (44a) is a consequence of the orthogonal -
ity of the characters of irreducible representations of
the trangdlation group to the character of the unit repre-
sentation (k; = 0), while Eq. (44b) meansthat the char-
actersof aregular representation of the group are equal
to zero for all elements of the group except for the
identity element (i.e., except for theidentity translation
and equivalent trandations through the superlattice
vectorsA).

4.2. Interpolation Procedure for Constructing
an Approximation to the Density Matrix

Let the density matrix P(k) be known at afinite set
of points {k} (j =1, ..., L) determined by the LUC
method and, therefore, satisfying Eq. (45). Our aim is
to approximate the DM at an arbitrary point k in the
BZ. The interpolation procedure discussed in this sub-
section is appropriate for calculations in both the coor-
dinate representation and the AO basis. For this reason,
we drop the indices on the DM, keeping in mind that
these indices are r and r' in the coordinate representa-
tion and p and v in the AO or orthogonalized-AO rep-
resentation.

The expansions of the density matrix P(k) given by
Egs. (15) and (29) can be rewritten in the form

P() = 3 ¢ p(RY

’ (46)
ik(Rn+A)p(R2 +A),

t22°

A%£0 Rg

wherethetranslations(Rﬂ +A) liein the basic domain
of the crystal. As mentioned above, the off-diagonal

elements of the density matrix p(Rg + A) fall off with
distance as Wannier functions (exponentialy in the
case of insulators). Therefore, asthe LUC growsin size
and the values of |A | become sufficiently large, the sec-
ond term in Eq. (46) will be small in magnitude. With
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this in mind, we will approximate the density matrix

P(k) of the crystal as follows [2]. In the expansion
given by Eq. (46), we drop the sum over the superlattice
siteswith A # 0 and take the remaining expression as an
interpolation formula for determining the DM at any k
point in the BZ; we rewrite this expression in the form

Pk) = )3 & Fo%RY).

n

(47)

Thisformulawas proposed in [13] for theinterpolation
of an arbitrary periodic function f(k) (see also [2, 14,

15]). The interpol ation coefficients pO( Rﬂ ) (the number
of which isL) can be found from the condition

Pk) = 3 € p(RY = P(K).

R

(48)

n

Using the orthogonality relation (44b), the interpo-
lation coefficients can be found to be

P°RY = 15 " PiK). (49)
K

The coefficients pO(Rg) can also be represented as a
sum of the DM elements p(Rﬂ) over the superlattice
sites. Indeed, substituting Eq. (46) for P(k;) into
Eq. (49) and using Eq. (44b), we have

PR = Y p(Ry+A). (50)

It should be noted that the matrix p°(R,,) can be defined
for al vectors R, of the Bravais lattice by using the
appropriate extensions of Egs. (49) and (50). It is easy
to seethat p°(R,,) is aperiodic function of period A.

Substituting Eg. (49) for the coefficients p®( Rﬂ )into
Eq. (47), we obtain an interpolation formulafor the DM
in the reciprocal space,

P(k) = kzP(kj)Q,-(k),
‘ (51)

. 0
i(k—k)R}

Q,k) = %Ze

R

n

Here, Q;(k) areinterpolation weights, the sum of which
is equal to unity (the normalization natural for weight-
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ing factors). Indeed, using Eq. (44b), we find

kzgzj(k) = ZoeikRg[%kze“kiﬂ
j R, j

ikRp _
= Ze Orop = 1

RO

n

(52)

For the appropriate DM in the coordinate space, one
can write equations similar to Egs. (12) and (28):

BR) = T exp(-ikR,)P(K)
k (53)

_ pO(Rﬂ)[l eik(RS—Rn)}_
sl

According to Eq. (14b), the expression in the sguare
brackets on the right-hand side of Eq. (53) is equal to

unity if thevector R, belongsto the set of vectors{ Rg}

(i.e., if this vector lieswithin the LUC or on its bound-
ary) and vanishes otherwise. Therefore, the appropriate
DM can be represented in the form

PRy = W(R,)P(RY,
where w(R,) is the so-called weighting function [2, 3],

(54)

ik(RS-R,) _ %ﬂ- RnD{Rg}

55
M R,O{RY. 59

WR) = Y e
k

We note that the procedure described above for
interpolating the DM in the BZ is not uniquely deter-
mined, because the LUC (i.e., the set of vectors{ R0 })
can be variously chosen for the same superlattice. Fur-
thermore, the LUC can be chosen differently for the
pairs of DM indices r, r' and {, v. In this paper, the
LUC istaken to be the Wigner—Seitz cell, because only
thiscell hasasymmetry identical to the point symmetry
of the superlattice in al cases. In order to correlate the
LUC with a cyclic cluster, we choose the LUC to be
dependent of the pair of DM indices as follows. In the
coordinate representation, the LUC (V, region) is cen-
tered at the point (r —r"); therefore, we have

wr,r‘(Rn) = (*)(Rn+rl_r)
Ol Ry+r=rv,
T RAr—rov,

(56)

In the AO representation, the LUC is centered at the
point (d, —d,), whered, and d, are the position vectors
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of the two atoms to which the AOswithindicesp and v
belong, respectively. Thus, we have

wuv(Rn) = w(Rn+dv_du)
b R,+d,—d,0V,
" B Ry+d,—d, OV,

(57)

The weighting function w, \(R;) of Eq. (57) intro-
duced into expressions for the DM specifies the cyclic
boundary conditions and the cyclic cluster. Indeed, let
an arbitrarily chosen LUC be fixed and let us consider
the orbitals of atoms A and B inthisLUC (u O A, v O

B). Out of all matrix elements p,,,(R, +A) with indi-

ces |t and v kept fixed and the vector A running over the
superlattice, only one matrix element is nonzero. For
this matrix element, the vector (d, + R, + A) (the posi-
tion vector of atom B) falls into the Wigner—Seitz cell
centered at the atom-A site. Thismatrix element exactly

equals the matrix element p,,(R,) -

4.3. Essential Features of the Approximate
Density Matrix

According to Eq. (54), the approximate density
matrix p(R,) found by interpolation in the BZ contains

the weighting function of Egs. (55)—(57) asafactor. This
function ensures the proper behavior of the off-diagonal
elements of the approximate DM as |R,| — . As

already mentioned, the matrix pO(Rn) without a
weighting factor is a periodic (not vanishing at infinity)
function,

PR, +A) = p°(Ry). (58)

However, this DM is frequently used in many calcula-
tions based on the Hartree—Fock approximation or its
semiempirical versions for crystals (the CNDO and
INDO methods). In those calculations, al summations
over the lattice sites are usually truncated by introduc-
ing interaction ranges. The nondecaying density matrix
P%(R,) gives rise to a divergent exchange term in the
Fock matrix [2]. In other words, as the corresponding
interaction range increases in size at a fixed number of
involved k points, the results do not converge to a cer-
tain limit and the total energy of the system sharply
decreases. In order to avoid these divergences, the
exchange interaction range should be chosen such that
the corresponding sphere differs only slightly from the
Wigner—Seitz cell of the superlattice, which generates
precisely the set of k points used in the calculations. In
this case, the size of the summation domain in the coor-
dinate space is in accord with the number of k points
used in the calculations and the exchange term in the
Fock operator does not diverge. The approximate den-

sity matrix p(R,,) isnot subject to these drawbacks, and
the balance between the size of the summation domain
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in the coordinate space and the number of k; points
involved occurs automatically [2].

It should be noted that in the versions of the density-
functional theory in which the exchange-correlation
term depends on the electron density aone, both
approaches are equivalent. Indeed, the el ectron density
P(R, R) = p;,,(0) depends only on the diagonal ele-
ments of the DM; therefore, the weighting function of
Egs. (55) and (56) is equal to unity in this case.

In general, the approximate DM does not satisfy all
the conditions to which the exact DM is subject. Let us
elucidate which of the relations presented in Section 2
holds for the approximate DM and which do not.

The normalization conditions (5), (31), and (35) are
very important. The approximate DM in the coordinate
representation and in the LAO basis meets these condi-
tions because the weighting function for the diagonal
elements of the DM isequal to unity. In the nonorthog-
onal AO basis, a modified normalization condition is
satisfied,

> Tr[p(RS-R] = n, (59)

where (R, isan approximate overlap-integral matrix,
which is obtained by interpolating in the BZ in much
the same way as the approximate DM was obtained and
has the form

Su(Ry = w(R,+d,—d)sn(Ry),

Sik.R 60
SRD = 15 ) = TR, A,
kj A

It is easy to verify that in all cases the approximate
DM is Hermitian; i.e., it obeys relations identical to
Egs. (17) and (18).

In general, the approximate DM is not idempotent,
because Eq. (22) holds only at points k = k; (j = 1,
2, ..., L) and is not satisfied at other points of the BZ.
For this reason, Egs. (21) and (37) in the coordinate
space do not generally hold. However, in the important
particular case wherethe vector R,, inthese equationsis
zero, the idempotency relation is satisfied. In the coor-
dinate space and in the LAO representation, we have

> P(RwP(Rm = 20(0). (61)

Therefore, the relation important for the Wiberg indices
(42) isaso satisfied.

We note that the matrix p°(R,,) obeys the relation

Y P’ (RmP’(Ra=Rm) = 20°(Ry).

Rm

(62)

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

2002

1663

In the strict sense, EQ. (62) is not an idempotency rela-
tion, because summation is carried out only over the

vectors R?n lying within the LUC, whereas the vector

difference (Ry — Rp,) can lie outside the LUC. If we
perform summation over all Bravais lattice vectors, the
right-hand side of Eq. (62) will diverge, because p°(R,,)
does not vanish at infinity.

For the approximate DM to have the proper point
symmetry, the LUC should be taken to be the Wigner—
Seitz (WS) cell. In this case, however, the symmetry
can be broken if, on the boundary of the WS cell, there
are atoms of the crystal. Indeed, if an atom lies on the
WS cell boundary, then there is one or several equiva-
lent atoms that also lie on the boundary of the cell and
their position vectors differ from that of the former
atom by a superlattice vector A. When constructing the
approximate density matrix p , we assigned only one of
severa equivalent atomsto the WS cell. In other words,

in the set { Rg}, there are no two vectors that differ
from each other by a superlattice vector A. In this case,
if a point-symmetry operation takes one boundary atom
into another atom assigned to another WS cell, then the
point symmetry of the density matrix p is broken,
because the symmetry of the weighting function
ww(Ry) of Eq. (57) is broken.

Sinceit is desirable to preserve the point symmetry
when calculating the electronic structure, the approxi-
mate DM can be replaced by an averaged density

matrix ps (see aso [14, 16-18]):

PR) = 3 FR) = @RIPR).  (63)
Sa=1

Here, theindex a = 1, 2, ..., N labels al N, possible
ways in which one of the equivalent boundary atoms
can be assigned to agiven WS cell and the symmetrical
weighting function «¥(R,) is defined as

NS
1
(*)Zv(Rn) = W z wﬁv(Rn)
Sa=1

64
L Ry+d,-d, 0V, (64

Iﬁl:l

s
uv

Rn+dv_d“ DVA,

SR

where nfw is the number of atoms in the WS cell
(including its boundary) that are trandlationally equiva
lent to atom B (v [ B) in the case where the WS cell is
centered at the atom-A site (1 [J A). In other words, nﬁv
isthe number of WS cellsthat have atom B in common.

If atom Bisstrictly insidethe WS cell, then nj,, = 1 and
Eq. (64) isidentical to Eq. (57). We note that the density
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matrix pS(R,) does not satisfy idempotency relation
(61) and corresponds to a mixed state of the system.
However, asthe LUC enlarges, the effect of the bound-
ary atoms decreases and the density matrix pS(R,)
approaches the idempotent density matrix p(R,,).

5. HARTREE-FOCK METHOD
AND DENSITY-FUNCTIONAL THEORY
IN THE CO-LCAO APPROXIMATION

The energy of the crystal (per primitive cell) as cal-
culated within the Hartree—Fock (HF) approximation
(Eyp) and DFT (Epgy) can be expressed in terms of the
one-electron DM:

Enelp] = Eolp] + Eu[p] + Ex[pl,
Eper[p] = Eolp] + Enlp] + Exclpl,

where Eg[p] is the one-electron energy, which is
defined as the expectation value of the one-electron

operator h(R),

(65)

Eilp] = § [RINRIPR RYe=ri (60

En[p] isthe Coulomb (Hartree) energy,
P(R, R)p(R', R').

_ 1.3 301
Ealp] = NJ’d RJ’dR R-R| (67)
Vy Vy
Ey[p] isthe HF exchange energy,
_ 11 a0 a0 [p(R R
Ex[p] = ZNIdRIdR RoR] (68)
Vy Vy
and Ey[p] isthe exchange-correlation energy,
1
Exclp] = i [dROR Riexclpl.  (69)

VN

In Eq. (69), exc[p] is the exchange-correlation energy
per electron as calculated within the uniform electron
gas approximation.

In the HF approximation and DFT, the crystal orbit-
als are solutions to the equations

'E(k)wi,k = &KW .
where the one-electron operator F is either the HF
operator ™ (K)

(70)

F' (k) = AK) + I(K) + X(K), (71)
or the Kohn—Sham operator £~ (K) ,
EPT(k) = AK) + I(K) + Vxe(k). (72)
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Here, H(k) isaone-electron operator which describes
the motion of an electron in the crystal and is equal to
the sum of the kinetic-energy operator and the Cou-
lomb interaction operator between the electron and

fixed atomic nuclei and J(k) and X(k) are the Cou-
lomb and exchange operators, respectively, which
describe the interaction of the given electron with the
other electrons of the crystal. In the LCAO basis, the
Hartree—Fock and Kohn—Sham operatorsin the recipro-

cal space are represented by the Fock matrices F/yy (k)

and Kohn-Sham matrices Fy, ' (k) , which arerelated to
the matrices in the coordinate space by the relations

Fin) = 3 € TR + (R + X (R,

R

" (73)
Far (K) = 5 €T (RY) + (R + Vi (R,

R

n

whereh,,(Ry), jw(Rn), and x,,(R,,) arethe one-electron,
Coulomb, and exchange parts of the Fock matrix in the
coordinate space, respectively. The Coulomb part
Jw(Ry) of the Fock matrix is defined as

WRI=Y Y PR [TR[FRGR)

ANOR Ry

(74
*QR-RIFZR AR ~Ru) %R ~Rn =Ry

The exchange part of the Fock matrix can be obtained
from Eqg. (74) by interchanging the electron position
vectors R and R' in the arguments of functions @,(R —
R,) and ¢(R'—Ry,):

1

%R = 55 3 PR [TR[CRGR)

AORL Ry

(79
* QR ~Ru) =gy MR ~RIG(R Ry =Ry,

In the DFT, instead of the nonlocal-exchange interac-
tion matrix x,,(R,), the exchange-correlation matrix

Vi (R, is used, with different exchange-correlation-

functional approximations being employed in various
versions of the DFT. In particular, in the local-density
approximation (LDA), it is assumed that

Viv(R,) = fd3chp(R>vX°(R)<pv(R—Rn),

XC _a (76)
vT(R) = a—ps[p(R)]-
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Here, p(R) = p(R, R) is the electron density. In the
DFT, the exchange-correlation potential depends only
on the electron density and, therefore, has no off-diag-
onal elementsin the coordinate representation. In more
accurate (than LDA) versions of the DFT, a gradient
correction is added to the energy functional.

In the DFT, the electronic structure of a crystal is
calculated, as a rule, in the plane-wave basis [19].
Recently, CO-LCAOQ calculations have been performed
using the Crystal-95 computer code [20], which is
based on both the HF method and DFT and allows one
not only to make a comparison between the results
obtained within these two approximations but also to
employ a combination of these approximations. For
example, the HF self-consistent electron density of the
crystal can be used to calculate correlation corrections
to the total HF energy a posteriori. Self-consistent cal-
culations of the electronic structure of a crystal are also
carried out using the so-called hybridized operator,
which includes both the nonlocal HF exchange operator
and the correlation potential derived from the density
functional. The other terms in operators (71) and (72)
are calculated in this case within the same approxima-
tions. Inthe LCAOQ approximation, the exchange-corre-

lation potential v*“(R) is expanded in the Gaussian
AOs and the expansion coefficients are found self-con-
sistently by fitting to an analytical expression in each
iterative cycle.

In actual practice, calculations are performed for a
relatively small number of pointsk; (j =1, 2, ..., L),
which are usually chosen using the LUC method with a
diagonal [21] or nondiagonal matrix | [22] (see
Eq. (43)). Such a set of wave vectors is chosen when
constructing an approximate DM of the crystal. In the
Crystal-95 computer code [20], the periodic (not van-
ishing at infinity) matrix pﬁv(Rn) istaken, infact, asthe
approximate DM. Therefore, particular attention
should be given to calculating lattice sums like
Egs. (74) and (75) in this case. We will consider this
problem in more detail following [20].

In the Crystal-95 code [20], the accuracy to which
the overlap-integral and kinetic-energy lattice sums are
computed is controlled by parameter t;; the summation
is terminated when the product of AOs at different cen-

tersbecomes lessthan 10 *. The accuracy towhichthe
Coulomb lattice sum j,,(Rp) is computed is also deter-
mined by parameter t; and, in addition, by parameter t,.
When the overlap of the electron densities of different

atoms becomes less than 10 2 , the corresponding Cou-
lomb interaction is treated as that of point multipoles.
The sums over R,; and R, in Eqg. (75) for the

exchange energy are convergent; the corresponding
summation is controlled by parameter t; and terminated

when the @,(R)®\(R -Ryy) and @,(R' - R)@s(R'— Ry —
R,;) AO overlap becomes less than 10 °. However,
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when the periodic (not vanishing at infinity) matrix
P°(R,) istaken as the approximate DM, the matrix ele-
ments x,,,(Rp) do not tend to zero as [R,| —= . This
can be easily verified by putting R, =0and R,,= R,,in
the sums over R, and R,;; in Eq. (75) and taking into
account that the function 1/|R — R’| lowly decreases
with increasing |R — R'|. Because of this improper
asymptotic behavior of x,,(R,), the exchange part of
the Fock operator in the reciprocal space diverges at
k = 0 and the total energy of the crystal also becomes
divergent. In order to avoid these divergences, the
appropriate interaction ranges (determined by parame-
terst, and ts) are introduced in the Crystal-95 code; the
DM elements p,,,(R,) and pys(R) in Eq. (75) are taken
equal to zero if the @,(R)@,(R — R,) and @,(R)@;(R —

R,) AO products become less than 10 * and 10 °,
respectively.

Such a scheme for calculating the lattice sums
involved in the matrix elements of the energy operator
was employed in [20] within both the HF approxima-
tion and DFT. In the former approach, the accuracy of
computation of integrals was controlled by all of the
parameterst; to ts; in the latter, only by t; and t,.

We propose three different versions of the HF
method in which the approximate density matrix pS(R,)
is used instead of the matrix p°(R,) not vanishing at
infinity.

In the first version, the density matrix p,,(R,,) in
Eq. (75) for the exchange part x,,(R,) of the Fock

matrix is replaced by the approximate DM p;,(R,),
which differs from p,,(R,) in that the former contains

the weighting factor w;4(R,) [see Eq. (63)]. Theintro-
duction of this factor removes the divergence of the
exchange energy of the crystal and the imbalance
between the number of k pointsin the BZ involved in
calculations and the summation procedure over the
direct latticein Eq. (75). Inthis case, there is no need to
introduce artificial cutoffs determined by parameterst,
and ts. This version alows one to calculate the elec-
tronic structure of the infinite crystal (or its basic
domain) by using a proper DM rapidly vanishing at
infinity in constructing the exchange potential .

In the second version, the density matrix p5(R,) is
substituted not only into the exchange part of the Fock
matrix in Eq. (75) but aso into the Coulomb part
jw(Rp) of the Fock matrix in Eq. (74). Inthis case, how-
ever, one should redefine the overlap integral matrix
S.(Ry) in accordance with Eq. (60) in order to pre-
serve the normalization relation (59). This version, as
well as thefirst, corresponds to calculation of the elec-
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tronic structure of the infinite crystal (or its basic
domain).

In the third version, the approximate DM p;,(R,,)
is substituted into the total energy of the crystal in
Eq. (65) and both the HF energy E,pS] and DFT

energy Ep[p] are calculated. Equationsfor the crystal
orbitals can be found by minimizing the energies
Ene[p®] and Eper[pS]. The distinctive feature of this ver-

sion is that the cutoff weighting function oofw(Rn) is

also involved as afactor in al lattice sums for the one-
electron and two-electron parts of the Fock matrix in
Eq. (73):

Fn() = 3 e MalRY) -

* [hyu(Ro) + Juu(Rn) + Xuu(R)] -

Thus, in the third version, the cutoff factor w;,(R,,)

is introduced in al lattice sums, in particular, in the
overlap integral matrices and kinetic-energy matrix.
The introduction of a cutoff factor in these sums is
equivalent to considering a cyclic cluster placed in an
external electric field (Madelung field) produced by
various (finite-size) multipoles. Thefield dueto charges
and multipoles is determined by the diagonal DM ele-

ments p;,,(0) for which the weighting function ;, ,(0)

equals unity. Thus, there is an intimate relationship
between the interpolation procedure proposed for cal-
culating the DM of theinfinite crystal inthek spaceand
acyclic cluster equal tothe LUC in size.

In this paper, we employed the first version of mod-
ified HF equations. In the next section, we discuss the
electronic structures of a number of crystals computed
by means of the Crystal-95 code without and with
allowance for the weighting function.

6. CALCULATED ELECTRONIC STRUCTURES
OF BNy, Si, AND RUTILE TiO, CRYSTALS

From the above discussion of calculations of the
electronic structure of an infinite crystal and a cyclic
cluster by using the HF and DFT methods, we can draw
some practically important conclusions. Such calcula-
tions are performed first for a set of points k; (j = 1,
2, ..., L) chosen in the BZ and then for enlarged sets
{kj;} until the results become convergent. In this paper,
we investigated the convergence of quantities such as
the total energy per primitive cell, the energies corre-
sponding to the top of the valence band and the bottom
of the conduction band, the band width, and the atomic
charges and covalences.

The calculations are performed for (i) hexagonal
BN (in the single-layer model) having two atoms per
primitive cell and belonging to the double-periodic
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symmetry group Déh , (if) acubic Si crystal having two
atoms per primitive cell and belonging to the space

group O; (Fd3m), and (iii) arutile-structure TiO, crys-
tal having a tetragonal lattice and belonging to the
space group Dj; (P4,/mnm). By choosing these crys-
tals, we can compare the convergence of calculations
for crystals with different chemical-bond covalence (a

pure covalent Si crystal, aBN crystal with weakly dis-
tributed charge, and an essentially ionic TiO, crystal).

We employed the Crystal-95 computer code [20],
which alows one to perform computations within the
LCAO approximation by using the HF and DFT meth-
ods. Thelattice parameters are taken to be equal to their
theoretical values for BNy, (a = 2504 A), Si (c =
5.460 A), and TiO, (a = 4.555 A, ¢ = 2.998 A) calcu-
lated in [23-25], respectively. The AO bases for Si, Ti,
and O are also taken from those papers. For BNy, the
STO-3G basisisused. Inthe DFT calculations, we used
the Becke-Lyp exchange-correlation potential [26],
which includes a gradient correction.

As indicated in Section 5, the accuracy of calcula-
tions of lattice sumsin the Crystal-95 codeis controlled
by parametersty, t,, ..., ts in the HF method and by t;
andt, in DFT. In our computations, weputt, =t, =t; =
t, = 6 and t; = 12. For such values of the parameters,
summations over the direct lattice cover domains of
radius R; equal t0 9.03, 11.17, and 8.16 A for BN, Si,
and TiO, crystals, respectively.

The results are listed in Tables 1-3. In the first col-
umns, the transformation matrices| defined by Eq. (43)
are presented; these matrices determine the direct-lat-
tice domains and the corresponding sets of L vectors
{kj}. Columns 2 to 10 present the following: the num-
ber J, which is the number of the trandation-vector
shell determining the LUC (the number of points k;
and, hence, the accuracy of calculations of the approx-
imate DM p are increased with increasing J); the radii
R; and Ry, which characterize the localization region of
the Wannier functionsfor the diagonal and off-diagonal
DM elements, respectively [see Eqg. (10)]; next, the
energy characteristics are listed (the total energy per
primitive cell E,;, the energy of the top of the valence
band E,, and the band gap width AE,); and the atomic
charges Q (Ti atom charge in the case of TiO,) and the
chemical-bond orders W, (Wiberg indices) for the
nearest neighbors as calculated from the LAO popula-
tions using Eq. (39). For the Si crystal (in which we
have Qg = 0), the covalence C, of the Si atom is pre-
sented. The calculations are performed using three
methods: the standard HF method ignoring the weight-
ing function [20], the HF method with alowancefor the
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Table 1. Electronic structure of the BN, crystal (Ry=9.03 A)
Matrix | J R; (A) R¢ (A) Method Erot E, AE4 (au.) Q| Wa_y
0, 40 HF 81192 | -0992 | 1.381 0.356 0.987
0< -0 5 434 550 HF,, 78311 | -0.260 | 0.558 0.353 1.047
0-110 : :

i3 DFT 78632 | -0.031 | 0097 0.298 1.042
030 HF 78299 | -0.268 | 0617 0.356 1.120
0° Y0 5 251 382 HF,, 78286 | -0.239 | 0508 0.353 1.123
0030 : :

02 DFT 78603 | -0083 | 0.153 0.298 1.137
04 o0 HF 78205 | -0.252 | 0.564 0.258 1.116
HooH 6 8.67 434 HF,, 78290 | —0245 | 0516 | 0259 | 1.116

=12 DFT 78694 | -0.082 | 0.153 0.167 1.133
Og a0 12 13.01 6.62 HF 78291 | -0241 | 0508 0.260 1.123
0° °Qg HF,, 78291 | -0241 | 0507 0.260 1.123
0-330 DFT 78697 | -0.087 | 0157 0.156 1.141

L=27
Og o0 HF 78201 | —-0.240 | 0.504 0.259 1.124
068 15 15.02 751 HF, 78291 | -0.240 | 0.504 0.259 1.124
Do DFT 78697 | -0.087 | 0.158 0.153 1.143

weighting function in the exchange part of the Fock
matrix (HF,, method), and the DFT method.

The data presented in Tables 1 to 3 allow one to
draw the following conclusions, which are applicableto
all three crystals under study:

(2) In spite of the differencesin the crystallographic
structure and in the AO basis used, the convergence of
the results for al three crystals setsin at parameter Ry
values close to one another (7.51, 11.58, 8.99 A). In
[27], the variations of the diagonal DM elements with
distance were investigated for valence AOs in BN
and Si crystals. Inthose calculations, sets of points{k;}
were used for which the convergence of HF computa-
tions aready took place. It was found that these DM
elements are close to zero for interatomic distances 7—
10 A, which correlates with the values of R; calculated
in this paper. The last statement does not contradict the
fact that the approximate DM p° without the weighting
functionisaperiodic function of distance [see Eq. (58)]
and does not vanish at infinity, because the spatial peri-
ods (superlattice parameters) for the given sets of {k;}
are far larger than the interatomic distances under dis-
cussion. We also note that the values of the parameters
R, and R are close to each other when the convergence
of calculations setsin. Thisis no surprise, because the
calculations become convergent when the size of the
localization region of Wannier functions (parameter R))
is close to the size of the region of crystal-lattice sum-
mation (parameter R).
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(2) For sets of {k;} relatively small in number (L =
3,9for BNy L =4,8for Si; L=2,4,9for TiO,), HF
calculations not involving aweighting function lead to
significantly lower values of the total energy of the
crystal in comparison with the total energy calculated
using {k;} setslarge in number. The reason for thisis
that the DM p%R,) exhibits improper asymptotic
behavior at large distances |R,,| and, hence, is not idem-
potent. Because of the divergence mentioned in Section 4,
the negative exchange energy becomes large in magni-
tude and the total energy of the crystal is considerably
decreased. Such an artificial decreasein thetotal energy
is particularly noticeable for large values of the param-
eters t, and t;, which truncate the lattice sums in the
exchange energy. In calculations involving the weight-
ing function, there are no artificial divergences and,
when wave-vector sets small in number are used, the
total energy is virtualy always an upper-bound esti-
mate, as it must be in variational calculations. We note
that, in the case of the Si crystal, the introduction of the
weighting function leads to the formation of a nonzero
band gap for any {k;} set small in number. In HF calcu-
lations not involving a weighting function, the elec-
tronic structure is found to correspond to ametal in the
case of L = 8, whereasin HF, calculations, the electron
density distribution is obtained to be close to the
“exact” result even for {k;} setsvery small in number.

(3) Because of the absence of nonlocal exchange
terms in the Hamiltonian, the DFT method gives an
upper-bound (typical of variational methods) estimate
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Table 2. Electronic structure of the Si crystal (R;=11.17 A)

EVARESTOV, TUPITSYN

Matrix | J R;(A) | R¢(A) | Method Eqot E, |AEg(au) Ca Wy g
0 0 HF -10.154 | —4.900 | 1.602 3.647 0.816
01-1-17
0-1 1 —10 2 5.46 3.86 HF,, —7557 | -0.216 | 0.285 4.146 0.999
0 0
0-1-11( DFT —7.643 | -0.098 | 0.041 4173 0.996
L=4
HF - Metal 0.0 - -
02007
00200 4 7.72 3.86 HF,, —7515 | -0.230 | 0.293 4.160 0.998
O 0
0002 DFT —7.645 | -0.109 | 0.042 4.188 0.995
L=8
HF —7.537 | -0.208 | 0.308 4.176 0.952
H3 -1-1F
0-1 3 —10 6 9.46 5.46 HF,, —7.534 | -0.216 | 0.251 4.154 0.964
0
0-1-1 30 DFT —7.724 | -0.138 | 0.046 4.180 0.947
L=16
0 0 HF -7535 | -0.223 | 0.254 4.149 0.967
022 2Q
02 2 20 8 10.92 5.46 HF,, —7.537 | -0.228 | 0.247 4.165 0.955
0 0
02 2 -20 DFT —7.727 | -0.139 | 0.046 4.179 0.941
L=32
0 HF —7.537 | -0.226 | 0.260 4.155 0.966
400
%o 4 OE 15 15.44 7.72 HF,, —7.537 | -0.227 | 0.257 4.157 0.966
O 0
00040 DFT —7.728 | -0.140 | 0.047 4178 0.939
L =64
HF —7.540 | -0.223 | 0.230 4.155 0.961
H6 007
00600 34 23.16 11.58 HF,, —7.540 | -0.223 | 0.230 4.155 0.961
0 0
00060 DFT —7.733 | -0.143 | 0.036 4.174 0.928
L=216
HF —7541 | -0.222 | 0.228 4.155 0.961
He o0
00800 59 30.88 15.44 HF,, —7.541 | -0.222 | 0.230 4.155 0.961
0 0
00080 DFT —7.734 | -0.144 | 0.034 4.173 0.925
L =512

of the total energy of the crystal for any set of k points.
In this case, as is evident from numerous cal culations
availableintheliterature, the calcul ated band gap width
AE, is always less than that given by the HF method.
Allowance for correlation effects in DFT leads to a
more covalent electron density distribution (in compar-
ison with that given by the HF method); it followsfrom
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Tables 1 and 3 that the atomic charges become notice-
ably smaller in the case of BN, and TiO,.

(4) As the {kj} set is enlarged, calculations of the
local characteristics of the electron density (atomic
charges, chemical-bond orders) converge more rapidly
than calculations of the energy characteristicsdo in all
three methods.
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Table 3. Electronic structure of the TiO, crystal (R;=8.16 A)

Matrix | J R; (A) Ry (A) | Method Eot E, AEg(au)| Qq Wyi_o
. HF | 70171 | —0633 | 0452 | —0033 | 0630
0ol 15 3 545 | 299 | HF, |-69732 | —0303 | 0409 | 1768 | 0512
0 1 2 ég DFT | —71.885 | —0.222 | 0363 | 2605 | 0.364
S HF | —69.790 | —0.316 | 0406 | 1602 | 0580
%2 é §D 5 644 | 345 | HF, | -69772 | —0303 | 0397 | 1697 | 0556
0, o8 DFT | —71.323 | —0.133 | 0057 | 1137 | 0657

. . HF | —69778 | —0307 | 0391 | 1719 | 0560
E‘ll _11 z 0 6 880 | 455 | HF, | -69775| -0305 | 0389 | 1728 | 0558
D) 50 DFT | —71.341 | —0135 | 0057 | 1110 | 0656
L=8
. HF | —69.775 | —0.305 | 0389 | 1728 | 0557
53 g g% 9 899 | 455 | HF, |-69775 | —0304 | 0389 | 1729 | 0556
0030 DFT | -71.349 | —0138 | 0057 | 1117 | 0649
L=12
O HF | —69.775 | —0303 | 0387 | 1730 | 0557
Bé (2) 8% 10 911 | 455 | HF, | -69775| —0304 | 0387 | 1730 | 0557
Epgs DFT | —71.344 | —0138 | 0055 | 1112 | 0649
L=16
. HF | —60.775 | —0.303 | 0387 | 1720 | 0557
%(2) g 8% 10 911 | 455 | HF, | -69775| —0304 | 0387 | 1729 | 0557
00060 DFT | —71.343 | —0.135 | 0055 | 1108 | 0649
L =24
O HF | —69.776 | —0.303 | 0386 | 1728 | 0557
%g’ 2 8 0 18 1199 | 599 | HF, |-69776 | 0303 | 038 | 1728 | 0557
Eps DFT | —71.347 | —0.130 | 0058 | 1103 | 0650
L =64
. HF | —69.776 | —0.303 | 0386 | 1727 | 0557
Bg g 8% 45 1799 | 899 | HF, |-69776 | —0303 | 0386 | 1727 | 0557
0060 DFT | -71.348 | —0.139 | 0058 | 1101 | 0650
L=216

7. CONCLUSION

Thus, the results presented in this paper alow oneto
better understand the features of Hartree—Fock self-
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consistent calculations of the electronic structure of an
infinite crystal with a nonlocal exchange potential
determined by the off-diagona elements of the one-
electron density matrix. It has been shown that the
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number of k points chosen in the BZ for calculations
should be in accord with the size of the interaction
range in the coordinate space. In other words, there
should be a correlation between summations over the
Bravais lattice in the coordinate space and over the BZ
in thereciprocal space. It was also shown that when the
Fock operator or the Kohn—Sham operator contai ns off-
diagonal DM elements, the BZ special-point technique
should be modified. By performing calculations for
particular systems, it was shown that the introduction of
the weighting function w(R,,) in the direct-lattice sums
entering the exchange term establishes the necessary
balance and removes the artificial divergences.

The comparison made between the HF operators in
theinfinite-crystal and cyclic-cluster modelsin Section 5
makes it possible to understand the relation between
these models. The equations derived within the cyclic-
cluster model by using the variational method are dif-
ferent from the equations following from the HF equa-
tionsfor aninfinite crystal in which the weighting func-
tion is introduced. This important problem will be the
subject of our next publication.
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Nonradiative Relaxation of Photoexcited O(l) Centers
in Glassy SO,
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Abstract—The processes involved in the excited-state relaxation of hole O‘l) centers at honbridging oxygen
atoms in glassy SiO, were studied using luminescence, optical absorption, and photoel ectron emission spec-
troscopy. An additional nonradiative relaxation channel, in addition to the intracenter quenching of the 1.9-eV
luminescence band, was established to become operative at temperatures above 370 K. This effect manifests
itself in experiments as a negative deviation of the temperature-dependent luminescence intensity from the
well-known Mott law and is identified as thermally activated external quenching with an energy barrier of
0.46 eV. Nonradiative transitions initiate, within the external quenching temperature interval, the migration of
excitation energy, followed by the creation of free electrons. Inthefinal stages, this rel axation process becomes

manifest in the form of spectral sensitization of electron photoemission, which is excited in the hole O(l) -center
absorption band. © 2002 MAIK “ Nauka/l nterperiodica” .

1. INTRODUCTION

Silicon dioxide plays a significant part in conven-
tional and integrated optics, €l ectronics, and microelec-
tronics. The operating characteristics of the various
SiO,-based devices depend substantially on the pres-
ence of photosensitive defects in the SiO, structure.
Structural defects form in the material in the course of
its preparation (for instance, in crystal growth or
guartz-glass fiber drawing) or under bombardment by
high-energy radiation.

The nonbridging oxygen, which is a component of
the complementary pair of a broken silicon—oxygen
bond, is an important kind of native defect in glassy

SiO,. The hole OY centers associated with nonbridging
oxygen atomsform efficiently in amorphous SiO, mod-

ifications, and their observation in crystalsisan indica
tion of structural amorphization of the material [1].

Despite extensive studies of defects of this type,
some of the problems related to their properties still
remain unsolved. In particular, mechanisms operating

in the relaxation of excited states of the OY centers

regquire more comprehensive investigation. These cen-
ters in SiO, are usually associated with the optical-
absorption bands at 4.75 eV (oscillator strength f =
0.048) and 2.0 eV (f = 0.001) and with red lumines-
cence at 1.9 eV [1-3]. It was observed that Mott’s law
isinsufficient for adequate description of the quenching
of the 1.9-eV luminescence in sampleswarmed to room
temperature and higher. This point requires a special

analysis, because the above disagreement may be
caused by various reasons. One of them could be the
structural disorder in glassy SiO,, which makes an acti-
vation-energy distribution of intracenter photolumines-
cence quenching possible [1]. At the same time, one
cannot exclude the possibility of existence of other
energy dissipation channels, for instance, of the recom-
bination type, which become operative at elevated tem-
peratures. In other words, there is an obvious diver-
gence in the description of thermal quenching of the
luminescence produced by native defects in SIO,,
which implies alack of clear understanding of the pro-
cessesinvolved in the nonradiative rel axation of excited
states.

The present communication reports on an integrated
investigation of photoluminescence (PL) and of the
excitation, optical absorption (OA), and optically stim-
ulated electron emission (OSEE) spectra of glassy
guartz containing radiation-induced defects undertaken
with the purpose of obtaining more detailed informa-
tion on the specific features of nonradiative transitions

in photoexcited O) centers,

2. SAMPLES AND EXPERIMENTAL
TECHNIQUES

We studied polished samples of KV-grade optical
quartz glass. Defect centersin the structure of the sam-
ples under study were produced by irradiating them
with 10-MeV electrons on an M-20 microtron. The
electron fluence ® was 2.4 x 10'® cm,

1063-7834/02/4409-1671$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. OA spectrum of quartz glass obtained after fast-elec-

tron irradiation (2.4 x 1016 cm™, 10 MeV) and its decom-
position into Gaussian constituents (dashed lines).

The OA spectrawere measured with a Specord-40M
spectrophotometer. The PL spectra were obtained with
an FEU-71 PM tube interfaced with a DMR-4 double
crystal monochromator. The luminescence was excited
with a DRK-120 mercury lamp or a DDS-400 deute-
rium lamp through a DM R-4 monochromator.

OSEE spectra were measured in the wavelength
range 200600 nm. The UV radiation was produced by
a DDS-400 lamp, with the required energy interval cut
out by amonochromator. The light beam formed in this
way was focused into a 3 x 0.5-mm spot on the sample
surface. The OSEE intensity was measured in avacuum
of 10 Pawith aV EU-6 secondary-electron multiplier.
The OSEE temperature behavior was studied with the
use of adevice providing sample temperature variation
within the range 80-800 K. The heater was of double-
helical design, thus precluding the electromagnetic
field induced by the heater current from exerting defo-
cusing action on the electron beam. The system permit-
ted the carrying out of measurements under linear heat-
ing at a preset rate or in the thermostating regime.

The OSEE spectral response curves obtained in the
experiment were normalized to the light flux and
treated subsequently by a technique described else-
where [4-6]. The spectral-response treatment proce-
dure used by us is based on the assumption that the
OSEE spectrum of an irradiated sample can be pre-
sented as a superposition of an exponentia described
by the Urbach rule and a set of Gaussians correspond-
ing to various species of point defects. This model per-
mitted us to obtain refined OSEE response curves
which, as shown in [4-6], are emission counterparts of
induced OA spectra. The OSEE data thus obtained can
be used to determine the spectral parameters and con-
centration of photosensitive defects in the emission-
active layer of amaterial [5-7].
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Fig. 2. OSEE spectra of radiation centers in quartz glass
obtained after fast-electron irradiation (10 MeV, 2.4 x

106 cm™) and its decomposition into Gaussian constitu-
ents (dashed lines).

3. EXPERIMENTAL RESULTS

3.1. Optical-Absorption and Optically Stimulated
Electron Emission Spectra

Figure 1 shows induced OA spectra of quartz glass
samples irradiated by fast electrons. Decomposition of
OA spectrain the 4.0- to 5.3-eV region into the constit-
uent Gaussians revealed three maxima located at
4.75eV (hadf-width at full maximum A = 0.9 eV),
502eV (A=0.4¢eV),and5.15eV (A = 0.55eV), with
spectral parameters permitting their assignment to the

0, B,a, and B,B centers, respectively [1, 2, 8]. The
curve rising with energy in the range 4.7-5.4 €V origi-
nates apparently from the long-wavelength part of the
E'-center absorption band [1, 8].

The OSEE spectral cutoff for the sample irradiated
at room temperature lies near 4.8 eV. Heating the sam-
ple shifts the cutoff toward |lower photon energies, with
a simultaneous steepening of the exponential slope of
the OSEE response curves.

When treated by the technique described in [4-6],
the OSEE spectra of the irradiated samples exhibited
the presence of selective bands (Fig. 2), which permits
their identification with similar bands in the induced
OA spectra(Fig. 1). The OSEE spectra obtained at suf-
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ficiently low temperatures are dominated by an emis-
sion maximum at 5.02 eV, whose spectral parameters
coincidewith those of the a component of the B,-center
OA band [8]. At temperatures above 370 K, an addi-
tional emission band at 4.75 eV appearsin OSEE spec-
tra (Fig. 2). When heated still further, this band grows
in intensity and, in addition, undergoes strong thermal
broadening (with A increasing from 0.23 to 0.8 V).
Taking into account the optical absorption data (Fig. 1),
we assigned the 4.75-eV OSEE band to photoexcited

O‘f centers. Thisassignment is supported by the obser-

vation that at elevated temperatures, the spectral param-
eters of the corresponding OSEE and OA bands
become nearly identical.

3.2. Photoluminescence Spectra

Luminescence studies of the nonbridging oxygen
atom centers yielded additional data which permitted
us to refine the nature of the OSEE maximum near
4.75 eV. In this experiment, the PL was excited by the
256-nm line (4.85 eV) of the mercury lamp spectrum,

which corresponds to the absorption band of the O(l)

centers. As seen from Fig. 3a, the oj’ emission spec-

trum has a narrow band peaking at 1.9 eV. As the tem-
perature is increased from 80 to 530 K, the lumines-
cence intensity drops by more than an order of magni-
tude. At the same time, the maximum of the
luminescence band shifts from 1.9 to 2.02 eV while
simultaneously broadening from 0.18 to 0.2 eV, which
isin full accord with the data reported in [1-3].

The excitation spectra were measured with a deute-
rium lamp. The excitation spectrum of the 1.9-eV lumi-
nescence in the temperature range 80-515 K is domi-
nated by a broad band peaking at 4.75 eV (Fig. 3b). As
the temperature increases, the intensity of the 4.75-eV
excitation band varies in correlation with that of the
corresponding luminescence peak. We note that this
band in the excitation spectrum does not undergo ther-
mal broadening (A = 0.8 eV) or anoticeable shiftinthe
position of the maximum.

The parameters of the PL excitation spectrum (the
width and position of the maximum) agree well with
the photoelectron emission data. For T > 520 K, the
half-widths of the corresponding bandsin the excitation
and OSEE spectraare close in magnitude. Thisgivesus
grounds to assume that the 1.9-eV phaotoluminescence
and the OSEE processes excited by 4.75-eV photons
areintimately connected and actually represent various

relaxation channels of the same excited state of the O‘f

centers. The relaxation probabilities can undergo sub-
stantia redistribution among the channels with varia-
tionsin temperature.
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Fig. 3. (@) Emission spectraand (b) excitation spectra of the
Og radiation centers localized on nonbridging oxygen
aomsat varioustemperatures T: (1) 80, (2) 300, and (3) 515K.

3.3. Thermal Quenching of the Luminescence

Studies of the thermal quenching of the PL permit-
ted us to determine the quantitative characteristics of
radiative and nonradiative relaxation of the optically

excited O(l) centers, as well as to confirm the involve-

ment of these centersin the OSEE effect. The lumines-
cence quenching was studied under heating from the
liquid-nitrogen temperature up (Fig. 4). It was taken
into account that the radiative transition probability is
only weakly dependent on temperature [9]. The tem-
perature dependence of the luminescence intensity
I,(T), considered with inclusion of the luminescence
guantum yield n,, can be written as

14(T) = Inu(T) = —°—, ®

|
Po &
+ —
1 PLe

where |y isthe PL intensity for T— 0, P, isthe lumi-

nescence probability, and E, and p{) are the activation

barrier and the frequency factor of intracenter lumines-
cence quenching, respectively.

Equation (1) is the well-known Mott law [1, 9] for
intracenter quenching. Fitting the experimental 1(T)

curve by Eq. (1) showsthat the quenching of the O PL

iswell reproduced by Mott’s law only for temperatures
T < 370 K (dashed line in Fig. 4). At higher tempera-
tures, a negative deviation from Mott’'s law is observed
to exist; it appears only logical to assign this deviation
to the operation of an additional quenching channel.
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Fig. 4. Temperature dependence of the 1.9-eV lumines-

cence intensity of 02 centers produced in quartz glass by

electron bombardment. Circles are experiment, dashed line
isfitting by Mott’srelation (1), and solid lineisfitting with
inclusion of external quenching (I5).

Assuming thisprocessto bethermally activated, Eq. (1)
can be rewritten in the form

15(T) = g = SE

1 B & Ec
1+P—L(P|+PE) 1+Pl|_(p:)ekT+p§ekT)

where |,(T) isthe temperature-dependent luminescence
intensity with inclusion of the additional quenching; Pz
and E¢ are the probability and activation energy of the

additional quenching, respectively; and pg isaprefac-
tor which isinversely proportional to the shortest char-
acteristic time of the process.

The calculated curve described by Eq. (2) shows a
good fit to the experimental relation (solid line in
Fig. 4). Because luminescence is the dominant relax-

ation channel of the O‘f centers, the radiative transition

probability P, can be found as 1/t, wheret ~ 20 us[1]
isthelifetime of the excited state. Knowing P, , one can

find the prefactors py and pg . The parameters |, E;,
and p(') /P, were calculated from Eq. (1) using the part

Parameters of Of center luminescence quenching

P,s? ==Y p('f,s‘1 Eg, eV

|
Po.S

106

lo, CPS

24000 | 5x 10* 0.05 |2x10%| 046
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of the experimental curve that obeys Mott’'s law. The
results of thefitting are given in the table.

An analysis of the shape of the experimenta 1(T)
curvein Fig. 4 showsimmediately that the initiation of
the additional quenching channel coincidesin tempera-
ture (370 K) with the appearance of the 4.75-eV band in
the OSEE spectra (Fig. 2). This observation should be
considered as independent evidence that the processes
responsiblefor the deviation from Mott'slaw (1) and for
excitation of the photoel ectron emission areinterrel ated.

4. DISCUSSION OF RESULTS

To understand the processes underlying the relax-

ation of excited 02 centers, as well as to establish the

part played by these centersin the photoel ectron emis-
sion, it appears appropriate to consider their electronic
structure. According to the model proposed in [1, 2],

the absorption and luminescence bands of the 02 cen-

ters at 2.0 and 1.9 eV, respectively, derive from elec-
tronic transitions between the split 2p states of the non-
bridging oxygen atom. One of these states is the filled
2p, orbital, and the other is the 2p, orbital with one
unpaired electron. The origin of the 2p state splitting
can be explained in terms of the dynamic Jahn—Teller
effect; the nonbridging atom occupying a corner of the
oxygen tetrahedron precesses and forms additional
chemical bonds with other oxygen atoms in the same
tetrahedron. According to [1, 2], the electronic transi-
tions responsible for the absorption at 2 eV and lumi-
nescence at 1.9 eV are forbidden, which is in accord
with experimental results; indeed, the oscillator
strength of the 2-eV absorption band is small and the
decay time of the 1.9-eV luminescence band (T ~ 20 us)
issubstantialy larger than the corresponding values for
allowed transitions (1 < 0.01 pus).

Considered within this model, the experimentally
observed 4.75-eV band can be associated with atransi-
tion from the o-bonding orbital to the 2p, antibonding
orbital with an unpaired electron. The alowed charac-
ter of thetransitionisin accord with thelarge amplitude
of the 4.75-eV band observed in the OA, luminescence
excitation, and OSEE spectra (Figs. 1-3). The lumines-
cenceat 1.9 eV isexcited after the 0 — 2p, transition
has been followed by a fast nonradiative 2p, — o
transition and, subsequently, by aradiative 2p, — 2p,
transition. The Mott intracenter quenching of the
1.9-eV luminescence is associated in this case with the
increased probability of nonradiative transitions of the
2p, — 2p, type with an activation barrier of 0.05 eV
(seetable). The process of additional quenching occurs
with a considerably higher barrier of 0.46 €V. To con-
firm the external character of the luminescence quench-
ing and its relation to the formation of the 4.75-eV
OSEE band, it appears appropriate to compare the
guantitative characteristics of these processes.
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Fig. 5. Correlation between quantum efficiency of external
luminescence quenching and integrated OSEE intensity of

the O(l) centersin the temperature range 373-600 K.

The quantum efficiency of the additional quenching
Ne can be derived from the PL temperature dependence
(Fig. 4). Asfollowsfromacomparison of Egs. (1) and (2),

LD P
1(T) P.+P+Pg

= ne(T). ©)

Using Eq. (3), one can compare the numerical values of
the quenching efficiency ng and integrated intensity of
the 4.75-eV OSEE band (see Fig. 5). Asisevident from
Fig. 5, therelation constructed in thismanner islinear and
demonstrates an intimate correl ation (with acoefficient of
0.99) between the nonradiative relaxation processes and
the OSEE. This result can be considered an argument
supporting the external character of the high-temperature
luminescence quenching and, accordingly, the involve-

ment of Of centersin the photoelectron emission.

Auger recombination may be one of the possible
mechanisms by which hole centers can be involved in
electron emission [10]. This mechanism, however,

assumesthat the hole isreleased from the Oﬁ center. At

the same time, an analysis of the electronic structure of
this center suggests that 0.46 eV istoo small an energy
for such aprocessto berealized (seetabl€). In our case,
resonant transfer of the energy of the 2p, —~ 2p, elec-

tronic transition from O‘I to the centers donating elec-

trons appears to be the most probable mechanism. The
generation of free electrons, which occurs at tempera-
tures above 370 K, is completed in the final stages of
the relaxation process by their escaping from the sur-
face into vacuum. According to [11], the observed phe-
nomenon should be treated as spectral sensitization of
photoelectron emission in the hole center excitation
band. The activated character of this process may be
dueto thermal broadening with a subsequent overlap of
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the emission and absorption bands between centers
releasing and absorbing energy [12].

5. CONCLUSION

Thus, we have shown that photoexcited nonbridg-
ing-oxygen centers in glassy SIO, can undergo relax-
ation, in general, over three channels. In addition to the
radiative transitions accounting for the 1.9-eV lumines-
cence band, there are two channels involving nonradia-
tive transitions 2p, — 2p, between sublevels of the

photoexcited 2p state of the O(l) center. One of these

nonradiative channels transforms the excitation energy
into thermal lattice vibrations and is actually an intrac-
enter quenching process (E, = 0.05 eV) obeying Mott’s
law. The other nonradiative recombination channel
(Eg = 0.46 eV) involves external quenching with exci-
tation transfer to emission-active el ectronic centers and
manifests itself at certain temperatures in the form of
spectrally sensitized photoel ectron emission.
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Abstract—The amplitude-independent dislocation absorption (internal friction) isinvestigated under the joint
action of constant and random external forces on the dislocation. The action of random forces of different types
are considered with due regard for the inertial properties of the dislocation and the effect of the internal (para-
balic) potentia relief of the crystal. The dependences of the internal friction on the degree of correlation of ran-
dom forces and the parameters of the dislocation and the medium are obtained. © 2002 MAIK “ Nauka/ I nter-

periodica” .

1. INTRODUCTION

Traditionally, the acoustical properties and the
microstructure of crystals (internal friction) have been
investigated with the use of exciting signals described
by a harmonic function. The dislocation motion under
external harmonic loads, the associated dynamical
properties, and the internal microstructure of crystals
have been examined in sufficient detail [1-10]. How-
ever, up to now, a number of interesting experimental
effects (and, sometimes, their irreproducibility aswell)
have defied justified explanation. These effects can be
associated with the manifestation of random actions on
the crystal and its microstructure. External actionson a
material cannot be reduced to harmonic loads alone. In
practice, the material is often subjected to random
mechanical stresses induced by different thermome-
chanical and radiation processes. In order to describe
the behavior of materials under these random loads, it
is necessary to elucidate the mechanisms of energy
absorption by defects of the crystal lattice with the aim
of determining the damping ability of the materias
themselves and their internal microstructure.

The use of a random signal (with known statistical
characteristics) as an exciting action in experiments on
internal friction can also provide away of deriving new
additional information on the internal structure of the
material.

The specific feature of the action of random loadsis
that the correlation of these loads can have a pro-
nounced effect on the dislocation dynamics. In this
respect, the dependence of the internal friction on the
degree of correlation of external actions (in addition to
the dependence on the frequency) is an important char-
acteristic of the dislocation motion and can be used to
obtain new data on the crystal microstructure.

In the present work, we solved amodel problem that
permitted us to demonstrate clearly how the random

external loads affect the dislocation (amplitude-inde-
pendent) internal friction and to determine the dynamic
properties of crystals and their microstructure under
random actions.

2. THE EQUATION OF MOTION

Let us consider a didocation segment that has a
length L, isrigidly fixed at the ends, and executes oscil-
lations under applied constant and random external
stresses. Moreover, the segment interactswith theinter-
nal-stressfield, which can beinduced by the interaction
of a dislocation with the crystal lattice (the Peierls—
Nabarro relief) or with different aggregates of lattice
defects (point, linear, and other defects). Without going
into the origin of the internal-stress field, we will
assume that the interaction between the dislocation and
this field is described by a linear force dependence.
This dependence corresponds to a parabolic potential
well in which the dislocation resides: U = ku?. The dis-
location displacement u(x, t) in the glide plane at the
point x and the instant of time t from an equilibrium
position is determined by the standard equation of
motion in the elastic-string approximation [1], that is,

°u , ou

= Toé‘x-z —)\fr?ﬁ —bku+g(t),

u(0,t) = u(L,t) = 0.

Here, the x axisis parallel to the rectilinear dislocation
at the equilibrium position in the absence of external
stresses, b isthe magnitude of the Burgers vector of the
didocation, m is the effective mass per unit length of
thedidlocation, T, istheeffectivelinetension of thedis-
location, A, is the coefficient of dislocation dynamic
friction, g(t) = bf, + bn(t) isthe external force acting on
the dislocation per unit length, f, is the constant com-

0°u

ot (1)
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ponent of the external stress, and n(t) is the stress pro-
duced under random actions of the medium on the dis-
location string.

In the case when the dislocation moves, for exam-
ple, in avalley of the Peierls-Nabarro relief, the coeffi-
cient Kk can vary from ~10% to ~10%° g/(cm s)? with a
change in the Peierls stress o from ~10°G to ~102°G
(where G is the shear modulus) [7]. The motion in
potential wells of another origin can be characterized
by similar or different coefficients k.

Therandom actions on the crystal have different ori-
gins. Correspondingly, the random forces can be
described by different models. In the present work, we
will use the following processes for modeling typical
random actions on a dislocation [11]: the telegraph and
generalized telegraph processes, the rectangular-pul sed
process with a fixed width and a random amplitude of
pulses, and the “exponential-saw” process (see the
Appendix). For these processes, the mean amplitude of
signals is equal to zero. In this case, the dislocation
does not undergo regular displacement under the action
of random forces.

The random instants of time t; at which the random
force suddenly changes its action on the dislocation
will be referred to as the flow of events. We will con-
sider the stationary Poissonian flow with the intensity
v. This means that the mean number of events per unit
time (the mean frequency) is equal tov. The quantity v
can be treated as an analog of the frequency of a peri-
odic action. Hence, the quantity v will be termed the
frequency of the random action. The probability that
the behavior of the force changes n times on the time
interval T = t, — t; is defined by the Poisson formula

Pr,t,)=n = a'exp(-)/n!, where a = [n(t,, ty)Uis the

ensemble-averaged number of events on the time inter-
val (ty, t,), I(ty, t,) = vT.

3. INTERNAL FRICTION

As is customary, the logarithmic decrement A is
taken as a measure of the internal friction. However,
since the external action is a random event, the corre-
sponding quantities are averaged over an ensemble of
random forces. Furthermore, in view of the aperiodic
external action, the viscouslossis calculated for atime
chosen equal to the reciprocal of the mean frequency v.
Consequently, theloss A (damping decrement) is calcu-
|lated for the effective period Ty, = v from the relation-

ship A = (NIAD/(2[U2D). Here, [Mis the operator of
averaging over the ensemble of random forces, N isthe
number of dislocation segments per unit volume,

A0 = Tnmm J’L[bfo + b () 2% au(x )

0

dt> dx (2
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is the mean energy dissipated by one dislocation seg-
ment per unit volume in the case of stationary disloca
tion motion, LU0 = (f2 + 02)/2G is the ensemble-
averaged vibrational energy per unit volume of the
crystal, and 0(2, is the square of the amplitude (or the

variance D) of the random component of the external
force.

Hereafter, without loss of generality, we will con-
sider atypical deltadistribution of dislocation segments
over lengths. Other distributions can betreatedinasim-
ilar way.

From relationships (1) and (2), we obtain the expres-
sion for the damping decrement [12]
_8Gh°A__ 1 Z
vm (f2+g )Tw T[2(2n+1)
' )\ B,S ¥
xJ’Kor(S)exp %DCOS(B S - A SN(B, S
0

[1dS.
B, O

Here,

2
)\fr

2 _ Ty 2[ 717
> n = —(2n+1)°FpH +

B, = [Q’- p-‘f;
m

n=0,1,2,...; \isthedisocation density; and Kor(S
isthe correlation function of the random component of
the external force. Expression (3) indicates that the
damping decrement depends on the correlation proper-
ties of the random component of the external force.

4. ANALY SIS OF THE RESULTS

4.1. The telegraph process. The calculations per-
formed with inclusion of the correlation function of the
telegraph random process lead to the following rela-
tionship for the decrement:

_ 2Gb°A
(4v2m + 2VA;, + bK)

« 1 [ _tanhyt}
[(folo5) +1] v J

(4)

where

a, = 4v°m+ 2VA; + bk,

*

b, = ToHH -

Figure 1 shows the frequency dependence of the
normalized damping decrement A, (where A, = AJA*
and A* = IGb?AL?/2T,) for different damping magni-
tudes D = 2mQy/A;,. The frequency characteristic
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Fig. 1. Frequency dependences of the decrement at a con-
stant dislocation length L and different damping magnitudes
D. The decrement is normalized to the multiplier

TGb?ALZ/2T,,

involves two portions, namely, a frequency-indepen-
dent plateau and a branch descending with an increase
in the frequency. The decrement in the range of the pla-
teau (the low-frequency range) is governed by the elas-
tic properties of the dislocation and the stiffness of the
internal relief. A decrease in the decrement in the high-
frequency range is associated with the inertial proper-
ties of the dislocation and the friction. The plateau
width, i.e., the frequency range in which the decrement
is independent of the frequency, is determined by the

frequency Vg = A(=1 + 4/1 + D?)/4m. The higher the
frequency v, the wider the plateau. At frequencies of
the external random actionv < v, the decrement does
not depend on the frequency and can be represented by
the expression

_ 2GbA 1
A = _ [
Ko [(fo/Dy) +1]

1 tanhyl} ()

Y1

wherey, = g@ and a; = bk.

