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Abstract—A review is made of studies of intracenter optical transitions in 3d shells of iron-group divalent
(magnetic) ions. Attention is focused on the emission spectra of Mn2+ ions in CdTe, ZnS, and ZnSe crystals. An
analysis is made of the structure of intracenter absorption and luminescence and of the effect that the elemental
matrix composition, magnetic-ion concentration, temperature, hydrostatic pressure, and structural phase tran-
sitions exert on the intracenter transitions. The mutual influence of two electronic excitation relaxation mecha-
nisms, interband and intracenter, is considered. The specific features of the intracenter emission of magnetic
ions embedded in two-dimensional systems and nanocrystals associated with a variation in sp–d exchange
interaction and other factors are discussed. Data on the decay kinetics over the intracenter luminescence band
profile are presented as a function of temperature, magnetic ion concentration, and excitation conditions. The
saturation of the luminescence and the variation of its kinetic properties under strong optical excitation, which
are caused by excitation migration and the cooperative effect, as well as the manifestation of a nonlinearity in
intracenter absorption, are studied. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals and glasses containing iron-group atoms
exhibit intracenter transitions in the unfilled 3d shells of
these atoms that manifest themselves strongly in
absorption and luminescence. The intracenter emission
of these ions, particularly of the divalent manganese,
has a potential use, because ZnS:Mn2+ is the most effi-
cient electroluminescent phosphor known to date [1].
The main subject of the present review is optically
excited intracenter luminescence (IL). While IL has
been studied on a broad range of objects, most reports
have dealt only with crystals containing Mn2+. Of most
interest is the investigation of the II–VI crystals, in
which the relative concentration of the Mn2+ cations
can range from a few hundredths of a percent to tens of
a percent. Considered over such a broad range of con-
centrations, the manganese may act both as a paramag-
netic impurity and an activator and as a solid-solution
component capable of affecting the fundamental prop-
erties of a crystal. A large number of studies of the opti-
cal properties of II–VI solid solutions with a magnetic
component and of the related quantum structures have
recently been reported. These compounds make up a
class of dilute magnetic semiconductors (DMS) some-
times referred to as semimagnetic semiconductors.
Typically, DMSs exhibit properties basically inherent
in crystalline solid solutions, such as a dependence of
the fundamental parameters on the solid-solution com-
position, inhomogeneous broadening, electron local-
ization associated with local compositional fluctua-
tions, etc. If the isoelectronic impurity is a transition
1063-7834/02/4411- $22.00 © 22013
metal, its 3d shell can undergo charge transfer, thus
imparting new properties to excitons bound to Cu2+,
Ni2+, Co2+, and Fe2+ in crystals of the wide-band-gap
II–VI compounds [2, 3]. DMSs and related quantum
structures exhibit specific properties associated with
the large magnetic moment of the unfilled 3d shell,
such as giant Zeeman splitting of the electronic levels,
giant Faraday rotation, and the magnetic polaron effect.
DMSs reveal two types of electronic excitations and of
their relaxation, more specifically, the conventional
semiconductor interband and the intracenter mecha-
nisms, which can affect each other substantially. The
intracenter absorption and emission of light in the 3d
shell of a magnetic ion become manifest in crystals
with a broad enough band gap. The most popular DMSs
with Mn2+ ions are model systems for studying mag-
netic and magnetooptical properties and intracenter
transitions. The application potential of DMSs contain-
ing various magnetic impurities lies in the area of pho-
toinduced magnetism, laser gain media, laser shutters,
electroluminescent devices, Faraday cells, and magne-
tosensitive low-dimensional quantum structures.
Recently, electroluminescence has been studied in thin
epitaxial films and composites containing a polymer
and manganese-activated crystallites [4, 5]. Investiga-
tion of the properties of intracenter photoluminescence
promotes our understanding of the electroluminescence
processes occurring in bulk crystals and quantum struc-
tures and shows the path to their optimization. There is
a variety of reviews and papers that primarily describe
the band electronic states of DMSs and the effect of an
002 MAIK “Nauka/Interperiodica”
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internal field of magnetic ions on them (electron–ion
exchange interaction), as well as the interaction of mag-
netic ions with one another (ion–ion exchange interac-
tion) (see, e.g., [6–10]). The present review deals with
the optical transitions occurring in the 3d shell of the
iron-group divalent ions, mainly of Mn2+, in II–VI crys-
tals and related nanostructures. Main attention is
focused on the interaction between various mecha-
nisms of electronic-excitation relaxation, on the effect
of external factors, elemental composition of the
matrix, and confinement, as well as on the kinetic prop-
erties of the IL.

2. ENERGY LEVELS AND OPTICAL 
TRANSITIONS IN THE 3d SHELLS 

OF IRON-GROUP IONS IN THE II–VI CRYSTAL 
MATRICES

The properties of the 3d shell of an iron-group ion in
a crystal and the methods to be used to calculate its
electronic levels are governed by a number of factors.
Among these are the electron–electron spin interaction
Vss, the spin–orbit interaction Vso, hybridization of the d
states with s and p states of the band electrons, and the
crystal field Vc. The crystal field can be written in the
form

(1)

where Vo is the spherically symmetric part of the field,
V1 provides the main contribution to the lowering of the
spherical field symmetry, and V2 contains small terms
of an even lower symmetry. In the systems of interest to
us here, the strongest is the electron–electron interac-
tion, which corresponds to the case of a weak crystal
field. If the 3d shell is filled to one half or less, the
weak-field complexes retain, in accordance with
Hund’s rule, the maximum possible total free-ion spin
moment (5/2 for Mn2+). In high-symmetry crystal
fields, the electron–electron interaction is described by
three Racah parameters, A, B, and C, with the first of
them yielding only the general shift of the whole
3d-level system. The ligand crystal field acting on the
cation in a zinc-blende-type lattice, to which II–VI
cubic crystals belong, is tetrahedral. In this field, the d
orbitals can be divided in two groups, with , 

belonging to the T2 term and dxy, dxz, dyz, to term E. The
tetrahedral and octahedral fields acting on the magnetic
ion located at the cube center are created by the ligands
occupying four positions at the cube vertices and six
positions at the face centers, respectively. The crystal-
field splittings of the 3d levels in these fields are related
through

(2)

Here, the indices t and o relate to the tetrahedral and
octahedral cases for which the T1 and E terms are the
lowest, respectively. The quantity ∆ (sometimes
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replaced by Dq) is commonly used to measure the crys-
tal field. It is due to the comparatively small value of ∆t

that the tetrahedral complexes in a II–VI matrix are
classed among high-spin, weak-field complexes. In this
case, the nearest neighbors (anions) forming the tetra-
hedron do not affect the level diagram of a single man-
ganese atom noticeably. The tetrahedral type of the
anion environment also accounts for the small change
that the fields acting on the Mn2+ ion undergo in the
transition of a II–VI crystal from the wurtzite to zinc-
blende structure; indeed, the ligand field has the Td

symmetry and there is no inversion center. The level
diagram for the Mn2+ ion in a tetrahedral field is pre-
sented in Fig. 1, with the energy reckoned from the
ground state (the spin sextet 6A1 with spin S = 5/2 and
orbital number L = 0), which is only weakly sensitive to
the field. The lowest excited states correspond to S = 3/2
and L = 1, 2, 3, 4, the 4G term with L = 4 lying at the
lowest energy. The 4G term splits into four levels in a
tetrahedral field. The T1 level is the lowest, because its
energy decreases considerably with increasing field,
whereas the A and E levels respond very weakly to a
field variation. Energy level calculations for iron-group
ions in crystal matrices (the ligand field) can be found
in a number of monographs and papers (see, e.g.,
[11, 12]).

While the positions of the 3d-shell levels relative to
the band-state extrema are difficult to derive from opti-
cal spectra, the absence of clearly pronounced transi-
tions from the 6A1 level to the conduction band in all
Mn-doped crystals of the II–VI compounds indicates
that this level lies below the top of the valence band
derived from the chalcogenide p states. Photoelectron
emission spectra of Cd1 – xMnxTe were studied both
experimentally and theoretically in [13–18]. Two meth-
ods of photoelectron spectroscopy, integrated and
angle-resolved, yielded contradictory results for the
extent of hybridization of various states. These contra-
dictions were finally removed, and it has been shown
that the observation of a strong photoemission peak
located a few electronvolts below the valence-band top
and corresponding to the 3d-shell contribution to the
electron density of states is not at odds with a consider-
able sp–d hybridization. The energy level correspond-
ing to the removal of one 3d electron from Mn2+ lies
3.5 eV below the valence-band top, whereas that due to
the addition of a sixth electron to the 3d shell is located
3.0–3.5 eV above the valence-band top. This paper does
not consider the problems associated with charge trans-
fer in the 3d shell of the iron-group atoms.

Absorption spectra corresponding to transitions in
the Mn2+ 3d shell are observed in crystal matrices with
a sufficiently broad band gap. Intracenter transitions
with a threshold of about 2.13 eV are seen to appear in
reflectance spectra of Zn1 – xMnxTe already at x = 0.02
[19]. At comparatively high manganese concentrations,
the intracenter absorption spectrum consists of bands
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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Fig. 1. (1) Intracenter absorption and (2) IL of Mn2+ in a Zn0.96Mn0.04S crystal [1]. Inset presents Mn2+ IL spectra in ZnS doped
with manganese to concentrations of (3) 0.01 and (4) 1%. The C, H, and SF lines refer to zero-phonon emission of single ions from
the cubic and hexagonal crystal regions and from the region containing stacking faults, respectively. The Mn–Mn, I, and II peaks
relate to emission of manganese pairs of minimum radius from a cubic region and its phonon replicas, respectively. T = 4 K.
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about 0.1 eV wide (Fig. 1). The intracenter absorption
coefficient is approximately proportional to the manga-
nese concentration, and the band width is governed by
the 3d-electron interaction with phonons and by inho-
mogeneous broadening.

The transitions between 3d shell levels are of the
intercombination type and are forbidden in the electric-
dipole approximation. The forbiddenness is partially
lifted by the noncentrosymmetric crystal field compo-
nents, dynamic Jahn–Teller effect, and spin–orbit cou-
pling. The pronounced hybridization of the d states
with the chalcogenide p states plays a significant part in
this class of compounds. As a result, the oscillator
strength of the Mn2+ intracenter transitions in II- to
VI-type lattices is far larger than that, for instance, in
MnF2 and its analogs. The absorption coefficient at the
band maxima of Cd0.5Mn0.5Te is 103 cm–1, which is one
to two orders of magnitude smaller than the typical
value of the interband absorption coefficient. In sys-
tems with a high Mn concentration, the IL band is struc-
tureless and about 120 meV wide and its maximum in
Cd0.5Mn0.5Te lies at approximately 2.0 eV, so that the
Stokes losses relative to the peak of the first intracenter
absorption band, 6A1–4T1 (the maximum of the IL exci-
tation spectrum), are quite large, 0.4 eV.

The intracenter absorption, IL, and IL excitation
spectra have a clearly pronounced structure for low
concentrations of atoms with unfilled 3d shells. Such
spectra can be observed in wide-band-gap matrices, the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
best studied of them being the ZnS:Mn2+ system. Zinc
sulfide can contain regions with zinc-blende and wurtz-
ite structure, as well as regions with stacking faults. At
Mn concentrations on the order of 10–4%, the IL spec-
trum of ZnS:Mn2+ exhibits several narrow zero-phonon
lines with energies lying in the interval 2.22–2.24 eV,
the strongest of them belonging, according to [1], to the
emission of Mn2+ ions occupying cationic sites of the
cubic and hexagonal phases. The weaker lines can be
assigned to Mn2+ positions in the regions where the ZnS
lattice has stacking faults. ZnS is a polymorphic mate-
rial with regular defect sequences forming the 4H, 6H,
and 9R polytypes. In the case of irregular defects, there
are inequivalent cationic positions of C3v symmetry.
For these reasons, the zero-phonon spectrum has a rich
structure and at low Mn2+ concentrations and a low
temperature, a system of closely spaced zero-phonon
lines are observed (Fig. 1). Strong phonon replicas are
seen on the low-energy side of these lines. The excita-
tion spectrum of the IL zero-phonon lines correlates
with the absorption spectrum; the former spectrum
exhibits bands corresponding to transitions from the
Mn2+ ground state 6A1 to the excited states 4T1, 4T2, and
4E. At low Mn concentrations, the IL decay time
exceeds 1 ms and increases for the zero-phonon lines
toward lower energies, from 1.15 ms for the hexagonal
phase to 1.77 ms for the cubic phase. In high-quality
matrices with no structural defects and at low Mn2+

concentrations, one succeeds in studying in consider-
02
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able detail the 3d level systems of single ions at low
temperatures. In such ZnS:Mn2+ crystals, the spectra of
polarized excitation of the Mn2+ terms were investi-
gated in [20]. The orbital-triplet fine structure is usually
associated with the Jahn–Teller interaction of the 3d
states with the e-type vibrational mode. In addition to

Fig. 2. Calculated energy level diagram and zero-phonon IL
spectrum of Mn2+ in a ZnS crystal free of structural defects
and having a low manganese concentration [20]. (a) Energy
levels of a free ion (Vo) and of an ion in a crystal field (Vc);

insets (1) and (2) show, respectively, the 6A1 ground-state

splitting (magnified 106 times) and two versions of addi-
tional splitting of the 4T1 excited state (magnified 102 times)
with inclusion of the spin–orbit (Vso) and Jahn–Teller (VJT)

interactions. (b) Fine structure of the Mn2+ IL spectrum in
ZnS obtained at T = 2 K and corresponding to the four 4T1
sublevels shown in inset 2.
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the 1-meV doublet splitting of the 4T1 term, nearly
degenerate states differing by 10–4 eV were resolved in
each doublet component (Fig. 2). The doublet compo-
nents derive from the Γ6, Γ8 and Γ7, Γ8 states, respec-
tively. It has been found that the crystal field model is
inadequate for determination of the multiplet splitting
of terms of the 3d5 states.

While the covalent model provides a more accurate
description of the 3d5 level system, it is more compli-
cated and the determination of a number of its parame-
ters requires experiments involving the application of a
magnetic field and uniaxial strain. As follows from this
model, the Mn2+ IL fine structure in ZnS, ZnSe, ZnTe,
and CdTe is largely governed by the spin–orbit cou-
pling of the 3d5 and ligand states. As the relative man-
ganese concentration x is increased from 0.001 to 0.02,
the IL and absorption bands shift toward higher ener-
gies at a rate of 3 meV/x and the spectrum becomes
more complex because of the interaction between the
magnetic ions. Already at an x value of about 0.01,
Zn1 − xMnxS exhibits a zero-phonon IL line of the near-
est neighbor Mn–Mn pairs which is substantially stron-
ger than the zero-phonon emission line of single Mn
ions (Fig. 1). The pair line has strong replicas with the
emission of LA and LO phonons. The IL excitation
bands still exhibit a phonon spectrum structure at x =
0.04; however, at x = 0.08 and larger, the bands become
structureless. In the 2.2-eV region, the ZnS matrix
reveals bands near 1.95 and 1.6 eV in addition to the
Mn2+ IL. While at low temperatures these bands are
weak, they have the same intensity as the 2.2-eV band
at 60 K and are dominant at 100–200 K. The low-
energy bands should be assigned, most likely, to Mn2+

ions occupying interstitial positions in the crystal
matrix. These bands become relatively enhanced with
increasing Mn2+ concentration and temperature, the
conditions in which energy transfer between the vari-
ous manganese centers becomes efficient. The relative
weakening of the 2.2-eV IL band observed to occur in
a ZnS:Mn2+ crystal heated above 60 K is accompanied
by a fast decrease in the decay time as a result of the
competing nonradiative mechanisms and energy trans-
fer to lower lying states, whereas for the long-wave-
length bands, this process starts at considerably higher
temperatures.

Even at the limiting manganese concentrations in
II–VI crystals, there is no indication of the properties of
the 3d levels changing radically due to the nearest
neighbor d–d interaction. For high Fe2+ and Co2+ con-
centrations, this interaction is far stronger and a transi-
tion is possible from isolated deep levels to a contin-
uum of hybridized d states. As a result, as the concen-
tration of iron or cobalt increases, the transitions
involving the crystal-field-split 3d levels broaden and
weaken in intensity.

When cobalt is doped in low concentrations into
ZnSe, numerous peaks about 0.01 eV and less in width
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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appear in the luminescence and subsequently extend
over a broad spectral region from 1.7 to 2.7 eV [21].
Two bands, at 0.73 and 0.78 eV, are due to the transition
from the 4A2(F) ground state of the 3d shell in the Td

field to the first excited state 4T1(F); the other bands
involve higher excited states of the type of G, D, H, and
P. The narrowness of these peaks and the absence of
phonon replicas indicate a weaker interaction of Co2+

with lattice vibrations compared with Mn2+ [22].
According to [23], the strengthening of the IL bands at
1.6, 1.9, and 2.4 eV in Zn1 – xCoxSe with x = 0.01–0.02
observed at 10 K is accompanied by a weakening and
disappearance of the green edge luminescence of ZnSe.
At x = 0.03, the IL also disappears, to be replaced by a
Raman continuum with a width larger than 0.5 eV,
which is due to electronic transitions in a d-type hybrid-
ized impurity band. Zn1 – xFexSe exhibits one IL band at
about 1.9 eV, which is more stable than the Co2+ IL
band. It starts to broaden at x = 0.2 and decays by an
order of magnitude only at x = 0.64, with the Raman
continuum appearing at x = 0.3 and gaining in intensity
up to the maximum concentration x = 0.73. Interest-
ingly, in II–VI crystals doped with cobalt and iron, no
transition from the nonconducting to metallic state
occurs, despite the pronounced delocalization of the 3d
states. This can be accounted for by the transition to the
conducting state being suppressed by disorder, i.e., by
the formation of a continuum of localized electronic
states. One can conceive of the following model for the
case of very high iron or cobalt concentrations: the
Coulomb energy for the 3d electrons is large compared
to the characteristic energy variation occurring in one
electron hop, as a result of which the electronic states
split into two subbands separated in energy, with one of
them being completely filled and the other being empty,
so that the system retains its insulating properties.

3. DEPENDENCE OF INTRACENTER 
LUMINESCENCE ON THE TEMPERATURE

AND ELEMENTAL COMPOSITION
OF CRYSTALS

The temperature dependence of the shape and width
of the Mn2+ IL band has been studied for Cd1 – xMnxTe
(0.4 < x < 0.7) in the range 10–220 K [24]. The spectral
band width was found to comply with the configura-
tional-coordinate model up to 80 K. At higher temper-
atures, the experimental data are observed to deviate
considerably from theoretical calculations because of
the equilibrium positions of the manganese ion in the
excited and ground states approaching each other with
increasing temperature. This conclusion is buttressed
by the considerable decrease in the Stokes losses above
80 K. The Mn2+ IL band in Zn0.5Mn0.5Se shifts toward
lower energies by 12 meV in the temperature interval
from 4 to 45 K, after which a 40-meV shift in the oppo-
site direction occurs within the region 45–300 K. The
model based on the 4T1–6A1 optical transition involving
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      200
simultaneous spin flip of two electrons in the 3d shells
of neighboring Mn2+ ions provides a correct description
of the low-temperature behavior of the IL band and of
its weak sensitivity to an external magnetic field up to
6 T [25]. The high-temperature shift toward higher
energies is accounted for primarily by the lattice expan-
sion. Cd1 – xMnxTe also exhibits a shift of the Mn2+ IL
maximum from 2.0 to 2.15 eV in the interval 77–300 K.
The temperature-induced variation of the IL band width
below 80 K is consistent with the configurational
model; however, in the high-temperature region, one
should also take into account the approach of the con-
figurational coordinates of the Mn2+ ground and excited
states [26]. Note that the temperature-induced shifts of
the manganese absorption threshold Et and of the Wan-
nier exciton line Egx in Cd1 – xMnxTe (x > 0.4) are close
in magnitude, while their shifts observed under hydro-
static pressure differ even in sign.

It was proposed to use the temperature-induced vari-
ation of transition energies in the 3d shell of the Mn2+

ions contained in various DMSs for determination of
the temperature dependence of the lattice constant for
crystals with a sufficiently wide band gap [27]. The
possibility of using the IL of Mn2+ as a probe rests on
the strong dependence of the energy of the 4T1 term on
the crystal field and the weak field dependence of the
energy of the 6A1 ground state. Optical spectroscopy
has in this respect an edge over direct electronic and x-
ray methods, which are difficult to employ over a broad
temperature range covering the low-temperature
domain. The variation of the lattice constant can also be
studied by probing the band gap width Eg with exciton
radiation. However, the IL has an advantage over exci-
ton spectroscopy in its temperature stability and conve-
nient spectral range, because measurement of the exci-
ton spectra of wide-band-gap crystals requires the use
of sophisticated techniques. This appears to be an
essential point in view of the interest focused currently
on II–VI crystals with a very wide band gap containing
light elements (Zn, Mg, Be, Ca). Furthermore, the exci-
ton in a solid solution is characterized by different
degrees of localization at different temperatures, which
makes accurate determination of Eg a difficult problem.
The manganese IL in MnF2 crystals with a different lat-
tice structure was used to determine the crystal-field
parameters and the degree of bond covalency [28].
Variations in the elemental composition also strongly
affect the temperature-induced shift, which in
Cd1 − xMnxTe, for instance, increases by a factor of more
than two with x increasing from 0.4 to 0.7 [29]. Molec-
ular beam epitaxy made it possible to prepare
Cd1 − xMnxTe films with x ranging from 0.6 to 1.0 and to
study the temperature-induced variation of the Mn2+ IL
at manganese concentrations inaccessible for bulk crys-
tals [30–33]. The temperature sensitivity of the IL in
MnTe is far weaker than that in Cd0.3Mn0.7Te; however,
in both cases, the lowest energy of the IL maximum
2
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corresponds to T = 50 K, where the interatomic dis-
tances are the smallest. Epitaxial films of other II–VI
solid solutions containing iron-group elements can also
be grown by molecular-beam epitaxy (MBE) within a
much broader relative cation concentration range than
can be done with bulk crystals.

Investigation of the spectral position of the IL in
Cd1 – xMnxTe [34], Cd1 – x – yMnxMgyTe [35], Zn1 – xMgxS:
Mn2+ [36] and other systems performed at various x and
y yielded information on the effect of the nearest cation
environment on the 3d transition energies in Mn2+. The
results obtained allow qualitative interpretation based
on the change that the crystal field undergoes when one
cation is replaced by another and on the radii of the
divalent ions, which for Cd2+, Mn2+, Zn2+, and Mg2+ are
0.97, 0.80, 0.74, and 0.66 Å, respectively. As can
be seen from Fig. 3, the shift rates depend strongly on
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Fig. 3. Energy position of the Mn2+ IL profile maximum in
II–VI solid solutions as a function of relative concentrations
b of the cation components (T = 77 K). Cd1 – x – yMnxMgyTe:
(1) b = y/(1 – x – y), x = 0.375 (Mg for Cd substitution);
(2) b = y/x, 1 – x – y = 0.25 (Mg for Mn substitution);
(3) b = x/(1 – x – y), y = 0.25 (Mn for Cd substitution);
(4) b = x/(1 – x – y), y = 0.5 (Mn for Cd substitution) [35].
Inset shows the position of the Mn2+ IL maximum in a
Zn1 − xMgxS crystal with a low manganese concentration,
b = x/(1 – x) (Mg for Zn substitution) [36].

Table 1.  Energy positions of the intracenter absorption
peaks in three types of DMS

DMS

Final state (transition energy
from the 6A1 level in eV)

4T1(4G) 4T2(4G) 4E(4G) 2T2(2I)

Mn1 – xZnxS 2.33 2.40 2.60 2.75

Mn1 – xZnxSe 2.38 2.52 2.68 2.93

Mn1 – xZnxTe 2.38 2.54 2.70 2.93
PH
the chosen pair of the substitution partners. The crystal
field Dq is usually assumed to vary inversely propor-
tional to the fifth power of the distance between the
manganese ion and the anion. If one uses the variation
of the lattice constant a0(x) as a basis, estimates made
for x varying from 0 to 1 yield a considerably larger
shift of the d–d transition bands than that observed
experimentally. The reasons for this discrepancy may
lie in that, first, the manganese–anion distance varies
more weakly than a0(x) does (this is supported by
EXAFS measurements) and, second, one should take
into account not only the geometric factor but also the
change in the bond covalency upon cation substitution.
The concentration-induced shift varies sometimes non-
monotonically. It was shown in [37] that the Fe2+ IL
band in ZnS1 – xSex, which peaks at about 1.3 eV, shifts
toward lower energies up to x = 0.3; then, the shift
reverses sign, which apparently results from the com-
bined effect of the crystal field variation and of the
degree of the sp–d hybridization.

A strong IL shift is expected to ensue from the intro-
duction into a DMS of beryllium as a cation component
(the Be2+ ionic radius is only 0.35 Å); beryllium has
become a subject of considerable recent attention as a
wide-band-gap component which would enhance the
bond covalency in II–VI crystals and increase their
microhardness [38]. The DMSs containing Be as one of
their components are of interest (both theoretically and
for application) in the form of both bulk crystals and as
layers in quantum well structures [39]. The currently
available data are insufficient for a quantitative descrip-
tion of the IL shift caused by Be introduction into vari-
ous DMSs.

Table 1 presents the positions of the intracenter 3d
absorption maxima for various group-VI elements
determined for transitions to the four Mn2+ excited
states [40].

We readily see that replacement of sulfur by sele-
nium and, all the more so, by tellurium shifts the
absorption bands noticeably, whereas substitution of
tellurium for selenium affects them only weakly. This
does not correlate well with the simple theory taking
into account only the ligand crystal field (the ionic radii
of S2–, Se2–, and Te2– are 1.84, 1.91, and 2.11 Å, respec-
tively). This disagreement can be removed, as in the
case of cation substitution, if one includes the change in
the bond covalency. The Racah coefficient B, which is
a measure of covalency, decreases in the order S–Se–Te
with weakening valence bond ionicity; this decrease
corresponds to the intracenter transition bands shifting
toward higher energies. The Mn2+ IL intensity varies lit-
tle in the interval 4–60 K, but when heated to 100 K, the
IL weakens by more than an order of magnitude. Note
that the IL intensity in matrices with strongly differing
parameters, for instance, in ZnS and CdTe, follows a
similar temperature behavior, provided the Mn2+ con-
centration exceeds a few percent. This similarity is
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002



INTRACENTER TRANSITIONS OF IRON-GROUP IONS 2019
accounted for by the fact that the major factor here is
the migration of intracenter excitation, a process which
will be considered below.

4. EFFECT OF HYDROSTATIC PRESSURE 
ON INTRACENTER TRANSITIONS

The effect of hydrostatic pressure P on the energy of
transitions between the 3d-shell levels of iron-group
ions is connected intimately with the level shifts
induced by variations in temperature or DMS elemental
composition. In the final count, the problem reduces to
the magnitude and symmetry of the local crystal field
and the degree of sp–d hybridization. It was established
that the pressure dependence of the shifts of the Wan-
nier exciton, dEgx/dP, and of the intracenter transition in
the Mn2+ ion, dEMn/dP, in Cd1 – xMnxTe measured at T =
2 K are 520 and –410 cm–1/GPa, respectively [41]. At
T = 40 and 77 K, the manganese level shift rates grow
to –450 and –600 cm–1/GPa, respectively; i.e., the tem-
perature dependence of the shift is nonlinear. The pres-
sure-induced shifts of the band and intracenter transi-
tions have opposite signs, so that at certain values of P,
depending on x, the threshold Et of the intracenter tran-
sition turns out to be below the exciton transition
energy even for x < 0.4. After the level crossing, the IL
band starts to grow in intensity and the exciton emis-
sion weakens. The low-energy shift correlates with
crystal-field theory for ions in that compression
enhances the field and lowers the first excited level 4T1

relative to the 6A1 ground state; numerical calculations
of the pressure-induced shifts yield, however,
−160 cm−1/GPa, which is considerably less than the
experimental value [42]. This disagreement is most
likely connected with the fact that the calculation used
does not go beyond the usual crystal-field theory and
does not assume strong hybridization of the Mn2+ 3d
states with s- and d-type orbitals of other atoms. Later
calculations [43] wherein the hybridization was
included yielded a larger pressure-induced shift of the
4T1 level. After the IL band has appeared with increas-
ing P, interband exciton emission gradually decays and
finally almost disappears. Two possible reasons were
suggested for the weakening of the exciton emission
with x increasing above 0.4: (i) enhanced relaxation via
the Mn2+ 3d levels and (ii) degradation of the solid-
solution quality at high x, which reduces the quantum
yield of the exciton luminescence. Hydrostatic pressure
experiments indicate that the first reason is more essen-
tial, because the exciton luminescence is observed to
weaken under elastic strains that do not degrade the
crystal quality.

The pressure-induced shifts of the Mn2+ IL band
maxima toward lower energies measured at room tem-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
perature [42] for Zn- and Mn-based DMSs with differ-
ent Group-VI elements are listed in Table 2.

An analysis produced the following results [42].
The main characteristics of the crystal field are its force
Dq and two Racah coefficients, B and C, for which the-
ory yields for the B/C ratio values ranging from four to
five [43]. In the case of Zn1 – xMnxS, the theory can be
reconciled with experiment for Dq = 500 cm–1 and B =
610 cm–1. The magnitude of Dq scales with the distance

a0 between the Mn and S ions as , and calculations
suggest that a0 changes by 0.014 nm in the pressure inter-
val from 0 to 10 GPa, whence dDq/dP = 18 cm–1/GPa.
For ZnS:Mn2+, dB/dP = –3.5 cm–1/GPa. According to
[44], the dependence of intracenter transition energy on
pressure can be cast as

(3)

where r determines the slope of the EMn/B dependence
on Dq/B in the diagrams presented in [43]. For the 4T1–
6A1 transition, one obtains dEMn/dP = 300 cm–1/GPa,
which is in accord with the experimental value (267 ±
9) cm–1/GPa for Zn1 – xMnxS.

It was found that a hydrostatic pressure of up to
13 GPa drives a phase transition in Zn1 – xMnxS (0.01 <
x < 0.1) from the zinc-blende to rocksalt structure [45].
This transition is accompanied by a radical change in
the IL spectrum, with the 2.0-eV band dying out and a
new band peaking at 1.4 eV and having a considerably
higher quantum yield that forms and rises in intensity
(Fig. 4). These experiments permit one to estimate the
change in the ligand field induced by the phase transi-
tion, as well as to use the IL as a probe to detect struc-
tural transformations. IL studies have established that
temperature annealing carried out after stress removal
restores the sphalerite structure practically completely.

a0
5–

dEMn/dP rd Dq( )/dP=

+ EMn Dqr–[ ] B 1dB/dP,–

Table 2.  Dependence of the shift of the Mn2+ IL band max-
imum on hydrostatic pressure P measured on three DMS
types with different magnetic component concentrations

DMS x
–dEMn/dP

(cm–1/GPa)

Zn1 – xMnxS 0.05 224 ± 4

0.3 286 ± 8

0.5 303 ± 5

Zn1 – xMnxSe 0.15 169 ± 16

0.25 181 ± 16

Zn1 – xMnxTe 0.1 500 ± 40

0.3 419 ± 16

0.6 395 ± 40
02
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Fig. 4. Effect of hydrostatic pressure on the Mn2+ IL spec-
trum in a ZnxMg1 – xS crystal [45]. (a) IL spectra (1) in the
original cubic crystal and (2) after application of a hydro-
static pressure of 13 GPa; x = 0.07; (b) IL after removal of
hydrostatic pressure: (1) before annealing, (2, 3, 4) after
annealing for 2 h at 200, 400, and 500°C, respectively; x =
0.04. The IL spectra were obtained at T = 77 K.

Fig. 5. Excitation spectra of the Mn2+ IL and exciton lumi-
nescence in a Zn0.95Mn0.05Se crystal obtained at T = 4 K
[46]. Inset shows a reflectivity spectrum of a crystal with an
excitonic structure near 2.803 eV. Arrows identify the posi-
tion of the exciton peak Egx and the positions spaced from
it by an integer number of LO phonon energies.
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5. COMPETITION 
BETWEEN THE INTRACENTER

AND BAND CHANNELS OF RADIATIVE 
RECOMBINATION

There is ample evidence supporting the existence of
a connection between the interband and intracenter
electronic states, for instance, the onset of ultrafast
phase relaxation of Wannier excitons in II–VI crystals
following their doping by iron-group ions, the presence
of a peak corresponding to the exciton energy Egx in the
IL excitation spectra, etc.

In the cases where the DMS band gap width Eg

(more specifically, the exciton energy Egx) does not
exceed the threshold energy of the intracenter transition
Et, the IL is weak. Under these conditions, energy trans-
fer from the first excited level of the 3d shell to band
states is more likely than a radiative transition to the
ground state of a magnetic ion. If Egx > Et, the situation
changes radically and the DMS may exhibit radiative
relaxation of optical excitation of two types, conven-
tional interband and intracenter. Their relative intensity
is governed by a number of factors, which we will dis-
cuss through the example of Cd1 – xMnxTe and
Zn1 − xMnxSe.

The band gap Eg(x) in Cd1 – xMnxTe broadens with
increasing Mn concentration, so that at x = 0.4 it
reaches Egx(0.4) = Et. For x slightly in excess of 0.4, the
peak intensities of the IL, I3d, and of the Wannier exci-
ton luminescence, Ix, are similar for the excitation
intensity Ie = 1 W cm–2. A further increase in x results
in a weakening of the exciton luminescence; indeed, for
x = 0.5, Ix is smaller than I3d by two orders of magnitude
and for x = 0.6, by three orders of magnitude for the
same value of Ie [41]. As x increases, Egx(x) falls into the
region of an ever increasing density of excited states of
the Mn2+ 3d shell. The relaxation rate from these levels
to lower levels of the Mn2+ ion is high, which leads to a
weakening of radiative relaxation via the conventional
semiconductor mechanisms, thus enhancing the IL.

The excitation spectra of the Zn0.95Mn0.05Se reveal a
nonmonotonic variation of Ix and I3d with increasing
excitation photon energy hνe [46]. As seen from Fig. 5,
the values

(4)

(where ωLO is the longitudinal optical phonon fre-
quency and k = 0, 1, 2, …) are most favorable for the
interband exciton luminescence. In this case, hot exci-
tons relax rapidly to the lowest exciton level upon emit-
ting an integer number of LO phonons. If, however,
condition (4) for hνe is not upheld, the final stage of
relaxation to the exciton level occurs slowly and with
the emission of a large number of acoustic phonons; in
other words, the probability of excitation transfer to the
manganese ion levels increases. The same effect is
observed at a fixed hνe if the crystal is placed in an

hνe Egx k"ωLO+=
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external magnetic field H. Due to the giant Zeeman
splitting of exciton levels, a relation similar to Eq. (4)
holds for the lowest exciton Zeeman component at cer-
tain values of H and fixed hνe.

Zn0.99Mn0.01Se was used to study the effect that res-
onant excitation of one of the Zeeman splitting compo-
nents of the n = 1 exciton exerts on the Mn2+ IL polar-
ization [47]. If hνe and H are chosen such that the
energy of the photon is equal to that of the σ– polarized
upper exciton Zeeman component, the IL band inten-
sity in the σ– polarization weakens and that in the σ+

polarization is enhanced. Such a resonant excitation of
one of the polarized exciton components reduces the
integrated I3d IL intensity, while the IL polarization
exceeds 50%. This experiment can be interpreted in
terms of spin-dependent exciton capture by the Mn2+ 3d
levels under the competition of exciton and intracenter
radiative recombination channels, where the selection
rules for optical transitions in the 3d shell are weakened
by the exchange interaction.

Evidence of a redistribution of radiative recombina-
tion between the interband and intracenter channels,
depending on the relative energies of the corresponding
transitions, is provided by the effect of hydrostatic pres-
sure on the Cd1 – xMnxTe luminescence, which was con-
sidered in the preceding section.

The luminescence intensity redistribution in favor of
the interband exciton emission has been observed in
Cd0.6Mn0.4Te placed in a magnetic field [48]. At the
level of nonselective excitation used in the experiment
(hνe > Egx), the band exciton emission and the IL mea-
sured in a zero magnetic field had an approximately
equal intensity, but a field H = 5 T enhances the exciton
emission by an order of magnitude compared to the IL.
While this trend can be explained as being due to a shift
of the σ+ exciton component toward lower energies
with increasing H, one does not succeed in fully
describing the intensity redistribution between the two
emission channels in this way. The efficiency of excita-
tion transfer from band excitons to the 3d shell is appar-
ently affected by the spin selection rules, which gain in
significance under conditions where the intracenter and
exciton levels are magnetic-field-split. A later study
[49] discusses the effect of the resonance between the
band excitons and intracenter transitions in
Cd1 − xMnxTe on the efficiency of the dipole–dipole
energy transfer mechanism.

Besides creating a new recombination channel, ions
of the iron group are capable of acting directly on the
impurity states involved in various kinds of lumines-
cence. Doping CdTe with Fe2+ suppresses the donor–
acceptor emission, because iron associates with the
components of the donor–acceptor pairs. Increasing the
iron concentration from 1017 to 1019 cm–3 weakens the
emission of excitons bound to neutral acceptors by one
and a half orders of magnitude. This is most likely asso-
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ciated with the acceptor concentration decreasing as a
result of the Fe2+–Fe3+ charge transfer [50].

6. NONLINEAR ABSORPTION 
AND BISTABILITY

The long excited-state lifetime of the Mn2+ ions pro-
vides a possibility of observation of the nonlinear
optical properties associated with intracenter transi-
tions at comparatively low excitation levels. 7-ns-long
YAG:Nd3+ laser second-harmonic pulses have been
used in pump-probe experiments on Zn1 – xMnxSe
(x = 0.01) [51]. At excitation levels Ie of the order of
104 W cm–2, intracenter absorption (the 6A1–4T1 and
6A1–4T2 transitions) is observed to weaken. For Ie >
105 W cm–2 and at room temperature, the shape of the
laser pulse becomes distorted in passing through the
crystal and optical bistability simultaneously sets in
(Fig. 6). The up- and down-switching times are 9 and
1.8 ns (Ie = 105 W cm–2) and 6 and 0.8 ns (Ie =
106 W cm–2), respectively, the optical hysteresis loop in
the latter case being three times wider. The onset of
bistability is apparently accounted for by the positive
feedback forming in the reflection of light inside the
crystal from its polished surfaces under increasing sam-
ple transparency. The parameters of optical bistability
in the region of 3d transitions in Zn1 – xMnxSe should be
determined by the concentration of the Mn2+ ions, the
lifetime of their excited state with inclusion of excita-
tion migration, the optical pumping level, and tempera-
ture. It should be pointed out that the absorption satura-
tion and nonlinear properties in the region of intrac-
enter transitions in iron-group ions present in II–VI
crystal matrices remain inadequately understood; how-
ever, there is currently a renewed interest in this prob-
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Fig. 6. Optical transmission of a 0.05-cm thick
Zn0.99Mn0.01Se crystal obtained under strong pumping by

YAG:Nd3+ laser second-harmonic pulses into the region of
the Mn2+ 6A1–4T1 intracenter transition. T = 280 K [51].
(a) Shape of the laser pulse on transmission through the
crystal at pulse peak intensities Ie (W cm–2): (1) 0.5 and
(2) 1; the dashed profile is the original laser pulse shape.
(b) Optical bistability hysteresis loops describing the
dependence of transmission on Ie at laser pulse peaks for
cases (1) and (2) of item (a).
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lem, particularly in what concerns the divalent ions of
chromium.

7. INTRACENTER TRANSITIONS 
IN DMS-BASED NANOSTRUCTURES

Quasi-two-dimensional DMS-based quantum struc-
tures, particularly CdTe/Cd1 – xMnxTe, are traditionally
used in optical studies. Recently, nanostructures includ-
ing wide-band-gap DMSs, where intracenter transitions
are observed to occur already at low concentrations of
the magnetic component, have received increasing
interest. Superlattices and nanocrystals doped by opti-
cally active centers have potential application. In addi-
tion, such centers can be used as probes to study the
properties of nanostructures. Self-organized DMS
nanocrystals 2 nm high and 20 nm in diameter have
been grown on the ZnTe(100) surface [52], Cd1 – xMnxS
quantum wires 3.5 nm in diameter have been prepared
by organometallic vapor deposition in pores of SiO2

(MCM-4) [53], and ZnS:Mn2+ has been embedded in a
photonic crystal consisting of submicron-sized poly-
mer spheres [54]. One can presently prepare high-qual-
ity II–VI nanocrystals containing one Mn2+ atom per
nanocrystal. Such a nanocrystal is a model object for
use in studying the single magnetic moment in a quan-
tum dot. Studies of the optical properties, including IL,
in various DMS-based nanostructures require investi-
gation of the interaction of the 3d states of magnetic
ions with the s and p states under the conditions of spa-
tial confinement of the electron wave functions.
Enhanced sp–d hybridization should increase the
energy transfer rate from the electron–hole pairs to the
3d shell in interband optical excitation of DMS nanoc-
rystals. The IL quantum yield of ZnS:Mn2+ nanocrys-
tals with a diameter D of about 3 nm (the Bohr radius
of the Wannier exciton is 2.5 nm) increases with
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Fig. 7. IL quantum yield η of a manganese ion embedded in
a ZnS nanocrystal with diameter D. Points are experimental
data for T = 4 K, and the line is a plot of the fitting relation
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decreasing nanocrystal size and reaches as high as 18%
(Fig. 7), and the luminescence decay rate is several
orders of magnitude lower than that in bulk crystals
(one nanocrystal contains, on the average, one Mn
atom) [55].

The IL quantum yield is given by

(5)

where  and  are the radiative and nonradiative
recombination rates, respectively. The magnitude of

 is determined by the number of surface atoms in a
nanocrystal per unit volume, which is proportional to

D–1, and  depends on the degree of zinc substitution
by manganese. If a nanocrystal contains, irrespective of

its size, a fixed number of Mn atoms, then  ~ D–3. In
this case, η ~ (1 + βD2)–1, where the parameter β
depends on the ratio τR/τNR. Estimates [55] show that
the IL quantum efficiency in a nanocrystal with D =
3 nm increases by an order of magnitude compared
with a bulk crystal, which is in accord with experiment.
Confinement shifts the 3d levels into the region of the
4s band states, and the recombination of 4s electrons
with holes can take place both directly and via the 3d
states. In this case, transitions involving 3d electrons
become parity-allowed. Thus, two properties of nanoc-
rystals appear to be essential: (i) fast excitation transfer
from band states to the 3d shell of the magnetic ion as
a result of the excitation being localized within one
nanocrystal and (ii) an increase in  by several orders
of magnitude through enhanced sp–d mixing. Other-
wise, if  were to remain the same as in a bulk crystal
(i.e., about 2 ms–1), the fast excitation transfer to the
Mn2+ ion and the slow radiative recombination would
bring about IL saturation already at low interband opti-
cal excitation levels. Confinement produces the stron-
gest effect on the s–d mixing of excited 3d states in
ZnS:Mn2+ nanocrystals, starting from D = 2–3 nm.
These nanocrystals were employed to develop the con-
cept of an atom under the conditions of quantum con-
finement [56] where the properties of an atom and its
coupling with the matrix are modulated by the nanoc-
rystal size. An analysis of Y2O3:Tb3+ nanocrystals,
where the luminescence efficiency is also several times
higher than that in the bulk material, supports the valid-
ity of this approach.

The time interval between the interband excitation
pulse and the IL intensity maximum in ZnS:Mn2+

nanocrystals was experimentally shown to be less than
0.5 ns; in other words, excitation transfer to a magnetic
ion is indeed a fast process. The crystal field acting on
this ion also changes somewhat when ones crosses over
from a bulk crystal to a nanocrystal, which becomes
manifest in a small shift in the IL maximum; this factor
cannot, however, affect the sp–d coupling noticeably.

η τ R
1– τR

1– τNR
1–+( ) 1–

,=

τR
1– τNR

1–

τNR
1–

τR
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1–
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YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002



INTRACENTER TRANSITIONS OF IRON-GROUP IONS 2023
The acceleration of excitation transfer to magnetic ions
was confirmed in a number of later studies, where spe-
cial measures were taken to ensure uniform manganese
distribution over the nanocrystals. It was shown theo-
retically that the conduction band in a ZnS nanocrystal
with saturated surface bonds and with a Mn2+ ion at its
center is modified by interaction with the 3d states of
manganese and that this interaction becomes enhanced
with decreasing nanocrystal size, whereas the valence-
band states remain virtually unchanged. CdS nanocrys-
tals containing one Mn2+ each revealed a giant splitting
of exciton spin sublevels in a zero external field [57].
This splitting permits one to estimate the giant internal
field induced by the manganese ion. The magnitude of
the field is evidence of an enhancement of the short-
range spin–spin interaction in the case of confinement.

The authors of [58] questioned the concept of rear-
rangement of the sp–d interaction connected with con-
finement and assigned the fast decay of the lumines-
cence observed to occur [55] at 2.1 eV to the superpo-
sition of the tail of the conventional ZnS impurity
luminescence on the IL band. Studies of CdS:Mn2+

nanocrystals grown in a polymer matrix revealed that
the IL decays in them with τR = 1.5 ms, which correlates
with the Mn2+ IL kinetics in a bulk CdS:Mn2+ crystal
[59]. In all the manganese-containing nanocrystals
studied, the temperature quenching of the IL is far
weaker than that observed in bulk crystals. While in a
bulk CdS:Mn2+ crystal the IL intensity measured in the
interval 4–100 K decreases by a factor of ten, the IL in
a nanocrystal weakens only by one half in the region 4–
300 K.

There are apparently sound grounds, both theoreti-
cal and experimental, to believe that the excitation
localization and the enhancement of 3d-state hybridiza-
tion with band states in DMS nanocrystals strongly
affect the quantum yield and kinetics of the IL. The
conflicting character of the data obtained in different
studies originates most likely from technological fac-
tors. The technique used in the preparation and subse-
quent treatment of samples containing nanocrystals of
II–VI compounds with a magnetic component strongly
influence the luminescent properties. Different systems
with ZnS:Mn2+ nanocrystals having the same original
manganese concentrations but grown using different
techniques exhibit a strong scatter in the IL intensity. It
was shown in [60] that a microemulsion containing
ZnS:Mn2+ nanocrystals subjected to hydrothermal
treatment had a 60 times higher Mn2+ IL quantum yield
than a similar material obtained in an usual aqueous
reaction. The factors responsible for the enhanced IL
quantum yield are the formation of nanocrystals with a
perfect zinc-blende structure in the course of growth
and efficient passivation of the nanocrystal surface,
both during and after growth. An efficient method for
uniformly distributing manganese was developed to
prepare ZnS:Mn2+ nanocrystals containing, on the
average, four Mn atoms each [61], which was con-
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firmed by ESR measurements. These systems revealed
a shift in the IL maximum toward higher energies with
decreasing average nanocrystal size and an increase in
the IL quantum yield to 20% at room temperature and
to 75% below 50 K.

Doping II–VI nanocrystals with magnetic ions sup-
presses the impurity–band and interimpurity emission,
as well as the luminescence originating from surface
states, which gain considerably in significance for
small crystal sizes. CdS:Mn2+ nanocrystals 4 nm in
average size exhibit strong IL that peak at 2.12 eV but
lack the surface state emission characteristic of
undoped CdS nanocrystals [62]. This confirms the effi-
ciency of excitation transfer from the band, impurity,
and surface states to the 3d shell of magnetic ions under
the conditions of spatial confinement, where defects are
located close to the magnetic ion.

The strong influence of the lowered dimensionality
of a system on the IL kinetics has been demonstrated in
a study of a bulk zinc sulfide crystal with planes doped
by manganese [63]. The IL measured from two-dimen-
sional layers with a Mn concentration of about 1014 cm–2

has a weaker temperature dependence, and its decay at
low excitation levels proceeds faster than that in the
three-dimensional crystal because of the sp–d hybrid-
ization enhancement discussed above, as well as due to
the lattice strain caused by the Mn doping. This system
was found to be convenient in determining the critical
distance between doped layers at which interlayer 3d-
shell excitation transfer starts. This distance was esti-
mated to be 9 nm [63]. This figure, equal to 30 cation
separations, appears to be overevaluated, because it
does not agree well with the minimum manganese con-
centration at which the migration of intracenter Mn2+

excitation sets in in uniformly doped bulk II–VI matrices.
As found in the preparation of a bulk Zn1 – xMnxSe

crystal (0.15 < x < 0.25) containing CdSe nanocrystals,
manganese ions play an important part in CdSe nucle-
ation [64]. Application of a magnetic field of up to 5 T
to this system enhances exciton luminescence in the
nanocrystals by an order of magnitude while suppress-
ing the IL of the Zn1 – xMnxSe matrix. The correlation
between these effects, which has been established on a
large number of samples, originates from a change in
the efficiency of excitation transfer between the DMS
and nonmagnetic nanocrystals in an external magnetic
field; however, the details of this process remain
unclear. Energy transfer from CdSe to Zn1 – xMnxSe is a
process whose selection rules depend on the values of
the initial and final spin states. For this reason, the mag-
netic-field-induced splitting of band states and of the 3d
levels can strongly affect the relative magnitude of the
excitation transfer time and the characteristic radiative
times. Remarkably, this effect is critical to nanocrystal
size; more specifically, if the thickness of the CdSe
interlayers of which the island nanocrystals form
increases from 1.5 to 2.5 monolayers, the redistribution
of the luminescence in a magnetic field disappears.
2
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Suppression of the energy transfer from band excitons to
the Mn2+ 3d shell by a magnetic field was observed to
occur in Zn1 – x – yCdxMnySe/ZnSe and Zn1 – xMnxSe/ZnSe
epitaxial layers and in Cd1 – xMnxSe and Cd1 – xMnxS
quantum wires [65]. A conclusion was drawn in [65]
that the efficiency of excitation transfer in a magnetic
field is determined primarily not by the degree to which
the excitonic and intracenter transitions are resonant
but rather by an enhancement of the role played by the
spin-dependent selection rules. This is in accord with
the above data on bulk Cd1 – xMnxTe crystals.

The Mn2+ IL at T = 2 K was studied in
CdTe/Cd0.4Mn0.6Te quasi-two-dimensional quantum-
well structures in [66]. Time-resolved experiments per-
formed with a ∆t = 0 delay reveal exciton emission
from the CdTe quantum well with a maximum at
2.02 eV, and only the IL of barrier Mn2+ ions peaking at
2.0 eV is left in the spectrum for ∆t = 2.5 µs. Because
of the small thickness of the structure, all of the Mn-
containing layers are excited, even under optical band-
to-band-type pumping occurring with a high absorption
coefficient. The energy is subsequently transferred
from the barrier band states to the Mn2+ ions, thus pro-
viding a more efficient excitation of the 3d shells than
obtained in direct intracenter excitation. For this rea-
son, the maximum of the IL excitation spectrum lies at
the fundamental edge of the barrier with Eg approxi-
mately equal to 2.6 eV rather than near the excitation
threshold of the Mn2+ 3d shell at Et = 2.15 eV, as is the
case with bulk crystals (Fig. 8). The long-lived excita-

4Τ1 → 6Α1(Mn2+) 6Α1 → 4Τ1(Mn2+) Eg(Cd0.4Mn0.6Te)
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Fig. 8. Mn2+ IL profile (solid line) and IL excitation spectra
(dashed lines) obtained on (1) a bulk Cd0.4Mn0.6Te crystal
and (2) a quantum-well structure CdTe/Cd0.4Mn0.6Te [66].
Curve 3 is the exciton luminescence excitation spectrum
from CdTe quantum wells. 6A1–4T1 is the transition to the
first excited state of the manganese ion; QWCdTe is the
transition between the first levels of electrons and heavy
holes in the CdTe quantum well; and Eg(Cd0.4Mn0.6Te) is
the edge of the interband transition in the barrier. T = 4 K.
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tion of the barrier 3d shell is capable of considerably
slowing down the decay of excitonic luminescence in
the CdTe quantum wells because of the excitation being
transferred from the barrier Mn2+ ions to the quantum
wells. CdTe/Cd1 – xMnxTe quantum-well structures with
x = 0.5 and 0.68 containing quantum wells from 1 to
10 nm in width were studied under a hydrostatic pres-
sure of up to 3 GPa in [67]. The pressure-induced
energy shifts obtained at 80 K constitute 640 cm–1/GPa
for the IL and 600 (x = 0.5) and 480 cm–1/GPa (x = 0.68)
for the exciton luminescence of the quantum wells.
Because of the pressure-induced shifts assuming oppo-
site signs at certain values of pressure determined by x
and the quantum-well width, the exciton energy starts
to transfer from quantum wells to the Mn2+ levels in the
barriers, a process detected from the threshold enhance-
ment of the IL.

A photonic crystal consisting of submicron-sized
polymer spheres with voids filled by the ZnS:Mn2+

DMS has become a new object for optical studies [54].
In the case where the DMS IL band falls into the stop-
band region of the photonic crystal, the decay kinetics
over the band profile varies in an unusual manner. The
ZnS:Mn2+ IL decay is the slowest at the IL band center
if the latter coincides in energy with the minimum of
the photonic-crystal transmission. The reason for this is
the low density of photon states in the stop band, which
is initiated by the strong difference in the dielectric
properties between the polymer spheres making up the
photonic crystal and the ZnS:Mn2+ filler. The parame-
ters of the photonic-crystal stop band are an essential
point. By properly selecting the diameter of the nano-
particles, one can control the width and energy position
of the stop band and overlap, partially or completely,
the IL profile, to entrap, in this way, the radiation in the
photonic crystal. Moreover, by introducing defects of
an appropriate type and concentration into a photonic
crystal, one can also control the formation of transpar-
ency regions in the stop band. Such systems combine a
high efficiency of electro- and photoluminescence with
a possibility of controlling the spectral composition of
the emission.

The influence of confinement on the properties of 3d
luminescence is still not fully clear. This phenomenon,
while being of interest in itself, is connected intimately
with the properties of electroluminescence in nano-
structures and has potential application. One can iden-
tify at least three reasons accounting for the specific
features of the IL in nanostructures; these reasons are
the change in the degree of sp–d hybridization, excita-
tion transfer between the nanocrystal and the matrix (or
between a quantum well and the barrier), and spatial
confinement of migration.

A conclusion was drawn in [68, 69] that the 3d lev-
els of transition ions correlate with the corresponding
matrix levels. In particular, it was maintained that the
difference between the intraion transition energies in
isovalent semiconductors is equal to that between the
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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valence-band top energies. This provides a possibility
of using intracenter transitions as probes to determine
the height of the heterojunction barriers for the
electrons and holes separately. This point was studied
on the heterostructures Zn1 – xCdxSe/ZnSe and
ZnS1 − xSex/ZnSe with an Ni impurity [the 3T1(F)–
1T2(F) transition] over a broad range of x, up to 0.5 [70].
While the measurements yielded good agreement with
theory, the results obtained in the case of
ZnS1 − xSex/ZnSe are at odds with the data derived from
measurements of optical transitions between size quan-
tization levels.

8. SELECTIVE EXCITATION OF Mn2+ 
INTRACENTER LUMINESCENCE

IL in Cd1 – xMnxTe with x > 0.4 is excited by photons
with hνe > 2.14 eV. In crystals with x = 0.5 pumped
selectively in the interval 2.14 < hνe < 2.25 eV, the IL
maximum shifts, accordingly, from 1.98 to 2.005 eV
[71, 72]. As hνe is increased further from 2.25 eV up,
the IL maximum shifts again toward lower energies
[72, 73]. This behavior of the IL remains unclear; one
can, however, put forward several possible reasons for
its occurrence. Nonmonotonic variation of the intrac-
enter absorption coefficient within the scanned region
(several absorption bands) affects the optical excitation
density. Another possible reason consists in the onset of
resonance conditions for excitation of the states in an
inhomogeneously broadened IL profile whose energy
differs from hνe by the LO phonon energy. A similar
effect is observed for the inhomogeneously broadened
bound-exciton emission band in Cd0.5Mn0.5Te [74].

A configurational model was proposed in [72] to
account for the IL spectrum obtained under selective
excitation within an inhomogeneously broadened pro-
file. In this model, the dependence of the position of the
IL maximum, EL, on hνe can be written as

(6)

where Hh and Hin are the homogeneous and inhomoge-
neous broadenings. Hh, Hin, and the full width at half
maximum of the IL profile, H, can be cast in the form

(7)

(8)

(9)

where R = / . Thus, by sweeping hνe and measur-
ing the shift of the IL maximum, one can calculate the
value of R. A comparison of the model with experiment
suggests that for T > 55 K, the inhomogeneous broad-
ening disappears [72]. It is difficult to conquer with this
conclusion. If an excitation can relax during its lifetime
with a lowering of energy, the inhomogeneous broaden-
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ing will not be completely overcome. Moreover, under
the conditions of excitation migration, inhomogeneous
broadening should depend on the optical pumping
level, because the lowest levels of an inhomogeneous
distribution saturate with increasing excitation.

Studies of the Mn2+ IL in Cd1 – xMnxTe show that in
the interval 4–20 K, the inhomogeneous and homoge-
neous broadenings for hνe > 2.2 eV are approximately
equal. Within the concentration interval 0.46 < x < 0.70,
the inhomogeneous broadening varies from 70 to
85 meV, with the IL profile shape being Gaussian.
There is nothing strange in there being an absence of
strong concentration dependence of the inhomoge-
neous broadening at such high manganese concentra-
tions. The inhomogeneous broadening should even
decrease with increasing x, because the maximum dis-
order in a solid solution sets in usually at x = 0.5. The
increase in Hin with increasing x in this interval is con-
nected most likely with an increasing concentration of
structural defects, because x = 0.7 is almost the highest
possible concentration for bulk Cd1 – xMnxTe crystals.
The assumption [72] of the temperature-induced varia-
tion of Hin being somehow connected with magnetic
phase transitions in Cd1 – xMnxTe is not supported by
the results of studies on the effect of temperature on the
IL profile. No changes in the profile shape of the IL or
in its integrated intensity have been found at the para-
magnet–spin-glass and paramagnet–antiferromagnet
phase transitions for x in the interval 0.4–0.7.

At liquid-helium temperatures, anti-Stokes IL is
excited in crystals with x > 0.4 by photons with hνe < Et

in a two-stage process, which is suppressed as the sam-
ple is warmed up to 80 K, apparently, because of the
decreasing electron lifetime in the intermediate state
[71, 73]. There are grounds to believe that it is this
parameter that is associated with temperature-driven
magnetic phase transitions [48].

9. KINETIC PROPERTIES OF INTRACENTER 
LUMINESCENCE

The kinetic properties of the IL depend on many fac-
tors, most of all on the concentration of the magnetic
component. Study of the concentration dependences is
associated with certain difficulties. In II–VI wide-band-
gap matrices, it is often difficult to dope iron-group ele-
ments in high enough concentrations, while in the com-
paratively narrow band-gap materials of the type of
CdTe, IL is observed only for high cadmium substitu-
tions by manganese. Combining of the data obtained on
different matrices is hampered by the fact that the spe-
cific properties of a matrix affect the IL kinetics. This
point can be exemplified by the observation that as the
sulfur concentration in the ZnSxSe1 – x matrix is
increased from 0.001 to 0.3, the decay time of the Co2+

IL L band (2.36 eV) decreases by more than five times
[75]. Partial substitution of cadmium for zinc in ZnSe
brings about a similar result. These changes may be
2
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associated with the system becoming disordered in the
formation of a solid solution, with changes in the 3d-
state interaction with ligands and in the spin–orbit
interaction. The characteristic IL decay time τR can be
written as

(10)

where α is determined by the sp–d hybridization, ρp is
the valence electron LS coupling, ρ3d is the LS coupling
for the 3d electrons in a magnetic ion, and C and A are
constants. The valence band in II–VI crystals is formed
by the p electrons of the anions, and the magnitude of ρp

varies strongly in the S–Se–Te sequence. As for ρ3d, this
quantity depends very little on the actual II–VI matrix for
a given magnetic ion. One should also bear in mind the
decrease in the spin–lattice relaxation time with increas-
ing concentration of the magnetic component [76].

The Mn2+ IL kinetics in Cd1 – xMnxTe can be studied
only in crystals with a high manganese concentration,
wherefore the relaxation dynamics of the intracenter
excitation is determined largely by its migration [73,
77]. Nonradiative excitation transfer occurs due to the
Coulomb interaction of electrons of the excited and
nonexcited atoms [78, 79]; this interaction has a
dipole–dipole, dipole–quadrupole, and quadrupole–
quadrupole component. In ions in which the dipole
transitions are at least partially forbidden, the nondi-
pole components may play an important role by provid-
ing a strong dependence of the excitation transfer prob-
ability on the separation between magnetic ions. Fol-
lowing [73], while the IL decay curves in Cd0.5Mn0.5Te
measured at half maximum of the profile on both sides
of the peak differ strongly from each other in the inter-
val 2–60 K, they coincide at already 77 K. It is believed
that the kinetics becomes the same over the IL band
profile in the case where thermal energy kBT
approaches the magnitude of the average jump in
energy occurring as the excitation transfers from one
manganese ion to another. It was concluded that (i) the
average energy change in a jump is 40 cm–1 and (ii) at
low temperatures (migration with a decrease in energy),
the excitation can transfer, on the average, over three
manganese ions in the characteristic IL decay time
(about 25 µs).

More comprehensive studies of the IL kinetics per-
formed on Cd0.4Mn0.6Te have shown that the IL profile
shape measured under selective excitation near the
Mn2+ intracenter absorption threshold (hνe = 2.175 eV)
depends strongly on temperature [80]. This dependence
is determined by the efficiency of upwise excitation
redistribution over the inhomogeneously broadened
excitation levels of an ensemble of manganese ions in
energy during the excitation lifetime. At T = 2 K, this
process does not operate and the IL decay is exponen-
tial. At T = 60 K, a broad spectrum of inhomogeneously
broadened states is populated and the IL decay is essen-
tially nonexponential. Energy relaxation within a sys-

1/τR αρ p/ρ3d C+( ) A+[ ] ,=
PH
tem of excited states is generally completed during the
excitation lifetime. According to current models, in the
case of excitation near the intracenter absorption
threshold, the relaxation of excited states occurs in two
stages. More specifically, it occurs due to fast relax-
ation by 0.2 eV in 1 ps (via the electron–phonon cou-
pling) to the minimum of the configurational curve for
the 4T1 level of the Mn2+ photoexcited ion, followed by
a slow relaxation within a few hundredths of an elec-
tronvolt over the inhomogeneously broadened 4T1 lev-
els of the manganese ion ensemble in a few tens of
microseconds. When excited substantially above the
intracenter absorption threshold, an intermediate pro-
cess with a characteristic time of less than 0.1 µs
becomes operative, which corresponds to the onset of a
“preliminary” equilibrium in the system of Mn2+

excited ions possibly involving band states in Cd1 –

 xMnxTe [if hνe > Eg(x)], after which subsequent varia-
tion of the population over the inhomogeneous profile
occurs only through excitation migration over the ions.

10. SATURATION OF INTRACENTER 
LUMINESCENCE AND ITS KINETICS 

UNDER STRONG OPTICAL EXCITATION

Studies of the IL kinetics are carried out in a pulsed
mode assuming a sufficiently high level of optical exci-
tation. The behavior of a system of ions with an unfilled
3d shell under strong pumping is of interest in more
than one aspect. Excitation of an Mn2+ ion initiates an
intracenter intercombination transition, with the spin of
the 3d shell decreasing from 5/2 to 3/2. This affects the
exchange ion–ion coupling, which is of particular sig-
nificance for nearest neighbor Mn2+ ions. Thus, on the
one hand, excitation reduces the total spin of the system
of magnetic ions, while on the other, a weakening of
exchange coupling between nearest neighbors destroys
the magnetic order. These changes affect the paramag-
netic properties of a crystal (and thus, the strength of
the internal field created in an external magnetic field)
in opposite ways. The decrease in the spin of 3d shells
influences the carrier–ion exchange interaction and,
hence, the magnetic polaron effect, the giant Zeeman
splitting, and the Faraday effect. Thus, we deal here
with a complex photoinduced variation of the magnetic
properties of a crystal depending on the concentration
of magnetic ions and of their fraction residing in the
excited state. A comparison of the properties of IL
under strong optical pumping with those of electrolu-
minescence at high carrier injection levels is also of
interest with respect to device applications.

Under weak optical pumping of Cd1 – xMnxTe crys-
tals with x > 0.4, the IL intensity I3d is higher than the
Wannier exciton luminescence intensity even at low
temperatures and for the value most favorable for exci-
ton emission, x = 0.4. However, already at excitation
levels Ie on the order of a few W cm–2, the IL undergoes
noticeable saturation [74], so that as Ie increases, the
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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exciton emission becomes dominant. The dependence
of I3d on Ie at low manganese concentrations can be
studied in wide-band-gap systems (ZnS:Mn2+ and oth-
ers). In such a system, saturation can be driven by a
transition of a sizable fraction of Mn2+ ions to the
excited state, which is favored by the long lifetime in
the 4T1 level. The IL saturation becomes manifest par-
ticularly strongly, however, at high manganese concen-
trations [74, 81], whereat excitation migration becomes
a major factor. The history of the investigation of migra-
tion dates back to the cited publications [78, 79], with
more comprehensive studies on the migration of excita-
tion over the 3d and 4f shells of magnetic ions and of the
role played by this migration in spectral diffusion
reported in later communications (see, e.g., [82–84]).

The integrated saturation of the IL 2-eV band in
Cd1 – xMnxTe under excitation into the intracenter
absorption region [hνe < Eg(x)] is presented graphically
in Fig. 9 [85, 86]. The fraction of excited Mn2+ ions can
be estimated if one knows the value of x, the intracenter
absorption coefficient, the lifetime in the 4T1 excited
state, and the pumping parameters. Estimates show that
saturation is observed to occur already at comparatively
low excited-ion concentrations. Thus, the saturation
occurring at high Mn2+ concentrations is indeed con-
nected with the excitation migration. This conclusion is
corroborated by the temperature dependence of satura-
tion, which is far more efficient at T > 60 K than at 4 K
at concentrations 0.45 < x < 0.75. It should be pointed
out that for x = 0.4, the saturation becomes enhanced
with decreasing temperature, provided the excitation
proceeds into the interband transition region (Fig. 10a).
The reason for this lies in that for x = 0.4, the Wannier
exciton level coincides at 80 K with the intracenter
absorption threshold (where the density of electronic
states of Mn2+ is low), whereas at 4 K, this level shifts
into the region of higher densities of states, toward the
maximum of the 1A6–4T1 intracenter transition; this
facilitates excitation transfer from band states to the
manganese ions.

The quenching of IL accompanying excitation
migration can be caused by relaxation on defects and by
the cooperative effect (CE) [87]. While the CE (up-con-
version) is usually associated with a manifestation of
anti-Stokes luminescence, in our case it should be
treated instead as the transfer of an additional excitation
to the already excited Mn2+ ion, a process in which anti-
Stokes luminescence cannot be observed at all. In con-
trast to the defect mechanism, the CE is, first, a nonlin-
ear effect and, second, practically cannot be saturated.
The Frenkel exciton concentration at a level of energy
hν at time t for a concentration x can be written in the
form

(11)

where function f determines the rate of excitation
transfer to other ions. Until recently, only transfer to

n t ν,( ) n 0 ν,( ) t/τR–( ) f ν x t, ,( ),exp=
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Fig. 9. Mn2+ IL saturation curves obtained on Cd1 – xMnxTe
for (a) x = 0.7 and (b) 0.4 at (1) T = 4 and (2) 77 K [85, 86].
The IL intensity is normalized against Ie = 1 (the value cor-

responding to the excitation level 4 MW cm–2).
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Fig. 10. Mn2+ IL kinetics obtained on a Cd0.5Mn0.5Te crys-
tal at different excitation levels Ie and temperatures [89].
(a, b) and (c, d) refer to points 1 and 2 on the IL profile (see
inset), respectively; solid and dashed lines relate to the exci-
tation levels Ie = 4 and 0.06 MW cm–2, respectively; (a, c)
T = 4 and (b, d) 77 K.
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neighboring nonexcited ions was taken into account; in
other words, the CE and the effect of the optical pump-
ing level were left out of consideration. The CE is also
disregarded in Monte Carlo simulations of the IL kinet-
ics in Cd1 – xMnxTe, even under the conditions of strong
pumping [88]. This effect should dominate, however, in
DMSs with a not too high defect concentration. There
is a substantial difference between excitation transfer to
a nonexcited and to an excited ion. Relaxation involv-
ing vibrational states is a fast process, so that energy
transfer to a neighboring ion occurs from the equilib-
rium state of the 4T1 electronic level. Therefore, excita-
tion transfer to a nonexcited ion requires that the
phonon system of the crystal donate an energy corre-
sponding to the Stokes losses of the 6A1–4T1 transition.
When excitation is transferred to an already excited ion,
practically no energy goes into the Stokes losses,
because the transition from 4T1 to higher states in an
acceptor ion entails a small Stokes shift. Adequate
description of the IL kinetics requires analysis of at
least two important points, namely, (i) estimation of the
difference between the excitation transfer probabilities
to a nonexcited and an excited ion and (ii) determina-
tion of the possible contribution of the CE to IL under
specific experimental conditions. Because the CE and
relaxation at defects are significant only under efficient
migration, a strong enhancement of intracenter excitation
transfer for T > 60 K entails as strong a decrease in the IL
quantum yield; this exactly is observed in experiment.

Let us turn to the dependence of the IL kinetics in
CdxMn1 – xTe on the optical-pumping level. Because of
the excitation being redistributed over the inhomoge-
neously broadened excitation levels of the ensemble of
Mn2+ ions, the IL intensity reaches a maximum on the
high-energy wing of the 2-eV band faster than it does
on the low-energy one. As follows from the IL kinetics
(Fig. 10), the spectral response of decay at high pump-
ing levels Ie manifests itself strongly even at a high tem-
perature. The variation of the IL kinetics with increas-
ing Ie is most pronounced at a high temperature and on
the high-energy wing, where the decay accelerates con-
siderably [89]. This implies the development of a fast
process associated with the CE. As follows from an
analysis of the kinetics, one can isolate localized and
delocalized states in a system of Mn2+ ions. The local-
ized states should most probably be identified with the
Mn2+ ions at the boundaries of manganese clusters,
where the 4T1 level is lower. Strong pumping saturates
localized states, and, as a result, excitation migration
over states lying above the mobility threshold occurs
even at low temperatures. Whether the inner or inter-
face regions in a manganese cluster correspond to local-
ized states depends on the elemental composition of the
matrix. In the case where the predominance of Mn in
the nearest cation environment of Mn reduces the crys-
tal field, the 4T1 level rises at the center of the cluster
and localization occurs at the boundaries (the case of
PH
Cd1 – xMnxTe). In the opposite case (for instance, in
Mg1 – xMnxTe), the 4T1 level is lower at the cluster center
and the excitation will therein be localized at low tem-
peratures.

The system of excited 3d states in a DMS with a
high magnetic-ion concentration is similar in some
respects to localized Wannier excitons in semiconduc-
tor solid solutions. The similarity relates to the behavior
of migration with temperature, the existence of a mobil-
ity edge, the kinetics of emission migration over the
inhomogeneously broadened band profile, etc. Natu-
rally, the energy and temporal characteristics of these
systems differ strongly from one another.

An interesting type of DMS is three-cation solid
solutions in which two cations are nonmagnetic and
one is magnetic. It has been established that the IL sat-
uration in Cd1 – xMnxMgyTe with increasing Ie is much
less pronounced than that in Cd1 – xMnxTe [45]. This is
accounted for by the excitation migration being sup-
pressed by doping Cd1 – xMnxTe with magnesium. Mag-
nesium enhances the fluctuations of the local fields act-
ing on the manganese ions, thus impeding intracenter
excitation transfer. The pronounced effect exerted on
the crystal field by the presence of magnesium among
the ligands is corroborated by the noticeable depen-
dence of the energy position of the Cd1 – x – yMnxMgyTe
IL band on magnesium concentration (Fig. 3).

Considerable interest has been aroused recently in
connection with studying the lasing effect involving 3d
magnetic ion transitions in semiconductor matrices,
which might have application potential, in particular, in
medicine. Cr2+ ions doped into the ZnS, ZnSe, and
Cd1 − xMnxTe matrices (the 5T2–2E transition) in concen-
trations of 1018–1019 cm–3 were studied as active lasing
centers [90–93]. The maxima of the Cr2+ absorption
and IL bands lie near 0.70 and 0.53 eV, respectively,
and the IL band halfwidth is 0.2 eV. Under sufficiently
strong selective pumping by a pulsed laser, the Cr2+ IL
transforms to a narrow band whose energy can be swept
from 0.50 to 0.45 eV depending on the actual resonator
mirror characteristics. In the best ZnSe:Cr2+ samples
prepared by thermal diffusion, lasing is achieved
already at 12 µJ with passive losses of 7% if the excita-
tion is produced in the 0.7-eV region with an
YAG:Nd3+-pumped Ba(NO3)2 Raman laser [94].

11. CONCLUSION

The optical investigation of intracenter transitions in
iron-group ions embedded in crystal matrices, which
has been pursued over the past two decades, allows one
to conclude that the properties of these transitions
exhibit a rich diversity, depending on the actual type of
magnetic ion and crystal matrix used, the magnetic ion
concentration, the system dimensionality, excitation
conditions, and temperature. Despite the numerous
studies performed, the mechanism by which electronic
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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excitation is transferred among the ions and between
the crystal matrix and the 3d shell of a magnetic ion
remains poorly understood. This makes investigation of
crystal matrices containing more than one type of ion of
the iron group and lanthanides an interesting field. Nev-
ertheless, optics of the iron-group ions in bulk II–VI
semiconductor matrices is fairly well known and we are
presently witnessing a shift in interest to nanostructures
doped by iron-group ions. The effect of confinement on
the degree of sp–d hybridization and the rate of excita-
tion transfer between the band and 3d states, on the
magnitude of electron–phonon and electron–ion cou-
pling, and on other characteristics of such systems will
become a major area of research in the years to come.
Confinement provides a possibility of purposefully
controlling the characteristics of the IL, in particular, of
strongly raising its quantum yield at high temperatures.
Technological progress in growing nanostructures
assumes precise doping of magnetic ions within one
nanocrystal and their controlled arrangement over the
volume or on the surface, as well as development of
new composite materials with the use of DMS nanoc-
rystals. Naturally, the performance of electrolumines-
cent devices will also be improved by basing them on
nanocrystals and quantum planes containing optically
active ions, primarily Mn2+. Investigation of the IL sat-
uration in the same activated media under strong optical
and injection pumping likewise deserves attention. The
use of semiconductor matrices with magnetic ions as
nonlinear optical media, optical shutters, and laser gain
media is another promising direction in applicable
fields.
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Abstract—Microwave-radiation absorption of single-phase Bi(2212) single crystals in a near-2-mm wave-
length range is studied as a function of microwave field overvoltage. A characteristic plateau is detected for the
electric-field orientation along superconducting planes. A possible mechanism for this behavior is considered
on the basis of the concepts of percolation network and pinchlike current distributions. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Analysis of microwave-radiation absorption by
high-temperature superconductors was found to be
effective in determining the properties of intrinsic
Josephson junctions. The discovered oscillatory depen-
dence of power on the radiation absorbed for different
values of a constant magnetic field is associated with
the existence of such junctions [1]. An analysis of the
experimental data makes it possible to single out the
characteristic features of absorption. This primarily
concerns the scales of mw fields which do not lead to a
local loss of superconductivity. These features can be
explained [2] by size quantization effects in small loops
with an area on the order of hundreds of square
micrometers. It follows from [2] that the frequency
dependence of the absorbed power has a peak at a fre-
quency which is a periodic function of the reciprocal
amplitude of the ac magnetic field. A further increase in
power leads to a more complex form of absorption. The
periodicity of absorption as a function of the field van-
ishes in this case, and mesoscopic fluctuations start
being manifested [3]. Microwave probing of HTSC sin-
gle crystals revealed such features as Josephson har-
monics generation and coherent conductivity peaks. In
the former case, an analogue of Shapiro steps is also
observed. The experiments were carried out in the
range of weak microwave fields for which mesoscopic
effects are not observed.

In this work, we analyze the microwave properties
of Bi(2212) single crystals (in a near-2-mm wavelength
range), which depend on the magnitude of the micro-
wave field used for sample probing.

An analysis of the known features of absorption
shows that, according to [2], the maximal frequency at
which size-quantization effects are still observed
extends approximately to a few gigahertz. It is conceiv-
able that such effects will not be manifested at frequen-
cies higher than the critical value. In addition, the
effects of Josephson harmonics generation are
observed only for multiphase samples. In this study, we
analyze microwave features in a near-2-mm wave-
1063-7834/02/4411- $22.00 © 22031
length range, i.e., under conditions when size-quantiza-
tion effects are not manifested. Samples were in the
form of single-phase and multiphase single crystals
which display, first, coherent conduction effects [4]
and, second, weak-coupling effects [5].

2. SAMPLES AND EXPERIMENTAL
TECHNIQUE

We used Bi(2212) single crystals prepared by spon-
taneous crystallization of melt in air. The sample size
was 0.8 × 1.7 × 3.7 mm. The crystal growth technology
does not differ from that described in [5, 6].

Microwave experiments are made using a strongly
emitting slit in a wide wall of a rectangular waveguide.
We constructed an original setup for studying the pro-
file of a standing wave in an open dielectric resonator
(ODR) loaded with a sample. The effectiveness of such
experiments for an analysis of superconducting proper-
ties was demonstrated in [4]. Here, we use a single-
mode teflon ODR with an inner radius of 0.325 mm,
outer radius of 0.470 mm, and length of 4 mm. Radial
electric and azimuthal magnetic components of the
electromagnetic field at the resonator end face interact
with the sample surface. The resonator is pumped
through a 0.1 × 8 mm slit. The sample was cooled to
78 K. We used a microwave oscillator (operating in a
near-2-mm wavelength range) whose maximum elec-
tric power P0 reached 4 mW (100%) and whose pulse
repetition frequency was 103 Hz. The resonance fre-
quency of the ODR was 143.52 GHz. Temperature
measurements of the signal power were carried out at
the standing-wave antinode closest to the sample, while
the dependence on the normalized incident power
(overvoltage) P/P0 was measured with the sample
arranged immediately above the slit. The sample orien-
tation was specified by the mutual orientation of the
electric field vector E in the slit and the normal n to the
base plane of the sample.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Dependence of the output microwave power I on the overvoltage P/P0 for (a, b) single-phase and (c, d) multiphase samples
for the field orientation (a, c) E ⊥  n and (b, d) E || n.
3. EXPERIMENTAL RESULTS
AND DISCUSSION

The main result is the following experimental fact:
the dependence of the power on the overvoltage in a
single-phase sample in fields corresponding to a 70%
overvoltage displays a characteristic plateau that
depends on the orientation. For a multiphase sample, a
characteristic kink is detected at an overvoltage of 40%.
Figure 1 shows the dependence of the output micro-
wave power on the overvoltage for single-phase and
multiphase samples oriented in different ways at liquid-
nitrogen temperatures. At room temperature, the fea-
tures mentioned above are not manifested; i.e., these
features characterize the superconducting state. Figure 2
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Fig. 2. Dependence of the superconducting-transition tem-
perature Tc on overvoltage P/P0 for a single-phase sample;
the field orientation E || n.
PH
shows the dependence of the superconducting transi-
tion temperature Tc on the overvoltage for the field ori-
entation E || n in a single-phase sample. This depen-
dence indicates that the superconducting state exists
over the entire range of overvoltage values (0–100%).
Furthermore, the change in the form of this dependence
occurs at the same value of overvoltage for which the
kink in Fig. 1b is observed.

It is well known that nonlinear effects associated
with the emergence of electrical instabilities can be
manifested in small volumes [7]. In this case, a current
pinch can be formed, which leads to a change in elec-
trophysical parameters. For example, a study of micro-
wave noise in the regime of current instability revealed
saturation of the current noise of the low-resistivity
state [8]. This effect is attributed to the pinch expan-
sion, which is analogous to the conservation of the cur-
rent density in the pinch observed earlier [7]. In accor-
dance with Kirchhoff’s law, the peculiarities of radia-
tion must be associated with the peculiarities of
absorption at the same temperature and wavelength.
Actually, the absorption of microwave power in the
electric-instability conditions [9] correlates with the
behavior of microwave noise. It is conceivable that the
decisive factor for the manifestation of the observed
plateau is the emergence of electrical-instability
regions in the bulk of the sample, followed by the for-
mation of pinchlike distributions of the mw current.
The centers for the emergence of such regions can be
the regions of nonuniform field distribution over the
volume. It is well known that, in samples of a nonellip-
soidal shape, a magnetic field is distributed nonuni-
formly in the bulk of a sample. The nonuniform field
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002



        

MICROWAVE FIELD EFFECTS IN HTSC SINGLE CRYSTALS OF Bi(2212) 2033

                                             
distribution in the high-temperature superconductors
measured in [10] indicates the emergence of a geomet-
ric barrier: the screening current is smaller than the crit-
ical current at the center of the sample and larger at the
periphery. The geometrical barrier may determine the
distribution of mw current. The beginning of the forma-
tion of a current pinch can be described in terms of the
model of percolation transition [11] as follows. Under
the action of mw current flowing in the bulk, a network
of percolation channels forms, and a part of the con-
ducting segments can be destroyed upon a subsequent
increase in current. The onset of the destruction process
suppresses the superconducting transition, which is
manifested in a decrease in the superconducting-transi-
tion temperature (Fig. 2). By increasing the field, we
bring the system closer to the percolation threshold,
since the network of percolation channels becomes pro-
gressively coarser. As the system approaches the perco-
lation threshold (critical concentration of conducting
channels), the percolation network is ruptured com-
pletely. The effective conductivity of such a system, as
well as the density of percolation channels, is deter-
mined numerically as a function of the breakdown field
in [11]. In our case, the breakdown field is the mw field
corresponding to the onset of electric instability in the
percolation network.

4. CONCLUSION
The main result obtained in this work is the detec-

tion of the superconducting transition coexisting with
electric instabilities associated with a pinchlike current
distribution over the percolation network. It can be con-
cluded that for fields strong enough for the emergence
of electric instability, the physics of the processes
change radically in comparison with the case of weak
mw fields. In the latter case, mw fields change the struc-
ture of a percolation network, while strong fields ini-
tiate the so-called strong-field effects. The supercon-
ducting state is destroyed only for critical fields close to
the percolation threshold. It should be noted that the
increase in the superconducting-transition temperature
may be associated with stimulation of superconducting
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
channels with a higher transition temperature in the
percolation network and requires further investigations.
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Abstract—A model of a divacancy which explains a number of experimental facts for Ge exposed to a flow of
accelerated electrons at temperature T = 77 K is proposed. The model explains the absence of photoconduction
associated with photoexcitation of infrared absorption bands at 0.44 and 0.52 eV corresponding to divacancies;
the difference in the values of activation energy for divacancy energy levels determined by optical and electrical
methods; and the existence of the limiting position of the Fermi level in the forbidden gap in the case of irradi-
ation with large radiation fluxes. © 2002 MAIK “Nauka/Interperiodica”.
It was shown in [1] that so-called light-sensitive
defects are formed in p-type germanium, as well as in
n-type germanium converted into p-Ge as a result of
irradiation with accelerated electrons (1–5 MeV). Pho-
tosensitivity is manifested only in samples possessing
p-type conductivity after irradiation [1–6]. It is shown
in [4, 6, 7] that light-sensitive defects are responsible
for infrared (IR) absorption bands at 0.44 and 0.52 eV.
These defects are manifested electrically (in experi-
mental temperature dependences of the Hall coeffi-
cient) as energy levels EV + 0.16 eV and EV + 0.08 eV
in the forbidden gap, depending on the charge state of a
defect [5]. At the same time, the electrically active lev-
els EV + 0.52 eV and EV + 0.44 eV have not been
observed in experiments. It should also be noted that
photoconduction was not observed in experiments in
the case of absorption of photons with energy 0.52 and
0.44 eV. In [4, 7], these defects in germanium were
called divacancies.

A similar situation (the difference between the ener-
gies of the optical absorption bands ~0.69 and ~0.32 eV
and the energies of the electrically active levels EC –
0.39 eV and EC – 0.54 eV, respectively [8]) is observed
for a divacancy in silicon [9–11]. In this case also, the
absorption of photons corresponding to energies of
optical absorption bands does not lead to photoconduc-
tion.

At the same time, it is well known [12, 13] that irra-
diation of n- and p-type germanium and silicon samples
leads to a decrease in the concentration of the majority
charge carriers; i.e., the Fermi level is displaced to the
middle of the forbidden gap and attains a certain limit-
ing position, which is the same for both types of con-
duction (the so-called limiting Fermi level) and
changes insignificantly upon a further increase in the
integrated radiation flux. A unified theory explaining all
these experimental facts has not yet been developed.

At the present time, there exists a model of diva-
cancy in silicon [9] (Fig. 1). The same model can also
1063-7834/02/4411- $22.00 © 22034
be used for germanium [7]. According to this model, at
the initial stage (before Jahn–Teller distortions appear),
there are two vacancies at adjacent atomic sites c and c'
(dashed circles in Fig. 1) located along a spatial diago-
nal of the cube and six neighboring atoms (a, d, a', d ',
b, b') with bent bonds a–d, a'–d ', and b–b'. The corre-
sponding polyatomic nonlinear molecule possesses the
D3d symmetry. The group D3d has four one-dimensional
and two two-dimensional irreducible representations.
Consequently, all electron terms of the molecule belong
to one of the six irreducible representations of the group
D3d. Thus, in addition to nondegenerate energy levels
corresponding to one-dimensional representations,
there also exist doubly degenerate electron energy lev-
els corresponding to two-dimensional irreducible rep-
resentations (if we disregard spin). A degenerate elec-
tron energy level occupied by electrons is unstable to
the Jahn–Teller effect. This effect leads to a distortion
of the configuration of the nonlinear molecule, and its
symmetry is lowered to C2h; the group C2h contains
only three one-dimensional irreducible representations
[14], and, hence, only nondegenerate electron energy

Fig. 1. 3D model of a divacancy in silicon (according to
[9]).
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levels are present. The spatial model of a divacancy and
its wave functions as given by the LCAO model without
and with the Jahn–Teller effect included (according to
[9]) are presented in Figs. 1 and 2. According to this
model, a divacancy is a multiply charged center with
four energy levels: the two lower levels (1, 2) lie
extremely close to each other in the immediate vicinity
of the top of the valence band, while the other two lev-
els (3, 4) lie deep in the forbidden gap. The charge state
of the divacancy is determined by the number of elec-
trons executing the b–b' bond between the atoms. When
this bond is free of electrons (levels 3, 4 in Fig. 3), the
divacancy is in the state with double positive charge.
When one or two electrons (filling level 3) execute this
bond, we have a singly positively charged or neutral
divacancy, respectively. This bond can accommodate
one or two more electrons at level 4. In this case, the
divacancy acquires a single negative or double negative
charge. This model of the divacancy used in [7, 9–11]
correctly describes some experimental results but fails
to explain all the above-mentioned experimental facts
for germanium and silicon.

In order to solve this problem, we propose, in con-
trast to [7, 9–11], a model of divacancies taking into
account the bending of energy bands of a semiconduc-
tor by fluctuation electric fields produced by charged
defects. We assume that there is no correlation in the
distribution of defects in a semiconductor and fluctua-
tions in their concentrations are of the Gaussian type
[15–17].

Let us apply the method of bent bands to our prob-
lem. It was shown in [16] that the fluctuation field of the
spatial charge bending the bands is created by chemical
impurities. In our case, such impurities are the initial
impurities (donors) compensating radiation-induced
point defects and their simple complexes, formed in n-
Ge as a result of irradiation by an integrated flux of
accelerated electrons (E = 2–6 MeV, Φ = 1016–5 ×
1017 cm–2) at temperature T = 77 K. This conclusion
follows from the fact that conversion of the conduction
type (overcompensation) was attained as a result of
irradiation of the n-Ge samples under investigation
with an initial concentration of conduction electrons
n ~ 1014–1016 cm–3 and that the samples displayed p-
type conduction after irradiation. The equilibrium hole
concentration in this case did not exceed ~1010 cm–3.

It should be noted that irradiation gives rise to ran-
domly distributed charged centers (defects). In the case
of a strong compensation, it is necessary to take into
account Gaussian fluctuations of the concentrations of
charged impurities and radiation defects, which create
a fluctuating large-scale electrostatic potential. The
effect of this potential on band bending and on the shift
of the Fermi level toward the middle of the forbidden
gap must be taken into consideration even for moderate
concentrations of defects on the order of 1015–1016 cm–3.
Under these conditions, the concentration of charged
defects creating strong fluctuation fields is high, while
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      200
screening is weak. However, a low concentration of
mobile carriers and a high density of the fluctuation
charge give rise to difficulties associated with the inclu-
sion of screening [18–20].

The difficulties associated with screening in the case
of a strong compensation were overcome in [16] with
the help of the hypothesis that the arrangement of impu-
rities is correlated (for shallow centers), which is deter-
mined by the crystal growth technology. In this case, a
specific nonelectron mechanism of screening (mutual
screening of donors and acceptors) takes place. In the
case of radiation defects, such a screening model is not
adequate to the actual situation. Since the experimen-
tally determined energy spacing between the lowest
and highest position of the top of the bent valence band

Fig. 2. Simple molecular-orbital LCAO model of the elec-
tronic structure of a divacancy (a) before Jahn–Teller distor-
tion (D3d) and (b) after the distortion C2h. Solid arrows
denote electrons and their spins for a singly charged positive
state, while dashed arrows denote extra electrons for a sin-
gly charged negative state.
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Fig. 3. Fragment of Fig. 2 showing the levels of a divacancy
determining its charge state.
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(potential relief) in germanium is approximately equal
to 0.3 eV, the linear-screening approximation is inappli-
cable. The reason for this is that such a high fluctuation
potential leads to a deep spatial modulation of the elec-
tron density. However, the linear-screening theory is
based on linearization of the Poisson equation, which is
justified only in the case of a small depth of the poten-
tial well and a weak inhomogeneity of the electron
density.

We will now use the basic concepts of the theory of
nonlinear screening formulated in [18–20]. In this the-
ory, one of the main difficulties is associated with deter-
mining the form of distribution of impurities in a semi-
conductor. Following [18–20], we assume that there is
no correlation in the distribution of defects, i.e., that the
distribution is of the Poisson type and fluctuations are
Gaussian (small fluctuations). In order to estimate
potential-energy fluctuations, we will use the approxi-
mation of a uniformly charged sphere [20]. We assume
that fluctuations have the form of homogeneous spher-
ical defect pileups having radius R and characterized by
a Poisson distribution of defects in them. We denote the
average concentration of defects by Nt. Then, the aver-
age number of particles in a sphere is N = 4πNtR3/3 ≈
4NtR3 and the root-mean-square fluctuation of particles

is ∆N =  = 2 . A typical charge of a sphere is

equal to 2Ze  (Z = ±1, ±2), and the rms fluctua-
tion potential energy γ(R) of an electron is given by

(1)

N NtR
3

NtR
3

γ R( ) 2Ze2 NtR
3/εR 2Ze2 NtR/ε,= =

Fig. 4. Diagram explaining the difference between optically
and electrically determined values of the activation energy
of a divacancy in germanium: 0.52 eV is the energy of opti-
cal excitation of an electron from the lower level of the diva-
cancy to level EV + 0.16 eV, while 0.44 eV is the same
energy corresponding to level EV + 0.08 eV (intracenter
transitions); Ei is the middle of the forbidden gap of the
unexposed crystal. The curve shows the bending of the top
of the valence band EV by the fluctuation potential of
charged defects, while the solid straight line corresponds to
the top of the unperturbed valence band.
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where ε is the permittivity of the medium and e is the
electron charge. As R  ∞, we have γ(R)  ∞ in
complete accord with the well-known result according
to which the rms Coulomb energy fluctuation

[Nt ]1/2 diverges at large distances. This

result is physically meaningless, which indicates that
screening must be taken into account in one way or
another for a random distribution of Coulomb centers.
In our case of large-scale fluctuations of randomly dis-
tributed charged centers, the only possible mechanism
of nonlinear screening that bounds the radius of a
sphere is the electron (hole) screening, in spite of the
low concentration of free charge carriers. We introduce
the radius of a sphere R = R0 in such a way that the fluc-

tuation charge density δN = 0.5Ze  is equal to
the hole charge density. Obviously, the holes (elec-
trons) in this volume neutralize the excess density of
the negative (positive) charge of the sphere. Conse-
quently, we have

(2)

In our experiments, n-type germanium is compensated
by irradiation: Nt = Nd + Na (Nd and Na are the concen-
trations of radiation defects of the donor and acceptor
type, respectively). Considering that compensation has
been attained, we can assume that, approximately, Nt =
2Nd.

It follows that fluctuations of a size R > R0 are neu-
tralized completely by free carriers, while fluctuations
with a size R < R0 remain unscreened. Consequently, an
approximate value of γ is obtained from Eqs. (1) and (2)
to be

(3)

For low concentrations of holes, the potential well is
found to be quite deep. The electron levels of a diva-
cancy lie in this well (Fig. 4).

For p = 1010 cm–3 and Nd = 1015 cm–3 (Nt ≈ 2Nd), esti-
mating the amplitude γ of potential-energy oscillations
for Ge from Eq. (3) gives γ = 0.16 eV. The condition for
the location of the ground-state energy levels in the

well, "2/2m  ! γ, can be written, in accordance with

Eqs. (2) and (3), in the form (p/Nt)5/3 ! a–1 , where
a = ε"2/me2 (m is the effective electron mass). Since
p ! Nd, this inequality holds with a large margin and
energy levels 1 and 2 of the divacancy lie near the bot-
tom of the well (the top of the valence band in the given
part of the crystal). The energy interval between the
bottom and the maximum (hump) of the potential relief
(bent band) is ∆U = 2γ ≈ 0.32 eV, while the correspond-
ing experimental value, determined with the help of
optical and electrical measurements, is ∆Uexp = (0.52 –
0.16) eV = (0.44 – 0.08) eV = 0.36 eV (Fig. 4). Consid-

e2/εr( )2
rd∫

Nt/R0
3

p 0.5Z Nt/R0
3, or R0 Z2Nt/4 p23 .= =

γ 4Z4e6Nt
2/ε3 p3 .=

R0
2

Nt
1/3–
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ering that the above values of parameters are typical of
our experiments, the agreement with the theoretical
model can be regarded as satisfactory.

As regards the range of applicability of formulas (2)
and (3), it should be noted that the characteristic scales
of fluctuations (and, accordingly, the amplitude of
oscillations of the potential energy γ(R)) in a compen-
sated semiconductor with a low concentration of
mobile charge carriers can become, in accordance with
formulas (2) and (3), indefinitely large (e.g., can exceed
the forbidden gap width). It was proved in [19], how-
ever, that if the bottom of the conduction band is low-
ered by 0.5Eg relative to its position in an unexposed
crystal, it will cross the Fermi level in this region of the
crystal, intrinsic carriers (electrons) will appear in a
number sufficient for screening of the potential well
formed, and further lowering of the bottom of the con-
duction band will stop. Similarly, in the crystal region
with an excess of negative charge (potential well for
holes), the number of holes formed upon the crossing of
the Fermi level will be sufficient for preventing a fur-
ther rise of the top of the valence band. Consequently,
formulas (2) and (3) are inapplicable for the case of low
concentrations of charge carriers when γ(R) ≥ 0.5Eg.
Under our experimental conditions, γ(R) < 0.5Eg, and
formulas (2) and (3) hold.

Let us now apply the proposed divacancy model to
explain the following experimental facts.

(1) The absence of photoconduction in the case of
optical excitation of levels 3 and 4 (transitions a, b in
Fig. 3). The above estimates indicate that the ground-
state levels of the divacancy (1, 2) lie near the bottom of
the potential well. When photons with energy 0.44 or
0.52 eV are absorbed, electron transitions from these
levels to levels 3 and 4 (intracenter transition) take
place. In this case, electrons must perform transitions
from the valence band to the lower vacant levels, 1 and
2; i.e., holes are generated near the bottom of the well
in the valence band (consequently, photoconduction
must appear). However, the divacancy in the well is in
an unstable charge state, and the surplus electron from
the upper level instantaneously recombines with a near-
est neighbor hole. Therefore, the hole disappears before
it can participate in photoconduction.

(2) Difference in the values of activation energy
of divacancy levels 3 and 4 (Fig. 3) determined by
optical and electrical methods. The activation ener-
gies for energy levels determined from experimental
temperature dependences of the Hall coefficient indi-
cate that the Fermi level is shifted towards the middle
of the forbidden gap upon an increase in temperature.
In this case, electrons can occupy levels 3 and 4; i.e., the
divacancy can change its charge state. Electrons per-
form transitions from the hump of the bent valence
band to these levels. The energy required for the excita-
tion of such electrons corresponds to the spacing
between the hump of the bent valence band and levels
3 and 4. Figure 4 shows the diagram explaining the dif-
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ference between optically and electrically determined
values of activation energy of a divacancy in germa-
nium: the optically determined value of the activation
energy for level 4 (0.52 eV) corresponds to the electri-
cally active level EV + 0.16 eV, while the electrically
active level for the activation energy of level 3
(0.44 eV) is EV + 0.08 eV.

(3) The existence of the limiting position of the
Fermi level in the forbidden gap. It was noted above
that the existence of the limiting Fermi level in both
types of semiconductors has been established experi-
mentally. It has been shown that the limiting Fermi
level is different for different semiconductors: it lies
near the middle of the forbidden gap in silicon and is
closer to the lower edge of the gap in germanium. In
n-Ge, a conversion of the conduction type is observed.
Different authors give different positions of the limiting
Fermi level in the forbidden gap of germanium (from
EV + 0.07 eV to EV + 0.24 eV) for various temperatures
and types of irradiation. In [12], the limiting position of
the Fermi level for p-Ge and for n-Ge converted to the
p type by irradiation by fast electrons at T = 77 K was
found to be EV + 0.07 eV. It was assumed in [12] that an
amphoteric level belonging to a complex radiation
defect exists in this region. The idea of pinning of the
Fermi level near an amphoteric level appears attractive,
and we adhere to the same point of view. However, in
contrast to [12], we proved that such an amphoteric
center is a multielectron center (divacancy), whose
energy level diagram is given in Fig. 4. Since γ ~
0.16 eV, according to our estimates, the optically deter-
mined levels 0.52 and 0.44 eV must be separated by
intervals ~0.16 and 0.08 eV from the hump of the bent
valence band, respectively, which corresponds to a dis-
tance ~0.1 eV from the middle of the forbidden gap in
the unexposed crystal. During irradiation of n- and
p-Ge, divacancies (which are compensating centers in
both cases) are introduced. In p-type samples, the diva-
cancy formed can be in the doubly positive (no elec-
trons on level 3), singly positive (one electron on level 3),
or neutral (two electrons on level 3) charge states. In the
former two cases, the divacancy is a positively charged
ionized center and behaves as a donor. Therefore, the
Fermi level moves upwards to the middle of the forbid-
den gap upon irradiation of the sample (i.e., upon an
increase in the divacancy concentration). When the
Fermi level lies between level 3 and 4 and is separated
from these levels by at least (2–3)kT, the charge state of
the divacancy changes and the divacancy becomes neu-
tral (level 3 is occupied by two electrons, while level 4
is empty). This situation comes about, because the
energy interval between level 3 and 4 is ∆E @ kT,
∆E/kT ≥ 10 (T = 77 K). A further upward displacement
of the Fermi level as a result of irradiation leads to a
transition of the divacancy to the singly or doubly
charged state (filling of level 4), which means that the
divacancy (negatively charged ionized center in this
case) becomes an acceptor. As a result, the Fermi level
2
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starts moving towards the valence band again, and,
after it attains the lower level, the divacancy again
transforms into a donor, after which the process is
repeated. The Fermi level turns out to be fixed between
the two levels, which is the reason for the existence of
the limiting Fermi level. The same pattern is also
observed for n-Ge, the only difference being that the
Fermi level moves, as a result of irradiation, toward the
middle of the forbidden gap from the conduction band.

REFERENCES

1. A. B. Gerasimov, N. D. Dolidze, N. G. Kakhidze, et al.,
Fiz. Tekh. Poluprovodn. (Leningrad) 1 (7), 982 (1967)
[Sov. Phys. Semicond. 1, 822 (1968)].

2. H. Saito, N. Fukuoka, H. Hattori, and J. H. Crawford, in
Radiation Effects in Semiconductors, Ed. by F. L. Vook
(Plenum, New York, 1968), p. 232.

3. T. M. Flanagan and E. E. Klontz, Phys. Rev. 167, 789
(1968).

4. H. J. Stein, in Radiation Damage and Defects in Semi-
conductors, Ed. by J. E. Whitehouse (The Institute of
Physics, London, 1973), p. 315.

5. A. R. Basman, A. B. Gerasimov, N. G. Kakhidze, et al.,
Fiz. Tekh. Poluprovodn. (Leningrad) 7 (7), 1347 (1973)
[Sov. Phys. Semicond. 7, 903 (1973)].

6. A. B. Gerasimov, N. D. Dolidze, B. M. Konovalenko,
and M. G. Mtskhvetadze, Fiz. Tekh. Poluprovodn. (Len-
ingrad) 11 (7), 1349 (1977) [Sov. Phys. Semicond. 11,
793 (1977)].

7. A. B. Gerasimov, N. D. Dolidze, R. M. Donina, et al.,
Phys. Status Solidi A 70, 23 (1982).
PH
8. V. S. Vavilov, N. P. Kekelidze, and L. S. Smirnov, Effects
of Radiation on Semiconductors (Nauka, Moscow,
1988).

9. G. D. Watkins and J. W. Corbet, Phys. Rev. 138, A543
(1965).

10. L. J. Cheng, J. C. Corelli, J. W. Corbet, and G. D. Wat-
kins, Phys. Rev. 152, 761 (1966).

11. A. H. Kalma and J. C. Corelli, Phys. Rev. 173, 734
(1968).

12. A. B. Gerasimov, Fiz. Tekh. Poluprovodn. (Leningrad)
12 (6), 1194 (1978) [Sov. Phys. Semicond. 12, 709
(1978)].

13. V. S. Vavilov, Effects of Radiation on Semiconductors
(Fizmatgiz, Moscow, 1963; Consultants Bureau, New
York, 1965).

14. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 3: Quantum Mechanics: Non-Relativistic
Theory (Nauka, Moscow, 1974; Pergamon, New York,
1977).

15. V. L. Bonch-Bruevich, Fiz. Tverd. Tela (Leningrad) 4
(9), 2660 (1962) [Sov. Phys. Solid State 4, 1953 (1962)].

16. L. V. Keldysh and G. P. Proshko, Fiz. Tverd. Tela (Len-
ingrad) 5 (12), 3378 (1963) [Sov. Phys. Solid State 5,
2481 (1963)].

17. E. O. Kane, Phys. Rev. 131, 79 (1963).
18. B. I. Shklovskiœ and A. L. Éfros, Zh. Éksp. Teor. Fiz. 60

(2), 867 (1971) [Sov. Phys. JETP 33, 468 (1971)].
19. B. I. Shklovskiœ and A. L. Éfros, Zh. Éksp. Teor. Fiz. 62

(3), 1156 (1972) [Sov. Phys. JETP 35, 610 (1972)].
20. A. L. Éfros, Usp. Fiz. Nauk 111 (3), 451 (1973) [Sov.

Phys. Usp. 16, 789 (1973)].

Translated by N. Wadhwa
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002



  

Physics of the Solid State, Vol. 44, No. 11, 2002, pp. 2039–2049. From Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 1948–1957.
Original English Text Copyright © 2002 by Lemanov, Sotnikov, Smirnova, Weihnacht.

                                                                                             

SEMICONDUCTORS 
AND DIELECTRICS
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Abstract—Ceramic samples of (1 – x)SrTiO3–xSrMg1/3Nb2/3O3 and (1 – x)SrTiO3–xSrSc1/2Ta1/2O3 were pre-
pared, and their dielectric properties were studied at x = 0.005–0.15 and 0.01–0.1, respectively, at frequencies
10 Hz–1 MHz and at temperatures 4.2–350 K. A giant dielectric relaxation was observed in the temperature
range 150–300 K, and not so strong but well-developed relaxation was found in the temperature range 20–90 K.
The activation energy U and the relaxation time τ0 were determined to be 0.21–0.3 eV and from 10–11 to 10–12 s
for the high-temperature relaxation and 0.01–0.02 eV and 10–8–10–10 s for the low-temperature relaxation,
respectively. The additional local charge compensation of the heterovalent impurities Mg2+ and Nb5+ (or Sc3+

and Ta5+) by free charge carriers or the host ion vacancies is suggested to be the underlying physical mechanism
of the relaxation phenomena. On the basis of this mechanism, the Maxwell–Wagner model and the model of
reorienting dipole centers Mg2+ (or Sc3+) associated with the oxygen vacancy are proposed to explain the high-
temperature relaxation with some arguments in favor of the latter model. The polaron-like model with the
Nb5+−Ti3+ center is suggested as the origin of the low-temperature relaxation. The reasons for the absence of
ferroelectric phase transitions in the solid solutions under study are also discussed. © 2002 MAIK
“Nauka/Interperiodica”.
1 1. INTRODUCTION

Strontium titanate SrTiO3 is known to be an incipi-
ent ferroelectric and a quantum paraelectric [1]. The
SrTiO3 crystal has a polar soft mode but never exhibits
a ferroelectric phase transition down to T = 0 due to
quantum fluctuations. At low temperatures, the dielec-
tric constant in SrTiO3 attains very high values.
According to [2], εa = 41900 and εc = 9380 (4 K, 1–
100 kHz). It should be noted that these remarkable val-
ues were obtained by extrapolation of the inverse sus-
ceptibility versus stress to zero stress and nobody has
been able to reproduce this result directly. A more or
less typical experimental value of εa in direct measure-
ments is around 20000 instead of 41900, and even this
value is remarkable.

The SrTiO3 crystal can be considered a marginal
system that is near the limit of its paraelectric phase sta-
bility. Small external perturbations such as elastic stress
or impurities can destroy the stability and induce a fer-
roelectric phase transition. Various impurities substi-
tuted for the host ions in SrTiO3 both in the A- and B-
position have been studied [3, 4]. It was shown that
divalent impurities substituted for Sr2+, such as Ca [5],
Ba [6], Pb [7], and Cd [8], induce a ferroelectric phase
transition with the transition temperature Tc propor-
tional to (x – xc)1/2, where the critical concentration xc is

1 This article was submitted by the authors in English.
1063-7834/02/4411- $22.00 © 22039
about 0.002 and is almost the same for all these impu-
rities, with some specific features for the case of Ba.
Isovalent B-impurities (Zr, Sn, Ge) have a much smaller
effect on the dielectric properties of SrTiO3. Simulta-
neous replacement of the host Sr2+ and Ti4+ ions by
impurity ions yields some specific effects. For example,
in the SrTiO3–PbMg1/3Nb2/3O3 (PMN) solid solution,
the transition to a ferroelectric phase (with relaxor
properties) was observed only at x > 0.2 with a linear
dependence of Tc on x, which was associated with ran-
dom fields due to the disordered Mg2+ and Nb5+ distri-
bution [9].

Quite a different situation takes place for heterova-
lent impurities. In this case, instead of induced ferro-
electric phase transitions, distinct dielectric relaxation
is observed. (The only exception is perhaps
SrTiO3:Bi3+; in [10], it was claimed that the Bi impu-
rity induces a ferroelectric phase transition with xc =
0.0005.) There is a very long history of studying dielec-
tric relaxation in SrTiO3 with various heterovalent
impurities, such as Bi [11–16], La [17–21], La and a
wide range of other trivalent rare-earth ions [22], and
Fe [23, 24].

In this paper, we studied some special cases of het-
erovalent substitution when the host Ti4+ ion is substi-
tuted by two heterovalent ions whose average charge is
equal to that of the Ti4+ ion. As an example of such sys-
tems, the solid solutions of SrTiO3 with SrMg1/3Nb2/3O3
002 MAIK “Nauka/Interperiodica”
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(SMN) and with SrSc1/2Ta1/2O3 (SST) were chosen. The
SrTiO3–SMN system, contrary to SrTiO3–PMN, does
not contain ferroelectrically active Pb2+ ions. A giant
dielectric relaxation and no ferroelectric phase transi-
tion have been found in these solid solutions. Prelimi-
nary results of this study have been published else-
where [25]. In the present paper, the giant relaxation in
(1 – x)SrTiO3–xSMN and (1 – x)SrTiO3–xSST is stud-
ied in detail.

2. EXPERIMENTAL PROCEDURE

Ceramic samples of SMN, SST, and (1 – x)SrTiO3–
xSMN and (1 – x)SrTiO3–xSST solid solutions were
prepared by a standard ceramic technology. A stoichio-
metric mixture of strontium carbonate and of Ti, Mg,
Nb, Sc, and Ta oxides of a special purity were used to
prepare the appropriate compounds and solid solutions.
Pure compounds of SMN and SST were synthesized
through a columbite (MgNb2O6) and a wolframite
(ScTaO4) route, respectively, according to the reactions

MgO + Nb2O5 = MgNb2O6,

SrCO3 + 1/3MgNb2O6 = SrMg1/3Nb2/3O3 + CO2; 

Sc2O3 Ta2O5 = 2ScTaO4,

SrCO3 + 1/2ScTaO4 = SrSc1/2Ta1/2O3 + CO2.

The columbite and wolframite were synthesized at
1000 and 1200°C, respectively, for 20 h. After calcining
the mixture at about 1200°C for several hours, the
material was reground, and pellets were formed by
pressing 9-mm diameter disks at 200 MPa. The final
sintering was conducted at 1450°C for 1.5 h. X-ray dif-
fraction study indicated that the samples had single-
phase cubic perovskite structure for concentrations up
to x = 0.15 in the case of SMN and more than x = 0.2 in
the case of SST.

The symmetry of the SrMg1/2Nb2/3O3 crystal is

known [26] to be rhombohedral with the  space
group with lattice parameters a = 5.66 and c = 6.98 Å.
The parameter of the reduced perovskite pseudocubic
unit cell is a = 4.01 Å. With the SrTiO3 parameter a =
3.905 Å, one obtains a 2.7% difference in the lattice
parameter between SrTiO3 and SMN. At such a small
difference, one might expect the possibility of obtain-
ing the SrTiO3–SMN solid solutions in the whole con-
centration range. However, experiment shows that there
is a solubility limit, with the limiting SMN concentra-
tion lying between 0.15 and 0.20. This low solubility
may be attributed to the difference in crystal structure.

The lattice parameter of the SrTiO3–SMN solid
solutions was measured, and it appeared that the lattice
parameter follows a linear Vegard law between a =
3.905 (SrTiO3) and 4.01 Å (SMN perovskite pseudocu-
bic unit cell) with the slope da/dx = 0.105 Å.

D3d
3

PH
The symmetry of the SrSc1/2Ta1/2O3 crystal, as far as
we know, has not been determined earlier, but the sym-
metry of the closely related compound SrSc1/2Nb1/2O3

(SSN) is known [27] to be cubic with the  space
group; the compound has ordered perovskite structure
with the doubled-unit-cell parameter a = 8.057 Å.

According to our measurements, the lattice parame-
ter of SST is equal to a = 8.054 ± 0.003 Å, which is very
close to the SSN lattice parameter. This allows us to
conclude that these compounds are isomorphic with the

 space group.

X-ray diffraction measurements demonstrated that
the lattice parameter in (1 – x)SrTiO3–xSST solid solu-
tions also follows a linear Vegard law between a =
3.905 (SrTiO3) and 4.027 Å (SST perovskite reduced
cell) with the slope da/dx = 0.12 Å. The lattice-param-
eter difference between SrTiO3 and SST is 3.1%.
Though this difference is a little bit higher than that
between SrTiO3 and SMN, this solid solution exists in
a much broader range of SST concentrations due to the
similarity in crystal structure.

All the samples had a density between 92 and 97%
with regard to the theoretical x-ray density. Pure SMN
and SST samples had a density of about 87%. The sam-
ples for dielectric measurements had a diameter of
8 mm and a thickness of 1–0.4 mm. For the measure-
ments, the samples were coated with silver-burnt, gold-
evaporated, and In–Ga-alloy electrodes. In all cases, we
obtained absolutely the same (within small experimen-
tal errors) temperature and frequency dependences of
the dielectric constant. The dielectric constant was
measured using a Solartron SI 1260 Impedance/Gain-
Phase Analyzer interfaced with a computer. The mea-
surements were performed at frequencies between
10 Hz and 1 MHz in a temperature range between 4.2
and 300 K by cooling at a constant rate of 1 K/min. The
amplitude of the ac electric field was 1 V/cm.

3. EXPERIMENTAL RESULTS AND ANALYSIS

The temperature dependence of the real part ε' of the
dielectric constant for SMN and SST ceramic samples
is shown in Fig. 1. For both materials, the dielectric
constant as a function of temperature behaves as that of
ordinary nonferroelectric dielectrics: the dielectric con-
stant decreases with decreasing temperature with a
slope of (1/ε)dε/dT = +0.8 × 10–4 and +1.0 × 10–4 K–1

for SMN and SST, respectively. Similar values of
(1/ε)dε/dT are characteristic of nonferroelectric oxides,
alkali halides, and other conventional dielectrics. This
is in great contrast with SrTiO3, where the quantity
(1/ε)dε/dT < 0 and its absolute value in ceramics and
single crystals is two and three orders of magnitude
larger, respectively, as compared to (1/ε)dε/dT in SMN
and SST. There is no frequency dispersion of the dielec-
tric constant in both SMN and SST, as well as in

Oh
5

Oh
5
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GIANT DIELECTRIC RELAXATION 2041
SrTiO3, in the frequency range under study, 10 Hz–
1 MHz. The situation drastically changes in the
SrTiO3–SMN and SrTiO3–SST solid solutions. At the
SMN concentration x(SMN) = 0.005, the first hints of a
frequency dispersion (dielectric relaxation) appear both
in the ε' and ε'' frequency spectra and in the ε' and ε''
temperature dependences. At x = 0.01, this relaxation
becomes quite distinct (Fig. 2) and the relaxation fea-
tures in this case are superimposed on the dielectric-
constant temperature dependence characteristic of pure
SrTiO3 ceramics. It should be noted that the maximum
value of the dielectric constant at 4.2 K in SrTiO3
ceramic samples is usually several times less than that
in single crystals; in our samples, this value is about
5000.

The relaxation strength attains a maximum at x =
0.03 (Fig. 3) and then decreases with increasing x.
Along with this (“high-temperature”) relaxation, which
develops between 100 and 300 K, a low-temperature
relaxation appears as x increases (Fig. 4) and the high
value of the dielectric constant of SrTiO3 becomes sup-
pressed at x ≥ 0.03. One can follow the evolution of this
low-temperature relaxation in Fig. 5, where the ε'(T )
dependences are shown at x between 0.05 and 0.15 at a
frequency of 1 MHz.

Certainly, the dielectric relaxation reveals itself not
only in the ε' and ε'' temperature dependences but also
in the ε' and ε'' frequency spectra. As an example, these
spectra are shown for the high-temperature relaxation
at x = 0.03 in Fig. 6 and for the low-temperature relax-
ation at x = 0.15 in Fig. 7.

High-temperature dielectric relaxation was also
observed in (1 – x)SrTiO3–xSST solid solutions
(Figs. 8, 9). Samples with x = 0.01, 0.05, and 0.1 were
measured. The strongest relaxation occurs at x = 0.05,
and the relaxation disappears at x = 0.1.

21.0

20.5

20.0

19.5

19.0
0 50 100 150 200 250 300

SrMg1/3Nb2/3O3

SrSc1/2Ta1/2O3

T, K

ε'

Fig. 1. Temperature dependence of the dielectric constant ε'
in SrMg1/3Nb2/3O3 and SrSc1/2Ta1/2O3.
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Fig. 2. Temperature dependence of (a) the real ε' and
(b) imaginary ε'' parts of the dielectric constant of (1 –
x)SrTiO3–xSrMg1/3Nb2/3O3 at x = 0.01.
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In SrTiO3–SMN samples, the relaxation is much
stronger than that in SrTiO3–SST.

The most remarkable feature of the high-tempera-
ture relaxation in Figs. 2–4 and 6 is the very high value
of the dielectric constant. At the SMN concentration
x(SMN) = 0.03, the dielectric constant ε0 attains a value
of 14000 at 150 K and is roughly 1000 at 300 K. The
relaxation strength (ε0 – ε∞) is very high and varied
roughly proportional to 1/T, as can be seen in Figs. 2
and 3.

All the temperature and frequency dependences in
Figs. 2–9 look like classical textbook relaxation depen-
dences. These dependences demonstrate a typical
Debye relaxation behavior of the dielectric properties:

(1)

ε' ε∞
ε0 ε∞–( )

1 ω2τ2+
---------------------,+=

ε''
ε0 ε∞–( )ωτ
1 ω2τ2+

----------------------------.=
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Fig. 4. Temperature dependence of ε' for (1 – x)SrTiO3–
xSrMg1/3Nb2/3O3 at x = 0.15.

Table 1.  Activation energy U and relaxation time τ0 for the
high-temperature relaxation in (1 – x)SrTiO3–xSrMg1/3Nb2/3O3
and (1 – x)SrTiO3–xSrSc1/2Ta1/2O3

x U, eV τ0, 10–11 s

SMN 0.01 0.23 5

0.03 0.21 0.9

0.05 0.23 0.3

0.07 0.24 0.4

0.1 0.26 0.2

0.15 0.3 0.2

SST 0.01 0.27 1.5

0.05 0.29 0.7
PH
From the experimental data, it follows that the relax-
ation time τ obeys an Arrhenius relation,

(2)

Fitting the experimental data to Eqs. (1) and (2), one
obtains U and τ0, which are presented in Tables 1 and 2.

In Table 1, one can see that, in general, there is a
small but systematic increase in the activation energy U
with increasing x. Interestingly, a similar behavior of
U(x) was observed in the case of SrTiO3 doped with
trivalent rare-earth ions [22].

A detailed analysis shows that the experimental
results can be described better by a Cole–Cole complex
function instead of Eq. (1):

(3)

where ε* = ε' – iε''.

As an example, one can refer to the Cole–Cole
graph at x(SMN) = 0.03 and various temperatures in
Fig. 10. The best fit of the experimental data to Eq. (3)
is obtained with β = 0.7.

Fitting the experimental data to Eq. (3) does not sig-
nificantly change the values of U and τ0 presented in
Table 1.

Concerning the low-temperature relaxation, we
should note that the experimental data can be fairly well
fitted to a simple Arrhenius relation [Eq. (2)] only at
temperatures T ≥ 20 K. The best fit in the whole temper-
ature range can be obtained using a Vogel–Fulcher rela-
tion,

, (4)

τ τ 0 U/kT( ).exp=

ε∗ ε∞
ε0 ε∞–( )

1 iωτ( )β+
-------------------------,+=

τ τ 0 U/k T Tg–( )[ ]exp=
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Fig. 5. Temperature dependence of ε' for (1 – x)SrTiO3–
xSrMg1/3Nb2/3O3 at a frequency of 1 MHz.
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with U ≈ 0.05 eV and Tg < 0. Since such values of Tg

have no physical meaning, we used the Arrhenius rela-
tion with the U and τ0 values given in Table 2.

We also tried to observe P(E) hysteresis loops in our
samples at low temperatures. This attempt failed, and
we may conclude that there are no ferroelectric phase
transitions in SrTiO3–SMN and SrTiO3–SST solid
solutions.

4. DISCUSSION

Thus, in the (1 – x)SrTiO3–xSMN and (1 –
x)SrTiO3–xSST solid solutions, we observed strong
high-temperature (150–300 K) dielectric relaxation;
much smaller low-temperature (20–90 K) relaxation
was also observed in the case of SrTiO3–SMN. As men-
tioned above, the observed high-temperature relaxation
in SrTiO3–SMN is characterized by a very high dielec-
tric constant ε0 and very high relaxation strength (ε0 –
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Fig. 6. Frequency spectra of ε' and ε'' for (1 – x)SrTiO3–
xSrMg1/3Nb2/3O3 at x = 0.03. (The high-temperature relax-
ation at various temperatures.)
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ε∞), which at x = 0.03 and a frequency of 10 Hz attain
14000 and 12000, respectively. Such a large value of ε0

(larger than the dielectric constant at 4.2 K in nominally
pure SrTiO3 ceramic samples) is surprising. These val-
ues are, to our knowledge, the highest yet reported for
SrTiO3 with heterovalent impurities in this temperature
range. In the literature, there are only two examples [16,
22] of a very high value of ε0 and (ε0 – ε∞), which are
close to but less than that mentioned above. One of

Table 2.  Activation energy U and relaxation time τ0 for the low-
temperature relaxation in (1 – x)SrTiO3–xSrMg1/3Nb2/3O3

x U, eV τ0, 10–9 s

0.07 0.02 0.3

0.1 0.01 0.2

0.15 0.02 15

71 K
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40 K
30 K
24 K
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Fig. 7. Frequency spectra of ε' and ε'' for (1 – x)SrTiO3–
xSrMg1/3Nb2/3O3 at x = 0.15. (The low-temperature relax-
ation at various temperatures.)
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these examples is SrTiO3:2 at. % Er with ε0 = 10000
and (ε0 – ε∞) = 9400 [22].

Very strong dielectric relaxation has also been
observed in another incipient ferroelectric, KTaO3. In
KTaO3 with 2.3 at. % Nb (KTN) and 0.055 at. % Ca,
dielectric relaxation was measured between about 50
and 100 K, with ε0 being about 16000 [28]. A similar
value of ε0 in the same temperature range was found in
KTaO3 with 2.5% Nb and 0.1% Li (KLTN) [29]. How-
ever, in both cases [28, 29], the dielectric relaxation
develops close to a ferroelectric phase transition, which
certainly affects the relaxation strength strongly.

Very large values of the dielectric constant are usu-
ally observed in SrTiO3 at ferroelectric phase transi-
tions induced by impurities at an impurity concentra-
tion x near the critical concentration xc. For example,
εm = 110000 in SrTiO3:Ca single crystals at x = 0.01 [5]
and εm = 170000 in SrTiO3:18O single crystals at x =
0.37 [30]. In ceramic samples of Sr1 – xBaxTiO3, accord-
ing to our measurements, εm = 35000 at x = 0.02. How-
ever, in the systems under study (SrTiO3–SMN and
SrTiO3–SST), there are no ferroelectric phase transi-
tions and the observed giant dielectric constant in them
should be determined by some other mechanisms.

In discussing possible mechanisms of the giant
dielectric relaxation, the first question to be answered is
what positions Nb5+ and Mg2+ occupy in the SrTiO3

host lattice. The Nb5+ ions should substitute for the Ti4+

host ions due to the size and charge factors. As for the
Mg2+ ions, they can occupy, in principle, either Sr2+ or
Ti4+ positions. Two experimental facts prove the latter
possibility. First, the Mg2+ ions being added to SrTiO3
alone (in the form of MgTiO3) do not lead to any dielec-
tric relaxation. Second, in the SrTiO3–SMN system, as
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Fig. 8. Temperature dependence of ε' for (1 – x)SrTiO3–
xSrSc1/2Ta1/2O3 at x = 0.01.
PH
well as in SrTiO3–SST, the lattice constant follows the
linear Vegard law between SrTiO3 and SMN (SST).
Thus, we make the conclusion that the Mg2+ and Nb5+

(or Sc3+ and Ta5+) ions substitute for the host Ti4+ ions
in SrTiO3. Though the impurity ions have a charge dif-
ferent from that of the host Ti4+ ions, they are “self-
compensating;” i.e., the excess charge of two Nb5+ ions
is compensated by the deficient charge of one Mg2+ ion,
and their average charge is equal to the charge of the
host Ti4+ ion. A similar situation occurs in SrTiO3–SST,
where the excess charge of a Ta5+ ion is compensated by
the deficient charge of an Sc3+ ion.

However, at small x, when the Mg2+ and Nb5+ ions
(Sc3+ and Ta5+) are far from each other, the Mg2+ ion
does not “know” that somewhere there are Nb5+ ions
with compensating charge (the same is the case for the
Nb5+ ions). Therefore, the impurity ions need some
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Fig. 9. Temperature dependence of ε' for (1 – x)SrTiO3–
xSrSc1/2Ta1/2O3 at x = 0.05.
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additional local charge compensation. This hypothesis
is a basic point for explanation of dielectric relaxation
in the systems under study. We believe that without this
hypothesis of the additional local charge compensation,
it is impossible to suggest any models for the observed
dielectric relaxation. The additional local charge com-
pensation may proceed through the formation of either
free charge carriers or the host ion vacancies in the fol-
lowing ways.

Substituting for the host Ti4+ ion, Nb5+ (and Ta5+)
serves as a donor and Mg2+ (and Sc3+) acts as an accep-
tor. Being fully ionized, an Nb5+ and an Mg2+ provide
one electron and two holes, respectively. If the electron
and hole mobilities are equal, the electrical conductiv-
ity will be compensated and the sample will exhibit a
high resistivity. In the opposite case, the resistivity may
be relatively low.

A second possible mechanism of local charge com-
pensation is the formation of one Sr2+ vacancy (VSr) per
two Nb5+ ions and of one O2– vacancy (VO) per Mg2+

ion. In the case of SST, one Sr2+ vacancy should be
formed per two Ta5+ ions, and one O2– vacancy is
formed per two Sc3+ ions.

These two means of local charge compensation may
lead to two mechanisms of the high-temperature (150–
300 K) dielectric relaxation.

High electrical conductivity may be a reason for the
Maxwell–Wagner relaxation in ceramic samples, and it
is well known that strong dielectric relaxation in semi-
conducting ceramic samples can always be attributed to
the Maxwell–Wagner mechanism. This relaxation is
due to the different properties of ceramic grains and
grain boundaries (see [31] and references therein). In a
very simplified model, the grain is considered as a
resistor R with the grain boundary as an insulating layer
with the capacity C in series with the resistor. A ceramic
sample represents a system of such RC elements, and
the relaxation time (which is the effective Maxwell
relaxation time of the whole system) is given by

(5)

where the relaxation time τ is in seconds and the elec-
trical conductivity σ is in (Ω cm)–1.

The temperature dependence of conductivity σ =
enµ is mainly determined by the temperature depen-
dence of the charge-carrier concentration

(6)

The Maxwell–Wagner relaxation mechanism can
give a very high value of εeff at ωτ < 1.

The effective dielectric constant of a ceramic sam-
ple is approximately given by [31]

, (7)

where d1 is the grain diameter, d2 is the thickness of the
grain boundary, and ε2 is the dielectric constant of the

τ 8.8 10 14– εeff/σ( ),×=

n n0 U/kT–( ).exp=

εeff d1/d2( )ε2≅
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grain boundary. With d1/d2 ≅  102 and ε2 ≅  102, Eq. (7)
gives εeff ≅  104.

The Maxwell–Wagner mechanism was studied in
detail for SrTiO3 ceramics in [31]. Ceramic samples of
stoichiometric SrTiO3 and those with up to 1% excess
of Ti were used. It was shown that the dielectric con-
stant reached a value of about 104 at 150°C at a fre-
quency of 10–2 Hz and that this value of the dielectric
constant was due to the Maxwell–Wagner relaxation.
Temperature-dependent maxima in ε''(ω) were
observed; they shifted to higher frequencies with
increasing temperature. At 150°C, ε''(ω) attained a
maximum value at a frequency of about 1 Hz. Assum-
ing reasonable (though rather arbitrary) values of the
parameters (d1 = 10, d2 = 0.1 µm, ε2 = 200, carrier con-
centration n0 = 1018 cm–3, mobility µ = 6 cm2/V s, acti-
vation energy U = 0.7 eV), the authors of [31] obtained
satisfactory agreement between the experimental
results and the Maxwell–Wagner model.

The value of U = 0.7 eV is determined by the energy
levels of donors or acceptors in the band gap [31]. This
energy is quite typical for SrTiO3. To determine
whether the relaxation in our samples that develops in
the 150–300 K range can be described by the Maxwell–
Wagner model, we have to set this energy equal to U ~
0.25 eV. Then, using Eqs. (5)–(7) with d1, d2, and ε2
taken from [31] and the charge-carrier mobility from
[32], we find that the Maxwell–Wagner mechanism can
satisfactorily describe the experimental results; the
conductivity and carrier concentration at 150 K are σ ~
10–5 (Ω cm)–1, n ~ 1012 cm–3, and n0 ~ 5 × 1020 cm–3, and
the quantities σ and n vary exponentially with temper-
ature, following Eq. (6) with U = 0.25 eV. Note that at
x = 0.03, the SMN concentration is n ≅  5 × 1020 cm–3,
which is not quite consistent with the value of n0. Nev-
ertheless, it is possible to conclude that the high-tem-
perature dielectric relaxation can be associated with the
Maxwell–Wagner mechanism.

However, the following experimental facts contra-
dict the Maxwell–Wagner model of the dielectric relax-
ation in the temperature range 150–300 K.

According to Eq. (7), the dielectric constant is inde-
pendent of temperature, whereas the experiment dem-
onstrates a 1/T dependence.

At about 250 K and a frequency of 10 Hz, one
observes an increase in ε' with increasing temperature,
which may be the onset of an additional relaxation,
which is especially distinct at x = 0.15 (Fig. 4). A crude
estimate shows that for this relaxation, U ≥ 0.5 eV. This
relaxation can be ascribed to the Maxwell–Wagner
model. Though nothing forbids the occurrence of two
Maxwell–Wagner relaxations in different temperature
regions (say, at T > 300 K and T < 300 K) in one sample,
such an event seems to be rather accidental.

The observed dependence of the activation energy U
on concentration x is difficult to explain in terms of the
2



2046 LEMANOV et al.
Maxwell–Wagner mechanism, as has been emphasized
earlier [22].

Application of a dc electric field E = 1 kV/cm does
not change the relaxation under discussion but leads to
great changes in ε'' and  at higher temperatures. At
the SMN concentration x = 0.05, T = 275 K, and a fre-
quency of 1 kHz, ε'' increases by more than an order of
magnitude under the action of the dc electric field.

The Maxwell–Wagner mechanism of the dielectric
relaxation in SrTiO3 with rare-earth ions [16, 17, 22] in
the same temperature range as discussed above has also
been denied. In SrTiO3:La ceramics, only relaxation at
temperatures around 200°C has been found to be asso-
ciated with the Maxwell–Wagner mechanism [17].
Relaxation in the range 150–300 K was ascribed to the
formation of the host ion vacancies. One of the argu-
ments against the Maxwell–Wagner mechanism for this
relaxation was that the relaxation holds even in single
crystals [17].

Now, we will discuss an alternative model of the
giant dielectric relaxation based on the local charge
compensation of impurities by the host ion vacancies as
described above.

Due to electrostatic interaction, the most favorable
configuration is that in which the impurity ions and
related vacancies are nearest neighbors. As a result, the
following impurity centers are formed:

[2  – VSr] and [  – VO] in SrTiO3–SMN,

[2  – VSr] and [2  – VO] in SrTiO3–SST.

It is widely accepted that in the ABO3 perovskites,
the mobility of the oxygen vacancies is higher than that
of the A ions [33]; therefore, we shall discuss below
only the centers with the oxygen vacancies, namely,

[ –VO] and [2 –VO]. The [ –VO] complex
is shown in Fig. 11. The Mg2+ ion is in the center of the

δtan

NbTi
5+ MgTi

2+

TaTi
5+ ScTi

3+

MgTi
2+ ScTi

3+ MgTi
2+

Sr2+ Mg2+ O2– VO

Fig. 11. Structure of the [ –VO] center.MgTi
2+
PH
oxygen octahedron, in which one of six oxygen ions is
absent (VO). The Mg2+–O2– distance is a/2 (a is the lat-
tice parameter), and the distance between the nearest

neighbor O2– ions is a/ . The dipole moment p =
2ea/2 = ea = 18.7 × 10–18 CGSE units = 18.7 D is asso-
ciated with this center. Thermally activated reorienta-
tion of this dipole moment via the vacancy jumping (or,
more correctly, the oxygen ion jumping through the
oxygen vacancy) is suggested as the origin of the
dielectric relaxation with U = 0.21–0.3 eV and τ0 =
10−11–10–12 s. These relaxation parameters seem to be
quite reasonable. Indeed, in the model under discus-

sion,  = ω0 should be on the order of the lattice
Debye frequencies. As for the activation energy, U ~
0.25 eV seems to be too low, at first sight, since the acti-
vation energy for the oxygen vacancy diffusion in the
perovskite is not less than 1 eV [34, 35]. However, it is
well known that the activation energy for the oxygen-
ion movement near a defect (as in our case) can be
much lower. For example, in KTaO3, where the activa-
tion energy for dc ionic conductivity is also not less
than 1 eV, the activation energy for an oxygen vacancy
hopping around a defect is very low: U = 0.08, 0.11,

and 0.36 eV for the defect centers [ –VO], [ –

VO], and [ –VO], respectively (see [28] and refer-
ences therein). Even for the reorientation of the Fe3+–

 center in KTaO3 with an interstitial oxygen ion

, the activation energy is as low as 0.34 eV [36, 37].

One may suppose that a similar situation takes place
in SrTiO3; in this case, the value of U = 0.21–0.3 eV
seems to be quite reasonable. It is important to note that
an activation energy around U = 0.25 eV was found ear-
lier to be characteristic of the dielectric relaxation in
SrTiO3 ceramics doped with Bi [11, 12], Mn [20], La
[17, 20–22], and other trivalent rare-earth ions [22].
The dielectric relaxation in all these systems was
ascribed to the host ion vacancies.

In the model under discussion, the relaxation
strength (ε0 – ε∞) decreases with increasing concentra-
tion x of SMN, since the Mg2+ and Nb5+ ions are pro-
gressively closer to each other and their charge self-
compensation takes place instead of their compensation
by the vacancies. If the observed dielectric relaxation is
due to this mechanism, the relaxation strength ε0 – ε∞
should first increase with increasing x, then reach a
maximum at a certain value of x, and then decrease and
completely vanish at large x. Exactly this behavior is
demonstrated by the high-temperature relaxation in our
samples.

Another important point is the unusually high relax-
ation strength ε0 – ε∞. Let us estimate the relaxation
strength in the framework of the proposed model. An
electric field E induces a polarization P due to the reori-
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entation of [ –VO] complexes with dipole moment
p = ea and concentration n:

. (8)

Therefore, the dielectric susceptibility is

(9)

For x = 0.03, assuming that all the Mg2+ impurity ions

form [ –VO] centers, we obtain (in CGSE units)
χ ≅  10 and ε ≅  4πχ ≅  102. This value is too small to
explain the experimental results. However, the local
electric field Eloc should be taken in Eq. (8) instead of
the applied electric field E.

As a crude estimation of the local field, one can use
the expression [38]

(10)

For the dielectric relaxation at x = 0.03, we have
ε∞ ≈ 2000 (Fig. 6); i.e., the local electric field is almost
three orders of magnitude larger than the applied field.
As a result, one obtains ε ≈ 2.5 × 104. Certainly, this
value should be considered as an upper limit and only
demonstrates that the proposed model can provide a
very high dielectric constant.

It is interesting to note that from experiment [37] it

follows that the local electric field at the [ –Oi] cen-
ter in KTaO3:Fe is an order of magnitude larger than
the applied field. This means that the local field in
SrTiO3 is much larger than that in KTaO3.

Thus, we may say that the proposed model is consis-
tent with the experimental data: the model can, in prin-
ciple, give a high value of ε0; the experimental ε0 ∝  1/T
temperature dependence is described by Eq. (9); and an
experimental activation energy U of about 0.25 eV is in
the range of typical values of the activation energy for
an oxygen vacancy jumping around an impurity ion in
perovskites.

Along with the high-temperature relaxation in
SrTiO3–SMN, a low-temperature relaxation is
observed with U ~ 0.01–0.02 eV and τ0 ~ 10–8–10–10 s.
We believe that such an activation energy is too low for
the ion movement and should be attributed to the elec-
tronic system. The following model may be suggested
to explain the low-temperature relaxation.

Some part of the Nb5+ ions is not compensated with

the Sr2+ vacancies but forms a new center [ –Ti3+]
(Fig. 12). The Nb5+ ion is surrounded by six Ti4+ ions,
and one of them is in the Ti3+ state; i.e., there is an elec-
tron localized on the Ti ion. This electron jumps over
six Ti4+ ions. The distance between the Nb and Ti ions

and between the Ti ions is a and a , respectively. The
activation energy for this electron hopping can be suffi-
ciently low. The excess electron polarizes the lattice

MgTi
2+

P p2n/kT( )E=

χ p2n/kT .=

MgTi
2+

Eloc ε∞ 2+( )/3( )E.=

FeK
3+

NbTi
5+

2
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and hops as a “polarization-dressed” electron, i.e., as a
polaron. In such a case, an accepted point of view [39]
is that the relaxation time τ0 should be in the range

between the characteristic lattice times (τ0 =  ≅
10−12–10–13 s) and electronic times (10–14–10–15 s).
However, we believe that for a polaron bound to the

impurity ion (  in our case), this relaxation time
can be much longer, because it can take much time for
the lattice to come to the equilibrium after the electron
hopping from one Ti ion to another. Indeed, for exam-
ple, in TiO2 reduced crystals, three relaxation processes
associated with polaron hopping were observed [40]
with activation energies between 10–3 and 10–2 eV and
τ0 between 10–8 and 10–6 s. Thus, our values of U and τ0
seem to be reasonable.

Now, let us turn to the SrTiO3–SST solid solution.
The high-temperature relaxation is also observed in this
system, but the relaxation strength is much smaller than

that for the SrTiO3–SMN. The [2 –VO] center has a
rather complicated structure to provide easy movement
of the oxygen vacancy. However, some small part of

these centers can exist as a simple [ –VO] center.
Therefore, the relaxation mechanism will be the same

as for the [ –VO] centers but with a much smaller
relaxation strength due to the small concentration of the

[ –VO] centers.

When discussing the dielectric relaxation associated
with the thermally activated movement of the host ion
vacancies, one should certainly bring to mind Skanavi’s
relaxation model [11, 12]. This model postulates that
the Sr2+ ion vacancies distort the neighboring oxygen
octahedra and, as a result, several off-center equilib-
rium positions for the Ti4+ ion appear. The dielectric
relaxation in this model is associated with thermally

ω0
1–

NbTi
5+

ScTi
3+

ScTi
3+

MgTi
2+

ScTi
3+

Nb5+ Ti3+

Ti4+ (possible positions of Ti3+)

Fig. 12. Structure of [ –Ti3+] center.NbTi
5+
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activated motion of the Ti4+ ion between these equiva-
lent off-center positions. In SrTiO3 doped with La [17],
La and Mn [20], and with a wide range of the rare-earth
ions [22], the observed dielectric relaxation was
explained in terms of Skanavi’s model. However, this
purely qualitative model is difficult to accept, since it is
doubtful that an asymmetric distortion of the oxygen
octahedron can lead to several equivalent off-center
positions for the Ti4+ ion. Theoretical microscopic cal-
culations must be made to support this model. This is
why we did not discuss this model as a possible reason
for the dielectric relaxation. Furthermore, the authors
of a recent paper [16] argue that the experimental data
on the dielectric relaxation in SrTiO3 are not consistent
with Skanavi’s model.

In conclusion, in SrTiO3–SrMg1/3Nb2/3O3 and in
SrTiO3–SrSc1/2Ta1/2O3 solid solutions, the giant high-
temperature (100–350 K) dielectric relaxation and a not
so strong, but well-developed, low-temperature (20–
90 K) relaxation were observed instead of a ferroelec-
tric phase transition induced by impurities in the incip-
ient ferroelectric and quantum paraelectric SrTiO3.
This means that not any impurity can disturb the stabil-
ity of the paraelectric phase in SrTiO3 and induce a fer-
roelectric phase transition (otherwise, one could speak
about an “impurity trigger effect”). In all the incipient
ferroelectric-based solid solutions studied earlier [3–9],
the second-end members of the solid solutions were
ferroelectrics (BaTiO3, PbTiO3, CdTiO3, PbMg1/3,
Nb2/3O3 in SrTiO3 and LiTaO3, KNbO3 in KTaO3) or at
least incipient ferroelectrics such as KTaO3 and CaTiO3

in SrTiO3 [5, 41, 42]. In all these cases, a transition to
the ferroelectric (or polar) phase inevitably occurred. In
our case, SMN and SST are not ferroelectrics, which
may be the reason for the absence of a ferroelectric
phase transition in their solid solutions with SrTiO3.
This point of view may be supported by the data from
[22], where SrTiO3 doped with all the rare-earth ions
except promethium was studied and no evidence of the
ferroelectric state was found. This result may imply
that, in the incipient ferroelectrics with impurities, the
ferroelectric phase transition is not due to the impurity-
trigger effect but is associated with a Vegard-type law
for the Tc(x) dependence at medium and large values of
the concentration x of the second-end member of the
incipient ferroelectric-based solid solution. At low x,
the transition to the quantum ferroelectric state occurs
with no ferroelectric phase transition at x values lower
than the critical concentration xc.

Returning to the dielectric relaxation in the solid
solutions under study, one may conclude that both the
Maxwell–Wagner mechanism and the reorienting
dipole-center model can explain the main features of
the high-temperature relaxation. There are some argu-
ments in favor of the model of the reorienting dipole
centers, but this conclusion is anything but final since,
PH
using only dielectric measurements, one cannot deter-
mine the structure of defect centers.

Finally, and most importantly, both models are
founded on the hypothesis of the additional local
charge compensation of the heterovalent B ions by the
host ion vacancies or by free charge carriers. This sce-
nario seems to be inevitable for explaining the dielec-
tric relaxation in the solid solutions under study. How-
ever, in this context, more experimental proofs are
desirable. Such proofs might be provided by experi-
ments with SrTiO3–SMN single crystals and/or using
SrMn1/2Nb2/3O3 instead of SrMg1/3Nb2/3O3 to obtain the
possibility of ESR study of Mn2+ centers. These and
other more complicated experiments are now in
progress.

In connection with the model of the additional local
charge compensation, it is worth noting that the ques-
tion of whether this charge compensation can play any
role in dielectric properties of disordered relaxor ferro-
electrics such as PbMg1/3Nb2/3O3 (PMN) is not ruled
out.
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Abstract—The bivalent chromium impurity centers in CdF2 and CaF2 crystals are investigated using electron
paramagnetic resonance (EPR) in the frequency range 9.3–300 GHz. It is found that Cr2+ ions in the lattices of
these crystals occupy cation positions and form [CrF4F4]6– clusters whose magnetic properties at low temper-
atures are characterized by orthorhombic symmetry. The parameters of the electron Zeeman and ligand inter-
actions of the Cr2+ ion with four fluorine ions in the nearest environment are determined. The initial splittings
in the system of spin energy levels of the cluster are measured. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The ground state of a free Cr2+ ion is characterized
by the 5D term. Upon incorporation into crystals of the
fluorite structural family (CdF2, CaF2, SrF2, and BaF2),
bivalent chromium ions occupy cation sites whose
coordination polyhedron is represented by a regular
cube with F– ions in the vertices. For such a structure,
according to the crystal field theory, the quintuply
degenerate ground 5D term of the chromium ion is split
into the excited orbital doublet 5Eg and the ground trip-
let 5T2g. In this regard, the impurity complex [CrF8]6–

formed in a crystal is of considerable interest as an
object exhibiting Jahn–Teller properties.

Ulrici [1] investigated the optical spectra of CdF2 :
Cr crystals and revealed transitions between the 5T2g

and 5Eg states. The splitting of the levels of the ground
triplet 5T2g was estimated at 5000 cm–1. This indicates
considerable distortions of the crystal lattice in the
vicinity of a paramagnetic impurity. The characteristic
temperature dependence of the optical spectra observed
in [1] suggests a Jahn–Teller nature of these distortions.
It should be noted that, according to [2], the vibronic
interaction of the orbital triplet 5T2g with eg vibrations
should lead to a tetragonal distortion of the coordina-
tion cube of the impurity ion and the interaction with t2g

vibrations should result in a trigonal distortion. How-
ever, the orthorhombic anisotropy is observed in the
optical properties of Cr2+ centers [1]. Therefore, in the
case under consideration, the interactions with vibra-
tions of tetragonal and trigonal symmetries are equally
efficient.

These inferences were confirmed by Jablonski et al.
[3], who studied the electron paramagnetic resonance
1063-7834/02/4411- $22.00 © 22050
(EPR) spectra of CdF2 : Cr crystals. These authors
examined the ligand hyperfine structure of the EPR
spectra and determined the molecular structure of the
impurity paramagnetic complex [3]. It turned out that
the Cr2+ ion is located at the center of a coordination
polyhedron that is a right-angle orthorhombic prism
whose vertices are occupied by eight F– ions.

The same conclusions regarding the structure of
Cr2+ complexes were drawn on the basis of the EPR
data for crystals of CaF2 : Cr [4, 5] and SrF2 : Cr [6]. In
our earlier work [6], we performed an EPR investiga-
tion over a wide frequency range. This made it possible
to determine virtually all the spin Hamiltonian parame-
ters with sufficient accuracy. Crystals of CdF2 : Cr [3]
and CaF2 : Cr [4, 5] were examined at frequencies of
9.3 [3, 4] and 34 GHz [5]. For this reason, the spin
Hamiltonian parameters were derived from the angular
dependences of the EPR transitions |+1〉   |–1〉  and
|+2〉   |–2〉 . Since the transitions |0〉   |–1〉  and
|±1〉   |±2〉  could not be observed at low frequencies,
the majority of the parameters obtained in [3–5] were
determined only approximately. For example, in [5],
the splittings between the spin levels |0〉 , |±1〉 , and |±2〉
were evaluated from the temperature dependence of the
population of the spin energy levels of the impurity
complex. Note that the spin Hamiltonian parameters
obtained in [3] are questionable. Their values differ
severalfold from those determined in [5, 6]. This seems
to be unlikely considering the similarity between the
molecular structures of the complexes in these three
same-type crystal matrices.

In this respect, the main purpose of the present work
was to refine the data obtained in [3–5].
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2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Crystals of CdF2 : Cr were grown by the Bridgman
method in a helium atmosphere with small fluorine
additives. The crucible used for a CdF2 : Cr melt was
produced from chemically pure graphite. Chromium
impurities in the form of a well-dried chromium triflu-
oride powder were introduced into the melt. Fluorine
was added to the helium atmosphere used in the crystal
growth for the purpose of preparing a melt of nonsto-
ichiometric composition with an excess fluorine con-
tent. This encouraged an increase in the equilibrium
concentration of chromium ions dissolved in the melt.
It turned out that the presence of excess fluorine ions in
the melt was a necessary condition for the incorpora-
tion of chromium into the lattice of the growing crystal.
Crystals of CaF2 : Cr were grown under similar condi-
tions. However, since the vapor pressure of the CaF2
melt was substantially less than that of CdF2 melt, the
CaF2 : Cr crystals were grown by the Czochralski
method.

The grown crystals were examined by EPR spec-
troscopy. It was found that, depending on the growth
conditions, the grown crystals contained either predom-
inantly bivalent chromium centers (the temperature
gradient in the vicinity of the crystallization front was
greater than 50 K/cm, and the velocity of the crystalli-
zation front was higher than 20 mm/h) or trivalent chro-
mium centers of trigonal symmetry (under different
conditions). The latter chromium centers were
described in [7].

The spectra of certain CdF2 : Cr crystals exhibited
weak EPR signals whose angular dependences indi-
cated orthorhombic symmetry of the relevant centers.
Repeated recrystallization of these samples led to the
disappearance of these centers. On the other hand, the
addition of oxygen in small amounts to the atmosphere
used in the crystal growth resulted in an increase in the
concentration of the centers under investigation. Simi-
lar oxygen-containing centers were observed in CaF2 :
Cr crystals. The parameters of the EPR spectra of these
crystals coincided with those obtained for [CrF6O]6–

impurity complexes in [5].

In this work, we performed an EPR investigation of
CdF2 : Cr and CaF2 : Cr samples predominantly con-
taining [CrF4F4]6– complexes. The measurements were
carried out at frequencies of 9.3 and 37 GHz (on an E-
12 Varian EPR spectrometer) and in the frequency
range 65–300 GHz (on a quasi-optical spectrometer
described in our previous work [8]). The use of the fre-
quency-tuned spectrometer in the submillimeter-wave-
length region made it possible to determine directly all
the initial splittings in the system of the spin energy lev-
els for the Cr2+ impurity ion.

Since some doubts were cast upon the spin Hamilto-
nian parameters obtained in [3], our prime concern was
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
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is indicated near the corresponding curve in Fig. 1. To
avoid overloading of the figures by too large a number
of graphs, Fig. 1 shows the dependences for transitions
in the system of the spin energy levels only for the
structurally equivalent centers for which the Z axis is
parallel to the vector B0 of the external constant mag-
netic field. In actual fact, there occur also transitions
between the states of five magnetically nonequivalent
centers with other orientations with respect to the
vector B0.

The angular dependences of the resonance external
magnetic field measured upon rotation of the vector B0
in the (110) plane of the crystal at T = 4.2 K and f =
37 GHz are plotted in Fig. 2. The dependences shown
in this figure correspond to transitions within the pairs
of the spin levels |±1〉  and |±2〉  and between the levels
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 Dependences of the frequencies of the resonance
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|0〉  and |–1〉 . The transitions |–1〉   |+1〉  are observed
for all six magnetically nonequivalent centers. The
transitions |0〉   |–1〉  occur only for one group of
these centers, in which the vector B0 is oriented at small
angles (≤12°–15°) with respect to the Z axis. This can
be explained by the fact that the states |0〉  and |±1〉  are
characterized by a considerable energy splitting, which

is determined primarily by the parameter  of the ini-

tial splitting (because 3  @ βegB0 ~ 6 ).

In the case when the magnetic vector Bf of the elec-
tromagnetic field in the spectrometer cavity is oriented
perpendicularly to the quantization axis of spin
moments of the centers under investigation, the transi-
tions |2〉   |+2〉  are forbidden. However, the vector Bf

during rotation of the vector B0 in the (110) crystal
plane has a nonzero component along the quantization
axes of five (out of six) groups of the magnetically non-
equivalent centers. Therefore, the possibility appeared
of recording the resonance lines corresponding to these
transitions. In reality, this could be done only for the
four groups of these centers for which the angle
between the Z axis and the vector B0 did not exceed
50°–60°.

For certain orientations of the vector B0 of the exter-
nal magnetic field with respect to the principal axes of
the CdF2 : Cr2+ and CaF2 : Cr2+ crystals, the EPR spec-
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Fig. 2. Angular dependences of the resonance external mag-
netic field upon rotation of the vector B0 in the (110) plane

of the CdF2 : Cr2+ crystal (T = 4.2 K, f = 37 GHz) for the
electron transitions |+1〉   |–1〉  (closed circles),
|+2〉   |–2〉  (open circles), and |0〉   |–1〉  (closed
squares).
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tra exhibited a ligand hyperfine structure. The best res-
olution was achieved for the transitions |+2〉   |–2〉 .
For the transitions |+1〉   |–1〉 , the ligand hyperfine
structure was revealed only in the CdF2 : Cr2+ samples
with the orientation B0 || Y. For the transition |0〉  
|−1〉 , a partly resolved ligand hyperfine structure was
observed in the CdF2 : Cr2+ samples at the orientation
B0 || Z. In the majority of cases, the ligand hyperfine
structure was represented by five resonance lines with
relative intensities approximately equal to the ratio 1 :
4 : 6 : 4 : 1. Moreover, the dependence of the line width
of the ligand hyperfine quintet on the direction of the
vector B0 was observed for the transitions |+2〉  
|−2〉  in both matrix crystals.

The angular dependences of the resonance external
magnetic field upon rotation of the vector B0 in the
(110) plane at T = 4.2 K and f = 9.3 GHz are depicted
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entation B

 

0

 

 

 

||

 

 

 

〈

 

001

 

〉

 

 in a magnetic field of 

 

≈

 

0.4 T. In [3],
this line was erroneously assigned to the transition

 

|

 

+2

 

〉

 

  

 

|

 

–1

 

〉

 

.

3. RESULTS AND DISCUSSION

The theoretical positions of the resonance lines in
Figs. 1–3 were determined from the equality between
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of the CdF2 : Cr2+ crystal (T = 4.2 K, f = 9.3 GHz) for the
electron transitions |+1〉   |–1〉  (closed circles) and
|+2〉   |–2〉  (open circles).
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the corresponding differences of the eigenvalues of the
spin Hamiltonian

(1)

and the energy of electromagnetic-field quanta in the
spectrometer cavity. Here, the spin Hamiltonian param-

eters are as follows:  = –27700 ± 50 MHz,

 = 900 ± 30 MHz,  ≈ 5 MHz,  = 45 ±
5 MHz, gx = 1.978 ± 0.005, gy = 1.995 ± 0.005, and gz =

1.946 ± 0.005 for the CdF2 crystal and  = –28 400 ±

100 MHz,  = 1800 ± 50 MHz,  ≈ 3 MHz,

 = 25 ± 10 MHz, gx = 1.97 ± 0.01, gy = 1.98 ± 0.01,
and gz = 1.94 ± 0.01 for the CaF2 crystal.

The spin Hamiltonian (1) is represented in a coordi-
nate system whose axes are oriented with respect to the
principal axes of the crystal as follows: X || 〈001〉 , Y ||
〈1–10〉 , and Z || 〈110〉 . The choice of the Z axis was gov-
erned by the requirement for a maximum magnitude of

the coefficient  of the spin operator  in Hamilto-
nian (1). The Hamiltonians of the other five centers can
be obtained through transformation of the cubic sym-
metry group.

In the course of calculations, some doubts were cast
on the possibility of uniquely determining all eight
parameters of the spin Hamiltonian (1). In order to elu-
cidate this problem, we constructed a system of approx-

imate linear equations in which the parameters , ,

, , , gx, gy, and gz were unknown; i.e., we used
the least-squares method to the first order in the pertur-
bation theory. For this purpose, the matrix of the spin
Hamiltonian (1) was determined using the eigenfunc-
tions of the truncated Hamiltonian

(2)

where  and  are the approximate values

of the parameters  and , respectively. These
approximate parameters can be obtained, for example,
from the splittings of the spin energy levels at B0 = 0

(Fig. 1). Then, the approximate components  (i = x,
y, z) of the tensor g can be found from the EPR spectra
measured at a frequency of 37 GHz. Thereafter, for a
necessary set of experimental points in the angular
dependences of the resonance external magnetic field
B0, we write the initial approximate equalities deter-
mining the coefficients of the system of simultaneous
equations in the least-squares method. In the approxi-
mate equalities, the corresponding differences between
the diagonal matrix elements of the spin Hamiltonian
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(1), which is represented with the use of the eigenfunc-
tions of the spin Hamiltonian (2), are taken to be equal
to the photon energy of electromagnetic oscillations at
the resonance frequency.

It turned out that the determinant of the matrix of the
coefficients is close to zero. This indicates that the
occurrence of unavoidable experimental errors prevents
unique determination of the parameters of the spin
Hamiltonian (1). In particular, it is found that, in the
matrix, the column of the coefficients of the unknown

 linearly depends on the column of the coefficients of

the unknown . This linear dependence can be

approximated using the quantity (  – 4 ). Further-
more, it is revealed that, when the set of experimental
points is limited to those corresponding to the transi-
tions |+1〉   |–1〉  and |+2〉   |–2〉 , the solutions of
the system of equations become extremely sensitive to
experimental errors. Actually, these calculations make
it possible to determine a number of important parame-

ters of the spin Hamiltonian (1), namely, , (  –

4 ), gx, gy, and gz, with a satisfactory accuracy. How-
ever, the other parameters can be obtained with a con-
siderably lower accuracy.

Analysis of the splittings in the ligand hyperfine
structure of the EPR spectra enabled us to derive the
parameters of the Hamiltonian of the ligand hyperfine
interaction between the electron magnetic moment of
the studied center and the nuclear magnetic moments of
fluorine ions in the nearest environment of the chro-
mium impurity ion. In the case under consideration,
this Hamiltonian has the form

(3)

where S is the electron spin moment operator, AF(i) is the
tensor for the ligand hyperfine interaction with F–(i)
ions, and IF(i) is the nuclear spin moment operator for
F−(i) ions. In order to describe the ligand hyperfine
splittings in the EPR spectrum, Hamiltonian (3) should
be considered simultaneously with the nuclear Zeeman
interaction Hamiltonian [representing the interaction of
the external magnetic field with the nuclear magnetic
moment of the F–(i) ion]; that is,

(4)

where gN and βN are the g factor and the nuclear mag-
neton of this ion, respectively.

As follows from the experimental data, each center
interacts only with four equivalent fluorine ions. These
ions are located in the same plane as the Cr2+ impurity
ion. This plane coincides with the XOY coordinate
plane and is aligned parallel to one out of the six (110)
planes in the crystal. The ligand hyperfine interaction

b2
2

b4
2

b2
2 b4

2

          

b2
0 b2

2

b4
2

Hshfi SAF i( )IF i( ),
i
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with four fluorine ions each is described by the symme-
try group Cs, and the symmetry of the paramagnetic
complex, as a whole, corresponds to the D2h group. This
inference is confirmed by the angular dependences of
the resonance magnetic field B0 measured at frequen-
cies of 9.3 and 37 GHz and in the submillimeter-wave-
length region. It is known (see, for example, [5]) that,
in the case of large initial splittings of the spin energy
levels, the ligand hyperfine splitting of the EPR lines
for the electron transition |+2〉   |–2〉  is predomi-
nantly determined by three components (AZX, AZY, and
AZZ) of the tensor AF(i) and very weakly depends on the
direction of the external magnetic field. If the ligands
are located in the XOY plane, we have AZY = AZX = 0 and
the measured splittings in the ligand hyperfine structure
of the EPR spectra permit us to determine only one
component of the tensor AF(i) [i.e., the component AZZ,
which corresponds to the perpendicular component A⊥
of the same tensor AF(i) represented in a local coordinate
system with the Z ' axis aligned along the Cr2+–F–(i)
bond]. An examination of the ligand splittings in the
EPR spectra recorded at frequencies of 9.3 and 37 GHz
for the transition |+2〉   |–2〉  demonstrates that
nearly identical ligand hyperfine splittings of the
nuclear energy levels are observed under all experimen-
tal conditions. The splitting of the electron level |M〉  can
be determined from the approximate relationship

(5)

Here, 〈SZ〉M is the mean of the electron operator SZ in the
state |M〉  that corresponds to either of two electron
levels between which the resonance transition occurs
(M = +2 or –2), fL = gNβNB0 (resonance) is the Larmor
precession frequency of fluorine ions in the external
magnetic field, α is the angle between the Z axis and the
vector of the external magnetic field, and A⊥ 〈SZ〉M @ fL.

Relationship (5) holds with a high accuracy in a
weak external magnetic field (the EPR spectra mea-
sured at a frequency of 9.3 GHz). Moreover, according
to calculations, this relationship in our case can also be
used for analyzing the ligand hyperfine structure of the
EPR spectra measured at a frequency of 37 GHz. The
calculations performed using relationship (5) give the
components |A⊥ | = 40 ± 4 MHz for CdF2 : Cr2+ crystals
and 42 ± 5 MHz for CaF2 : Cr2+ crystals (the latter value
coincides with the result obtained in [5]). The ligand
hyperfine interaction tensor component  ≈ A|| (the

     

δEM SZ〈 〉 2A⊥
2 f L

2+( ) 2A⊥ f L SZ〈 〉 M αcos–{ } 1/2–
.≅

AZZ'
PH
           

prime indicates the local coordinate system) for CdF2 :
Cr2+ crystals was determined from the ligand hyperfine
structure of the EPR spectrum for the electron transi-
tion |+1〉   |–1〉  at the orientation B0 || Y. It was found
that |A||| = 20 ± 8 MHz. A similar tensor component for
CaF2 : Cr2+ crystals cannot be obtained because the
ligand hyperfine structure of the EPR spectrum is
observed only for the transition |+2〉   |–2〉 .