Two types of the frequency characteristics of the
decrement at a constant dislocation length can be
observed depending on the damping magnitude D.

At alight damping (D > 1), we have v, = Qy/2 and
the frequency characteristic exhibits a wide plateau
extending to nearly half the resonance frequency. At
higher frequencies, the decrement in a narrow range
variesin inverse proportion to the frequency; i.e, A ~v=,
In this range, the dislocation motion is governed by the
friction. In the vicinity of the resonance frequency, the
decrement sharply decreases as v=2. In this case, the
behavior of the decrement is determined by the inertial
properties of the dislocation.

Anincreasein the damping resultsin anarrowing of
the plateau. At D? > 1, the frequency v, decreases
compared to that in the preceding case and is deter-
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mined by theformulav,, = 0.5(Qq—A;/2m). Inturn, the
descending branch of the frequency characteristic of
the decrement, which is associated with the friction,
extends over a progressively wider frequency range.

If the damping is heavy (D < 1), we obtain v, =
A D%4m= Q,D/4. Inthis case, the critical frequency is
considerably lower than the resonance frequency. The
plateau is shifted toward the range of very low frequen-
cies. The frequency characteristic is represented by the
curve smoothly descending with an increase in the fre-
guency. At v < Aq/2m, the decrement decreases
smoothly [A ~ (As,) Y] due to the friction. In the range
v > \/2m, the decrement decreases steeply (A ~ v2),
which isexplained by the effect of theinertia. The max-
imum lossisobserved at v << v,

When the internal relief is soft [bk < Ty(1vL)?], the
decrement in the range of the plateau is determined
only by the elastic properties and the length of the dis-
location and can be written as

1 1
A=ANT——_- 5]
3T (f5/ag) + 1] ©

Asfollows from relationship (6), the decrement is pro-
portional to the dislocation length squared and does not
depend on the friction coefficient A, dislocation mass,
and stiffness of theinternal relief. Moreover, the decre-
ment does not depend on the amplitude (variance) of
the random force in the absence of the constant load
(fo = 0). Note that, in this case, the normalized decre-
ment isa universal quantity equal to 1/(3m).

For the stiff internal relief [bk > T(1vL)?], the dec-
rement in the range of the plateau is represented by the
expression

A= 2GbA 1
T K 2, 2 :
[(fo/oo) +1]

(7)

According to expression (7), the decrement does not
depend on the length, mass, elastic properties, and
coefficient of dynamic friction of the dislocation seg-
ment and is governed only by the relief stiffness and
dislocation density. Relationship (7) can be used to esti-
mate experimentally the stiffness Kk of the internal
potentia relief in which the dislocation resides.

The influence of theinternal-relief stiffnessk on the
frequency dependence of the decrement isillustrated in
Fig. 2. It can be seen from this figure that the relief
affects the decrement only in the range of the plateau
and the dependences for different stiffnesses in the
high-frequency range virtually coincide with each
other. Thisimplies that the dislocation motion at these
frequencies of the external action does not depend on
the relief and is determined by the friction and inertial
properties of the dislocation.
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The dependence of the decrement on the dislocation
segment length is controlled by the parameter

LooL 4v’m+ 2V, + bk
a2 To '
Under the condition Ly << 1, the decrement is char-

acterized by a quadratic dependence on the length, that
is,

_ GP°AL? 1 ®
6To [(f§/og)+1]
At Ly > 1, we have
A= 2Gb°A 1
4v’m+ 2V, + bk [(f2/02) + 1]
)

2 To
X|1—= 5 .
LA/ (4v°m+ 2vA,, + bK)

Asfollowsfrom formula(9), anincreasein the disloca-
tion length leadsto an increasein the decrement A ~ 1 —
constL1: however, this increase is smoother than that
observed in the preceding case.

For long dislocation segments with Ly > 1, we
obtain

_ 2Gb°A 1
(4vm-+ 2vhg + bK)[(T3/05) +1]

It is seen from expression (10) that the decrement does
not depend on the dislocation segment length and is
determined by a relationship identical to that derived
for the action of arandom force of the telegraph type on
a didlocation with free ends [13]. The condition Ly >
lissatisfied not only for very long dislocations but also
in the case of dislocation motion in a stiff relief [k >
10% g/(s cm)?] at dislocation segment lengths larger
than L = 10°b for any friction coefficient. Thiscondition
can aso be met for the motion in a softer relief at cer-
tain ratios between the dislocation length and the fric-
tion coefficient.

In the case when the random force associated with
the generalized telegraph process (see the Appendix)
acts on the dislocation, the decrement can be repre-
sented in the form
A= Gb’A 1 [

(v’m+ VA, +bK)[(fo/D,) + 1]

T
%:Ea/bi’ p:v2m+v)\ﬂ+b|<g.

*

(10)

1 _ lanhy
y

(11)

This model is characterized by dependences similar to
those obtained for the telegraph process. However, for
the model of the generalized telegraph process, the dec-
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Fig. 2. Effect of thelatticerelief stiffnessk on the frequency
dependence of the normalized decrement A, at a constant

dislocation length. k = (1) 0 and (2) 10 g/(s cm)?.

rement becomes smaller, the frequency v, is doubled,
and the amplitude in the corresponding formulas is
replaced by the amplitude variance.

It should be noted that the decrement over the entire
frequency range does not depend on the amplitude
(variance) of the random force when the dislocation
does not experience an additional constant load or its
amplitude is substantially less than that of the random
force. If the constant load is predominant [its amplitude
is considerably larger than the amplitude (variance) of
the random force], the decrement becomes proportional
to the square of the ratio between the amplitude (vari-
ance) of the random component of the external force
and the amplitude of the constant load.

Anaysis demonstrates that the stronger the correla-
tion of random forces (the lower the frequency v), the
larger the damping decrement. For strongly correlated
forces (v < v), the decrement does not depend on the
degree of correlation.

4.2. Theexponential-saw process. From formula(3),
we obtain the expression for the decrement in the form
2
A= — Gb"A
(a"m+ aAy, + bk)

(12)

1 tanhh
X 1-—
[(fS/DV)+1][ h }

[
h‘zjbt’

and a is the attenuation coefficient of the exponential
pulse. It isseen from expression (12) that the decrement
isindependent of the frequency v; i.e., the frequency of
the action of the random force on the dislocation does
not affect the decrement. The behavior of the decrement
is determined by the attenuation coefficient a of asin-
gle pulse. This coefficient characterizes the degree of
correlation of random forces.

where

_ 2
d, = a’m+aA, + bk,
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Fig. 3. Dependences of the normalized decrement A, on the

degree of correlation o of random forces at a constant dis-
location length and different damping magnitudes D.

For a < a. and the critical coefficient defined by
the formula

A
Oy = 50[-1+41+D7,

the decrement does not depend on the coefficient a and
can be written as

(13)

= (14)

GbA 1 [

tanhy,
_ 1- }
K [(fo/Dy) +1]

Y1

In this range of coefficients a, the dislocation behavior
is governed only by the length and elastic properties of
the dislocation and the internal relief. The relationship
for the decrement appearsto beidentical to that derived
in the case of the random low-frequency action mod-
eled by the generalized telegraph process. By ignoring
the internal-stressfield (k = 0) in the description of the
dislocation motion, expression (14) for the decrement
takes the form

_GbA2_ 1
12T, [(fyD,)+1]

(15

When the damping is sufficiently light (D? > 1), the
coefficient a, is close to the resonance frequency Q;
thatis,

SR Qg

aCI‘ = Dzm

(16)
The decrement A(a) remains unchanged at a < a,. In
the range of a ~ a, the decrement decreases gradually
due to the friction [A ~ (A, a)7Y]. At o > a, the decre-
ment decreases sharply (A ~ o), because the inertial
properties of the dislocation in this range make the
main contribution. For a very light damping (D > 1),
we have a. = Q. In this case, the range of gradual
decrease in the decrement dueto thefrictionisvirtually
absent. With an increase in a, the decrement remains
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constant almost to the resonance frequency Q. and then
decreases steeply (A ~ a?).

If the damping is not light (D? < 1), the coefficient
04 = QyD/2 issubstantially less than the resonance fre-
guency. The plateau is shifted toward the range of very
low frequencies. At Q,D/2 < a < Aq/2m, the curve
A(a) fallsoff smoothly as (A,0)L. Finaly, at a > A, /2m,
the sharp decrease in the decrement (A ~ a~?) isgoverned
by the inertial properties of the dislocation. The lossis
maximum at a << dg. The loss associated with this
mechanism is observed in therange a < Q, for alight
damping andintherangea < Q,D/2 for aheavy damp-
ing.

Figure 3 displaysthe dependences of the normalized
decrement on the degree of correlation a of random
forcesfor different damping magnitudes D. The depen-
dences of the decrement on the relief stiffness and the
didocation length are similar to those for a random
force modeled by the generalized telegraph process.

Over the entire frequency range, the dependence of
the decrement on the amplitude variance for the expo-
nential-saw random force exhibits a behavior identical
to that for the telegraph random force.

Analysis shows that the stronger the correlation of
random forces (the less the parameter a), the larger the
damping decrement. For strongly correlated forces
(a < a), the decrement does not depend on the degree
of correlation.

4.3. The rectangular-pulsed process. From rela
tionship (3), we obtain the following formula for the
decrement:

_ 8Gb°A 1
A= 2
™ [(fo/D,)+1]

. -1 1
nZo(zn +1)°[bk + To(2n + 1)%(10L)7]

(17)

D |:| )\fl’ D
x Eﬂ' - eXp T 7 AI“D!
0 a Zm% 0
where

AxBSin(B,8)]
2m~ B o

0
A, = [cos(B,0) +
0

and 9 is the pulse width.

In this case, the decrement isindependent of thefre-
guency. The dependence of the decrement on the dislo-
cation segment length and the pulse width is character-
ized by acomplex behavior (Fig. 4). When the damping
isrelatively light (D? > 1), the relationship for the dec-
rement includes trigonometric functions, which, in a
number of cases, leads to oscillating dependences of
the decrement on the pulse width and the dislocation
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length. For aheavy damping (D? < 1), the trigonometric
functions are replaced by the hyperbolic functions and
the dependences on the disl ocation length and the pul se
width become monotonic. Let us analyze the limiting
cases of the decrement behavior.

If theinequality A;&/2m > 1 ismet, at any damping
magnitude (D > 1 or D < 1) satisfying the condition
A;0D?/4m > 1, the decrement is defined by the expres-
sion coinciding with formula (14), which was derived
in the case when the disl ocation was subjected to alow-
frequency random force modeled by the generalized
telegraph process or an external random force of the
exponential-saw type (at a < a). Under these condi-
tions, the decrement does not depend on the degree of
correlation of external forces (i.e., on the pulse width),
friction coefficient A;,, and inertial propertiesof thedis-
location and is determined only by the stiffness of the
internal relief of the lattice and the length and elastic
properties of the dislocation.

ing magnitude is so large (D? < 1) that A;,0D?%(4m) <
1, the decrement is given by

_ Gb°A 1
= > 0.
A [(f5/D,)+1]
In this situation, the decrement depends neither on the
mass, length, and elastic properties of the dislocation

segment nor on the stiffness of theinternal relief and is
governed by the pulse width and friction.

For A;0/2m ~ 1 and a light damping (D? > 1), we
have

(18)

2
A= SGr?z A[(fOID )+1] Z (2n + 1)
bk s To(2n1+ DAL)] (19)
x Dl exp freijcosd\fr %
where

D, = 2 |BX + To o0 + ).
fr

In this case, oscillations are observed in the depen-
dences of the decrement on the dislocation length L
(Fig. 5). The amplitude of these oscillations does not
depend on the length L and is determined by the value
of A;0/2m. The smaller this value, the larger the oscil-
lation amplitude. The oscillation frequency decreases
with anincrease in the length L. The dependence of the
decrement on the length L is not periodic, whereas the
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Fig. 4. Dependences of the normalized decrement A, on the
degree of correlation 6 of random forces at a constant dislo-
cation length and different friction coefficients A¢;: (1) 106

and (2) 101 g/(cm s).
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Fig. 5. Dependences of the normalized decrement A, on the
didocation length L at a constant pulse width and different
friction coefficients A¢,: (1) 10%and (2) 10 g/(cm s).

dependence of the decrement on the pulse width,
according to formula (19), is represented by ahigh-fre-
guency periodic function with an exponentially decay-
ing amplitude.

At a heavy damping (D? < 1), the relationship for
the decrement coincides with expression (18).

For A;0/2m < 1 and damping magnitudes D > 1 sat-
isfying the inequality A;0D/2m < 1, we obtain

_GA_ 1 o
2m [(f3/D,)+1]
Under these conditions, the decrement does not depend

on the friction coefficient A, the length and elastic
properties of the dislocation segment, and the stiffness

(20)
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of the internal relief and is proportional to the quantity
o%nmt,

If thedampingissolight (D > 1) that A;,0D/(2m) > 1,
the decrement has the form

00

A-8GDA_ 1 5 1

™ [(fe/D,)+1] &, (2n+1)°
(21)
X 1 0 oge@id %
[bK + To(2n + 1)2(17L)] = O%0m P

The dependence of the decrement on the dislocation
length in this case coincideswith that given by relation-
ship (19). The dependence of the decrement on the
pulse width is described by a high-frequency periodic
function with a constant amplitude.

When the damping isheavy (D? < 1), theexpression
for the decrement takes the form

_ GbA 1 tanhy; 1 A8
= 1- —— . (22
2K [(fS/Dv)+1][ Vi }DZmD )

Therefore, at A;,0/2m > 1 and any damping magni-
tude (D > 1 or D < 1) satisfying the inequality
A;0D?%/4m > 1, the decrement does not depend on the
degree of correlation of external forces (i.e.,, on the
pulse width), friction, and dislocation mass and coin-
cides with the decrement observed for a random force
modeled by the generalized telegraph process (in the

Types and correlation characteristics of random processes

KAMAEVA, CHERNOV

low-frequency range) or an exponential-saw random
force (at a < ag).

The amplitude dependence of the decrement isiden-
tical to that obtained for random forces modeled by the
generalized-telegraph or exponential-saw processes.

5. CONCLUSIONS

Thus, the regularities of the energy loss by excita-
tion of the dislocation structure under random external
actions essentially differ from those observed under
harmonic actions. Unlike the Granato-L ucke classical
case of periodic actions on a dislocation, the internal
friction in the low-frequency range for the random
actions nonlinearly depends on the frequency. The dec-
rement in this frequency range is considerably larger
than that under periodic actions. The dependence of the
damping decrement on the dislocation segment length
is governed by the parameters of the dislocation, the
medium, and the random force and can exhibit different
behavior in contrast with the corresponding depen-
dence observed under periodic actions (A ~ L#).

The decrement behavior substantially depends on
the degree of correlation of random forces. The degree
of correlation is considered to mean the quantity char-
acterizing a decrease in the correlation function. This
guantity is determined by the parameter v for the tele-
graph and generalized tel egraph processes, the parame-
ter a for the exponential-saw process, and the pulse
width & for the rectangular-pulsed process. The stron-
ger the correlation of external forces, the larger the dec-

APPENDIX

Process Relationships describing the process Correlation function
Telegraph process | n(t) = a(-1)"® 9, — o 2oyn(_
Probability (a = &) = Probability (a = —a) = 1/2, Kor(n) = opexp (=2vftl)
Probability (n(t,,t,) = m) = [Nt t)]” A(t,, t
obability (n(ty, tp) = m) = — —=—exp{-N(ty, L)} ,
n(ty, t) = vit;—t,] = V1|
Generalized N = Vi, 1 Kor(t) = D, exp(—v|1|)
telegraph process

(MO=0, IV2(ED,)
N

n = > Viexp(-a(t-t))
i=1

Exponential -saw
process

Rectangular-pulsed
process with afixed
width and arandom
amplitude of pulses

N
n = z Vih(t-t)),
i=1

ht) = 6(t) —8(t - 5),

o) = 1,t>0
0,t<0

vD,
Kor(t) = Eexp(—a It])

Kor(t) = vaD, A - 2ok - D

Note: n(0, t) isthe integer random Poissonian flow; Vg, Vy,..., V| are the random statistically independent quantities with the distribution
p(V); N isthe number of random pointst; on theinterval (O, t) [N obeys a Poisson distribution with the parameter INC= vt]; and h(t)

isthe pulse shape.
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rement. When the degree of correlation exceeds the
threshold value, the decrement becomes independent of
the type of random process. In this case, the decrement
depends neither on the frequency of the action of ran-
dom forces and the coefficient of dynamic friction, nor
on theinertial properties of the dislocation. The thresh-
old degree of correlation is governed by the type of the
process modeling the random force and the parameters
of the problem.

In the case when the constant load is appreciably
larger than the amplitude (variance) of the random
force, the decrement depends on the amplitude. The
amplitude dependence of the decrement is not associ-
ated with hysteresis phenomena.

The inclusion of the internal-stress field resultsin a
change in the damping decrement. The deeper the
potential well (the larger the coefficient k) in which the
dislocation executes a motion, the smaller the decre-
ment.

REFERENCES

1. A. Granato and K. J. Lucke, Appl. Phys. 27, 789 (1956).

2. Physical Acoustics: Principles and Methods, Vol. 111,
Part A: The Effect of Imperfections, Ed. by W. P. Mason
(Academic, New York, 1966; Mir, Moscow, 1969).

3. A. S. Nowick and B. S. Berry, Indlastic Relaxation in
Crystalline Solids (Academic, New York, 1972; Atomiz-
dat, Moscow, 1975).

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

2002

4.

5.

10.

11

12.

13.

1683

V. L. Indenbom and V. M. Chernov, Phys. Status Solidi
A 14, 347 (1972).

V. M. Chernov, Fiz. Tverd. Tela(Leningrad) 15 (4), 1159
(1973) [Sov. Phys. Solid State 15, 784 (1973)].

V. L. Indenbom and V. M. Chernov, in Elastic Srain
Fields and Dislocation Mohility, Ed. by V. L. Indenbom
and J. Lothe (North-Holland, Amsterdam, 1992), p. 517.

V. I. Alshits, in Elastic Srain Fields and Dislocation
Mobility, Ed. by V. L. Indenbom and J. Lothe (North-
Holland, Amsterdam, 1992), p. 625.

Proceedings of the 9th International Conference on
Internal Friction and Ultrasonic Attenuation in Solids,
Beijing, China, 1989.

J. P. Hirth and J Lothe, Theory of Dislocations
(McGraw-Hill, New York, 1967; Atomizdat, Moscow,
1972).

S. P. Nikanorov and B. K. Kardashev, Elasticity and Dis-
location Inelasticity of Crystals (Nauka, Moscow, 1985).
W. Feller, An Introduction to Probability Theory and Its
Applications (Wiley, New York, 1957; Mir, Moscow,
1964).

O. V. Kamaeva and V. M. Chernov, Preprint FEI-2856
(Institute of Physics and Power Engineering, Obninsk,
2000).

O. V. Kamaeva and V. M. Chernov, Preprint FEI-2770
(Institute of Physics and Power Engineering, Obninsk,
1999).

Translated by O. Borovik-Romanova



Physics of the Solid Sate, Vol. 44, No. 9, 2002, pp. 1684—1688. Translated from Fizika Tverdogo Tela, \ol. 44, No. 9, 2002, pp. 1609-1613.
Original Russian Text Copyright © 2002 by Peschanskaya, Yakushev, Egorov, Bershtein, Bokobza.

DEFECTS, DISLOCATIONS,

AND PHYSICS OF STRENGTH

Discontinuous Defor mation and M or phology of Polymers

N. N. Peschanskaya*, P. N. Yakushev*, V. M. Egorov*,
V. A. Bershtein*, and L. Bokobza**
* | offe Physicotechnical Institute, Russian Academy of Sciences, S. Petersburg, 194021 Russia
e-mail: yak@pav.ioffe.rssi.ru
** | aboratoire P.C.SM., Paris Cedex 05, 75231 France
Received November 20, 2001; in final form, December 14, 2001

Abstract—The morphological nature of discontinuous (jumplike) deformation is studied. Recording creep
behavior of materials using a laser interferometer permits one to determine the parameters of deformation
jumps on a micron scale. The objects of investigation were poly(dimethylsiloxane) (PDMS) and a composite
material consisting of PDM S and quartz (SiO,). It is shown that the height and sharpness of jumps depend on
the composition of the material and the stage of deformation. An analysis of differential scanning calorimetry
(DSC) curves of the materias in the deformed and initial states suggests that deformation results in ordered
domainsin rubberlike polymers. This confirms the assumption that deformation jumps reflect the presence and

the evolution of structural inhomogeneities in amorphous polymers. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Real bodies, including polymers, have a complex
nonuniform structure on various morphological levels.
According to modern concepts, the creep behavior of
materials at constant external parametersisaprocess of
structural self-organization and macrodeformation is
ensured by microdeformations on deeper levels. One of
the main features of deformation on various levelsisits
localization, i.e., its discontinuous, jumplike develop-
ment, e.g., through the nucleation of disclinations and
didocations, dip lines and bands, the formation of “sil-
very cracks’ in polymers, etc. However, the traditional
techniques of recording creep curves level the hetero-
geneity of the structure and the localization of deforma-
tion revealed by microscopic, x-ray diffraction, and
other methods, and support the concept of amonaotonic-
ity of the process with a gradually changing deforma-
tion rate. This contradiction can be eliminated by
increasing the resolution of the methods of measuring
the deformation rate and using new approaches to the
investigation of the kinetics of deformation [1-7]. The
use of an interferometer in the scheme of recording
creep in materials permitted study of the kinetics (rate)
of processes at the level of strain increments beginning
from fractions of amicron, i.e., on a mesoscopic struc-
tural level, and reveaing rate changes (deformation
jumps) as acreep property common for various materi-
als. The novelty of the results was in the fact that not
only the phenomenon of the nonmonotonic develop-
ment of deformation on amicron level was established,
but also a regular change in the characteristics of the
jumps at various stages of creep for amorphous poly-
mers, whose structure had no long-range order, was
shown. Usually, the term “discontinuous (jumplike)
deformation” referred to macroscopic (on the order of

afew millimeters) shear bands, which are formed upon
tensile tests at liquid-helium temperatures [8]. In [7],
the deformation is considered as a fundamentally non-
monotonic process.

Asto the nature of jumps, the following assumption
was made aready in our first work [1]: the deformation
jumps arise because of the existence of nonuniform
(strong and weak) interactions between polymer mole-
cules; these interactions are overcome in deformation
acts, and the scale of the jumps observed depends on
the size of ordered domains typical of a given level.
This assumption is confirmed by correlations with
molecular characteristics [2, 4, 7] and experiments on
model samples of polyethylene [3, 5].

To more completely study the nature of jumplike
acts of deformation, it is necessary to investigate poly-
mers with various chemical and supramolecular struc-
ture in various physical states. Earlier, main attention
was paid to solid amorphous and amorphous—crystal-
line polymers.

In this work, we consider changes in the rate of
deformation on amesoscopic level for poly(dimethylsi-
loxane) (PDMS) and a composite consisting of PDMS
and SiO,. These materials areinteresting since at 300 K
the polymer isin arubberlike state and can crystallize
upon cooling.

1. EXPERIMENTAL

Samples of cross-linked PDMS as well as PDMS
filled with quartz particles (40 wt % SiO,) were inves-
tigated. At 300 K, PDMSisin an amorphous rubberlike
state. The sampleswere deformed at a constant stressin
the regime of creep at 300 K. Using an interferometer
[1-7], the creep process was recorded as successive

1063-7834/02/4409-1684%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Aninterferogram of discontinuous creep. The period of the rate variation, or the height of ajump, isL = 0.6 um. Each beat

is equal to an increment of deformation by 0.3 um.

beats, each corresponding to a deformation increment
of 0.3 um (Fig. 1). The relative rate of deformation is

calculated by the formula € = Av/2l,, where A = 0.63

um is the laser wavelength, v is the beat frequency or
an average frequency of several beats, and |, is the ini-
tial length of the sample. Figure 1 displays an interfer-
ogram in which the rate of deformation (frequency of
beatings) changes periodically. The period L of the rate
variation expressed as the number of oscillations multi-
plied by 0.3 um is equal to the height of the deforma-
tion jump. Since the periodicity in the beat frequency is
by no means aways clearly pronounced, the periods L
were usually determined from the dependence of the
rate € (calculated from the frequencies of successive
beat in the interferogram) on the number of beats
(Figs. 2-5). The period of the rate changes, or the
height of the deformation jump, is equal to the number
of points in a period multiplied by 0.3 pm. Another
characteristic of ajump isits sharpnessh, i.e., theratio
of the maximum rate to the minimum rate within each
period. Thetable lists the average values of L and h for
small periods (cal culated from five oscill ations) and the
maximum parameters of the jumps near the genera
microdeformations indicated in the table.

The tensile samples were 20 mm long and 2 mm
thick; the compression samples were 6 mm in height
and 4 mm in diameter.

In [9], using the infrared dichroism and birefrin-
gence methods, a proportionality was shown to exist
between the molecular orientations and the degree of
extension of PDMS at 300 K. In this work, for the
investigation of changesin the structure of the polymer
after deformation, we used the ability of PDMSto crys-
tallize upon cooling. Using differential scanning calo-
rimetry (DSC), we measured the thermal effect upon
phase transition [10]. A DSC-2 Perkin—Elmer calorim-
eter was used; the rates of cooling and heating were
5 K/min. The assumption on the formation of a hetero-
geneous structure in the process of deformation of the
polymer at 300 K was checked as follows. The samples

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

stretched to 40% at 300 K were cooled to below the
melting temperature T,, then, upon heating, we
recorded the DSC curve in the melting range of the
crystals and compared the DSC curves of the deformed
and undeformed samples of PDMS and PDMS + SIO,.

2. RESULTS AND DISCUSSION

In the rubberlike state, the main deformation of the
polymer is developed during loading, then the creep
rate decreases rapidly. To obtain the same degree of
deformation, the PDM S sampl es should be subjected to
smaller stresses than the composite samples and to
smaller stresses during tensile tests than upon compres-
sion tests; therefore, it is impossible to compare the
creep behavior of such materials at identical stresses
and strains and main attention was paid to deformation
under tension. Fragments of creep curves of the materi-
as studied are shown in Figs. 2-5 in the strain-rate—
strain coordinates; each point in the curves shown

4L
Tv;
T2t
Ry
O C 1 1 1
35.05 35.10 35.15 35.20
€, %

Fig. 2. Variation of the creep rate as a function of deforma-
tion upon tension for poly(dimethylsiloxane). Each point
corresponds to the creep rate within an interval of 0.3 um.
The stressiso = 0.15 MPa.
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€, %
Fig. 3. PDMS + SIO,, same asin Fig. 2, 0 = 0.2 MPa.
2k
TKIJ
S 1t
o
23.5 23.6 23.7 23.8 23.9
g, %

Fig. 4. PDMS + SiO,, same asin Fig. 2, 0 = 0.35 MPa

refers to a deformation increment of 0.3 um. The main
result of the work is that the deformation jumps (the
nonuniform deformation rate) are observed for the
polymer in the rubberlike state even at relatively small
deformations (Fig. 3). It is seen from Figs. 2-5 and
from the table that the periods L of the variation of the
deformation rate, or the deformation jumps, can be
divided into two groups. The periods L, of the small-
est variations are approximately the same upon tension
and compression (see table). With increasing deforma-
tion €, small jumps unite into coarser ones (L) con-
sisting of smaller jumps (Figs. 4, 5 and table). Upon
tension, the amplitude of variations of the deformation
rate (h) isusually higher than upon compression, which
isin genera typical of various polymers and various
deformation stages. The greater sharpness and the more

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

complex shape of jumps upon tension can be explained
by the formation of microcracks under the effect of ten-
sile stresses. The greatest variety of jumps was
observed upon tension of the composite, which can be
attributed to shears not only in pure polymer but also in
the adhesion layers at polymer—quartz interfaces.

It was shown, using composite samples as an exam-
ple (see Figs. 3-5 and table), that with increasing defor-
mation (and stress), there occurs an increase in the
period L of jumps and the formation of large jumps
from smaller ones. An analogous evolution of the peri-
ods of the variations of the deformation rate was
observed upon deformation of glassy and crystalline
polymersin[1, 3,5, 7].

By definition, deformation jumps reflect the cooper-
ative behavior of kinetic units and, consequently, are
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Fig. 5. PDMS + SiO,, same asin Fig. 2, 0 = 0.55 MPa.

related to the heterogeneity of the polymer morphol-
ogy. Theinformation on the morphology of amorphous
polymers is contradictory, but the concept of a cross-
linked structure formed by “physical nodes’ between
fragments of neighboring chains can be considered to
be commonly accepted.

Strong interactions between groups of atoms in
neighboring molecules and the most densely packed
regions of molecular chains can serve as physica
nodes. Strong bonds correspond to large relaxation
times; weak bonds, to small relaxation times; i.e., the
nonuniformity of interactions in amorphous polymers
is sufficient grounds for the appearance of a stepped
type of motion. It is more difficult to explain what fea-
tures are associated with the scale of jumps in amor-
phous polymers, where the presence of clearly pro-
nounced elements of packing of micron size has not yet

been proved. In this case, an analogy with dislocation
models can be drawn; these models were not first
applied to amorphous bodies, since such bodies do not
contain classical didocations. The situation changed
when Gilman suggested the model of the formation,
under the action of a force, of a gliding dislocation
loop, which travels on the plane in which maximum
tangential stressesact. Similarly, we suppose that struc-
tural nonuniformities of micron sizescan arisein amor-
phous polymers under the effect of directional forces
and deformations. For PDMS, it was shown in [9] that
the molecules become oriented upon deformation. In
the process of orientation, ordered domains can arise
(because of a greater degree of local orientation of
chain fragments and because of their denser packing),
similar to the situation where fibrils are formed upon
extension of amorphous—crystalline polymers. The

Parameters of deformation jumps for PDMS and PDMS + SIO,

Material and loading mode | Stress, MPa €, % A\éfrfgi Vﬂ%es Linaxs KM vgﬁgsagfh Pax
PDMS, tension 0.15 35 0.9 12 25 3
PDMS, compression 0.65 30 0.9 3 13 2.2
PDMS + SiO,, tension 0.2 11.3 1.0 15 6.0 10

0.25 14.3 125 54 3.0 4.0

0.35 234 1.25 9.0 25 3.0

0.45 313 16 9.0 3.0 45

0.55 33.6 18 50 35 7.0

PDMS + SiO,, compression 15 26 1.0 15 14 15
PHYSICS OF THE SOLID STATE Vol. 44 No. 9 2002
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dH/dt = 0.2 mW

Endo

1 1 1 1
240 260 280 300
T,K

1 1
200 220

Fig. 6. DSC curves: (1, 1) undeformed sample and (2, 2)
sample stretched to 40% at 300 K. Solid lines, PDMS;
dashed lines, composite.

length of the initial ordered domains in amorphous
polymers is supposed to correspond approximately to
the length of a stretched molecule (fractions of a
micron, microns). Such “amorphous fibrils’ can deter-
mine the scale of deformation jumpsthat can be solved
using this technique. In the process of deformation, as
follows from experiments (Figs. 2-5), coarser jumps
are formed from smaller ones and complex jumps
appear sometimes [3, 4], which indicates an evolution
of the structure that can be called “kinetic.”

The above suggested concepts were confirmed in
this work by the investigations (using the DSC tech-
nique) of structural change upon deformation. At
300 K, poly(dimethylsiloxane) is in a rubberlike state,
but upon cooling it passes into an amorphous—crystal-
line state (the melting temperature is T,, = 230 K, and
the temperature of transition into the glassy state is
Ty =150K). It turned out that the DSC spectra of
PDMS and composite films that were stretched at
300K and cooled to below T, broaden significantly
upon heating in the region of T,,, as compared to similar
spectra for undeformed samples (Fig. 6).

The effect for the composite is somewhat higher; in
addition, a shift of the spectra of deformed samples
toward higher temperatures by 2-3 K is noted. The
broadening of the DSC lines suggests that the deforma-
tion of the polymer in the rubberlike state increases the
dispersion of crystallitesthat are formed at low temper-
atures; i.e., the structure of a deformed amorphous
polymer containsagreater number of nuclei for crystal-
lites than in the undeformed material. In thefilled poly-

PHYSICS OF THE SOLID STATE Vol. 44 No. 9
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mer, the number of variations of crystals can increase
because of the existence of boundary layers between
the polymer and SiO,; therefore, the DSC line for the
composite turns out to be broader than that for a pure
polymer. Thus, the data obtained support the assump-
tion on the appearance of heterogeneity in the polymer
structure oriented upon deformation even for the rub-
berlike state when the relaxation times are small. The
data on discontinuous creep and the results of DSC are
in good agreement; the introduction of afiller increases
the variety of the characteristics of jumps and the vari-
ation of crystals.

The above results prove that the assumption that itis
the heterogeneity of the medium that is the cause of the
discontinuous (jumplike) character of creep isalso con-
firmed for amorphous polymers. Therefore, the investi-
gation of the kinetics of deformation on a mesoscopic
level gives information on the scale of ordered struc-
tural domains and on their evolution during deforma-
tion.
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Abstract—Carbon fiberswith inclusions of cobalt nanoclusters are prepared by heat treatment of carboxylated
cellulose containing cobalt cations. The influence of the heat treatment conditions on the structuring of the car-
bon matrix and cobalt clusters, the magnetization hysteresis loop, the temperature dependence of the conduc-
tivity, and the magnetoresistance is investigated. It is established that the cobalt-containing carbon fibers heat
treated at Ty, = 700 and 900°C possess superparamagnetic and ferromagnetic properties, respectively. It is
shown that fibers heat treated under different conditions are characterized by different conduction mechanisms
and can exhibit anisotropic and giant magnetoresistances and al so the effects associated with the influence of
magnetic field on the processes of weak localization and spin—orbit scattering. © 2002 MAIK “ Nauka/ I nter pe-

riodica” .

1. INTRODUCTION

Over the last decades, the electronic properties of
granular metals have been extensively investigated by
experimental and theoretical methods. Granular ferro-
magnets belong to the subclass of granular metals in
which metallic nanoparticles consisting of a ferromag-
netic material are introduced into a nonmagnetic
matrix. Either nonmagnetic metals (Ag, Au, and Cu) or
dielectrics (SO, and Al,O,) are traditionally used as
nonmagnetic matrices. These materials possess quite
different magnetic, magnetoresistive, and transport
properties, which can be controlled by choosing the
composition of the materials and the shape and struc-
ture of magnetic nanoparticles. The size-dependent
magnetic characteristics[1] and the giant [2] and tunnel
[3] magnetoresistive effects are among the most
intriguing properties of these materials. However, the
mechanisms of electron transfer in these systems, espe-
cially in the vicinity of metal—insulator junctions, are
still not clearly understood. In this range, the electrical
conductivity is determined, to a large extent, by the
properties and structure of thin interlayers between
metallic particles, because these interlayers, as arule,
are strongly disordered and can vary in composition.

Investigation into the magnetic and transport prop-
erties of these nanostructured materials is not only of
purely scientific importance but also of applied signifi-
cance in respect to the devel opment of magnetic-mem-
ory elements with a giant density and magnetic-field
pickups on the basis of the giant or tunnel magnetore-
sistive effects. The giant and tunnel magnetoresistive
effects are observed in the cases of metallic and dielec-
tric matrices, respectively. At the same time, the phys-
ics of electron transfer processes that are responsible

for the giant and tunnel magnetoresistive effects in a
magnetic field callsfor further investigation. In order to
gain a better insight into the magnetism and the mech-
anisms of magnetotransport in these systems, it is also
important to investigate the structural and electrical
properties in the case when the conductivity of the
matrix is intermediate between the conductivities of
metals and dielectrics.

Granular solids are usually produced by simulta-
neous or sequential deposition of metal and insulator
layers [4, 5], the sol—gel method [6], or a combination
of ion-beam sputtering and preparation of amatrix inan
inert-gas flow [7]. Alternatively, metallic nanoparticles
inthe matrix with different electrical conductivities can
be prepared by heat treatment of carboxylated cellulose
fibers after replacement of protonsin COOH groups of
the cellulose by metal cationsthrough theion-exchange
sorption. An atomically uniform distribution of metal
cations over the fiber bulk in the course of sorption can
provide auniform distribution of metallic nanoparticles
in carbon fibers upon heat treatment under the appropri-
ate conditions.

The present paper reports on the results of a system-
atic investigation into the structural, magnetic-field,
and temperature dependences of the electrical conduc-
tivity and the magnetoresistance for Co,C; _, carbon
fibers containing cobalt clusters at different concentra-
tion ratios between cobalt and carbon. Cobalt, like
nickel, is the main metal used for preparing granular
ferromagnets. Carbon was chosen as the matrix mate-
rial, because its conductivity can be easily changed by
varying the temperature and conditions of heat treat-
ment.

1063-7834/02/4409-1689%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Effect of the duration of preliminary annealing of the cobalt
salt of tricarboxycellulose (the cobalt content in polymeric
acidisequal to 2.7 mmol/g) inair at Tp = 300°C on the cobalt
content in carbon fibers prepared by annealing under vacuum
a Ty, = 700 and 900°C

. _ Mole fraction of cobalt
No Time T of annealing in carbon fibers
: at 300°Cinair, h
Ty =700°C | Ty, =900°C

1 0 0.138 0.146

2 0.5 0.159 0.185

3 1.0 0.177 0.198

4 2.0 0.251 —

5 3.0 0.606 —

2. SAMPLE PREPARATION

Cobalt clustersin the carbon matrix were produced
by heat treatment of carboxylated cellulose fibers after
substitution of cobalt cations for protons in COOH
groups of the cellulose through the ion-exchange sorp-
tion. Tricarboxycellulose (polymeric acid) was used as
carboxylated cellulose. Tricarboxycellulose was
obtained by introducing three carboxyl groups into
each monomer unit of a cellulose macromolecule
according to the reactions

[CeH70,(OH)4] , + NHIO, !
— [C4H50,(0OH)(CHO),] , + nHIO; + nH, 0, @)

[C4H50,(OH)(CHO),] , + 2nN,0,

2
— [C3H30,(COO0H),],, + 4nNO + nH,0. @)
Tricarboxycel lulose synthesi zed through reactions (1)
and (2) retained the fibrous structure of theinitial cellu-
lose (viscose fibers). As follows from chemical analy-
sis, the content of COOH groups in tricarboxycellulose
was equal to 2.8-35.0 wt %. Cobalt cations were intro-
duced into the tricarboxycellul ose matrix from agqueous
solutions of cobalt acetate at a solid-to-liquid ratio of
1:50 and a temperature of 20.0 = 0.2°C through ion-
exchange sorption according to the reaction

2[C4H,0,(COOH),] , + 3nCo™
—»{[C3H;0,(COOH),] ,Cog , +6nH".

The concentration of cobalt acetate solutions was
0.125 M, which provided the maximum substitution of
cobalt cations for protons of tricarboxycellulose. The
cobalt content in tricarboxycellulose varied from 2.5 to
3.1 mmol/g.

The samples were heat treated under vacuum (with
a residual pressure of 1.3 Pa) at a heating rate of
3 K/min. After heating to the final heat treatment tem-
perature T,, (700 or 900°C), the samples were isother-
mally treated for 30 min with the aim of stabilizing

©)
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thermochemical transformationsin the annealing prod-
uct. The heat treatment resulted in the formation of car-
bon fibersthat had cobalt inclusions and reproduced the
texture of the cellulose precursor. When it is necessary
to obtain spatial formations with a complicated config-
uration, this method offers an advantage, as the initial
cellulose fibers possess a high flexibility.

The thermostimulated transformations in tricarbox-
ycellulose fibers under the above conditions led to a
considerable decrease in their size and mass (the fiber
diameter decreased from 1.5 to 0.5 mm, and the mass
loss was as large as 70%) due to the removal of volatile
low-molecular products, for the most part, in the form
of carbon monoxide and carbon dioxide.

The maximum mole fraction x of cobalt in the
Co,C, _, fibersprepared from cobalt salts of tricarboxy-
cellulose at the annealing temperatures used did not
exceed 0.19. This appeared to be insufficient for reach-
ing the metal—insulator transition. In order to increase
the cobalt content in the carbon matrix, we modified the
regime of heat treatment of the metallocellul ose precur-
sors. Essentially, the modification was as follows: prior
to the thermal annealing under vacuum, the metallocel-
lulose fibers were heat treated at 300°C in air for T =
0.5-3 h. This led to more intensive oxidation reactions
in the cellulose matrix and to an increase in the total
mass loss in the sample and the cobalt content in the
carbon fiber (see table). As can be seen from the table,
the preliminary annealing of tricarboxycellulose con-
taining 2.7 mmol/g Co at T, = 300°C for 3 h made it
possible to obtain carbon fibers with a mole fraction of
cobalt as large as 0.60.

The cobalt content in the Co,C, _, fibers was inde-
pendently determined by chemical (gravimetric) analy-
sis and Auger spectroscopy. In the case of gravimetric
analysis, the fibers were calcined at a temperature of
850°C to transformation into Co;C, and the cobalt con-
tent in the cobalt-containing carbon fibers was calcu-
lated from the weight of the reaction product. The
cobalt contents determined in the carbon fibers by these
two methods were dightly different, possibly, because
the chemical method offers an integral estimate,
whereas the Auger spectroscopic data refer only to a
thin surfacelayer. For thisreason, we presented the data
obtained by the chemical method and Auger spectros-
copy was used to check the presence of foreign ele-
ments in the fibers. The carbon matrix reliably protects
the cobalt clusters against oxidation. The stability of the
cluster structure in the carbon matrix isindicated by the
fact that the electrical and magnetic characteristics of
the Co,C,; _, fibersremained constant over the course of
ayear.

3. EXPERIMENTAL TECHNIQUE

The distribution of cobalt clusters over the carbon
fiber, their structure, and the influence on the structur-
ing of the carbon matrix were investigated using trans-
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mission electron microscopy (TEM) on a Philips CM
300UT-EFG transmission electron microscope at an
accelerating voltage of 300 kV with a resolution of
about 1.5 A. The magnetization hysteresis loops were
recorded on a Faraday magnetometer. The temperature
dependences of the electrical resistance and the magne-
toresistance were measured with samples prepared by
cutting the fibersinto 6- to 8-mm-long pieces to which
copper wires were cemented using a silver paste. The
current—voltage characteristic in the range covered was
linear. The temperature dependences of the resistance
and the magnetoresi stance were measured in adc mode
in the temperature range 2-300 K at magnetic fields as
highas1.2T.

4. RESULTS

4.1. Structuring of thematrix and cobalt clusters.
Examination of the TEM images of fibers (Figs. 1-5)
prepared at different heat trestment temperatures
revealed that the heat treatment leads to the formation
of cobalt clustersinside the carbon fibers. As can be see
from Figs. 1 and 2, the mean size of the cobalt clusters
at the heat treatment temperature Ty, = 700°C is approx-
imately equal to 10 nm. The clusters are rather uni-
formly distributed over the fiber bulk and have a poly-
crystaline structure. No structuring of carbon is
observed.

A general view of the matrix and clustersin the car-
bon fiber annealed at T, = 900°C isdisplayed in Fig. 3.
An increase in the annealing temperature leads to an

Fig. 1. TEM image of the fiber annealed at Ty, = 700°C.
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increase in the cluster size. In this case, the diameter of
the cobalt clusters varies from less than 30 to 200 nm or
greater and their distribution over the fiber bulk
becomes nonuniform.

It is seen from Fig. 4 that the cobalt clusters have a
catalytic effect on the formation of graphite planes.
This process most intensively occurs in the region
between two closely spaced cobalt clusters. It can aso
be seen from thisfigure that alayer composed of graph-
ite planes surrounding the cobalt cluster is formed in
the matrix. The layer of graphite planes has an imper-
fect structure in regions far from other clusters. The
twisting of the graphite planes around the cobalt clus-
ters induces mechanical stresses in regions between
spherical formations, which leads to the appearance of
poresin these regions.

Note that the introduction of the cobalt clustersinto
the amorphous carbon matrix resultsin the formation of
extended regions 100 nmin size or greater with parallel
graphite planes, as is shown in Fig. 5. The interplanar
distancedisof the order of 0.370 nm. Thisis somewhat
larger than the corresponding distances in turbostratum
carbon, which is characterized by the absence of regu-
lar orientation of layers with respect to the hexagonal
axis (d = 0.344 nm), and pyrolytic graphite (d =
0.335 nm) but istypical of strongly disordered fibers[8].

4.2. Magnetization. The magnetization hysteresis
loops measured at room temperature for the cobalt-con-
taining carbon fibers annealed at Ty, = 700 and 900°C
are depicted in Fig. 6. The magnetization for a particu-
lar magnetic field strength increases with anincreasein

Fig. 2. Structure of the cobalt cluster in the fiber annealed at
Ty = 700°C.
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Fig. 3. TEM image of the fiber annealed at Ty, = 900°C.

the heat treatment temperature and the cobalt content in
the carbon fibers. It is seen that the fibers annealed at
Ty = 700°C with x = 0.123 and 0.157 do not possess
remanent magnetization (Fig. 6, curves 1, 2). Thisindi-
cates that the blocking temperature of magnetic
moments of the clusters is below room temperature;
i.e., the system of cobalt clusters at 300 K is in the
superparamagnetic state. The blocking temperature

BASHMAKOV et al.

estimated according to [9] for the system of cobalt clus-
ters with a cluster diameter of 10 nm, which is most
characteristic of this heat treatment temperature
(Fig. 1), islessthan 100 K.

Anincreasein the magnetization with anincreasein
the concentration of cobalt cations in tricarboxycellu-
lose and in the annealing temperature is caused by an
increase in the cluster size. Thefibersannealed at Ty, =
900°C with the cobalt contents x = 0.146 and 0.187 pos-
sess remanent magnetization with the equal coercive
forceB.=0.043T (Fig. 6, curves 3, 4). The cobalt clus-
ters, whose sizein thesefibers can be aslarge as 200 nm
or greater (Fig. 3), arein the ferromagnetic state, which
explains the remanent magnetization of the carbon
fibersannealed at Ty, = 900°C.

4.3. Temperature dependence of the resistance.
With the use of the above procedures and heat treatment
conditions, we prepared three groups of samples exhib-
iting different behavior of the temperature dependences
of the resistance R(T) and magnetoresistance R(B)
Since the dependences R(T) for the samples belonging
to each group differed only quantitatively, one sample
from each group was chosen for analysis.

Figure 7 shows the temperature dependences of the
resistance for three samples on the linear (Fig. 7a), log-
arithmic (Fig. 7b), and T¥? (Fig. 7c) scaes. The num-
bering of the samples corresponds to that of the groups
of the samples. The samples of thefirst group (0.146 <
x < 0.187) were prepared by the aforementioned tech-
nigue with annealing under vacuum at Ty, = 900°C and
without intermediate annealing at 300°C in air. The
experimental dependences R(T) and R(B) are given for
sample no. 1 with x = 0.187. As is seen from Fig. 7

Fig. 4. TEM image of afiber region with structuring of car-
bon between cobalt clusters upon annealing at Ty, = 900°C.

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

Fig. 5. TEM image of afiber region with structuring of car-
bon in the form of graphite planes upon annealing at Ty, =
900°C.
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Fig. 6. Magnetization hysteresis loops at T = 300 K for
cobalt-containing carbon fibers annealed at Ty, = (1, 2) 700

and (3, 4) 900°C. Mole fraction x of cobalt in carbon fibers:
(2) 0.123, (2) 0.157, (3) 0.146, and (4) 0.187.

(curve 1), the temperature coefficient of resistance for
this sample is negative; hence, we can make the infer-
ence that this sample corresponds to the dielectric side
of the meta—didectric transition. The temperature
dependence of the resistance is linear on the logarith-
mic scale (Fig. 7b).

The procedure of preparing sample no. 2 with x =
0.198 involved preliminary annealing at Tp = 300°C for
lhinair followed by annealing under vacuum at Ty, =
900°C for 0.5 h. The dependence R(T) for this sample
(Fig. 7, curve 2) exhibitsaminimum at T = 45 K. The
temperature coefficient of resistance is positive in the
high-temperature range and negative in the low-tem-
perature range. The minima in the curves R(T) are
observed for all samples of the second group with a
change in the low-temperature annealing time in the
range0.5<t<1h.

For sample no. 3 with x = 0.251, the time t of the
preliminary annealing at T, = 300°C in air was equal to
2 h and the temperature T,, of the high-temperature
annealing was 700°C. The temperature dependence of
the resistance for this sample istypical of “dirty” met-
as. As the temperature decreases, the resistance
decreases and reaches saturation at low temperatures.
Other samples of this group with the preliminary
annealing time 1 varying in therange 1-3 h haveasim-
ilar dependence R(T).

The change in the behavior of the dependence R(T)
(when changing over from sample no. 1 to sample
no. 3) with a variation in the annealing temperature
reflects an increase in the structural perfection of the
percolation channels providing the charge transfer.
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Fig. 7. Temperature dependences of the resistance normal-
ized to the resistance at T = 255 K on different scales for
fiber samples prepared under different heat treatment condi-
tions: (1) Ty, = 900°C, x = 0.187, without preliminary heat
treatment; (2) Ty = 900°C,x=0.198,1=1h; and (3) Ty =
700°C,x=0.251,1=2h.

These channels consist of cobalt clusters with a pro-
nounced crystal structure and intercluster regions that
are characterized by a considerable degree of disorder-
ing and, possibly, include the carbon phase.

4.4. Magnetoresistive effect. The magnetic-field
dependences of the magnetoresistance AR(B)/R(0) =
(R(B) — R(0))/R(0) for the samples of three groups at
different temperatures with the magnetic field applied
normally to the fiber are plotted in Figs. 8 and 9. The
dependences of the magnetoresi stance on the magnetic
field for samples of these groups differ significantly. It
is worth noting that the magnetoresistance of the sam-
ples of all the groups involves a negative magnetoresis-
tance component over the entire studied range of mag-
netic fields—1.2 < B < 1.2 T. The negative magnetore-
sistance component of all the samples increases with a
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Fig. 8. Typical magnetic-field dependences of the magne-
toresistance for cobalt-containing carbon fibers of the first
group at different temperatures T (K): (1) 2.2, (2) 10, (3) 50,
and (4) 100.

decrease in the temperature and exhibits a similar
behavior in the magnetic field. In this respect, the typi-
cal magnetic-field dependences of the magnetoresis-
tance are represented only for samples of thefirst group
at different temperatures in Fig. 8. The magnetoresis-
tance of the samples of different groups differsonly in
weak magnetic fields, in which the positive magnetore-
sistance component is observed for the fibers of all the
groups (Fig. 9). The magnetoresi stance of sample no. 1
(Fig. 9a) is positive only in weak magnetic fields at a
temperature of 2 K, whereas only the negative compo-
nent is observed at higher temperatures. No hysteresis
isfound in the magnetoresistance curves; i.e., the mag-
netoresi stance does not depend on the prehistory and
the direction of magnetic field scanning.

The dependence of the magnetoresistance for sam-
pleno. 2, which is characterized by the minimum in the
temperature dependence of the resistance, also exhibits
unusual behavior. Asfor the samples of the first group,
the magnetoresistance of this sample, in the low-tem-
perature range is positive without hysteresis. An
increase in the temperature is attended by the disap-
pearance of the positive magnetoresi stance component
for sample no. 2. However, unlike sample no. 1, the
positive magnetoresistance component again arises at
temperatures above 50 K (Fig. 9b). It can be seen that
the local minimum in the magnetoresistance curve at
this temperature is shifted with respect toB=0and is
located approximately at B = 0.07 T when the magnetic
field changes from 1.2 T toward negative fields. The
change in the magnetic field in the opposite direction
leads to a symmetrical shift of the local minimum
toward positive magnetic fields.

The positive magnetoresistance component is
observed for the samples of the third group over the
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Fig. 9. Magnetic-field dependences of the magnetoresis-
tance for cobalt-containing carbon fibers of (a) the first,
(b) second, and (c) third groups at different temperaturesin
weak fields. Curves 1-4 are measured at the same tempera-
tures asthosein Fig. 8.

entire temperature range 2 K < T < 100 K (Fig. 9c¢).
However, the magnetic-field dependence of the magne-
toresistance substantially changes in the range of weak
magnetic fields: as the temperature decreases, the pro-
nounced local minimum shifted with respecttoB=0 at
high temperatures (Fig. 9c, curves 3, 4) is smeared and
manifests itself as a plateau in the curves R(B) at low
temperatures (Fig. 9c, curves 1, 2). The direction of the
shift of the local minimum in the magnetoresistance
curves depends on the prehistory. As a consequence,
there occur hysteresis phenomena in the magnetoresis-
tance of the samples of the third group (Fig. 10).
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5. DISCUSSION

It is evident that the differences in the magnetiza-
tion, the temperature dependence of the resistance, and
the magnetoresistance of the samples of the three
groups under investigation are associated primarily
with the cobalt content in the Co,C, _, fibers and the
degree of coagulation of the cobalt clusters in the car-
bon matrix. The samples of the first group with a low
cobalt content correspond to the dielectric side of the
metal—dielectric transition and are characterized by a
logarithmic temperature dependence of the resistance.
This dependence is predicted for two-dimensional dis-
ordered systems [10, 11] and is not typical of three-
dimensional systems, including the Co,C, _ , fibers
studied in our work. The reason for this behavior of the
dependence R(T) is still unclear. Peng et al. [12]
observed the logarithmic dependence R(T) is observed
for three-dimensional films of Co,(Co0), _, granular
metals. It was established that the logarithmic depen-
dence R(T) isobserved only inthe case when individual
clusters are separated by a very thin layer of atunnel-
transparent dielectric or metal point contacts.

Two mechanisms responsible for the logarithmic
dependence R(T) with a negative temperature coeffi-
cient of resistance are known for two-dimensiona dis-
ordered systems: a weak localization due to the inter-
ference of electron wave functions [11] and an aterna-
tive effect associated with the Coulomb electron—
electron interaction [10]. These effects manifest them-
selves differently in the magnetic field. The magnetic
field suppresses the weak |ocalization and leads to neg-
ative magnetoresistance. At the same time, a moderate
magnetic field does not affect the electron—electron
interaction. The experimental data obtained allow usto
draw the inference that the weak localization mecha-
nism occurs for Co,C, _, fibers of the first and second
groups at low temperatures. Actually, the spin—orbit
interaction suppressing the interference of the wave
functions owing to the spin reorientation upon scatter-
ing results in the antilocalization of electrons and,
hence, in alternating magnetoresistance [13]. There-
fore, the observed positive magnetoresistance associ-
ated with the spin—orbit scattering in the Co,C, _, fibers
at low temperatures and the deviation of R(T) from the
logarithmic dependence at the lowest temperatures
count in favor of the weak |ocalization mechanism. The
spin-dependent electron scattering by magnetic clus-
ters, i.e., the giant magnetoresistance, can aso contrib-
ute to the negative magnetoresistance. However, since
the conductivity of the carbon matrix is low and has a
nonmetallic character, it can be assumed that this con-
tribution is not dominant for the samples of the first
group.

The cobalt content x in the samples of the second
group is equal to 0.185-0.198. The temperature depen-
dence of the resistance for the samples of this group at
high temperatures is characteristic of metallic conduc-
tivity. At T < 45 K, the weak localization proceeding in
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Fig. 10. Magnetoresistance hysteresis loop for a sample of
thethird groupat T=4.2 K.

the samples leads to a logarithmic temperature depen-
dence of the resistance (Fig. 7, curve 2). As a conse-
guence, at low temperatures and in weak magnetic
fields, the positive magnetoresistance manifests itself
owing to the spin-orbit scattering. With an increase in
the temperature, the positive component of the mag-
netoresistance decreases and vanishes, as is the case
with samples of thefirst group. However, unlike the lat-
ter samples, the positive magnetoresi stance component
for the samples of the second group again appears at
T > 45K intheform of amaximum shifted with respect
to B = 0, thus reflecting the domination of the metallic
conductivity upon the suppression of weak localization
due to an increase in the temperature.

The cobalt content x in the samples of the third
group variesfrom 0.251 to 0.60, which exceeds the per-
colation threshold for three-dimensional systems. In
this case, individual cobalt clusters coalesce into con-
tinuous metallic percolation channels. The metallic
conductivity in these samples manifests itself in the
positive temperature coefficient of resistance and the
residual resistance at low temperatures.

As was noted above, the magnetic-field depen-
dences of the magnetoresistance for Co,C, _, fibers of
the third group exhibit a complex behavior due to a
superposition of the positive and negative components.
Examination of the magnetoresistance demonstrates
that the minimum of the positive magnetoresistance
component is shifted to the magnetic field Bg= 0.078—
0.08 T with respect to B = 0, whereas the minimum of
the negative magnetoresi stance component is observed
at B = 0 over the entire temperature range. It should be
noted that the direction of the shift of the positive mag-
netoresi stance component at a minimum with respect to
B = 0 is determined by the direction of the magnetic
field scanning (see Fig. 10). Therefore, it can be
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assumed that the positive magnetoresistance is associ-
ated with the remanent magnetization that results from
the formation of an infinite cobalt cluster and is
observed for the samples of the given group. The rema-
nent magnetization is characteristic of ferromagnetic
films and wires, whereas the positive magnetoresis-
tance in these systems is a manifestation of the aniso-
tropic magnetoresistance [14-16]. As the temperature
decreases, the pronounced local minimum in the curves
R(B) in the vicinity of B = Bgtransforms into a plateau
(Fig. 9¢). This change in the shape of the curves R(B) is
caused by an increase in the negative magnetoresis-
tance component with a decrease in the temperature,
because the positive magnetoresistance component
only weakly depends on the temperature. The plateau at
B = Bg in the magnetoresistance curves for sample no.
3 appears at temperatures for which the slopes of the
curves R(B) for the positive and negative magnetoresis-
tance components become equal in magnitude.

The specific feature of the studied fibers is that the
positive magnetoresistance component is found in a
magnetic field applied perpendicularly to the fiber. The
positive magnetoresistance component in granular fer-
romagnetic filmsis observed only in the case when the
magnetic field is aligned along the direction of current
flow, i.e, along the film plane. It is reasonable to
assume that the clusters in the fibers under consider-
ation form a three-dimensional percolation network
built up of metalic channels whose resistance can
strongly fluctuate over the fiber bulk. In this network,
the current predominantly flows along the fiber; how-
ever, there are regions in which the current, to agreater
or lesser extent, flows normally to the fiber axis, i.e.,
along the magnetic field. These regions in the three-
dimensional network of metallic percolation channels
areresponsible for the positive component of the aniso-
tropic magnetoresistance in the magnetic field perpen-
dicular to thefiber.