As regards the interaction with the other four nearest
ligands, its influence on the EPR spectra manifests
itself in an angular dependence of the line width in the
ligand hyperfine structure of the EPR spectra for the
electron transitions |+2〉   |–2〉 .

4. CONCLUSIONS

Thus, the results of the above investigation allow us
to make the inference that the models of the studied
centers in CdF2 and CaF2 crystals are consistent with
the model of a bivalent chromium impurity complex in
the SrF2 crystal [6]. The hyperfine structure parameters
determined from analyzing the EPR spectra of CdF2
crystals in the present work and in [3] differ signifi-
cantly. This can be explained by the misinterpretation
of the EPR spectra in [3], most likely, as a result of a
lack of necessary experimental data.
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Abstract—Based on the fractal model of an inhomogeneous medium with a chaotic structure and the iteration
method of averaging, frequency dependences of the dielectric properties of metal–insulator composites were
determined. In the low-frequency limit, the considered methods of the investigation of two-component media
were shown to permit one to obtain detailed information on the metal–insulator transition. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Theoretical investigations of the dielectric proper-
ties of inhomogeneous media stem from works pub-
lished as far back as the 1870s–1930s [1–3]. Based on
these works, the method of an effective medium was
developed [4], which in essence represents the replace-
ment of an inhomogeneous medium consisting of two
composites with conductivities σ1 and σ2 by a continu-
ous medium with an effective conductivity σ. Note that
such an approximation is only applicable for the case
where the length of the electromagnetic wave interact-
ing with the medium is much greater than the sizes of
inhomogeneities and the spacings between them.

The effective-medium method has been sufficiently
widely used for the description of physical properties of
inhomogeneous media [4]; however, it did not permit
one to predict the behavior of the system upon the
metal–insulator transition near the percolation thresh-
old [5–9]. For the case where the ratio of the conductiv-
ities of the phases σ2/σ1 tends to zero, scaling depen-
dences were obtained in terms of the percolation theory
for the effective dc conductivity σ (see [5, 6]), which
reflect the behavior of the conductivity near the geo-
metrical phase transition (near the metal–insulator tran-
sition) when the disconnected region of the conducting
phase passes into a connected region:

(1)

(2)

where T = s ≈ 1.1 for two-dimensional systems (d = 2)
and T ≈ 1.6, s ≈ 1 for three-dimensional systems (d = 3);
pc is the percolation threshold. If we assume that for
local regions the strength of the electric field E(r, t)

σ ∆p s– , ∆p∼ p pc 0,<–=

σ ∆pT , ∆p 0,>∼
1063-7834/02/4411- $22.00 © 22055
changes upon the propagation of the electromagnetic
field periodically with a frequency ω as

(3)

then Ohm’s law may be written in the form [10]

(4)

where j(r, ω) is the current density and σ*(r, ω) is the
complex coefficient of conductivity:

(5)

For an inhomogeneous medium with a chaotic struc-
ture, the dielectric constant ε(r, ω) and the conductivity
σ(r, ω) are random (stochastic) functions of the coordi-
nates r.

Note that from Eq. (5) we can determine the scaling
expressions for the conductivity of a lattice of resistors
of finite dimensions l, which were first obtained in
[11, 12]:

(6)

(7)

where G+(x, y) and G–(x, y) are the functions of two
variables that describe the frequency and scale depen-
dences of the conductivity of the function above and
below the percolation threshold.

In recent years, great attention has been paid to an
analysis of the dependences of the properties of metal–
insulator composites on frequency [11–31], which is
related to the difficulties in the description of the anom-
alous behavior of dielectric properties in the low-fre-
quency limit. The nature of the anomalous behavior of
frequency dependences of dielectric properties can be
clarified if we consider a model medium consisting of

E r t,( ) E0 r ω,( ) iωt( ),exp=

j r ω,( ) σ* r ω,( )E r ω,( ),=

σ* r ω,( ) σ r ω,( ) iωε r ω,( ).+=

σ σ1ξ
t /v– G+ σ1/σ2ξ

t s+( )/v ξ /l,( ), ∆p 0,>=

σ σ2ξ
s/v G– σ2/σ1ξ

t s+( )/v ξ /l,( ), ∆p 0,<=
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small spherical metallic particles described by the
Drude dielectric function

(8)

and embedded into an insulating matrix with a dielec-
tric constant equal to unity (ε2 = 1). In Eq. (8), ωp1 is the
plasma frequency and τ1 is the relaxation time of the
metallic phase.

If such a medium is subjected to the action of an
electric field (3), then, with allowance for the fact that
the solution to the electrostatic problem for a spherical
inclusion in a homogeneous medium yields for the
electric field E1 inside a spherical metallic particle a
dependence of the form

(9)

we obtain that the electric field E1 tends to infinity at
frequencies close to

(10)

At such frequencies, the applied field is in resonance
with the mode of the small metallic particle; as a result,
a strong absorption appears at this frequency; i.e., the

ε1 ω( ) 1
ωp1

2

ω ω i/τ1+( )
----------------------------–=

E1 3E0/ ε1 2+( ),=

ω ≅ ω p1/ 3.

A B

A

(a)

B

(b)

Fig. 1. Obtaining the Ωn(l0, p0) set for l0 = 2 at the fourth
iteration step (k = 4): (a) p0 = 1 and (b) p0 = 0.75 (sche-
matic).
PH
imaginary part of the effective dielectric constant of the
medium strongly increases in the vicinity of the fre-

quency ωp/  [11, 12].

For inhomogeneous media such as a metal–insulator
composite with a chaotic structure, the behavior
becomes even more complex.

In the majority of numerical calculations of the
anomalous frequency behavior of the metal–insulator
composites (in particular, near the percolation thresh-
old pc) under the action of an alternating current, lattice
(discrete) models have been used, which were studied
in terms of the transfer-matrix method [11, 12] and
using the Frank–Lobb algorithm [13]. The numerical
calculations and the theoretical analysis of the proper-
ties of metal–insulator composites performed in [11–
31] led to significant progress in the understanding of
this phenomenon, but the dielectric properties of
metal–insulator composites with fractal structures vir-
tually have not been considered in the literature.

Below, we report the results of calculations of the
dielectric properties of metal–insulator composites
with a chaotic hierarchic self-similar structure on the
basis of a fractal model in the entire concentration
range of inhomogeneities at various frequencies of an
external field. In the work, the iteration method of aver-
aging was employed [24, 32–36].

2. MODEL

Simulation of a chaotic structure of an inhomoge-
neous medium was performed on the basis of a lattice
with a random distribution of its parameters. The sites
of the lattice simulated microinhomogeneities (compo-
nents of the system) in space, and the bonds between
the sites simulated their contacts with neighbors [32,
35, 36].

The basic set of bonds Ω was obtained with the help
of an iteration process in which at the first step (k = 0),
there is a finite lattice in d = 3 space with a probability
p0 that the bond between neighboring nodes of the lat-
tice is unbroken (is “painted” a definite color). Bonds of
the same color possess the same properties. At the next
step (k = 1, 2, …, n), each bond in the lattice is replaced
by the lattice obtained at the previous step (Fig. 1). The
iteration process is terminated when the properties of
the lattice stop being dependent on the number of the
iteration k. The set of bonds Ωn(l0, p0) obtained using
the iteration procedure depends on the size of the initial
lattice l0 and on the probability p0.

The probability of forming a set of bonds of the
same color connecting two opposite faces of the lattice
Y(l0, p0) was calculated as the ratio of the number of
connecting sets (CS) to the number of all possible con-
figurations of bonds of the same color ( ) at a given
p0 and l0 [32].

3
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At the first iteration step, the length of the lattice

edge is equal to l1 =  and the density of bonds of the

same color, e.g., black ( ), is equal to p1 = Y(l0, p0). At
the next iteration steps, the length of the lattice edge is

l2 =  and the density of black bonds is

Here, pk = Y(lk – 1, pk – 1) is the density of CSs at the kth
iteration step.

The growth of the chaotic fractal set Ωn(l0, p0) is ter-
minated at the nth step at the fixed point 0 or 1 for the
function pn = Y(ln – 1, pn – 1):

The functions Y(l0, p0) for various rectangular lat-
tices were calculated using the Monte Carlo method in
[32].

The unstable critical point pc (percolation threshold)
was determined from the equality pc = Y(l0, pc).

Then, the probability function pk for the event that
the set of bonds at the kth iteration step is a CS was
determined using the formula [37]

(11)

which agrees satisfactorily with numerical calculations
[32].

The percolation threshold pc, according to [11], is
equal to 0.2084626828…; i.e., the nonconnecting set
(NCS) passes into the connecting set (CS) at pc ≈
0.208462.

Each kth bond in the set Ωn(l0, p0) possesses a com-
plex resistance (impedance) Zk(ω) which consists of
an active resistance Rk, an inductance Lk, and a capac-
itance Ck:

(12)

In what follows, each bond will be characterized by
the complex conductivity  with allowance for the
fact that the equality

(13)

is fulfilled.
Consider a two-phase system with a distribution

function

(14)
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where δ(x) is the Dirac delta function, p0 is the proba-
bility that a given local region possesses the property

 = , and 1 – p0 is the probability that this region

possesses the property  = .

In this case, after k iteration steps, the density func-
tion takes on the form

(15)

In what follows, we will distinguish two types of
sets of bond configurations: connecting sets (CSs) and
nonconnecting sets (NCSs).

To determine the dielectric properties of the CSs and
NCSs, we used a cell of the cube-in-cube type (Fig. 2);
i.e., at each step of the iteration process of the calcula-
tion of the properties, the structures of the CSs and
NCSs were simulated by a cube-in-cube cell as follows:
CS, a continuous body of a well conducting phase
including a cube of a poorly conducting phase (Fig. 2a);
NCS, a continuous body of a poorly conducting phase
including a cube of a well conducting phase (Fig. 2b).

The dc conductivity of the cube-in-cube cell (Fig. 2)
was determined in [7, 38]. The results obtained in [7,
38] for a cell in which a cube with a conductivity σ2 is
in the center of a cube with a conductivity σ1 can be
written in the form

(16)

where

(17)

(18)

σ1*
0( ) σ1*

σ2*
0( ) σ2*

Pk σ*( ) = 1 pk–( )δ σ* σ2*
k( )–( ) pkδ σ* σ1*

k( )–( ).+

σ
σ1

2
----- ψ1 ψ2+( ),=

ψ1

σ1 σ2 σ1–( ) 1 p–( )2/3+

σ1 σ2 σ1–( ) 1 p–( )2/3 1 1 p–( )1/3–[ ]+
---------------------------------------------------------------------------------------------,=

ψ2

σ2 σ1 σ2–( ) 1 p–( )1/3 1 1 p–( )2/3–[ ]+

σ2 σ1 σ2–( ) 1 p–( )1/3+
---------------------------------------------------------------------------------------------.=

(a) (b)

Fig. 2. Simulation of (a) a connecting set (CS) and (b) a
nonconnecting set (NCS) (schematic).
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Here, p is the volume concentration of the phase with a
conductivity σ1.

According to Eqs. (4) and (5), the problem of the
determination of the effective characteristics of a
medium in a quasi-stationary approximation differs
from the static case only in the replacement of the con-
ductivity σ (dc conductivity) by the complex conduc-
tivity σ*.
PH
With allowance for Eqs. (16)–(18), the complex
conductivity of CSs at the kth step of the calculations
was determined using the formulas

(19)

where

σc*
k( ) σc*

k 1–( )

2
----------------- ψ1

k 1–( ) ψ2
k 1–( )+( ),=
(20)

(21)

ψ1
k 1–( ) σc*
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σc*
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σn*
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------------------------------------------------------------------------------------------------------------------------------------------------,=
 = ,  = , and p0 = p. The magnitudes
of pk were determined using formula (11).

In Eqs. (19)–(21), the subscripts n and c denote that
a given quantity refers to the NCS and CS, respectively,
and the index k indicates the order number of the itera-
tion step.

To determine the complex conductivity of an NCS

, it is necessary to replace the indices in Eqs. (19)–
(21) as follows: n  c, 1  2, and (1 – p)  p.

3. CALCULATION RESULTS

The calculations were performed for a two-phase
(two-component) medium.

The calculations of the dielectric properties of inho-
mogeneous media at various frequencies and concen-
trations of the phases using Eqs. (11) and (19)–(21)
showed that the iteration process converges; i.e.,

(22)

The complex local conductivity for the metallic phase
with allowance for the Drude dielectric function (8)
was determined as

(23)

where

The complex local conductivity of the insulating
phase was determined as

(24)

It was assumed in the calculations that

σc*
0( ) σ1* σn*

0( ) σ2*

σn*
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σc*
k( )

k ∞→
lim σn*
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lim σ*.= =

σ1* ω( ) σ1 iω ε1
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x2 γ2+
----------------– 

  ,+=

x ω/ωp, γ 1/ωpτ1.= =

σ2* ω( ) σ2 iωε2.+=
Figures 3 and 4 display the dependences of the
effective dielectric constant ε = Im(σ*)/ω and the effec-
tive conductivity σ = Re(σ*) on the concentration of the
metallic phase p and the relative frequency ω/ωp. The
zeros of the effective dielectric constant ε determine the
plasma frequencies of the system, i.e., the metal–insu-
lator transition.

It follows from the calculations (Figs. 3, 4) that at
low frequencies, a divergence arises in the effective
dielectric constant and in the effective conductivity (a
sharp increase in losses). This is explained by the fact
that in this case, in the system, finite clusters of the
metallic phase arise which are separated by thin insulat-
ing interlayers. Such structures form a hierarchic self-
similar chaotic capacitance net which generates a sys-
tem of resonance frequencies.

In addition, the frequency dependences of the effec-
tive properties are affected by the configurations of the
finite clusters [39]. This may be illustrated by the con-
sideration of a pair of inclusions that have the shape of
a circle with the associated set of discrete frequencies:

(25)

where

ρ is the spacing between the centers of the circles, and
R is the radius of the circles.

Thus, if such regions are formed in a composite,
they create circuits with resonance frequencies.

ε1 1; ε2 10; γ 1
30
------; ωpτ1 30;= = = =

σ2/σ1 10 2– ; τ1 1; 0.001 ω/ωp 1.5.≤ ≤= =
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Fig. 3. Variation of the dielectric constant ε/ε2 of a metal–insulator composite as a function of the concentration of the metallic phase
p and the frequency ω/ωp.
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It also follows from Eq. (25) that, at ρ  2R, we
have ξ0  0 and frequencies (25) form a quasi-con-
tinuous spectrum [39].

It was shown in [11, 12] that ring-shaped structures
(ring clusters) generate double peaks in the frequency
dependence of the conductivity. Such ring structures in
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the system at hand are located chaotically, hierarchi-
cally, in a self-similar way, and also lead to the appear-
ance of peaks in the conductivity.

Figure 5 displays the dependences of the modulus of
the ratio of the capacitance conductivity to the active
conductivity h = |εω/σ| on p and ω/ωp. Calculations
show that the displacement current in the region of
small frequencies (ω/ωp < 1) behaves nonmonotoni-
cally. In the range of high frequencies (ω/ωp > 1) and at
concentrations of the metallic phase below the percola-
tion threshold (p < pc), the displacement current
exceeds the current through the active conductors (h @
1) and the surface of the dielectric properties becomes
smooth. At p > pc, the current through the active con-
ductors exceeds the displacement current (h ! 1).

Now, we discuss one of the possible applications of
the above model concepts of the dielectric properties of
fractal systems.

The optical properties of colloid systems have not
yet been explained in terms of the classical theory (e.g.,
in terms of the Mie theory [40–42]). In the framework
of this theory, the change in the color of sols was
assumed to be due to the appearance of metallic (silver)
particles of various sizes in the solution; the change in
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002



FREQUENCY DEPENDENCES OF DIELECTRIC PROPERTIES 2061
the color was ascribed to the dependence of the reso-
nance (plasma) frequency on the particle radius. How-
ever, the experimental investigations showed that the
spectral dependences of colloid solutions do not corre-
late with the statistical particle-size distribution func-
tion; i.e., the role of the particle size seems to be insig-
nificant [43]. The appearance of a long-wavelength
wing in the spectrum of the colloid solution can be
explained by the aggregation of particles into fractal
structures.

Indeed, a small silver particle has a frequency of
plasma vibrations with a wavelength λ = 2πc/ωp =
140 nm. To explain the presence of a peak at 650 nm,
the classical (Lorentz) theory [40–42] requires the pres-
ence in the colloid solution of silver with a volume con-
centration of p ≅  0.86 (Fig. 6a), whereas the experiment
yields p values that are much smaller [44], which agrees
with our calculations (Fig. 6b). Thus, the shift of the
peak in colloid solutions toward the region of small
concentrations of metal can be explained by the forma-
tion of fractal structures in these solutions.

We indicate some other objects that have fractal
structures. For example, using sputtering regimes that
correspond to the model of diffusional aggregation [5],
thin films consisting of metallic fractal clusters can be
obtained. Fractal structures are also characteristic of
percolation clusters near the percolation threshold, as
well as some binary solutions and polymer solutions.
The dielectric properties of all these objects can be pre-
dicted using the above-considered fractal model.

4. CONCLUSION

Thus, calculations of the dependences of the con-
ductivity and the dielectric constant of chaotic hierar-
chic self-similar structures of metal–insulator compos-
ites were performed on the basis of a fractal model in
the entire range of concentrations of inhomogeneities at
various frequencies of an external field. The metal–
insulator transition was shown to occur not only near
the percolation threshold. It was also shown that the
transition depends on the concentration of the metallic
phase and the frequency of the external field.
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Abstract—The electronic structure and chemical bonding in the Sr2Fe2O5 strontium ferrate are investigated in
the framework of the ab initio linear-muffin-tin-orbital tight-binding representation and extended Hükcel cal-
culations. Models of defect formation (oxygen vacancies and anti-Frenkel defects) in the brownmillerite struc-
ture are considered. A model of ion transfer in strontium ferrate is proposed reasoning from the results of the
calculations. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Oxide compounds with a brownmillerite structure
of the general formula A2B2O5 have attracted consider-
able attention, because they are promising materials for
use in designing high-temperature electrochemical
devices [1, 2]. In particular, strontium ferrate exhibits
high characteristics of ion transfer. Recently [3], we
revealed that the oxygen ion conductivity in Sr2Fe2O5
reaches 0.1 S/cm in the temperature range 850–900°C.

The structure of the Sr2Fe2O5 ferrate can be consid-
ered a derivative of the SrFeO3 perovskite structure in
which 1/6 of the oxygen sites are empty. The orthor-
hombic unit cell of this compound is shown in Fig. 1.
The unit cell consists of alternating layers of Fe(1)O6
octahedra and Fe(2)O4 tetrahedra, whereas oxygen
vacancies are ordered in the [101] direction. As a rule,
ordering of oxygen vacancies leads to suppression of
ion transfer [4]. In this respect, it is of interest to eluci-
date the mechanism of the disordering of the Sr2Fe2O5
structure that is favorable to electrical conduction
through oxygen ions. In the present work, the use of the
ab initio linear-muffin-tin-orbital tight-binding (TB-
LMTO) method [5] in combination with extended
Hükcel calculations [6] made it possible for the first
time to investigate the electron energy spectrum, chem-
ical bonding, and the energy of formation of anti-Fren-
kel defects in strontium ferrate. The mechanism of ion
transfer in Sr2Fe2O5 was proposed from analyzing the
results of quantum-chemical calculations.

2. CALCULATION TECHNIQUE

In order to calculate the electronic structure and the
total energy, we used one of the most time-efficient and
sufficiently exact methods in the electron density func-
tional theory, namely, the linear-muffin-tin-orbital
1063-7834/02/4411- $22.00 © 22063
tight-binding method. The theoretical concepts of this
approach were thoroughly described in [5, 7]. Here, we
dwell on some computational details that affect the
accuracy of the results obtained, especially for the total
energy of the crystal.

The Bloch functions for the studied crystal are con-
structed using a basis set of atomic orbitals, including
the valence 5s and 4d orbitals of strontium atoms; the
4s, 4p, and 3d orbitals of iron atoms; and the 2p orbitals
of oxygen atoms. The Sr 5p orbitals are not included in

Fig. 1. Supercell of strontium ferrate.
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the basis set of the Bloch functions used to construct the
Hamiltonian matrices with the use of the down-folding
method [8], which is based on the Löwdin perturbation
theory [9]. The calculations are performed with a super-
cell of composition Sr8Fe8O20E4, where E are empty
interstitial spheres.

Since the TB-LMTO method is developed and
offers the most exact results for close-packed lattices,
in our calculations, interstices are filled by empty

Table 1.  Atomic parameters used in the extended Hükcel
calculations: the ionization potentials of valence orbitals Hii ,
the exponents ξi , and the weight coefficients Ci of exponents
in the expressions for atomic orbitals of the Slater type

Atom Orbital Hii, eV ξ1(C1)
ξ2(C2)

O 2s 32.30 2.275

2p 14.80 2.275

Fe 4s 9.10 1.90 (1.00)

4p 5.32 1.90 (1.00)

3d 12.60 5.35 (0.5505)

2.00 (0.6260)

Sr 5s 6.62 1.214 (1.00)

5p 3.92 1.214 (1.00)
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Fig. 2. Densities of states N(E) for a perfect crystal of
SrFeO2.5: (a) the total density of states and (b) Fe 3d, (c) O
2p, and (d) Sr 5s and Sr 5p partial densities of states.
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spheres with a basis set of s orbitals (extraspheres [5,
7]); the p and d states of extraspheres are taken into
account only within the down-folding approach.

The calculations are performed using 256 k vectors
in the Brillouin zone (75 k vectors per irreducible part
of the Brillouin zone). The radii of atomic spheres are
determined from the condition of filling the defect-free
crystal volume with these spheres according to the pro-
cedure described in [10]. The accuracy in the determi-
nation of the energies of defect formation depends on
the appropriate choice of the radii of the extraspheres
and real atoms, which interchange sites with one
another to form a defect. We assume that the oxygen
atom occupying an extrasphere site takes on the extras-
phere radius and vice versa; at the same time, the radii
of atoms and extraspheres that are not involved in the
defect formation remain unchanged. This procedure of
choosing the atomic radii was detailed and approved for
alkaline-earth fluorides and zirconium oxides in our
earlier work [11]. The lattice parameters for the
Sr2Fe2O5 crystal are taken from [12].

The characteristics of the chemical bonding in the
ferrate under investigation were analyzed in the frame-
work of semiempirical extended Hükcel calculations
[6, 13]. The standard parameters used in the extended
Hükcel calculations are tabulated in [14] and presented
in Table 1.

3. RESULTS AND DISCUSSION

Figure 2 shows the total and partial densities of
states for Sr2Fe2O5, which were obtained in the frame-
work of ab initio LMTO calculations. The broad band
A in the energy range from –9.87 to –5.27 eV corre-
sponds to a hybrid O 2p–Fe 3d band with an admixture
of Sr 5s and Sr 5p states. The high-energy band B in the
energy range from –5.27 to –0.75 eV consists predom-
inantly of Fe 3d orbitals with an admixture of O 2p
states. The metallic band C, which is composed of Sr 5s
and Sr 5p states, is located at even higher energies. The
Fermi level corresponds to a maximum of the B band.
The absence of the band gap at the Fermi level is a con-
sequence of incomplete inclusion of correlation effects
in the calculation. Note that the correlation effects are
responsible for the splitting of the B band and the tran-
sition of the ferrate to a Mott–Hubbard insulator. This
assumption is confirmed by the fact that a band gap of
~1.4 eV appears in the electronic spectrum in the
course of simulation of the electronic structure of
Ba2In2O5 with a similar crystal lattice. This band gap is
underestimated with respect to the experimental value
of 2.7 eV [15]. It should be noted that traditional ab ini-
tio calculations (TB-LMTO [5], full-potential LMTO
[16], and Hartree–Fock [17] methods) give sufficiently
exact values of the total crystal energy and the energy
of formation of point defects [18, 19]. More correct cal-
culation procedures of the electronic band structure and
the total energy of Mott–Hubbard insulators must take
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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Table 2.  Populations of overlap of crystal orbitals, the total energies Etot of the crystal lattice with one oxygen vacancy per
supercell, the total populations of overlap of crystal orbitals for different-type oxygen atoms, and the energies of formation of
anti-Frenkel defects EAFD in the SrFeO2.5 crystal

Type of oxygen atom

O(1) O(2) O(3)

Populations of overlap
of crystal orbitals

Fe(1)–O 0.274–0.254 0.163 –

Fe(2)–O – 0.422 0.465–0.292

Sr–O 0.050–0.022 0.079–0.043 0.156

Etot , Ry –74011.00176 –74010.8814 –74010.9569

Total populations of overlap of crystal orbitals 0.674 0.767 0.915

EAFD, Ry (eV) 0.225 (3.067) 0.264 (3.597) –
into account nonlocal exchange-correlated interactions
and their dependence on the energy of skeletal states of
the crystals. However, these methods are still under
development (see, for example, [20]).

Apart from analyzing the electronic spectrum of
strontium ferrate, we investigated chemical interactions
in the Sr2Fe2O5 structure in the framework of the
semiempirical Hükcel method. The results of the calcu-
lations of chemical bonding are given in Table 2. The
strongest covalent interactions are observed between
the Fe(2) and O(3) atoms (the bond order is equal to
0.466) in layers formed by the FeO4 tetrahedra. The Fe–
O(1) bonds, which involve oxygen atoms located in the
equatorial plane of the FeO6 octahedra, prove to be
somewhat weaker. Small populations of the overlap of
the crystal orbitals (0.022) correspond to a substantial
contribution of the ionic component and a small contri-
bution of the covalent component of the Sr–O(1) chem-
ical bond. Therefore, the structure of strontium ferrate
is characterized by a rigid framework consisting of
iron–oxygen octahedra and tetrahedra with strong Fe–
O covalent bonds. The strontium atoms are more
weakly bonded to the nearest oxygen environment, and
the Sr–O interactions exhibit a mixed ionic–covalent
nature.

In order to elucidate the mechanism of ion transfer
in the brownmillerite structure, we simulated the
defect-containing phases of the strontium ferrate. All
the calculations of the total energy for crystals with one
oxygen vacancy or one anti-Frenkel defect per compu-
tational supercell were carried out in the framework of
the ab initio TB-LMTO representation. We considered
three possible variants of the arrangement of a particu-
lar oxygen vacancy in the brownmillerite structure,
namely, at the O(1), O(2), and O(3) sites. The configu-
ration with an oxygen vacancy in the Fe(1)O(1)4 equa-
torial plane of the Fe(1)O(2)2O(1)4 octahedra, which
form perovskite-like structural units, turned out to be
the most energetically favorable (Table 2). The forma-
tion of an oxygen vacancy in the O(2) apical position of
these octahedra is less probable. The independent band
calculations within the extended Hükcel approximation
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
confirm the preferential formation of oxygen vacancies
in the equatorial plane of the Fe(1)O(2)2O(1)4 oxygen
octahedron. The total population of the overlap of crys-
tal orbitals for different types of oxygen atoms charac-
terizes the covalent contribution to the chemical bond
and appears to be minimum for the O(1) atom (Table 2).
The results obtained allow us to assume that the ion
migration in ferrate occurs through vacant oxygen sites
in the equatorial plane of the FeO6 octahedra.

The above assumption is confirmed by the calcu-
lated energies of formation of anti-Frenkel defects in
the Sr2Fe2O5 crystal. The lowest energy of formation of
anti-Frenkel defects corresponds to a transition of the
O(1) atom to a tetrahedral interstice (E) (Table 2). The
transition of the O(2) atom to the nearest tetrahedral
vacancy is less energetically favorable. Analysis of the
calculated data demonstrates that the formation of anti-
Frenkel defects proceeds through the direct interstitial
mechanism. As a result, the interstitial oxygen atom
occupies a tetrahedral position and the oxygen vacancy
is located in the equatorial plane of the oxygen octahe-
dron. The lower bonding energy of the equatorial oxy-
gen atoms suggests that the dominant mechanism of ion
migration in the ferrate is the positional exchange of
oxygen ions and oxygen vacancies in the equatorial
plane of FeO6 octahedra forming perovskite-like struc-
tural units of the Sr2Fe2O5 structure.

Moreover, we evaluated the degree of interaction
between oxygen vacancies in the case when their con-
centration increases to two vacancies per computa-
tional supercell of the studied ferrate. The results
obtained indicate a preferential arrangement of vacan-
cies in the form of VO–Fe–VO chains in the equatorial
plane of the perovskite-like structural unit. The forma-
tion of these associates leads to an effective elimination
of vacancies from the ion transfer even at sufficiently
high temperatures. This explains the decrease in the ion
conduction in ferrate at extremely low oxygen pres-
sures in the gas phase [3].
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Abstract—The relaxation kinetics of primary pairs of radiation defects in ionic crystals with a face-centered
lattice is investigated using the Monte Carlo method. The dependence of the relaxation kinetics of an F–H pair
on the parameters of the interaction potential between the components of the pair is studied. The obtained
kinetic dependences are analyzed to determine the factors responsible for the relaxation processes. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The action of ionizing radiation on ionic crystals
results in the creation of electron excitations decaying
into pairs of Frenkel defects [1]. The decay occurs over
time periods of the order of several or tens of picosec-
onds [2, 3]. The primary Frenkel pairs (F and H pairs)
formed in this way remain stationary up to 0.1–10 ns.
Subsequent motion of the mobile component (H center)
of a pair leads, as a result of a series of consecutive ther-
mally activated jumps, either to the annihilation of the
pair or to spatial separation of its components. In this
case, the number of pairs decreases with time and the
movable component is transformed into a stable hole
center. A model of relaxation of primary defects with
time, taking into account the sample temperature, was
proposed in [4, 5]. This model was confirmed experi-
mentally and developed in [6, 7].

This study aims at analyzing the primary processes
of relaxation of defect pairs created during the decay of
electron excitations by using methods of computer sim-
ulation and determination of the dependence of the
kinetics on the form of the interaction potential and on
the initial mutual distribution of pair components.

2. COMPUTATIONAL METHOD

We calculated the motion of a mobile component (H
center) of a pair in the field of the stationary component
(F center) in the face-centered lattice of an alkali halide
metal. We specified the initial position of the H center
at one of the lattice sites nearest to the F center. Using
the Monte Carlo method [8], we then determined the
probabilities of the transition of the H center from the
given state to any other state possible for its arrange-
ment as a result of a series of consecutive jumps as a
function of the interaction potential between the com-
ponents of the defect pair. The H center moves over the
anionic sublattice as a result of thermally activated
1063-7834/02/4411- $22.00 © 22067
jumps. The origin of the coordinate system is taken to
be at the F center, which corresponds to the zeroth state.
Each state corresponds to a coordination shell around
the F center in which the H center can be arranged as it
moves away from the F center. The H center is in the
field of the F center, which is taken into account in the
model by introducing the interaction potential between
the H and F centers and, therefore, by a difference in
the barrier height for the motion of the H center towards
the F center and away from it. The fall of the H center
to the zeroth state means its annihilation with the F cen-
ter and the vanishing of the pair. In the case when the H
center is beyond the twelfth shell of its possible
arrangement around the F center, the H center is
assumed to be transformed into a center that is stable
under the experimental conditions and cannot be anni-
hilated during its subsequent motion. This corresponds
to the actual situation upon irradiation: at temperatures
higher than the delocalization temperature, an H center
is transformed into a stable Vk center after several
jumps over the lattice. We calculated the probability of
survival of the H center (and, accordingly, of the F–H
pair) by a given instant of its migration as a function of
the crystal temperature. Any H center was regarded as
having survived irrespective of its location (inside or
outside the twelve shells around the F center).

We assumed that, in the course of decay of electron
excitations, the initial mutual arrangement of the com-
ponents of pairs is created in the form of a compact
function with a maximum in the first shell around the F
center, which is taken as the starting point for calcula-
tions. 

The effect of the stationary defect on the motion of
the mobile defect was presented by the superposition of
the periodic potential of the crystal lattice and the inter-
action potential of the form E(r) = –aexp(–br). The
periodic variation of the potential during migration of
the H center is associated with the fact that the H center,
002 MAIK “Nauka/Interperiodica”
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when moving from a lattice site to a neighboring site,
must pass through the constriction formed by cations in
a plane perpendicular to the direction of motion of the
H center. The form of the interaction potential is
unknown. However, its representation in exponential
form ensures the possibility of wide variation of its
form, which is determined by the type of interaction
(electrostatic, elastic, etc.).

The transition of an H center to a state more distant
from the F center indicates spatial separation of the pair
components. We calculated the migration of an H cen-
ter in the bulk of a crystal containing 1000 anionic lat-
tice sites.

At present, neither the form of the interaction poten-
tial of the components of a primary pair nor the form of
the function describing their initial mutual distribution
is known. It is known, however, that the components of
a genetically connected primary pair of defects interact
with each other. This leads to the assumption that the
components of a pair created during the decay of an
electron excitation are in the nearest shells of their pos-
sible arrangement. To establish the dependence of the
relaxation kinetics on the starting state, the initial
mutual distribution of the pair components was speci-
fied as follows. We assumed that the H center is in the
first, second, or third shell of its possible arrangement
around the F center. These shells correspond to location
of the H center at sites with coordinates equivalent to
〈110〉 , 〈200〉 , and 〈211〉  relative to the F center. Table 1
gives the probabilities of distribution of the H center

Table 1.  Starting probabilities of arrangement of an H center
in different shells around the F center used in the calculations
(initial distribution function, IDF)

No. First shell Second shell Third shell

1 1 0 0

2 0.5 0.5 0

3 0 1 0

4 0 0 1
PH
over the shells of its possible location around the F cen-
ter. The values 1 and 0.5 in the table indicate the starting
probability of the location of the H center in the corre-
sponding shell. The starting probability of the location
of the H center indicates the initial distribution function
for primary pairs formed as a result of the decay of elec-
tron excitations.

The parameters of the interaction potential were
chosen such that the H center could be in a metastable
state even at a site nearest to the F center. This means
that we presumed the existence of a barrier for a jump
of the H center towards the F center from the site near-
est to the F center. The forms of the potential relief for
the migrating H center in the vicinity of the F center are
presented in Fig. 1. The values of the parameters of the
interaction potential were set in the intervals a = 0.1–
0.25 and b = 0.5–2.0. Calculations were made for the
same sample temperature, 100 K. In this case, an H cen-
ter with an activation energy for its motion equal to
0.04 eV is mobile.

3. RESULTS OF CALCULATION

Typical relaxation kinetics curves calculated for var-
ious initial states of mutual distribution of pair compo-
nents are presented in Fig. 2. All the curves have three
clearly manifested segments on which the probability
of pair survival decreases with time (the first segment
corresponds to the time interval 10–12–10–8 s, the sec-
ond to 10–8–10–7 s, and the third to a time longer than
10–7 s). The first segment corresponds to 1–3 single
jumps of the H center. The probability decrease on this
segment is significant if the H center starts from the
sites closest to the F center. As the distance between the
starting point of the H center and the F center increases,
the role of the first stage in the decrease becomes much
smaller. For example, the results of calculations pre-
sented in Fig. 2 (curves 4) show that in the case when
the H center starts from the third shell, the contribution
of the first stage is insignificant. The contribution of the
first stage to the kinetics of decay depends not only on
the initial mutual arrangement of the pair components
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Fig. 2. Relaxation kinetics curves of F–H pairs for different initial distributions of pair components in the nearest three coordination
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but also on the parameters of the interaction potential
(Fig. 2). As the interaction potential (parameter a)
increases, the fraction of pairs annihilating during the
first jumps of the H center increases sharply. A depen-
dence on the rigidity of the interaction potential
(parameter b) can also be seen.

The decay at the second stage is most interesting. At
this stage, the main decrease in the concentration of
pairs with time from the beginning of motion of the
mobile component is observed for all the ranges of the
parameters of the interaction potential and for all start-
ing mutual arrangements of the pair components. The
length of the second segment corresponds to the time
required for performing from three to several dozens of
jumps of the H center.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
The results of our calculations show that the defect
relaxation on the second segment is described satisfac-
torily in semilogarithmic coordinates by a linear func-
tion with the characteristic relaxation time τ2. Table 2
contains the calculated values of τ2 for the second stage
of Frenkel defect relaxation. At this stage, the charac-
teristic relaxation time slightly decreases with increas-
ing interaction parameter a and exhibits a noticeable
dependence on the interaction parameter b: the relax-
ation time increases with b.

The results presented in Table 2 show that τ2 weakly
depends on the starting arrangement of the H center rel-
ative to the F center and is independent of the starting
state in the case when the interaction potential is
extended (the value of b is small). For any other ver-
02
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Table 2.  Dependence of the characteristic relaxation time for an F–H pair (s) on the parameters of interaction potential for
different starting states (see Table 1)

Potential parameters Starting state

a b 1 2 3 4

0.15 0.5 1.1 × 10–7 1 × 10–7 1 × 10–7 1 × 10–7

0.15 1 1.25 × 10–7 1.43 × 10–7 1.43 × 10–7 1.43 × 10–7

0.15 2 2.5 × 10–7 3.3 × 10–7 3.3 × 10–7 3.3 × 10–7

0.15 1.5 1.67 × 10–7 2.5 × 10–7 2.5 × 10–7 2.5 × 10–7

0.2 1.5 1.43 × 10–7 2 × 10–7 2 × 10–7 2 × 10–7

0.25 1.5 1.43 × 10–7 2 × 10–7 2 × 10–7 1.67 × 10–7
sions of interaction potentials, τ2 is independent of the
starting state for any initial states except the first; the
relaxation time τ2 upon a start from the first state is
shorter than that for starts from all other states (but not
by more than 30%).

The last, third, segment, on which the number of
pairs remains unchanged with time, corresponds to the
case where all of the mobile components of pairs
escape from the rated volume and transform into stable
hole color centers. The results of investigations of the
third relaxation stage are presented in Table 3 in the
form of a dependence of the fraction of preserved pairs
on the parameters of the interaction potential and on the
starting mutual arrangement of the components of the
pairs. It follows from the results of calculations pre-
sented in the table that the survival probability for a pair
depends on the initial mutual arrangement of the pair
components. The shorter the distance between the pair
components in the initial state, the higher the probabil-
ity of their annihilation; in other words, the longer the
distance between the starting H center and the F center,
the larger the fraction of surviving (accumulated, long-
lived) pairs by the beginning of the third stage. As the
interaction potential (parameter a) increases and, espe-
cially, as the rigidity of the interaction potential (param-

Table 3.  Dependence of the probability of survival of an F–H
pair after completion of the relaxation process on the parame-
ters of interaction potential for different starting states (see
Table 1)

Potential
parameters Starting state

a b 1 2 3 4

0.15 0.5 0.03 0.09 0.12 0.17

0.15 1 0.06 0.22 0.28 0.38

0.15 2 0.26 0.45 0.58 0.64

0.15 1.5 0.14 0.35 0.45 0.55

0.2 1.5 0.06 0.3 0.39 0.5

0.25 1.5 0.02 0.28 0.34 0.45
PH
eter b) decreases, the fraction of preserved pairs
decreases.

4. DISCUSSION

In this study, we used computer simulation methods
for analyzing the relaxation kinetics of correlated inter-
acting Frenkel pairs. The calculations were made for
different starting arrangements of correlated pair com-
ponents relative to each other, i.e., for situations with
different extents of correlation of pairs. The degree of
correlation in our calculations varied from extremely
high, when the components of a pair were at nearest
neighbor sites, to that corresponding to the location of
the H center in the third shell around the F center.

Of the two stages of the decay of correlated pairs
due to annihilation during thermally activated motion
of the mobile component of a pair, the second stage is
more interesting. Obviously, this stage can be observed
experimentally as the shortest stage. In fact, it follows
from the results of calculations that the maximum
decrease is observed in the second stage in most ver-
sions of the interaction potential and starting states that
we used. The first stage of the calculated relaxation
kinetics is of too short a duration and is noticeable only
when the first state is predominantly the starting state.

The results of calculations showed that the relax-
ation kinetics depends on the starting state only slightly
(Table 2). This means that from the relaxation kinetics
we can only judge whether or not a pair is correlated;
i.e., kinetic curves provide no information on the
degree of correlation and, in particular, on the type of
starting state.

The experimental results on the decay kinetics of F–
H centers in alkali halide crystals available at present
[5, 7] show that at least two stages of defect relaxation
exist after the application of a short radiation pulse in
the nanosecond and microsecond time ranges. The first
(nanosecond) stage is correctly described by monomo-
lecular kinetics, while subsequent stages are described
by bimolecular kinetics. The ratios of decay rates and
of the decreases in the pair concentration at the two
(monomolecular and bimolecular) stages depend on the
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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temperature of the sample during irradiation. In the
temperature range from liquid-nitrogen to room tem-
perature, the initial concentration of primary defects
induced by the radiation pulse depends on temperature
only slightly. However, the ratio of concentrations of
correlated and uncorrelated pairs changes significantly
in favor of the latter pairs.

The ratio of concentrations of correlated and uncor-
related pairs created by a radiation pulse also depends
on the energy of the exciting pulse. The fraction of
uncorrelated pairs increases with the excitation power.

Thus, in the range of short times following excita-
tion by a nanosecond radiation pulse, the relaxation of
primary defects has several stages. The shortest stage is
associated with annihilation of correlated pairs. Uncor-
related pairs of defects have a longer lifetime and are,
hence, referred to as long-lived. The relation between
the relaxation stages associated with correlated and
uncorrelated pairs is determined by the experimental
conditions.

The results of experimental investigation at the ini-
tial stages of breakdown of F–H pairs formed in alkali
halide crystals as a result of the decay of electron exci-
tations are described in [6]. The experimentally mea-
sured relaxation curves for F centers in the nanosecond
time interval exhibit two clearly manifested stages: a
short stage, in time intervals from tens to hundreds of
nanoseconds, and a long stage, for which no noticeable
time variation is observed in these time intervals [6]. At
the first relaxation stage, at least half of the created
pairs of centers decay at 80 K.

A comparison of the results of theoretical and exper-
imental investigations of the initial stages of the break-
down of F–H pairs leads to the following conclusions.
The second relaxation stage on the theoretical curves
obviously corresponds to the shortest experimentally
observed relaxation stage [6]. The results of calcula-
tions show that only correlated and uncorrelated pairs
can be distinguished in the relaxation kinetics of the
components of F–H pairs during thermally activated
migration of the H centers. The degree of correlation is
manifested too weakly in the kinetics. Consequently,
we can conclude that only one (the shortest) relaxation
stage observed in the experiments is associated with
correlated pairs. Any subsequent stage is not the result
of annihilation of correlated pairs.

The concepts of short- and long-lived pairs are often
encountered in the description and analysis of the
results of investigations. Such pairs are often referred to
as unstable and stable, respectively. The division into
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      200
two groups is carried out arbitrarily. In connection with
this, we can propose the following division of pair com-
ponents into short- and long-lived centers. Short-lived
pairs should be regarded as correlated and long-lived
pairs as uncorrelated, irrespective of their origin.
Uncorrelated pairs can be formed both due to primary
processes of decay of electron excitations and as a
result of separation of the correlated pairs formed.
There can be several long-lived stages. Relaxation can
result from reactions between uncorrelated pairs, as
well as from a combination of reactions involving sec-
ondary affects.

5. CONCLUSIONS
The theoretical analysis carried out in this paper

proved that experimentally measured relaxation kinet-
ics curves for primary pairs created as a result of a radi-
ation pulse can provide information on the presence of
correlated and uncorrelated pairs and on the ratio of
their concentrations. However, the relaxation kinetics
curves give no information on the degree of correlation
and, in particular, on the function of the initial mutual
arrangement of the components of primary pairs.
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Abstract—The mechanism of formation of fragmented (banded, block) dislocation structures (FDSs) in crys-
tals subjected to large plastic deformations are discussed. The theoretical analysis is based on the kinetic equa-
tions for the density of geometrically necessary dislocations (GNDs). The equations include the processes of
multiplication, immobilization, annihilation, and diffusion of GNDs. The formation of an FDS is considered a
synergetic process of self-organization of GNDs obeying the principle of similitude of dislocation structures at
various degrees of plastic deformation. Conditions for the formation of the structures at hand have been deter-
mined, as well as their parameters and the dependence of these parameters on the degree of deformation. The
theoretical results are compared with the available experimental data. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experiments show that after large plastic deforma-
tions (γ > 0.5–10), a fragmented dislocation structure
(FDS) is formed in crystalline materials [1–14]. Such a
structure is also called a banded or block dislocation
structure according to the shape of the fragments that
are formed after large deformation. The formation of
such a structure is determined by the amount of defor-
mation and is independent of the way in which this
deformation has been reached, i.e., irrespective of
whether it is formed in the neck of a tensile sample [2]
as a result of twisting [4], drawing [1], rolling [3], or
multiple extrusion through a knee-shaped die (equal-
channel angular pressing technique [11]).

The formation of an FDS is accompanied by the
appearance of strong crystallographic misorientations
in the crystal, since the boundaries of fragments contain
a large density of like dislocations (of the same sign).
As the degree of deformation increases, the fragment
dimensions decrease from several microns to several
hundreds of nanometers and the misorientation of the
lattice between neighboring fragments changes from
fractions of a degree of arc to several tens of degrees.
Straining to large degrees of plastic deformation is at
present one of the most efficient techniques for the pro-
duction of fine-crystalline (nanostructured) materials.

The formation of an FDS begins at the third stage of
the strain-hardening process and continues at the fourth
and fifth stages. At the second and third stages of strain
hardening, a cellular dislocation structure is known to
be formed in the crystal. Its formation is related to the
formation and accumulation in the crystal of statisti-
cally random dislocations (SRDs) as a result of their
generation at dislocation sources and subsequent multi-
1063-7834/02/4411- $22.00 © 22072
plication. As to FDSs, there are good grounds to
assume that geometrically necessary dislocations
(GNDs) take part in their formation [12–14]. These dis-
locations are formed as a response of the crystal to its
elastic bending (twisting) due to the nonuniformity of
plastic deformation and the related geometrical distor-
tions in the shape of the crystal or its local regions [15].
Thus, the geometrically necessary dislocations differ
from the statistically random dislocations in their ori-
gin.

The concentration of GNDs in fragment boundaries
decreases the energy of a dislocation ensemble as a
result of a decrease in the energy of dislocation interac-
tions [16, 17]. However, this cause alone cannot lead to
the formation of an FDS. Experiments show that GNDs
can be distributed in the crystal randomly. Such a dis-
tribution is observed if dislocations, during their
motion, suffer strong friction from the side of the
Peierls crystal relief or, in the case of alloys, friction
due to a high concentration of impurities or disperse
inclusions in the lattice. In this case, continuous rather
than localized misorientations arise in the crystal [5,
14]. A similar situation takes place when a cellular dis-
location structure is formed: such a structure has not
been observed in strongly doped and dispersion-hard-
ened alloy [6, 18].

Thus, the formation of an FDS has geometrical (dis-
clinational [2]), energetical [16], and kinetic aspects.
The last aspect was considered in [12, 13, 19]. It fol-
lows from these works that the FDSs, like cellular dis-
location structures, obey the principle of similitude of
dislocation structures. According to this principle, the
dislocation structure changes in a self-similar way with
increasing plastic deformation; i.e., it retains the rela-
tionship between its parameters during its evolution.
002 MAIK “Nauka/Interperiodica”



 

PHYSICS OF THE SOLID STATE

 

      

 

Vol. 44

 

      

 

No. 11

 

      

 

2002

 

KINETIC MECHANISM OF THE FORMATION 2073

 

The self-similar character of the evolution of FDSs
indicates that their formation is due to the process of
self-organization of dislocations.

This paper is aimed at a theoretical analysis of the
kinetic mechanism of formation of FDSs on the basis of
equations that describe the evolution of the density of
GNDs at large plastic deformations. In Section 2, the
corresponding kinetic equations are formulated. Sec-
tion 3 is devoted to an analysis and solution of these
equations. In Section 4, a comparison of the theoretical
results with available experimental data on the evolu-
tion of parameters of fragmented structures with
increasing deformation is performed.

2. EQUATION OF THE EVOLUTION 
OF THE DENSITY OF GEOMETRICALLY 

NECESSARY DISLOCATIONS

What is the mechanism of generation of GNDs and
the size (scale) of the regions of bend–twist that lead to
the formation of these dislocations upon large plastic
deformations in the crystal? Since the formation of
fragmented structures is independent of the loading
conditions, it is obvious that it is due to internal causes.
According to Ashby [15], the density of GNDs is deter-
mined by the relationship 
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of plastic deformation and 
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 is the size of the region of
bending (it determines the radius of the lattice curva-
ture 

 

R

 

 = 

 

l

 

/

 

γ

 

). The radius of curvature 

 

R

 

 is linked with the
dislocation density as 
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, wherefrom we imme-
diately obtain the Ashby relation.

A cellular dislocation structure is related to a non-
uniformity of plastic deformation of the crystal on a
scale of 
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 (the size of a dislocation cell) due to a non-
uniform distribution of dislocations, i.e., their high den-
sity in the cell boundaries and a small density in the
bulk of the cells. Therefore, at the second and third
stages of the strain-hardening curve, the size of the
region of bending is on the order of several 
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, i.e., is on
the order of the length of slip lines in the cellular dislo-
cation structure. At the fourth and fifth stages of the
strain-hardening curve, the size of the slip lines can
apparently be much greater than the size of fragments
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, since the GNDs are pileups of like dislocations.

In their kinetic properties, the geometrically neces-
sary dislocations do not differ from the statistically ran-
dom dislocations. Therefore, the evolution of their
ensemble should be described by a kinetic equation of
the same type as in the case of SRDs; i.e., it should
include the processes of multiplication, immobiliza-
tion, annihilation, and diffusion of dislocations [20,
21]. As was said above, the main feature of GNDs is
that these are dislocations that are not compensated in
the Burgers-vector sign. Therefore, they form their own
mesostructure in the crystal, which differs from the
mesostructure of statistically random dislocations com-
pensated in the Burgers-vector sign. Experiments show
that the fragment boundaries lie in the slip planes of

dislocations [7, 22], as in the case of cell boundaries in
cellular dislocation structures [23]. This means that the
walls of the fragments are formed as a result of disloca-
tion slip and contain dislocations of various slip sys-
tems.

According to the Ashby relation, the rate of genera-
tion of GNDs is  = (1/

 

bl

 

) , where  = 

 

b

 

ρ

 

u

 

 is the rate
of plastic deformation and 

 

u

 

 is the dislocation velocity.
With the above in mind, we can write equations of evo-
lution of the densities of GNDs of different signs (

 

ρ

 

+

 

and 

 

ρ

 

–

 

) that are analogous in their structure to the equa-
tion of evolution of the density of SRDs [20, 21]:

(1a)

where 

 

J

 

±

 

 are the fluxes of unlike dislocations and 

 

t

 

 is the
time. The first term on the right-hand side describes the
rate of generation of dislocations caused by the nonuni-
formities of plastic deformation with characteristic
dimensions of order 

 

l

 

; the second term describes the
immobilization of dislocations by obstacles; the third
term is responsible for the multiplication of disloca-
tions on the dislocation forest; and the fourth term
allows for dislocation annihilation. The coefficients

, 

 

δ

 

f

 

 and 

 

h

 

a

 

 determine the intensity of the corres-
ponding processes. When writing Eq. (1a), we assumed
that there occurs multiple slip in the crystal and that the
dislocation densities in intersecting slip planes differ
only insignificantly.

Assuming that, in the process of deformation at the
fourth and fifth strain-hardening stages, the relationship
between the unlike dislocations remains constant (

 

ρ

 

–

 

 =

 

βρ

 

+

 

, where 

 

β

 

 < 1), we obtain, instead of Eq. (1a), the
equation of evolution of the density of dislocations of
one sign (

 

ρ

 

+

 

)

(1b)

where 
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4

 

 = (1 + )

 

δ

 

f

 

/2 and 

 

δ

 

5

 

 = 

 

β

 

h

 

a

 

. In what follows,
we omit the plus sign at 

 

ρ

 

 and 

 

J

 

 for the time being.
According to [21], the appearance of spatially non-

uniform drift- and diffusion-related dislocation fluxes 

 

J

 

in the crystal can be caused by the nonuniform multipli-
cation of dislocations by double cross slip of screw dis-
locations:
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 are the diffusion coefficients for dislocations
of the first and second orders, respectively; 
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are numerical parameters; M = –∂lnu/∂lnρ > 1 is the
coefficient of dislocation-related strain hardening; λs is
the free path of screw dislocations between the events
of double cross slip; and hc is the characteristic distance
for the escape of a dislocation segment into a parallel
slip plane upon double cross slip of screw dislocations.
Since M = Vτµ/2kT @ 1, the diffusion fluxes (2) change
their sign due to local strain hardening of the crystal in
the regions of an enhanced dislocation density. (Here,
V = b2ρ–1/2 is the activation volume upon multiple slip;
τµ = αµbρ1/2, the dislocation-induced strain-hardening
of the crystal; α, the coefficient of dislocation interac-
tion; µ, the shear modulus; k, the Boltzmann constant;
and T, the temperature.)

Substituting Eq. (2) into Eq. (1b), we can investigate
the spatial stability of the dislocation distribution deter-
mined using this equation. Let us denote, for brevity,
the right-hand side of Eq. (1b) by uΦ(ρ). Equation
Φ(ρ) = 0 has three roots, namely,

(3)

where βi = l/λi > 1 is the coefficient of immobilization
of dislocations. Near the critical values ρ1, ρ2, and ρ3,
the stability of the dislocation density toward fluctua-
tions of the form δ(x, t) ~ exp(ωt + iqx) is determined
by the equation ω(q) = ωi(q) + iω2(q), where

(4)

The condition ∂ω1/∂q = 0 yields critical values of the
wave vectors q1, 2, 3 and increments ω1(q1, 2, 3):

(5)

At 0 < η ! 1, it follows from Eq. (3) that ρ1 ≈ (δ4/δ5)2

and ρ2 ≈ [(βi – 1)/δ4l]2. An analysis shows that at the
critical points ρ2 and ρ3 under the condition (M –
1)l/(βi – 1)λs > 1, the increments ω1(q2, 3) > 0 are posi-
tive and, consequently, the dislocation density is unsta-

ble toward fluctuations of size λc = 2π hc. At the crit-
ical point ρ1 > ρ2, the dislocation density is stable to

such fluctuations if (M – 1)δ5 < . In addition,
since ω2(q1, 2) ≠ 0, the critical fluctuations are convec-
tively unstable.

ρ1 2,
1/2 δ4

2δ5
-------- 
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--------------+ 
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2
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PH
3. FRAGMENTED DISLOCATION 
STRUCTURES

The above linear analysis shows that the distribution
of GNDs in the crystal is unstable to spatial fluctuations
of the dislocation density near the critical value of the
density ρ2. What is the subsequent evolution of the fluc-
tuations of dislocation density and of the ensemble of
GNDs on the whole? To answer this question, we
should solve nonlinear equation (1b), in which the dis-
location flux J in the general case depends on the inte-
gral of the dislocation density [21]. Since this is an
unsolvable problem, we consider, as the first approxi-
mation, the solution to Eq. (1b) using Eq. (2) for the
dislocation flux and restricting ourselves to the first dif-
fusion term in it.

As a result, we obtain the equation

(6)

where λD = (M – 1) /λs. Taking into account the con-
vective instability of density fluctuations, we seek the
solution to Eq. (6) in the form ρ(z, t), where z = x – Ut
and U is a constant velocity. Taking into account that
∂ρ/∂t = ∂'ρ/∂'t – U∂ρ/∂z, we have, instead of Eq. (6), the
equation

(7)

Assuming then that U = u, we transform Eq. (7) by tak-
ing into account that ∂'ρ/∂'t = (∂ρ/∂γ) , where  = bρu.
As a result, we obtain for the density of GNDs ρ(z, γ)
an equation of the form

(8)

where k3 = 1/bl, k4 = δ4/b, and k5 = δ5/b. Equation (8)
describes the spatial evolution of the dislocation density
of GNDs depending on the degree of deformation γ.

To find this density, we write Eq. (8) in the dimen-
sionless form

(9a)

∂ρ
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by introducing the following designations:

(9b)

We seek the solution to Eq. (9a) in a self-similar form
Ψ(Z1, Γ) = ν2(Γ)ψ(Z1), where Z1 = Zν1/2(Γ). As a result,
we obtain

(10)

from which we see that the variables ν(Γ) and ψ(Z1) are
not completely separated. To separate the variables, we
should assume that Ψ0 = ψ0ν. This means that in
Eq. (9b) we have η ! 1 and that l = l5/ν, βi = l/λi =

const, and ψ0 = (βi – 1)δ5/ , where l5 is the length of
slip lines at the fifth stage of strain-hardening. The
coefficient βi > 1 has in this case the meaning of the
coefficient of transparency of the fragment boundaries
for GNDs. Then, equating the left-hand and right-hand
sides of Eq. (10) to unity, we obtain an equation for ν,
the solution to which has the form

(11)

For the function ψ(Z1), we have the equation

(12)

Since ψ0ν ! 1, this equation describes a stationary dis-
tribution of GNDs in the crystal.

Integrating Eq. (12) under the conditions

(13)

leads to a tabulated integral and a solution to Eq. (9a),
which, after simple transformations, may be written in
the following compact form (now, we restore the plus
sign at ρ):

(14a)
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where z0 is the integration constant and

(14b)

It follows from relations (13) that the stationary (ν = 1)
fragmented structure is formed if 0 < ψ0 < 2/3. Equa-
tion (14a) describes a spatially periodic dislocation
structure with fragment dimensions Λ and with a dis-
location density in the fragment boundaries and in the
bulk of fragments equal (at ψ0 ! 1) to

(14c)

respectively.

Taking into account (see Section 2) that the density
of dislocations with the opposite sign of the Burgers
vector is ρ–(z, γ) = βρ+(z + z–, γ), we have the following
expression for the distribution of the total density of
GNDs:

(15)

where z– = (1/2)Λ. Figures 1a and 1b show the distribu-
tion of the density of GNDs in the crystal according to
Eq. (15) under deformations Γ = k5γ  ∞ and ψ0 = 4 ×
10–2 and f0 = 25 in the cases where β = 0 and β ≠ 0
(β = 0.5).

Since the density of GNDs and the angle of lattice
rotation (misorientation between fragments) θ are
related as ρ = b–1∂θ/∂z, the distribution of the rotation
angles θ(z, γ) corresponding to the density of GND
given by (15) is described by the integral

(16a)

Figures 1c and 1d display the distribution of rotation
angles corresponding to the distribution of the density
of GNDs given in Figs. 1a and 1b. It is seen that the
fragment boundaries, in which most GNDs are concen-
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Fig. 1. Distributions of (a, b) the density of geometrically necessary dislocations (GNDs) ρ and (c, d) misorientation angles θ in the
fragmented dislocation structure according to Eqs. (15) and (16a) at γ  ∞ with (a, c) β = 0 and (b, d) β = 0.5.
trated, lead to misorientations of the fragment lattices
by the angles

(16b)

where ν(γ) is determined by Eq. (11). Experiments
show that in the fragmented structures, fragments with

θ+ γ( )
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Fig. 2. Correlation between the width of fragment bound-
aries ∆Λ and fragment size Λ in (1, 2) fragmented and (3)
cellular dislocation structures in Ni [2, 12].
PH
misorientations of both the same sign (Fig. 1c) and with
alternating signs (Fig. 1d) can occur [7].

4. COMPARISON WITH EXPERIMENT

It was found while treating data for Ni [12] that a
correlation exists between the width (thickness) of frag-
ment boundaries ∆Λ(γ) and the dimensions of the frag-
ments Λ(γ). This correlation is illustrated in Fig. 2
(straight lines 1, 2). Line 1 refers to the narrowest
boundaries (∆Λ(γ)/Λ(γ) = 0.04); line 2, to the widest
boundaries (∆Λ/Λ = 0.13). Assuming that in Eq. (14a)
the boundary width ∆Λ1/2 corresponds to a dislocation
density ρ+(z, γ) = (1/2) (γ), we find that

(17)

At the average width of the boundaries in Fig. 2 equal
to ∆Λ/Λ = 0.085, we obtain, according to Eq. (17), that
ψ0 = 4 × 10–2. Line 3 in Fig. 2 illustrates the correlation
between the width of cell boundaries and cell dimen-
sions in the cellular dislocation structure of nickel (pro-
cessing of the data from [2]). It is seen that, as com-
pared to fragment boundaries, the cell boundaries are
much wider (∆Λ/Λ = 0.32).

The ratio ∆Λ/Λ is independent of the degree of
deformation; this means that the evolution of the FDSs
at the fourth and fifth stages of strain hardening occurs

ρmax
+

∆Λ1/2 γ( )
Λ γ( )

---------------------
2
π
--- 2 1–

f 0 1–
---------------- 

 
1/2

0.43ψ0
1/2.≈arcsin=
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in a self-similar manner, with the retaining of a constant
relation between the FDS parameters, as in the case of
a cellular dislocation structure at the second and third
stages of strain hardening [21]. To illustrate this, Fig. 3
displays the results of treatment of the data of [12] on
the misorientation angles of the fragments (line 1) and
the cells (line 3) in the fragmented and cellular disloca-
tion structures of nickel, respectively. It is seen that the
product of the average angles of misorientation by the
average dimension of the fragments or the cells

/b remains constant in the process of the for-
mation and evolution of the corresponding structures,
which indicates a correlated, synergistic character of
dislocation processes occurring in the crystal at all
stages of plastic deformation. The fact that this correla-
tion has a regular rather than accidental character is also
confirmed by the results of treatment of the data on the
evolution of the parameters of the fragmented disloca-
tion structure in α-Fe [1] depending on the amount of
deformation (line 2 in Fig. 3).

According to the above-developed theory
(Eqs. (14b), (16a)), the product θ(γ)Λ(γ)/b =
(θ∞Λ∞/b)ν(γ) does not remain constant in the process of
evolution of a fragmented dislocation structure. The
cause of this is likely that the initial kinetic equation for
the density of GNDs (Eq. (1b)) has an excessively
deterministic character and does not take into account
the statistically random mechanism of the fragment for-
mation, which, as was established in [12, 13], leads to
a distribution of fragments in size and misorientation
angle of the type

(18)

For the product /b to remain constant, it is
necessary that the average size and the misorientation
angle of fragments change as  = /ν(γ) and

 = ν(γ).

The experiment confirms such dependences.
Straight line 1 in Fig. 4 demonstrates a dependence

 = [1 – exp(–(1/2)mk5ε)]–1 for nickel [12] in

the theoretical coordinates  – ε,

where ε = γ/m, m is the Taylor factor, and  = 0.1 µm.
For comparison, Fig. 4 also demonstrates an analogous
dependence for the average size of dislocation cells in
nickel [2] (line 2, Λ∞ = 0.21 µm). At m = 3, we find,
from the slope of line 1, the effective coefficient of
annihilation of dislocations at the fifth stage of strain-
hardening k5 = 0.2; the slope of line 2 yields the coeffi-
cient of dislocation annihilation at the third stage ka =
ha/b = 2.5. Thus, the ratio between the densities of dis-
locations of different signs in nickel is β = k5/ka = 0.08.
This value is close to the value found in [19] for copper
(β = 0.1, according to [24]).

θ γ( )Λ γ( )

P Λ( ) Λ/Λ γ( )( )2
3Λ/Λ γ( )–[ ] .exp∼

θ γ( )Λ γ( )

Λ γ( ) Λ∞

θ γ( ) θ∞

Λ ε( ) Λ∞

1 Λ∞/Λ ε( )–[ ]log

Λ∞
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It follows from the above experimental and theoret-
ical results that, as in the case of cellular dislocation
structures [25], the average density of dislocations ρ(γ)
and the flow stress τ(γ) at the fourth and fifth stages of
crystal strengthening may be described by the relations

(19a)

(19b)

where fG = ∆Λ/Λ ≈ 0.43  is the volume fraction

occupied by fragment boundaries, τ5 = α∗ ,

and α∗  = α(1 + β)1/2. The density of dislocations in the

ρ γ( ) 1 β+( ) f Gρmax
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Fig. 3. The independence of the product of the average mis-

orientation angle  and the average fragment size  from
the amount of deformation ε in (1, 2) fragmented and (3)
misoriented cellular dislocation structures; (1, 3) Ni [12]
and (2) α-Fe [1].
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boundaries  is determined by Eq. (15). An anal-
ysis of the curves of strain hardening in copper at the
fourth and fifth stages confirms the above relations
[19].

Thus, in accordance with the principle of similitude
of dislocation structures, we have the following rela-
tionships between the parameters of a fragmented dis-
location structure:

(20a)

(20b)

(20c)

Here, K1, K2, and K3 are coefficients that are indepen-
dent of deformation but depend on the relative volume
of fragment boundaries in the volume of the crystal fG

and, consequently, on the magnitude of kinetic coeffi-
cients that determine the intensity of the processes of
multiplication, immobilization, and diffusion of dislo-
cations in Eqs. (1b) and (6).

Assuming that the average dislocation density is ρ =

1/ , where h =  = ρ–1/2 is the separation
between dislocations in fragment boundaries, we find
that

(21)

It follows from Eqs. (16b), (17), and (19) that at f0 ≈
 @ 1, the average angle of misorientation between

the fragments is  ≈ b  and, consequently, K3 = K2 =

. According to Eq. (20c) and to the data given in
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Fig. 5. Variation of the number of fragments N in the trans-
verse section of a nickel sample with the amount of defor-
mation ε [12]. The curve corresponds to a calculation
according to Eq. (23).
PH
Fig. 3 (line 1), we have for nickel K2K3 =  = 183,
K2 = K3 = 13.5, and fG = 5.4 × 10–3. Assuming that α∗  =
0.5, we obtain the following estimates for the other
scale coefficients: K1 ≈ 7 and K4 = 3.7 × 10–2. Note for
comparison that in the case of a misoriented cellular
dislocation structure in nickel (line 3 in Fig. 3), we have

K2K3 =  = 64 and K2 = K3 = 8.

In a similar way, in the case of α-Fe (line 2 in Fig. 3),

we find that K2K3 =  = 70 and K2 = K3 = 8.4. It fol-
lows from the relation σ = A/Λ between the flow stress
σ and the size of fragments Λ in iron (see [26]) that at
m = 3 and A = 120 MPa µm, the coefficient K1 in (20a)
is equal to 2. The estimation of this coefficient accord-
ing to Eq. (21) yields a twice as large value at α∗  = 0.5.
It was also found in [1] that in α-Fe at mean misorien-
tation angles and fragment sizes, a relation  = Bε2

is held, where B = 50 mm–1. It follows from Eqs. (20a)
and (20b) that

(22)

Therefore, according to Eq. (22), we have  ~ ε2 at
the fourth stage of the strain-hardening curve (at ε !
2/mk5), which is in agreement with the results of [1].

The kinetic mechanism of formation of fragmented
dislocation structures permits us to clarify the paradox
related to the evolution of the sizes and shapes of frag-
ments at large plastic deformations, namely, the viola-
tion of the Taylor–Polanyi (TP) law in a fragmented
dislocation structure [26]. According to this law, upon
the deformation of a polycrystalline aggregate, the
grain sizes d with increasing plastic deformation ε
should increase in the direction of the dislocation slip
and decrease in the transverse direction: d = d0exp(–ε),
where d0 is the initial grain size. For example, at d0 =
100 µm and ε = 10, we have d ≈ 10–4d0 = 10–2 µm. How-
ever, experiments show that in a strongly misoriented
dislocation structure that arises instead of the initial
polycrystalline structure, the fragment size, after defor-
mations to ε > 1, changes only a little and lies in the
range of 0.1–0.5 µm irrespective of the initial grain
size, even upon the deformation of single-crystal sam-
ples.

Upon drawing or rolling, the transverse dimensions
of the samples subjected to deformation decrease by a
factor of a few tens or even hundreds. In this case,
because of the violation of the Taylor–Polanyi law, a
second paradox arises; namely, at deformations ε > 1,
the number of dislocation fragments in the transverse
section of the sample begins decreasing with increasing
degree of plastic deformation. Figure 5 illustrates this
according to the data of [12] for nickel. The experimen-
tal points show the change in the number of fragments

f G
1–

f S
1–

f S
1–

θ/Λ

θ/Λ bρ θ∞/Λ∞( ) 1
1
2
---mk5ε– 

 exp–
2

.= =

θ/Λ
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N(ε) = H(ε)/  in the transverse section of a planar
sample with initial thickness H0. Since the sample
thickness changes with increasing degree of deforma-
tion as H(ε) = H0exp(–ε), we have, with allowance for

the dependence of  on ε (Eq. (20a)),

(23)

where N0 = H0/ . The curve in Fig. 5 demonstrates
this dependence for N0 = 6.6 × 104 and mk5 = 1.06. It is
seen that at deformations ε < 0.8, the number of frag-
ments in the section increases because of the decrease
in their dimensions, whereas at large deformations, this
number decreases because of the thinning of the sample
at an approximately constant size of the fragments .

A question that arises is where do the fragments dis-
appear to from the section. According to [12], their dis-
appearance is related to the coalescence of low-angle
boundaries of fragments with the formation of high-
angle boundaries, as well as to the annihilation of
boundaries of opposite signs. Although such processes
can take place if the fragment sizes and misorientations
obey a distribution of type (18), upon deformation, the
number of “medium” fragments in the section of the
deformed sample decreases according to Fig. 5 and the
law of similitude of fragmented structures (Fig. 3).
Therefore, the only way in which the number of frag-
ments can decrease in the section is through the escape
of fragment boundaries to outside the sample, i.e., their
annihilation with the surface, as in the case of indi-
vidual dislocations emerging onto the surface of the
sample.

This means that the fragment boundaries are mobile,
as follows from the solution (14a) to Eqs. (1) and (6),
rather than static, as may be supposed based on elec-
tron-microscopic investigations of samples unloaded
after deformation. Since the formation of fragments is
a dynamic process of self-organization of dislocations
caused by internal factors, the emergence of fragment
boundaries onto the surface of the crystal does not dis-
turb this dynamic process until the fragment dimen-
sions become comparable with the sample thickness.
The dynamic, synergetic character of the process of for-
mation of FDSs explains why the Taylor–Polanyi law is
violated for such structures.

In conclusion, we note that the analysis of experi-
mental data on the basis of equations of dislocation
kinetics makes it possible to consider the processes of
deformation strengthening [19, 21] and the formation
of dislocation structures [21] at all five stages of the
curves of deformation strengthening of crystals from
common positions.

Λ ε( )

Λ

N ε( ) N0 1
1
2
---mk5ε– 

 exp– ε–( ),exp=

Λ∞

Λ∞
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Abstract—The known dynamic criteria for yield of metals are generalized to the case of any stressed–strained
state and an arbitrary loading duration. The criteria for uniaxial tension and simple shear are a special case. The
dependences of the yield point on the strain rate are calculated using the proposed criterion and are compared
with the experimental data. © 2002 MAIK “Nauka/Interperiodica”.
For slow uniaxial tension or compression, it is gen-
erally assumed that the material transforms into a plas-
tic state under a critical load (yield point). In this case,
the yield criterion can be written in the form

(1)

where σY is the yield point for a slow uniaxial tension.
The classical generalizations of criterion (1) to the

case of an arbitrary stressed state are the Mises yield

σ t( ) σY ,≤
1063-7834/02/4411- $22.00 © 22080
criterion and Tresca yield criterion. The latter criterion
turns out to be more adequate for the majority of mate-
rials and satisfies the condition

(2)

where

Tk t( )
σY

3
-------,≤
Tk
1

6
-------= σx σy–( )2 σy σz–( )2 σz σx–( )2 6 σxy

2 σyz
2 σzx

2+ +( )+ + +

=  
1

6
------- σ1 σ2–( )2 σ2 σ1–( )2 σ3 σ1–( )2+ +
is the intensity of shear stresses (σ1, σ2, and σ3 are the
principal stresses). This criterion makes it possible,
first, to analyze the complex stressed state and, second,
to compare the results of testing with the use of differ-
ent schemes (for example, testing for bending and ten-
sion). For a stressed state, criterion (2) transforms into
criterion (1). For a simple shear, criterion (2) trans-
forms into the condition

(3)

where τ is the shear stress and τY =  is the shear
yield point.

It is well known that, under the conditions of instan-
taneous loads, criteria (1) and (2) cease to describe ade-
quately the behavior of the material. Traditional
attempts to introduce corrections to these criteria by
substituting a strain rate function for the statistical yield
point have a number of material disadvantages. First,
the invariance is lost; i.e., in this case, we can deal only
with a certain type of testing (for example, testing

τ t( ) τY ,≤

σY / 3
under loading at a constant rate). This hampers compar-
ison with the results obtained using other load schemes.
Second, in many cases, the strain rate cannot be consid-
ered to be constant even approximately. This is particu-
larly true in regard to pulsed (impact) load and tests for
yield delay under a permanent load applied instantly.
Finally, the construction of the experimental diagram
σY  presents considerable technical difficulties,
especially if account is taken of the strong effects of
temperature, structural features of the material (for
example, grain size), etc.

The problem of constructing a dynamic yield crite-
rion is associated with the experimental determination
of a certain invariant characteristic of the process that
must be independent of the type of action. Suvorova [1]
analyzed the results of numerous experimental investi-
gations and proved that, for high-rate loading, the
dependence of the yield stress (σ∗ ) on the time of tran-

sition to a plastic state (t∗ ) is well approximated by a

ε̇( )
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straight line in logarithmic coordinates, i.e., by the rela-
tionship

We considered variants of the generalization of this
relationship to the case of an arbitrary law of variation
in the stress with time. Analysis demonstrates that the
best qualitative agreement with the experimental data
on instantaneous loads is achieved with the criterion
proposed by Campbell [2]:

(4)

Here, σ is the current stress, σ0 is the yield point at
absolute zero temperature, and α is the dimensionless
parameter. The time t* of transition to the plastic state
corresponds to the shortest time t at which relation-
ship (4) transforms into an equality. The advantage of
this criterion is its applicability to arbitrary variations in
the stress with time. The disadvantages of this criterion
are its applicability only to uniaxial tension or compres-
sion and only to very short-term loading. In actual fact,
criterion (4) is contradictory to criterion (1) and, start-
ing with a certain loading duration, leads to consider-
ably underestimated threshold values of the yield stress
as compared to the experimental data. The change-over
to the quasi-static case becomes impossible in terms of
the limiting condition (4). As a consequence, the posi-
tion of the dynamic branch in the time dependence of
the yield remains uncertain. For uniaxial tension, these
disadvantages can be eliminated under the condition
proposed in [3–5], that is,

(5)

Here, tinc is the incubation time, which characterizes the
rate of structural transformation in the material. Since

α σ*log tlog *+ const.=

σ s( )
σ0

----------- 
  α

sd

0

t

∫ C C const=( ).≤

σ s( )
σY
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Fig. 1. Dependence of the yield point on the logarithm of
the tension rate. The curve represents the results of our cal-
culations, and the points are the experimental data taken
from [7].

(Campbell and Ferguson [7])
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the transition to a plastic state is associated with the
development of the dislocation structure, it is reason-
able to assume that this quantity is related to the time
characteristics of the dislocation motion; i.e., tinc is
inversely proportional to the dislocation velocity v. The
dislocation velocity v  can be represented using the
expression proposed by Gilman [6]; that is,

Here, ∆G is the activation free energy, k is the Boltz-
mann constant, and T is the absolute temperature. Con-
sequently, the relationship for the incubation time can
be written in the following form:

(6)

Criterion (5) agrees well with the experimental data
over a wide range of strain rates and temperatures [4].
In order to generalize criterion (5) to the case of any
complex stressed–strained state, we can represent it in
the form

(7)

Now, we consider two special cases. Let t0 be the
characteristic time of loading. It is easy to verify that,
for uniaxial load, criterion (7) coincides with condi-
tion (5). For a slowly varying load, the limiting transi-
tion tinc/t0  0 satisfies the static criterion (1). Figure 1
depicts the calculated dependence of the yield point on
the tension rate (α = 17, tinc = 0.1 s, and σY = 215 MPa)
upon uniaxial loading at a constant rate in comparison
with the experimental data taken from [7].

For simple shear, we have σ1 = τ, σ2 = 0, and σ3 =
−τ; consequently, we obtain Tk(t) = τ(t). As a result, ine-

v v 0 –
∆G
kT
-------- 

  .exp=

tinc γ ∆G
kT
-------- 

  .exp=
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Fig. 2. Dependence of the yield point on the logarithm of
the shear rate. The curve represents the results of our calcu-
lations, and the points are the experimental data taken from
[7].
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quality (7) takes the form

.

The change-over to the static case leads to criterion (3).
Figure 2 presents the calculated dependence of the
yield point on the shear rate (α = 11, tinc = 5 × 10–4 s,
and τY = 110 MPa) and the experimental data taken
from [7]. As can be seen from Figs. 1 and 2, the pro-
posed model is in good agreement with the experiment.
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Abstract—It was established using the EPR method that a magnetic field (B = 0.6 T) does not affect the process
of the appearance of free radicals that are formed as a result of the breaking of covalent chemical bonds in mac-
romolecules of mechanically loaded fibers of polycaproamide. On this basis, as well as on the basis of some
other data, doubts were cast on the possibility of using the assumption (frequently discussed in the literature)
on the influence of a magnetic field on the rate of transformation of defect complexes due to singlet–triplet tran-
sitions upon the fluctuational lengthening of covalent bonds in such complexes for explaining some manifesta-
tions of the magnetoplastic effect in ionic crystals. © 2002 MAIK “Nauka/Interperiodica”.
Al’shits et al. [1, 2] revealed an increase in the
mobility of individual dislocations under the effect of a
relatively weak dc magnetic field (B < 1 T) in alkali-
halide crystals (AHCs). Later, it turned out that the
magnetic field also affects the macroplastic properties
of these crystals. A decrease in the yield stress in a mag-
netic field was observed [3, 4], as well as an increase in
the rate of straining after switching-on a field [5–7] and
a decrease in the microhardness of AHCs in a magnetic
field [8].

The change in the plastic properties of crystals in a
magnetic field was called the magnetoplastic effect
(MPE). In recent years, several dozen works were
devoted to the MPE. The main results of these investi-
gations were generalized in a comprehensive review [9]
containing a complete list of papers related to studying
the MPE. Based on the data obtained in those works, a
conclusion was derived on the occurrence in ionic crys-
tals of magnetosensitive reactions in the subsystem of
structural defects, namely, of reactions between para-
magnetic centers (PMCs) at dislocations and point
defects. Thus, a hypothesis was suggested on the elec-
tron nature of the MPE.

According to [9–11], a magnetic field acts not only
on the process of interaction of dislocations with obsta-
cles but also on the structure of the dislocations them-
selves, as well as on the structure of point defects and
their complexes. A conclusion was made on the impor-
tant role of short-range exchange forces (formation and
opening of covalent chemical bonds between PMCs) in
the formation of plastic properties of crystals.

Because of the lack of data on the structure of
PMCs, the discussion of the mechanism of the effect of
a magnetic field on the dislocation plasticity of crystals
has frequently been performed in a general form, with-
out consideration of reactions with the participation of
1063-7834/02/4411- $22.00 © 22083
concrete centers, proceeding from only the general con-
cepts of spin-dependent free-radical reactions. How-
ever, works have appeared recently [11–13] in which
concrete transformations in the systems of point defects
were considered. To be more precise, a scheme of mag-
netosensitive reactions in complexes of point defects
containing several impurity ions was suggested. In par-
ticular, the effect of a magnetic field on the transforma-
tions in trimers of impurity–vacancy dipoles was stud-
ied. The heart of the scheme is as follows. Various types
of trimers differ from one another in binding energy
and the spacing between impurity ions (bond lengths).
Changes in the structure of impurity complexes may
affect the plasticity of crystals. The magnetic field may
affect the spin-dependent stages of the transition of the
complexes into more stable configurations with
changes in the separation between impurity ions. It is
assumed that a magnetic field may accelerate the tran-
sition of a complex of defects from the configuration in
which the spacing between the impurity ions is mini-
mum and, consequently, the contribution of exchange
forces to the interaction is large into a configuration in
which the separation between impurities is enhanced as
compared to the initial one. Thus, it is assumed that in
the initial configuration, there exists a covalent bond
between some impurity ions in the paramagnetic state,
i.e., possessing unpaired electrons.

A transformation of a defect complex, as was noted
in [12, 13], is a thermoactivational process. It may be
supposed that it also can occur in a field of mechanical
forces [11]. At sufficiently large thermofluctuational
increments in the lengths of the covalent interatomic
(“interion”) bonds in a magnetic field, singlet–triplet
(S–T) transitions occur, which are accompanied by an
increase in the interion spacings. The complexes loos-
ened due to the presence of broken covalent bonds then
002 MAIK “Nauka/Interperiodica”
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suffer a sufficiently fast rearrangement due to a facili-
tated motion of dipoles.

It was of interest to experimentally test the validity
of the basic assumption on the acceleration of the ther-
mofluctuational breaking of stressed covalent chemical
bonds under the effect of a magnetic field. To detect the
events of the breaking of covalent bonds in loaded
materials, the EPR method has long been successfully
applied. Suitable objects for studying the processes of
breaking of interatomic chemical bonds in mechani-
cally loaded materials are high-strength polymer fibers,
in which high concentrations of rather stable (long-
lived) free macroradicals that can reliably be registered

1

2

N S

Load

Fig. 1. Schematic of the loading of a polymer fiber. Hori-
zontal bars mark fiber segments (1 and 2) in which free rad-
icals were registered.

5 × 10–3 T
a

Fig. 2. An EPR spectrum of free radicals formed in a loaded
fiber of nylon-6.
PH
using the EPR method can be accumulated upon ten-
sion [14, 15].

In this work, we used monofibers of polycaproam-
ide (nylon-6) 0.8 mm in diameter. The EPR spectra
were recorded after applying a mechanical load to the
fiber. The load decreases the energy of activation for
bond breaking and accelerates the thermofluctuational
breaking of bonds. The concentrations of free macro-
radicals (concentrations of broken bonds) formed in the
fiber under the effect of a dc magnetic field with an
induction B = 0.6 T and without a magnetic field were
compared.

The scheme of the experiment is illustrated in
Fig. 1. A piece of a fiber was loaded with a force of
27 kg (a stress of 54 kg/mm2). Part of the fiber was
located between the poles of a dc magnet, i.e., in a mag-
netic field, and part of the fiber was outside the field.
After holding under a load for 2 min, the fiber was
unloaded and placed in a cylindrical resonator of a
V4500-10A EPR spectrometer operating in the Q
range. Then, the spectra of the fiber segments 1 and 2
marked by horizontal bars in Fig. 1 were recorded
sequentially (during loading, segment 1 was located in
the magnetic field; segment 2 was outside the magnetic
field). The tensile tests and the recording of the spectra
were performed at room temperature. The time of
recording a spectrum was 2.5 min; therefore, the time
between two successive recordings of spectra (with
allowance for the time necessary for the translation of
the fiber along the resonator axis when selecting a
proper position of a segment) was 3 min and the time
between two sequential recordings of spectra from the
same segment (1 or 2) was 6 min. Twelve spectra were
recorded for each sample (six spectra from each of the
selected segments). All the spectra had the same shape,
shown in Fig. 2.

The spectra mainly belong to secondary middle
macroradicals –NH–CH–CH2– (I) that are formed as a
result of interaction of active primary end macroradi-
cals with neighboring macromolecules [16]. The con-
centration of the radicals was about 1017 cm–3. Since in
the center of the spectrum there is a weak singlet
belonging to free radicals that are more stable than rad-
icals of type I, we selected the amplitude of the high-
field line of the hyperfine structure of the spectrum (a
in Fig. 2) as a measure of the concentration of radicals.
The dependence of the amplitude of this line on the
time of recording of the spectrum (reckoned from the
moment of the beginning of the recording of the first
spectrum) is shown in Fig. 3. The decrease in the con-
centration of free radicals in time is caused by their
recombination. It is seen that the points corresponding
to both segments fall well on the same curve. This
means that the number of radicals formed under a load
in the segment located in a magnetic field is equal to the
number of radicals that arise in the segment that did not
suffer the field effect. Therefore, the magnetic field
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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does not affect the process of the breaking of covalent
bonds.

This fact indicates that the scheme of transformation
of defect complexes suggested in [11–13] is insuffi-
ciently substantiated. Note one more obvious circum-
stance concerning the main supposition of the authors
of those works: the mixing of spin states (S–T conver-
sion) upon thermofluctuational excitations of the
bonds. To realize transitions between the spin states of
a pair of paramagnetic particles, it is necessary that the
exchange energy (spin contribution to the energy of
interaction of the particles) be comparable with the
energy of transitions stimulated by the magnetic field;
i.e., the difference between the energies of the singlet
and triplet states should be approximately 10–6 eV. This
is possible only at very large bond lengthenings.

The estimates can be made using one of the known
potentials, e.g., the Morse potential, to characterize the
interatomic interaction:

where D is the energy of dissociation of the bond, b =
2F/D, F is the maximum force of interatomic interac-
tion, and r0 is the equilibrium interatomic separation.

At r @ r0, we have U ~ –2Dexp(–br). Assuming D =
1 eV, U = –2 × 10–6 eV, and b = 2 × 107 cm–1, we obtain
r = 7.0 nm. This is a formal estimate, since it makes no
sense to speak of chemical bonding when |U| ! kT.
Nevertheless, it is clear that the above-considered bond
lengthenings in crystals are unrealistic.

Note also that the expected times of S–T transitions,
which are, according to [12, 13], 10–9 to 10–8 s, exceed
the lifetime of a fluctuationally extended bond (equal to
10–13 s, according to [17]) by several orders of magni-
tude.

Thus, the scheme of transformation of complexes
(trimers) of defects that was discussed in the literature
apparently cannot be regarded as a basis for explaining
the spin origin of the magnetoplastic effect (MPE). In
this connection, we consider this problem in some more
detail.

As was noted above, the MPE is attributed to the
occurrence of spin-dependent reactions between para-
magnetic centers (PMCs). Therefore, the problems of
substantiating the presence of PMCs in alkali-halide
crystals (AHCs) subjected to no preliminary actions
(e.g., to ionizing radiations), as well as of clarifying the
structure of the centers possessing unpaired electrons
and determining the minimum concentration of PMCs
sufficient for the observation of the MPE against the
background of “nonmagnetic” defects, seems to be
very important. In our opinion, these problems have
been given insufficient attention. However, these are by
no means simple problems. Indeed, there are no reliable
data on the behavior of PMCs at dislocations in AHCs
in the literature. The attempts to record EPR signals
upon severe deformation and fracture of AHCs were

U D –2b r r0–( )[ ]exp 2 –b r r0–( )[ ]exp–{ } ,=
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
unsuccessful [18]. The references to [19] sometimes
occurring in the literature are somewhat unconvincing,
since this work contains no data on PMCs at disloca-
tions in unirradiated crystals. Moreover, in view of the
results obtained in [20–22], the conclusions made in
[19] apparently require corrections.

The paramagnetism of point defects is frequently
attributed to the presence of calcium as an impurity in
AHCs (e.g., in NaCl crystals that are widely used as a
suitable object for the investigation of various proper-
ties of ionic crystals) [9]. The Ca++ ions enter into the
composition of impurity–vacancy dipoles, in which
vacancies compensate their charge. There are no data
on the observation of EPR signals from paramagnetic
Ca+ ions in AHCs even at a high concentration of the
impurity [23], which appears to be due to the small
magnitude of the second ionization potential of cal-
cium, for which reason the impurity calcium is present
in AHCs in the form of double-charged ions.

The assumption on the presence in the complexes of
dimers of single-charged ions participating in the for-
mation of covalent bonds seems insufficiently
grounded, in particular, since, with the change of the
charged state of the impurity (e.g., with the appearance
of a single-charged instead of a double-charged cal-
cium ion), the reason for which the impurity ion can
hold a vacancy disappears; the reason for the formation
of a dipole also disappears. In addition, the separation
between the cations, e.g., in NaCl, exceeds 0.4 nm. At
the same time, it is known that the lengths of even weak
covalent bonds do not exceed 0.25 nm. At large dis-
tances, the unpaired electrons form the so-called radical
pairs, which have a characteristic doublet EPR spec-
trum. Naturally, the possibility of a sharp (approxi-
mately twofold) change in the interatomic separation
(upon the formation of a covalent bond) requires spe-
cial substantiation.

Finally, when discussing the nature of the MPE, we
should take into account that there are data on the
absence of the effect of impurity paramagnetic Mn++

ions on the plasticity of AHCs in a magnetic field [24]
and on the insensitivity of MPE to the presence of F
centers in the crystal [25].
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tra. Open circles correspond to segment 1 (B ≠ 0); solid cir-
cles, to segment 2 (B = 0).
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From the above-said, we conclude that the scheme
of transformation of defect complexes in alkali-halide
crystals that was discussed earlier in the literature can-
not be considered to be well grounded. To clarify the
mechanism of the magnetoplastic effect and, above all,
to determine the concrete type of spin-dependent reac-
tions in the system of defects in ionic crystals, further
investigations are necessary.

ACKNOWLEDGMENTS
We are grateful to É.E. Tomashevskiœ for the oppor-

tunity to perform experiments on the investigation of
electron paramagnetic resonance of free radicals in
fibers subjected to tension.

REFERENCES
1. V. I. Al’shits, E. V. Darinskaya, T. M. Perekalina, and

A. A. Urusovskaya, Fiz. Tverd. Tela (Leningrad) 29 (2),
467 (1987) [Sov. Phys. Solid State 29, 265 (1987)].

2. V. I. Al’shits, E. V. Darinskaya, and E. A. Petrzhik, Fiz.
Tverd. Tela (Leningrad) 33 (10), 3001 (1991) [Sov.
Phys. Solid State 33, 1694 (1991)].

3. Yu. I. Golovin and R. B. Morgunov, Izv. Ross. Akad.
Nauk, Ser. Khim., No. 4, 739 (1997).

4. A. A. Urusovskaya, V. I. Al’shits, A. E. Smirnov, and
N. N. Bekkauér, Pis’ma Zh. Éksp. Teor. Fiz. 65 (6), 470
(1997) [JETP Lett. 65, 497 (1997)].

5. Yu. I. Golovin and R. B. Morgunov, Fiz. Tverd. Tela
(St. Petersburg) 37 (7), 2118 (1995) [Phys. Solid State
37, 1152 (1995)].

6. Yu. I. Golovin, R. B. Morgunov, S. V. Zhulikov, and
A. M. Karyakin, Izv. Ross. Akad. Nauk, Ser. Fiz. 60 (9),
173 (1996).

7. Yu. I. Golovin, R. B. Morgunov, and S. V. Zhulikov, Fiz.
Tverd. Tela (St. Petersburg) 39 (3), 495 (1997) [Phys.
Solid State 39, 430 (1997)].

8. Yu. I. Golovin, R. B. Morgunov, D. V. Lopatin, and
A. A. Baskakov, Phys. Status Solidi A 160 (2), R3
(1997).

9. Yu. I. Golovin and R. B. Morgunov, Materialovedenie,
No. 3, 2 (2000); No. 4, 2 (2000); No. 5, 2 (2000); No. 6,
2 (2000).
PH
10. Yu. I. Golovin and R. B. Morgunov, Zh. Éksp. Teor. Fiz.
115 (2), 605 (1999) [JETP 88, 332 (1999)].

11. Yu. I. Golovin and R. B. Morgunov, Izv. Ross. Akad.
Nauk, Ser. Fiz. 61 (5), 850 (1997).

12. Yu. I. Golovin, R. B. Morgunov, V. E. Ivanov, and
A. A. Dmitrievskiœ, Zh. Éksp. Teor. Fiz. 117 (6), 1080
(2000) [JETP 90, 939 (2000)].

13. R. B. Morgunov, Author’s Abstract of Doctoral Disserta-
tion (Voronezh. Gos. Tekhn. Univ., Voronezh, 2000).

14. S. N. Zhurkov, A. Ya. Savostin, and É. E. Tomashevskiœ,
Dokl. Akad. Nauk SSSR 159 (2), 303 (1964) [Sov. Phys.
Dokl. 9, 986 (1965)].

15. B. Ya. Levin, A. V. Savitskiœ, A. Ya. Savostin, and
É. E. Tomashevskiœ, Vysokomol. Soedin., Ser. A 13 (4),
947 (1971).

16. V. A. Zakrevskiœ, V. V. Baptizmanskiœ, and É. E. Toma-
shevskiœ, Fiz. Tverd. Tela (Leningrad) 10 (6), 1699
(1968) [Sov. Phys. Solid State 10, 1341 (1968)].

17. A. I. Slutsker, A. I. Mikhaœlin, and I. A. Slutsker, Usp.
Fiz. Nauk 164 (4), 357 (1994) [Phys. Usp. 37, 335
(1994)].

18. V. V. Boldyrev, V. A. Zakrevskiœ, and F. Kh. Urakaev, Izv.
Akad. Nauk SSSR, Neorg. Mater. 15 (12), 2154 (1979).

19. S. Z. Shmurak and F. D. Senchukov, Fiz. Tverd. Tela
(Leningrad) 15 (10), 2976 (1973) [Sov. Phys. Solid State
15, 1985 (1973)].

20. A. A. Kusov, M. I. Klinger, and V. A. Zakrevskiœ, Fiz.
Tverd. Tela (Leningrad) 31 (7), 67 (1989) [Sov. Phys.
Solid State 31, 1136 (1989)].

21. A. V. Shuldiner and V. A. Zakrevskii, Radiat. Prot.
Dosim. 65 (1–4), 113 (1996).

22. V. A. Zakrevskiœ and A. V. Shul’diner, Fiz. Tverd. Tela
(St. Petersburg) 42 (2), 263 (2000) [Phys. Solid State 42,
270 (2000)].

23. C. Hoentzsch and J. M. Spaeth, Phys. Status Solidi B 88
(2), 581 (1978).

24. Yu. I. Golovin and R. B. Morgunov, Pis’ma Zh. Éksp.
Teor. Fiz. 61 (7), 583 (1995) [JETP Lett. 61, 596 (1995)].

25. Yu. I. Golovin and R. B. Morgunov, Fiz. Tverd. Tela
(St. Petersburg) 35 (9), 2582 (1993) [Phys. Solid State
35, 1280 (1993)].

Translated by S. Gorin
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002



  

Physics of the Solid State, Vol. 44, No. 11, 2002, pp. 2087–2090. Translated from Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 1994–1997.
Original Russian Text Copyright © 2002 by Melnichuk, Malanushenko.

                             

MAGNETISM 
AND FERROELECTRICITY

           
Effect of Irradiation with Ne+ Ions on the Transformations
of Domain Structures of a Uniaxial Magnetic Film

in an AC Magnetic Field
I. A. Melnichuk and E. L. Malanushenko

Donetsk National University, Universitetskaya ul. 24, Donetsk, 83055 Ukraine
e-mail: magnet@dongu.donetsk.ua

Received November 2, 2001

Abstract—Effects of irradiation with Ne+ ions on the transformations of domain structures (DSs) that occur in
a uniaxial magnetic film under the action of an ac magnetic field are investigated. Transitions of a DS from an
amorphous state into a hexagonal lattice and a labyrinthine structure are considered. The irradiation is found to
lead to a change in the amplitudes of the ac field at which phase transformations of the DS occur. The effect of
the magnitude of the ac field on the number of domains in a block with a hexagonal lattice has been studied. It
is shown that the process of annealing of defects in a DS consisting of blocks with a hexagonal lattice can be
described by the equation of a first-order reaction. The irradiation-induced change in the energy of activation
for the annealing of defects in the DS has been found. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, large attention has been paid to the
investigation of phase transformations of domain struc-
tures (DSs) in thin magnetic films. The interest in the
investigation of DSs in the presence of a low-frequency
ac magnetic field is, on the one hand, due to the specific
features of new dynamic stable domain configurations
[1, 2] and, on the other hand, to the effect of an ac mag-
netic field on the phase transformations in DSs, which
are described using the concept of an effective temper-
ature related to the ac magnetic field [3–5].

The experimental investigations of the transforma-
tions of DSs in an ac magnetic field show that the use
of the effective temperature makes it possible to quali-
tatively correctly describe such features of the behavior
of DSs in ac magnetic fields as the times of relaxation
of DSs in ac magnetic fields toward the equilibrium
state [6] and the changes in the average spacings
between the bends in stripe domains [7]. In addition,
the velocity distribution for the segments of domain
walls (DWs) that move in an ac field is Maxwellian,
which indicates a sufficient “chaotization” in the sys-
tem of DWs [8].

The effective temperature is defined through the
average kinetic energy of domains [4] or domain walls
[5]; therefore, the presence of defects, which contribute
to the pinning or retardation of DWs, affects the condi-
tions of phase transformations in the DSs. To break
away a DS from the site of pinning and to overcome
friction forces, the ac field must do additional work;
therefore, the introduction of additional defects into the
sample increases the amplitudes of the ac field at which
phase transformations occur in DSs. The study of trans-
1063-7834/02/4411- $22.00 © 22087
formations in DSs in samples with various concentra-
tions of defects makes it possible to test the validity of
the application of the concept of effective temperature
for describing the behavior of DSs in an ac magnetic
field.

This work was aimed at the study of the effect of
irradiation with accelerated particles on the conditions
of the transition from an amorphous domain structure
(ADS) of bubble domains into the states of the hexago-
nal lattice (HL) and labyrinthine domain structure
(LDS) and also at describing the ADS–HL transition.

2. EXPERIMENTAL

Domain structures were observed on a magnetoop-
tical device using the Faraday effect. The investigations
were performed on a uniaxial epitaxial film of
(YEuTmCa)3(FeGe)5O12 with a thickness h = 2.9 µm
and a saturation magnetization 4πM = 250 G. This sam-
ple was chosen for two reasons. First, the DSs in such
films are easily observable, and the technology of their
growth permits one to obtain samples of quite varying
degrees of perfection. Second, the main features of the
effect of irradiation on the magnetic and structural
properties of iron garnet films have been very well stud-
ied (see, e.g., [9]). To introduce additional defects into
the sample, it was irradiated with Ne+ ions (60 keV) to
a dose of 0.8 × 1014 cm–2. This dose is smaller than the
dose 2 × 1014 cm–2 necessary for the formation of
anisotropy of the easy-plane type over the whole thick-
ness of the irradiated layer; therefore, the properties of
the DWs are mainly affected by radiation defects.
Under given irradiation conditions, the depth of pene-
002 MAIK “Nauka/Interperiodica”
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tration of Ne+ ions into the sample is about 0.1 µm; con-
sequently, for this thickness of the film, all the defects
are localized near its surface.

An ADS was obtained by converting the sample
from a saturated state into a single-domain state by
decreasing the external magnetic field applied parallel
to the film plane. The ADS–HL–LDS transitions were
realized by applying an ac magnetic field H oriented
along the normal to the sample surface (H = H0sinωt,
where ω/2π = 300 Hz and H0 = 0–80 Oe). The applica-
tion of an ac magnetic field led to transformations of the
DS, which manifested themselves in changes in the
domain size and in domain displacements. In a certain
time, the changes were stopped and the DS passed into
a stable state (for a given magnitude of H0). The trans-
formations of the DS were considered to be completed
after the termination of domain displacements. Further,
to diminish the diffuse character of the DWs in the DS
images, the amplitude of the ac magnetic field was
decreased to zero.

The intermediate state of the DS between ADS and
HL represents a polycrystalline structure (PS). This
structure consists of blocks of HL separated by defects
and regions of an ADS. To quantitatively describe the
DS in this state, we used the average number of
domains that compose a single block with a hexagonal
packing (N). Other quantities to be measured were the
critical fields of the transitions ADS–PS (field H1) and
HL–LDS (field H2). Note that while the field of the HL–
LDS transition can easily be determined from the fact
of the formation of stripe domains in the DS, no strict
criterion for distinguishing between the ADS and PS
exists. In this work, as in [10], the magnitude of H1 was
determined based on the formation of HL nuclei in the
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Fig. 1. Variation of the number of domains in an HL block
as a function of the amplitude of the ac magnetic field: (1)
unirradiated sample; (2) irradiated sample; ADS, amor-
phous domain structure; LDS, labyrinthine domain struc-
ture; and HL, hexagonal lattice.
PH
DS. As a nucleus of the HL, a block with a hexagonal
packing containing no less than 30 domains was con-
sidered. This criterion is very close to that used in [11];
in addition, it is precisely 30 domains that are required
to construct the second coordination shell of the HL in
bubble domains with allowance for the fact that its unit
cell contains two domains. Since no HL blocks with a
domain number N ≥ 30 were observed in the ADS, we
used the formation of blocks with this number of
domains as a criterion for the transition of the ADS into
a polycrystalline structure. At H1 < H0 < H2, the DS rep-
resented a set of HL blocks with N ≥ 30.

3. RESULTS AND DISCUSSION

Figure 1 displays the dependence of N on H0. As is
seen, the average number of domains in an HL block
grows with increasing H0, and irradiation leads to a
shift of this dependence along the H0 axis toward larger
amplitudes of the ac field. The fields of existence of the
ADS, PS, HL, and LDS for the irradiated and unirradi-
ated samples are separated in Fig. 1 by dashed vertical
lines. It is seen that the irradiation of the sample
increases H1 by 25% and H2 by 17%. The changes are
large, since the phase transition at H = H2 is observed
very clearly and occurs in a rather narrow range of
fields. In addition, the criterion for the determination of
H1 used in this case also permits us to reliably deter-
mine the field for the transition from the ADS to the PS.
The errors in the measurements of critical fields are no
more than 3%. Since the effective temperature of the
DS is unambiguously related to the amplitude of the ac
field [4, 5], an increase in the critical fields upon irradi-
ation may be interpreted as being due to the influence
of irradiation on the effective temperature of phase
transformations in the DS.

An analysis of the ADS–HL transition for the irradi-
ated and unirradiated samples was performed using the
effective temperature with allowance for the N(H0)
dependences shown in Fig. 1. This transition has many
common features with the process of crystallization of
solids; therefore, the analysis of the effect of an ac mag-
netic field on the behavior of the DS was based on the
model of defect annealing in the crystal lattice of a
solid. According to [12, 13], the process of defect elim-
ination may be described by the following equation:

(1)

where c is the concentration of defects, n is the order of
the reaction, K0 is a constant, U0 is the activation
energy, k is the Boltzmann constant, and T is the tem-
perature. The order of the reaction is determined by the
mechanism of defect elimination [12, 13]. According to
[14], the main mechanism of elimination of defects in
DSs in the range H1 < H0 < H2 is connected with their
migration to sinks or with the annihilation of close
paired defects. Therefore, the process of defect elimina-
tion was described using the equation of a first-order

dc/dt –Kcn, K K0 U0/kT( ),exp= =
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reaction. It is seen that Eq. (1) qualitatively correctly
reflects the behavior of the N(H0) dependence shown in
Fig. 1.

In order to obtain a quantitative correspondence of
the N(H0) dependence to Eq. (1), it is necessary to use
the dependence of the effective temperature on the
amplitude of the ac field and unambiguously relate the
number of domains in an HL block to the concentration
of defects in the DS. According to [4, 5], the effective

temperature may be determined as  = , where
α is a constant depending on the parameters of the sam-
ple.

The analytical relation between the concentration of
defects in the DS and the number of domains in an HL
block was obtained under the assumption that the num-
ber of domains remained constant with increasing
amplitude of the ac magnetic field and that at H0 > H1,
all the defects were localized at the boundaries of these
blocks. The width of the interface between the blocks of
the HL was assumed to be equal to one unit cell of this
lattice.

The relative concentration of defects was deter-
mined as follows: C(N) = Nd/(Nd + N), where Nd is the
number of domains in the cells localized at the block
boundaries and N is the total number of domains in an
HL block. On the assumption that the block has a hex-

agonal symmetry, we obtained C(N) = 4/(4 + ).
This relation permits comparison of the measured
N(H0) dependence with the C(N) dependence calcu-
lated using Eq. (1).

Note that, in accordance with the model used, the
number of defects in the lattice exponentially depends
on time. Therefore, the defect concentration decreases
sharply with increasing time of residence of the DS in
an ac field. Such a behavior corresponds to the way of
estimation of the moment of termination of the trans-
formations of the DS in an ac field assumed in the
model.

To compare the experimental values of N(H0) with
calculated values of C(H0), it is convenient to use the
function Q(H0) = lnln(C(H0)–1). Then, in accordance
with Eq. (1) and the definition of the effective tempera-
ture, we obtain

(2)

where A is a constant that is independent of the mag-
netic field. Therefore, if the experimental N(H0) depen-
dence corresponds to the model under consideration,

then the magnitude of Q linearly depends on  and
the magnitude of the activation energy determines the
slope of this dependence.

The  dependences for the irradiated and
unirradiated sample are given in Fig. 2. We emphasize
that, in accordance with the results of [14], the mecha-

Teff α H0
2

N

Q H0( ) A U0/kα H0
2,–=

H0
–2

Q H0
–2( )
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nism of annihilation of paired defects is realized in the
middle of the interval of variation of the fields H0. It is
for this reason that in Fig. 2, we chose only these values
of the amplitude of the ac field. As is seen from Fig. 2,
both dependences are linear; note that irradiation led to
a change in the slope of the  dependence. This
means that the model of the annealing of defects in a DS
upon transition from the amorphous state into an HL is
described by the equation of a first-order reaction.

The slope of the straight line  in the depen-
dence on H yields the energy of activation for the pro-

cess of defect annealing. A comparison of the 
dependences for the irradiated and unirradiated sam-
ples shows that an irradiation with ions not only leads
to a change in the first and second critical fields but also
changes the entire process of crystallization of the DS
on the whole, which manifests itself in a change in the
activation energy, which, in turn, causes a change in the

slope of the  dependence. The comparison
shows that in this case, the irradiation led to an increase
in the activation energy of the process by 50%. Note
that the changes that occurred in the sample are related
to the appearance of additional defects as a result of
irradiation with Ne ions.

4. CONCLUSION

Thus, in this work, we showed that irradiation
affects the magnitudes of the critical fields for the
ADS–HL–LDS transitions. It was found that N(H0)
increases with increasing H0, while the irradiation leads
to a shift of this dependence along the H axis toward
larger amplitudes of the ac magnetic field. It is shown
that the change in N(H0) may be described in terms of
the model of annealing of DS defects with the use of an
equation of the first-order reaction. In this case, the irra-
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Fig. 2. Q(N(H)) dependence plotted for (1) unirradiated and
(2) irradiated samples. Points correspond to experimental
values of N(H); solid lines, to calculated values of N(H).
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diation leads to an increase in the energy of activation
for the process of annealing of structural defects of the
DS. The effective temperature related to the ac field can
be used for the description of the ADS–HL transition.
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Abstract—The magnetic properties of a tetragonal intermetallic compound, namely, HoMn2Ge2, are investi-
gated experimentally and theoretically. The experimental temperature dependences of the initial magnetic sus-
ceptibility and the lattice parameters are obtained in alternating and static magnetic fields. The magnetization
curves are measured in strong magnetic fields up to 50 T. The parameters of the crystal field and Ho–Mn and
Mn–Mn exchange interactions are determined, and the temperature dependence of the magnetic field of the
phase transition from an antiferromagnetic phase to a ferromagnetic phase in a magnetic field aligned along the
tetragonal axis is calculated. © 2002 MAIK “Nauka/Interperiodica”.
1. Crystals of intermetallic compounds of the gen-
eral formula RMn2Ge2 (R is a rare-earth element) have
a tetragonal structure of the ThCr2Si2 type (space group
I4/mmm) that consists of a set of –R–Ge–Mn–Ge–R–
layers aligned perpendicularly to the c axis. As is
known, RMn2Ge2 intermetallic compounds are ideal
natural superlattices. Over the last two decades, the
physical (including magnetic) properties of RMn2Ge2

have been intensively investigated, especially, as
regards the numerous phase transitions revealed in
these compounds. In RMn2Ge2 intermetallic com-
pounds with heavy rare-earth elements, the magnetic
moments of manganese are ordered in layers due to
Mn–Mn exchange interactions (these interactions
appeared to be the strongest of the interactions
involved). It is found that Mn–Mn and R–Mn interac-
tions exhibit antiferromagnetic nature. At T < TN ≈ 460 K
(where TN is the Néel temperature), the manganese sub-
system is antiferromagnetically ordered, whereas the
rare-earth subsystem is disordered. In the HoMn2Ge2

compound, unlike the intermetallic compound with
other rare-earth elements (R = Gd, Tb, or Dy), the rare-
earth subsystem remains disordered to very low tem-
peratures [1]. Szutula and Leciejewicz [2] demon-
strated that this phenomenon is associated with the
weak R–Mn exchange interaction. According to neu-
tron diffraction data [1], the magnetic moments of hol-

mium at temperatures below  = 2.5 K are character-
ized by a superposition of two sinusoidally modulated
magnetic structures with different wave vectors. The
manganese subsystem whose magnetic moments are
collinear with respect to the tetragonal axis remains
antiferromagnetically ordered down to 1.3 K [1]. Kirste

TN
Ho
1063-7834/02/4411- $22.00 © 22091
et al. [3] investigated the magnetic phase transitions in
RMn2Ge2 intermetallic compounds in ultrastrong mag-
netic fields and revealed that, at the liquid-helium tem-
perature, the holmium-containing compound under-
goes a first-order phase transition from an antiferro-
magnetic phase to a ferromagnetic phase in a magnetic
field of approximately 90 T. In the present work, we
discussed the magnetic properties of the HoMn2Ge2
intermetallic compound reasoning from the aforemen-
tioned findings and the results of our measurements of
the initial magnetic susceptibility, lattice parameters,
and magnetization curves in magnetic fields up to 50 T.
Moreover, we determined the parameters of the main
interactions revealed in this compound.

2. Polycrystalline samples of the HoMn2Ge2 inter-
metallic compound were prepared by melting the initial
components (with a purity of 99.9%) in an induction
furnace under quasi-levitation conditions in an argon
atmosphere. In order to achieve a better homogeniza-
tion, the samples were remelted three times and were
then annealed at a temperature of 750°C in a dynamic
vacuum for 170 h. The phase homogeneity of the pre-
pared samples was checked using x-ray diffraction
analysis. The initial magnetic susceptibility was mea-
sured both in an alternating magnetic field (in the tem-
perature range from 4.2 to 270 K) and in a static mag-
netic field (in the temperature range from 300 to
500 K). The temperature dependence of the lattice
parameters was measured using the x-ray diffraction
technique on a Geigerflex diffractometer (Japan) in the
temperature range from 10 to 800 K. Figure 1 shows the
temperature dependences of the initial magnetic sus-
ceptibility and the lattice parameters of the HoMn2Ge2
compound. It can be seen from Fig. 1 that, at TN ≈ 460 K,
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependences of (a) the initial magnetic
susceptibility in (1) an alternating magnetic field and (2) a
static magnetic field and (b) the lattice parameters of the
HoMn2Ge2 compound.
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Fig. 2. Experimental (solid lines) and calculated (dashed
lines) curves of the magnetization at temperatures of (1) 8,
(2) 27.5, and (3) 49 K. The inset shows the H–T phase dia-
gram for the transition from the antiferromagnetic (AF)
phase to the ferromagnetic (F) phase in a magnetic field
directed along the tetragonal axis. The closed circle indi-
cates the experimentally determined field of the phase tran-
sition at T = 5 K [3]. For explanation of curves a and b, see
the text.
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the manganese subsystem undergoes a transition from
the paramagnetic state to the antiferromagnetic state
and the temperature dependence of the lattice parame-
ter a(T) exhibits a negative anomaly. At low tempera-
tures, the magnetic susceptibility increases drastically.
This can be associated with the appearance of precur-
sors of magnetic ordering in the holmium subsystem.

The magnetization of HoMn2Ge2 was measured on
a pulsed induction magnetometer [4] in the temperature
range from 8 to 50 K in strong pulsed magnetic fields
up to 50 T with a pulse duration of 26 ms. The magne-
tization measurements were performed with powders
whose particles could rotate in a magnetic field. At T =
8 K, the magnetization was also measured on a vibrat-
ing-coil magnetometer in magnetic fields up to 12 T.
Figure 2 depicts the magnetization curves of the
HoMn2Ge2 compound. As can be seen from this figure,
the results of magnetization measurements carried out
using the two techniques are in good agreement (cf.
curves a and b). The magnetization of HoMn2Ge2 in
strong magnetic fields is approximately equal to
8 µB/f.u. This value is less than that for a free ion
(10 µB/f.u.) and indicates a considerable effect of the
crystal field.

3. As was noted above, at temperatures below  =
2.5 K, the holmium subsystem of the HoMn2Ge2 inter-
metallic compound is in the paramagnetic state,
whereas the manganese subsystem is antiferromagneti-
cally ordered and jumpwise transforms into the ferro-
magnetic state in a critical magnetic field oriented
along the tetragonal axis. Let us now consider the mag-
netic properties of this compound in a magnetic field
aligned parallel to the tetragonal axis with allowance
made for the smallest (but sufficiently large for describ-
ing the experimental data) number of exchange interac-
tions in the molecular field approximation. For the
manganese subsystem, we take into account both the
exchange interactions in a layer (the exchange parame-

ter ) and the exchange interactions between adja-
cent layers (the parameter λ22). The Ho–Ho exchange
interaction is disregarded, because, in this case, it is rel-
atively weak [1] and is of no significance in the temper-
ature range under investigation. The effect produced by
all the layers involved in the manganese subsystem on
the rare-earth subsystem is summed and can be
described by the parameter λ12 (see [5]). In these calcu-
lations, we also take into account the known depen-
dence of the parameter λ22 (characterizing the Mn–Mn
exchange interactions in adjacent layers) on the inter-
atomic distance in the layer, i.e., the lattice parameter a
[6]; this dependence leads to the temperature depen-
dence of the exchange parameter and can be repre-
sented by the relationship

(1)

TN
Ho

λ22
0

λ22 ρ a ac–( ),=
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where ac = 4.045 Å for RMn2Ge2 intermetallic com-
pounds.

The effective Hamiltonian for an Ho3+ ion subjected
to a tetragonal crystal field in a magnetic field directed
along the tetragonal axis (the z axis) has the form

(2)

where  stands for the crystal field parameters, 
are the equivalent operators, gJ is the Landé splitting
factor (gJ = 5/4), and Jz is the z component of the angu-
lar momentum operator for the Ho3+ ion. The molecular
field of the manganese subsystem can be represented by

the relationship  = λ12(m1z + m2z), mkz = µBg〈Skz〉 ,
where k = 1 and 2, g is the Landé splitting factor for
manganese, and Skz is the z component of the operator
of the kth spin moment for manganese.

The thermodynamic potential of the system in a
magnetic field along the tetragonal axis per formula
unit is determined by the expression

(3)

The partition function Z for the holmium magnetic
moment was determined using numerical diagonaliza-
tion of Hamiltonian (2), Mz = µBgJ〈Jz〉 , and xk =

µBg /kBT, where  = Hcosϕk + Hmk, Hmk =

 + λ12Mzcosϕk, ϕk is the
polar angle of the kth magnetic moment of manganese

(in our case, ϕk = 0 or π), and  are the parameters of
the Mn–Mn exchange interaction between atoms of the
kth and nth layers. The second and fourth terms in
expression (3) are conventional correcting terms in the
molecular field theory.

Thus, we calculated the magnetization curves M(H)
and the H–T phase diagram for the magnetic field of the
first-order phase transition from the antiferromagnetic
state to the ferromagnetic state in the manganese sub-
system in a magnetic field directed along the tetragonal
axis. The lattice parameters of the HoMn2Ge2 com-
pound were determined by comparing the calculated
and experimental data.

4. The experimental magnetization curves for the
HoMn2Ge2 compound at three temperatures (solid lines
in Fig. 2) indicate that the crystal field substantially
affects the magnetic moment of the holmium sub-
system. In this case, the holmium subsystem resides in
the paramagnetic state, because, in the temperature
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range under investigation, the molecular fields acting
on each holmium layer from the two adjacent layers
cancel each other. The magnetization curves were used
to determine the crystal field parameters. For lack of
reliable spectroscopic information, we restricted our
consideration to the case of three parameters (the sixth-

order parameters  and  were taken to be equal to
zero, as was done by Venturini et al. [7] in their deter-
mination of the crystal field parameters from the tem-
perature dependences of the hyperfine field and the
quadrupole interaction in the case of DyMn2Ge2). The
fitting was performed with the crystal field parameters
of DyMn2Ge2, which were taken as the initial values.
These parameters were refined using available mag-
netic data in our recent work [5]. The best fitting of the
magnetization curves (Fig. 2) was achieved with the

following parameters (in cm–1):  = 169,  = –72,

and  = –556. These parameters differ significantly
from those determined with the use of only the param-

eter  for DyMn2Ge2.

5. The parameters of Mn–Mn and Ho–Mn exchange
interactions (λ22 and λ12, respectively) were obtained
using the experimentally determined field of the transi-
tion from the antiferromagnetic phase to the ferromag-
netic phase in a magnetic field directed along the tetrag-
onal axis: HAF → F = 91 T at T = 5 K [3]. At low temper-
atures, from the expansion of the thermodynamic
potential (3) (see also [5]), we obtain

HAF → F = –λ12M – λ22m. (4)

The magnetic moment M for holmium, according to
our experimental data, is taken to be equal to 8.3µB
(Fig. 2), and the magnetic moment m for manganese in
the antiferromagnetic phase is assumed to be 2.3µB.
The latter value was found in [1] by averaging the mag-
netic moments over a series of RMn2Ge2 compounds
(R = Tb, Ho, Er, and Tm). The exchange parameters λ12
and λ22 were determined from their linear combina-
tion (4) using two methods. In the first method, the
exchange parameter λ12 for HoMn2Ge2 was calculated
from the parameter λ12 for DyMn2Ge2 [5] with the use
of the relevant Landé factors; then, the parameter λ22
was obtained from expression (4). In the second
method, the exchange parameter λ22 for HoMn2Ge2 was
calculated from the parameter λ22 for DyMn2Ge2 [5]
with the use of formula (1) (for the lattice parameter
aDy, we used our data obtained earlier in [5]); then, the
parameter λ12 was determined from expression (4). It is
worth noting that both methods lead to close values of
the exchange parameters: λ12 = –4.5 ± 0.5T/µB and
λ22 = –23 ± 2T/µB. A similar calculation of the
exchange parameters for HoMn2Ge2 from the parame-
ters for GdMn2Ge2, which were determined in [8],
gives a larger spread of the results obtained. This can be
explained by the fact that, compared to dysprosium,
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gadolinium is more distant from holmium in the row of
rare-earth elements in the periodic table.

The temperature dependence of the critical field
HAF → F of the transition from the antiferromagnetic
phase to the ferromagnetic phase was calculated using
the thermodynamic potential (3), which accounts for
the temperature and field dependences of all the charac-
teristics of the system under consideration. Moreover,
we took into account the temperature dependence of the
Mn–Mn interlayer exchange parameter λ22 according
to formula (1) with the use of the measured temperature
dependence of the lattice parameter a(T) (Fig. 1b). The

parameter  characterizing Mn–Mn exchange inter-
actions in a layer was found from the temperature TN =

460 K and the known parameter λ22:  = 2.1 ×
103T/µB. The calculated phase diagram is depicted in
the inset to Fig. 2.
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Abstract—The nature of the field dependence of thermopower in the Co–Al–O and Fe–Al–O magnetic gran-
ular alloys with tunneling conduction is shown to be related to tunneling thermopower. The tunneling ther-
mopower is small and depends approximately linearly on temperature and squared magnetization, and its field
dependence is described by a relation of the type S(H)/T = a + bρ(0)/ρ(H), where ρ is the alloy electrical resis-
tivity and the parameters a and b are field-independent. © 2002 MAIK “Nauka/Interperiodica”.
Recently, Sato et al. [1, 2] found that thermopower
S in the Co–Al–O and Fe–Al–O magnetic granular
alloys of the metal–insulator type with tunneling mag-
netoresistance (TMR) is negative and considerably
smaller than that in bulk Co and Fe and that its field
dependence is described by the relation

(1)

where a and b are field-independent and ρ is the electri-
cal resistivity. A relation of the type of Eq. (1), found
earlier to hold for metallic multilayers and granular
alloys with giant magnetoresistance (see, e.g., [3]), has
been shown to be due to the fact that both ρ(H) and
S(H) are governed in these metallic systems by spin-
dependent scattering in the grain volume and from
interfaces. In granular metal–insulator alloys, however,
the magnetoresistance is connected with electron tun-
neling transport through the insulating spacer between
adjacent grains; therefore, Eq. (1) requires adequate
substantiation. Moreover, one can readily show that the
effective-medium theory developed for metal–insulator
composites fails to account for this relation [4].

We present here a calculation of tunneling ther-
mopower S tun in granular metal–insulator alloys and
show that the thermopower in these systems near the
percolation threshold is primarily of tunneling nature
and can be approximated by Eq. (1). As far as we know,
tunneling thermopower has not yet been discussed in
the literature.

Near the percolation threshold, it can be assumed
that the conducting channel in the metal–insulator sys-
tem is made up of series-connected elements of two
types, more specifically, of metallic grains and tunnel-
ing barriers. Let each of these elements be character-
ized by the values of their thermopower (S met, S tun) and
thermal resistance (Wmet, W tun). Following the obvious

S H( )
T

------------ a b
ρ 0( )
ρ H( )
-------------,+=
1063-7834/02/4411- $22.00 © 22095
Kohler rule [5], we can present the thermopower of
such a conductor in the form

(2)

Kohler’s rule is a consequence of a temperature gradi-
ent distribution in the inhomogeneous system. If all the
elements of the conductor are metallic and obey the
Wiedemann–Franz law, Eq. (2) reduces to the well-
known Nordheim–Gorter rule [5]. In the case under
consideration, Eq. (2) is a rough approximation,
because it is assumed at the very beginning that all the
elements of the electrical circuit are identical. In a more
consistent analysis, one should take into account the
difference in the height of the tunneling barriers and
perform an averaging over the optimum electron trans-
port trajectories, as is done, for instance, in the theory
of magnetoresistance [6]. However, this would be
beyond the scope of the present communication, which
deals primarily with calculation of S tun.

Because the thermal resistance of the insulating
spacer W tun is of the order of that of the insulator and is
certainly larger than Wmet, we have

(3)

where γtun and γmet are the thermal conductivities of the
insulator and the metal, respectively.

The tunneling process does not involve a change in
the electron energy; therefore, S tun can be calculated
using Mott’s relation:

(4)

S
SmetWmet StunW tun+

Wmet W tun+
---------------------------------------------.=

S Stun SmetW
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where G(E) is the tunneling conductance. In terms of
the TMR theory, the tunneling conductance can be writ-
ten in the form [7]

(5)

where G0 = const, C = const, m is the relative magneti-
zation,

(6)

Dσ(E) (σ = ↑ , ↓ ) is the local density of states at the tun-
neling junction interfaces for the corresponding energy
E,

(7)

meff is the effective mass of a tunneling electron, and V
is the height of the barrier. In accordance with Eq. (5),
the temperature dependence of the conductance is

(8)

which is in good agreement with experiment [6]. Equa-
tion (5) also quite well describes the dependence of
TMR on m2 and the weak temperature dependence of
the TMR. We note that Eqs. (5) and (8) are valid within
a fairly broad but limited temperature interval Tmin <
T < Tmax [6] and although these equations were derived
using the approximation of Sheng et al. [8] for conduc-
tance averaging over intergrain distances, relations of
the same kind can be obtained based on general consid-
erations concerning the character of grain distribution
with respect to size [6]. For high temperatures, the T1/2

law in Eq. (8) fails and is replaced by a relation describ-
ing an activated behavior. We shall restrict ourselves to
the region where Eq. (8) holds, because the high-tem-
perature case is not realized in ferromagnetic systems
even if the Curie temperature is high.

After substituting Eq. (5) into Mott’s relation (4)
and performing some straightforward calculations, we
obtain

(9)

It follows from Eq. (5) that

(10)

(11)

G E( ) G0 1 P2 E( )m2+[ ] e
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According to Eq. (11), m2 = ; Eq. (9) can

now be recast in the form of Eq. (1), where

(12)

(13)

Equations (9), (12), and (13) sum up the main result of
our study. Because, in all the systems studied, the TMR
does not exceed 9% [1, 3] and the spin polarization is
P ~ 0.3 [7, 9], one can limit oneself without any loss of
generality to a linear approximation in P. Furthermore,
the second term in brackets in Eq. (9) is small compared
to the first one and should be taken into account only in
the case of paramagnetic alloys. Indeed, because κ ≥ kF
(where kF is the Fermi wave vector [7]) and near the
percolation threshold T0 ≈ 10 K [6], the second term in
Eq. (9) is certainly smaller than 1/4EF. However, the
quantity

(14)

may be considerably larger than P/EF for transition
metals if the sp–d hybridization is included. As we shall
see below, a comparison with experiment shows that
the neglect of the second term in Eq. (9) is indeed jus-
tified, particularly in the temperature interval 77–300 K.
In this case, Eqs. (9), (12), and (13) become simplified:

(15)

(16)

For the Fe–Al–O system, these relations show good
agreement with the experimental data bexp = (0.08 ±
0.01) µV/K2 and aexp = –(0.09 ± 0.01) µV/K2 [10].
Indeed, bexp ≈ –aexp and both parameters are practically
temperature-independent. Moreover, it is commonly
accepted that tunneling is dominated by sp-like elec-
trons and that their relatively large polarization (P ≈
0.3) is related to sp–d hybridization. For the free-elec-
tron model D↑ (↓ ) = A↑ (↓ )(E )1/2, where ∆ is the sub-
band spin splitting, or for the case of a semielliptical
curve of density of states with a nearly half-filled sub-
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band with spin σ = ↑ , which corresponds to Fe, we have

 < 0. Because P > 0, we have  < 0 and b > 0,

which is in agreement with experiment. We can reason-

ably assume, for a rough estimate, that  –

 = , where ω is the band half-width or the

Fermi energy. Then, for ω = 1 eV [7], we obtain from
Eq. (16) that bcalc = 0.08 µV/K2.

While S for the Co–Al–O system is of the same
order of magnitude, here, in contrast to Fe–Al–O, we
have bexp < 0 and aexp > 0, with |bexp | ≠ |aexp |, with the
parameter a being temperature-dependent [10]. This

can be readily understood if we assume that  > 0

and take into account the second term in Eq. (3). That
the second term in Eq. (3) must be retained follows
clearly from the fact that the room-temperature ther-
mopower in Co is –30 µV/K, which is substantially

larger in magnitude than S tun; because  ≥ , one

cannot neglect the metallic contribution to the ther-
mopower in the system in question when comparing
theory with experiment. We believe that in order to iso-
late S tun from experimental data, one should make use
of the correlation S tun ~ m2, which follows from
Eq. (15). The situation with the sign of the quantity

 is more complex. As already mentioned, this

quantity must be negative for nearly free electrons

P > 0,  < 0 . If we take, for an estimate, the total

density of states for Co, we will obtain P < 0,  < 0,

and, in accordance with experiment,  > 0. It is usu-

ally accepted, however, that d-like electrons are not
involved in tunneling and, therefore, P > 0 for all sys-

tems, while for sp–d hybridized states, the sign of 

depends substantially on the subband filling. Moreover,
the local density of states near interfaces may differ
considerably from that of the grain material. Using
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experimental data on tunneling thermopower for the

determination of  of the electrons taking part in tun-

neling appears to be a promising approach.
It should be pointed out that, because tunneling ther-

mopower is associated neither with scattering pro-
cesses, including interband s–d transitions, nor with
phonon or magnon drag, this thermopower is substan-
tially simpler and, in this sense, more informative than
conventional thermopower. In addition, tunneling ther-
mopower should be taken into account when describing
thermoelectric phenomena in composites in terms of
the percolation theory [4]. Alongside elastic tunneling
processes, phonon- or magnon-assisted tunneling may
take place. Since Mott’s relation is invalid for descrip-
tion of the corresponding contribution to thermopower,
this problem requires additional analysis.

Thus, the nature of the field dependence of the ther-
mopower in Co–Al–O and Fe–Al–O magnetic granular
alloys is related to the tunneling thermopower. The tun-
neling thermopower is small and depends approxi-
mately linearly on temperature, and its field depen-
dence is described by Eq. (1).
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Abstract—The unidirectional anisotropy arising in a ferromagnetic film on an antiferromagnetic substrate due
to the proximity effect is investigated. Consideration is given to the smooth and rough film–substrate interfaces.
The conditions of the formation of a domain wall in the film and the passage of the wall into the substrate in
the course of magnetization reversal are determined. The parameters of the static spin vortices formed in the
vicinity of the rough interface are studied as functions of the magnetic field strength. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Unidirectional anisotropy (the exchange bias) man-
ifests itself in a shift of the magnetization curve of a fer-
romagnetic film deposited on the surface of an antifer-
romagnet, for example, NiFe/FeMn, NiFe/CoO,
Ni/NiO, Fe/FeF2, or Fe/Cr. The effect of unidirectional
anisotropy has been investigated in many works (see,
for example, review [1]).

In this work, we examined the case when, in the
antiferromagnet, the atomic plane aligned parallel to
the ferromagnet–antiferromagnet interface involves
uncompensated spins. The origin of unidirectional
anisotropy in the case of a compensated surface of anti-
ferromagnets was explained by Koon [2].

Earlier [3], we considered the limiting case when
the exchange stiffness of the film is appreciably larger
than that of the substrate. In the present work, we ana-
lyzed the situation when the exchange stiffness of the
film is substantially smaller than that of the substrate.
The smooth film–substrate interface is considered in
Section 2. The “thickness–roughness” magnetic phase
diagram in the absence of an external magnetic field is
presented in Section 3. The magnetization reversal in
single-domain and polydomain phases is treated in Sec-
tions 4 and 5, respectively.

2. AN ATOMICALLY SMOOTH INTERFACE

For an atomically smooth interface, the exchange
interaction between spins of the upper atomic layer of
the substrate and the lower atomic layer of the film has
the same sign over the entire interface. It is assumed
that the magnetization and antiferromagnetic vectors
lie in the plane parallel to the interface and are charac-
terized by the angle θi (i = f and af) formed by the order
parameter with the preferred axis in this plane. In the
1063-7834/02/4411- $22.00 © 22098
mean-field approximation, the film–substrate interac-
tion can be described by the relationship

(1)

where Sf and Saf are the mean spins of the film and the
substrate, respectively; Jf, af is the exchange integral
(the integration is performed over the interface); and b
is a lattice constant that is nearly identical for both
materials.

Irrespective of the sign of the integral Jf, af, interac-
tion (1) leads to a shift of the magnetization curve of the
film from the position symmetric with respect to the
sign of the external field. In order to estimate this shift,
it is necessary to determine the equilibrium magnetiza-
tion curve from the condition for the minimum of the
total energy W of the system; that is,

(2)

Here, the first and second integrals are taken over the
volumes of the film and the substrate, respectively;

(3)

is the excess exchange energy due to the order parame-
ter inhomogeneity (where Ai is the exchange stiffness);

(4)

is the anisotropy energy in the layer plane; and

(5)

is the Zeeman energy (where M is the film magnetiza-
tion and B0 is the induction of an external magnetic field

W f af,
J f af, S f Saf

b2
------------------------ θ f θaf–( )cos σ,d∫–=

W W f af, d3r wex
f wan

f wZ
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which is aligned parallel to the film plane and forms the
angle ϕ with the preferred axis).

In this case, we disregard the sublattice angularity
(by virtue of the smallness of B0) and the corresponding
Zeeman energy of the antiferromagnet. For definite-
ness, we assume that Jf, af > 0 and θaf = 0 deep into the
substrate. As a result, the magnetization curve at ϕ = 0
is shifted toward the negative-field range.

Malozemoff [4] and Mauri et al. [5] obtained an
estimate of the corresponding shift in the form

(6)

where a is the film thickness. This result was obtained
from simple considerations: the magnetization reversal
of the film brings about the formation of a domain wall

with the surface energy (Aaf Kaf)1/2  in the substrate,
and the Zeeman energy gain should compensate for the
expenditure of energy to form the wall.

This estimate for  is valid for the large exchange

stiffness of the film when the energy (Af Kf)1/2  of the
domain wall in the film is higher than that of the domain
wall in the substrate. Otherwise, the above estimate
turns out to be erroneous.

Before preceding to the case of a lower energy of the
domain wall in the ferromagnet, it should be noted that,
in a magnetic field, the characteristic width ∆f (B0) of
the 180° domain wall is governed not by the competi-
tion between the exchange interaction and anisotropy
energies but by the competition between the exchange
interaction energy and the sum of the anisotropy and
Zeeman energies [6]; that is,

(7)

It is easy to see that the Zeeman energy in the vicin-
ity of the Curie point of the ferromagnet makes the
dominant contribution (M ∝  Sf).

Let the external magnetic field be applied antiparal-
lel to the direction of the film magnetization in the
absence of the field. Now, we determine the magnetic
induction Bf at which the 180° domain wall aligned
parallel to the film–substrate interface is formed in the
film in the vicinity of the interface (Fig. 1a) under the

assumption that Bf ! , i.e., that the substrate
remains virtually homogeneous. For this purpose, we
equate the domain wall energy and the Zeeman energy

Baf
0 Aaf Kaf( )1/2Saf

2
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gain. Taking into account that the domain wall can arise
in the film only at ∆f(B0) < a, we obtain

(8)

As the magnetic field increases to B0 ≈ Baf, the
domain wall becomes thinner; i.e., it is “pressed” to the
interface. The value of Baf can be found from the con-
dition for the equality of the domain wall energies in the
ferromagnet and the antiferromagnet; that is,

(9)

At B0 ≈ Baf, the domain wall begins to move into the

substrate. At B0 @ , the film becomes homoge-
neously magnetized and a 180° domain wall arises in
the antiferromagnet in the vicinity of the film boundary
(Fig. 1b). Certainly, this state is metastable, because,
for the domain wall, it is likely to disappear after pass-
ing across the whole width of the substrate.

For very thin films (when Bf > ), the 180°
domain wall is formed immediately in the antiferro-
magnetic substrate. The dependences of the magnetic
fields Bf and Baf on the film thickness are plotted in
Fig. 2.
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Fig. 1. Domain walls (gray regions) in (a) the film and (b)
the substrate in the vicinity of the interface. Arrows indicate
the directions of the magnetization and antiferromagnetic
vectors.
2



2100 MOROSOV, SIGOV
Thus, the magnetization curve is shifted by min(Bf ,

) from the symmetric position toward the negative-
field range. The corresponding magnetization curve is
depicted in Fig. 3. The above analysis can easily be
extended to the case of magnetic fields applied at arbi-
trary angles ϕ to the film magnetization.

3. PHASE DIAGRAM IN THE CASE
OF A ROUGH INTERFACE

Apparently, the real interface is not perfectly
smooth and involves atomic steps that change the sub-
strate thickness by one atomic layer. On different sides
of the step, spins of the upper atomic layer of the anti-
ferromagnet have opposite orientations. As a result,
regardless of the sign of the exchange integral Jf, af for

Baf
0

No domain wall

DW in AF

DW in F

Bf

B

Baf

a–1

B0
af

∆–1(0)

Fig. 2. “Thickness–field” phase diagram in the case of a
smooth interface. The solid line shows the dependence of
the bias field on the film thickness.

Fig. 4. A transverse domain wall due to frustration in the
film.
PH
spins of the film and the substrate, the presence of steps
at the interface leads to frustrations. In our previous
work [7], the phase diagram of the magnetic film on the
antiferromagnetic substrate with a large exchange stiff-
ness was considered in the framework of the continuum
model.

In the absence of a magnetic field, an individual step
is responsible for the formation of a 180° domain wall
of a new type—a domain wall induced by the frustra-
tion. This wall coincides with the step edge and pene-
trates throughout the film; i.e., the wall plane is perpen-
dicular to the film surface (Fig. 4). On different sides of
the step, spins of the ferromagnet are parallel to spins

of the upper layer of the antiferromagnet. The width 
of this domain wall in the vicinity of the film–substrate

δ0
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M

Fig. 3. Magnetization curve in the case of a smooth film–
substrate interface. The magnetic field strength is given in
arbitrary units, and the magnetic moment is expressed in
terms of the saturation moment.

80

70

60

50

40

30

20

10

0 70605040302010
z

δ
f

Fig. 5. Dependence of the thickness of the “unusual”
domain wall on the distance to the interface. The distances
are expressed in terms of a lattice constant (a = 64).
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interface depends on the parameter η defined by the
formula

(10)

If η @ 1, the width  is given by the expression

(11)

An increase in the distance from the interface results in
an almost proportional increase in the domain wall
width (Fig. 5). The characteristic wall width is esti-
mated as δf ≈ a. For a typical film thickness a ~10 Å,
this width is considerably less than the width of conven-
tional domain walls [see expression (7)]. At η ! 1, the
increase in the width of the domain wall can be ignored
and the wall width can be represented as

(12)

The above relationships hold at a < ∆f(0). At a >
∆f(0), the domain wall width increases to ∆f(0) and then
remains unchanged.

When the distance R between the step edges is larger

than max( , a), the film breaks down into domains
with opposite magnetization directions. Distortions of
the order parameter in the substrate appear to be insig-
nificant.

For a relatively thick film (a @ R @ ), the film in
the bulk is in a single-domain state and static spin vor-
tices arise in the film in the vicinity of the interface
(Fig. 6). If the exchange stiffness of the film is relatively
large, the vortices are formed in the substrate. Each vor-
tex is bounded by the step edges and diverges in the
direction away from the edges. At ∆f(B0) > R, the vortex
size in the direction perpendicular to the interface is
equal to R in order of magnitude. At ∆f(B0) < R, a
domain wall aligned parallel to the interface is formed
in the film and the transverse size of the vortex is equal
to ∆f(B0).

As was noted above, the steps separate the interface
into regions of two types with the total surface areas σ1
and σ2. The interfacial energy is minimum at θf = θaf

in regions of the former type and at θf = π – θaf in
regions of the latter type. Now, we assume that the mag-
netization of the ferromagnetic film makes an angle ψ
with the antiferromagnetic order parameter deep into
the substrate. In this case, the angle θf varies from zero
to ψ in vertices in the former regions and from ψ to π in
vertices in the latter regions.

As in the case of a large exchange stiffness of the
film [1, 8], it can be shown, by analogy with the “mag-
netic proximity” model proposed by Slonczewski [9],
that the energy of the system can be represented by the
relationship

(13)

η J f af, Saf a/J f S f b.=

δ0
f

δ0
f b J f af, Saf J f S f+( )/J f af, Saf .≈

δ f a/ η .≈
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where

(14)

at ∆f(B0) > R and Cj = (AfKf)1/2  at ∆f(B0) < R. If

σ1 = σ2, the angle ψ =  corresponds to the minimum

energy of the system in a zero magnetic field.

At R ! , the system is characterized by weak dis-
tortions of the order parameter. Below, we will consider
the behavior of each phase in an external magnetic
field.

4. THE SINGLE-DOMAIN PHASE 
IN A MAGNETIC FIELD

The application of the magnetic field results in rota-
tion of the film magnetization and in the formation of
the domain wall first in the film and then in the sub-
strate. The magnetization reversal and unidirectional
anisotropy in the single-domain phase are similar to
those observed in the case of the smooth interface. The
differences are as follows.

(i) In the absence of the field, the film magnetization
is perpendicular rather than parallel to the antiferro-
magnetic order parameter.

(ii) In the field range corresponding to ∆f(B0) < R,
the vortex shape changes: the vortex size in the direc-
tion perpendicular to the interface becomes equal to
∆f(B0) in order of magnitude and decreases with an
increase in the field. The vortices take an elongated
shape (Fig. 7a) and are then displaced into the substrate
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Fig. 6. Static spin vortex in the film in the vicinity of the
film–substrate interface (z = 0) at a @ R. Numbers near the
isolines of θf are the values of θf in units of π. Steps are
located at the points x = ±8 and z = 0. The distances are
expressed in terms of a lattice constant.
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by the magnetic field (Fig. 7b). This field is defined by
the expression

(15)

where ∆af = π(Aaf /Kaf)1/2.

However, even at B0 > , in the region of radius
∆f(B0) which is adjacent to the step edge, the distortions
of the order parameter occur in the film rather than in
the substrate (Fig. 7b). Qualitatively, we can make the
inference that the magnetic field displaces the distor-
tions from the region in which the Zeeman energy
exceeds the difference between the energies of inhomo-
geneities in the antiferromagnet and the ferromagnet.

5. THE POLYDOMAIN PHASE
IN A MAGNETIC FIELD

In the polydomain phase, the unidirectional anisot-
ropy can be observed in the case when the magnetic
field is applied perpendicularly to the magnetization
direction in domains and the domain walls with a par-
ticular sense of rotation of magnetization are predomi-
nant [3]. These 180° domain walls disappear with an
increase in the magnetic field strength for one of the
two directions of the magnetic field and transform into
360° domain walls for the reverse direction of the field.

The characteristic change in the wall energy in the
saturation field is of the order of the energy. There-

B̃af
Aaf

2
Saf

4

MA f S f
2 min R ∆af,( )[ ] 2

----------------------------------------------------,≈

B̃af

(a)

(b)

f

af

f

af

Fig. 7. Vortices in the film–substrate system in the magnetic

fields (a) B0 <  and (b) B0 > . The isolines of the
order parameter are shown.

B̃af B̃af
PH
fore, the shift of the magnetization curve can be
determined as

(16)

where ∆n is the excess concentration of particular walls
and n is the total wall concentration. When the field is
applied parallel to the domain magnetization, the mag-
netization curve is not shifted.

Let us now analyze the magnetization reversal. If
the domain size is larger than ∆af, the surface can be
treated as virtually smooth; i.e., we can consider the
magnetization reversal of an individual domain in the
same manner as for the smooth interface. In this case,
the region in the vicinity of the domain walls makes an
insignificant contribution. The characteristic magneti-

zation field is of the order of min(Bf , ).
In the case when R ! ∆af and the magnetic field is

applied normally to the domain magnetization, the

magnetization reversal of domains in the field B0 < 
occurs in much the same manner as in the case of the

smooth interface. At Bf  < , the magnetization vector
in the domain in the magnetic field B0 ~ Bf begins to
rotate and a spin vortex arises in the film in the vicinity
of the interface. The transverse size of this vortex

decreases with an increase in the field. At B0 > , a set
of static vortices (similar to that in the single-domain
phase) appears in the antiferromagnetic substrate.
Since the film magnetization in a strong external field is
orthogonal to the order parameter deep into the antifer-
romagnetic substrate, no domain walls are formed. At

Bf > , the vortices appear immediately in the sub-
strate. The characteristic magnetization field is equal to

min(Bf , ).
The magnetic field applied parallel to the magneti-

zation in ferromagnetic domains leads to a magnetiza-
tion similar to that considered above, except that the
90° domain wall is formed in the substrate in the mag-
netic field defined as

(17)

The reason for the formation of this wall is the same as
in the case when the film magnetization in the single-
domain phase in the absence of the magnetic field is
orthogonal to the order parameter deep into the sub-
strate: the formation of the wall results in a decrease in
the energy of the system of vortices.

Actually, in the absence of the domain wall, no vor-
tices are formed in domains whose magnetization is
parallel to the external field. At the same time, a 180°
vortex arises in the magnetic field B0 ≈ min(Bf ,

∆af/R) in domains with initial antiparallel orienta-
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tions of the magnetization and the field. In the presence
of the domain wall, 90° vortices appear in domains of
both types. Note that, in different-type domains, the
magnetization (or the antiferromagnetic order parame-
ter) has an opposite sense of rotation. Since the vortex
energy is proportional to the rotation angle squared, the
energy of vortices decreases in the presence of the
domain wall. The difference between the energies of
the states with a domain wall and without it should
exceed the energy of formation of the domain wall.

6. CONCLUSIONS
Thus, the main inferences made in the present work

can be summarized as follows.
(1) The unidirectional anisotropy and the character-

istic magnetization field of the ferromagnetic film on
the antiferromagnetic substrate depend on the film
thickness and the degree of roughness of the film–sub-
strate interface.

(2) The presence of atomic steps (changing the anti-
ferromagnet thickness by one monoatomic layer) in the
interface leads to frustrations in the ferromagnet–anti-
ferromagnet system. In thin films, the frustrations are
responsible for the formation of domain walls of the
new type that separate the film surface into domains. In
thicker films, static spin vortices arise in the vicinity of
the interface, whereas the magnetization in the bulk of
the film remains unchanged.

(3) In single-domain films, the formation of domain
walls in the course of magnetization reversal depends
on the film thickness. In thin films, the domain wall is
immediately formed in the antiferromagnetic substrate.
In thick films, the domain wall initially arises in the film
in the vicinity of the interface with the substrate. As the
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
field increases, the wall becomes sharper and then
moves into the antiferromagnetic substrate.

(4) Similar behavior is observed for the static spin
vortices arising in polydomain films during their mag-
netization reversal.
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Abstract—The low-temperature behavior of the magnetic susceptibility of the V15 low-spin cluster in ultras-
trong magnetic fields of up to 550 T was studied. Ultrastrong magnetic fields were generated by an MK-1 mag-
netic explosion generator. Anomalies in the susceptibility were found to exist in fields B1 = 200 T and B2 = 350 T.
It is concluded that these anomalies indicate the initial phase of a field-induced transformation of the cluster
magnetic structure from quasi-ferrimagnetic to ferromagnetic. This transformation occurs by discrete quantum
jumps at low temperatures. The experimental data are compared with theory. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Considerable interest is presently focused on mag-
netic nanoclusters containing d or f ions (Mn12Ac, Fe6,
Fe8, Fe10, Fe17, V12, etc.) [1–11], most of which are
giant-spin organometallic molecules. These clusters are
mesoscopic objects whose behavior reveals, in addition
to specific quantum features typical of individual
atoms, classical characteristics inherent in bulk single
crystals. The clusters form molecular crystals in which
they retain their individuality, because the coupling
between the clusters is fairly weak. The unique proper-
ties of such systems are molecular bistability [12] and
macroscopic quantum tunneling of magnetization [5, 8,
12, 13]. These phenomena are of undeniable interest for
understanding the fundamental problems of magne-
tism. Until recently, only integer-spin clusters, such as
Mn12Ac (S = 10 in the ground state), Fe8 (S = 10 in the
ground state), and Mn6R6 (S = 12 in the ground state),
were studied. A deeper insight into the physics of mag-
netic nanoclusters can be gained, however, by studying
clusters with a half-integer spin, to which the V15 mag-
netic cluster belongs.

Moreover, one should know the exchange interac-
tions between the magnetic ions contained in a cluster.
The most direct method of studying these interactions
is based on measurements of the total magnetization
curve in megagauss magnetic fields. This is the object
of the present study, which deals with the behavior of
the magnetic susceptibility of the V15 cluster in ultras-
trong magnetic fields.
1063-7834/02/4411- $22.00 © 22104
2. EXPERIMENT

We measured the magnetic susceptibility of a poly-
crystal formed of polyoxyvanadate V15 molecules

(K6[ As6O42(H2O)] · 8H2O). These crystals possess
trigonal symmetry (space group R3 with a = 14.029 Å,
α = 79.26°, V = 2632 Å3 [11, 14]). The unit cell con-
tains two V15 clusters. The V15 cluster consists of 15 VIV

ions, each having a spin S = 1/2. The VIV ions occupy
the vertices of two plane hexagons and of a triangle
located between them. The cluster structure is shown
schematically in Fig. 1. Each hexagon of the cluster
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1
J

2J '3

4

5 6 J2

J1
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Fig. 1. Schematic structure of the V15 cluster and exchange
interactions between vanadium ions.
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contains three pairs of strongly coupled spins (J ≈
−800 K); the spin of each ion belonging to the triangle
is coupled to two pairs of spins, with one pair belonging
to the upper hexagon and the other to the lower hexagon

(J ' ≈  ≈ –150 K, J '' ≈ J2 ≈ –300 K). The exchange
interaction between the spins located at the vertices of
the triangle is very weak (J0 ≈ –2.5 K [15]). The mag-
netic (dipole) interaction between the spins of the
neighboring clusters is negligible (a few millikelvins).
The ground-state cluster spin is S = 1/2. This value of
the spin results from antiferromagnetic interactions
between the VIV ions [14]; therefore, such a cluster can
be treated on the molecular level as a multisublattice
ferrimagnet. An external magnetic field induces trans-
formation of the magnetic structure from quasi-ferri-
magnetic with spin S = 3/2 to ferromagnetic with S =
15/2. According to [16], this transformation should take
place in ultrastrong magnetic fields and proceed via
three quantum jumps at low temperatures.

The magnetic susceptibility measurements were
conducted at liquid- helium temperature in fields of up
to 550 T. Magnetic fields were produced by an MK-1
magnetic explosion generator [17]. The generator was
employed in its single-stage version (without interme-
diate internal stages) to produce a smooth magnetic-
field pulse and to increase the usable volume. Several
samples (from four to eight) could be studied in one
experiment. The original magnetic field (B ≈ 16 T) was
generated in a thin-walled multilayered multiple-coil
solenoid by a capacitor battery discharge (W = 2 MJ).
The magnetic flux trapped inside the conducting cylin-
der was compressed by the products of explosion to a
diameter of 20 mm. The magnetic-field compression
time was about 16 µs. At the maximum magnetic field,
the usable volume was a cylinder of approximately
20 mm in diameter and about 100 mm in length. The
samples and magnetic-field sensors were disposed on a
plate of fiberglass laminate and immersed in liquid
helium in a continuous-flow cryostat. The magnetic
field was measured with a set of single-turn induction
sensors varying from 0.6 to 14.0 mm in diameter
wound with PÉTV-2 wire. The signals were fed to Tek-
tronix 784 and Tektronix 744 four-channel oscillo-
graphs having a resolution of 2 ns/T.

The magnetic susceptibility was measured with a
compensation pickup, which represented two oppo-
sitely connected, well-compensated induction coils.
The PÉTV-2 wire, 71 µm in diameter, was laid in spiral
grooves 2 mm in diameter cut in two caprolon blocks,
with 9 turns in each. The degree of coil compensation
was checked in a high-frequency magnet. The total coil
areas NS (where S is the area of one turn) differed by no
more than 2%. A hole 1.6 mm in diameter and intended
for placing the sample to be studied was drilled in one
of the blocks. When one of the coils contains a sample,
the signal is proportional to the derivative of the sample
magnetic moment, U(B) ∝  dM/dt + KdB/dt. The coeffi-
cient K depends on the accuracy with which the coils

J̇1
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are compensated. An ideal coil compensation is impos-
sible to achieve, particularly if the rate of magnetic field
variation is as high as dB/dt ≈ 106 T/s. However, if the
rate of magnetic field variation dB/dt is a smooth func-
tion of time, the jumps observed on the U(B) curve can
originate only from a change in the sample magnetic
moment.

Figure 2 presents an oscillogram of the signal
obtained from the inductive sensor of the differential
magnetic susceptibility dM/dt. At fields of ~200 and
350 T, one can see signal jumps, which may be due to
changes in the sample magnetic moment produced by
the V15 cluster undergoing discrete quantum transitions
in the spin structure.

3. DISCUSSION OF RESULTS

The theoretical study of the spin structure rearrange-
ment in a V15 cluster conducted in [16] yielded analyti-
cal relations describing the behavior of the cluster mag-
netization upon variation of the magnetic-field induc-
tion B and of temperature T. The expression given in
[16] for the magnetic moment of a cluster can be cast in
the form

(1)

M B( )

=  4µB

S 3S S2– 2+( ) E S B,( )
kT

------------------– 
 exp

S 0=

3

∑

3S S2– 2+( ) E S B,( )
kT

------------------– 
 exp

S 0=

3

∑
--------------------------------------------------------------------------------- 3µB,+

6

5

4

3

2

1

0
0 100 200 300 400 500 600

B, T

U, V

Fig. 2. Inductive sensor plotted signal of differential mag-
netic susceptibility dM/dt vs. magnetic field.
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where

(2)

with J, J1, J ', J2, and J" being exchange integrals
between the VIV ions (Fig. 1).

Equation (1) allows one to derive the following rela-
tion for the magnetic susceptibility:

(3)

It follows from Eq. (2) that in the fields

(4)

,

the crossing of the lower energy levels of the cluster
occurs. This should initiate sharp anomalies at B1, B2,
and B3 (at low temperatures) in the magnetization (1)
and in the magnetic susceptibility χ(B, T) (3). Accept-
ing, as a rough estimate, the values J = –800 K, J ' ≈ J1 ≈
–150 K, and J '' ≈ J2 ≈ –300 K for the exchange integrals
[14], we obtain from Eq. (4) for B1, B2, and B3 the val-
ues 371, 650, and 929 T, respectively. The anomalies
revealed experimentally in the differential magnetic
susceptibility occur in fields B1 = 200 T and B2 = 350 T
(Fig. 2), which is in obvious disagreement with the the-
oretical figures. The observed anomalies in magnetic
susceptibility correspond to the following values of the
exchange integrals: J = –490 K, J ' = J1 = –80 K, and
J '' = J2 = –161 K. It should be pointed out that the pro-
cedure used in comparing the theoretical data with
experimental results does not allow an unambiguous
choice of the exchange parameters. To determine the
values of J, J ', J1, J", and J2, we used the relations J ' ≈
J1 and J '' ≈ J2 [14].

E S B,( ) –S J̃
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4. CONCLUSION

Thus, we have studied, both experimentally (in
fields of up to 550 T) and theoretically, the spin struc-
ture rearrangement induced by megagauss-scale mag-
netic fields in the V15 magnetic nanocluster. It was
shown that the transition from the quasi-ferrimagnetic
to the quasi-ferromagnetic structure of the VIV spins
occurs at low temperatures through three quantum
jumps. The experimental data were compared with the-
ory. It was established that the values of the exchange
integrals given in [14] do not allow quantitative
description of the experimentally observed initial stage
of the spin structure rearrangement of the V15 cluster. A
set of exchange parameters was proposed that permits
one to reconcile quantitatively the theoretical results
with experiment. Observation of a complete picture of
quantum jumps in the V15 spin structure would require
fields of up to 103 T.
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Abstract—The Faraday effect is measured in paramagnetic terbium gallate garnet Tb3Ga5O12 at a wavelength
λ = 0.63 µm at 6 K in pulsed magnetic fields up to 75 T increasing at a rate of 107 T/s for field orientation along
the crystallographic direction 〈110〉 . The experimental data are compared with the results of theoretical calcu-
lations taking into account the crystal fields acting on the Tb3+ ion and various contributions to the Faraday rota-
tion. Since the measurements in pulsed fields are carried out in the adiabatic regime, the dependence of the sam-
ple temperature on the magnetic field acting during a current pulse is obtained from the comparison of the
experimental dependence of Faraday rotation with the theoretically calculated dependences of the Faraday
effect under isothermal conditions at various temperatures. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the magnitude of experimentally attain-
able static magnetic fields reaches 50 T, while fields
with a higher induction (which are usually referred to as
ultrastrong) are generated only in the pulse regime [1].

Experiments in ultrastrong magnetic fields attract
considerable attention, since the substances investi-
gated in them are in extreme conditions (huge Zeeman
splittings for the spin and orbital degrees of freedom,
quantum limit in semiconductors and semimetals, “rup-
ture” of exchange coupling in magnetically ordered
materials and nanoclusters). In such experiments, mag-
netic transformations that cannot occur in other condi-
tions take place.

Although the methods of generation of pulsed mag-
netic fields in the range 50–100 T have been developed
to perfection, the measuring technique for such fields is
far from perfect. In particular, the entropy redistribution
among the magnetic subsystem, crystal lattice, and
thermostat and, hence, the temperature conditions for
pulsed magnetization remain unclear, since the rate of
variation of the field in experiments with ultrastrong
fields is very high (107–108 T/s). This work is devoted
to this methodologically important and physically
interesting problem. It is expedient to choose for such
experiments a material whose properties and energy
spectrum of the magnetic subsystem are well known.
We chose terbium gallate Tb3Ga5O12 with the garnet
structure for our investigation. The “tracing” of the
magnetic subsystem (and of the sample temperature) is
1063-7834/02/4411- $22.00 © 22107
carried out using the Faraday effect, whose features in
rare-earth compounds with the garnet structure have
been studied extensively [2–4]. An important argument
in favor of the Faraday effect is that the measuring unit
is outside the magnetic field in this method, which
makes it possible to minimize electric stray currents
induced in ultrastrong pulsed magnetic fields.

Crystals with garnet structure possess cubic symme-
try. Their crystallographic structure is rather complex

and is described by the space group  [5–7]. The unit
cell of the garnet contains 160 atoms. Rare-earth ions in
the garnet structure are located in six inequivalent
dodecahedral positions with orthorhombic symmetry
of their surroundings (point group D2) with different
orientations of local axes. The orientation of local axes
for all six inequivalent sites can be obtained by rotating
the crystallographic system of coordinates through an
angle ±π/4 relative to the axes [100], [010], and [001]
(Table 1).

The low symmetry of the crystal surroundings of the
rare-earth ion R3+ in the garnet structure leads to the
maximum possible removal of degeneracy of its ground
multiplet. For the non-Kramers ion Tb3+, the low-
energy part of the spectrum consists of quasi-doublets:
the ground state is a quasi-doublet with a gap of 2.5 cm–1,
the first excited quasi-doublet lies 34 cm–1 above the
ground one, the third is separated from the latter by
43 cm–1, and so on [8]. The exchange interaction energy
in rare-earth gallate garnets is lower than the energy of
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Table 1.  Orientation of local symmetry axes for six inequivalent dodecahedral positions of rare-earth ions in rare-earth garnets

Unit vector 1 2 3 4 5 6

ex [001] [001] [100] [100] [010] [010]

ey [1 0] [110] [01 ] [011] [ 01] [101]

ez [110] [ 10] [011] [0 1] [101] [10 ]

1 1 1

1 1 1

Table 2.  Crystal-field parameters for terbium gallate garnet [10] (in cm–1)

B20 B22 B40 B42 B44 B60 B62 B64 B66

–81 169 –2163 249 945 677 –155 1045 –4
the crystal field (the Néel temperature of terbium gal-
late is TN = 0.25 K [9], which corresponds to approxi-
mately 0.17 cm–1); consequently, we can disregard the
exchange interaction in an analysis of experimental
results at liquid-helium temperatures.

The parameters of the crystal field acting on a Tb3+

ion in gallate garnet have been determined by various
methods [10, 11]. In our opinion, the set of parameters
given in [10] (Table 2) is most adequate. This set of
parameters makes it possible to describe quantitatively
the crossing of energy levels in the spectrum of the Tb3+

ion, which is observed experimentally in Tb3Ga5O12, in
a field parallel to direction 〈110〉 , as well as magnetiza-
tion curves along this direction in fields up to 15 T [10].
One of our tasks was to verify the applicability of the
above crystal-field parameters for describing the prop-
erties of the terbium gallate garnet in stronger fields (up
to 75 T).

It should be noted that magnetization was measured
in [10] in static fields and, hence, under isothermal con-
ditions. In the pulsed magnetic fields used in our exper-
iments, the measurements were made in the adiabatic
regime. It was demonstrated for the first time in [12]
that, by comparing the experimental results obtained
under adiabatic conditions with the (experimental and
theoretical) results obtained in the isothermal regime, it
is possible to determine the magnetocaloric effect. This
was a second problem solved in this study. It should be
noted that, apart from its scientific value, an analysis of
the magnetocaloric effect is important for applications,
since rare-earth paramagnetic garnets are regarded as
promising materials for low-temperature magnetic
refrigerators [13].