The remanent magnetization of these network
regions leads to a shift of the minimum of the positive
magnetoresistance component with respect to B = 0.
Since the remanent magnetization of the formed infi-
nite cluster does not result in a shift of the negative
magnetization component, we can state that this com-
ponent is unrelated to the anisotropic magnetoresis-
tance. We believe that the negative magnetoresistance
component is associated with the spin-dependent elec-
tron scattering by cobalt clusters, i.e., with the giant
magnetoresistance effect, even though this effect in the
Co,C, _, fibersisfar from giant, because the parameters
of the system (the size of magnetic clusters and the
intercluster distance) are not optimum for the manifes-
tation of the effect. The weak manifestation of the giant
magnetoresistance effect and the superposition of the
negative and positive magnetoresistance components
were observed earlier in granular ferromagnetic films
with a high content of the magnetic component [15].
The large size of magnetic clusters and the small free

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

BASHMAKOV et al.

path in the carbon matrix account for the small negative
magnetoresistance and the absence of the hysteresisin
the Co,C, _, fibers studied. Note a so that the negative
magnetoresistance can a so be dueto the suppression of
the weak localization by the magnetic field; however,
the contributions of the aforementioned two processes
cannot be separated because of the small negative mag-
netoresistance.

It is of interest to consider the change in the origin
of the positive magnetoresistance for samples of the
second group under variations in temperature. It can be
expected that the system of magnetically interacting
clusters will become ferromagnetically harder with a
decrease in the temperature. However, the shift of the
minimum in the positive-magnetoresi stance curves for
samples of the second group due to the manifestation of
bulk ferromagnetic properties and, correspondingly, the
magnetization hysteresis occurs at high temperatures.
This fact can be explained by the change in the mag-
netic interaction between the magnetic clusters. The
anisotropic magnetoresi stance effect for samples of the
second group (Fig. 9b, curve 3) is observed at the same
temperatures as the crossover from the weak localization
mechanism to metallic conductivity (Fig. 7, curve 2).
Whether or not this coincidenceis accidental isunclear.
Possibly, the exchangeinteraction, whichisresponsible
for the magnetic ordering in the ensembl e of the cobalt
clusters and, hence, for the manifestation of collective
ferromagnetic properties, proceeds through the
exchange of free electrons between the clusters. At low
temperatures, the weak localization results in a
decrease in the electron exchange rate, which should
weaken the indirect magnetic exchange interaction
between the cobalt clusters. Therefore, these clustersin
the Co,C,; _, fibers behave as a system of noninteracting
magnetic clusters. At high temperatures, the suppres-
sion of the weak localization leads to an enhancement
of the exchange interaction and the fibers exhibit col-
lective ferromagnetic behavior and, consequently, the
anisotropic magnetoresistance.

6. CONCLUSION

Thus, it has been demonstrated that cobalt clusters
can be produced in acarbon matrix upon heat treatment
of carboxylated cellulose in which cobalt cations are
introduced through the ion-exchange sorption. This
makes it possible to control the structuring of the car-
bon matrix and to prepare different composite carbon
materials. In particular, these materials can (i) possess
both superparamagnetic and ferromagnetic properties,
(ii) have positive and negative temperature coefficients
of resistance and the conductivity typical of metalsand
dielectrics, and (iii) exhibit different mechanisms of the
magnetoresistance. These materials can find applica
tion in devices of magnetic recording, storage, and
reading of information.
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Abstract—Magnetization and remagnetization processes in a close-packed nanodispersed barium hexaferrite
powder sample in the magnetically stable state were analyzed. Reversibility effects were discussed in terms of
interparticleinteraction. Judging from the magnetization curve and the parameters characterizing remagnetiza-
tion irreversibility, the sample under study is a model system of small Stoner—Wohlfarth particles. © 2002

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Experimental studies of the properties of magnetic
powder materials used in nano- and microel ectronics
pass, as a rule, over the problem of model approxima-
tion of objects as complex as highly dispersed systems.
Generalization of results of investigations and estab-
lishment of the causes of observed deviations from the-
oretical predictions are complicated because of the size
and, in specific cases, chemical-composition distribu-
tions of particles.

Theinvestigation of systems of single-domain nano-
and micrometer particles includes two basic aspects:
revealing of the possible occurrence of a superpara
magnetic state of particles with a volume close to criti-
cal under atemperature—field exposure, and analysis of
the influence of the rough free surface of particles on
their properties. Some of the results of our study were
reported earlier in [1, 2]. The emphasisin this paper is
on model approximation of an object, refinement of the
nature of magnetization and remagnetization in fields
of various strength, and determination of the parame-
ters of these processes.

2. SAMPLE PREPARATION

We studied hexagonal barium ferrite with an unsub-
stituted magnetic BaFe,;,0,4 host in the form of anano-
dispersed powder produced using cryochemical tech-
nology [3]. Barium and iron nitrates highly soluble in
water were used as initial components. The solution
concentrations were 1-2 and 0.3-0.32 mol/l for
Fe(NO;); and Ba(NO,), solutions, respectively. The
solutions were mixed in a stoichiometric (for the end
product) ratio (6 : 1). The solution, in the form of a
monodisperse flow of drops, was subjected to cryocrys-
tallization followed by sublimation drying. To stabilize

the chemical system homogeneity at the subsequent
technological stages, complex formation was used. Cit-
ric acid was used as a complexing agent. The produced
salt mixture was annealed without flux at T = 1173 K
for 2 h. The chosen technological conditions allowed
complete ferritization and crystallization of particles
with an average size of 60 nm in the basal plane and an
aspect ratio of 2—3. X-ray and M 6ssbauer studies of the
powder sample at room temperature do not detect any
unintentional phases or para- or superparamagnetic
particles.

3. MAGNETIZATION CURVES

The measurements were carried out with a ther-
mally demagnetized close-packed (packing factor p of
approximately 0.4) powder sample. Figure 1 displays
an experimental magnetization curve measured at
300 K; the material is in a magnetically stable state.
This curve, in contrast to the case of a macroscopic
analogous crystal in fields up to 4 kOe, exhibitsalinear
increase in the magnetization followed by a drastic
growth. The magnetization change in fields above
8 kOeindicatesthat in afield equal to the macroscopic-
crystal anisotropy field (H, = 17.8 kOe), thereis no sat-
uration. Figure 1 al so shows a magnetization curve cal-
culated theoretically in the Stoner—Wohlfarth (SW)
model for a system of randomly oriented identical non-
interacting magnetically uniaxial single-domain parti-
cles under the assumption of homogeneous rotation of
their magnetization vectors [4]. For convenience of
comparison, the anisotropy field of the SW model sys-
tem isassumed to bethat of barium ferrite and the mag-
netization isgiven in relative units. One can seethat the
experimental dependence correlates well with the cal-
culated SW curve. The shift of the position of the mag-
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netization jump in the experimental curve to weaker
fields with respect to the jump in the calculated curveis
due to the fact that the sample under study is character-
ized by an effective-anisotropy-field distribution of par-
ticlesin therange H, = 8-18 kOe [2].

To establish the nature of the magnetization process
for various portions of the experimental curve, partia
and major hysteresis loops were studied (the latter is
shown in Fig. 1). From the data obtained, the depen-
dence of the magnetization reversal field Hg on the
amplitude of the magnetizing field H was determined
(Fig. 2). One can see that the field Hg is zero for mag-
netizing-field amplitudes up to 3.0 kOe; i.e., the mag-
netization reversal proceeds without hysteresis. Hence,
theinitial linear portion of the magnetization curve cor-
responds to reversible processes of magnetization vec-
tor rotation.

As is known, the field value separating the regions
of reversible and irreversible rotation (threshold field
H,) for amagnetically uniaxial particle depends on the
orientation of the easy magnetization axis and on the

min

value of the anisotropy field [5]. Theminimum (H," =

H./2) and maximum (Hg™ = H,) threshold fields are

characteristic of particles with an easy-axis orientation
8 =45° and 6 = 0°, 90° with respect to the field, respec-
tively. In the case of chaotically oriented particles with
a unique value of H,, particles with easy-axis orienta-
tions different from 6 = 45° are gradually involved in
irreversible rotation as the magnetizing field increases
fromH=H_/2uptoH =H,.

In considering the threshold fields for the system
under study, one should also take into account the dis-
tribution of the anisotropy fields of particles and the
effect of thermal fluctuations. According to the classifi-
cation from [6], the particles of the system at hand are
small SW particles. The criterion is the ratio between
the actual volume V of particles and the critical volume
Vs for the transition from the magnetostable to super-
paramagnetic state. Particlesfor which Vg<'V < 1000 Vg
arereferred to as small. This condition ismet at 300 K
not only for the finest (V/Vs ~ 3.5) and intermediate
(VIVs~ 130) but also for the largest (V/Vs~ 600) parti-
cles of the system under study. As the ratio V/Vg
decreases, the threshold field is reduced and its depen-
dence on the angle 6 is flattened in comparison to that
for large SW particles (V/Vg—» ) [7]. The latter fac-
tor makesit possible to consider the magnetic behavior
of the disordered system under study to be similar to the
behavior of particles oriented at an angle 6 = 45°. From
the above discussion, it becomes clear why the lower

boundary of the threshold field range is Hp'" ~ HI™

and the dependence of the magnetization reversal field
on the magnetizing-field amplitude is saturated at a

field of the order of 9 kOe rather than a H,~ =
17.8 kOe (Fig. 2).
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Fig. 1. Norma magnetization curve and major hysteresis
loop of a nanodispersed powder sample of barium hexafer-
rite at 300 K: (1) experiment and (I1) calculated magnetiza-
tion curve. Dashed curves are the magnetization curve and
hysteresis |oop taking into account the interparticle interac-
tion.

H, kOe

Fig. 2. Dependence of the magnetization reversal field on
the magnetizing field amplitude at 300 K.

The limiting value of the magnetization reversal
field Hg is the coercivity Hc, which is an important
parameter characterizing the magnetic state of particles
and powder quality in terms of amodel approximation.
According to [4], the coercivity for an array of chaoti-
cally oriented identical noninteracting single-domain
particlesisrelated to the effective anisotropy field as

Hc = 0.48H,, 1)
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where the effective anisotropy field is given by
Ha: HK_NIS' (2)

Here, Hy isthe magnetocrystalline anisotropy field and
NI is the shape anisotropy field.

Equation (2) isvalid for microcrystalline powders of
BaFe,,0,4 ferrite. As shown in [8], the anisotropy field
measured using various methods in these materialsis,
on the average, 13.8 ([d0= 0.11 um) and 13.65 kOe
([d= 0.42 um). In this case, the shape anisotropy field
(NIg ~ 4.8 kOe) is responsible for the decrease in the
anisotropy field in comparison with the case of a mac-
roscopic crystal.

For the nanocrystalline system studied in this work,
the average effective anisotropy field is close to that of

the above-mentioned microcrystalline systems ( EI—~|aD:

12.4 kOe). As in the case of microcrystals, the domi-
nant contribution to the magnetic anisotropy comes
from the magnetocrystalline anisotropy. However, the
shape anisotropy field of platelike particles of the sys-
tem under study, even with the maximum aspect ratio
d/h = 3, isan order of magnitude weaker than the mag-
netocrystalline anisotropy field (Hx = 17.8 kOe, Nig [
1.8 kOe); the surface anisotropy is responsible for the
decrease in the effective anisotropy field in this case.

The coercivity found in this work from the major
hysteresisloop is 5.3 kOe.

The underestimated values of Hg in comparison
with thevalue given by Eq. (1) are usually explained by
such causes as the presence of multidomain or super-
paramagnetic particles and magnetic interaction
between particles [9-11]. As indicated above, the size
of particlesin the system under study does not exceed
the critical size for the single-domain state (d = 1.3 um
[12]) and al of the particles arein the magnetically sta-
ble state at 300 K. Taking into account that in the sys-

e o o ST
md ++++ 10 ml OO
= ¢
'g . 05F-----------~ d
N ]
B -+ OO:
[=} ! 1
) i+ H
< 1 : 1
EloH, T -5 oF 5 H. 10
5 K H, kOe
(=1
N +
g + —0.5’
~ +
— ~1.0F

Fig. 3. Field dependences of the remanent magnetizations
m, and m.
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tem at hand the particle volume is close to its critical
value, the influence of therma fluctuations should be
considered above all.

According to [7], the true average anisotropy field
[H,lof the system of particles is related to the experi-

mentally observed field [H,[ as

[H,0= ZH,0 3)

wherethe coefficient Z is determined by thermal fluctu-
ations and can be found from the equation

0.7
(Z-1)2°° = E—-@H——B . 4
VO s[H o
Here, k is the Boltzmann constant, [Wis the average

volume of particles of the system, |5 is the magnetiza-
tion, and 1, is the vacuum permeability.

Our numerical calculations gave the value Z = 1.04,
which corresponds to the true anisotropy field [H, =
12.9 kOe and the coercivity H- = 5.5 kOe. The dis-
agreement between the value of H found with account
of thermal fluctuations and the value determined by for-
mula (1) with [H,Osubstituted for the true anisotropy
field (H = 6.2 kOe) necessitates estimation of therole
of the interparticle interaction.

4. INTERPARTICLE MAGNETIC
INTERACTION

Itisgeneraly believed that the magnetic interaction
between small particles of a close-packed system can
significantly affect its properties. Theinteraction can be
either positive or negative, promoting a sample magne-
tization or demagnetization, respectively. As indicated
in [13], both interaction types take place in the systems
of barium hexaferrite particles; however, as arule, one
of these types dominates.

In this study, in order to estimate the interparticle
magnetostatic interaction in a nanocrystalline close-
packed powder sample of barium hexaferrite, we
employed a technique based on measurement of the
field dependence of the remanent magnetizations
m(H) = o,(H)/0,(e0) and my(H) = 64(H)/a¢(e). Theiso-
thermal remanent magnetization o, is measured on a
thermally demagnetized sample by cycling the partial
and mgjor hysteresis loops with a gradual increase in
the measuring field amplitude; o,() is the value of o,
found by extrapolation of the g, = f(1/H) dependenceto
an infinite field. The remanent magnetization o, is pro-
duced by magnetizing the sample to saturation fol-
lowed by afield decrease down to zero, then reversing
the field sign (direction) and increasing the field to a
preset value, and then turning the field off. The quantity
04(0) isanalogousto o, (o) and is an extrapolated value
of aginaninfinitefield.

2002



STONER-WOHLFARTH-TYPE BEHAVIOR
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Fig. 4. Henkel plot.

According to [14], the m(H) and my(H) depen-
dences for a system of noninteracting magnetically
uniaxial single-domain particles arerelated as

my(H) = m(«)-2m(H) = 1-2m(H). ()

Any deviation from linearity in the my(H) = f(m.(H))
graph (Henkel plot [15]) indicates interaction between
the particles.

Figure 3 shows the experimental field dependences
of m and my, and Fig. 4 presents a Henkel plot con-
structed on their basis for the powder sample under
study. The concavity of the experimental my = f(m,)
curve with respect to a straight line indicates that the
negative interaction dominatesin the array of particles.

Since the Henkel plot compares the remanent mag-
netizations m. and my in the same field, we also ana
lyzed the magnetization and remagnetization processes
by using an additional, moreinformative technique [16]
in which the deviation from Eq. (5) is considered as a
function of the applied field:

Am(H) = my(H) -[1-2m(H)]. (6)

One can see from the dependence shown in Fig. 5
that the effect of the interaction manifests itself in the
field range 3-9 kOe, which, according to the data of
Fig. 2, corresponds to irreversible magnetization pro-
cesses. The maximum interaction (Am = —0.34) is
observed for fields of 6-6.5 kOe. The portions of the
normal magnetization curve and of the saturation hys-
teresis loop taking the interparticle interaction into
account are indicated in Fig. 1 by dashed lines. It turns
out that the negative interaction, as a destabilizing fac-
tor, manifestsitself only in the region of the magnetiza-
tion jJump, while the threshold fields and coercivity are
almost unaffected by the interaction in the system at
hand. For example, the correction to the value He =
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Fig. 5. Modified Henkel plot (Kelly plot [16]).

5.3 kOe can be as small as 100 Oe. As aresult, the true
coercivity found when taking into account thermal fluc-
tuationsand theinterparticleinteraction isequal to 90%
of the theoretical value.

5. CONCLUSION

Thus, we have shown that the magnetic behavior of
ananodispersed powder sample of high-anisotropy bar-
ium hexaferrite can berather well described by the clas-
sical model as applied to an array of small Stoner—
Wohlfarth particles. This allows one to conclude that
magnetization proceeds via coherent rotation in parti-
cleswith avolume close to the critical value.

The negative interparticle magnetic interaction
detected in the close-packed array of disordered nano-
crystals manifests itself in the field range correspond-
ing to irreversible magnetization and has no apprecia-
ble effect on either the shape of the magnetization curve
or the values of the coercivity and critical fields charac-
terizing the magnetization mechanism.
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Abstract—The stroboscopic method was applied to study the evolution of dynamic spiral domains in garnet
ferrite filmsin an ac magnetic field. The spiral-domain shape was shown to change significantly within afield
period; the basic shape transformations take place in the phase range —174 to + 174 with respect to the polarity
inversion time. During the spiral-domain formation or decay, the area and shape of a hysteresis|loop of thefilm
region containing the domain gradually change. The upper boundary of the frequency range in which spiral
domainsform was established to be associated with transformations of the domain wall structure. © 2002 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Spiral domains represent an interesting case of the
ordered domain structure of a magnetic material,
attracting the attention of many researchers. Dynamic
spiral domains can be formed in uniaxial magnetic
filmsin certain frequency and amplitude ranges of an ac
magnetic field [1-4]. Spiral domains can also be
formed in apulsed field [4—7], in aquasi-static field [8,
9], under laser radiation [10], in two-layer films [11],
and in very thin films[12].

Available experimental data on dynamic spira
domainsin an ac magnetic field are not strictly related
to the field phase. Due to poor tempora resolution,
micrographs of domain structures often display an inte-
gral state of the structure over atime comparable to or
exceeding a field period. Therefore, we can no more
than speculate on the correspondence between domain
structure micrographs and the remagnetization phase,
which makes the interpretation of experimental data
more complicated. In particular, there is no unambigu-
ous answer to the question of whether the spiral-
domain formation in an ac magnetic field (of frequency
f ~ 10%-10° Hz) is controlled by the dynamic mecha-
nisms of domain wall mation or if it is a superposition
of quasi-static processes producing insignificant varia-
tions from one field period to another. The remagneti-
zation mechanisms determining the boundaries of the
frequency range in which dynamic spiral domains
occur are aso unclear.

Thiswork isaimed at adirect study of the formation
mechanisms of dynamic spiral domains. To thisend, we
studied the evolution of these domains over a period of
the ac magnetic field by detecting dynamic domain
structures using the stroboscopic method.

2. EXPERIMENTAL

Dynamic spiral domains were studied with a mag-
netooptical setup using the Faraday effect. The setup
allows one to record hysteresis loops in the field fre-
quency range f = 10“-2 x 10° Hz and to simultaneously
view images of dynamic domain structures correspond-
ing to various portions of a hysteresisloop by using the
stroboscopic method with a temporal resolution of
0.8 us [13]. A transversely pumped (by microwave
radiation) helium—neon laser with a modulated supply
voltage was used as a pulsed light source [14]. Adapt-
able variation of the laser switching mode made it pos-
sible to apply the stroboscopic method with a tuned
strobing multiplicity, Ky =1, 2, 3, ... . To detect nonre-
curring processes when recording dynamic domain
structures using a video camera, we selected the setup
operating condition by varying the strobing multiplicity
such that the dynamic domain structure wasrecorded in
one video frame over one laser pulse.

In addition to the conventional method of recording
dynamic hysteresis loops from an oscilloscope screen
when a sequence of loops for many remagnetization
cyclesis included in a single frame, the setup allows
one to strobe and video record a dynamic hysteresis
loop for asingle remagnetization cycle. To thisend, we
synchronized the laser pulse in phase and duration with
afield period by tuning the pulse duration.

The ac magnetic field was produced by Helmholtz
coils 2.5 mm in diameter applied perpendicular to the
film plane. A sample area 1.5 mm in diameter was
studied.

Single-crystal garnet ferrite filmswere used as sam-
ples. To compare our results with the available data on

1063-7834/02/4409-1703%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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(b)

Fig. 1. (@) Static (H = 0) and (b-) dynamic domain structures in agarnet ferrite film corresponding to various phases of an applied
ac magnetic field with frequency f = 2 kHz and amplitude Hy, = 38 Oe: (b) 0°, (c) 30°, (d) 60°, (€) 90°, (f) 100°, (g) 125°, (h) 135°,
(i) 200°, (j) 224°, (k) 292°, and (1) 328°.

spiral domains, we chose a (Tm,Bi);(Fe,Ga)s0,, film 3. EXPERIMENTAL RESULTS
with parameters comparable to those of the samples o ] ]
Stud|ed in [2_4’ 15_17]’ narnely, th|CkneSS h = 58 um’ In an equHIbl’Ium State, the f||m pOSSESSBd adoman

equilibrium width of stripe domainsw = 8.7 um, satu-  structure in the form of stripe or labyrinth domains
ration magnetization Mg = 10 G, uniaxial anisotropy (Fig. 1a). To achieve an equilibrium state, the structure
constant K, = 1.3 x 10* erg cm™3, and damping constant ~ was placed in an ac magnetic field with afrequency f =
o =0.09. 50 Hz and with an amplitude slowly decreasing to zero.

PHYSICS OF THE SOLID STATE Vol. 44 No.9 2002



EVOLUTION OF DYNAMIC SPIRAL DOMAINS OVER A PERIOD

Spiral domains were formed in the field frequency
range f = 0.5-5 kHz at the field amplitudes H,, = 43 +
5 Oe. Stripe domains can be twisted into microspirals
in a significantly wider range of the field frequency
(0.1-20 kHz); however, we did not take into account
spiral domains with anumber of turnslessthan two. In
this case, the longest lifetime (3-8 s) and the shortest
expectation time (5-8 s) of the spiral structure were
observed at the frequency f ~ 2 kHz. Therefore, thisfre-
guency was chosen for the study of the spiral-domain
evolution over a field period (Figs. 1b-1l). The time
separation between video frames is 80 field periods.
Since the spira-domain lifetime (elapsed from its
nucleation to decay) is about 10* field periods, the num-
ber of spiral turns changes insignificantly for several
tens of periods.

Spiral domains could also be formed in higher-fre-
guency fields [4, 17], up to f ~ 100 kHz. However, this
requires adc bias field H,, applied perpendicular to the
film plane; thisfield must increase and, simultaneously,
the ac field amplitude H,, must decrease with increas-
ing frequency. The field amplitude H,, and the field H,,
varied steadily (as in [4]) as the frequency was
increased; no frequency ranges in which nucleation of
spiral domains was impossible [17] were observed. In
the whole frequency range, the maximum magnetic
field Hy, + H,, applied to the film corresponded to the
hysteresis transition region between a uniformly mag-
netized state and a labyrinth domain structure [4].

The spiral domains shown in Figs. 1b-1l are most
typical of the indicated magnetic-field phases. The
domains were formed in the same region of the sample
at different instants of time. The spiral twist direction
can vary sincethedc biasfield H, is zero [ 3].

At the instant of field polarity inversion, a spira
domain is strongly distorted (Fig. 1b). As the field
increases, the amplitude of quasiperiodic distortions of
the spiral turns and their “appendixes’ (branches)
decrease (Fig. 1c). Spira-turn smoothing is virtually
completed at a phase of 60° (Figs. 1b-1d). After the
peak field is passed, small-scale untwisting of the spiral
center takes place (Fig. 1f) and isfollowed by distortion
of spira turns (Figs. 1g, 1h). As the field polarity is
inverted (in the next field half-cycle), the pattern
repeats (Figs. 1i—11). Thus, a significant change in the
spiral domain shape takes place within the magnetic-
field period, with the number of spiral turns remaining
virtually unchanged.

The shape of domains of the same polarity changes
differently asthe field varies within a half-cycle: bend-
ing distortions increase as the field decreases (Figs. 19,
1h, 1), and appendixes are formed asthefield increases
(Figs. 1c, 1i).

The hysteresis loop shape is closely related to the
spiral-domain formation [4, 15]. The maor and minor
hysteresisloops of afilm under aquasi-statically varied
magnetic field are similar to those typical of garnet fer-
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Fig. 2. Mgor (Hy; = 120 Oe) (curve a) and minor (Hy =
38 Oe) (curve b) hysteresis loops of a garnet ferrite film in
the case of a quasi-statically varying magnetic field.

Fig. 3. Minor hysteresis loops in an ac magnetic field with
amplitude Hy, = 38 Oe and frequency f = 2 kHz for the same

film area occupied by |abyrinth domains (curve a) or a spi-
ral domain (curve b).

rite films with a low coercive field (Fig. 2; the loop
recording time is about 200 s). During the formation or
decay of a spiral domain in the ac field, we recorded a
hysteresis loop simultaneously with domain detection
by focusing alaser beam onto the sample area occupied
by a spiral. The hysteresisloop area gradually changed
for a few seconds when the spiral formed and curled.
Certainly, the loop area changed in steps from one field
period to another. However, as strobing of dynamic
hysteresis loops for individual remagnetization cycles
showed, the step size is insignificant. At the field fre-
guency f ~ 2 kHz, the steps are inappreciable when hys-
teresis loops are observed on the oscilloscope screen
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and manifest themselves as an increase in the oscillo-
scope beam diameter in separate portions of aloop.

Asin [15], hysteresis loops had the least areain the
case of the spiral domain structure (Fig. 3, curve b). An
increasein theloop areaand in the maximum film mag-
netization (Fig. 3, curve a) corresponds to spiral decay
and transition to the labyrinth domain structure. No
loop jumps as observed in [15] werefound. The hyster-
esis loop of the spiral domain is characterized by a
downward deviation of the ascending loop branch from
the hysteresis loop branch of the stripe domain struc-
ture (Fig. 3). The deviation is smaller than the theoreti-
cally calculated value [18].

4. DISCUSSION

Compression and expansion of a stripe domain
forming a spiral within a period of the magnetic field
are accompanied by a change in the structure of its
domain walls and, hence, by redistribution of the effec-
tive mass along the walls. Thisis indicated by the for-
mation of appendixes in the spiral domain regions,
which are clearly distinguishable over part of the mag-
netic-field period (Figs. 1c, 1i). Earlier, theformation of
lateral appendixes was observed in studying spiral-
domain formation, but only under a pulsed field during
the pulse [6, 7] or after the pulse was turned off (in a
frozen structure) [4, 5].

The formation of spiral-domain appendixes and
branches is due to the finite saturation velocity of
domain walls[19], which was, according to high-speed
photography data with an exposure time of 5 ns [20],
V,~ 10 m s for our sample. Notwithstanding the low
average velocity of domain walls over afield period at
the frequency f ~ 2 kHz, separate regions of the spiral
domain, due to jumplike motion, reach acritical veloc-
ity V (during jumps) at which the domain wall struc-
ture changes and wall regions with different effective
masses (and, hence, different velocities) arise. We
observed such phenomena both at the spiral-domain
center during the spiral formation or its decay and at
the periphery during the transformation of branches.
The jumps are caused by local pinning of domain
walls (at film defects) and their breaking away under
changes in the instantaneous values of the ac field, as
well as by the hysteresis of the transformation of
stripe magnetic domainsinto bubble domains and vice
versa[21].

The probability that the critical velocity V, will be
reached during jumplike motion of adomainwall isrel-
atively high. According to our calculations carried out
using various models of domain wall motion [19], the
critical velocity for the sample at hand is reached in a
driving field H,, = 1.2-2 Oe, which is comparableto the
coercivefield for thefilm (H. ~ 0.6 Oefor aquasi-static
hysteresis loop and H, > 1 Oe for a dynamic loop, at
f > 0.1 kHz).
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It isnoteworthy that the upper boundary f, of thefre-
guency range in which spiral domains form in an ac
magnetic field is due to the dynamic properties of
domain walls and depends on the maximum rate of the
magnetic-field variation. As the field frequency
increases, the hysteresis loop area increases; further-
more, the transformation of the structure of dynamic
domain walls and the formation of regions with differ-
ent effective masses in domain walls result not only in
branching but also (even more frequently) in breaking
of stripe domains (as in the case of formation of bubble
magnetic domains in a pulsed field [19]). These pro-
cesses prevent the formation of a spiral domain, which
is, in fact, along curled stripe domain. To find a gener-
alized parameter defining the boundaries of the fre-
guency range in which spiral domainsform isan objec-
tive of further investigations. Difficulties encountered
in reaching this goal can be associated with significant
variations in the shape and parameters of spira
domains, as well as in the amplitude of domain wall
vibrations, that are produced by changes in the mag-
netic-field frequency.
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Abstract—A method is proposed for analyzing magnetic phase transitions within the Ising model under the
conditions of competing direct and indirect exchange interactions. It is demonstrated that the competition of
exchangeinteractionsleads to areentrant phase transition between the ferromagnet and spin glass near the per-
colation threshold below the Curie temperature. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Although spin-glass systems have been intensively
studied over many years [1], their properties in the
vicinity of the percolation threshold have yet to be
explained reasoning from the essentially different (and,
sometimes, mutually exclusive) assumptions put for-
ward [2-4]. In particular, Efimovaand Ustimenkova[5]
and Delyagin et al. [6] proposed anumber of alternative
explanations of the formation of magnetic structures
with the properties of the so-called reentrant spin
glasses, in which the second magnetic phase transition
to the spin-glass state is observed at a temperature
below the Curie point. In the present paper, the possi-
bility of the magnetic phase transitions occurring in
amorphous alloys with competing exchange interac-
tionsis considered in the framework of the lsing model.

2. THE DISTRIBUTION FUNCTION
OF INTERACTION FIELDS

Earlier [7, 8], we demonstrated that the distribution
function for random interaction fieldsW(H) in an amor-
phous ferromagnet is determined by the following rela
tionship:

W(H) = J’A(p)exp{—ipH} dp,
where

A(p) = exp{-n*&,
a= J’[l—exp{ipq)(m,r)}]r(m)dde,

n* = s is the number of ferromagnetic atoms per unit

volume, ¢(m, r) describes the law of their interaction,
and t(m) is the particle distribution function with

respect to the magnetic moments, which, in the Ising
model, has the followi ng form:

(m) =

Here, 1 isthe magnetic moment per atom, 9 istheangle
responsible for the orientation of m with respect to the
Zaxis, a + =1, and (a — B) is the relative magnetic
moment of the system. Within the approximation in
which the expression for a contains only the terms qua-
dratic in p, we obtain the relationship

W(H) = L exp 2 (H=Ho(a=B)I'

0,
JmB O B 0

where
Ho = —n*_[q;(r)dv, B® = 2n*J'¢2(r)dV.

The advantage of this relationship over those used
earlier in the spin glass theory is that the basic charac-
teristics of the distribution function H, and B are related
through the interaction law ¢(r).

After averaging of the relative magnetic moment
(a —B) in terms of the Gibbs distribution and over con-

figurations, the self-consistent equation for @& — B
takesthe form

—BO=M = J’tanhHJ—DW(H M)dH
OkTg

or

Cn
pD—%DdH 2

(H + HoM)O
(O TR
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Fig. 1. Dependences M(B) calculated with the use of (a) the Gaussian function and (b) the step function substituted for the Gaussian

function.

If we replace the Gaussian function by the approxi-
mate function
, H*>B°
f(H,B) =01 2

%, H" <B",

Eq. (2) for small M can be represented in the form

H, BJ
M = M—tanh—. 3
B KT

The insignificant loss of accuracy due to the above
replacement is overweighed by the simplicity of the
subsequent estimates. This error can be estimated by
solving Eg. (2) numerically for two different distribu-
tion functions. Figure 1 reprmtsthe results of the cal-

culation for different values of a = — (the variable 3
is defined by the expression 3 = HOE ).

It follows from Eq. (3) that the solution with non-
zero M (ferromagnetism) becomes possible only under
the condition

0
—>
'B' >1. (4)

In this case, the Curie point can be determined from the
relationship

(To), B(Tc)D
BO(TC) %l ch |:|

= ©)

Ho
For B

only in the transition to the spin-glass state.

< 1, a decrease in the temperature can result
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3. COMPETING INTERACTIONS

In the case when the two exchange mechanisms
described by different laws, namely, ¢,(r) and ¢(r),
take place simultaneously, the parameters of the distri-
bution function can be expressed as

Ho = —n*I(¢1(r) +¢,(r))dv,
Y (6)
B* = 2n* [(0u(r) +0,(r))%av,

or

Ho = Hp1tHpo B = (Bi"'Bg'*'Blz)ﬂz

Here, Hy,, B; and Hy ,, B, are the corresponding
parameters for each type of interaction and

By, = 4n*I¢1¢2dV (7)

istheinterference integral.

It is evident that the different temperature depen-
dences of the parameters H,y and B can lead to a suffi-
ciently complex (nonmonotonic) behavior of the function

Ho(T) B(T)D
S tan hE“ . ®

F(T) =

The points of intersection of this function with the line
F = 1 determine the temperatures of the magnetic phase
transitions.

We consider the following competing interactions: (i)
the direct exchange, which is described by the function

~ +f,, O0<R<2R,
0= " rozm, ©
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Fig. 2. Curves F(T) for different concentrations of magnetic
atomsn*, 102 m=: (1) 4, (2) 3, (3) 2, (4) 1.5, and (5) 1. The
temperature range below the point T; point of the second

intersection of theline F(T) = 1 corresponds to the reentrant
spin glass.

where R, is comparable to the atomic size in order of
magnitude; (ii) the Ruderman—Kittel-Kasuya—Yosida
(RKKY) exchange interaction

o, = oK 4SN(2kR) — 2k-Rcos(2k:-R) (10)
T (2kR)" ’

and (iii) theindirect exchangein semiconductors (see[9])

o sexp{—(k:R
b, = -aer 2L

_|2m*kT
= 5

where m* is the effective electron mass.

In the above relationships, the parameters f,, b, and
d characterize the intensity of the interaction and are
chosen in such amanner that, in the vicinity of the con-
centration ny, which providesthe percolation transition
for the direct exchange, any one of these interactions
leads to a Curie temperature of the order of 100 K.

The percolation threshold is determined from the
condition

(11)

Here,

Ho.1
— = 1.
B;

Taking into account that the minimum distance
between atomsis of the order of R,, we obtain

2Ry
4
HO = n* I fodV = 7f0n*§T[Rg,
Ro

B® = 14fin* gnRg,
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Ho 7 *4 3 _
5 2n 3nRo = 1,
_ 4 3 2
Cp = n*éT[RO = 7,

where Cy is the relative volume concentration of ferro-
magnetic atoms.

For Ry = 10 m, we have nj ~ 3 x 10%® mr®. The
function F(T) for the cases of competing interactions
(b4, ¢,) and (¢4, d5) was calculated in the vicinity of
ny ~10%® m2a f, = 10 and b = d = 5 x 10% The
effective mass m* was assumed to be equal to the elec-
tron mass. Theresults of calculations at different n* for
the case of competing interactions (¢,, ¢,) are pre-
sented in Fig. 2. Asis seen from thisfigure, there exists
a concentration range in which the ferromagnet—spin
glasstransition can occur at atemperature T = T; below
the Curie point. Inthetemperaturerange T > T, the dif-
ference between the paramagnet and the spin glass is
determined by the maximum exchange field B; more

specificaly, the condition t—? < 1 corresponds to the
uB

paramagnet, whereas the condition T = 1 determines

the region of existence of the spin glass. A similar result
was obtained for the competing interactions (¢4, ¢3); in
this case, T, somewhat increases.

4. CONCLUSION

Thus, the competition of direct and indirect exchange
interactions in the vicinity of the percolation threshold
for amorphous semiconducting alloys can lead to areen-
trant phase transition between the ferromagnet and spin
glass at temperatures below the Curie point.

REFERENCES

1. 1. Ya Korenblit and E. F. Shender, Usp. Fiz. Nauk 157,
267 (1989) [Sov. Phys. Usp. 32, 139 (1989)].

2. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801

(1986).

M. Gabay and G. Toulouse, Phys. Rev. Lett. 47, 201

(1981).

P. A. Beck, Phys. Rev. B 32, 7255 (1985).

N. N. Efimovaand M. B. Ustimenkova, Zh. Eksp. Teor.

Fiz. 114, 2065 (1998) [JETP 87, 1122 (1998)].

N. N. Delyagin, G. M. Gurevich, A. L. Erzinkyan, et al.,

Zh. Eksp. Teor. Fiz. 109, 1451 (1996) [JETP 82, 783

(1996)].

7. V. 1. Belokon’ and S. V. Semkin, Zh. Eksp. Teor. Fiz.
102, 1254 (1992) [Sov. Phys. JETP 75, 680 (1992)].

8. V. |. Belokon' and K. V. Nefedev, Zh. Eksp. Teor. Fiz.
120, 156 (2001) [JETP 93, 136 (2001)].

9. S. Methfessel and D. C. Mattis, in Handbuch der Physik,
Vol. 18, Part 1, Ed. by H. P. J. Wijn (Springer-Verlag,
Berlin, 1968), p. 389.

g W

o

Trandated by O. Moskalev

2002



Physics of the Solid Sate, Vol. 44, No. 9, 2002, pp. 1711-1714. Trandated from Fizika Tverdogo Tela, Vol. 44, No. 9, 2002, pp. 1635-1638.

Original Russian Text Copyright © 2002 by Kamzin, Fulin Wei, Zheng Yang, Xiaoxi Liu.

MAGNETISM

AND FERROELECTRICITY

Crystallization of Ba—Me Hexagonal Ferrite Thin Films

A. S Kamzin*, Fulin Wei**, Zheng Yang**, and Xiaoxi Liu**
* | offe Physicotechnical Institute, Russian Academy of Sciences,
Poalitekhnicheskaya ul. 26, . Petersburg, 194021 Russia

** Research Ingtitute of Magnetism and Magnetic Materials, Lanzhou University, Lanzhou,
230000 Republic of China

e-mail: KAMZIN@spb.cityline.ru
Received November 2, 2001

Abstract—Thin films of Ba—Me ferrites are synthesized by reactive rf diode sputtering of a BaO - nFe,0;
ceramic target. Quartz plates subjected to preliminary annealing are used as substrates. Theinfluence of the bar-
ium ion content on the crystalline and magnetic properties and the microstructure of the prepared filmsisinves-
tigated, and the interrelation between the quantity dH/dT and the microstructure of thefilm is considered. The
prepared films satisfy the requirements for materials used as information carriers with a superhigh recording

density.© 2002 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Thin magnetic films are promising materials for use
asinformation carrierswith high and superhigh record-
ing densities. This necessities comprehensiveinvestiga:
tions of their properties and the development of new
technologies for manufacturing thin magnetic films
with specified parameters. The main objective of these
investigations is to increase the data recording density.
Oneway toincreasetherecording density isto decrease
the distance between the recorder and the information
carrier. For this purpose, information carriers need to
possess high mechanical strength and chemical durabil-
ity. Films of Ba-Me hexagona ferrites exhibit high
resistance to mechanical actions; however, the coercive
forces of these films are insufficiently strong to provide
data recording with high and superhigh densities.
Moreover, it isimportant to decrease the manufacturing
cost of Ba~Me ferrite films.

The possibility of using thin films of Ba-Me hexag-
onal ferrites of the chemical formula BaFe,,O,4 in data
recording with high and superhigh densities has long
since been demonstrated (see, for example, [1-3] and
references therein). However, stringent reguirements
on the properties of hexagonal ferrite films used as stor-
age media necessitate their growth on single-crystal
substrates prepared from garnets or other ferrites. In
turn, this appreciably increases the net cost of the films
a the expense of the single-crystal substrates aone.
Matsuoka et al. [4] showed that Ba—Me ferrite films
whose properties satisfy the rigid requirements on data
recording with a superhigh density can be synthesized
on amorphous quartz plates. These findings gave impe-
tus to a search for new inexpensive substrates and the
devel opment of techniquesfor synthesizing Ba—Mefer-
rite films on these substrates. Chen et al. [5] proved that
the properties of Ba—Me ferrite thin films substantialy

depend on their chemical composition. Nonetheless,
even despite the large number of works dealing with
Ba-Meferritefilms, the processes of crystallization and
formation of complex oxide compounds (such as fer-
rites) in theform of thinfilmsare till not clearly under-
stood.

In the present work, we investigated the influence of
the barium ion content on the crystalline and magnetic
properties and the microstructure of Ba-Me ferrite thin
films synthesized on amorphous substrates. Moreover,
we analyzed how the quantity dH/dT (where H. isthe
coercive force) affects the microstructure of the film.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Thin films of Ba—Me ferrites were synthesized by
reactive rf diode sputtering of a Ba—Me ceramic ferrite
target in a gaseous mixture of Ar and O, in the ratio
3.5:0.5 (mTorr). Quartz plates subjected to prelimi-
nary annealing were used as substrates for film deposi-
tion. Targetswere prepared in the form of BaO - nFe,04
ceramic pellets annealed for 5 hin amixture of BaCO;
and Fe,O; taken in appropriate proportion. After depo-
sition, the films were annealed for 1 h at a temperature
of 800°C with the aim of forming crystal and magnetic
structures of the required quality, which was estab-
lished experimentally. The thickness of the prepared
films was approximately equal to 100 nm.

The film composition was determined using induc-
tively coupled plasma mass spectrometry (ICP-MS).
The crystal structure of the prepared films was investi-
gated by x-ray diffraction. The magnetic structure of
the films was analyzed using Auger-electron and con-
version-electron Mossbauer spectroscopy. The mag-
netic properties and their temperature dependences

1063-7834/02/4409-1711$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. X-ray diffraction spectraof BaO - nFe,O3 films. The
concentrations n = 4.5, 5.0, 5.25, 6.0, and 6.5 are deter-
mined using inductively coupled plasmamass spectrometry
(ICP-MS). The parenthetic numbers correspond to the
reflections assigned to the Ba-Me hexagona ferrite. Arrows 1
and 2 indicate the reflections attributed to Fe,O3 and
BaOFe,Oy, respectively.
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Fig. 2. (a) Temperature dependences of the saturation mag-
netization Mg and temperature dependences of the coercive
force measured in a magnetic field applied (b) parallel and
(c) perpendicular to the growth plane of the BaO - nFe,03
filmsat n=(1) 5.0, (2) 5.5, and (3) 6.0.
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were measured on a vibrating-sample magnetometer.
The surface morphology of the films was examined
using an electron microscope.

3. RESULTS AND DISCUSSION

Figure 1 showsthe x-ray diffraction spectra of BaO -
nFe,O; films. The concentrationsn=4.5, 5.0, 5.25, 6.0,
and 6.5 were determined by inductively coupled plasma
mass spectrometry. Analysis of the x-ray diffraction
spectra depicted in Fig. 1 revealed that broad peaks
with maxima in the 20 range of 22° are attributed to
reflections from the substrate. As is seen from this fig-
ure, the (008) reflection dominates in the spectrum of
the BaO - 4.5Fe,O; film. This indicates that, for BaO -
nFe, O, films at n = 4.5, the crystallographic axis C is
perpendicular to the growth plane of the film. More-
over, the x-ray diffraction spectrum of the BaO -
4.5Fe, O film exhibits reflections of moderate intensity
which correspond to the BaFe,O, ferrite. This can be
explained by the fact that the content of barium ionsin
this compound is relatively high and exceeds their con-
tent in the stoichiometric compound BaO - 6.0Fe, 0.
An increase in the concentration n leads to an increase
in the intensity of the reflection assigned to the (110)
plane, which suggests a deviation of the crystallo-
graphic axis C from the normal to the growth plane of
the film. It can be seen that the (110) reflection domi-
nates in the spectrum of the BaO - nFe,O; film at n =
5.25; i.e., for the BaO - 5.25Fe,O; composition, the C
axisispredominantly oriented along thefilm plane. The
x-ray diffraction spectrum of the BaO - 6.5Fe,O; filmis
characterized by the reflection attributed to hematite.
This can be associated with the deviation of the BaO -
6.5Fe,O; composition from stoichiometry, as was also
noted in [5].

Figure 2 depicts the temperature dependences of the
saturation magnetization and the coercive force mea-
sured in a magnetic field applied parallel and perpen-
dicular to the growth plane of the BaO - nFe,O; films at
different concentrations n. The temperature depen-
dences of the saturation magnetization Mg measured
with the use of the vibrating-sample magnetometer
upon heating from room temperature to 700 K are dis-
played in Fig. 2a. It can be seen that, for all the ferrite
films under investigation, the saturation magnetization
M, almost linearly decreases with an increase in the
temperature. For filmswith concentrationsn =5.0, 5.5,
and 6.0, the value of dM¢/dT remains unchanged.

The concentration dependences of the saturation
magnetization M and the coercive force measured in a
magnetic field applied parallel and perpendicular to the
growth plane of the BaO - nFe,O; films are plotted in
Fig. 3. Asthe concentration n increases, the saturation
magnetization M, increases (Fig. 3, curve 1) and
reaches amaximum value of ~370 emu/cm?® at n = 5.25.
A further increase in the concentration n results in a
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decrease in the magnetization M. It can be assumed
that low values of M. a n < 4.5 and n > 6.0 are associ-
ated with the presence of the paramagnetic phase in
these compositions. Thisinferenceisin agreement with
the results obtained from analyzing the x-ray diffrac-
tion spectra.

L et us now consider the concentration dependences
of the coercive force measured in a magnetic field
applied paralel and perpendicular to the growth plane
of the BaO - nFe,O; films (Fig. 3, curves 2, 3). As can
be seen, an increase in the concentration n leads to a
decrease in the coercive force measured both parallel
and perpendicular to the growth plane. At room temper-
ature, the value of dH./dT decreases with an increasein
the concentration n. It is worth noting that the smaller
the value of dH//dT, the higher the bit density—an
important parameter of information carriers (in our
case, the BaO - nFe,O; films). By analogy with [6], we
analyzed our results within an approach described in
[7] and revealed that, for the Ba—Me ferrite films under
investigation, the above parameter depends solely on
the crystal grain shape. According to electron micro-
scopic data, the BaO - nFe, O, ferrite films with a high
content of barium ions (at small concentrations n) are
characterized by small-sized grainsand, at n < 5.0, pre-
dominantly contain crystal grains of platelet shape. At
n = 6, the mean size of crystal grainsin the ferrite films
substantially increases and exceeds 200 nm. Crystal
grains of needle shape with a length-to-diameter ratio
of ~6 dominate in the Ba—Me films at n = 6. It seems
likely that, at n = 6, the grain size exceeds the size of
single domains and the existence of domain wallsinthe
crystal grains leads to a decrease in the coercive force
of these films. For concentrations n = 6, the coercivity
inthefilm planeis higher than that in the perpendicular
direction. The opposite situation occursat n<5.75; i.e.,
the coercive force measured in amagnetic field applied
paralel to the growth plane of the film is weaker than
that applied in a direction perpendicular to this plane.
Therefore, we can draw the conclusion that the concen-
tration n is a controlling factor responsible for the ori-
entation of the C axis in the synthesized films of BaO -
nFe, O, ferrites.

It is well known that the phase composition of the
materials under investigation and the orientation of the
magnetic moments in the samples can be determined
directly from Mdssbauer measurements. For this rea-
son, the prepared films were examined by Mdssbauer
spectroscopy with recording of conversion electrons
and Auger electrons in a backscattering geometry [8].
The latter circumstance stems from the fact that tradi-
tiona Mossbauer spectroscopy with recording of
gamma radiation in a transmission geometry cannot be
used for thin films, because, in this case, the signal-to-
noise ratio is very small. Figure 4 displays the Mdss-
bauer spectra of BaO - 4.5Fe,O; ferrite films prepared
at room temperature and subjected to annealing for 1 h
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Fig. 4. Mosshauer spectra of BaO - 4.5Fe,O5 ferrite films
after annealing for 1 h at temperatures of (a) 700, (b) 800,
and (c) 900°C.

a different temperatures. The wave vector of gamma
radiation is perpendicular to the growth plane of the
films.
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Asis seen from Fig. 4a, the Mdssbauer spectrum of
the BaO - 4.5Fe,O; ferrite film subjected to annealing
at atemperature of 700°C represents adoublet. Similar
spectra are observed for ferrite films either not sub-
jected to annealing or annealed at temperatures below
700°C for 1 h. The isomer shifts (0.25 mm/s) with
respect to Fe and quadrupol e splittings (0.75 mm/s) cal-
culated from these spectra (Fig. 4a) coincide with those
obtained for Ba—Me ferrite films immediately after
their synthesis through radio-frequency sputtering [9]
and correspond to the parameters of Ba-Me nonmag-
netic bulk amorphous ferrites [10].

After annealing of the BaO - 4.5Fe,O; ferrite film at
a temperature of 800°C, the Mossbauer spectrum
exhibits Zeeman splitting (Fig. 4b). A similar spectrum
isobserved for the BaO - 4.5Fe,O; ferrite film subjected
to annealing at 900°C (Fig. 4c). A computer-assisted
least-squares analysis of the experimental Méssbauer
spectra demonstrated that the films under investigation
belong to the Ba—Me hexagonal ferrite[11]. M &ssbauer
lines attributed to other phases, including the BaFe,O,
ferrite, were not found to within an error of 5%. The

effective magnetic fields at Fe nuclei in 4f,, 4f,, and

12k sublattices were determined from the spectra and
amountedto 342 + 5, 348 £ 5, and 327 = 5 kOe, respec-
tively.

It can be seen from Figs. 4b and 4c that the intensi-
ties of the second and fifth components of the Zeeman
sextets are relatively low. This indicates that the mag-
netic moments in the studied material dlightly deviate
from the wave vector of gammaradiation, which is per-
pendicular to thefilm plane. The angle 6 determinesthe
orientation of the magnetic momentsin the crystal with
respect to the wave vector of gamma radiation and can
be calculated from the M ssbauer spectra according to
the following formula (see, for example, [12]):

Arg—3A, 2
6 = arccosl:ﬂ_.l'f__%_a]
LAA, ¢+ 3A, ]

_ . D (3/2)A25/A16 |:|1/2
- AN @) A A

(D)

where A ¢ stands for the intensities of the first and sixth
lines and A, 5 are the intensities of the second and fifth
lines. The angle 6 calculated from formula (1) is equal
to 30° + 7°.

An examination of the BaO - 4.5Fe,O; ferrite films
under the el ectron microscope revealed that these films
consist of platelike grains. Earlier [8], it was shown
that, in Ba-Me hexagonal ferrites, the magnetic
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moments are aligned along the crystallographic axis C.
As follows from anayzing the results of electron
microscopy and M éssbauer spectroscopy, in the major-
ity of platelike grains forming the BaO - 4.5Fe,O; film
under investigation, the C axis is oriented normally to
the growth plane of the film.

4. CONCLUSION

Thus, our investigation has demonstrated that thin
films of Ba-Me hexagonal ferrites whose properties
satisfy the requirements for information carriers with a
superhigh recording density can be synthesized through
reactive rf diode sputtering onto an amorphous
annealed quartz substrate followed by annealing.
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Abstract—The spin-wave resonance spectrum of a ferromagnetic film magnetized normally to its surface is
investigated as a function of the finite depth of penetration of the high-frequency field into the film with due
regard for damping in the spin system and different types of surface-spin pinning. The exact numerical solution
of the equation of motion for magnetization is obtained by considering the finite thickness of the skin layer. For
a substantially inhomogeneous distribution of the high-frequency field over the layer thickness, the change in
the resonance shape at frequencies close to the ferromagnetic resonance frequency is observed in addition to
the broadening of all the resonance peaks and the decrease in their amplitudes. © 2002 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

It is known that a necessary condition for excitation
of spin-wave resonance in auniformly magnetized film
by a homogeneous high-frequency field is the surface
anisotropy of the film. The surface anisotropy differs
from the bulk anisotropy and determines the character
and degree of spin pinning on the film surface. In many
works [1-5], the influence of the boundary conditions
on the spin-wave resonance spectrum has been ana-
lyzed taking into account the specific features of the
spin-wave resonance for different types of surface-spin
pinning and damping in the spin system. However, the
fact that the high-frequency field penetrates into a con-
ducting sample to a finite depth, thus breaking the
homogeneity of the magnetization distribution, has
been disregarded by the majority of authors. A consis-
tent analysis of the skin effect, which is important for
high-conductivity films, necessitates simultaneous
solution of the electromagnetic equation and the equa-
tion of motion for magnetization. In general, this leads
to a bicubic dispersion equation and a cumbersome
solution of the boundary-value problem even for a
semi-infinite medium and special cases of total surface-
spin pinning or its absence [6]. In this respect, approx-
imate analytical methods of anayzing the spin-wave
resonance spectra of conducting films have assumed
particular importance.

If the mean free path of conduction electronsis con-
siderably less than the depth & of penetration of the
electromagnetic field into a metal, the normal skin
effect takes place and the skin depth is determined by

the expression 6 = ¢/ ./2Ttow, where c is the velocity
of light in free space, wisthefield frequency, and o is

the conductivity of the metal. The magnetic permeabil-
ity p of the sample is a function of the frequency and
accounts for the magnetic characteristics, geometry,
and orientation of the sample with respect to the exter-
nal magnetic field. For magnetic films with the thick-
ness L ~ 10 cm and the conductivity o = 10'" s, the
skin depth can be of the same order of magnitude even
at room temperature due to high values of the high-fre-
guency permeability (L > 1). In the case when the film
thickness satisfies the condition L = 9, the distributions
of both the microwave field and magnetization cannot
be considered to be homogeneous over the film thick-
ness. This circumstance can lead to a modification of
the spin-wave modes and adecrease in their amplitudes
compared to thoseinthecase 6 > 1.

2. GENERAL EQUATIONS
AND RELATIONSHIPS

Let us consider a film magnetized normally to its
surface by an external field H, along the easy magnetic
axis. Since the film possesses axial symmetry, it iscon-
venient to describe the deviation of the magnetic
moment M from the equilibrium moment M, in terms
of the circular projections m* = m, + im,. If the micro-
wavefieldisalso circularly polarized (h* = h,+ ih)) and
harmonically depends on time, the equation of motion
for the component m* =m, which isresponsiblefor free
oscillations of the spin system, takes the form

2
dm+ 2

- _h(@
i vm——a. (D)

1063-7834/02/4409-1715%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Here, the wave number of the spin wave is determined
by the relationship

2 _ (1-ig)w—w,
v ayMo 2
where wy, = Y(Hg + BMy—41M,) isthe frequency of uni-
form (ferromagnetic) resonance; a and [ are the
exchange interaction constant and magnetic anisotropy
constant, respectively; y is the gyromagnetic ratio; and
¢ isthe damping parameter. Let us represent the depen-
dence of the microwave field on the coordinate in the
form

h(z) = heexp[(z—L)/3]. 3)

Here, it is accepted that the origin of coordinates is
located at the center of alayer with thickness 2L. Tak-
ing into account that the high-frequency permeability
M, which entersinto the definition of the depth & of pen-
etration of the microwavefield into the metal, isacom-
plex quantity, we obtain

1.1, .
5= g(g—lp), (4)

where &, = ¢/ /2TTOWw is the penetration depth without
regard for the magnetic properties of the metal,

p = W™ sing,
W= (P ¢ = Jarctan(u/y),

g = [u/*coso,

Next, we take into account that the high-frequency
permeability can be expressed as 4 = 1 + 41tx, where x
is the complex high-frequency susceptibility. Hence,
thereal and imaginary parts of the magnetic permeabil-
ity involved in expression (4) can be represented by the
relationships i’ = 1 + 41t} and " = 41t'. Therefore, in
order to calcul ate the depth of penetration of the micro-
wavefield into thelayer, it isnecessary to determinethe
high-frequency susceptibility x. In turn, this calls for
solving the equation of motion for magnetization (1).
Making allowancefor theinhomogeneous distribution of
the microwave field, which isdefined by relationship (3),
the exact solution to Eqg. (1) can be obtained only by
numerical methods.

We will seek the exact solution to Eq. (1) with the
following boundary conditions for magnetization:

dm
EidimlzziL = 0, (5)

where d; stands for the parameters of spin pinning on
the layer surface. The total spin pinning is observed at
d, — o0 and is absent on the corresponding surface of
thelayer at d, = 0.

NOSQOV, SEMENTSOV

3. HIGH-FREQUENCY SUSCEPTIBILITY
OF THE LAYER

Simultaneous solution of Egs. (1) and (5) in terms of
Eqg. (3) gives the expression for the high-frequency
magnetization: m(2) = x(2)h,. Averaging the high-fre-
guency magnetization m(z) over thelayer thickness and
taking into account that (M= xh,, we obtain the fol-
lowing general relationship for the high-frequency sus-
ceptibility of the layer, which does not depend on the
coordinate but does depend on the parameters of the
magnetic subsystem, layer thickness, frequency, and
conductivity:

0 a—pe 2Ll
X =GO—
8 d,d, + v(d, + d,) cot2vl —v,]
(6)
—1+e_2u6%
O

wherea = (v +d;tanvL)(1 + d,0), b= (v + dytanvL) x
(1 —d;d), and G = d%2aL(1 + v?3?). It should be
remembered that the quantity & in expression (6) is a
complex function of the frequency and is determined
by relationship (4), which involves both the real and
imaginary parts of the high-frequency susceptibility x.
In order to obtain an approximate analytical representa-
tion of the spin-wave resonance spectrum with the use
of relationships (4) and (6), the complex parameter o
can be determined using an approximate expression for
the susceptibility Xpomog: This €xpression corresponds
to the homogeneous distribution of the microwave field
over the layer thickness and can be derived from rela-
tionship (6) at & — o in the following form:

o= 1
e oy
0  v(d; +d,) +2d,d,tanvL [] "
x 1 142

1 -].
ovL[d,d, +v(d, + d,)cot2vL —v?] O

In our recent work [7], we applied expression (7) to
analyze thoroughly the spin-wave resonance spectrum
for alayer characterized by a homogeneous distribution
of the high-frequency field and finite degrees of sur-
face-spin pinning. Aswill be shown below, the approx-
imate solution thus obtained agrees well with the exact
numerical solution of the problem under consideration.

Let us now consider the most important special
cases of resonant susceptibility of the spin system at a
finite skin depth 6, which follow from relationship (6).
For symmetric boundary conditions (d, = d, = d), the
susceptibility of the spin system can be represented as

X = G(1— e—zué)[(v +dtanvL)(1 + ddcoth Llé)} -
vd*(d” + 2vdcot2vL —v?) 1’
PHYSICS OF THE SOLID STATE Vol. 4 No.9 2002
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The situation with the total pinning of surface spins
(d —= o) isof particular interest. The susceptibility of
the spin system takes the form

[tanvL

X = G(1-e”"%)5 cothL/3-1H,  (9)

and the position of resonance peaks corresponding to
spin-wave modes (in the absence of damping) is deter-
mined by the wave numbersv, = (1 + 2p)/2L, asisthe
case with the homogeneous distribution of the high-fre-
guency field over the layer thickness.

In the case of asymmetric pinning (d; =-d, = d), the
high-frequency susceptibility has the form

X =G(1-e?")
[(6d 1)(v + dtanvL cothL/3) 1}
vd° (v +d° )

(10)

For the total asymmetric pinning, the expression for x
coincides with relationship (9).

For completely free surface spins (d; = d, = 0), the
resonant susceptibility of the layer takes the form

_ 62 o 2L/
20v°L

-1), (11)

from which it follows that the spectrum contains only
the “uniform” mode (v — 0).

Among the asymmetric cases of surface-spin pin-
ning, the most interesting situation corresponds to the
total pinning of spins on one of the layer surfaces and
to the absence of spin pinning on the other surface
(d; — o0, d, = 0). In this case, the expression for the
high-frequency susceptibility takes the form

dve?® + tanvl
52v2cot2vL

X = G(1- e—zua)

-H @

The position of spin-wave modes is specified by the
wave numbersv, = (1 + 2p)/AL; in this case, the num-
ber of maxima in the spin-wave resonance spectrum is
doubled in comparison with the case of symmetric pin-
ning.