2. THEORY

2.1. Faraday Effect

The angle of rotation in the light-polarization plane
in Tb3Ga5O12 contains two contributions,

(1)αF α Tb( ) αD,+=
PH
where α(Tb) is the contribution from paramagnetic
Tb3+ ions and αD is the contribution from the matrix
formed by diamagnetic gallium and oxygen ions. The
term αD is independent of temperature and proportional
to the magnetic field B,

(2)

As the Verdet constant V of the matrix, in the first
approximation, we can take the Verdet constant of
yttrium gallate garnet V(YGG) = 0.043 min/(cm Oe)
[14].

In the visible and ultraviolet regions, the contribu-
tion of rare-earth ions to Faraday rotation is mainly
determined by the allowed electric-dipole f–d transi-
tions, except in narrow spectral regions in the vicinity
of the resonance frequencies of forbidden f–f transi-
tions. In general, the quantity α(Tb) contains three
terms: the paramagnetic contribution, the contribution
of mixing, and the diamagnetic contribution [2–4, 15].
The diamagnetic contribution is linear in the magnetic
field B, is significant only in a narrow spectral region in
the vicinity of resonance frequencies of optical transi-
tions, and is reduced to a renormalization of constant V
in Eq. (2). According to [3], the paramagnetic contribu-
tion and the contribution of mixing have the form

(3)

where M0 is the magnetization associated with the split-
ting of the energy levels of the ground multiplet 7F6,
MVV is the Van Vleck correction to magnetization [3, 4]
associated with admixing of the first excited multiplet
7F5 of the Tb3+ ion to the ground multiplet,  = 3/2 is
the Landé factor of the ground multiplet of this ion, and
A is a constant depending on the frequency of incident
radiation and the oscillator strength for allowed f–d
transitions. In order to calculate M0(B) and MVV(B) and
thus calculate αF(B), we must determine the electron
structure of Tb3+ ions formed under the action of the
ionic surroundings (described by the crystal-field

αD VB.=

α Tb( ) A M0

gJ0

2 gJ0
–

---------------MVV– 
  ,=

gJ0
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Hamiltonian) and the magnetic field. The actual Hamil-
tonian of the problem is [6]

(4)

where

(5)

 are irreducible tensor operators [16]; k = 2, 4, 6; q ≤
k; and summation over i is carried out over all 4f elec-
trons of the Tb3+ ion. In Eq. (4), HZ is the interaction
Hamiltonian of the ion with the magnetic field:

(6)

It was mentioned above that in our calculations we
used the set of crystal field parameters from [10]
(Table 2).

Using this algorithm, we calculated the energy lev-
els En and determined the eigenfunctions of Tb3+ ions in
a wide range of magnetic fields parallel to the 〈110〉
axis, taking into account inequivalent positions occu-
pied by Tb3+ ions in the garnet structure (Table 1). It
was found that, as indicated in [10], the lower energy
levels of the Tb3+ ion located in position 1 cross in a
field B ≈ 9.5 T. Then, we calculated the magnetizations
M0(B) and MVV(B) in Tb3Ga5O12 as a function of the
magnetic field at various temperatures (6 ≤ T ≤ 41 K).
It should be noted that, according to calculations, the
value of MVV(B) turned out to be quite small (it amounts
to 1% of M0(B) in fields on the order of 100 T) and can
be disregarded in the first approximation. The contribu-
tion of terbium to the Faraday effect is calculated using
Eq. (3) (in relative units) for various temperatures under
isothermal conditions.

2.2. Magnetocaloric Effect

Since we measured Faraday rotation under adiabatic
conditions, it is necessary to take into account in calcu-
lations the magnetocaloric effect, i.e., the change in the
sample temperature as a result of magnetization. The
change in temperature upon adiabatic magnetization
can be calculated by solving the equation of the adiabat
(see, e.g., [17])1:

(7)

where SP =  is the phonon contribution to the

entropy; CV is the molar heat capacity, which can be

1 Here, we assume that entropy is transferred from the magnetic
subsystem to the lattice quite rapidly, so that the magnetic sub-
system and the lattice can be described by the same temperature.

Ĥ Ĥcr ĤZ,+=

Ĥcr Bkq Cq
k i( ) C q–

k i( )+( );
kqi

∑=

Cq
k

ĤZ µB L 2S+( )B.=

SM T0 0,( ) SP T0( )+ SM T B,( ) SP T( ),+=

CV Td
T

-------------
T0

T∫
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approximated at low temperatures by the expression

(8)

where n = 20 is the number of atoms in a Tb3Ga5O12
molecule; R is the universal gas constant; and ΘD is the
Debye temperature, whose exact value for Tb3Ga5O12 is
not known to us at the moment; however, a comparison
of the available data on the Debye temperature for alu-
minate garnets [18] makes it possible to estimate it as
ΘD ≈ 500 K. It should be noted that the approximation
of the heat capacity by Eq. (8) is rather rough, espe-
cially for crystals with a complex crystallographic
structure as in rare-earth garnets. This follows, for
example, from the results obtained in [19], where it is
shown that the Debye temperature of gadolinium gal-
late garnet depends strongly on the temperature at
which it is measured.

Entropy SM (per Tb3Ga5O12 molecule) in Eq. (7) is
given by

(9)

where Zm =  is the magnetic contri-

bution to entropy, which is averaged over inequivalent
positions (index m). The solution of Eq. (7) gives the
magnetocaloric effect, viz., the field dependence of
T(B).

The theoretical formulas derived in this section were
used for an analysis of experimental data (see below).

3. EXPERIMENTAL TECHNIQUE 
AND SAMPLES

We measured the Faraday effect in Tb3Ga5O12 for
the initial sample temperature 6 K. Measurements were
made at a wavelength of 0.63 µm lying in the transpar-
ency window, far away from the absorption lines of
rare-earth ions, and were carried out according to the
conventional intensity scheme using a gas laser. A
pulsed magnetic field up to 75 T was generated by dis-
charging a capacitor bank through a one-turn solenoid.
Cooling to low temperatures was carried out in a gas-
flow helium cryostat, so that the sample was in helium
vapor during measurements. The pulse duration was
6 µs. Earlier [12], it was proved theoretically and
experimentally that, for such a cooling regime, magne-
tization is an adiabatic process if the rate of increase in
the field exceeds about 100 T/s. Since the rate of varia-
tion of the magnetic field in our case was much higher
(more than 107 T/s), we can state that measurements
were made under adiabatic conditions.

CV
12
5
------Rπ4n T /ΘD( )3,=
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2
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A terbium gallate garnet Tb3Ga5O12 single crystal
was grown from solution in melt. A plate having a
thickness of 0.64 mm and oriented perpendicular to the
crystallographic direction 〈110〉  was cut from this crys-
tal.

4. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 1 shows the experimental field dependence
of the Faraday effect in Tb3Ga5O12 in a pulsed field for
the initial sample temperature 6 K. It can be seen that
Faraday rotation attains saturation in comparatively
weak fields B ≈ 40 T. It should be noted that no features
associated with crossing of energy levels of the Tb3+ ion
in a magnetic field are observed on the experimental
curves. Figure 1 also shows the theoretical dependences

0.2

0 20

–
α F

, 1
04 °/

cm

B, T

0.4

0.6

0.8

1.0

10 30 40 50 60 70

6 K

41 K

Fig. 1. Dependence of the Faraday effect in Tb3Ga5O12 on
the magnetic field. Thick curve describes the experimental
αF(B) dependence under adiabatic conditions at the initial
temperature of 6 K of the sample; thin curves are the exper-
imental αF(B) dependences under isothermal conditions,
obtained at temperatures varying from 6 to 41 K with a step
of 5 K.
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Fig. 2. Magnetocaloric effect T(B) in Tb3Ga5O12. Dark
squares correspond to experimental results, and the solid
curve is calculated theoretically.
PH
of the Faraday effect in the terbium gallate garnet under
isothermal conditions at low temperatures. For plotting
these curves in absolute units, we made use of the fact
that, according to calculations, the magnetization M0 of
the terbium sublattice in strong fields (B ≥ 50 T) and at
low temperatures (T ≤ 50 K) is virtually independent of
temperature; i.e., the adiabatic and isothermal magneti-
zations coincide under these conditions. This allowed
us to determine constant A in Eq. (3) for the Faraday
effect from a comparison of theoretical results obtained
for isothermal conditions with the experimental data for
adiabatic magnetization in the region of strong fields
(B = 70 T); the result is A = 1500 deg/(µB cm).

It can be seen from Fig. 1 that the experimental adi-
abat of the Faraday effect intersects the theoretically
calculated isothermal αF(B) dependences. At the inter-
section points, the sample temperature in the adiabatic
regime is equal to the temperature of the corresponding
isothermal dependence. Thus, a comparison of the
experimental adiabatic curve of Faraday rotation of the
polarization plane of incident light with the αF(B) iso-
therms makes it possible to determine directly the mag-
netocaloric effect, i.e., the dependence of the sample
temperature on the magnetic field under adiabatic con-
ditions.

Figure 2 shows the T(B) dependence for terbium
gallate garnet determined in this way. It can be seen that
the increase in temperature as a result of adiabatic mag-
netization in a field of 75 T attains a value of 35 K. Fig-
ure 2 also shows a theoretical dependence calculated on
the basis of Eqs. (7)–(9) using the value ΘD = 500 K for
the Debye temperature. It can be seen that the experi-
mental and theoretical T(B) dependences are of the
same type and the calculated and experimental values
of magnetocaloric effect are close, although the exper-
imental effect is slightly stronger (by 3–4 K). The rea-
son for this discrepancy has not been found as yet.
According to estimates, the temperature variation as a
result of adiabatic magnetization depends on the Debye
temperature only slightly; its variation within 20–30%
does not remove the discrepancy between theory and
experiment. This discrepancy is probably due to the
non-Debye character of the phonon spectrum in garnets
(see above).

In Fig. 3, the theoretical adiabat of the Faraday
effect calculated by using the magnetocaloric effect
determined from the solution to Eq. (7) is compared
with the experimental αF(B) dependence measured at
the initial temperature of 6 K. It can be seen that the
agreement between the experimental and theoretical
curves is quite small, which confirms the correctness of
the model and the adequacy of the values of the param-
eters of the crystal field indicated above. We note that
other sets of crystal-field parameters available in the lit-
erature [11] provide a poorer description of the experi-
mental results.

It should be noted that, in all probability, the small
variations of the crystal-field parameters used by us
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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here will provide an even better agreement between the
experimental and theoretical results.

Figure 3 also shows the theoretically calculated iso-
therm of the Faraday effect at 6 K. It clearly displays a
feature near 9.5 T associated with a crossing of energy
levels. The absence of this feature in adiabatic measure-
ments can be explained by the elevation of temperature
due to the magnetocaloric effect, leading to a blurring
of this feature.

5. CONCLUSION

Thus, using the parameters of the crystal field acting
on Tb3+ ions in Tb3Ga5O12 taken from [10] (Table 2),
we have described both the behavior of magnetization
of terbium gallate garnet in weak magnetic fields under
isothermal conditions and the field dependence of the
Faraday effect in strong magnetic fields under adiabatic
conditions, as well as the dependence of the sample
temperature on the magnetic field during the action of a
pulse.
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Abstract—Domain wall (DW) dynamics in a low-damping YBiFeGa film with perpendicular magnetic anisot-
ropy was studied under FMR conditions. Measurements were carried out under radial expansion of magnetic
bubbles in high pulsed drive fields and in an in-plane dc magnetic field. A high-speed image recording technique
was employed. The pattern of the dependence of DW velocity on drive field for the parts of the DW oriented
parallel and perpendicular to the in-plane field was established. In all cases, this dependence contains a satura-
tion region in which the DW velocity increases noticeably with increasing in-plane field. The experimental data
obtained do not agree with theory. A possible explanation for this discrepancy is proposed. The onset of spa-
tially periodic distortions in a moving DW is discussed. © 2002 MAIK “Nauka/Interperiodica”.
While domain wall (DW) dynamics in ferrite-garnet
films with perpendicular magnetic anisotropy has been
extensively studied, the results reported relate primarily
to weak drive fields Hg not in excess of the saturation
magnetization 4πM. Only a limited number of studies
have dealt with stronger fields (Hg > 4πM), and the
results of these studies are contradictory. It is reported
in [1], for instance, that in this region the character of
DW motion changes, the saturated velocity behavior
being replaced by a regime in which the DW velocity V
increases substantially with the field Hg. In [2, 3], no
velocity saturation was observed, whereas in [4–6] it
was seen. Several communications have discussed the
effect of a dc in-plane field Hp on DW motion in high
drive fields. According to [7], when the field Hp is weak
(~4πM) and parallel to the film plane, the relation V(Hg)
has a region with positive differential mobility followed
by another region at higher Hg that exhibits negative
differential mobility. As Hp increases, the mobility in
the second region reverses sign to become positive. At
the same time, according to [5, 6], as the in-plane field
increases, the velocity saturation in weak fields Hp dis-
appears and the DW velocity increases monotonically
with increasing drive field. The data on the V(Hp)
behavior in high fields Hg are also contradictory. For
instance, the findings reported in [7] fit Eq. (12) from a
theoretical analysis made in [8]. However, the data
reported in [5, 6] agree neither with that relation nor
with the expression derived on the basis of a simple
model in [9]. Domain wall motion is frequently
observed to entail the so-called widening effect, i.e.,
formation of a broad diffuse boundary and generation
of microdomains in front of the moving DW [4–6, 10].
These phenomena are sometimes preceded by the onset
of spatially periodic DW shape distortions [1, 7, 10].
1063-7834/02/4411- $22.00 © 22112
While there is no lack of conjectures concerning the
origin of these effects [1, 7, 11–14], the problem
remains basically unsolved. In view of the disagree-
ments among the results obtained in various studies and
the fairly limited amount of available experimental
data, it appeared reasonable to study the dynamic
behavior of a DW in a low-damping film under high
drive fields. It is believed that in such fields, the effects
specific for this field region should be most clearly
expressed.

Our measurements were performed on a (111)-ori-
ented film of the YBiFeGa system with the following
characteristics: the film thickness h = 4.6 µm, 4πM =
156 G, the field of uniaxial anisotropy was 6200 Oe, the
Bloch wall width parameter ∆ = 2 × 10–6 cm, the effec-
tive gyromagnetic ratio γ = 1.67 × 107 Oe–1 s–1, the
Gilbert damping parameter α = 0.002, and the bubble
domain static collapse field was 34 Oe. A high-speed
video recording technique was used, with a rhodamine
6G dye laser (pumped by a nitrogen laser) providing
single light pulses ~5 ns long. The image obtained was
stored in digital video memory and could be displayed
on a monitor screen for processing. The spatial resolu-
tion was ~0.4 µm. A bubble was stabilized by a dc bias
field Hb and expanded by applying a pulsed uniform
field H directed opposite to Hb. The DW was displaced
by an effective drive field:

Hg = H – Hb + He,

where the last term takes into account the fact that the
effective field due to the DW curvature and the effective
demagnetization field normal to the film plane depend
on the bubble radius. This term in Hg was found using
the well-known relations from the theory of bubble sta-
bility (see, e.g., [15]). The lowest value of the drive field
in our measurements was 60 Oe, because below this
002 MAIK “Nauka/Interperiodica”
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value of Hg, the bubble shape underwent irreproducible
distortions. The dc in-plane magnetic field Hp applied
to the film could be varied. For Hp < 145 Oe, the maxi-
mum value of Hg was 970 Oe. In a stronger field Hp, the
walls of the expanding bubble approached the neigh-
boring domains; to avoid their interaction, measure-
ments under these conditions were conducted in lower
drive fields. The translation of parts of the bubble wall
parallel and perpendicular to the in-plane field was
measured experimentally as a function of time during
the drive field pulse. For this purpose, the laser illumi-
nation pulse was delayed with respect to the instant of
the field pulse application by an amount varied from 0.3
to 0.7 µs. The measurements were made repeatedly for
each delay time. To exclude the effect of the initial DW
displacement phase, the minimum delay was always
0.3 µs. The data thus obtained were used to find the DW
velocity and its dependence on the drive field Hg for
various values of Hp.

Figure 1 exemplifies typical V(Hg) dependences
obtained for the in-plane field Hp equal to 0, 200, and
360 Oe. At Hp = 0, the DW velocity is seen to reach sat-
uration at Vs = 4.5 m/s. This velocity agrees well with
the value of 4.2 m/s calculated for the film under study
from the empirical relation Vs = M∆γ(1 + 7.5α) [16,
17]; this agreement lends additional support to the the-
oretical model developed in [18, 19], which is in accord
with this relation and according to which the saturation
regime corresponds to the state of chaos. The analysis
performed in [18, 19] was applicable to low fields Hg <
4πM. As follows from our data, the state of chaos can
also set in in high drive fields.

For Hp ≤ 110 Oe, the experiment reveals only the
velocity saturation region throughout the Hg variation
range studied. When Hp > 145 Oe and is oriented per-
pendicular to the DW plane, one can see an interval of
V(Hg), preceding the velocity saturation region, where
the DW velocity increases with the field Hg (Fig. 1). If
the field Hp is parallel to the DW plane, such an interval
appears for Hp > 250 Oe. Thus, the initial part of the
V(Hg) relation (Hg ≤ 220 Oe) is characterized by veloc-
ity anisotropy. As already mentioned, the measure-
ments were conducted in drive fields Hg ≥ 60 Oe; for
this reason, the region of linear DW translation and a
maximum in the DW velocity are not observed,
because, even in high Hp fields, the maximum occurs
for Hg < 5 Oe in low-damping films [20]. It is believed
that, after the steady-state motion breaks down, the DW
structure contains a horizontal Bloch line (HBL) and
undergoes periodic transformations, with the wall
velocity increasing with the field Hg (see [21, Fig. 1]
and [22, Fig. 1]). It is apparently this region of increase
in velocity that becomes manifest in the corresponding
curves in Fig. 1. The parts of the DW oriented perpen-
dicular and parallel to the in-plane field should differ in
structure. In the former case, the DW should contain a
region of the Néel wall type whose size increases with
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      200
Hp [23]. The HBLs in such DWs will apparently have
different twist angles and move differently; this is what
initiates an anisotropy in the DW velocity.

The V(Hg) relations obtained by us differ from those
observed in [7]. In our case, regions with negative dif-
ferential mobility that transform into those exhibiting
positive mobility were not seen. The reason for these
discrepancies is unclear; the films studied had similar
parameters, except the uniaxial-anisotropy field (in our
sample, this field was ~60% higher). The difference
from the results reported in [5] is as difficult to explain.
It is possible that the measurements in [5] were carried
out in fields Hg that were not high enough, and thus the
velocity saturation region was not reached.

The data plotted in Fig. 1 were used to derive the
dependence of the saturation velocity on the in-plane
field for DWs oriented differently relative to this field
(Fig. 2). The saturation regime is known to set in when
the average DW velocity reaches a certain critical value
and does not vary thereafter. The Vs(Hp) relation is
likely to reflect the dependence of this critical velocity
on the in-plane field. This field should stabilize the DW
spin structure. Therefore, Fig. 2 suggests that, starting
with a certain value of Hp, the DW structure with a
Néel-type region observed in walls oriented perpendic-
ular to the in-plane field is more stable. In this wall,
chaos arises at a higher DW velocity. The theory devel-
oped in [8] permits the conclusion that the velocity sat-
uration effect is caused by a change in the relaxation
mechanisms with increasing DW velocity and yields
the following expression relating the saturation velocity
and the in-plane field:

(1)Vs
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Fig. 1. Domain wall velocity plotted vs. drive field for dif-
ferent values of the in-plane field Hp: (1) 0, (2) 200, and (3)
360 Oe. (a, b) The wall is parallel and perpendicular to the
field Hp, respectively.
2



2114 BOKOV et al.
Another relation was obtained in [9] from an analysis of
a simple model of wall motion and has the form

(2)

Equations (1) and (2) are plotted in Fig. 2. The obvious
disagreement with the experimental data is accounted
for by the fact that the velocity saturation regime is due
to a mechanism different from the ones treated in the
communications cited above.

Throughout the ranges of the fields Hg and Hp stud-
ied here, the wall parallel to the in-plane field did not
exhibit the spatially periodic distortions reported in [7,
10] for this DW orientation. At the same time, as in [7,
10], such distortions formed on the wall perpendicular
to the in-plane field. When this field was 110 Oe, the
distortions appeared when the wall moved in a drive
field Hg ≥ 300 Oe. As Hp increases, the value of the
drive field above which DW distortions arise decreases;
for Hp = 360 Oe, the corresponding value of Hg is
~100 Oe. Distortions arise at drive field values below
the velocity saturation region, at least for Hp > 240 Oe.
The width of the DW region where spatially periodic
distortions are observed is comparatively small. For
Hp = 360 Oe, this width was ~3 µm 0.7 µs after appli-
cation of a field Hg = 590 Oe; at this instant, the domain
size in the direction collinear with the in-plane field was
115 µm. The spatially periodic DW distortions may be
one more reason for the above-mentioned anisotropy in
the wall velocity.

Formation of a broad diffuse DW in a field Hp nor-
mal to its plane was reported in [5]; this observation
found theoretical interpretation [13] within a concept
assuming random wall motion in high drive fields. We
did not observe such a DW widening, and, as shown by
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Fig. 2. Domain wall saturation velocity plotted vs. in-plane
field. (a, b) The wall is parallel and perpendicular to the
field Hp, respectively. Curve 1 is a plot of Eq. (1), and curve
2 is a plot of Eq. (2).
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our data, the formation of spatially periodic distortions
is not related to a crossover to the velocity saturation
regime.

Thus, our analysis of the behavior of a low-damping
ferrite-garnet film under FMR conditions in high drive
fields has established the character of the dependence
of the DW velocity on the drive field for domain walls
oriented parallel and perpendicular to the in-plane field.
It was shown that velocity saturation is reached in all
cases, and the dependence of the saturation velocity on
the in-plane field was found. On the whole, the results
obtained find interpretation in terms of a concept by
which the DW velocity saturation corresponds to the
state of chaos. When the in-plane field is perpendicular
to the wall, spatially periodic distortions arise on the
DW; this phenomenon is not related in any way to the
velocity saturation.
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Abstract—The temperature dependences of the electromagnetic–acoustic transformation (EMAT) efficiency
and the velocity of transverse sound for the erbium rare-earth metal with three complex magnetic structures are
experimentally investigated at different external constant magnetic fields. An intensive generation and anoma-
lies in the velocity of transverse sound are revealed in the temperature range of the magnetic phase transitions.
It is found that an increase in the magnetic field leads to an increase in the sound generation efficiency and a
decrease in the anomalies in the velocity of sound. The relationships for the efficiency of transverse-sound gen-
eration through the magnetoelastic mechanism are theoretically derived for two magnetic structures of erbium.
It is demonstrated that an increase in the EMAT efficiency in the phase transition range is associated with the
specific features in the static and dynamic magnetic susceptibilities of erbium. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Magnetic ordering of some magnets, among them
rare-earth metals, exhibit a complex nature. As a rule,
all rare-earth metals undergo a number of phase transi-
tions between different magnetic structures with a
decrease in the temperature. In particular, the erbium
rare-earth metal in the absence of magnetic fields
undergoes the following sequence of spontaneous
phase transitions [1–4]. At temperatures T > TN1 = 87 K,
erbium is a paramagnet. In the temperature range TN1 >
T > TN2 = 54 K, erbium has a magnetic structure which
is referred to as the longitudinal spin wave structure.
This structure is characterized by oscillations of the
longitudinal magnetization projection onto the anisot-
ropy axis. In this case, the transverse magnetization
components are equal to zero. The transverse and lon-
gitudinal magnetization projections onto the hexagonal
axis c oscillate in the structure observed in the temper-
ature range TN2 > T > TC = 18 K. This magnetic struc-
ture is termed the complex spiral (or cycloidal) struc-
ture. With a decrease in the temperature in this phase,
the wave vector of a cycloid decreases and passes
through a series of commensurate and incommensurate
values [15]. At T < TC, erbium has a structure of the
ferromagnetic spiral type.

The complex magnetic structure of erbium is
retained in the external magnetic field H aligned along
the hexagonal axis up to H = 26–28 kOe [3, 4]. An
increase in the magnetic field results in an increase in
the temperature range of existence of the ferromagnetic
1063-7834/02/4411- $22.00 © 22116
spiral phase and a decrease in the temperature ranges of
existence of the longitudinal spin wave and cycloidal
phases. An increase in the magnetic field in the cycloi-
dal phase is attended by stabilization of the commensu-
rate structures, which possess a net magnetization
along the hexagonal axis [3]. At H > 16 kOe, the cyc-
loidal phase is characterized by only one commensu-
rate structure with a wave number of 2/7 (in terms of a
reciprocal lattice constant along the c axis) [3]. By con-
trast, the number of commensurate and incommensu-
rate structures increases in the ferromagnetic spiral
phase [3, 4].

The occurrence of several magnetic phase transi-
tions and different long-period magnetic structures in
erbium and other rare-earth metals leads to the fact that
the behavior of different physical characteristics of
these metals can essentially differ from the behavior of
similar characteristics in magnets with a simpler mag-
netic structure. In particular, it is of interest to investi-
gate experimentally and theoretically the electromag-
netic–acoustic transformation (EMAT) in rare-earth
metals, because all changes in the magnetic structure of
these materials should affect the sound generation effi-
ciency [6].

The electromagnetic–acoustic transformation in
rare-earth metals with a modulated magnetic structure
has been investigated in a number of works (see, for
example, review [6]). Andrianov et al. [7, 8] experi-
mentally studied the electromagnetic excitation of
sound in ferromagnetic and modulated phases of ter-
002 MAIK “Nauka/Interperiodica”
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bium and dysprosium. The electromagnetic–acoustic
transformation in ferromagnetic phases of modulated
magnets was theoretically analyzed in [6, 8]. However,
the efficiency of the electromagnetic–acoustic transfor-
mation in modulated phases of rare-earth metals was
theoretically treated in only one work [9], which dealt
with this process in a modulated phase of the simple
spiral type.

In the present work, we experimentally investigated
the electromagnetic–acoustic transformation in an
erbium single crystal. The efficiency of the electromag-
netic–acoustic transformation through the magne-
toelastic mechanism was theoretically calculated for
the longitudinal spin wave and ferromagnetic spiral
modulated phases. The results of theoretical calcula-
tions were compared with experimental data.

2. EXPERIMENTAL TECHNIQUE

The EMAT efficiency and the velocity of generated
sound were investigated using a Matec DSP-8000 auto-
mated ultrasonic measuring system [10, 11], which was
adapted for measurements according to the standard
echo pulse noncontact sound generation technique
described, for example, in review [6]. A cylindrical sin-
gle-crystal sample 2.8 mm long and 4.5 mm in diameter
was placed in a pancake coil. The hexagonal axis c of
the sample coincided with the cylinder axis. The coil
with the sample was placed in a constant magnetic field
whose vector H was perpendicular to the coil plane and
parallel to the hexagonal axis c of the sample. In this
geometry, the transverse sound with the wave vector k
aligned parallel to the c axis was generated in the sam-
ple [6]. Electromagnetic field pulses with an amplitude
of 200 V, a width of 0.6–0.8 µs, and a carrier frequency
of 10 MHz were applied to the coil. These pulses
excited a sequence of decaying acoustic signals in the
sample. Since the electromagnetic pulse-repetition fre-
quency was equal to 1 kHz, the whole sequence of gen-
erated acoustic signals fell in this range. The ultrasound
pulses at the frequency of the incident electromagnetic
wave were generated at both cylinder ends, propagated
along the cylinder axis, and recorded at the opposite
cylinder end by the same coil. Echo signals following
at intervals t = h/S (where h is the cylinder length and S
is the velocity of ultrasound) arrived from the coil at the
Matec DSP-8000 precision instrument. The propaga-
tion time of the signal through the sample was deter-
mined from the third and fourth echo signals, and the
amplitude of the generated signal was measured from
the third echo signal [10]. The error in the measurement
of the velocity of sound with the use of the Matec DSP-
8000 instrument did not exceed 0.1%. Analysis of the
echo signal shape showed that the ultrasonic attenua-
tion in the sample was relatively small and had no
noticeable effect on the EMAT efficiency [10]. In this
case, the recorded signal amplitude under the above
experimental conditions was proportional to the EMAT
efficiency squared [6, 10].
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The temperature dependences of the EMAT signal
amplitude at two constant magnetic fields are displayed
in Fig. 1. It can be seen that, at H = 10 kOe, the depen-
dence of the EMAT signal amplitude in the temperature
ranges of the paramagnet –longitudinal spin wave, lon-
gitudinal spin wave–cycloid, and cycloid–ferromag-
netic spiral phase transitions exhibits pronounced peaks
in the sound generation. At H = 20 kOe, the generation
efficiency also increases in these temperature ranges.
Note that the generation efficiency in the cycloidal
phase is characterized by a plateau and exceeds the gen-
eration efficiency in other phases. The generation effi-
ciency in all the phases increases with an increase in the
magnetic field. The temperature dependences of the
velocity of generated transverse sound at three mag-
netic fields are plotted in Fig. 2. As is seen from this fig-
ure, the anomalies in the velocity of sound are observed
in the above temperature ranges. The anomalies are
smoothed as the magnetic field increases. The velocity
of transverse sound most strongly decreases in the cyc-
loidal phase at the magnetic field H = 10 kOe. In this
case, the velocity of sound changes by 15–20%. It
should be noted that such a considerable change in the
velocity of ultrasound in the range of magnetic phase
transitions has never been observed in other rare-earth
metals.
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Fig. 1. Experimental temperature dependences of the
EMAT signal amplitude for the erbium single crystal in the
magnetic field H || c at H = (1) 10 and (2) 20 kOe. The signal
amplitude is given in arbitrary units.
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3. THEORY

3.1. The free energy and the ground state. Rare-
earth metals have a hexagonal crystal structure. The
free energy of such a magnet can be described by the
phenomenological relationship [1, 9, 12]

where

(1)

Here, M is the magnetization; M± = Mx ± iMy are its cir-
cular components; a and b are the homogeneous
exchange constants; α and γ are the inhomogeneous
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Fig. 2. Experimental temperature dependences of the veloc-
ity of transverse sound for the erbium single crystal in the
magnetic field H || c at H = (1) 10, (2) 15, and (3) 20 kOe.
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exchange constants; β stands for the anisotropy con-
stants, H and h are the strengths of constant and alter-
nating magnetic fields, respectively; γik and γiklm are the
exchange and relativistic magnetostriction tensors,
respectively; Uij is the strain tensor, and ciklm is the elas-
tic constant tensor.

Let us determine the ground state of a crystal with-
out regard for the anisotropy in the basal plane (β6 = 0)
provided the external magnetic field is aligned along
the hexagonal axis: H || c || z. For this purpose, it is nec-
essary to solve a set of equations that involves the Euler
equations for the magnetic subsystem and the equilib-
rium equations for the elastic subsystem under the Saint
Venant strain compatibility conditions [12].

We will separately consider the ground states for the
longitudinal spin wave and ferromagnetic spiral phases.

In the case of a longitudinal spin wave structure, the
equilibrium components of the magnetization vector
can be written in the form [1]

(2)

where 2π/q is the period of the structure along the z
axis.

The equilibrium strain tensor, which is obtained by
solving the equilibrium equations for the elastic
medium under the Saint Venant compatibility condi-
tions with due regard for relationships (2) in the
approximation qd @ 1 (i.e., in the case when the period
of the structure is considerably less than the magnet
thickness d), is given in the Appendix [formulas (A1)].

In order to determine the equilibrium values of 
and q, formulas (2) and (A1) should be substituted into
relationship (1) for the free energy, which should then

be minimized with respect to  and q. Analysis of the
set of equations derived by minimizing the free energy

of the system demonstrates that  = . Hence,

hereafter, we will treat only the components  with
n = 0, 1, 2, 3, …. We will also restrict our consideration
to weak magnetic fields. In this case, it is sufficient to
retain the terms with n = 0, 1, 2, and 3 (M1 @ M0, M2,
and M3) in expression (2) [1]. To a first approximation

in the small parameter /L(q), we obtain the following
relationships for the components M0, M1, M2, and M3:

(3)
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Here, L(q) = a – β1 + α||q2 + γq4 is the eigenvalue of the
differential operator

The ground state of the magnet in the ferromagnetic
spiral phase can be determined under the assumption
that the energy W is minimum when the magnetization
has the form

(4)

where θ is the angle between the magnetization vector
M and the symmetry axis z. The solution of the elastic-
ity equations with allowance made for the Saint Venant
compatibility conditions for the ferromagnetic spiral
phase and relationships (4) makes it possible to obtain

the equilibrium strain tensor . The components of
this tensor are given in the Appendix [formulas (A2)].
Substitution of expressions (4) and (A2) into relation-
ship (1) for the free energy, averaging of the energy at
qd @ 1, and minimization with respect to θ and q give
the following equations for the equilibrium magnetiza-
tion and the wave number of a spiral in the ferromag-
netic spiral phase:

(5)

where  = γq4, hme = (γ11 – γ12)2 /(c11 – c12), and 

and  are the anisotropy constants renormalized by
the magnetostriction [9, 13].

3.2. The ultrasonic generation in the longitudinal
spin wave phase. Now, we consider a magnet occupy-
ing the half-space z > 0 (this approximation is valid in
the case when the acoustic wavelength is considerably
less than the sample thickness and, in particular, under
the aforementioned experimental conditions). We
assume that a plane electromagnetic wave is incident
normal to the magnet surface. Let the external magnetic
field vector H be aligned along the hexagonal axis c of
the sample (H || k || c || z). 

The amplitude of the acoustic wave excited in the
magnet can be determined by solving the system of
elasticity, Landau–Lifshitz, and Maxwell coupled
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equations with the standard boundary conditions for the
electric and magnetic field vectors, the stress tensor,
and the magnetization [6], that is,

(6)

Here, B = H + 4πM is the magnetic induction, E is the

electric field strength, Heff = –  +  is

the effective magnetic field, ρ is the metal density, u is
the displacement vector, g is the gyromagnetic ratio, c
is the velocity of light in free space, and σ is the electri-
cal conductivity. The terms responsible only for the
magnetoelastic mechanism of sound generation are
retained in Eqs. (6). This mechanism of electromag-
netic–acoustic transformation dominates in magnetic
fields as strong as 100 kOe [6].

We will analyze small deviations of the magnetiza-
tion, elastic displacements, and electromagnetic field
from the equilibrium values determined by relation-
ships (2) and (3). For this purpose, all the variables are
represented in the form

(7)

where F0 stands for the equilibrium values and f are
small deviations from the equilibrium values. By sub-
stituting formulas (7) into the system of coupled equa-
tions (6) and eliminating the electric field strength E,
we obtain an infinite set of equations (linearized in the
vicinity of the equilibrium values) for the Fourier com-
ponents fn of coupled waves in the longitudinal spin
wave phase. Within the approximation that the zeroth
harmonics f0 in the derived infinite set of equations have
the largest amplitudes [9], the linearized system of
equations (6) takes the form

(8)
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the frequency of the electromagnetic wave incident on
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2i/δ2 = 4πiσω/c2; δ is the skin depth in the metal; ω1 =

gM0(L(k) + β1 + 6(  + bme) ); and

Note that only the transverse sound can be excited in
the geometry under consideration [6].

It is assumed that the frequency of excited waves is
considerably less than the frequency of uniform magne-
tization precession (ω ! ω1) and the spatial dispersion
of spin waves is insignificant. Consequently, from Eqs.
(8), we obtain the dispersion relation for coupled elec-
tromagnetic, spin, and elastic waves:

(9)

where  = , χ = gM0/ω1 is the dynamic magnetic

susceptibility, µ = 1 + 4πχ, and ζt = χ /ρ  is the
dynamic parameter of magnetoelastic interaction.

The dispersion equation (9) has the following solu-
tions:

(10)

Here, k1 and k2 are the wave numbers of the quasi-elas-
tic and quasi-electromagnetic waves, respectively.

Under the assumption that the zeroth harmonics f0
have the largest amplitudes, the linearized system of
boundary conditions can be written as follows:

(11)

where  are the circular amplitudes of the incident
electromagnetic wave. Subscripts 1 and 2 refer to the
waves propagating in the metal and correspond to those
in the solutions of the dispersion equation (10). It
should be noted that the boundary condition for magne-
tization in the system of equations (11) is absent,
because the dynamics of the magnet is considered
within the approximation according to which the inho-
mogeneous exchange is disregarded in the energy den-
sity (1) [6, 9].

In the approximation ke @ kt, which is usually satis-
fied under experimental conditions, the simultaneous
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solution of the systems of equations (8) and (11)
enables us to derive the amplitude of the excited sound:

(12)

The coefficient of the transformation of electromag-
netic waves into acoustic waves (the EMAT efficiency)
η is defined as the ratio between the acoustic and elec-
tromagnetic energy fluxes at the magnet boundary [6].
In the case under consideration, this coefficient is given
by the formula

(13)

3.3. The sound generation in the ferromagnetic
spiral phase. Let us examine small deviations of the
displacement, magnetization, and electric and magnetic
field vectors from the equilibrium values [relationships
(4) and (5)]. In the case when the waves propagate
along the z (spiral) axis and the fundamental harmonics
have the largest amplitudes, the linearized system of
equations (6) for the Fourier components of the above
vectors takes the form [13]

(14)

Here, we introduced the following designations: h±(k),
m±(k), and u±(k) are the circular components of the
Fourier vectors h, m, and u, respectively; ν =

; ω2(k) = ω20 + gM0L⊥ (k); ω20 = ωme4cos2θ;

ωme4 = ; L⊥ (k) is the eigenvalue of the dif-
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sin2θ(  + (  + 2β2) cos2θ + hmesin2θ)]; and hme4 =
ωme4/gM0.

The dispersion relation of system (14) is defined by
expression (9). The solution of this dispersion equation
within the approximation ω2 @ ω (the given approxi-
mation, as a rule, is valid in the frequency range used in
experimental investigations of the electromagnetic–
acoustic transformation in metals) is represented by
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expressions (10), where ζt = χcosθ(sin2θ/2 –

cos2θ)/ρ , µ = 1 + 4πχcosθ, and χ = gM0/[(ω2(k) +
ωme4sin2θ/2)cosθ]. By ignoring the spatial dispersion
of spin waves, the linearized system of boundary con-
ditions is determined by formulas (11) in which the
component M0 should be replaced by M0cosθ.

The simultaneous solution of the systems of equa-
tions (14) and (11) at cki/4πσ ! 1 permits us to deter-
mine the amplitude of the generated elastic transverse
wave in the case when the skin depth in the metal is
substantially less than the incident electromagnetic
wavelength; that is,

(15)

From this formula, we obtain the following relationship
for the EMAT efficiency in the ferromagnetic spiral
phase:

(16)

4. RESULTS AND DISCUSSION
Let us dwell once again on the expression for the

EMAT efficiency in the case of sound generation in the
longitudinal spin wave phase. Taking into account that
the inequality µ @ ζt is almost universally satisfied [6]

and using expression (3) for , formula (13) for the
EMAT efficiency in the longitudinal spin wave phase
can be rewritten in the form

(17)

where χs and χd are the static and dynamic susceptibil-
ities of the ferromagnetic metal, respectively. The static
susceptibility is determined from expression (3) as the

proportionality coefficient between  and H; that is,

(18)

The dynamic susceptibility relates the alternating mag-
netization and the alternating magnetic field and,
according to relationships (3), (8), and (9), can be
expressed by the formula

(19)

The experimental dependence of the EMAT effi-
ciency in the longitudinal spin wave phase of erbium
(Fig. 1) can be explained in terms of the theoretical rela-
tionship (17) and expressions (18) and (19). As follows
from relationship (17), the EMAT efficiency peak at the
Néel point TN1 = 87 K can be associated with the maxi-
mum of the static susceptibility χs [expression (18)].
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This maximum, as a rule, is observed in magnetically
ordered crystals upon transition from the paramagnetic
state to the ordered state [14]. The small height of the
generation efficiency peak in the vicinity of TN1 can be
due to the small anisotropic magnetostriction constant
γ44 in this temperature range [6].

The transition from the longitudinal spin wave
phase to the cycloidal phase at T = TN2 = 54 K is
attended by a sharp increase in the dynamic susceptibil-
ity (19). This is caused by the fact that the frequency of
the quasi-spin mode ω1 = gM0  decreases upon the
longitudinal spin wave  cycloidal phase transition.
According to relationship (19) (see also [1]), at this
phase transition point, the frequency ω1 takes the mini-

mum value (ω1 = 6gM0 ) determined by the mag-
netoelastic coupling and the dynamic susceptibility has
a maximum. As follows from expression (17), this can
be responsible for the second peak in the experimental
dependence of the EMAT efficiency for erbium at
T = TN2. Moreover, in accordance with expression (17),
the EMAT efficiency depends on the external magnetic
field and should increase with an increase in its
strength. This is actually observed in the experimental
dependence (Fig. 1).

It should be noted that the temperatures of the para-
magnet–longitudinal spin wave (TN1) and longitudinal
spin wave–cycloidal phase (TN2) transitions only
slightly depend on the magnetic field (see the H–T
phase diagrams in [3, 4]). Consequently, the EMAT
efficiency peaks at H = 10 and 20 kOe in Fig. 1 are
observed virtually at the same temperatures.

The next intense EMAT efficiency peak at T ≈ 47 K
in the cycloidal phase in the field H = 10 kOe, accord-
ing to the H–T phase diagrams obtained in [3, 4], can be
explained by the specific features of the static and
dynamic susceptibilities in the range of transition either
from the commensurate phase with a wave number of
2/7 to the commensurate phase with a wave number of
3/11 [3] or from the commensurate phase with a wave
number of 2/7 to the incommensurate phase [4].

In the ferromagnetic spiral phase at T < TC, the mag-
netization M0 entering into formula (16) for the EMAT
efficiency can be treated as nearly constant (equal to the
saturation magnetization at T  0) and independent
of the external magnetic field. In this case, the specific
features in the EMAT efficiency in the ferromagnetic
spiral phase are likely associated with the characteristic
properties of the dynamic susceptibility and the equi-
librium angle θ between the resultant vector of the
magnetization along the hexagonal axis and the exter-
nal magnetic field vector.

Formula (16) for the EMAT efficiency at µ @ ζt can
be represented in the form

(20)
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Here, the dynamic magnetic susceptibility χd at
ω2(k) @ ω (as was noted above, this inequality is well
satisfied in the range of ultrasonic frequencies), accord-
ing to relationships (5) and (14), can be written as fol-
lows:

(21)

The transition from the ferromagnetic spiral phase
to the cycloidal phase at T = TC leads to a decrease in
the wave number q0 [1]. As a result, the susceptibility
χd sharply increases at the transition point, which man-
ifests itself in an increase in the EMAT efficiency in the
experimental dependence (Fig. 1). According to the
H−T phase diagrams [3, 4], the transition from the fer-
romagnetic spiral phase to the cycloidal phase is
accompanied by the appearance of a small peak in the
EMAT efficiency at T ≈ 27 K in the field H = 10 kOe
and a peak in the EMAT efficiency at T ≈ 45 K in the
field H = 20 kOe.

It can be seen from Fig. 1 that the ferromagnetic spi-
ral phase is characterized by one more EMAT effi-
ciency peak in the field H = 10 kOe and, at the mini-
mum, two more EMAT efficiency peaks in the field H =
20 kOe. The peak in the field H = 10 kOe is observed at
the temperature T = 20 K. Analysis of the phase dia-
grams obtained in [3, 4] (despite their certain disagree-
ment) suggests that this peak can be associated with the
specific features in the characteristics of erbium in the
range of the transition between the commensurate
phase with a wave number of 5/21 and the incommen-
surate phase within the ferromagnetic spiral phase. In
the field H = 20 kOe, the first peak at the temperature T
≈ 38 K is very weakly pronounced and can be explained
by the specific feature in the susceptibility upon the
transition from the incommensurate phase to the com-
mensurate phase with a wave number of 1/4 within the
ferromagnetic spiral phase [3, 4]. Similarly, the second
peak at the temperature T ≈ 27 K can be due to the spe-
cific feature in the susceptibility upon the transition
from the commensurate phase with a wave number of
1/4 to the commensurate phase with a wave number of
5/21 within the ferromagnetic spiral phase [3, 4].

Note that an increase in the external magnetic field
results in a decrease in the equilibrium angle θ between
the magnetization and the field. Consequently, an
increase in the magnetic field strength can lead to an
increase in the EMAT efficiency over the entire temper-
ature range T ≤ TC by virtue of the presence of the mul-
tiplier cos2θ in relationship (20). This is also observed
in the experimental dependence (Fig. 1).

5. CONCLUSIONS

Thus, the comparison of the experimental data on
the EMAT efficiency for the Er rare-earth metal (Fig. 1)
and the theoretical expressions describing the EMAT

χd hme4 1
1
2
--- θ2sin– 

  2γq0
4+

1–
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PH
efficiency in the longitudinal spin wave and ferromag-
netic spiral phases [relationships (17) and (20)] allowed
us to make the following inferences.

Analysis of relationships (17) and (20) provides a
qualitative explanation of the EMAT efficiency peaks
observed in the experiment (Fig. 1) in the range of para-
magnet–longitudinal spin wave, longitudinal spin
wave–cycloid, and cycloid–ferromagnetic spiral phase
transitions. These peaks are associated with the specific
features in the static and dynamic susceptibilities of
erbium in the vicinity of the above transitions. Unfortu-
nately, a quantitative comparison of the experimental
and theoretical results cannot be performed because of
the large number of unknown parameters entering into
relationships (17) and (20). A quantitative comparison
calls for complex experimental measurements of these
parameters at different temperatures and magnetic
fields. To the best of our knowledge, similar experi-
ments with erbium crystals have not been performed to
date. Moreover, quantitative comparison is complicated
by the fact that finite samples are usually used in exper-
iments, whereas the theory is constructed for semi-infi-
nite single crystals. However, as was shown in [6], the
theory developed for semi-infinite crystals offers a
qualitative explanation for all the main regularities of
the electromagnetic–acoustic transformation in ferro-
magnetic metals. As follows from analyzing relation-
ships (17) and (20) and Fig. 1, a similar statement is
true for the electromagnetic–acoustic transformation in
erbium single crystals.

The other EMAT efficiency peaks observed in the
experiment can be associated with the specific features
in the characteristics of erbium in the range of transi-
tions either between two commensurate phases or
between commensurate and incommensurate phases
within the cycloidal and ferromagnetic spiral phases. In
the present work, the phenomenological theory of the
electromagnetic–acoustic transformation was devel-
oped in the continuum approximation. This theory can-
not describe the commensurability effects and, corre-
spondingly, the phase transitions between different
commensurate and incommensurate phases in the cyc-
loidal and ferromagnetic spiral phases [1]. In order to
describe these transitions and the electromagnetic–
acoustic transformation in the presence of commensu-
rability effects, it is necessary to construct the micro-
scopic theory of electromagnetic generation of ultra-
sound in rare-earth metals, which is a special problem.
This problem remains unsolved because of its complex-
ity. However, the comparison between the temperature
dependences of the EMAT efficiency at different mag-
netic fields (Fig. 1) and the H–T phase diagram of
erbium [3, 4] allowed us to draw the conclusion that the
commensurability effects in the cycloidal and ferro-
magnetic spiral phases can actually be responsible for
the other EMAT efficiency peaks.
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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APPENDIX

The equilibrium strain tensor in the longitudinal
spin wave phase has the form

(A1)

where  = γ13 – γ12 + γ1/2,  = γ33 – γ31 + γ3/2, and  =

c33(c11 + c12) – 2 .

The equilibrium strain tensor in the ferromagnetic
spiral phase at qd @ 1 can be represented as follows:

(A2)

Uik
0 0 i k≠( ),=

Uzz
0 –

γ33 γ31–
c33
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2 2c13

c33
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Uxx
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γ̃1 γ̃3 ∆

c13
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Uxx
0 Uyy

0 c33

2∆
------- γ11 γ12–( )M0

2 θsin
2
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–
1
∆
--- c33 γ13 γ12–( ) c13 γ33 γ31–( )–[ ] M0

2 θcos
2
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c33
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0 γ44

4c44
----------M0

2 2θ qz, Uxy
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Abstract—The dependence of the width ∆Hβ of the ferromagnetic resonance (FMR) line in anisotropic mag-
nets on the angle of misorientation β between the static (resonance) and scanning magnetic fields was investi-
gated both experimentally and theoretically. The change in the linewidth is due to the dependence of the equi-
librium orientation of the magnetization vector on the direction of the magnetic field upon the passage through
the resonance. Using iron garnet films as an example, it was shown that under such a misorientation (a nonzero
angle β) the linewidth is smallest. It was also shown that a two-dimensional representation of FMR spectra, in
contrast to one-dimensional angular dependences of the resonance parameters, contains full information on the
spectral characteristics of the film, including noncollinear field configurations. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The width of the line of ferromagnetic resonance
(FMR) measured in the process of scanning of an exter-
nal magnetic field H is determined as a range of fields

(1)

whose initial and final points,  and , respec-
tively, correspond to the positions of the maximum and
minimum of the first derivative dP/dH of the signal of
absorption of the high-frequency field P(H) (the point
of the maximum slope). In this case, the magnitude of
the resonance field HR, determined as the point of pas-
sage of the dP/dH signal through zero, always lies in
the range of values  < HR < . In the traditional
process of measuring an FMR linewidth, the directions
of the scanning field hsw and resonance field HR are
coincident. In other words, the signal is detected due to
a change in only the amplitude of the external field in
the vicinity of the resonance value. In this method of
measurement of the linewidth, the orientation of the
magnetic field with respect to the anisotropy axes
remains unaltered in the process of measurement.

It is known that the linewidth ∆Hpp determined by
this method is independent of the angle ϕ that specifies
the orientation of the resonance magnetic field relative
to the anisotropy axes. This function ∆Hpp(ϕ) is non-
monotonic; it has local maxima and minima whose
number and positions are determined by the type of
anisotropy and the magnitude of the corresponding
constants [1].

∆H pp H p+ H p––=

H p+ H p–

H p+ H p–
1063-7834/02/4411- $22.00 © 22124
The physical cause of the change in the linewidth
∆Hpp in films of anisotropic ferromagnets is the change
in the orientation of the equilibrium magnetization M
during the registration of the absorption line, as was
shown in [2] and [3]. The calculations performed in
these works showed that the width of the FMR line
∆Hpp increased with the deviation of the magnetic field
from the anisotropy axis (directed along the normal to
the film). The linewidth reaches maximum values in the
vicinity of angles ϕ corresponding to the ranges of the
fastest variation of the function HR(ϕ). The increase in
the linewidth obtained in the above-cited works is
related to the fact that they were concerned with a spe-
cial case of orientation of the magnetic and scanning
fields, namely, the fields were collinear. We may sup-
pose that in the case of misorientated resonance and
scanning fields the above mechanism of the linewidth
variation will lead not only to a broadening but also, at
certain angles, to a narrowing of the FMR line.

In this paper, we analyze the width of the FMR line
∆Hβ measured at a certain angle β to the static field HR

rather than along this field. In this case, the amplitude
of the scanning field changes in the range [–hsw, +hsw]
along a new direction and the resulting field H = HR +
hsw changes in both magnitude and direction. It follows
from an analysis of the experimental dependence of the
FMR linewidth ∆Hβ in the mixed iron garnet on the
misorientation angle β and on the direction of the mag-
netic field (ϕ) that the line width ∆Hβ proves to be
smaller than the conventionally measured value ∆Hpp.
It was shown experimentally and substantiated theoret-
002 MAIK “Nauka/Interperiodica”
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ically that a two-dimensional representation of the sig-
nal P(H, ϕ) of FMR absorption contains full informa-
tion on all possible values of ∆Hβ and, thus, permits one
to determine an optimum configuration of the fields and
the smallest value of the linewidth.

2. EXPERIMENTAL

As an object of investigation, we used a film
of      mixed iron garnet of composition
(Y1.15Eu0.5Bi0.5Ca0.85)(Fe4.15Si0.85)(O12) 2.92 µm thick
grown by liquid-phase epitaxy. The values of the uniax-
ial anisotropy constant and quality factor were K =
1.696 × 104 erg/cm3 and Q = 4.3, respectively. The film
composition was controlled by the weight ratio of the
components in the initial charge. As a substrate, we
used a gallium gadolinium garnet sample 0.5 mm thick
with a surface (111) on which a thin film of yttrium iron
garnet (YIG) 0.2 µm thick was applied. The narrow line
of YIG was not observed in the FMR spectra of the
sample. The application of an YIG layer ensures a
higher time and temperature stability of the two-layer
system and suppresses the formation of hard bubble
domains. As is known, it is precisely those films with an
easily modified composition that are the basis of mag-
netic electronics [4]. Therefore, obtaining additional
information on the resonance characteristics under the
conditions of noncollinear magnetic fields is of great
importance. The problems of the interaction of modes
in magnetically coupled two-layered systems and the
techniques of measuring magnetic parameters from
FMR data have been discussed in detail earlier in [5, 6].

A sample (1 × 0.5 mm) was mounted on a vertical
stock at the antinodal point of the magnetic component
of the microwave field of a TE102 resonator. The FMR
spectra were recorded using a standard CW homodyne
EPR spectrometer in the X range (9.45 GHz). The
derivative of the FMR signal dP/dH was recorded at
power levels p < 2 mW every 5° in the range of ϕ = 0°–
360°. All measurements were performed at room tem-
perature.

The geometry of the experiment is shown in Fig. 1.
The axis of the sample rotation perpendicular to the fig-
ure plane coincides with the OX axis, and the direction
of the normal to the film coincides with the OZ axis. As
the film is rotated, the angle ϕ between the field direc-
tion HR and the OZ axis changes. Upon analyzing the
FMR spectra under misorientation conditions, a config-
uration is assumed in which the direction of scanning of
the field hsw makes an angle β with the direction HR.
The magnetization vector lags behind the direction of
the external field, which is characterized by the angle θ.
It is shown in the work that in the two-dimensional rep-
resentation of the spectra, we can always determine a
variety of points corresponding to the FMR signal
under conditions of misoriented fields with an arbitrary
angle β.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
In the process of measurements, each spectrum was
integrated (dP/dH  P(H)) and was plotted in the
form of a set of experimental points in a cylindrical
coordinate system (ρ, ϕ, Z)  (H, ϕ, P). Then, for
each set of points with a fixed parameter H = const, we
performed a procedure of smoothing of the dependence
of P on the angle ϕ and subsequent approximation of
the entire set of data in the form of a single surface
P(H, ϕ). Based on realistic spectra, we used a Lorentz-
ian shape of the line when approximating the field depen-
dence. As a result, the experimental set of 75000 points
was described by a single surface in a relatively com-
pact form. The general appearance of the surface for
(Y1.15Eu0.5Bi0.5Ca0.85)(Fe4.15Si0.85)(O12) is represented
in Fig. 2.

Note that in the general case (complex spectra,
anisotropies of various types, multilayered objects), the
procedure of the choice of a single surface may prove
to be inefficient because of a significant complexity. In
this case, it appears to be more expedient to deal with
an original set of data in the form of a 3D grid (a three-
dimensional representation of a discrete set of data) and
to perform the approximation using a smooth surface in
the vicinities of singular points.

Note also that the method of recording in which a
double scanning of the external field is performed for
each fixed value of the azimuthal angle may also prove
inefficient for the 3D representation of angular depen-
dences. A fundamental advantage may be given by a
method in which the sample rotates about the OX axis
in such a way that the sample is rotated by 360° in a sin-
gle elementary interval (step) of sweeping of the mag-
netic field. In this case, a large number of points at var-

–hsw

OY

hsw

+hsw

OZ

Ms

ϕ
β

HR
 θ

Fig. 1. Geometry of the experiment (for details, see the
main text). The rotation of the film occurs about the OX
axis. The vector hsw directed at an angle β to the field H =
HR corresponds to the effective scanning field under misori-
entation conditions (in the figure, corresponding parallel
and perpendicular projections of hsw are indicated).
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ious angles could be recorded in the course of a single
act of sweeping with a field. The duration of the sweep-
ing, which is determined by the inertia properties of the
magnetic system, is usually T = 3–10 min, which means
that the duration of an elementary step is ∆T ≈ 0.2 s. At
the same time, it can easily be ensured that the sample
is rotated at rates Ω ≤ 1 s–1, so that during a rotation of
the sample by 360° only a single scanning with the field
is required at each sweeping step. If the condition

(2)

is fulfilled, where τ is the time of reading (with an ana-
log–digital converter) and fmod is the frequency of
modulation of the field, the admissible number of val-
ues (angles) is N ~ 1/Ωτ. As a result, the total time of
the experiment at Ω–1 ≤ ∆T does not exceed the duration
of the recording of a single spectrum. At Ω–1 = 1 s, the
time of an experiment increases by a factor of Ω∆T = 5
to be 15 min.

It can easily be shown that, upon successive varia-
tion of the angle between the normal to the surface of

Ω ! τ( ) 1–
 ! 2πf mod

Z

Y

HR hsw
ϕ

β

P(H, ϕ)

Hy

Hz

Fig. 2. Representation of the experimental angular
dependence of the FMR spectrum P(H, ϕ) for
(Y1.15Eu0.5Bi0.5Ca0.85)(Fe4.15Si0.85)(O12) in the form of an
approximated surface in cylindrical coordinates (H, ϕ, P).
The conventional absorption signal is a section of the sur-
face along the radius vector HR. The FMR signal under mis-
oriented conditions corresponds to a section in the vicinity
of H = HR along the field hsw.
PH
the sample and the plane YOZ, this procedure yields full
information on the resonance properties of a magnet in
spherical coordinates in the experiment with a single
scanning of the magnetic field. In turn, the passage
from the 1D spectra to a three-dimensional “portrait”
permits one to pass to a qualitatively new analysis of
the resonance properties of magnets from the viewpoint
of the topological features of the corresponding equipo-
tential surfaces and their sections.

From the methodological viewpoint, the P(H, ϕ)
surface shown in Fig. 2 represents a special case (sec-
tion) of a 3D portrait. In turn, the case of a misoriented
resonance and scanning fields, as can easily be shown,
represents the intersection of this surface with a vertical
plane that passes at an angle β to the plane (HR(ϕ), OX).
In the general case, this plane can be inclined to the
YOZ plane. In this case, the resultant curve represents
an FMR spectrum under conditions of a noncollinear
configuration. At fixed values of (HR, ϕ), the points of
the new spectrum P(h, β) can be determined numeri-
cally by changing the coordinates into P(H ', ϕ') accord-
ing to the following rule (Fig. 2):

(3)

(4)

It is seen that for anisotropic magnets, the dependence
of the linewidth ∆Hβ on the angle β is nonmonotonic,
exhibiting a local minimum with smallest values at cer-
tain angles ϕ that are different for different magnets.

3. PRINCIPAL EQUATIONS

In this section, we present a model that permits one
to calculate the ∆Hβ dependences and compare the
experimental data with the results of calculation. It is
known that in films of mixed iron garnets, the contribu-
tion to the angular dependence of HR comes from both
uniaxial (growth-related) and cubic (crystallographic)
magnetic anisotropies. The applicability of the model
of a uniaxial ferromagnet to samples with a cubic
anisotropy is based on the fact that the constant of cubic
anisotropy in the sample at hand was smaller by an
order of magnitude than that of uniaxial anisotropy.

The dependence of the resonance field HR on the
angle ϕ that characterizes its orientation relative to the
anisotropy axis is known to be determined from the
equation for the natural frequency of uniform vibra-
tions of magnetization [7]. In the model of a uniaxial
ferromagnet, the magnitude of the resonance field is
found from the equation

(5)

where ωR is the resonance frequency, γ is the gyromag-
netic ratio, θ is the angle of the equilibrium orientation

H '2 HR
2 hsw

2 2HRhsw β,cos+ +=

ϕ' ϕ hsw βsin( ).arcsin–=

ωR

γ
------ 

 
2

HR θ ϕ–( )cos HA θcos
2

+[ ]=

× HR θ ϕ–( )cos HA 2θ( )cos+[ ] ,
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of the magnetization vector M in the field HR reckoned
from the anisotropy axis, HA = 2K/M – 4πM is the effec-
tive field of anisotropy, K is the uniaxial anisotropy
constant, and M is the saturation magnetization. The
angle θ is found by minimizing the free energy of the
system, which, in the case of a uniaxial ferromagnet,
leads to the relations

(6)

Thus, at a given angle ϕ of the orientation of the
magnetic field and the parameters of the problem
(ωR, K, M, γ), we can find HR and θ can be found from
Eqs. (5) and (6).

The method of the calculation of the linewidth ∆Hβ
is described in [8], where, using the example of a uniax-
ial ferromagnet, the following expression was obtained
for the width of the FMR line measured at an arbitrary
angle β to the direction of the resonance field:

(7)

where

(8)

(9)

(h = HA/HR). Thus, the linewidth ∆Hβ is expressed
through the known quantity ∆Hpp and the function Fβ
depending on the angles β and ϕ and on the ratio HA/HR.
In this case, the equilibrium angle of the magnetization
θ and the magnitude of the resonance field HR entering
into Eq. (8) can be found from the set of equations (5)
and (6).

The method of calculating ∆Hpp was described in
[3], where it was shown that the fields  and

 entering into the definition of the linewidth
∆Hpp(ϕ) (Eq. (1)) can be found from the set of equa-
tions (5) and (6), in which one should substitute the fre-
quencies

(10)

for the resonance frequency ωR (α is the damping
parameter). In other words, the linewidth ∆Hpp is found
by doubly solving the set of equations (5), (6) with
respect to the fields  and . For the angles 0 <
ϕ < π/2, this set of equations can be solved only numer-
ically. However, for two directions (ϕ = 0, π/2), as was
shown in [8], we can obtain analytical expressions for

HA 2θsin 2HR θ ϕ–( )sin+ 0,=

HA 2θcos 2HR θ ϕ–( ) 0.>cos+

∆Hβ Fβ∆H pp,=

Fβ βcos G βsin+( ) 1– ,=

G
1

HR

-------
dHR

dϕ
---------- ϕ θ–( )tan θ ϕ–( )sin{+= =

+ h 2θ 1 ϕ 2 ϕ h θsin
3

–sin( )
1–

sin+[ ]sin }

× θ ϕ–( )cos h 2θcos+[ ] 1–

H p+ ϕ( )

H p– ϕ( )

ωp+ 1 α–( )ωR, ωp– 1 α+( )ωR= =

H p+ H p–
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the linewidth ∆Hpp. Namely, at ϕ = 0 (the resonance
field parallel to the anisotropy axis), we have

(11)

If ϕ = π/2 (the resonance field perpendicular to the
anisotropy axis), we obtain

(12)

Here, hA = HA/(ωR/γ) is the normalized anisotropy field.
It follows from Eq. (12) that if the magnetic field is per-
pendicular to the anisotropy axis, then, irrespective of
the sign of the effective field HA, the linewidth
decreases as compared to the isotropic case.

4. DISCUSSION

In the case of a single FMR line of a Lorentzian
shape, the analysis of the P(H, ϕ) dependences is sig-
nificantly simplified. Figure 3 displays experimentally
obtained angular dependences of the three fields

, HR(ϕ), and  in the range 0° ≤ ϕ ≤ 180°.
In this figure, the angle ϕ is a parameter and the coordi-
nate axes correspond to the projections of the external
field onto the axes OZ and OY, respectively. These
curves also contain information on the angular depen-
dence of the linewidth ∆Hpp(ϕ); namely, the linewidth

∆H || ∆H pp 0( )≡ H p– H p+– 2α
ωR

γ
------.= =

∆H ⊥ ∆H pp π/2( )≡

=  H p– H p+– 2α
ωR

γ
------ 1

hA
2

4
-----+ 

 
1/2–

.=

H p+ ϕ( ) H p– ϕ( )
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Hp+(ϕ)

HR(ϕ)

Hp–(ϕ)

Hz, Oe

H
y,

 O
e

Fig. 3. Experimental angular dependences of three
parameters of the FMR spectrum for
(Y1.15Eu0.5Bi0.5Ca0.85)(Fe4.15Si0.85)(O12) in polar coordi-

nates (H, ϕ): maximum , minimum , and
the values of the resonance field HR(ϕ) corresponding to the
first derivative of the absorption signal dP/dH in the angular
range 0° ≤ ϕ ≤ 180° (the angle ϕ is shown in Fig. 1).

H p+ ϕ( ) H p– ϕ( )

ϕ

2
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at a fixed ϕ is numerically equal to the distance between
the first and third curves along the position vector
HR(ϕ). The slight asymmetry of the curves in quadrants
I and II is due to the deviation of the easy axis from the
normal to the surface and to the contribution from cubic
anisotropy.

3000
60

Angle ϕ
0 120 180 240 300 360

3500

4000

4500

5000

5500
H

R
, O

e

Fig. 4. Experimental (points) and theoretical (line) depen-
dences of the resonance field HR(ϕ). The magnitudes of the
parameters of the model are as follows: fR = ωR/2π =
9.5 GHz, ωR/γ = 4.31 kOe, M = 25 G, and HA = 1.04 kOe.
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Fig. 5. Variation of the FMR linewidth as a function of the
misorientation angle between the resonance and scanning
fields at α = 0.018. Other parameters: ϕ = 60° (squares,
experiment); ϕ = 90° (rhombi, experiment); lines show the
corresponding calculated dependences.
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Figure 4 compares the experimental data with the
HR(ϕ) dependence calculated according to Eqs. (5) and
(6). As the parameters of the theory, we also used exper-
imentally measured quantities (for the numerical values
of the parameters, see the caption to Fig. 4). As might
be expected, the model of the uniaxial ferromagnet sat-
isfactorily describes experimental data in the case of a
small constant of cubic anisotropy.

Figure 5 displays the experimentally obtained data
(points) and the results calculated in accordance with
the above model (lines) for the dependences of the lin-
ewidth on the misorientation angle β between the reso-
nance and scanning fields. When comparing them, we
should take into account that the error of the experi-
mental measurement of the width of the FMR line is
about 5%. In the case of a single symmetrical line, there
is no need to construct sections of the surface for each
(ϕ, β) set (Fig. 2), since the magnitudes of ∆Hβ coincide
with the distance [  + ] intercepted by
a straight line passing through the point HR(ϕ) and the
origin at an angle β to the radius vector (Fig. 3). For
more complex spectra, this simplification is invalid and
we should perform the procedure of intersecting the
surface described above. The width of the FMR line
observed experimentally along the resonance field var-
ied from 133 to 152 Oe.

In Fig. 5, both the theoretical and experimental
curves are given for two directions of the magnetic field
with respect to the anisotropy axis. Cases 1 and 2 cor-
respond to the angles ϕ = 60° and 90°. It is seen from
the figure that if ϕ = 90° (the resonance field lies in the
film plane), then the minimum width of the FMR line is
observed at β = 0; i.e., the minimum width corresponds
to the linewidth traditionally measured along the reso-
nance field. However, as follows from the experiment
and calculations, when the resonance field deviates by
30° from the film plane (ϕ = 60°), the minimum line-
width is observed at the misorientation angle β = 20°.
Note that although the minimum linewidth for the
(Y1.15Eu0.5Bi0.5Ca0.85)(Fe4.15Si0.85)(O12) film at hand
decreases insignificantly (by 10%), a significant fact is
that the minimum linewidth is observed upon misorien-
tations between the resonance and scanning fields as
small as 20°. The latter means that we can select such a
geometry of the resonance and scanning fields for the
fields to be misoriented up to angles close to 90° but the
linewidth to increase only insignificantly. This fact is,
in particular, important from the applied viewpoint,
since it offers additional opportunities, e.g., for the
development of devices of microwave electronics based
on FMR of spin waves.

5. CONCLUSION

Thus, in this paper, we established, using the exam-
ple of an iron garnet film, that the minimum width of
the FMR line in anisotropic magnets is realized in the
case of a noncollinear configuration of the resonance

H p– ϕ1( ) H p+ ϕ2( )
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and scanning magnetic fields. Information on the opti-
mum configuration (on the angles ϕ and β) is contained
in the two-dimensional representation of the FMR
spectra in the form of a P(H, ϕ) surface. The determi-
nation of this configuration reduces to seeking the sec-
tion of this surface that yields a line with the smallest
width. Such an analysis can be useful for the investiga-
tion of the interaction of modes in two-layer and multi-
layer magnetic films. Note that the passage from 1D
spectra to a three-dimensional portrait permits us to go
to a qualitatively new analysis of resonance properties
of magnets from the viewpoint of topological features
of the corresponding equipotential surfaces and their
sections.

In addition, the results obtained permit us to suggest
a new method of controlling the width of the FMR line
in anisotropic magnets, which consists in variation of
the orientation of the scanning field with respect to the
resonance field. Such a variation can be sufficiently
simply realized by applying, in the presence of a con-
stant resonance field, an additional (scanning) magnetic
field at a certain angle with respect to the resonance
field. This method of controlling the width of the FMR
line is of practical importance. For example, in the
devices of microwave electronics, the resonance field is
most frequently created with dc magnets, whereas the
controlling (scanning) field is produced with coils. In
such a situation, it is sometimes technologically conve-
nient if the resonance and controlling fields are misori-
ented, but in such a way that the linewidth does not
increase significantly. In particular, this permits one to
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      200
additionally miniaturize the devices of microwave elec-
tronics.
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Abstract—Thermal vibrations of ions in R2CuO4 crystals (R = La, Pr, Nd, Sm, Eu, Gd) were studied by x-ray
diffractometry. A comparative analysis of thermal displacements of the copper and rare-earth ions permitted a
conclusion as to the main interactions responsible for the structural state of the CuO2 sheets and of a crystal as
a whole. The structural properties were found to correlate with the magnitude of the ionic radius and with the
ground state of the rare-earth ions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Thermal vibrations of ions in a crystal are deter-
mined by the symmetry and strength of the local crys-
tal-field potential. This permits one to obtain informa-
tion on the local potential by studying the spatial distri-
bution of thermal ion displacements using diffraction
methods. Our previous communications [1, 2] reported
on an investigation of thermal vibrations of the Cu2+

and rare-earth (RE) ions in R2CuO4 crystals (R = La,
Eu, Pr, Gd). Main attention was focused on the temper-
ature dependence of the probability density function
(PDF), which characterizes the spatial distribution of
equally probable displacements of ions relative to their
equilibrium positions. We succeeded in following the
temperature-induced local structural distortions and
structural phase transitions in the crystals under study.

The purpose of this study was to compare the PDFs
of the Cu2+ and RE ions at a fixed temperature for a
broader class of R2CuO4 crystals (R = La, Pr, Nd, Sm,
Eu, Gd) and to follow the influence of the RE ions on
the properties of the CuO2 sheets and on the crystal
structure as a whole. To do this, we studied, in addition
to data obtained earlier, thermal vibrations in Nd2CuO4
and Sm2CuO4 crystals (at temperatures of 296 and
373 K). The analysis of the PDF for the Cu2+ and RE
ions was carried out for the whole class of R2CuO4 crys-
tals (R = La, Pr, Nd, Sm, Eu, Gd) at room temperature,
taking into account the earlier data reported in [1, 2].

The structure of the La2CuO4 and R2CuO4 crystals
with RE ions (R = Pr, Nd, Sm, Eu, Gd) is presented in
Fig. 1. The R2CuO4 crystals (R = Pr, Nd, Sm, Eu) have
T ' structure (space group I4/mmm) at all temperatures.
1063-7834/02/4411- $22.00 © 22130
La2CuO4 and Gd2CuO4 undergo phase transitions from
the high-temperature tetragonal to the low-temperature
orthorhombic phase (see [3] and [4], respectively). A
common feature in the structure of the La2CuO4 and
R2CuO4 crystals with RE ions is its quasi-2D character.
The ions are arranged in layers perpendicular to the c
axis. Layers of R3+ and O2– ions are sandwiched
between the CuO2 planes. The distances between the
CuO2 sheets and the layers containing copper and RE

R3+

O2–

Cu2+

T T '
(a) (b)

Fig. 1. Crystal structure of (a) La2CuO4 and (b) R2CuO4
(R = Pr, Nd, Sm, Eu, Gd).
002 MAIK “Nauka/Interperiodica”
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ions exceed by far those between the in-plane ions. We
are interested primarily in the properties of CuO2 layers
separated at a distance of c/2. The nearest environment
of Cu2+ ions in La2CuO4 differs from that in R2CuO4

with RE ions. In La2CuO4, we have octahedra of O2–

ions (coordination number Z = 6), and in R2CuO4 with
RE ions, we have squares of oxygen ions (Z = 4). The
structural properties of the crystals under study are
determined by in-plane interactions in the CuO2 sheets
and the layers containing RE ions, as well as by inter-
layer coupling (primarily between the Cu2+ and R3+

ions). We study here the main interactions responsible
for the structural properties of the crystals and their
dependence on the properties of the RE ions.

The cubic crystal-field potential is usually ~1 eV.
The tetragonal distortions of the cubic lattice are related
to a change in this potential by about ~0.1 eV. The
anomalously strong 2D Heisenberg exchange interac-
tion between the Cu2+ ion spins (exchange constant J ~
0.13–0.15 eV [5]) and the spin–orbit (SO) coupling of
Cu2+ ions with a constant λ ~ 0.06–0.08 eV [6] are prac-
tically of the same magnitude in the crystals under
study. As a result, Cu2+ ions in the R2CuO4 crystals with
RE ions are involved in a number of interactions of sim-
ilar magnitude, which determine various, including
structural, properties of the crystals.

As shown in [1, 2], the character of the PDF and,
hence, the symmetries of the local crystal-field poten-
tial of the Cu2+ and RE ions in R2CuO4 crystals (R = La,
Pr, Eu, Gd) are different. However, local distortions in
CuO2 layers were found to be dominant in all these
crystals in the temperature interval 140–400 K. As fol-
lows from the present study, distortions in these layers
are also dominant in Nd2CuO4. Only in Sm2CuO4 at
room temperature do Jahn–Teller distortions for the
Sm3+ ions dominate and is the character of the copper
ion PDF determined primarily by the Sm3+–Cu2+ inter-
action.

Thermal vibrations in Pr2CuO4 at room temperature
were probed using neutron scattering [7]. A comparison
of the measurements carried out on Pr2CuO4 and CuO
crystals suggests [7] that the dynamic behavior of cop-
per ions in Pr2CuO4 is a result of interaction mainly
with the nearest neighbor oxygen atoms. At the same
time, Raman scattering measurements performed on a
number of R2CuO4 crystals (R = Pr, Nd, Sm, Gd), also
at room temperature, suggest that the RE ions have a
substantial effect on phonon spectra. It has been
pointed out that the part played by the Cu–R coupling
increases with decreasing RE ionic radius [8].

Gd2CuO4 occupies a special place among the
R2CuO4 crystals with RE ions. This crystal undergoes a
structural phase transition to the low-temperature
orthorhombic phase (T < 650 K) [4]. The orthorhombic
distortions in the CuO2 layers originate from the oxy-
gen OI ions rotating about the copper ions [4].
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A study of the spin and lattice dynamics in R2CuO4
crystals (Pr, Sm, Eu), carried out in the millimeter range
at low temperatures, revealed jumps in the microwave
power absorption which were assigned to structural
phase transitions [9]. A structural phase transition in
Eu2CuO4 at T ≈ 150 K was also observed to occur using
other techniques [10–12]. The properties of the low-
temperature phases and the transition points in R2CuO4
(Pr, Sm, Eu) were different for different crystals and are
most likely determined by the RE ions.

Our present data show that the structural properties
of the CuO2 layers and of the crystal as a whole for
R2CuO4 crystals with RE ions depend on the RE ions
present in the crystals.

2. EXPERIMENTAL RESULTS

We carried out a complete x-ray diffraction charac-
terization of the Sm2CuO4 and Nd2CuO4 crystals at
temperatures of 296 and 373 K. The measurements
were performed on single crystals grown by the sponta-
neous-crystallization method described in [2]. The
crystals were stoichiometric in composition and
dielectric.

The samples used for the diffractometric studies
were rectangular prisms measuring 0.17 × 0.18 ×
0.11 mm (Sm2CuO4) and 0.12 × 0.11 × 0.11 mm
(Nd2CuO4). All measurements were taken on the same
samples and in the same setup.

A preliminary diffractometric investigation showed
the Sm2CuO4 and Nd2CuO4 crystals to have tetragonal
symmetry (space group I4/mmm). The x-ray reflection
intensities were measured up to the value sinΘ/λ =
1.075 Å–1 on an automated three-circle, single-crystal
diffractometer in the normal-inclination, layer-by-layer
ω scanning mode by properly rotating the crystal about
the a axis. The MoKα radiation used (λ = 0.71069 Å)
was passed through a graphite monochromator.

The crystal structures were refined by least-squares
techniques in the block-matrix approximation, basi-
cally, by the scheme employed in [1, 2]. The parameters
of the cation temperature factors were refined in the
fourth-order anharmonic approximation. The data thus
obtained were used to construct the ion probability den-
sity functions, which are Fourier transforms of the cor-
responding temperature factors. To reduce the regions
of negative values of the PDF which form when refin-
ing anharmonic parameters by least-squares tech-
niques, we employed the Gram–Charlier model of the
temperature factor [13]:

(1)

Here, Tharm(h) = exp(–βpqhphq); βpq are anisotropic har-
monic temperature parameters; cpqr and dpqrs are the

T h( ) Tharm h( ) 1 2πi( )3/3!cpqrhphqhr+[=

+ 2πi( )4/4!d pqrshphqhrhs ] .
2
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Table 1.  Details of the experiment and structural parameters of R2CuO4 single crystals at room temperature

Parameter La2CuO4
a Pr2CuO4 Nd2CuO4 Sm2CuO4 Eu2CuO4 Gd2CuO4

Space group Abma I4/mmm I4/mmm I4/mmm I4/mmm I4/mmm

a, Å 5.397(3) 3.953(2) 3.944(1) 3.921(1) 3.897(3) 3.895(1)

b, Å 5.365(3) a a a a a

c, Å 13.165(2) 12.232(3) 12.147(2) 11.994(2) 11.905(2) 11.8952(6)

Nrefl (I > 3σ(I))b 640 250 198 170 285 250

R, %c 3.23 2.79 1.79 2.09 4.00 2.79

RW , %d 3.34 2.24 2.37 2.27 4.19 2.95

µ, cm–1e 275.3(3) 304.3(1) 324.9(3) 370.6(3) 400.8(4) 423.3(1)

rext , Å
f 1835(14) 3288(15) 2082(17) 5564(44) 7868(49) 2897(35)

Note: a La2CuO4 is twinned pseudomerohedrally along the (110) planes. Extinctions of the twin-domain reflections satisfy the Abma and
Bmab space groups. Least-squares refinement yields for the twinning coefficient Ktw = 0.68(2), which corresponds to the 2 : 1 ratio
for the components described by lattices A and B;

b Nrefl is the number of independent nonzero reflections; 
c R is the structural divergence factor;
d RW is the weighting factor of divergence according to the Cruckshank scheme [14]; 
e µ is the absorption coefficient (for MoKα). The absorption was taken into account by numerical integration over the crystal volume; 
f rext is the least-squares value of the extinction parameter. The extinction was taken into account using the method of Becker and
Coppens [15] in isotropic approximation for crystals with rext ! λg and a Lorentzian mosaic-block distribution.