In order to determine the position, amplitude, and
width of the line corresponding to the resonant modein
the spin-wave resonance spectrum with damping in the
spin system, it is necessary to derive theimaginary part
of the susceptibility x" for each of the above cases,
because x" determines the absorbed power per unit vol-
ume (P = wh?"/2). Since the wave number v and
parameter o are the complex quantities determined by
relationships (2) and (4), the appropriate expressions
for x" appear rather cumbersome. In the simplest case
of the absence of surface-spin pinning (d;, = d, = 0),
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which is described by relationship (11), the susceptibil-
ity X" satisfies the expression

YMo2Lp(w— ap) + (3, —2Lg)¢w
§wy (- )’ +&Ew’
At the resonance frequency w = wy, we obtain theimag-

inary part of the susceptibility for the amplitude of the
uniform mode:

X(en) = Eo -5

Hence, it follows that, asthe depth of penetration of the
microwave field into the sample increases, the ampli-
tude for the ferromagnetic resonance peak increases

and, at d, — o, reaches the susceptibility X, =
YMy/€w,. Note that the broadening and shift of the res-
onance curve due to changes in the penetration depth

are virtually absent because the parameter of magnetic
damping isfixed and is unrelated to the conductivity a.

X"(w) = (13)

(14)

4. NUMERICAL ANALYSIS

The above analysis can be illustrated using the fre-
guency dependences of the susceptibility x", which
were obtained by numerical calculation and plotted on
a semilogarithmic scale. In our case, the frequency
dependence is taken to mean a dependence of the sus-
ceptibility x" on the normalized detuning Aww,, where
Aw = w— wy,. For the calculation, we chose the foll ow-
ing parameters of the permalloy film: M, =10 G, a =

102 cm?, € =102 L =2x10°%cm, and wy = 3 x
10 s™1, The required changes in the depth of penetra-
tion of the high-frequency field into the sample were
obtained by varying the conductivity. For all the depen-
dences given below (Figs. 1-3), the conductivity was
taken to be 0 = (1, 50, and 1000) x 10% s (curves 1-
3). The solid lines represent the results of exact numer-
ical calculations, and the dashed lines correspond to the
results of approximate calculations. The exact numeri-
cal calculationimplies aprocedure in which the param-
eter & at agiven frequency is calculated from the values
of x' and x" obtained at the preceding step of calcula-
tion. The step of frequency detuning is chosen such that
it provides as small changes in the aforementioned
guantities as possible. Curves 1, which correspond to
o = 10% s, coincide to within high accuracy for both
the exact and approximate calculations. This is associ-
ated with the distribution of the microwave field over
the layer thickness actually being homogeneous. The
time of the exact numerical calculation substantialy
exceeds the time of the approximate calculation.

Figure 1 shows the resonance curves X"(w) at d; =
d, = 0. Asin the case of the homogeneous field distri-
bution h(t), the absence of spin pinning leadsto the dis-
appearance of the spin-wave spectrum and to excitation
of a single mode characterized by the exponentia
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D60y,

Fig. 1. Spin-wave resonance spectra in the absence of spin
pinning on the layer surfaces (d; = d, = 0) at different con-
ductivities o, 10%° s (1) 1, (2) 50, and (3) 1000. Solid
lines represent the results of exact calculations, and dashed
lines are the results of approximate calculations.

decay of the amplitude of in-phase oscillations of mag-
netization over the layer thickness. An increase in the
conductivity o brings about a decrease in the penetra-
tion depth of thefield h(t) and, consequently, adecrease
in the amplitude of the resonance curve. At frequencies
close to the frequency of uniform ferromagnetic reso-
nance, the resonance shape somewhat changes, because
itisat thisfrequency that the quantity Re(d?), whichis
proportional to 1", becomes zero.

The dependences x"(w) for the total symmetric pin-
ning (d; = d, —= o) and limiting asymmetric pinning
(d; =0, d, — ) of surface spinsare shown in Figs. 2
and 3, respectively. The number of spin-wave modes at
the symmetric boundary conditions is equal to half the
number of modesin the case of the asymmetric bound-
ary conditions. However, the amplitude of these modes
intheformer caseissubstantially higher than that in the
|atter case. This is associated with the fact that, in the
case of asymmetric boundary conditions, spins are
pinned only at one surface of the layer.

In addition to the changes in the amplitude, there
occur a shift of the resonance curves and their broaden-
ing, which are determined by the relationships

ayM 20y M
Doy = 20(p2—g?), AFy = X 0pg. (15)
5 5

These quantities are small at the chosen parameters on
the given scale. However, detailed analysis of the spin-
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Fig. 2. Spin-wave resonance spectra for total symmetric
pinning of surface spins (d, = d, —> ). Designations of
curves 1-3 arethe same asin Fig. 1.

wave resonance spectrum at frequencies close to
revealed that an increase in the conductivity o leads to
ashift of the uniform mode toward the range of positive
Aws, i.e., toward the range of bulk modes.

X"t

Fig. 3. Spin-wave resonance spectra for total asymmetric
pinning of surface spins (d; = 0, d) — «). Designations
of curves 1-3 arethe same asin Fig. 1.

2002



SPIN-WAVE RESONANCE IN MAGNETIC FILMS

5. CONCLUSION

The above anaysis has demonstrated that the con-
ductivity of metallic magnetic layers most strongly
affects the character of the spin wave spectrum in the
frequency range in which the skin effect leads to an
inhomogeneous field distribution over the layer thick-
ness. In this case, the distinctive feature of the spin-
wave resonance spectrum is aslight change in the reso-
nance shape in the frequency range of the uniform fer-
romagnetic resonance in addition to the broadening,
shift, and decrease in the amplitude for al the spin-
wave modes. The observed change in the resonance
shape stems from the fact that the parameter é isacom-
plex quantity. This parameter determines the depth of
penetration of the high-frequency field into the mag-
netic material and depends on its magnetic susceptibil-
ity. At frequencies close to the uniform resonance fre-
guency, thereal part of the susceptibility becomes zero,
which results in a sharp increase in the penetration
depth and deviation of the resonance curve from the
Lorentzian shape.
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Abstract—Annealing in vacuum is found to affect magnetic order in polycrystalline Cu, _,Zn,Cr,Se, samples
(x = 0.88, 0.90). Samples subjected to heat treatment exhibit a temperature dependence of dynamic magnetic
susceptibility characteristic of a non-single-phase magnetic state. The annealing-induced magnetic order is
assigned to the zinc off-stoichiometry formed in the process. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The Cu,_,ZnCr,Se, solid solutions have been
attracting interest due to the rich variety of magnetic
states these solutions feature upon different substitu-
tions x [1-3]. This diversity is due to the strong differ-
ence in magnetic properties between the extreme com-
pounds in the series, namely, CuCr,Se, (ferromagnetic
semimetal with T ~ 420 K) and ZnCr,Se, (helicoidal
antiferromagnet with Ty ~ 20 K). The competition
between the exchange interactionsin the solid solutions
givesrise to nontrivial magnetic properties. Of particu-
lar interest is the alternation of magnetic phases in the
concentration interval from 1.0 to 0.8, where gradua
substitution of copper for zinc offers a possibility of
observing the following magnetic states successively:
simple spin spiral, ferromagnetic spiral, spin glass, fer-
romagnetic spiral, and collinear ferromagnetism [4].

In our earlier comprehensive investigation [5] of
the concentration-driven  phase  transition in
Cu, _,Zn,Cr,Se,, we measured the magnetic properties
of this solid solution in the 0.8-0.9 concentration inter-
val with a small step of 0.02. Polycrystals were pre-
pared by the authors of [6] using solid-phase technol-
ogy, which is described in considerable detail in [6].
The substituent concentration x. = 0.88 was established
to becritical. Indeed, all compoundswith x < x. arefer-
romagnets with a Curie temperature of 370420 K, a
sample with x = 0.88 possesses a weak room-tempera-
ture magnetic moment, and an x = 0.9 sample under-
goes only an antiferromagnetic transition at the same
temperature as the extreme compound ZnCr,Se,.

The magnetic transition from a helicoidal structure
in ZnCr,Se, to aferromagnetic structurein CuCr,Se, in
this series of compounds is accompanied by a change
over from semiconducting to semimetallic conduction.
Thus, to fully understand the nature of the concentra-
tion-driven phase transitions in Cu, _,Zn,Cr,Se,, one

has to make a comprehensive investigation of both the
magnetic and electrical properties. Thisraisesthe prob-
lem of thermal stability of these solid solutions, aselec-
trical measurements on polycrystals are made on
pressed and sintered powder samples. This problem
was discussed earlier in [6], where studies of the ther-
mal stability of Cu,_,Zn,Cr,Se, compositions in air
were carried out at temperatures ranging from 500 to
920 K. It was found that up to temperatures of about
650 K, selenium is detached and a selenium-deficient
spinel forms[6]. Above 650 K, oxide compounds were
observed to form. This study was aimed at establishing
whether the heat treatment used in sintering a powder
sample results in a noticeable change in its physica
properties, primarily in its magnetic properties, and,
hence, at estimating the possible effect of the off-
stoichiometry caused by the heat treatment.

2. EXPERIMENTAL TECHNIQUE

The samples, pressed into rectangular parallelepi-
peds measuring 2 x 2 x 4 mm, were placed in quartz
ampules evacuated to 10 mm Hg. One sample lot was
annealed at T, = 850 K (anned 1); the other, at T, =
1150 K (anneal 2). The samples were annealed for two
hours, and the operating temperature was reached in
three hours of uniform heating. After this, the samples
were allowed to cool in the furnace.

The temperature-dependent real part of magnetic
susceptibility X' of the samples subjected to heat treat-
ment was measured using the dynamic ac bridge tech-
nigue. The sample temperature was varied by blowing
it with a stream of heated air in a cylindrical flow-
through cryostat with measuring coils mounted on its
outer wall. The bridge unbalance was measured with a
UNIPAN 232B phase-sensitive nanovoltmeter.

The electrical resistance R(T) was measured using
the dc four-probe method. The contacts, made of
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indium paste, were arranged along astraight line on the
larger face of the sample. The current was supplied over
thin copper wires 0.06 mm in diameter. The measure-
ments in the cooling runs were aso carried out in a
flow-through cryostat, and the samples were heated in
an unsealed quartz ampoule in a muffle furnace.

3. RESULTS

The magnetic measurements carried out after the
annealing revealed that al the samples of the lot under
study exhibit spontaneous magnetism with a clearly
pronounced ferromagnetic component. This is also
valid for compositions with a high zinc concentration,
x=0.88 and 0.90, of which theformer had an extremely
low magnetization before the annealing and the latter
was fully paramagnetic at room temperature. Magnetic
ordering occurred during both anneals 1 and 2. The
samples of these two compositions demonstrated simi-
lar temperature dependences of the dynamic magnetic
susceptibility X'. The measurements made on the sam-
ple with x = 0.88 are displayed in Fig. 1, which shows,
for comparison, x'(T) curves for compositionally simi-
lar samples Cug14ZNg56Cr,Se, and Cug 162N 54CroSe,
measured before the heat treatment. We readily see
from Fig. 1 that the magnetic susceptibility of the
annealed sample (curve 1), as well as x'(T) of the
Cug 142Ny 56CroSe,  stoichiometric  composition, van-
ishes at a temperature close to T of the original com-
pound CuCr,Se,. Note that curve 1 follows a pattern
characteristic of a non-single-phase magnetic state of a
sample and lies between curves 2 and 3 for the samples
with x = 0.86 and 0.84, respectively.

The measurements of the temperature dependence
of electrical resistance showed that the samples can be
divided into two groups. With increasing temperature,
the electrical resistance decreases in samples with x >
0.88 and increases in the other samples. Figures 2aand
2b display the R(T) relations measured for two similar
compositions, x = 0.88 and 0.86, respectively, featuring
different types of conduction.

4. DISCUSSION

As aready mentioned, it was shown in [6] that
annealing Cu, _,Zn,Cr,Se, solid solution samplesin air
up to temperatures of 750-900 K brings about only
detachment of selenium, without any visible indica-
tions of chemical activity of the Cu and Zn ions. Com-
positions with a high zinc content were observed to
have the highest thermal stability. For instance, the oxi-
dation of Cu,,Zn,sCr,Se, started at 920 K. Thus, one
might expect that a short annealing in vacuum at a
lower temperature (anneal 1) would not produce a
noticeable off-stoichiometry in copper or zinc. How-
ever, susceptibility measurements showed that the
annealed samples (after either of anneds 1 or 2)
approached, in magnetic properties, the compositions
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Fig. 1. Temperature dependences of the magnetic suscepti-
bility for (1) annealed Cug 152N ggCroSe, and (2, 3) the
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ples, respectively.
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Fig. 2. Temperature dependences of the electrical resistance
of annealed samples (a) Cug12ZNgggCroSe, and (b)
Cug 142N 86Cr2S8y.

with alower zinc content, which suggests that the com-
position shifted toward the zinc-deficient spinel as a
result of annealing. Note that the expected selenium
deficiency cannot apparently initiate the onset of ferro-
magnetism, because the ferromagnetism of CuCr,Se, is
due to the high hole concentration in the valence band.
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The additional electrons appearing as a result of sele-
nium deficiency entail partial compensation and, hence,
weakening rather than enhancement of the magnetic
properties.

One more important result of this study consists in
supporting the assumption made in [5] that the concen-
tration-driven magnetic transition within the critical
concentration region in Cu,_,ZnCr,Se, occurs
through separation of the compound into two magnetic
phases, namely, a ferromagnetic phase with a high T
and an antiferromagnetic phase. This is argued for by
the observation that the Curie temperature for the heat-
treated samples, as well as for the untreated x = 0.86
sample, is close to T of the extreme compound in the
series, CuCr,Se,, athough the content of copper in
them is considerably lower than that of zinc. Also, the
heat-treated samples with x = 0.88 and 0.90 behave as
semiconductors. It is this combination of properties,
according to [7], that is characteristic of a magnet with
highly conducting ferromagnetic particles embedded in
aweakly conducting antiferromagnetic matrix.

Thus, our heat treatment of Cu,_,ZnCr,Se, sam-
ples apparently resulted in acompositional shift toward
aspinel which is deficient not only in selenium but also
in zinc. Thereason for thisprobably liesin the high vol-
atility of zinc subjected to annealing in vacuum.
Indeed, the boiling point of pure zinc drops from
1210 K at apressure of 10 mmHgto 565K at 10 mm
Hg, which is substantially below the anneal tempera-
ture used in the study. Because the study was carried
out in the critical concentration region, a slight change

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

IVANOVA et al.

in the composition apparently produced a substantial
change in the physical properties. One can thus con-
clude that even short anneals, such as those needed to
sinter Cu, _,Zn,Cr,Se, samples for resistance measure-
ments, should be performed under an intentionally pro-
duced excess zinc-vapor pressure.
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Abstract—The coerciveforce, the temperature dependence of the magnetization, and the structure of aDyFeTi
alloy based on the DyFe;; Ti compound with an excess content of a-Fe in the initial coarse-grained, nanocrys-
talline, and submicrocrystalline states are investigated experimentally. It is found that, in the submicrocrystal-
line sample, the coercive force is three times stronger and the temperature of the first spin-reorientation transi-
tionis 20 K higher than those in the coarse-grained sample. In the nanocrystalline sample, the coercive forceis
five times stronger than that in the coarse-grained sample, the first spin-reorientation transition is not revesled,
and the transition at the Curie temperatureis smeared. It is demonstrated that the changes observed in the mag-
netic properties are unrelated to the phase transformations but stem from the small size of crystal grains and
high imperfection of the structure. The thermal instability of the DyFe;; Ti compound is observed in submicro-
crystaline and nanocrystalline states. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Intermetallic compounds based on 3d transition
metals and rare-earth elements have been intensively
studied in recent years because their magnetic proper-
ties are of considerable interest both in basic research
and from the practical standpoint. In particular, Clark
[1] revealed that RFe, compounds exhibit a giant mag-
netostriction at room temperature. Permanent magnets
with record-high characteristics were obtained from
rare-earth compounds with 3d elements. It is aso
known that the magnetic properties of ferromagnets are
determined by their structure in many respects. Thisis
especially true for ferromagnetic samples in nanocrys-
taline and submicrocrystaline states. For example,
compared to coarse-grained samples, in nanostructured
samples, the coerciveforce of pure Dy and Th increases
thousandfold [2, 3]; the magnetization of Dy [2], Tb
[3], and Gd [4] decreases severafold; the points of
magnetic transformations are shifted [2, 3]; and the
magnetic ordering in these metals changes in character
[5]. In our recent work [6], we found that, in the triple
intermetallic compound GdTiGe, the transition to a
nanocrystaline state leads to a transformation of the
crystal lattice and, correspondingly, to substantia
changes in the magnetic properties. Until presently, tri-
ple rare-earth compounds with 3d elements and an
RFe,, Ti-type structure had not been adequately studied,
even though these materials are very promising for use

as permanent magnets[7]. For example, Tereshinaet al.
[8, 9] reveded that single-crystal DyFe,; Ti can undergo
two spin-reorientation transitions (at 120 and 248 K).
However, the properties of these compounds in nanoc-
rystalline and submicrocrystalline states are not under-
stood.

The present paper reports on the results of experi-
mental investigations into the magnetic properties and
the structure of a DyFeTi aloy in nanocrystalline and
submicrocrystalline states. For comparison, we studied
a coarse-grained sample of the same composition.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The experiments were performed with a DyFeTi
aloy (5.2at. %Dy, 88.2at. % Fe,and 7.1 at. % Ti) pre-
pared by induction melting. Prolonged homogenization
of thisalloy at ahigh temperature resulted in the forma-
tion of the triple compound DyFe; Ti with a ThMn;,-
type structure. An excess iron content in the alloy
brought about the precipitation of a-Fe. This dightly
increased the plasticity of the material and made severe
deformation of the ingots possible.

Samples with a nanocrystalline structure were pre-
pared from a homogenized ingot subjected to severe
plastic deformation through torsional strain with the
use of Bridgman anvils under a pressure of 8 GPa at

1063-7834/02/4409-1723%22.00 © 2002 MAIK “Nauka/ Interperiodica’



1724

Coerciveforces of DyFeTi alloy samplesin different crystal-
line states

M easure- He, kA/m
ment temk coarse-grained | submicrocrys- | nanocrystal-
perature, samples | talline samples | line samples
298 32 6.1 6.6
78 8.2 252 416

room temperature with a rotation through an angle of
101t The choice of severe plastic deformation as the
method of nanostructuring of the studied samples was
madefor thefollowing reasons: (i) thismethod does not
introduce contaminants into the initial material, and
(i) severe plastic deformation makes it possible to
obtain nonporous samplesthat do not need to be further
compacted for structural and magnetic measurements.
Samples with a submicrocrystalline structure were pro-
duced by grinding a coarse-grained sample in an agate
mortar in a protective medium. The submicrocrystal-
line powder with a particle size of lessthan 1 um was
separated through sedimentation. The size of powder
particles was determined on a JSM-840 scanning elec-
tron microscope.

The magnetization curves and temperature depen-
dences of the magnetization of the samples under inves-
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Fig. 1. Temperature dependences of the magnetization o(T)
measured in the magnetic field H = 250 kA/m for (a) coarse-
grained, (b) submicrocrystalline, and (c) nanocrystalline
samples.
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tigation were obtained on a vibrating-sample magne-
tometer in amagnetic field of 1.6 x 10° kA/m. Thetem-
perature was measured using a copper thermal resistor.
The temperature dependence of the magnetization at
high temperatures was measured using an automated
magnetic microbalance under vacuum with a residual
pressure of 1.3 x 102 Pa in a magnetic field of
250 kA/m in the temperature range 78-1070 K. In this
case, the temperature measurements were performed
with achromel—alumel thermocouple.

The microstructure of the nanocrystalline samples
was examined using a JEM 2000EX transmission elec-
tron microscope. The chemica composition of the sam-
ples was determined on a JSM-840 scanning electron
microscope with a Link attachment.

3. EXPERIMENTAL RESULTS

3.1. Coercive force. Earlier [8], it was shown that
RFe;, Ti compounds exhibit a strong uniaxial magne-
tocrystalline anisotropy. Therefore, these compoundsin
ananocrystalline state should possess a strong coercive
force. In this respect, we measured the coercive force
H. of DyFeTi aloy samples in different crystaline
states at temperatures of 298 and 78 K. The results of
measurements are presented in thetable. It is seen from
the table that, at 298 K, the coercive force H, of an
unstrained coarse-grained sample does not exceed
3.2 kA/m, whereas the coercive forces of submicro-
crystalline and nanocrystalline samples are equal to 6.1
and 6.6 kA/m, respectively. A decrease in the tempera-
ture leads to an increase in the coercive force H, of al
the studied samples; however, the maximum increasein
H. is observed in the nanocrystalline state (by afactor
of more than six).

3.2. Temperature dependence of the magnetiza-
tion. Figure 1 depicts the temperature dependences of
the magnetization o(T) measured in the magnetic field
H = 250 kA/m for samples in different crystaline
states. It can be seen from Fig. 1 that, in all the crystal-
line states, the temperature dependences of the magne-
tization exhibit complex behavior: as the temperature
increases, the magnetization increases, passes first
through a maximum at 250 K and then through an
inflection at 350 K, drastically decreases at 550 K, and
becomes zero at 1040 K. It should be noted that the
position of the maximum in the dependence o(T) mea-
sured upon heating is determined by the crystalline
state of the sample; specifically, the maxima in the
dependences o(T) for coarse-grained and nanocrystal-
line samples are observed at 250 and 275 K, respec-
tively. For a submicrocrystalline sample, the depen-
dence o(T) exhibits a broad maximum at 310 K. The
inflection inthevicinity of 350 K iswell defined for the
coarse-grained sample (Fig. 1a), less pronounced for
the nanocrystalline sample (Fig. 1¢), and is absent for
the submicrocrystalline sample (Fig. 1b). Although the
decrease in the magnetization in al the crystaline
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states occurs at approximately the same temperature
(550 K), which corresponds to the Curie point of the
DyFe,; Ti phase, the lope of the curve o(T) dependson
the crystalline state of the sample; in particular, the
curve o(T) for the coarse-grained sample has a very
steep slope, whereas the slope of the curve o(T) for the
nanocrystalline sample is slightly flattened. For all the
sampl es, the magnetization reducesto zero at the same
temperature (1040 K), which corresponds to the a-Fe
phase (Fig. 1).

In order to elucidate the thermal stability of the stud-
ied compound in different crystalline states, the tem-
perature dependences o(T) were measured upon cool-
ing of the samples after high-temperature heating. The
curves o(T) obtained upon heating and cooling of the
samples completely coincide only for the coarse
grained sample (Fig. 1a). For submicrocrystalline and
nanocrystaline samples, the curves o(T) measured
upon cooling lie slightly above the heating curves and
the aforementioned specific features in the cooling
curves are more pronounced. As the temperature
decreases, the dependence o(T) for the nanocrystalline
sample (Fig. 1c) becomes similar to the dependence
o(T) for the coarse-grained sample (Fig. 1a).

It can be seen that the first spin-reorientation transi-
tion (at 120 K) does not manifest itself in the curves
o(T) depicted in Fig. 1. This can be associated with the
fact that the magnetic field strength (250 kA/m) used in
the magnetization measurements with the magnetic
microbalanceis not very high. For thisreason, the tem-
perature dependences of the magnetization o(T) were
also measured in stronger magnetic fields (H = 1.6 x
10% kKA/m). These dependences are displayed in Fig. 2.
As is seen, the first spin-reorientation transition mani-
festsitself asadlight kink in the curves o(T). Thiskink
isobserved at 115 K for the coarse-grained sample and
at 135K for the submicrocrystalline sample. Asregards
the nanocrystalline sample, no kink is found in the
curve o(T) and the magnetization smoothly increasesin
the temperature range of the first spin-reorientation
trangition.

3.3. Structural investigations. Figure 3 displays
the electron microscope image of the microstructure
and the electron diffraction pattern of the nanocrystal-
line sample. The size of crystal grains was estimated
from the bright-field images and amounted to 20—
30 nm. An examination of the electron microscope
image revealed a high defect density within the crystal
grains. It can be seen that crystal grains have broad and
diffuse boundaries. The electron diffraction pattern
taken from a 0.5-um? section of the nanocrystalline
sample has the shape of a ring. This suggests large
grain-boundary angles.

Themean size of crystal grainsin the submicrocrys-
talline sample was determined using a scanning elec-
tron microscope and amounted to 1 pum.
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Fig. 2. Temperature dependences of the magnetization o(T)
measured in the magnetic field H = 1.6 x 10° kA/m for (a)
coarse-grained, (b) submicrocrystalline, and (c) nanocrys-
talline samples.

Fig. 3. Electron microscope image of the nanocrystalline
structure of the studied compound.

4. DISCUSSION

The results of our investigations demonstrate that
the magnetic properties of the DyFeTi aloy in different
crystalline states differ significantly. The coerciveforce
H. of the submicrocrystalline sampleislessthan that of
the nanocrystalline sample. At a temperature of 78 K,
the coercive forces of these samples are three and five
times stronger than that in the coarse-grained sample,
respectively. Such an increase in the coercive force can
be associated with the small size of crystal grains. This
assumption is confirmed by the fact that, in the nanoc-
rystalline state, the smaller the grain size, the stronger
the coercive force H.. However, the measured val ues of
H. proved to be considerably less than the coercive
forces predicted from the single-domain theory for the
DyFe;; Ti compound with strong anisotropy. This can
be explained by the fact that microcrystals of the
DyFe;; Ti phase with a high coercivity are surrounded
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by the a-Fe soft magnetic phase which encourages
magnetization reversal of DyFe;,;Ti crystal grains in
weaker magnetic fields. The presence of the a-Fe soft
magnetic phase in the composition of the studied alloy
is indicated by the temperature dependences of the
magnetization (Fig. 1).

As was noted above, the temperature dependences
of the magnetization of the DyFe;; Ti compound in all
the crystalline states under investigation exhibit similar
behavior. However, some portions of these curves show
specific features associated with the small size of the
crystal grains involved. In particular, the smoother
decrease in the magnetization of the nanocrystalline
sample [the curve o(T) measured upon heating] in the
vicinity of the Curie temperature of the DyFe;; Ti phase
isindirect evidence that the crystal lattice of this phase
is substantially distorted and that the interatomic dis-
tances vary within a certain range. This brings about
local changes in the exchange interaction, which, in
turn, leads to smearing of the transition from the ferro-
magnetic order to the paramagnetic state of the
DyFe; Ti phase. Thisinferenceis supported by the fact
that, for the submicrocrystalline sample with interme-
diate-sized grains, the slope of the curve o(T) in the
vicinity of the Curie point of the DyFe;Ti phase
slightly exceeds the slope for the nanocrystalline sam-
ple and is less than that for the coarse-grained sample.

It seems likely that the lattice distortions and the
small size of crystal grains affect not only the exchange
interaction, which determines the Curie temperature,
but also the magnetocrystalline anisotropy constants.
The effect of thelattice distortions and the grain size on
the anisotropy constants can be judged from the tem-
peratures of the spin-reorientation transitions, because
they are determined primarily by theratio of thefirst to
the second magnetic anisotropy constants. Apparently,
this circumstance accountsfor both the shift of the kink
in the curve o(T) for the submicrocrystalline sample
toward the high-temperature range and its smearing for
the nanocrystalline sample (Fig. 2).

The shift and smearing of the maximum attributed
to the second spin-reorientation transition in the nanoc-
rystalline sample can aso be explained by the weaken-
ing of the magnetic anisotropy due to lattice imperfec-
tion in the bulk and at the boundaries of nanocrystals.

Thefact that the curves o(T) measured upon heating
and cooling of the coarse-grained sample completely
coincide with each other indicates the thermal stability
of the composition under investigation. For submicro-
crystalline and nanocrystalline states, the curves o(T)
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measured upon cooling of the samples after high-tem-
perature heating lie above the heating curves due to the
precipitation of a-Fe. This suggests that the DyFey; Ti
compound in submicrocrystalline and nanocrystalline
states possesses a low thermal stability. Moreover,
high-temperature heating leads to recrystallization of
the nanocrystalline sample, as judged from the recov-
ery of the curve o(T) below the Curie temperature of
the DyFe,, Ti phase.

5. CONCLUSION

Thus, it has been demonstrated that, upon the transi-
tion to the nanocrystalline state, the temperatures of
spin-reorientation transitions increase, the coercive
force enhances, and the thermal stability of the studied
aloy decreases.

ACKNOWLEDGMENTS

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 00-02-17723.

REFERENCES

1. A.E. Clark, in Handbook on the Physics and Chemistry
of Rare Earths, Ed. by K. A. Gshneidner, Jr. and J.
Eyring (North-Holland, Amsterdam, 1979), pp. 231-
258.

2. Kh.Ya Mulyukov, G. F. Korznikova, and S. A. Nikitin,
J. Appl. Phys. 79 (11), 8584 (1996).

3. Kh. Ya. Mulyukov, G. F. Korznikova, |. Z. Sharipov, and
S. A. Nikitin, Nanostruct. Mater. 8 (7), 953 (1997).

4. Kh.Ya Mulyukov, G. F. Korznikova, and S. A. Nikitin,
J. Magn. Magn. Mater. 153, 241 (1996).

5. Kh.Ya Mulyukov, I. Z. Sharipov, G. F. Korznikova, and
S. A. Nikitin, Fiz. Tverd. Tela (St. Petersburg) 38 (12),
3602 (1996) [Phys. Solid State 38, 1963 (1996)].

6. G. F. Korznikova, Kh. Ya. Mulyukov, S. A. Nikitin, and
Yu. A. Ovchenkova, Fiz. Tverd. Tela (St. Petersburg) 43
(4), 683 (2001) [Phys. Solid State 43, 710 (2001)].

7. S. P. Efimenko, Yu. K. Kovneristyi, and I. M. Milyaev,
Fiz. Khim. Obrab. Mater. 3, 82 (1998).

8. |. S. Tereshing, S. A. Nikitin, N. Yu. Pankratov, et al., in
Proceedings of the Moscow | nternational Symposiumon
Magnetism (MISM 99), Moscow, 1999, p. 364.

9. I. S. Tereshing, |. V. Telegina, and K. P. Skokov, Fiz.
Tverd. Tela (St. Petersburg) 40 (4), 699 (1998) [Phys.
Solid State 40, 643 (1998)].

Translated by O. Borovik-Romanova

2002



Physics of the Solid Sate, Vol. 44, No. 9, 2002, pp. 1727-1735. Translated from Fizika Tverdogo Tela, \ol. 44, No. 9, 2002, pp. 1650-1658.

Original Russian Text Copyright © 2002 by Men'shov, Tugushev.

MAGNETISM

AND FERROELECTRICITY

| nterface-lnduced Stateswith an |ncommensur ate Spin-Density
Wavein Fe/Cr-Type Multilayers

V.N. Men’shov and V. V. Tugushev
Russian Research Centre Kurchatov Institute, pl. Akademika Kurchatova 1, Moscow, 107207 Russia
e-mail: sasha@mail.mics.msu.su
Received July 6, 2001; in final form, December 27, 2001

Abstract—A model is proposed for magnetic ordering in Fe/Cr-type multilayers substantially above the Néel
temperature of bulk chromium. Redistribution of the charge (and, hence, spin) density near the Fe/Cr interfaces
gives rise to the formation of an essentially inhomogeneous spin-density-wave (SDW) state in the chromium
spacer. The spatial structure of the antiferromagnetic order parameter in thick spacersis described. The SDW
contribution to the effective exchange coupling between the moments in adjacent iron layersis calculated. The
data obtained are used in the interpretation of experimental data on the tunneling spectroscopy of trilayers and
neutron diffraction from Fe/Cr superlattices. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Multilayer structures (multilayers) containing tran-
sition metals have been recently attracting considerable
interest due to their unusual magnetic and kinetic prop-
erties. Thisinterest is focused primarily on Fe/Cr-type
structures with alternating ferro- and antiferromagnetic
layers of iron and chromium [1, 2]. The discovery that
the effective coupling between the moments of adjacent
Fe layers oscillates in sign depending on the thickness
L of the Cr spacer and thetemperature T should initself
be worthy of close attention [3, 4] because of the con-
siderabl e significance of thiseffect from both the stand-
point of fundamental science and applications. How-
ever, after a number of other features in the magnetic
properties of the Fe/Cr structures were revealed (phase
dlip of the effective exchange, the existence of short and
long periods of its oscillations, the formation of noncol-
linear structures, exchange shift of the hysteresis loop,
giant magnetoresistance, etc.), it became clear that one
here deals with a new class of objects, which requires
individual investigation with the inclusion of a theoret-
ical analysis.

Even a cursory glance at the magnetic phase dia-
gram derived from neutron diffraction and magnetoop-
tical measurements [5—7] supports the need for such a
study. For instance, the reason for the existence of two
critical temperatures, T,(L) and T,(L), that depend dif-
ferently on the chromium spacer thicknessL isunclear.
It isalso not understood why thereisastrong difference
in the properties between multilayers with thick (L >
L*) and thin (L < L*) spacers, where L* is a critical
thickness of about 30 chromium monolayers. Systems
with L > L* exhibit two antiferromagnetic phasesin the
chromium spacer; one of them [the so-called low-tem-
perature phase, occurring for T < T,(L)] can be tenta-
tively identified with the corresponding phase in bulk

chromium, while the other [high-temperature phase,
existing for T,(L) < T < T4(L)] has no bulk counterpart.
For L < L*, only the high-temperature phase persists; it
exists below the T,(L) line down to very low tempera-
tures. Recall that T,(L) is of the order of 550 K; it rises
sharply for L < L* while remaining nearly unchanged
for L > L*; at the same time, T,(L) drops to zero and
doesnot exist for L < L* whiletending to the bulk value
T,(L>L*) OTy=311K for L/L* — oo.

There are sound grounds to believe that the proper-
ties of the Fe/Cr(100)-type multilayers are directly con-
nected with the formation, in the chromium spacer, of a
peculiar antiferromagnetic order of the type of a spin
density wave (SDW) [8] whose structure depends
strongly on the perfection of the Fe/Cr interface and on
the temperature and thickness of the spacer itself. There
is still no adequate theoretical model that could consis-
tently explain the bulk of available experimental obser-
vations and support these conjectures. While there are
numerical calculations of the ground-state magnetiza-
tion distribution inside the chromium spacer (see, e.g.,
[9]), they are not applicable to the complex thermody-
namics of magnetic structures in the multilayers stud-
ied. The variational approach [10] to description of the
magnetic structure inside the chromium spacer, which
is based on a straightforward analogy to bulk systems,
is not capable of accounting even for the existence of
two transition temperatures and of the critical thickness
of the spacer, to say nothing of finer detailsin the mag-
netic phase diagram. Furthermore, this approach
ignores the complex character of spin density redistri-
bution near the Fe/Cr interfaces on the scale of the cor-
relation length of antiferromagnetism in chromium,
which depends on temperature and determines the
region where short-range order with SDW isformed at
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various temperatures, in particular, above the bulk Néel
point.

We suggest here a possible scenario for the forma-
tion of a strongly inhomogeneous high-temperature
SDW phase in the chromium spacer. The main mecha-
nism responsible for the onset of such an antiferromag-
netic order at atemperature T, substantially in excess of
Ty =311K consists, in our opinion, in the redistribution
of the charge (and, hence, spin) density in the chro-
mium layers adjoining the interface. This redistribution
resultsin achange in electronic polarizability, parame-
ters of the energy spectrum, and band occupation on the
scale of the Debye screening length |4 near the Fe/Cr
interface; accordingly, the condition of the paramag-
netic phaseinstability (the generalized Stoner criterion)
against SDW formation in the near-surface chromium
layers changes. An analysis made within this approach
providesastraightforward explanation for the existence
of the near-surface antiferromagnetic transition and
permits one to estimate its temperature T, and find the
characteristic spatial scale D ~ L*/2 of the forming
State.

Unfortunately, there are strong factors that do not
permit description of magnetic ordering with SDW
throughout the temperature interval from T, to T,
within a single analytical procedure. First, as the tem-
perature decreases from T, to T,, the order parameter
A(X) (the spin density amplitude expressed in energy
units; x is the coordinate reckoned from the spacer cen-
ter, x < L/2) can be far from small near the Fe/Cr inter-
face; asaresult, the condition A(X) < 1tT, which is used
in deriving the Ginzburg-Landau expansion for the
free-energy functional and is valid for T = Ty, is ho
longer applicablefor all x. Second, evenif for somerea
son A(x) remains sufficiently small in comparison with
il for al x [in the bulk of athick spacer, where A(x)
decays exponentially with distance away from the
interfaces, this condition is adways satisfied], it
becomes necessary, as the temperature decreases from
T, to T,, to take into account terms of higher order in
A(X) in the Ginzburg-Landau expansion. The fact is
that it isin this temperature interval that the coefficient
of the lowest order gradient term reverses sign from
positive to negative, which, asis well known [11, 12],
accounts for the formation of the incommensurate
SDW structure in bulk chromium. Thus, when describ-
ing antiferromagnetic spin-density configurations in
Fe/Cr multilayers with the temperature varying in the
interval T, > T > T, and when crossing over from the
boundaries of the spacer to its inner layers, one has to
take into account the radical change in the significance
of the various terms in the thermodynamic potential of
the system.

As we will show below, the profile of the order
parameter A(X) across the spacer thickness changes
strongly with decreasing temperature; indeed, whilefor
T < T,, the SDW amplitude decays exponentially away
from the Fe/Cr interfaces over a length &(t) which is
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larger than or of the order of D, the sharp falloff of A(X)
near theinterfacesisreplaced at lower temperatures, in
the case of athick spacer with L > L*, by a smoother
decay accompanied by oscillations on the scale of the
correlation length &(T) > D, where &(T) = Ey(T/Ty—1)?
and &, is the coherence length, which in chromium
equals, according to various estimates, seven to ten
monolayers; i.e., & < D ~ L*/2. Assuming the inter-
faces separating the chromium and iron layersto beide-
aly plane, the formation of only collinear SDW struc-
tures in the chromium spacer (which may change their
symmetry relative to x = 0 with variations in the thick-
ness L and temperature T) appears energetically prefer-
able. We believe that this feature can provide a clue to
the experimentally observed phase dlip [1, 4] in the
effective moment coupling at the adjacent iron layers.

Following the universally accepted terminology, we
shall cal T,(L) the Néel temperature T while bearing
in mind that the identification of these quantitiesisfor-
mally valid only in the limit L/§ —» oo under periodic
boundary conditions imposed on the order parameter,
i.e., Ty(c0) =Ty

2. FORMATION OF A CHARGE-INDUCED
PROXIMITY SDW STATE NEAR
AN Fe/Cr INTERFACE

Let us consider the structura unit of a Fe/Cr(100)-
type multilayer system representing a trilayer made up
of two iron films sandwiching a chromium spacer. In
the high-temperature domain T > Ty, the paramagnetic
phase of bulk chromium is stable against magnetic
ordering; however, the presence of the Fe/Cr interfaces
can disrupt this stability. The origin of the SDW state
above the Nédl point can be qualitatively understood
aready in terms of the smple model of a plane defect
placed in aone-dimensiona medium with afree-energy
density [12]:

F(X) = A%+ G,V 2A% 4 G A% + Byiar?
( ) 1 2V F 2 2 F (1)
+ A% + CV 2 [2(AAT) + 3A%AT.

Equation (1) is based on the well-known Landau—Gin-
zburg expansion for the free energy of an SDW system
in powers of the order parameter A(X), which is made
under the assumption that |A(X)| < TIT and |A'(X)| <<
1T/, This expansion is derived directly from the
microscopic SDW model, in which the origin of the
antiferromagnetic instability is connected with nesting
of the electron and hole parts of the metal Fermi surface
in the paramagnetic phase. Here, v isthe Fermi veloc-
ity of the quasiparticles and c,, c,, and c; are coeffi-
cients depending on the temperature and band-structure
parameters; ¢, and ¢, can reverse their sign under the
variation of temperature, and the coefficient c; is
alwayspositive[11, 12]. Inthis section, we consider the
region of fairly high temperaturesin which (c;, ¢,) > 0;
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in these conditions, the equilibrium value of the order
parameter corresponding to a minimum of functional
(1) is zero, which is certain to correspond to the para-
magnetic phase. In this case, the part of the free energy
that is connected with the defect potential and is not
contained in Eq. (1) plays a decisive role in SDW for-
mation. We shall approximate the Fe/Cr(100) interface
with an ideal smooth plane placed perpendicular to the
structure growth direction n, and assume the chromium
spacer thickness to be large enough (a more rigorous
criterion is introduced later on) to exclude the mutual
influence of the opposite interfaces. The potential sim-
ulating the interface interaction with the itinerant com-
ponent of spin density forming the SDW will be
assumed to fall steeply near the defect as compared
with the slowly varying order parameter A(X). The con-
tribution from the plane defect placed at the origin x =
0 to the thermodynamic potential of the system can be
written, with due inclusion of the above approxima-
tions, in the form

Q, = %AZ(O) _AA(0). )

The coefficients v and A can be obtained in the micro-
scopic modd [12] and are of different physical origin.
The term quadratic in A(O) in Eqg. (2) describes the
effect of Coulomb interaction and charge redistribution
near the Fe/Cr interface. Estimation of coefficient v
made within the model proposed in [12] yields v =

-UN/|3|for | 8|~ 1T, where U = 4mgell, O isthe sur-
face charge, | is the Debye length in the spacer metal,

N isthe averaged density of states in the electron and
hole parts of the Fermi surface possessing the nesting
property, and 0 is the difference (expressed in energy
units) between the occupations of these parts by quasi-
particles. In our case, d < 0 and |d| < 0.05 eV, 1T <

0.2eV,andUN ~1;i.e,v>20eVL Notethat the neg-
ative sign of the parameter v corresponds to electrons
flowing from Fe into Cr. The term linear in A(O) in
Eq. (2) derives from the exchange interaction between
the Fe and Cr spins in the monolayers adjacent to the
interface. Coefficient A takes into account the possible
formation of alocalized moment in the first Cr mono-
layer adjoining an Fe layer [2]. The antiferromagnetic
coupling between the nearest neighbor iron and chro-
mium moments can reduce the effective interface
moment, which affects the itinerant component of spin
density in more distant chromium layers, thus produc-
ing a specific magnetic screening. Estimation of coeffi-
cient A made in terms of the model of [12] yields A =
JS N, where J is the exchange integral and S, is the
effective moment of the interface. In our case, it
appears reasonable to use the estimate of J made for

bulk Cr,_,Fe, aloys, namely, |[JN| < 0.05, which
yieldsA < 0.1, because §, < S, where S, [012.2/atom
is the iron moment at T ~ 400-600 K. Thus, the Cou-
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lombic term [quadratic in A(0)] can noticeably exceed
the exchange term [linear in A(0)], at least for values of
A(0) (greater than 102 €V) that are not overly small, in
the high-temperature domain of iT = 0.2 eV where A <
TtT. In the approach proposed here, the term quadratic
in A(Q) isthe main contribution and drives the near-sur-
face transition to the SDW state at the temperature T, >
Ty. We shall call this state charge-induced. Notethat the
termlinear in A(0) in Eq. (2), while not driving the tran-
sition with T, induces a small-amplitude SDW compo-
nent at any temperature. This additional, exchange-
induced, proximity SDW component should be taken
into account only above or in the immediate vicinity of
the near-surface transition temperature T, where the
charge-induced SDW component is either very small or
absent altogether [a case redlistic enough under the
condition A(0) < 10 eV]. It may be expected that this
approach, taking into account primarily the term qua-
dratic in A(0) in Eqg. (2), will bring about more or less
reasonable qualitative results for the high-temperature
region far from the Néel point of interest here.

L et us describe the formation of the charge-induced
SDW near a plane defect by using a model expression
for the thermodynamic potential

[

Q = [T(dx+Qy, 3)

where we retain in Qg only the first term of Eq. (2),
which is proportional to ~vA2(0), with v < 0. Consider
the case of temperatures T > T* high enough to justify
neglect of terms proportional to ¢, in thef(x) expansion
of Eq. (1) (the temperature T* is estimated in the next
section). Treating Eq. (3) as a functional of A(x), Q =
Q[A], we can find its stationary function in the class of
linearly polarized SDW envelopesin the form

ve D
§ '

where n isthe unit polarization vector, &(T)vg,/c,/c; is

A(X) = n sinh_l%(ﬂgg, tanhg = @)

the correlation length, and D = 2c2v,2:/v is a character-
istic scale, which, by analogy with the terminology
accepted in the theory of surface superconductivity
[13], we shall call the interpolation length. Within the
model used, the length D is only weakly temperature-
dependent. Solution (4) is valid for D/ < 1; for D/E >
1, only the trivial solution A(X) = 0 exists.

Equation (4) suggests the following scenario of the
system behavior. For temperatures T > T, [which is
equivalent to the condition &(T) < D], only the para-
magnetic phase is stable. Below the temperature T,,
which satisfies the equality

&(T) = D, ()

the near-surface SDW described by Eq. (4) forms;
thereby, equality (5) can be considered aspecific Stoner
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criterion for antiferromagnetism in a semi-infinite sys-
tem described by Eq. (3). Asthe temperature decreases
below T < T, [or &(T) > D], a spin density distribution
A(X), which falls off sharply in amplitude for x > D
while varying only weakly on the spatial scale x < D,
forms near the plane defect. It goes without saying that
a more consistent description of the behavior of the
order parameter A(X) in the high-temperature domain
near the Fe/Cr interfaceswould require theintroduction
of a number of complications into the simplest model
(3). One would have first of all to cross over from a
semi-infinite medium with one defect to a spacer of
thickness L bounded on both sidesin the n, direction by
plane defects. Criterion (5) isvalid in this case only in
the limit &/L —» 0, while in a more genera case, the
transition temperature depends in a more complicated
way on the spacer thickness, T, = T,(L). These compli-
cations do not affect the qualitative pattern and were
considered in detail in [14]. In our case, it isimportant
to understand the origin of the proximity SDW and to
estimate the critical temperature T, of its onset and its
characteristic spatial scale D. Following these esti-
mates, we shall subsequently use approximations to
construct amodel of spin density distribution acrossthe
chromium spacer for temperatures which, while being
fairly low compared to T,, would nevertheless corre-
spond to the paramagnetic phase of bulk chromium
(T>Ty). The approach based on the relation between
T, =550 K and Ty = 311 K and on the existence of a
short-range order onthe scale D ~ (L*/2) = 10-15 chro-
mium monolayersisapplicableat least up to thick spac-
erswith L > L*,

3. SPATIAL SPIN-DENSITY DISTRIBUTION
FAR FROM THE Fe/Cr INTERFACES

In the temperature region Ty < T < T,, we consider
the chromium spacer of thickness L > L* in an
Fe/Cr(100) multistructure as consisting conventionally
of layers of a strong and a weak antiferromagnet. The
terms strong and weak relate to the regions adjoining
the interfaces and those far in the bulk of the spacer,
respectively. We shall assume that all the temperature-
induced changes in the order parameter A(X) occurring
in the interval of temperatures (of interest to us here)
sufficiently low in comparison with T,, take place only
in the domain of weak antiferromagnetism with an
effective thickness2l = L —L*.

The region of strong antiferromagnetism of thick-
ness L*, which adjoins the technological interfaces, is
only a small fraction of the total chromium spacer
thickness and separates the deep layers of chromium
from the Fe/Cr interfaces. We shall assume that within
the strong-antiferromagnet layers, the amplitude of the
charge-induced SDW is temperature-independent and
that its formation at temperatures considerably above
Ty isdescribed by nonlinear equationswith self-consis-
tent sources at the boundaries, solution of which (as
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already pointed out) is afairly complicated problem in
itself. Moreover, for T < T,, the SDW amplitude near
theinterfacesisA(xL) ~ v/D(T,) and can turn out to be
not at all small as compared to 1tT, which may make the
Ginzburg—Landau expansion throughout the |x| < L/2
spacer inapplicable. Nevertheless, within the weak-
antiferromagnetism region, we still have |A(X)| < 1T, so
that one can use Eg. (1) for the free-energy density.
Because the temperature region within which we use
this expression is now different, the relations between
the coefficients c,, ¢,, and ¢; also change. Naturaly, ¢,
and c; are positive as before; however, the parameter
C,(T) decreases strongly and can even reverse sign as
the temperature varies between T, and T, so that the
terms containing c; cannot, generally speaking, be
neglected. Thismakes finding the optimum SDW struc-
ture A(X) an extremely complex problem. There is,
however, a smplifying factor which permits one to
retain only the terms lowest (quadratic) in A(X) in the
f(x) expansion of Eq. (1), abeit with some restrictions.
The fact is that, in contrast to the situation considered
in the preceding section, there is no charge transfer and
no Coulomb interaction at the conventiona interface
separating the strong antiferromagnet from the weak
one (these ferromagnets differ in the SDW amplitudes
only). Therefore, the surface contribution to the ther-
modynamic potential of the weak antiferromagnet can
be written simply in an approximation linear in A(X):

Q= —%[B(l)A(l) +B(DAEN], (6)

where | is one half of the effective spacer thickness.
Within the specified temperature region, any spin den-
sity distribution across the spacer thickness can be rep-
resented as the sum of aslowly varying [on the scale of
the correlation length &(T)] and a rapidly varying part
[on ascale less than or of the order of the interpolation
length D < §(T)]. By averaging over the rapidly varying
part of the order parameter, which is concentrated
within a distance D ~ L*/2 from the interfaces, we
obtain for the small, slowly varying component an
effective Hamiltonian with a term linear in A(zl) and
given by Eq. (6), wherethe coefficient B(xl) can be esti-
mated (to within a factor) as B = |B(xl)|] =
Uy [IA(X)] dx, with U, being the effective SDW poten-
tial Tn chromium equal to 0.3-0.5 eV (for more details,
see[11]); the integration is performed over the interval
| < x < L/2. An order-of-magnitude estimate of the coeffi-
cient B ~ (1iT,/Ug) = 0.5-1.0 does not contain any small-
ness; therefore, the exchangeterm Q. in Eq. (6) isasource
of the order parameter in the bulk of the spacer for [x| <.

We write the thermodynamic potential of the SDW
system in the weak-antiferromagnetism region in the
form

|
Q[A] = %J'f(A, A AYdx+ Q[A], @
2
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where f and Q. are given by Egs. (1) and (6), respec-
tively. Presented in this form, Eq. (7) simulates the
effect of the exchange field of the Fe layers on SDW
formation in the Cr spacer, although the effective thick-
ness 2| and the effective exchange potential B(l) natu-
rally have totally different meanings here. In particular,
B # 0, even if we formally put the magnetic moment of
the Felayer equal to zero. Actually, the thermodynamic
potential was chosen in the form of Eq. (7) in order to
be able, after conditional variation of the bulk part [the
integral of the density f(x)] of the functional Q[A] for
given SDW amplitudes near the Fe/Cr interfaces
(where the Ginzburg-Landau expansion is either
invalid or its analysis would be too cumbersome), to
derive the optimum configuration of the order parame-
ter A(X) inthe bulk of the chromium spacer fromthelin-
ear equation. Considered from the formal standpoint,
this corresponds to excitation of the long-wavelength
A(X) component by an external (with respect to the
region of weak antiferromagnetism) exchange field
B(zl), which is generated near the Fe/Cr interfaces at a
high temperature T = T, by the mechanism outlined in
the preceding section.

To find the extremals of functional Q[A] of Eq. (7),
we make afew additional simplifying assumptions. We
shall consider only transverse-polarized SDW struc-
tures and assume the A(X) vector to be orthogonal to the
multilayer growth direction n,;

A(X) = nA,+nA,, (8)

where {n,, n,, n;} isthe basis of the orthogonal refer-
ence frame. We also restrict ourselves to A(X) depen-
dences with a symmetric modulus, |A(X)| = |A(=X)|. We
choosetheangle ¢ (0< ¢ < 1) between vectors B(l) and
B(-) to which the directions of the SDW vectors A(l)
and A(H) are rigidly related at the boundaries of the
weak antiferromagnetism region. Thisangleisassumed
to be afixed externa parameter for the present. Then,
axisfrom which the angle ¢ is reckoned is chosen con-
veniently so as to group the solutions for the extremals
of functional Q[A] according to boundaries of two
types, namely, type |

A[l) = Af) = |A(l)[cos(¢/2),

A(l) = A1) = [A()sin(¢/2)
and typell

A1) = -A-1) = |A()|cos(/2),

A(l) = &) = [AD)sin($/2).

We shall haveto analyze only type | solutions, because
solutions of type Il are equivalent to those of type |
under the substitution z-——y. Conditions (9) or (10)
correspond to a noncollinear SDW structure whose
polarization vector in the chromium spacer turns con-
tinuously (from one monolayer to another) from the
angle—¢/2 for x=- to ¢/2 for x =1.

9)

(10)
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Consider first the temperature interval Ty < T < T*,
wherein coefficient ¢, is either positive and compara-
tively small or negative and terms proportiona to ¢
have to be retained in expansion (1). By varying func-
tiona Q[A] of Eq. (7), we obtain the Euler—Lagrange
equation

caV A —2¢,vEA" +2¢,A = 0 (11)

subject to the boundary conditions
Ay(xl) =0, Ayl =0, (12)
+B = [2¢,V2AL*]) + caVEA, (+1)] cos(d /2) 3

+ [2¢,VEAY(£]) — caV Ay (21)] sin(@ /2).

The fundamental system of solutionsto Eqg. (11) can be
written as
A, (X) = sinBxsinhax, Ay(x) = cosBxcoshax,

(14)

Ay(X) = sinBxcoshax, A,(X) = cosBxsinhax,

where the quantities a~* and 3 are the correlation
lengths of amplitude and phase fluctuations of the order

parameter:
12
Ve = [lm 2_°1+C_ﬂ} ,
200 c;  cH

" (15)
VB = [ED 3‘3_1_321]
F 20) c; ] -
Solutions of type | have the form
A(X) = AN (X) + AA(X),
AX) = A1Ay(X) + AxDy(X) (16)

D) = ADs) + A (¥),

where the constants A;, according to boundary condi-
tions (12) and (13), are

A, = Aycos(§/2)(sin’Bl + sinhal)
x [2aBsinBlsinhal — (o — B%) cosPl coshal],

A, = A,cos($/2)(sin’Bl + sinh*al)
x [2aB cospl coshal + (o —p?)sinflsinhal],
(17)
x [2aB sinBl coshal — (a” — B?) cosBl sinhal],

A; = Aysin(9/2)(cos’Bl + sinhal)

A, = A,sin(¢/2)(cos’Bl + sinhal)

x [2ap cosplsinhal + (a®—B%)sinBl coshal],

Ao = 2B[vicy(a®+B%)P(®)] .
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Phase diagram of induced SDW states in the chromium
spacer above the bulk Néel temperature.

Here, P(¢) is the determinant of the coupled equations
forA(i=1,2, 3, 4):

P($) = cos (¢/2)(sin’Bl + sinh’al)
x [B(Ba’ =% sinh2al + o (3B° —a’)sin2pI] 18)
+sn°(¢/2)(cos’Bl + sinh’al)
x [B(3a” —B?)sinh2al —a (3p* —a®)sin2pl].

Note two fundamental circumstances connected with
relations (17) and (18). First, for al — oo, all coeffi-
cients A, tend to zero exponentially (exp(—2al) — 0),
such that in the thermodynamic limit there are no SDW
states of the type of Eqg. (16). Second, for a negative
coefficient c,, the determinant P(¢) in Eq. (18) reverses
sign and vanishes at a temperature T,, which exceeds
the Nédl temperature Ty, in an infinite sample specified

by Eq. (15) for a = 0: 2¢,¢; = 5. This means that even
in the absence of an external source (B = 0), the system
can become unstable with respect to the formation of
unique nonuniform SDW states, whose origin derives
essentially from the spacer being limited purely geo-
metrically on both sidesin the n, direction. The ampli-
tude of such states (we call them topological) oscillates
with a period ~B~* and decays over alength ~a~* (3 >
o) away from the interfaces into the spacer. The solu-
tion of the equation P(¢) = O gives the temperature
max{ T,(1)} above which such topologica states cannot
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exigt. It is this temperature, rather than Ty, that limits,
from below, the region of applicability of the approach
based on Egs. (11)—(13). As| — oo, the quantity Ty(l)
approaches the value Ty () asymptotically, which does
not depend on ¢ and is given by the equality 30° — B2 =
Oor, whichisthesame, c,c;= 2c§ . Notethat, asfollows

from the expressions for the coefficients c,, ¢,, and ¢
givenin [12], we have Ty(0) > Ty for ¢, < 0. For finite
values of |, the function Ty(l) isfairly complex; indeed,
it oscillates near the Ty(c0) line and crosses it at the
nodes 2Bl, = (n =0, 1, 2, ...). The figure qualita-
tively presents the Ty(l) and T,(I) relations correspond-
ing to the lines of instability with respect to the forma-
tion of topological collinear states with a symmetrical
and an antisymmetrical SDW envelope A(X), respec-
tively. Note that the T(1) line exists down to very small
[; for Bl < 1, the equation for T,(l) simplifies greatly,
3vﬁc2 = ¢,|% By contrast, the T(l) line exists only at
values of | in excess of a certain critical value; in the
limit Bl < 1, thereisnoinstability against the formation
of a symmetrical collinear topological state above Ty.
For 0 < ¢ <1, the Ty(l) curves alwaysliein theinterval
between Ty(l) and T,(1).

Asthetemperature increases, we reach the region of
C, > 0, where the determinant P(¢) of Eg. (18) can be
only positive. The structure of the order parameter is
changed (compared to that for ¢, < 0) toward slower
oscillations against the background of asharper dropin
amplitude as one moves away from the layer interfaces.
Inthe B/a — Olimit (whichisequivalent to 2c,c; —»

cé for ¢, > 0), we obtain the temperature T = T*, which

it appears only natural to choose as an estimate of the
above conventional boundary. Above T*, the terms of
expansion from (1) that are proportional to c; become
insignificant; therefore, by dropping the corresponding
termsin Egs. (11) and (13) and taking into account con-
dition (9), we find the components of the noncollinear
structure (8) of type| for the given parameters ¢ and B:

A(x) = beos($/2)sinh B cosh B

L™ el
A(X) = bsin(q)/z)cosh%%sinh%%, (19)
b = Bi%:osh%%%—coscbg .

C,VE

In the high-temperature phase T, > T > T*, it ispossible
to make a self-consistent calculation with an effective
exchange potential B(zl) in Eqg. (6) in an explicit way.
To do this, we construct linear combinations of SDW
envelopesin the form of Eq. (4) which are localized at
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the boundaries of a thick spacer (L > §). For small
arguments [X| < L — &, the symmetric combination
coincides with function A,(x) and the antisymmetric
one coincides with function A (x) in Eqg. (19) if we set

g H+Dd

Equality (20) relates the exchange constant B at the
boundary between the weak and the strong antiferro-
magnetism to the charge density redistribution near the
Fe/Cr interface through the interpolation length D(v).

Thus, within the temperature interval max{ Ty (L)} <
T<Ty(L), only SDW states associated with the decrease
in surface energy at the expense of an externa (with
respect to the spacer) charge perturbation in near-inter-
face layers and ordered nonuniformly over the Cr
spacer thickness can exist. It appears natural to cal
such states induced, because they vanish in the absence
of external sources, as opposed to the topologica
states, which form spontaneously for T< Ty(L). Thelat-
ter states can exist only if the following two factors are
present simultaneoudly: (i) the system must be bounded
on both sides along the SDW wave vector direction, and
(i) thefree-energy functional must have a specific form
of Eg. (1) containing a negative lowest order gradient
term c,(A'(X))? predetermining instability with respect
to the formation of an incommensurate SDW structure
in the volume and a positive higher order gradient term
c5(A"(X))? stabilizing this structure. No topological
SDW states will form in the absence of either of these
factors. Unfortunately, the scope of this publication
does not allow us to consider the situation at T <
max{ Ty(l)}, because this would require taking into
account higher powers of A(X) in expansion (1) and
would strongly complicate all calculations. Thus, the
restriction T > max{T,(l)}, under which we have
P(¢) > O0for dl ¢ and I, is of fundamental significance
and is assumed subsequently to hold.