Table 2.  Refined room-temperature parameters for Cu2+(0, 0, 0) ions in R2CuO4 crystals (R = La, Pr, Nd, Sm, Eu, Gd)

 Parameter La Pr Nd Sm Eu Gd

Beq, Å2 0.67(1) 0.439(6) 0.43(2) 0.48(1) 0.42(1) 0.45(1)

U11, Å 0.085(1) 0.0861(3) 0.055(1) 0.075(1) 0.072(2) 0.072(1)

U22, Å 0.088(2) U11 U11 U11 U11 U11

U33, Å 0.101(1) 0.079(1) 0.100(4) 0.084(4) 0.075(2) 0.075(2)

U13, Å 0.006(30) 0 0 0 0 0

d1111 × 109 154(49) 130(148) –172(141) 1065(794) –19(305) 305(262)

d2222 × 109 –686(69) d1111 d1111 d1111 d1111 d1111

d3333 × 109 –0.4(7) 0.3(10) 39(14) –5(2) –5(2) –7(21)

d1113 × 109 2(8) 0 0 0 0 0

d1333 × 109 1(1) 0 0 0 0 0

d1122 × 109 73(18) 325(71) 82(63) –424(129) –321(163) 649(132)

d1133 × 109 13(3) –8(8) –41(17) –17(19) 69(16) 58(16)

d2233 × 109 –23(4) d1133 d1133 d1133 d1133 d1133

d1223 × 109 –1(7) 0 0 0 0 0

Note: Uii are RMS temperature-induced atomic displacements (harmonic part of the temperature factor); Uij = sgn(βij)sqrt(βij/(2π)2aiaj);
dpqrs are fourth-order anharmonic temperature parameters; Beq is the equivalent isotropic temperature factor; Beq = 4/3Σβijaiaj,
where βij are anisotropic temperature factors.
anharmonic temperature parameters of the third and
fourth order, respectively; and h is the scattering vector
with components (h1, h2, h3) = (h, k, l).

The same method was applied to refine the room-
temperature structural parameters of the La2CuO4 and
Eu2CuO4 crystals studied by us earlier [1] by using the
Edgeworth anharmonic approximation of the cation
PH
temperature factors [13]. The cation PDFs obtained in
both models of the anharmonic temperature factor are
qualitatively similar.

The experimental and main structural parameters of
the crystals studied are listed in Tables 1–5. Figures 2
and 3 display the PDFs of the Cu2+ ions in R2CuO4 crys-
tals (R = La, Pr, Nd, Sm, Eu, Gd) calculated for room
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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Table 3.  Refined room-temperature parameters for R3+ ions (x/a, 0, z/c) in R2CuO4 crystals (R = La, Pr, Nd, Sm, Eu, Gd)

Parameter La Pr Nd Sm Eu Gd

x/a 0.00227(4) 0 0 0 0 0

z/c 0.36136(1) 0.35132(2) 0.35149(4) 0.35057(3) 0.35009(3) 0.34922(3)

Beq, Å2 0.718(4) 0.522(2) 0.556(7) 0.494(3) 0.389(4) 0.478(3)

U11, Å 0.0938(5) 0.0861(3) 0.0578(4) 0.0850(4) 0.0758(6) 0.0832(4)

U22, Å 0.1126(6) U11 U11 U11 U11 U11

U33, Å 0.0761(6) 0.0707(4) 0.1201(13) 0.0658(7) 0.0575(10) 0.0655(7)

U13, Å 0.057(13) 0 0 0 0 0

c111 × 108 14(13) 0 0 0 0 0

c333 × 108 –2(5) –0.7(8) –20(6) –2.4(15) –2(1) –1.4(14)

c122 × 108 –5(10) 0 0 0 0 0

c113 × 108 8(4) –19(10) 6(12) –1(160) –19(16) –25(16)

c133 × 108 1(1) 0 0 0 0 0

c223 × 108 1(5) c113 c113 c113 c113 c113

d1111 × 109 –309(7) 786(49) –139(47) 887(242) 491(95) 765(78)

d2222 × 109 –1410(26) d1111 d1111 d1111 d1111 d1111

d3333 × 109 –0.2(2) 1.5(3) 135(7) –3.6(5) 1.6(6) –3.4(5)

d1113 × 109 –2(3) 0 0 0 0 0

d1333 × 109 0.5(5) 0 0 0 0 0

d1122 × 109 363(6) –513(24) 67(22) –363(62) –632(47) –673(36)

d1133 × 109 16(1) –12(2) –47(7) –14(5) 13(5) 36(4)

d2233 × 109 –15(1) d1133 d1133 d1133 d1133 d1133

d1223 × 109 1(3) 0 0 0 0 0

Note: Notation for the quantities Beq, Uii, Uij, and dpqrs is the same as in Table 2; cpqr are third-order anharmonic temperature parameters.

Table 4.  Refined cation parameters for Nd2CuO4 (space group I4/mmm, a = 3.950(1) Å, c = 12.153(1) Å, Nrefl = 178, R = 1.87%,
RW = 2.82%) and Sm2CuO4 (space group I4/mmm, a = 3.926(1) Å, c = 12.014(1) Å, Nrefl = 168, R = 2.37%, RW = 2.44%) at 373 K

Parameter
Nd2CuO4 Sm2CuO4

Nd Cu Sm Cu

z/c 0.35079(7) 0 0.35055(2) 0

Beq, Å2 2.33(2) 2.31(5) 0.666(3) 0.65(1)

U11, Å 0.0588(6) 0.047(2) 0.0969(4) 0.087(1)

U22, Å U11 U11 U11 U11

U33, Å 0.2854(12) 0.289(3) 0.0807(6) 0.097(2)

c333 × 108 –25(19) 0 38(14) 79(359)

c113 × 108 31(25) 0 –124(166) –1(160)

c223 × 108 c113 0 c113 0

d1111 × 109 –132(79) –86(210) 564(105) 79(359)

d2222 × 109 d1111 d1111 d1111 d1111

d3333 × 109 49(17) –34(48) –0.6(5) –10(2)

d1122 × 109 69(33) 44(97) –74(28) –49(97)

d1133 × 109 –43(15) –22(47) –12(4) 19(16)

d2233 × 109 d1133 d1133 d1133 d1133

Note: Notation for the quantities Beq, Uii, Uij, cpqr, and dpqrs is the same as in Tables 2 and 3.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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Table 5.  Room-temperature distances between ions (Å) in R2CuO4 crystals (R = La, Nd, Sm, Eu)

Parameter La2CuO4 Nd2CuO4 Sm2CuO4 Eu2CuO4

R–O2 2.323(4) 2.3256(5) × 4 2.3019(5) × 4 2.284(1) × 4

R–O1 2.620(3) × 2 2.6726(5) × 4 2.6563(8) × 4 2.642(1) × 4

R–O1' 2.654(3) × 2 – – –

R–O2' 2.684(6) – – –

R–O2'' 2.752(2) × 2 – – –

R–O2''' 2.850(6) – – –

Cu–O1 1.9028(8) × 4 1.9720(5) × 4 1.9605(5) × 4 1.948(1) × 4

Cu–O2 2.437(4) × 2 – – –
temperature. Figures 4 and 5 show the room-tempera-
ture PDFs of the R3+ ions calculated for the same crys-
tals. Figures 6 and 7 present the PDFs of the Cu2+ and
R3+ ions calculated for Nd2CuO4 and Sm2CuO4, respec-
tively, for T = 373 K. We note that the ion PDFs in the
(100) and (010) planes of R2CuO4 crystals (R = Pr, Nd,
Sm, Eu, Gd), whose structure is described by the space
symmetry group I4/mmm, are equivalent. At the same
time, for La2CuO4 (space group Abma), the PDFs in the
(100) and (010) planes are different. Because the (100)
cut of the PDF is in this case more informative, it is the
(100) PDFs that are presented in the figures.

As seen from Figs. 2–7, while PDFs for R2CuO4
crystals with different RE ions differ substantially, we
observe, however, a certain pattern in the PDF variation
which correlates with the increase in atomic number
and decrease in radius of the RE ion.

As an illustration of two limiting cases, let us con-
sider the PDFs of Cu2+ ions for La2CuO4 and Eu2CuO4.
In La2CuO4, one observes a two-well potential with
splitting along the a and b axes in the CuO2 layer and a
minimum of the PDF at the special ion position. We
believe the Jahn–Teller vibronic interaction, which
gives rise to the cooperative Jahn–Teller effect (CJTE)
of copper ions [1], to dominate here. Eu2CuO4 exhibits
a singly connected PDF with the maximum value at the
special position. In this case, the orbit–orbit interaction
mediated by 2D spin fluctuations is dominant [1].

Let us formulate the main criteria underlying the
analysis of the data presented here for all R2CuO4 crys-
tals.

First of all, the actual type of the PDF is important,
namely, whether the PDF is multiply or singly con-
nected. We believe that multiply connected PDFs, cor-
responding to double- or multiwell crystal-field poten-
tials, form as a result of vibronic CJTE for the corre-
sponding ions. In the case of a singly connected PDF
with the maximum value (accepted as 100%) at the
equilibrium ion position, there is no vibronic CJTE.
The equilibrium position of an ion in the lattice corre-
sponds to the center of the square panels in Figs. 2–7.
PH
The density of the spatial distribution of PDF lines
relative to its maximum value is a measure of the steep-
ness of the local potential. For multiply connected
PDFs, the value of the PDF at the center of a panel
(field) characterizes the depth of the wells produced by
the CJTE of the corresponding ions. Angular symmetry
in the PDF distribution provides information on the
directions of extremal ion displacements in thermal
vibrations.

PDFs are constructed taking into account both the
harmonic and anharmonic contributions to thermal ion
vibrations (Tables 2–4). Large anharmonic contribu-
tions are indicated by the flat regions in the PDFs [13].
To find the effect of the RE properties, as well as of
interactions between the copper and RE ions, on the
structural states of a crystal, a comparative analysis is
carried out of the PDF patterns for the copper and RE
ions.

Consider the main features of the room-temperature
Cu2+ PDF in the series of crystals studied by us.

In Eu2CuO4 and Gd2CuO4, one observes singly con-
nected PDFs with the maximum value at the field cen-
ter, which implies the absence of vibronic CJTE. By
contrast, R2CuO4 crystals (R = La, Nd, Pr, Sm) exhibit
multiply connected PDFs, which indicates the presence
of vibronic CJTE for the Cu2+ ions.

In La2CuO4, Pr2CuO4, and Nd2CuO4, the crystal-
field potential in the presence of vibronic CJTE splits in
the (001) plane along the [100], [010], and [110] direc-
tions, respectively. In Sm2CuO4, this splitting occurs
along the c axis ([001] direction).

In crystals with multiply connected PDFs, the deep-
est wells are observed in La2CuO4 and Nd2CuO4, with
close-to-zero PDF values at the field centers. In the
Pr2CuO4 and Sm2CuO4 crystals, the well depth is con-
siderably smaller. In the latter crystal, a practically flat
crystal-field potential is observed near the field center
(Figs. 2, 3).

As also can be seen from Figs. 2–7, the symmetry of
the PDFs in the (001) planes, corresponding to the
CuO2 sheets, and in the (100) and (010) planes, charac-
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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Fig. 2. Room-temperature PDF of Cu2+ ions for La2CuO4 (La), Pr2CuO4 (Pr), and Nd2CuO4 (Nd) calculated for the (001) and (010)
planes. Field span 0.48 × 0.48 Å. PDF isolines drawn in steps of 10% of the maximum value. Dot specifies 100% PDF. Dot-and-
dash line corresponds to PDF = 0. Dashed lines identify negative values of PDF. Field centers correspond to equilibrium lattice ion
positions in the lattice.

[100] [100]

[010] [001]

La

Pr

Nd
terizing copper ions off the CuO2 sheets, is substan-
tially different.

In R2CuO4 crystals (R = Sm, Eu, Gd), the probability
density function in the (001) planes for small ion ther-
mal-vibration amplitudes (PDF > 50%) has a practi-
cally isotropic pattern, which implies a harmonic char-
acter of the thermal vibrations. In the case of large
PDF > 50% (large thermal vibration amplitudes), flat
PDF regions characteristic of an anharmonic compo-
nent of thermal vibrations appear and the PDF distribu-
tion acquires a square anisotropy. In Nd2CuO4 and
Pr2CuO4 crystals, one can see manifestations of a
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
vibronic CJTE in the (001) plane, while the square
anisotropy in the PDF distribution is retained. The PDF
patterns in the (100) and (010) planes for R2CuO4 crys-
tals with different RE ions differ more strongly than in
the (001) plane. Copper ions in La2CuO4, Nd2CuO4,
and Sm2CuO4 exhibit the largest thermal displacement
along the c axis. In Sm2CuO4, the 100% value point of
the PDF is shifted along the c axis from the equilibrium
ion position. In Nd2CuO4, one sees only residual indi-
cations of a vibronic CJTE along the c axis, which pos-
sibly occurs at a lower temperature, as is the case with
Pr2CuO4 (see [2]).
02
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Sm

Eu

Gd

[010] [001]

[100] [100]

Fig. 3. Room-temperature PDF of Cu2+ ions for Sm2CuO4 (Sm), Eu2CuO4 (Eu), and Gd2CuO4 (Gd). For other explanatory notes,
see Fig. 2.
Almost all the crystals studied exhibit flat PDF
regions, indicating a large anharmonic component of
thermal vibrations of the copper ions (see also Table 2).
Note that the anharmonic contribution to thermal cop-
per-ion vibrations is most prominent in crystals with
weak CJTE manifestations. Also, anharmonic contribu-
tions manifest themselves more strongly in the (100)
and (010) than the (001) plane.

As follows from the pattern of the angular PDF dis-
tribution, the nonsplit, centered part of the local poten-
tial has cubic symmetry (Z = 8) in all R2CuO4 crystals
with RE ions.
PH
Let us turn now to the experimental features of the
PDF distribution of RE ions. As seen from Figs. 4 and
5, crystals with the Pr3+, Eu3+, and Gd3+ ions at room
temperature exhibit singly connected PDFs and those
with La3+, Nd3+, and Sm3+ ions exhibit multiply con-
nected PDFs. Note that, in contrast to the copper ions,
the PDF of the RE ions is singly connected but asym-
metric relative to the [001] direction (see Table 5). This
deviation from symmetry is also most likely a manifes-
tation of the CJTE.

A comparison of the copper and RE PDFs shows
them to have the same pattern for almost all crystals,
with the exception of Pr2CuO4.
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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La

Pr

Nd

[010] [001]

[100] [100]

Fig. 4. Room-temperature PDF of R3+ ions for La2CuO4 (La), Pr2CuO4 (Pr), and Nd2CuO4 (Nd). For other explanatory notes, see
Fig. 2.
As seen from Fig. 4, Nd3+ ions are characterized by
flat potentials in the (001) plane with weakly pro-
nounced shallow wells which are shifted along the
[110] diagonals. Comparison of the PDFs of the copper
and Nd3+ ions in Nd2CuO4 makes it possible to con-
clude that the CJTE-induced distortion of the local
crystal-field potential for the copper ions is consider-
ably larger than that for Nd3+.

The Sm3+ ions in the (100) plane [as well as in the
equivalent (010) plane] in Sm2CuO4 exhibit a vibronic
CJTE, with wells that are asymmetric in depth and
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      200
shifted along the [001] direction with respect to the
equilibrium ion positions. The isoline that envelopes
both wells and is closest to the equilibrium position
corresponds to a PDF value of 40%. Thus, unlike
Nd2CuO4, the degree of local crystal-field distortion for
the Sm3+ ions in Sm2CuO4 is larger than that for the
copper ions. We note that only in Sm2CuO4 is there a
double-well potential with splitting along the c axis of
the crystal for both the copper and RE ions.

In crystals with dominant vibronic Jahn–Teller dis-
tortion of the Cu2+ ions, this distortion is observed in
2



2138 GOLOVENCHITS et al.
Fig. 5. Room-temperature PDF of R3+ ions for Sm2CuO4 (Sm), Eu2CuO4 (Eu), and Gd2CuO4 (Gd). For other explanatory notes,
see Fig. 2.

Sm

Eu

Gd

[010] [001]

[100] [100]
the (001) planes. At the same time, in Sm2CuO4, the
dominant vibronic distortion of the Sm3+ ions occurs
along the [001] direction, with no vibronic CJTE
present for the Cu2+ ions in the (001) plane.

In Gd2CuO4, there is no CJTE for the Gd3+ ions and
the PDF distributions for the copper and RE ions are
similar. In Eu2CuO4, the PDF of Eu3+ ions is singly con-
nected but asymmetric relative to the [001] direction;
this pattern results from the CJTE. No indication of the
CJTE for the copper ions is seen, however.

For the RE ions, as well as for Cu2+, there are large
anharmonic contributions, i.e., flat PDF regions and
PH
large third- and fourth-order anharmonicity parameters
(see Table 3).

3. ANALYSIS OF EXPERIMENTAL DATA

One can thus conclude that the structural properties
of the CuO2 layers in R2CuO4 crystals with RE ions dif-
fer substantially, depending on the actual type of the RE
ion, more specifically, on its ionic radius and the char-
acter of the ground state.

The absence of apical oxygen ions in the nearest
environment of the copper ions in R2CuO4 crystals with
RE ions should enhance the effect of the latter on the
properties of the CuO2 sheets and the crystal structure
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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[010] [001]

Fig. 6. PDF of Cu2+ and Nd3+ ions for Nd2CuO4 calculated for 373 K. For other explanatory notes, see Fig. 2.

[010] [001]

[100] [100]

Cu

Sm

Fig. 7. PDF of Cu2+ and Sm3+ ions for Sm2CuO4 calculated for 373 K. For other explanatory notes, see Fig. 2.
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as a whole compared with La2CuO4 (in which the apical
oxygen ions in the Cu–O layers screen the effect of the
RE ions on them). As a result, in La2CuO4, the local
crystal-field potential of the copper ions is determined
by the nearest neighbors in the 2D CuO2 sheet, whereas
in R2CuO4 crystals with RE ions, the effective local
potential of the Cu2+ ions does not derive from them
alone. To the field of the 2D plane square lattice in the
CuO2 sheet (the first coordination shell) is admixed to
the crystal field of the next coordination shells and, pri-
marily, of the RE ions, because the R3+ ions are closest
to the Cu2+ ions in the c direction (see Fig. 1).

Let us turn now to an analysis of the intralayer inter-
actions, which determine the structural properties of
crystals. These are, first of all, the Jahn–Teller interac-
tions in the CuO2 sheets and in layers with RE ions.
R2CuO4 crystals with RE ions contain Jahn–Teller ions
of two types, namely, Cu2+ and R3+ [16, 17]. As follows
from our results, the dominant lattice distortions exist-
ing in the crystals under study, which actually deter-
mine the crystal structure as a whole, are those caused
by the Jahn–Teller effect of either the copper or RE
ions. In Sm2CuO4, the Jahn–Teller RE ion interactions
are dominant, whereas in the Nd2CuO4 and Pr2CuO4
crystals, the Jahn–Teller interaction of copper ions pre-
dominates. In this case, the intralayer Cu2+–R3+ cou-
pling plays, on the whole, an important role in govern-
ing the crystal structure.

Note that the vibronic CJTE for Cu2+ ions is
observed in R2CuO4 crystals with the maximum possi-
ble RE ionic radii (R = Pr, Nd). By contrast, in crystals
with smaller ionic radii (R = Sm, Gd, Eu), the vibronic
CJTE for the Cu2+ ions is substantially weaker or is
altogether absent.

Let us consider the situation in the CuO2 sheets in
more detail. The character of the Cu2+ orbital ground
state and, accordingly, the character of the Jahn–Teller
effect are known to be determined by the type of nearest
environment in the cubic-lattice approximation [6, 16].
In R2CuO4 crystals with RE ions, the nearest environ-
ment of the copper ions derives from the contribution of
two crystal-field components with different symme-
tries, namely, of the oxygen ion squares in the CuO2
sheets (Cu–4OI) and of the cubic RE environment (Cu–
8R). As is well known, the orbital ground state of Cu2+

ions in an oxygen ion square is a  singlet. The

cubic arrangement of R3+ ions around the Cu2+ ion cor-
responds to an orbital ground state of Cu2+ in the form
of an eg doublet [18].

Splitting of the eg doublet in the tetragonal lattice
produces a vibronic CJTE for copper ions [6, 16]. We
believe, however, that the structural states of the CuO2
sheets and of the crystals as a whole are also deter-
mined by the excited orbital states of the t2g triplet. As
already mentioned, in R2CuO4 crystals, a number of

d
x

2
y

2–( )
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interactions comparable in strength to the splitting ∆ =
(eg – t2g) ~ 0.1 eV in the cubic lattice are observed,
which makes admixture of excited states to the ground
state possible. The t2g triplet in the tetragonal lattice
splits into a dxy singlet and a dxz, yz tetragonal doublet.
The character of this splitting depends on the relative
magnitude of the vibronic and SO couplings. If the
former coupling dominates, the lower state is the dxy

singlet, and if the latter interaction is stronger, the dxz, yz

tetragonal doublet is in a lower position [6, 16].

If the SO interaction in R2CuO4 crystals with RE
ions is strong, the tetragonal doublet is admixed to the
orbital ground singlet  for the copper ions.

Under these conditions, the orbit–orbit coupling
through 2D spin fluctuations can give rise to a CJTE of
spin origin. A CJTE of this type was assumed to be
responsible for the 2D orbital glass state revealed in
Eu2CuO4 for T > 150 K [11]. No strong lattice distor-
tions occurred, but correlated spin and orbital states
formed. We believe that the existence of a singly con-
nected PDF in Eu2CuO4 for T > 150 K is due to Jahn–
Teller stabilization through a CJTE of spin origin. A
singly connected PDF is observed in Gd2CuO4, while
the Pr2CuO4 and Nd2CuO4 crystals exhibit an admix-
ture of centered PDF to the split PDF induced by
vibronic CJTE. It appears only natural to assign the
nonsplit, centered PDF of the copper ions to a contribu-
tion of orbit–orbit coupling through spin fluctuations.

The multiply connected copper-ion PDFs observed
in R2CuO4 crystals (R = Nd, Pr) are evidence of a dom-
inant contribution of vibronic Jahn–Teller interactions
for the Cu2+ ions in CuO2 sheets.

Thus, in the CuO2 layers of R2CuO4 crystals with
RE ions, there are two different interactions bringing
about Jahn–Teller lattice stabilization, namely, vibronic
(phonon-mediated orbit–orbit coupling) and orbit–
orbit coupling mediated by 2D spin fluctuations. As
already mentioned, the character of the Jahn–Teller sta-
bilization is different for these two interactions. Their
coexistence may produce nonuniform structural states,
and variation of the relative strength of the interactions
with temperature may give rise to structural phase tran-
sitions.

In the cases where the Jahn–Teller RE interaction in
R2CuO4 crystals is dominant, a distortion of the cubic
symmetry in the RE environment plays a primary role.
Interaction between the copper and RE ions should also
change the structural state of the Cu2+ ions. It is this sit-
uation that is apparently realized in Sm2CuO4.

Let us consider some characteristic features of the
structural states of specific R2CuO4 crystals with RE
ions in more detail.
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3.1. La2CuO4

Atomic number Z(La) = 57; ionic radius r(La3+) =
1.032 Å [19].

The La3+ ion is nonmagnetic. As mentioned above,
for temperatures T < 650 K, La2CuO4 has a T-type
orthorhombically distorted structure, with the nearest
environment of the Cu2+ ions being oxygen octahedra
in the CuO2 sheets.

As seen from Fig. 2, the copper ion PDFs have a pat-
tern typical of crystals with a vibronic CJTE. The crys-
tal field has a double-well potential with a splitting in
the (001) plane (in the CuO2 layer) and a close-to-zero
field-center PDF. The copper ion displacement in ther-
mal vibrations is maximum along the c axis, which
indicates that the nearest environment of the ion is an
octahedron extended along the c axis.

3.2. Pr2CuO4

Z(Pr) = 59; r(Pr3+) = 0.99 Å [19].
The ground state of the Pr3+ ion is 3H4 (S = 1, L = 5,

J = 4). The orbital and spin ground singlet is separated
energywise from the excited orbital doublet by
~18 meV [20].

Vibronic Jahn–Teller distortions in the CuO2 layers
are dominant for copper ions at room temperature.
Such distortions are not observed for the Pr3+ ions. As
already mentioned, Pr2CuO4 is the only R2CuO4 crystal
with RE ions in which there are no obvious correlations
in PDF shape between the copper and RE ions.

The Pr3+ ion has the maximum ionic radius in
R2CuO4 crystals with tetragonal T ' structure. The lattice
accommodating the slightly larger La3+ ion has T struc-
ture. The displacements of the Pr3+ ions in a lattice of T '
symmetry are apparently constrained. As a result, the
Coulomb repulsion between the Pr3+ and Cu2+ ions
gives rise to a relatively larger copper-ion displacement
in the CuO2 layer; i.e., the Coulomb repulsion effi-
ciently enhances the vibronic Jahn–Teller interaction
between the copper ions. Nevertheless, near the field
center, there is also a centered part of the copper ion
PDF in the (001) plane; we associate this part with the
contribution of the orbit–orbit coupling through spin
fluctuations to the Jahn–Teller stabilization.

Thus, although the vibronic interaction of copper
ions in the CuO2 sheets is dominant in Pr2CuO4, the
properties of the Pr3+ ion (in this case, its ionic radius)
and the R3+–Cu2+ interaction noticeably affect the crys-
tal structure.

3.3. Nd2CuO4

Z(Nd) = 60; r(Nd) = 0.983 Å [19].
The Nd3+ ground state is 4I9/2 (S = 3/2, L = 2). The

orbital ground doublet is crystal-field split by 0.5 meV.
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The first excited orbital doublet is spaced energywise
from the ground state by 16 meV [20].

The Nd2CuO4 crystal at room temperature exhibits a
dynamic vibronic CJTE for both the copper and neody-
mium ions; however, the distortion of the local crystal
field for copper ions is larger than that for Nd3+. In other
words, vibronic interactions for the Cu2+ ions dominate
in Nd2CuO4. One readily sees a correlation between the
copper ion and Nd3+ states. We believe this correlation
to be due to Cu2+–Nd3+ coupling giving rise to corre-
lated ion displacements. The ionic radius of Nd3+ is
smaller than that of Pr3+; this accounts for the higher
mobility of the former ion in the lattice.

The (001) plane displays a centered part of the cop-
per ion PDF near the equilibrium position, which we
assign to a contribution of the orbit–orbit interaction
through spin fluctuations to the Jahn–Teller stabiliza-
tion. Note that the relative contribution of the centered
nonsplit potential in Nd2CuO4 is larger than that in
Pr2CuO4.

Thus, the crystal structure of Nd2CuO4 is a result of
three types of interactions, namely, the intralayer
vibronic Jahn–Teller and SO coupling of copper ions
and the Cu2+–Nd3+ interlayer interaction. At room tem-
perature, the Jahn–Teller vibronic interaction for the
copper ions is dominant.

As seen from Figs. 2 and 6, an increase in tempera-
ture enhances copper-ion displacements along the
[001] directions and decreases the contribution of sin-
gly connected PDFs in the (001) plane; i.e., it enhances
the role of the in-plane vibronic Jahn–Teller coupling.
The symmetry of the effective nearest environment of
copper ions in Nd2CuO4 approaches ever more that of
an octahedron extended along the [001] direction, mak-
ing the PDF distribution pattern similar to that of
La2CuO4.

3.4. Sm2CuO4

Z(Sm) = 62; r(Sm3+) = 0.958 Å [19].
As already mentioned, the structure of Sm2CuO4 is

dominated by the CJTE for the RE ions and the interac-
tion between the copper and RE ions. The ionic radius
of Sm3+ is slightly smaller than that of Nd3+ but is larger
than those of europium and gadolinium.

The ground multiplet of the Sm3+ ion is 6H5/2 (S =
5/2, L = 5, J = 5/2). Crystal field splitting makes the
orbital singlet and Kramers doublet the ground state.
The distance to the nearest excited orbital doublet is
~18 meV [21].

At room temperature, the Sm3+ ion is seen to
undergo equilibrium-position displacement along the
[001] direction from the field center (Fig. 5), which is a
consequence of static CJTE for the Sm3+ ions. The local
Jahn–Teller distortions for the Sm3+ ions are larger than
those for the copper ions. The PDFs for the copper and
02
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samarium ions are similar. The off-plane displacement
of the Cu2+ ions from the CuO2 sheets along the c axis
is most likely due to the Sm3+–Cu2+ interaction. Note
that the pattern of the Cu2+ displacement along the c
axis corresponds to the case of dynamic CJTE (Cu2+

displacements up and down with respect to the layer are
equally probable). At the same time, copper ions do not
exhibit any manifestation of the vibronic CJTE in the
(001) plane at room temperature. One sees, however,
PDFs extended along the a and b axes, which can give
rise to switching, at a low temperature, of the dominant
type of interaction from the vibronic for RE ions to the
vibronic for copper ions in the CuO2 layer and, thus,
can lead to a structural phase transition.

As seen from Fig. 7, the pattern of PDF distribution
of copper and samarium ions in Sm2CuO4 obtained at
T = 373 K changes qualitatively compared to that for
room temperature. At T = 373 K, no vibronic CJTE is
observed either for the Sm3+ or the Cu2+ ions. In the
interval 300–373 K, Sm2CuO4 apparently undergoes a
structural phase transition manifest in a transformation
of the PDF from the doubly to singly connected pattern
(compare Figs. 3, 4, 7). The situation becomes similar
to that observed in Eu2CuO4 for T > 150 K (in the tet-
ragonal phase) [1]. It may be assumed that orbit–orbit
coupling through 2D spin fluctuations in the CuO2 lay-
ers becomes dominant in Sm2CuO4 for T > 296 K.

Note that below the Néel temperature (TN ~ 250–
290 K), all R2CuO4 crystals with RE ions support long-
range 3D antiferromagnetic order. If for T < TN the
crystal is in a uniform 3D antiferromagnetic state, then
2D spin fluctuations with large correlation lengths are
formed in CuO2 sheets for temperatures T > TN. If, how-
ever, the 3D antiferromagnetic state is nonuniform, 2D
spin fluctuations also persist for T < TN. The existence
of well-developed 2D spin fluctuations with large cor-
relation lengths can enhance the part played by a CJTE
of spin origin. It is possible that Sm2CuO4, in contrast
to Eu2CuO4, supports a uniform magnetic and a struc-
tural state for T < TN. At the same time, in Pr2CuO4 and
Nd2CuO4, which do not suffer noticeable changes in
their structural properties (in the shape of the PDF) near
the Néel temperature, a nonuniform 3D antiferro-
magnetic state most likely exists for T < TN. The possi-
bility of existence of well-developed 2D spin fluctua-
tions in Pr2CuO4 for T < TN is also corroborated by spin
dynamics studies [22, 23] and by the presence of cen-
tered, nonsplit PDFs of copper ions in CuO2 sheets for
T < TN [2].

3.5. Gd2CuO4

Z(Gd) = 60; r(Gd3+) = 0.938 Å [19].
Unlike other RE ions, Gd3+ is not a Jahn–Teller ion,

because its ground state is 8S7/2. A nonzero orbital
moment appears in the next term spaced from the
PH
ground state by ~2 eV. Gd3+ ions have the smallest ionic
radius among the RE ions in R2CuO4 crystals. A T '-type
lattice does not form for RE ions with smaller ionic
radii. For temperatures T < 600 K, Gd2CuO4 exhibits
orthorhombic distortions in the CuO2 sheets caused by
the O2– (OI) ions rotating about the undisplaced Cu2+

ions [4, 8].

The shape of the copper-ion PDF suggests that the
vibronic JT interaction is weak and does not affect the
structural state of the crystal significantly. There is a
similarity in the spatial PDF distribution between the
copper and gadolinium ions. The PDF symmetry in the
(100) and (010) planes reflects a Z = 8 coordination of
the nearest environment of ions, which is in agreement,
for the Gd3+ ions, with the actual nearest environment
of OI and OII ions and indicates, for the Cu2+ ions, that
the Gd3+–Cu2+ interaction plays a dominant role in the
formation of the crystal-field potential. There is a sub-
stantial anharmonic contribution to the PDF in the same
planes, which usually reflects structural instability of
the lattice, i.e., closeness to a displacive phase transi-
tion [24].

In the (001) plane, a square PDF symmetry is
observed, which is a sign of a predominant contribution
of the Cu–OI coupling to the potential formation in the
CuO2 sheets. As already pointed out, in this layer, one
observes orthorhombic distortions associated with the
OI ions turning with respect to the undisplaced copper
ions.

One may thus assume that the Gd3+–Cu2+ Coulomb
repulsion and the Cu–OI coupling in the CuO2 sheets
are of the same order of magnitude in Gd2CuO4. Also,
the Gd3+–Cu2+ interaction in the (100) and (010) planes,
combined with a strong anharmonicity, results in the
RE and copper ion thermal displacements being corre-
lated; this, possibly, gives rise to stabilization of the
nearly unstable lattice.

As mentioned above, we associate the presence of
nonsplit centered PDFs of the Cu2+ Jahn–Teller ions
with a CJTE of spin origin. In Gd2CuO4, however,
orthorhombic distortions in the CuO2 sheets should
bring about splitting of the dxz, yz tetragonal doublet and
predominance of the vibronic Jahn–Teller interaction
for the copper ions. If the structural state of the crystals
were to be uniform and have orthorhombic symmetry,
the PDFs would be split, reflecting the predominantly
vibronic character of the Jahn–Teller lattice stabiliza-
tion, which is at odds with the observed PDF distribu-
tion pattern. It may be conjectured that Gd2CuO4 sup-
ports a nonuniform structural state with a strong anhar-
monicity and that effects characteristic of both the
tetragonal [23] and orthorhombic symmetry [4, 8, 22]
are observed. Possible coexistence of the tetragonal and
orthorhombic phases was reported recently in a study
of weak ferromagnetism and Raman spectra [25].
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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3.6. Eu2CuO4

Z(Eu) = 63; r(Eu3+) = 0.947 Å [19].

The ground state of the Eu3+ ion 7F0 (S = 3, L = 3,
J = 0) is singlet and nonmagnetic. However, the first
excited multiplet of the Eu3+ ion (7F1), which is mag-
netic and degenerate (triplet), lies low in energy,
0.03 eV away from the ground-state multiplet [1].
Structural studies of Eu2CuO4 showed static CJTE of
the Eu3+ ions (7F1) to form for temperatures T > 350 K
when there is a noticeable thermal population of the 7F1
excited triplet state [1].

Eu2CuO4 is reported [9–11] to undergo a structural
phase transition at T ≈ 150 K. For T < 150 K, orthor-
hombic distortions form in the CuO2 layers that are
similar to those observed in Gd2CuO4. For T > 150 K,
these distortions disappear, restoring the square in-
plane symmetry and tetragonal symmetry throughout
the crystal [9]. However, the structural state is nonuni-
form and an orbital glass state is observed [11].

We believe that the phase transition at T ≈ 150 K
may be driven by a change in the character of the Cu2+–
Eu3+(7F1) interaction compared with Cu2+–Eu3+(7F0).
For T ≥ 150 K, the displacement of the Jahn–Teller ions
Eu3+(7F1) from the central positions may be assumed to
be more probable than rotation of the oxygen ions OI in
the CuO2 layers. As a result, for T < 150 K, Eu2CuO4
acquires a structural state similar to that in Gd2CuO4.
The difference is that Eu2CuO4 retains tetragonal sym-
metry throughout the crystal, with orthorhombic distor-
tions present only in local regions. The state persisting
in the temperature interval 150 < T < 350 K is charac-
terized by a singly connected, centered PDF for the
copper ions, and we believe that the interactions in the
CuO2 sheets are dominated by orbit–orbit coupling
through 2D antiferromagnetic spin fluctuations with
large correlation lengths [11]. Nonuniform magnetic
and structural states allowing the existence of 2D anti-
ferromagnetic fluctuations form in Eu2CuO4 for T >
150 K as a result of simultaneously occurring structural
and magnetic phase transitions (i.e., considerably
below TN ≈ 250 K) [9, 12]. In this case, the role of the
Cu2+–Eu3+(7F1) interaction can be enhanced by its long-
range character if it is mediated by 2D spin correlations
in the CuO2 layer.

4. CONCLUSION

Thus, our analysis of experimental data shows that
the character of structural distortions occurring at room
temperature in the CuO2 sheets of R2CuO4 crystals with
RE ions and the type of the dominant interaction are
determined by the RE properties (ionic radius and the
ground state). In all R2CuO4 crystals with RE ions, the
part played by the Cu2+–R3+ coupling is important and
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
the main factor accounting for the structural features is
the absence of RE ion screening for the copper ions.

The larger the RE ionic radius, the more significant
the part played by the vibronic Jahn–Teller interactions
for the copper ions in crystal structure formation. The
copper ion displacements resulting from the CJTE in
the CuO2 layers efficiently increase the distance to the
nearest positively charged RE ions. Correlated dis-
placement of the Cu2+–R3+ ions brings about stabiliza-
tion of a T '-type tetragonal structure. In the cases where
the RE ions are not of the Jahn–Teller type [Eu3+(7F1)
and Gd3+] and at the same time have minimum ionic
radii, the Cu2+–R3+ interaction gives rise to a strong
anharmonicity characteristic of lattice states close to
instability.
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Abstract—A new kinetic approach is proposed for explaining the fatigue effect in ferroelectrics. A self-con-
sistent variation in the area and geometry of the switching region of a sample upon a cyclic switching accom-
panied by the formation and growth of kinetically frozen domains is considered. It is assumed that fatigue is
due to self-organized formation of a spatially inhomogeneous internal bias field due to retardation of bulk
screening of the depolarization field. Variations in the switching charge and in the amplitude of switching cur-
rent, which are calculated with the help of computer simulation of domain kinetics upon cyclic switching, are
in good agreement with experimental data obtained for thin lead zirconate–titanate (PZT) thin films. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A decrease in the switching charge as a result of
long-time cyclic switching of polarization in thin ferro-
electric films, which is known as the fatigue effect,
remains a key problem, whose solution is essential for
wide practical application of nonvolatile storage
devices based on such films [1–16]. Recently, several
alternative mechanisms have been proposed for
explaining the fatigue effect in films. In accordance
with the bulk-locking mechanism, charged domain
walls in a film subjected to cyclic switching are fixed
(pinning effect) by charge carriers localized at traps [9,
10]. It should be noted that this mechanism was pro-
posed for the first time by Kudzin et al. [16] for explain-
ing fatigue effects in barium titanate single crystals.
According to another mechanism (interface scenario),
fatigue is associated with the slowing down of domain
growth, which is due to suppression of nucleation (seed
termination) at the film–electrode interface [5, 6]. The
role of oxygen vacancy redistribution in an electric field
has also been discussed extensively [14]. In [12], it is
proposed that fatigue can be explained by the growth of
a nonferroelectric passive surface layer upon cyclic
switching. It should be noted that, in all contemporary
models, the relation between the fatigue effect and the
domain-structure kinetics upon cyclic switching is dis-
regarded while considering fatigue in thin films. At the
same time, recent direct observations of the domain
structure of thin films with the help of scanning-probe
microscopy proved that the fatigue effect is accompa-
nied by the formation of a complex-shaped region
being switched and by the appearance and growth of
regions with a frozen orientation of polarization (“fro-
zen domains”) [8, 17].
1063-7834/02/4411- $22.00 © 22145
In this study, we propose an approach to describing
the evolution of switched regions during cycling
switching, which is based on the decisive role of retar-
dation in the bulk screening of the depolarization field.
For cyclic switching, this retardation leads to the self-
organized formation of a spatially nonuniform internal
bias field suppressing the formation of new domains
and slowing down the switching. As a result, the
switching cannot be completed in the regions with the
maximum value of the internal bias field, which corre-
sponds to the formation of kinetically frozen domains.
The main predictions of the proposed model (the exist-
ence of an additional stage of formation (of a rejuvena-
tion stage) preceding the fatigue stage and a change in
the geometry of the switched region upon cycling
switching) are in good agreement with the results of
experimental investigations in thin films.

2. MODEL

It is well known that, after switching of polarization
in a ferroelectric capacitor, external screening (charge
redistribution on the electrodes accompanied by
switching current) rapidly compensates the depolariza-
tion field Edep. However, there is no complete field com-
pensation in the bulk, since a nonpolar surface layer
(dielectric gap) exists in ferroelectrics [18, 19]. After
termination of external screening, the field Edep is com-
pensated only partly and a residual depolarization field
Erd = Edep – Eex.scr is preserved in the bulk [19, 20]. The
compensation of Erd due to slow processes of bulk
screening leads to the formation of an internal bias field
Eb. This field is responsible for the unipolarity of the
switching process, which is manifested in a shift of a
hysteresis loop upon a quite rapid (as compared to the
002 MAIK “Nauka/Interperiodica”
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bulk screening) cyclic switching in an alternating field
[20, 21]. It has been shown, using lead germanite single
crystals as an example, that the field Eb is spatially non-
uniform [22] and varies upon a long-time cyclic switch-
ing [19–23]. Bulk screening can be regarded as a result
of competition between three groups of mechanisms:
(1) orientation of defect dipoles [24–26], (2) redistribu-
tion of bulk charge carriers [18, 19], and (3) injection of
charge carriers from electrodes through a dielectric gap
[6, 27].

We take into account the fact that the domain kinet-
ics during cyclic switching are a self-organized process,
since the spatial distribution of Eb is determined by the
preceding evolution of domains and determines, in
turn, their subsequent kinetics. Earlier, we demon-
strated experimentally that the field Eb is virtually uni-
form over the entire switched region in the case of long-
time cyclic switching with asymmetric (Tpos ≠ Tneg)
rectangular pulses if the switching time is much shorter
than the period of the switching field (ts ! T). In this
case, the mean value of Eb is determined by the asym-
metry of pulses c ~ (Tpos – Tneg)(Tpos + Tneg)–1 [28]. It fol-
lows that in the case of slow switching (ts ≤ T), the
internal bias field Eb becomes spatially nonuniform
even when symmetric pulses are used, since different
regions in the sample are in states with opposite direc-
tions of polarization for different periods of time. Dur-
ing long-time switching, the local value of Eb relaxes to
a value determined by the relative difference in the res-
idence times of a given part of the sample in the states
with opposite directions of polarization, (T+ – T–)/T
(Fig. 1b). In this case, the magnitude and sign of the
internal bias field Eb(x, y) are spatially inhomogeneous
and the distribution function f(Eb) varies upon cyclic
switching. The computer simulation of the domain
kinetics carried out by us revealed that the variation of
f(Eb) upon cyclic switching leads to the appearance and
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Fig. 1. (a) Three types of nuclei considered in simulation:
(1) a nucleus at the end of a step, (2) a nucleus on a domain
wall, and (3) an isolated nucleus. (b) Diagram showing vari-
ations in the relative local value of spontaneous polarization
and in the relative value of the external field during a simu-
lated switching cycle.
PH
growth of unswitched regions (kinetically frozen
domains) [29, 30].

3. COMPUTER SIMULATION

The domain kinetics for cyclic polarization switch-
ing in a thin plate (film) of a uniaxial ferroelectric under
the action of rectangular field pulses were simulated on
a two-dimensional (2D) matrix. We used the classical
model of polarization switching, in which the domain
structure kinetics involve the formation of new domains
and their subsequent growth (nucleation and growth
model) [31, 32]. We assumed that both processes are
controlled by nucleation. The formation of nuclei of
three different types was considered (Fig. 1a).

(i) Formation of nuclei at the ends of the existing
steps leads to step growth.

(ii) Nucleation at a domain wall leads to the forma-
tion of new steps.

(iii) The appearance of isolated nuclei leads to the
formation of new domains.

The probability pk of formation of nuclei of a spe-
cific type in a given element of the matrix (i, j) during
the Nth switching cycle is determined by the local field
Eloc(i, j, N):

(1)

where  and  are the activation field and the
threshold field, respectively [19].

It is well known that the nucleation probability at a
domain wall is much higher than that at a distance from
the wall, since  <  <  [19]. Conse-
quently, an increase in the length of a domain wall facil-
itates polarization switching.

The local field Eloc(i, j, N) is the sum of the uniform
external field Eex, the residual depolarization field Erd,
and the spatial nonuniform internal bias field Eb(i, j, N)
formed by the end of the preceding switching cycle:

(2)

In experiments on fatigue, bulk screening proceeds,
as a rule, quite slowly, and τ @ T. In this case, Eb(i, j, N)
tends to compensate the sum of the external and the
residual depolarization field averaged over a switching
cycle, 〈Eex + Erd〉 . For symmetric pulses of rectangular
shape, we have 〈Eex〉  = 0 at any point, while 〈Erd〉  is spa-
tially nonuniform: 〈Erd〉  = Erd(T+ – T–)/T, where T+ and
T– are the times for which the spontaneous polarization
at a given point is directed along one of the two oppo-
site directions, respectively, during a switching cycle
(Fig. 1b). It should be noted that the local values of T+

and T– for each cycle depend on the domain kinetics in
the entire sample (since the probability of switching at
a given point is determined by the state of its surround-
ings) and, hence, can be determined only as a result of

pk i j N, ,( ) Eac, k / Eloc i j N, ,( ) Eth,k–[ ]–{ } ,exp∼

Eac, k Eth,k

Eac,1 Eac,2 Eac,3

Eloc i j N, ,( ) Eex Erd Eb i j N, ,( ).+ +=
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simulation of the domain kinetics in the entire matrix.
In our analysis, we did not aim at choosing a preferred
screening mechanism from those described above and
characterized the kinetics of screening only by a time
constant τ.

The domain structure kinetics in each switching
cycle were simulated by taking into account the field
Eb(i, j, N) formed by the end of the preceding cycle. The
calculated local values of T+ and T– were used for recal-
culating the spatial distribution of Eb for the next
switching cycle in accordance with the relation

(3)

Assuming the condition T ! τ to be satisfied, we
used the simplified relation

(4)

Obviously, the results of simulation must depend to
a considerable extent on the spatial distribution of Eb

prior to the first switching cycle. In the course of simu-
lation, we considered two versions of the initial state:
an idealized version with a uniform zero internal bias
field (without bulk screening) Eb(i, j, 1) = 0 and a real-
istic version with a completely screened polydomain
initial state Eb(i, j, 1) = –Erd(i, j). The latter version cor-
responds to the spatial distribution observed after pro-
longed holding of the domain structure in a static state.
In this case, the fields Eb in domains with opposite ori-
entations are equal in magnitude but opposite in sign.

3.1. Initial State with Zero Internal Bias Field

The evolution of the domain structure (a set of con-
secutive domain configurations each of which corre-
sponds to a single switching cycle) at various stages of
fatigue process, which is obtained for the initial state
with zero internal bias field, is presented in Fig. 2. It can
be seen that complete switching occurs during the first
cycle (Fig. 2a), while after a long-time cyclic switch-
ing, polarization reversal occurs predominantly in nar-
row regions separating kinetically frozen domains of
different polarities (Fig. 2b). Such a change in the
geometry of the switching region leads to a qualitative
change in the type of domain kinetics. In the initial
state, switching is mainly due to a 2D growth of indi-
vidual domains (Fig. 2a), while the appearance of fro-
zen domains leads to an increase in the contribution
from 1D motion of domain walls. After a long-time
cyclic switching, the domain kinetics are mainly deter-
mined by a reversible parallel displacement of domain
walls (Fig. 2b). It is important to note that a similar
change in the geometry of the switching region was
also detected by directly observing domain kinetics in
PZT films using scanning-probe microscopy [8].

Eb i j N, ,( ) Eb i j N 1–, ,( ) T /τ–( )exp=

+ Erd 1 T /τ–( )exp–[ ]∆ T i j N, ,( )/T .

Eb i j N, ,( ) Eb i j N 1–, ,( ) 1 T /τ–( )=

– Erd i j N 1–, ,( )〈 〉 T /τ .
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The spatially nonuniform field Eb formed after the
completion of the Nth cycle was characterized by the
instantaneous value of the distribution function f(Eb, N)
of the internal bias field:

(5)

The distribution functions f(Eb, N) obtained as a
result of simulation are closely fitted by a Gaussian

f Eb N,( ) L 2– δ Eb Eb i j N, ,( )–[ ] .∑=

(a)

(b)

0.05T 0.2T 0.4T

Fig. 2. Sequence of instantaneous domain configurations
forming during a switching cycle, found with the help of
computer simulation (a) during the first switching and (b)
after a long-time cyclic switching. Switched domains of
opposite polarities are shown by black and white, while fro-
zen domains of various polarity are shown by light-gray or
dark-gray color. The initial state corresponds to zero inter-
nal bias field.
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(Fig. 3a). The initially narrow distribution function
spreads in the course of cyclic switching (variance w
increases significantly). The formation and growth of
two peaks of the distribution function at Eb = ±Erd cor-
respond to the formation and increase in the area of
kinetically frozen domains (Fig. 3a).

According to the Preisach theory, the distribution
function for the internal bias field determines the
dependence of switching charge and current on the
applied voltage during testing with triangular pulses
[33, 34]. The spread of f(Eb, N) upon cyclic switching
decreases the switching charge, since polarization
switching is terminated in the regions in which the local
field Eloc becomes smaller than the threshold field Eth.
In our modification [35] of the Preisach approach, we
took into account the above-mentioned fact that the
threshold fields required for the formation of a single
nucleus and for domain growth (nucleation at a domain
wall) differ significantly. It is shown that the depen-
dence of the maximum value of switching current jmax
on the variance w of the distribution function, which is
found in our model with the help of computer simula-
tion, can be fitted by the formula (Fig. 3) [35]

(6)jmax 1/w( ) jmax 0( ) J a/w( )exp 1–[ ] ,+=
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Fig. 4. Decrease (a) in the relative values of switched charge
and (b) in the maximum value of switching current as a
result of the cyclic switching process obtained by simula-
tion. The initial state corresponds to zero internal bias field.

N = 2 Rejuvenation N = 50 Fatigue N = 450

Fig. 6. Variation of switching region upon cyclic switching
obtained as a result of simulation. Switching from a com-
pletely screened polydomain initial state. Dark field corre-
sponds to the switching region, while light-gray and
dark-gray fields correspond to frozen domains of different
polarities.
PH
where J and a are constants.
It is important to note that the maximum value of the

switching current, jmax, decreases in the fatigue process
to a considerably greater extent than the switched
charge does (Fig. 4).

3.2. Completely Screened Polydomain Initial State

A simulation of cyclic switching from a polydomain
completely screened state revealed an initial increase in
the switching charge. This feature enabled us to single
out an additional rejuvenation stage preceding the
fatigue stage (Fig. 5a). It can be seen that the geome-
tries of the switching region in the rejuvenation and
fatigue stages are qualitatively different (Fig. 6). In the
course of rejuvenation, the width of the switching
region increases considerably and its connectivity
changes. After the completion of rejuvenation, this
region has the form of a connected labyrinth structure.
At the fatigue stage, a self-consistent smoothing and
simplification of the labyrinth structure is observed.
The stimulation revealed that frozen domains of the
same polarity are predominantly formed and grow (uni-
polar fatigue). The sign of unipolarity is determined by
the geometry of the initial domain structure. This ten-
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Fig. 5. Rejuvenation and fatigue stages: (a) simulation of
switching from a completely screened polydomain initial
state; and (b) experimental results for thin PZT films.
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dency is in good agreement with the reported experi-
mental results [13].

The evolution of the internal-bias-field distribution
function in this case differs qualitatively from that in
the case of a zero initial internal bias field considered
above. Two peaks corresponding to initial domains of
opposite signs spread and merge into a single broad
peak during rejuvenation (Fig. 7a). The subsequent
behavior of this peak repeats the variation of f(Eb, N)
described earlier (Fig. 7b). At the rejuvenation stage,
the switching current is the sum of two contributions
corresponding to switching in the regions differing in
the sign of the internal bias field (Fig. 8a).

4. EXPERIMENT

The rejuvenation and fatigue were studied in lead
zirconate–titanate Pb(Zr0.2Ti0.8)O3 films 100–200 nm
thick. The films were deposited by sol–gel method on
Pt/Ti/SiO2/Si/ substrates [11]. The upper platinum elec-
trode was used for applying rectangular bipolar pulses
with 100% filling (without a pause between the pulses).
The amplitude of pulses Ucyc was 5–8 V, and the fre-
quency fcyc was chosen in the interval from 10 Hz to
1 MHz. Hysteresis loops and switching currents were
measured by applying triangular pulses (fm = 10–
100 Hz, Um = 5–7 V) following a certain number of
switching cycles with rectangular pulses. Cyclic switch-
ing and measurements were carried out at room temper-
ature using an automated measuring complex [29].

The measured variations in switching charge
(Fig. 5b) and in current (Fig. 8b) upon cyclic switching
in PZT films confirm the existence of the rejuvenation
stage, which is manifested most clearly in the increase
in jmax (Fig. 9). The experimental data on the evolution
of the shape of the current during cyclic switching is in
qualitative agreement with the predictions of computer
simulation (Figs. 5a, 8a). It should be noted that, in
order to reduce the computer time required for simula-
tion, the value of the time constant τ characterizing the
kinetics of screening was chosen to be much smaller
than its experimental value, which leads to the observed

3

–0.5

j, 
ar

b.
 u

ni
ts

Field, arb. units

40

0 –4
Field, V

0.5 –1 1 –1 1

2

1

0

N = 20 N = 40 N = 60

0 4–4 0 4 –4 0 4

20

Initial

N
 =

 2
 ×

 1
04

N
 =

 3
 ×

 1
07

j, 
µA

(‡) (b)

Fig. 8. Variation of the shape of switching current at the
rejuvenation and fatigue stages: (a) simulation of switching
from a completely screened polydomain initial state and (b)
experimental results for thin PZT films.
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discrepancy between the theoretical and experimental
values of N, for which the magnitude of the switched
charge decreases to half the initial value (endurance).

5. CONCLUSION

Thus, the proposed model of self-consistent evolu-
tion of the local internal bias field enabled us to
describe the variations in the geometry of the switching
region during cyclic switching and to predict the exist-
ence of the rejuvenation stage. With the help of com-
puter simulation, we observed a correlation between
the variations in the internal-bias-field distribution
function and in the shape of switching current upon
cyclic switching. The established correlation makes it
possible to extract important information concerning
the fatigue kinetics from measurements of the switch-
ing current. The good agreement between the results of
simulation and the experimental data obtained for thin
PZT films confirm the applicability of the proposed
approach.
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Abstract—A comparative analysis of polarization-switching kinetics in single crystals of congruent and sto-
ichiometric lithium tantalate LiTaO3 is carried out by recording a sequence of instantaneous domain configura-
tions (optical visualization of the evolution of the domain-structure) and the switching current simultaneously.
A new mechanism of fast kinetics of domains in congruent lithium titanate due to the growth of steps formed
during domain coalescence is discovered experimentally and studied with the help of computer simulation.
Additional information on the domain kinetics in stoichiometric lithium tantalate is obtained on the basis of
statistical analysis of the noise component of a switching current. A model is proposed for description of the
jerky motion of domain walls. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, a new class of periodically polarized non-
linear optical materials has been used extensively for
creating coherent radiation sources and frequency con-
verters using the quasi-phase matching effect [1, 2].
Lithium tantalate LiTaO3 is one of the most important
representatives of this new class, since it is character-
ized by high values of electrooptical and nonlinear opti-
cal coefficients. A periodic domain structure can be cre-
ated by applying an electric field to a system of periodic
electrodes [3–5] deposited by photolithography. In
recent years, attempts have been made to use stoichio-
metric lithium tantalate (SLT) with a much lower con-
centration of defects instead of congruent lithium tanta-
late (CLT) for manufacturing nonlinear optics devices.
It was shown that making use of SLT not only consid-
erably reduces photorefraction and qualitatively
changes the domain shape but also decreases the coer-
cive field by an order of magnitude [6]. However, the
kinetics of domain structure in the case of polarization
switching in SLT have not been studied comprehen-
sively as yet. An integrated study of switching pro-
cesses, including a comparison of the results obtained
simultaneously by using direct and indirect methods, is
of special interest. It has been proved recently for CLT
that the domain kinetics can be observed with the help
of an optical microscope directly during switching [7].
In this study, we report on the results of measurements
of switching current and direct observation of evolution
of the domain structure in CLT and SLT and analyze the
mechanisms determining the domain kinetics.
1063-7834/02/4411- $22.00 © 22151
2. EXPERIMENT

The experiments were performed on monocrystal-
line samples of commercial CLT (Crystal Technology,
CA) and on lithium tantalate samples with a close-to-
stoichiometric composition (SLT), which were grown
by using the Czochralski method with a double crucible
at the National Institute of Materials Science, Tsukuba,
Japan [8]. The concentration of lithium vacancies was
about 2% in CLT and 0.3% in SLT samples. The sam-
ples under investigation were in the form of mon-
odomain plates having a size of 6 × 5 mm and cut per-
pendicularly to the polar axis. The thickness was
0.2 mm for CLT samples and 0.9 mm for SLT samples.
Switching was carried out by rectangular field pulses
using transparent electrodes having a diameter of 1 mm
and made of liquid electrolyte (aqueous solution of
LiCl). In addition, SLT samples were investigated using
In2O3:Sn (ITO) transparent electrodes of diameter
2.5 mm, deposited by reactive sputtering. All measure-
ments were made at room temperature.

The evolution of the domain structure during
switching in the entire switching region of a sample (for
electrodes of diameter 1 mm) was observed directly
with the help of a polarizing microscope in transmitted
light. The sequence of instantaneous images was
recorded by a video camera with a frequency of
25 frames per second. The switching current was
recorded simultaneously by using traditional methods.
In this way, a unique possibility of establishing a corre-
spondence between the switching current and domain
kinetics was realized. Subsequent computer processing
of images was used for a quantitative analysis. Our
002 MAIK “Nauka/Interperiodica”
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measurements proved that CLT and SLT differ quanti-
tatively, not only in the shape of domains, but also in the
domain-structure kinetics and, hence, in the shape of
the switching current.

(a) (b) (c)

Fig. 1. Optical observation of domain-structure evolution
during switching under the action of a rectangular field
pulse in CLT (a) 0.3, (b) 0.9, and (c) 1.5 s from the instant
of field application. The diameter of the switching region is
1 mm, E = 190 kV/cm.

(a)

50 µm

(b) (c) (d)

(e)

v f
Y+

Y–

v sf

Fig. 2. Fast motion of a domain wall in the Y+ direction and
the formation of a superfast zigzag domain wall moving in
the Y– directions in CLT (a) 0.7, (b) 0.8, (c) 0.9, and (d) 1 s
from the instant of field application. E = 190 kV/cm. (e) The
results of simulation of domain kinetics.

(a) (b)0.9

0.6

0.3

0

1

0

–1

j, 
ar

b.
 u

ni
ts

0 200 400 600
Time, arb. units

Fig. 3. (a) Diagram of domain growth (dashed lines indicate
the final position of the domain wall). (b) Switching current
and its noise component obtained as a result of simulation
[fitting by Eq. (1)].
PH
3. DOMAIN KINETICS IN CONGRUENT 
LITHIUM TANTALATE

The domain-structure switching in CLT has made it
possible for the first time to experimentally observe a
new domain wall motion mechanism, which was pro-
posed by us earlier for explaining the domain kinetics
in lead germanate [9, 10].

The switching from the single-domain state in CLT
upon the application of a field (in the form of a rectan-
gular pulse) begins with the almost instantaneous (as
compared to the switching time) formation of a large
number of small domains with a density attaining
1000 mm–2 (Fig. 1a). Subsequently, domain formation
ceases completely and switching is carried out only due
to domain growth. The following two mechanisms of
domain growth can be singled out: (i) extremely slow
growth of individual domains (at a rate v s) and (ii) fast
motion of domain walls (DWs) after coalescence of
domains with considerable anisotropy (a difference in
the velocities in the Y+ and Y– directions) (Figs. 1b, 1c).
The fast motion of a DW (at a velocity v f) in the three
Y+ directions is the result of formation of steps on the
DW due to the coalescence of the moving wall with sin-
gle isolated domains, followed by the growth of steps
(Fig. 2). In addition, superfast zigzag DWs with a high
concentration of steps are formed as a result of coales-
cence of large-size domains (Figs. 2c, 2d), which leads
to an anomalously fast motion (at velocity v sf) of DWs
in the Y– directions. Typical values of velocity of DWs,
obtained as a result of statistical analysis of a sequence
of instantaneous images for switching in a field of
190 kV/cm, were v s ~ 1 µm/s, v f ~ 20–60 µm/s, and
v sf  ~ 130 µm/s. It can be seen that for such a relation
of velocities, the switching process is determined not
by the growth of individual domains due to nucleation
at the walls [10–12] but by the growth of steps formed
as a result of coalescence of domains. It should be noted
that the mechanism under consideration differs qualita-
tively from the Kolmogorov–Avrami model [13, 14]
used conventionally for analysis of switching currents
and based on the study of the growth of individual
domains.

Computer simulation of the switching process in
CLT was carried out in accordance with the proposed
mechanism. The only parameter of the model is the
density of randomly distributed seeds formed on the
first simulation step. Only the switching due to the
growth of the steps formed during domain coalescence
was simulated (Fig. 3a). The growth of individual
domains was disregarded. The obtained domain config-
urations and the form of the switching current (Fig. 3b)
qualitatively agree with the experimental results
(Figs. 2, 4), which confirms the applicability of the pro-
posed mechanism of domain evolution. A detailed dis-
cussion of the results of simulation will be given in a
separate publication.
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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4. SWITCHING CURRENT IN CONGRUENT 
LITHIUM TANTALATE

In the switching mechanism under investigation, an
elementary act of domain-structure rearrangement
(coalescence of domains or rapid growth of steps) is
accompanied by the generation of an elementary pulse
of switching current. In CLT, the high initial concentra-
tion of isolated domains leads to a large number of
simultaneous events. While measuring the switching
current, elementary pulses over the entire switching
region are added; for this reason, a smooth current
pulse with an insignificant noise component is usually
observed (Fig. 4a).

In order to quantitatively compare the switching
current and the domain-structure kinetics in the course
of computer processing of the domain-structure
images, we calculated the “optical switching current”
proportional to the change ∆S(t) of the switching-
region area between two consecutive instantaneous
domain configurations (Fig. 4b). It can be seen from
Fig. 4 that the optical current obtained for the entire
switching region is similar to the switching current
measured simultaneously according to the conventional
method. The time resolution for the optical current is
relatively small; however, the application of this
method makes it possible to determine the optical
switching current for any part of the switching region,
which provides a unique possibility to attribute the fea-
tures of the switching current to specific processes of
domain-structure rearrangement.

Our detailed analysis of instantaneous domain con-
figurations made it possible to separate three mecha-
nisms of domain evolution, which we used for choosing
an adequate mathematical description of the form of the
switching current. The switching current was approxi-
mated by the sum of two current components:

(1)

The first current component, j1(t), corresponds to
coalescence of the initial small individual domains. For
a low initial concentration of domains (in a weak field),
only partial switching is observed, which terminates
with the formation of individual domains with a consid-
erable size dispersion. Traditionally, the first compo-
nent of the switching current is not considered, since it
is attributed to the “dielectric contribution” associated
with the recharging of the ferroelectric capacitor.

The second current component, j2(t), is observed
only for a high density of nuclei (in a strong field). Its
time dependence has two stages, which can be approx-
imately described by the Kolmogorov–Avrami formula
modified by us [15] (this formula is normally used for
analysis of experimental currents) with a transition of
growth dimensionality from 2D to 1D (geometrical
catastrophe), α(2D)  β(1D):

(2)

j t( ) j1 t( ) j2 t( )+ At γ– 2PSdq/dt.–= =

q t( ) k1 t/t01( )3–[ ] , texp tcat,<=
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
(3)

where k1 and k2 are the fractions of area, t01 and t02 are
time constants, and tcat is the catastrophe time.

Such an analysis makes it possible to determine the
effective velocity of lateral motion and the nucleation
rate. Alternative methods of the analysis of the current
shape for the switching mechanism under investigation
will be discussed in a separate publication.

Analysis of an image clearly shows that the forma-
tion and growth of domains [α(2D) process] dominates
at the first stage (Fig. 1b), while coalescence of
domains due to annihilation of domain walls [β(1D)
process] mainly occurs at the second stage (Fig. 1c).

It should be noted that the method of analysis
described above can be applied to extract information
on the domain kinetics from the results of measurement
of the conventional switching current, without direct
optical observations of the domain kinetics in the
course of switching.

The jerky rearrangement of the domain structure
leads to a considerably nonmonotonic switching cur-
rent and to the emergence of a noise component
(Barkhausen noise). This component can be found by
subtracting the approximating curve from the switching
current (Fig. 4). Elementary acts of domain-structure
rearrangement leading to individual jumps were sin-
gled out from an analysis of instantaneous domain con-
figurations.

5. DOMAIN-STRUCTURE KINETICS
IN STOICHIOMETRIC LITHIUM TANTALATE

Domain kinetics in SLT were studied in the case of
switching under the action of a field and in the case of
spontaneous reversal of polarization after the removal
of the field [4, 16]. It can be seen from Figs. 1 and 5 that
the shapes of domains in CLT and SLT differ qualita-
tively. Single domains in SLT have the shape of hexag-
onal prisms and pyramids (for nonthrough domains), as

q t( ) k2 t tcat–( )/t02–[ ] , texp tcat,>=
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Fig. 4. (a) Traditional and (b) optical switching currents and
their noise components in CLT [fitting by Eq. (1)]. E = 190
kV/cm. 
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is the case with switching in lithium niobate with the
help of liquid electrodes [17, 18], in contrast to the tri-
angular prisms and pyramids observed in CLT [17, 18].

Domain kinetics in CLT and SLT also differ consid-
erably. After the application of a field, several hexago-

(a) (b) (c)

Fig. 5. Optical observation of domain-structure evolution
during switching in a dc field in SLT with liquid electrodes
(a) 2.4, (b) 4.44, and (c) 10.32 s from the instant of field
application. The diameter of the switching region is 1 mm,
E = 32 kV/cm.
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Fig. 6. Switching currents in SLT with (a, b) liquid and (c,
d) ITO electrodes. E, kV/cm: (a, c) 20 and (b) 33. (d) The
Fourier spectrum of switching current (E = 25 kV/cm).
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Fig. 7. Analysis of switching currents in SLT with liquid
electrodes: cumulative distribution functions of (a) current
pulse duration and (b) rest time. Fitting (a) by a power-law
dependence and (b) by Eq. (4). Squares and circles corre-
spond to polarization switching with the field switched on
and off, respectively. E = 20 kV/cm, liquid electrodes.
PH
nal domains are formed in SLT under the edges of an
electrode (Fig. 5a). The subsequent kinetics of the
domain structure are determined by jerky motion of a
small number of domain walls oriented strictly along
preferred crystallographic directions (Figs. 5b, 5c). The
DWs stop and, after a certain “rest time,” rapidly jump
to a new static position. As a result, the switching cur-
rent is a sequence of individual short current pulses
(Fig. 6) corresponding to the jumps of DWs. The aver-
age time between pulses (rest time) decreases with
increasing applied field (Figs. 6a, 6b). In contrast to
congruent lithium niobate [19], the evolution of
domains in SLT is independent of the type of electrodes
used (cf. Figs. 6a, 6c).

6. ANALYSIS OF BARKHAUSEN NOISE
IN STOICHIOMETRIC LITHIUM TANTALATE

It is obvious that classical methods cannot be used
for an analysis of switching currents in SLT (as in the
case of lithium niobate) [9, 15, 20–22]; for this reason,
we applied statistical methods developed for the analy-
sis of noise.

An analysis of the frequency spectrum proved that
the Fourier spectrum of switching current in SLT
(Fig. 6d) is continuous and contains no well-defined
harmonics. The spectrum can be approximated by a
power-law dependence with an exponent close to 0.1.

A statistical analysis of switching currents by using
a modified Korcak method [23] made it possible to
determine the cumulative distribution functions for the
duration of individual current pulses (Fig. 7a) and for
the rest time (Fig. 7b). The distribution function for cur-
rent-pulse duration demonstrates the power-law-depen-
dence with exponents 2.8 and 2.0 for polarization
switching with the field switched on and off, respec-
tively. It should be noted that such behavior, which is
invariant to scaling, is typical of self-organized pro-
cesses [24].

The power-law dependence for the rest time, corre-
sponding to a self-organized behavior, is observed only
in a narrow time interval. For this reason, we approxi-
mated the experimental data by a formula taking into
account the finite scaling range (upper cutoff) [25]: 

(4)

where δt is a time interval, α is the scaling exponent,
and ξ is the fractal correlation time.

As a result of the approximation, we determined the
scaling exponent α = 0.33 and the fractal correlation
time ξ = 5 ms.

With the help of the R/S analysis of switching cur-
rent [24], we determined the value of the Hurst expo-
nent H = 0.70 ± 0.05 (Fig. 8a), which is direct evidence
of the persistence of domain-wall motion with a long
correlation time. It is well known that persistent sto-
chastic processes are characterized by the preservation
of tendencies with low noise, as compared to Brownian

N δt( ) Bδt α– δt/ξ–( ),exp=
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(random) processes [24]. The distribution function for
the current-pulse amplitudes demonstrates a power-law
dependence with an exponent 2.3 over the entire range
investigated (Fig. 8b).

In order to explain the obtained results, a mecha-
nism of jerky motion of a DW was proposed. It is well
known [26, 27] that the velocity of a planar DW
decreases after its displacement from the initial posi-
tion. This slowing down is associated with a decrease in
the local field at the wall under the action of a residual
depolarization field (partly compensated by a fast exter-
nal screening) created by bound charges in the region
behind the moving wall [10]. For switching in fields
exceeding the threshold value insignificantly, this effect
leads to a halt of the DW after its displacement [27, 28].
Obviously, defects (which locally enhance the thresh-
old field) may play the role of pinning centers in this
case.

The pinning force and the distance between the cen-
ters determine the power law of the distribution func-
tions for the duration of current pulses and their ampli-
tudes with close values of exponents. A similar power-
law dependence was also obtained from an analysis of
Barkhausen pulses emerging during the motion of a
DW in magnets [29].

A domain wall can continue its motion only if the
local field exceeds its local threshold value. This can be
realized during DW rest due to bulk screening of the
residual depolarization field as a result of simultaneous
operation of the following three competing mecha-
nisms: (i) redistribution of volume charges [10, 30],
(ii) reorientation of dipole defects [31, 32], and
(iii) injection of a charge from electrodes through the
dielectric gap [33]. According to estimates, the rest
time for a single planar DW must be considerably
shorter than the time constant of bulk screening. In
addition, the experimentally determined rest time must
decrease due to the fact that several DWs move simul-
taneously and independently in the sample. This con-
clusion is confirmed by the relation between the value
of the fractal correlation time obtained by us (5 ms) and
the experimentally determined time constant of bulk
screening in SLT (40 ms) [34].

101

101

(a)

R/S

101

102
(b)

102

101

10–1

10–3

N

Time, ms j, arb. units

Fig. 8. Analysis of switching currents in SLT: (a) R/S anal-
ysis and (b) distribution function for current-pulse ampli-
tudes. E, kV/cm: (a) 20 and (b) 24. Fitting by a power-law
dependence.
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7. CONCLUSION

Thus, we have carried out a detailed analysis of the
switching kinetics by comparing the sequences of
instantaneous domain configurations with switching
current, which allowed us to find for CLT a new mech-
anism of fast domain kinetics associated with the coa-
lescence of domains in ferroelectrics. It is shown that
important information on the domain kinetics in SLT
can be extracted from a statistical analysis of the noise
component of the switching current. The proposed
model of jerky motion of a domain wall is also applica-
ble to lithium niobate. The mechanisms responsible for
the observed differences will be considered in a sepa-
rate publication.

ACKNOWLEDGMENTS

The authors are grateful to Prof. K. Kitamura and
Dr. K. Terabe for providing the samples of stoichiomet-
ric lithium tantalate.

This study was partially supported by the Russian
Foundation for Basic Research (grant no. 01-02-
17443), the program “Russian Universities: Fundamen-
tal Studies” (grant no. 5563), the program “University
Studies in Priority Trends of Science and Technology:
Electronics” (grant no. 03-02-29), and the American
Foundation of Civil Studies and Development of Inde-
pendent States of the Former Soviet Union (grant
no. REC-005).

REFERENCES
1. R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549 (1997).
2. G. Rosenman, A. Skliar, and A. Arie, Ferroelectr. Rev. 1,

263 (1999).
3. M. Yamada, M. Saitoh, and H. Ooki, Appl. Phys. Lett.

69, 3659 (1996).
4. R. G. Batchko, V. Ya. Shur, M. M. Fejer, and R. L. Byer,

Appl. Phys. Lett. 75, 1673 (1999).
5. V. Ya. Shur, E. L. Rumyantsev, R. G. Bachko, et al., Fiz.

Tverd. Tela (St. Petersburg) 41, 1831 (1999) [Phys. Solid
State 41, 1681 (1999)].

6. K. Kitamura, Y. Furukawa, K. Niwa, et al., Appl. Phys.
Lett. 73, 3073 (1998).

7. V. Gopalan and T. E. Mitchell, J. Appl. Phys. 85, 2304
(1999).

8. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa,
J. Cryst. Growth 197, 889 (1999).

9. V. Ya. Shur, A. L. Gruverman, V. V. Letuchev, et al., Fer-
roelectrics 98, 29 (1989).

10. V. Ya. Shur, in Ferroelectrics Thin Films: Synthesis and
Basic Properties (Gordon and Breach, New York, 1996),
Vol. 10, Chap. 6.

11. R. C. Miller and G. Weinreich, Phys. Rev. 117, 1460
(1960).

12. E. Fatuzzo and W. J. Merz, Ferroelectricity (North-Hol-
land, Amsterdam, 1967).

13. A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser Mat. 3,
355 (1937).
02



2156 SHUR et al.
14. M. Avrami, J. Chem. Phys. 7, 1103 (1939); 8, 212
(1940); 9, 177 (1941).

15. V. Ya. Shur, E. L. Rumyantsev, and S. D. Makarov, J.
Appl. Phys. 84, 445 (1998).

16. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al.,
Appl. Phys. Lett. 76, 143 (2000).

17. S. Kim, V. Gopalan, and B. Steiner, Appl. Phys. Lett. 77,
2051 (2000).

18. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al.,
Proc. SPIE 3992, 143 (2000).

19. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, and
E. I. Shishkin, Appl. Phys. Lett. 77, 3636 (2000).

20. V. Ya. Shur, E. L. Rumyantsev, and S. D. Makarov, Fiz.
Tverd. Tela (St. Petersburg) 37, 1687 (1995) [Phys. Solid
State 37, 917 (1995)].

21. V. Ya. Shur, S. D. Makarov, N. Yu. Ponomarev, et al., Fiz.
Tverd. Tela (St. Petersburg) 38, 1889 (1996) [Phys. Solid
State 38, 1044 (1996)].

22. V. Ya. Shur, E. L. Rumyantsev, S. A. Makarov, et al.,
Integr. Ferroelectr. 27, 179 (1999).

23. J. Russ, Fractal Surfaces (Plenum, New York, 1994).
24. J. Feder, Fractals (Plenum, New York, 1988; Mir, Mos-

cow, 1991).
PH
25. A. Hasmy, M. Foret, J. Pelous, and R. Jullien, Phys. Rev.
B 48, 9345 (1993).

26. M. Drougard and R. Landauer, J. Appl. Phys. 30, 1663
(1959).

27. V. Ya. Shur, E. L. Rumyantsev, V. P. Kuminov, et al., Fiz.
Tverd. Tela (St. Petersburg) 41, 126 (1999) [Phys. Solid
State 41, 112 (1999)].

28. V. Ya. Shur, A. L. Gruverman, V. P. Kuminov, and
N. A. Tonkachyova, Ferroelectrics 111, 197 (1990).

29. B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi,
J. Appl. Phys. 68, 2908 (1990).

30. V. M. Fridkin, Photoferroelectrics (Nauka, Moscow,
1976; Springer, Berlin, 1979).

31. U. Robels and G. Arlt, J. Appl. Phys. 73, 3454 (1993).
32. P. Lambeck and G. Jonker, J. Phys. Chem. Solids 47, 453

(1986).
33. I. Stolichnov, A. Tagantsev, N. Setter, et al., Appl. Phys.

Lett. 74, 3552 (1999).
34. V. Ya. Shur, E. V. Nikolaeva, E. I. Shishkin, et al., Appl.

Phys. Lett. (in press).

Translated by N. Wadhwa
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002



  

Physics of the Solid State, Vol. 44, No. 11, 2002, pp. 2157–2164. Translated from Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 2061–2068.
Original Russian Text Copyright © 2002 by Yu. Bo

 

œ

 

kov, Erts, Claeson, A. Bo

 

œ

 

kov.

                                                                     

MAGNETISM
AND FERROELECTRICITY

                                                                        
Dielectric Response of Ba0.75Sr0.25TiO3 Epitaxial Films
to Electric Field and Temperature

Yu. A. Boœkov*, D. Erts**, T. Claeson**, and A. Yu. Boœkov***
* Ioffe Physicotechnical Institute, Russian Academy of Sciences, 

Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

** Chalmers Technical University, Göteborg, S-41296 Sweden

*** St. Petersburg State University, Universitetskiœ pr. 2, St. Petersburg, Petrodvorets, 198094 Russia
Received January 15, 2002; in final form, February 18, 2002

Abstract—The structure and dielectric parameters of the intermediate ferroelectric layer in the (001)SrRuO3 ||
(100)Ba0.75Sr0.25TiO3 || (001)SrRO3 heterostructure grown by laser ablation on (001)La0.294Sr0.706Al0.647Ta0.353O3
were studied. Tensile mechanical stresses accounted for the polar axis in the ferroelectric, being oriented pre-
dominantly parallel to the substrate plane. The remanent polarization in the Ba0.75Sr0.25TiO3 layer increased
approximately linearly with decreasing temperature in the interval 320–200 K. The real part of the dielectric
permittivity of the intermediate ferroelectric layer reached a maximum ε'/ε0 = 4400 at TM ≈ 285 K (f = 100 kHz).
The narrow peak in the temperature dependence of the dielectric loss tangent for the Ba0.75Sr0.25TiO3 ferroelec-
tric layer, observed for T < TM, shifted toward lower temperatures with decreasing frequency and increasing
bias voltage applied to the electrodes. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For the device potential of ferroelectric films to be
realizable in microelectronics and microwave technol-
ogy, they should be employed as an integral part of a
multilayer heterostructure grown on the corresponding
substrate and including interlayers of metals, conduct-
ing oxides, or superconductors.

In the large family of perovskite-like ferroelectrics,
the BaxSr1 – xTiO3 solid solutions are among the most
likely candidates for application in storage cells [1],
tunable microwave devices [2], IR detector sensors [3],
etc. The possibility of using physical techniques of film
preparation (laser ablation, magnetron sputtering,
molecular-beam epitaxy, etc.) to grow multilayer het-
erostructures, including films of ferroelectrics and met-
als (superconductors), has been demonstrated in a num-
ber of publications [4, 5].

In the case of metallic electrodes (Pt, Au, etc.), the
Shottky barrier forming near the electrode/ferroelectric
interface favors suppression of leakage currents in a
plane-parallel capacitor structure [5]. However, the real
part of the dielectric permittivity ε' of the intermediate
ferroelectric layer becomes noticeably reduced [6] and
its temperature dependence cannot be fitted to the
Curie–Weiss relation. While replacing the metal elec-
trodes with electrodes made from an oxide having
metallic conductivity [SrRuO3 (SRO), La0.5Sr0.5CoO3,
etc.) strongly enhances the response of ε' to tempera-
ture and electric field, dielectric losses are also
increased in this case.
1063-7834/02/4411- $22.00 © 22157
The mechanisms responsible for the substantial dif-
ferences in the temperature and field dependences of
both the real and imaginary (ε'') parts of the dielectric
permittivity ε = ε' – iε'' between ferroelectric films and
single crystals remain unclear. Our knowledge of the
temperature dependences of the remanent polarization
and coercive field for c- and a-oriented BaxSr1 – xTiO3
films (with the polar axis perpendicular and parallel to
the substrate plane, respectively) is far from complete.

This communication reports on a study of the
response of ε' and dielectric loss tangent  of
(100)Ba0.75Sr0.25TiO3 (BSTO) epitaxial films to varia-
tions in temperature, electric field, and frequency. Esti-
mates of the activation energy and of the characteristic
relaxation time of the process governing the value of

 at temperatures below the phase transition point
are presented.

2. EXPERIMENT

The laser ablation method (COMPex 100, KrF, λ =
248 nm, τ = 30 ns) was employed to grow
SRO/BSTO/SRO trilayer heterostructures on a
(001)LSATO substrate [(LaAlO3)0.3 + (Sr2AlTaO6)0.7].
Consecutive SRO  BSTO  SRO ablation of the
original ceramic targets was conducted at a laser radia-
tion density on their surface of 1.5 J/cm2 and an oxygen
pressure of 0.4 mbar. The deposited layers of the metal
oxide and the intermediate ferroelectric layer were sat-
urated by oxygen in the course of cooling of the
SRO/BSTO/SRO heterostructure (760°C  20°C,
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20°C/min) in an oxygen environment (1 atm). The tech-
nology for growing the SRO/(Ba,Sr)TiO3/SRO hetero-
structures is described in more detail in [7, 8].

The microstructure and phase composition of the
heterostructures thus grown were studied by x-ray dif-
fraction (CuKα radiation, ω/2θ and φ scans, rocking
curves). To determine the lattice unit cell parameters of
the BSTO layer in the direction parallel to the substrate
plane (a||) and along the normal to its surface (a⊥ ), dif-
fractograms were measured in the geometry where the
plane containing the incident and reflected X-ray
beams was orthogonal to either (001) or (101)LSATO.
To estimate the effective grain size and strain distribu-
tion in the ferroelectric layer, the first four peaks in a
(00n)ω/2θ x-ray scan were measured using high-preci-
sion x-ray optics [7].

The surface morphology of the BSTO layer grown
on SRO/LSATO was studied with an atomic-force
microscope (Nanoscope-IIIa, tapping mode). The data
on the surface morphology of the SRO layer grown on
LSATO can be found in [9].

The preparation of contact pads on the top SRO
layer and of auxiliary holes in the intermediate ferro-
electric layer is outlined in [10].

The capacitance C and  of the plane-parallel
SRO/BSTO/SRO capacitors formed (Fig. 1) were mea-
sured with an hp 4263A LCR meter in the frequency
interval 1–100 kHz, both with a bias voltage Vb = ±2.5 V
applied to the electrodes and without it. The real and
imaginary parts of the dielectric permittivity of the
BSTO layer were calculated from the relations ε' =
Cd/S and ε'' = ε' , where d = 700 nm is the ferro-
electric layer thickness and S = 200 × 200 µm2 is the
area of the upper contact in the capacitor heterostruc-
ture; the bottom electrode was common for all the
capacitors grown on the chip.

δtan

δtan

LCR
meter

LSATO

SRO

BSTO
PSE

SRO

Fig. 1. Sketch of a plane-parallel capacitor
SRO/BSTO/SRO heterostructure formed by photolithogra-
phy and ion milling. The spontaneous polarization vector PS
in the BSTO layer is oriented predominantly parallel to the
substrate plane.
PHY
3. EXPERIMENTAL RESULTS 
AND DISCUSSION

An SRO layer grown epitaxially at condensation
temperatures of 700–800°C on the LSATO surface has
a smooth surface [9] with rare growth steps whose
height is a multiple of the metal-oxide unit cell param-
eter. Because the temperature coefficients of linear
thermal expansion of strontium ruthenate (βSRO = 11 ×
10–6 K–1 for the orthorhombic phase at T = 300–650 K
[11]) and of the substrate (βLSATO = 10 × 10–6 K–1

according to the specification of Crystec, which pro-
vided the substrates) are similar, the character of
mechanical strains in a SRO film grown on LSATO is
determined by the lattice misfit of the two crystals [m =
(aL – aS)/aS ≈ +2%, where aL is the lattice parameter of
the film and aS is that of the substrate]. An SRO layer
grown on (001)LSATO is acted upon by compressive
mechanical stresses in the substrate plane.

The temperature coefficient of linear expansion of
BSTO (β0 ≈ 12.5 × 10–6 K–1) is considerably larger than
those of LSATO and SRO. As a result, at temperatures
close to that of the phase transition (TC = 340 K for bulk
samples [12]), a BSTO layer grown on SRO/LSATO is
subject to tensile mechanical stresses in the substrate
plane. The mechanical strains generated in the hetero-
structure due to the BSTO and SRO lattice misfit
become partially relieved during the formation of the
ferroelectric layer. The tensile mechanical stresses act-
ing in the substrate plane favor the in-plane orientation
of the polar axis of the BSTO ferroelectric layer (paral-
lel to the substrate plane).

Let us analyze first the x-ray diffractograms
obtained for the grown SRO/BSTO/SRO heterostruc-
tures and the data on the free-surface morphology of the
BSTO layer and, after this, the dielectric parameters of
this layer.

3.1. The Structure of the BSTO Layer
and the Morphology of Its Free Surface

The x-ray diffractograms obtained did not contain
peaks indicating the presence of macroinclusions of
secondary phases in the grown SRO/BSTO/SRO het-
erostructures (Fig. 2 and inset to Fig. 3). The preferred
orientation of the ferroelectric layer and the oxide elec-
trodes in the SRO/BSTO/SRO heterostructure was
(001)[010]SRO || (100)[010]BSTO || (001)[010]SRO ||
(001)[010]LSATO.

The parameter a⊥  = 3.981 Å, calculated for the
BSTO layer from the x-ray data (T = 300 K), was sub-
stantially smaller than a|| = 3.992 Å. This suggests that
the polar axis in the grown ferroelectric layer is ori-
ented predominantly parallel to the substrate plane (a-
oriented layer). The FWHM of the rocking curve for the
(200)BSTO x-ray peak of the SRO/BSTO/SRO hetero-
structure was 0.23° [inset (a) in Fig. 3]. The FWHM
obtained for the BSTO layer is in accord with the typi-
SICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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cal values reported in the literature for (Ba,Sr)TiO3
epitaxial layers with the polar axis parallel to the
substrate plane. The slight increase in the FWHM of
the  ferroelectric layer in the SRO/BSTO/SRO com-
pared to that of the rocking curve measured for a
precisely c-oriented Ba0.25Sr0.75TiO3 film in the
SRO/Ba0.25Sr0.75TiO3/SRO heterostructure [7] should
be attributed to the presence of grains whose polar axis
is orthogonal to the substrate plane in the bulk of the
BSTO layer. The effective lattice parameter for the
BSTO layer in the SRO/BSTO/SRO heterostructure,

aeff = ( a||)1/3 ≈ 3.98 Å, was larger than the correspond-
ing parameter for stoichiometric bulk samples (a ≈
3.97 Å) [13]. This signals a high density of oxygen
vacancies in the intermediate ferroelectric layer.

Figure 3 presents the FWHM Ø of the (n00) peaks
plotted vs. θ for an x-ray (001)ω/2θ scan. The Ø vs. θ
dependence can be written as [14]

(1)

where λ0 = 1.54056 Å is the x-ray wavelength, d0 is the
sample grain size, a is the lattice parameter, and ∂a is
the lattice parameter distortion associated with nonuni-
form lattice strains. The slope of the straight line in
Fig. 3 was used to determine 2∂a/a ≈ 1.2 × 10–3, the
value characterizing the average strain in the BSTO
layer. The intercept of the same line on the ordinate axis
provided an estimate of the grain size in the BSTO
layer, d0 = 35 nm. The values obtained in this way for
∂a/a and d0 for the BSTO layer in the SRO/BSTO/SRO
heterostructure agree well, on the whole, with the cor-
responding literature figures for the SrTiO3 [15] and
Ba0.25Sr0.75TiO3 [7] epitaxial films. The lattice parame-
ter distortion in the BSTO layer may be caused by off-
stoichiometry, the presence of structural defects (grain
boundaries, stacking faults, dislocations, etc.) in its vol-
ume, and mechanical stresses.

Data on the morphology of the free surface of a film
are useful when analyzing the mechanisms governing
its growth. These data are particularly important in the
case of thin multicomponent oxide layers grown on the
surface of auxiliary (buffer or electrode) layers with a
high density of structural defects. Figure 4a presents an
atomic-force microscope (AFM) image of the
(100)BSTO || (001)SRO || (001)LSATO free surface
obtained in height mode. One can clearly see grains of
size d1 = 150–200 nm (dimensions in the substrate
plane) whose interfaces are decorated by characteristic
grooves. The formation of grooves on the free film sur-
face at the points where it crosses the grain boundaries
results from free-energy minimization in the growing
film–substrate system. The character of the grooves is
determined to a considerable extent by the relative
magnitude of the free energy of the free surface and of
that of the grain boundaries (the ions present in the
region of grain boundaries and in the surface layer have

a⊥
2

∅ 0.9λ0 d0 θcos( ) 2 θ∂a/a,tan+=
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excess free energy compared to the ions in the grain
bulk). As follows from the x-ray data [φ scan of the
(111)BSTO peak], the azimuthal misorientation of
grains in the ferroelectric layer did not exceed 0.4°.
Because grain boundaries can substantially affect the
parameters of films of the perovskite-like oxides, it
appears appropriate to mention at least the main mech-
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Fig. 2. Diffractogram (CuKα, ω/2θ) obtained for a
SRO/BSTO/SRO heterostructure in the geometry where the
incident and reflected x-ray beams were in a plane normal
to (001)LSATO. (1, 2) CuKβ x-ray peaks from the ferroelec-
tric layer and the substrate, respectively, and (3)
(400)BSTO. Inset shows a fragment of the diffractogram
measured on the same heterostructure in the geometry
where the incident and reflected x-ray beams were in a
plane normal to (101)LSATO.
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Fig. 4. (a) AFM image of the free surface of a 700-nm-thick BSTO layer obtained in height mode (top view). The ferroelectric layer
was grown on (001)SRO || (001)LSATO. (b) AFM image of the same part of the ferroelectric layer obtained in phase mode (top
view). (c) Image of the free surface of a 700-nm-thick SrTiO3 layer grown on (001)SRO || (001)LSATO obtained in height mode
(viewed at 45°).
anisms responsible for their formation. One of the rea-
sons for grain formation in a BSTO layer is lattice mis-
fit with the substrate [in our case, with (001)SRO ||
(001)LSATO]. Minimization of the energy of elastic
mechanical stresses in the nucleus–substrate system
can produce a certain azimuthal misorientation of sta-
ble islands forming in the initial growth stage of a fer-
roelectric layer. This accounts for the formation of a
polycrystalline layer with grains separated by small-
angle boundaries. The small-angle grain boundaries are
seen clearly in high-resolution electron-microscopy
images of cross sections of multilayer heterostructures
containing layers of perovskite-like oxides [4].

Grain boundaries can also form in a ferroelectric
film in the case where the nuclei of the condensing
PH
material are deposited on the substrate in a coherent
manner. Grain boundaries can originate here due to the
phase adsorbed on the surface of the growing layer
being off-stoichiometric or as a result of the low mobil-
ity of the particles of this phase. The excess compo-
nents segregate at the outer boundaries of the growing
islands. As a result, the grown film is made up of grains
of the given composition, with interlayers of an off-sto-
ichiometric phase. The density of such interlayers in the
layer volume can be reduced by appropriate heat treat-
ment in an oxygen environment [16].

The pronounced difference between the effective
grain sizes derived from x-ray measurements and from
images of the BSTO layer free surface can be
accounted for by the grains growing with increasing
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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layer thickness or by the presence of a fine structure of
block interfaces within a grain, which is not resolved
when viewing the film free surface in height mode.

In contrast to the height mode, the AFM images
obtained in the phase mode contain information on
variations in the nanoscale mechanical characteristics
of the sample surface layer. The image obtained in the
phase mode (Fig. 4b, T = 300 K) of the same part of the
BSTO layer that is shown in Fig. 4a resolves clearly not
only the small-angle crystallographic boundaries but
also characteristic features within the grains in the form
of sharp boundaries where the signal changes its phase.
Azimuthal orientation of these intragrain boundaries is
predominantly along the directions making an angle of
45° with [001] and [010]BSTO. At room temperature,
the grown BSTO layer (or at least a sizable part of its
volume) was in the ferroelectric phase. One of the rea-
sons for the appearance of the above features in the
phase-mode images of the free surface of the BSTO
film can be the formation of 90° walls between ferro-
electric domains in its volume. Phase-mode AFM
images of Ba0.25Sr0.75TiO3 epitaxial films [7], which
were in paraelectric phase at 300 K, did not reveal any
features indicating a complex structure of crystallo-
graphic grains. The atomic-force microscope was used
successfully in the height mode to study the domain
structure of PZT films [17].

To find the extent to which the granular character of
a grown BSTO layer can be accounted for by off-sto-
ichiometry of the adsorbed phase and by the lattice mis-
fit between BSTO and SRO/LSATO, we grew a 700-nm
thick SrTiO3 epitaxial layer on the (001)SRO ||
(001)LSATO surface under the same technological
conditions. Strontium titanate is a better lattice match
to SRO and LSATO (m < 0.7%). The mechanisms that
can give rise to a BSTO layer becoming off-stoichio-
metric but that do not operate in STO were considered
in [18]. The FWHM of the rocking curve of the
(200)STO reflection from the SRO/STO/SRO hetero-
structure is smaller by about a factor of three [9] than
the corresponding figures for the BSTO layer. Figure 4c
shows an image of the free surface of a 700-nm thick
STO layer grown on SRO/LSATO. On the free STO
surface, we clearly see resolved growth steps whose
height is a multiple of the strontium titanate lattice
parameter. No grooves decorating grain boundaries on
the free STO layer surface were found. This, however,
cannot be considered proof of the absence of grain
boundaries in the strontium titanate layer but rather
indicates that the azimuthal misorientation of grains
and the density of grain boundaries in its volume are
smaller than those in BSTO/SRO/LSATO.

3.2. Dielectric Parameters of the BSTO Layer

The temperature dependence of ε' measured at
100 kHz for the BSTO layer had a clearly pronounced
maximum at a temperature TM ≈ 280–290 K (Fig. 5a).
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      200
As in the case of bulk BSTO crystals, the maximum in
the ε'(T) curve shifted toward higher temperatures
when a bias voltage was applied to the electrodes
(curves 3, 4 in Fig. 5a). At temperatures below TM, ε'
exhibited a noticeable frequency dispersion. As f
decreased, the real part of the dielectric permittivity
increased, with the difference ∆ε' = ε'(10 kHz) –
ε'(100 kHz) passing through a sharp peak at T ≈ 185 K
(Fig. 5a). For T > TM, the difference ∆ε' decreased
monotonically with increasing temperature. When f
was lowered from 10 to 1 kHz, the peak in the ∆ε'(T)
curve shifted toward lower temperatures by about 30 K.
Taking into account the fact that the real part of dielec-
tric permittivity of epitaxial layers of the (Ba,Sr)TiO3
solid solutions in the paraelectric phase is virtually fre-
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quency-independent [7, 19], it seems natural to
attribute the presence of the peak in the ∆ε(T) relation
to dielectric relaxation of the ferroelectric phase. At
temperatures below TC, a BSTO film is divided into fer-
roelectric domains. Ferroelectric domains in an a-ori-
ented BSTO layer are separated by 90° domain walls.
The displacement of ferroelectric domain walls by an
electromagnetic wave propagating in a BSTO layer is
accompanied by redistribution of the electrons, cancel-
ing the polarization charge. Incomplete compensation
of the polarization charge at the points where domain
walls cross the grains accounts for the generation of an
internal electric depolarization field, which acts
directly on ε' and [19]. The dielectric relaxation
time τD associated with charge redistribution in the
BSTO layer can be written as [20]

(2)

where ρ is the electrical resistivity.
The electrical resistivity of the (Ba,Sr)TiO3 interme-

diate layer in an epitaxial heterostructure with elec-
trodes of conducting oxides is, as a rule, substantially
lower than that of the corresponding single crystals.
One of the main reasons accounting for the substantial
conductivity of epitaxial ferroelectric layers is the high
concentration of oxygen vacancies in their volume. The
conductivity of oxygen-deficient BSTO films is deter-
mined to a considerable extent by the intensity of elec-
tron promotion from donor centers into the conduction
band [18]. Under these conditions, the carrier concen-
tration in the ferroelectric layer depends exponentially
on the temperature and electric field (the Poole–Frenkel
emission [21]) and the temperature dependence of ρ
follows the relation

(3)

where ϕL is the energy gap between the donor level and
the conduction band edge, kB is the Boltzmann con-
stant, β = (e3/πεhfε0)1/2, e is the electronic charge, εhf is
the high-frequency dielectric permittivity, and ε0 is the
dielectric permittivity of the vacuum. From the temper-
ature dependence of the conductivity determined for
oxygen-deficient STO single crystals and BSTO epi-
taxial films, the value of ϕL was found to be ~0.1 eV [9,
18]. For E = Vb/d > 2 × 107 V/m, ions can also contribute
to the conductivity of the ferroelectric layer [22].

Recalling Eqs. (2) and (3), the dielectric relaxation
time associated with electron redistribution in the
domain wall region in the BSTO layer can be written as

(4)

where τ0 is the attempt time and ϕ0 ~ (ϕL – βE1/2) is the
activation energy.

To make a comprehensive analysis of the extent to
which the relaxation process affects the dynamics of

δtan

τD ε'ρ,=

ρ ϕL βE1/2–( )/kBT[ ] ,exp∼

τ τ 0 ϕ0/kBT( ),exp=
PH
dielectric permittivity, we used ε'(T) and 
dependences measured at different frequencies. It
seems natural to assign the sharp peak in the tempera-
ture dependence of  to resonance in the interaction
of domain walls with the electromagnetic wave, when
its frequency approaches τ –1. When the frequency was
lowered, the peak in the  dependence for the
BSTO layer shifted toward lower temperatures
(Fig. 5b), which is in full agreement with the tempera-
ture dependence of τ [see Eq. (4)].

Within the Debye model, the contribution of the
relaxation process to dielectric permittivity εr can be
written in the form [23]

(5)

where εS and ε∞ are the relaxation contributions to the
dielectric permittivity at low and high frequencies,
respectively, and ω = 2πf. For BSTO, we have εS @ ε∞
[24]. It follows from Eq. (5) that

(6)

According to Eq. (6), ε'' should be maximum at ωτ = 1.
To estimate τ0 and ϕ0, we made use of the temperature
dependence of the reciprocal relaxation time. The val-
ues of τ–1 at different temperatures were derived from
the position of the maximum in the measured ε''(T)

plots. The  ~ 1/T dependences for the BSTO
layer at E = 0 are plotted in the inset to Fig. 5b (curve 1).
The Arrhenius plot yielded the following values: τ0(E =
0) = 5 × 10–9 s and ϕ0(E = 0) = 105 meV.

The maximum in the  curve for the BSTO
layer shifted toward lower temperatures when a bias
voltage was applied to the metal-oxide electrodes
(curves 4, 5 in Fig. 5b). In accordance with Eq. (3), the
height of the barrier governing the intensity of electron
promotion into the conduction band from donor centers
decreased in an electric field, which was accompanied
by a decrease in τ. The relation ln(τ–1) ~ 1/T obtained at
E = 3.5 × 106 V/m for the BSTO layer in the
SRO/BSTO/SRO heterostructure is plotted in the inset
to Fig. 5b (curve 2). When biased at E = 3.5 × 106 V/m,
the activation energy ϕ0 decreased by about 12% to
93 meV, while the attempt time did not change: τ0(E =
3.5 × 106 V/m) = τ0(E = 0) = 5 × 10–9 s.

According to [21], β = 5.1 × 10–24 J m1/2 V–1/2 for
bulk STO crystals. With such a coefficient β, the activa-
tion energy should have decreased in a field E = 3.5 ×
106 V/m by about 50%. Since there are no grounds to
suspect a sharp increase in the high-frequency dielec-
tric permittivity of the BSTO layer compared with the
corresponding figures available for bulk single crystals,
the relatively weak response of ϕ0 to an external electric
field in the BSTO layer should be apparently attributed

δ T( )tan

δtan

δ T( )tan

εr ε∞ εS ε∞–( )/ 1 iωτ–( ),+=
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τ 1–( )ln
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to the electric fields in the bulk of crystal grains and at
grain boundaries being substantially different.

We used the values of τ0 and ϕ0 thus obtained to
approximate the measured temperature dependence of
∆ε'(T) = ε'(10 kHz) – ε'(100 kHz) for the BSTO layer
(Fig. 5a). It follows from Eq. (5) that

(7)

where ω1/2π = 10 kHz and ω2/2π = 100 kHz. The
experimental ∆ε'(T) relation can be fitted quite well by
Eq. (7) for (εS – ε∞)/ε0 ≈ 3300.

The ε'(T = 295 K) curve (inset to Fig. 5a) exhibits a
weak hysteresis, signaling the presence of a ferroelec-
tric phase in the bulk of the BSTO layer. At T = 295 K,
the dependence of ε' of the BSTO layer on electric field
was virtually symmetrical with respect to the E = 0
point. In contrast to a c-oriented Ba0.25Sr0.75TiO3 film
[7], the electronic processes occurring at the
SRO/BSTO interface do not noticeably affect the
dynamics of BSTO dielectric permittivity. At T =
300  K, ε' of the ferroelectric layer in the
SRO/BSTO/SRO heterostructure decreased by about a
factor of three when a bias voltage ±2.5 V was applied
to the electrodes.

The field dependence of polarization P(E) measured
at T < 320 K exhibited distinct hysteresis loops. For
T < 300 K, the hysteresis loops were practically sym-
metrical with respect to the E = 0 point (inset to Fig. 6)
and remained unchanged with the frequency varied
from 10 to 50 kHz. The temperature dependences of the
remanent polarization Pr and coercive field EC for the
BSTO layer are displayed in Fig. 6. For 200 < T < 320 K,
Pr increased approximately linearly with decreasing

∆ε' T( ) εS ε∞–( )=

× ω2
2 ω1

2–( )τ2/ 1 ω1
2τ2+( ) 1 ω2

2τ2+( ),

4

0
240

2P
r,

 1
0–

2  C
/m

2

T, K

2

6

8

10

200 280 320

3

2

1

4

f = 50 kHz

200 K

1

2

2E
C

, 1
06  V

/m

0–1 1
E, 107 V/m

1

0

–1

P
, 1

0–
1  C

/m
2

Fig. 6. Remanent polarization Pr and coercive field EC plot-
ted as a function of temperature for the BSTO layer in the
SRO/BSTO/SRO heterostructure. Inset shows the field
dependence of the polarization P(E) measured on the same
layer at T = 200 K.
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temperature. For T < 200 K, the growth of Pr with
decreasing temperature became less steep. The coer-
cive field increased with decreasing temperature in the
interval 320–200 K without a visible sign of saturation.

Thus, the polar axis orientation in the BSTO layer is
determined to a considerable extent by the actual type
of mechanical strains due to the lattice misfit and a dif-
ference in the thermal expansion coefficient between
the layer and the substrate. For T < TC, relaxation of
ferroelectric domain walls in the BSTO layer accounts
for the substantial frequency dependence of dielectric
permittivity. For E = 0, the characteristic time τ0 and the
activation energy ϕ0 describing domain wall relaxation
in the BSTO layer are 10–9 s and 105 meV, respectively,
so that ϕ0 decreases by about 12% when a bias voltage
of ±2.5 V is applied to the electrodes.
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Abstract—Crystals of (Rb0.1(NH4)0.9)2SO4 solid solutions are studied using x-ray diffractometry. It is revealed
that the temperature dependence of the lattice parameter a exhibits an anomalous behavior, namely, the “invar
effect” at temperatures above the ferroelectric phase transition point Tc and an anomalous increase in the tem-
perature range from Tc to the liquid-helium temperature. An anomalous increase in the lattice parameter a and
an increase in the intensity of Bragg reflections with a decrease in the temperature are interpreted within the
model of the coexistence of two sublattices hypothetically responsible for the ferroelectric phase transition. A
series of superstructure reflections observed along the basis axes corresponds to a sublattice formed in the
matrix of the host structure. Analysis of the ratio between the lattice parameters of these structures allows the
inference that, in the temperature range 4.2–300 K, the structure of the crystal under investigation can be con-
sidered an incommensurate single-crystal composite. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that crystals belonging to the structural
family of rubidium ammonium sulfates of the general
formula (Rbx(NH4)(1 – x))2SO4 form a continuous series
of solid solutions [1]. Crystals of the rubidium-free
ammonium sulfate (NH4)2SO4 undergo a first-order fer-
roelectric phase transition with a change in the symme-
try from Pnam to Pna21 at a temperature of 223 K. A
decrease in the temperature brings about reversal of the
spontaneous polarization of these crystals [2]. In the
(Rbx(NH4)(1 – x))2SO4 system, the ferroelectric phases
are retained up to compositions with x = 0.6–0.65 [1].

The origin of the ferroelectric phase transition in
crystals of this family has been discussed in the frame-
work of different models, such as the order–disorder
model [3], improper ferroelectrics [4], coupled oscilla-
tors [5], coupled oscillators–relaxors [6], and the model
of two ferroelectric nonequivalent sublattices [7]. As is
evident from the aforementioned approaches, the
mechanism of the ferroelectric phase transition under
investigation is rather complicated and, until presently,
has not been clearly understood [8].

The compounds under consideration belong to a
very interesting class, namely, the class of orientational
glasses, in which the subsystem of multipole moments
is efficiently frozen with a decrease in the temperature.
These compounds exhibit a disorder intermediate
between the disorders observed in crystals and conven-
tional “canonical” glasses [9–12].

In the present work, we performed an x-ray diffrac-
tion investigation of the real structure of
(Rb0.1(NH4)0.9)2SO4 solid solutions. In our opinion, this
investigation is necessary for correct interpretation of
1063-7834/02/4411- $22.00 © 22165
the temperature behavior of the physical properties of
these compounds and elucidation of the nature and
mechanisms of the phase transitions involved.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The experiments were carried out using single-crys-
tal samples with a rubidium content x = 0.1. According
to the phase diagram, these crystals at temperatures
below 223 K belong to ferroelectrics [1]. The choice of
this composition was made for the following reasons:
(i) the low content of rubidium in the solid solution and,
consequently, the possible manifestation of the proper-
ties of the rubidium-free ammonium sulfate
(NH4)2SO4, on the one hand, and (ii) the presence of
substitutional atoms that would provide a manifestation
of the structural features typical of the entire series of
compositions 0 < x < 0.6 containing low-temperature
ferroelectric phases, on the other hand.

The quality of the studied samples was controlled
using traditional rolling-crystal and Laue methods. The
determination of the crystal symmetry and precision
measurements of the unit cell parameters were per-
formed on a Rigaku AFC6S four-circle diffractometer
(MoKα radiation) at temperatures above and below Tc

(300 and 203 K, respectively). The low-temperature
measurements were carried out using a Strimer cryostat
(Rigaku). For x-ray diffraction analysis, samples were
prepared in the form of balls ~0.25–0.35 mm in diame-
ter. The space groups were determined prior to and after
the transformation and coincided with those available in
the literature, namely, Pnam and Pna21, respectively.
The results of the solution of the atomic structure at
these temperatures will be published in a separate paper.
002 MAIK “Nauka/Interperiodica”
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Lattice parameters of (Rb0.1(NH4)0.9)2SO4 crystals

T, K Space group a, Å (∆a) b, Å (∆b) c, Å (∆c) α, deg (∆α) β, deg (∆β) γ, deg (∆γ)

300 Pnma 7.8081 5.9862 10.5525 90.003 90.038 89.994
(0.0010) (0.0008) (0.0016) (0.012) (0.010) (0.011)

203 Pna21 7.8161 5.9564 10.5206 90.024 89.985 89.978
(0.0018) (0.0012) (0.0012) (0.012) (0.013) (0.018)
The temperature measurements of the lattice param-
eters were performed on a Siemens D500 x-ray diffrac-
tometer with the use of a helium cryostat designed at
the Institute of Solid-State Physics, Russian Academy
of Sciences. The diffractometer was modified using
special programs with the aim of recording reciprocal
lattice maps of the single-crystal sections.

3. RESULTS AND DISCUSSION

The measured characteristics of the crystal structure
of (Rb0.1(NH4)0.9)2SO4 solid solutions are presented in
the table. The angular distribution of substructure ele-
ments of the samples (ω scan mode) did not exceed
0.3°. Analysis of the rocking x-ray patterns revealed
additional (superstructure) reflections lying off the
main layer lines. The superstructure reflections
observed were identified using the reciprocal lattice
cross sections along the basis axes. Figure 1 shows the
characteristic (b*–a*) plane sections of the reciprocal
space with the aforementioned superstructure reflec-
tions at room temperature. It can be seen that the super-
structure reflections are located along the b* direction
not only for the (0 k 0) reflections but for the (h k 0)
reflections as well. The distance from these reflections
to the main reflection changes with variations in the
order of the reflection in accordance with the coexist-
ence of two lattices with the following parameters:
10.5525 Å for Bragg reflections and 9.2593 Å for satel-
lite reflections. Similar sections were obtained for the
(b*–c*) plane of the reciprocal space. An examination
of these sections revealed that the (0 k l) superstructure
reflections are also located along the b* direction. In
the reciprocal space, the obtained sections correspond
to two interpenetrating lattices in which the projections
of all the points onto the (a*–c*) plane virtually coin-
cide, thus retaining the motif of the initial structure,
whereas the points along the b* direction are spaced at
progressively larger intervals with distance away from
the origin of the coordinates.1

1 It is quite possible that the points of both sublattices also do not
coincide in the (a*–c*) plane. This assumption is based on the
reciprocal lattice map in the vicinity of the (1 0 0 0) point
(Fig. 1e), which contains a very weak diffuse reflection in addi-
tion to the strong Bragg reflection. Similar superstructure reflec-
tions are also observed for higher orders of reflection along the c
direction. The difference between the parameters a and c of the
satellite lattices and the relevant Bragg lattices is so small that
they can be considered to be nearly identical in the (a*–c*) plane.
PH
Reasoning from the results obtained, we can pro-
pose three models of the crystal structure under investi-
gation. According to the first model, the crystal struc-
ture is formed by layers of new phase precipitates
whose lattice spacing differs from the lattice spacing of
the matrix along the b* direction. It should be noted
that these phase precipitates are unrelated to enrich-
ment or depletion of particular regions of the crystal
with rubidium atoms in the case when these atoms are
statistically distributed over the (NH4) positions. As fol-
lows from analyzing the reciprocal lattice maps
depicted in Fig. 1, the lattice parameter bph of the pos-
sible phase precipitates is less than the lattice parameter
bm of the matrix . This ratio between the lat-
tice parameters of the new phase precipitates and the
matrix should correspond to an enrichment of the new-
phase regions with rubidium atoms in accordance with
the concentration dependence of the lattice parameter
b(x) obtained in [1]. However, the lattice parameter b of
the possible phase precipitates proves to be equal to
9.2593 Å, whereas this parameter even for pure Rb2SO4
must be no less than 10.44 Å. Moreover, within the
framework of the concentration model, a change in the
lattice parameter b should be attended by variations in
the lattice parameters a and c, which is in contradiction
with the experiment. The lattice parameters a and c of
the new phase precipitates observed are assumed to be
nearly identical to those of the matrix. This inference
stems from the fact that, in the case of the (h k 0) reflec-
tions (see, for example, the reciprocal lattice map in the
vicinity of the (1 6 0) point in Fig. 1d), the satellite
reflections (–h k 0), (0 k l), and (0 k –l) are located,
accurate to within the scan step, along the a* (c*) direc-
tion at the same distance in the reciprocal space as the
main reflection. Furthermore, the absence of the satel-
lite reflection for the Bragg reflection (0 4 0) and the
presence of the satellite reflections for the Bragg reflec-
tions (0 2 0) and (0 6 0) suggest a structural dissimilar-
ity between the possible phase precipitates and the
matrix. For a statistical distribution of rubidium atoms,
each Bragg reflection should be accompanied by the
satellite reflections.

The model of phase precipitates is consistent with
the experiment under the assumption that, in particular
regions of the crystal, the rubidium atoms occupy regu-
lar positions in the unit cell (for example, a certain layer
along the b direction) instead of being statistically dis-
tributed over the (NH4) positions. This structure can be

bph* bm*>( )
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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Fig. 1. Reciprocal lattice maps in the vicinity of the (a) (0 2 0), (b) (0 4 0), (c) (0 6 0), (d) (1 6 0), and (e) (1 0 0 0) points for
(Rb0.1(NH4)0.9)2SO4 crystals.
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considered a polytype structure with a layer packing of
Rb and (NH4). In this case, the absence of certain super-
structure reflections and a considerable change in the
lattice parameter along the direction of layer packing
become possible. For this distribution of rubidium
atoms, the lattice parameters in the (a–c) plane remain
unchanged. The verification of the above model calls
for investigation of (Rbx(NH4)(1 – x))2SO4 compounds of
other compositions for which, in the case under consid-
eration, the positions of the satellite reflections will
change with variations in the rubidium content.

The second model describes a crystal structure with
substitutional modulations such that, in the reciprocal
space, the distance from the satellite reflection to the
main reflection can change with variations in the order
of reflection and, moreover, the satellite reflections can
arise on only one side of the main reflection [13]. In this
model, the (NH4) tetrahedron changing its orientation
with respect to the (SO4) tetrahedron can serve as a sub-
stitutional element and the rubidium atoms can be sta-
tistically distributed over the (NH4) positions. The
choice of the (NH4) tetrahedron as an ordering element
corresponds to an extremely low intensity of super-
structure reflections. In order to verify the validity of
the second model, it is necessary to examine rubidium-
free ammonium sulfate crystals of the composition
(NH4)2SO4, which, in this case, are also characterized
by substitutional modulations.

According to the third model, the structure of the
crystal under investigation is treated as an incommen-
surate single-crystal composite in which two weakly
interacting and interpenetrating nonequivalent (host
and guest) substructures coexist in such a way that their
lattice parameters coincide in one of the basal planes
and are incommensurate along the direction perpendic-
ular to this plane [14–20]. In this case, it would appear
reasonable that the guest substructure is formed by
(NH4) groups, which, owing to the low reflection
power, are responsible for lower intensities of the satel-
lite reflections from the guest lattice sites as compared
to those of the host substructure containing (SO4)
groups. Therefore, the structures described above
become possible for rubidium-free ammonium sulfate,
as is the case with substitutional modulations.

Finally, the assumption that the additional reflec-
tions are associated with the degradation of the surface
layer of the sample should be rejected. Judging from
the depth of the diffracting layer (~5–50 µm) and the
intensity ratio of the additional and main reflections
(1/500), the disturbed surface layer does not exceed
100–1000 Å. This layer should be easily polished.
However, the additional reflections were observed even
after deep mechanical polishing. This indicates a vol-
ume distribution of the phase precipitates over the
matrix.

Analysis of the results obtained permits us to choose
the most appropriate model. In actual fact, the main lat-
PH
tice must be a multiple of the superstructure lattice in
both the polytype model and the model of substitutional
modulations. For an incommensurate single-crystal
composite, the ratio between the lattice parameters of
the substructures must have an irrational value. In this
case, the multiplicity or the irrationality can be esti-
mated using the ratio asat/(aBragg – asat), which follows
from the coincidence (or noncoincidence) of the sites in
both lattices within N periods: asat(N + 1) = aBraggN.
This ratio must have an integral value for the first two
models and an irrational value for incommensurate
structures. From the aforementioned parameters, we
obtain N = 7.36877513…. Therefore, the most appro-
priate model is an incommensurate single-crystal com-
posite.

In order to obtain additional information on the
crystal structure of (Rb0.1(NH4)0.9)2SO4 solid solutions,
we measured the temperature dependences of the lat-
tice parameters (Fig. 2). As can be seen from Fig. 2a,
the lattice parameter a exhibits an anomalous behavior,
namely, a decrease in the temperature from Tc to 4.2 K
is accompanied by an increase in the lattice parameter
a. To account for the anomalous behavior of the lattice
parameter a, it is necessary to elucidate the physical
nature of the changes observed in the lattice parameters
with variations in the temperature. It should be noted
that the changes in the lattice parameters are associated
primarily with the anharmonicity of atomic vibrations
in local potential wells. It is evident that, in the general
case, changes in the temperature (or, what amounts to
the same, changes in the energy of atomic vibrations)
should be attended by variations in the amplitude of
atomic vibrations and, consequently, in the mean inter-
atomic distances and lattice parameters. Within this
interpretation, there must be no expansion of the crystal
lattice with a decrease in the temperature.

A different situation can arise when atoms are not
independent of one another but form coupled nonequiv-
alent sublattices. As the temperature decreases, these
sublattices can expand not through anharmonicity of
atomic vibrations but through other interactions, for
example, due to a dipole–dipole interaction of their
constituent structural elements (in our case, for exam-
ple, due to an interaction of dipole moments of (SO4)
and (NH4) distorted tetrahedra). In the case under con-
sideration, the mechanism of the anomalous increase in
the lattice parameter a can be determined from the
changes observed in the intensity of reflections due to
variations in the temperature. For anharmonicity of
atomic vibrations, the increase in the lattice parameters
with variations in the temperature should lead to a
decrease in the diffracted intensity at the expense of the
Debye–Waller factor. In the case when the lattice
parameter a increases as a result of displacement of the
sublattices, the diffracted intensity either can decrease
with a decrease in the temperature or can increase with
temperature variations in the structure factor of the
reflection involved. In general, upon transformation of
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002
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Fig. 2. Temperature dependences of the lattice parameters (a) a, (b) b, and (c) c for (Rb0.1(NH4)0.9)2SO4 crystals.
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the sublattices, the intensity of reflections increases or
decreases depending on the temperature range. We
observed only an increase in the integrated intensity of
the (h 0 0) reflection with a decrease in the temperature.
This is indirect evidence that nonequivalent sublattices
coexist in the studied structures. In this respect, the
observed increase in the lattice parameter a and the
increase in the integrated intensity of the (h 0 0) reflec-
tion with a decrease in the temperature count in favor of
the model of the coexistence of two nonequivalent sub-
lattices, especially from the standpoint of the elucida-
tion of the mechanism of the ferroelectric phase transi-
tion [7].

Apart from the anomalous increase at temperatures
below Tc, the lattice parameter a exhibits an “invar
effect” with a change in the temperature above Tc (see
inset in Fig. 2a). It is known that the invar effect can be
observed in the temperature range of the existence of
incommensurately modulated phases. However, we
failed to reveal superstructure reflections that would be
symmetric with respect to the Bragg reflections and,
moreover, would be located at regular intervals with
variations in the order of reflection (wave vectors ±k)
along the basis axes (by analogy with the known direc-
tions for isomorphic compounds [21, 22]). No equidis-
tant reflections along the basis axes were observed until
the intensity ratio of the superstructure reflection to the
main reflection became equal to 1/1000. The latter cir-
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      20
cumstance suggests that the modulation, if it exists,
exhibits a complex nature in these crystals.

The temperature dependence of the unit cell volume
(Fig. 3) provides additional information on the origin of
the ferroelectric phase transition. It can be seen from
Fig. 3 that, below Tc, the unit cell volume first smoothly
increases with a decrease in the temperature and then
decreases. Note that the bulk thermal expansion coeffi-
cient of the studied sample substantially changes in the
vicinity of Tc. An increase in the unit cell volume with

492.0
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0 50 100 150 200
T, K

V
, Å

3

250

Fig. 3. Temperature dependence of the unit cell volume for
(Rb0.1(NH4)0.9)2SO4 crystals.
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a decrease in the temperature of the crystal indicates a
radical transformation of the crystal structure upon the
ferroelectric phase transition. A considerable decrease
in the bulk thermal expansion coefficient at tempera-
tures below Tc suggests that, after the ferroelectric
phase transition, the lattice atoms reside in potential
wells with a smaller anharmonicity coefficient.

4. CONCLUSIONS

Thus, the results obtained in our investigation clearly
demonstrated that crystals of (Rb0.1(NH4)0.9)2SO4 solid
solutions are characterized by structural states of com-
plex nature. This manifests itself in the following phe-
nomena: (i) a decrease in the temperature leads to an
anomalous increase in the lattice parameters and the
unit cell volume, (ii) the temperature dependence of the
lattice parameters exhibits an invar effect at tempera-
tures above the ferroelectric phase transition point Tc,
and (iii) a set of superstructure reflections indicates the
presence of an incommensurate sublattice in the host
structure. The observed increase in the integrated inten-
sity of scattering with a decrease in the temperature and
an anomalous increase in the lattice parameter below Tc

are indirect evidence in favor of the model of the coex-
istence of two ferroelectric sublattices. However, the
available data are still insufficient to interpret defini-
tively the structural state of a crystal composed of two
nonequivalent incommensurate substructures. In par-
ticular, the role played by rubidium atoms in the forma-
tion of superstructure reflections and, consequently, the
anomalous structural states of these crystals are not
clearly understood. In our opinion, a complete under-
standing of the nature of the observed anomalous states
of the crystal structure calls for detailed investigation
into the structure of crystals of the other compositions,
specifically of rubidium-free ammonium disulfide crys-
tals.
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Abstract—The mechanism of homogenization of the martensite state of crystals with a shape memory effect
under mechanical stresses applied to a crystal is theoretically analyzed in the framework of the thermodynamic
approach and the theory of smeared martensite transitions. The homogenization of the martensite state of the
crystal is considered for two variants of martensite that differ in all parameters (the temperature and the heat of
transformation, spontaneous strains, etc.) and for many variants of martensite that differ from one another in
the orientation of the habit planes. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental investigations have revealed several
variants of martensite in the course of martensite trans-
formation of crystals with a shape memory effect [1, 2].
Different martensites either can have the same crystal
lattice and differ only in the orientation of the habit
planes or can exhibit different crystal structures. This
multivariance takes place when the martensite transfor-
mation is initiated by variations in the temperature.
Owing to the isotropic nature of the thermodynamic
forces involved, the martensite transformation, as a
rule, leads to the formation of a system of self-accom-
modated (twinned) martensite layers in the crystal.

Under external mechanical stresses or internal
stresses arising in the crystal, the isotropy of the crystal
and the multivariance and self-accommodation of the
martensite state disappear. When the stresses are suffi-
ciently strong, there occurs a complete or partial
homogenization of the martensite state due to “freez-
ing-out” of the martensites unfavorably oriented with
respect to the acting mechanical force [1, 2]. At present,
this phenomenon has been understood qualitatively.
However, in a quantitative sense, the physical mecha-
nism of homogenization remains poorly investigated.

In this work, the homogenization mechanism was
analyzed in terms of the recently developed phenome-
nological theory of smeared martensite transitions [3,
4], which is based on a thermodynamic approach to
first-order phase transitions, among them martensite
transformations in alloys with a shape memory effect.
This theory describes the phase equilibrium in a crystal
as a function of temperature and different forces acting
on the crystal, including mechanical forces.

Earlier [3, 4], I developed the theory describing the
phase equilibrium in a crystal with one variant of mar-
tensite. In Section 2 of the present paper, the phase
1063-7834/02/4411- $22.00 © 22171
equilibrium in a crystal and the homogenization of the
martensite state are considered in the framework of the
theory of smeared martensite transitions as applied to
the crystal with two variants of martensite. In Section 3,
a similar analysis is performed for a larger but finite
number of martensite variants.

2. TWO VARIANTS OF MARTENSITE

Within the thermodynamic approach, the phase
equilibrium in a crystal undergoing a structural trans-
formation is determined by the minimum (minima) of
the free energy ∆F = ∆U – T∆S, where T is the temper-
ature, ∆U is the change in the internal energy of the
crystal upon the structural transition, and ∆S is the
change in the entropy of the crystal. Let us assume that
particles (atoms) in the crystal exist in three states with
concentrations (relative volume fractions) ϕ1, ϕ2, and
ϕ3, where ϕ3 is the volume fraction of particles in the
ground state. Since the number of atoms in the crystal
during the transformation remains unchanged, we can
write the condition

(1)

For the given system of particles, the free energy can be
represented in the form

(2)

Here, U1, U2, and U3 are the internal energies of parti-
cles in states 1, 2, and 3, respectively, and Uint(ϕ) is the
energy of interaction between particles in different
states. The last term in the right-hand side of Eq. (2) is
the change in the entropy of the crystal due to mixing
of the particle states, and k is the Boltzmann constant.
Since our concern here is with the martensite embryos

ϕ1 ϕ2 ϕ3+ + 1.=

∆F U1ϕ1 U2ϕ2 U3ϕ3 U int ϕ1 ϕ2 ϕ3, ,( )+ + +=

+ kT ϕ1 ϕ1ln ϕ2 ϕ2ln ϕ3 ϕ3ln+ +[ ] .
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whose sizes exceed the critical embryo size, in what
follows, we will disregard the interaction energy of par-
ticles in different states Uint(ϕ), i.e., the surface energy
[3, 4].

According to condition (1), two concentrations are
independent, namely, ϕ1 and ϕ2. In order to determine
their thermodynamically equilibrium values, we have
two conditions,

(3)

Substituting potential (2) into these equations and tak-
ing into account the particle balance equation (1), we
obtain the following expressions for equilibrium con-
centrations:

(4)

where ∆U1 = U1 – U3 and ∆U2 = U2 – U3 are the changes
in the particle energies upon the transitions from the
ground state to new structural states 1 and 2, respec-
tively. Since the transition to a new state occurs in por-
tions of volume ω (where ω is the elementary volume
of transformation), we have ∆U1, 2 = ω1, 2∆u1, 2. Here,

∂∆F
∂ϕ1
----------- 0,

∂∆F
∂ϕ2
----------- 0.= =

ϕ1 = ϕ3 ∆U1/kT–( ), ϕ2exp  = ϕ3 ∆U2/kT–( ),exp

ϕ3
1

1 ∆U1/kT–( )exp ∆U2/kT–( )exp+ +
------------------------------------------------------------------------------------------,=

1.5

1.0

0.5
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T/Tc1

Fig. 1. Temperature dependences of the volume fraction of
(1) martensite 1 and (2) martensite 2 according to formulas
(4) and (6a)–(6c): (a) in the absence of stresses and (b) in
the presence of stresses. The dotted lines correspond to the
total amount of martensite in the crystal.
PH
∆u is the change in the density of the internal energy of
the crystal upon the structural transition:

(5)

where q is the heat of transformation; Tc is the critical
(characteristic) temperature of transformation; ξik and
ξ0 are the shear strain and the dilatation of the lattice
upon its structural transformation, respectively; τik is
the shear stress applied to the crystal; and P is the uni-
form pressure.

It is assumed that the two variants of martensite dif-
fer from each other in all parameters (ω, q, Tc, ξik, ξ0).
For simplicity, we assume that the shear strain tensor
and stress tensor have only one nonzero component,

namely,  ≡ ξ1, 2 and τik ≡ τ. As a result, in expres-
sions (4), we obtain

(6a)

(6b)

(6c)

where m1 and m2 are the orientational factors of the
habit planes during the structural transformation of the
lattice with respect to the mechanical stress σ applied to
the crystal and ±τf is the stress of dry friction in the
course of the interaction between the interphase bound-
aries and defects in the crystal during the direct and
reverse martensite transitions.

Figure 1a displays the temperature dependences of
the volume fractions of martensites 1 and 2 according
to expressions (4) and (6a)–(6c) in the absence of the
stress (σ = 0) and the uniform pressure (P = 0) at the
following parameters: B2 = 0.8B1, B1 = 100, Tc2 =
1.25Tc1, and τf 1 = τf 2 = 0. It can be seen that, at these
parameters, there exist two temperature regions of the
homogenization of the martensite state of the crystal:
(i) T < 0.5Tc1, in which martensite 1 dominates, and (ii)
0.6Tc1 < T < 1.3Tc1, in which martensite 2 dominates. In
the intermediate temperature range 0.5Tc1 < T < 0.6Tc1,
there exists a mixed martensite state. The dotted line in
Fig. 1a corresponds to the total amount of martensite in
the crystal.

Let us now consider the change in the martensite
state of the crystal under mechanical stresses. Figure 1b
shows the volume fractions of martensites 1 and 2
according to formulas (4) and (6a)–(6c) at the external
stress σ = 0.5τ1 and m1 = 0.5, m2τ1/τ2 = 0.2, and P = 0.
It can be seen that, under the applied stress, the temper-
ature range of existence of martensite 2 becomes nar-
rower, whereas the temperature range of existence of

∆u1 2, q1 2,
T Tc1 2,–

Tc1 2,
--------------------- ξ ik

1 2,( )τ ik– ξ0
1 2,( )P,–=

ξ ik
1 2,( )

∆U1

kT
---------- B1 T /Tc1 1– m1σ/τ1– P/P1–

τ f 1

τ1
-------± 

  ,=

∆U2

kT
---------- B2 T /Tc2 1– m2σ/τ2– P/P2–

τ f 2

τ2
-------± 

  ,=

B1 ω1q1/kT , B2 ω2q2/kT ,= =

τ1 2, q1 2, /ξ1 2, , P1 2, q1 2, /ξ0
1 2,( ),= =
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martensite 1 broadens. This results in the homogeniza-
tion of the martensite in the temperature range 0.5Tc1 <
T < 0.6Tc1, in which a mixed state is observed in the
absence of stresses. An increase in the stress to σ = τ1
leads to the complete disappearance of martensite 2. It
is evident that the uniform pressure P, when applied to
the crystal in the presence of nonzero lattice dilatations

, should also affect the ratios of the martensite
volume fractions in certain temperature ranges.

The martensite transformation in the crystal is
accompanied by its macrodeformation (transformation
plasticity), depending on the amount of martensite in
the crystal, the spontaneous strains ξik, and the orienta-
tional factors m. In the example considered above, the
strain arising in the crystal due to the formation of the
two types of martensite (martensites 1 and 2) is deter-
mined as ε(T, σ) = ε(1)(T, σ) + ε(3)(T, σ). Here,

(7a)

(7b)

In the absence of external stresses, martensites 1 and 2
reside in a twinned state. The martensite variants in a
twinned pair differ from each other in that their orien-
tational factors are opposite in sign (±m1 and ±m2,
respectively). Consequently, we obtain ε(1)(T) =
ε(2)(T) = 0; i.e., the strain of the crystal is absent. The
application of stresses leads to partial or complete
detwinning of the martensites and a nonzero strain of
the crystal.

Figure 2a shows the temperature dependences of ε(1)

and ε(2) according to expressions (7a) and (7b) at the
above parameters, σ = 0.5τ1, and ε2 = m2ξ2 = 0.5ε1,
where ε1 = m1ξ1. The solid curve indicates the temper-
ature dependence of the total strain of transformation ε.
It can be seen that this curve has a two-step shape due
to the formation of two variants of martensite with a
decrease in the temperature. Similar step curves of
transformation are observed, for example, in crystals of
titanium nickelide TiNi [2]. The steps correspond to the
formation of martensite of types R and B19, respec-
tively. The reverse martensite transition is characterized
by a hysteresis of the transformation due to the dry fric-
tion stress τf . Figure 2b depicts the curves of the direct
and reverse martensite transformations at the friction
stresses τf1/τ1 = ±0.1 and τf 2/τ2 = ±5 × 10–2.

The existence of two variants of martensite is
responsible for the step shape of hyperelastic strain
curves of the crystal [2]. Figure 3 depicts the hyperelas-
tic strain curves according to expressions (7a) and (7b)
at the temperature T = 1.3Tc1 for loading and unloading
of the crystal. The dotted line corresponds to the hyper-
elastic strain in the absence of a hysteresis of the trans-
formation.

ξ0
1 2,( )

ε 1( ) T σ,( ) m1ξ1 ϕ1 T m1σ,( ) ϕ1 T m1σ–,( )–[ ] ,=

ε 2( ) T σ,( ) m2ξ2 ϕ2 T m2σ,( ) ϕ2 T m2σ–,( )–[ ] .=
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Fig. 2. Temperature dependences of (a) the partial strains
upon transformation of (1) martensite 1 and (2) martensite
2 (the solid line indicates the total strain of transformation)
and (b) the total strain of the direct and reverse martensite
transformations in the absence (dotted line) and in the pres-
ence (solid lines) of the hysteresis of the transformation.
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Fig. 3. Hyperelastic strain curves for two variants of mar-
tensite in the absence (dotted line) and in the presence (solid
lines) of the hysteresis of the transformations: (1) loading
and (2) unloading.
02



2174 MALYGIN
3. MANY VARIANTS OF MARTENSITE
The obvious generalization of expressions (4) to the

case of N variants of martensite (instead of two vari-
ants) can be represented by the following relationships:

(8a)

(8b)

As an illustration, we consider a conventional structural
transformation—a transition from a face-centered
cubic lattice to a hexagonal close-packed lattice. Theo-
retically, there can exist 24 variants of martensite upon
this transition. These variants differ from each other in
both the orientation of the habit planes (four octahedral
planes) and the direction of their displacements (six
directions in each octahedral plane, including displace-
ments of the opposite sign). All the parameters are iden-
tical except for the orientational factors m. Conse-
quently, taking into account the designations of formu-
las (6a)–(6c), using expressions (8a) and (8b), and
assuming that P = 0, we obtain

(9a)

(9b)

ϕn ϕN ∆Un/kT–( ),exp=

ϕN
1

1 ∆Un/kT–( )exp
n 1=

N

∑+

-------------------------------------------------------,=

ϕ ϕ n

n 1=

N

∑
∆Un/kT–( )exp

n 1=

N

∑

1 ∆Un/kT–( )exp
n 1=

N

∑+

-------------------------------------------------------,= =

∆Un Un UN .–=

ϕn T σ,( )

=  
–B T /Tc 1– mnσ/τ1–( )[ ]exp

1 B T /Tc 1–( )–[ ] mnBσ/τ1( )exp
n 1=

N

∑exp+

-----------------------------------------------------------------------------------------------------,

ϕ T σ,( )

=  

B T /Tc 1–( )–[ ] mnBσ/τ1( )exp
n 1=

N

∑exp

1 B T /Tc 1–( )–[ ] mnBσ/τ1( )exp
n 1=

N

∑exp+

-----------------------------------------------------------------------------------------------------.
PH
It follows from the above expressions that, in the case
when the stress σ is absent, the volume fractions of
martensites ϕn are identical and the temperature depen-
dence of the sum of fractions of all the martensite vari-
ants can be represented by the relationship

(10)

In the presence of external stresses, the volume frac-
tion of each martensite depends on the particular orien-
tational factor m, i.e., on the orientation of the crystal
with respect to the applied stress. For example, under
uniaxial tension or compression of the crystal in the
[111] direction, the shear stress in the (111) octahedral
plane is equal to zero, whereas the orientational factors
in the other three octahedral planes are nonzero. Note
that, in each of these planes, there exists one variant
with the maximum orientational factor m = 0.416.
According to formulas (9a) and (9b), this means that
application of a sufficiently strong stress to the crystal
should suppress all martensite variants, except for the
three variants with maximum orientational factors. For
less symmetric directions of loading of the crystal, a
variant whose orientational factor is maximum in this
scheme of loading has a good chance of surviving.

4. CONCLUSION

Thus, the theory of smeared martensite transitions
offers an adequate quantitative description of the
homogenization of the martensite state of a crystal sub-
jected to mechanical stresses over the entire tempera-
ture range of the transformation.
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Abstract—The rigorous perturbation theory of the evolution of a small-sized cluster is developed in the frame-
work of the density functional method. The solution of the general equation for relaxation of the order param-
eter field is derived in the form of a power series of the metastability parameter (an analog of supersaturation
or supercooling) and the curvature. The profile of the cluster density and the cluster growth rate are determined
in an analytical form. The surface tension and the Tolman parameter are calculated. The results obtained are
applied to a van der Waals three-dimensional gas and a two-dimensional lattice gas. It is shown that the theo-
retical results are in good agreement with experimental data. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Over the last six decades, first-order phase transi-
tions have attracted the particular attention of many
researchers [1–3]. At present, there exist two principal
approaches to the description of the kinetics of first-
order phase transitions. According to the first (classical)
approach, a phase transition is treated as a fluctuation
nucleation and the growth of a new phase in the size
space [1]. Within this approach, the growth of individ-
ual nuclei is described by an appropriate microscopic
equation, for example, the diffusion equation or the
heat conduction equation [3]. The second approach is
based on the so-called density functional theory. In the
framework of the second approach, the growth of indi-
vidual nuclei is regarded as a relaxation of the order
parameter field [4–6]. In the case of first-order phase
transitions, the order parameter is a local density of the
material and the effective Hamiltonian represents a
grand thermodynamic potential. The second approach
is considered to be more general because it can offer an
adequate description of the nucleation and growth of a
new phase even when the first approach is inapplicable,
for example, due to a small size of nuclei. In this
respect, the density functional method becomes espe-
cially efficient when applied to the description of the
evolution of nanometer-sized clusters and islands, i.e.,
the so-called quantum dots, which are widely used in
modern optoelectronics. The disadvantage of the den-
sity functional method is that, within this approach, no
analytical solution describing either the cluster growth
or the evaporation of clusters has hitherto been obtained
for real thermodynamic potentials. There are only a few
results obtained from numerical simulations [7–9].

The purpose of the present work was to derive a gen-
eral analytical solution to the relaxation equation with
1063-7834/02/4411- $22.00 © 22175
a grand thermodynamic potential of the general form
that would allow first-order phase transitions. This
solution was represented in the form of a convergent
series in terms of the ε difference in the chemical poten-
tials of the initial and equilibrium phases, which was
used as the small parameter of the theory. In other
words, we developed a rigorous theory of perturbations
of the general equation for relaxation of the order
parameter. Within this approach, we uniquely deter-
mined the surface tension and the Tolman parameter
(the correction to the surface tension for the curvature
in the case of small sizes). The results obtained were
applied to the van der Waals three-dimensional gas and
the two-dimensional lattice gas (which provides the
growth of a wetting layer for quantum dots [10]). It was
shown that the proposed model is in good agreement
with the experimental data.

2. THE EQUATION FOR RELAXATION 
OF THE ORDER PARAMETER

According to the general kinetic theory, the most
probable path of the evolution of a thermodynamic sys-
tem can be described by the Markov master equation
[5]. For a slowly varying order parameter, this equation
can be simplified. Specifically, if the system is
described by only one order parameter ρ, this equation
takes the form

(1)

Here, H is the dimensionless effective Hamiltonian of
the system, t is the time, r specifies the coordinates of a
point of the medium, the dimensionless field ρ is the
density of the material at each point (ρ is conveniently

∂ρ r t,( )
∂t

-------------------
1
tρ
----δH

δρ
------- h̃.+–=
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expressed in terms of the critical density ρc), tρ is the

characteristic time of variation in ρ, and  is the exter-
nal force simulating a thermal ensemble. Generally
speaking, this equation describes the relaxation of the
field of the nonpersistent order parameter ρ [4].

In the case of first-order phase transitions, the effec-
tive Hamiltonian is equal to a grand thermodynamic
potential (because the variable of the description is the
chemical potential rather than the number of particles)
expressed in terms of kBTc, where kB is the Boltzmann
constant and Tc is the critical temperature. The inhomo-
geneous part of the grand thermodynamic potential rep-
resents a complex nonlocal density functional. How-
ever, when the density field slowly varies in the space
(as is the case with first-order phase transitions), the
inhomogeneous part is significantly simplified and
becomes local. In this approximation, we obtain

(2)

where F is the free energy density of the homogeneous
medium (expressed in terms of kBTc), dr is the elemen-
tary volume, H0 stands for the contributions of all the
remaining degrees of freedom, λ is the typical scale of
spatial variation in ρ, and µ is the chemical potential.

The quantities λ and tρ can be determined by com-
paring the results obtained in the framework of the clas-
sical theory and the density functional theory. Specifi-
cally, in the case when ρ(r, t) is represented by the
expression derived below, an unambiguous correspon-
dence between these theories can be achieved only
under the condition

(3)

where m is the mass of one molecule and ρc is the crit-
ical density. The characteristic time tρ can be deter-
mined by making the cluster growth rate obtained in
terms of the density functional theory equal to the cor-
responding result of the classical microscopic theory. In
particular, when applied to the free-molecular growth
of a spherical drop, the perturbation theory developed
below gives

(4)

where V is the volume per molecule in a liquid and σ0
is the surface tension coefficient for a planar interface
between the vapor and the liquid.

The chemical potential µ can be represented as the
sum µe + ε, where µe is the equilibrium chemical poten-
tial and ε = µ – µe is the difference in chemical poten-
tials (expressed in terms of kBTc) between the initial and
equilibrium phases. The second term of the sum is often

h̃

H F µρ–
λ2

2
----- ∇ρ( )2+ rd

V

∫ H0,+=

λ m
ρc

-----3 ,=

tρ
2 3kBTm

σ0V
----------------------- m

ρc

----- 
  2/3

,=
PH
referred to as the metastability parameter. This param-
eter is an analog of supersaturation or supercooling. In
order for a liquid drop to nucleate from a supersaturated
vapor, the metastability parameter must be equal to
(T/Tc)ln(p/pe) [1], where p is the supersaturation vapor
pressure and pe is the equilibrium pressure. Within this
theory, ε is considered to be so small that the system
resides in a metastable state (well away from the spin-
odal). It is assumed that the external forces maintain a
constant value of ε. Moreover, we will deal only with a
temperature range in which thermal fluctuations of the
order parameter are negligible compared to the density
of the denser phase. For a van der Waals system, this
range satisfies the condition 0 < T/Tc < 0.8. According
to the classification of metastable states [11], we con-
sider only a nonfluctuating region. As a result, the equa-
tion of the evolution without regard for thermal fluctu-

ations  can be written in the form

(5)

where µ(ρ, T) = ∂F/∂ρ is the chemical potential per par-
ticle of the material with density ρ and temperature T.
Let us assume that, in this case, the time is measured in
terms of tρ and the length is expressed in terms of λ. For
spherical symmetry, we obtain the relationship

(6)

Here, d is the space dimension (d = 3 for a drop and d =
2 for a disk-shaped island in the growth of thin films)
and Ωe is the grand thermodynamic potential, which is
defined at the equilibrium chemical potential µe (µe can
be found from phase equilibrium equations) as follows:

(7)

At temperatures below the critical point, the depen-
dence of Ωe on ρ exhibits two isolated minima at ρG and
ρL, which correspond to the gaseous and liquid states.
The constant of integration Ω0 is chosen in such a way
that these minima become zero.

Specifically, in the case of a van der Waals three-
dimensional gas, which is an important example of sys-
tems undergoing a first-order phase transition, we have

(8)

(9)

h̃
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∂2ρ r t,( )

∂r2
--------------------=

+
d 1–

r
------------∂ρ r t,( )

∂r
------------------ Ωe' ρ( )– ε.+

Ωe µ ξ T,( ) µe t( )–[ ] ξ Ω 0+d

0

ρ

∫=

=  F ρ T,( ) µeρ– Ω0.+

F ρ T,( ) Tρ ρ
1 ρ/3–
-----------------ln

9
8
---ρ2,–=

µ ρ T,( ) Tρ ρ
1 ρ/3–
-----------------ln T

1 ρ/3–
-----------------

9
4
---ρ.–+=
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Here, the temperature and the density are expressed in
critical units. For a two-dimensional lattice gas [6], we
can write the following expressions:

(10)

(11)

Figure 1 shows the dependence of Ωe on ρ for the van
der Waals three-dimensional gas at T = 0.8Tc. It is evi-
dent that relationship (6) is a typical Ginzburg–Landau
equation which is frequently used in the density func-
tional theory for first-order phase transitions.

Below, we will derive an analytical solution to the
evolution equation (6) with allowance made for the fact
that ε is the small parameter.

3. THE PERTURBATION THEORY

Before proceeding to an analytical solution of the
evolution equation (6), we consider a simpler equation
for arbitrary grand thermodynamic potentials Ωe(ρ)
with two minima at ρL and ρG [in this case, Ωe(ρL) =
Ωe(ρG) = 0], that is,

. (12)

We seek an analytical solution to this equation in the
following form:

(13)

(14)

where τ = εt is the so-called “slow time.” By substitut-
ing expressions (13) and (14) into Eq. (12) and equating
terms with identical exponents εk, we obtain the follow-
ing recurrent system of equations:

(15)

for ε0 and

(16)

for εk. Here, Fk are the known functions determined
from expressions (12)–(14). Specifically, at k = 1, we
have

(17)

F ρ T,( )

=  
a
2
--- T 2 ρ–( ) 2 ρ–( )ln ρ ρln+[ ] ρ 2 ρ–( )+{ } ,

µ ρ T,( ) a
2
---T

ρ
2 ρ–
------------ln a 1 ρ–( ).+=

∂ρ
∂t
------ ∂2ρ

∂r2
-------- Ωe' ρ( )– ε+=

ρ r t,( ) εkρk θ( ),
k 0=

∞

∑=

θ r R τ ε,( ), R τ ε,( )– εkRk τ( ),
k 0=

∞

∑= =

ρ0'' Ωe' ρ0( )– 0=

ρk'' Ωe'' ρ0( )ρk– Fk ρk 1– ρk 2– … ρ0, , ,( ),=

k 1≥

F1 ρ0 τ,( ) –
dR0

dτ
---------ρ0' 1.–=
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Equation (15) has an obvious solution,

(18)

where ρ∗  is the point at a maximum of the grand ther-
modynamic potential Ω between the minima at ρL and
ρG (Fig. 1), η = ±1 (sign “–” corresponds to a nucleus
of the liquid phase L, and sign “+” corresponds to a
nucleus of the gas phase G). Figure 2 depicts the den-
sity profile f(r) for a liquid cluster in the van der Waals
three-dimensional gas at T = 0.7Tc. According to the
rigorous perturbation theory [12], the power series
defined by expression (13) converges at any values of r
and t (i.e., it is a uniformly convergent series) provided
the growth law Rk(τ) is chosen in such a way that the
inequalities ρk + 1/ρk < ∞ and k ≥ 0 hold at any values of
θ and τ. Essentially, this is the renormalization method
in the rigorous perturbation theory [12]. In particular,
the zeroth-order approximation ρ0 is uniformly suitable

ρ0 f θ( ), η ρd

2Ωe ρ( )
----------------------

ρ
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f

∫ r,= =
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Fig. 1. Dependence of the grand thermodynamic potential
on the density for the van der Waals three-dimensional gas
at T = 0.7Tc.
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Fig. 2. Density profile for a liquid cluster in the van der
Waals three-dimensional gas at T = 0.7Tc.
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provided R0 is chosen such that the condition ρ1/ρ0 < ∞
is universally satisfied. Equation (16) is linear with
respect to ρ (to within the kth correction) and can be
solved using the following method. For definiteness,
we consider an equation for ρ1, that is,

(19)

The solution to this equation will be sought in the form

(20)

Substitution of expression (20) into Eq. (19) gives

(21)

Equation (21) can be simplified by multiplying the
left-hand and right-hand sides of this equation by ;
that is,

(22)

As a consequence, we obtain

(23)

It follows from relationship (18) that the quantity 1/
takes on exponentially large values; therefore, the nec-
essary condition for convergence of the exterior inte-
gral in expression (23) has the form

(24)

This is an important result of the present work. Only
when condition (24) is met can inequality ρ1/ρ0 < ∞ be
satisfied and can the zeroth-order approximation in the
form of a traveling wave ρ0(r – R(t)) have physical
meaning. By substituting relationship (17) into expres-
sion (24), we found the cluster growth law in the fol-
lowing form:

(25)

where

(26)

Thus, within the framework of the perturbation theory,
the fulfillment of the uniform convergence condition
for the power series (14) of the metastability parameter
leads to the cluster growth law (25) and the surface ten-
sion coefficient (26). It is obvious that formula (26) is
in complete agreement with the results obtained in
terms of the stationary perturbation theory [13].

ρ1'' Ωe'' ρ0( )ρ1– F1 ρ0( ).=

ρ1 z θ( )ρ0' θ( ).=

z''ρ0' 2z'ρ0''+ F1.=

ρ0'

z''ρ0'
2( )' F1ρ0' .=

ρ1 ρ0'
θ1d

ρ0'
2

-------- F1ρ0' θ2.d

∞–

θ1

∫
0

θ0
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ρ0'
2

F1ρ0' θd

∞–

∞

∫ 0.=

dR0

dτ
---------

ρL ρG–
σ0

-----------------,=

σ0 ρ0'
2 θd

∞–

∞

∫ 2Ωe ρ( ) ρ.d

ρG

ρL

∫= =
PH
Now, we turn to the analysis of the initial equation (6).
The term [(d – 1)/r](∂ρ/∂r) can be treated as a small
perturbation of the antikink-type solution (13) for the
new small parameter 1/R (the curvature of the studied
cluster) because we have

(27)

The asymptotic construction of the zeroth-order
approximation with respect to ε has precisely the same
form; however, in this case, the function F1 is more
complicated; that is,

(28)

Substitution of relationship (28) into expression (24)
gives the growth law for clusters of the new phase. Con-
sequently, to the zeroth order in ε and to the first order
in 1/R, we have

(29)

(30)

(31)

It is evident that Rc plays the role of a radius of a critical
nucleus.

In general, the method described above can be used
to determine higher orders of the approximation both in
ε and in the curvature 1/R. It should be noted that, in
this case, the surface tension depends on 1/R. The inclu-
sion of this dependence is particularly important for
small-sized nanoclusters. We leave out the mathemati-
cal treatment and write the final expressions to the first
order in ε and to the second order in 1/R:

(32)

(33)

(34)
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(35)

(36)

It is obvious that δ plays the role of a correction to the
surface tension for the curvature; i.e., δ is the Tolman
parameter. We see little reason for refining expres-
sions (32)–(36) by calculating new corrections,
because the initial Ginzburg–Landau equation is valid
to the second order in 1/R. In the case of bubbles (gas
nuclei in a liquid), the correction to the surface tension
for the curvature changes sign:

(37)

The important advantage of the above approach is
that the quantities λ and tρ can be uniquely determined
by identifying expressions (32)–(36) with the appropri-
ate relationships derived in the framework of the classi-
cal thermodynamic theory; furthermore, σ0 can be
identified with the surface tension of a planar interface,
δ can be identified with the Tolman parameter, etc. In
particular, the free energy of formation of a liquid clus-
ter from a supersaturated vapor in the three-dimen-
sional case (d = 3) can be determined from the relation-
ship

(38)

By using relationship (32) and integrating to a required
accuracy, after changing over to a dimensional form
with the use of formula (4), we obtain

(39)

Expression (39) completely coincides with the classical
formula for the energy of formation of a nucleus. This
confirms the validity of formula (4).

The temperature dependences of the surface tension
(in a dimension form) calculated according to expres-
sions (8), (10), and (26) for the van der Waals three-
dimensional gas and the two-dimensional lattice gas are
displayed in Fig. 3. This figure also shows experimental
values of the surface tension for four gases, namely,
methane, neon, argon, and krypton [14]. As is clearly
seen, the theoretical results obtained above for the sur-
face tension of the van der Waals gases are in excellent
agreement with experimental data. Figure 4 depicts the
temperature dependence of the Tolman parameter for
the van der Waals three-dimensional gas (since the ther-
modynamic potential of the lattice gas is a symmetric
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function with respect to ρ – ρ∗ , the Tolman parameter
for this system is equal to zero). It can easily be shown
that, in the temperature range 0.5 < T/Tc < 1, the Tolman

parameter is of the order of δ ~ 0.1  ~ 0.5 × 10−10 m.
This will suffice to have a pronounced effect on the
nucleation [15].

4. CONCLUSIONS

Thus, we developed a rigorous perturbation theory
for the evolution of nanoclusters of a new phase for an
arbitrary grand thermodynamic potential that allows
first-order phase transitions. The solution of the general
equation for relaxation of the order parameter was
derived in the form of a uniformly convergent series of
the metastability parameter. It was demonstrated that
the fulfillment of the uniform convergence condition
for this series uniquely determines the evolution law for
nanoclusters and, consequently, the coefficient of their
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Fig. 3. Temperature dependences of the surface tension of
the planar interface for the van der Waals three-dimensional
gas (solid line) and the two-dimensional lattice gas (dashed
line). Points are the experimental data taken from [14]: (1)
CH4, (2) Ne, (3) Ar, and (4) Kr.
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surface tension. The analytical results obtained are in
good agreement with experimental data.
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Abstract—The absorption and reflection of light by a quantum well are investigated in the case of two closely
spaced levels of electronic excitations in the well. The dependences of the dimensionless absorptance ! and
reflectance 5 on the frequency ωl of the exciting light are calculated. The overall sequence of processes involv-
ing absorption and reemission of photons is taken into account. This is beyond the scope of the perturbation
theory for the photon–electron coupling constant. It is shown that the perturbation theory is inapplicable when
the reciprocal radiative lifetimes of excitations are comparable to the reciprocal nonradiative lifetimes. In this
case, the nontrivial dependences !(ωl) and 5(ωl) are obtained. The total reflection and the total transparency
points are determined. The relationships derived are used to analyze the special case of two excitation levels
that are formed in the quantum well in a strong magnetic field H normal to its plane due to the Johnson–Larsen
magnetopolaron effect. The reciprocal radiative lifetimes of electron–hole pairs are calculated far from and in
the vicinity of the magnetophonon resonance. It is found that these lifetimes are proportional to H in the range
far from the resonance and depend strongly on the difference H–Hres in the vicinity of the resonance. The depen-
dences of the coefficients ! and 5 on the magnetic field H at different frequencies of the exciting light are
deduced. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The role of the electron–phonon interaction in the
formation of a polaron state in magnetic fields sharply
enhances when the following resonance condition is
satisfied:

(1)

where ωLO is the frequency of longitudinal optical (LO)
phonons,

(2)

is the cyclotron frequency, e is the elementary charge,
and me(h) is the effective electron (hole) mass. In this
case, the resonant coupling between electron levels
clearly manifests itself. The fulfillment of condition (1)
leads to the intersection of the magnetic-field depen-
dences of the energy terms for the electron–phonon
system. The formation of the polaron states results in
divergence of the energy levels at the intersection
points. The divergence of the terms was first revealed
by Johnson and Larsen [1] in the interband magnetoop-
tical absorption in massive InSb.

The polaron states are formed in three-dimensional
and quasi-two-dimensional systems. In systems of both
types, these states play an important role in the forma-

ωLO jΩ, j 1 2 3 …,, , ,= =

Ω e H/ cme h( )( )=
1063-7834/02/4411- $22.00 © 22181
tion of the frequency dependence of magnetooptical
effects, such as reflection, interband absorption, cyclo-
tron resonance, and Raman light scattering (see, for
example, reviews [2–4]). The difference between the
systems manifests itself in the energy spectrum of an
electron (hole), which is represented by Landau one-
dimensional bands in the three-dimensional system and
discrete levels in the quasi-two-dimensional system.
This difference leads to a different divergence of the
energy levels of the electron–phonon system: the diver-
gence is of the order of α2/3"ωLO in the three-dimen-
sional case [5] and α1/2"ωLO in the quasi-two-dimen-
sional case [6–9], where α is the dimensionless con-
stant of the electron–phonon coupling [10].

A single quantum well is considered as a quasi-two-
dimensional system. The well is assumed to be ideal,
and the inhomogeneous broadening of levels is
ignored. The dimensionless reflectance 5 and absorp-
tance ! of the light are calculated as the ratio between
the reflected or absorbed light flux and the incident flux.
The quantum well has a finite depth. Moreover, the
quantum well is characterized by the discrete energy
levels of electron–hole pairs and a continuous spec-
trum. We are interested in the optical effects caused by
the resonance between the exciting light of frequency
002 MAIK “Nauka/Interperiodica”
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ωl and the discrete energy levels of electron–hole pairs
or magnetopolarons. For magnetic fields H and frequen-
cies ωl far from those corresponding to the magnetopo-
laron resonance, the quantum well is treated as a two-
level system (one energy level corresponds to the
ground state of the crystal, and the other energy level is
associated with the electron–hole pair). Under condi-
tions close to the magnetopolaron resonance, the well is
regarded as a three-level system (the ground energy and
two polaron levels).

The absorption and reflection of light in quasi-two-
dimensional systems have been investigated repeatedly.
The absorption is traditionally calculated within the
perturbation theory to the lowest order in the interac-
tion of light with the electronic system [11–13]. The
expression for the absorptance involves the multiplier

("ωl – Eρ), where Eρ is the electronic excitation
energy reckoned from the ground-state energy,

 (3)

is the function transforming into the Dirac delta func-
tion at γ  0, and γρ is the reciprocal nonradiative
lifetime of the level ρ. This relationship is rather contra-
dictory. Actually, we obtain ∆γ(E)  ∞ at E = 0 and γ

 0, whereas the dimensionless absorptance ! can-
not exceed unity. The contradiction can be resolved
when going beyond the scope of the perturbation theory
in the photon–electron coupling constant, i.e., by sum-
ming the contributions of all the orders in this constant.
Summation of the contributions means inclusion of the
overall sequence of processes involving the absorption
and reemission of a photon "ωl. The new theory

includes the notion of the radiative lifetime  of elec-
tronic excitation, which was introduced by Andreani
et al. [14] as applied to excitons in quantum wells at
H = 0.

Initially, the new approach was used to describe the
light reflection from quantum wells at frequencies ωl

close to those corresponding to exciton energies [12,
14–16]. More recently, Kavokin et al. [17, 18] con-
structed the consistent theory for absorption. It was
demonstrated that, in the case of absorption, the results
obtained using the perturbation theory are applicable
when the following condition is satisfied:

(4)

The new theory should work well, especially, when
applied to an analysis of the specific features of reflec-
tion and absorption of light by ideal quantum wells in a
strong magnetic field, because the reciprocal nonradia-
tive lifetimes γρ for discrete levels of electron–hole
pairs in strong magnetic fields are very small and con-
dition (4) can be violated. We will calculate the coeffi-
cients 5 and ! for the normal incidence of light on the
quantum well in the presence of a strong magnetic field

∆γp

∆γ E( )
1
π
--- "γ/2

E2
"γ/2( )2+

------------------------------=

γrρ
1–

γrρ ! γρ.
PH
perpendicular to the well plane with due regard for the
magnetopolaron effects.

This paper is organized as follows. In Section 2, we
derive the relationships for the electric fields to the right
and the left of the quantum well under normal irradia-
tion by exciting light in the case of a multilevel system.
The formulas for the coefficients of reflection and
absorption of light by the quantum well are deduced in
Section 3. The reciprocal radiative lifetimes of the elec-
tron–hole pair and two magnetopolaron states in the
quantum well in a strong magnetic field are calculated
in Sections 4 and 5. In Section 6, we determine the
broadening associated with the nonradiative lifetimes
of the magnetopolaron states. The results of numerical
calculations of the reflectance and absorptance are
given in Section 7.

In Sections 2 and 3, we only disregard the inhomo-
geneous broadening of levels, without any other
approximations. This broadening can be reduced to a
minimum in the quantum well with a high perfection of
boundaries. In these sections, we consider the case of
two excited discrete levels of the electronic system in
the quantum well. The locations of the levels are
assumed to be arbitrary, and the levels are characterized
by the nonradiative [γ1(2)] and radiative [γr1(2)] recipro-
cal lifetimes. This pair of levels can exist in an exciton
in the absence of a magnetic field or in a magnetopo-
laron in a quantizing magnetic field in the quantum
well. No assumptions regarding the smallness of the
exciton effect and a weak influence of longitudinal opti-
cal phonons on the magnetopolaron spectrum are made
in Sections 2 and 3. In our earlier work [19], we showed
that neither exciton effect nor phonon dispersion can
transform the magnetopolaron levels into energy bands
if the equality K⊥  = 0 is satisfied (where "K⊥  is the pro-
jection of the quasi-momentum of the magnetopolaron
onto the xy plane of the quantum well). It is assumed
that the light creates magnetopolarons with K⊥  = 0,
because we consider only the normal incidence of light
on the quantum well plane. At K⊥  = 0, the exciton effect
and the phonon dispersion result only in a shift of the
magnetopolaron energy levels and in an additive addi-
tion to the nonradiative broadening of the levels. In Sec-
tions 4–7, for the purpose of obtaining qualitative
results and simplifying calculations, we assume that the
Coulomb attraction between the electron and the hole,
the phonon dispersion, and the nonparabolicity of the
bands of the crystal have a weak effect. These assump-
tions hold true in the case of strong magnetic fields and
narrow quantum wells. Indeed, according to Lerner and
Lozovik [20], the exciton effect can be disregarded
under the conditions

(5)
Here,

(6)
is the Wannier–Mott exciton radius in the absence of a
magnetic field, ε0 is the static permittivity, µ =

aexc
2

 @ aH
2 , aexc @ d .

aexc "
2ε0/ µe2( )=
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memh/(me + mh) is the reduced effective mass, aH =
(c"/|e |H)1/2 is the magnetic length, and d is the quantum
well width. For GaAs, we have [21]

(7)

where  corresponds to the magnetic field Hres

derived from condition (1) at j = 1. From formulas (7),

we obtain ( /aexc)2 . 0.154. Therefore, the first ine-
quality (5) is satisfied and the second inequality
imposes a limitation on the quantum well width.