(20)

4. EFFECTIVE EXCHANGE ENERGY
AND PHASE SLIP

It can readily be shown that the equilibrium thermo-
dynamic potential Q[A] of Eq. (7) is expressed through
the SDW amplitude at the boundary as Q = —BJ|A(l)]/2.
In the temperature region max{ Ty} < T < T*, straight-
forward calculation of the order parameter configura-
tion using Egs. (9) and (16) made with coefficients A, of
Eq. (17) yields the following relation for Q as a func-
tion of the parameter ¢:

-
P(0) cos’(¢/2) + P()sin*(¢/2)’

where P(0) and P(m) are the values of the determinant
in Eq. (18) for ¢ = 0 and 1, respectively, and I' does not

Q(¢) = (21)
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depend on the angle ¢ and can be written as
= —-P0)Q(0) = —P(r)Q(m)

_ __ 2B%ap )
caVi(a®+B7)

x (sinh’al + sin’Bl)(sinh’al + cos”l).

In the temperature region of interest here, I, P(0), and
P(m) are positive; i.e., the gain in energy is the highest
githeraadp =0oratdp =1L

The choice of the solution corresponding to the cho-
sen value of ¢ depends on the formulation of the prob-
lem. We may recall that the region of weak-antiferro-
magnetic order described here is connected with the Fe
layer spins indirectly through the strong order regions.
If the ¢ angleisfixed by an exchange mechanism cou-
pling the iron moments which is not related to SDW
formation in the spacer (for instance, coupling through
the paramagnetic parts of the chromium itinerant-elec-
tron Fermi surface [8, 11]) or by an external magnetic
field, then the problem of the choice of the optimum
SDW structure can be solved using Egs. (14)—(18); as
for Egs. (21) and (22), they are not needed in the further
commentary.

By contrast, if the energy gained in the formation of
antiferromagnetic order in the chromium spacer islarge
enough, then the relative magnitude of Q(0) and Q(m)
determinesthe type of the SDW collinear structure and,
accordingly, the mutual orientation of theiron magnetic
moments in adjacent layers. Considered in terms of the
above model with an additional vector B, which hasthe
symmetry of the order parameter in the commensurate
SDW state, the state with ¢ = 1t corresponds to the fer-
romagnetic orientation of Fe momentsfor an even num-
ber of Cr monolayersin the spacer and to the antiferro-
magnetic orientation if the number of Cr monolayersis
odd. If ¢ =0, the ferro- and antiferromagnetic orienta-
tions of the Fe moments in the above reasoning should
be reversed. Consider that the SDW-induced contribu-
tion to the effective exchange energy is usually calcu-
lated as the difference

D(0) — D(m)

E. = Q0 - = T

(23)

where Er — Er = (-1)N* 1E,, is the difference between
the energies of states with antiferromagnetic and ferro-
magnetic configurations of iron moments in adjacent
layersand N is the number of chromium monolayersin
the spacer. The sign of E,, is determined by the relative
magnitude of P(0) and P(11) and depends on the spacer
thickness and temperature. The P(0) — P(17) difference
vanishes if the equality

3 2_ 2
B3Y =B anh(2al)

tn(2Bl) = £

(24)
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is met. The solution to Eq. (24) can be conveniently
plotted on the (21, 2al) plane (seefigure); thissolution
represents afamily of curves starting at the nodes 231 =
m(n=0,1,2,...)ontheTy(l) line of topological insta-
bility and reaching the asymptotic behavior 23| = 1i(n +
1) — 3p/a for B/a — 0. Each curve can be identified
with its temperature-dependent |, (T) (which has no
simple analytical form). For a fixed temperature, the
quantitiesL,(T) 02(1(T) + D) are essentially the spacer
thicknesses at which the phase of the effective
exchange (-1)N*1E,, undergoes a dlip (in the regular
sign aternation), with the number of monolayers N
changing by one[1, 2, 4]. Each phase dip line l(T) is
formally aline of thermodynamic equilibrium between
collinear phases with an even and an odd order param-
eter, Q(0) = Q(m). As the length | passes through the
point 1,,(T), function A(X) acquires or 100ses one zero.
For illustration, the insets to the figure qualitatively
show the A(X) distributions in a spacer with an effective
half-thickness|, which for small nisconfined within an
interval (1,(T), I,+1(T)). Assuming 2I,, = dN,, whered is
the distance between adjacent chromium monolayers,
one can estimate the critical monolayer numbers at
which the effective exchange phase undergoes the first,
second, and subsequent dlips. Because the a(T) and
B(T) quantities given by Eq. (15) are temperature-
dependent, the numbers N,(T)also vary with tempera-
ture. It iseasy to verify that in the temperature region of
interest to us here, the phase correlation length B(T)
increases, whereas the amplitude correlation length
a~Y(T) decreases with increasing T, which is associated
with the behavior of the coefficient c,(T) described
above. Thus, the critical numbers N, (T) grow with tem-
perature and, in addition, as follows from Eq. (24), we
have N,(T) = nNy(T) (n=1, 2, ...); i.e, as the number
of monolayersin the chromium spacer varies, the effec-
tive exchange phase should dlip with a close-to-regular
periodicity.

We note that the zero line of phase dlippage 14(T)

existsonly for ¢, > 0 and hasthe form I,(T) = ./3/2 (T)
for (al, Bl) < 1. However, if B becomes imaginary,
which corresponds to the temperature rising above T*,
then Eq. (24) has no solutions and thereis no phase slip
effect. Thisis in accord with the finding that the most
energetically favorable state in the high-temperature
region T, > T > T* is always a state with a symmetric
SDW envelope. Indeed, the thermodynamic potential
for structure (19)

B sinh(21/%)
4C2V§cosh(2I/E)—cosq)

Q(¢) = (25)

has a minimum at the point ¢ = 0.

As follows from Egs. (21)—<23) and (25), effective
exchange through a thick chromium spacer decays
exponentially with increasing L on the scale length of
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amplitude SDW fluctuations: a=}(T) for max{ Ty} <T<
T*and (M) for T* <T<T,.

The present model of an SDW state in Fe/Cr-type
multilayers, which is strongly nonuniform over the
chromium spacer thickness, can be useful in the inter-
pretation of some experimental results obtained in
investigating these systems. We have in mind here pri-
marily investigation of the magnetic structure of multi-
layers with thick spacers (L > 20-30 chromium mono-
layers) performed at high temperatures (150 to 550 K).
Polarized neutron reflection experiments [7] (see adso
reviews [1, 2]) made on Fe/Cr(100) superlattices have
revealed two antiferromagnetic transitions in the chro-
mium spacer. The first of them is described in [7] as a
gradual transition from the state with an incommensu-
rate SDW to a state with a commensurate SDW (but,
possibly, strongly nonuniform over the spacer thick-
ness). For instance, the diffraction pattern obtained
with a quasi-momentum Q = (100)1¢(2d) on a sample
with L = 56 monolayers featured two satellites that
approached each other with the temperature increasing
from 175 to 310 K. The other transition isidentified on
the (T, L) plane of the magnetic phase diagram with a
fairly distinct boundary at T,(L) = 500 K above which
the central peak disappears; thisboundary isinterpreted
in [7] as corresponding to the transition between the
commensurate SDW and the paramagnetic state. We
note that the results obtained in neutron diffraction and
kinetic measurements on superlattices apparently
depend strongly on the quality of the Fe/Cr interface; as
aresult, in some experiments (e.g., [5]), where the sam-
pleswere grown in other conditions, one observed only
one (low-temperature) incommensurate-SDW phase at
T < T\(L) in spacerswith aL > 30 monolayer thickness.
Measurements of the conductivity and magnetization
hysteresis made in [15] on epitaxial superlattices of a
different composition, Fe/Cr; _,Fe,(100) with x = 0.06,
showed the existence of two antiferromagnetic transi-
tion temperaturesin athick (L > 24 monolayers) spacer.
The lower of these temperatures, Ty, is associated with
the transition to a state with a uniform SDW, which is
of the type of the AF, phase in bulk dilute Cr;_,Fe,
aloys, the other critical temperature T, (or T, in our
notation), lying, asarule, 150 K above Ty, corresponds
to the transition from the nonuniform SDW state to the
paramagnetic phase.

One can thus maintain that experiments carried out
on superlattices indicate the existence in the tempera-
ture region Ty(L) < T < T4(L) of a nonuniform antifer-
romagnetic phase which has no counterparts in bulk
chromium. Unfortunately, it will likely not prove possi-
ble to reproduce the fine spatial structure of the SDW
envelope that determines this nonuniformity from neu-
tron diffraction data. It is possible to detect only a
strong broadening of the central peak within the inter-
val Ty(L) < T <Ty(L) in the neutron diffractogram near
the quasi-momentum Q = (100)1v(2d) associated with
the existence of some short-range antiferromagnetic
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order and, apparently, with alarge diffuse contribution
to neutron scattering.

Tunneling spectroscopy measurements performed
on the so-called optimized Fe/Cr/Fe(100) trilayers with
a wedge-shaped spacer and a high-quality interface
structure (see references in reviews [1, 2]), which can-
not be reached in Fe/Cr superlattices, turned out to be
moreinformative asto details on the SDW spatia struc-
ture. Those experiments studied the effective exchange
coupling of ferromagnetic iron layers through a chro-
mium spacer and, in particular, the role played in this
coupling by antiferromagnetic ordering inside the
spacer. It was found that, instead of the expected alter-
nation of ferro- and antiferromagnetic relative moment
orientation of theiron layers with variation of the num-
ber of chromium monolayers N by one, the phase
undergoes slippage at room temperature (i.e., irregular
reversal of the exchange sign) at N, = 24, 44, and 64
(i =1, 2, 3); if the spacer thickness exceeds =75 mono-
layers, magnetic coupling between the layers virtually
disappears. Thefirst point of phase slip N;(T) isseento
increase monotonically with temperature from 24 to
38 monolayers up to 550 K, as though it continues the
corresponding dependence of the half-period of the
long-wavelength SDW envelope above Ty in the AF;
phase of bulk chromium [8]. While the data available
on the N, 5(T) relations are |less definite, they indicate,
on thewhole, arisein N;(T) at temperatures T > Ty(L).

Within the model proposed here, the results of the
N;(T) measurements can be unambiguously considered
asarguing for the existence in achromium spacer above
Ty(L) of atransversely polarized SDW with long-wave-
length modulation along the growth direction of the
structure, with the values of N; being connected in a
straightforward way with the nodes of the SDW at
which its amplitude vanishes. The fact that we did not
experimentally observe the Ny(T) line, which appears
formally in our model, may be due either to the real
temperature of the onset of the proximity SDW state
T,(L) lying lower than the zero-phase-dlip temperature
calculated by us or to the Ny(T) line being in the region
of the (T, L) parameters that is beyond the scope of
applicability of our model.
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Abstract—It is shown that high-temperature treatment of self-poled |ead zirconate-titanate films containing an
excess of lead oxide, followed by prolonged storage at room temperature, results in a charge redistribution in
the near-electrode regions of ferroelectric films. Such heat treatment destroys, asarule, the self-poled state and
removes the dielectric nonuniformity. A model of athin-film ferroelectric capacitor is proposed which makes
it possible to reproduce variationsin the PV hysteresis |oop shape and capacity—voltage (C-V) characteristics,
as well as in the frequency-dependent pyroelectric response (LIMM). The effect of the interface and grain
boundaries on the onset of the self-poled state, its variation, and destruction is discussed in terms of the pro-

posed model. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

One of the most interesting properties of thin ferro-
electric films s the formation of the self-poled state in
some of them. The poled state setsin in afilm without
application of any external electric field after the film
has crystallized and become ferroelectric. The self-
poled state can be observed in ferroelectric films irre-
spective of their composition, crystal structure, and the
method of preparation used [1-9]. Self-polarization is
actually an interface effect [1, 2]. This state can be
induced, in particular, by afield of electronstrapped in
surface states on aferroel ectric—bottom electrode inter-
face[3, 4]. Another viewpoint on the nature of the self-
poled state relates this state to mechanical stresses
present in ferroelectric films [7]. The internal electric
field, which manifests itself in the shift of hysteresis
loops and C-V characteristics, is correctly considered
to be an attribute of self-poling [2] and is due to the
migratory polarization which screens the self-polariza-
tion [3].

Nevertheless, the origin of self-poling is still far
from being clear and requires additional studies.
Among the problems which have to be refined are (1)
therole played by Schottky barriers at the interfaces of
a thin-film ferroelectric capacitor [1]; (2) the effect of
thefilm crystal structure, for instance, the predominant
onset of self-poling inthinfilmsof lead zirconate-titan-
ate solid solutions PbZr, _, Ti,O; (PZT) in thetetragonal
phase (x = 0.47), compared with the rhombohedral
compositions (x < 0.47) [1, 2, 10]; (3) the size effects
(depending, in particular, on the relation between the
grain size and thickness of polycrystaline films) and
their manifestations in the film properties; and (4) the

reasonsfor self-poling destruction under film annealing
[1, 10, 11].

We present here an analysis of the onset of the self-
poled state and of its variation and destruction in PZT
films subjected to heat treatment.

2. FILM PREPARATION AND COMPOSITION
AND EXPERIMENTAL TECHNIQUES

The films prepared by using radio-frequency mag-
netron sputtering of a ceramic target of composition
PbZrg 5, Tig 4605 + 10 mol % PbO contained an excess
of lead oxide PbO, which is known [3, 11-14] to stim-
ulate the onset of the self-poled state in these films.
Films of thickness 0.7—1.0 um were deposited on acold
substrate (130°C) and subjected to heat treatment at
550°C. We believe [3] that the role of the lead oxide
excessin PZT films can bereduced, in particular, to the
extraction of a certain amount of oxygen atoms (which
are mobile in the perovskite structure) from the perovs-
kite lattice, as a result of which the ferroelectric layer
becomes doped by oxygen vacancies and features
n-type conduction. Platinum films were used as the top
and bottom electrodes. The area of the capacitor struc-
ture was determined by the dimensions of the top elec-
trode, whose diameter was 130 pm.

The dielectric hysteresis loops of thin-film ferro-
electric capacitors were studied using a modified Saw-
yer—Tower circuit at a frequency of 50 Hz, their volt-
age—capacity characteristics were obtained with an E7-
12 digital bridge at a frequency of 1 MHz, and the fre-
guency-dependent pyroelectric response (LIMM) was
measured and processed following the technique
described in detail in [15, 16].

1063-7834/02/4409-1736%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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3. EXPERIMENTAL RESULTS

We showed earlier that the self-poled state in PZT
films is distributed nonuniformly over the film thick-
ness and is concentrated in the film region adjacent to
the bottom electrode (curve 1 in Fig. 1) [3]. A weakly
polarized region with oppositely directed polarization
was located close to the top electrode. This distribution
of the self-polarization was reflected in the asymmetric
hysteresis loops (Fig. 2a) and voltage—capacity charac-
teristics (Fig. 3a).

A comparison of the polarization distribution curves
obtained by biasing the film with an external dc voltage
of +20 or =20V (curves 2, 3inFig. 1) with the self-pol-
ing curve (curve 1in Fig. 1) showed the self-poled state
not to extend over more than 10-15% of the film vol-
ume. Despite a fairly strong polarizing field
(200 kV/cm) being applied to the film, the maximum in
the polarization distribution is seen to remain shifted
toward the bottom electrode. This shift becomes stron-
ger after application of a positive voltage (curve 2 in
Fig. 1).

The results of LIMM measurements made on the
films, which were poled by avoltage of +20 and -20V
at a temperature of 280°C and in the course of subse-
guent cooling and then storage for 24 h at room temper-
ature, are represented by curves4 and 5in Fig. 1. The
degree of polarization of such samples is seen to
increase substantially compared to that reached in nor-
mal conditions. The LIMM amplitudesin the PZT film
near the top electrode were almost identical when
polarized by pulses of either polarity. At the sametime,
the amplitude of the positive signal near the bottom
electrode is noticeably larger than that of the negative
signal, which may be due to the existence of aresidua
space charge near the bottom electrode.

Heat treatment of self-poled PZT films at 100 and
200°C did not affect the shape of the P-V and C-V
curves. Annealing the films at a higher temperature
(300°C), which is close to the Curie point, resulted in
their depolarization and a noticeable change in the
shape of the hysteresisloops (Fig. 2b) and C-V charac-
teristics (Fig. 3b). The hysteresisloops and the voltage—
capacity characteristics assumed their normal, i.e,
symmetric, form. Prolonged storage of such PZT films
at room temperature produced waists in the hysteresis
loops (Fig. 2c, storage 4 x 107 s), which is frequently
seenin polycrystalline ceramic ferroelectrics[17], with
additional extremaappearing inthe C-V characteristics
(Fig. 3c).

The hysteresis loop shape of self-poled films
depended on the amplitude of the ac voltage used. For
instance, application of an ac voltage 20V in amplitude
reduced the loop asymmetry (Fig. 4a) in comparison
with that at 10V (Fig. 2a) but did not result in a com-
plete disappearance of the internal bias field. Consecu-
tive measurement of C-V curves made on the same
sample revealed that as the number of polarization
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Fig. 1. Polarization distributionin aPZT film over itsthick-
ness (d = 1 um): (1) self-poled state; (2) after application of
avoltage +20V or (3) =20 V for 30 min at room tempera-
ture; (4) after application of +20V or (5) -20 V at 280°C
and field cooling to room temperature.
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Fig. 2. Hysteresis loops of a self-poled film 1 um thick
deposited at 130°C: (a, d, €) before annealing, the loops are
observed with a probability of 80, 15, and 5%, respectively;
with a capacitor array; (b) immediately after film annealing
at 300°C; (c) after film storage for 14 months at room tem-
perature; and (f) the hysteresisloop of aself-poled PZT film
of thickness 0.7 um deposited at a temperature of 200°C.

switching cyclesincreases, the shape of the C-V curves
changes (Fig. 3c¢), making them smoother (Fig. 3d).

The experiments showed that the dielectric charac-
teristics of an array of capacitor structures based on a
self-poled PZT film exhibit asignificant scatter over the
film area (Figs. 2a, 2d, 2e). For instance, identical
capacitor structures exhibited hysteresis loops of three
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Fig. 3. C-V characteristics of a self-poled PZT film (@)
immediately after its formation, (b) after anneding at
300°C, and (c, d) after one-month storage of the annealed
film in the first and second cycles of bias voltage variation,
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Fig. 4. Hysteresis loops of aself-poled PZT filmin astrong
electric field (20 V) (a) after film formation and (b) after
annealing at 300°C and prolonged storage.

types with different degrees of asymmetry, from loops
with astrong internal field E;,, = 25 kV/cm (Fig. 2a) to
nearly symmetric ones with waists (Fig. 2e). Increasing
the substrate temperature from 130 to 200°C upon dep-
osition of the ferroelectric layer gave rise to a better
uniformity of the dielectric characteristics over the film
area, as well as to a growth in dielectric permittivity
(from 450 to 750). A typical hysteresis|oop for such a
filmisshownin Fig. 2f.

4. DISCUSSION OF RESULTS

To explain the above experimental results, we pro-
pose amodel whose essenceisillustrated in Figs. 5 and
6. The model postulates the following assumptions,
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which were made on the basis of previous studies. (1)
PZT films have a predominantly columnar structure
characterized by a distinctly oriented texture, e.g.,
along (1110112, 18, 19]. (2) Due to an oxygen defi-
ciency, the films feature n-type conduction [3, 20, 21].
(3) Localized states are distributed nonuniformly over
the film thickness and concentrate at the interfaces of
the thin-film ferroelectric capacitor, where the charge
buildsup [22]. (4) Self-poling is screened by migratory
polarization [17].

Figure 5 schematically shows the distribution of the
self-poled state and of the screening space charge over
the PZT film thickness (a) before annealing and
(b) after annealing and prolonged storage at room tem-
perature.

Before annealing, the poled regioninthefilmiscon-
centrated primarily near the bottom interface of the
structure (Fig. 5a). This is due to the fact that the per-
ovskite phase in the PZT film crystallized without the
top electrode; this electrode was deposited on the
aready formed film at a substrate temperature of 100
120°C [3]. Thereason for the shift in the P-V and C-V
characteristics toward negative voltages is that the
migratory polarization screens the spontaneous polar-
ization (Figs. 2a, 2f, 3a).

Theinternal field in the capacitor structures charac-
terized by an asymmetric hysteresis loop (Fig. 2a) can
be as high as 25 kV/cm. Such afield can be generated
by the charge of the electrons trapped in the surface
states. We estimate the density of this charge to be
approximately 5 uC/cm?. The density of surface states
at the interface will be about 3 x 1013 cm=2 in this case,
which correlates well with the data from [23] and cor-
responds to a volume density of defects of 108 cm S,

According to our model, as aresult of high-temper-
ature annealing, the charged localized states at the
interfaces become partially depleted due to the disap-
pearance of spontaneous polarization and the released
charges are distributed uniformly over the film thick-
ness. When cooled subsequently to below the Curie
temperature, the electrons trapped in surface states of
the bottom and top interfaces polarize the near-elec-
trode regions of the ferroelectric film. Poled states
forming near the interface initiate migratory polariza-
tion, which eventually gives rise to the formation of
space charge in the near-electrode regions screening
spontaneous polarization (Fig. 5b). Therefore, the hys-
teresisloops and the C-V characteristics, which exhibit
the usual symmetric form immediately after annealing
(Figs. 2b, 3b), transform with time to assume the shape
illustrated in Figs. 2c and 3c. A waist appears in the P—
V curves, and the C-V characteristics exhibit additional
extrema, which reflect that the migratory polarization
screens oppositely poled regions in the ferroelectric
film near the electrodes. Thus, annealing and subse-
guent storage of afilmin normal conditions bring about
charge redistribution between the top and bottom inter-
faces and in the volume of the structure. The time
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required for the space charge to build up is apparently
determined by the low migration rate of charged oxy-
gen vacancies at room temperature.

However, within this concept, one cannot explain
the observed nonuniformity of dielectric parameters
over the film area and the existence of a poled volume
at the top interface of the self-poled film. The experi-
mental results, as a whole, can be interpreted if one
assumes that there are structural defects in the film
which interfere with the migration of charged particles
between the electrodes of the thin-film capacitor.

We believe that such structural defects could be, in
the simplest case, transverse grain boundaries parallel
to the plane of the capacitor structure (Fig. 6). Grain
boundaries can be initiated by film lattice imperfec-
tions, such asinclusions of aforeign phase, lattice mis-
fit between the top electrode and the perovskite film,
and mechanical stresses. In our case, the formation of
transverse boundaries in a PZT film can be related to
the presence of a substantial excess of lead oxide,
which precipitates at grain boundaries in the volume of
thefilmin the course of perovskite phase formation and
suppresses the growth of perovskite nuclei through the
film thickness. Figures 6b—6e illustrate the possible
arrangement of transverse boundaries over the film
thickness. Let us consider the way in which these
boundaries can affect hysteresisloopsin self-poled fer-
roelectric films before and after their annealing.

If there are no transverse boundaries across the film
(Fig. 6a), charge migration from the interior of the film
to traps at the bottom electrode does not meet with
obstacles. After the transition to the ferroel ectric phase,
the region of the film near the bottom interface polar-
izes to the maximum extent. To this state of the capaci-
tor structure corresponds the strongly asymmetric hys-
teresis loop shown in Figs. 2aand 2f.

The self-poled film volume at the bottom interface
contracts when a transverse boundary forms a two-
grain structure (Fig. 6b), because in this case only part
of the charges can reach the traps at the bottom inter-
face. Thistrend becomes stronger asthe grain boundary
moves toward the bottom interface (Figs. 6c¢, 6d). If at
least part of the charge from the volume of the grain
becomes localized in the surface traps, the film region
near the free surface will also become poled. In this
case, the hysteresis loops will be less asymmetric
(Figs. 2d, 2¢). If, after deposition of the top electrode,
the top interface traps still retain a considerable charge,
aloop with awaist can form (Fig. 2€). An increase in
the number of grain boundaries (Fig. 6e) tends to make
the loops more symmetrical, reduce the polarization of
the near-el ectrode regions of the PZT film, and, accord-
ingly, reduce and, possibly, suppress self-poling.
Therefore, the shape of the hysteresis loop will be
determined by the relationship between the volumes of
individual crystallites and the number of structural
defects within the capacitor area (Figs. 6a—6€).
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Fig. 5. Schematic distribution pattern of the poled state (P,
is residual polarization) and space charge (Eyig is the
migratory polarization field) at the interfaces of a thin-film
ferroelectric capacitor made of a self-poled PZT film (a)
after film formation and (b) after annealing and prolonged
storage at room temperature.

Fig. 6. Schematic of aPZT film with different arrangements
of transverse grain boundaries over the film thickness.

High-temperature annealing of films containing the
above types of structural defects makes the hysteresis
loops more symmetrical (Fig. 2b). In particular, in the
absence of transverse boundaries, part of the charges
become distributed with equal probability between the
top and bottom interfaces and polarize the near-inter-
face film regions. Subsequent prolonged storage of
such films at room temperature results in the formation
of ascreening space charge and, accordingly, of waists
in the hysteresis loops (Fig. 4b). At the same time, it
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may be conjectured that when a film contains grain
boundaries shifted toward either electrode, the film can
retain noticeable self-poling, as was observed in [1].

As mentioned above, increasing the substrate tem-
perature from 130 to 200°C removes diel ectric nonuni-
formity over the film area and increases the dielectric
permittivity from 450 to 750, with the hysteresis loops
taking on a distinct asymmetric shape (Fig. 2f). We
assign these changes to a decrease in the amount of
excesslead in deposited PZT films; thissituationis fre-
quently encountered when applying ion plasma meth-
odsto ceramic target sputtering. The probability of for-
mation of oppositely poled regions in such films
reducesto aminimum, and their crystal structure can be
described by the schemein Fig. 6a.

The above reasoning was made under the assump-
tion that after the annealing, the top and the bottom
interfaces of athin-film ferroelectric capacitor become
identical in terms of their density of states. One cannot,
however, exclude the possibility that the hysteresisloop
asymmetry that isretained in some cases can be associ-
ated with there being a difference in the density of
charged states between these interfaces. One should,
therefore, perform a more comprehensive study of the
PZT film structure, interfaces, and their relation to the
parameters of capacitor structures.

5. CONCLUSION

The results obtained permit the following conclu-
sion. High-temperature annealing of self-poled PZT
films brings about destruction of the self-poled state
and removes the dielectric nonuniformity over the film
area, which is connected with charge redistribution
between the top and bottom interfaces of the thin-film
ferroelectric capacitor.

The specific features of charge redistribution in a
film can be explained within a model which assumes
that there are transverse grain boundariesin aferroel ec-
tric film that suppress charge migration between the
capacitor electrodes.

The existence of transverse grain boundariesin tex-
tured PZT films originates from inclusions of the
excess |ead oxide phase.
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Abstract—The reverse dependences of the permittivity €; (E-) and the polarization and depol arization currents
in multicomponent ferropiezoelectric ceramics based on lead zirconate titanate (PZT) are investigated over a
wide range of temperatures. The results obtained make it possible to separate the effects associated with the
phase transformation and the effects predominantly caused by the switching of the domain structurein the stud-
ied material. The assumption is made that two smeared phase transitions occur in the system under consider-

ation. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Itisknown (see, for example, [1]) that relaxor ferro-
electrics have two characteristic temperatures, namely,
T,, and T,. The temperature T,, corresponds to a maxi-
mum of the permittivity €' and depends on the fre-
guency of the measuring field. Thetemperature T, isthe
temperature at which the preliminarily polarized sam-
ple undergoes depolarization upon heating. It is worth
noting that the temperature T is universally less than
the temperature T, (see, for example, the detailed
investigations performed by Zuo-Guang Ye and Hans
Schmid [2] for a model relaxor—the lead magnesium
niobate PoMg,,sNb,;0; (PMN)). In our earlier works
[3-5], we demonstrated that similar characteristic tem-
peratures are also observed in multicomponent ferropi-
ezoelectric ceramics based on lead zirconate titanate
(PZT). However, according to [3-5], the behavior of a
number of physical parameters characterizing the
polarization in the temperature range from T, to T, for
this multicomponent system significantly differ from
the behavior of these parameters, for example, for the
well-known PLZT relaxor [6]. In particular, with a
change in the frequency from 1 to 1000 Hz, the shift of
the temperature T, for the multicomponent ferropiezo-
electric ceramics is equal to 4 K [7, 8], whereas this
shift for the PLZT-9/65/35 ceramics is as large as 10—
11 K [6]. Moreover, even at infralow frequencies, the
multicomponent ceramics does not exhibit double
polarization loops typical of relaxorsat T = T,. At the
same time, the temperature dependences of the effec-

tive permittivity €y (T) determined from analysis of the

polarization loops [ 3, 4] are characterized by two max-
ima one maximum is observed in the vicinity of the

temperature T4 and the other maximum occurs in the
vicinity of the temperature T,,,. It should be noted that,
in the case of the PZT multicomponent ceramics|3, 4],
unlike conventional relaxors based on lead magnesium
niobate (see, for example, [9, 10]), an increase in the
field amplitude (in the amplitude range covered) brings
about a substantial decrease only in the temperature of
the additional maximum in the vicinity of T, in the

dependence e (T) without achangein the temperature
of the maximum in the range of T,

Toshio Ogawa and Ayako Yamada [11] performed
an x-ray structure investigation into the switching
effects in tetragonal ferropiezoelectric ceramics based
on lead zirconate titanate and revealed the specific fea-
tures in the behavior of the intensity of maxima in the
diffraction pattern. In [11], these features were attrib-
uted to 90° rotations of domains. In the authors' opin-
ion, this should result either in a change in the shape of
the polarization loops or in the appearance of double
maximain the reverse dependences of the permittivity
€, (E.)). Therefore, in ferropiezoelectric ceramics,
unlike relaxors, anomalies in the dielectric properties
can be associated both with the domain dynamics and
with the phase transitions 3, 4, 12].

In this respect, the aim of the present work was to
analyze thoroughly the reverse dependences ¢, (E.) in
the range of the characteristic temperatures T, and T,
and to investigate the polarization and depolarization
currents in the multicomponent ferroelectric ceramics
in order to separate the effects associated with phase
transformations. In other words, we made efforts to
separate the effects typical of relaxor ferroelectrics
from the effects predominantly caused by the switching

1063-7834/02/4409-1741$22.00 © 2002 MAIK “Nauka/Interperiodica’
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of the domain structurein multicomponent ferroel ectric
ceramics.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The reverse (field) dependences of the permittivity
€, (E-) were measured by the bridge method at a fre-
guency of 1 kHz with a stepwise variation in the bias
field E.. The measuring field strength E, did not
exceed 1 V/cm. The temperature dependences of the
current I(T) were obtained using aV 7-30 electrometer
under the following conditions: (i) upon heating after
annealing for 1 hat T > T, and subsequent cooling to
room temperature (T,), (ii) upon heating after ageing
for one month at T,, and (iii) upon heating after cool-
ing of asamplefrom T > T,,to T, in adc electric field.
The heating was carried out at E=E_ = 0. In all cases,
the heating rate was approximately equal to 1 K/min.
The samples used in measurements had the form of
plane-parallel plates prepared from the PZT-based soft
ferroelectric ceramics belonging to multicomponent
systems of the PbTiO;—PbZrO;—PbNb,;3Zn;305—
tent of 34.89 mol % [13] (hereafter, designated as
PKRL) The measurements were performed with sam-
ples5 x5 x 1 mm in size. Electrodes were applied by
burning-in silver.

3. RESULTS AND DISCUSSION

Figure 1 displaysthe dependences ¢, (E.) at temper-
aturesbelow T, (T =298, 373, and 439 K), inthevicin-
ity of T, (T =450 K), and above T, (T = 472, 479, 484,
and 493 K). The temperatures T = 484 and 493 K are
higher than the temperature T,,, for thismaterial at afre-
quency of 1 KHZ (T kz = 483 K [4]). Inour previous
work [8], the temperature T4 was determined using the
method proposed by Isupov [1]: thetemperature T, was
taken asthe temperature at a minimum of the frequency
of piezoelectric resonance. For the ceramics under
investigation, this temperature was estimated to be T =
449 K. Figure 1 also shows the temperature depen-
dences of the effective coercive field E(T) (curve 1)
and the critical field E;4(T) (curve 2). The effective
coercive field E,(T) was determined from the positions

of the maxima in the dependence ¢, (E.). The critical
field E;4(T) corresponds to the appearance of a pro-

nounced nonlinearity (akink) in the dependence €, (E-)
in thetemperaturerange T > T,,,

1 The notation PKR (piezoelectric ceramics, Rostov) was intro-
duced by the designers of the aforementioned ferroelectric
ceramics at the Research Institute of Physics of the Rostov State
University. Patents have been taken out for many ferroelectric
ceramics similar in composition to that used in the present work:
PKR-1, PKR-8, PKR-7M, and others.
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It can be seen from Fig. 1 that a number of reverse
dependences ¢, (E.) (at T = 298, 373, and 472 K)
exhibit anomalies in the form of local minima which

arise after preliminary polarization of the sampleinadc
field E- > |Ein| (Where E,;, isthefield strength E_ cor-

responding to the permittivity €; (E.) at a minimum).
These anomalies are characterized by the following
feature: as the temperature increases, the minimum of

the permittivity €, (E.) arises at all the temperatures,
except for the temperature range in the vicinity of Ty
and T = T,,.. It should also be noted that the fields corre-
sponding to the appearance of these anomalies substan-
tially exceed the fields at which the permittivity €, (E.)
reaches maxima; i.e., they are stronger than the effec-

tive coercive fields for thismaterial. It seemslikely that
these features are caused by the following factors.

(1) A gradua increase in the permittivity €, (E.)
with a decrease in the magnitude of the polarizing field
E_ from—E, tozeroismost likely dueto anincreasing
contribution to the permittivity from non-180-degree
domain walls (the main contribution) and 180-degree
domain walls of both “persistent” and newly arising
domains. New, usually tapered, domains [14] appear in
ferroelectric ceramics upon switching off the external
field E- owing to residual mechanical stresses and, pos-
sibly, remanent electric fields, which lead to a partial
breakdown of nearly single-domain states formed in
strong fields E_. The application of the electric field E-
with opposite sign encourages the growth of these
domain and the formation of new a domainsand anum-
ber of ¢ domains. In electric fields E- = E,, the domain
walls of these domains make the maximum contribu-
tion, which is reflected in the appearance of the maxi-

mum in the dependence ¢, (E.) at the given field
strength (E- = E,).

(2) A further increase in the magnitude of the field
E- (above the maximum of ¢, ) is attended by a consid-

erable decrease in the permittivity €, (E.). This can be

explained by the rotation of non-180-degree domains
(i.e., by thetransformation of a domainsinto c domains

with a substantially smaller permittivity €' [15]) and a

further formation of the 180-degree domain structure,
which results in pinning of 90-degree domains and
piezoelectric clamping of 180-degree antiparallel
domains (the well-known Drougard—Joung effect [ 16]).
Note that the switching of domain walls due to the
Drougard—Joung effect attains a maximum when the
numbers of these antiparallel domains are equal to each
other. In our case, this situation is observed at a certain
field E- > E. and leads to the appearance of the mini-

mum inthe curve €; (E.) (Fig. 1). The stronger fields E-

give rise to a unipolar domain state, and the clamping
of domainsis eliminated in part. As a conseguence, the
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Fig. 1. Reverse dependences ¢, (E-) at different temperatures and the temperature dependences of (1) the coercive field E¢(T) and
(2) the induction field E;,q(T) for the multicomponent ferropiezoel ectric ceramics based on lead zirconate titanate.

permittivity €, (E2) dightly increasesand thelocal min-  decrease in the concentration of domain walls upon

imum inthe curve £ (E.) at E- > E, becomes more pro- polarization of the material in astrong bias field.

nounced (Fig. 1). A further decrease in the permittivity Sinceno local minimumin the dependence €, (E.) is
& (E-) at E- — +E.4 is primarily caused by a revealed at temperatures close to the T, point, the tem-
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perature T, can be treated as the most probable temper-
ature of a smeared phase transition from one ferroel ec-
tric phase (hypothetically, rhombohedral) to another
ferroelectric phase (hypotheticaly, tetragonal). The
same situation was observed for ferroelectric ceramics
of this type in our previous works [3, 4]. It should be
emphasized that the x-ray diffraction investigation per-
formed by Konstantinov et al. [17] revealed a smeared
phase transition of thiskind in another PZT-based mul-
ticomponent system (similar to that studied in the
present work), namely, PKR-7M. Note that the afore-
mentioned smeared phase transition occursirrespective
of whether or not the biasfield E. is applied to the sam-

ple. In our case, the behavior of the dependence ¢, (E.)

can only suggest that, in the range of the hypothetical
smeared phase transition, relatively weak externa
(electric or mechanical) fields can rather easily change
the phase (domain) state of the material owing to an
appreciable lability of the crystal lattice. Asaresult, in
the transition range (i.e., at T = T,), the processes asso-
ciated with changes in the phase and domain states in
the piezodectric ceramics under investigation can be
superimposed on one another and lead to a certain
“weakening” (suppression) of the clamping of 180-
degree antiparallel domains. However, in the case when
the temperature reaches the range of the existence of
the stable crystal and domain structures, the Drougard—
Joung effect again rather clearly manifestsitself, ascan
be seen from the curves €, (E-) in the temperature range
Ty<T<T,(Fig. 1). Aleshin and Luchaninov [18] car-
ried out anumerical simulation of the domain clamping
and proved that the clamping effect weakens at a high
mobility (compliance) of domain (interphase) bound-
aries. Making alowance for the fact that such a high
compliance is achieved in the vicinity of any phase
transition, the above factors responsible for the disap-
pearance of the local minimum in the dependence
€, (E.) at temperatures T = Ty and T = T,,, suggest the
occurrence of a phase transition in the vicinity of T,
which isin good agreement with the inferences drawn
in[18].

In the temperature range T = T, the heating of the
material studied can be attended by a phase transition
from the tetragonal ferroelectric phase to a macroscop-
ically nonpolar phase, asisthe casewith PKR-7M [17].
Earlier [19], we demonstrated that the temperature
range T = T,, in ceramics of thistype can be character-
ized as the range of existence of a superparaelectric
phase. The superparael ectric phase can be considered a
paraelectric phase with fluctuating polar nanoregions
[20] which are responsible for the extremely high
polarizability of the material. This inference agrees
well with the structural data obtained in [17] for PKR-
7M, according to which the cubic phase and the so-
called secondary phase composed of an aggregate of
polar microregions coexist in the temperature range
from T, to temperatures more than 100 K abovethe T,
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point. In the present work, the high polarizability of the
systemat T > T, can be judged from the behavior of the

reverse dependences ¢, (E.) at temperatures that corre-
spond to the appearance of a pronounced nonlinearity
in the curve ¢, (E.) at certain fields E. = Ejq. AS is
clearly seen from the temperature dependence E;4(T)
plotted in Fig. 1 (curve 2), the field E;4 increases with
anincrease in the temperature. In our opinion, thisfield
represents an induction field in which the macroscopi-
cally polar phase isinduced from the nonpolar phasein
much the same manner asin relaxors.

Therefore, unlike the aforementioned relaxors with
a sole strongly smeared phase transition [2, 7, 10], in
the piezoelectric ceramics, we deal with two smeared
phase transitions: one transition occurs in the vicinity
of the temperature T, and is associated with the coexist-
ence of two ferroel ectric phases, and the other (conven-
tional) transition is observed in the vicinity of T, Note
that the temperature T, for the piezoelectric ceramics
under investigation can, to some extent, characterize
the mean temperature of the high-temperature smeared
phase transition.

The assumption that the piezoelectric ceramics
undergoes two phase transitions can be confirmed, in
particular, by the behavior of the dependence EL(T)
(Fig. 1, curve 1). It is seen from Fig. 1 that this depen-
dence at temperatures T, and T,,, exhibits clearly defined
steps, which, asarule, are observed upon phase transi-
tions[14].

Theresults of investigationsinto theinfluence of the
sample prehistory on the polarization and depolariza-
tion currents in the piezoel ectric ceramics (Fig. 2) aso
indicate that this material can undergo two smeared
phase transitions. Asis clearly seen from Figs. 2b—2d,
the long-term ageing (like the application to the field)
leads to the appearance of two anomaliesin the form of
maxima in the curve I(T); more specifically, one maxi-
mum is observed in the vicinity of the temperature T
and the other maximum is located in the vicinity of the
temperature T = T, determined at afrequency of 1 kHz.
It should be noted that, in the case of preliminary ther-
mal annealing, the maximum in the dependence I(T) is
observed only at a temperature T = Tiy; ) (Fig. 28).
Similar results were obtained in our recent studies on
electric currentsin different ferroel ectric ceramics with
smeared phase transitions, namely, in PLZT-8/65/35,
lead barium scandium niobate (PBSN-4) [21, 22], and
SBN-75 single crystals [23]. In these works, the above
behavior of the dependence I(T) was explained by the
fact that, in the course of ageing, specific polar clusters
(microelectrets [24, 25] or the so-called tweed struc-
tures [26]) are formed over a wide range of smeared
phase transition temperatures. Most likely, these clus-
ters are typical of heterogeneous structures, i.e., the
structures characterized by the coexistence of different
phases. This is particularly supported by the fact that
structures of the tweed type were found for the first
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Fig. 2. Temperature dependences of (a—d) the current I(T) and (€) the maximum polarization Py, (T) for the multicomponent fer-
ropiezoel ectric ceramics based on lead zirconate titanate. The currents are measured upon heating of samples with different prehis-
tories: (8) after annealing for 1 h at T > T,;, and cooling to room temperature (T,), (b) after annealing at T > T,,, and ageing for one
month at T, without preliminary polarization, (c) after cooling of the sample from T > T, to T, in the dc electric field E- =
2.23 kV/cm, and (d) after cooling of the samplefrom T > T, to T, in the dc electric field E- = —4.46 kV/cm. The polarizations Py,
are determined according to the data taken from [4] on polarization loops measured at a frequency of 0.1 Hz and different fields E,
V/em: (1) 1730, (2) 3400, (3) 4243, (4) 5072, (5) 5937, (6) 6785, and (7) 8412.

time in martensitic materials (see, for example, [27]).
The coexistence of the polar and nonpolar phases over
a very wide range of temperatures (down to liquid-
helium temperature) is characteristic of the aforemen-
tioned ferroel ectric materials with smeared phase tran-
sitions. In our case (piezoelectric ceramics), two differ-
ent polar phases coexist in the vicinity of the tempera-
ture T,. This can result in the formation of mesoscopic
structures, such as microdlectrets, fractal clusters,
tweeds, etc. In turn, the formation of these structures
can be attended by an increase in the internal electric
fields inducing self-polarization processes. The fact
that, during ageing, the thermally annealed piezoelec-
tric ceramic sample becomes partially unipolar due to
the induction of considerable internal fields is con-
firmed by the qualitative similarity of the behavior of
the currentsin this sample and the sample preliminarily
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polarized in an external electric field (Figs. 2c, 2d).
Although the currentsin the latter case are several times
heavier, they are comparable to those in the aged sam-
ple. In our opinion, this could indicate that the internal
fieldsinduced in the material during ageing are compa-
rable to the fields generated as a result of polarization
in an external field.

Therefore, we can state that the anomalies observed
inthe current inthetemperaturerange T = T, upon heat-
ing of the polarized or aged sample are caused by the
change in the polarization state of the material due to
the phase transition. This inference is supported by the
behavior of the temperature dependences of the maxi-
mum polarization P, (T) for the given piezoelectric
ceramics (Fig. 2e). The polarizations P, were deter-
mined according to the datataken from our earlier work
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[4], in which we analyzed the temperature evolution of
the polarization loops at different frequencies and
amplitudes of the measuring field (the polarizations
P, & afrequency of 0.1 Hz are presented in Fig. 2€).

It can be seen from Fig. 2e that certain of the depen-
dences P, (T) are characterized by a temperature
range (433463 K) in which the anomalies manifest
themselvesin the form of local minimaor plateaus. The
temperature that corresponds to the beginning of the
steepest decrease (step) in the polarization P, (T) vir-
tually coincides with the temperature at which the cur-
rent I(T) noticeably increasesin therange T < T4 The
second (high-temperature) step in the dependence
Pax(T) isobserved in the vicinity of the high-tempera-
ture maximum in the dependence I(T) (i.e, a T =
T khz)- 1t should be emphasized that the current was
measured under dynamic conditions upon heating at
the rate V; = 1 K/min, whereas the polarization P, (T)
was determined under quasi-static conditions (the rate
was decreased to 0.1 K/min in measurements of the
polarization loop family at a specified temperature [4]).
It is quite possible that thisisthe reason for the shift of
both the low-temperature and high-temperature max-
ima in the dependence I(T) toward the high-tempera-
ture range with respect to the temperatures of the steps
in the curves P, »(T). Indeed, it iswell known (see, for
example, [28]) that the heating rate substantially affects
not only the magnitude of the current but also the posi-
tion of the maximum in the dependence I(T) [the higher
the heating rate, the higher the temperature of the max-
imum in the curve I(T)].

At the sametime, it should be noted that an increase
in the field amplitude E, in measurements of the polar-
ization loops leads to a considerable increase in the
maximum polarization P,,(T). The polarization
P.(T) in the temperature range of the plateau
increases more rapidly compared to that in the range of
the high-temperature step. As a consequence, the local
minimum or the plateau in the dependence P, .(T)
gradually disappears in the strongest fields. Specifi-
cally, only the high-temperature step and one very
smeared maximum can be distinguished in curve 7
(Fig. 2e). Thisincreasein the polarization P, (T) with
an increase in the amplitude E; is governed primarily
by the dynamics of domain and interphase boundaries
inthe course of polarization and polarization switching.
A similar inference was made in our earlier work [29],
in which we investigated the PZT germanium-doped
multicomponent ferroelectric ceramics related to the
material studied in the present work. In[29], it wasa so
established that the positions of plateaus or additional
maximain the temperature dependences of the effective

permittivity &% (T) = P(T)/E, substantially depend on
both the field E; and the measurement conditions (heat-
ing—cooling). For example, the temperature hysteresis
of the effective permittivity €%; (T) inthevicinity of the
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low-temperature anomaly of €% (T) reached as high as
10 K, whereas the high-temperature maximum of
€5 (T) shifted by no more than 5 K.

Therefore, the data obtained in the present work,
together with the results of other studies concerning
multicomponent systems based on |ead zirconate titan-
ate, allow usto make the inference that the specific fea
tures revealed in the dielectric and polarization charac-
teristics of the piezoelectric ceramics in the vicinity of
the depolarization temperature T, are associated with
the phase transformation. Since the hypothetical struc-
tural phase transformation is a transition between two
ferroelectric phases, the domain structure also under-
goes transformation (we emphasize that this structure
does not disappear, as is the case with relaxors at the
temperature Ty). On the other hand, as was noted by
Isupov [30], therole played by the ceramic nature of the
material under investigation (grain misorientation,
spread in composition, etc.) in the electrical properties
cannot be ruled out.

4. CONCLUSIONS

Thus, the results of our investigation can be summa-
rized asfollows.

(1) It is established that, in bias fields E- > E_, the
reverse dependences ¢, (E-) for the multicomponent
ferropiezoelectric ceramics based on lead zirconate
titanate exhibit local minima due to piezoelectric
clamping of antiparallel domains. These minima are
observed in the entire temperature range, except for the
temperatures closeto Ty and T,

(2) The anomalies of the polarization and depolar-
ization currents arerevealed at T= Tyand T= T,,,. The
character of the anomalies observed in the currents at
T =Ty isessentially dependent on the prehistory of the
material.

(3) The assumption is made that the ferroelectric
ceramics studied undergo two smeared phase transi-
tions. One (low-temperature) transition occurs in the
vicinity of T = T4 and represents the transition between
two ferroelectric phases. The other (high-temperature)
transition observed in thevicinity of thetemperature T,,,
at amaximum of the permittivity is the transition from
the ferroelectric phase to the superparaelectric
(pseudocubic) phase.
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Abstract—The influence of domain reorientations on the piezoresistivity of polycrystalline ferroelectric semi-
conductors under mechanical stressesisinvestigated. It is demonstrated that the inclusion of 90° domain reori-
entations in the analysis of the potential barriers formed at the grain boundaries leads to correct determination
of the magnitude and sign (positive under compression and negative under tension) of the piezoresistive coef-

ficientsfor BaTiO,. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Polycrystalline ferroelectric semiconductors that
exhibit the so-called effect of the positive temperature
coefficient of resistance, or the posistor effect (i.e., a
drastic increase in the electrical resistance R upon tran-
sition from a ferroelectric state to a paraglectric state),
also manifest the piezoresistive effect (pressure depen-
dence of the resistance R) [1]. The piezoresistive effect
is characterized by the piezoresistive coefficient 11 =
(YR)(0R/00), where 0 is the mechanical stress. For
polycrystalline ferroelectric  semiconductors, the
piezoresistive coefficient 11 substantially increases (to
10% cm?/MN) at temperatures close to the ferroel ectric—
paraelectric phase transition temperature T, [1] as com-
pared to the coefficients 1t for other materials. For
example, the piezoresistive coefficient Ttfor germanium
and silicon at 20°C does not exceed 10 cm?MN and
decreases proportionaly to T [2]. Capurso and
Schulze [3] noted that, for polycrystalline ferroelectric
semiconductors, the piezoresistive coefficient mea-
sured along the compression axis over the entire tem-
perature range under investigation satisfies the condi-
tion t= 1, > 0 (Fig. 1a, curve 1). Guntersdorfer and
Heywang [4] reveaed that, at higher applied pressures,
the coefficient 11, changes sign with variations in the
temperature (Fig. 1b). A similar inversion of the sign of
the piezoresistive coefficient 1T measured along the
compression axis was observed by Gurevich [5]. It was
found that the piezoresi stive coefficient measured along
the tension axis has negative sign: 1= 14 < 0 [5]
(Fig. 1a, curve 2); the same sign of the coefficient Tt
measured normally to the compression axisis observed
for polycrystalline ferroelectric semiconductors under
uniaxial compression [5]. As was shown in [3], a
decrease in the posistor effect of polycrystalline ferro-
electric semiconductorsis attended by adecreasein the
piezoresistivity at temperatures closeto the T, point. In
[6-8], the behavior of the piezoresistive coefficient Ttin
the paraelectric phase was satisfactorily described in

the framework of the Heywang model [9] and the ther-
modynamic theory of ferroelectricity [10]. However,
the temperature behavior of the piezoresistive coeffi-
cient 1T in the ferroelectric phase, i.e., the drastic
increase in the value of 1 as the temperature T, is

I (a)
400 1
Z
P
Pl 0 | | | )
E 230 220 —100\0 10— 120
E T-T.,K
2
400 -
40 - (b)
z
=
Pea 0 1 1 1 1 )
E —40 -20 0 20 40 60
E T-T. K

—40

Fig. 1. Typical temperature dependences of the piezoresis-
tive coefficients 1t for BaTiOz under (a) (1) uniaxial com-
pression and (2) uniaxial tension at ¢ = 10 MPa[3] and (b)
uniaxial compression at 0 = 25 MPa[4].

1063-7834/02/4409-1748%22.00 © 2002 MAIK “Nauka/ Interperiodica’
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approached (Fig. 1a), has defied explanation in terms of
the Heywang model [9]. In our earlier work [11], we
found experimentally that the domain reorientations
have an extremely strong effect on the resistance R of
polycrystalline ferroelectric semiconductors. In this
respect, the purpose of the present work was to analyze
theoretically how the transformation of the domain
structure under external mechanical stresses affects the
piezoresistive coefficient Tt

2. DESCRIPTION OF THE MODEL

For polycrystalline ferroelectric semiconductors,
the resistance R is determined primarily by potential
barriers formed at the grain boundaries owing to local-
ized charged states of the acceptor type with the num-
ber density Ny and activation energy E¢[9]. Theresistiv-
ity p of acrystal grain at small strengths of an external
field inducing an electric current can be represented by
the relationship

oA 9%
P = GNkTpd P kT &)

Here, ¢, isthe potential ¢ at the grain boundary, [ isthe
mobility of free charge carriers, g is the elementary
charge, Ny is the number density of donors with alow
activation energy, k is the Boltzmann constant, T is the
temperature, d is the crystal grain size, and |, is the
thickness of the Schottky region, whose depletion in
mobile charge carriers leads to compl ete neutralization
of the surface charge at the grain boundary. The system
of equations for determining the potentia ¢, involves

9 =-E, ()]
g,0E = Q-0OP, 3

aNs
1+ exp[(Er—Es+qdo)/kT]

and the equation of state of the polarization P. The last
equation takes into account the influence of an electric
field of the charged grain boundary and can be derived
from the minimum condition for the elastic thermody-
namic potential ®, which can be written in the follow-
ing form [8-10, 12]:

1.Q = an, = (4)

® = Ja(P;+PE+PE) + 7By (Pi+ Pi+PY)
+ Bo(PEPS+ P3PS + PEPE) + Sy, (PS+ P + PY)

+Y,(P1(P3+ P3) + P3(P} + P3) + P3(P% + P))
+Y3PiP3P3— (E; Py + E,P, + E5P5) (5)
- qll(o-lpi + Gng + 03P§) - Chz(Ul(P; + P;)
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+0,(P; + P3) + 05(P; + P3))
—044(0,P,P3 + 05P,P3 + 05P1 P,).

Here, Q is the space-charge density in the Schottky
region, Eistheelectricfield strength, g, isthedielectric
constant, ng isthe density of filled localized states at the
grain boundary, and E is the Fermi energy. For donor
states with a low activation energy, the space-charge
density is determined as Q = gNj.

The potentia barrier height q¢, depends on the
degree of screening of localized charged states. The
screening is provided both by conduction electrons
with the number density N4 and through the response of
the ferroelectric system. Thelow resigtivity p in thefer-
roelectric phase, as compared to that in the paraelectric
phase, indicates the important role played by screening
processes due to the existence of the order parameter
(the spontaneous polarization Py and states corre-
sponding to different directions of the spontaneous
polarization Pgin the ferroel ectric phase. Thetransition
from one state to another (i.e., the polarization switch-
ing initiated by an external action, namely, the electric
field E, at the grain boundary) brings about the forma-
tion of an antiparallel domain with a zigzag domain
wall [12]. Within this domain wall, the fields induced
by a change in the direction of the polarization P and
those created by the response of the electronic sub-
system of the Schottky region, for the most part, com-
pensate each other. Consequently, the resultant field is
determined by thermoactivated processes responsible
for changes in the direction of the spontaneous polar-
ization P, and is equal to the coercive field. After com-
plete polarization switching, polarization occurs in
fields whose strength is appreciably larger than that of
the coercive field, because the polarization processes,
unlike the polarization switching, are not attended by a
thermoactivated transformation of the domain structure
[12]. The posistor effect is observed in the case when
the thickness | of the Schottky region does not exceed
the size of the polarization switching region. In the fer-
roelectric state, the potential ¢, is predominantly gov-
erned by the polarization switching and, at the same
direction of the spontaneous polarization P, in crystal
grains with respect to their boundaries, can be approxi-
mated by the relationship

NSE.

Ng
Here, E, isthe coercive field in which the spontaneous
polarization P, changes its direction due to thermoacti-
vated processes[12]. The number density N, is constant
for a particular composition of the material. The coer-
civefield E; depends on the orientation of the spontane-
ous polarization Py of the domains with respect to the

grain boundaries, because this field is determined by
the difference between the depths of the potential wells

bo=lEc= (6)
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Fig. 2. Schematic representation of (a) the orientations of
the spontaneous polarization Pg and the electric field E,

(arrows) with respect to the grain boundary (solid lines) and
the Schottky region boundary (dotted lines) and (b) the ori-
entations of the polarization Pg (arrows) in the bulk of adja-

cent crystal grains with respect to the grain boundary (solid
lines).

for the statesinvolved in the phase transition [12]. Spe-
cifically, for thetetragonal phase, the coercivefield E; =
E.150 @ a 180° reorientation of the spontaneous polar-
ization Py is equal to half the field E, = E o, a a 90°
reorientation of the polarization P, even though the
mechanical clamping of the domains upon 90° reorien-
tation is disregarded. Therefore, the potential barrier
gd, depends on the mutual orientation of the spontane-
ous polarization P, in the bulk of the adjacent crystal
grains and on the electric field E, induced by localized
charged states at the grain boundaries. In particular, the
potentia barrier g, for the antiparallel orientation of
P, and E, islessthan that for the perpendicular orienta-
tion. As a result, the resistance R for charge transfer
through the boundary of crystal grainswith the sponta-
neous polarization P, of configuration | (Fig. 2a) isless
than that of configuration I1. Note that crystal grainsin
anonpolarized stress-free state have acomplex domain
structure. Let us now consider a ferroelectric placed in

Calculated resistivities p at the boundaries of crystal grains
with different configurations of the orientations of the spon-
taneous polarization P (Fig. 2b)

Configuration no. pi, Qcm n
1 116 1

2 9 x 10° 1

3 3.3x 104 2

4 512 8

5 8.3x10° 8

6,7 10° 16
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arectangular system of coordinates. It is assumed that,
in the ferroel ectric under consideration, an electric cur-
rent flows along the OY axis and a grain boundary
(across which the current flows) lies in the XOZ plane.
The main configurations that characterize the orienta-
tion of the spontaneous polarization P, in adjacent crys-
tal grains in the YOX plane are depicted in Fig. 2b.
Moreover, proper alowance must be made for equiva
lent configurations (with respect to the potential barrier
height) obtained from different combinations of rota-
tions of configurations 3—7 (Fig. 2b) about the OX axis
through an angle of 180° and about the OY axisthrough
anglesof 90°, 180°, and 270°. From relationships (1)—<5),
we calculated the resistivities of BaTiO; crystal grains
with potential barriers corresponding to different con-
figurations with the following parameters: d = 5 x
103 em[3], Ny=3x 10" cm?, E;=0.9€eV [9], Ny =4 x
10Y cmr3, Eygo =480V cm™ [10], p=0.5cm?V1st
[13], and T = T, — 5 K. The results of these calculations
are presented in the table (nis the number of equivalent
configurations). The required coefficients of the ther-
modynamic potential (5) used to determine the polar-
ization P were taken from [10]. The number densities
N, and N, were determined by the best fitting of the cal-
culated results to the experimental data obtained by
Capurso and Schulze [3]. In this case, the constraints
providing the validity of relationship (6) are satisfied. It
should be noted that, in the nonpolarized stress-free
state, all the configurations are equally probable and the
resistivity p is inversely proportiona to the electrical
conductivity to which each configuration (Fig. 2b, con-
figurations 1—7) makes a contribution proportional to n.
Hence, the resigtivity p of the ferroelectric tetragonal
phase in the stress-free state can be represented by the
expression

p = (p1 +8ps)/36, (7

where p, and p, are the lowest resistivities for domain
configurations shown in Fig. 2b.

According to Subbarao et al. [14], the application of
the uniaxial stress ¢ brings about 90° rotations of the
spontaneous polarization P, of the domains involved.
The most intensive rotations are observed in the phase
transition range in which the degree of tetragonality of
the crystal lattice decreases significantly. Let A be the
fraction of domainsin which 90° rotations of the polar-
ization P occur under pressure (0 < A < 1). For small
fractions A, simultaneous rotations of the polarization
Ps in adjacent domains involved in configurations 1-7
(Fig. 2b) are improbable; hence, the change in the con-
tribution of each configuration to the conductivity is
proportional to A. With due regard for the data pre-
sented in the table, the resistivities of the ferroelectric
tetragonal phase under uniaxial compression (p,) and
uniaxial tension (p,) can be written as

pe' = p—A(p; +2p,)/18, (8)
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Pl = p+ AL +2p5)/9. (9)

Within the proposed model, the appropriate trans-
formation of therelationship t= (p, —p)(po) (where p,
and p aretheresistivities under mechanical stressesand
inthe stress-free state, respectively) givesthefollowing
formulasfor describing the piezoresistivity in theferro-
electric tetragonal phase:

A

T, = (K= A)’ (10)
-1, 8 -1
Ko = 220 (11)
2(p; +2p,)
for uniaxial compression and
A
= —— 12
U (K A) (12)
_1+8 -1
K = TP (13)
4(p, +2p,)

for uniaxial tension along the direction of the electric
current.

3. COMPUTATIONAL RESULTS

In our calculations, we used relationships (10) and
(11) and the experimental x-ray diffraction data on the
degree of 90° domain reorientation under pressure in
the tetragonal phase of the barium titanate ferroelectric
ceramics at temperatures far from the phase transition
range (A=0.2a o 035 MPaand T = 20°C) [14] and
obtained the piezoresistive coefficient T, ~ 190 c?/MN
for BaTiOs. Thisvalueisin reasonable agreement with
the experimental piezoresistive coefficient T ¢, ~
200 cm?/MN determined for barium titanate ferroelec-
tric ceramicsat T = 20°C in [1]. According to formulas
(10)—«(13), wehavet,> 0, ;. < 0, and 11, > 11, Wwhich also
agrees well with the experimental data obtained in [3]
(Fig. 1a). A comparison with the experimental data at
0 = 10 MPaleads to the following estimates: A= 0.3
O4aT=T,andA=006a T=T.-5K. Figure 3a
shows the calculated dependences of the piezoresistive
coefficient ton thefraction Afor BaTiOz at 0 =10 MPa
and T = T, — 5 K. The calculated temperature depen-
dences of the coefficient tat 0 = 10 MPaare plotted in
Fig. 3b. The numerical calculations were performed
with fractionsA=0.4a T =T, and A= 0.06 at temper-
atures below T. For temperatures corresponding to the
paraelectric phase, the piezoresistive coefficient Ttwas
calculated using relationships (1)—(5). As can be seen
from Figs. 1 and 3, our theoretical results (Fig. 3b) are
in qualitative agreement with the experimental data
(Fig. 1a). Therefore, the proposed model can beusedin
a more detailed analysis of the factors responsible for
the piezoresistivity.
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Fig. 3. Calculated dependences of the piezoresistive coeffi-
cient Tton (a) the fraction of domainsAat T=T,—5K and

(b) the temperature T under (1) uniaxial compression and
(2) uniaxial tension at 0 = 10 MPa.

Let us now analyze how the uniaxial compression
and uniaxia tension along the direction of the electric
current affect the electrical resistance of the ferroelec-
tric tetragonal phase. Under compression, 90° rotations
of the polarization P, occur in domains at the boundary
specifying the barrier to electric current. Thisleadsto a
decreasein thefraction of configurations 1 and 4 and an
increase in the fraction of configurations 6 and 7
(Fig. 2b). As a result, we have p. < p and 1. > O
(Figs. 1a, 3b, curves 1) because of thelow values of qo,
for configurations 1 and 4 and high values of q¢, for
configurations 6 and 7 (see table). The opposite situa-
tion occurs under uniaxial tension along the direction of
the electric current; in this case, we obtain p; < p and
. < 0 (Figs. 1a, 3b, curves 2). The same effect is
observed under uniaxial compression in adirection per-
pendicular to the direction of the electric current. Now,
we consider the influence of uniaxial compression and
uniaxial tension along the direction of the electric cur-
rent on the electrical resistance of the paraelectric
phase. In the parael ectric phase, the spontaneous polar-
ization in the bulk of crystal grainsis absent; i.e., P, =
0. However, the ferroelectric polarization can be
induced in the Schottky region by the electric field of
grain boundariesat E > Ej; [portions A B; (i =1, 2, 3) in
Fig. 4]. This polarization contributes to the screening of
the potentia barrier. The compression hinders induc-
tion of the polarization along the compression direction
by the electric field of grain boundaries, because the
field Ey; of the transition to the induced ferroelectric
state (Fig. 4, curve 3) isstronger than thefield Ej, inthe
absence of mechanical stresses (Fig. 4, curve 2). Con-
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Fig. 4. Dependences of the polarization P on the electric
field strength E: (1) uniaxial tension at o = 10 MPa, (2) the
stress-free state, and (3) uniaxial compression at ¢ =
10MPa T=T,+5K.

2 1 1 1 J
-10 -5 0 5 10
T-T.,K
8001
(b)
7 400
2
NE —/\
o
E oo : I : '
-10 -5 (v) 5 10
—400%-
T-T.,K

Fig. 5. (a) Calculated temperature dependences of theresis-
tivity p (1) in the stress-free state and (2) under uniaxial
compression at o = 30 MPaand (b) the calculated tempera-
ture dependence of the piezoresistive coefficient 1T under
uniaxial compression at 0 = 30 MPa.

sequently, the degree of screening of the potential bar-
rier decreases under uniaxial compression and 1, > 0
(Fig. 1a, curve 1). The tension in the parael ectric phase
facilitates induction of the polarization along the ten-
sion direction by the electric field of grain boundaries,
because thefield E,, of thetransition to theinduced fer-
roelectric state (Fig. 4, curve 1) isweaker than thefield
Eg. Therefore, under uniaxia tension, the degree of
screening of the potential barriers along the direction of
the electric current increases and 1, < 0 (Figs. 1a, 3b,
curves 2).

In polycrystalline ferroelectrics, the uniaxial com-
pression affectsthe crystal grain volume and leadsto an
increase in the temperature T, by AT.. As a conse-
guence, in the limited temperature range T O (T, T, +
AT,), the resistivity p. (Fig. 5a, curve 2) appears to be
lessthan the resistivity p of the paraelectric phasein the
stress-free state (Fig. 5a, curve 1); hence, we have Tt <
0 (Fig. Bb). A theoretical estimate in terms of the ther-
modynamic potential (5) for uniaxial compression at
high pressures (o = 30 MPa) gives AT, = 21 K. This
value considerably exceeds AT, = 0.5 K, which is cal-
culated from the relationship AT, = 3.31 x 10g
obtained experimentaly in [1]. This difference can be
explained by ignoring the mechanical clamping of
domains in the theoretical estimate. In our calculations
of the resistivity p, and the piezoresistive coefficient 11,
for uniaxial compression at 0 = 30 MPa, we used the
experimental value AT.. The results of these calcula-
tions are displayed in Fig. 5. The temperature depen-
dence of the coefficient 11, a high pressures (=30 M Pa)
exhibits complex behavior (Figs. 1b, 5b). For the ferro-
electric phase at temperatures far from the temperature
T, the change in the direction of the spontaneous polar-
ization P under uniaxial compression resultsin a posi-
tive piezoresistive coefficient (1. > 0). In the phase tran-
sition range, an increase in the temperature T, under
compression leads to a change in the sign of the
piezoresistive coefficient (1, < 0). In the paraelectric
phase, the compression hinders the polarization and,
correspondingly, the screening of the potential barriers
along the direction of the el ectric current; consequently,
the piezoresistive coefficient is positive (11, > 0). Since
AT, issmall at pressures <10 MPa and the resistance R
increases gradually, no inversion of the sign of the coef-
ficient 1, occursin thevicinity of T, and 1. > 0 over the
entire temperature range (Figs. 1a, 3b, curves 1). The
uniaxial tension affects the crystal grain volume and
leads to an increasein the temperature T, for configura:
tion 1 (Fig. 2b), providing the best screening of the
potential barriers aong the direction of the electric cur-
rent; hence, we have p; < p. As aresult, under uniaxial
tension, the negative piezoresistive coefficient (13 < 0)
is observed over the entire ranges of temperatures and
pressures (Figs. 1a, 3b, curves 2).
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4. CONCLUSIONS

Thus, it has been demonstrated that, in polycrystal-
line ferroelectric semiconductors, the resistivity and the
order parameter (P are affected by the same factors,
because the screening of the potential barriers induced
by charged grain boundaries is governed, to a large
extent, by local perturbations of the spontaneous polar-
ization P, [12]. Consequently, the resistivity appearsto
be sensitive to external mechanical stresses due to both
transformation of the domain structure under stresses
and changes in the temperature range of the existence
of the order parameter. In the case when the direction of
the spontaneous polarization P, in adjacent crystal
grains is opposite to the direction of the electric field
induced by the boundaries of these grains, the potential
barrier heights are less than those in the case when
these directions are perpendicular to each other.

As aresult, 90° rotations of the polarization P, in a
number of domains under external uniaxial mechanical
stresses lead to an increase in the electrical resistance R
aong the compression axis, whereas the electrical
resistance along the tension axis decreases; moreove,
the piezoresi stive coefficient provesto be dependent on
the degree of transformation of the domain structure.
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Abstract—The optical properties of Pby geBag 04S¢0 5Nbg 503 (PBSN-4) and Pby g4Bag 06SCq sNbg 05 (PBSN-
6) single-crystal solid solutions were studied for the first time. It was shown that the spontaneous phase transi-
tion occurring in PBSN-4 with no electric field present is accompanied by a sharp minimum in optical trans-
mission, which indicates the percolation nature of the transition. No sharp changes were observed in the tem-
perature dependence of optical transmission in PBSN-6 single crystalswith no electric field applied. However,
avery weak electric field, ~0.4 kV/cm, is sufficient to induce the ferroelectric state in PBSN-6 single crystals.
It was shown that the destruction of the induced ferroelectric state is a first-order phase transition which is
accompanied by an anomalously narrow peak in the small-angle light scattering intensity (or by a minimum in
optical transmission) and occurs through the percolation mechanism. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The properties of compositionally ordered ferro-
electrics, to which PbB},, Bj, Ostype compounds

belong (where B' stands for Sc and B" stands for Nb,
Ta), have recently attracted the increasing interest of
researchers. This may be attributed primarily to the
observation that the properties of these substances can
change from those characteristic of normal ferroelec-
trics to relaxor properties without a change in their
chemical composition. As a result of a high-tempera-
ture phase transition of the order—disorder typein the B'
and B" ion distribution over equivalent crystallographic
positions, the degree of order (s) of the B' and B" ions
in acompound can be different, depending on the actual
thermal treatment of the samples or the growth temper-
ature regime chosen [1, 2]. The lead scandiumniobate
PbSc,,Nb,,0; (PSN) single crystals belong to this
class. Crystals with long-range order (s= 1) undergo a
sharp phase transition and do not exhibit the main fea-
tures inherent in relaxor compounds. When the crystal
isinadisordered state (s — 0), theferroelectric phase
transition becomes diffuse, but even in this case, a
spontaneous phase transition from the relaxor (micro-
domain) to a macrodomain ferroelectric state takes
place below the temperature at which the dielectric per-
mittivity € is maximum. This spontaneous transition is
identified with a jump in the temperature dependence
€(T) [3] and with a small-angle light scattering (SAS)
peak, which indicates the percolation nature of the
phase transition [4, 5]. The relaxor state in partialy
ordered compounds (0 < s< 1) existsin afairly broad
temperature region, thus offering aunique possibility to
follow the relation between the conventional ferroelec-

tric and the relaxor behavior in one and the same com-
pound, both in zero electric field and under the action
of an external factor.

However, obtainment of a stable relaxor state simi-
lar to that observed in lead magnesiumniobate (PMN),
a classical relaxor, has not been successful even with
the Sc3* and Nb°* ions arranged in total disorder [6].
For a stable relaxor behavior to set in, the lattice must
be additionally disordered. By increasing the lead
vacancy concentration in ceramic PSN samples from a
nominal level of 0.2-0.5 to 1.4-2 at. %, a quenched
relaxor state can seemingly be reached. However, a
spontaneous phase transition, although strongly dif-
fused, does occur [6]. It remains unclear at what defect
concentration the relaxor state can be quenched.

To enhance the relaxor properties in the PSN
ceramic, an attempt was madein [7, 8] to partially sub-
dtitute isovalent Baionsfor the Pbions. The motivation
was asfollows: (i) in the case of a partial substitution of
barium for lead, the concentration and uniformity of
distribution of isovalent impurities is easier to control
than in the case of lead vacancies, and (ii) it may be
expected that as the barium content is increased, the
stability of the relaxor state in PSN will gradually
increase up to total quenching of this state.

Performing such studies on ceramic sampleswith dif-
ferent barium contents has met with obstacles because of
the difficulties in obtaining Pb; _ ,BaScysNbys0;
(PBSN) equilibrium solid solutions; these difficulties
stem from the PSN and BaSc, sNb, ;05 (BSN) having
substantialy different reactivities [9]. This difficulty
was overcome by growing single-crystal samples of the
P, _,B,SN solid solutions (0 < x < 0.58) [10, 11]. The

1063-7834/02/4409-1754%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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temperature dependence of € of crystals with 0 < x <
0.04 was found to exhibit, dlightly below the tempera-
ture at which the permittivity is maximum, a spontane-
ous phase transition from the relaxor to a macrodomain
state, in which the features of both the normal ferro-
electric and therelaxor behavior areretained. The spon-
taneous phase transition becomes manifest asajumpin
€ and the onset of birefringence [11]. Crystals with x >
0.08 exhibited a typically relaxor behavior. Crystals
with x = 0.06 (PBSN-6) were assigned a particular
place. These crystals occupied an intermediate position
between crystals with normal ferroelectric properties
(low barium content) and high-Ba-content compounds
possessing typical relaxor properties. As a result,
PBSN-6 crystals had a low enough threshold field to
allow transition to the macrodomain ferroelectric state
[12]. It is such compounds with a low threshold field
that are most interesting from the standpoint of study-
ing the effect of a static electric field on the dielectric
and optical properties, because the field will affect the
relaxor properties and the character of the spontaneous
ferroelectric transition differently. The temperature
dependences of the dielectric permittivity of PBSN-4 (x
= 0.04) and PBSN-6 single crystals and the effect of a
static electric field on these dependence were studied in
[11, 12]. The observed anomalies were not always dis-
tinct enough, which made their experimental detection
difficult.

Optical methods, more specifically, optical trans-
mission and SAS, are more sensitive in studying the
processes occurring in phase transitions. These meth-
ods were employed by us to advantage in investigating
the spontaneous ferroelectric phase transition in PSN
and PST crystals[5, 13, 14] and theinduced phase tran-
sition in the PMN and PZN relaxors [15]. The temper-
ature dependence of the SASintensity measured on sto-
ichiometric PST and PSN crystals with different
extents of ionic disorder exhibited a narrow peak at the
temperature of the spontaneous ferroelectric phase
transition in the absence of an electric field; inthe PMN
crystals, a narrow SAS peak was found to exist only
with an éectric field applied. If the phase transition is
of the percolation type, then the average size of the
new-phase cluster at the percolation threshold
approaches the side of the sample and a large-scale
nonuniform structure forms; in this case, the phase
transition should be accompanied by the appearance of
anomalously narrow SAS peaks and, hence, of a mini-
mum in optical absorption. The presence of peaksinthe
temperature dependence of the SAS intensity indicates
a percolation character of the transition between the
relaxor and ferroelectric states. A theoretical descrip-
tion of anomalouslight scattering in the vicinity of first-
and second-order phase-transition temperatures in
crystals with large-scale inhomogeneities can be found
in[16].

The purpose of this study was to investigate the
effect of astatic electric field on the behavior of thefer-
roelectric and relaxor states in single crystals of both
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PBSN-6 (in which a weak electric field is needed to
induce a ferroelectric phase transition) and PBSN-4
(which exhibits a ferroelectric phase transition and
relaxor behavior even in the absence of an electric
field).

2. SINGLE-CRYSTAL GROWTH
AND EXPERIMENTAL TECHNIQUE

PBSN-4 and PBSN-6 single crystals were grown by
mass crystallization. The growth technique used and
the x-ray and dielectric studies of these crystals were
described in [10, 11]. The crystal samples, 0.3- to
0.8-mm thick plates with [100] faces, were transparent
and yellowish in color. All measurements were carried
out on samples that were not subjected to mechanical
processing. A static electric field was applied in the
[100] direction, and light was propagated along [001].
The electric field was applied in various regimes,
namely, field-heating after field-cooling (FHaFC) and
field-heating after zero-field-cooling (FHazZFC). After
each field application, the subsequent measurement
was preceded by annealing of the sample at 500°C for
an hour. To obtain reproducible results and to avoid
dielectric ageing (an effect observed in PBSN-6 crys-
tals[11]), the dielectric and optical measurements were
performed directly following the sample annealing. We
studied optical transmission and SAS, which was mea-
sured in the transmission geometry [17]. The optical
measurements were made with a He-Ne laser. The
dielectric measurementswere carried out at afrequency
of 1 kHz. The sample temperature variation rate was
1.5t0 4.5°C/min.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 1 presents temperature dependences of the
dielectric permittivity and optical transmission
obtained on PBSN-4 single crystals under heating and
cooling with no electric field applied. When the sample
is heated, optical transmission curve 2 clearly shows a
minimum at a temperature ~52°C, whereas curve 1
exhibits only afast rise (jJump) in € at this temperature
(Ty), which is the point of spontaneous phase transition
from the macrodomain to relaxor state [11]. Asfollows
from [11], PBSN-4 crystals exhibit frequency disper-
sion of € and an increase in the temperature of the per-
mittivity maximum with increasing measurement field

frequency. Unlike T, _, the temperature position of the

jumpin € isvirtually frequency-independent. The non-
relaxation character of the spontaneous transition is
supported by our optical and dielectric measurements,
more specifically, by the coincidence between the min-
imum-transmission temperature T, at zero field fre-
guency and the fast rise in € at T, at a frequency of
1 kHz. The minimum in optical transmission (or the
maximum in SAYS) indicates the formation of a large-
scal e inhomogeneous structure at this temperature and
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Fig. 1. Temperature dependences of (1, 1) dielectric permittivity and (2, 2) optical transmission obtained on single-crystal PBSN-

4 under (1, 2) heating and (1, 2') cooling.

the onset of a spontaneous percol ation-type phase tran-
sition. Thetemperature hysteresis of ~13°C observed in
the optical and dielectric measurements (Fig. 1) is one
of the main features of a first-order phase transition.
Thetemperature of the spontaneoustransition is~20°C
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Fig. 2. Temperature dependences of (1, 3) optical transmis-
sion and (2) dielectric permittivity (f = 1 kHz) measured
on aPBSN-6 single crystal in an electric field E- egual to
(1,2) 0and (3) 0.45 kV/cm.
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lower than the temperature of the maximumin g, which
indicates that the relaxor state existsin thiscrystal ina
fairly broad temperature interval. The temperature
dependences of optical transmission for the PBSN-4
and PSN [5] crystals areidentical.

The situation with the PBSN-6 crystal is radically
different (Fig. 2). In the absence of an electric field, the
optical transmission grows fairly smoothly with
increasing temperature without any jumps and clearly
pronounced maxima (curve 1), a feature characteristic
of purely relaxor compounds. The weak maxima at 28
and 45°C are most likely associated with the samples
being inhomogeneous. The temperature dependence of
€ exhibits no significant anomalies other than the
clearly seen maximum (curve 2).

The pattern of optical transmission seen in the
PBSN-6 crystal changes in an electric field. When an
electric field E < E = 0.3 kV/cm is applied in the
FHaZFC regime, the transmission pattern does not
show any changes as compared with the zero-field case.
An electric field of E ~ 0.4 kV/cm is high enough to
change the character of the temperature dependence of
optical transmission (curve 3); namely, a jump in the
intensity is observed and a minimum appears at atem-
perature of ~27°C. The pattern of optical transmission
in PBSN-6 in an electric field becomes similar to that

2002
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Fig. 3. Temperature dependences of (1) optical transmission and (2, 3) small-angle light scattering measured on a PBSN-6 single
crystal in an electric field of 3.5 kV/cm applied under different conditions: (1, 2) FHaZFC and (3) FHaFC. Scattering angle 30'.

for the PBSN-4 crystal with no electric field applied
(curve 2 in Fig. 1). The observed minimum signals the
formation of an induced large-scale structure and a fer-
roelectric state in an electric field in excess of athresh-
old level. The temperature position of the observed
anomaly coincides with the depolarization temperature
Ty Which was derived from dielectric measurements
[11], and can be identified with destruction of the elec-
tric-field-induced ferroelectric phase.

The anomalies in the temperature dependences of
optical transmission and of SAS intensity become more
distinct in higher electric fields. Figure 3 displays tem-
perature dependences of the optical transmission and
SAS intensity | measured in the PBSN-6 crystal in an
electric field of 3.5 kV/cm in both field application
regimes, FHaZFC and FHaFC. As seen from Fig. 3, at
a certain temperature T, corresponding to destruction
of the ferroelectric state under cooling, the temperature
dependence of the SAS intensity exhibits a narrow
peak, indicating the percolation nature of thistransition
(curve 3). This temperature coincides, for the same
electric field, with the destruction temperature of the
ferroelectric state in the FHaZFC regime. It should be
noted that we did not succeed in deriving the tempera-
ture at which the ferroelectric state is induced in the
FHaZFC regime from our experiments on optical trans-
mission carried out at a fixed sample heating rate. This
is probably associated with the fact that, as follows
from [12], the formation of the ferroelectric state is a
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kinetic phase transition and requires a fairly long time
for the equilibrium to set in.

In fields above 2 kV/cm, the depolarization temper-
ature T, increases linearly with the field in the PBSN-6

134
QO
4320 .
&
130
128
0 2 4 6 8
E,kV/cm

Fig. 4. Temperatures of (1) the spontaneous phase transition
T, for the PBSN-4 crystal and (2) destruction of the field-

induced ferroelectric state Ty for PBSN-6 plotted as func-
tions of the electric field.
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crystal (curve 2 in Fig. 4). The temperature T, was
derived from the position of the maximum in the tem-
perature dependence of the SAS intensity measured in
various electric fields. Interestingly, in fields 0.4 < E <
2 kV/cm, the temperature T4 was virtually independent
of the electric field. Thisis most likely connected with
the samples being inhomogeneous. The peak in the
temperature dependence of the SAS intensity at the
destruction temperature of the field-induced ferroelec-
tric phase, aswell asthe linear dependence of this tem-
perature on electric field in fields above 2 kV/cm,
implies that this transition is of the percolation nature
and isfirst order. The occurrence of such a“weak” first-
order transition during the destruction of the field-
induced ferroelectric phase in the PLZT 9/65/35
ceramic was reported in [18]. We note that the transi-
tion from the field-induced ferroelectric to ergodic
relaxor phaseinthe classical relaxors PMN and PZN is
not of the percolation type [15].

The observed difference in the nature of the phase
transition associated with destruction of the field-
induced ferroelectric phase in PBSN-6 single crystals
and in the classical relaxor PMN may originate from
the fact that PBSN-6 single crystals are at the boundary
of stability separating normal ferroelectrics from relax-
ors. When the barium concentration in PBSN increases
and the relaxor state becomes more stable, the phase
transition involving destruction of thefield-induced fer-
roelectric state will apparently occur inthe sasmeway as
it doesin the PMN. Further studies are needed to sup-
port this conjecture. A linear dependence of the sponta-
neous phase-transition temperature on electric field was
also observed by uswithin the field interval covered in
PBSN-4 crystals (curve 1in Fig. 4) and issimilar to the
corresponding relation for pure PSN [5].
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Abstract—The reflection, transmission, and absorption of a symmetric electromagnetic pulse whose carrier
frequency is closeto the frequency of the interband transition in aquantum well are calculated. The energy lev-
elsin the quantum well are assumed to be discrete, and one excited level istaken into account. Consideration
isgiven to the case of a sufficiently wide quantum well when the pul se wavel ength corresponding to the carrier
frequency is comparable to the quantum well width and when allowance should be made for the dependence of
the matrix element of the interband transition on the photon wave vector. The calculations are performed with
due regard for the difference between the refractive indices of the material of the quantum well and the barrier
at an arbitrary ratio of the reciprocal radiative to nonradiative lifetimes of the excited level of the electronic sys-
tem. It is demonstrated that the inclusion of the spatial dispersion and the difference in the refractive indices
most strongly affects the reflection of the electromagnetic pul se, because the reflection due to interband transi-
tionsin the quantum well is accompanied by an additional reflection from the quantum well boundaries. Com-
pared to the previously considered model, the most radical changes in the reflection are observed in the case
when thereciprocal nonradiative lifetime of the excited stateis substantially longer than the reciprocal radiative

lifetime. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, a number of works have been
devoted to theinvestigation of variationsin the shape of
alight pulse in its penetration through a quantum well
[1-7]. Consideration has been given to an asymmetric
exciting pulse with a steep edge [1-3] and a symmetric
pulse[4, 5]. In[1, 2, 5], analysis was performed under
the assumption that the carrier frequency wy of the
exciting pulse is close to the frequency wy, of the elec-
tronic excitation (a two-level system). A three-level
system [ 7] and a system with many excited states[3, 6]
have also been studied. The results obtained in these
works are valid for relatively narrow quantum wells
when the following inequality is satisfied:

kd < 1, ()

where d is the quantum well width and K is the magni-
tude of the photon wave vector corresponding to the
carrier frequency of the symmetric pulse. In actual fact,
the parameter kd in the aforementioned works was
taken equal to zero and the calculated reflectance,
absorptance, and transmittance were independent of the
guantum well width d. The magnitude k can be numer-
icaly estimated from the lasing wavelength of a gal-
lium arsenide heterolaser. This wavelength is estimated
to be 0.8y, and the corresponding energy %y is equal

to 1.6 eV. If the refractive index of the quantum well
material istaken asv = 3.5, we have K = vwy/c = 2.8 x

10° cm, where c is the velocity of light in free space.
For the quantum well width d = 500 A, we obtain
the parameter kd = 1.4. Therefore, in the case of suffi-
ciently wide quantum wells, the contribution of the spa-
tial dispersion of waves forming the exciting pulse can
be significant.

For wide quantum wells, the inequality d > a,
(where a, is the lattice constant) is very strong and the
penetration of a pulse through the quantum well can be
described by the Maxwell equations for a continuous
medium. This approach requiresinclusion of the differ-
ence between the refractive indices of the barrier and
the quantum well. As a consequence, there should
appear an additional reflection from the quantum well
boundaries. Thisreflection decreases with adecreasein
the parameter kd but, in the range kd = 1, in certain
cases, can be equal or exceed the reflection due to res-
onant transitions in the quantum well. The change in
the reflection of the light wave is accompanied by a
change in its transmission. Therefore, account must be
taken of both the difference in the refractive indices of
the barrier and the quantum well and the dependence of
the reflection and transmission on the parameter kd.
The aim of the present work was to analyze how these
two factors affect the shape of the light pulse reflected

1063-7834/02/4409-1759%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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from a quantum well and the light pulse passed
through it.

We consider a system composed of a deep semicon-
ductor quantum well located in therange0 < z< d and
two semi-infinite barriers. Analysisis carried out for an
intrinsic semiconductor at zero temperature under the
following assumptions: (i) the exciting light pul se prop-
agates along the z axis from negative values of z, (ii) the
barriers are transparent to the pulse, and (iii) the pulse
isabsorbed in the quantum well, thusinducing resonant
interband transitions. Only the statesin which one elec-
tron transfers from the valence band to the conduction
band with the formation of a hole in the valence band
are considered to be excited. It is assumed that w [y
(the band gap in the quantum well is defined as E; =
fiwy) and a small fraction of valence electrons partici-
patesin the absorption. These electrons arelocated near
the extremum of the band and can be adequately
described by the effective mass method. For deep quan-
tum wells, the electron tunneling into the barrier, in this
case, can be ignored and the barrier can be regarded to
be free of electrons. Moreover, the energy levels close
to the quantum well bottom can be treated within the
approximation of an infinitely deep well. The system
under consideration is inhomogeneous. Since inequal-
ity (1) does not hold for wide quantum wells, the optical
characteristics of this system should be determined
from the solution of the Maxwell equations in which
the current and charge densities should be expressed by
the relationships derived in the framework of the micro-
scopic approach [8, 9].

The final results are obtained for one discrete level
of the electronic system in the qguantum well. The influ-
ence of other levels on the reflection and absorption of
light can be disregarded when the carrier frequency w
issufficiently closeto the excitation frequency wy, of the
chosen level and the other levels are sufficiently far
from this level. The exciton levels in a zero magnetic
field or the levelsin a strong magnetic field perpendic-
ular to the quantum well plane are discrete in the quan-
tumwell under the condition K =0, where K isthe
vector of thetotal quasi-momentum of an electron-hole
pair in the quantum well plane. As an example, we will
examine the level of an electron-hole pair in a strong
magnetic field aligned paralel to the z axis without
regard for the Coulomb interaction between the elec-
tron and the hole. Thisinteraction is considered aweak
perturbation for sufficiently strong magnetic fields and
not very wide quantum wells [10]. However, the exci-
ton effect does not lead to radical changesin the results
obtained and only affects the reciprocal radiative life-
timey; of the electronic excitation in the quantum well.
The same is aso true for the exciton levels in a zero
magnetic field.
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2. THE ELECTRIC FIELD INDUCED
BY A PENETRATING PULSE

Let us assume that a symmetric exciting pulse is
incident on a single quantum well from negative values
of z. The circularly polarized electric field that corre-
sponds to this pulse can be represented in the form

Eo(z 1) = eEqexp(—iwp) @
x{e(p)e ™ +[1-0(ple"™} +cc.

Here, E; isthereal amplitude, p =t —v,z(c,

& = (e,tig)l/2 3

is the unit vector of circular polarization, e, and g, are
thereal unit vectors, v, istherefractiveindex of the bar-
rier, ©(p) is the Heaviside function, and the parameter
v; determines the rise and decay of the symmetric pulse.
The Fourier transform of the function Ey(z, t) has the
form

Eo(z &) = exp(ik,2){ &Eq(w) + € Eo(—w)} ,
Eo(w) = Egy/[(w—@)*+ (yi/2)7,

where K, = v,w/C.

In our earlier work [11], we solved the problem of
the penetration of a monochromatic electromagnetic
wave through a quantum well with due regard for the
spatial dispersion of the wave. In [11], we obtained the
relationship for the density of the high-frequency cur-
rent induced by the propagating wave in the quantum
well. For oneexcited level and circularly polarized inci-
dent waves, the current density can be written as

00

J(zt) = (JJZH)J'dwexp(—i wt)J(z, w),

_ayvw

J(z w) = e

(%)

1 1
* cD(Z)[oo— Wy +iy/2 * W+ oy + iy/Z}

d
XIdZA(z, W) P(Z) +c.c. = gz t).

The interband transition energy that corresponds to the
chosen excited state is defined by the expression

fiwy = iy +e(m,) +e(my) +2Q (n+1/2), (6)

whereg(m,) [e(m,)] isthe energy of an electron (ahole)
with the quantum number m. (m,) in the quantum-well
level, Q, = |e|H/uc is the cyclotron frequency, e is the
elementary charge, H isthe strength of a constant mag-
netic field, p = mgmy/(m, + m,), my(my) is the effective
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electron (hole) mass, n isthe Landau guantum number,
and v is the reciprocal nonradiative lifetime of the
excited state. Within the approximation of an infinitely
deep well, we have

@) = (2/d)sin(mmzd)sn(rm,z/d).  (7)

In expression (5), we introduced the reciprocal radia-
tivelifetimey; of the electron-hole pair in the magnetic
fieldat kd =0, that is,

Y, = (2€°1hev)(ps,/mhooy) (JeH/mee),  (8)

where my is the mass of a free electron. Furthermore,
we introduced the scalar A(z, w) related to the Fourier
transform of the vector potential A(z, w) through the
expression

Az, w) = gA(z W) + € A(Z, —w). 9)

The electric field vector E(z, w) is described by a for-
mulasimilar to expression (9). Relationship (5) isvalid
for heavy holesin crystals with a zinc blende structure
when the z axis is aligned along the fourfold symmetry
axis[12, 13]. Thereal constant p,, entering into thefor-
mulafor the reciprocal lifetimey; isassociated with the
momentum interband matrix element for two degener-
ate bands, that is,

Py = Pey( Fiey)/ /2.

The current density Ji(z t) satisfies the condition

divJi(z t) =0, and hence, theinduced charge density is
p(z, t) = 0. Then, we can use the gauge : ¢(z t) = 0,
where ¢(z, t) isthe scalar potential, and

Ezt) = (=1/c)(dA/dt),

. (10)

E(z, w) = (iw/c)A(z, w).
Since E(z, w) ~A(z, w), instead of the equation for A(z,
w), it is convenient to solve a similar equation for the
scalar E(z, w). This eguation can be written in the form

d’E(z, w)/dZ + K°E(z, w) = —(41U¢)I(z, W), 1)
K = vw/c.

Note that, in relationship (5) for J(z, ), A(Z, w)

should be replaced by E(Z, w) with the use of expres-

sion (10).

Equation (11) isintegro-differential. The solution of
Eq. (11) can be formally represented as the sum of the
general solution of a homogeneous equation and the
particular solution of a nonhomogeneous equation.
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Then, Eqg. (11) transforms into the Fredholm integral
equation of the second kind,*

E(z, w) = C,*°+C,e™*

i(y./2)F(@) ° (12)
i(y, z

Ta—wt iy/2IdZE(z’ W) P(2).

0

This equation is valid at frequencies w close to wy,
because it was derived without regard for the nonreso-
nant term w + wy, + iy/2 in relationship (5) for the cur-

rent density J(z, w) . Ignoring the nonresonant term is
equivalent to having the inequality (w — wy)/wy < 1.
Therefore, the theory becomes inadequate at w — wy, =
Wy, however, this frequency range is very far from the
resonance frequency wy andisof nointerest. Inthe case
of the time representation, the inadequacy of the theory

manifestsitself at timest < t, = w;" . For fiw, = 1.6 eV,

weobtaint, =4 x 107¢s. Thearbitrary constants C, and
C, are determined from the boundary conditionsin the
planes z = 0 and z = d, and the function F(2) has the
form

z d
F(Z) = e*’fdze"“®(2) + € [dze"*D(2). (13)
0 z

Aty, <y, theintegral termin Eqg. (12) can betreated
as asmall perturbation. Hence, it is sufficient to alow
for the first approximation with respect to this term.
The radiative broadening of the energy levelsin quasi-
two-dimensional systems results from the breaking of
the trandational symmetry in a direction perpendicular
to the plane of the quantum well [15, 16]. For high-
quality quantum wells, the scattering by inhomogene-
ities of the quantum well boundaries can make a small
contribution to the nonradiative broadening of the level.
The sameis also true for the scattering by phonons and
impurities at low temperatures and small impurity con-
centrations. As a conseguence, it can turn out that y, >
y. Inthiscase, the solution of Eq. (12) cannot be limited
to thefirst iteration and requires summation of the com-
plete iteration series. It can be demonstrated that this
series is reduced to a geometric progression and the
solution can be written in the form [11]

i(y,/2)F(2)
S -y Hi(y+yE)2
d (14

x J’dz‘(CleiKz +C,e")D(2).
0

E(z, w) = C,€** + C,e*
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The complex quantity € defined as
d

e = £ +ie’ = [dZO@)F(Q) (15)
0

characterizesthe change in the broadening and the shift
inthe level due to spatial dispersion of the wave. In the

limiting case kd = 0, we have € = &, , . For barriers

without induced current, instead of Eq. (11), thefollow-
ing equation holds:

d°E(z, w)/dZ* + k2E(z, w) = O,

(16)
z<0, z=d, k; =v,w/c.
The solution of this equation has the form
Ez w) = Ejw)e ™+ Cre 7,
(z w) = Eg(w) R 17)

z<0; E'(zw) = CTeiKlz, z>d.

In the expression for E'(z, w), thefirst term isthe scalar
amplitude of the Fourier transform of the exciting pulse
and Cy and C; determine the amplitudes of the wave
reflected from the quantum well and the wave transmit-
ted through the well, respectively. The coefficients C,,
C,, Cr, and C; depend on the frequency w and are
deduced from the continuity conditions for E(z, w) and
dE(z, w)/dzat theboundariesz=0and z=d. Asaresult,
we found

Cy = (2Eg(w)/A)e ™ [1+ T+ (1-QN],

C, = ~(2Eo(w)/D)(1-Q)[€" "+ NT,

(18)
Cr = Eo(w)p/4,
C; = 4E(w)Ze “[1+e ™ N]/A,
A = (Z"‘l)ze_in—(Z—l)zein
~2(C-1N[(+1)e™ +7-1], (19)

p = 2i(°=1)sinkd + 2[({®+1)e ™+ P - 1] N.

In relationships (18) and (19), we introduced the fol-
lowing designations:

¢ = K/Ky = Vlvy, (20)

N = —i(y,/2)F(0)/[w— oy +i(y + V,£)/2]. (21)
The function Ey(w) isdefined by formula (4). It follows
from expressions (13) and (15) that, at m.=m, = m(the
allowed interband transition in the limiting case kd =
0), the functions F(2) and € can be written as

F(2 =iB[2-exp(ikz) —exp(ik(d—2))

2 2 (22)
—(kd/Tm)“sin“(Ttmz/d)],

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

KOROVIN et al.

F(0) = F(d) = iB[1 - exp(ikd)],

23
B = (4rfm’/kd)/[4T¢m’ — (kd)7], =

g = F(0)exp(—ikd) = 4B’sin’(kd/2),
" = 2B[1-Bsinkd —3(kd)*/81¢m’].

According to formula (17), the Fourier transform of the
electric field vector E'(z, w) on theright of the quantum
well is given by

(24)

E'(z w) = exp(ik,2)[€Cqy(w) + € Cr(-w)],
z=d.

The Fourier transform of the electric field vector E'(z,

w) on the left of the quantum well involves the compo-

nents associated with the exciting pulse field [expres-
sion (4)] and the reflected wave field AE'(z, w) and is

(25

described by the relationship
E'(z w) = Ey(z w)+AE(z w), (26)
AE'(z, w) = exp[—(iK;2)][€Cr(w) + & Cr(-w)],
z>d. (27)

3. THE CHANGE-OVER TO THE TIME
REPRESENTATION

In the time representation, the electric field vector of
the pul se transmitted through the quantum well, accord-
ing to relationship (17), hasthe form (p = t —zv,/c)

E'(zt) = eE'(z t) +cc,

: ” (28)
E(zt) = (]JZH)J'dwexp(—iwp)CT(w), z>d.

In asimilar way, the field vector of the pulse reflected
from the quantum well iswritten as
AE'(z, t) = e,AE'(z, t) +c.c,
+00 (29)
AE'(zt) = (UZH)Idwexp(—iws)CR(m), z<d,

where s=1t + zv,/c. After substitution of Ey(w) defined

by expression (4) and N(w) represented by formula

(21) into relationships (18), the functions C;(w) and

Cr(w) take theform

4E,y {exp(-ik,d)
39

O W —V,E"12+iy/2

(w-w)’+(y/2)°

Ci(w) =

(30)
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_ By
Cr(w) = [75]
wim L , : - (31)
x%[w—oq-)—y,s 12+i(y + V,€)/2] —iB,y,€'12
(- w)*+(yi/2)*
D = W= w=Y, F/2+i(y + y F2)/2, (32)
£ = (1+0)°exp(-ikd) - (1-0)*exp(ikd), (33)
B = -2i(1-2°)sinkd,
2|( Z)25|nK | (34)
By = 2[1+ " —(1-)exp(ikd)],
G = 2¢'(1-2%)sinkd
1= ¢~ 2 > )
1+ +(1-C")coskd (35)
o= _ 2(¢'
F, =

1+ 22+ (1-7% coskd

Inintegrals (28) and (29), the integrands have the poles
W= w % iy/2 and, in addition, the pole determined by
the equation 9% = 0 in the lower half-plane w. In the
strict sense, the functions &, and %, entering into &
[seeformula (32)] depend on w, because the magnitude
of thewave vector k = vw/cisafunction of w. However,
reasoning from the assumptions made in deriving rela-
tionship (12), the frequency w should not differ
strongly from the frequency wy,. Therefore, the equation
9 = 0 can be solved using only the first iteration. As a
result, we obtain the following pole in the lower half-
plane:

W = =Y, Fi (o) —i(Y + Vi Fo(wp))/2.  (36)
By using the approximate pole (36), we obtain
K = Kg = VWy/C, K; = Kyp = V;p/C. (37

On the other hand, the polesw = w) + iyj/2 lead to Kk =
K, = vwy/c and K, = Ky, = v,wy/c. Since the theory holds
true when the inequality () — wy)/wy, <<€ 1 is satisfied,
hereafter, we assume that K, = Ko = K and Ky = Ky = Kj.

After integration over the frequency w, the scalar
functions E'(z, t) and AE'(z, t) take the form

E'(z 1) = (4LE//L)exp(-i(wp +K,d))
x{[1-0O(p)] exp(y, p/2)Wx(y) + O(p)er} ,
AE'(zt) = (Ef/£)exp(-iws)

*{[1-06(s)] exp(ys/2)Wr(y) + O(s)eq} ,

where the functions e; and e are defined by the identi-
cal formulas

(38)

(39)

el p(s)/2 I(Aw— Y F1/2) p(9)
€T(R ~ Wrr(=Y) —
—( ) ()/ (40)
Y+ Y Fo) ()2
x Wrre
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In relationships (38)—(40), weintroduced the following
notation:

Aw = w—wy, (41)
Wi(y) = [Aw—y.e"2+i(y+v)/2]/Q(y), (42)
Wi(Y) = {B[Aw- vy, 2+i(y+ Y +V,E)/2] 3
—iy &' B1/2}Q(yy), 3
=—i(y /2)[F,—i(e" = F1)] W—WD( 44)

Wi = —i(y/2){ B[ - F,+i(e"—F)] +e'By
Lol __1g (49)

ED(—Y|) Q(Y|)D

Q(y) = Dw— Y, F2+i(y+y +Y, F)2.  (46)

Note that alowance made for the dependence of k
on w leads to the replacement of the variable p by p' =
p +t; in expression (38) for the scalar function E'(z, t).
Here, t; = v;d/c is the time the light takes to propagate
through the quantum well. Consequently, the inclusion
of the dependence of kK on w manifestsitself only in the
case when p < t;. At d =500 A and v, = 3, we obtain
t; =5 x 1076 s t,. The approximate equality t; [ t,
indicates that allowance made for the dependence of K
on w in calculation of integrals (28) and (29) leads to
exceeding the required accuracy, because, in this case,
the corrections are of the same order of magnitude as
those ignored when deriving formula (12). The expres-
sions deduced for E'(z t) and AE'(z, 1) are rather cum-
bersome, and their analytical examination is compli-
cated. Therefore, of special interest are the two limiting
cases for which these expressions are simplified sub-
stantialy. If the medium is homogeneous (i.e., v, = V),
we obtain

K, = K, £ = 4dexp(-ikd),
% = 0, %1 = 4, gl = 8", 9‘;2 = ¢

and expressions (38) and (39) transform into the rela-
tionships

E'(zt) = Eo(zt) + AE'(z 1)

= Ey(z t) — Eo(iy,€'/2) exp(—iw p) (47)
x{[1-0O(p)] exp(y,p/2)/Q(y)) + O(p)e} ,
AE'(z 1) = —Ey(iy,€'/2)exp(—i(ws—kd)) )

x{[1-0O(s)] exp(ys/2)/Q(y)) + ©(s)¢} ,

where the function Q(y;) defined by formula (46) trans-
formsinto the function

Q(y) = Aw—vy e /2+i(y+y +Y,€)2  (49)
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and the function described by expression (40) takes the
form

€ = exp(-y,t/2)/Q(-y)) — exp[i(Aw - y,€"/2)1]

x exp[—(y + V&)2{Q ) - Qy) 7} -

The parameter t in formula (50) is as follows: t = p for
E" and t = sfor AE'. The function AE'(z, t) determines
the distortion of the exciting pulse transmitted through
the quantum well.

It is seen from relationships (47) and (48) that the
inclusion of the spatial dispersion in the case of the
homogeneous medium leads to a shift in the frequency

wy by v,£"/2 and the replacement of y, by y, =y€'. The

quantity y, coincideswith the reciprocal radiative life-
time calculated in [3, 7] for an electron-hole pair in a
strong magnetic field at K ;= 0 for an arbitrary value of
Kd. When the spatia dispersion is disregarded (i.e., at
kd = 0), according to formulas (24), we havee' — 1
and €" — 0 and expressions (47) and (48) transform
into the relationships derived in [5] for the case of a
homogeneous medium in the absence of spatial disper-
sion. Formulas (47) and (48) coincide with similar
expressions obtained in [5] [formula (15)] provided
that, in these expressions, the transition frequency wy is
considered to mean wy, + Y,£"/2 and y, isreplaced by y, .
It is aso of interest to analyze the limiting case of a
weak spatial dispersion when kd — 0 but the medium
isinhomogeneous (i.e., v, # V). This situation can arise
with comparatively narrow quantumwells, Settingkd =0
in formulas (38) and (39), we obtain £ = 4, B = 0,
B, =4 F,=0,%F, = and

AE'(z, 1) = (Eyy,L/2)exp(—iwyp)
x{[1-0(p)] exp(y,p/2)/Q(y,) + €(P)O(p)} ,
€(p) = exp(-y,p/2)/Q(-y)

—exp[iAwp— (v + ¥ Q) P21 Q) - Q) ).
In the given case, the function Q(y,) is represented as

Qy) = Aw+i(y+y +vY,{/2) (53)

and the difference between AE'(z, t) and the corre-
sponding function described by expression (51) resides
inthereplacement of p by s. It can be seen that theinho-
mogeneity of the medium without regard for the spatial
dispersion results only in the substitution of y,{ for v,
i.e., in the substitution of v, for v in expression (8) for
V:. Formulas (51) and (52) coincide with the relation-
shipsdeducedin[5] if y, isreplaced by y, intheserela-
tionships. Since the condition { (11 is met in real sys-
tems, the inhomogeneity of the medium makes only a
small contribution. The passage to the limit y; — 0
implies the change-over to a monochromatic exciting
wave. In this limiting case, formulas (38) and (39) are
reduced to the expressions obtained in [11].

(51)

(52)
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4. REFLECTION AND TRANSMISSION
OF AN EXCITING PULSE

The energy flux S(p) corresponding to the electric
field of the exciting pulse can be written in the form

S(p) = (e/41)(cV1)(E(z 1)* = eSP(p), (54)

where §, = CES /(21tv;) and e, is the unit vector along

the z axis. The dimensionless function P(p) determines
the spatial and time dependences of the energy flux of
the exciting pulse, that is,

P(p) = (Eo(z 1)*/S

= o(p)e "+ [1-0(p)]e"".

By analogy with expression (54), the transmitted flux,
i.e., the flux on the right of the quantum well, can be
represented as

S(z1) = (e/4M(cv)(E'Z 1) = &ST(p). (56)

The reflected flux (on the left of the quantum well) has
the form

S = —(e/4m)(c/v,)(AE'Z 1) = —e,SR(). (57)

The dimensionless functions I (p) and R (s) determine
the fractions of the transmitted and refl ected energies of
the exciting pulse.

By analogy with [5], the absorbed energy flux S? can
be defined as the difference between the flux S + S,
which isincident on the quantum well from the left at
z=0, and the flux S, which leaves the well toward the
right at z=d at the same instant of timet; that is,

S(t) = S(t) +S(t) -S(1). (58)

With the use of definitions (54)—(58), the flux S&(t) can
be represented as

SV = eSIPM) - RO -TO]. (59)

The fraction of the absorbed energy s4(t) is defined
using the equality SX(t) = 5,94 (t). Asaresult, we have

At) = Pt) —R(@) - T(t). (60)
Formula (60) can be generalized if the planesin which
the fluxes are considered are displaced by z = —z,
toward theleft of the quantum well and by z, toward the

right of the quantum well (z,> 0). Then, instead of rela-
tionship (60), we obtain

AX) = PO) = R(x) - T (%), (61)

where X = p = s=1t —v,|z)/c. The relationships for the
quantities 7, R, and A are expressed through the sca-
lar functions E'(z, t) and AE'(z, t) according to the gen-
eral formulas (38) and (39). These relationships are
very cumbersome and are not presented in this work.
The quantities P(t), I (t), and % (t) are universally pos-

(55
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itive, whereas the absorptance < (t) can be positive or
negative. The negative absorptance at a certain instant
of time t suggests that the electronic system of the
guantum well gives away the energy accumul ated at the
preceding instants of time.

5. TIME DEPENDENCE OF THE REFLECTANCE,
TRANSMITTANCE, AND ABSORPTANCE
IN THE CASE OF TRUE RESONANCE w = wy

First, we analyze the limiting casey > v,. Thefields
E'(z t) and AE'(z t) defined by expressions (38) and
(39) can be represented as the series

E'(zt) = Eo(z t) + (V,/Y)Eyz t) + ..., (62)

AE'(zt) = AEY(z t) + (V,/Y)AEY(Z, ) + ..., (63)

where
Eo(z 1) = & (4LEf/ L) exp[—i(w p + k,d)]{ [1-O(p)]
x exp(y,p/2) + O(p)exp(-y,p/2)} +cc., (64)

AE(z 1) = —&(BE/L)exp(-iws){[1-O(p)]

(65)
x exp(y,s/2) + O(s)exp(—y,s/2)} +c.c.

correspond to the transmitted and reflected pulses at
Y; =0, i.e., when the absorption in the quantum well is
absent.

In the limiting caseskd 0 and { = 1 or kd = 0 and
(£ 1, wehave AE'O(z, t) =0, because, according to for-
mula (34), &B = 0. In the former case, thisis explained
by the fact that the medium becomes homogeneous. In
the latter case, the amount of the material in the quan-
tum well is very small and the transmitted wave does
interact with it. In these limiting cases, from relation-
ship (57), we obtain R (t) ~ (y,/y)? i.e., the reflectance
isasmall quantity. When changing over to the general
case kd # 0 and { # 1, the reflectance 9R(t) takes the
form

Rt) = ST(AEYS)” + 2(y,/Y) (AEKSAE(S))] . (66)

As a consequence, the reflectance appreciably
increases owing to the first term in expression (66). As
regards the transmittance J(t), in the limiting cases
kd=0or =1, wefound that J (t) = P(t). When chang-
ing over to the general case, the transmittance changes
only slightly, because the multiplier 16¢/|< > does not
differ significantly from unity.

Figure 1 displays the time dependences of the
dimensionless transmittance I, absorptance &, and
reflectance R for different values of the parameters kd
and C. Itisseen from Fig. 1athat the curve J (t) at kd =
Oand ¢ = 1 virtually coincideswith that at kd = 1.5 and
¢ = 1.1. The same holds true for the absorptance s (t).
As can be seen from Fig. 1b, the reflectance is a small
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1.0

@) 0.8

0.6

Fig. 1. Dependences of the transmittance I, the absorp-
tance 54, and the reflectance R of the symmetric exciting
pulse P on the dimensionlesstime yjt in the case of trueres-
onanceandy, <V. (@ (1) {=1,kd=0and { = 1.1, kd =
15 (2 (=1andkd=0; and (3) { = 1.1 and kd = 1.5.
(b) (1) ¢=1landkd=0,(2) (=1andkd=15,(3) (=11
andkd=15,(4) {=12andkd=1.5,and (5) { = 1.3 and
kd=1.5.

quantity and substantially depends on the parameter ¢
atkd=1.5: achangein{ from 1to 1.3 leadsto an eight-
fold increase in the reflectance R (t)

In the limiting case y, > v, the induced fields are
comparable in magnitude to the field of the exciting
pulse and, hence, the shape of the pulse transmitted
through the quantum well changes very strongly. It can
be seen from Fig. 2 that, under these conditions, the
transmittance I is small and the reflectance AR is pre-
dominant. In our previous work [5], we introduced the
notion of singular pointsin the time dependences of the
functions I, s, and %R. In particular, one of these
points (the total reflection point of the first kind) is
defined by the conditions R(ty) = P(ty) and I (t) =
A(ty) =0 (Fig. 2a). At { # 1 and kd # 0 (Fig. 2b), other
conditions, namely, 7 (to) + A (ty) = 0 and R(t,) = P(ty),
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(b) 0.8\ Vi,

Al >—3 4
~02 vit

Fig. 2. Time dependences of the functions P, R, oA, and I
in the case of true resonanceandy, <v. (@) { =landkd =
Oand (b) { =1.1and kd = 1.5. yjtg and y;t, are the singular
points of total reflection of the first and second kinds,
respectively.

are satisfied at thetotal reflection point. Thismeansthat
the absorptance is negative H(t) < 0O; i.e., the system
generates radiation accumulated at earlier instants of
time. Therefore, the change-over to the genera case
results in the appearance of a singular point, which,
according to the classification proposed in [5], is the
total reflection point of the second kind. Note also that
the transmittance shown in Fig. 2b is severa times
larger than that in Fig. 2a. Consequently, in this case,
too, the inhomogeneity of the medium and the spatial
dispersion substantially affect only small quantities,
which are represented by the transmittance 7 (t) in the
given limiting case.

6. DEVIATION OF THE CARRIER FREQUENCY
FROM THE RESONANCE FREQUENCY

In[5], it was demonstrated that the deviation Aw of
the carrier frequency from the resonance frequency
leads to oscillations of the quantities () and R (t)
with time. However, the oscillations could be observed
only at small vaues of () and R (t). On the other
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0.010
0.006

0.002

R
0.0025

0.0020

0.0015

0.008&

0.00

.004

0.002

-2 -1

Yit

Fig. 3. Time dependences of the reflectance in the case of
deviation of the carrier frequency from the resonance fre-
quency aty=0and (a) Aw=10andy,/y, = 0.1, (b) Aw= 10
andy,/y;=1,and (c) Aw=30and y,/y; = 1. (1) (= 1and
kd=0and (2) {=1.1andkd=15.

hand, the inclusion of the inhomogeneity of the
medium and the spatial dispersion resultsin the appear-
ance of an additional reflection from the quantum well
boundaries. Its magnitude can exceed the oscillating
component of the reflectance PR (t). The effect of the
inhomogeneity of the medium and the spatia disper-
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R

Yit

Fig. 4. Time dependences of the reflectance in the case of a
strong deviation of the carrier frequency from the resonance
frequency at (1) (=1andkd =0, (2) { =1.1and kd = 1.5,
(3)¢=12andkd=1.5and (4) {=1.3andkd = 1.5.

sion of the light wave on the reflectance R (t) isillus-
trated in Fig. 3. The most noticeable changes are
observed at y,/y; < 1, i.e., for a short exciting pulse. It
isseen from Fig. 3athat, compared to the reflectance at
¢ =1 and kd = 0, the reflectance %(0) increases by a
factor of more than 300 and no oscillations can be dis-
tinguished as a consequence of their low amplitude. In
the intermediate case y, = y; (Fig. 3b), the changes are
insignificant and the oscillations are clearly seen in the
curve correspondingto = 1.1 andkd = 1.5. In Fig. 3c,
the reflectance 92.(0) increases by afactor of 22 and the
oscillations can be distinguished. As regards the
absorptance, the oscillating curves s{(t) weakly change
in theinhomogeneous medium. Thisisexplained by the
fact that the absorption in the quantum well is caused
by the quantum transitions, which only slightly depend
on the refractive index.

Figure 4 shows the curves R(t) at y, > v, (along
exciting pulse) and Aw # 0. However, in this case, the
reflection oscillations are virtually indistinguishable.
As is seen from Fig. 4, alowance made only for the
spatial dispersion leads to a decrease in the reflectance
as compared to the reflectance at kd = 0. Thisis associ-
ated with adecrease in the effective reciprocal radiative
lifetime y,€', because €' is a decreasing function of the
parameter kd. The change-over to the inhomogeneous
medium results in an increase in the reflectance. The
larger the parameter ¢, the greater the increase in the
reflectance.

7. CONCLUSIONS

The results obtained alowed us to draw the general
conclusion that the inclusion of the inhomogeneity of
the medium and the spatial dispersion of the plane
waves forming the exciting pulse most strongly affects
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the reflection. The changes are most pronounced in the
case when the reflection associated with the interband
trangitions in the quantum well is relatively weak and
masked by a stronger reflection from the quantum well
boundaries. This situation occurs in the limiting case
y >y, at trueresonance Aw = 0 and in the other limiting
casey <y, whenthe carrier frequency deviatesfromthe
resonance frequency. Noteworthy also is the depen-
dence of the reflectance on the parameter v/v,, which
becomes more pronounced due to the reflection from
the quantum well boundaries. The change in the trans-
mittance is also observed only in the case when the
value of J issmall.

In real semiconductor heterostructures, impurity
electrons of the barrier transfer to the quantum well and
distort its square shapein the vicinity of the boundaries.
Therefore, the theory developed above is valid for suf-
ficiently pure materials and wide quantum wells when
the size of distorted boundary regions is small com-
pared to the quantum well width. Moreover, the theory
holdstruefor deep quantum wellsinwhich thelocation
of thefirst levels and the corresponding wave functions
only dlightly differ from those in an infinitely deep
guantum well. Since the theory allows for only one
excited level, the energy separation between the adja-
cent levels in the quantum well should be larger than
the width of the level under consideration and the
energy width of the exciting pulse. These conditions
impose a restriction on the quantum well width from
above. For example, at d = 500 A and m, = 0.06m,, the
difference between the energies of the two lowest quan-
tum-well levelsis equal to approximately 102 eV.
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Abstract—A theory of the Shubnikov—de Haas effect is developed for two-dimensional systems in a tilted
magnetic field. The conductivity tensor is calculated for an arbitrary ratio r of the Zeeman splitting to the cyclo-
tron splitting. Possible anisotropy of the g factor istaken into account. It is shown that at integer values of r, the
main harmonic dominates in the spectrum of Shubnikov—de Haas oscillations and the phase of the oscillations
depends on the parity of r. At half-integer values of r, the conductivity oscillations are determined by the har-
monics of the second order of smallness.© 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is well known that at low temperatures, the con-
ductivity of a degenerate electron gas in a magnetic
field oscillates as the field changes (the Shubnikov—de
Haas effect). These oscillations are caused by consecu-
tive crossing of the Fermi level by Landau levelsin a
guantizing magnetic field. In two-dimensiona (2D)
systems, small-amplitude conductivity oscillations are
observed in classical magnetic fields, when w1 ~ 1.
Here, wy isthe cyclotron frequency and 1 isthe carrier
relaxation time. The corresponding small parameter
determining the amplitude of the oscillations is
exp(—Tvw,T). The Shubnikov—de Haas effect in 2D sys-
tems was theoretically studied in[1, 2], and at present,
the measurement of Shubnikov—de Haas oscillationsis
one of the main methods for characterizing conducting
2D structures.

In addition to the diamagnetic (cyclotron) quantiza-
tion, splitting of the electron states into spin sublevels
occursin amagnetic field (Zeeman effect). The magni-
tude of the splitting A islinear in the magnetic field and
determined by the g factor of the carriers.

In bulk materials, the condition A < Ay is usualy
satisfied; therefore, the Zeeman splitting does not affect
small-amplitude Shubnikov—-de Haas oscillations and
manifests itself only in extremely strong magnetic
fields, when the amplitude of conductivity oscillations
becomes large. Galvanomagnetic phenomena in bulk
materials with due regard for spin splitting were con-
sidered in [3]. In 2D systems, however, a qualitatively
new situation arises. By applying a magnetic field at
some angle to the plane of a 2D electron gas, one can
vary the ratio r = A/fiw, over awide range, because in
the case of strong quantum confinement of the carriers,
the cyclotron splitting is determined by the component
of thefield B perpendicular to the plane of the electron

gas [4], whereas the Zeeman splitting is determined by
the total magnetic field B.