In Sections 4–6, we use the results of our earlier
work [22], in which we developed the theory of magne-
topolarons. As in [22], we assume that the frequencies
of confined and interface phonons [23] involved in the
formation of the magnetopolaron coincide with ωLO.
The approximation according to which the interaction
with confined phonons is replaced by the interaction
with bulk phonons and the interaction with interface
phonons is ignored is used only in Section 6 in order to
estimate the nonradiative broadening γp of the polaron
levels. This approximation is applicable for wide quan-
tum wells [24]. The nonradiative broadening γp with
allowance made for the confined and interface phonons
was calculated in our previous work [25]. Hereafter, we
will use the magnetopolaron classification proposed in
[24]. The specific calculations are performed for the
polaron A, in which the electron–phonon interaction
binds two adjacent Landau levels (with n = 0 and 1)
belonging to the same quantum-well level. The
obtained results, as in [22, 24], are valid when the
polaron splitting is small compared to the difference
between the energies of the adjacent quantum-well lev-
els. Since the level spacing decreases with an increase in
d, this condition places an upper limit on the permissible
well widths (see numerical estimates in [24]). In the
present work, we examine the irradiation of the quantum
well in a strong magnetic field by monochromatic light.
Note that, in [26], we proposed a technique for detecting
and examining the magnetopolaron effect with the use of
irradiation of the quantum well by light pulses and
recording of transmitted and reflected pulses.

2. ELECTRIC FIELDS TO THE RIGHT 
AND THE LEFT OF A QUANTUM WELL

Let us assume that an electromagnetic wave (or a
superposition of waves that corresponds to a time-lim-
ited light pulse) is incident on a single quantum well
normally to its plane from the left and the electric field
of this wave has the form

(8)
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where n is the refractive index of the barrier.1 We intro-
duce the designation

(9)

where E0 is the scalar amplitude; el is the polarization
vector of the exciting light; and $0(ω) is the frequency
function, which, upon excitation by monochromatic
light with the frequency ωl, can be represented by the
expression

(10)

Now, we assume the incident wave to have a circular
polarization; that is,

(11)

where ex and ey are the unit vectors along the x and y
axes, respectively.

In the quantum well, the states of the electronic sys-
tem are excited by the incident electromagnetic wave.
The energy of the excited states will be characterized
by a set of indices ρ. For example, upon normal inci-
dence of the wave in a strong magnetic field, the set of
indices ρ for electron–hole pairs involves le, lh, and ne =
nh, where le (lh) are the quantum numbers of the quan-
tum confinement of electrons (holes) and ne (nh) are the
Landau quantum numbers of electrons (holes). In the
case of an infinitely deep quantum well, we have le = lh.
The state with the set ρ is characterized by the energy
"ωρ reckoned from the ground-state energy and the
radiative (γrρ) and nonradiative (γρ) reciprocal lifetimes.
Now, we analyze the quantum well with width d !
c/ωln. In this case, the electric fields EL(R)(z, t) on the
left (right) of the quantum well are given by the rela-
tionship [27]

(12)

(13)

where the upper (lower) sign corresponds to the sub-
script L (R). The frequency distribution is defined as
follows:2

(14)

1 It is possible to omit the complex conjugate and to replace the

term %0α(ω) by %0α(ω) = %0α(ω) + (–ω) = 2πE0[elαD0(ω) +

(–ω)].
2 Expression (15) is written taking into account that either of two

circular polarizations corresponds to the excitation of one of two
types of electron–hole pairs with identical energies from the
ground state [see formula (78)].
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(15)

Relationships (12)–(15) describe the electric fields on
both sides of the quantum well and, hence, the energy
fluxes of the transmitted and reflected light for the mul-
tilevel system. The second term in the square brackets
on the right-hand side of relationship (15) is nonreso-
nant but is required to fulfill the relationship

(16)

In real quantum wells with a finite depth in a strong
magnetic field, there always exist discrete energy levels
(or at least one discrete level). Moreover, there exists a
continuous spectrum in addition to the discrete spec-
trum. Therefore, the index ρ on the right-hand side of
relationship (15) takes both discrete and continuous
values. In a strong magnetic field, proper allowance
must sometimes be made for a large number of levels
(see [28, 29]). For a two-level system, it is assumed that
the influence of all the levels, except for the level that is
at resonance with the frequency ωl, can be ignored.

The reflectance and absorptance for the two-level
system corresponding to one exciton level in the quan-
tum well at H = 0 were calculated in [14–18]. The fol-
lowing relationships were derived for the electric fields:

(17)

(18)

(19)

Formulas (17) and (18) can be obtained from expres-
sions (10) and (12)–(15) by retaining one term in the
sum over ρ on the right-hand side of relationship (15)
using the designations

(20)

and omitting the nonresonant term in the square brack-
ets.

χ ω( ) i/4π( ) γrρ/2( )
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The three-level system involves the ground level of
the electronic system in the quantum well and two lev-
els characterized by the energies "ω1(2) and the radia-
tive [γr1(2)] and nonradiative [γ1(2)] reciprocal lifetimes.
The calculation of the electric fields for the three-level
system is somewhat more complicated, because it is
necessary to solve the quadratic equation [see Eq. (23)].
By using relationships (10) and (12)–(15) and rejecting
the nonresonant term on the right-hand side of expres-
sion (15), we obtain

(21)

(22)

The quantities O1, 2 = Ω1, 2 – iG1, 2/2 (G and Ω are real
quantities by definition) obey the equation

(23)

and are given by the formula

(24)

(the plus and minus signs refer to subscripts 1 and 2,
respectively), where

(25)

In general, the relationship under the radicand in for-
mula (24) is a complex-valued expression. Moreover,
we used the designations

(26)
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A comparison of relationships (21) and (22) with the
corresponding expressions (17) and (18) for the two-
level system shows that the summation of the contribu-
tions from levels 1 and 2 is not a simple summation but
is accompanied by the replacement

(28)

The calculation of the electric fields for a four-level
system is even more difficult because it requires the
solution of a cubic equation, etc. At present, the prob-
lem for an arbitrary number ρ of levels has defied exact
solution. However, at γrρ ! γρ, the perturbation theory
for the interaction of light with the electronic system in
the quantum well is applicable and, hence, the term
4πχ(ω) in the denominator on the right-hand side of
relationship (14) can be rejected. As a result, we obtain
the solution for any number ρ of levels in the form

(29)

(30)

3. REFLECTANCE AND ABSORPTANCE
OF LIGHT

With knowledge of the relationships for the electric
fields to the left and the right of the quantum well, it is
possible to calculate the reflectance and absorptance of
light. Let us introduce the Poynting vector SL(R) on the
left (right) of the quantum well. The vector SL can be
written in the form

(31)

where

(32)

is the flux of the exciting light and ∆SL is the flux of the
reflected light directed along the vector –ez. The reflec-
tance of light is defined by the ratio

(33)

the dimensionless absorptance is represented by the
formula

(34)
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and the transmittance of light is given by the expression

(35)

With the use of relationships (17) and (18) for the two-
level system, we obtain

(36)

(37)

(see [14–18]). From formula (37), it follows that, at γ =
0, the absorption of light by the electronic system in the
quantum well is absent [17, 18].

Let us consider two limiting cases: γr ! γ and γr @
γ. At γr ! γ, the perturbation theory is applicable to the
lowest order in the interaction of light with electrons.
The absorptance and reflectance appear to be quantities
of the second and fourth order in the interaction,
respectively. From relationships (36) and (37), we have

(38)

(39)

Here, ∆γ(E) is the function defined by formula (3). At
γr ! γ, the following inequalities are satisfied:

(40)

For γr @ γ, the quantity Γ in relationships (36) and
(37) is approximately replaced by γr. As a result, at res-
onance, we have 5(ωl = ω) . 1; i.e., the total reflection
takes place and ! ! 1. Consequently, the absorptance
is small in both limiting cases. The maximum absorp-
tance !(ωl = ω) = 1/2 is observed at γr = γ.

For the three-level system with the use of expres-
sions (21), (22), (33), and (34), we obtain

(41)

(42)
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It follows from formula (42) that the absorptance of
light for the three-level system is equal to zero under
the condition

(44)

With due regard for Eq. (23), the quantity Z can be rear-
ranged to the form

(45)

Next, we derive the simplified expressions for the
coefficients 5 and ! in different limiting cases.
Relationships (41) and (42) are conveniently used
sometimes with formula (43) and sometimes with
formula (45). The first limiting case corresponds to the
inequalities

(46)

when the perturbation theory for the interaction of light
with the electronic system can be applied. Under con-
dition (46) and by setting Ω1(2) . ω1(2) and G1(2) = γ1(2)
in formula (43), we obtain the relationships

(47)

(48)

According to relationship (48), the absorptance ! is
the sum of contributions (39) from levels 1 and 2,
because the absorptance under condition (46) is linear
in the constants γr1 and γr2. According to formula (47),
the reflectance 5 is quadratic in the constants γr1 and γr2
and, hence, includes the interference contribution in
addition to the contributions from the individual levels.

By generalizing relationship (48) to an arbitrary
number of levels under condition (4), we obtain

(49)

The next limiting case is opposite to that considered
above; i.e., it is described by the inequality

(50)
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PH
Setting γ1 = γ2 = 0 on the right-hand sides of relation-
ships (41) and (42), we obtain ! = 0 and

(51)

(52)

As follows from relationship (51), the reflectance for
the three-level system is characterized by the specific
properties when the reciprocal radiative times are pre-
dominant. At any constants γr1 and γr2, the reflectance is
equal to zero at the point ωl = ω0 and unity at the points
ωl = ω1 and ωl = ω2. Assume that γr1 = γr2 = γr. Then, we
have 5 = 0 at ωl = (ω1 + ω2)/2. At γr @ ω1 – ω2, the
reflectance at the point ωl = (ω1 + ω2)/2 exhibits a nar-
row minimum with 5 = 0. The half-width at half-min-
imum is equal to (ω1 – ω2)2/(23/2γr).

Figure 1a shows the functions 5(ωl) under the con-
ditions

(53)

Figure 1b depicts the dependences !(ωl) under the
same conditions (53). At fixed values of γ, an increase
in γr leads to changes in the curves !(ωl). Curves 1–6
are constructed for the following values of "γr: 0.002,
0.005, 0.008, 0.04, 0.125, and 0.5.3 Two maxima are
observed in curve 1 (at "γr = 0.002). The other curves
have only one maximum. Curve 5 ("γr = 0.125) exhibits
the most pronounced maximum with !max = 0.5. The
absorptance !0 that corresponds to the central point
ωl = (ω1 + ω2)/2 and coincides with !max in curves 2–5
can be described by the exact formula

(54)

which can be easily deduced from expression (42) by
setting ωl = (ω1 + ω2)/2. The absorptance !0 is maxi-
mum at

(55)

Substitution of "(ω1 – ω2) = 0.005 and "γ = 0.0001
(these values correspond to Fig. 1b) into formula (55)
gives "γr0 = 0.125 and !max = !0 = 0.5 (curve 5 in
Fig. 1b).

3 All the parameters and frequencies in Figs. 1 and 2 are given in
arbitrary units, because relationships (47) and (48) include only
the ratios of these quantities.
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The next limiting case is specified by the smallness
of the reciprocal lifetimes γ1(2) and γr1(2) as compared to
ω1 – ω2. Assume that the following conditions are met:

(56)

Note that the ratio between the nonradiative and radia-
tive reciprocal lifetimes γ1(2) and γr1(2) can be arbitrary.
Cosequently, when the frequency ωl is close to reso-
nance with one of the levels, for example, ωl . ω1, from
relationships (41) and (42), we obtain

(57)

These formulas coincide with expressions (36) and (37)
for the two-level system.

Finally, we examine the case of merging levels.
Under the conditions

(58)

from relationships (41) and (42), we have

(59)

(60)

Analysis of these expressions demonstrates that the for-
mulas for the two-level system with twice the recipro-
cal lifetime γr are valid in the case of the doubly degen-
erate excited level.

4. CALCULATION OF THE RADIATIVE 
LIFETIME FOR AN ELECTRON–HOLE PAIR

IN A QUANTUM WELL IN A STRONG 
MAGNETIC FIELD

The reciprocal radiative lifetime γr of the electron–
hole pair in a strong magnetic field can be calculated
from the following formula of the perturbation theory
in the second order:

(61)

Here, |η〉 and |s〉  are the wave functions in the second
quantization representation. The function |η〉 of the ini-
tial state corresponds to the presence of one pair with
the set of indices η, and function |s〉  of the final state
corresponds to the presence of one photon with the set
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of indices s. The interaction U can be written in the
form

(62)

Here,

 (63)

is the vector potential, the set of indices s consists of the
wave vector k and the polarization index i (which takes

two values);  and cs are the creation and annihilation
operators for the photon s, respectively; es and "ωs are

U
1
c
--- rA r( ) j r( ).d∫–=

A r( ) 2π"
V0

----------
c
n
--- ωs

1/2– csese
ikr cs
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Fig. 1. Dependences of the dimensionless (a) reflectance 5
and (b) absorptance ! of light on the light frequency ωl for
a three-level system at γ ! γr (where γr = γr1 = γr2 is the radi-
ative broadening of the levels and γ = γ1 = γ2 is the nonradi-
ative broadening of the levels). "(ω1 – ω2) = 0.005; "γ =
0.0001; and "γr = (1) 0.002, (2) 0.005, and (3) 0.008. The
inset shows the dependences !(ωl) at "γr = (4) 0.04, (5)
0.125, and (6) 0.5.
2
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the polarization vector and the energy of the photon,
respectively; and V0 is the normalization volume. The
current density operator can be represented by the
expression

(64)

Here, m0 is the mass of the free electron,  and aξ are

the creation and annihilation operators for the electron–
hole pair in the state ξ;

(65)

Ψξ(re, rh) is the slowly varying part of the electron–hole
pair wave function (in the effective-mass approxima-
tion) dependent on the radius vectors re and rh of the
electron and hole, and pcv is the interband matrix ele-
ment of the momentum operator.

Let us determine the wave functions Ψξ(re, rh). The
symbol ξ designates the set of indices characterizing
the state of the electron–hole pair, that is,

(66)

The subscripts c and v  indicate the conduction and
valence bands, respectively (which, in principle, can be
degenerate). By introducing the coordinates

for the relative and cooperative motion of the electron
and hole in the xy plane, we obtain [30–33]

(67)

where "K⊥  is the quasi-momentum of the electron–hole
pair in the xy plane, M = me + mh, Lx and Ly are the nor-

malization lengths, and r⊥ 0 = H × K⊥ /H. The func-
tion _n, m is defined by the relationship [31]

(68)

where p = , φ = , and  is
the associated Laguerre polynomial. The form of the
real functions ϕc(v)l(z) corresponding to the quantum
number l of quantum confinement for the quantum well
with a finite depth is given in [22]. In formula (67), we
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used the gauge of the vector potential A = A(0, xH, 0).
In our earlier work [32], we demonstrated that func-
tions (67) are the eigenfunctions of the momentum

operator  of the electron–hole pair in the xy plane
and correspond to the eigenvalues of "K⊥ . The operator

 was determined in [34]. The energies of the states
of functions (67) are as follows:

(69)

where Eg is the band gap and Ωe(h) = |e|H/me(h). Now, the
reciprocal radiative lifetime γrξ of the electron–hole
pair with the set of indices ξ can be calculated with the
use of formulas (61)–(69). By assuming that the x axis
is aligned along K⊥ , we find (for more details, see [25])

(70)

where Ω0 = |e |H/m0c is the cyclotron frequency corre-
sponding to the mass m0 of the free electron,

(71)

(72)

A comparison of relationship (70) with the results
obtained in [14] for the exciton level in the quantum
well at H = 0 shows that the dependences on pcv for
both cases coincide with each other and γrξ = 0 at K⊥  >
ωξn/c.

The right-hand side of relationship (70) involves the
multipliers Ω0 and  associated with the mag-

netic field. The multiplier  is
absent in the expressions deduced in [14], because
these authors considered the quantum wells with d !
c/nωl, whereas we did not impose this limitation in the
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derivation of relationship (70). For narrow wells (d !
λ), we have

(73)

In the case of infinitely deep quantum wells, we obtain

(74)

For the quantum well with d . c/nωl, the multiplier

 depends on the quantum well

width, namely, decreases with an increase in d. As a
result, the reciprocal lifetime γrξ also decreases. In the
limiting case d @ λ, we obtain γrξ  0, as should be
expected when changing over to the bulk crystal [12].

For normal incidence of light on the quantum well,
it is sufficient to determine the reciprocal lifetimes
described by formula (70) at K⊥  = 0. Since the equality

 =  is satisfied, we calculate the recipro-

cal lifetime  for the set of indices

(75)

With the use of expression (70), we find

(76)

(77)

It follows from formula (76) that the reciprocal radi-
ative lifetime of the electron–hole pair is proportional
to the magnetic field H when the energy  weakly

depends on the field H (  . , where  = Eg +

 + ).

Now, we calculate the reciprocal lifetime  for

the band model of GaAs. The conduction band is dou-
bly degenerate (with respect to the spin), and the sub-
script c can take two values: c = 1 or 2. The valence
band (of heavy holes) is also doubly degenerate: v  = 1
or 2. There exist pairs of two sorts denoted by the indi-
ces I and II such that c = 1 and v  = 1 in pairs of sort I
and c = 2 and v  = 2 in pairs of sort II. The electron–hole
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pairs of these sorts differ in the interband matrix ele-
ments pcv , which can be written in the following form:

(78)

Within the proposed model, the wave functions 

and  do not depend on the subscripts c and v.
With the use of the circular polarizations (11), each
polarization (the left-hand or right-hand polarization
with respect to the z axis) is rigidly associated with a
particular sort (I or II) of electron–hole pairs, because
the interaction of the pair with light is proportional to
the quantity espcv. From formula (76) for model (78),
we find the reciprocal radiative time of pairs of any sort,
that is,4 

(79)

In the case of narrow quantum wells (d ! λ), we use
approximation (73) and have

(80)

By using the parameters taken from [21] for GaAs and
approximation (74) and also setting  . Eg, we
obtain the numerical estimate for the reciprocal radia-
tive time in the form

(81)

where Hres corresponds to polaron A, i.e., is given by the
formula Hres = mecωLO/|e|.

5. RECIPROCAL RADIATIVE LIFETIMES
OF THE MAGNETOPOLARON

Now, let us calculate the radiative lifetime of the
system composed of a magnetopolaron and a hole. As
an example, we choose polaron A in combination with
the hole described by the quantum number lh of the
quantum confinement and the Landau quantum number
nh = 1. In the vicinity of the resonance ωLO = Ωe, the
energy level of the electron–hole pair is split into two
energy terms. Either energy term is characterized by the
reciprocal radiative lifetime γra or γrb according to the
designations proposed in [22] (the subscripts a and b
refer to the higher and lower terms of the magnetopo-
laron). The reciprocal radiative lifetimes γra and γrb can

4 The relationship derived in [28] coincides with expression (79) at
n = 1.
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be calculated using formula (61). The initial state is
characterized by the set of indices

(82)

where the index p is equal to a or b and "K⊥  is the
quasi-momentum (lying in the xy plane) of the system.
The wave functions of the system with indices (82)
were calculated in our previous works [22, 25]. The
corresponding energies can be written in the form

(83)

where Ep is the polaron energy measured from the level

. According to [22], the polaron energy is defined by
the relationship

(84)

η c v p K⊥ le lh,, , , , ,
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Fig. 2. Dependences of the dimensionless (a) reflectance 5
and (b) absorptance ! of light on the light frequency ωl for
a three-level system at γ = γr. "(ω1 – ω2) = 0.005 and "γr =
(1) 0.002, (2) 0.005, and (3) 0.008.
PH
where the upper (lower) sign corresponds to the term
p = a (p = b). At resonance, we have Ωe = ωLO and

(85)

For the reciprocal radiative lifetimes, we obtain

(86)

(87)

Compared to expression (70), formula (86) includes an
additional multiplier Q0p, which strongly depends on
the deviation λ of the cyclotron frequency Ωe from the
resonance frequency ωLO, i.e., on the magnetic field
strength H. The reason for this strong dependence is as
follows. In [22], we demonstrated that the wave func-
tion of the magnetopolaron is a linear combination of
two functions of the electron–phonon system, one of
which corresponds to the electron with the Landau
quantum number n = 1 and phonon vacuum and the
other function is associated with the electron with the
quantum number n = 0 and one phonon with the fre-
quency ωLO. The coefficients Q0p and Q1p are the prob-
abilities of finding the system in these states (the index 0
indicates the absence of phonons, and the index 1 indi-
cates the presence of one phonon). The coefficient Q0p

is defined by formula (87), and the coefficient Q1p can
be represented by the expression

(88)

At resonance, we have Ωe = ωLO and  =  = 1/2.
The presence of the multiplier Q0p in relationship (86)
can be explained by the fact that only one of two exci-
tations (whose superposition comprises the magneto-
polaron–hole system), namely, the excitation with the
indices ne = nh = 1 and N = 0, can undergo light annihi-
lation. The light annihilation of the other excitation
with the indices ne = 0, nh = 1, and N = 1 is impossible.
It follows from expressions (86) and (87) that, at λ = 0
(i.e., at true resonance), the reciprocal radiative life-
times γra and γrb are equal to each other and involve an
additional multiplier 1/2 as compared to those of the
electron–hole pair with the indices ne = nh = 1. At K⊥  =
0, we introduce the set of indices η0  c, v, p, K⊥  =
0, le, and lh. In this case, the formulas derived for the
reciprocal lifetimes  differ from relationships (76),
(79), and (80) only in the replacement of the indices ξ0
by the indices η0 and the presence of the multiplier Q0p.
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The replacement of  by  is of no significance

because we approximately have  .  . /",

where  = Eg +  + . As a result, instead of
expression (80), we obtain

(89)

The strong dependence of the reciprocal radiative life-
time on the index p and the magnetic field H is deter-
mined by the multiplier Q0p. The dependences of the
reciprocal radiative lifetimes γra and γrb on the field H in
the vicinity of the resonance are plotted in Fig. 3.

6. NONRADIATIVE LIFETIMES 
OF THE MAGNETOPOLARON

We will not calculate the reciprocal nonradiative
lifetimes of the electron–hole pair in a quantum well in
a strong magnetic field far from the magnetopolaron
resonance because the nature of the processes responsi-
ble for these times remains unclear. One-phonon pro-
cesses are forbidden by the energy conservation law.
Possibly, two-phonon processes with the participation
of acoustic phonons make the main contribution. How-
ever, in the vicinity of the magnetophonon resonance,
there arises a contribution to the reciprocal lifetimes γp

(p = a and b) due to the finite lifetimes of the longitudi-
nal optical phonons comprising the magnetopolaron.
This contribution will be calculated in this section. In
this way, the lower limit of the quantities γp (p = a and
b) can be determined in the vicinity of the resonance.

In the quantum well, the phonon with the set of indi-
ces ν is characterized by the reciprocal nonradiative
lifetime γν governed by the phonon–phonon interac-
tion, for example, by the decay of one longitudinal opti-
cal phonon into two acoustic phonons. First, we derive
the relationship for the reciprocal lifetime γν. This life-
time can be written in the form

(90)

where *pp is the phonon–phonon interaction, |i〉  =

 is the initial state corresponding to one phonon
with the set of indices ν and the energy Ei = "ωLO, |f 〉  =

 is the final state of the phonon system with the set

of indices τ and the energy Ef = Eτ, and  is the
phonon operator corresponding, for example, to the
creation of two acoustic phonons. In our earlier work
[25], we calculated the reciprocal lifetimes γν and γp for
the model proposed in [22], according to which con-
fined and interface phonons with the same frequency
ωLO without dispersion participate in the formation of
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the polaron in the quantum well. In the present work,
we use an even simpler model in which the interaction
of electrons with confined phonons can be approxi-
mated by the Fröhlich interaction with bulk phonons
and the interaction with interface phonons is disre-
garded. In [24], we demonstrated that the interaction of
electrons with bulk phonons can be used for sufficiently
wide quantum wells.

In the case of bulk longitudinal optical phonons, the
set of indices ν reduces to the three-dimensional wave
vector q. The final phonon state is characterized by the
resultant three-dimensional wave vector q' and other
indices ϕ. For example, when the phonon decays into
two acoustic phonons, we have q' = q1 + q2.

0.4
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0.8

3

2

1

(a)γra/γ0, γa/γra

λa1

λa3

–1 0–2 1 2
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2
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γrb/γ0, γb/γrb
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Fig. 3. Magnetic-field dependences of the radiative and
nonradiative broadening of the excited level of the system
consisting of polaron ! and the hole with the quantum
numbers nh = 1 and l in the quantum well at p = (a) a and
(b) b. ∆E/"ωLO = 0.18 (this is characteristic of GaAs [24]).
Solid lines correspond to γrp/γ0, and dashed lines represent

γp/γrp at /γ0 = (1) 10, (2) 1, and (3) 0.1.γLO
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The matrix element in formula (90) can be defined
by the expression

(91)

Then, formula (90) can be rearranged to give

(92)

where Eq, ϕ is the energy of the final phonon state repre-
sented, for example, by two bulk acoustic phonons. In
the framework of the same model, the reciprocal nonra-
diative lifetime of the polaron can be deduced in the fol-
lowing form [25]:

(93)

Here, the upper (lower) sign corresponds to the polaron
state p = a (p = b), the quantity Q1p is given by relation-
ship (88), and the function U(q) was derived in [22] in
the form

(94)

where

ε0 (ε∞) is the static (high-frequency) permittivity,
_10 (q⊥ ) is defined by expression (68), and

(95)

In formulas (93)–(95), we used the designations given
in [22]. From a comparison of relationships (92) and
(93), we find that, in the vicinity of the polaron reso-
nance, i.e., under the condition

(96)

the reciprocal time γp is expressed through γq. As a
result, we obtain

(97)

(98)

Owing to the multiplier Q1p in expression (97), the
reciprocal lifetime γp strongly depends on the quantity
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λ = "(Ωe – ωLO) describing the deviation of the mag-
netic field from the resonance Ωe = ωLO. At resonance,
we have

(99)

for both terms p = a and b.
Now, we analyze the results obtained with the use of

relationship (93) far from the resonance Ωe = ωLO. It is
seen from Fig. 3 that, under the condition |λ| @ |A|, the
term a at λ > 0 and the term b at λ < 0 transform into
the electron level with the indices n = 1 and l. In this
case, according to formula (88), we have Q1p . A2/λ2.
As a result, from expression (93), we obtain

(100)

This quantity cannot be expressed through  but,
compared to it, includes the small multiplier A2/λ2. It is
worth noting that the argument of the δ function in for-
mula (100) corresponds to the transition from the elec-
tron level n = 1 to the level n = 0 with the emission, for
example, of two acoustic phonons. The quantity γp [for-
mula (100)] is determined to the second order in the
interaction of electrons with longitudinal optical
phonons and to the second order in the phonon–phonon
interaction. This quantity is one of the contributions to
the reciprocal nonradiative lifetime of the electron–
hole pair far from the magnetophonon resonance. Two
other branches of the terms, namely, a at λ < 0 and b at
λ > 0 (|λ| @ |A|), correspond to the state of an electron
at the level n = 0, l + one longitudinal optical phonon.
For these branches, we have Q1p . 1 and

(101)

as should be observed for the state including the longi-
tudinal optical phonon. Therefore, formula (93) cor-
rectly describes the limiting cases at |λ| @ |A|.

Thus, the reciprocal nonradiative lifetime γp of the
electron–hole pair sharply increases in the vicinity of
the intersection between the electronic terms and
reaches half the reciprocal lifetime of the longitudinal
optical phonon. At resonance Ωe = ωLO, the reciprocal
nonradiative lifetime for each term is no less than

/2.

7. RESULTS OF NUMERICAL CALCULATIONS

Figures 1 and 2 depict the dependences of the reflec-
tance 5(ωl) and absorptance !(ωl) for the three-level
system at different ratios between the parameters γr1(2),
γ1(2), and ω1 – ω2. These results should be used in the
case of any two excited, rather closely spaced levels in
the quantum well. At γr1(2) ! ω1 – ω2 and γ1(2) ! ω1 –
ω2, the results for two two-level systems are applicable.
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The dependences 5(ωl) and !(ωl) for the three-
level system at γr1 = γr2 = γr, γ1 = γ2 = γ, and γr @ γ are
depicted in Fig. 1. Curves 1 are obtained at γr < ω1 – ω2.
Curves 2 are constructed at γr = ω1 – ω2. Curve 3 in
Fig. 1a and curves 3–6 in Fig. 1b are plotted at γr > ω1 –
ω2. Curves 1 correspond to the dependences for two
two-level systems. The other curves exhibit a specific
behavior. In particular, the reflectance 5(ω0) at the
point ωl = ω0 in all three curves in Fig. 1a is close to
zero.

As for two-level systems, the reflectance and
absorptance at γr1(2) ! γ1(2) are considerably less than
unity and 5(ωl) ! !(ωl). At γr1(2) @ γ1(2), the absorp-
tance reaches values close to unity.

Figure 2 shows the dependences 5(ωl) and !(ωl)
for the three-level system at γr1 = γr2 = γr, γ1 = γ2 = γ, and
γr = γ. Curves 1 are obtained at γr < ω1 – ω2, curves 2
are constructed at γr = ω1 – ω2, and curves 3 are plotted
at γr > ω1 – ω2. It can be seen that the absorptance
reaches a maximum but never exceeds 0.5.

Below, the formulas obtained for the coefficients
!(ωl) and 5(ωl) in the case of the three-level system in
the quantum well will be used for the system comprised
of a magnetopolaron and a hole with the indices nh = 1
and lh = l. The energy levels of this system are deter-
mined by expressions (83) and (84). If the energy of the
system is reckoned from the level

relationship (83) is conveniently rewritten in the form

(102)

where λ = "(Ωe – ωLO), ∆E is the splitting of the terms
at λ = 0, and the upper (lower) sign corresponds to the
term p = a (p = b). With the use of relationships (89)
and (87), we obtain

(103)

where the constant γ0 is the reciprocal radiative lifetime
of the electron–hole pair with the indices ne = nh = 1 and
le = lh = l at λ = 0 without regard for the polaron effect.
The multiplier in the parentheses describes the depen-
dence of the quantity Ω0 entering into the expression
for γrp on the magnetic field. By using relationships (89)
and (97), the ratio between the nonradiative and radia-
tive reciprocal lifetimes can be estimated as

(104)

When plotting Figs. 3 and 4, we used the following
parameters for GaAs: me/mh = 0.2 and ∆E/"ωLO =
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0.18.5 According to the formulas derived in Section 4,
we obtain the relationship

(105)

which, with the use of the parameters taken from [21],
gives the estimate

(106)

Thus, the reciprocal lifetime γrp can be estimated (as
was done above), whereas the reciprocal lifetime γp

5 According to [24], the splitting of the terms is estimated to be
∆E . 6.65 × 10–3 eV for polaron A in the quantum well 300 Å
thick in GaAs. Since "ωLO = 0.0367 eV, we obtain the ratio
∆E/"ωLO . 0.181.
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Fig. 4. Dependences of the dimensionless (a) reflectance 5
and (b) absorptance ! on the magnetic field in the vicinity of
the resonance for polaron !. me/mh = 0.2, "ωLO = 0.036 eV,

∆E = 6.65 × 10–3 eV [24], "γ0 = 5.35 × 10–5 eV, /γ0 =

10. (1) "ωl = E0, (2) "ωl = E0 + ∆E/2, and (3) "ωl = E0 –
∆E/2. E0 is determined in Section 7. The given parameters
correspond to GaAs.
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remains unknown.6 For this reason, Figs. 3 and 4
present the results obtained at different ratios /γ0.

Figure 3 shows the dependences of the reciprocal
radiative lifetime γrp and the ratio γp/γrp on the magnetic
field in the vicinity of the magnetophonon resonance.
The dependences for the terms a and b are plotted in
Figs. 3a and 3b, respectively. The dependences of the
ratio γp/γrp on λ/∆E are constructed for three parameters

/γ0. As can be seen from Fig. 3, the reciprocal life-
times γrp and γp in the range of the magnetophonon res-
onance very strongly depend on the magnetic field.

The magnetopolaron effect is observed in the range
approximately from λ/∆E = –2 to λ/∆E = 2. The term a
at λ/∆E > 2 and the term b at λ/∆E < –2 transform into
the energy level of the electron–hole pair with the quan-
tum numbers of the electron and hole ne = nh = 1 and
le = lh = l. The term b at λ/∆E > 2 and the term a at
λ/∆E < –2 transform into the energy level of the system
composed of an electron–hole pair (with the quantum
numbers ne = 0, nh = 1, and le = lh = l) and one phonon.
This state involves the longitudinal optical phonon and
weakly interacts with the exciting light outside the
range of the magnetophonon resonance.

The energy splitting ∆E is very large in the case of
polaron A. Therefore, the conditions γrp ! ω1 – ω2 and
γp ! ω1 – ω2 are satisfied and the coefficients 5 and !
can be calculated in the approximation of two two-level
systems [see formulas (36) and (37) in Section 3]. The
expressions derived for the three-level system in Sec-
tion 3 should be used for the small splittings ∆E, which
can be observed for weakly coupled polarons [24, 25].

In the range of the magnetopolaron effect, the func-
tions 5(ωl) and !(ωl) should have two maxima at a
constant magnetic field H. At ωl = const, two maxima
should be observed in the functions 5(H) and !(H).

The coefficients 5(ωl) and !(ωl) depend on the
ratio /γ0. In the range of the ratios λ/∆E (i.e., the
fields H) at which γp/γrp @ 1, the absorptance is substan-
tially less than unity but exceeds the reflectance. For
curves 1 plotted in Fig. 3 at the ratio /γ0 = 10, this
range for both terms (a and b) covers almost the entire
magnetic field range in which the polaron effect is pro-
nounced. Actually, in this case, we have γa/γra = 1 at
λa1/∆E = 1.24 and γb/γrb = 1 at λb1/∆E = –1.82. In the
vicinity of the points λa1 and λb1, the absorption by the
terms a and b reaches a maximum (! = 1/2 and 5 =
1/4 at a maximum). In the ranges λ @ λa1 and λ ! λb1,
the polaron effect is of no significance. The second
maxima in the curves 5(ωl) and !(ωl) disappear. The
results obtained are similar to those for the pair with the
indices ne = nh = 1 and le = lh = l far from the polaron

6 In principle, the quantity γrp can be estimated from the line width
of one-phonon scattering in bulk GaAs.

γLO

γLO

γLO

γLO
PH
resonance. In this range, we have γp/γrp ! 1 and the
reflectance is larger than the absorptance.

In the other limiting case /γ0 = 0.1 (curve 3), the
inequality γp/γrp ! 1 is satisfied virtually over the entire
range of the magnetophonon resonance. This range
involves the resonance point λ = 0. The absorptance is
appreciably less than the reflectance, which is as large
as 5 = 1 at the points of both maxima in the curve
5(ωl). At λa3/∆E = –1.24 and λb3/∆E = 1.68, the radia-
tive and nonradiative reciprocal lifetimes become equal
to each other, which corresponds to the maximum
absorptance. The term a does not interact with the light
to the left of the point λa3, as judged from the very small
values of γra. The same holds true for the term b to the
right of the point λb3. Curves 2 in Fig. 3 correspond to
the intermediate case /γ0 = 1. The maximum
absorptance is observed at the resonance point λ = 0.
For the term a, the condition γa/γra < 1 is fulfilled at λ >
0 and the condition γa/γra > 1 is met at λ < 0. The oppo-
site situation occurs for the term b. The reflectance is
predominant at γp/γrp < 1, and the absorptance is domi-
nant at γp/γrp > 1.

The calculated dependences 5(H) and !(H) in the
vicinity of the magnetophonon resonance are displayed
in Fig. 4. Curves 1–3 are constructed at three different
frequencies ωl with the use of the parameters for GaAs
at the ratio /γ0 = 10.

8. CONCLUSIONS

The main results obtained in the present work can be
summarized as follows. The reflection and absorption
of light by a quantum well was analyzed in the case of
three-level electronic systems. The relationships for the
dimensionless reflectance and absorptance were
derived upon normal incidence of light on the quantum
well plane. The calculations were performed with due
regard for the radiative lifetimes of two excited levels in
the electronic system. The radiative lifetime of the elec-
tron–hole pair in the quantum well in a strong magnetic
field was calculated far from the magnetophonon reso-
nance at an arbitrary wave vector K⊥  of the pair in the
quantum well plane. The radiative lifetime of the sys-
tem composed of a magnetopolaron and a hole in the
valence band was determined. The expressions for the
contributions associated with finite lifetimes of longitu-
dinal optical phonons to the nonradiative lifetimes of
the polaron states were deduced. It was found that the
radiative and nonradiative lifetimes of the polarons
very strongly depend on the magnetic field H in the
vicinity of the magnetophonon resonance. The func-
tions !(H) and 5(H) were determined taking into
account the magnetopolaron effect.

γLO

γLO

γLO
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Abstract—The energy of an electron of an adatom chemisorbed on a size-quantized film is investigated as a
function of the external quantizing magnetic field. Consideration is given to the cases when the external mag-
netic field is directed parallel and transverse to the film surface. It is demonstrated that, as the magnetic field
increases, the energy of chemisorption jumpwise decreases. © 2002 MAIK “Nauka/Interperiodica”.
1. The specific features of chemisorption on size-
quantized films were investigated in [1–3]. It has been
demonstrated that the chemisorption energy is an oscil-
lating function of the film thickness due to specific fea-
tures of the energy spectrum and the density of states of
the electrons of a thin film. The chemical bonding
between an atom and the surface of a crystal has been
studied within the Anderson–Newns approach with the
use of model Hamiltonians [4–6]. According to the
Anderson–Newns model, the renormalized energy of
an electron of an adatom can be represented by the rela-
tionship Ea, s = εa + U〈ns〉 . Here, εa is the energy of an
electron of an isolated atom; U is the potential of the
intraatomic Coulomb repulsion; and 〈ns〉  is the pertur-
bation of the electron density of the atom due to the
interaction with the substrate, which is determined by

the expression 〈ns〉  = , where  is the

correlation function of the electron of the adatom and s
is the spin quantum number. The energy attenuation at
the electron energy level of the adatom can be written
in the form ∆ ≈ |V |2ρ, where ρ(W) is the density of
states of the electrons of the substrate (W is the conduc-
tion band width of the electrons of the film) and V is the
potential of hybridization of the seed electron energy
states of the adatom and the substrate.

At present, different versions of the Anderson–
Newns method with the use of model Hamiltonians
enjoy wide application. In particular, the charge
exchange in the course of interaction of atomic parti-
cles with the surface of a crystal was investigated in
the framework of a nonstationary model developed in
[7–11]. The distribution of the electron density in a
monoatomic adsorbed layer was examined in [12].
The derivation of quantum kinetic equations for a
“crystal + adatom” system on the microscopic level

ω/πgs ω( )d
∞–

∞∫ <
gs
<

1063-7834/02/4411- $22.00 © 22196
and the generalization of the Anderson–Newns model
within the Kadanoff–Baym formalism are presented
in [13, 14].

In the present work, based on the results obtained in
[14], we analyzed the influence of an external magnetic
field on the energy of an electron of an adatom chemi-
sorbed on a thin film. We considered two cases: (i) the
external quantizing magnetic field is directed trans-
versely to the film surface, and (ii) the external quantiz-
ing magnetic field is aligned parallel to the film surface.

2. The equations of motion for the Green’s functions
of an “adatom + thin film” electronic subsystem in the
stationary case have the form [14]

(1)

Here, λ stands for the quantum numbers characterizing
the motion of electrons of an adatom, ελ, s(ω) is the

energy of the adatom,  is the correlation function of
an electron of the adatom, gR, A are the retarded and
advanced Green’s functions of the electron of the ada-

tom, σR, A are the corresponding mass operators, and 
is the generalized collision integral. The mass operator

consists of two parts: σR, A =  + , where σ0 is
the mass operator of an isolated atom and σa is the con-
tribution to the mass operator of the electron of the ada-
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A ω( ){

λ''s''

∑–

+ σλ s λ''s'',
R ω( )gλ''s'' λ's', ω( ) } 0,=

ω ελ s ω( )–[ ] gλ s λ's',
R A, ω( )

– σλ s λ''s'',
R A, ω( )gλ''s'' λ's',

R A, ω( ) }{
λ''s''

∑ δλλ 'δss' .=

<

<

<

gs
<

σ
<

σ0
R A, σa

R A,
002 MAIK “Nauka/Interperiodica”



        

SPECIFIC FEATURES OF CHEMISORPTION 2197

   
tom due to the interaction with a thin film. This contri-
bution has the form

(2)

where G is the Green’s function of an electron of the
film and i, k is the set of quantum numbers describing
the motion of the electron in the film.

The equations of motion for the Green’s function of
an electron of the film are similar to Eqs. (1) and (2)
with appropriate substitution for the set of quantum
numbers describing the motion of the electron.

The system of equations (1) and (2), together with
the equations of motion for the Green’s functions of the
electrons of the film, describes the general case with
allowance made for all possible interactions of adatoms
with one another and with the substrate. Let us consider
the case when the interaction between adatoms is
absent. Moreover, we assume that an adatom has a sin-
gle energy level (in what follows, we will drop the
index λ). The correlation function of an electron of the
adatom, according to relationships (1), takes the fol-
lowing form (we assume that σ0 is taken into account in
the determination of the energy of the electron of the
atom in the absence of the interaction with the film):

(3)

Under the assumption that the hybridization potential is

constant, it can easily be shown that (ω) satisfies the
following expression:

(4)

For the correlation function of the electron of the film,
we obtain

(5)

where f(ω) is the Fermi–Dirac distribution function
and Aiks is the spectral function,

Here, Γ is the attenuation of single-particle states and
ReΣ is the renormalization of single-particle states due
to the interaction (the Coulomb and crystal potentials).
The self-consistent energy of the electrons of the sub-
strate can be determined according to the expression

σa λ s λ's', ,
R A,( ) ω( )

=  Vλ s iks'', ω( )Giks'' ; i 'k's'''
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Then, we obtain the expression for the spectral func-
tion:

(6)

where

is the renormalization constant. From expressions (1)–
(6), we obtain the correlation function of the electron of
the adatom in the following form:

(7)

where the spectral function of the electron of the ada-
tom has the form

(8)

Here,

When analyzing the expressions for the electron energy
of the adatom, the self-consistent energy is introduced
according to the definition Eas = (εas(ω) +
Λas(ω) , which, in turn, can be parametrized in
the usual manner: Eas = εa + U〈n–s〉 .

Further consideration depends on the concrete
expression for the electronic spectrum of the thin film.
This problem is considered in [1–3] in the absence of an
external magnetic field. Here, we analyze the case
when an external magnetic field is present.

3. Let us consider the case when the external mag-
netic field is directed parallel to the film surface. The
OZ axis is perpendicular to the film surface. The mag-
netic field is assumed to be such that the magnetic
length lB = (h/eB)–1/2 (h is the Planck constant, e is the
elementary charge, and B is the magnetic field induc-
tion) is of the same order of magnitude as the film thick-
ness L. Under the assumption that the film potential can

be approximated by the expression V(z) = m z2/2, we
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can exactly solve the Schrödinger equation and obtain
the following expression for the electron energy:

where  = (  + )1/2 and n = 0, 1, 2, … (ωc = eB/m
is the cyclotron frequency).

Consequently, the spectral function takes the form

Finally, in the approximation Γs  0, 〈ns〉  can be rep-
resented by the following expression:

(9)

where

is the renormalization constant of the adatom, and nF is
the number of discrete energy states below the Fermi
level.
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Fig. 1. Dependence of 〈n〉  on the dimensionless thickness
L(B)/L0 of the film in a constant magnetic field. B = 4 ×
103 T, L0 = 10–7 cm.
PH
For numerical calculations, it is necessary to estab-
lish a relationship between the chemical potential, the
film thickness, and the magnetic field. Within the above
approximation (Γs  0), the number of electrons in
the film can be determined from the expression

(10)

where µ is the chemical potential. The condition of fill-
ing of the nth discrete state has the form µ(n) = (n +
1/2). From expression (10), we determine the chemical
potential µ and, then, obtain the following condition:

(11)

According to formula (11), we can determine the film
thickness Ln at which the nth energy level is filled in a

constant magnetic field B: Ln(B) = L0(1 + B2/ )n(n +
1), where L0 = (N/V0)–1/3, V0 is the volume of the system,

and B0 = 2πh/e  = 4.12 × 103 T. It is assumed that

ω0 = 2πh/m . In the case when the film thickness L is
constant, the magnetic field Bn corresponding to filling
of the nth energy level is determined by the relationship

 + 1 = (L/L0)/n(n + 1). As the film thickness
increases and becomes equal to Ln the number of dis-
crete states below the Fermi level also increases and
reaches n. The reverse situation is observed with an
increase in the magnetic field: when the magnetic field
reaches Bn, the number of filled discrete energy states
decreases by unity.

Figure 1 presents the results of the numerical calcu-
lation of 〈ns〉  as a function of the film thickness in a con-
stant magnetic field. It is evident that the value of 〈ns〉
remains constant until the next discrete energy level is
filled. This is due to the approximation used for the film
potential. Upon filling of the next energy level, 〈ns〉
jumpwise increases, thus exhibiting an oscillating
dependence on the film thickness; consequently, there

N
mLxLy

πh2
---------------- ω̃

ω0
------ nF 1+( ) µ ω̃

2
---- nF 1+( )– ,=
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ω̃2 2πh2N
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Fig. 2. Dependence of 〈n〉  on the dimensionless magnetic
field B(L)/B0 at a constant thickness L of the film. B0 = 4 ×
103 T, L = 25L0, L0 = 10–7 cm.
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appears an oscillating dependence of the chemisorption
energy of an adatom on the film thickness. Figure 2
depicts the dependence of 〈ns〉  on the magnetic field at
a specified thickness of the film. It can be seen that, as
the magnetic field increases, the value of 〈ns〉  continu-
ously decreases and jumps when the number of filled
discrete energy levels decreases. Thus, an increase in
the quantizing magnetic field is accompanied by a
decrease in the chemisorption energy.

4. Let us now consider the case when the magnetic
field is directed transversely to the film surface. The
energy spectrum is totally quantized and has the form

Eni = ωc  + εi. Here, εi is the energy correspond-

ing to the motion of an electron across the film. The
spectral function of the adatom electron has the form

Here, ρ⊥  = zazΠ .

In this case, 〈ns〉  takes the following form:

(12)

When deriving expression (12), we disregarded the
quantities of the order of magnitude ≈(Γn, i/ωc)2 ! 1.
The calculations demonstrate that, qualitatively, the
dependences of 〈ns〉  on the film thickness and the mag-
netic field, in this case, remain unchanged.
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5. The experimental observation of the aforemen-
tioned effects under changes in the external magnetic
field and film thickness will make it possible to deter-
mine the specific features of the energy characteristics
of an adatom and the electronic subsystem of the film.
The decrease in the energy of interaction between the
adatom and the substrate in an external magnetic field
is of interest from the viewpoint of controlled changes
in the surface properties of thin films. The condition of
observation of oscillations in a magnetic field has the
form  @ T, h/τ (T is the absolute temperature and τ is
the relaxation time). Note that this condition is less
stringent than that for bulk samples: ωc @ T, h/τ.
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Abstract—Measurements performed at frequencies of 0.1–10 kHz on films of C70 fullerite revealed a negative
dielectric permittivity ε' < –1000. The largest drop in ε' occurred in the temperature interval 170–270 K and was
accompanied by frequency dispersion. The negative sign of the dielectric permittivity and its low-frequency dis-
persion are accounted for by the Lorentz correction to the local field acting on the conduction electrons. This
correction originates from the polarization of the electrons bound to impurity centers. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

C70 fullerite is a semiconductor with a band gap of
1.7–1.8 eV [1, 2]. Thermopower measurements made
after heat treatment at 200°C in vacuum showed C70
films to have n-type conduction [1]. The nature of the
donor centers remains unclear. The electrical conduc-
tivity σ and its activation energy E depend strongly on
the oxygen content in the C70 samples. Exposure to air
leads to an increase in E from 0.52 to 0.71 eV and a
decrease in σ at room temperature from 10–9 to
10−12 Ω−1 cm–1 [2]. This suggests that oxygen creates
compensation centers in C70 which capture electrons
from the donor centers and, thus, lower the Fermi level.

The low-frequency dielectric permittivity ε' of C70
measured at low temperatures has a constant positive
value of about 4; above 300 K, this permittivity
increases to 20, which is accompanied by frequency
dispersion [3]. This growth is believed [3] to be caused
by the intrinsic dipole relaxation of C70. Moreover, a
weak anomaly of ε' was observed near 300 K, which
has been associated [3] with a structural phase transi-
tion. The effect of oxygen on the dielectric permittivity
of C70 has not been studied. That this effect may be
quite strong is shown by measurements performed on
samples of C60 fullerite, which is close in electrical
properties to C70. For instance, ε' of C60 measured at
100 Hz can vary by up to a factor of five depending on
the exposure time in air at room temperature [4]. Here,
we also note that all of the above data were obtained on
samples that were subjected to ambient air after their
preparation. At the same time, annealing in vacuum was
shown not to restore completely the properties of sam-
ples that underwent oxidation [5]. This is particularly
valid in the case of C70, where this is believed [2] to be
the reason why no one has succeeded in reaching values
of E less than 0.5 eV, whereas in C60, E = 0.2 eV was
1063-7834/02/4411- $22.00 © 22200
achieved by vacuum annealing. Therefore, the only
way in which one can study a fullerite with a low oxy-
gen concentration lies in making measurements imme-
diately after the preparation of a sample, without taking
it out of the vacuum chamber (i.e., in situ). Indeed, the
measurements of the conductivity of C60 carried out in
this way showed E to be less by about one half and σ to
be higher by several orders of magnitude in comparison
with the results obtained after exposure to air [5]. We
have not succeeded in finding any mention on in situ
measurements of ε' in fullerites or of σ in C70.

The purpose of this study was to investigate the
dielectric permittivity and electrical conductivity of C70
fullerite films that were not subjected to ambient air.
The low-frequency (0.1–10 kHz) measurements per-
formed in this investigation revealed frequency-depen-
dent negative dielectric permittivity (Fig. 1a).

2. EXPERIMENT

The films used in our experiment were prepared in
vacuum at 10–5 Torr. The measurements were con-
ducted in situ in the vacuum chamber immediately after
deposition of C70 on a mica substrate. The 99%-pure
C70 powder was produced by the company MER. The
characteristic sublimation temperature was 750 K.
Prior to this deposition, planar interdigitated electrodes
were deposited on the substrate. The substrate temper-
ature during the film deposition was 470 K. X-ray
structural characterization performed at 300 K showed
that the films were single phase and had an hcp struc-
ture and cell parameters a = 10.593 Å and c = 17.262 Å.
The ac electric field strength between the electrodes
was 20 V/cm. The measurements were carried out in
the temperature region 100–500 K with a rate of tem-
perature variation of 2 K/min.
002 MAIK “Nauka/Interperiodica”
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The dielectric permittivity ε' and the electrical con-
ductivity σ of the film were calculated using the tech-
nique proposed in [6]. The film capacitance was found
by subtracting the capacitance of the substrate (mea-
sured before the film deposition) from the total capaci-
tance measured after the deposition.

As already mentioned, the most interesting finding
made in the measurements was the discovery of a high
negative dielectric permittivity and of its frequency dis-
persion in the low-frequency range (Fig. 1a). At low
temperatures, ε' is positive, but as the temperature is
increased, a fast drop in ε' is observed, accompanied by
a reversal of its sign and frequency dispersion. As the
temperature is increased further, ε' saturates and the
dispersion disappears. In this stage, ε' becomes less
than –103.

The temperature and frequency dependences of σ of
the C70 film (Fig. 1b) exhibit a typically semiconductor
character. At low temperatures, σ is only weakly tem-
perature-dependent and grows proportionally to ω0.9

(ω is the circular frequency): σLT = 9 × 10–10ω0.9. This
behavior of σ is characteristic of impurity conduction
[7]. In the high-temperature domain, σ is frequency-
independent and, hence, coincides with the dc con-

ductivity σc: σHT = σc = nτe/m*, where e0 is the
electronic charge, τe is the electron mean free time, and
m* is the effective electron mass. The conduction elec-
tron concentration n in the free-electron model for
parabolic bands is given by the relation n =
(1/4)π−1.5(2"−2m*kT)3/2exp(–E/kT), where E is the acti-
vation energy, which, as derived from the slope of the
logσ(1000/T) plot, is 0.33 eV. The room-temperature
conductivity is 1.5 × 10–2 S/m. Thus, E measured in situ
in films is indeed substantially smaller than E measured
[2] after exposure to air and the conductivity is several
orders of magnitude higher. The total electrical conduc-
tivity is the sum σ = σLT + σHT.

Now, one can find the temperature dependence of
the mean free time. This quantity was found to scale
with temperature as τe = 2.88 × 10–13T–3/2. Such a
dependence is typical of electron scattering from opti-
cal phonons.

The oxidation of films substantially affects the mag-
nitude and sign of their dielectric permittivity and the
character of its temperature dependence. Figure 2 dis-
plays temperature dependences of the dielectric permit-
tivity of a film measured after its exposure to air at dif-
ferent pressures for 12 h. As the air pressure in the
chamber increases, ε' of the film decreases in absolute
value. After air is admitted to atmospheric pressure, ε'
becomes positive, as was observed earlier with the C70
fullerite acted upon by air [3].

As the film undergoes oxidation, its high-tempera-
ture conductivity decreases and the activation energy
increases. As a result, the boundary of high-tempera-
ture conductivity shifts toward higher temperatures.
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specified in the graphs. The lines are plots of the calcula-
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F on conductivity.
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3. DISCUSSION
Let us consider the conditions conducive to the

onset of a negative dielectric permittivity. The relative
complex dielectric permittivity ε* is given by the
Drude–Lorentz relation

(1)

where ε∞ is the relative dielectric permittivity for ω 
∞, N is the concentration of charge carriers contributing
to ε* – ε∞, e is the charge of a carrier, m is the carrier
mass, ε0 is the absolute dielectric permittivity of vac-
uum, ω0 is the circular resonance frequency character-
izing the elastic restoring force, and τ is the relaxation

(decay) time. The term  = Fe2N/(ε0m) is the Lorentz
correction characterizing the local field enhancement
caused by charge polarization; F is the Lorentz factor
depending on the symmetry of the local environment
and the extent of carrier wave function localization. For
localized charges in the case of local spherical symme-
try, we have F = 1/3, and for free electrons, we have
F = 0, i.e., ωF = 0 [8].

Equation (1) permits one to find the real part of
dielectric permittivity ε' and the electrical conductivity
σ = ε''ε0ω, where ε'' is the imaginary part of ε*:

, (2a)

(2b)

where  =  –  – ω2. The necessary condition
for the onset of negative ε' is given by the inequality

ω2 >  – .

Let us see how this condition can be satisfied in our
experiment.

As follows from a comparison of the ε'(T) and σ(T)
plots (Fig. 1), within the temperature region where one
observes the largest drop and dispersion of ε', σ is
determined primarily by the conduction electrons. This
suggests that the behavior of ε' is likewise related to the
inertia of free electrons. In this case, the quantities e, N,
m, and τ in Eqs. (2) should be replaced by the corre-
sponding quantities for the conduction electrons, i.e.,
e0, n, m*, and τe. At high temperatures, where one can
neglect ε∞, Eqs. (2a) and (2b) yield

(3)

In the case of free electrons, as already mentioned, ω0

and ωF are zero and  = –ω2. Then, as follows from
Eq. (3), –ε' and σHT should depend on temperature in
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approximately the same way and be frequency-inde-
pendent. Because, as follows from experiment, this is
not the case, we assume that ωF ≠ 0. In view of the fact
that the effect of the Lorentz correction on ε' becomes

significant for  > ω2, we replace ωeff with ωF; in this
case, we find the following expression relating ε' to σ:

(4)

As pointed out earlier, at high temperatures, we have
σHT = σc. Therefore, Eq. (4) takes the form

(5)

As follows from Eq. (2b), for the equality σHT = σc to

hold, the condition  ! ω/τ should be satisfied; this
inequality can be recast in the form

(6)

This condition imposes certain constraints on the
choice of the F factor.

In the region of ε' saturation (the high-temperature
domain), according to Eq. (5), the following relation
should be valid:

(7)

where F0 = const and we have ε' = –F0. A comparison
with experiment shows that F0 = 1.2 × 103.

As the temperature decreases,  drops; therefore,

the product F  ~ 1/  increases and condition (6)

fails, to be replaced by the inverse inequality  @ 1/F
(Fig. 3). The expression for ε' assumes the form ε' =
−( )2/F0; i.e., ε' depends on frequency, and its absolute
value drops with decreasing temperature. The calcu-
lated values of ε' in the region of dispersion almost
coincide with the experimental figures (Fig. 1a). Simul-
taneously, the relation σHT = σc transforms to σHT =

/(ε0ωF0)2, and as the temperature decreases, the cal-

culated (1000/T) plots deviate from a straight line
toward smaller values, i.e., have a negative curvature.
Negative curvature is indeed observed in the experi-
mental plots. It is particularly pronounced below 250 K
in the graph constructed for 10 kHz (Fig. 1b). The lesser
curvature of the experimental graphs in comparison
with that of the plots of Eq. (7) suggests that in actual
fact F grows more slowly than proportional to (1/ )2.

That the growth of F with decreasing temperature
must be limited is obvious, because the Lorentz factor
can in no case be larger than unity. The constraint on the
values of F will appear in a natural way with decreasing
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temperature if we replace  in Eq. (7) with ε'', i.e., if
we replace the high-temperature conductivity σHT = σc

by the total conductivity σ = σc + σLT. In this case, as
one approaches the region of impurity conduction, the
growth of F will slow, subsequently stopping alto-
gether.

The replacement of σc by σ does indeed reduce the
negative curvature somewhat, but this decrease is obvi-
ously too small to reconcile the results with experiment.
To enhance the effect of the termσLT, we multiply it by
a coefficient k > 1:

(8)

The best fit of the experimental curves with the calcu-
lations is obtained for k = 7 (Fig. 1b). At the same time,
the agreement of the calculated with experimental
curves for ε' is also improved (Fig. 1a). All this means
that in reality the effect of impurity conductivity on the
Lorentz factor in the transition region is considerably
stronger than in the case when only the contribution of
the impurity conductivity to the total conductivity is
taken into account.

4. CONCLUSION
Thus, the temperature and frequency dependences

of the negative dielectric permittivity of C70 and of the
conductivity are fitted very well by the Drude–Lorentz
model, which assumes the conduction electrons to be
charge carriers. These electrons cannot, however, be
considered as completely free and, in order to correctly
describe the results of an experiment, one should intro-
duce the Lorentz correction. At low temperatures, the
value of the Lorentz factor is determined by the impu-
rity conductivity, which drops with increasing temper-
ature because of the increasing conductivity in the con-
duction band. In the temperature region where negative
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Fig. 3. Temperature behavior of ε'' and of the Lorentz factor F.
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permittivity is observed, the Lorentz factor is negligi-
ble, 10–2–10–11 (Fig. 3).

Oxidation of a sample reduces the absolute value of
ε' and, hence, the coefficient F0. Simultaneously, the
conductivity activation energy increases and the con-
ductivity itself decreases. This means that oxygen cre-
ates in C70 compensating impurity centers capturing
electrons from the donors, a circumstance which lowers
the Fermi level and increases the electron activation
energy. Thus, the decrease in F0 observed during C70
oxidation correlates with the decrease in the electron
concentration at the donor centers. One may, therefore,
expect that it is the polarization of these electrons that
is responsible for the weak polarization of the conduc-
tion electrons and for the Lorentz correction.

As C70 is oxidized still further, the positive lattice
permittivity begins to dominate and the total dielectric
permittivity becomes positive. This provides an answer
to the question of why negative ε' was not observed in
[3], where well-oxidized C70 fullerite samples were
measured. In the present study, the dielectric permittiv-
ity of fullerites was measured for the first time on non-
oxidized samples (in situ).

ACKNOWLEDGMENTS

The authors are indebted to N.F. Kartenko for the x-
ray characterization of the films, to Yu.A. Stotskiœ for
upgrading the experimental equipment, and to
V.V. Lemanov for useful discussions.

The support of the Russian State Program
“Fullerenes and Atomic Clusters” (project no. 3-2-98)
and program “Low-Dimensional Quantum Structures”
of the Presidium of the Russian Academy of Sciences is
gratefully acknowledged.

REFERENCES

1. D. Han, H. Habuchi, and S. Nitta, Phys. Rev. B 57 (7),
3773 (1998).

2. H. Habuchi, S. Nitta, D. Han, and S. Nanomura, J. Appl.
Phys. 87 (12), 8580 (2000).

3. P. Mondal, P. Lunkenheimer, and A. Loidl, Z. Phys. B
99, 527 (1996).

4. B. Pevzner, A. F. Hebard, and M. S. Dresselhaus, Phys.
Rev. B 55 (24), 16439 (1997).

5. T. Asakava, M. Sasaki, T. Shiraishi, and H. Koinuma,
Jpn. J. Appl. Phys. 34 (4), 1958 (1995).

6. O. G. Vendik, S. P. Zubko, and M. A. Nikolskiœ, Zh.
Tekh. Fiz. 69 (4), 1 (1999) [Tech. Phys. 44, 349 (1999)].

7. M. Pollak and T. H. Geballe, Phys. Rev. 122 (6), 1742
(1961).

8. J. C. Slater, Quantum Theory of Molecules and Solids,
Vol. 3: Insulators, Semiconductors, and Metals (McGraw-
Hill, New York, 1967; Mir, Moscow, 1969).

Translated by G. Skrebtsov
02



  

Physics of the Solid State, Vol. 44, No. 11, 2002, pp. 2204–2209. Translated from Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 2106–2111.
Original Russian Text Copyright © 2002 by Razbirin, Starukhin, Chugreev, Zgoda, Smirnov, Grushko, Kolesnik, Coheur, Liévin, Colin.

                                                 

FULLERENES 
AND ATOMIC CLUSTERS

                                
 Absorption Line Spectrum of the C60Cl24 Halofullerene
B. S. Razbirin*, A. N. Starukhin*, A. V. Chugreev*, A. S. Zgoda*, V. P. Smirnov**, 

Yu. S. Grushko***, S. G. Kolesnik***, P.-F. Coheur****,
J. Liévin****, and R. Colin****

* Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
e-mail: b.razbirin@pop.ioffe.rssi.ru

** St. Petersburg State Institute of Fine Mechanics and Optics, ul. Sablinskaya 14, St. Petersburg, 197101 Russia
*** Konstantinov Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad oblast, 188350 Russia

**** Université Libre de Bruxelles, Brussels, 1050 Belgium
Received December 29, 2001

Abstract—Optical spectra of the C60Cl24 halofullerene in the crystalline state, as well as of C60Cl24 matrix-
isolated molecules, were studied. In both cases, a rich line structure was revealed in absorption spectra in the
energy region 1.5–3.0 eV. An energy diagram of the electronic levels of the molecule which are responsible for
the observed optical transitions is proposed. The parameters of the geometrical structure of the C60Cl24 mole-
cule were calculated under the assumption of its having Th symmetry. These data were used in a theoretical
study of the embedment of the C60Cl24 molecule in a toluene crystal matrix, which leads to the formation of a
fine spectral structure (an analog of the Shpol’skiœ effect) observed experimentally in this study. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Halogenated fullerenes belong to the so-called syn-
thones, typical intermediate links in the preparation of
a number of fullerene derivatives that have application
potential. Therefore, investigation of the physical prop-
erties and, in particular, the electronic structure of
halofullerenes by optical methods is currently a prob-
lem of primary interest. Combining fluorine, chlorine,
or bromine with C60 produces stable halofullerene mol-
ecules with different stoichiometries [1–3] with the for-
mation of strong covalent bonds, whereas the iodof-
ullerenes exhibit weak van der Waals bonds of molecu-
lar iodine with the carbon cage.

Under normal conditions, the halofullerenes are
molecular crystals. At the same time, they can be dis-
solved in a number of organic solvents with their
molecular structure being conserved, which permits a
comparative study of their optical spectra both in the
crystalline state (in fullerites) and in the molecular
state, in the form of a frozen gas of matrix-isolated mol-
ecules. This communication presents the results of a
study of optical electronic spectra made on the least
studied fullerene, C60Cl24, in both the crystalline and
molecular states. It is first established that, in contrast
to other halofullerenes, C60Cl24 has a distinct line struc-
ture in the near-IR and visible regions of the spectrum.
We also briefly describe the method used to synthesize
C60Cl24 and the results obtained in a theoretical investi-
gation of the geometrical structure of this molecule
(assuming it to have Th symmetry).
1063-7834/02/4411- $22.00 © 22204
2. PREPARATION OF C60Cl24

C60Cl24 was synthesized by chlorinating crystalline
C60 in a chlorine environment under heating. The C60

fullerene was isolated from fullerene-containing soot
prepared from spectroscopically pure graphite rods by
the standard electric-arc technique of Krätschmer [4].
The isolation and purification were achieved by selec-
tive recrystallization, followed by flash chromatogra-
phy on activated carbon and vacuum annealing. The
purity of the C60 thus obtained, as derived from high-
performance liquid chromatography (HPLC) data
obtained on a C18-silica gel stationary-phase column,
was 99.9%+. The chlorine was produced by oxidizing
HCl in a concentrated solution of chromic acid under
heating, dried successively over CaCl2 and P2O5, and
purified of oxygen by passing over porous charcoal at
750°C. The C60 was heated in the dark at 310°C in a
chlorine flow of 15 ml/min, with the sample weight
controlled periodically. It was found that the weight of
the reaction product increased, to approach asymptoti-
cally the value corresponding to the C60Cl24 formula.
We succeeded in reaching the maximum chlorine con-
tent in the molecule, which corresponded to an atomic
carbon/chlorine ratio of 60 : 23.97 (Fig. 1). These data
suggest that the original product obtained under the
given conditions of preparation had no molecules con-
taining more than 24 chlorine atoms.

The product was a fine-grained, yellowish-brown
powder well soluble in organic solvents.
002 MAIK “Nauka/Interperiodica”
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3. THE GEOMETRIC STRUCTURE
OF THE C60Cl24 MOLECULE

The lines seen in vibrational spectra of the C60Cl24
halofullerene are either Raman-or IR-active [5], which
means that the molecule has inversion symmetry. Thus,
there are grounds to believe that the symmetry of the
C60Cl24 molecule is Th, similar to that of C60Br24. In this
structure, all the chlorine atoms are equivalent.

We calculated the geometric structure of the C60Cl24
molecule using universal force field (UFF) parameteriza-
tion [6]. Then, the C60Cl24 geometry was optimized at the
Hartree–Fock semiempirical AM1 (Austin Model 1)
quantum-chemical level with the use of the Gaussian 98
code [7].

This molecule has C–C bonds of five types, 72 of
which are single and the remaining 18 of which are
double (Fig. 2). Table 1 lists the results of the calcula-
tions for C60Cl24 and compares them with the figures
obtained for C60Br24 by us by using the same method
and with experimental data from [1]. The single C–C
bonds in the C60Cl24 molecule are longer than those in
C60Br24, and the double bonds are somewhat shorter.
The calculated length of the C–Cl bond (1.7507 Å) is
noticeably less than that of the corresponding C–Br
bond in C60Br24. An AM1 analysis of the populations of
the molecular orbitals shows the electron density in the
C60Cl24 molecule to be shifted toward the chlorine
atoms. Each chlorine atom donates to the fullerene cage
an average charge of +0.0055 |e |, and this charge is dis-
tributed primarily over the carbon atoms with sp2-
hybridized orbitals. In contrast to C60Br24, where all
carbon atoms have an excess positive charge as a result
of the strongly shifted electron density, the carbon
atoms with sp3- and sp2-hybridized orbitals in C60Cl24
are short of positive charge or have an excess of it,
respectively.

6

0 10

C60Cl24

Duration of chlorination, hours

12

18

24

20 30 40

C
l/C

60
 r

at
io

 in
 C

60
C

l n

Fig. 1. Mass of the reaction product plotted as a function of
the reaction time.
PHYSICS OF THE SOLID STATE      Vol. 44      No. 11      200
4. OPTICAL SPECTRA OF C60Cl24

Spectroscopic studies were carried out on a DFS-12
double-monochromator-based setup with a reverse dis-
persion of 0.5 nm/mm. Spectra were measured with an
FÉU-79 PM tube in the photon counting mode. A
C60Cl24 polycrystalline sample was a layer of powdery
material 100–200 µm thick sandwiched between two
glass plates. The samples of matrix-isolated molecules
were prepared by freezing the fullerene solution in an
organic solvent placed in a glass ampoule.

Figure 3 displays a transmission spectrum of poly-
crystalline C60Cl24 measured at T = 80 K. The spectrum
is seen to consist of a large number of absorption lines
of different widths, the widths increasing toward
shorter wavelengths. The observed spectrum can be

a
b

c

d

e

Fig. 2. Geometric structure of the C60Cl24 molecule.

Table 1.  Geometrical structure and charge distribution in
halofullerene molecules, obtained by quantum chemical cal-
culations

C60Cl24 C60Br24

C–C bond length, Å

a 1.4876 1.4828

b 1.5272 1.5235

c 1.5231 1.5187

d 1.3537 1.3559

e 1.3351 1.3367

C–X bond length, Å

1.7507 1.9425

Charge distribution

Average charge per 
halogen atom

+0.005488|e| +0.09325|e|

Total charge trans-
ferred to carbon cage

+0.1317|e| +2.238|e|
2
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Fig. 3. Absorption spectrum of C60Cl24 crystalline powder.
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1.6

L
um

in
es

ce
nc

e,
 a

rb
. u

ni
ts

Energy, eV
1.7 1.8 1.9

1

2

3

hω6

hω5

hω4
hω3hω2hω1

E0–0
A

Fig. 4. Spectra of (1, 2) absorption and (3) luminescence of
(2) C60Cl24 crystalline powder and of (1, 3) matrix-isolated
C60Cl24 molecules in a matrix of 1,2,4-chlorobenzene. The
dips in the luminescence spectrum observed in the interval
1.69–1.76 eV are caused by reabsorption of the radiation.
T = 80 K.
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divided, in a first approximation, into three groups of
lines. We denote them by A, B, and C. The long-wave-
length group (A) is characterized by the smallest line-
width (the FWHM is ≈10 meV) and is confined to the
energy interval 1.5–1.8 eV. The second group (B) is
observed in the energy interval 2.3–2.5 eV. The line
halfwidth is ≈20 meV. The third group (C) consists of
two bands of halfwidth ≈50 meV. Within each group,
one can isolate lines due to purely electronic transi-
tions, as well as lines associated with their vibrational
replicas. Table 2 lists the energies of all the line series
observed (A, B, C) and their tentative assignment. The
table specifies the energies of the purely electronic tran-
sitions (E0–0) and of the corresponding vibrational
quanta. We note that the line peaking at 1.817 eV is
broader and apparently associated with more than one
vibrational mode with energy in the interval 50–
80 meV.

The C60Cl24 luminescence is extremely weak, which
implies that a considerable role is played by nonradia-
tive processes. At T = 80 K, we succeeded in observing
only three weak emission lines in the interval 1.55–
1.66 eV, which approximately coincide energywise
with the corresponding absorption lines (Fig. 4).

Our study of C60Cl24 in frozen organic solvents per-
formed at T = 80 K showed that the spectra of matrix-
isolated molecules virtually do not differ from those of
the C60Cl24 crystalline powder (Fig. 4). The only differ-
ences that are observed are a slight line narrowing and
some intensity redistribution between them. All this
indicates a clearly pronounced molecular character of
the C60Cl24 crystal. Figures 4 and 5 illustrate in more
detail the spectra of groups A and B. We note that the
intensity of the long-wavelength line group A is approx-
imately one-fifth that of the short-wavelength lines B
and C. This suggests that type-A transitions occur with
a lower probability.

Theoretical calculations of electronic energy levels
of the C60Cl24 molecule are not found in the literature.
Therefore, we propose a variant of the electronic level
diagram of the molecule in the region of the HOMO–
LUMO transitions which is based only on an analysis
of our experimental data (Fig. 6). In accordance with
this diagram, the line group A corresponds to transitions
between levels 2 and 3; line group B, to the 1  3
transitions; and line group C, to the 1  4 transitions.
The 2  4 transitions are manifest extremely weakly
in the spectrum, only in the form of barely seen features
in the absorption spectrum in the interval 1.8–1.9 eV.
The large linewidth observed in the 1  4 transitions
is possibly associated with short electron lifetimes on
level 4 because of a fast excitation conversion to level 3
accompanied by the emission of a vibrational quantum
of the molecule with "ω ≈ 0.33 eV (264 cm–1). Approx-
imately the same vibrational quanta ("ω ≈ 31 and
37 meV) were observed by us in the vibronic absorp-
tion spectrum, as well as in the Raman spectrum ("ω ≈
34 meV). The characteristic conversion time should be
YSICS OF THE SOLID STATE      Vol. 44      No. 11      2002



ABSORPTION LINE SPECTRUM OF THE C60Cl24 HALOFULLERENE 2207
Table 2.  Energy positions of the lines observed in the absorption spectra of C60Cl24 at T = 80 K 

Transitions A Transitions B

No. E, eV assignment "ωi, meV No. E, eV assignment "ωi, meV

1 1.522 E0–0 1 2.313 E0–0

2 1.538 2 2.340

3 1.549 3 2.357 E0–0

4 1.566 4 2.377  + "ω1 37

5 1.579 5 2.392  + "ω2 52

6 1.614 6 2.409  + "ω3 69

7 1.632 7 2.422  + "ω4 82

8 1.650 E0–0 8 2.444  + "ω5 104

9 1.669 9 2.456  + "ω6 116

10 1.693 E0–0 10 2.471  + "ω7 131

11 1.734 11 2.485  + "ω8 145

12 1.753 12 2.514  + "ω9 174

13 1.761 E0–0

14 1.784  + "ω1 31
Transitions C

15 1.817  + "ω2 64

16 1.846  + "ω3 93 1 2.67

17 1.861  + "ω4 108 2 2.77  + "ω1 100

18 1.873  + "ω5 120

19 1.939  + "ω6 186

20 1.979

E0–0*

E0–0*

E0–0*

E0–0*

E0–0*

E0–0*

E0–0*

E0–0*

E0–0*

E0–0* E0–0*

E0–0*

E0–0*

E0–0* E0–0*

E0–0* E0–0*

E0–0*

E0–0*
on the order of 0.1 ps, which is in reasonable agreement
with current ideas on the relaxation processes occurring
in molecules and crystals. We believe each of the levels
of this diagram to have a complex structure, which may
account for the presence of several E0–0 lines in the
type-A and B transitions at T = 80 K.

The width of the lines of groups A (10 meV) and B
(20 meV) is due to inhomogeneous broadening, as well
as to interaction with acoustic vibrations of the C60Cl24
lattice or of the matrix. In certain cases, the broadening
associated with the latter effect can be eliminated by
properly choosing the corresponding matrix producing
an optical counterpart of the Mössbauer effect [8, 9]. In
this case, spectra of a number of fullerene molecules
(C70, C60, and some derivatives) reveal a fine line struc-
ture corresponding to pure electronic transitions [10].
This is similar to the Shpol’skiœ effect, which was
observed in aromatic molecules embedded in frozen
solutions in organic solvents (n-paraffines) [11].
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In the C60Cl24–toluene crystal matrix system, in
samples cooled to a temperature of 2 K, we succeeded
in observing the formation of a fine structure in the
lines  (E = 1.753 eV) and  (E = 2.340 eV), as

well as a vibrational satellite structure in the  line
(Fig. 7). The linewidth of the fine structure of line A is
1 meV, and that of line B is 2 meV. This structure dis-
appears as the temperature is raised to ≈30 K. There is
no fine structure in the C60Cl24–glass matrix system. We
believe that this structure of the C60Cl24 spectrum orig-
inates from the Shpol’skiœ effect.

It appears logical to assume that the fine structure in
the  and  lines is associated with the molecule
occupying several inequivalent sites in the matrix. In
connection with this, we carried out a theoretical study
of the structure of the C60Cl24 centers in a toluene
matrix.

A0–0* B0–0*

B0–0*

A0–0* B0–0*
02
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The geometry of the C60Cl24 molecule was chosen in
accordance with the Th symmetry and the parameters
determined in this work and in [12]. The nonvalent
interactions between the C60Cl24 molecule and the mol-
ecules of crystalline toluene were simulated by the
interatomic potentials taken from [13]. The interatomic
interaction in [13] had the form of the Lennard–Jones
potential with parameters chosen [13] such as to obtain
a good fit between the calculated and experimental data
for several model substances. The toluene crystal
matrix was simulated by a 60-molecule fragment of it.
The matrix represents a high-temperature modification
of the toluene crystal lattice, which has, according to

[14], monoclinic symmetry P21/C .

The position, dimensions, and shape of the crystal-
matrix cavity for a C60Cl24 molecule were determined
by the following technique. The linear dimensions of

C2h
5( )

4

3

2

1

A B C

LUMO

HOMO

1.
52

 e
V

Fig. 6. Electronic-level diagram of the C60Cl24 molecule
accounting for the experimental spectra.
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Fig. 7. (1, 2) Fine structure of absorption lines A and B of
the C60Cl24 molecule in the crystal matrix of toluene. (3, 4)
The spectrum of the molecule in the glassy toluene matrix
does not have a fine structure. T = 80 K.
PH
the cavity (for the C60Cl24 molecule in toluene) cannot
be less than ~14.6 Å, because otherwise the repulsive
(positive) part of the energy with which fullerene atoms
interact with atoms of the crystal matrix would become
too high for the incorporation of the fullerene molecule
into the cavity of the crystal matrix to be energetically
favorable. However, the smaller the number of toluene
molecules that have to be removed to create the cavity,
the more energetically favorable its formation. There-
fore, in order to determine the position, dimensions,
and shape of the cavity, we scanned the irreducible part
of the primitive cell of the toluene crystal by a sphere of
radius 7.3 Å and found, for each position of the sphere’s
center, the number of crystal molecules that have at
least one atom located within the sphere (it is the
removal of such atoms that produces a cavity for the
C60Cl24 molecule); thereafter, we chose the variants of
the cavity that require removal of the smallest number
of toluene molecules from the crystal. Finally, we
established that the most energetically preferable are
cavities centered at a common point with the coordi-
nates rc = 0.636a + 0.227b + 0.477c and at equivalent
points; these cavities are obtained by removing 17 tol-
uene molecules (the primitive cell of the crystal con-
tains eight molecules). In such a cavity, we found sev-
eral deep energy minima (corresponding to different
positions of the C60Cl24 molecule in the matrix); it is
with these minima that one should apparently identify
experimental points in the optical spectra.

The existence of a comparatively small number of
possible energetically favorable positions of the mole-
cule incorporated into the toluene crystal matrix corre-
lates with the small number of lines due to purely elec-
tronic transitions that are observed in the spectrum of
this system. Taking into account the relaxation of the
crystal matrix molecules around the embedded C60Cl24
molecule should permit a more detailed comparison of
the theoretical and experimental results.
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