If the magnitude of the Zeeman splitting is compa-
rable to the distance between the Landau levels, the
character of magnetic oscillations changes signifi-
cantly. For example, if the cyclotron splitting is two
times larger than the Zeeman splitting (r = 1/2), the
oscillations are observed at the double frequency. Sim-
ilar magnetic-transport measurements in a tilted mag-
netic field (suggested in [5]) have been actively carried
out in recent years and allow one to determine, for
example, the g factorsof electronsin quantumwells[6—
13]. However, only qualitative treatment of the experi-
mental data is possible, because there is presently no
consistent theory of this effect.

The aim of this paper is to develop a theory of the
Shubnikov—de Haas effect for 2D systems in a tilted
magnetic field. The Zeeman splitting is considered with
due regard for possible anisotropy of the electron g fac-
tor. It is assumed that the carriers are scattered by a
short-range potential and the spin relaxationtimeissig-
nificantly larger than the momentum relaxation time.

2. CALCULATION OF THE CONDUCTIVITY
TENSOR

In order to calculate the conductivity tensor in the
case where the Shubnikov—de Haas effect takes place,
it is convenient to use a diagrammatic technigue. With
allowance for spin splitting, the Green’s function of
noninteracting electronsin an external magneticfieldis
generally a(2 x 2) matrix:

G, 1) = 3 Gl k)W OWR(). ()
n, k

1063-7834/02/4409-1769%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Here, l]Jnky(I‘) = (Pnky(l)) u(2) are the electron coordinate

wave functions in a quantum well under an external
magnetic field with the vector potential written in the
Landau gauge, A = (0, Bx, 0); nlabelsthe Landau lev-
els; k, is the wave vector; and u(2) is the quantum con-
finement function. The wave functions of the carriersin
the quantum-well plane (pnky(p) and the éectronic
spectrum are determined by the perpendicular compo-
nent of the field only, because the size-quantization
energy is significantly larger than the distance between
the Landau levels.

Let us assume that the condition of a good conduc-
tor is satisfied for the electron gas,

Ect/h > 1, @)

and the Fermi energy Eg is significantly larger than the
magnitude of the spin splitting and the energy distance
between the Landau levels,

Er > A, fw,, (©)

where w, = eBy/mc is the cyclotron frequency, misthe
effective electron mass for the in-plane motion, eisthe
elementary charge, and c is the speed of light.

In the case where the electrons are scattered by a
system of randomly distributed short-range scatterers

and there is no spin relaxation, the matrix G, takesthe
form

Ge(n k) = [e+Ee—hwo(n+12)—As— %], (4)

where Hs is the Hamiltonian responsible for the Zee-
man splitting,

Hs = (M0/2)'y GupBuBy. (5)
op

Here, |, isthe Bohr magneton, g, isthe electron g-fac-
tor tensor, G, isthe Pauli matrix, and o and 3 are Car-
tesian coordinates. In the framework of the self-consis-

tent Born approximation, the self-energy X is inde-
pendent of the index n [1, 3] and defined by the
equation

h ~
W7 3 Gin, k). ©6)

Xe = T 21

In view of Egs. (4) and (6), the matrix X. can be
rewritten as

Xe = agi+bgﬂ8/A1 (7)
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where a, and b, are complex quantities. The spin split-
ting A is generally defined by the formula

|:|2
A= uo/gégguﬁ%- (8)

In the case of natural anisotropy of the g factor, caused
by the presence of a size-quantization axis, we have

O = Oy = 9 9~ = 9n, and g, = 0 (a # B) and Eq. (8)
takesthe form

A = Wo4/g)B] + goBY, (9)

where By isthe component of the magnetic field parallel
to the plane of the 2D electron gas.

Using the Poisson summation formula

_ f(0)
f(n) = + dnexp(2mikn) f(n)  (10)
Z kz—oo'!).

and neglecting the first term, one can derive the follow-
ing closed system of equations for a, and b, from

Eq. (6):

_ . h L [Ert€ a. 1o
a, = |2T[|1+2kzlexp[2mkD Fo, 3
i| A+ bSDD
i, U ’
“" (1)
_ fioe L Eete—a. 1o
b, = Tzkzlexp[ZTukD—ﬁwC 2]Sgne}

y Sln%'[kA-'-bED

A similar equation for the self-energy part of the
Green's function without regard for spin effects was
derived, for example, in [14].

In order to calculate the conductivity tensor at an
electric-field frequency w > 0, we use the relationship
[3, 14]

GB(w) - —TrIIdrdrI [Ja(r)(ge+hco(r r)] (12)

iN e2

X [Jp(r)Ge(r', 1] + —=8,

where J(r) is the current-density operator, which is
diagonal with respect to the spin indices,

i) = —%[—iﬁV + EA(r)]i; (13)
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N is the total electron concentration; and Tr implies
summation over the spin variables. Below, we investi-
gate the static conductivity and, therefore, consider the
frequency w as a small quantity and replace it by zero
in the final expressions. Since the components of the
conductivity tensor arereal at w = 0 and related to one
another by the relationships oy, = 0,, and g, = -0, it

will suffice to calculate the quantity
0 = Oy +i0y,. (19)

Using the Green’s functionsin the coordinate repre-
sentation given by Eq. (1) and the matrix elements of
the current-density operator between the el genstates of
an electron in the magnetic field

TR . ﬁcl.)c
[h'k}| 3 nk,0 = ie /2m
x (’\/ﬁo-n',n—l_ N+ 16n',n+1)6ky, K}’

(AON
2m

x (’\/F]O-n',n—l_ Jn+ 16n',n+1)6ky, Ky

we can write the conductivity o intheform

(15

[h'k| 3yl nk,0 = —e

2
e(x)
- S5y fz B noln)Ge(n — 1)+—'Ne (16)

After summation over the spin indices, the quantity
TrGG can be written as the sum of two terms,

TrGesnube = GI21uGL7 + GG, (A7)
each of these terms being a product of the functions
GHn) = [e+Er FAR—fhoy(n+12)— X (18)
where

X® = a +b,/2. (19)

Using the system of equations (11) for a; and b,, one
can derive independent equations for X®),

(i‘) - _ ED - .
Xe' =i > El + ZKZl exp{Zm k
i (20)
EeFAR+e-XE 1n O
s o stgns} 5sgns,

which differ from each other only in the sign of A/2.

It is obvious that G® are the Green’s functions of
noninteracting spinless electrons in a magnetic field
with the effective Fermi energy Er ¥ A/2, that is, of the

particles occupying the upper and lower spin sublevels,
and Egs. (20) are equations for the self-energy parts of
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these Green's functions. Thus, Eg. (17) formally dem-
onstratesthat the spin subsystems, as one would expect,
give independent contributions to the conductivity in
the absence of spin relaxation: o = o) + g©. In this
case, the contribution from each spin subband to the
conductivity can be calculated as the conductivity

without spin effects &, in which E is replaced by the

energy distance between the Fermi level and the bottom
of the spin subband, E; + A/2:

o® = 6(E- FA/2). (21)

Summing over the Landau levels by using the Pois-
son summation formula (10) (detailed calculations
without regard for spin effects are presented in [14])
gives the following expression for the conductivity:

(%) eT

o = =_E,

(22)

de + + + *
S (X o= XN (e + X 0=X07).

—00

Expanding the self-energy parts up to the second order
in exp(-Tvw,T) yields

@ - ;hl 0. mQ
Xe |2rgﬂ+2eXpD W,
+
x exp[Zn EEF J}iﬁz £ %Hsgna}
, ) , (23)
[N 0 <1
+ 2% - E_[Dex D_ETD

ErFAR+e 1o

O
X exp[4m ho, ijsgns} %sgne.

The final expression for the static-conductivity tensor
(w — 0), which is correct to the second order in
exp(—17w.1), is

2 D 2
g, = Ner/ranﬂJr 2Q 5,
1+0°0 1+0Q
%l 2rg (3— Q)Q 5,0
1+0Q° (1+0%° ] 'O
(24)
o = NetQ/md  1+30°
Xy 1+0% 0 (1+Q3)0Q%
| 1+30Q* o 2m  1-3Q° 5,0
(1+090°0 QY (14 0%? 2D
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Fig. 1. Dependence of the resistivity py, on magnetic field
in the regime of the Shubnikov—de Haas effect for different
values of the ratio between the spin and cyclotron splittings
of energy levels.

where Q = w1 and 6, and &, are oscillating quantities
of thefirst and second order of smallness, respectively:

- 2expl LD Ee _ AQ
0, 2expD wcTDCOS%T[th THCOSEFILQ)CD’
£ (25)
- 0 210 e A0
o 2expD wcﬂcos%nﬁwcacos%nﬁwcm.

The smearing of the electron distribution at a non-
zero temperature leads to temperature damping of the
oscillations. A similar calculation of the conductivity
tensor at afinite temperature made using the Matsubara
diagrammatic technique shows that Egs. (24) remain
unchanged, but extra (conventional) temperature fac-
tors appear in the formulas for o, and &,:

Er A A
><COS%T[h(‘OC—TECOS ﬁ—wcmm,

2T
0, = 2exp E_ZEE
C

(26)

X COS%lT[ﬁ—wCDCOS%Hﬁ—mCDm,
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where A = 21%T/%w, and T is the temperature expressed
in energy units.

Equations (24), in combination with Egs. (26) and
(9), describe the magnetoconductivity of two-dimen-
sional systems under the conditions of small-amplitude
Shubnikov—de Haas oscillations in a magnetic field of
arbitrary direction.

3. RESULTS AND DISCUSSION

Figure 1 shows the dependences of the resistivity
Py = Oyl (T + O%,) ON magnetic field at different val-
uesof theratior = A/hw,. The dependenceswere calcu-
lated using Egs. (24) for zero temperature and E-t/% =
10. In the absence of spin splitting, small-amplitude
Shubnikov—de Haas oscillations are determined by the
cos(2nEL/fiwg)harmonic, which is of the first order of
smallness in exp(—Tvw.T)(Fig. 1a). Multiple harmonics
appear only in stronger fields, when the amplitude of
oscillations becomes large, and modify the shape of
oscillations.

When the spin splitting is comparable to the cyclo-
tron one, the behavior of the Shubnikov—de Haas oscil-
lations qualitatively changes. Since the spin subsystems
give additive contributions to the conductivity, the
oscillation parameters depend on the relative positions
of the Landau levels of the spin subbands. Thisleadsto
the appearance of the factors cos(n&hw,) and
cos(2nNhw,) in Egs. (25) and (26) for the oscillating
parts of the conductivity tensor. Figure 2 schematically
shows the relative positions of the Landau levels at a
certain value of cyclotron splitting and different values
of the parameter r.

Atr =1/2, 3/2, ... (haf-integer values), the “mis-
match” between the Landau levels of the spin sub-
systems is maximal; that is, the Landau levels of one
spin subband are located between the Landau levels of
the other subband (Fig. 2). In this case, the contribu-
tions from the spin subsystems to the conductivity
oscillations cancel out to thefirst order in exp(—=Tvw.T).
As a result, the Shubnikov—de Haas effect is deter-
mined by the harmonic of the second order of small-
ness, because the contributions from the spin sub-
systems to this harmonic coincide when r is haf-inte-
ger. Such doubling of the oscillation frequency and a
decrease in the amplitude of oscillations are clearly
seen in Figs. 1b and 1d.

If the spin splitting is a multiple of the cyclotron
splitting (whenr isan integer), the matching of the Lan-
dau levels of the spin subsystems occurs (Fig. 2) and
the main harmonic again dominates in the spectrum of
Shubnikov—de Haas oscillations. However, the posi-
tions of the maxima and minima of the resistivity at
even (Fig. 1e) and odd (Fig. 1c) valuesof r aredifferent,
because the positions of the Landau levels differ by
hwJ/2 inthesetwo cases (Fig. 2). The second-order har-
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Fig. 2. Relative positions of the Landau levels of the spin
subsystems at different values of the Zeeman splitting.

monics, which dightly change the character of the
oscillations, are the same for all integer values of r.

The Shubnikov—de Haas effect in atilted magnetic
field was experimentally investigated in a number of
works [5-13]. The effect of the change in the phase of
the main harmonic caused by the transition from an
even to an odd value of r was used to determine the g
factor. In accordance with the results of our calcula-
tions, the doubling of the oscillation frequency and a
decreasein the amplitude of oscillations were observed
when r was half-integer. The experimental data indi-
cate, however, that the phases of second-harmonic
oscillations can be different [9, 11, 12]. In [12], asin
our calculations, the extrema of the dependence of p,
on magnetic field at integer values of r transform to the
maxima of the resistivity at half-integer values of r. In
contrast, the data presented in [9, 11] indicate that the
phase of the second harmonic is the opposite. Since the
phase sign is determined by smooth functions of the
magnetic field that are the coefficients of &, in
Egs. (24), such adifferenceinthesignis, probably, due
to a significant difference between the transport and
guantum relaxation timesin the structures investigated.
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Abstract—The temperature dependences of electrical resistivity and of the Hall effect of nanocluster tellurium
crystals obtained by filling the voidsin adielectric (opal) matrix with amelt of pure and doped Te were studied.
The Hall hole concentration pg; was found to increase anomalously (by more than two orders of magnitude) in
a sample prepared from pure Te and cooled to helium temperatures. At T = 1.45 K, the hole concentration in
this sample was pg; 06 x 1017 cm3. At the same time, the Hall effect in this sample was observed to reverse
signat T 0200 K from positive for T < 200 K to negative at higher temperatures. Thisimplies alow impurity
concentration (N, islessthan at least 10* cm™3). A nanocluster crystal of doped Te does not exhibit this anom-
aly; here, we have pg; 06 x 107 cm throughout the temperature region covered, as in the original Te. These
features are assigned to the formation of a two-dimensional conducting accumulation layer near the Te—-amor-
phous SiO, (the opal material) interface at low temperatures; such alayer determinesthe low-temperature prop-
erties of nanocluster crystals prepared from pure Te. Actually, we obtained a model of a three-dimensional

structure formed from atwo-dimensional film. © 2002 MAIK * Nauka/Interperiodica’ .

1. INTRODUCTION

Progress made in the growth technologies of syn-
thetic opal [1] has provided a basis for the devel opment
of a new class of ordered semiconductor nanostruc-
tures, namely, spatially modulated cluster crystals.

Synthetic opal represents a system of silicate
spheres of amorphous silicon dioxide, about 200 nmin
diameter, that are close-packed, producing an fcc cubic
lattice. The materia under study is introduced into
voids between the spheres. When the voids are filled
completely by ametal or semiconductor, the conduct-
ing structure thus formed makes up a nanocluster crys-
tal, i.e., acubic array of octa- and tetrahedral clusters,
~45 and ~85 nm in size (the diameters of inscribed
spheres), which share corners [2]. As has been shown
by electron microscopy [3], Te introduced into opal
crystallizes in the voids between silicate spheres under
cooling to form asingle-crystal structure corresponding
to the tellurium volume lattice, with all clusters having
the same crystall ographic orientation.

On the other hand, the system of filled voids inside
the opal can be considered to be a regular honeycomb
structure, with the cells separated by holes correspond-
ing to points of contact between the silicate spheres,
which represents an inverted opal lattice [4]. In areal
opal, the diameter of these holes varies depending on
the technology of preparation. In the sample studied in
[5], the diameter was estimated as 2 nm. Thus, the

material embedded in the opal contacts with the matrix
material over an extremely large area.

There were grounds to believe that this circum-
stance would play adecisive rolein the electrical prop-
erties of atellurium cluster crystal, because the surface
of crystaline tellurium is known to support the forma-
tion of an accumulation layer [6].

Thispublicationisthefirst report of aninvestigation
into the electrical resistivity and Hall effect of samples
prepared by injecting original Te doped to various lev-
elsinto opal performed over abroad range of tempera-
tures and magnetic fields in order to revea the role
played by the Te-silicon dioxide interface in the prop-
erties of nanocluster tellurium crystals.

2. EXPERIMENT

Nanocluster crystals were prepared by injecting
pure melted Te with a residual hole concentration
p(77 K) ~ 10** cm (sample 1) and doped Te with
p(77 K) =5 x 10' cm™3 (sample 2) under pressure into
a matrix (synthetic opal). In the first case, the electron
gas (holes) in the original material remained nondegen-
erate down to helium temperatures. In the second case,
theholesare degenerate at |ow temperatures (T < 100 K).

The samples intended for electrical measurements
were 2 x 3 x 8-mm rectangular parallelepipeds pre-
pared by mechanical processing of synthetic opal crys-

1063-7834/02/4409-1774%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Hall voltage Uy vs. magnetic-field plots obtained at T = 1.4 K on samples 1 [Uy (no. 1)] and 2 [Uy (no. 2)]. Also shown is
the magnetic-field dependence of the ratio Up/B ~ Ry for these samples.

talsfollowing tellurium injection. No purposeful align-
ment of the C; crystallographic axis of tellurium with
respect to the parall elepiped edges was made. The con-
tactswere prepared by gold deposition through a mask.
The electrical resistivity and Hall effect measurements
on the cluster samples discussed here were carried out
in the magnetic-field range 0-12 T at temperatures of
1.4-300 K with an 11-Hz ac current. The current did
not exceed 10 YA. The magnetic field was generated by
a superconducting coil, and the measured signal was
entered into a computer.

The measurements were conducted at the Interna-
tional Laboratory of Strong Magnetic Fields and Low
Temperatures in Wroclaw, Poland.

Figure 1 shows the Hall voltage U,, measured as a
function of magnetic field at T = 1.4 K on samples of
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both types. The voltages are seen to depend approxi-
mately linearly on the magnetic field and to be similar

in magnitude. Calculation of theratio UY/B™ (i isthe

number of a data point), which is proportional to the
effective Hall coefficient R, «, revealed a certain
decrease in Ry « With increasing magnetic field
(Fig. 1). We note that the magnitude of R, « differs
markedly from the microscopic valuefor bulk tellurium
in clusters not only because of the sample size differing
geometrically from the total size of the Te clusters (the
filling factor), but also as a result of the topological
properties of the Te cluster sublattice in opal voids and
as a consequence of the Te-SiO, interface affecting the
conductivity, a point which we touch on later. The
rough cal culation of the effective hole concentration pg;



1776

RH, off> Cm3/A S

BEREZOVETS et al.

100+
100
50k no. 2
- no. 1
50+
0
1 1 1 1 1
0 0.05 0.10 0.15 0.20 0.25

/T, K!

Fig. 2. Dependence of the effective Hall coefficient Ry ¢ of samples 1 and 2 on reciprocal temperature. The measurements were

performedat B=8T.

took into account only the filling factor (~25% of the
sample volume).

The experiment showed that ps at T = 1.45 K is

approximately the same (~5.5 x 10 cm™) for both
samples (the magnetic-field-averaged values obtained
at 1.45 K are py; = 6.11 x 10" cm3 for sample 1 and

5.23 x 10 cm2 for sample 2). One might thus con-
clude that the severe technological conditions followed
in Teinjection into the opa (temperature T ~ 600°C and
hydrostatic pressure P ~ 3 kbar) favor impurity intro-
duction into the starting material (the doping level of
the pure material increases by three orders of magni-
tude). This conclusion, however, proved to be wrong.
Check measurements of R, performed on fragments of
the starting material after removal from ahigh-pressure
chamber showed the hole concentration of the undoped
starting Teto haveincreased only to p(77 K) ~10% cm=.

Figure 2 presentsthe R «(1/T) temperature depen-
dencesfor both samples measured in amagnetic field of

PHYSICS OF THE SOLID STATE Vol. 44 No. 9

80 T. The value of R (77 K) obtained for sample 2
yields pg = 5 x 10%” cm3 and varies only weakly up to
room temperature. R, « of sample 1, prepared from
pure Te, amost coincides below 10 K with the value
measured on sample 2. However, as the temperature of
sample 1 is increased, R, « reversesits sign at T, =
200 K from positive (for T < T;;,) to negativefor T > T;,.

The temperature dependence of effective electrical
resistivity (py) of both samples is displayed graphi-
caly in Fig. 3. While the p(T) relation for sample 2
has a metallic character (it grows monotonically with
temperature), pe Of sample 1 decreaseswith increasing
temperature.

3. DISCUSSION

The sign reversal of R, « observed in sample 1 is
typical of p-type semiconductors with a low acceptor
concentration N, and indicates a transition to mixed
conduction with increasing temperature, i.e., to thermal

2002
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activation of electrons with a mobility u,, higher than
that of holes, uy,.

The temperature of the Hall coefficient sign reversal
can be used for independent determination of N, with-
out recourse to absolute values of the semiconductor
electrical characteristics. In the case of acluster crystal,
this approach acquires specific significance, because
the result does not depend here on the topological char-
acteristics of the object.

In general, the magnitude and sign of the Hall coef-
ficient R(H) depend on the contributions provided by all
active groups of carriers to the conductivity in a mag-
netic field:

o(H)%,
o(H)%+o(H)Z,

R(H) = &

where 0,, = ZOLy and o, = Zoixx.
In the case of a magnetic field tending to zero,

Eqg. (1) for the standard band-structure model can be
presented in the form

2 2

_ A nu,-puj
=t TP

€C(nu, + pu,)

)

where u, and u, are the mobilities of the electrons and
holes, respectively; n and p are their respective concen-
trations; and A is a coefficient of order unity which
depends on the scattering mechanism and the statistics
of carriers.

By combining the condition of the zero Hall coeffi-
cient

p/n = (ufu,)? = b? (3)
with the charge neutrality equation
(p+Nun = nf,

nf = np = (N:N,)°’T*?exp(E,/2kT), (4)
one can determine the concentration of the ionized
acceptor impurity N, at the temperature of the Hall
coefficient sign reversal. Calculations madefor tellurium
at T;, = 200 K in this model yield N, [11.8 x 10* cmr3,
We used here u,/u, 01.6 and mj m = 0.076m; [7].
Note that R(T) of single-crystal Te samples with acon-

centration p(77 K) 01 x 10 cm™ does indeed reverse
signat T,, 200K (see, e.g., [8]).

The value of N, thus obtained corresponds to the
residual hole concentration p(77 K) in the starting

3/2

1 When determining the microscopic characteristics, the topologi-
ca features of a nanocluster crystal can be roughly included
within a simplified geometric model, for instance, a model of
spheres connected by cylindrical channels [2], pardleled by
simultaneous measurement of the resistance, Hall effect, and
magnetoresi stance in aweak magnetic field.
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Fig. 3. Electrical resistivity pes of samples 1 and 2 mea-
sured as a function of reciprocal temperature.

material and is at odds with the low-temperature mea-
surements presented graphicaly in Fig. 1. This sug-
gests a qualitative conclusion that the value of Ry «
measured on the undoped starting material at low tem-
peratures (Fig. 1) cannot be identified with the concen-
tration of three-dimensional (3D) holesinthebulk of Te
clusters.

No such phenomenon was observed in the Te cluster
crystal prepared from a strongly doped materia. In this
case, as expected, Ry « remains virtually temperature-
independent up to 300 K. This appears only natural,
because at high values of N,, the R, sign reversa
occurs at substantially higher temperatures.

We propose the following model to account for
these contradictory results.

It isknown that the free surface of single-crystal tel-
lurium is always coated by athin (~2 nm thick) film of
natural tellurium oxide TeO,. This oxide is adielectric
with a large band gap width. It is because of the exist-
ence of the Te-TeO, interface on the Te surface that a
layer of thickness of the order of 10 nm with an
enhanced content of free two-dimensional (2D) holes
(size-quantized accumulation layer, AL) forms on the
Te surface [6]. The hole concentration in the AL as
derived from the Shubnikov—de Haas effect is approxi-
mately 102 cm2 (or p = 10™® cm 3, if reduced to three-
dimensional volume), and the mobility of the 2D holes
exceeds that of holes in the volume by nearly an order
of magnitude [9]. If the Te-SiO, (opal) contact pro-
duces an effect similar to that of Te-TeO,, alayer with
an enhanced hole concentration should also form in the
Te-SiO, interface. Recalling that a cluster crystal has
an extremely large Te-SiO, interface, one readily
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comes to the conclusion that the major contribution to
the electrical conductivity and Hall effect at helium
temperaturesis dueto charge carriersin the AL. In this
case, the value of R,  measured at low temperatures
contains, according to Eq. (1), contributions from 2D
holes in the AL and from 3D holes in the bulk of the
clusters, asin the case of bulk Te sampleswith asurface
AL [6]. As the temperature increases and the system
crosses over to the state of mixed conduction, the con-
centration of free carriers (primarily, of electrons)
increases, the screening length decreases rapidly, and
the AL disappears. Therefore, for T > 100 K, we dedl
already with volume conduction, where Eq. (2) is
appropriatefor the Hall coefficient. In aTe cluster crys-
tal prepared from astrongly doped material, an AL does
not form at all, because the screening length for doped
Te is smal and the surface layer does not contain
allowed states.

This model provides an explanation for the fact that
the temperature dependences of electrical resistivity
p(T) of the samples studied follow different patterns
(Fig. 3). In sample 1, p(T) has a semiconducting char-
acter with atransition to intrinsic conductivity at high
temperatures, whereas sample 2, because of the elec-
tron gas being strongly degenerate, behaves as a dirty
metal. One can thus conclude that the major contribu-
tion to low-temperature galvanomagnetic effectsis due
to 3D carriers in the sample with doped tellurium and
to 2D holes in the AL on the Te-SiO, interface in the
“pure” sample. According to Eg. (1), the value of Ry
measured on sample 1 at low temperatures is deter-
mined by the sum g,(2D) + 0,(3D) and depends pri-
marily on the concentration of 2D holesin the AL.

The two-group conductivity model proposed for the
Te cluster crystal at helium temperaturesis also argued
for by the above-mentioned dight decrease in Ry «
observed to occur with increasing magnetic field
(Fig. 1). Indeed, in accordance with Eq. (1), anincrease
in the magnetic field brings about a decrease in the rel-
ative contribution from the group of fast charge carriers
to g,, and, accordingly, adecreasein Ry For sample 1,
such carriers are 2D holes. In sample 2, the role of the
second group of carriers is apparently played by holes
residing in regions of size comparable to the extension
in space of their wave functions but possessing a con-
siderably lower mobility.

As aresult of the Te cluster crystals having a large
surface areain the opa matrix, the main carrier scatter-
ing mechanism here involves the Te-SiO, interface.
Estimation of the hole mobility in the samples studied
yielded ug(sample 1) = 10 cm?/(V s) and ug(sample 2) =
100 cm?/(V s). No such low mobility has thus far been
observed in Te. The interface mechanism of scattering
isalso indicated by the fact that the mobility in the dirty
sampleis an order of magnitude higher than that in the
pure one, where the electrical conductivity is deter-
mined by the interface charge carriers.

PHYSICS OF THE SOLID STATE Vol. 44 No. 9
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An interface or a thin interlayer of modified tellu-
rium separating the sublattice of octahedral and tetrahe-
dral tellurium clusters from the amorphous SO,
spheres making up the opal lattice forms an interface
bubble lattice. An earlier publication [10] described a
silicon bubble lattice obtained by Si deposition on the
inner opal surface. In our case, the physical properties
of such an interface bubble lattice are determined by
both the contact effects between the Te sublattice and
the SIO, spheres and the symmetry of the opal lattice
and of itsthree-dimensional volume replica (Te sublat-
tice). In the case of n- and p-cluster sublattices, the
interface will represent a large-area p—n junction,
which can betreated as a superrectifier or a supercapac-
itor [11].
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Abstract—Within the framework of the nonrel ativistic fluctuation electromagnetic theory, relationshipsfor the
quadrupol e-quadrupol e contribution to the tangential and normal components of the force acting on a particle
moving parallel to the polarizing surface are derived for the first time. Consideration is given to the cases when
the particle possesses a permanent quadrupole moment or a fluctuation quadrupole moment and the surfaceis
characterized by alocal dielectric function. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Asfar asweknow, all theoretical investigationsinto
the interaction of moving neutral particles with a sur-
face have hitherto been performed only within the
dipole approximation (see, for example, [1-4]), specif-
icaly for the cases of particles with both a permanent
dipole moment (a polar molecule, etc.) and a fluctua-
tion moment (an atom in the ground state, etc.). How-
ever, there exists a diversity of molecules with a zero
dipole moment d but with a nonzero quadrupole
moment Q,, and higher-order multipole moments. For
example, among these molecules are all homonuclear
molecules (H,, N,, O,, etc.) [5]. Spherical particles that
have no permanent multipole moments possess the

fluctuation moments d¥, Q% , and L, with zero mean

values but with nonzero mean squares [5, 6]. This pro-
vides interaction of the spherical particles with each
other and with the surface at distances considerably
longer than the interatomic distances. Despite the fact
that the dipole contribution to the fluctuation interac-
tion of spherical particles with the surface dominatesin
the vicinity of the van der Waals minimum, the inclu-
sion of higher-order multipole moments is of the
utmost significance [6].

The purpose of the present work is to develop the
nonrelativistic theory of dynamic interaction between
neutral particles and a surface [2—4] with inclusion of a
permanent quadrupole moment or afluctuation quadru-
pole moment.

2. THE PARTICLE WITH A PERMANENT
QUADRUPOLE MOMENT
(A QUADRUPOLE MOLECULE)

By analogy with the approach developed in [2-4],
we consider a point particle with the quadrupole
moment Q;, that moves in vacuum with the nonrelativ-

istic velocity V aong the x axis aligned parallel to aflat
surface bounding a semi-infinite medium with the per-
mittivity €(w). The particle and the surface are sepa-
rated by a distance z,. The space density of bound
charges of the quadrupole particle can berepresented in
theform [6]

p(x,y,z,t) = %Dimk

*{3(x = V1)6(y)d(z—7) Qi -

It should be noted that the quadrupole moment tensor
involved in expression (1) is defined as

Qu = %{p(r')(sx;x'k—aikr'z)d . ?)

This expression differs from the most universaly
accepted definition [7, 8] by amultiplier of 1/2. Defini-
tion (2) usedin[5, 6] ismore convenient in terms of the
spherical tensor formalism.

With due regard for expression (1), the Poisson
equation for the electric potential can be written in the
form

(D

41
Ad(X Y, z,t) = —0,00
o(x Y.z t) = —3 0.0 ‘3
x{3(x—Vt)d(y)d(z—2)) Qi -
After the Fourier transformation of both sides of Eq. (3)
with respect to components of the two-dimensional
wave vector (k,, k) in aplane of the surface, we have

81’

d2
7~ KHba(@ = 5-8(0-kV)

L7
X { (KeQu + K2Qyy + 2k, k,Qy) (2 — 20)
- (2| kaxz +2i kyQyz)él(Z_ ZO) - szau(z_ ZO)} :

(4)

1063-7834/02/4409-1779%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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The solution of Eq. (4) for the Fourier component of the
induced potential has the following form (for more
details, see the Appendix):

d(2 = %5(w—ka)A(w)eXp(—k(Z+Zo)

5
x { kiQxx + kiny + 2kxkyQXy ( )

—2i kaxz —2i kyQyz - kZsz} '

g(w)—1
gw)+1°

Note that the components of the tensor Q, in
Egs. (4) and (5) can also be calculated in the coordinate
system related to the particle, because they do not
depend on the shift of the coordinate system provided
the particle has zero charge and zero dipole moment [5,
6].

Let usnow calculate the lateral (F,) and normal (F.)
forces acting on the particle on the side of the induced
field of the surface. The Hamiltonian of the interaction
of the quadrupole Q; with an external electric field can
be represented by the expression [6]

where A(w) =

¥ = _%QikaEi- (6)

Taking into account expression (6), we obtain

1 1 i
Fy = éDinkaEi —§DinkaDi¢m1 (7

F. = 30.0.06E = 30.0,000" ()
It should be remembered that, in relationships (7) and
(8), we first perform the differentiation with respect to
spatial variables and then substitute the coordinates of
the moving particle, ry(t) = (Vt, O, z,).

Next, theinduced potential ¢ isexpanded in a Fou-
rier integral with respect to spatial and time variables
[0.«(2 is defined by formula (5)] and the resultant
expression is substituted into relationships (7) and (8)
with due regard for the above remark. Upon integrating
by parts and transforming the limits of integration over
ki, to the interval (O, «) with allowance made for the
evenness of the real part and the oddness of the imagi-
nary part of the dielectric function g(w), we obtain the
following expressions:

2 A"k, V
F, = ~on TJ I dkxdkykxexp(—Zkzo)%
0

9)
x {KeQ% + KyQ5y + K'QZ, + 2K3K3(2Q%, + QuQyy)

+ 2Kk (2Q%, — QQy) + 2Kk (2Q5, - Q,,Q.) }
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[

— é . 1
F, = —ngIdkxdkyexp( 2kz,) A'(k, V)
0

(10)
x {K Qi + KyQF, + K'Q2, + 2K2K2(2Q%, + QQyy)

+ 2Kk (2Q%, — QQu) + 2Kk (2Q5, — Q,, Q) } -

Here, the real and imaginary components of the func-
tion A(k,V) are denoted by one and two primes, respec-
tively.

Expressions (9) and (10) describe not only the inter-
action of moving homonuclear molecules with a sur-
face but al so theinteraction between asurface and more
complex molecules (benzene, ethylene, etc.) that pos-
sess more than one symmetry axis, areflection axis, or
the center of symmetry. In all the above cases, the first
nonzero moment of a particle is the quadrupole
moment [5].

In the static case (at V = 0), we have F, = 0 and the
integration of expression (10) with respect to wave vec-
tors leads to the relationship for the attractive force

5 g-1
1925 +1

x {3Q5 + 3Q5, + 8Q%, + 2(2Q%, + QuQ,y)
+ 8(2Q§z - QXXQZZ) + 8(2Q§z - nysz)} )

where € is the static permittivity. Formula (11) can be
appreciably ssimplified for an axially symmetric mole-
cule whose axis is perpendicular to the surface. In this
case, the nondiagonal components of the quadrupole
moment tensor are taken as zero and the diagona com-
ponents are related through the simple expression [5]

Qxx = ny = _sz/2-

By substituting these rel ationshipsinto expression (11),
we have

F, =
(11)

(12)

15Qu,e -1

I:Z=_3zzgza+1'

(13)

Formula (13) can also be derived in a smpler manner
as follows. Let us consider a system of three point
charges (e, —2e, €) whose coordinates on the z axis are
given by (z,—a, z,, Z, + @). In this system, according to
definition (2), we have Q,, = 2ea?. Theimage chargesin

this case are determined as % (e, —2e, ©)[9]. Recall

that the energy of the system accounts for the interac-
tion between the charges and their images. By expand-
ing the energy of the system into a series with respect
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to the small parameter a/z, to a first nonvanishing
approximation, we obtain the expression

3QLe-1

32 zg e+l (14)
Taking into account the relationship F, = -0U(z,)/0z,,
formula (13) immediately follows from expression
(14).

3. THE PARTICLE WITH A FLUCTUATING
QUADRUPOLE MOMENT

Before proceeding to the case of a moving fluctuat-
ing quadrupole, we should note that, in addition to the

fluctuation quadrupole moment Q}, a neutral particle

possesses the fluctuation dipole moment d* (apart from
the other fluctuation multipole moments). For a spheri-
cal particleinits own coordinate system, no correlation

between the fluctuation quadrupole moment Q7 and
the fluctuation dipole moment d¥® isrevealed [6]. How-
ever, upon changing over to another coordinate system
through the paralel shiftr — r' =r — b, the compo-
nents of the quadrupole moment tensor defined by for-
mula (2) can be represented in the form [6]

= Q- (ds"bk +dcb) + (d¥b)&.  (15)
From relationship (15), it followsthat, in the coordinate

system related to the surface, the fluctuation dipole
moment correlates with the fluctuation quadrupole

moment; i.e., (¥ QX% 0. By virtue of this correla-
tion, the total force acting on the moving neutral parti-
cle on the side of the surface can be written as

Fy = FU O+ PO+ RS (16)
Thefirst term in relationship (16) describes the retard-
ing force within the dipole approximation in the case
when the quadrupole and higher-order multipole
moments are equal to zero. To the best of our knowl-
edge, all the theoretical works dealing with the calcula-
tion of dissipative tangential forces were reduced to
analyzing only this contribution. In relationship (16),
the second term accounts for the correlation between
the dipole moment and the quadrupole moment and the
third term describes the quadrupole contribution. For-
mally, the quadrupole contribution can be obtained
from relationship (16) at d* = 0. In this work, we will
restrict our consideration to the case of the purely qua-
drupole contribution.

For a fluctuating quadrupole moment, the expres-
sion for the tangenti al force takes the form

F, = Z0,Q70, E'”D+ XQ:;‘D EO (17)
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Informula(17), thefirst term describes the contribution
of spontaneous fluctuations of the quadrupole moment
and the second term accounts for the contribution of the
fluctuation electromagnetic field of the surface. The
Poisson equation for the Fourier component of the
potentia ¢ (2) takesthe form

nd°_
L7
X k5Quy (0= K, V) + 2Kk, Qu (@ —K,V)
X 6(2_ Z— (2| kaxz(w_ kxv)
+2ik,Qy(w—kV))3 (2—2)
- sz((’o - kXV)6"(Z - ZO) } .

The solution of Eqg. (18) (see the Appendix) hasthefol-
lowing form:

0@ = TH(KQu(0-kV)

(18)

b = E—L‘A(wexp(—k(z— ) KQud w—k,V)
Q=K V) + 2k kyQuy (0 —k, V)
= 2ikQ,(w—Kk,V) - 2ik, Q,(w—-K,V)

—K'QAw—kM)}.

In order to calculate the first term in relationship (17),
the quadrupole moment Qi-p is expanded in the Fourier

(19)

frequency integral and the components of the field E:”

are expanded in the Fourier integral with respect to the
frequency and the two-dimensional wave vector. Next,
the Fourier components of the induced field are
expressed in terms of ¢, with due regard for relation-
ship (19). The resultant correlator of the quadrupole
moment can be cal culated using the fluctuation dissipa-
tive relationship [6]

hw

(w)Q (0)d = 21y w+ ub)—coth2k

(20)

2
X Ima(Z)(w) %ilékj + 6ij6k| - éaikéljgi

where 0((2)(00) is the quadrupole polarizability. After
transformations with allowance made for the evenness
of thereal parts and the oddness of the imaginary parts

of the functions a(z)(oo) and €(w), the contribution of
spontaneous fluctuations of the quadrupole moment to
the tangential force can be written in the form

FO = _ij[LZ [ ootk i,k exp(~2czo)
0 (21)
xam2T$ a@ (@[ A"(w + k) — A" (0K V)]
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where T, is the temperature of the particle.

The second term in formula (17) can be calculated
using alinear integral relationship between the induced
guadrupole moment and the Fourier components of the
fluctuation field of the surface. For this purpose, the

components of the field E* entering into formula (17)
are expanded in Fourier integrals with respect to w, k,,
and k. The correlators of the spatial derivatives of the
surface field, which appear in the course of the calcula-
tion, are expressed through the components of the
retarded Green's function of aphoton in the mediumin
accordance with the general result of the theory of elec-
tromagnetic fluctuations [10]. After transformations
similar to those applied to derive relationship (21), we
obtain

2% .
F® = 2L rrdeodk, dk K K exp(—2k
3n2HI Y p(=2kz)
(22)
x coth ij Fa@a? @) —a? @-kv)],

where T, is the temperature of the surface. By combin-
ing expressions (21) and (22), we finally obtain

0
(23)

AW @) Aw+ KV) - A(w—k,V)]

2kBT1

O
X gcoth

+ coth—— it

. . O
" @) @
KT, A'(W[a” (w+k,V)—a (w kXV)]%;

Similar calculations for the force of attracting the qua-
drupole to the surface lead to the following formula:

FoQ - _2h y dodk, dk, k* exp (—2kz,)
2 ffjooma,

(24)

AW _ @ () [Aw + k,V) + A—k V)]

O
X Dcoth2k T
B'1

(OF

+ coth =1 A"(w)[a(z) (@+kV)—a

0

In conclusion, we consider the special cases of formu-
las (23) and (24), which are important from the practi-
cal standpoint. Within an approximation linear in the
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velacity, the particle temperature is equal to the surface
temperature; hence, it follows from formula (23) that

F = 15hV ﬁw 0 21 (25)

@) Bol ma(w)- JiCoths

Formula (25) is identical in the structure of the fre-
guency integral to the expression for the dipole—dipole
force [1, 4]. The only difference is provided by the

additional small factor gazl zé where a is the charac-

teristic linear size of the quadrupole. It is obvious that
the parameter a/z, characterizes the convergence of the
total interaction between the particle and the surface in
the case of the expansion into a seriesin terms of mul-
tipole moments.

For aparticleatrest (V=0and T, = T, =0), theinte-
gration of expression (24) with respect to wave vectors
and the rotation of the frequency integration contour
through an angle of 12 lead to the following relation-
ship for the force of attracting the particle to the sur-
face:

- -ffz—g!dwa(z’(imm(i ). (26)

From relationship (26), we can readily obtain the stan-
dard expression for the conservative interaction poten-
tial between the fluctuating quadrupol e and the surface

[11]:
___h @ i Al
U= 2 50|d(o0( (lw)A(w).

4. CONCLUDING REMARKS

It is evident that, in the case a/z, < 1, the quadru-
pole—quadrupole contribution to the normal and tan-
gential forces of the interaction between a moving par-
ticle and the surface is negligible compared to the
dipole—dipole contribution. However, the structure of
the frequency integrals involved in expressions (25)—
(27), generally speaking, does not allow usto introduce
the small parameter a/z, in a forma manner. Conse-
guently, there can occur a situation when the contribu-
tion of higher-order multipole moments will appear to
be predominant, specifically for the resonance structure
of the functions entering into the integrands in expres-
sions (25)—27).

At T, =T, =0, formula (25) and the dipole-dipole
contribution [1, 4] lead to a zero tangential force to the
first order in the velocity. In this case, Persson and
Volokitin [12] applied the higher-order perturbation
theory (based on the dipole approximation) to the deter-
mination of the coefficient of internal friction and

(27)
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obtained a dependence ~7;'°, which was used for the

interpretation of experiments on the friction of adsor-
bates. The inclusion of the multipole moments, which
are disregarded by the theory used in [12], as follows
from formula (25), makes contributions with a weaker
dependence of theforces on thedistance. Therefore, the
multipole moments cannot be ignored.

It should @l so be noted that the derived formulas can
be easily generalized to the case of nonlocal dielectric
surface functions through formal substitution [13].

APPENDIX

SOLUTION OF THE POISSON EQUATION
FOR THE FOURIER COMPONENTS
OF THE ELECTRIC POTENTIAL INDUCED
BY A MOVING MULTIPOLE

For a quadrupole particle, the Poisson equation for
the Fourier components of the electric potential coin-
cideswith expressions (4) and (18) in the cases of aper-
manent quadrupole moment and a fluctuating quadru-
pole moment, respectively. Without loss of generality,
these equation can be written as follows:

gd?

Qj?

~KH0u(@ = Ad(z-2) + BE(2-2)

+C0'(z—-2) + D3"(z-29),

(A1)

where A, B, C, and D are the z-independent coefficients
and k2 = K + ki .

The general solution of Eq. (A1) can be represented
as the sum of the general solution of the homogeneous
equation

b (2 = Ciexp(—kz) + C,exp(kz) (A2)
and the partial solution of the inhomogeneous equation
(A1). The partial solution of the inhomogeneous equa
tion (A1) can be found using a Green’s function which

correspondsto the formulated problem and satisfies the
equation

O dj _ kEG(Z’ 7) = 8z-2). (A3)

Q7

By directly substituting into Eq. (A3), we can easily
check that the required Green’s function has the form

Gz 7) = —%(exp(—klz—z’l). (Ad)

Then, according to the conventional method of finding
partial solutions to equations of type (Al) [14], we
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write the convolution of the right side of Eq. (A1) with
the Green's function (A4); that is,

00

dx(2 = {G(Z, 2)[Ad(Z - 2) + BA(Z - 2o) (A5)

+C8'(Z —2,) + D8"(Z —2,)]dz.

For calculating the convolution, we use the standard
relationships

I 3™ (x) f(x)dx = (-1)" f 3(X) f™(x)dx,

d, -
&lxl - %n(x)’

d2
ylxl = 23(x).

Asaresult, from expression (A5), we obtain the partial
solution in the following form:

0A_B
(2 = exp(Kz—2)) G5 + 559n(2-%)
0

Ck

_7+Ca(z_zo)+DTkzsgn(z—zo) (A6)

— DKsgn(z-2,)8(z- 2) + D&(z2) E;

A combination of Egs. (A2) and (A6) resultsin the gen-
era solution of Eqg. (Al). The coefficients C;, and C,
(C,=0az<0and C,=0at z>0) can be determined
from the continuity conditions of the potential and the
normal component of the electrical induction on the
surface z= 0. As aresult, we have

g(w)—1
g(w)+1

C,=C, =
(A7)

A+ Bk + Ck?+ DK®
x oK exp(—kz).

Next, we eliminate the internal electromagnetic field of
the particle [the nonzero term at €(w) = 1] from the gen-
eral solution. Consequently, for theinduced potential in
the range z> 0, we have

A+ Bk + Ck?+ DK®

du(@ = B(0) o exp(-k(z+ 2)).
(A8)
where A(w) = g—gg—)):———i

Formula (A8) can be easily generalized to the case
of multipole moments of an arbitrary order. For this
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purpose, given a zero octupole moment L;,.,,, the coeffi-
cient D in formula (A8) should be taken as zero.

In the case when the solutions of Egs. (4) and (18)
are represented in terms of formula (A8), we have D =
0 and the coefficients A, B, and C can be found from
direct comparison of theright sides of Egs. (4) and (18)
with formula (A1).
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Abstract—The photoluminescence (T = 5 K) and absorption (T = 295 K) spectra and thermostimulated lumi-
nescence (T = 5-300 K) curves of poly(methylphenyl)silane (PMPS) films are investigated as functions of the
film thickness, annealing temperature, and oxygen content in air. It isrevealed that the optical spectra and ther-
mostimulated luminescence curves of PMPS films prepared in air at room temperature undergo changes after
annealing at T = 370450 K. The assumption is made that the observed changes are associated with the forma-
tion of long polymer chain segments with a closer packing. This leads to an increase in the density of low-
energy states of excitons and charge carriers. It is demonstrated that atmospheric oxygen substantially affects
the formation processes and the energy disorder in the films prepared. The PMPS films are found to degrade
after heating to T = 500 K. © 2002 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Polysilanes are organosilicon polymersin which the
chains consist of silicon atoms linked by ¢ bonds and
attached side organic groups. Chromophores in polysi-
lanes are polymer chain segments in which electrons
involved in the o bonds between silicon atoms are del o-
calized. These segments have different lengths and are
separated by topological defects[1, 2]. Polysilanes are
characterized by large quantum yields of photolumi-
nescence (PL) [1] and high drift mobilities of holes[3]
and hold considerable promise for use as transferring
and light-emitting layers in multilayer electrolumines-
cent diodes [4-7].

Under operating conditions, electroluminescent
diodes degrade and, in the process, the passage of ulti-
mate currents considerably shortens their service life.
According to Kido et al. [4] and Suzuki et al. [5], the
degradation of diodes can be associated with the oxida-
tion of electrodes, deterioration of contacts between
layers, morphological changes in the films, and their
photodegradation and thermodegradation. Fujii et al.
[6] and Nespurek et al. [7] studied the photolumines-
cence and electroluminescence spectra of diodes in
which poly(methylphenyl)silane (PMPS) films served
as emitting layers. The photodegradation of PMPS
films as a function of the temperature, emission wave-
length, and atmospheric oxygen content was investi-
gated in detail in [8, 9]. The aim of the present work
was to elucidate how the heat treatment conditions
affect the luminescent properties and the energy disor-
der of PMPSfilms. For this purpose, the photolumines-
cence (T =5K) and absorption (T = 295 K) spectraand
thermostimulated luminescence (TSL) (5-300 K)
curves of PMPS films were investigated at different

film thicknesses (d = 0.5-30 pm), annealing tempera-
tures (T, = 295-570 K), and oxygen contentsin air.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The polymer films were prepared by pouring tolu-
ene solutions of PMPS onto fused silica substrates fol-
lowed by drying in air at room temperature. Moreover,
a number of films were produced by drying of a
degassed toluene solution of PMPS under vacuum with
the residual pressure P = 100 Pa. The degassing was
carried out asfollows. Initially, aquartz cell filled with
aPMPSsolution was held for t =60 minat T = 370 K.
Then, the cell was dipped into liquid nitrogen, the
PMPS solution was frozen, and air was evacuated from
the cell. After the solution was defrozen, the procedures
of itsfreezing and evacuation of air were repeated. The
absorption spectra (T = 295 K) were recorded on a
KSVU-23 spectrometric computer complex, and the
photoluminescence spectra (T = 5 K) were measured on
an SDL-1 spectrometer. The photoluminescence was
excited by a DRSh-250-3 high-pressure mercury-vapor
lamp with aset of absorption glassfilters. The low-tem-
perature measurements were performed using an opti-
cal helium cryostat with quartz windows and an auto-
matic system of control and stabilization of the temper-
ature which was measured with athermocouple.

The thermostimulated luminescence curves were
measured as follows: the samplesin the cryostat at T =
5 K were irradiated with a DRSh-500M mercury lamp
at the excitation wavelength A, =365 nm fort = 30 s,
were allowed to stand in the dark at this temperature,
and were then heated at a constant rate of 0.15 K s,
The integrated signal of thermostimulated lumines-

1063-7834/02/4409-1785%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Absorption spectra of the PMPSfilm (T =295K, d =
5 um) prepared in ar at room temperature: (1) prior to
annealing and (2, 3) after annealing under vacuum with
residual pressure P = 100 Pafor t = 60 min at Ty, = (2) 400
and (3) 550 K. The structural formula of PMPSis shown.
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Fig. 2. Photoluminescence spectra of PMPSfilms (T =5K,
Aex = 313 nm) prepared in air at room temperature: (1, 2)
prior to annealing and (3, 4) after annealing under vacuum
with residual pressure P = 100 Pafor t = 60 min at T, =

(3) 400 and (4) 550 K. Film thickness d: (1) 1 and (2-4)
30 pm.

cence was measured on an automated setup with the use
of an FEU-106 photomultiplier operating in a photon-
counting mode. The activation energies of charge car-
rier traps were determined by the fractional thermolu-
minescence technigue based on the temperature modu-
lation of the linear heating of the studied sample [10].
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The activation energies E, in each thermal cycle were
calculated from the relationship

ELT) = —d[Inl{g (T)]/d(1/KT), (1)

where l;g (T) is the thermostimulated luminescence
intensity and K is the Boltzmann constant.

3. EXPERIMENTAL RESULTS

Let us first consider the absorption and photolumi-
nescence spectra and the thermostimulated lumines-
cence curves of PMPS films prepared from a nonde-
gassed solution in air. At T = 295 K, the absorption
spectrum of the PMPSfilm prepared at room tempera-
ture consists of two broad structureless bands with
maxima at 275 and 337 nm (Fig. 1, curve 1). These
bands are associated with the T— 1 and 0 — o*
transitions in side phenyl groups and polymer chain
segments, respectively [2, 11]. Upon annealing of this
filmfort =60 minat P =100 Paand T,, = 370450 K,
i.e., at temperatures either near or above the glass tran-
sition point of the PMPS polymer (T, =408 K [3]), the
intensity of both absorption bands in the spectrum
slightly decreases and the low-energy edge of the band
attributed to the 0 — o* transition shifts toward the
long-wavelength range (Fig. 1, curve 2). A further
increase in the annealing temperature to T,, = 500 K
brings about a drastic decrease in the intensity of the
band attributed to the 0 — o* transition and a hypso-
chromic shift in thelocation of its maximum. For exam-
ple, after annealing for t = 60 min at T,, = 550 K, the
intensity of the absorption band of the g —» o* transi-
tion at a maximum decreases by ~25% and the hypso-
chromic shift is approximately equal to 5 nm (Fig. 1,
curve 3). These changes become more pronounced with
an increase in the temperature T,, and the annealing
time.

Figure 2 displays the photol uminescence spectra of
PMPS films (T = 5 K, A = 313 nm) at different film
thicknesses and different heat-treatment conditions. It
is found that the spectra of PMPS thin films (d = 0.5—
3 um) prepared at room temperature coincide with
those of the PMPS solution in toluene (the concentra-
tion C is equal to 0.01 wt %) and contain two bands
with maxima at A,; = 350-353 nm and A, = 415 nm
(Fig. 2, curve 1). The short-wavelength band with a
half-width of approximately 0.1 eV is assigned to the
o* — 0 exciton transitions in long chain segments,
whereas the long-wavelength band corresponds to the
radiative transition from the 1 state to the o state,
which is formed as a result of the o electron transfer
from a chain segment to the 1t orbital of the side phe-
nyl ring [7, 11]. As the film thickness increases to d =
5-7 um, the half-width of the exciton band increases by
afactor of approximately 1.5. Atd =7 um, thisband is
split into two componentswith maximaat A, = 350 nm
and A, = 355-358 nm whose intensities are virtually
equal to each other (Fig. 2, curve 2). After annealing of
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both thin and thick films for t = 10-200 min at P =
100 Paand T, = 370450 K, their photoluminescence
spectra coincide with each other and consist of two
bands with maxima at A, = 355-358 nm and A, =
415 nm (Fig. 2, curve 3).

An increase in the annealing temperature of PMPS
films to T,, = 500-570 K at P = 10°-10° Paresultsin
more significant changes in the photoluminescence
spectra. These changes become more pronounced with
anincrease in the temperature and time of annealing. In
particular, the annealing of the PMPS film at T,, =
550K for t = 60 min brings about an appreciable
decrease in the intensity of the exciton band, a hypso-
chromic shift in the location of its maximum by 5—
8 nm, and the appearance of a new broad luminescence
band in the visible range with a maximum at A, =
460 nm (Fig. 2, curve 4). An increase in the annealing
temperature to T,, = 570 K is attended by a substantial
decrease in the intensity of all the bands in the spec-
trum, and the photoluminescence almost completely
disappears after annealing of the film at this tempera-
turefor t = 60 min.

Now, we analyze the thermostimulated lumines-
cence curves for PMPS films. It is revealed that the
thermostimulated luminescence curves for thin and
thick films (d = 0.5-30 um) prepared at room tempera-
ture coincide with each other and have the shape of a
broad asymmetric peak located in the temperature
range T = 5-150 K with a maximum at T, = 95 K
(Fig. 3, curvel). It turned out that the thermostimul ated
luminescence curves measured in this work are similar
to those obtained in [8, 12]. As follows from the frac-
tiona thermoluminescence measurements, the activa-
tion energy E, linearly increases with an increasein the
temperature (Fig. 3, curve 4) and proves to be E,; =
0.21 eV at a maximum of the thermostimulated lumi-
nescence band. The annealing of PMPSfilms at T, =
370450 K and P = 100 Pafor t = 10-200 min leads to
a shift of the thermostimulated luminescence band
toward the high-temperature range, and its intensity
increases by afactor of two to five (Fig. 3, curve 2). In
this case, the maximum of the band isobserved at T,,, =
110 K and the activation energy E,, isequal to 0.25 V.
As the annealing temperature increases to T,, = 550 K
(t=60min), theintensity of the thermostimulated lumi-
nescence band at T,, = 110 K decreases and a new
high-temperature band appears in the range T = 150—
180 K with amaximum at T, = 160 K. Thisindicates
the formation of new traps of charge carriers with the
activation energy E,; = 0.40 eV (Fig. 3, curve 3).

In order to elucidate how atmospheric oxygen
affects the luminescent properties of the PMPS poly-
mer, we analyzed the photoluminescence spectra and
the thermostimulated luminescence curves for a thick
film (d =30 um) annealed at T,, =400K and P =100 Pa
for t = 60 min and saturated with oxygen upon holding
in air at room temperature for a certain time. First, the
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Fig. 3. Thermostimulated luminescence curves of the
PMPSfilm (T =5K, Ag =365 nm, d = 30 pm) prepared in
air at room temperature: (1) prior to annealing and (2, 3)
after annealing under vacuum with residual pressure P =
100 Pafor t = 60 min a T, = (2) 400 and (3) 550 K. (4)
Dependence of the activation energy E(T).
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Fig. 4. (8) Photoluminescence spectra (T = 5 K, Ag =
313 nm) and (b) thermostimulated luminescence curves of
PMPS films (d = 30 pm) subjected to annealing at T, =
400 K for t =60 min: (1) after rapid cooling from room tem-
perature to liquid-helium temperature and (2) after anneal-
ing at Ty, = 300 K for t = 15 min in a helium atmosphere.

photoluminescence spectrum and the thermostimul ated
luminescence curve were measured for the film rapidly
cooled from room temperature to liquid-helium tem-
perature. Then, the film was annealed in a cryostat in a
helium atmosphere at T,, = 300 K for t = 15 min and
cooled to T = 5 K and the photoluminescence spectrum
and the thermostimulated luminescence curve were
recorded again. It was found that, after annealing of the
PMPS film in a helium atmosphere, the intensities of
both the photoluminescence and thermostimulated
luminescence bandsincrease by afactor of 1.5-2. Note
that the photoluminescence spectrum remains
unchanged (Fig. 4a, curves 1, 2), whereas the thermo-
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stimulated luminescence curve for the film containing
adsorbed oxygen shifts toward the low-temperature
range (Fig. 4b, curves1, 2). Moreovey, itisrevealed that
the maximum of the exciton photoluminescence band
in the spectrum of the PMPS film prepared from a
degassed solution at room temperature under vacuum
with residual pressure P = 100 Pais observed at A, =
354-355 nm and its location remains unchanged after
annealing of thefilm at T,, = 370450 K for t =60 min.

4. DISCUSSION

In disordered organic matrices, only relatively weak
forces of intermolecular interaction act between mole-
cules. As a consequence, excitons and charge carriers
are localized at molecules of the matrix and exhibit
energy distributions that are characterized by the den-
sity-of-state functions of excitons and charge carriers,
respectively. According to the model proposed by
Bassler [13, 14], these functions can be represented by
a Gaussian distribution. Specificaly, for charge carri-
ers, we can write the relationship

p(E) = (2nd”) " “exp[-E*/(20%)], ®)

where E isthe energy of acharge carrier with respect to
the center of the Gaussian distribution with the half-
width o. Asfollows from the cal culations, the parame-
ter o, for excitons is approximately 1.5 times smaller
than that for charge carriers [13]. In the model under
consideration, it is assumed that the energy disorder in
polysilanes is governed by the distributions of chain
segments over energies and over local changes in the
packing of the polymer chains. In this case, the low-
energy edge of the absorption band attributed to the
0 — O* trangition is determined primarily by the
length distribution of chain segments. Within this
model, the dynamics of excitonic excitations is treated
as migration of excitons from short segments to longer
segments with a lower excitation energy. The excitons
continue to migrate until their energy becomes equal to
an energy E, which is referred to as the mobility
threshold. Below the mohility threshold E,, the density
of states is so low that the migration of excitons
becomes impossible and they are locaized. Conse-
guently, upon excitation of excitons with energies
higher than the mobility threshold, the photolumines-
cence spectrum does not depend on the excitation
wavelength A,,.. Inthe case when the excitation energies
are less than the mobility threshold E,, the photolumi-
nescence spectrum is associated with radiative transi-
tions from states that have already been excited selec-
tively and the Stokes shift between absorption and
emission in long segmentsis absent [15].

In polysilanes, the trans planar conformation of
chain segments is more energetically favorable and the
polymer chains containing segments with this confor-
mation in the solid phase have a closer packing as com-
pared to polymer chainsinvolving segments with adis-
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ordered structure [1, 2]. The calculations demonstrates
that, in polysilanes containing chain segments with a
disordered structure, the longest segments should adopt
aconformation similar to the trans planar conformation
[1]. Asis known [2], PMPS polymers can form amor-
phous films and the PMPS chain fragments have a dis-
ordered structure. It can be assumed that the structure,
the conjugation length, and packing of chain segments
in PMPS depend on the preparation conditions of the
polymer films. Moreover, in the photoluminescence
spectrum, the short-wavelength band at A,; = 350-
353 nm corresponds to luminescence of excitonslocal-
ized at relatively short segments and the long-wave-
length band at A, = 353-358 nm is attributed to lumi-
nescence of excitons localized at longer segments.
Analysis of the photoluminescence spectrum (Fig. 2,
curve 1) shows that relatively short chain segments are
formed in thin films prepared in air at room tempera-
ture. The doublet structure of the exciton photolumi-
nescence spectrum of thick films prepared in air at
room temperature (Fig. 2, curve 2) indicates that these
films contain two types of spatially separated centers of
radiative excitonic recombination. These centers are
polymer chains with different length distributions of
chain segments. It seems likely that the annealing of
thin and thick films at T,, = 370-450 K leads to an
increase in the concentration of long segments with a
closer packing, as judged from the long-wavelength
shift in the low-energy edge of the absorption band
assignedtothec — o* transition (Fig. 1, curves, 2).
As aresult, the energy disorder in the films becomes
more pronounced, the density of low-energy states
localized at long segmentsincreases, and the maximum
of the exciton photoluminescence band is located at
Arp = 355-358 nm (Fig. 2, curve 3).

If the hypothesis that the energy disorder in PMPS
films prepared at room temperature increases after their
annealing at T,, = 370450 K holds true, it can be
expected that, after annealing of the film, the parameter
o for charge carrierswill increase. Asarule, the param-
eter 0 is determined from the temperature dependence
of the charge carrier mobility u, which is extrapolated
to zero electric field strength [3, 13]; that is,

W(T) = Hoexp[—(20/3KT)7, 3)

where |, is the mobility in the energetically ordered
matrix.

Unlike excitons with a finite lifetime, photogener-
ated charge carriers in disordered matrices at suffi-
ciently low temperatures are localized at the lowest
energy levels described by the density-of -state function
[13, 14]. Anincrease in the temperature results in ther-
mal release of trapped carriers, and radiative recombi-
nation of oppositely charged carriers leads to thermo-
stimulated luminescence. Earlier [12, 16-18], it was
shown that the shape of the distribution p(E) can be
determined from analyzing the thermostimulated lumi-
nescence curves; more specifically, the high-tempera-
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ture edge of these curves for a number of molecular,
doped, carbazolyl-containing, and o- and T-conjugated
polymers can be approximated by the Gaussian func-
tion (2). In this case, the parameter o can be calculated
using the following relationship [12, 16, 17]:

En
o = .
[3InIn(At/t,)]Y* -1

Here, E,, is the activation energy at a maximum of the
thermostimulated luminescence curve measured after
illumination of the polymer at T=5K, At = 10®sisthe
delay time between the illumination of the polymer and
the recording of the thermostimulated luminescence
curve, and t, = 107 sis the residence time of carriers
in the polymer molecule in the absence of disorder
effects.

From relationship (4) and the data presented in
Fig. 3 (curves 1, 2), we obtain 0, = 0.10 eV and o0, =
0.12 eV. Therefore, the annealing of the PMPSfilm at
T,,=400K resultsin anincreasein the energy disorder.
According to formula (3), the above increase in the
parameter ¢ after annealing of the film impliesthat the
hole mobility at room temperature decreases by afactor
of 20. Note that the parameter o, determined in the
present work agrees well with the parameter o; =
0.093 eV obtained from the experimental data on the
hole mobility in PMPSfilmsin [3].

After heating of the PMPSfilms to higher tempera-
tures (T,, = 500-570 K), the changes reveaed both in
the absorption (Fig. 1, curve 3) and luminescence
(Fig. 2, curve 4) spectra and in the thermostimulated
luminescence curves (Fig. 3, curve 3) are similar to
those observed earlier upon exposure of the PMPS
filmsto UV light at room temperature due to photodeg-
radation of the polymer [8, 9]. It is known that photo-
degradation and thermodegradation of PMPS are
accompanied by identical chemical reactions dueto the
following factors: (i) the scission of o bonds between
silicon atomsin the polymer chain, (ii) the formation of
cyclic structures, (iii) the cross-linking between poly-
mer chains, and (iv) the incorporation of oxygen into
the polymer chain [1, 9]. Reasoning from the results
obtained in previous works, we can make the inference
that the decrease in the intensity of the absorption band
attributed to the 0 — o* transition and the decreasein
the intensity of the exciton photoluminescence band,
which are attended by a hypsochromic shift in their
maxima, are caused by the scission of o bonds between
silicon atomsin the polymer chain, whereas the appear-
ance of the new photoluminescence band at A, =
460 nm and the new thermostimulated luminescence
band at T3 = 160 K isassociated with the cross-linking
between polymer chains [8, 9]. It should be noted that
thermodegradation isacompletely irreversible process.

It is known that, in polysilanes, adsorbed atmo-
spheric oxygen [20] serves as an electron acceptor and
can form weak charge-transfer complexes with mole-

(4)
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cules of many organic compounds at atmospheric pres-
sure. These complexes are relatively unstable and can
easily dissociate upon elimination of oxygen [21]. As
was shown in my recent work [22], doping of PMPS
films by acceptors, namely, 2,7-dinitro-9-fluorenone,
2,4, 7-trinitro-9-fluorenone, and 7,7',8,8-tetracyano-
guinodimethane, results in coloration of the films and
the appearance of new broad bands in the absorption
and photol uminescence spectra due to the formation of
weak charge-transfer complexes with segments of the
PMPS chain. It can be assumed that atmospheric oxy-
gen is also capable of forming weak charge-transfer
complexes with PMPS chain segments. This accounts
for the experimentally observed photoluminescence
quenching in the film saturated with atmospheric oxy-
gen (Fig. 4a). The interaction between an electron
donor and an electron acceptor is accompanied by par-
tial transfer of the el ectron density from the donor to the
acceptor, and the efficiency of this process increases
with a decrease in the ionization potentia of the donor
[21]. Consequently, it can be expected that the charge-
transfer complexes with oxygen molecules will be
formed primarily by the longest PMPS chain segments
on which thelowest energy states of holesare localized.
The formation of the chargetransfer complexes
between oxygen molecules and the longest segments
leads to rearrangement of the energy levels of the seg-
ments and adecreasein the density of low-energy states
of holes. In turn, this results in a shift of the thermo-
stimulated luminescence curve toward the low-temper-
ature range after saturation of the film with atmospheric
oxygen (Fig. 4b).

Thus, the following model can be proposed to
explain the changes observed in the morphology and
energy disorder in PMPSfilms prepared under different
conditions. Inthin films (d < 7 um) produced from non-
degassed solutions at room temperature, atmospheric
oxygen forms weak charge-transfer complexes with
PMPS chain segments. This prevents their close pack-
ing, and relatively short segments are predominantly
formed in the films. The maximum of the exciton pho-
toluminescence band (T = 5 K) is observed at A, =
350-353 nm. During the preparation of thick films, the
oxygen concentration in the film bulk decreases, which
encourages the formation of chain segments with a
large conjugation length and regions with a close pack-
ing of the polymer chains. Asaresult, the spatially sep-
arated polymer chains with different length distribu-
tions of segments are formed and the exciton photolu-
minescence band is split into adoublet with maxima at
Ama = 350 nm and A, = 355-358 nm. The films pre-
pared at room temperature are characterized by the
energy disorder parameter o; = 0.10 eV.

The annedling of PMPS films at sufficiently high
temperatures and a low pressure brings about the
decomposition of charge-transfer complexesformed by
chain segments with oxygen molecules and the elimi-
nation of oxygen. Upon heating to temperatures either
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near or above the glass transition point, the mobility of
individual fragments of the polymer chains increases
and, after cooling of thefilms, the concentration of long
segments with a closer packing increases. This results
in a substantial increase in the density of low-energy
states of excitons and charge carriers. As a conse-
guence, the maximum of the exciton photolumines-
cence band is observed at A, = 355-358 nm and the
energy disorder parameter increases to o, = 0.12 eV.
After annedling at temperatures above 500 K, the
PMPS polymer undergoes thermodegradation.
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Abstract—It is demonstrated that prolonged treatment in a constant magnetic field considerably increases
the creep rate under compression of poly(methyl methacrylate) samplesirradiated with gamma-ray doses as
high as 100 kGy. For higher irradiation doses, the effect of the magnetic field on the creep rateisinsignificant.

© 2002 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

Asarule, polymers used in recent devices are sub-
jected to fields of different nature simultaneously. In
this respect, the study of the mechanical properties of
irradiated polymersisan urgent problem, because these
properties remain poorly understood. Smolyanskii
et al. [1] and Borisenko and Zhdanov [2] investigated
radiation-chemical processesin polymers under irradi-
ation and in light, magnetic, and temperaturefields. The
inference was made that radiation-chemical transfor-
mations can be enhanced under the action of magnetic
fields. It was assumed that changesin the rate of radical
reactions can lead to variations in the strength proper-
ties of polymers. In our earlier works[3, 4], we experi-
mentally demonstrated that an applied constant mag-
netic field can substantially affect the stress-strain
properties of polymers; moreover, we assumed that the
changesin the creep rate in amagnetic field are caused
by averaging of loca magnetic fields. It was aso
proven that the strength and stress—strain characteris-
tics of poly(methyl methacrylate) depend on the irradi-
ation dose [5, 6].

In this work, we analyzed the changes in the strain
of poly(methyl methacrylate) irradiated with different
gamma-ray doses after prolonged exposure to a con-
stant magnetic field. It was demonstrated that the effect
of the constant magnetic field on the creep rate depends
on the radiation dose absorbed by the polymer under
investigation.

2. SAMPLES AND EXPERIMENTAL
TECHNIQUE

Poly(methyl methacrylate) was studied under con-
ditions of uniaxial compression at a constant load of 80
MPa and a temperature of 300 K. The samples were
6 mm in height and 3 mm in diameter. Before mechan-
ical testing, the samples were placed in a constant mag-

netic field with a strength of 1600 Oe for 1.5 months.
Then, the samples were evacuated in ampules and irra-
diated by different gamma-ray doses with the use of a
80Co source at apower of 0.4 Gy/s. The reference series
of sampleswas not subjected to the magnetic field. The
samples were loaded after the ampules were opened,
and the time evolution of their strain under a constant
stress was measured. The error in measuring the total
creep was equal to 0.05%. The creep curves for the
samples treated and not treated in the magnetic field
were compared.

3. RESULTS AND DISCUSSION

Figures 1-3 depict the creep curves for reference
samples and samples treated in the magnetic field at
identical irradiation doses. For low irradiation doses,
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Fig. 1. Creep curves for poly(methyl methacrylate) after
irradiation with a dose of 10.5 kGy. H, Oe: (1) 0 and (2)
1600.
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Fig. 2. Creep curves for poly(methyl methacrylate) after
irradiation with a dose of 156 kGy. H, Oe: (1) 0 and
(2) 1600.

the constant magnetic field, as a rule, increases the
strain rate (curves 2). However, for irradiation doses
higher than 107 kGy, the measured and reference
curves approach each other.

Earlier [3-6], we examined the individual effects of
a constant magnetic field and gamma radiation. It was
shown that an increasein the creep rate with an increase
in the irradiation dose is associated not only with the
plastic shear but also with the extension of large-sized
hollow cracks. Note that, usualy, the latter phenome-
non is not observed under the compression of unirradi-
ated poly(methyl methacrylate) samples. A sharp
decrease in the yield strength was observed at irradia-
tion doses above 100 kGy, whereas the scatter of yield
strengths increased at irradiation doses of approxi-
mately 25 kGy. These effects can be explained by the
difference in the radical reactions at different irradia-
tion doses. Prolonged treatment (no shorter than a few
days) inamagnetic field at atemperature of 300 K also
increased the creep rate (the strain in the same time) for
poly(methyl methacrylate) samples[3, 4]. The effect of
the constant magnetic field was explained in terms of
disordering of the structure (excitation of macromole-
cules), which is characteristic of the early stages of ori-
entation [3, 4].

Let us now compare the effects of gamma radiation
alone and the joint action of gamma radiation and a
constant magnetic field on the poly(methyl methacry-
late) samplestreated according to the above procedure.
After irradiation, poly(methyl methacrylate) can be so
brittle that it cleaves under compression. For this rea
son, we observed creep for small strains at which no
macroscopic fracture occurred.

Figures 4 and 5 display the creep curves for two
series of samples. It can be seen from Fig. 4 that the
strain of poly(methyl methacrylate) samples in the
same time increases with an increase in the irradiation
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Fig. 3. Creep curves for poly(methyl methacrylate) after
irradiation with a dose of 350 kGy. H. Oe: (1) 0 and
(2) 1600.

dose. However, at irradiation doses of 205 and 350 kGy,
the mean strain rate decreases. The sameisalso truefor
poly(methyl methacrylate) samplestreated in the mag-
netic field (Fig. 5); however, the decel eration of the pro-
cess occurs at lower irradiation doses and is more pro-
nounced.

The times of attaining a 10% strain in the samples
irradiated with different gamma-ray doses and in the
samples treated in the magnetic field are compared in
Fig. 6. The shorter the time, the higher the strain rate.
Ascan be seen from Fig. 6, the largest divergence of the
two curves is observed at irradiation doses of 10.5 and
107 kGy. A similar result was obtained for strainsin the
range from 5 to 15%. The higher strains were disre-
garded because of the distortion of the true strain due to
the extension of hollow cracks. Thus, prolonged treat-
ment in a constant magnetic field with a strength of
1600 Oe at atemperature of 300 K substantially affects

25¢
20
15
S
W
10

1
0 10 20 30 40 50 60
Time, min

Fig. 4. Creep curves for poly(methyl methacrylate) after
irradiation with different doses D, kGy: (1) 10.5, (2) 29.2,
(3) 107, (4) 156, (5) 205, and (6) 350. Curves 1 refer to two
different samples.
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Fig. 5. Creep curves for poly(methyl methacrylate) after
prolonged exposure to a magnetic field. D, kGy: (1) 10.5,
(2) 29.2, (3) 107, (4) 156, (5) 205, and (6) 350.

the creep rate of poly(methyl methacrylate) irradiated
with gammarray doses as high as 107 kGy.

The intensive formation of hollow cracks that sup-
press the true strain is observed in the samples irradi-
ated with adose of higher than 107 kGy. Therefore, we
can assert that the magnetic field affects the shear acts
associated with the intermolecular interaction. As is
seen from Fig. 6, the magnetic field most strongly
affects the samples irradiated with doses of 10.5 and
107 kGy. Earlier [6], we noted that the creep rate begins
to change after irradiation with a dose of higher than
10.5 kGy; i.e., the influence of the constant magnetic
field at thisdose of irradiation is not yet complicated by
radiation-chemical processes. It was assumed that
exposure to gamma radiation with a dose of approxi-
mately 25 kGy decreases the molecular mobility, thus
initiating, for example, the reaction of radiativelinking;
consequently, the effect of the constant magnetic field
in this range of irradiation doses decreases. Smolyan-
skii et al. [1] also observed aspecific featurein theform
of amaximum intheradical concentration at aradiation
dose of 25 kGy. Aswas mentioned earlier, the influence
of aconstant magnetic field on the strain at doses above
107 kGy is suppressed by the fictive strain due to the
growth of cracks; as aresult, the creep rates (timesin
Fig. 6) for samples of two types approach each other. It
is evident that, even for the same polymer, the critical
irradiation doses can vary depending on the conditions
of irradiation and heat treatment of the samples, the
strength and exposure time of the constant magnetic
field, and the measurement temperature of the stress—
strain characteristics.

The mechanism of the influence of the constant
magnetic field on the creep rate is open to speculation.
Diamagnetism is inherent in al solids, however, its
mechanism is assumed to be specific to each material.
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Fig. 6. Dependences of the time of attaining a10% strainin
poly(methyl methacrylate) on the irradiation dose. H, Oe:
(1) 0and (2) 1600.

For complex molecules, diamagnetism is governed not
only by electron precession in atoms but aso by the
polarization of electron clouds in an external magnetic
field and by the orbital magnetic moment oriented par-
alel to the constant magnetic field [7]. Theoretically,
the coefficients of magnetic susceptibility are calcu-
lated for individual atoms and molecules.

Sincethe strain is associated with overcoming of the
barriersto intermolecular nonchemical interactions and
is determined by the degree of molecular mobility [8],
it is clear that the constant magnetic field affects the
intermolecular bonds and mobility of segments of the
polymer chains. In [3], it was demonstrated that the
effect of a constant magnetic field on the unirradiated
poly(methyl methacrylate) manifests itself in an
increase in the creep rate and a decrease in its non-
monotonicity. It was assumed that the constant mag-
netic field suppresses strong interactions between
neighboring molecules. Thisleads to an increase in the
molecular mobility and accelerates shear processes
under mechanical stresses. It is also known that poly-
mer molecules are oriented in aconstant magnetic field.
According to the calculations performed by Rodin [9],
the compl ete orientation of the molecule becomes pos-
sible in viscous solutions. In solid polymers [4-6], the
orientation is also observed upon prolonged treatment
in a magnetic field; however, reasoning from the long
times of relaxation of the molecules involved, we can
only infer an orientation of individual segments of the
macromolecule. Consequently, the orientation influ-
ence of the constant magnetic field on the polymer is
similar to the influence of the mechanical field. This
corresponds to a decrease in the potential barrier to
shear acts and to an increase in the strain rate, which is
observed experimentally.
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The changes observed in radiation-chemical reac-
tionsin irradiated polymers under the action of a con-
stant magnetic field have been discussed in the litera-
ture. In particular, Borisenko and Zhdanov [2] noted
that, upon irradiation of polymers, a constant magnetic
field increases the density of paramagnetic centers and
stabilizing charged particles and enhances radiation-
chemical transformations. The magnetic field can also
favor a decrease in the recombination rate of radical
pairs. It is not improbable that the variations in chemi-
cal reactions under the action of a constant magnetic
field can affect the strength properties of the polymers.
Actually, the deformation and failure can be considered
chemical processes. In this case, the increase in the
strain rate (decrease in the time in Fig. 6) agrees with
the data obtained in [2].

At present, the mechanism of theinfluence of acon-
stant magnetic field on the mechanical properties can-
not be unambiguoudly interpreted for the lack of reli-
able data; however, the changes in the stress—strain
characteristics and certain regularities have been estab-
lished [3, 4]. The results of thiswork confirm and com-
plement the available data regarding the influence of a
constant magnetic field on the properties of diamag-
netic materials. It was demonstrated that the effect of a
magnetic field on the strain rate of poly(methyl meth-
acrylate) depends on the radiation dose.
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Abstract—The structural and elastic properties of 4-n'-pentyl-4'-cyanobiphenyl (5CB) in the nematic liquid-
crystal phase areinvestigated in the framework of the statistical—-mechanical theory and the molecular dynamics

method. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The macroscopic properties of liquid crystals, gen-
erally, and the Frank elastic constants, in particular,
have been the subject of extensive experimental [1] and
theoretical [2] investigations. In many cases, homologs
of cyanobiphenyls, specifically of 4-n'-pentyl-4'-cyano-
biphenyl (5CB), are used as liquid-crystal materials.

Mesogenic molecules of these compounds consist
of one or several flexible hydrocarbon chains attached
to an elastic polar core. The flexibility of the hydrocar-
bon chains determines the physical properties of liquid
crystals in many respects. Moreover, these molecules
possess a sufficiently large dipole moment (~4.5-5.0 D
[3]), whichisdirected from the polar core to the molec-
ular tail, and form a nematic phase in the low-tempera-
ture range (295-305 K [1]). The latter circumstance
renders these objects very interesting for experimental
investigations [4—7]. Direct experimental measure-
ments of the Frank elastic constants are rather compli-
cated and can be performed accurate to within ~20—
40% [4, 5]. In this respect, theoretical studies of the
elastic liquid-crystal propertiesin the framework of sta-
tistical mechanics[8] or numerical molecular dynamics
calculations [9] have assumed a new significance,
because these approaches can provide answers to a
number of fundamental questions. For example, how
much do the microscopic parameters responsible for
the character of intermolecular interactionsin aliquid-
crystal system affect the measured macroscopic charac-
teristics of thereal liquid crystal?

In the present work, the above theoretical
approaches were used to investigate the elastic proper-
tiesof liquid crystals. The stati stical-mechanical theory
is based on the method of conditional distribution func-
tions [10]. This method makes it possible to take into
account not only trand ational and orientational correla-
tions but also mixed correlations of the molecules
involved. As amodel intermolecular interaction poten-
tial, we chose the dipolar Gay—Berne potential [11].

Thedipoleswere aligned parallel to thelong axes of the
molecules forming aliquid crystal. The pair and direct
correlation functions of the distribution and the orienta-
tion distribution function of 5CB molecules in the tem-
perature range corresponding to the nematic phase
were calculated in the framework of the statistical—
mechanical theory. Moreover, the orientation distribu-
tion function and the pair correlation function were
obtained by molecular dynamics calculations with the
use of readigtic intramolecular and intermolecular
atom—atom interaction potentials for 5CB [12, 13].

Nowadays, there exist a number of microscopic the-
ories describing the elastic properties of nematic liquid
crystals [14-17]. Within these theories, the Frank elas-
tic constants K; (i = 1, 2, and 3) are expressed in terms
of the orientation distribution function and the direct
correlation function of the nematic liquid crystal. It
should be noted that the key problem—the determina-
tion of the direct correlation function for anematic lig-
uid crystal—was solved with different degrees of strict-
ness. In particular, the pair correlation function was
obtained in the framework of the statistical-mechanical
theory with theinclusion of translational, orientational,
and mixed correlations, which made it possible to con-
struct the direct correlation function in the classical
Percus-Yevick approximation [18]. In turn, the direct
correlation function within the molecular dynamics
approach was derived by numerical solution of the Orn-
stein—Zernike equation [18]; furthermore, the pair cor-
relation function was also determined by the molecular
dynamics method. In the latter case, both the direct and
pair correlation functions were expressed as power
seriesin spherical functions and the solution of the Orn-
stein—Zernike equation was limited to the lowest
expansion terms.

This paper is organized as follows. Section 2 covers
the basic principles of the statistical—mechanical
description of the Frank elastic constants for nematic
liquid crystals. Section 3 describes the equilibrium sta-
tistical-mechanical theory used to calculate the orien-

1063-7834/02/4409-1795%$22.00 © 2002 MAIK “Nauka/Interperiodica’



1796

tation distribution function and the pair correlation
function, the numerical solution of the nonlinear inte-
gral equations required to construct these functions,
and the specific features in molecular dynamics calcu-
lations of the pair correlation function and order param-
eters of a nematic liquid crystal formed by 5CB mole-
cules. Section 4 presents the results of calculations of
the Frank elastic constants and the structural properties
of 5CB and the basic inferences drawn in this work.

2. FRANK ELASTIC CONSTANTS

In a perfect nematic liquid crystal, molecules are
predominantly aligned paralld to the director n [1, 2].
In the case when the perfect configuration is distorted
by either surfaces bounding the nematic liquid crystal
or thermal fluctuations, the molecular orientation varies
from point to point and the distortion of the director
field n(r) can be determined by minimizing the free
energy density functional

f = fo+ K+ Kjh i

1 ()
+ éKijkIni,jnk,I +
where f, is the density functional for the unstrained

state; Kjj, Kj, and Kjjy are the elastic constant tensors;

andn, ; = on, [1, 2]. In the bulk of the nematic liquid

crystal, we have K;; = 0 and the contributions Kj;; jx
can be represented in the form [19, 20]

izt fou = kysV(n IVN)
—(Ky+kyy)VINIVN+nxVxn].

Moreover, in functional (1), the other important part,
which is proportional to the square of the derivative of
the director, can be written in the Frank form [14, 15]

1

2 3)
X [Ky(Vn)*+Ky(n x Vn)*+ Ky(n x V xn)7,

whereK; (i =1, 2, and 3) arethethree fundamental elas-

tic constants corresponding to the longitudinal, tor-
sional, and flexura strains.

Therefore, the complete expression for the free
energy takes the form

F = IdeF +Id5(f13+ f24) +IdeS’ (4)

where fi3 = kigk - (n -V - n), fo = (K, + Kk - [NV -
n+n x (V xn)], and k is the normal to the surface S
bounding the volume V.

In recent years, several micrascopic approaches to
the description of the coefficients K; have been pro-
posed [14-17, 19, 21]. Within these approaches, the
coefficientsK; arerelated to structural characteristics of

)

fe =
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the nematic phase, such as the orientation distribution
function and the direct correlation function. In the gen-
eral form, the Frank elastic constants can be repre-
sented by the following expressions [14, 15]:

ke T
- pIr c(r, e, J)f o(cosp)) -
x fo(cosB))e, e« “drdQdQ,dQ;,
_ keT p’ Ir C(r, &, &) fo(cosp;) ©)
x fo(cosB))e. y& r drdeQide,
= kBTp Ir C(r, e, ) fo(cosp;) -

x fo(cosB))e, e« “drdQdQ;dQ;,

where C(r, g, q) is the direct correlation function;
fo(cosp;) is the orientation distribution function; 3; is
the polar angle, i.e., the angle between the z axis (coin-
ciding with the director orientation n) and thelong axis
of the ith molecule; dQ;, = sinB,dB,dd; dQ =
sinf3;dB;;dd;;; B; and ¢; are the polar and azimuthal
angles of the unit vector e =r/|r |, respectively; r =r; —
r;; Iy and r; are the vectors specifying the coordinates of
the centers of mass of the ith and jth molecules, res-
pectively; Tisthetemperature; p = N/V isthe density of
the system; kg isthe Boltzmann constant; and f,(cosp;)

is the derivative of the orientation distribution function
with respect to cosp;.

There are a number of simplified approaches to the
problem of calculating the Frank elastic constants [17,
19-21]. These approaches are based on the approxi-
mate calculation of the direct correlation function C(r,
e, §) = C(r/o), where o is the parameter of the Gay—
Berne potential [11], which depends on the vectors e
and g (specifying the orientation of theith and jth mol-
ecules, respectively) and the unit vector e.

For example, according to the approach developed
in our earlier works[8, 17], the Frank elastic constants
can be written in the form

% = 1+ A\(5-92), (8)
% = 1-A(1+32), (9)
'% 1-4N(1-32), (10)

2002



ELASTIC PROPERTIES OF LIQUID CRYSTALS

where
_ cos'B—cos’B W _yi-1
e = T Bmw) P Ty
cos’B - cos'B y +1

y=0)/oisthelength-to-width ratio of themolecule, and

K = 2(Ky+ Ko+ Ky)
_ _ (11)
_ B|5210P2—24P4+ 143 -w
TR 105 6w

Here, the factor B has the dimensions of force and is
given by

1+ (1/14)w°
(1-w?)’
1+ (3/14)w
(1-w?)”
2|52 +1
3 H
20?’2 + 8'54 +7
35 ’
110P, + 72P, + 16Ps + 33
231 '

The dimensionless parameter M, (L = 1 and 2) is
defined as

2.5

B = 3M,b°p’c’ ks T (12)

b = 4MApw’M, (13)

COSZB =

cos4[3 =

cosSB =

00

M, = —J'drC(r)rZL, (14)
0

and

s

Pa = J’PzL(COSB) fo(cosB)sinBdp (15)
0

are the order parameters of rank 2L. Here, P, (cosp)
(L =1, 2, and 3) are the Legendre polynomials of even
order.

Thus, relationships (8)—10) allow us to calculate
the Frank elastic constants in the case when the order
parameters Py, the orientation distribution function
fo(cosB), and the direct correlation function C(r) are
known. Note that the cal culation of thefirst two quanti-
ties presents no special problems, whereas the calcula-
tion of the direct correlation function for the nematic
phase is considerably more complicated.

3. CORRELATION FUNCTIONS

The direct correlation functions for such an aniso-
tropic system as the nematic phase of 5CB are calcu-
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lated in the framework of two independent approaches:
(i) the equilibrium statistical-mechanical theory [8, 17,
22], which is based on the method of conditional distri-
bution functions [10], and (ii) the molecular dynamics
method applied to the description of nematic liquid
crystals [9, 12, 13]. Within the equilibrium statistical—
mechanical theory, we consider a single-component
system composed of ellipsoidal molecules of length o,
and width o;inavolumeV at atemperature T. The vol-
ume V of the system is divided into N cells, each occu-
pying the volume v = V/N. As afirst approximation, we
take into account only states of the system for which
each cell contains one molecule [8, 17, 22].

The potential energy of this system can be repre-
sentedasU = i< d(ij) , where @(ij) isthe pair inter-
molecular potential, i =(r;, &), andr; and g arethe vec-

tors specifying the position and the orientation of theith
molecule, respectively. By integrating the quantity

exp[—kBiT} ,which i the density of probability of find-

ing the system at pointsi at the temperature T [10, 18],
we can introduce partial distribution functions, namely,
the one-particle distribution function F(i) (the density
of probability of finding a particle inside the ith cell),
the pair distribution function F(ij) (the density of prob-
ability of finding two particles in the ith and jth cells),
etc. [8, 10, 17, 22].

Within this approach, we will restrict our consider-
ation to the case of two-particle correlations. The func-
tions F(i) and F(ij) can be expressed in terms of the
mean-force potentials[8, 10, 17]

rp = (18)
Jawi()
i
Fyi) = FOFOVDY0 w607 @D

where

lle(j) = |_| lle,i(j),

i#]

V(ij) = exp[—%}

Id(j) = Idrjdej,
j w

w=vQdaq,

and a is the volume associated with the orientation of
the ith molecule. The one-particle function F(i) auto-
matically satisfies the normalizing condition

i d(i)F;(@i) =1, andtheconstraint F;(i) = J,d(j)Fij(ij),
which relates the one-particle and two-particle func-
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fo(cos B)
£

cos B;

Fig. 1. Orientation distribution function for 5CB molecules
at T =300 K according to calculations in the framework of
(1) the molecular dynamics method, (2) the statistical—
mechanical theory with inclusion of the dipole—dipoleinter-
action, and (3) the statistical-mechanical theory without
regard for the dipole—dipole interaction.

tions, allows us to derive the closed integral equation
with respect to the mean-force potential [8, 10, 17, 22]:

P (i) = Id(j)V(ij)w}li(jF;(j))- (18)
i
Equation (18) can only be solved by a numerical
method, which is described in detail in [8, 22].
With the use of the solution U, (i), we can calculate
the pair correlation function F(ij) and the orientation

distribution function fy(cosp;) = [dr,[d; F(i), where

¢; is the azimuthal angle of the unit vector &. In the
classical Percus-Yevick approximation [18], the
expression for the direct correlation function has the
form

Ci(if) = Fy(iD(L-V7(iD). (19)
Here, V(ij) is the kernedl of the integral equation (18),
which is determined by the pair intermolecular poten-
tial chosen as the sum of the Gay—Berne potential [11]
and the dipole—dipole interaction potential: ®(ij) =
Pag(ij) + Pyy(ij). Theformer potential can bewritten as
Dg(ij) = 4e€(R2 - R®), where R=(r — o + op)/og;
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r =|r;—r;|; and o and € [11] are the width and the depth
of the potential well, respectively. The parameters o
and & depend on the orientation of the unit vectorse, g,
and e; the geometric parameter y; and the exponents v

and p in the relationship € = €] (g, g)€5 (e, €, €). The

dipole—dipole interaction potential has the form
2

Dyq(ij) = %(q -g — 3¢ - ee- g), where A isthe dipole

moment of the 5CB molecule (A ~5 D [3]).

The intermolecular interaction parameters used in
our calculations are as follows: y= 3 (0, = 1.8 nm and

05 =0.59nm),v =20, u=0.98, and g, = 2.07 x 102* J.
In addition, we used the following dimensionless
parameters: the dimensionless density p* = NoJ/N =

0.512 (corresponding to a density of 10° kg/m? for
5CB), the temperature ©* = kgT/e,, and the dipole

moment p* = = 2.5. Themolecular dynamics

(8002) "
calculations included 120 5CB moleculesenclosedin a
cubic cell with an edge of 3.647 nm, which corresponds
to a density of 10° kg/m3. The temperature was main-
tained at 300K (©* =2.0) (for alarge canonical ensem-

ble).

The equations of motion were solved using the Ver-
let algorithm [23] with atime step of 2 fs. The starting
configuration corresponded to the smectic phase of
5CB [9]. The orientation of the director n was deter-

mined with the use of the matrix Q\r written in the
form [24]

w' o i
sz - NO.Zl
J:

where N, isthe number of 5CB moleculesand Biv isthe

angle between the long axis of the jth molecule and the
v axis related to the cubic cell. The molecular coordi-
nates of the system were constructed using the eigen-
vectors of the tensor of the moment of inertia [9, 12,
13]. By diagonalizing the matrix Q,, , we obtained
three eigenvectors, of which the largest vector corre-
sponds to the orientation of the director n. Figure 1
depicts the orientation distribution function fy(cosf3;)
calculated directly by the molecular dynamics method
with due regard for the potential energy involving the
intramolecular and intermolecular atom—atom contri-
butionsin the systemat T=300K [9, 12, 13]. The ori-
entation distribution functions derived with the use of
the integral equation for polar (u* = 2.5) and nonpolar
(u* = 0) systems at T = 300 K are also displayed in
Fig. 1. Making allowance for the fact that the calcula
tions were performed using different potentials of the
intermolecular interaction, the results obtained by dif-
ferent methods are in good agreement. Moreover, the

(3cosBl,cosBly —3,,),  (20)

NI
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order parameters P, and P, caculated in the frame-
work of the statistical—-mechanical theory (P, = 0.4 and
P, = 0.13) and the molecular dynamics method (P, =
0.504 and P, = 0.188) were compared with the exper-
imental data obtained by Raman spectroscopy (P, =
0.58 and P, =0.14) [25].

It turned out that the results of our calculations devi-
ate from the experimental data only dightly. The pair
correlation function F(ij) of the anisotropic system
formed by 5CB molecules at T = 300 K was also cal-
culated using the af orementioned molecular dynamics
method. Figure 2 (curve 1) shows the radial distribu-

tion function G(r) = J’F(ij)deQide, where dQ =
sin;dp;do;.

The Ornstein—Zernike equation relating the direct
and pair correlation functions, that is,

C(rp) = G(rp) -1

21
— 2 [drsC(r13)(G(r ) — 1), &

makes it possible to calculate the direct correlation
function with the use of the iterative procedure
describedin[9]. Theradia part of the direct correlation
function obtained by solving Eq. (21) numericaly is
plotted in Fig. 2 (curve 2). Thus, we determined the ori-
entation distribution function fy(cosB;), the order

parameters P,,, and the direct correlation function

C(r), which are necessary in calculating the Frank elas-
tic constants.

4. RESULTS OF CALCULATIONS
OF THE FRANK ELASTIC CONSTANTS
AND STRUCTURAL PROPERTIES FOR 5CB

In order to calculate the Frank elastic constants K;
(i=1, 2, and 3) with the use of relationships (8)—10),
it isnecessary to determinethe momentsM,, (L=1and
2) of the direct correlation function and the order

parameters P,, (L = 1, 2, and 3). The moments M,,

were obtained in the framework of both the statistical—
mechanical theory with expression (19) and the molec-
ular dynamics method with expression (21). The calcu-
lated magnitudes of K; (i = 1, 2, and 3) in the tempera-
ture range corresponding to the nematic phase of 5CB
aredisplayed in Fig. 3.

A comparison shows that the theoretical and exper-
imental results arein reasonable agreement with allow-
ance made for the approximate character of relation-
ships (8)—«10) and the accuracy of the measurements
(2040% [4, 5]). Note that the accuracy in direct mea-
surements of the ratios between the Frank constants
K4/K; and K,/K; can be higher than that of the con-
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Fig. 2. (1) Radia function G(r) and (2) direct correlation
function G(r) of the distribution of 5CB molecules at T =
300 K (molecular dynamics calculations).
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Fig. 3. Temperature dependences of the Frank elastic con-
stantsK; (i =1, 2, and 3): (1) K3, (2) K4, and (3) K, constants
calculated according to relationships (8)—(10) with the
direct correlation function obtained from expression (19)
and (4) K3, (5) K4, and (6) K, constants calculated accord-
ing to relationships (8)—(10) with the direct correlation
function obtained from expression (21).
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Frank elastic constants K; (i = 1, 2, and 3) and their ratios
Ks/K; and K,/K; for 5CB at atemperature of 300 K

Theoretical approach
Frank — Exoer .
constants statistical— molecular perimen
mechanical theory| dynamics
K1, PN 19.4 95 10.5
Kz, pN 10.0 5.1 5.4
Ks, PN 30.1 13.8 13.8
Ks/K1y 1.55 1.45 1.31
Ka/Ky 0.52 0.54 0.51

Note: The calculations were performed according to relationships
(8)<10). The direct correlation function was calculated
within two approaches: (i) the statistical—mechanical theory
with expression (19) and (ii) the molecular dynamics
method with expression (21). The experimental data were
obtained by the Freédericksz transition technique [5].

stants K; themselves [1]. The theoretical and experi-
mental data on the Frank constants and their ratios are
presented in the table. Knowing the radial parts of the
pair and direct correlation functions and using the
hyperinterlacing chain approximation [18], we can

T T T T 10
120+
18
80+ _6p
Z
= 5
& 146
40+
412
2
0_
1 0
-20 1 1 1 1

Fig. 4. (1) Radial part of the effective intermolecular poten-
tial d(r)/(kgT) determined using relationship (21) and

(2) the effective force F&'(r) between two 5CB molecules.
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determine the radial part of the effective pair potential
d(r), that is,

M) = G(r)-1-InG(r) —C(r)

ke T (22)

—% e between two
5CB molecules. The results of calculations are repre-
sented in Fig. 4. The potential ®(r)/kgT is characterized
by a pronounced repulsive part at distancesup to r =
0.6 (which corresponds to the width of the 5CB mole-
cule) and the small potential barrier A® = &(0.79) —
@®(0.59) 00.26ksT. The repulsive force between two
5CB molecules rapidly decreases with an increase in
the intermolecular distance and becomes zero at 1 [

0.6. As the distance increases in therange 0.62 < 1 <
0.8, the molecules are attracted to each other. The max-
imum attractive force is approximately equal to
2.21pN at r 00.8. With a further increase in the dis-
tance between the molecules, the attractive force rap-
idly tends to zero. It should be noted that the effective
potential ®(r) differs from the Gay—Berne potential
Dgg(ij) in both the potential well depth and the poten-
tial barrier. However, structura characteristics, such as
the orientation distribution function fy(cosf3;) and the

and the effective force F&(r) =

order parameters P,, , calculated in the framework of

these radically different approaches exhibit avery sim-
ilar behavior. In turn, this gives grounds to make the
inference that the correct inclusion of intermolecular
correlations leads to a decrease in the differences asso-
ciated with the choice of the intermolecular potential.
At the same time, structural characteristics such as the
Frank elastic constants must be calculated with due
regard for the flexibility of the hydrocarbon chains of
cyanobiphenyls. This problem is partly solved in the
framework of the molecular dynamics approach. As a
result, compared to the calculations in terms of the
mechanical—statistical theory, the molecular dynamics
calculations lead to a better agreement with the experi-
mental data. However, we believe that both approaches
open up independent ways of solving the problem con-
cerning the prediction of the structural properties of
real liquid crystals.
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Abstract—The vibration spectrum of perfect carbon nanotubes is studied using a two-parametric potential
whichincludes pairwise and three-particle interatomic interactions. This potential was proposed by Keating and
allows one to take into account the elasticity of pairwise interatomic bonds and the elasticity associated with a
change in the angle between directional interatomic bondsin covalent crystals. Using the Keating potential, the
vibration spectrum of a graphite monolayer is calculated and fitted to the vibration spectrum of crystalline
graphite, thereby determining the parameters of the potential . With these parameters, the phonon spectra of per-
fect monolayer graphite nanotubes are calculated. A continuum model, in which a monolayer nanotube is rep-
resented as an elastic cylindrical shell of a finite thickness, is also discussed. Within this model, the vibration
spectrum of a nanotube is calculated numericaly in the long-wavelength limit as a function of the radius and
thickness of the nanotube. © 2002 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Carbon nanotubes were experimentally discovered
by lijima[1] and have attracted considerable attention
because of their unigue properties, such as high
strength and conductivity dependent on the chirality
indices of the nanotube, and of their application poten-
tial in nanoelectronics. Unfortunately, there is no cur-
rently available technology of fabricating a nanotube of
a given chirality; nanotubes resulting from thermal
decomposition of graphite have uncontrollable dimen-
sions and chirality.

A perfect carbon nanotube can be covered by mak-
ing screw rotations of a unit cell consisting of two car-
bon atoms lying on the cylindrical surface. Let
SAz, Ad) be a screw rotation operator that transforms
the cylindrical coordinates z and ¢ of a point on the
cylindrical surfaceaccordingtotherulez, ¢ — z+ Az,

¢ + Ad.

We can introduce two linearly independent screw
rotation operators S,(Az;, Ad,) and S(Az,, Ad,) on the
nanotube. These operators can be chosen differently.
Since screw rotation operators commute, the operator

SIS, (wheren, mare arbitrary integers) transforms the
coordinates of an arbitrary point according to the rule
(z, ¢) — (z+nAz, + MAZ, ¢ + NAP, + MAd,). For cer-
tain values of n and m, this operator can be equival ent
to the identity operator. The minimum values of n and
min this case are called the indices of the nanotube and
are designated as (i, i,) in what follows. Since the
choice of operators S, and S, is not unique, there are
several different definitions of indices (i, i,) in the lit-

erature (these indices are also called chirality indices).
In this paper, we use the notation from Fig. 1.

L et us discuss how the parameters of the screw rota-
tion operators shownin Fig. 1 can befound for aperfect
monolayer nanotube with given chirality indices. Men-
tally cutting the nanotube along its generator and
unbending the tube, we will obtain a strip which can be
thought of as part of aninfinite graphite monolayer con-
sisting of closely packed regular hexagons of carbon
atomswith side d,. The screw rotation operators S; and
S, for the nanotube are represented by primitive vectors
T,and T, inthe plane, and the chirality indicesi, and i,
defineavector C =i,T, +i,T,; thisvector is perpendic-
ular to two sides of the strip, and its magnitude is equal
to the strip width. The parameters Ad, and Ad, can eas-
ily be related to the projections of thevectors T, and T,
onto the vector C, while Az, and Az, are equal to the

Fig. 1. Atomic structure of a carbon nanotube (schematic).

1063-7834/02/4409-1802%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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projections of T, and T, onto the direction of the gen-
erator of the nanotube:

(T,

2 ’

(T,

2 1

A, = 21T

Ad, = 21T

Az, = (T, [k), Az = (T,[),

where e, isaunit vector parallel to the generator of the
lateral surface. Thus, given the value of d, and using
the above formulas, one can calculate the parameters
of the screw rotation operators for a perfect monolayer
nanotube from the primitive vectors T, and T, and the
vector C.

Using the operators S; and S, introduced above, we
can unigquely determine the coordinates of atoms on the
surface of the carbon nanotube by expressing them in
terms of three numbers (n, m, s), where n and m are
arbitrary integers, except the multiples of the tube indi-
cesi, and i,, and s takes on two values (s = 0, 1) and
specifies the atomsin the unit cell of the structure. The
cylindrical coordinates of an atom specified by the

numbers (n, m, ) can be found by operating with S;S)’

on the sth atom in the zeroth unit cell of the structure.
For notational convenience, we will replace the pair of
numbers (n, m) by one index v, so that the position of
an atom on the nanotube will be specified by the pair of
numbers (y, s). We also note that the carbon nanotube
can be represented as two interpenetrating tubes, with
the unit cell of each of these tubes containing one car-
bon atom.

1803

2. DISCRETE MODEL

We numerically calcul ated the vibration spectrum of
the nanotube by using the Keating two-parametric
interatomic interaction potential [2], in terms of which
the relative interaction energy of atoms of the nanotube
can be written as

2 2 2
W = 9 (rys,y's_‘tys,y's)
S 2 2 2

ys,y's Tysys

(D

2

+B z (rysysfysys —TysysTys y's) ,
2vs V'S TysysTysy's'

where a and 3 are the stiffness coefficients of the C—-C
bond stretching and C-C—C bond bending maodes of
vibration, respectively; 1, s iS the vector connecting
the nearest neighbor atoms (y, s) and (y', S) in equilib-
rium positions; andr s < isthe current value of the vec-
tor connecting the nearest neighbor atoms. In the first
sum in Eqg. (1), summation is performed over various
pairs of nearest neighbor atoms, while in the second
sum, it is performed over various triples of nearest
neighbor atoms. When all of the carbon atoms are in
their equilibrium positions, characterized by vectors
T, yvs: the energy of Eq. (1) isequal to zero.

L et U, bethe displacement of an atom from its equi-
librium position. Assuming this displacement to be
small in comparison with the interatomic distances, we
expand the function W into a Taylor series and keep
only second-order terms. In this case, the force acting
on a specified atom (y, s) isalinear function of atomic
displacements and the classical equations of motion in
this approximation have the form

(Tys, y's’(Uys - Uy's‘))Tys y's

M Uys = 4a Z
y's

Tys, y"s"(Uy‘s' - Uys))(rys y's + Tys y"s")

2

Tysys

+B Z (Tysys(Uyre —Uy) +

T
VS.Y'S

)

ysy's lys y's'

Uys) + Tys e (Uys—=Uys)) Tys v

+B Z (Tys ys(Uyre —

y's,y"s"

where M is the mass of a carbon atom.

Figure 1 schematically depicts two atoms of the
zeroth unit cell of the carbon nanotube and the atoms
interacting with the zeroth unit cell; the latter atoms are
responsible for the terms on the right-hand side of the
equations of motion (2) withy=0ands=0, 1. In Fig.
1, the atoms of the zeroth unit cell are hatched and the
atoms of the neighbor unit cells interacting with the
zeroth unit cell are represented by black circles.

PHYSICS OF THE SOLID STATE Vol. 44 No.9 2002

'I_'y.s,’ ysTv'S, ys"

It should be noted that in the case of aplanar carbon
structure (graphite monolayer), al of the vectors 1,5 <
in Eq. (1) lie in the same plane and the restoring force
acting on the atoms in the monolayer, according to
Eg. (2), has no component along the normal to the
monolayer. In the case of the carbon nanotube, the vec-
torst,s < do not liein the same plane and the restoring
force acting on an atom on the nanotube surface,
according to Eqg. (2), can have a nonzero radial compo-
nent.
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Fig. 2. Phonon spectrum of an individua graphite mona-
tomic layer.

We seek a solution to the set of equations (2) in the
form

Uys = RIRZA exp(iqz, +ild, —iwt). (3)

It will berecalled that y stands for (n, m); R, and R, are
the rotation matrices corresponding to the screw rota-
tion operators S; and S, respectively; A, and A, arethe
displacement vectors of the atoms of the zeroth unit
cell; Aq is the momentum of a phonon and 7l is the
angular momentum of the phonon; w is the frequency;
and z,and ¢, are the cylindrical coordinates of the yth
unit cell on the nanotube surface. Substituting Eq. (3)
into Eq. (2) reducesthe infinite set of differential equa-
tions describing the motion of atoms of the carbon nan-
otube to the eigenvalue and eigenvector problem for a
dynamic 6 x 6 matrix. Given the solution to this prob-
lem, one can numericaly calculate the dispersion
curves and polarization of phonons in the nanotube.

To calculate the phonon spectrum of the carbon nan-
otube, we need the numerical values of the stiffness
coefficients a and 3 and the vectors 1,5 ¢ Characteriz-
ing the equilibrium positions of the carbon atoms of the
perfect monolayer nanotube in a Cartesian coordinate
system. We choose the x axisto passthrough the zeroth-
cell atom with index s = 0 and the z axis to coincide
with the nanotube axis. By acting with operators S, and
S, onthe coordinates of thetwo atoms of the zeroth cell,
one can determine the Cartesian coordinates of the
atoms of the nanotube and then find the equilibrium
position vectors T, y.

We determined the values of a and 3 by solving the
set of equations (2) describing atomic oscillation for the
case of aplane carbon monolayer. In this case, the rota-
tion matricesin Eq. (3) are equal to the identity matrix
and the atomic displacements in the monolayer plane
have the form

Uys = Agexp(ig,z, +igyx, —iwt), (4)
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Fig. 3. Phonon spectra of a (20, 10) carbon nanotube as cal-
culated within the discrete model for | = 0, 1, and 2. The
nanotube radiusisR=6.785 A.

where g, and g, are the components of the wave vector
of atwo-dimensional phonon in the xz coordinate plane
coinciding with the monolayer plane. Substituting
Eq. (4) into Eqg. (2) reduces the infinite set of differen-
tial equations to the eigenvector and eigenvalue prob-
lem for a dynamic 4 x 4 matrix. By solving this prob-
lem, we found the dispersion curves and polarization of
two-dimensional phonons in the graphite monolayer.
We note that the order of the dynamic matrix of the car-
bon monolayer is associated with the Keating potential,
for which the restoring force acting on an atom dis-
placed along the normal to the monolayer vanishes in
the linear approximation and, hence, the component of
the atomic displacement vector along the monolayer
normal in Eq. (4) isequal to zero. The parametersa and
B arefitted under the assumptions that the frequency of
theoptical vibration mode at thel™ point inthe Brillouin
zone of the graphite monolayer equals 1582 cm™ [3]
and the behavior of the phonon dispersion curves along
the "M, 'K, and MK directions is similar to that deter-
mined from experimental phonon spectra of a graphite
crystal [4] for the case where the propagation vectors
and the atomic displacement vectors of phonons lie in
the graphite atomic sheets. These assumptions are jus-
tified, because the interaction between atomic sheetsin
graphite is relatively weak and the properties of two-
dimensional phonons are mainly determined by the
elastic moduli of individual carbon monatomic layers.
Thevalues of the parametersa and 3 thusfitted area =
105216.76 dyn/cm and (3 = 84489.06 dyn/cm for the
equilibrium value of the carbon hexagon side in the
monolayer taken to be d, = 1.418 A. The dispersion
curves calculated for two-dimensiona phonons in the
carbon monolayer are presented in Fig. 2. It follows
from Fig. 2 that the velocities of long-wavelength
acoustic phonons in the monolayer are V; = 14.3 km/s
and V, = 20.7 km/s. These values are close to the theo-
retical values of the velocities of long-wavelength
phononsin a carbon monolayer presented in [3] and are
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equal toV; = 15.0 km/sand V, = 21.1 km/s. It should be
noted that calculations of the vibration spectrum of a
graphite monolayer based on the Keating potential
were first performed in [5]; those calculations are at
variance with the data presented in [3, 4] because of the
inadequate values of the parameters a and 3 chosen in
[5].

We assumed that the parametersa and 3 of the Keat-
ing potential found for acarbon monolayer can be used
to calculate the phonon spectra of carbon nanotubes.

Cadlculations are performed for a (20, 10) nanotube,
for which the data on phonon dispersion are availablein
the literature. For example, in [3], the phonon spectrum
of a (20, 10) nanotube was calculated using only trans-
lational symmetry without specifying the quantum
numbers of phonons: the longitudinal momentum and
angular momentum. The calculated phonon dispersion
curvesfor ananotube with chirality indices (20, 10) are
presented in Fig. 3. The velocities of long-wavelength
acoustic phononswith orbital quantum number | =0 are
found to be V; = 14.1 km/s and V, = 20.7 km/s; these
phonons belong to the longitudinal mode (in which
atoms are displaced along the axis of the nanotube) and
to the shear mode (in which atomic displacements are
perpendicular to the nanotube axis). In addition, the
nanotube supports a breathing phonon modewith alim-
iting frequency equal to w, = 161.2 cm™; in this mode,
atomsaredisplaced intheradia direction and their dis-
placements have axia symmetry. An analysis of the
dispersion curvesin Fig. 3 reveals that near the breath-
ing mode, thereis avibration mode with alimiting fre-
quency 228.7 cm which corresponds to radial vibra-
tions of the nanotube sublattices relative to each other.
In the optical-frequency region, there are modes with
limiting frequencies 1575 and 1583 cm in the long-
wavelength limit; these modes correspond to displace-
ments of the nanotube sublattices relative to each other
along the axis of the nanotube and to relative rotations
of the sublattices.

Thedispersion curvesfor phononswith | # 0 are dif-
ferent (Fig. 3).

We compared the numerically calculated frequen-
cies of long-wavelength phonons in the (20, 10) nano-
tube with the data from [3, 6] obtained using another
technique and a potential with many parameters. In
those papers, the frequency of the breathing mode in
the long-wavelength limit was calculated to be w, =
170 cm™ [6] and wy, = 165 cm [3], which is close to
our result for this frequency, w, = 161.2 cmr™.

3. CONTINUUM MODEL

In the continuum maodel, the carbon nanctubeisrep-
resented asacylindrical elastic shell of finite thickness.
This approximation is adequate if qd, < 1 and Idy/R <
1 (Ristheradius of the nanotube), which corresponds
to the case where the phonon wavelength is large in
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comparison with the interatomic distance. If the vibra-
tion amplitude of the thin eastic shell is small com-
pared to the shell thickness, the vibrations of the shell
can be described by the linear equations[7]

0°u, 1-p @  1+pd%U, pou _ 10%,
07 2R°9¢> ° 2R 090z ROz %%’
L+pdu, 1oy 107, 10y _ 10y,
2R 0200 2 97 RPop®? RO c?ot?’

)
pou, 10u, U

Rz ROO R

21 A2 22
_h_Ela—+1' o°H = 10 Ur
1207 2990 2
where | is the Poisson ratio, p is the density of the
material of the shell, Ristheradius of the middle cylin-
drical surface within the shell, h is the shell thickness,
and zand ¢ arethe cylindrical coordinates of apoint on

the middle cylindrical surface within the shell; u,, Uy,
and u, are the components of the displacement vector in

the cylindrical coordinate frame; and ¢ = /Lz
pP(1-p%)

(E isthe Young modulus).

We seek solutionsto Egs. (5) for the components of
the displacement vector in the form

u, = Aexp(-wt +ild +iqz),
Bexp(—wt +il$ +iqz), (6)
Cexp(—wt+il$p +iqz),

U¢=

<
1

where A, B, and C are constants. By substituting
Egs. (6) into Egs. (5), we obtain aset of algebraic equa
tions for the constants A, B, and C. From the condition
for anontrivial solution of these equations to exist, we
obtain dispersion relations for elastic waves propagat-
ing through the shell.

We note that Egs. (5) have the following simple par-
ticular solutions with | = 0 in the elastic-membrane
limith=0.

(1) u,=u,=0andu, = Bexp(-wt +ig2). Inthiscase,
the dispersion relation has the form

2

2 _ E ¢
(.L) o e
2(1+u)p

and the solution describes torsional waves propagating
along the elastic shell.

(2) uy =0, u,= Aexp(iwt +igz), and u, = Cexp(iwt +
i92).

(7)
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Fig. 4. Phonon spectra of a carbon nanotube as calculated
within the continuum model for | = 0, 1, and 2. The nano-
tuberadiusisR=6.785 A, and the thickness of the nanctube
wall is zero.

This solution describes a wave propagating along
the shell. Under the conditions gh < gR < 1, the disper-
sion relations have the form

2 _ 20l 2 I 2 _ qu
wl—C[Ez"'qu- wz—?- (8)
In the case of q = 0, the wave with frequency w, isa
radial shell vibration (A= 0, C # 0) and corresponds to
the breathing mode. The second of dispersion relations
(8) in the case of g ~ 0 corresponds to a longitudinal
wavewith A#z0and C=0.

Generally, the dispersion relations for waves propa-
gating through the elastic shell are found by solving a
cubic equation following from Egs. (5) for the fre-
quency squared w? at fixed values of g and |.

We determined the values of the phenomenol ogical
parameters |1 and ¢ for the monolayer carbon nanotube
by fitting to the long-wavel ength phonon spectra cal cu-
lated within the discrete atomic model in the preceding
section. These fitting parameters are found to be p =
0.065 and ¢ = 20.59 km/s.

Figure 4 shows phonon spectra of the (20, 10) car-
bon nanotube cal culated numerically within the contin-
uum approximation. The velocities of long-wavel ength
acoustic phononswithl =0areV, =14.1km/sand V, =
20.6 km/s, and the frequency of the breathing modeis
W, = 161.3 cm™. The calculated spectra presented in
Fig. 4 correspond to a nanotube of zero thicknessh = 0.
In the case of h # 0, the calculated dispersion curve of
the breathing mode depends heavily on the thickness of
the nanotube. As an illustration, Fig. 5 shows the
numerically calculated phonon dispersion curves for a
(20, 10) carbon nanotube with h/R = 0.295.

Thus, the discrete and continuum models of carbon
nanotubes considered above may prove useful in ana-
lyzing data on Raman scattering on nanotubes, in esti-
mating the lattice heat capacity of an individual nano-
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Fig. 5. Phonon spectra of a carbon nanotube as calculated
within the continuum model for | = 0, 1, and 2. The nano-
tube radius is R = 6.785 A, and the ratio of the wall thick-
ness of the nanotube equals 0.295.

tube, and in analyzing the electron—phonon interaction
in nanotubes.

For example, scattering of an optical photon on a
carbon nanotube can be accompanied by the creation or
annihilation of a phonon and the photon—phonon inter-
action must obey certain selection rulesfollowing from
the conservation of energy, momentum, and angular
momentum. A Raman-active phonon mode of a nano-
tube is a breathing mode; the limiting frequency of this
mode (in inverse centimeters) as afunction of the nan-
otube radius (in angstroms) is given by the following
formula, as can be seen from Eq. (8):

_ 1093.278

W R 9
y = == ©
logw
3 _..
2 -
1k

1 1 1
0 0.5 1.0 1.5 2.0

logR

Fig. 6. Dependence of the limiting frequency of the breath-
ing mode on the nanotube radius as calculated within the
discrete model. The frequency wismeasured ininverse cen-
timeters; the radius R, in angstroms.
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Figure 6 shows the dependence of the frequency of
the breathing mode on the nanotube radius calculated
numerically in the long-wavelength limit within the
discrete model. It can be seen from Fig. 6 that adevia-
tion from Eq. (9) is observed only for nanotubes of
small radius. Calculations also show that the frequency
of the breathing mode virtually does not depend on the
nanotube chirality. These data and Eq. (9) can be used
to identify carbon nanotubes on the basis of experimen-
tal Raman scattering data.

The low-temperature heat capacity of a nanotube
can be calculated within the continuum model. In a
nanotube at low temperatures, there are acoustic
phonons with zero angular momentum and phonons
whose frequencies do not vanish in the limit g = 0 and
depend on the orbital quantum number |. The frequency
of long-wavelength acoustic phonons can be evaluated
from asimple formula,

_v
w0|~ﬁ:

where V is the velocity of an acoustic phonon with | =
0. At low temperatures, phonons are excited with vari-
ous values of the orbital quantum number | for which
hwy = kg T, where kg isthe Boltzmann constant and T is

(10)
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the temperature; therefore, anomalies can occur in the
temperature dependence of the nanotube heat capacity.
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